#### SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix A Water Supply Servicing March 29, 2022

#### Appendix A WATER SUPPLY SERVICING

#### A.1 DOMESTIC WATER DEMAND ESTIMATE

#### <u>Wellings of Stittsville Phase 2 - 20 Cedarow Court</u> - <u>Domestic Water Demand Estimates</u> - Based on Wellings of Stittsville Site Phase 2 (160401511)

| Building ID                           | Area              | Population | Daily Rate of       | Avg Day Demand |          | Max Day | Demand <sup>2,3</sup> | Peak Hour Demand 2,3 |       |  |  |
|---------------------------------------|-------------------|------------|---------------------|----------------|----------|---------|-----------------------|----------------------|-------|--|--|
|                                       | (m <sup>2</sup> ) |            | Demand <sup>1</sup> | (L/min)        | (L/s)    | (L/min) | (L/s)                 | (L/min)              | (L/s) |  |  |
|                                       |                   |            |                     |                |          |         |                       |                      |       |  |  |
| Phase 2 and Phase 3                   |                   |            |                     |                |          |         |                       |                      |       |  |  |
| Residential                           | -                 | 441        | 350                 | 107.2          | 1.79     | 268.0   | 4.47                  | 589.5                | 9.83  |  |  |
| Commercial and communal Amenity Areas | 4726              | -          | 28,000              | 9.2            | 9.2 0.15 |         | 0.23                  | 24.8                 | 0.41  |  |  |
|                                       |                   |            |                     |                |          |         |                       |                      |       |  |  |
| Phase 4                               |                   |            |                     |                |          |         |                       |                      |       |  |  |
| Residential                           | -                 | 312        | 350                 | 75.9           | 1.26     | 189.7   | 3.16                  | 417.4                | 6.96  |  |  |
|                                       |                   |            |                     |                |          |         |                       |                      |       |  |  |
| Total Site :                          |                   |            |                     | 192.3          | 3.20     | 471.5   | 7.86                  | 1031.7               | 17.19 |  |  |

1. 28,000 L/gross ha/day is used to calculate water demand for retail, restaurants and office space.

2. The City of Ottawa water demand criteria used to estimate peak demand rates for commercial space are as follows:

maximum day demand rate = 1.5 x average day demand rate maximum hour demand rate = 1.8 x maximum day demand rate

3. The City of Ottaw water demand criteria used to estimate peak demand rates for residential areas are as follows: maximum day demand rate = 2.5 x average day demand rate

maximum hour demand rate = 2.2 x maximum day demand rate

#### SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix A Water Supply Servicing March 29, 2022

#### A.2 FIRE FLOW REQUIREMENTS PER FUS



#### FUS Fire Flow Calculation Sheet

### Stantec Project #: 160401317 Project Name: 20 Cedarow Court Date: 9/1/2021 Fire Flow Calculation #: 1 Description: Phase 2 and 3

Notes: 6 storey building with 2hr horizontal firewalls between each floor

| Step | Task                                        |                                                                 | Value Used               | Req'd Fire<br>Flow (L/min) |                             |                                          |                               |      |       |  |  |  |
|------|---------------------------------------------|-----------------------------------------------------------------|--------------------------|----------------------------|-----------------------------|------------------------------------------|-------------------------------|------|-------|--|--|--|
| 1    | Determine Type of Construction              |                                                                 | 0.8                      | -                          |                             |                                          |                               |      |       |  |  |  |
| 2    | Determine Ground Floor Area of One Unit     |                                                                 |                          | 4456                       | -                           |                                          |                               |      |       |  |  |  |
| 2    | Determine Number of Adjoining Units         |                                                                 |                          | 1                          | -                           |                                          |                               |      |       |  |  |  |
| 3    | Determine Height in Storeys                 |                                                                 | Does not i               | nclude floor               | s >50% belov                | v grade or op                            | en attic space                | 1    | -     |  |  |  |
| 4    | Determine Required Fire Flow                |                                                                 | (F                       | = 220 x C x A              | <sup>1/2</sup> ). Round t   | o nearest 100                            | 0 L/min                       | -    | 12000 |  |  |  |
| 5    | Determine Occupancy Charge                  |                                                                 | -15%                     | 10200                      |                             |                                          |                               |      |       |  |  |  |
|      |                                             |                                                                 |                          | c                          | onforms to N                | IFPA 13                                  |                               | -30% |       |  |  |  |
|      | Determine Sprinkler Reduction               |                                                                 |                          | -10%                       | -4080                       |                                          |                               |      |       |  |  |  |
| 0    | Determine spinikler keduciion               |                                                                 |                          | 0%                         |                             |                                          |                               |      |       |  |  |  |
|      |                                             |                                                                 |                          | 100%                       | L                           |                                          |                               |      |       |  |  |  |
|      |                                             | Direction                                                       | Exposure<br>Distance (m) | Exposed<br>Length (m)      | Exposed Height<br>(Stories) | Length-Height<br>Factor (m x<br>stories) | Construction of Adjacent Wall | -    | -     |  |  |  |
|      |                                             | North                                                           | 10.1 to 20               | 30                         | 6                           | > 120                                    | Wood Frame or Non-Combustible | 15%  |       |  |  |  |
| 7    | Determine Increase for Exposures (Max. 75%) | East                                                            | 20.1 to 30               | 82                         | 5                           | > 120                                    | Wood Frame or Non-Combustible | 10%  | 2079  |  |  |  |
|      |                                             | South                                                           | > 45                     | 123                        | 1                           | > 120                                    | Wood Frame or Non-Combustible | 0%   | 37/0  |  |  |  |
|      |                                             | West                                                            | 10.1 to 20               | 82                         | 1                           | 61-90                                    | Wood Frame or Non-Combustible | 14%  |       |  |  |  |
|      |                                             | Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min |                          |                            |                             |                                          |                               |      |       |  |  |  |
|      | Determine Final Required Fire Flow          | Total Required Fire Flow in L/s                                 |                          |                            |                             |                                          |                               |      |       |  |  |  |
| Ů    | Determine rindi kequiled rile flow          |                                                                 |                          |                            | Required Du                 | ration of Fire I                         | low (hrs)                     |      | 2.00  |  |  |  |
|      |                                             |                                                                 |                          |                            | Required Vo                 | olume of Fire F                          | low (m³)                      |      | 1200  |  |  |  |



#### FUS Fire Flow Calculation Sheet

Stantec Project #: 160401317 Project Name: 20 Cedarow Court Date: 9/1/2021 Fire Flow Calculation #: 1 Description: Phase 4

Notes: 6 storey building with 2hr horizontal firewalls between each floor

| Step | Task                                        |                                                                 | Value Used               | Req'd Fire<br>Flow (L/min) |                             |                                          |                               |      |       |  |  |  |
|------|---------------------------------------------|-----------------------------------------------------------------|--------------------------|----------------------------|-----------------------------|------------------------------------------|-------------------------------|------|-------|--|--|--|
| 1    | Determine Type of Construction              |                                                                 | 0.8                      | -                          |                             |                                          |                               |      |       |  |  |  |
| 2    | Determine Ground Floor Area of One Unit     |                                                                 |                          | 3192                       | -                           |                                          |                               |      |       |  |  |  |
| 2    | Determine Number of Adjoining Units         |                                                                 |                          | 1                          | -                           |                                          |                               |      |       |  |  |  |
| 3    | Determine Height in Storeys                 |                                                                 | Does not i               | nclude floor               | s >50% belov                | v grade or op                            | en attic space                | 1    | -     |  |  |  |
| 4    | Determine Required Fire Flow                |                                                                 | (F                       | = 220 x C x A              | <sup>1/2</sup> ). Round t   | o nearest 100                            | 0 L/min                       | -    | 10000 |  |  |  |
| 5    | Determine Occupancy Charge                  |                                                                 | -15%                     | 8500                       |                             |                                          |                               |      |       |  |  |  |
|      |                                             |                                                                 |                          | c                          | onforms to N                | IFPA 13                                  |                               | -30% |       |  |  |  |
| 4    | Determine Sprinkler Reduction               |                                                                 |                          | -10%                       | -3400                       |                                          |                               |      |       |  |  |  |
| °    | Determine spinkler keduction                |                                                                 |                          | 0%                         |                             |                                          |                               |      |       |  |  |  |
|      |                                             |                                                                 |                          | 100%                       |                             |                                          |                               |      |       |  |  |  |
|      |                                             | Direction                                                       | Exposure<br>Distance (m) | Exposed<br>Length (m)      | Exposed Height<br>(Stories) | Length-Height<br>Factor (m x<br>stories) | Construction of Adjacent Wall | -    | -     |  |  |  |
|      |                                             | North                                                           | > 45                     | 122                        | 1                           | > 120                                    | Wood Frame or Non-Combustible | 0%   |       |  |  |  |
| 7    | Determine Increase for Exposures (Max. 75%) | East                                                            | 30.1 to 45               | 54                         | 5                           | > 120                                    | Wood Frame or Non-Combustible | 5%   | 2125  |  |  |  |
|      |                                             | South                                                           | 10.1 to 20               | 122                        | 6                           | > 120                                    | Wood Frame or Non-Combustible | 15%  | 2123  |  |  |  |
|      |                                             | West                                                            | 30.1 to 45               | 28                         | 1                           | 0-30                                     | Wood Frame or Non-Combustible | 5%   |       |  |  |  |
|      |                                             | Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min |                          |                            |                             |                                          |                               |      |       |  |  |  |
|      | Determine Final Required Fire Flow          | Total Required Fire Flow in L/s                                 |                          |                            |                             |                                          |                               |      |       |  |  |  |
| Ů    | Determine rindi kequiled rile flow          |                                                                 |                          |                            | Required Du                 | ration of Fire F                         | low (hrs)                     |      | 2.00  |  |  |  |
|      |                                             |                                                                 |                          |                            | Required Vo                 | olume of Fire F                          | low (m³)                      |      | 840   |  |  |  |

#### SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix A Water Supply Servicing March 29, 2022

#### A.3 BOUNDRY CONDITIONS

#### **Boundary Conditions - 20 Cedarow Court**

October-19

| <b>D</b> ecomposite  | Demand |       |  |  |  |  |  |  |  |
|----------------------|--------|-------|--|--|--|--|--|--|--|
| Scenario             | L/min  | L/s   |  |  |  |  |  |  |  |
| Average Daily Demand | 156    | 2.60  |  |  |  |  |  |  |  |
| Maximum Daily Demand | 388    | 6.46  |  |  |  |  |  |  |  |
| Peak Hour            | 850    | 14.17 |  |  |  |  |  |  |  |
| Fire Flow Demand #1  | 16,020 | 267   |  |  |  |  |  |  |  |

# of connections

Date Provided

2

#### Location:



#### **Results:**

**Connection 1 - Cedarow Crescent** 

| Demand Scenario     | Head<br>(m) | Pressure <sup>1</sup> (psi) |
|---------------------|-------------|-----------------------------|
| Maximum HGL         | 161.1       | 80.3                        |
| Peak Hour           | 157.7       | 75.5                        |
| Max Day plus Fire 1 | 150.2       | 64.8                        |

<sup>1</sup> Ground Elevation = 104.6m

#### **Connection 2 - Wellings Pvt**

| Demand Scenario     | Head<br>(m) | Pressure <sup>1</sup> (psi) |
|---------------------|-------------|-----------------------------|
| Maximum HGL         | 161.1       | 80.3                        |
| Peak Hour           | 157.7       | 75.4                        |
| Max Day plus Fire 1 | 149.6       | 63.9                        |

<sup>1</sup> Ground Elevation = 104.7m

#### Notes:

- 1. Pressure reducing valve is required since the maximum pressure exceeds 80 psi.
- 2. Looping of the watermain is required to decrease vulnerability of the water system in case of breaks.
- 3. Confirm the ownership of the watermain on Wellings Private.

#### Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

#### SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix B Wastewater Servicing March 29, 2022

#### Appendix B WASTEWATER SERVICING

B.1 SANITARY SEWER DESIGN

| (Single Contraction of the second sec |      | SUBDIVISION:<br>Nautical Lands Group - Wellings of<br>Stittsville Senior's Living and |           |           |           |             | SANITARY SEWER<br>DESIGN SHEET |            |        |            |       |      | DESIGN PARAMETERS |       |            |              |             |         |        |             |              |       |        |              |         |            |         |            |          |        |       |        |           |        |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------|-----------|-----------|-----------|-------------|--------------------------------|------------|--------|------------|-------|------|-------------------|-------|------------|--------------|-------------|---------|--------|-------------|--------------|-------|--------|--------------|---------|------------|---------|------------|----------|--------|-------|--------|-----------|--------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | E                                                                                     | Extendica | are L.T.C |           |             |                                |            | (Cit   | ty of Otta | wa)   |      |                   |       | MAX PEAK F | ACTOR (RES.  | )=          | 4.0     |        | AVG. DAILY  | FLOW / PERSC | DN    | 280    | L/p/day      |         | MINIMUM VE | ELOCITY |            | 0.60     | ) m/s  |       |        |           |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | DATE:                                                                                 |           | 8/31      | /2021     |             |                                |            |        |            |       |      |                   |       | MIN PEAK F | ACTOR (RES.) | =           | 2.0     |        | COMMERCIA   | AL           |       | 28,000 | L/ha/day     |         | MAXIMUM V  | ELOCITY |            | 3.00     | ) m/s  |       |        |           |        |        |
| Stantec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | REVISION:                                                                             |           |           | 2         |             |                                |            |        |            |       |      |                   |       | PEAKING FA | CTOR (INDUS  | STRIAL):    | 2.4     |        | INDUSTRIAL  | (HEAVY)      |       | 55,000 | L/ha/day     |         | MANNINGS   | n       |            | 0.013    | 3      |       |        |           |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | DESIGNED                                                                              | BY:       | ٦         | ſR        | FILE NUMB   | ER:                            | 1604-0151  | I      |            |       |      |                   |       | PEAKING FA | CTOR (COMM   | 1., INST.): | 1.5     |        | INDUSTRIAL  | (LIGHT)      |       | 35,000 | L/ha/day     |         | BEDDING CI | LASS    |            | 1        | В      |       |        |           |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | CHECKED I                                                                             | BY:       | 0         | т         |             |                                |            |        |            |       |      |                   |       | STUDIO APA | RTMENT       |             | 1.4     |        | INSTITUTION | NAL          |       | 28,000 | L/ha/day     |         | MINIMUM CO | OVER    |            | 2.5      | 0 m    |       |        |           |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                                       |           |           |           |             |                                |            |        |            |       |      |                   |       | 1 BEDROOM  |              |             | 1.4     |        | INFILTRATIO | N            |       | 0.33   | L/s/ha       |         |            |         |            |          |        |       |        |           |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                                       |           |           |           |             |                                |            |        |            |       |      |                   |       | 2 BEDROOM  |              |             | 2.1     |        |             |              |       |        |              |         |            |         |            |          |        |       |        |           |        |        |
| LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                                                                                       |           |           |           | RESIDENTIAL | AREA AND I                     | POPULATION |        |            |       | COM  | MERCIAL           | INDUS | TRIAL (L)  | INDUST       | TRIAL (H)   | INSTITU | TIONAL | GREEN       | / UNUSED     | C+I+I |        | INFILTRATION | I       | TOTAL      |         |            |          |        | PIPE  |        |           |        |        |
| AREA ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FROM | TO                                                                                    | AREA      |           | Single    |             | POP.                           | CUMU       | _ATIVE | PEAK       | PEAK  | AREA | ACCU.             | AREA  | ACCU.      | AREA         | ACCU.       | AREA    | ACCU.  | AREA        | ACCU.        | PEAK  | TOTAL  | ACCU.        | INFILT. | FLOW       | LENGTH  | DIA        | MATERIAL | CLASS  | SLOPE | CAP.   | CAP. V    | VEL.   | VEL.   |
| NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M.H. | M.H.                                                                                  |           | Studio    | 1 Bedroom | 2 Bedroom   |                                | AREA       | POP.   | FACT.      | FLOW  |      | AREA              |       | AREA       |              | AREA        |         | AREA   |             | AREA         | FLOW  | AREA   | AREA         | FLOW    |            |         |            |          |        |       | (FULL) | PEAK FLOW | (FULL) | (ACT.) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                                       | (ha)      |           | Units     |             |                                | (ha)       |        |            | (L/s) | (ha) | (ha)              | (ha)  | (ha)       | (ha)         | (ha)        | (ha)    | (ha)   | (ha)        | (ha)         | (L/s) | (ha)   | (ha)         | (L/s)   | (L/s)      | (m)     | (mm)       |          |        | (%)   | (l/s)  | (%)       | (m/s)  | (m/s)  |
| Wellings of Stittsville Ph2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                       |           |           |           |             |                                |            |        |            |       |      |                   |       |            |              |             |         |        |             |              |       |        |              |         |            |         |            |          |        |       |        |           |        |        |
| ENTIRE SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STUB | MAIN                                                                                  | 1.82      | 0         | 376       | 108         | 753                            | 1.82       | 753    | 3.88       | 9.5   | 0.47 | 0.47              | 0.00  | 0.00       | 0.00         | 0.00        | 0.00    | 0.00   | 0.00        | 0.00         | 0.2   | 2.29   | 2.29         | 0.8     | 10.4       | 23.1    | 300<br>675 | PVC      | SDR 35 | 0.40  | 60.7   | 17.20%    | 0.86   | 0.53   |

#### SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix B Wastewater Servicing March 29, 2022

#### B.2 SANITARY EXCERPTS FROM THE KWMSS

#### 4.0 SANITARY SEWER SERVICING

#### 4.1 Introduction

This section outlines the evaluation criteria for wastewater servicing options, describes the alternative wastewater servicing alignments, summarizes the evaluation process, and compares the recommended alternatives to select the preferred option.

#### 4.2 Evaluation Criteria and Weightings

The evaluation of alternatives is based, in part, on criteria previously developed for the Regional Master Plan for Water, Wastewater and Transportation, which can be found in Volume 2 of the "Planning and Environmental Assessment Summary Report" prepared by the former Region of Ottawa-Carleton.

The criteria are divided into four categories. The first three categories consider environmental, social, and economic impacts of the project on the Study area. The fourth category (Constructability/Functionality) considers project-specific criteria assessing the technical aspects and impacts of the project on the Study area. A list of each criteria and its respective category, as well as an explanation of their indicators, is provided in **Table 4.1-1**.

| TABLE 4.1-1   Evaluation Criteria |                                                 |                                                                                                                         |  |  |  |  |  |  |  |
|-----------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Category                          | Criteria                                        | Indicator                                                                                                               |  |  |  |  |  |  |  |
| Constructat                       | pility/Functionality                            |                                                                                                                         |  |  |  |  |  |  |  |
| CO1.1                             | Geotechnical Issues and<br>Construction Risks   | Potential for encountering poor soils and/or elevated groundwater conditions.                                           |  |  |  |  |  |  |  |
| CO1.2                             | Infrastructure Requirements                     | Extent of works required.                                                                                               |  |  |  |  |  |  |  |
| CO1.3                             | Operational Impacts                             | Amount of maintenance intensive<br>infrastructure required.                                                             |  |  |  |  |  |  |  |
| CO1.4                             | Construction Scheduling                         | Impact of construction on development timing/phasing.                                                                   |  |  |  |  |  |  |  |
| CO1.5                             | Property Acquisition                            | Ease of property acquisition. Depends on status of required and adjacent lands (i.e. vacant, leased or owner occupied). |  |  |  |  |  |  |  |
| CO1.6                             | System Reliability                              | Proximity of a storm sewer, SWM or other surface water for emergency overflow.                                          |  |  |  |  |  |  |  |
| CO1.7                             | System Flexibility                              | Ease of accommodating potential changes in servicing plans.                                                             |  |  |  |  |  |  |  |
| Economy                           |                                                 |                                                                                                                         |  |  |  |  |  |  |  |
| E1                                | Potential to Use Combined<br>Service Corridor   | Length and area of combined service corridor.                                                                           |  |  |  |  |  |  |  |
| E2                                | Efficiency of use of existing<br>infrastructure | Use of existing capacity.                                                                                               |  |  |  |  |  |  |  |
| E3                                | Energy consumption                              | Pumping requirements.                                                                                                   |  |  |  |  |  |  |  |
| E5                                | Impact on Agriculture                           | Agricultural area likely to be affected by infrastructure.                                                              |  |  |  |  |  |  |  |

#### STANTEC / CUMMING COCKBURN LIMITED / IBI GROUP Kanata West Master Servicing Study June 2006

| E9          | Construction Cost                                                               | Estimated construction cost.                                                                                                                                                                        |
|-------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Caring and  | Healthy Community                                                               |                                                                                                                                                                                                     |
| C3          | Displacement of Residents,<br>Community/Recreation Features<br>and Institutions | Affects on residential areas, institutions or businesses.                                                                                                                                           |
| C4          | Disruption to Existing Community                                                | Extent of works affecting existing residences and businesses.                                                                                                                                       |
| C9          | Consistency with Planned Land<br>Use and Infrastructure                         | Compatibility with City land use, design<br>guidelines and infrastructure servicing<br>corridor planning (Kanata West<br>Transportation Master Plan Report and<br>Storm Sewer and Watermain Needs). |
| Natural Env | ironment                                                                        |                                                                                                                                                                                                     |
| N1          | Impact on Significant Natural<br>Features                                       | Loss of natural areas due to installation of works.                                                                                                                                                 |
| N3          | Impact on Aquatic Systems                                                       | Potential impact on fish habitat due to<br>installation of works.                                                                                                                                   |
| N4          | Impact on Quality and Quantity of Surface Water and Groundwater                 | Potential impact on water quality in the Carp<br>River resulting from rare emergency<br>overflows to the SWM pond due to pumping<br>station failure.                                                |
| N5          | Impact on Global Warming                                                        | Difference in carbon dioxide emissions resulting from occasional use of diesel generator.                                                                                                           |
| N6          | Effects on Urban Green Space,<br>Open Space and Vegetation                      | Disruption to green space and trees.                                                                                                                                                                |

#### 4.2.1 Description of Evaluation Categories

Presented below is a description of the categories used to assess each of the three servicing alternatives. The four categories were selected to ensure that the various servicing alternatives were evaluated in a consistent and comprehensive manner. Further details on the criteria and weightings for each category are provided in Appendix 2.1.

#### Constructability/Functionality (C/F) - 36%

Wastewater infrastructure is required to facilitate the development of Kanata West. The infrastructure needs to provide a flexible servicing solution to accommodate the orderly development of the entire area in a series of phases. It is important that the construction of the wastewater servicing be coordinated with other major infrastructure projects such as storm sewers, waterwain and transportation, to ensure all services are available when required. Various alignment alternatives, construction techniques and phasing options will be assessed.

#### Economy (E) - 25 %

The Kanata West area is recognized within the City of Ottawa Official Plan as a future growth area comprised of a mixture of residential, business, and commercial lands. The accelerated rate of development and design concerns within the Study area requires a cost-effective solution to providing municipal wastewater services.

#### STANTEC / CUMMING COCKBURN LIMITED / IBI GROUP Kanata West Master Servicing Study June 2006

#### Caring and Healthy Communities (CHC) – 25 %

Impact to the surrounding community is an important factor when determining the preferred servicing alternative. The selected alignment and construction techniques are evaluated to minimize disruption to surrounding communities. It is anticipated that impacts will be limited to the time of construction for the off-site servicing.

#### Natural Environment (NE) - 14%

The majority of the required wastewater infrastructure is aligned within existing or proposed public roads to limit the impacts to the natural environment. Servicing alignments selected outside of roadways were chosen to minimize impacts where possible. Construction of the wastewater services will be performed in conjunction with other servicing projects required as part of the overall development. Further information on the environmental impacts of the proposed road allowances are documented in the Kanata West Transportation Master Plan Report.

In the rare event that the pump station overflows, impacts to surface water quality are anticipated to be minimal. All discharges from the overflow will be directed to the stormwater management pond where they will be collected. Increases in  $CO_2$  emissions from the emergency diesel generators during power failures or maintenance procedures will be negligible.

#### 4.2.2 Outlet Alternatives

#### 4.2.2.1 Description of Outlet Alternatives

To provide an adequate outlet for the KWCP wastewater system three servicing options were evaluated. Each of these options will ultimately discharge to the Tri Township Collector Sewer. The first servicing option utilizes a gravity sewer (tunnel), the remaining two options make use of a pumping station located at the intersection of Maple Grove Road and Silver Seven Road, with alternate forcemain alignments. **Figures 4.1-1, 4.1-2 and 4.1-3** illustrate the alternative outlet alignments, which are further described below:

- Alternative I (Gravity Outlet) A gravity sewer (tunnel) along the Highway 417 corridor to the Tri Township Collector. The tunnel would be constructed within the existing road allowance, adjacent to the travel lanes. The alignment crosses Highway 417 east of Eagleson Road and parallels the Glen Cairn Collector. Refer to Figure 4.1-1.
- Alternative II (Forcemain Alignment 1) A forcemain along the Highway 417 corridor from a proposed pumping station on Maple Grove Road, extending to the Glen Cairn Collector Sewer east of Eagleson Road. Refer to **Figure 4.1-2**.
- Alternative III (Forcemain Alignment 2) A forcemain along Katimavik Road and Palladium Drive from a proposed Pumping Station on Maple Grove Road to the Glen Cairn Collector Sewer east of Eagleson Road. Refer to **Figure 4.1-3**.

#### 4.2.2.2 Evaluation of Outlet Alternatives

Evaluation of the criteria was completed using the "standard pair-wise comparison" methodology. The weightings assigned to each of the criteria were selected based on the weightings applied for past similar projects, knowledge of environmental constraints, community

concerns and professional judgment. The scores for each category and criterion were summed to determine the overall category weighting. Evaluation results are summarized in **Table 4.1-2**. An explanation of the category rankings and weightings are provided below.

#### Constructability/Functionality (C/F) (36%)

A review of the three proposed servicing options indicates that the forcemain alternatives present fewer issues with respect to the geotechnical constraints when compared to the gravity sewer alternative. The forcemain alternatives would require a relatively shallow excavation, reducing the conflict with the shallow bedrock formations that exist along each forcemain alignment. The shallow depth of the forcemains would also minimize the technical difficulties arising from earth to rock transitions along the trench. The effort required to install either of the forcemain alternatives would be much less than the gravity outlet alternative because the need to tunnel would be eliminated.

When comparing the two forcemain alternatives, an obvious benefit of Alternative II is its location along Katimavik Road as compared to the location of Alternative III, along Highway 417. Katimavik Road has a lower classification than Highway 417, reducing traffic management issues during construction and routine maintenance operations. The central location of the Alternative II forcemain alignment in relation to the area to be serviced also improves the flexibility for developing internal servicing options. The various alignments available for Alternative II, west of Terry Fox Drive (see **Figure 4.1-3**), are all located within existing road allowances and are considered equal when evaluated with the prescribed criteria. The Alternative II alignment along Silver Seven Road also allows the opportunity for the services to be installed in an easement located immediately adjacent to the east side of the right-of-way. Construction in this easement would eliminate the need to reconstruct this portion of the road. The use of easements for construction of the necessary services was not factored into the evaluation criteria and therefore the ranking was not affected.

#### Economy (E) (25%)

The costs of both forcemain alternatives are similar and much less expensive than the gravity sewer alternative. The increased costs of the gravity sewer are attributed to the need to tunnel through the existing bedrock. The forcemain alternatives allow for a relatively shallow excavation over the entire length of the alignment. The level of effort required to construct the gravity sewer would also be significantly greater than the effort required to install either of the forcemain alternatives.

#### Caring and Healthy Community (CHC) (25%)

Both the gravity outlet and the Alternative I forcemain would have minimal impact on the community given that the majority of the work would occur within the Highway 417 road allowance. The Alignment II forcemain alignment along Katimavik Road would require open cut excavation and would have a temporary impact on the residents during construction.



|            |                                                            |  | О́я<br>Я |                                        |
|------------|------------------------------------------------------------|--|----------|----------------------------------------|
| FIG. 4.1-1 | Legend:<br>Gravity Outlet (Tunnel)<br>Existing Trunk Sewer |  |          | GRAVITY<br>SANITARY OUTLET<br>LOCATION |





| FIG. 4.1-2 | Legend:<br>Forcemain<br>Existing Trunk Sewer | SANITARY<br>FORCEMAIN OUTLET<br>ALIGNMENT 1<br>HWY 417 |
|------------|----------------------------------------------|--------------------------------------------------------|
|------------|----------------------------------------------|--------------------------------------------------------|



| SANITARY<br>FORCEMAIN OUTLET<br>ALIGNMENT 2<br>KATIMAVIK RD. |
|--------------------------------------------------------------|
| SANITARY<br>FORCEMAIN OUTLET<br>ALIGNMENT 2<br>KATIMAVIK RD. |

The construction of both forcemain alternatives is compatible with existing City design standards and construction practices. However, only Alignment II can easily be integrated into other servicing or roadway improvements. The time required for the construction of the gravity outlet would be significantly longer than that of the forcemain alternatives.

#### Natural Environment (NE) (14%)

There are no significant differences on the impacts to the natural environment between the gravity outlet and forcemain Alternative II. The gravity outlet will be tunneled below ground for the majority of the alignment resulting in minimal impact to surface conditions. Forcemain Alternative II is located within the Katimavik Road allowance, which is already developed and has minimal environmental impact. Forcemain Alternative I has a greater impact on the natural areas located along the Highway 417 corridor then the gravity sewer.

#### 4.2.2.3 Selection of Preferred Outlet Alternative

Based on the above evaluation Alternative II, the Katimavik Road alignment, is selected as the preferred outlet alternative. This alignment offers the greatest amount of flexibility for internal servicing design, uses a lower road classification corridor, which simplifies routine maintenance operations, and provides maximum separation from the sensitive natural areas located in the 417 corridor east of Terry Fox Drive.

While Forcemain Alignment II has a marginal cost increase over Alignment I, the benefits of improved internal servicing and phasing options more than offset this discrepancy.

#### 4.2.3 Internal Servicing Alternatives

#### 4.2.3.1 Description of Internal Servicing Alternatives

The preliminary servicing report prepared in support of the approved Community Design Plan identified the need for two pumping stations for the wastewater discharge from KWCP. The two stations identified are required to satisfy phasing needs for construction of the overall development area and to produce a cost effective initial phasing scheme. The new sanitary pumping station(s) south of Highway 417 will be required to provide internal wastewater service to that portion of KWCP south of Highway 417.

Three potential servicing alternatives were considered for the configuration and location for the pumping station(s) required to service these lands south of Hwy. 417. Internal servicing alternatives were chosen based on their proximity to the preferred outlet described in Section 4.2.3.3. above, and accessibility to the servicing areas as illustrated in **Figures 4.1-4, 4.1-5, 4.1-6 and 4.1-6A**. A brief description of the alternative pumping station locations are as follows:

- Alternative I Two pumping stations connected with a combination of gravity sewer and forcemain. One pumping station will be located on Silver Seven Road at Highway 417. The second station will be located on Maple Grove Road at the Carp River. Refer to **Figure 4.1-4**.
- Alternative II Two pumping stations connected with a gravity sewer. One station will be located on Maple Grove Road near the Carp River and will discharge to the main station located near the Carp River south of Highway 417. A diversion sewer will also be required to intercept the existing Silver Seven Road sanitary sewer. Refer to Figure 4.1-5.

#### **TABLE 4.1-2**



#### Kanata West Wastewater - Outlet Alternatives

| Criteria Indicators |                                                                                   | Weighting                                                                                                                                                                                       | Rationale for | Alternatives                                                                                                                                                                                                                                                 |                      |                   |                    |  |
|---------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|--------------------|--|
|                     |                                                                                   |                                                                                                                                                                                                 |               | Relative Weights                                                                                                                                                                                                                                             | Gravity Sewer Outlet | PS FM Alignment I | PS FM Alignment II |  |
| CON                 | STRUCTABILITY/FUNCTIO                                                             | NALITY                                                                                                                                                                                          | 36%           |                                                                                                                                                                                                                                                              | 16                   | 20                | 22                 |  |
| CO1.1               | Geotechnical Issues and Construction Risks                                        | Potential for encountering poor soils and/or elevated groundwater conditions.                                                                                                                   | 7%            | Alt. I has potential for poor soils conditions due to depth and tunnelling in<br>and out of rock.                                                                                                                                                            | 2                    | 3                 | 3                  |  |
| CO1.2               | Infrastructure Requirements                                                       | Extent of works required.                                                                                                                                                                       | 7%            | Alt. I with tunnelling is a very large scale operation.                                                                                                                                                                                                      | 1                    | 3                 | 3                  |  |
| CO1.3               | Operational Impacts                                                               | Amount of maintenance intensive infrastructure required.                                                                                                                                        | 6%            | Alt. II and III require more extensive maintenance due to pumping.                                                                                                                                                                                           | 3                    | 2                 | 2                  |  |
| CO1.4               | Construction Scheduling                                                           | Impact of construction on development timing.                                                                                                                                                   | 4%            | Alt. I with tunnelling is an extended construction schedule.                                                                                                                                                                                                 | 1                    | 3                 | 3                  |  |
| CO1.5               | Property Acquisition                                                              | Ease of property acquisition. (Depends on status of lands and adjacent lands, i.e.<br>vacant, leased or owner occupied.)                                                                        | 2%            |                                                                                                                                                                                                                                                              | 4                    | 4                 | 4                  |  |
| CO1.6               | System Reliability                                                                | Proximity of a storm sewer, SWM or other surface water for emergency overflow                                                                                                                   | 69/           |                                                                                                                                                                                                                                                              | 3                    | 3                 | 3                  |  |
| CO1.7               | Servicing Flexibility                                                             | Ease of accommodating potential changes in servicing plans.                                                                                                                                     | 5%            | Alt. I and II have fixed alignments along the north limit of the servicing area.<br>Alt. II has some flexibility to be realigned within the development area, but<br>Alt. II due to its more central location has maximum flexibility within Kanata<br>West. | 2                    | 2                 | 4                  |  |
| FCO                 | NOMY                                                                              |                                                                                                                                                                                                 | 25%           |                                                                                                                                                                                                                                                              | 0                    | 10                | 15                 |  |
| E1                  | Potential to Use Combined Service Corridor                                        | Length and area of combined service corridor.                                                                                                                                                   | 23 /8         | Alt. I with the requirement for tunnelling does not offer any potential to use combined<br>corridors.                                                                                                                                                        | 1                    | 2                 | 3                  |  |
| E2                  | Efficiency of Use of Existing Infrastructure                                      | Use of exisitng capacity                                                                                                                                                                        | 5%            | Alt. I requires reconstruction beyond the closest connection point to the Glen Cairn<br>Collector sewer.                                                                                                                                                     | 1                    | 3                 | 4                  |  |
| E3                  | Energy Consumption                                                                | Pumping requirements                                                                                                                                                                            | 4%            | Alt. II & III require pumping.                                                                                                                                                                                                                               | 3                    | 2                 | 2                  |  |
| E5                  | Impact on Agriculture                                                             | Agriculture area likely to be affected by infrastructure.                                                                                                                                       | 00/           |                                                                                                                                                                                                                                                              | 3                    | 3                 | 3                  |  |
| E9                  | Capital Cost                                                                      | Estimated cost of construction.                                                                                                                                                                 | 8%            | Alt. I is very expensive due to the tunnelling requirement.                                                                                                                                                                                                  | 1                    | 3                 | 3                  |  |
| CARI                | NG AND HEALTHY COMMI                                                              | INITIES                                                                                                                                                                                         | 25%           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                        | 7                    | 9                 | 9                  |  |
| C3                  | Displacement of Residents,<br>Community/Recreation Features and<br>Institutions.  | Affects areas of residence, institutions or businesses.                                                                                                                                         | 6%            | Length of Construction for Alt. I will result in increasedconstruction traffic, etc.                                                                                                                                                                         | 3                    | 3                 | 3                  |  |
| C4                  | Disruption to Existing Community                                                  | Extent of works affecting existing residences and businesses and visibility of additional<br>infrastructure.                                                                                    | 11%           |                                                                                                                                                                                                                                                              | 3                    | 3                 | 3                  |  |
| C9                  | Consistency with Planned Land Use and<br>Infrastructure                           | Compatibility with City land use, design guidelines and infrastructure servicing corridor<br>planning (Kanata West Roadwork Environmental Study Report and Storm Sewer and<br>Watermain Needs). |               | Alt. I would provide service for larger area than the existing urban boundary<br>due to size of pipe required to tunnel. Alt. Il provides greater flexibility for<br>internal servicing.                                                                     | 1                    | 3                 | 3                  |  |
|                     |                                                                                   |                                                                                                                                                                                                 | 8%            |                                                                                                                                                                                                                                                              |                      |                   |                    |  |
| ΝΑΤΙ                | JRAL ENVIRONMENT                                                                  |                                                                                                                                                                                                 | 14%           |                                                                                                                                                                                                                                                              | 16                   | 12                | 14                 |  |
| N1                  | Impact on Significant Natural Features                                            | Loss of natural area due to installation of works.                                                                                                                                              | 3%            | Alt. I mostly tunnel therefore minimal impact. Alt. II in vicinity of ANSI in 417 corridor<br>at Terry Fox.                                                                                                                                                  | 4                    | 1                 | 3                  |  |
| N3                  | Impact on Aquatic Systems                                                         | Potential impact on fish habitat due to installation of works.                                                                                                                                  | 3%            |                                                                                                                                                                                                                                                              | 3                    | 3                 | 3                  |  |
| N4                  | Impact on Quality and Quantity of Surface<br>Water and Groundwater                | Potential impact on water quality in the Carp River resulting from rare emergency<br>overflows to the SWM pond due to pump station failure.                                                     | 3%            |                                                                                                                                                                                                                                                              | 3                    | 3                 | 3                  |  |
| N5                  | Impact on Global Warming                                                          | Difference in carbon dioxide emissions resulting from occasional use of diesel generator.                                                                                                       | 1%            | Alt. II and III require pumping in long term. Alt. I does not.                                                                                                                                                                                               | 3                    | 2                 | 2                  |  |
| N6                  | Effects on Urban Greenspace, Open Space<br>and Vegetation (i.e.trees,shrubs,etc.) | Disruption to greenspace and trees.                                                                                                                                                             | 5%            |                                                                                                                                                                                                                                                              | 3                    | 3                 | 3                  |  |
| Total               | Score                                                                             |                                                                                                                                                                                                 | 100%          |                                                                                                                                                                                                                                                              | 2.17                 | 2.75              | 3.01               |  |
| Rank                | ing                                                                               |                                                                                                                                                                                                 |               |                                                                                                                                                                                                                                                              | 3                    | 2                 | 1                  |  |
| Estin               | nated Capital Cost (in \$mill                                                     | ion)                                                                                                                                                                                            |               |                                                                                                                                                                                                                                                              | 30                   | 8.8               | 9                  |  |

Description of Alternatives Gravity Sewer Outlet Pump Station - Forcemain Alignment I - HWY 417 Pump Station - Forcemain Alignment II - Katimavik Rd.

1604-00406\_KWCP\_San\_EA\_June\_06.xls/EA Evaluation-Outlet (Qual)

Evaluation Ranking 1 -2 High or Negative Impact 3 Moderate or No Impact 4-5 Low or Positive Impact

#### STANTEC / CUMMING COCKBURN LIMITED / IBI GROUP Kanata West Master Servicing Study June 2006

 Alternatives III and IIIA – Alternative III is a single pumping station with a gravity sewer intercepting the existing Silver Seven Road sanitary sewer. The gravity sewer alignment will be adjacent to the Carp River and connect to the pump station located at Maple Grove Road west of the Carp River. Alternative IIIA is a variation of this alternative utilizing a single pumping station and gravity sewer intercepting the existing Silver Seven

Road sewer. The variation from Alternative III is that the gravity sewer will be located within a proposed road right-of-way, or an easement, north of Palladium Drive. Refer to **Figures 4.1-6 and 4.1-6A**.

#### 4.2.3.2 Evaluation of Internal Servicing Alternatives

The alternative internal servicing alignments were evaluated as discussed in Section 4.2. The results of the evaluation are summarized in **Table 4.1-3**. An explanation of the category rankings and weightings are provided below.

#### Constructability/Functionality (C/F) (36%)

All proposed alternatives use pumping stations to provide internal wastewater servicing. The use of pumps allows the sewer system to be constructed at a relatively shallow depth. This reduces the potential for contact with poor subsurface conditions during construction. Deep Excavations will be confined to a limited area in the vicinity of the pumping station.

A benefit of Alternatives III and IIIA is that a single pumping station is required to provide the internal servicing. This is advantageous from a constructability and operational point of view when compared to Alternatives I and II which require two pumping stations to service the same area. A further benefit of Alternatives III and IIIA is that either servicing scenario will eliminate the need for the existing Palladium siphon under the Carp River. Removing the siphon will improve the overall reliability to the system.

A benefit of Alternative IIIA over Alternative III is that work in the Carp River corridor is reduced to a single crossing at Palladium Drive. Both Alternatives are close to a stormwater management pond which can be used as an emergency overflow in the rare event of flooding. (see **Figures 4.1-6 and 4.1-6A**)

All alternatives are capable of satisfying a phased development process.

#### Economy (E) (25%)

Alternatives I and II use two pumping stations and are significantly more expensive than Alternatives III and IIIA which use a single pump station. The additional pump stations in Alternatives I and II also increase the energy demand over the remaining options. Alternatives III and IIIA are able to service the entire KWCP with a single pump station resulting in equal or fewer economic impacts.

#### Caring and Healthy Community (CHC) (25%)

In terms of impact on the community, there are no differences between the alternatives. All options require construction in the vicinity of existing businesses. Impacts are anticipated to be relatively short in duration (less than two years).







INTERNAL SANITARY SERVICING ALTERNATIVE I

MAY 2006

FIG. 4.1-4

|              | <b>⊗</b><br>↓                                                       |                       |                     |           |                      | 0<br>  <br>  <br>  <br>       |  |
|--------------|---------------------------------------------------------------------|-----------------------|---------------------|-----------|----------------------|-------------------------------|--|
| Pump Station | Existing Pumping Station<br>and Forcemain<br>(To be Decommissioned) | Existing Trunk Sewers | Temporary Frocemain | Forcemain | Proposed Trunk Sewer | Ultimate Major Drainage Limit |  |







FIG. 4.1-5

| $\square$    | 8                                                                   |                       |                     |           |                      | <br> <br> <br> <br>           |
|--------------|---------------------------------------------------------------------|-----------------------|---------------------|-----------|----------------------|-------------------------------|
| Pump Station | Existing Pumping Station<br>and Forcemain<br>(To be Decommissioned) | Existing Trunk Sewers | Temporary Frocemain | Forcemain | Proposed Trunk Sewer | Ultimate Major Drainage Limit |

INTERNAL SANITARY SERVICING ALTERNATIVE II







MAY 2006

FIG. 4.1-6

| $\square$    | <b>⊗</b><br>↓                                                       |                       |                     |           |                      | 8<br>8<br>8                   |
|--------------|---------------------------------------------------------------------|-----------------------|---------------------|-----------|----------------------|-------------------------------|
| Pump Station | Existing Pumping Station<br>and Forcemain<br>(To be Decommissioned) | Existing Trunk Sewers | Temporary Frocemain | Forcemain | Proposed Trunk Sewer | Ultimate Major Drainage Limit |

INTERNAL SANITARY SERVICING ALTERNATIVE III





INTERNAL SANITARY SERVICING

(PREFERRED OPTION)

ALTERNATIVE IIIA

MAY 2006

| FIG      | $\square$    | ©<br>↓                                                              |                       |                     |           |                      | 8<br>8<br>8<br>8              |  |
|----------|--------------|---------------------------------------------------------------------|-----------------------|---------------------|-----------|----------------------|-------------------------------|--|
| . 4.1-6A | Pump Station | Existing Pumping Station<br>and Forcemain<br>(To be Decommissioned) | Existing Trunk Sewers | Temporary Frocemain | Forcemain | Proposed Trunk Sewer | Ultimate Major Drainage Limit |  |

#### Natural Environment (NE) (14%)

All four servicing options have a similar level of impact on the natural environment. Alternatives III and IIIA use a gravity sewer and a single pump station, thereby using less energy to discharge the sanitary flow from the KWCP. Alternatives II & III require the greatest amount of construction within the Carp River corridor.

Alternatives I and II both require two pumping stations. This increases the potential for impacts over the remaining options from the use of the emergency diesel generators and construction and construction.

#### 4.2.3.3 Selection of Preferred Internal Servicing Alternative

Based on the above evaluation, Alternatives III and IIIA are considered to be the most viable options for the internal wastewater servicing for the KWCP. When comparing the two options, all of the evaluation criteria are similar. However, Alternative III requires the construction of the trunk sanitary sewer within the Carp River corridor. Alternative IIIA utilizes the proposed road allowances for the construction of a portion of the trunk sewer alignment, minimizing the potential for impacts to the Carp River. Based on the evaluation results, Alternative IIIA is selected as the preferred servicing alternative.

#### 4.2.4 Temporary Forcemain Alternatives

#### 4.2.4.1 Description of Temporary Forcemain Alternatives

A temporary forcemain will be required to service the initial phases of development within the KWCP. Three potential alignments were selected based on available corridors through the existing community. Each alignment begins at the preferred location of the Kanata West Pump Station, located on Maple Grove Road and west of the Carp River. All three servicing scenarios ultimately discharge to a temporary outlet, the Stittsville Collector Sewer. As illustrated on **Figure 4.1-7** the alternative forcemain alignments are:

- Alternative I West along Maple Grove Road to Huntmar Road. South along Huntmar Road and Iber Road to the Stittsville Collector Sewer situated along Abbott Street East.
- Alternative II South, parallel to the west side of the Carp River and through the proposed development lands to the Glen Cairn stormwater pond. East to Terry Fox Drive, then south along Terry Fox Drive to the Stittsville Collector Sewer.
- Alternative III East on Maple Grove Road to Terry Fox Drive. South on Terry Fox Drive to the Stittsville Collector Sewer.

#### 4.2.4.2 Evaluation of Temporary Forcemain Alternatives

The temporary forcemain alternatives were evaluated and ranked using the criteria discussed in Section 4.2 The results of the evaluation are summarized in **Table 4.1-4**. An explanation of the category rankings and weightings are provided below.

#### **TABLE 4.1-3**



#### Kanata West Wastewater - Internal Servicing Alternatives

| Criteria Indicators |                                                                                   | Weighting                                                                                                                                                                                       | Rationale for | Alternatives                                                                                                                                                                             |                    |      |      |         |
|---------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|------|---------|
|                     |                                                                                   |                                                                                                                                                                                                 |               | Relative Weights                                                                                                                                                                         | Internal Servicing |      |      |         |
|                     |                                                                                   |                                                                                                                                                                                                 |               |                                                                                                                                                                                          | I                  | I    |      | IIIA    |
| CON                 | STRUCTABILITY/FUNCTION                                                            | ALITY                                                                                                                                                                                           | 36%           |                                                                                                                                                                                          | 14                 | 14   | 23   | 22      |
| CO1.1               | Geotechnical Issues and Construction Risks                                        | Potential for encountering poor soils and/or elevated groundwater conditions.                                                                                                                   | 7%            |                                                                                                                                                                                          | 3                  | 3    | 3    | 3       |
| CO1.2               | Infrastructure Requirements                                                       | Extent of works required.                                                                                                                                                                       | 7%            | Alt. I and II require two pumping stations. Alt. III and IIIA require one pumping<br>station. All Alts. require the same amount of piping.                                               | 1                  | 1    | 3    | 3       |
| CO1.3               | Operational Impacts                                                               | Amount of maintenance intensive infrastructure required.                                                                                                                                        | 6%            | Alt. I and II (with two pumping stations) have more maintenace intensive<br>infratructure.                                                                                               | 1                  | 1    | 2    | 2       |
| CO1.4               | Construction Scheduling                                                           | Impact of construction on development timing.                                                                                                                                                   | 4%            |                                                                                                                                                                                          | 3                  | 3    | 3    | 3       |
| CO1.5               | Property Acquisition                                                              | Ease of property acquisition. (Depends on status of lands and adjacent lands, i.e. vacant, leased or owner occupied.)                                                                           | 2%            | Alt. Ill requires the least amount of property acquisition with only one pumping<br>station located on active developers lands and using the Carp River corridor for<br>sewer alignment. | 2                  | 2    | 4    | 3       |
| CO1.6               | System Reliability                                                                | Proximity of a storm sewer, SWM or other surface water for emergency overflow                                                                                                                   | 6%            | Alt. I and II have pumping stations remotely located relative to proposed storm<br>ponds.                                                                                                | 2                  | 2    | 4    | 4       |
| CO1.7               | Servicing Flexibility                                                             | Ease of accommodating potential changes in servicing plans.                                                                                                                                     | 5%            | The more central location of the main pumping station to the tributary area makes<br>Alt. III and IIIA more flexible to change.                                                          | 2                  | 2    | 4    | 4       |
|                     |                                                                                   |                                                                                                                                                                                                 |               |                                                                                                                                                                                          |                    |      |      |         |
| ECO                 | NOMY                                                                              |                                                                                                                                                                                                 | 25%           |                                                                                                                                                                                          | 11                 | 11   | 18   | 18      |
| E1                  | Potential to Use Combined Service Corridor                                        | Length and area of combined service corridor.                                                                                                                                                   | 6%            | Alt. III and IIIA service the entire area south of Hwy 417 with one pumping station.                                                                                                     | 2                  | 2    | 4    | 4       |
| E2                  | Efficiency of Use of Existing Infrastructure                                      | Use of exisitng capacity                                                                                                                                                                        | 5%            |                                                                                                                                                                                          | 4                  | 4    | 4    | 4       |
| E3                  | Energy Consumption                                                                | Pumping requirements                                                                                                                                                                            | 4%            | Alt. I and II requires double pumping of a significant portion of the service area.                                                                                                      | 1                  | 1    | 3    | 3       |
| E5                  | Impact on Agriculture                                                             | Agriculture area likely to be affected by infrastructure.                                                                                                                                       | 4 /6          |                                                                                                                                                                                          | 3                  | 3    | 3    | 3       |
| E9                  | Capital Cost                                                                      | Estimated cost of construction.                                                                                                                                                                 | 2.78          | Alt. I and II are significantly more expensive primarily due to the cost of two                                                                                                          | 1                  | 1    | 4    | 4       |
|                     |                                                                                   |                                                                                                                                                                                                 | 8%            | pumping stations.                                                                                                                                                                        |                    |      |      |         |
| CAR                 | ING AND HEALTHY COMMU                                                             | NITIES                                                                                                                                                                                          | 25%           |                                                                                                                                                                                          | 10                 | 10   | 10   | 10      |
| C3                  | Displacement of Residents,<br>Community/Recreation Features and<br>Institutions.  | Affects areas of residence, institutions or businesses.                                                                                                                                         |               |                                                                                                                                                                                          | 4                  | 4    | 4    | 4       |
| C4                  | Disruption to Existing Community                                                  | Extent of works affecting existing residences and businesses and visibility of additional<br>infrastructure.                                                                                    | 11%           |                                                                                                                                                                                          | 3                  | 3    | 3    | 3       |
| C9                  | Consistency with Planned Land Use and<br>Infrastructure                           | Compatibility with City land use, design guidelines and infrastructure servicing corridor<br>planning (Kanata West Roadwork Environmental Study Report and Storm Sewer and<br>Watermain Needs). |               |                                                                                                                                                                                          | 3                  | 3    | 3    | 3       |
| ΝΑΤ                 |                                                                                   |                                                                                                                                                                                                 | 8%            |                                                                                                                                                                                          |                    |      |      |         |
| N1                  | Impact on Significant Natural Features                                            | Loss of natural area due to installation of works.                                                                                                                                              | 3%            | Alts. II & III require a significant amount of work inside the Carp River corridor.                                                                                                      | 4                  | 2    | 2    | 14<br>3 |
| N3                  | Impact on Aquatic Systems                                                         | Potential impact on fish habitat due to installation of works.                                                                                                                                  | 3%            | Alts. II & III require a significant amount of work inside the Carp River corridor.                                                                                                      | 3                  | 2    | 2    | 3       |
| N4                  | Impact on Quality and Quantity of Surface<br>Water and Groundwater                | Potential impact on water quality in the Carp River resulting from rare emergency overflows<br>to the SWM pond due to pump station failure.                                                     | 3%            | Alts. I & II require two pumping stations for each alternative. Alts. III & IIIA require<br>only one station each.                                                                       | 2                  | 2    | 3    | 3       |
| N5                  | Impact on Global Warming                                                          | Difference in carbon dioxide emissions resulting from occasional use of diesel generator.                                                                                                       | 1%            | Alt. I and II require double pumping where Alt. III and IIIA only require single<br>pumping.                                                                                             | 1                  | 1    | 2    | 2       |
| N6                  | Effects on Urban Greenspace, Open Space<br>and Vegetation (i.e.trees,shrubs,etc.) | Disruption to greenspace and trees.                                                                                                                                                             | 5%            | Alt. III requires work within the Carp River Corridor.                                                                                                                                   | 3                  | 2    | 2    | 3       |
| Tota                | Score                                                                             | ·                                                                                                                                                                                               | 100%          |                                                                                                                                                                                          | 2.39               | 2.26 | 3.21 | 3.29    |
| Ran                 | king                                                                              |                                                                                                                                                                                                 | •             |                                                                                                                                                                                          | 3                  | 4    | 2    | 1       |
| Estir               | nated Capital Cost (in \$milli                                                    | on)                                                                                                                                                                                             |               |                                                                                                                                                                                          | 8.5                | 8.5  | 5.5  | 5.5     |

Description of Alternatives Internal Servicing Alternative I - Silver Seven Road at HWY 417 Internal Servicing Alternative II - HWY 417 East of Carp River

Internal Servicing Alternative III - Maple Grove Road West of the Carp River Internal Servicing Alternative III - Maple Grove Road West of the Carp River with an Alternative Sewer Alignment

1604-00406\_KWCP\_San\_EA\_June\_06.xls/EA Evaluation-Internal (Qual)

Evaluation Ranking 1 -2 High or Negative Impact 3 Moderate or No Impact 4-5 Low or Positive Impact

#### STANTEC / CUMMING COCKBURN LIMITED / IBI GROUP Kanata West Master Servicing Study June 2006

#### Constructability/Functionality (C/F) -36%

All three alternatives require the construction of a shallow forcemain so geotechnical issues are not considered to be a concern along the selected alignments. However, an assessment of the subsurface conditions indicates that unlike Alternative III, Alternatives I and II will not require rock excavation.

Alternatives I and III are located entirely within existing or proposed road allowances eliminating the need for additional land or easements. A benefit of Alternative II is that the length of the require forcemain is moderately less than Alternatives I and III.

Alternative I is advantageous for routine maintenance operations as the alignment is located within a lower classification of roadway when compared to Alternative III.

#### Economy (E) – 25%

Approximately 50% of the Alternative I forcemain will be installed in conjunction with other development works minimizing the amount of reinstatement required. This reduces the overall cost of Alternative I relative to the other remaining options. A large portion of Alternative II would be constructed in open fields requiring fewer costs for reinstatement when compared to Alternative III.

#### Caring and Healthy Community (CHC) – 25%

All three alternatives present similar impacts to the community. These impacts are limited to the duration of construction and are therefore considered minimal. Alternative I creates the least amount of impact when compared to Alternatives II and III. This is due to the fact that approximately half of the construction of the temporary forcemain will be done with other development works. Alternative II requires construction along major arterials within existing communities east of the KWCP, resulting in the highest level of impact.

#### Natural Environment (NE) – 14%

Alternatives I and III are entirely contained within existing or proposed road allowances. However, Alternative III would require a crossing at the Carp River. Construction monitoring to detect any required mitigation measures for potential impacts to water quality would be required. A large portion of the Alternative II alignment is within the Carp River corridor and will have the highest impact on existing natural features.

#### 4.2.4.3 Selection of Preferred Temporary Forcemain Alternative

Based on the above evaluation, temporary forcemain Alternative I, the Huntmar Road/Iber Road alignment, is selected as the preferred alternative. This alignment facilitates routine maintenance operations, as it is located within a roadway of lower classification when compared to the other alternatives (Terry Fox Drive). This alignment also results in the least amount of impact on the existing natural features. The Alternative I alignment is similar to Alternative II as the most economical options. Over half of the alignment will be constructed in conjunction with other works, unlike Alternative II.







FIG. 4.1-7

# Ultimate Major Drainage Limit Alternate I (Preferred Option) Alternate II Alternate II Existing Trunk Sewers Existing Pumping Station and Forcemain (To be Decommissioned) Pump Station

#### **TABLE 4.1-4**



#### Kanata West Wastewater - Temporary Forcemain Alternatives

| Criteria Indicators |                                                                                   | Weighting                                                                                                                                                                                    | Rationale for | Temporary Forcemain                                                                                                                          |      |              |      |
|---------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|------|
|                     |                                                                                   |                                                                                                                                                                                              |               | Relative weights                                                                                                                             |      | Alternatives |      |
|                     |                                                                                   |                                                                                                                                                                                              |               |                                                                                                                                              | 1    |              |      |
| CONST               | RUCTABILITY/FUNCTIONALITY                                                         |                                                                                                                                                                                              | 36%           |                                                                                                                                              | 21   | 18           | 20   |
| CO1.1               | Geotechnical Issues and Construction Risks                                        | Potential for encountering poor soils and/or elevated groundwater conditions.                                                                                                                | 70/           | Alt. III requires acrossing of the Carp River through deep clay deposits.                                                                    | 3    | 3            | 2    |
| CO1.2               | Infrastructure Requirements                                                       | Extent of works required.                                                                                                                                                                    | 1%            |                                                                                                                                              | 2    | 2            | 2    |
| CO1 3               | Onerational Impacts                                                               | Amount of maintenance intensive infrastructure required                                                                                                                                      | 7%            |                                                                                                                                              | 3    | 3            | 3    |
| CO1.4               | Construction Scheduling                                                           | Impact of construction on doublement timing                                                                                                                                                  | 6%            |                                                                                                                                              | 2    | 3            | 3    |
| 001.4               | Construction Scheduling                                                           | impact of construction on development uning.                                                                                                                                                 |               |                                                                                                                                              | 5    | 5            | 5    |
| CO1.5               | Property Acquisition                                                              | Ease of property acquisition. (Depends on status of lands and adjacent lands, i.e. vacant, leased or<br>owner occupied.)                                                                     | 4%            | Alt. Il requires property acquisition from private owners.                                                                                   | 4    | 1            | 4    |
| CO1.6               | System Reliability                                                                | Proximity of a storm sewer, SWM or other surface water for emergency overflow                                                                                                                | 2%            |                                                                                                                                              | 3    | 3            | 3    |
| 0017                | Consistent Flavibility                                                            | For a foregoing define a startist share on initial share                                                                                                                                     | 6%            |                                                                                                                                              |      | 0            | 0    |
| CO1.7               | Servicing Flexibility                                                             | Ease of accommodating potential changes in servicing plans.                                                                                                                                  | 5%            |                                                                                                                                              | 3    | 3            | 3    |
|                     |                                                                                   |                                                                                                                                                                                              |               |                                                                                                                                              |      |              |      |
| ECONC               | МҮ                                                                                |                                                                                                                                                                                              | 25%           |                                                                                                                                              | 16   | 14           |      |
| E1                  | Potential to Use Combined Service Corridor                                        | Length and area of combined service corridor.                                                                                                                                                |               | Alts. I uses a common corridor with other new works for half of length. Alt. II<br>requires a new single use corridor for 1/3 of its length. | 4    | 1            | 2    |
| E2                  | Efficiency of Lice of Existing Infrastructure                                     | Lico of ovisitos conacity                                                                                                                                                                    | 6%            |                                                                                                                                              | 2    | 2            | 2    |
| L2                  | Endency of Ose of Existing initiasuadure                                          | Use of existing capacity                                                                                                                                                                     | 5%            |                                                                                                                                              | 5    | 5            | 5    |
| E3                  | Energy Consumption                                                                | Pumping requirements                                                                                                                                                                         | 4%            |                                                                                                                                              | 3    | 3            | 3    |
| E5                  | Impact on Agriculture                                                             | Agriculture area likely to be affected by infrastructure.                                                                                                                                    | 2%            |                                                                                                                                              | 3    | 3            | 3    |
| E9                  | Capital Cost                                                                      | Estimated cost of construction.                                                                                                                                                              |               | Alt II is the least expensive and Alt. III is the most expensive to install.                                                                 | 3    | 4            | 2    |
|                     |                                                                                   |                                                                                                                                                                                              | 8%            |                                                                                                                                              |      |              |      |
| CARING              | G AND HEALTHY COMMUNITIES                                                         |                                                                                                                                                                                              | 25%           |                                                                                                                                              | 8    | 5            |      |
| C3                  | Displacement of Residents, Community/Recreation<br>Features and Institutions.     | Affects areas of residence, institutions or businesses.                                                                                                                                      |               | Alt. Il is adjacent to Carp River corridor.                                                                                                  | 3    | 2            | 3    |
| C4                  | Disruption to Existing Community                                                  | Extent of works affecting existing residences and businesses and visibility of additional                                                                                                    | 6%            | Alt II and III are along major arterials in existing communities                                                                             | 3    | 1            | 2    |
| 0.                  | Sindplot to Ending Community                                                      | infrastructure.                                                                                                                                                                              | 11%           |                                                                                                                                              | 0    | ·            | -    |
| C9                  | Consistency with Planned Land Use and<br>Infrastructure                           | Compatibility with City land use, design guidelines and infrastructure servicing corridor planning<br>(Kanata West Roadwork Environmental Study Report and Storm Sewer and Watermain Needs). |               |                                                                                                                                              | 2    | 2            | 2    |
|                     |                                                                                   |                                                                                                                                                                                              | 8%            |                                                                                                                                              |      |              |      |
| NATUR               | AL ENVIRONMENT                                                                    |                                                                                                                                                                                              | 14%           |                                                                                                                                              | 15   | 9            | 14   |
| N1                  | Impact on Significant Natural Features                                            | Loss of natural area due to installation of works.                                                                                                                                           | 3%            | Alt. II is adjacent to Carp River corridor.                                                                                                  | 3    | 1            | 2    |
| N3                  | Impact on Aquatic Systems                                                         | Potential impact on fish habitat due to installation of works.                                                                                                                               | 3%            | Alt. It is adjacent to the Carp River corridor which presents a potential for<br>impacts to aquatic systems                                  | 3    | 2            | 3    |
| N4                  | Impact on Quality and Quantity of Surface Water and<br>Groundwater                | Potential impact on water quality in the Carp River resulting from rare emergency overflows to the<br>SWM pond due to pump station failure.                                                  | 3%            | Alt. II requires construction along a significant portion of the Carp River corridor<br>which is currently vegetated.                        | 3    | 2            | 3    |
| N5                  | Impact on Global Warming                                                          | Difference in carbon dioxide emissions resulting from occasional use of diesel generator.                                                                                                    | 1%            |                                                                                                                                              | 3    | 3            | 3    |
| N6                  | Effects on Urban Greenspace, Open Space and<br>Vegetation (i.e.trees,shrubs,etc.) | Disruption to greenspace and trees.                                                                                                                                                          | 5%            | Alt. It is adjacent to Carp River corridor which presents a potential for impacts to<br>aquatic systems                                      | 3    | 1            | 3    |
| Total S             | core                                                                              | L                                                                                                                                                                                            | 100%          | 1                                                                                                                                            | 2.93 | 2.29         | 2.52 |
| Rankin              | g                                                                                 |                                                                                                                                                                                              |               |                                                                                                                                              | 1    | 3            | 2    |
| Estimat             | ted Capital Cost (in \$million)                                                   |                                                                                                                                                                                              |               |                                                                                                                                              | 1.5  | 1.5          | 2    |

Description of Alternatives Temporary Forcemain Alternative I - Maple Grove/Huntmar/Iber Road to the Sittsville Collector Temporary Forcemain Alternative II- Carp River/Terry Fox to the Stittsville Collector Temporary Forcemain Alternative III- Maple Grove/Terry Fox to the Stittsville Collector

Evaluation Ranking 1 -2 High or Negative Impact 3 Moderate or No Impact 4-5 Low or Positive Impact

#### 4.2.5 Trunk Sewer Alignment Alternatives

#### 4.2.5.1 Description of Trunk Sewer Alignment Alternatives

Three potential alignments were considered for the gravity sewer that will service the unserviced lands on Hazeldean Road. This sewer will also permit the decommissioning of several small existing pumping stations located along the north limit of the Village of Stittsville. As illustrated in **Figure 4.1-8** the alternative alignments considered for this sewer are:

- Alternative I Maple Grove Road from the proposed pumping station to Huntmar Road, south on Huntmar Road to Hazeldean Road at Iber Road.
- Alternative II Maple Grove Road to south of Poole Creek, southerly along Poole Creek to the transit corridor, southerly along the transitway to Hazeldean Road at Iber Road.
- Alternative III South from the Maple Grove Road Pumping Station through the proposed development lands adjacent to the Carp River to Hazeldean Road, west on Hazeldean Road to Iber Road.

#### 4.2.5.2 Evaluation of the Trunk Sewer Alignment Alternatives

The alternative sewer alignments were evaluated and ranked using the criteria discussed in Section 4.2. The results of the evaluation are summarized in **Table 4.1-5.** An explanation of the category rankings and weightings are provided below.

#### Constructability/Functionality (C/F) – 36%

All three alternatives require approximately the same depth of excavation and present similar geotechnical issues. A benefit of Alternative I is that at least half of the works will be installed in conjunction with other infrastructure. In addition, the Alternative I alignment will be installed in a corridor that will be part of Phase One of construction providing flexibility in phasing works outside the KWCP area.

Alternatives I and II require the least amount of infrastructure to reach Iber Road.

Economy (E) - 25%

Alternatives I and II offer the opportunity to use combined service corridors along Maple Grove Road and Huntmar Road (Alternative I) and Hazeldean Road and the transitway (Alternative II). Alternative I would be part of Phase 1 of construction and will ensure that the timing of installation will coincide with other joint use utilities. This ensures that the economies of the combined corridor servicing will materialize for Alternative I.

Alternatives I and II are the least costly to install as they require the least amount of infrastructure.

#### Caring and Healthy Community (CHC) – 25%

There are no significant differences between the three alternatives in terms of the impact on the community. The alignment of all three alternatives is primarily confined to within the development area. Impacts will be confined to the period of construction in all cases.

#### Natural Environment (NE) - 14%

All three sewer alignment alternatives have a similar impact on the environment. Each alignment is confined to existing right-of-ways or in new right-of-ways proposed within the development area. Alternative I requires crossing Poole Creek that may impact water quality.

#### 4.2.5.3 Selection of Preferred Huntmar Road Sewer Alignment Alternative

Based on the above evaluation, Huntmar Road sewer Alternative I is selected as the preferred alignment for the gravity sewer. This sewer will service Hazeldean Road and the southern portion of the KWCP. The alignment is preferred because it maximizes the flexibility for development within the KWCP without compromising the surrounding communities or natural environment.

#### 4.2.6 Signature Ridge Pumping Station Alternatives

4.2.6.1 Description of Signature Ridge Pumping Station Alternatives

The Signature Ridge Pumping Station is a critical element for providing sanitary service to the KWCP. The present condition of the station is insufficient to provide the necessary level of service required to service the proposed area. To the capacity, two alternatives were considered for the Station. The station can be upgraded (Alternative II) or it can be completely rebuilt (Alternative I), including the construction of a new wet well, pumps and auxiliary power facility. Upgrade recommendations have been described in the "Signature Ridge Pumping Station Feasibility Study" by R.V. Anderson Assoc. Ltd., dated Sept. 2003.

These alternatives were considered because of the significant amount of infrastructure that is currently dependent on the Signature Ridge Pumping Station for an outlet. The station is also located in close proximity to the northeast portion of the KWCP. **Figure 4.1-9** illustrates the location of the Signature Ridge Pumping Station.

#### 4.2.6.2 Evaluation of Signature Ridge Pumping Station Alternatives

The alternative pumping station alternatives were evaluated and ranked using the criteria discussed in Section 4.2. The results of the evaluation are summarized in **Table 4.1-6**. An explanation of the category rankings and weightings are provided below.

#### Constructability/Functionality (C/F) 36%

The Signature Ridge Pumping Station requires only mechanical upgrades to provide the necessary level of service, which can be accomplished through Alternative I (Station up-grade). This eliminates the need to perform deep excavations in soft clays for reconstruction of the wet well. A benefit of constructing a new pumping station would be the ability to increase the pumping capacity to more than that required for the KWCP, increasing the flexibility of the overall wastewater system.

Upgrading the existing station will not require any property acquisition and can be completed in stages to meet the needs of future development over time.







MAY 2006



## TRUNK SEWER ALIGNMENT ALTERNATIVES

#### **TABLE 4.1-5**



#### Kanata West Wastewater - Trunk Sewer Alternatives

| Criteria |                                                                                   | Indicators                                                                                                                                                                                   | Weighting | Rationale for                                                                                                           | Trunk Sewer |              |      |  |
|----------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------|--|
|          |                                                                                   |                                                                                                                                                                                              |           | Relative Weights                                                                                                        |             | Alternatives |      |  |
|          |                                                                                   |                                                                                                                                                                                              |           |                                                                                                                         | I           | I            |      |  |
| CONSTR   | RUCTABILITY/FUNCTIONALITY                                                         |                                                                                                                                                                                              | 36%       |                                                                                                                         | 27          | 17           | 19   |  |
| CO1.1    | Geotechnical Issues and Construction Risks                                        | Potential for encountering poor soils and/or elevated groundwater conditions.                                                                                                                |           |                                                                                                                         | 3           | 3            | 3    |  |
| CO1.2    | Infrastructure Requirements                                                       | Extent of works required.                                                                                                                                                                    | 7%        | Alt. III requires the most sewer .                                                                                      | 3           | 3            | 2    |  |
| CO1 3    | Operational Impacts                                                               | Amount of maintenance intensive infrastructure required                                                                                                                                      | 7%        |                                                                                                                         | 3           | 3            | 3    |  |
| CO1.4    | Construction Scheduling                                                           | Impact of construction on development timing                                                                                                                                                 | 6%        | Alt Lensures the trunk sewer is constructed as part of Phase I due to the                                               | 5           | 2            | 2    |  |
| 001.4    | Construction Concerning                                                           | mpact of construction of the comprise it uning.                                                                                                                                              | 4%        | requirement to install Huntmar Road as part of Phase I.                                                                 | 5           | L            | L    |  |
| CO1.5    | Property Acquisition                                                              | Ease of property acquisition. (Depends on status of lands and adjacent lands, i.e. vacant, leased or owner occupied.)                                                                        |           | Alts. I and III are entirely within existing road right-of-ways or in new roads.                                        | 5           | 2            | 5    |  |
| CO1.6    | System Reliability                                                                | Proximity of a storm sewer, SWM or other surface water for emergency overflow                                                                                                                | 2%        |                                                                                                                         | 3           | 3            | 3    |  |
|          |                                                                                   |                                                                                                                                                                                              | 6%        |                                                                                                                         |             |              |      |  |
| CO1.7    | Servicing Hexibility                                                              | Lase of accommodating potential changes in servicing plans.                                                                                                                                  | 5%        | The central location of Alt. I to the service area maximizes flexibility.                                               | 5           | 1            | 1    |  |
| ECONO    | MY                                                                                |                                                                                                                                                                                              | 25%       |                                                                                                                         | 17          | 15           | 12   |  |
| E1       | Potential to Use Combined Service Corridor                                        | Length and area of combined service corridor.                                                                                                                                                |           | Alt. I is entirely within a joint use corridor where Alt. II and III require<br>extensive specific corridors.           | 5           | 3            | 2    |  |
| E2       | Efficiency of Use of Existing Infrastructure                                      | Use of exisiting capacity                                                                                                                                                                    | 6%<br>5%  |                                                                                                                         | 3           | 3            | 3    |  |
| E3       | Energy Consumption                                                                | Pumping requirements                                                                                                                                                                         | 3%        |                                                                                                                         | 3           | 3            | 3    |  |
| E5       | Impact on Agriculture                                                             | Agriculture area likely to be affected by infrastructure.                                                                                                                                    | 476       |                                                                                                                         | 3           | 3            | 3    |  |
| E9       | Capital Cost                                                                      | Estimated cost of construction.                                                                                                                                                              | 2%        | Alt. III is significantly more expensive than Alt. I and II due to overall length<br>and singular service construction. | 3           | 3            | 1    |  |
|          |                                                                                   |                                                                                                                                                                                              | 8%        |                                                                                                                         |             |              |      |  |
| CARING   | AND HEALTHY COMMUNITIES                                                           |                                                                                                                                                                                              | 25%       |                                                                                                                         | 9           | 9            | 9    |  |
| C3       | Displacement of Residents, Community/Recreation Features<br>and Institutions.     | Affects areas of residence, institutions of dusinesses.                                                                                                                                      | 69/       |                                                                                                                         | 3           | 3            | 3    |  |
| C4       | Disruption to Existing Community                                                  | Extent of works affecting existing residences and businesses and visibility of additional infrastructure.                                                                                    | 119/      |                                                                                                                         | 3           | 3            | 3    |  |
| C9       | Consistency with Planned Land Use and Infrastructure                              | Compatibility with City land use, design guidelines and infrastructure servicing corridor planning (Kanata West<br>Roadwork Environmental Study Report and Storm Sewer and Watermain Needs). | 11/8      |                                                                                                                         | 3           | 3            | 3    |  |
|          |                                                                                   |                                                                                                                                                                                              | 8%        |                                                                                                                         |             |              |      |  |
| NATURA   | AL ENVIRONMENT                                                                    |                                                                                                                                                                                              | 14%       |                                                                                                                         | 13          | 15           | 15   |  |
| N1       | Impact on Significant Natural Features                                            | Loss of natural area due to installation of works.                                                                                                                                           | 3%        | Alt. I crosses Poole Creek requring construction within the river corridor.                                             | 2           | 3            | 3    |  |
| N3       | Impact on Aquatic Systems                                                         | Potential impact on fish habitat due to installation of works.                                                                                                                               | 3%        | Alt. I crosses Poole Creek increasing the potential to impact fish habitat.                                             | 2           | 3            | 3    |  |
| N4       | Impact on Quality and Quantity of Surface Water and<br>Groundwater                | Potential impact on water quality in the Carp River resulting from rare emergency overflows to the SWM pond due to<br>pump station failure.                                                  | 3%        |                                                                                                                         | 3           | 3            | 3    |  |
| N5       | Impact on Global Warming                                                          | Difference in carbon dioxide emissions resulting from occasional use of diesel generator.                                                                                                    | 1%        |                                                                                                                         | 3           | 3            | 3    |  |
| N6       | Effects on Urban Greenspace, Open Space and Vegetation<br>(i.e.trees,shrubs,etc.) | Disruption to greenspace and trees.                                                                                                                                                          | 5%        |                                                                                                                         | 3           | 3            | 3    |  |
| Total So |                                                                                   |                                                                                                                                                                                              | 100%      |                                                                                                                         | 3 20        | 2.94         | 2.61 |  |
| Ranking  |                                                                                   |                                                                                                                                                                                              | 100 /0    |                                                                                                                         | 1           | 2.04         | 3    |  |
| Estimate | ed Capital Cost (in \$million)                                                    |                                                                                                                                                                                              | 1         |                                                                                                                         | 1.5         | 1.5          | 2.5  |  |
|          |                                                                                   |                                                                                                                                                                                              |           |                                                                                                                         | -           |              | -    |  |

Description of Alternatives Trunk Sewer Alternative I - Maple Grove/Huntmar/Hazeldean Road Trunk Sewer Alternative II- Maple Grove/Poole Creek/Transitway/Hazeldean Road Trunk Sewer Alternative III - Maple Grove/Hazeldean Road



#### Economy (E) 25%

The reconstruction of the Signature Ridge Pumping Station is significantly more than the costs to upgrade the existing station.

#### Caring and Healthy Community (CHC) 25%

In terms of the impact on the Community, there are no significant differences between the two alternatives.

#### Natural Environment (NE) 14%

There are no significant differences between the two options with respect to impacts to the natural environment. Both alternatives require the construction of an emergency overflow to the Carp River. Impacts to surface water quality as a result of potential station overflows during an emergency situation are not expected to occur. Should an overflow occur for either alternative, the impacts would be mitigated by a SWM pond. Increases in  $CO_2$  emissions as a result of the use of diesel generators during power failures or maintenance procedures will be negligible and are similar in both alternatives.

4.2.6.3 Selection of Preferred Signature Ridge Pumping Station Alternative

Based on the above evaluation, the Signature Ridge Pumping Station Alternative I, station upgrade, is selected as the preferred alternative. This alternative maximizes the use of existing infrastructure and offers the most flexibility in phasing of the works with the least amount of capital expenditure or impacts.

#### 4.2.6.4 Summary

The preferred alternatives selected for the wastewater outlet, the internal servicing system, the temporary forcemain, the trunk sewer alignment, and the Signature Ridge Pumping Station have been used to develop a comprehensive wastewater servicing plan for the KWCP. This servicing plan is discussed in future detail in the following section of this report.

#### 4.3 **Preferred Sanitary Sewer Servicing Plan**

Section 4.2 has detailed the selection of preferred alternatives for the major infrastructure required to provide sanitary sewer service to the KWCP. These preferred alternatives have been used to develop a Master Sanitary Servicing Plan for the area. This plan is illustrated on **Drawing S-1** (appended to this report). The major features of this plan are:

(i.) An upgraded Signature Ridge Pumping Station (SRPS) to service all the KWCP lands north of the Queensway, the existing urban area north of the Queensway currently proposed to drain to the SRPS, and the Broughton/Richardson Interstitial lands. A spreadsheet detailing the exact areas and flows tributary to the SRPS is included in **Figure 4.2-1**.

The 400 l/sec peak flow capacity identified in **Figure 4.2-1** for the upgraded SRPS, is consistent with the findings of the R.V. Anderson Report titled "Signature Ridge Pumping Station Upgrades Feasibility Study".







# FIG. 4.1-9

| ⊗<br>↓                                                              |                      |                               |                         | Legend: | SIGNAI<br>PUMPIN                    |
|---------------------------------------------------------------------|----------------------|-------------------------------|-------------------------|---------|-------------------------------------|
| Existing Pumping Station<br>and Forcemain<br>(To be Decommissioned) | Existing Trunk Sewer | Existing Stittsville<br>Sewer | Ultimate Drainage Limit |         | I URE RIDGE<br>NG STATION<br>CATION |
### **TABLE 4.1-6**



### Kanata West Wastewater - Temporary Forcemain/Trunk Sewer/Signature Ridge Alternatives

|              | Criteria                                                           | Indicators                                                                                                                                                                                   | Weighting | Rationale for<br>Relative Weights                                                                                                          | Signature<br>Altern | Ridge PS<br>ative |
|--------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|
|              |                                                                    |                                                                                                                                                                                              |           |                                                                                                                                            | Upgrade             | Rebuild           |
| CONSTRI      |                                                                    |                                                                                                                                                                                              | 36%       |                                                                                                                                            | 24                  | 16                |
| CO1.1        | Geotechnical Issues and Construction Risks                         | Potential for encountering poor soils and/or elevated groundwater conditions.                                                                                                                | 50%       | Alt. Il requires reconstruction of the pumping station in very soft clays where Alt. I<br>does not require reconstruction of the wet well. | 3                   | 1                 |
| 001.0        | Jafrastrusture Daguiramente                                        | Evident of works approximate                                                                                                                                                                 | 7%        | Alt Look requires meredias of backware within the existing number station                                                                  | 4                   | 1                 |
| 601.2        | Infrastructure Requirements                                        | Extent of works required.                                                                                                                                                                    | 7%        | Ait. I only requires upgrading of hardware within the existing pumping station.                                                            | 4                   | '                 |
| CO1.3        | Operational Impacts                                                | Amount of maintenance intensive infrastructure required.                                                                                                                                     | 6%        |                                                                                                                                            | 3                   | 3                 |
| CO1.4        | Construction Scheduling                                            | Impact of construction on development timing.                                                                                                                                                | 49/       | Alt. I can be phased to suit development timing where Alt. II requires a lengthy total<br>reconstruction program.                          | 4                   | 2                 |
| CO1.5        | Property Acquisition                                               | Ease of property acquisition. (Depends on status of lands and adjacent lands, i.e. vacant, leased or<br>owner occupied.)                                                                     | 470       | Alt. Il requires property acquisition for a new station because existing station will have<br>to remain in service during construction.    | 5                   | 2                 |
| CO1.6        | Svetem Peliphility                                                 | Provimity of a ctorm sawer. SWM or other surface water for emergency overflow                                                                                                                | 2%        |                                                                                                                                            | 3                   | 3                 |
| 001.0        | System Reliability                                                 | Proximity of a storm server, Sivini of other surface water for emergency overhow                                                                                                             | 6%        |                                                                                                                                            | 0                   | 5                 |
| CO1.7        | Servicing Flexibility                                              | Ease of accommodating potential changes in servicing plans.                                                                                                                                  | 078       | Alt. II can be built to accommodate changes where Alt. I is designed to the maximum.                                                       | 2                   | 4                 |
|              |                                                                    |                                                                                                                                                                                              | 5%        |                                                                                                                                            |                     |                   |
|              |                                                                    |                                                                                                                                                                                              | 050/      |                                                                                                                                            |                     | 10                |
| ECONOM<br>E1 | Potential to Lise Combined Service Corridor                        | Length and area of combined service corridor                                                                                                                                                 | 25%       |                                                                                                                                            | 19                  | 12                |
| L 1          | Potential to use combined Service Comuon                           |                                                                                                                                                                                              | 201       |                                                                                                                                            | 5                   | 5                 |
| E2           | Efficiency of Use of Existing Infrastructure                       | Use of exisitng capacity                                                                                                                                                                     | 6%        | Alt. I maximizes the use of the existing station.                                                                                          | 5                   | 2                 |
|              |                                                                    |                                                                                                                                                                                              | 5%        |                                                                                                                                            |                     |                   |
| E3           | Energy Consumption                                                 | Pumping requirements                                                                                                                                                                         | 4%        |                                                                                                                                            | 3                   | 3                 |
| E5           | Impact on Agriculture                                              | Agriculture area likely to be affected by infrastructure.                                                                                                                                    | 2%        |                                                                                                                                            | 3                   | 3                 |
| E9           | Capital Cost                                                       | Estimated cost of construction.                                                                                                                                                              |           | Alt. II is significantly more expensive to construct.                                                                                      | 5                   | 1                 |
|              |                                                                    |                                                                                                                                                                                              | 8%        |                                                                                                                                            | 10                  |                   |
| CARING A     | Displacement of Residents, Community/Recreation                    | Affects areas of residence, institutions or businesses.                                                                                                                                      | 25%       |                                                                                                                                            | 4                   | 4                 |
|              | Features and Institutions.                                         |                                                                                                                                                                                              | 6%        |                                                                                                                                            |                     |                   |
| C4           | Disruption to Existing Community                                   | Extent of works affecting existing residences and businesses and visibility of additional infrastructure.                                                                                    | 11%       | Alt. 1 requires only internal up-grades and will have minimal construction traffic or<br>related impacts.                                  | 4                   | 3                 |
| C9           | Consistency with Planned Land Use and Infrastructure               | Compatibility with City land use, design guidelines and infrastructure servicing corridor planning<br>(Kanata West Roadwork Environmental Study Report and Storm Sewer and Watermain Needs). |           | Alt. I maximizes use of currently planned infrastructure by upgrading existing station<br>to its maximum potential.                        | 4                   | 2                 |
|              |                                                                    |                                                                                                                                                                                              | 8%        |                                                                                                                                            |                     |                   |
| NATURAL      |                                                                    |                                                                                                                                                                                              | 14%       |                                                                                                                                            | 14                  | 14                |
| N1           | Impact on Significant Natural Features                             | Loss of natural area due to installation of works.                                                                                                                                           | 3%        |                                                                                                                                            | 3                   | 3                 |
| N3           | Impact on Aquatic Systems                                          | Potential impact on fish habitat due to installation of works.                                                                                                                               | 3%        |                                                                                                                                            | 3                   | 3                 |
| N4           | Impact on Quality and Quantity of Surface Water and<br>Groundwater | Potential impact on water quality in the Carp River resulting from rare emergency overflows to the<br>SWM pond due to pump station failure.                                                  | 3%        |                                                                                                                                            | 3                   | 3                 |
| N5           | Impact on Global Warming                                           | Difference in carbon dioxide emissions resulting from occasional use of diesel generator.                                                                                                    | 1%        |                                                                                                                                            | 2                   | 2                 |
| N6           | Effects on Urban Greenspace, Open Space and                        | Disruption to greenspace and trees.                                                                                                                                                          | 5%        |                                                                                                                                            | 3                   | 3                 |
|              | Vegetation (i.e.trees,shrubs,etc.)                                 |                                                                                                                                                                                              |           |                                                                                                                                            |                     |                   |
| Total Sco    | re                                                                 | 1                                                                                                                                                                                            | 100%      |                                                                                                                                            | 3.60                | 2.48              |
| Ranking      |                                                                    |                                                                                                                                                                                              | ,         |                                                                                                                                            | 1                   | 2                 |
| Estimated    | l Capital Cost (in \$million)                                      |                                                                                                                                                                                              |           |                                                                                                                                            | 1                   | 4                 |

Evaluation Ranking 1 -2 High or Negative Impact 3 Moderate or No Impact 4-5 Low or Positive Impact

Description of Alternatives Signature Ridge PS Alternative 1 - Rebuild Signature Ridge PS Alternative II - Upgrade

## STANTEC / CUMMING COCKBURN LIMITED / IBI GROUP Kanata West Master Servicing Study June 2006

The Signature Ridge Pumping Station is currently not equipped with catastrophic failure protection in the form of a gravity overflow. A hydraulic analysis of the proposed sewer system was therefore completed to evaluate the potential for providing a gravity overflow. This analysis demonstrates that catastrophic protection can be provided by gravity. The analysis is included in **Appendix 4.2** and demonstrates that overflows to the existing stormwater management pond on First Line Road and to Pond I can provide the necessary level of protection.

(ii.) A single new pumping station and forcemain located south of Maple Grove Road and west of the Carp River.

This new pumping station ultimately services all the KWCP south of Highway 417, the lands south of the 417 originally tributary to the SRPS, and the lands in the Village of Stittsville, along Hazeldean Road which are currently unserviceable by gravity to the Stittsville Sanitary Sewer System. This new pumping station has also been designed to accommodate the decommissioning of up to eight small public and private pumping stations along Hazeldean Road without deepening the Kanata West system. **Figure 4.2-1** details the exact areas and flows from Stittsville which will ultimately be tributary to the new pumping station. The areas are also illustrated on **Drawing S-1**.

**Figures 4.2-3 and 4.2-4** illustrate a conceptual layout and cross-section for the new pumping station and **Appendix 4.3** details the conceptual design of the pumping station.

The new pumping station will temporarily outlet to the Stittsville Collector Sewer via a temporary forcemain in Huntmar Road and Iber Road. This temporary forcemain is designed to accommodate a flow of 190 l/sec (approximately 3,000 units). The temporary outlet will be located entirely within a public right-of-way. The single 405 mm diameter forcemain used for the initial outlet can be kept in service for long-term use as an emergency back up outlet. Rationale on the availability of capacity in the Stittsville Collector Sewer is attached as **Appendix 4.1**.

The permanent outlet for the new pumping station consists of a forcemain leading from the pumping station to the Glen Cairn Collector Sewer east of Eagleson Road. The preferred route for this forcemain in along Maple Grove Road to Silver Seven Road; along the east side of Silver Seven Road, in an easement, in the undeveloped lands between Maple Grove Road and Palladium Drive; easterly along Palladium Drive to Katimavik Road; and easterly along the north side of Katimavik Road, in the corridor for the unbuilt westbound lanes of Katimavik Road, to Eagleson Road and the Glen Cairn Collector Sewer. The location of the new pumping station is in close proximity to Stormwater Management Ponds 4 and 5. This provides catastrophic failure protection to the new pumping station in the form of a gravity overflow. The hydraulic analysis of this overflow system is attached as **Appendix 4.2**.

The preferred sanitary sewer system also includes a gravity sewer, which collects flow from several minor internal sanitary sewers and directs this flow to the new pumping station location. As illustrated on **Drawing S-1** this minor collector sewer runs parallel to the west side of the Carp River corridor between Maple Grove Road and Palladium Drive, crossing under the Carp River by boring beneath the river. The sewer extends northerly to intercept flows from Silver Seven Road and diverts them from the Signature Ridge Pumping Station. The inclusion of this north south sewer is a key element in eliminating the need for double pumping within Kanata

## SANITARY SEWER DESIGN SHEET PROJECT : Kanata West Servicibility Study LOCATION : CITY OF OTTAWA

|                                           |          |       |                               |        |        |         |         | MODEL 1   | ULTIMAT | TE (populati | on based crit | eriaICI simu | iltaneous pea | aking)   |             |            |            |        |         |                    |        |          |         |            |            |        |          |       |         |        |        |       |          |
|-------------------------------------------|----------|-------|-------------------------------|--------|--------|---------|---------|-----------|---------|--------------|---------------|--------------|---------------|----------|-------------|------------|------------|--------|---------|--------------------|--------|----------|---------|------------|------------|--------|----------|-------|---------|--------|--------|-------|----------|
|                                           | LOCA     | TION  |                               | TOTAL  |        | I       | R       | ESIDENTI/ | AL .    |              |               | ļ            | EMPLO         | YMENT/RE | ETAIL/BUSIN | ESS PARK/C | PEN SPACES |        |         | INFILTI            | RATION | 1        | TOTAL   | PF         | ROPOSED SE | WER    |          |       |         |        |        |       |          |
|                                           |          |       |                               | AREA   | APPLIC | UNIT/Ha | TOTAL   | POPU      | LATION  | PEAK         | PEAK          | APPLIC       | ACCUM         | TOTAL    | FLOW        |            | PEAK FLOW  |        |         | AREA (Ha           | )      | PEAK     | FLOW    | CAPACITY V | /ELOCITY   | LGTH.  | PIPE     | GRADE | AVAIL.  | HARMON | ACTUAL | va/Vf | ACTUAL   |
| STREET                                    | FROM     | то    |                               |        | AREA   |         | UNITS   | INDIV     | ACCUM   | FACTOR       | FLOW          | AREA         | AREA          | AREA     | RATE        | INDIV      | ACCUM      | TOTAL  | INDIV   | CUMUL              | TOTAL  | FLOW     |         |            | (full)     |        |          |       | CAP.    | PF     | q/Q    | '     | /ELOCITY |
|                                           | МН       | MH    |                               | (на)   | (Ha)   |         |         |           |         |              | (I/S)         | (на)         | (Ha)          | (Ha)     | (I/Ha/d)    | (I/S)      | (I/S)      | (I/S)  |         |                    | COMUL  | (I/S)    | (I/S)   | I/S        | m/s        | (m)    | (mm)     | %     | (%)     |        |        |       | (m/s)    |
| Company Drive Track Company               | 1        | 2     | Arres 1 (DDD)                 | 20.11  |        |         |         |           |         |              |               | 20.11        | 00.11         |          | 25000       |            | 00.10      |        | 20.1    | 1 20.11            |        |          |         |            |            |        |          |       |         |        |        |       |          |
| Campeau Drive Trunk Sewer                 | I        | 2     | Area I (PBP)                  | 38.11  |        |         |         |           |         |              |               | 38.11        | 38.11         |          | 35000       | 23.1       | 8 23.16    |        | 38.1    | 1 38.11            |        |          |         |            |            |        |          |       |         |        |        |       |          |
|                                           |          |       | Area 2 Ext Employment         | 14.05  | -      |         |         |           |         |              |               | 14.05        | 70.45         |          | 5000        | 10.5       | o 51.04    |        | 14.0    | 5 70.45            |        |          |         |            |            |        |          |       |         |        |        |       |          |
|                                           |          |       | Area 4 HP Employment          | 10.03  |        | -       |         |           |         |              |               | 10.03        | 90.38         | 90.3     | 8 50000     | 9.4        | 0 51.94    | 61.4   | 2 10.9  | 3 00.38            | 90.3   | 8 25.3   | 86.7    | 3 283.70   | 1.27       | 525.0  | 525      | 0.40  | 69.44%  |        | 0.306  | 0 730 | 0 927    |
|                                           | 2        | 3     | Area 5 Residential            | 20.10  | 20.10  | 0 1     | 10 555  | 1664      | 1664    | 3.65         | 24.58         | 10.75        | 70.50         | 90.3     | 8           | , ,        | 01.42      | 61.4   | 2 20.1  | 0 20.00            | 0.5    | 0 25.5   | 00.7.   | 205.17     | 1.27       | 525.0  | 525      | 0.40  | 07.44%  | 3.65   | 0.000  | 0.700 | 0.527    |
|                                           | 2        | 5     | Area 9 Ext Employment         | 8.45   | 27.17  |         | .) 55.  | 1004      | 1004    | 5.02         | 24.50         | 8.45         | 8.45          | 98.8     | 3 50000     | 73         | 4 7.34     | 68.7   | 6 84    | 5 128.02           | 128.0  | 2 35.84  | 129.1   | 8 286.61   | 0.98       | 700.0  | 600      | 0.20  | 54 93%  | 0.00   | 0.451  | 0.830 | 0.815    |
|                                           | 14       | 3     | Area 6/8 Ext Employment       | 16.65  |        |         |         |           |         |              | 21.50         | 16.65        | 16.65         | 70.0     | 50000       | 14.4       | 5 14.45    | 00.7   | 16.6    | 5 16.65            | 120.0. | 2 55.0.  |         | 200.01     | 0.50       | 700.0  | 000      | 0.20  | 51.55%  |        | 0.101  | 0.000 | 0.010    |
|                                           | 14       | 5     | Area 7 HP Employment          | 5.48   | -      |         |         |           |         |              |               | 5.48         | 22.13         | 22.1     | 3 50000     | 47         | 6 19.21    | 19.2   | 10.0    | 8 22.13            | 22.1   | 3 6.20   | 25.4    | 1 148 74   | 0.91       | 910.0  | 450      | 0.25  | 82 92%  |        | 0 171  | 0.630 | 0.571    |
|                                           | 3        | 4     | Thea, The Employment          | 5.10   |        |         |         |           | 1664    | 3.65         | 24.58         | 0.00         | 0.00          | 120.9    | 6           | 0.0        | 0 0.00     | 87.9   | 7 0.0   | 0 0.00             | 150.1  | 5 42.04  | 1 154.5 | 9 392.29   | 1.06       | 300.0  | 675      | 0.20  | 60.59%  | 3.65   | 0.394  | 0.790 | 0.839    |
|                                           | 44       | 4     | Area 10 Residential           | 27.86  | 27.86  | 6 1     | 19 520  | 1588      | 1588    | 3.66         | 24.50         | 0.00         | 0.00          | 120.7    | 0           | 0.0        | 0.00       | 07.9   | 27.8    | 6 27.86            | 27.8   | 6 7.80   | 31.3    | 6 148 74   | 0.91       | 750.0  | 450      | 0.25  | 78 92%  | 3.66   | 0.004  | 0.660 | 0.598    |
|                                           | 4        | 5     | 14 Mixed Use                  | 4.13   | 1.76   | 6 5     | 50 85   | 263       | 3515    | 3 3 3        | 48.17         | 2 37         | 2 37          | 123.3    | 3 35000     | 1.4        | 4 1.44     | 80.4   | 1 4.1   | 3 413              | 182.1  | 4 51.00  | 188.5   | 8 302.20   | 1.06       | 450.0  | 675      | 0.25  | 51.03%  | 3 38   | 0.481  | 0.840 | 0.000    |
|                                           | Oueenews | n 5   | Area 13 Community Retail      | 6.35   | 1.70   |         | ,0 00   | 203       | 5515    | . 5.50       | 40.17         | 6.35         | 6.35          | 63       | 5 35000     | 38         | 6 3.86     | 3.8    | 6 63    | 5 4.15             | 102.1  | 4 51.00  | 100.5   | 572.27     | 1.00       | 450.0  | 075      | 0.20  | 51.95%  | 0.00   | 0.401  | 0.040 | 0.002    |
|                                           | Queenswa | .y 5  | Area 11/12 Mixed Use          | 11.80  | 5.03   | 2 5     | 50 251  | 752       | 752     | 3.88         | 11.81         | 6.79         | 13.14         | 13.1     | 4 35000     | 41         | 2 7.98     | 7.9    | 11 8    | 0 1815             | 18.1   | 5 5.08   | 24.8    | 8 43.88    | 0.87       | 420.0  | 250      | 0.50  | 43 31%  | 3.88   | 0.567  | 0.880 | 0.762    |
|                                           | 5        | 5A    | Area 15 Community Retail      | 3.88   | 5.01   |         |         | . ,,,,    | 4267    | 3 31         | 57.19         | 3.88         | 15.11         | 15.1     | 35000       | 23         | 6          |        | 3.8     | 8                  | 10.1.  | 5 5.00   | 21.0    | 15100      | 0.07       | 120.0  | 250      | 0.50  | 15.5170 | 3.31   | 0.007  | 0.000 |          |
| First Line Road Sewer                     | 5        | 5/1   | Area 44                       | 25.54  | -      |         |         |           | 4201    | 5.51         | 57.19         | 25.54        | 29.42         | 165.8    | 9 35000     | ) 15.5     | 2 17.88    | 115.2  | 7 25.5  | 4 29.42            | 229.7  | 1 64.33  | 236.7   | 7 519.43   | 1 14       | 300.0  | 750      | 0.20  | 54 42%  | 0.01   | 0 456  | 0.830 | 0.945    |
|                                           |          |       |                               | 229.71 |        |         |         |           |         |              | 57.19         | 20101        | 27.12         | 105.0    | ,           | , 10.0     | 2 17.00    | 115.2  | 7       | 27.12              | 227.1  | 64.30    | 236.7   | 7          |            | 500.0  | ,50      | 0.20  | 51.12%  |        | 0.100  | 0.000 | 0.010    |
| Signature Ridge                           |          | 5A    | Area 100 Residential          | 90.20  | 90.20  | 0 1     | 19 1714 | 5141      | 5141    | 3.23         | 67.35         | 0.00         |               |          |             |            |            | 115.2  |         |                    |        | 01.5.    | 250.7   |            |            |        |          |       |         | 3.23   |        |       |          |
| Signature Ridge                           |          | 5A    | Area 100 Non-Residential      | 4.88   |        |         | .,      |           |         |              | 67.35         | 4.88         | 4.88          | 4.8      | 8 50000     | 4.2        | 4 4.24     | 4.2    | 4 95.0  | 8 95.08            | 95.0   | 8 26.62  | 98.2    | 1          |            |        |          |       |         |        |        |       |          |
| Intersticial Lands & Broughton/Richardson |          | 5A    |                               |        |        |         |         |           |         |              |               |              |               |          |             |            |            |        |         |                    |        |          | 65.0    | 0          |            |        |          |       |         |        |        |       |          |
| Total To SRPS                             | 54       | SRPS  |                               | 324 79 | 154.02 | 2       | 3136    |           | 9409    |              | 124 54        | 170 77       |               |          |             |            |            | 119 5  | 1       |                    | 324 79 | 90.94    | 399.95  | 8 580 53   | 1 27       | 30.0   | 750      | 0.25  | 31 10%  | 2 98   | 0 689  | 0.940 | 1 197    |
|                                           | -        | 514 5 |                               | 52407  | 104.02 | -       | 0100    |           | 7407    |              | 124.04        | 1/0.//       |               |          |             | 1          |            | 1176   | -       |                    | 02407  | , ,0,,,  |         | , 200.22   | 1.27       | 50.0   | 720      | 0.20  | 51.10 % | 2.00   | 0.000  | 0.040 |          |
|                                           |          |       |                               |        |        |         |         |           |         |              |               |              |               |          |             |            |            |        | _       |                    |        |          | -       |            |            |        |          |       |         |        |        |       |          |
| Pollodium Drive Trunk Sewer               | 6        | 7     | Area 22 (PPP)                 | 57.03  |        |         |         |           |         |              |               | 57.03        | 57.03         |          | 50000       | 40.5       | 1 49.51    |        | 57.0    | 3 57.02            |        |          |         |            |            |        |          |       |         |        |        |       |          |
| Fanadum Drive Trunk Sewer                 | 0        | /     | Area 32 (FDF)                 | 8 24   |        | -       |         |           |         |              |               | 8 24         | 65.27         |          | 50000       | 49.3       | 49.31      |        | \$ 2.   | 5 57.05<br>4 65.37 |        |          |         |            |            |        |          |       |         |        |        |       |          |
|                                           |          |       | Area 33/34 Ext Employment     | 54.85  |        | -       |         |           |         |              |               | 54.85        | 120.22        | 120.2    | 2 50000     | 47.6       | 1 97.12    | 07.1   | 2 54.8  | 5 120.22           | 120.2  | 2        |         |            |            |        |          |       |         |        |        |       |          |
|                                           | 7        | 8     | Area 37 Mixed Use             | 36.70  | 15.60  | 0 5     | 50 780  | 2340      | 2340    | 3.53         | 33.47         | 21.10        | 21.10         | 141.3    | 2 50000     | 183        | 1 97.12    | 115.4  | 4 36.7  | 0 36.70            | 156.0  | 2 43.0/  | 1 102.8 | 5 455.83   | 1.23       | 925.0  | 675      | 0.27  | 57 69%  | 3 53   | 0.423  | 0.810 | 1.000    |
|                                           | ,        | 0     | fuca 57 mixed Osc             | 156.92 | 15.60  | 0 .     | 780     | 2,540     | 2340    | 0.00         | 33.47         | 141.32       | 21.10         | 141.5    | 2 50000     | , 10.5     | 2 10.52    | 115.4  | 4 156.9 | 2 30.70            | 156.9  | 2 43.0   | 1 102.8 | 5 455.05   | 1.20       | 725.0  | 075      | 0.27  | 51.0710 | 3.53   | 0.420  | 0.010 | 1.000    |
| Coral Centre Etc. (Existing Sewar)        |          | 16    | Area 25 UP Employment         | 6.05   | 15.00  | 0       | 700     | ,         | 2,540   | ·            | 55.41         | 6.05         | 6.05          |          | 30000       | 3 1        | 5 3 15     | 115.4  | 6.0     | 5                  | 150.9  | 45.5-    | 172.0.  |            |            |        |          |       |         | 0.00   |        |       |          |
| Coler Centre Etc. (Existing Sewer)        |          | 16    | Area 36 (Corel Centre)        | 0.05   |        | -       |         |           |         |              |               | 0.05         | 0.05          |          | 50000       | 5.1        | 5 5.15     |        | 0.0.    | 5                  |        | 30.00    | )       |            |            |        |          |       |         |        |        |       |          |
|                                           |          | 16    | Area 38 Exten Employment      | 20.15  |        | -       |         |           |         |              |               | 20.15        | 26.20         | 26.2     | 0 14400     | 5.0        | 4 8 10     | 8.1    | 0 20.1  | 5 26.20            | 26.2   | 0 7.2    | 1 45.5  | 2          |            |        | Existing |       |         |        |        |       |          |
| First Line Dood Sawar                     | 15       | 16    | Area 40 Employment            | 14.50  |        |         |         |           |         |              |               | 14.50        | 14.50         | 20.2     | 25000       | ) 9.0      | 7 9.97     | 0.1    | 14.5    | 0 14.50            | 20.20  | 0 7.5    | + 45.5. | 2          |            |        | LAISTING |       |         |        |        |       |          |
| First Line Road Sewer                     | 15       | 10    | Area 41 Employment            | 11.07  | -      |         |         |           |         |              |               | 14.59        | 26.56         |          | 35000       | 7 2        | 7 16.14    |        | 14.5    | 7 26.56            |        |          |         | -          |            |        |          |       |         |        |        |       |          |
|                                           |          |       | Area 42 Employment            | 20.66  | -      |         |         |           |         |              |               | 20.66        | 47.22         |          | 35000       | 12.5       | 5 28.69    |        | 20.6    | 6 47.22            |        |          |         | -          |            |        |          |       |         |        |        |       |          |
|                                           |          |       | Area 43 Employment            | 28.89  |        |         |         |           |         |              |               | 28.89        | 76.11         | 76.1     | 1 35000     | 17.5       | 5 46.25    | 46.2   | 5 28.8  | 9 76.11            | 76.1   | 1 21.3   | 67.5    | 6 224.35   | 1.00       | 525.0  | 525      | 0.25  | 69.89%  |        | 0.301  | 0.730 | 0.733    |
| Carp River Trunk                          | 16       | 8     | Nothing To Add                | 102.31 | 15.60  | 0       | 780     | )         | 2340    | 3.53         | 33.47         | 102.31       | 102.31        | 102.3    | 1 (         | 0.0        | 0 54.44    | 54.4   | 4 0.0   | 0 102.31           | 102.3  | 1 28.65  | 5 113.0 | 8 286.61   | 0.98       | 400.0  | 600      | 0.20  | 60.54%  | 3.53   | 0.395  | 0.790 | 0.776    |
| Carp River Trunk                          | 8        | 10A   | Nothing To Add                | 259.23 | 15.60  | 0       | 780     | )         | 2340    | )            | 33.47         | 0.00         | 0.00          | 243.6    | 3           | 0.0        | 0.00       | 169.8  | 7 0.0   | 0 139.01           | 259.2  | 3 109.92 | 305.9   | 3 579.95   | 1.05       | 550.0  | 825      | 0.15  | 47.25%  | 3.53   | 0.528  | 0.860 | 0.904    |
|                                           | -        |       | 8                             |        |        |         |         |           |         |              |               |              |               |          |             |            |            |        |         |                    |        |          |         |            |            |        |          |       |         |        |        |       |          |
| Marle Grove Road Trunk Sewer              | 9        | 10    | Area 18/19 Exist, Residential | 23.34  | 23.34  | 4 1     | 19 443  | 1330      | 1330    |              |               |              |               |          |             |            |            |        | 23.3    | 4 23.34            |        |          |         |            |            |        |          |       |         | 3.72   |        |       |          |
|                                           |          |       | Area 22/26/27 Residential     | 79.32  | 79.32  | 2 3     | 30 2380 | 7139      | 8469    | 3.03         | 103.82        |              |               |          |             |            |            |        | 79.3    | 2 102.66           | 102.6  | 6 28.74  | 132.5   | 6 405.11   | 1.39       | 775.0  | 600      | 0.40  | 67.28%  | 3.03   | 0.327  | 0.740 | 1.027    |
|                                           | İ        |       |                               | 1      |        | İ       |         | İ         | İ       |              |               |              |               |          | İ           | 1          |            |        |         | 1                  | 1      | İ        |         |            | 1          |        | 1        |       |         |        |        |       | -        |
| Hazeldean/Huntmar Trunk Sewer             | 11       | 12    | Area 16/20 Residential        | 99.01  | 99.01  | 1 1     | 19 1881 | 5644      | 5644    | 3.20         | 73.06         |              |               |          |             |            |            |        | 99.0    | 1 99.01            | 1      | 1        | 1       |            |            |        |          |       |         | 3.20   |        |       |          |
|                                           |          |       | Area 16/20 Commercial         | 33.50  |        |         |         |           |         |              |               | 33.50        | 33.50         | 33.5     | 0 50000     | 29.0       | 8 29.08    | 29.0   | 33.5    | 0 132.51           |        |          |         |            |            |        |          |       |         |        |        |       |          |
|                                           |          |       | Area 16/20 Open Space         | 14.13  |        |         |         |           |         |              |               | 14.13        |               |          |             |            |            |        | 14.1    | 3 146.64           |        |          |         |            |            | _      |          |       |         |        |        |       |          |
|                                           |          |       | Area 17 Ex. Commercial        | 3.44   |        |         |         |           |         |              | 73.06         | 3.44         | 36.94         | 36.9     | 4 35000     | 2.0        | 9 31.17    | 31.1   | 7 3.4   | 4 150.08           | 150.0  | 8 42.02  | 2 146.2 | 6 554.82   | 1.50       | 775.0  | 675      | 0.40  | 73.64%  |        | 0.264  | 0.700 | 1.051    |
|                                           | 12       | 10    | Area 21 Exist. Employment     | 10.89  |        |         |         |           |         |              |               | 10.89        | 10.89         | 10.8     | 9 50000     | 9.4        | 5 9.45     |        | 10.8    | 9 10.89            |        |          |         |            |            |        |          |       |         |        |        |       |          |
|                                           |          |       | Area 19A Exist Residential    | 6.63   | 6.63   | 3 1     | 19 126  | 5 378     | 3       |              |               |              |               |          |             |            | 9.45       |        | 6.6     | 3 17.52            |        |          |         |            |            |        |          |       |         |        |        |       |          |
|                                           |          |       | Area 23/24 Community Retail   | 17.61  |        |         |         |           |         |              |               | 17.61        | 28.50         | 28.5     | 0 35000     | 10.7       | 0 20.15    | 51.3   | 2 17.6  | 1 35.13            |        |          |         |            |            |        |          |       |         |        |        |       |          |
|                                           |          |       | Area 28/30 Residential        | 27.10  | 27.10  | 0 3     | 30 813  | 2439      | 8460    | 3.03         | 103.72        | 0.00         | 0.00          | 65.4     | 4           |            |            | 51.3   | 2 27.1  | 0 62.23            | 212.3  | 1 59.45  | 214.4   | 9 519.43   | 1.14       | 950.0  | 750      | 0.20  | 58.71%  | 3.03   | 0.413  | 0.800 | 0.911    |
| Marle Grove Road Trunk Sewer              | 10       | 10A   | Area 39 Mixed Use             | 21.13  | 8.98   | 8 5     | 50 449  | 1347      | 1       | -            |               | 12.15        | 12.15         | 77.5     | 9 35000     | 7.3        | 8 7.38     | 58.7   | 1 21.1  | 3                  |        |          | I       |            |            |        |          |       |         |        |        |       |          |
|                                           |          |       | Area 29 Residential           | 15.00  | 15.00  | 0 3     | 30 450  | 1350      | 19627   | 2.66         | 211.54        | ·            |               | L        | -           |            |            | 58.7   | 1 15.0  | 0 36.13            | 351.10 | 98.3     | 368.5   | 6 669.89   | 1.21       | 1000.0 | 825      | 0.20  | 44.98%  | 2.66   | 0.550  | 0.870 | 1.056    |
| Carp River Trunk Sewer                    | 13       | 10A   | Area 25 Community Retail      | 20.24  |        | -       |         |           | -       |              |               | 20.24        | 20.24         | 20.2     | 4 35000     | 12.3       | 0 12.30    | 12.3   | 0 20.2  | 4                  |        | -        | -       |            |            |        |          |       |         |        |        |       | -        |
|                                           |          |       | Area 31 residential           | 38.72  | 38.72  | 2 3     | 30 1162 | 3485      | 3485    | 3.39         | 47.80         |              |               |          |             |            |            | 12.3   | 0 38.7  | 2 58.96            | 58.9   | 6 16.5   | 1 76.6  | 1 320.17   | 1.10       | 1000.0 | 600      | 0.25  | 76.07%  | 3.39   | 0.239  | 0.680 | 0.746    |
|                                           |          | 10A   | Area 31A (PBP)                | 0.75   | -      |         | _       |           |         | ļ            | ļ             | 0.75         | 0.75          | 0.7      | 5 50000     | 0.6        | 5 0.65     | 0.6    | 5 0.7   | 5 0.75             | 0.7    | 5 0.2    | 0.8     | 6 36.69    | 0.72       | 100.0  | 250      | 0.35  | 97.65%  |        | 0.023  | 0.340 | 0.246    |
|                                           |          |       |                               |        | -      |         | _       |           |         | ļ            | ļ             |              |               |          | +           |            |            |        | _       |                    | ļ      |          |         | ┦────┤─    |            |        |          |       |         |        |        |       |          |
| Pumping Station 2 to KWPS                 | 10A      | KWPS  |                               | 670.04 | 313.70 | )       | 8484    |           | 25451   |              | 292.82        | 356.34       |               |          |             |            |            | 241.53 | 3       |                    | 670.04 | 4 224.95 | 759.29  | 9 1273.71  | 1.43       | 30.0   | 1050     | 0.20  | 40.39%  | 2.55   | 0.596  | 0.900 | 1.283    |
|                                           |          |       |                               |        |        |         |         |           |         |              |               |              |               |          |             |            |            |        |         |                    |        |          |         |            |            |        |          |       |         |        | _      | -     | -        |
| STUDY TOTALS                              | 1 -      | 1 1   |                               | 994.83 | 467.72 | 2       | 11620   | )         | 34860   |              | 1             | 527.11       |               |          |             | 1          |            |        |         |                    |        |          |         |            | Т          | T      | T        |       |         | 2.41   |        | Т     |          |





Revision No. 1: April 01, 2005

Revision No. 2: April 11, 2005

Revision No. 3: April 21, 2005 
 Revision No. 4:
 June 07, 2005

 Revision No. 5:
 August 10, 2005

# PAGE 1 OF 1 PROJECT: 3598-LD-03 DATE: April 2005 DESIGN: JIM FILE: 3598LD.sewers.XLS

Revision No. 6: Oct. 14, 2005 Revision No. 7: Nov. 10, 2005 Revision No. 8: Nov. 11, 2005 Revision No. 9: Apr. 19, 2006

FIG. 4.2-1

## SANITARY SEWER DESIGN SHEET

PROJECT : Kanata West Servicibility Stury LOCATION : CITY OF OTTAWA

PHASE 1 SIGNATURE RIDGE (population based criteria..ICI simultaneous peaking)

|                                     | LOCA      | TION |                          | TOTAL  |        |         | RE    | SIDENTIA | L     |        |        |        | EMPLO  | YMENT/RE | TAIL/BUSIN | IESS PARK/OI | PEN SPACES |       |        | INFILT   | RATION |        | TOTAL  |          | PROPOSED | SEWER                                   |                                         |       |         |
|-------------------------------------|-----------|------|--------------------------|--------|--------|---------|-------|----------|-------|--------|--------|--------|--------|----------|------------|--------------|------------|-------|--------|----------|--------|--------|--------|----------|----------|-----------------------------------------|-----------------------------------------|-------|---------|
|                                     |           |      |                          | AREA   | APPLIC | UNIT/Ha | TOTAL | POPUL    | ATION | PEAK   | PEAK   | APPLIC | ACCUM  | TOTAL    | FLOW       |              | PEAK FLOW  |       |        | AREA (Ha | )      | PEAK   | FLOW   | CAPACITY | VELOCITY | LGTH.                                   | PIPE                                    | GRADE | AVAIL.  |
| STREET                              | FROM      | то   |                          |        | AREA   |         | UNITS | INDIV    | ACCUM | FACTOR | FLOW   | AREA   | AREA   | AREA     | RATE       | INDIV        | ACCUM      | TOTAL | INDIV  | CUMUL    | TOTAL  | FLOW   |        |          | (full)   | 1 1                                     | 1                                       |       | CAP.    |
|                                     | MH        | МН   |                          | (Ha)   | (Ha)   |         |       |          |       |        | (l/s)  | (Ha)   | (Ha)   | (Ha)     | (I/Ha/d)   | (l/s)        | (l/s)      | (l/s) |        |          | CUMUL  | (l/s)  | (l/s)  | l/s      | m/s      | (m)                                     | (mm)                                    | %     | (%)     |
|                                     |           |      |                          |        |        |         |       |          |       |        |        |        |        |          |            |              |            |       |        |          |        |        |        |          |          |                                         | í – – – – – – – – – – – – – – – – – – – |       |         |
| Campeau Drive Trunk Sewer           | 1         | 2    | Area 1 (PBP)             | 0.00   |        |         |       |          |       |        |        | 0.00   | 0.00   |          | 35000      | 0.00         | 0.00       |       | 0.00   | 0.00     |        |        |        |          |          |                                         |                                         |       |         |
|                                     |           |      | Area 2 (PBP)             | 0.00   |        |         |       |          |       |        |        | 0.00   | 0.00   |          | 35000      | 0.00         | 0.00       |       | 0.00   | 0.00     |        |        |        |          |          |                                         | 1                                       |       |         |
|                                     |           |      | Area 3 Ext Employment    | 0.00   |        |         |       |          |       |        |        | 0.00   | 0.00   |          | 50000      | 0.00         | 0.00       |       | 0.00   | 0.00     |        |        |        |          |          |                                         | 1                                       |       |         |
|                                     |           |      | Area 4 HP Employment     | 0.00   |        |         |       |          |       |        |        | 0.00   | 0.00   | 0.00     | 50000      | 0.00         | 0.00       | 0.00  | 0.00   | 0.00     | 0.00   | 0.00   | 0.00   | 283.79   | 1.27     | 500.0                                   | 525                                     | 0.40  | 100.00% |
|                                     | 2         | 3    | Area 5 Residential       | 29.19  | 29.19  | 19      | 555   | 1664     | 1664  | 3.65   | 24.58  |        |        | 0.00     |            |              |            | 0.00  | 29.19  | 29.19    |        |        |        |          |          |                                         | 1                                       |       |         |
|                                     |           |      | Area 9 Ext Employment    | 0.00   |        |         |       |          |       |        | 24.58  | 0.00   | 0.00   |          | 50000      | 0.00         | 0.00       | 0.00  | 0.00   | 0.00     | 29.19  | 8.17   | 32.75  | 286.61   | 0.98     | 700.0                                   | 600                                     | 0.20  | 88.57%  |
|                                     | 14        | 3    | Area 6/8 Ext Employment  | 0.00   |        |         |       |          |       |        |        | 0.00   | 0.00   | 0.00     | 50000      | 0.00         | 0.00       | 0.00  | 0.00   | 0.00     | 0.00   | 0.00   | 0.00   |          |          |                                         |                                         |       |         |
|                                     |           |      | Area 7 HP Employment     | 0.00   |        |         |       |          |       |        |        | 0.00   | 0.00   | 0.00     | 50000      | 0.00         | 0.00       | 0.00  | 0.00   | 0.00     |        |        |        | 148.74   | 0.91     | 920.0                                   | 450                                     | 0.25  | 100.00% |
|                                     | 3         | 4    |                          |        |        |         |       |          | 1664  | 3.65   | 24.58  | 0.00   | 0.00   | 0.00     |            | 0.00         | 0.00       | 0.00  | 0.00   | 0.00     | 29.19  | 8.17   | 32.75  | 200.67   | 0.90     | 150.0                                   | 675                                     | 0.20  | 83.68%  |
|                                     | 4A        | 4    | Area 10 Residential      | 27.86  | 27.80  | 19      | 529   | 1588     | 1588  | 3.66   | 23.55  |        |        |          |            |              |            |       | 27.86  | 27.86    | 27.86  | 7.80   | 31.36  | 34.00    | 0.67     | 750.0                                   | 450                                     | 0.25  | 7.76%   |
|                                     | 4         | 5    | 14 Mixed Use             | 4.13   | 1.70   | 50      | 88    | 263      | 3515  | 3.38   | 48.17  | 2.37   | 2.37   | 123.33   | 35000      | 1.44         | 1.44       | 1.44  | 4.13   | 4.13     | 61.18  | 17.13  | 66.74  | 200.67   | 0.90     | 600.0                                   | 750                                     | 0.20  | 66.74%  |
| Corel Centre Etc. (Existing Sewer)  |           | 15   | Area 35 HP Employment    | 6.05   |        |         |       |          |       |        |        | 6.05   | 6.05   |          | 30000      | 3.15         | 3.15       |       | 6.05   | i        |        |        |        |          |          |                                         |                                         |       |         |
|                                     |           |      | Area 36 (Corel Centre)   |        |        |         |       |          |       |        |        |        |        |          |            |              |            |       |        |          |        | 30.00  |        |          |          |                                         |                                         |       |         |
|                                     |           |      | Area 38 Exten Employment | 20.15  |        |         |       |          |       |        |        | 20.15  | 26.20  | 26.20    | 14400      | 5.04         | 8.19       | 8.19  | 20.15  | 26.20    | 26.20  | 7.34   | 45.52  |          |          |                                         | Existing                                |       |         |
| First Line Road Sewer               |           | 15   | Area 40 Employment       | 14.59  |        |         |       |          |       |        |        | 14.59  | 14.59  |          | 35000      | 8.87         | 8.87       |       | 14.59  | 14.59    |        |        |        |          |          |                                         |                                         |       |         |
|                                     |           |      | Area 41 Employment       | 11.97  |        |         |       |          |       |        |        | 11.97  | 26.56  |          | 35000      | 7.27         | 16.14      |       | 11.97  | 26.56    |        |        |        |          |          |                                         |                                         |       |         |
|                                     |           |      | Area 42 Employment       | 20.66  |        |         |       |          |       |        |        | 20.66  | 47.22  |          | 35000      | 12.55        | 28.69      |       | 20.66  | 47.22    |        |        |        |          |          |                                         |                                         |       |         |
|                                     |           |      | Area 43 Employment       | 28.89  |        |         |       |          |       |        |        | 28.89  | 76.11  | 76.11    | 35000      | 17.55        | 46.25      | 46.25 | 28.89  | 76.11    | 76.11  | 21.31  | 67.56  | 100.21   | 0.88     | 694.0                                   | 375                                     | 0.30  | 32.59%  |
| Totals South Of Queensway To SRPS   | 15        | 5A   |                          | 102.31 | 0.00   | )       | 0     |          | 0     |        | 0.00   | 102.31 |        |          |            |              |            | 54.44 | 102.31 |          | 102.31 | 58.65  | 113.08 | 203.90   | 1.24     | 230.0                                   | 450                                     | 0.47  | 44.54%  |
|                                     | Queensway | 5    | Area 13 Community Retail | 6.35   |        |         |       |          |       |        |        | 6.35   | 108.66 |          | 35000      | 3.86         | 58.29      |       | 6.35   | 6.35     |        |        |        |          |          |                                         |                                         |       |         |
|                                     |           |      | Area 11/12 Mixed Use     | 11.80  | 5.02   | 50      | 251   | 752      | 752   | 3.88   | 11.81  | 6.79   | 115.45 | 115.45   | 35000      | 4.12         | 62.42      | 62.42 | 11.80  | 18.15    | 120.46 | 63.73  | 137.96 | 203.90   | 1.24     | 420.0                                   | 450                                     | 0.47  | 32.34%  |
|                                     | 5         | 5A   | Area 15 Community Retail | 3.88   |        |         |       |          |       |        |        | 3.88   | 119.33 |          | 35000      | 2.36         | 64.77      |       | 3.88   | 124.34   |        |        |        |          |          |                                         |                                         |       |         |
|                                     |           |      | Area 44                  | 25.54  |        |         |       |          |       |        | 59.98  | 25.54  | 144.87 | 268.20   | 35000      | 15.52        | 81.73      | 81.73 | 25.54  | 149.88   | 211.06 | 89.10  | 230.81 | 519.43   | 1.14     | 300.0                                   | 750                                     | 0.20  | 55.56%  |
|                                     |           |      |                          | 149.88 |        |         |       |          |       |        |        |        |        |          |            |              |            |       |        |          |        | 63.73  | 63.73  |          |          |                                         |                                         |       |         |
| Heritage Hills                      |           | 5A   | Area 100 Residential     | 90.20  | 90.20  | 19      | 1714  | 5141     | 5141  | 3.23   | 67.35  | 0.00   |        |          |            |              |            |       | 90.20  | )        |        |        |        |          |          |                                         |                                         |       |         |
| Heritage Hills                      |           | 5A   | Area 100 Non-Residential | 4.88   |        |         |       |          |       |        | 67.35  | 4.88   | 4.88   | 4.88     | 50000      | 4.24         | 4.24       | 4.24  | 4.88   | 95.08    | 95.08  | 26.62  | 98.21  |          |          | i – – – – – – – – – – – – – – – – – – – | í T                                     |       |         |
| Broughton-Richardson / Interstitial |           | 5A   |                          |        |        |         |       |          |       |        |        |        |        |          |            |              |            |       |        |          |        |        | 65.00  |          |          | i – – – – – – – – – – – – – – – – – – – | í T                                     |       |         |
| Total To SRPS                       | 5A        | SRPS |                          | 306.14 | 154.03 |         | 3136  |          | 9409  |        | 127.33 | 152.12 |        |          |            |              |            | 85.97 |        |          | 306.14 | 115.72 | 394.02 | 625.68   | 1.37     | 30.0                                    | 750                                     | 0.29  | 37.03%  |

| Average Daily Per capita Flow Rate =           | 350 1/cap/d     |                      |
|------------------------------------------------|-----------------|----------------------|
| Infiltration Allowance Flow Rate =             | 0.28 l/sec/Ha   |                      |
| Residential Peaking Factor = 1+(14/(4+(P^0.5)) | ), P=Pop. in 10 | 00's, Max of 4       |
| Population density per unit =                  | 3.00            |                      |
| P. F. For Employment/Retail/Business Park =    |                 | 1.50                 |
|                                                | 10 500 10 1     | <b>D</b> 1 1 1 0 0 0 |

Mixed Uses Assumes: 15% Community Retail, 42.5% Business Park and 42.5% Residential



Note: Sewer from node 5 to SRPS is existing and is to be replaced.

### PAGE 1 OF 1 PROJECT: 3598-LD-03 DATE: Apr 2005 DESIGN: JIM FILE: 3598LD.sewers.XLS

| Revision | No. 1: | April 11, 2005 |
|----------|--------|----------------|
| Revision | No. 2: | April 20, 2005 |
| Revision | No. 3: | June 07, 2005  |
| Revision | No. 4: | Oct. 14, 2005  |
| Revision | No. 5: | Feb. 15, 2006  |
|          |        |                |

# FIG. 4.2-2

## SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix C Stormwater Management March 29, 2022

# Appendix C STORMWATER MANAGEMENT

# C.1 STORM SEWER DESIGN SHEET AND ROOF STORAGE CALCULATIONS

| Stantec                            | Wellings of<br>DATE:<br>REVISION:<br>DESIGNED<br>CHECKED | of Stittsville Ph 2<br>) BY:<br>BY:                 | 2- 20 Ceda<br>2021                   | row Court<br>-09-01<br>1<br>TR<br>-  | FILE NU                              | MBER:                                | STORM<br>DESIGN<br>(City of<br>16040151 | SEWER<br>N SHEET<br>Ottawa)          | २<br>Г                               |                                      | DESIGN<br>I = a / (t+<br>a =<br>b =<br>c = | PARAME<br>b) <sup>c</sup><br>1:2 yr<br>732.951<br>6.199<br>0.810 | 1:5 yr<br>998.071<br>6.053<br>0.814                | (As per C<br>1:10 yr<br>1174.184<br>6.014<br>0.816 | City of Otta<br>1:100 yr<br>1735.688<br>6.014<br>0.820 | wa Guide<br>MANNING<br>MINIMUM<br>TIME OF | lines, 2012<br>S'S n =<br>COVER:<br>ENTRY | 2)<br>0.013<br>2.00<br>10                 | m<br>min                                  | BEDDING C                                                   | LASS =                                    | В                                              |                                                |                                                |                                  |                                         |                                           |                                  |                                        |                                        |                                                          |                                              |       |                                      |                                           |                                                |                                      |                                      |                                      |
|------------------------------------|----------------------------------------------------------|-----------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------------------------|-------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------|-----------------------------------------|-------------------------------------------|----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------------|----------------------------------------------|-------|--------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| LOCATION<br>AREA ID<br>NUMBER      | FROM<br>M.H.                                             | TO<br>M.H.                                          | AREA<br>(2-YEAR)<br>(ha)             | AREA<br>(5-YEAR)<br>(ha)             | AREA<br>(10-YEAR<br>(ha)             | AREA<br>) (100-YEAR<br>(ha)          | AREA<br>) (ROOF)<br>(ha)                | C<br>(2-YEAR)<br>(-)                 | C<br>(5-YEAR)<br>(-)                 | C<br>(10-YEAR)<br>(-)                | C<br>(100-YEAR)<br>(-)                     | A x C<br>(2-YEAR)<br>(ha)                                        | ACCUM<br>AxC (2YR)<br>(ha)                         | DR<br>A x C<br>(5-YEAR)<br>(ha)                    | AINAGE AF<br>ACCUM.<br>AxC (5YR)<br>(ha)               | A x C<br>(10-YEAR)<br>(ha)                | ACCUM.<br>AxC (10YR)<br>(ha)              | A x C<br>(100-YEAR)<br>(ha)               | ACCUM.<br>AxC (100YR)<br>(ha)             | T of C<br>(min)                                             | I <sub>2-YEAR</sub><br>(mm/h)             | I <sub>5-YEAR</sub><br>(mm/h)                  | I <sub>10-YEAR</sub><br>(mm/h)                 | l <sub>100-YEAR</sub><br>(mm/h)                | Q <sub>CONTROL</sub><br>(L/s)    | ACCUM.<br>Q <sub>CONTROL</sub><br>(L/s) | Q <sub>ACT</sub><br>(CIA/360)<br>(L/s)    | LENGTH<br>(m)                    | PIPE WIDTH<br>OR DIAMETE<br>(mm)       | PIPE<br>HEIGHT<br>(mm)                 | PIPE<br>SHAPE<br>(-)                                     | MATERIAL<br>(-)                              | CLASS | SLOPE                                | Q <sub>CAP</sub><br>(FULL)<br>(L/s)       | % FULL<br>(-)                                  | VEL.<br>(FULL)<br>(m/s)              | VEL.<br>(ACT)<br>(m/s)               | TIME OF<br>FLOW<br>(min)             |
| ROOF 1-ROOF 12, UGPK 1 TO UGPK - 1 | BLDG<br>STM STC 3(<br>STM 100<br>TANK<br>STM 101         | STM STC 300<br>STM 100<br>TANK<br>STM 101<br>EX STM | 0.81<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.76<br>0.00<br>0.00<br>0.00<br>0.00    | 0.90<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00       | 0.729<br>0.000<br>0.000<br>0.000<br>0.000                        | 0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000          | 0.000<br>0.000<br>0.000<br>0.000<br>0.000              | 0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 10.00<br>10.02<br>10.05<br>10.13<br>10.13<br>10.16<br>10.56 | 76.81<br>76.72<br>76.61<br>76.29<br>76.18 | 104.19<br>104.07<br>103.93<br>103.49<br>103.33 | 122.14<br>122.00<br>121.83<br>121.32<br>121.13 | 178.56<br>178.35<br>178.10<br>177.34<br>177.07 | 61.0<br>0.0<br>0.0<br>0.0<br>0.0 | 61.0<br>61.0<br>61.0<br>0.0<br>0.0      | 216.5<br>216.4<br>216.1<br>125.0<br>154.3 | 2.4<br>2.8<br>8.7<br>1.5<br>20.8 | 450<br>450<br>450<br>525<br>525<br>675 | 450<br>450<br>450<br>525<br>525<br>675 | CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR | CONCRETE<br>CONCRETE<br>CONCRETE<br>CONCRETE | -     | 1.00<br>1.00<br>1.00<br>0.20<br>0.20 | 297.4<br>297.4<br>297.4<br>200.6<br>200.6 | 72.80%<br>72.74%<br>72.67%<br>62.31%<br>76.88% | 1.81<br>1.81<br>1.81<br>0.90<br>0.90 | 1.73<br>1.73<br>1.73<br>0.82<br>0.87 | 0.02<br>0.03<br>0.08<br>0.03<br>0.40 |

ICD and weir are proposed to be constructed in STM 101 prior to flows discharging to approved outlet, therefore a 450mm diameter pipe is sufficient as flows will be restricted.

Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF1 and 2 Standard Watts Model R1100 Accutrol Roof Drain

|           | Ratinç         | g Curve          |         |           | Volume F | Estimation |             |             |   | Total  |
|-----------|----------------|------------------|---------|-----------|----------|------------|-------------|-------------|---|--------|
| Elevation | Discharge Rate | Outlet Discharge | Storage | Elevation | Area     | Volume     | e (cu. m)   | Water Depth | > | Volume |
| (ш)       | (cu.m/s)       | (cu.m/s)         | (cu. m) | (ш)       | (sq. m)  | Increment  | Accumulated | (m)         |   | (cu.m) |
| 0.000     | 0.0000         | 0.0000           | 0       | 0.000     | 0        | 0          | 0           | 0.000       |   |        |
| 0.025     | 0.0003         | 0.0022           | 0       | 0.025     | 21       | 0          | 0           | 0.025       |   | 0.0    |
| 0.050     | 0.0006         | 0.0044           | -       | 0.050     | 85       | -          | -           | 0.050       |   | 1<br>2 |
| 0.075     | 0.0008         | 0.0055           | 5       | 0.075     | 191      | ო          | 5           | 0.075       |   | 4.6    |
| 0.100     | 0.0009         | 0.0066           | 1       | 0.100     | 339      | 7          | 1           | 0.100       |   | 11.1   |
| 0.125     | 0.0011         | 0.0077           | 22      | 0.125     | 530      | 11         | 22          | 0.125       |   | 21.9   |
| 0.150     | 0.0013         | 0.0088           | 38      | 0.150     | 763      | 16         | 38          | 0.150       |   | 38.0   |
|           |                |                  |         |           |          |            |             |             | ] |        |
|           | Rooftop Storac | te Summary       |         |           |          |            |             |             |   |        |

0 0.07778 0.24669 0.52078 0.90812 1.41371

0.0 1.2 3.4 6.5 10.8 16.1

986.7

608.0

0.0 280.0

1394.4 1820.1

Time (hr) Detentior

(cu.m) Vol

Time (sec)

Drawdown Estimate Total

|                                          |       | 1                                                           | From Watts Drai | n Catalogue |
|------------------------------------------|-------|-------------------------------------------------------------|-----------------|-------------|
| Total Building Area (sq.m)               | 954   |                                                             | Head (m) L/s    | 1           |
| Assume Available Roof Area (sq. 80%      | 763.2 |                                                             | Open            | 75%         |
| Roof Imperviousness                      | 0.99  |                                                             | 0.025 0.315     | 5 0.3155    |
| Roof Drain Requirement (sq.m/Notch)      | 232   |                                                             | 0.050 0.630     | 9 0.6309    |
| Number of Roof Notches*                  | 7     |                                                             | 0.075 0.946     | 4 0.8675    |
| Max. Allowable Depth of Roof Ponding (m) | 0.15  | * As per Ontario Building Code section OBC 7.4.10.4.(2)(c). | 0.100 1.261     | 8 1.1041    |
| Max. Allowable Storage (cu.m)            | 38    |                                                             | 0.125 1.577     | 3 1.3407    |
| Estimated 100 Year Drawdown Time (h)     | 1.1   |                                                             | 0.150 1.892     | 7 1.5773    |
|                                          |       |                                                             |                 |             |

25% Closed 0.3155 0.3155 0.6309 0.6309 0.7098 0.6309 0.77086 0.6309 0.7886 0.6309 0.8675 0.6309 0.8674 0.6309

0.7886 0.9464 1.1041 1.2618

50% 0.3155 0.6309

\* Note: Number of drains can be reduced if multiple-notch drain used.

| Calculation Re- | sults            | 5 yr  | 100yr | Available |
|-----------------|------------------|-------|-------|-----------|
|                 | Qresult (cu.m/s) | 900'0 | 0.008 |           |
|                 | Depth (m)        | 0.077 | 0.136 | 0.150     |
|                 | Volume (cu.m)    | 5.3   | 1.92  | 38.2      |
|                 | Draintime (hrs)  | 0.3   | 1.1   |           |

# Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF3 Standard Watts Model R1100 Accutrol Roof Drain

|           | Rating           | Curve                   |         |           | Volume I | Estimation |             |             | [ |
|-----------|------------------|-------------------------|---------|-----------|----------|------------|-------------|-------------|---|
| Elevation | Discharge Rate ( | <b>Dutlet Discharge</b> | Storage | Elevation | Area     | Volume     | e (cu. m)   | Water Depth | > |
| (m)       | (cu.m/s)         | (cu.m/s)                | (cu. m) | (m)       | (sq. m)  | Increment  | Accumulated | (m)         |   |
| 000.0     | 0.0000           | 0.0000                  | 0       | 000.0     | 0        | 0          | 0           | 0.000       | [ |
| 0.025     | 0.0003           | 0.00126                 | 0       | 0.025     | 24       | 0          | 0           | 0.025       |   |
| 0.050     | 0.0006           | 0.00252                 | 0       | 0.050     | 98       | -          | 2           | 0.050       |   |
| 0.075     | 0.0009           | 0.00379                 | 5       | 0.075     | 220      | 4          | 5           | 0.075       |   |
| 0.100     | 0.0013           | 0.00505                 | 13      | 0.100     | 390      | 8          | 13          | 0.100       |   |
| 0.125     | 0.0016           | 0.00631                 | 25      | 0.125     | 610      | 12         | 25          | 0.125       |   |
| 0.150     | 0.0019           | 0.00757                 | 44      | 0.150     | 878      | 19         | 44          | 0.150       |   |
|           |                  |                         |         |           |          |            |             |             |   |
|           | Rooftop Storage  | e Summary               |         |           |          |            |             |             |   |

| Total Building Area (sq.m)               | 109    |                                                             |
|------------------------------------------|--------|-------------------------------------------------------------|
| Assume Available Roof Area (sq. 805      | % 878. | 4                                                           |
| Roof Imperviousness                      | 0.99   |                                                             |
| Roof Drain Requirement (sq.m/Notch)      | 232    |                                                             |
| Number of Roof Notches*                  | 4      |                                                             |
| Max. Allowable Depth of Roof Ponding (m) | 0.15   | * As per Ontario Building Code section OBC 7.4.10.4.(2)(c). |
| Max. Allowable Storage (cu.m)            | 44     |                                                             |
| Estimated 100 Year Drawdown Time (h)     | 1.9    |                                                             |
|                                          |        |                                                             |

\* Note: Number of drains can be reduced if multiple-notch drain used.

| Calculation Res | sults            | 5yr   | 100yr | Available |
|-----------------|------------------|-------|-------|-----------|
|                 | Qresult (cu.m/s) | 0.004 | 0.007 |           |
|                 | Depth (m)        | 0.080 | 0.142 | 0.150     |
|                 | Volume (cu.m)    | 7.0   | 37.9  | 43.9      |
|                 | Draintime (hrs)  | 0.5   | 1.9   |           |

|        | Drawdowr | n Estimate |           |
|--------|----------|------------|-----------|
| Total  | Total    |            |           |
| Volume | Time     | Vol        | Detention |
| (cu.m) | (sec)    | (cu.m)     | Time (hr) |
|        |          |            |           |
| 0.0    | 0.0      | 0.0        | 0         |
| 1.4    | 564.0    | 1.4        | 0.15667   |
| 5.3    | 1020.6   | 3.9        | 0.44016   |
| 12.8   | 1490.6   | 7.5        | 0.85422   |
| 25.2   | 1966.0   | 12.4       | 1.40032   |
| 43.7   | 2444 O   | 18.5       | 2 07922   |

# From Watts Drain Catalogue

|          |        | ,      |        |        |        |
|----------|--------|--------|--------|--------|--------|
| Head (m) | L/S    |        |        |        |        |
|          | Open   | 75%    | 50%    | 25% (  | Closed |
| 0.025    | 0.3155 | 0.3155 | 0.3155 | 0.3155 | 0.3155 |
| 0.050    | 0.6309 | 0.6309 | 0.6309 | 0.6309 | 0.6309 |
| 0.075    | 0.9464 | 0.8675 | 0.7886 | 0.7098 | 0.6309 |
| 0.100    | 1.2618 | 1.1041 | 0.9464 | 0.7886 | 0.6309 |
| 0.125    | 1.5773 | 1.3407 | 1.1041 | 0.8675 | 0.6309 |
| 0.150    | 1.8927 | 1.5773 | 1.2618 | 0.9464 | 0.6309 |

# Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF4 Standard Watts Model R1100 Accutrol Roof Drain

|           | Rating         | g Curve          |         |           | Volume I | Estimation |             |             | Tc  | Total |
|-----------|----------------|------------------|---------|-----------|----------|------------|-------------|-------------|-----|-------|
| Elevation | Discharge Rate | Outlet Discharge | Storage | Elevation | Area     | Volume     | i (cu. m)   | Water Depth | Vol | olume |
| (m)       | (cu.m/s)       | (cu.m/s)         | (cu. m) | (m)       | (sq. m)  | Increment  | Accumulated | (m)         | (CI | (m.uc |
| 0.000     | 0.0000         | 0.0000           | 0       | 0.000     | 0        | 0          | 0           | 0.000       |     |       |
| 0.025     | 0.0003         | 0.0016           | 0       | 0.025     | 80       | 0          | 0           | 0.025       | 0   | 0.0   |
| 0.050     | 0.0006         | 0.0032           | -       | 0.050     | 31       | 0          | -           | 0.050       | 0   | 0.5   |
| 0.075     | 0.0006         | 0.0032           | 0       | 0.075     | 70       | -          | 2           | 0.075       | -   | 1.7   |
| 0.100     | 0.0006         | 0.0032           | 4       | 0.100     | 125      | 2          | 4           | 0.100       | 4   | 4.1   |
| 0.125     | 0.0006         | 0.0032           | 8       | 0.125     | 196      | 4          | 8           | 0.125       | 0   | 8.1   |
| 0.150     | 0.0006         | 0.0032           | 14      | 0.150     | 282      | 9          | 14          | 0.150       | 1,  | 14.0  |
|           |                |                  |         |           |          |            |             |             |     |       |
|           | Rooftop Storad | te Summary       |         |           |          |            |             |             |     |       |
|           |                |                  |         |           |          |            |             |             |     |       |

|                                          |         | 1                                                           |
|------------------------------------------|---------|-------------------------------------------------------------|
| Total Building Area (sq.m)               | 352     |                                                             |
| Assume Available Roof Area (sq. 80%      | % 281.6 |                                                             |
| Roof Imperviousness                      | 0.99    |                                                             |
| Roof Drain Requirement (sq.m/Notch)      | 232     |                                                             |
| Number of Roof Notches*                  | S       |                                                             |
| Max. Allowable Depth of Roof Ponding (m) | 0.15    | * As per Ontario Building Code section OBC 7.4.10.4.(2)(c). |
| Max. Allowable Storage (cu.m)            | 14      |                                                             |
| Estimated 100 Year Drawdown Time (h)     | 0.9     |                                                             |
|                                          |         |                                                             |

\* Note: Number of drains can be reduced if multiple-notch drain used.

| <b>Calculation Res</b> | sults            | 5 yr  | 100yr | Available |
|------------------------|------------------|-------|-------|-----------|
|                        | Qresult (cu.m/s) | 0.002 | 0.003 |           |
|                        | Depth (m)        | 0.029 | 0.135 | 0.150     |
|                        | Volume (cu.m)    | 0.1   | 10.5  | 14.1      |
|                        | Draintime (hrs)  | 0.0   | 0.9   |           |

|        | Drawdowr | n Estimate |           |
|--------|----------|------------|-----------|
| Total  | Total    |            |           |
| Volume | Time     | Vol        | Detention |
| (cu.m) | (sec)    | (cu.m)     | Time (hr) |
|        |          |            |           |
| 0.0    | 0.0      | 0.0        | 0         |
| 0.5    | 144.6    | 0.5        | 0.04018   |
| 1.7    | 392.6    | 1.2        | 0.14924   |
| 4.1    | 764.6    | 2.4        | 0.36162   |
| 8.1    | 1260.5   | 4.0        | 0.71176   |
| 14.0   | 1880.4   | 5.9        | 1.23411   |

# From Watts Drain Catalogue Head (m) L/s 75% 50% 25% Closed Open 75% 50% 25% Closed 0.025 0.3155 0.3155 0.3155 0.3155 0.3155 0.050 0.63309 0.63309 0.63309 0.63309 0.63309 0.075 0.9464 0.8675 0.7886 0.7098 0.63309 0.100 1.2618 1.1041 0.9464 0.8309 0.63309 0.125 1.5773 1.3407 1.1041 0.8675 0.6309 0.150 1.8927 1.5773 1.2618 0.90464 0.6309

2022-03-29\_MRM.xlsm, ROOF4 W:\active\160401511\design\analysis\swm\

# Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF5 Standard Watts Model R1100 Accutrol Roof Drain

|           | Rating         | t Curve          |         |           | Volume I | Estimation |             |             |
|-----------|----------------|------------------|---------|-----------|----------|------------|-------------|-------------|
| Elevation | Discharge Rate | Outlet Discharge | Storage | Elevation | Area     | Volume     | ) (cu. m)   | Water Depth |
| (m)       | (cu.m/s)       | (cu.m/s)         | (cu. m) | (m)       | (sq. m)  | Increment  | Accumulated | (m)         |
| 0.000     | 0.0000         | 0.00000          | 0       | 0.000     | 0        | 0          | 0           | 0.000       |
| 0.025     | 0.0003         | 0.00126          | 0       | 0.025     | 24       | 0          | 0           | 0.025       |
| 0.050     | 0.0006         | 0.00252          | 0       | 0.050     | 98       | -          | 2           | 0.050       |
| 0.075     | 0.0009         | 0.00379          | 5       | 0.075     | 220      | 4          | 5           | 0.075       |
| 0.100     | 0.0013         | 0.00505          | 13      | 0.100     | 390      | 8          | 13          | 0.100       |
| 0.125     | 0.0016         | 0.00631          | 25      | 0.125     | 610      | 12         | 25          | 0.125       |
| 0.150     | 0.0019         | 0.00757          | 44      | 0.150     | 878      | 19         | 44          | 0.150       |
|           |                |                  |         |           |          |            |             |             |
|           | Rooftop Storad | te Summary       |         |           |          |            |             |             |
|           |                |                  |         |           |          |            |             |             |

|                                          |     |       | 1                                                           |
|------------------------------------------|-----|-------|-------------------------------------------------------------|
| Total Building Area (sq.m)               |     | 1098  |                                                             |
| Assume Available Roof Area (sq.          | 80% | 878.4 |                                                             |
| Roof Imperviousness                      |     | 0.99  |                                                             |
| Roof Drain Requirement (sq.m/Notch)      |     | 232   |                                                             |
| Number of Roof Notches*                  |     | 4     |                                                             |
| Max. Allowable Depth of Roof Ponding (m) |     | 0.15  | * As per Ontario Building Code section OBC 7.4.10.4.(2)(c). |
| Max. Allowable Storage (cu.m)            |     | 44    |                                                             |
| Estimated 100 Year Drawdown Time (h)     |     | 1.9   |                                                             |
|                                          |     |       |                                                             |

\* Note: Number of drains can be reduced if multiple-notch drain used.

| Calculation Re- | sults            | 5yr   | 100yr | Available |
|-----------------|------------------|-------|-------|-----------|
|                 | Qresult (cu.m/s) | 0.004 | 0.007 |           |
|                 | Depth (m)        | 0.080 | 0.142 | 0.150     |
|                 | Volume (cu.m)    | 7.0   | 37.9  | 43.9      |
|                 | Draintime (hrs)  | 0.5   | 1.9   |           |

|        | Drawdowr | i Estimate |           |
|--------|----------|------------|-----------|
| Total  | Total    |            |           |
| Volume | Time     | Vol        | Detention |
| (cu.m) | (sec)    | (cu.m)     | Time (hr) |
|        |          |            |           |
| 0.0    | 0.0      | 0.0        | 0         |
| 1.4    | 564.0    | 1.4        | 0.15667   |
| 5.3    | 1020.6   | 3.9        | 0.44016   |
| 12.8   | 1490.6   | 7.5        | 0.85422   |
| 25.2   | 1966.0   | 12.4       | 1.40032   |
| 43.7   | 2444.0   | 18.5       | 2.07922   |

# From Watts Drain Catalogue

|          |        | 0.000  |        |        |        |
|----------|--------|--------|--------|--------|--------|
| Head (m) | L/S    |        |        |        |        |
|          | Open   | 75%    | 50%    | 25% (  | Closed |
| 0.025    | 0.3155 | 0.3155 | 0.3155 | 0.3155 | 0.3155 |
| 0.050    | 0.6309 | 0.6309 | 0.6309 | 0.6309 | 0.6309 |
| 0.075    | 0.9464 | 0.8675 | 0.7886 | 0.7098 | 0.6309 |
| 0.100    | 1.2618 | 1.1041 | 0.9464 | 0.7886 | 0.6309 |
| 0.125    | 1.5773 | 1.3407 | 1.1041 | 0.8675 | 0.6309 |
| 0.150    | 1.8927 | 1.5773 | 1.2618 | 0.9464 | 0.6309 |

Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF6 and 7 Standard Watts Model R1100 Accutrol Roof Drain

|           | Rating         | g Curve          |         |           | Volume I | Estimation |             |             |
|-----------|----------------|------------------|---------|-----------|----------|------------|-------------|-------------|
| Elevation | Discharge Rate | Outlet Discharge | Storage | Elevation | Area     | Volume     | e (cu. m)   | Water Depth |
| (E)       | (cu.m/s)       | (cu.m/s)         | (cu. m) | (m)       | (a. m)   | Increment  | Accumulated | (m)         |
| 0.000     | 0.0000         | 0.000            | 0       | 0.000     | 0        | 0          | 0           | 0.000       |
| 0.025     | 0.0003         | 0.0022           | 0       | 0.025     | 21       | 0          | 0           | 0.025       |
| 0.050     | 0.0006         | 0.0044           | -       | 0.050     | 85       | -          | -           | 0.050       |
| 0.075     | 0.0008         | 0.0055           | 5       | 0.075     | 191      | ო          | 5           | 0.075       |
| 0.100     | 0.0009         | 0.0066           | 11      | 0.100     | 340      | 7          | 1           | 0.100       |
| 0.125     | 0.0011         | 0.0077           | 22      | 0.125     | 531      | 11         | 22          | 0.125       |
| 0.150     | 0.0013         | 0.0088           | 38      | 0.150     | 764      | 16         | 38          | 0.150       |

0 0.07787 0.24694 0.52133

0.0 280.3

0.0 1.2 3.4 6.5 10.8 16.1

987.8

608.7

0.90907 1.41519

1395.9 1822.1

Time (hr)

Vol (cu.m)

Time (sec)

Detentior

Drawdown Estimate Total

| -                                        |      | 1                                                           | From Watts  | brain Ca | italogue |
|------------------------------------------|------|-------------------------------------------------------------|-------------|----------|----------|
| Total Building Area (sq.m)               | 955  |                                                             | Head (m) L/ | s        |          |
| Assume Available Roof Area (sq. 80%      | 764  |                                                             | 0           | pen      | 75%      |
| Roof Imperviousness                      | 0.99 |                                                             | 0.025 (     | 0.3155   | 0.3155   |
| Roof Drain Requirement (sq.m/Notch)      | 232  |                                                             | 0.050 (     | 0.6309   | 0.6309   |
| Number of Roof Notches*                  | 7    |                                                             | 0.075 (     | 0.9464   | 0.8675   |
| Max. Allowable Depth of Roof Ponding (m) | 0.15 | * As per Ontario Building Code section OBC 7.4.10.4.(2)(c). | 0.100       | I.2618   | 1.1041   |
| Max. Allowable Storage (cu.m)            | 38   |                                                             | 0.125       | 1.5773   | 1.3407   |
| Estimated 100 Year Drawdown Time (h)     | 1:1  |                                                             | 0.150       | 1.8927   | 1.5773   |
|                                          |      |                                                             |             |          |          |

25% Closed 0.3155 0.3155 0.6309 0.6309 0.7098 0.6309 0.77086 0.6309 0.7886 0.6309 0.8675 0.6309 0.8674 0.6309

0.7886 0.9464 1.1041 1.2618

50% 0.3155 0.6309

\* Note: Number of drains can be reduced if multiple-notch drain used.

| Calculation Re- | sults            | 5 yr  | 100yr | Available |
|-----------------|------------------|-------|-------|-----------|
|                 | Qresult (cu.m/s) | 900'0 | 0.008 |           |
|                 | Depth (m)        | 0.077 | 0.136 | 0.150     |
|                 | Volume (cu.m)    | 5.3   | 1.92  | 38.2      |
|                 | Draintime (hrs)  | 0.3   | 1.1   |           |

2022-03-29\_MRM.xlsm, ROOF6-7 W:\active\160401511\design\analysis\swm\

# Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF8 Standard Watts Model R1100 Accutrol Roof Drain

|           |                |                  |         |           |          |           |             |             |    |       | rawdown E | stimate |
|-----------|----------------|------------------|---------|-----------|----------|-----------|-------------|-------------|----|-------|-----------|---------|
|           | Rating         | I Curve          |         |           | Volume E | stimation |             |             | F  | Fotal | Total     |         |
| Elevation | Discharge Rate | Outlet Discharge | Storage | Elevation | Area     | Aolume    | e (cu. m)   | Water Depth | Vo | olume | Time      | Vol     |
| (m)       | (cu.m/s)       | (cu.m/s)         | (cu. m) | (m)       | (sq. m)  | Increment | Accumulated | (m)         | (c | (m.uc | (sec)     | (cu.m)  |
| 0.000     | 0.0000         | 0.000            | 0       | 0.000     | 0        | 0         | 0           | 0.000       |    |       |           |         |
| 0.025     | 0.0003         | 0.0006           | 0       | 0.025     | 2        | 0         | 0           | 0.025       |    | 0.0   | 0.0       | 0.0     |
| 0.050     | 0.0006         | 0.0013           | 0       | 0.050     | 6        | 0         | 0           | 0.050       |    | 0.1   | 99.7      | 0.1     |
| 0.075     | 0.0007         | 0.0014           | 0       | 0.075     | 19       | 0         | 0           | 0.075       |    | 0.5   | 240.4     | 0.3     |
| 0.100     | 0.0008         | 0.0016           | -       | 0.100     | 34       | ÷         | ٦           | 0.100       |    | 1.1   | 421.4     | 0.7     |
| 0.125     | 0.0009         | 0.0017           | N       | 0.125     | 54       |           | 2           | 0.125       |    | 2.2   | 631.6     | 1.1     |
| 0.150     | 0.0009         | 0.0019           | 4       | 0.150     | 78       | 0         | 4           | 0.150       |    | 3.9   | 863.6     | 1.6     |
|           | 1              |                  |         |           |          |           |             |             |    |       |           |         |
|           | Rooftop Storag | e Summary        |         |           |          |           |             |             |    |       |           |         |

0 0.02768 0.09447 0.21152 0.38695 0.62685

Detention Time (hr)

|                                          |     |      |                                                             | From Watts   | s Drain C | atalogue |
|------------------------------------------|-----|------|-------------------------------------------------------------|--------------|-----------|----------|
| Total Building Area (sq.m)               |     | 97   |                                                             | Head (m) L/s | s         |          |
| Assume Available Roof Area (sq.          | 30% | 77.6 |                                                             | ō            | pen       | 75%      |
| Roof Imperviousness                      |     | 0.99 |                                                             | 0.025 0      | 0.3155    | 0.3155   |
| Roof Drain Requirement (sq.m/Notch)      |     | 232  |                                                             | 0.050 0      | 0.6309    | 0.6309   |
| Number of Roof Notches*                  |     | N    |                                                             | 0.075 0      | 0.9464    | 0.8675   |
| Max. Allowable Depth of Roof Ponding (m) |     | 0.15 | * As per Ontario Building Code section OBC 7.4.10.4.(2)(c). | 0.100 1      | I.2618    | 1.1041   |
| Max. Allowable Storage (cu.m)            |     | 4    |                                                             | 0.125 1      | 1.5773    | 1.3407   |
| Estimated 100 Year Drawdown Time (h)     |     | 0.3  |                                                             | 0.150 1      | 1.8927    | 1.5773   |
|                                          |     |      |                                                             |              |           |          |

25% Closed 0.3155 0.3155 0.6309 0.6309 0.7098 0.6309 0.7886 0.6309 0.7886 0.6309 0.8675 0.6309 0.8674 0.6309

50% 0.3155 0.6309 0.7886 0.9464 1.1041 1.2618

\* Note: Number of drains can be reduced if multiple-notch drain used.

| Calculation Re- | sults            | 5 yr  | 100yr | Available |
|-----------------|------------------|-------|-------|-----------|
|                 | Qresult (cu.m/s) | 000.0 | 0.002 | ı         |
|                 | Depth (m)        | 000'0 | 0.117 | 0.150     |
|                 | Volume (cu.m)    | 0.0   | 1.9   | 3.9       |
|                 | Draintime (hrs)  | 0.0   | 0.3   |           |

# Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF9 Standard Watts Model R1100 Accutrol Roof Drain

| Drawdown Estimate | Total Total | olume Time Vol   | cu.m) (sec) (cu.m) |        | 0.0 0.0 0.0 | 0.1 54.4 0.1 | 0.3 131.4 0.2 | 0.6 230.2 0.4 | 1.2 345.1 0.6 | 2.1 471.9 0.9 |                           |
|-------------------|-------------|------------------|--------------------|--------|-------------|--------------|---------------|---------------|---------------|---------------|---------------------------|
|                   |             | >                | <i></i>            |        |             |              |               |               |               |               |                           |
|                   |             | Water Depth      | (ш)                | 0.000  | 0.025       | 0.050        | 0.075         | 0.100         | 0.125         | 0.150         |                           |
|                   |             | (cu. m)          | Accumulated        | 0      | 0           | 0            | 0             | -             | ÷             | 2             |                           |
|                   | stimation   | amnloV           | Increment          | 0      | 0           | 0            | 0             | 0             | -             | 1             |                           |
|                   | Volume E    | Area             | (sq. m)            | 0      |             | 5            | 11            | 19            | 29            | 42            |                           |
|                   |             | Elevation        | (m)                | 000.0  | 0.025       | 0.050        | 0.075         | 0.100         | 0.125         | 0.150         |                           |
|                   |             | Storage          | (cu. m)            | 0      | 0           | 0            | 0             | -             |               | 2             |                           |
|                   | Curve       | Outlet Discharge | (cu.m/s)           | 0.0000 | 0.0006      | 0.0013       | 0.0014        | 0.0016        | 0.0017        | 0.0019        |                           |
|                   | Rating      | Discharge Rate   | (cu.m/s)           | 0.0000 | 0.0003      | 0.0006       | 0.0007        | 0.0008        | 0.0009        | 0.0009        | Contraction of the second |
|                   |             | Elevation        | (m)                | 0.000  | 0.025       | 0.050        | 0.075         | 0.100         | 0.125         | 0.150         |                           |

0 0.01512 0.05162 0.11557

0.21143 0.34251

Detention Time (hr)

|                                          |      | 1                                                           | From Watt  | s Drain C | atalogue |
|------------------------------------------|------|-------------------------------------------------------------|------------|-----------|----------|
| Total Building Area (sq.m)               | 53   |                                                             | Head (m) L | /s        | )        |
| Assume Available Roof Area (sq. 80%      | 42.4 |                                                             | 0          | Den       | 75%      |
| Roof Imperviousness                      | 0.99 |                                                             | 0.025      | 0.3155    | 0.3155   |
| Roof Drain Requirement (sq.m/Notch)      | 232  |                                                             | 0.050      | 0.6309    | 0.6309   |
| Number of Roof Notches*                  | 0    |                                                             | 0.075      | 0.9464    | 0.8675   |
| Max. Allowable Depth of Roof Ponding (m) | 0.15 | * As per Ontario Building Code section OBC 7.4.10.4.(2)(c). | 0.100      | 1.2618    | 1.1041   |
| Max. Allowable Storage (cu.m)            | 0    |                                                             | 0.125      | 1.5773    | 1.3407   |
| Estimated 100 Year Drawdown Time (h)     | 0.1  |                                                             | 0.150      | 1.8927    | 1.5773   |
|                                          |      |                                                             |            |           |          |

25% Closed 0.3155 0.3155 0.6309 0.6309 0.7098 0.6309 0.7886 0.6309 0.7886 0.6309 0.8675 0.6309 0.8674 0.6309

0.7886 0.9464 1.1041 1.2618

50% 0.3155 0.6309

\* Note: Number of drains can be reduced if multiple-notch drain used.

| Calculation Res | sults            | 5 yr  | 100yr | Available |
|-----------------|------------------|-------|-------|-----------|
|                 | Qresult (cu.m/s) | 000.0 | 0.002 | -         |
|                 | Depth (m)        | 000.0 | 0.100 | 0.150     |
|                 | Volume (cu.m)    | 0.0   | 9.0   | 1.2       |
|                 | Draintime (hrs)  | 0.0   | 0.1   |           |

2022-03-29\_MRM.xlsm, ROOF9 W:\active\160401511\design\analysis\swm\

# Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF10 Standard Watts Model R1100 Accutrol Roof Drain

|           |                |                  |         |           |          |           |             |             |       | Draw   | down Est | imate   |
|-----------|----------------|------------------|---------|-----------|----------|-----------|-------------|-------------|-------|--------|----------|---------|
|           | Rating         | g Curve          |         |           | Volume E | stimation |             |             | Total | al Tot | tal      |         |
| Elevation | Discharge Rate | Outlet Discharge | Storage | Elevation | Area     | Volume    | ) (cu. m)   | Water Depth | Volum | ne Tin | Je /     | /ol Dé  |
| (m)       | (cu.m/s)       | (cu.m/s)         | (cu. m) | (m)       | (sq. m)  | Increment | Accumulated | (m)         | (cu.m | se) (ר | c) (C    | u.m) Ti |
| 0.000     | 0.0000         | 0.0000           | 0       | 0.000     | 0        | 0         | 0           | 0.000       |       |        |          |         |
| 0.025     | 0.0003         | 0.0066           | -       | 0.025     | 62       | -         | -           | 0.025       | 0.0   | 0      | 0        | 0.0     |
| 0.050     | 0.0006         | 0.0132           | 4       | 0.050     | 250      | 4         | 4           | 0.050       | 3.6   | 274    | 6.1      | 3.6 0   |
| 0.075     | 0.0007         | 0.0149           | 14      | 0.075     | 562      | 10        | 14          | 0.075       | 13.5  | 663    | 3.3      | 9.9 0   |
| 0.100     | 0.0008         | 0.0166           | 33      | 0.100     | 666      | 19        | 33          | 0.100       | 32.8  | 3 116  | 2.6 1    | 9.3 0   |
| 0.125     | 0.0009         | 0.0182           | 65      | 0.125     | 1561     | 32        | 65          | 0.125       | 64.5  | 5 174  | 2.4 3    | 1.7 1   |
| 0.150     | 0.0009         | 0.0199           | 112     | 0.150     | 2248     | 47        | 112         | 0.150       | 111.5 | 9 238  | 2.8 4    | 7.4 1   |
|           | 1              |                  |         |           |          |           |             |             |       |        |          |         |
|           | Rooftop Storad | te Summary       |         |           | _        |           |             |             |       |        |          |         |
|           |                |                  |         |           |          |           |             |             |       |        |          |         |

Detention Time (hr)

0 0.07637 0.26063 0.58357

1.06758 1.72946

|                                          |      | 1                                                           | From Watts D | rain Cat | alogue |
|------------------------------------------|------|-------------------------------------------------------------|--------------|----------|--------|
| Total Building Area (sq.m)               | 2810 |                                                             | Head (m) L/s |          |        |
| Assume Available Roof Area (sq. 80%      | 2248 |                                                             | Ope          | Ę        | 75%    |
| Roof Imperviousness                      | 0.99 |                                                             | 0.025 0.3    | 155 0    | .3155  |
| Roof Drain Requirement (sq.m/Notch)      | 232  |                                                             | 0.050 0.6    | 309 0    | 6309.  |
| Number of Roof Notches*                  | 21   |                                                             | 0.075 0.9    | 9464 0   | .8675  |
| Max. Allowable Depth of Roof Ponding (m) | 0.15 | * As per Ontario Building Code section OBC 7.4.10.4.(2)(c). | 0.100 1.2    | 618 1    | .1041  |
| Max. Allowable Storage (cu.m)            | 112  |                                                             | 0.125 1.5    | 5773 1   | .3407  |
| Estimated 100 Year Drawdown Time (h)     | 1.5  |                                                             | 0.150 1.8    | 3927 1   | .5773  |
|                                          |      |                                                             |              |          |        |

25% Closed 0.3155 0.3155 0.6309 0.6309 0.7098 0.6309 0.7886 0.6309 0.7886 0.6309 0.8675 0.6309 0.8674 0.6309

50% 0.3155 0.6309 0.7886 0.9464 1.1041 1.2618

\* Note: Number of drains can be reduced if multiple-notch drain used.

| Calculation Ret | sults            | 5yr   | 100yr | Available |
|-----------------|------------------|-------|-------|-----------|
|                 | Qresult (cu.m/s) | 0.017 | 0.019 |           |
|                 | Depth (m)        | 0.100 | 0.141 | 0.150     |
|                 | Volume (cu.m)    | 33.1  | 2.46  | 112.4     |
|                 | Draintime (hrs)  | 9.0   | 1.5   |           |

| , ROOF10   | lysis/swm/  |
|------------|-------------|
| _MRM.xlsm  | \design\ana |
| 2022-03-29 | \160401511  |
|            | W:\active   |

# Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF11 Standard Watts Model R1100 Accutrol Roof Drain

| Drawdown Estimate | Total Total | folume (cu. m) Water Depth Volume Time Vol | ient Accumulated (m) (cu.m) (sec) (cu.m) | 0.000 0 | 0 0.025 0.0 0.0 0.0 | 0 0.050 0.1 108.9 0.1 | 1 0.075 0.4 | 1 0.100 1.2 460.5 0.7 | 2 0.125 2.4 690.2 1.2 | 4 0.150 4.2 943.8 1.8 |  |
|-------------------|-------------|--------------------------------------------|------------------------------------------|---------|---------------------|-----------------------|-------------|-----------------------|-----------------------|-----------------------|--|
|                   |             | pth                                        |                                          |         |                     |                       |             |                       |                       |                       |  |
|                   |             | Water De                                   | (E)                                      | 000.0   | 0.025               | 0.050                 | 0.075       | 0.100                 | 0.125                 | 0.150                 |  |
|                   |             | e (cu. m)                                  | Accumulated                              | 0       | 0                   | 0                     | -           | -                     | 0                     | 4                     |  |
|                   | stimation   | Volume                                     | Increment                                | 0       | 0                   | 0                     | 0           | -                     | -                     | 2                     |  |
|                   | Volume E    | Area                                       | (a. m)                                   | 0       | 0                   | 6                     | 21          | 38                    | 59                    | 85                    |  |
|                   |             | Elevation                                  | (m)                                      | 000.0   | 0.025               | 0.050                 | 0.075       | 0.100                 | 0.125                 | 0.150                 |  |
|                   |             | Storage                                    | (cu. m)                                  | 0       | 0                   | 0                     | -           | -                     | 2                     | 4                     |  |
|                   | Curve       | Outlet Discharge                           | (cu.m/s)                                 | 0.0000  | 0.0006              | 0.0013                | 0.0014      | 0.0016                | 0.0017                | 0.0019                |  |
|                   | Rating      | Discharge Rate                             | (cu.m/s)                                 | 0.0000  | 0.0003              | 0.0006                | 0.0007      | 0.0008                | 0.0009                | 0.0009                |  |
|                   |             | Elevation                                  | (m)                                      | 0.000   | 0.025               | 0.050                 | 0.075       | 0.100                 | 0.125                 | 0.150                 |  |

0 0.03025 0.10323 0.23114

0.42285 0.68501

Detention Time (hr)

|                                          |      | 1                                                           | From Watts Drain | Catalogue |
|------------------------------------------|------|-------------------------------------------------------------|------------------|-----------|
| Total Building Area (sq.m)               | 106  |                                                             | Head (m) L/s     |           |
| Assume Available Roof Area (sq. 80%      | 84.8 |                                                             | Open             | 75%       |
| Roof Imperviousness                      | 0.99 |                                                             | 0.025 0.3155     | 0.3155    |
| Roof Drain Requirement (sq.m/Notch)      | 232  |                                                             | 0.050 0.6309     | 0.6309    |
| Number of Roof Notches*                  | 2    |                                                             | 0.075 0.9464     | 0.8675    |
| Max. Allowable Depth of Roof Ponding (m) | 0.15 | * As per Ontario Building Code section OBC 7.4.10.4.(2)(c). | 0.100 1.2618     | 1.1041    |
| Max. Allowable Storage (cu.m)            | 4    |                                                             | 0.125 1.5773     | 1.3407    |
| Estimated 100 Year Drawdown Time (h)     | 0.4  |                                                             | 0.150 1.8927     | 1.5773    |
|                                          |      |                                                             |                  |           |

25% Closed 0.3155 0.3155 0.6309 0.6309 0.7098 0.6309 0.7886 0.6309 0.7886 0.6309 0.8675 0.6309 0.8674 0.6309

0.7886 0.9464 1.1041 1.2618

50% 0.3155 0.6309

\* Note: Number of drains can be reduced if multiple-notch drain used.

| Calculation Re- | sults            | 5yr   | 100yr | Available |
|-----------------|------------------|-------|-------|-----------|
|                 | Qresult (cu.m/s) | 000'0 | 0.002 | -         |
|                 | Depth (m)        | 000'0 | 0.120 | 0.150     |
|                 | Volume (cu.m)    | 0.0   | 2:2   | 7'5       |
|                 | Draintime (hrs)  | 0.0   | 0.4   |           |

2022-03-29\_MRM.xlsm, ROOF11 W:\active\160401511\design\analysis\swm\

# Project #160401511, Wellings of Stittsville Phase 2, 20 Cedarow Court Roof Drain Design Sheet, Area ROOF12 Standard Watts Model R1100 Accutrol Roof Drain

|    |         |                       |                  |         |           |          |           |             |             |     | -     | Drawdown E | Estimate |
|----|---------|-----------------------|------------------|---------|-----------|----------|-----------|-------------|-------------|-----|-------|------------|----------|
|    |         | Rating                | g Curve          |         |           | Volume E | stimation |             |             |     | Total | Total      |          |
| ш́ | evation | Discharge Rate        | Outlet Discharge | Storage | Elevation | Area     | Volume    | e (cu. m)   | Water Depth | No. | olume | Time       | Vol      |
|    | (m)     | (cu.m/s)              | (cu.m/s)         | (cu. m) | (ш)       | (sq. m)  | Increment | Accumulated | (m)         | 0)  | cu.m) | (sec)      | (cu.m)   |
|    | 0.000   | 0.0000                | 0.0000           | 0       | 0.000     | 0        | 0         | 0           | 0.000       | [   |       |            |          |
| 2  | 0.025   | 0.0003                | 0.0006           | 0       | 0.025     | 0        | 0         | 0           | 0.025       |     | 0.0   | 0.0        | 0.0      |
| 2  | 0.050   | 0.0006                | 0.0013           | 0       | 0.050     | <b>б</b> | 0         | 0           | 0.050       |     | 0.1   | 102.7      | 0.1      |
| 2  | 0.075   | 0.0007                | 0.0014           | -       | 0.075     | 20       | 0         | -           | 0.075       |     | 0.5   | 247.9      | 0.4      |
| 2  | 0.100   | 0.0008                | 0.0016           | -       | 0.100     | 36       | -         | -           | 0.100       |     | 1.2   | 434.4      | 0.7      |
| 2  | 0.125   | 0.0009                | 0.0017           | 0       | 0.125     | 56       | ÷         | 2           | 0.125       |     | 2.3   | 651.1      | 1.1      |
| 2  | 0.150   | 0.0009                | 0.0019           | 4       | 0.150     | 80       | 0         | 4           | 0.150       |     | 4.0   | 890.4      | 1.7      |
|    |         | ì                     |                  |         |           |          |           |             |             |     |       |            |          |
|    |         | <b>Rooftop Storag</b> | je Summary       |         |           |          |           |             |             |     |       |            |          |

0 0.02854 0.09739 0.21806 0.39892 0.64624

Detention Time (hr)

|                                          |      |                                                             | From Watts Drain | Catalogue |
|------------------------------------------|------|-------------------------------------------------------------|------------------|-----------|
| Total Building Area (sq.m)               | 100  |                                                             | Head (m) L/s     |           |
| Assume Available Roof Area (sq. 80%      | 80   |                                                             | Open             | 75%       |
| Roof Imperviousness                      | 0.99 |                                                             | 0.025 0.3155     | 0.3155    |
| Roof Drain Requirement (sq.m/Notch)      | 232  |                                                             | 0.050 0.6309     | 0.6309    |
| Number of Roof Notches*                  | N    |                                                             | 0.075 0.9464     | 0.8675    |
| Max. Allowable Depth of Roof Ponding (m) | 0.15 | * As per Ontario Building Code section OBC 7.4.10.4.(2)(c). | 0.100 1.2618     | 1.1041    |
| Max. Allowable Storage (cu.m)            | 4    |                                                             | 0.125 1.5773     | 1.3407    |
| Estimated 100 Year Drawdown Time (h)     | 0.3  |                                                             | 0.150 1.8927     | 1.5773    |
|                                          |      |                                                             |                  |           |

25% Closed 0.3155 0.3155 0.6309 0.6309 0.7098 0.6309 0.7886 0.6309 0.7886 0.6309 0.8675 0.6309 0.8674 0.6309

0.7886 0.9464 1.1041 1.2618

50% 0.3155 0.6309

\* Note: Number of drains can be reduced if multiple-notch drain used.

| Calculation Ret | sults            | 5 yr  | 100yr | Available |
|-----------------|------------------|-------|-------|-----------|
|                 | Qresult (cu.m/s) | 0.001 | 0.002 | ı         |
|                 | Depth (m)        | 0.073 | 0.118 | 0.150     |
|                 | Volume (cu.m)    | 0.5   | 2.0   | 4.0       |
|                 | Draintime (hrs)  | 0.1   | 0.3   |           |

| Incanica | nutional m    |             |                          | storage       |             |              |           |        |
|----------|---------------|-------------|--------------------------|---------------|-------------|--------------|-----------|--------|
|          |               |             | $  - \alpha/(t + b)^{0}$ |               | 1705 000    |              |           | 1      |
|          | 100 yr Inten  | sity        | I = a/(I + D)            | a =           | 1/35.688    | t (min)      | I (mm/nr) |        |
|          | City of Otta  | wa          |                          | b =           | 6.014       | 10           | 178.56    |        |
|          |               |             |                          | C =           | 0.820       | 20           | 119.95    |        |
|          |               |             |                          |               |             | 30           | 91.87     |        |
|          |               |             |                          |               |             | 40           | /5.15     |        |
|          |               |             |                          |               |             | 50           | 63.95     |        |
|          |               |             |                          |               |             | 60           | 55.89     |        |
|          |               |             |                          |               |             | 70           | 49.79     |        |
|          |               |             |                          |               |             | 80           | 44.99     |        |
|          |               |             |                          |               |             | 90           | 41.11     |        |
|          |               |             |                          |               |             | 100          | 37.90     |        |
|          |               |             |                          |               |             | 110          | 35.20     |        |
|          |               |             |                          |               |             | 120          | 32.09     |        |
|          | 100 YEAR      | Modified Ra | tional Metho             | d for Entire  | Site        |              |           |        |
| Subdr    | ainade Area:  | BOOF12      |                          |               |             |              | Boof      |        |
| Subur    | Δrea (ha)·    | 0.01        |                          | N             | laximum Sto | rade Denth.  | 150       | mm     |
|          | C:            | 1.00        |                          | IV            |             | lage Deptil. | 150       |        |
|          | tc            | l (100 vr)  | Qactual                  | Qrelease      | Ostored     | Vstored      | Depth     | I      |
|          | (min)         | (mm/hr)     | (L/s)                    | (L/s)         | (L/s)       | (m^3)        | (mm)      |        |
|          | 10            | 178 56      | 4 96                     | 1.69          | 3.28        | 1 97         | 117.3     | 1 0.00 |
|          | 20            | 119.95      | 3.33                     | 1.69          | 1.65        | 1.98         | 117.5     | 0.00   |
|          | 30            | 91.87       | 2.55                     | 1.64          | 0.91        | 1.64         | 110.1     | 0.00   |
|          | 40            | 75.15       | 2.09                     | 1.58          | 0.51        | 1.22         | 100.7     | 0.00   |
|          | 50            | 63.95       | 1.78                     | 1.50          | 0.28        | 0.84         | 87.4      | 0.00   |
|          | 60            | 55.89       | 1.55                     | 1 42          | 0.14        | 0.49         | 74.6      | 0.00   |
|          | 70            | 49.79       | 1.38                     | 1.32          | 0.07        | 0.28         | 59.0      | 0.00   |
|          | 80            | 44.99       | 1.25                     | 1.22          | 0.03        | 0.14         | 48.4      | 0.00   |
|          | 90            | 41.11       | 1.14                     | 1.12          | 0.02        | 0.12         | 44.4      | 0.00   |
|          | 100           | 37.90       | 1.05                     | 1.04          | 0.02        | 0.10         | 41 1      | 0.00   |
|          | 110           | 35.20       | 0.98                     | 0.97          | 0.01        | 0.09         | 38.3      | 0.00   |
|          | 120           | 32.89       | 0.91                     | 0.90          | 0.01        | 0.07         | 35.8      | 0.00   |
| Storage: | Roof Storage  | e           |                          |               |             |              |           |        |
|          | Г             | Depth       | Head                     | Discharge     | Vreq        | Vavail       | Discharge | I      |
|          |               | (mm)        | (m)                      | <u>(L</u> /s) | (cu. m)     | (cu. m)      | Check     |        |
| 100-year | r Water Level | 117.51      | 0.12                     | 1.69          | 1.98        | 4.00         | 0.00      | Ι      |
| _        |               |             |                          |               |             |              |           |        |
| Subdra   | ainage Area:  | ROOF11      |                          |               |             |              | Root      |        |
|          | Area (ha):    | 0.01        |                          | N             | laximum Sto | rage Depth:  | 150       | mm     |
|          | C:            | 1.00        |                          |               |             |              |           |        |
|          | tc            | l (100 vr)  | Qactual                  | Qrelease      | Qstored     | Vstored      | Depth     | T      |
| 1        | (min)         | (mm/hr)     | (L/s)                    | (L/s)         | (L/s)       | (m^3)        | (mm)      |        |
| 1        | 10            | 178.56      | 5.26                     | 1.69          | 3.57        | 2.14         | 118.5     | • 0.00 |
|          | 20            | 119.95      | 3.53                     | 1.70          | 1.83        | 2.20         | 119.7     | 0.00   |
|          | 30            | 91.87       | 2.71                     | 1.66          | 1.05        | 1.88         | 113.1     | 0.00   |
| 1        | 40            | 75.15       | 2.21                     | 1.60          | 0.61        | 1.46         | 104.3     | 0.00   |
| 1        | 50            | 63.95       | 1.88                     | 1.53          | 0.35        | 1.05         | 93.0      | 0.00   |
| 1        | 60            | 55.89       | 1.65                     | 1.45          | 0.19        | 0.69         | 80.6      | 0.00   |
| 1        | 70            | 49.79       | 1.47                     | 1.37          | 0.10        | 0.41         | 67.0      | 0.00   |
| 1        | 80            | 44.99       | 1.33                     | 1.28          | 0.04        | 0.21         | 53.3      | 0.00   |
| 1        | 90            | 41.11       | 1.21                     | 1.19          | 0.03        | 0.14         | 47.0      | 0.00   |
| 1        | 100           | 37.90       | 1.12                     | 1.10          | 0.02        | 0.12         | 43.5      | 0.00   |
| 1        | 110           | 35.20       | 1.04                     | 1.02          | 0.02        | 0.10         | 40.5      | 0.00   |
|          | 120           | 32.89       | 0.97                     | 0.96          | 0.01        | 0.09         | 37.9      | 0.00   |
|          |               |             |                          |               |             |              |           |        |

|                                       |                                                                                       | Depth                                                                                     | Head                                                | Discharge                                          | Vreq                                                    | Vavail                                                           | Discharge                                                         |    |
|---------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|----|
| 100 100                               | r Water Lovel                                                                         | (mm)                                                                                      | (m)                                                 | (L/s)                                              | (cu. m)                                                 | (cu. m)                                                          | Check                                                             |    |
| TOU-year                              | i Walei Levei                                                                         | 119.70                                                                                    | 0.12                                                | 1.70                                               | 2.20                                                    | 4.24                                                             | 0.00                                                              |    |
| Subdra                                | ainage Area:                                                                          | BOOF10                                                                                    |                                                     |                                                    |                                                         |                                                                  | Roof                                                              |    |
|                                       | Area (ha):                                                                            | 0.28                                                                                      |                                                     | M                                                  | laximum Sto                                             | rage Depth:                                                      | 150                                                               | mm |
|                                       | Ć:                                                                                    | 1.00                                                                                      |                                                     |                                                    |                                                         | 0                                                                |                                                                   |    |
|                                       | tc                                                                                    | l (100 yr)                                                                                | Qactual                                             | Qrelease                                           | Qstored                                                 | Vstored                                                          | Depth                                                             |    |
|                                       | (min)                                                                                 | (mm/nr)                                                                                   | (L/S)                                               | (L/S)                                              | (L/S)                                                   | (m^3)                                                            | ( <b>mm</b> )                                                     |    |
|                                       | 20                                                                                    | 110.00                                                                                    | 93 70                                               | 10.40                                              | 74.63                                                   | 72.00<br>89.55                                                   | 129.0                                                             |    |
|                                       | 30                                                                                    | 91.87                                                                                     | 71 77                                               | 19.25                                              | 52 52                                                   | 94 53                                                            | 140.6                                                             |    |
|                                       | 40                                                                                    | 75 15                                                                                     | 58 70                                               | 19.25                                              | 39.45                                                   | 94.68                                                            | 140.6                                                             |    |
|                                       | 50                                                                                    | 63.95                                                                                     | 49.96                                               | 19.20                                              | 30.79                                                   | 92.36                                                            | 139.4                                                             |    |
|                                       | 60                                                                                    | 55.89                                                                                     | 43.66                                               | 19.04                                              | 24.62                                                   | 88.64                                                            | 137.5                                                             |    |
|                                       | 70                                                                                    | 49.79                                                                                     | 38.89                                               | 18.88                                              | 20.01                                                   | 84.05                                                            | 135.0                                                             |    |
|                                       | 80                                                                                    | 44.99                                                                                     | 35.15                                               | 18.70                                              | 16.44                                                   | 78.93                                                            | 132.3                                                             |    |
|                                       | 90                                                                                    | 41.11                                                                                     | 32.12                                               | 18.51                                              | 13.60                                                   | 73.46                                                            | 129.4                                                             |    |
|                                       | 100                                                                                   | 37.90                                                                                     | 29.61                                               | 18.31                                              | 11.30                                                   | 67.78                                                            | 126.4                                                             |    |
|                                       | 110                                                                                   | 35.20                                                                                     | 27.50                                               | 18.07                                              | 9.43                                                    | 62.23                                                            | 122.8                                                             |    |
|                                       | 120                                                                                   | 32.89                                                                                     | 25.70                                               | 17.79                                              | 7.90                                                    | 56.91                                                            | 118.6                                                             |    |
| torage:                               | Roof Storag                                                                           | e                                                                                         |                                                     |                                                    |                                                         |                                                                  |                                                                   |    |
|                                       | Γ                                                                                     | Depth                                                                                     | Head                                                | Discharge                                          | Vreq                                                    | Vavail                                                           | Discharge                                                         |    |
|                                       |                                                                                       | (mm)                                                                                      | (m)                                                 | (L/s)                                              | (cu. m)                                                 | (cu. m)                                                          | Check                                                             |    |
| 100-year                              | r Water Level                                                                         | 140.64                                                                                    | 0.14                                                | 19.25                                              | 94.68                                                   | 112.40                                                           | 0.00                                                              |    |
| Subdr                                 | ainago Aroa:                                                                          | POOE0                                                                                     |                                                     |                                                    |                                                         |                                                                  | Poof                                                              |    |
| Subur                                 | Δrea (ha):                                                                            | 0.01                                                                                      |                                                     | M                                                  | laximum Sto                                             | rade Denth:                                                      | 150                                                               | mm |
|                                       | C:                                                                                    | 1.00                                                                                      |                                                     |                                                    |                                                         | age Dopan                                                        |                                                                   |    |
|                                       | tc                                                                                    | l (100 yr)                                                                                | Qactual                                             | Qrelease                                           | Qstored                                                 | Vstored                                                          | Depth                                                             |    |
|                                       | (min)                                                                                 | (mm/hr)                                                                                   | (L/s)                                               | (L/s)                                              | (L/s)                                                   | (m^3)                                                            | (mm)                                                              |    |
|                                       | 10                                                                                    | 178.56                                                                                    | 2.63                                                | 1.58                                               | 1.05                                                    | 0.63                                                             | 100.1                                                             |    |
|                                       | 20                                                                                    | 119.95                                                                                    | 1.77                                                | 1.46                                               | 0.30                                                    | 0.37                                                             | 81.9                                                              |    |
|                                       | 30                                                                                    | 91.87                                                                                     | 1.35                                                | 1.29                                               | 0.06                                                    | 0.11                                                             | 54.6                                                              |    |
|                                       | 40                                                                                    | 75.15                                                                                     | 1.11                                                | 1.08                                               | 0.02                                                    | 0.06                                                             | 42.9                                                              |    |
|                                       | 50                                                                                    | 63.95                                                                                     | 0.94                                                | 0.93                                               | 0.01                                                    | 0.04                                                             | 36.8                                                              |    |
|                                       | 60                                                                                    | 55.89                                                                                     | 0.82                                                | 0.82                                               | 0.01                                                    | 0.03                                                             | 32.3                                                              |    |
|                                       | 70                                                                                    | 49.79                                                                                     | 0.73                                                | 0.73                                               | 0.00                                                    | 0.02                                                             | 28.9                                                              |    |
|                                       | 80                                                                                    | 44.99                                                                                     | 0.66                                                | 0.66                                               | 0.00                                                    | 0.01                                                             | 20.2                                                              |    |
|                                       | un                                                                                    |                                                                                           |                                                     |                                                    |                                                         | 0.01                                                             | 23.9                                                              |    |
|                                       | 100                                                                                   | 41.11                                                                                     | 0.01                                                | 0.00                                               | 0.00                                                    | 0.01                                                             | 00.4                                                              |    |
|                                       | 100                                                                                   | 37.90                                                                                     | 0.56                                                | 0.56                                               | 0.00                                                    | 0.01                                                             | 22.1                                                              |    |
|                                       | 100<br>110<br>120                                                                     | 37.90<br>35.20<br>32.89                                                                   | 0.56<br>0.52<br>0.48                                | 0.56<br>0.52<br>0.48                               | 0.00<br>0.00<br>0.00<br>0.00                            | 0.01<br>0.01<br>0.01                                             | 22.1<br>20.5<br>19.2                                              |    |
| torage:                               | 100<br>110<br>120<br>Roof Storag                                                      | 41.11<br>37.90<br>35.20<br>32.89<br>e                                                     | 0.56<br>0.52<br>0.48                                | 0.56<br>0.52<br>0.48                               | 0.00<br>0.00<br>0.00<br>0.00                            | 0.01<br>0.01<br>0.01                                             | 22.1<br>20.5<br>19.2                                              |    |
| Storage:                              | 100<br>110<br>120<br>Roof Storag                                                      | 41.11<br>37.90<br>35.20<br>32.89<br>e                                                     | 0.56<br>0.52<br>0.48                                | 0.56<br>0.52<br>0.48                               | 0.00<br>0.00<br>0.00<br>0.00                            | 0.01<br>0.01<br>0.01                                             | 22.1<br>20.5<br>19.2                                              |    |
| Storage:                              | 100<br>110<br>120<br>Roof Storag                                                      | 41.11<br>37.90<br>35.20<br>32.89<br>e                                                     | 0.56<br>0.52<br>0.48<br>Head                        | 0.50<br>0.56<br>0.52<br>0.48                       | 0.00<br>0.00<br>0.00<br>0.00                            | 0.01<br>0.01<br>0.01<br>Vavail                                   | 22.1<br>20.5<br>19.2<br>Discharge                                 |    |
| itorage:<br>100-year                  | 100<br>110<br>120<br>Roof Storag                                                      | 41.11<br>37.90<br>35.20<br>32.89<br>e<br>Depth<br>(mm)<br>100.15                          | 0.51<br>0.56<br>0.52<br>0.48<br>Head<br>(m)<br>0.10 | 0.50<br>0.52<br>0.48<br>Discharge<br>(L/s)<br>1.58 | 0.00<br>0.00<br>0.00<br>Vreq<br>(cu. m)<br>0.63         | 0.01<br>0.01<br>0.01<br>Vavail<br>(cu. m)<br>2.12                | 22.1<br>20.5<br>19.2<br>Discharge<br>Check<br>0.00                |    |
| Storage:<br>100-year                  | 100<br>110<br>120<br>Roof Storag                                                      | 41.11<br>37.90<br>35.20<br>32.89<br>e<br>Depth<br>(mm)<br>100.15                          | 0.51<br>0.52<br>0.48<br>Head<br>(m)<br>0.10         | 0.50<br>0.52<br>0.48<br>Discharge<br>(L/s)<br>1.58 | 0.00<br>0.00<br>0.00<br>Vreq<br>(cu. m)<br>0.63         | 0.01<br>0.01<br>0.01<br>Vavail<br>(cu. m)<br>2.12                | 22.1<br>20.5<br>19.2<br>Discharge<br>Check<br>0.00                |    |
| Storage:<br>100-year<br>Subdra        | 100<br>110<br>120<br>Roof Storag<br>r Water Level                                     | 41.11<br>37.90<br>35.20<br>32.89<br>e<br>Depth<br>(mm)<br>100.15<br>ROOF8                 | 0.51<br>0.56<br>0.52<br>0.48<br>Head<br>(m)<br>0.10 | 0.50<br>0.52<br>0.48<br>Discharge<br>(L/s)<br>1.58 | 0.00<br>0.00<br>0.00<br>Vreq<br>(cu. m)<br>0.63         | 0.01<br>0.01<br>0.01<br>Vavail<br>(cu. m)<br>2.12                | 22.1<br>20.5<br>19.2<br>Discharge<br>Check<br>0.00<br>Roof        |    |
| Storage:<br>100-year<br>Subdra        | 100<br>110<br>120<br>Roof Storag<br>r Water Level<br>ainage Area:<br>Area (ha):       | 41.11<br>37.90<br>35.20<br>32.89<br>e<br>Depth<br>(mm)<br>100.15<br>ROOF8<br>0.01         | 0.56<br>0.52<br>0.48<br>Head<br>(m)<br>0.10         | 0.50<br>0.52<br>0.48<br>Discharge<br>(L/s)<br>1.58 | 0.00<br>0.00<br>0.00<br>Vreq<br>(cu. m)<br>0.63         | 0.01<br>0.01<br>0.01<br>Vavail<br>(cu. m)<br>2.12<br>rage Depth: | 22.1<br>20.5<br>19.2<br>Discharge<br>Check<br>0.00<br>Roof<br>150 | mm |
| itorage:<br>100-year<br><b>Subdra</b> | 100<br>110<br>120<br>Roof Storag<br>r Water Level<br>ainage Area:<br>Area (ha):<br>C: | 41.11<br>37.90<br>35.20<br>32.89<br>e<br>Depth<br>(mm)<br>100.15<br>ROOF8<br>0.01<br>1.00 | 0.51<br>0.52<br>0.48<br>Head<br>(m)<br>0.10         | 0.50<br>0.52<br>0.48<br>Discharge<br>(L/s)<br>1.58 | 0.00<br>0.00<br>0.00<br><u>Vreq<br/>(cu. m)</u><br>0.63 | 0.01<br>0.01<br>0.01<br>Vavail<br>(cu. m)<br>2.12<br>rage Depth: | 22.1<br>20.5<br>19.2<br>Discharge<br>Check<br>0.00<br>Roof<br>150 | mm |
| Storage:<br>100-year<br><b>Subdra</b> | 100<br>110<br>120<br>Roof Storag<br>r Water Level<br>ainage Area:<br>Area (ha):<br>C: | 41.11<br>37.90<br>35.20<br>32.89<br>e<br>Depth<br>(mm)<br>100.15<br>ROOF8<br>0.01<br>1.00 | 0.51<br>0.56<br>0.52<br>0.48<br>Head<br>(m)<br>0.10 | 0.50<br>0.52<br>0.48<br>Discharge<br>(L/s)<br>1.58 | 0.00<br>0.00<br>0.00<br>Vreq<br>(cu. m)<br>0.63         | 0.01<br>0.01<br>0.01<br>Vavail<br>(cu. m)<br>2.12<br>rage Depth: | 22.1<br>20.5<br>19.2<br>Discharge<br>Check<br>0.00<br>Roof<br>150 | mm |

|          | (min)       | (mm/hr)        | (L/s)      | (L/s)         | (L/s)           | (m^3)            | (mm)         |      |
|----------|-------------|----------------|------------|---------------|-----------------|------------------|--------------|------|
|          | 10          | 178.56         | 4.82       | 1.68          | 3.13            | 1.88             | 116.7        | 0.0  |
|          | 20          | 119 95         | 3.23       | 1.68          | 1 55            | 1.87             | 116.3        | 0.0  |
|          | 30          | 91.87          | 2 48       | 1.63          | 0.85            | 1.52             | 108.5        | 0.0  |
|          | 40          | 75 15          | 2.40       | 1.00          | 0.00            | 1.02             | 98.3         | 0.0  |
|          | 40<br>50    | 62.05          | 1.70       | 1.07          | 0.40            | 0.74             | 90.5<br>04 E | 0.0  |
|          | 50          | 63.95          | 1.72       | 1.40          | 0.23            | 0.74             | 04.0         | 0.0  |
|          | 60          | 55.89          | 1.51       | 1.39          | 0.12            | 0.42             | 70.3         | 0.0  |
|          | 70          | 49.79          | 1.34       | 1.29          | 0.05            | 0.21             | 54.9         | 0.0  |
|          | 80          | 44.99          | 1.21       | 1.19          | 0.03            | 0.13             | 47.0         | 0.0  |
|          | 90          | 41.11          | 1.11       | 1.09          | 0.02            | 0.11             | 43.1         | 0.0  |
|          | 100         | 37.90          | 1.02       | 1.01          | 0.02            | 0.09             | 39.9         | 0.0  |
|          | 110         | 35.20          | 0.95       | 0.94          | 0.01            | 0.08             | 37.1         | 0.0  |
|          | 120         | 32.89          | 0.89       | 0.88          | 0.01            | 0.07             | 34.8         | 0.00 |
| Storage: | Roof Storag | e              |            |               |                 |                  |              |      |
|          | ]           | Depth          | Head       | Discharge     | Vreq            | Vavail           | Discharge    |      |
|          |             | <u>(mm)</u>    | <u>(m)</u> | <u>(L/s</u> ) | <u>(cu. m</u> ) | ( <u>cu. m</u> ) | Check        |      |
| 100-year | Water Level | 116.66         | 0.12       | 1.68          | 1.88            | 3.88             | 0.00         |      |
|          |             |                |            |               |                 |                  |              |      |
| Subdra   | inage Area: | ROOF6 and 7    |            | ۲.            | laximum Sto     | rage Depth:      | Roof         | mm   |
|          | C:          | 1.00           |            | 101           |                 | rage Deptil.     | 150          |      |
|          | tc          | l (100 vr)     | Qactual    | Qrelease      | Qstored         | Vstored          | Depth        |      |
|          | (min)       | (mm/hr)        | (L/s)      | (L/s)         | (L/s)           | (m^3)            | (mm)         |      |
|          | 10          | 178 56         | 47 41      | 7.84          | 39.57           | 23 74            | 127.5        | 0.00 |
|          | 20          | 110.05         | 21.95      | 0.16          | 22.57           | 20.74            | 127.5        | 0.00 |
|          | 20          | 119.95         | 31.05      | 0.10          | 23.09           | 20.42            | 134.0        | 0.00 |
|          | 30          | 91.87          | 24.39      | 8.21          | 16.18           | 29.12            | 135.9        | 0.00 |
|          | 40          | /5.15          | 19.95      | 8.15          | 11.80           | 28.32            | 134.7        | 0.00 |
|          | 50          | 63.95          | 16.98      | 8.05          | 8.93            | 26.79            | 132.3        | 0.00 |
|          | 60          | 55.89          | 14.84      | 7.92          | 6.92            | 24.91            | 129.4        | 0.00 |
|          | 70          | 49.79          | 13.22      | 7.78          | 5.44            | 22.84            | 126.1        | 0.00 |
|          | 80          | 44.99          | 11.94      | 7.60          | 4.34            | 20.85            | 122.1        | 0.00 |
|          | 90          | 41.11          | 10.91      | 7.40          | 3.51            | 18.96            | 117.7        | 0.00 |
|          | 100         | 37.90          | 10.06      | 7.21          | 2.85            | 17.09            | 113.4        | 0.00 |
|          | 110         | 35.20          | 9.35       | 7.03          | 2.32            | 15 28            | 109.2        | 0.00 |
|          | 120         | 32.89          | 8.73       | 6.85          | 1.88            | 13.56            | 105.2        | 0.00 |
| Storage: | Roof Storag | e              |            |               |                 |                  |              |      |
|          | ٦           | Depth          | Head       | Discharge     | Vreq            | Vavail           | Discharge    |      |
|          |             | (mm)           | (m)        | (L/s)         | (cu. m)         | (cu. m)          | Check        |      |
| 100-year | Water Level | 135.90         | 0.14       | 8.21          | 29.12           | 38.20            | 0.00         |      |
| <u> </u> | •••••       | DOGET          |            |               |                 |                  |              |      |
| Subdra   | inage Area: | ROOF5          |            |               |                 | <b>_</b>         | Root         |      |
|          | Area (ha):  | 0.11           |            | M             | laximum Sto     | rage Depth:      | 150          | mm   |
|          | C:          | 1.00           |            |               |                 |                  |              |      |
|          | tc          | l (100 yr)     | Qactual    | Qrelease      | Qstored         | Vstored          | Depth        |      |
|          | (min)       | (mm/hr)        | (L/S)      | (L/S)         | (L/S)           | (m^3)            | (mm)         |      |
|          | 10          | 178.56         | 54.50      | 6.54          | 47.96           | 28.78            | 129.5        | 0.00 |
|          | 20          | 119.95         | 36.61      | 7.00          | 29.61           | 35.54            | 138.7        | 0.00 |
|          | 30          | 91.87          | 28.04      | 7.14          | 20.90           | 37.62            | 141.5        | 0.00 |
|          | 40          | 75.15          | 22.94      | 7.16          | 15.78           | 37.87            | 141.8        | 0.00 |
|          | 50          | 63.95          | 19.52      | 7.11          | 12.41           | 37.23            | 141.0        | 0.0  |
|          | 60          | 55.89          | 17.06      | 7.04          | 10.02           | 36.08            | 139.4        | 0.0  |
|          | 70          | 49.79          | 15.20      | 6.94          | 8.26            | 34.68            | 137.5        | 0.01 |
|          | 80          | 44 99          | 13 73      | 6.83          | 6 90            | 33 12            | 135.4        | 0.00 |
|          | 00          | 77.00<br>11 11 | 10.75      | 6 70          | 5.00            | 21 /0            | 132.4        | 0.00 |
|          | 90          | 41.11          | 11 57      | 0.72          | 0.83            | 31.40<br>00.70   | 100.2        | 0.00 |
|          | 100         | 37.90          | 11.57      | 6.61          | 4.96            | 29.76            | 130.9        | 0.00 |
|          | 4.4.0       | 05 00          | 10 75      | o             | 4 ~ ~           | ~~ ~~            | 100 0        |      |

| Mounicu  | 120                        | 32.89       | 10.04          | 6.37         | 3.67        | 26.40        | 126.3         | (   |
|----------|----------------------------|-------------|----------------|--------------|-------------|--------------|---------------|-----|
|          | 120                        | 02.00       | 10.04          | 0.07         | 0.07        | 20.40        | 120.0         | , c |
| Storage: | Roof Storage               | 9           |                |              |             |              |               |     |
|          |                            | Depth       | Head           | Discharge    | e Vreq      | Vavail       | Discharge     |     |
|          |                            | (mm)        | (m)            | (L/s)        | (cu. m)     | (cu. m)      | Check         |     |
| 100-year | Water Level                | 141.83      | 0.14           | 7.16         | 37.87       | 43.92        | 0.00          |     |
| Cubdu    |                            |             |                |              |             |              | Deef          |     |
| Subara   | Area (ha):                 | ROOF4       |                |              | Maximum Sto | rade Denth.  | 150 m         | m   |
|          | Alea (lia).                | 1 00        |                |              |             | rage Deptil. | 150 11        | .11 |
|          | 0.                         | 1.00        |                |              |             |              |               |     |
|          | tc                         | l (100 yr)  | Qactual        | Qrelease     | Qstored     | Vstored      | Depth         |     |
|          | (min)                      | (mm/hr)     | (L/s)          | (L/s)        | (L/s)       | (m^3)        | (mm)          |     |
|          | 10                         | 178.56      | 17.47          | 3.15         | 14.32       | 8.59         | 126.9         |     |
|          | 20                         | 119.95      | 11.74          | 3.15         | 8.59        | 10.31        | 134.1         |     |
|          | 30                         | 91.87       | 8.99           | 3.15         | 5.84        | 10.51        | 135.0         |     |
|          | 40<br>50                   | 75.15       | 6.26           | 3.15         | 4.20        | 0.09         | 133.2         |     |
|          | 60                         | 55.89       | 5.47           | 3.15         | 2.32        | 8.35         | 125.9         |     |
|          | 70                         | 49.79       | 4.87           | 3.15         | 1.72        | 7.23         | 119.2         |     |
|          | 80                         | 44.99       | 4.40           | 3.15         | 1.25        | 6.01         | 111.6         |     |
|          | 90                         | 41.11       | 4.02           | 3.15         | 0.87        | 4.71         | 103.4         |     |
|          | 100                        | 37.90       | 3.71           | 3.15         | 0.56        | 3.35         | 91.5          |     |
|          | 110                        | 35.20       | 3.44           | 3.15         | 0.29        | 1.95         | 76.9          |     |
|          | 120                        | 32.89       | 3.22           | 3.15         | 0.07        | 0.50         | 48.6          | -   |
| Storage: | Roof Storage               | )           |                |              |             |              |               |     |
|          | Г                          | Depth       | Head           | Discharge    | e Vreq      | Vavail       | Discharge     |     |
|          |                            | (mm)        | (m)            | (L/s)        | (cu. m)     | (cu. m)      | Check         |     |
| 100-year | Water Level                | 134.96      | 0.13           | 3.15         | 10.51       | 14.08        | 0.00          |     |
| Subdr    | ainaga Area:               | BOOE3       |                |              |             |              | Boof          |     |
| Subur    | Δrea (ha):                 | 0 11        |                |              | Maximum Sto | rade Depth:  | 150 m         | m   |
|          | C:                         | 1.00        |                |              |             | ruge Deptil. | 100 m         |     |
|          | · · · · ·                  |             |                |              |             |              |               |     |
|          | tc<br>(min)                | l (100 yr)  | Qactual        | Qrelease     | Qstored     | Vstored      | Depth<br>(mm) |     |
|          | 10                         | 179.56      | (L/S)<br>54.50 | (L/S)        | (L/S)       | (111-3)      | (1111)        |     |
|          | 20                         | 119.95      | 36.61          | 7 00         | 29.61       | 35.54        | 138 7         |     |
|          | 30                         | 91.87       | 28.04          | 7.14         | 20.90       | 37.62        | 141.5         |     |
|          | 40                         | 75.15       | 22.94          | 7.16         | 15.78       | 37.87        | 141.8         |     |
|          | 50                         | 63.95       | 19.52          | 7.11         | 12.41       | 37.23        | 141.0         |     |
|          | 60                         | 55.89       | 17.06          | 7.04         | 10.02       | 36.08        | 139.4         |     |
|          | 70                         | 49.79       | 15.20          | 6.94         | 8.26        | 34.68        | 137.5         |     |
|          | 80                         | 44.99       | 13.73          | 6.83         | 6.90        | 33.12        | 135.4         |     |
|          | 90                         | 41.11       | 12.55          | 6.72         | 5.83        | 31.48        | 133.2         |     |
|          | 100                        | 37.90       | 11.57          | 6.61         | 4.96        | 29.76        | 130.9         |     |
|          | 110                        | 35.20       | 10.75          | 6.49<br>6.27 | 4.26        | 28.09        | 128.6         |     |
|          | 120                        | 32.89       | 10.04          | 6.37         | 3.67        | 26.40        | 120.3         |     |
| Storage: | Roof Storage               | 9           |                |              |             |              |               |     |
|          |                            | Depth       | Head           | Discharge    | e Vreq      | Vavail       | Discharge     |     |
|          |                            | (mm)        | (m)            | (L/s)        | (cu. m)     | (cu. m)      | Check         |     |
| 100-year | Water Level                | 141.83      | 0.14           | 7.16         | 37.87       | 43.92        | 0.00          |     |
|          |                            |             |                |              |             |              |               |     |
| Subdra   | ainage Area:<br>Area (ha): | ROOF1 and 2 |                |              | Maximum Sto | rade Denth:  | Roof          | m   |
|          | C:                         | 1.00        |                |              |             | .ago Bopin.  | 100 11        |     |

|         | tc            | l (100 yr) | Qactual | Qrelease  | Qstored | Vstored | Depth     |
|---------|---------------|------------|---------|-----------|---------|---------|-----------|
|         | (min)         | (mm/hr)    | (L/s)   | (L/s)     | (L/s)   | (m^3)   | (mm)      |
|         | 10            | 178.56     | 47.36   | 7.84      | 39.52   | 23.71   | 127.5     |
|         | 20            | 119.95     | 31.81   | 8.16      | 23.65   | 28.38   | 134.8     |
|         | 30            | 91.87      | 24.36   | 8.21      | 16.16   | 29.08   | 135.9     |
|         | 40            | 75.15      | 19.93   | 8.15      | 11.78   | 28.27   | 134.6     |
|         | 50            | 63.95      | 16.96   | 8.05      | 8.91    | 26.73   | 132.2     |
|         | 60            | 55.89      | 14.82   | 7.92      | 6.90    | 24.85   | 129.3     |
|         | 70            | 49.79      | 13.20   | 7.78      | 5.42    | 22.78   | 126.1     |
|         | 80            | 44.99      | 11.93   | 7.60      | 4.33    | 20.79   | 122.0     |
|         | 90            | 41.11      | 10.90   | 7.40      | 3.50    | 18.92   | 117.7     |
|         | 100           | 37.90      | 10.05   | 7.21      | 2.84    | 17.05   | 113.3     |
|         | 110           | 35.20      | 9.34    | 7.03      | 2.31    | 15.22   | 109.1     |
|         | 120           | 32.89      | 8.72    | 6.85      | 1.87    | 13.49   | 105.1     |
| torage: | Roof Storage  |            |         |           |         |         |           |
|         | Г             | Depth      | Head    | Discharge | Vreq    | Vavail  | Discharge |
|         |               | (mm)       | (m)     | (L/s)     | (cu. m) | (cu. m) | Check     |
| 100-yea | r Water Level | 135.88     | 0.14    | 8.21      | 29.08   | 38.16   | 0.00      |



Tag:

# Adjustable Flow Control for Roof Drains

## ADJUSTABLE ACCUTROL(for Large Sump Roof Drains only)

For more flexibility in controlling flow with heads deeper than 2", Watts Drainage offers the Adjustable Accutrol. The Adjustable Accutrol Weir is designed with a single parabolic opening that can be covered to restrict flow above 2" of head to less than 5 gpm per inch, up to 6" of head. To adjust the flow rate for depths over 2" of head, set the slot in the adjustable upper cone according to the flow rate required. Refer to Table 1 below. Note: Flow rates are directly proportional to the amount of weir opening that is exposed.

## **EXAMPLE:**

For example, if the adjustable upper cone is set to cover 1/2 of the weir opening, flow rates above 2" of head will be restricted to 2-1/2 gpm per inch of head.

Therefore, at 3" of head, the flow rate through the Accutrol Weir that has 1/2 the slot exposed will be: [ 5 gpm(per inch of head) x 2 inches of head ] + 2-1/2 gpm(for the third inch of head) = 12-1/2 gpm.



|                                      |                                                                     |                                                           |                                                   | Head of Wat                                        | er                                        |                                  |                     |
|--------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------|---------------------|
|                                      | Weir Opening                                                        | 1"                                                        | 2"                                                | 3"                                                 | 4"                                        | 5"                               | 6"                  |
|                                      | Exposed                                                             |                                                           | Flow                                              | Rate (gallons p                                    | per minute)                               |                                  |                     |
|                                      | Fully Exposed                                                       | 5                                                         | 10                                                | 15                                                 | 20                                        | 25                               | 30                  |
|                                      | 3/4                                                                 | 5                                                         | 10                                                | 13.75                                              | 17.5                                      | 21.25                            | 25                  |
|                                      | 1/2                                                                 | 5                                                         | 10                                                | 12.5                                               | 15                                        | 17.5                             | 20                  |
|                                      | 1/4                                                                 | 5                                                         | 10                                                | 11.25                                              | 12.5                                      | 13.75                            | 15                  |
|                                      | Closed                                                              | 5                                                         | 10                                                | 10                                                 | 10                                        | 10                               | 10                  |
| Job Name<br>Job Location _           |                                                                     |                                                           |                                                   | Contractor                                         | D. No                                     |                                  |                     |
| Engineer                             |                                                                     |                                                           |                                                   | Representative                                     |                                           |                                  |                     |
| WATTS Drainage<br>previously or subs | reserves the right to modify or ch<br>equently sold. See your WATTS | ange product design or cor<br>Drainage representative for | astruction without prio<br>any clarification. Dir | r notice and without ir<br>nensions are subject to | curring any obligat<br>manufacturing tole | on to make similar c<br>erances. | hanges and modifice |

© Watts Drainage 2005

CANADA: 5435 North Service Road, Burlington, ON, L7L 5H7 TEL: 905-332-6718 TOLL-FREE: 1-888-208-8927 Website: www.wattsdrainage.ca

## SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix C Stormwater Management March 29, 2022

# C.2 SAMPLE PCSWMM MODEL INPUT (12HR 100YR SCS)

| [TITLE]<br>;;Project Title/Note                                                                                                                                                                        | s                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| [OPTIONS]<br>;;Option<br>FLOW_UNITS<br>INFILTRATION<br>FLOW_ROUTING<br>LINK_OFFSETS<br>MIN_SLOPE<br>ALLOW_PONDING<br>SKIP_STEADY_STATE                                                                 | Value<br>LPS<br>HORTON<br>DYNWAVE<br>ELEVATION<br>Ø<br>YES<br>NO                                                                                       |
| START_DATE<br>START_TIME<br>REPORT_START_DATE<br>REPORT_START_DATE<br>END_DATE<br>END_TIME<br>SWEEP_START<br>SWEEP_END<br>DRY_DAYS<br>REPORT_STEP<br>WET_STEP<br>DRY_STEP<br>ROUTING_STEP<br>RULE_STEP | 07/23/2009<br>00:00:00<br>07/23/2009<br>00:00:00<br>07/24/2009<br>00:00:00<br>01/01<br>12/31<br>0<br>00:05:00<br>00:05:00<br>00:05:00<br>1<br>00:05:00 |
| INERTIAL_DAMPING<br>NORMAL_FLOW_LIMITED<br>FORCE_MAIN_EQUATION<br>VARIABLE_STEP<br>LENGTHENING_STEP<br>MIN_SURFAREA<br>MAX_TRIALS<br>HEAD_TOLERANCE<br>SYS_FLOW_TOL<br>LAT_FLOW_TOL<br>MINIMUM_STEP    | PARTIAL<br>BOTH<br>H-W<br>0<br>0<br>8<br>0.0015<br>5<br>5<br>0.5                                                                                       |

| THREADS                                                      | 4                               |              |                        |         |       |        |         |          |
|--------------------------------------------------------------|---------------------------------|--------------|------------------------|---------|-------|--------|---------|----------|
| [EVAPORATION]<br>;;Data Source<br>;;<br>CONSTANT<br>DRY_ONLY | Parameters<br>0.0<br>NO         |              |                        |         |       |        |         |          |
| [RAINGAGES]<br>;;Name<br>;;<br>RG1                           | Format Interv<br>INTENSITY 0:15 | al SCF S<br> | ource<br>IMESERIES 100 | SCS     |       |        |         |          |
| [SUBCATCHMENTS]<br>;;Name                                    | Rain Gage                       | Outlet       | Area                   | %Imperv | Width | %Slope | CurbLen | SnowPack |
| ;;                                                           |                                 |              |                        |         |       |        |         |          |
| EXT-1                                                        | RG1                             | CB507-S      | 0.068859               | 38.571  | 95    | 1.5    | 0       |          |
| R00F_10                                                      | RG1                             | R00F-10-S    | 0.281012               | 100     | 136   | 1.5    | 0       |          |
| R00F_11                                                      | RG1                             | R00F-11-S    | 0.010607               | 100     | 21    | 1.5    | 0       |          |
| R00F_12                                                      | RG1                             | R00F-12-S    | 0.01253                | 100     | 15.6  | 1.5    | 0       |          |
| ROOF_3                                                       | RG1                             | R00F-3-S     | 0.109818               | 100     | 130   | 1.5    | 0       |          |
| ROOF_4                                                       | RG1                             | R00F-4-S     | 0.035229               | 100     | 46    | 1.5    | 0       |          |
| ROOF_5                                                       | RG1                             | R00F-5-S     | 0.109819               | 100     | 130   | 1.5    | 0       |          |
| ROOF_8                                                       | RG1                             | R00F-8-S     | 0.009743               | 100     | 21    | 1.5    | 0       |          |
| ROOF_9                                                       | RG1                             | R00F-9-S     | 0.005311               | 100     | 15    | 1.5    | 0       |          |
| ROOF1_2                                                      | RG1                             | R00F-1-2-S   | 0.0954                 | 100     | 95    | 1.5    | 0       |          |
| R00F6_7                                                      | RG1                             | R00F-6-7-S   | 0.0955                 | 100     | 95    | 1.5    | 0       |          |

| UGPK_1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAT                                                                | NKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.144022                                                     | 77.143                                                                                      | 115 | 2                                                                                                                                                                          | 0                                                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| LIGPK 2                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | та                                                                 | NK S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 152/75                                                     | 80                                                                                          | 177 | 2                                                                                                                                                                          | 0                                                                  |  |
| UGFK_2                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IA                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.152475                                                     | 80                                                                                          | 122 | 2                                                                                                                                                                          | 0                                                                  |  |
| UGPK_3                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAN                                                                | NKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.059673                                                     | 58.571                                                                                      | 60  | 2                                                                                                                                                                          | 0                                                                  |  |
| UGPK_4                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAT                                                                | NKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.119964                                                     | 70                                                                                          | 95  | 2                                                                                                                                                                          | 0                                                                  |  |
| UGPK_5                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAT                                                                | IKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.110163                                                     | 70                                                                                          | 85  | 2                                                                                                                                                                          | 0                                                                  |  |
| UGPK_6                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAT                                                                | NKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.021989                                                     | 100                                                                                         | 60  | 15                                                                                                                                                                         | 0                                                                  |  |
| UGPK_7                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAT                                                                | NKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.112091                                                     | 78.571                                                                                      | 78  | 2                                                                                                                                                                          | 0                                                                  |  |
| UGPK_8                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAT                                                                | NKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.061679                                                     | 75.714                                                                                      | 42  | 2                                                                                                                                                                          | 0                                                                  |  |
| UGPK 9                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IAT                                                                | <b>IKS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.032467                                                     | 100                                                                                         | 42  | 2                                                                                                                                                                          | 0                                                                  |  |
| LINC-1                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OF                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 078091                                                     | 41 429                                                                                      | 78  | 2                                                                                                                                                                          | 0                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 05                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 515042                                                     | 0 571                                                                                       | 25  | -                                                                                                                                                                          | 0                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 062                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.010045                                                     | 6.571                                                                                       | 25  | 1                                                                                                                                                                          | 0                                                                  |  |
| UNC-3                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UF:                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.069306                                                     | 61.429                                                                                      | 122 | 2                                                                                                                                                                          | 0                                                                  |  |
| UNC-4                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CB                                                                 | 507-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.051524                                                     | 37.143                                                                                      | 90  | 2                                                                                                                                                                          | 0                                                                  |  |
| [cup approx]                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                                             |     |                                                                                                                                                                            |                                                                    |  |
| [SUBAREAS]<br>;;Subcatchment                                                                                                                                                                                                                                                                                                                                                                                                                                      | N-Imperv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N-Perv                                                             | S-Imperv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S-Perv                                                       | PctZero                                                                                     |     | RouteTo                                                                                                                                                                    | PctRouted                                                          |  |
| ;;                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    | 1 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | <br>0                                                                                       |     |                                                                                                                                                                            | 100                                                                |  |
| ROOF 10                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2                                                                | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.67                                                         | 0                                                                                           |     | IMPERVIOUS                                                                                                                                                                 | 100                                                                |  |
| ROOF_11                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2                                                                | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.67                                                         | 0                                                                                           |     | IMPERVIOUS                                                                                                                                                                 | 100                                                                |  |
| R00F_12                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2                                                                | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.67                                                         | 0                                                                                           |     | IMPERVIOUS                                                                                                                                                                 | 100                                                                |  |
| ROOF_3                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2                                                                | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.67                                                         | 0                                                                                           |     | IMPERVIOUS                                                                                                                                                                 | 100                                                                |  |
| ROOF_4                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2                                                                | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.67                                                         | 0                                                                                           |     | IMPERVIOUS                                                                                                                                                                 | 100                                                                |  |
| ROOF_5                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2                                                                | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.67                                                         | 0                                                                                           |     | IMPERVIOUS                                                                                                                                                                 | 100                                                                |  |
| R00F_8                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2                                                                | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.67                                                         | 0                                                                                           |     | IMPERVIOUS                                                                                                                                                                 | 100                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                                             |     |                                                                                                                                                                            |                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                                             |     |                                                                                                                                                                            |                                                                    |  |
| <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                                             |     |                                                                                                                                                                            |                                                                    |  |
| <br>ROOF 9                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2                                                                | 1 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 67                                                         | 0                                                                                           |     | TMPERVIOUS                                                                                                                                                                 | 100                                                                |  |
| ROOF_9<br>ROOF1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2<br>0.2                                                         | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.67<br>4.67                                                 | 0<br>0                                                                                      |     | IMPERVIOUS<br>IMPERVIOUS                                                                                                                                                   | 100<br>100                                                         |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2<br>0.2<br>0.2                                                  | 1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.67<br>4.67<br>4.67                                         | 0<br>0<br>0                                                                                 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS                                                                                                                                     | 100<br>100<br>100                                                  |  |
| <br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2<br>0.2<br>0.2<br>0.2<br>0.2                                    | 1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67                                 | 0<br>0<br>0                                                                                 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS                                                                                                                       | 100<br>100<br>100<br>100                                           |  |
| R00F_9<br>R00F1_2<br>R00F6_7<br>UGPK_1<br>UGPK_2                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2                             | 1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.67<br>4.67<br>4.67<br>4.67<br>4.67                         | 0<br>0<br>0<br>0                                                                            |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS                                                                                                                       | 100<br>100<br>100<br>100<br>100                                    |  |
| R00F_9<br>R00F1_2<br>R00F6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3                                                                                                                                                                                                                                                                                                                                                                                                        | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2               | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67                 | 0<br>0<br>0<br>0<br>0                                                                       |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS                                                                                                         | 100<br>100<br>100<br>100<br>100<br>100                             |  |
| R00F_9<br>R00F1_2<br>R00F6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_4                                                                                                                                                                                                                                                                                                                                                                                              | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2        | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67         | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS                                                                             | 100<br>100<br>100<br>100<br>100<br>100<br>100                      |  |
| R00F_9<br>R00F1_2<br>R00F6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_5<br>UGPK_5<br>UGPK_6                                                                                                                                                                                                                                                                                                                                                                          | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS                                                               | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100               |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_6<br>UGPK_7                                                                                                                                                                                                                                                                                                                                                      | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS                                                               | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100        |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK 8                                                                                                                                                                                                                                                                                                                                                      | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS                                                 | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9                                                                                                                                                                                                                                                                                                                                            | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS                                   | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_5<br>UGPK_7<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1                                                                                                                                                                                                                                                                                                                         | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS                                     | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_3<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-1<br>UNC-2                                                                                                                                                                                                                                                                                                                 | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS                         | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-4                                                                                                                                                                                                                                                                                                                  | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS               | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-2<br>UNC-3<br>UNC-4<br>[INFILTRATION]                                                                                                                                                                                                                                                                             | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS   | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-2<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment                                                                                                                                                                                                                                                                     | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_5<br>UGPK_6<br>UGPK_6<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-2<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;                                                                                                                                                                                                                                                               | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_5<br>UGPK_6<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;<br>EXT-1<br>ROOF_10                                                                                                                                                                                                                                 | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;<br>EXT-1<br>ROOF_10<br>ROOF_11                                                                                                                                                                                                                                | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.012<br>0.012<br>0.012<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_7<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;<br>EXT-1<br>ROOF_10<br>ROOF_11<br>ROOF_12<br>POOE_2                                                                                                                                                                                                           | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.012<br>0.012<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;<br>EXT-1<br>ROOF_10<br>ROOF_11<br>ROOF_12<br>ROOF_3<br>ROOF 4                                                                                                                                                                                                 | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013 | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS   | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_3<br>UGPK_3<br>UGPK_6<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;<br>EXT-1<br>ROOF_10<br>ROOF_11<br>ROOF_12<br>ROOF_3<br>ROOF_4<br>ROOF_5                                                                                                                                                                             | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.02<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS               | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;<br>EXT-1<br>ROOF_10<br>ROOF_11<br>ROOF_12<br>ROOF_3<br>ROOF_5<br>ROOF_8                                                                                                                                                                             | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.012<br>0.013<br>0.012<br>0.013<br>0.013<br>0.012<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-2<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;                                                                                                                                                                                                                                            | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.012<br>0.013<br>0.012<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS               | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_5<br>UGPK_6<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-2<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;<br>EXT-1<br>ROOF_10<br>ROOF_12<br>ROOF_12<br>ROOF_3<br>ROOF_4<br>ROOF_5<br>ROOF_8<br>ROOF_9<br>ROOF1_2                                                                                                                                     | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013 | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS   | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-3<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;<br>EXT-1<br>ROOF_10<br>ROOF_11<br>ROOF_12<br>ROOF_5<br>ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7                                                                                                                                    | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS   | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;<br>EXT-1<br>ROOF_12<br>ROOF_11<br>ROOF_22<br>ROOF_3<br>ROOF_4<br>ROOF_5<br>ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF_9<br>ROOF1_2<br>ROOF27<br>UGPK_1                                                                                                               | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS   | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_3<br>UGPK_3<br>UGPK_6<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;<br>EXT-1<br>ROOF_10<br>ROOF_11<br>ROOF_12<br>ROOF_2<br>ROOF_3<br>ROOF_4<br>ROOF_5<br>ROOF_5<br>ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF5<br>ROOF_7<br>UGPK_1<br>UGPK_1<br>UGPK_1                                                                         | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2               | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS   | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-2<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;<br>EXT-1<br>ROOF_10<br>ROOF_11<br>ROOF_12<br>ROOF_3<br>ROOF_4<br>ROOF_5<br>ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF_7<br>UGPK_1<br>UGPK_1<br>UGPK_1<br>UGPK_2<br>UGPK_3                                                                                   | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS               | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_6<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;                                                                                                                                                                                                                                                                        | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.02<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2               | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS   | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;                                                                                                                                                                                                                                                                        | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2               | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-3<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;<br>EXT-1<br>ROOF_10<br>ROOF_11<br>ROOF_12<br>ROOF_3<br>ROOF_3<br>ROOF_4<br>ROOF_5<br>ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_1<br>UGPK_1<br>UGPK_2<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_6                      | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2               | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.44<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14<br>4.14 | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS   | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |
| ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-3<br>UNC-4<br>[INFILTRATION]<br>;;Subcatchment<br>;;<br>EXT-1<br>ROOF_11<br>ROOF_12<br>ROOF_12<br>ROOF_3<br>ROOF_4<br>ROOF_5<br>ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF_5<br>ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF_7<br>UGPK_1<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_6<br>UGPK_7<br>UGPK_6<br>UGPK_7 | 0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>0.013<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2<br>76.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2               | 1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57<br>1.57 | 4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67<br>4.67 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |     | IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>IMPERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS<br>PERVIOUS   | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |  |

| UGPK 9                                                                                                                                                      | 76.2                                                                                                                                                                                       | 13.2                                                                                                | 4.14                                                                                                                                            | 7                                                                                              | 0                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------|
| UNC-1                                                                                                                                                       | 76.2                                                                                                                                                                                       | 13.2                                                                                                | 4.14                                                                                                                                            | 7                                                                                              | 0                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
| UNC-2                                                                                                                                                       | 76.2                                                                                                                                                                                       | 13.2                                                                                                | 4.14                                                                                                                                            | 7                                                                                              | 0                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
| UNC-3                                                                                                                                                       | 76.2                                                                                                                                                                                       | 13.2                                                                                                | 4.14                                                                                                                                            | 7                                                                                              | 0                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
| UNC-4                                                                                                                                                       | 76.2                                                                                                                                                                                       | 13.2                                                                                                | 4.14                                                                                                                                            | 7                                                                                              | 0                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
|                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                     |                                                                                                                                                 |                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
| [JUNCTIONS]                                                                                                                                                 |                                                                                                                                                                                            |                                                                                                     |                                                                                                                                                 |                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
| ;;Name                                                                                                                                                      | Elevation                                                                                                                                                                                  | n MaxDept                                                                                           | th InitDep                                                                                                                                      | th SurDe                                                                                       | pth Apo                                                                              | onded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        |                                                                                                                                                  |                                                               |                  |
| ;;                                                                                                                                                          |                                                                                                                                                                                            |                                                                                                     |                                                                                                                                                 |                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
| 100                                                                                                                                                         | 99.4                                                                                                                                                                                       | 2.735                                                                                               | 0                                                                                                                                               | 0                                                                                              | 0                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
|                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                     |                                                                                                                                                 |                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
| [OUTFALLS]                                                                                                                                                  |                                                                                                                                                                                            | -                                                                                                   |                                                                                                                                                 |                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                      |                                                                                                                                                  |                                                               |                  |
| ;;Name                                                                                                                                                      | Elevation                                                                                                                                                                                  | і туре                                                                                              | Stage D                                                                                                                                         | ата                                                                                            | Gated                                                                                | коите                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                     |                                                                                                                                                  |                                                               |                  |
|                                                                                                                                                             | 09 7                                                                                                                                                                                       | CDCC                                                                                                |                                                                                                                                                 |                                                                                                | NO                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        | -                                                                                                                                                |                                                               |                  |
| OF1                                                                                                                                                         | 98.7                                                                                                                                                                                       | FREE                                                                                                |                                                                                                                                                 |                                                                                                | NO                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
| 0F2                                                                                                                                                         | 0                                                                                                                                                                                          | FREE                                                                                                |                                                                                                                                                 |                                                                                                | NO                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
| 0F3                                                                                                                                                         | õ                                                                                                                                                                                          | FREE                                                                                                |                                                                                                                                                 |                                                                                                | NO                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
| 0F4                                                                                                                                                         | 101.87                                                                                                                                                                                     | FIXED                                                                                               | 102.17                                                                                                                                          |                                                                                                | NO                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
|                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                     |                                                                                                                                                 |                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
| [STORAGE]                                                                                                                                                   |                                                                                                                                                                                            |                                                                                                     |                                                                                                                                                 |                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
| ;;Name                                                                                                                                                      | Elev.                                                                                                                                                                                      | MaxDepth                                                                                            | InitDepth                                                                                                                                       | Shape                                                                                          | Curve                                                                                | e Name/Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | arams                                                                                                  | N/A                                                                                                                                              | Fevap                                                         |                  |
| Psi Ksat                                                                                                                                                    | IMD                                                                                                                                                                                        |                                                                                                     |                                                                                                                                                 |                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
| ;;                                                                                                                                                          |                                                                                                                                                                                            |                                                                                                     |                                                                                                                                                 |                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               | -                |
|                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                     | _                                                                                                                                               |                                                                                                |                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                      |                                                                                                                                                  | -                                                             |                  |
| 1000                                                                                                                                                        | 99.92                                                                                                                                                                                      | 4.18                                                                                                | 0                                                                                                                                               | FUNCTIO                                                                                        | NAL 1.13                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E                                                                                                      | 9 0                                                                                                                                              | 0                                                             |                  |
| CB507-S                                                                                                                                                     | 102.56                                                                                                                                                                                     | 2.23                                                                                                | 0                                                                                                                                               | FUNCTIO                                                                                        | NAL 0                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E                                                                                                      |                                                                                                                                                  | 0                                                             |                  |
| RUUF-10-5                                                                                                                                                   | 114                                                                                                                                                                                        | 0.15                                                                                                | 0                                                                                                                                               | TABULAR                                                                                        | RUUF                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        | 0                                                                                                                                                | 0                                                             |                  |
| RUUF-11-5                                                                                                                                                   | 114                                                                                                                                                                                        | 0.15                                                                                                | 0                                                                                                                                               |                                                                                                | ROOF                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        | 0                                                                                                                                                | 0                                                             |                  |
| ROOF-12-3                                                                                                                                                   | 114<br>11/                                                                                                                                                                                 | 0.15                                                                                                | 0                                                                                                                                               |                                                                                                | DOOL                                                                                 | L2<br>Land?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        | 0                                                                                                                                                | 0                                                             |                  |
| ROOF-1-2-3                                                                                                                                                  | 114                                                                                                                                                                                        | 0.15                                                                                                | 0                                                                                                                                               |                                                                                                | POOE                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        | 0                                                                                                                                                | 0                                                             |                  |
| ROOF-4-S                                                                                                                                                    | 114                                                                                                                                                                                        | 0.15                                                                                                | 0                                                                                                                                               |                                                                                                | ROOF                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        | 0                                                                                                                                                | 0                                                             |                  |
| R00F-5-5                                                                                                                                                    | 114                                                                                                                                                                                        | 0.15                                                                                                | a                                                                                                                                               |                                                                                                | ROOF                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        | 0                                                                                                                                                | 0                                                             |                  |
| R00F-6-7-S                                                                                                                                                  | 114                                                                                                                                                                                        | 0.15                                                                                                | ø                                                                                                                                               | TABULAR                                                                                        | ROOF                                                                                 | Sand7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        | õ                                                                                                                                                | 0                                                             |                  |
| R00F-8-5                                                                                                                                                    | 114                                                                                                                                                                                        | 0.15                                                                                                | 0                                                                                                                                               | TABULAR                                                                                        | ROOF                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        | 0                                                                                                                                                | 0                                                             |                  |
| ROOF-9-S                                                                                                                                                    | 114                                                                                                                                                                                        | 0.15                                                                                                | 0                                                                                                                                               | TABULAR                                                                                        | ROOFS                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        | 0                                                                                                                                                | 0                                                             |                  |
| TANKS                                                                                                                                                       | 99.7                                                                                                                                                                                       | 3.61                                                                                                | 0                                                                                                                                               | FUNCTIO                                                                                        | NAL Ø                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                      | 222 0                                                                                                                                            | 0                                                             |                  |
|                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                     |                                                                                                                                                 |                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
|                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                     |                                                                                                                                                 |                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
|                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                     |                                                                                                                                                 |                                                                                                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                  |                                                               |                  |
| [CONDUITS]<br>;;Name<br>MaxFlow<br>::                                                                                                                       | From Node                                                                                                                                                                                  | 2                                                                                                   | To Node                                                                                                                                         | Leng                                                                                           | th Ro                                                                                | oughness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | InOffse                                                                                                | et OutOffset                                                                                                                                     | InitFlow                                                      |                  |
| [CONDUITS]<br>;;Name<br>MaxFlow<br>;;                                                                                                                       | From Node                                                                                                                                                                                  | 2                                                                                                   | To Node                                                                                                                                         | Leng                                                                                           | th Rc                                                                                | oughness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | InOffse                                                                                                | et OutOffset                                                                                                                                     | InitFlow                                                      |                  |
| [CONDUITS]<br>;;Name<br>MaxFlow<br>;;<br>C1                                                                                                                 | From Node<br><br>CB507-S                                                                                                                                                                   | 2                                                                                                   | To Node<br>                                                                                                                                     | Leng<br><br>21.3                                                                               | th Ro<br><br>Ø.                                                                      | oughness<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | InOffse<br>                                                                                            | et OutOffset<br>102.45                                                                                                                           | InitFlow<br>0                                                 | - 0              |
| [CONDUITS]<br>;;Name<br>MaxFlow<br>;;<br>C1<br>C2                                                                                                           | From Node<br><br>CB507-S<br>1000                                                                                                                                                           | 2 7                                                                                                 | To Node<br><br>0F4<br>100                                                                                                                       | Leng<br>21.3<br>20.8                                                                           | th Ro<br><br>Ø.<br>Ø.                                                                | oughness<br>.013<br>.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | InOffse<br>102.56<br>99.87                                                                             | et OutOffset<br>102.45<br>99.83                                                                                                                  | InitFlow<br>0<br>0                                            | - 0 0            |
| [CONDUITS]<br>;;Name<br>MaxFlow<br>;;<br>C1<br>C2<br>Pipe_13                                                                                                | From Node<br><br>CB507-S<br>1000<br>100                                                                                                                                                    | 2 7                                                                                                 | To Node<br><br>OF4<br>100<br>HEADWALL                                                                                                           | Leng<br>21.3<br>20.8<br>11.1                                                                   | th Ro<br>0.<br>0.<br>35 0.                                                           | oughness<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | InOffse<br>102.56<br>99.87<br>99.548                                                                   | et OutOffset<br>102.45<br>99.83<br>99.52                                                                                                         | InitFlow<br>0<br>0<br>0                                       | -<br>0<br>0      |
| [CONDUITS]<br>;;Name<br>MaxFlow<br>;;<br>C1<br>C2<br>Pipe_13                                                                                                | From Node<br>                                                                                                                                                                              | 2                                                                                                   | To Node<br><br>OF4<br>100<br>HEADWALL                                                                                                           | Leng<br>21.3<br>20.8<br>11.1                                                                   | th Ro<br><br>0.<br>35 0.                                                             | oughness<br>013<br>013<br>013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | InOffse<br>102.56<br>99.87<br>99.548                                                                   | et OutOffset<br>102.45<br>99.83<br>99.52                                                                                                         | InitFlow<br>0<br>0<br>0                                       | -<br>0<br>0      |
| <pre>[CONDUITS] ;;Name MaxFlow ;; C1 C2 Pipe_13 [ORIFICES] ;;Name</pre>                                                                                     | From Node<br>CB507-S<br>1000<br>100<br>From Node                                                                                                                                           | 2 7                                                                                                 | To Node<br><br>OF4<br>100<br>HEADWALL<br>To Node                                                                                                | Leng<br>21.3<br>20.8<br>11.1<br>Type                                                           | th Ro<br>0.<br>0.<br>35 0.                                                           | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | InOffse<br>102.56<br>99.87<br>99.548<br>Qcoef                                                          | et OutOffset<br>102.45<br>99.83<br>99.52                                                                                                         | InitFlow<br>0<br>0<br>0<br>CloseTime                          | -<br>0<br>0      |
| <pre>[CONDUITS] ;;Name MaxFlow ;; C1 C2 Pipe_13 [ORIFICES] ;;Name ;;</pre>                                                                                  | From Node<br>                                                                                                                                                                              | 2 T                                                                                                 | To Node<br>OF4<br>100<br>HEADWALL<br>To Node                                                                                                    | Leng<br>21.3<br>20.8<br>11.1<br>Type                                                           | th Ro<br>0.<br>0.<br>35 0.                                                           | oughness<br>013<br>013<br>013<br>013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | InOffse<br>102.56<br>99.87<br>99.548<br>Qcoef                                                          | et OutOffset<br>102.45<br>99.83<br>99.52<br>Ef Gated                                                                                             | InitFlow<br>0<br>0<br>0<br>CloseTime                          | -<br>0<br>0      |
| <pre>[CONDUITS] ;;Name MaxFlow ;; C1 C2 Pipe_13 [ORIFICES] ;;Name ;; CISTERN-0</pre>                                                                        | From Node<br>CB507-S<br>1000<br>100<br>From Node<br>TANKS                                                                                                                                  | 2<br>                                                                                               | To Node<br>OF4<br>100<br>HEADWALL<br>To Node<br>1000                                                                                            | Leng<br>21.3<br>20.8<br>11.1<br>Type<br>SIDE                                                   | th Ro<br><br>0.<br>35 0.                                                             | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | InOffse<br>102.56<br>99.87<br>99.548<br>Qcoef<br>0.61                                                  | et OutOffset<br>102.45<br>99.83<br>99.52<br>Ff Gated<br>NO                                                                                       | InitFlow<br>0<br>0<br>0<br>CloseTime<br>0                     | - 0 0            |
| <pre>[CONDUITS] ;;Name MaxFlow ;; C1 C2 Pipe_13 [ORIFICES] ;;Name ;; CISTERN-0 [WEIRS]</pre>                                                                | From Node<br>CB507-S<br>1000<br>100<br>From Node<br>TANKS                                                                                                                                  | 2 (<br>(<br>2                                                                                       | To Node<br>OF4<br>100<br>HEADWALL<br>To Node<br>1000                                                                                            | Leng<br>21.3<br>20.8<br>11.1<br>Type<br>SIDE                                                   | th Ro<br>0.<br>35 0.                                                                 | 0013<br>.013<br>.013<br>.013<br>.013<br>.015<br>.015<br>.015<br>.015<br>.015<br>.015<br>.015<br>.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | InOffse<br>102.56<br>99.87<br>99.548<br>Qcoef<br>0.61                                                  | et OutOffset<br>102.45<br>99.83<br>99.52<br>Ff Gated<br>NO                                                                                       | InitFlow<br>0<br>0<br>CloseTime<br>0                          | - 0 0 0 -        |
| <pre>[CONDUITS] ;;Name MaxFlow ;; C1 C2 Pipe_13 [ORIFICES] ;;Name ;; CISTERN-0 [WEIRS] ;;Name</pre>                                                         | From Node<br>CB507-S<br>1000<br>100<br>From Node<br>TANKS<br>From Node                                                                                                                     | 2 T                                                                                                 | To Node<br>OF4<br>100<br>HEADWALL<br>To Node<br>1000<br>To Node                                                                                 | Leng<br>21.3<br>20.8<br>11.1<br>Type<br>SIDE<br>Type                                           | th Ro<br>0.<br>0.<br>35 0.                                                           | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | InOffse<br>102.56<br>99.87<br>99.548<br>Qcoef<br>0.61<br>Qcoef                                         | et OutOffset<br>102.45<br>99.83<br>99.52<br>Ff Gated<br>NO                                                                                       | InitFlow<br>0<br>0<br>0<br>CloseTime<br>0<br>EndCon           | -<br>0<br>0<br>- |
| <pre>[CONDUITS] ;;Name MaxFlow ;; C1 C2 Pipe_13 [ORIFICES] ;;Name ;; CISTERN-0 [WEIRS] ;;Name EndCoeff Surch</pre>                                          | From Node<br>CB507-S<br>1000<br>100<br>From Node<br>TANKS<br>From Node<br>arge Road                                                                                                        | 2                                                                                                   | To Node<br>OF4<br>100<br>HEADWALL<br>To Node<br>1000<br>To Node<br>oadSurf Co                                                                   | Leng<br>21.3<br>20.8<br>11.1<br>Type<br>SIDE<br>eff. Curv                                      | th Ro<br><br>0.<br>35 0.<br>                                                         | oughness<br>013<br>013<br>013<br>0ffset<br>99.95<br>CrestHt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | InOffse<br>102.56<br>99.87<br>99.548<br>Qcoef<br>0.61<br>Qcoef                                         | et OutOffset<br>102.45<br>99.83<br>99.52<br>Ff Gated<br>NO<br>Ff Gated                                                                           | InitFlow<br>0<br>0<br>0<br>CloseTime<br>0<br>EndCon           | - 0 0            |
| <pre>[CONDUITS] ;;Name MaxFlow ;; C1 C2 Pipe_13 [ORIFICES] ;;Name ;;CISTERN-0 [WEIRS] ;;Name EndCoeff Surch ;;</pre>                                        | From Node<br>CB507-S<br>1000<br>100<br>From Node<br>TANKS<br>From Node<br>arge Road                                                                                                        | e (<br>c<br>e<br>e<br>JWidth Ro                                                                     | To Node<br>OF4<br>100<br>HEADWALL<br>To Node<br>1000<br>To Node<br>oadSurf Co                                                                   | Leng<br>21.3<br>20.8<br>11.1<br>Type<br>SIDE<br>eff. Curv                                      | th Ro<br>0.<br>35 0.<br>                                                             | 013<br>.013<br>.013<br>.013<br>.013<br>.013<br>.015<br>.015<br>.015<br>.015<br>.015<br>.015<br>.015<br>.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | InOffse<br>102.56<br>99.87<br>99.548<br>Qcoef<br>0.61<br>Qcoef                                         | et OutOffset<br>102.45<br>99.83<br>99.52<br>ff Gated<br>NO<br>ff Gated                                                                           | InitFlow<br>0<br>0<br>0<br>CloseTime<br>0<br>EndCon           | - 0 0 0          |
| <pre>[CONDUITS] ;;Name MaxFlow ;; C1 C2 Pipe_13 [ORIFICES] ;;Name ;; CISTERN-0 [WEIRS] ;;Name EndCoeff Surch ;;</pre>                                       | From Node<br>CB507-S<br>1000<br>100<br>From Node<br>TANKS<br>From Node<br>arge Road                                                                                                        | 2 (<br>                                                                                             | To Node<br>OF4<br>100<br>HEADWALL<br>To Node<br>1000<br>To Node<br>oadSurf Co                                                                   | Leng<br>21.3<br>20.8<br>11.1<br>Type<br>SIDE<br>eff. Curv                                      | th Ro<br><br>0.<br>0.<br>35 0.<br>                                                   | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | InOffse<br>102.56<br>99.87<br>99.548<br>Qcoef<br>0.61<br>Qcoef                                         | et OutOffset<br>102.45<br>99.83<br>99.52                                                                                                         | InitFlow<br>0<br>0<br>0<br>CloseTime<br>0<br>EndCon           | -<br>0<br>0<br>0 |
| <pre>[CONDUITS] ;;Name MaxFlow ;; C1 C2 Pipe_13 [ORIFICES] ;;Name ;; CISTERN-0 [WEIRS] ;;Name EndCoeff Surch ;; W1 YES</pre>                                | From Node<br>CB507-S<br>1000<br>100<br>From Node<br>TANKS<br>From Node<br>arge Road<br>                                                                                                    | 2 (<br>2 (<br>2 )<br>2 )<br>2 )<br>3 )<br>3 )<br>3 )<br>3 )<br>3 )<br>3 )<br>3 )<br>3 )<br>3 )<br>3 | To Node<br>OF4<br>100<br>HEADWALL<br>To Node<br>1000<br>To Node<br>oadSurf Co                                                                   | Leng<br>21.3<br>20.8<br>11.1<br>Type<br>SIDE<br>eff. Curv<br>TRAN                              | th Ro<br><br>0.<br>35 0.<br><br>e<br><br>SVERSE                                      | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | InOffse<br>102.56<br>99.87<br>99.548<br>Qcoef<br>0.61<br>Qcoef<br>1.67                                 | et OutOffset<br>102.45<br>99.83<br>99.52<br>Ef Gated<br>NO<br>Ef Gated<br>NO                                                                     | InitFlow<br>0<br>0<br>0<br>CloseTime<br>0<br>EndCon<br>0      | -<br>0<br>0<br>- |
| <pre>[CONDUITS] ;;Name MaxFlow ;; C1 C2 Pipe_13 [ORIFICES] ;;Name ;; CISTERN-0 [WEIRS] ;;Name EndCoeff Surch ;; W1         YES [OUTLETS] ;;Name Gated</pre> | From Node<br>CB507-S<br>1000<br>100<br>From Node<br>TANKS<br>From Node<br>arge Road<br>TANKS<br>From Node                                                                                  | 2                                                                                                   | To Node<br>OF4<br>100<br>HEADWALL<br>To Node<br>1000<br>To Node<br>oadSurf Co<br>1000<br>To Node                                                | Leng<br>21.3<br>20.8<br>11.1<br><br>SIDE<br>eff. Curv<br><br>TRAN<br>Offs                      | th Ro<br><br>35 0.<br><br>SVERSE<br>et Ty                                            | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | InOffse<br>102.56<br>99.87<br>99.548<br>Qcoef<br>0.61<br>Qcoef<br>1.67                                 | et OutOffset<br>102.45<br>99.83<br>99.52<br>f Gated<br>NO<br>ff Gated<br>NO<br>2Table/Qcoeff                                                     | InitFlow<br>0<br>0<br>CloseTime<br>0<br>EndCon<br>0<br>Qexpon | -<br>0<br>0<br>- |
| <pre>[CONDUITS] ;;Name MaxFlow ;; C1 C2 Pipe_13 [ORIFICES] ;;Name ;; CISTERN-0 [WEIRS] ;;Name EndCoeff Surch ;; W1 YES [OUTLETS] ;;Name Gated ;;</pre>      | From Node<br>CB507-S<br>1000<br>100<br>From Node<br>TANKS<br>From Node<br>arge Road<br>TANKS<br>From Node                                                                                  | 2                                                                                                   | To Node<br>OF4<br>100<br>HEADWALL<br>To Node<br>1000<br>To Node<br>oadSurf Co<br>1000<br>To Node                                                | Leng<br>21.3<br>20.8<br>11.1<br>Type<br>SIDE<br>eff. Curv<br>TRAN<br>Offs<br>                  | th Ro<br>0.<br>0.<br>35 0.<br><br>SVERSE<br>et Ty<br>                                | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | InOffse<br>102.56<br>99.87<br>99.548<br>Qcoef<br>0.61<br>Qcoef<br>1.67                                 | et OutOffset<br>102.45<br>99.83<br>99.52<br>ef Gated<br>NO<br>ef Gated<br>NO<br>pTable/Qcoeff<br>2005-10-0                                       | InitFlow<br>0<br>0<br>CloseTime<br>0<br>EndCon<br>0<br>Qexpon | -<br>0<br>0<br>- |
| <pre>[CONDUITS] ;;Name MaxFlow ;; C1 C2 Pipe_13 [ORIFICES] ;;Name ;;CISTERN-0 [WEIRS] ;;Name EndCoeff Surch ;;</pre>                                        | From Node<br>CB507-S<br>1000<br>100<br>From Node<br>TANKS<br>From Node<br>arge Road<br>TANKS<br>From Node<br>CODE TO S                                                                     | 2                                                                                                   | To Node<br>OF4<br>100<br>HEADWALL<br>To Node<br>1000<br>To Node<br>0adSurf Co<br>1000<br>To Node<br>1000<br>To Node                             | Leng<br>21.3<br>20.8<br>11.1<br>Type<br>SIDE<br>eff. Curv<br>TRAN<br>Offs<br><br>114           | th Ro<br><br>0.<br>0.<br>35 0.<br>35 0.<br>35 0.<br><br>SVERSE<br>et Ty<br><br>TA    | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | InOffse<br>102.56<br>99.87<br>99.548<br>Qcoef<br>0.61<br>Qcoef<br>1.67                                 | et OutOffset<br>102.45<br>99.83<br>99.52<br>Ff Gated<br>NO<br>Ff Gated<br>NO<br>2Table/Qcoeff<br>200F-10-0                                       | InitFlow<br>0<br>0<br>CloseTime<br>0<br>EndCon<br>0<br>Qexpon | -<br>0<br>0<br>- |
| <pre>[CONDUITS] ;;Name MaxFlow ;; C1 C2 Pipe_13 [ORIFICES] ;;Name ;; CISTERN-0 [WEIRS] ;;Name EndCoeff Surch ;; W1</pre>                                    | From Node<br>CB507-S<br>1000<br>100<br>From Node<br>TANKS<br>From Node<br>arge Road<br>TANKS<br>From Node<br>Roof-10-S<br>ROOF-10-S                                                        | 2                                                                                                   | To Node<br>OF4<br>100<br>HEADWALL<br>To Node<br>1000<br>To Node<br>0adSurf Co<br>1000<br>To Node<br>1000<br>To Node                             | Leng<br>21.3<br>20.8<br>11.1<br>Type<br>SIDE<br>eff. Curv<br>TRAN<br>Offs<br><br>114<br>114    | th Ro<br>                                                                            | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | InOffse<br>102.56<br>99.87<br>99.548<br>Qcoef<br>0.61<br>Qcoef<br>1.67<br>C<br>EAD F                   | et OutOffset<br>102.45<br>99.83<br>99.52<br>Ef Gated<br>NO<br>Ef Gated<br>NO<br>27able/Qcoeff<br>200F-10-0<br>200F-11-0                          | InitFlow<br>0<br>0<br>CloseTime<br>0<br>EndCon<br>0<br>Qexpon | -<br>0<br>0<br>- |
| [CONDUITS]<br>;;Name<br>MaxFlow<br>;;                                                                                                                       | From Node<br>CB507-S<br>1000<br>100<br>From Node<br>TANKS<br>From Node<br>CB507-S<br>TANKS<br>From Node<br>CB507-S<br>TANKS<br>From Node<br>CB507-S<br>ROOF-10-S<br>ROOF-11-S<br>ROOF-12-S | 2                                                                                                   | To Node<br>OF4<br>100<br>HEADWALL<br>To Node<br>1000<br>To Node<br>0adSurf Co<br>1000<br>To Node<br>To Node<br>To Node<br>To Node               | Leng<br>21.3<br>20.8<br>11.1<br><br>SIDE<br>eff. Curv<br><br>TRAN<br>Offs<br><br>114<br>114    | th Ro<br>                                                                            | Dughness           .013           .013           .013           .013           .013           .013           .013           .013           .013           .013           .013           .013           .013           .013           .013           .014           .015           .015           .016           .017           .013           .013           .013           .013           .013           .013           .014           .015           .015           .016           .017           .0102           .0102           .0102           .0102           .0102           .0102           .0102           .0102           .0102           .0102           .0102           .0102           .0102           .0102           .0102           .0102           .0102 | InOffse<br>102.56<br>99.87<br>99.548<br>Qcoef<br>0.61<br>Qcoef<br>1.67<br>C<br>EAD F<br>EAD F<br>EAD F | et OutOffset<br>102.45<br>99.83<br>99.52<br>f Gated<br>NO<br>f Gated<br>NO<br>2Table/Qcoeff<br>200F-10-0<br>200F-11-0<br>200F-12-0               | InitFlow<br>0<br>0<br>CloseTime<br>0<br>EndCon<br>0<br>Qexpon | -<br>0<br>0<br>- |
| [CONDUITS]<br>;;Name<br>MaxFlow<br>;;                                                                                                                       | From Node<br>CB507-S<br>1000<br>100<br>From Node<br>TANKS<br>From Node<br>arge Road<br>TANKS<br>From Node<br>ROOF-10-S<br>ROOF-10-S<br>ROOF-11-S<br>ROOF-12-S                              | 2                                                                                                   | To Node<br>OF4<br>100<br>HEADWALL<br>To Node<br>1000<br>To Node<br>oadSurf Co<br>1000<br>To Node<br>To Node<br>TANKS<br>TANKS<br>TANKS<br>TANKS | Leng<br>21.3<br>20.8<br>11.1<br>Type<br>SIDE<br>eff. Curv<br>TRAN<br>Offs<br>114<br>114<br>114 | th Ro<br><br>0.<br>35 0.<br>35 0.<br><br>sverse<br>et Ty<br><br>TA<br>TA<br>TA<br>TA | oughness<br>.013<br>.013<br>.013<br>.013<br>.013<br>.013<br>.013<br>.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | InOffse<br>102.56<br>99.87<br>99.548<br>Qcoef<br>0.61<br>Qcoef<br>1.67<br>C<br>EAD F<br>EAD F<br>EAD F | et OutOffset<br>102.45<br>99.83<br>99.52<br>f Gated<br>NO<br>f Gated<br>NO<br>2Table/Qcoeff<br>ROOF-10-0<br>ROOF-11-0<br>ROOF-12-0<br>ROOF-1-2-0 | InitFlow<br>0<br>0<br>CloseTime<br>0<br>EndCon<br>0<br>Qexpon | -<br>0<br>0<br>- |

| NO                                  |            |          |       |                                                                                                  |        |          |             |      |           |         |
|-------------------------------------|------------|----------|-------|--------------------------------------------------------------------------------------------------|--------|----------|-------------|------|-----------|---------|
| ROOF4-0                             | ROC        | )F-4-S   | TAN   | <s< td=""><td>114</td><td>TA</td><td>ABULAR/HEAD</td><td>RC</td><td>00F-4-0</td><td></td></s<>   | 114    | TA       | ABULAR/HEAD | RC   | 00F-4-0   |         |
| ROOF5-0<br>NO                       | ROC        | )F-5-S   | TAN   | <s< td=""><td>114</td><td>TA</td><td>ABULAR/HEAD</td><td>RC</td><td>0F-5-0</td><td></td></s<>    | 114    | TA       | ABULAR/HEAD | RC   | 0F-5-0    |         |
| R00F6-7-0                           | ROC        | )F-6-7-S | TAN   | <s< td=""><td>114</td><td>TA</td><td>ABULAR/HEAD</td><td>RC</td><td>00F-6-7-0</td><td></td></s<> | 114    | TA       | ABULAR/HEAD | RC   | 00F-6-7-0 |         |
| ROOF8-0                             | ROC        | )F-8-S   | TAN   | ٢S                                                                                               | 114    | TA       | ABULAR/HEAD | RC   | 00F-8-0   |         |
| ROOF9-0<br>NO                       | ROC        | )F-9-S   | TAN   | ٢S                                                                                               | 114    | ΤA       | ABULAR/HEAD | RC   | 00F-9-0   |         |
| [XSECTIONS]                         |            |          |       |                                                                                                  |        |          |             |      |           |         |
| ;;Link                              | Sha        | ipe      | Geom1 |                                                                                                  | Geom2  | Geom3    | Geom4       | E    | Barrels   | Culvert |
| C1                                  | CIR        | CULAR    | 0.25  |                                                                                                  | 0      | 0        | 0           | 1    |           |         |
| C2                                  | CIR        | CULAR    | 0.45  |                                                                                                  | 0      | 0        | 0           | 1    | L         |         |
| Pipe_13                             | CIR        | CULAR    | 0.9   |                                                                                                  | 0      | 0        | 0           | 1    | L         |         |
| CISTERN-0                           | CIR        | CULAR    | 0.075 |                                                                                                  | 0      | 0        | 0           |      |           |         |
| W1                                  | REC        | T_OPEN   | 1     |                                                                                                  | 0.5    | 0        | 0           |      |           |         |
| [TRANSECTS]<br>;;Transect Data<br>: | a in H     | IEC-2 fo | rmat  |                                                                                                  |        |          |             |      |           |         |
| NC 0.013 0.0                        | 913        | 0.013    |       |                                                                                                  |        |          |             |      |           |         |
| X1 Overland                         |            | 5        | 0.15  | 6.85                                                                                             | 0.0    | 0.0      | 0.0         | 0.0  | 0.0       |         |
| GR 0.15 0                           |            | 0        | 0.15  | 0                                                                                                | 6.85   | 0.15     | 7           | 0.15 | 7         |         |
| ;<br>;[LE: 0][RE: 7                 | ]          | 0 013    |       |                                                                                                  |        |          |             |      |           |         |
| X1 Overland(or                      | 515<br>iσ) | 1        | 0 15  | 6 85                                                                                             | 00     | aa       | 0 0         | aa   | 0 0       |         |
| GR 0.15 0                           | -6/        | -<br>0   | 0.15  | 0.05                                                                                             | 6.85   | 0.15     | 7           | 0.0  | 0.0       |         |
| GR 0115 0                           |            | 0        | 0.15  | Ū                                                                                                | 0.05   | 0.15     | ,           |      |           |         |
| [LOSSES]<br>;;Link                  | Ken        | itry     | Kexit | Kavg                                                                                             | Flap ( | Gate See | epage       |      |           |         |
| ;;<br>C2                            | 0          |          | 0.14  | 0                                                                                                | NO     | 0        |             |      |           |         |
| [INFLOWS]                           |            |          |       |                                                                                                  |        |          |             |      |           |         |

| ;;Node           | Constituen | t T     | ime Series      | Туре | Mfactor | Sfactor | Baseline Patte | ern |
|------------------|------------|---------|-----------------|------|---------|---------|----------------|-----|
| 100              | FLOW       | 1       | .00yrHydrograph | FLOW | 1.0     | 1       | 0              |     |
| [CURVES]         |            |         |                 |      |         |         |                |     |
| ;;Name           | Туре       | X-Value | e Y-Value       |      |         |         |                |     |
| ;;               |            |         |                 |      |         |         |                |     |
| DIUSWALE_DASEFLU | N Rating   | 0 01    | 0 2             |      |         |         |                |     |
| BIOSWALL_BASEFLO | ~<br>^     | 10      | 0.5             |      |         |         |                |     |
|                  |            | 10      | 0.5             |      |         |         |                |     |
| ROOF-10-0        | Rating     | 0       | 0               |      |         |         |                |     |
| ROOF-10-0        |            | 0.025   | 6.624           |      |         |         |                |     |
| ROOF-10-0        |            | 0.05    | 13.249          |      |         |         |                |     |
| ROOF-10-0        |            | 0.075   | 14.905          |      |         |         |                |     |
| ROOF-10-0        |            | 0.1     | 16.561          |      |         |         |                |     |
| ROOF-10-0        |            | 0.125   | 18.217          |      |         |         |                |     |
| ROOF-10-0        |            | 0.15    | 19.873          |      |         |         |                |     |
| DOOF 11 0        | Datina     | 0       | 0               |      |         |         |                |     |
| RUUF-11-0        | Rating     | 0 025   | 0 (21           |      |         |         |                |     |
| ROOF 11-0        |            | 0.025   | 0.631           |      |         |         |                |     |
| ROOF-11-0        |            | 0.05    | 1.262           |      |         |         |                |     |
| ROOF-11-0        |            | 0.075   | 1.42            |      |         |         |                |     |
| R00F-11-0        |            | 0.1     | 1.377           |      |         |         |                |     |
| ROOF-11-0        |            | 0.125   | 1.893           |      |         |         |                |     |
|                  |            | 0.15    | 1.055           |      |         |         |                |     |
| R00F-12-0        | Rating     | 0       | 0               |      |         |         |                |     |
| ROOF-12-0        |            | 0.025   | 0.631           |      |         |         |                |     |
| ROOF-12-0        |            | 0.05    | 1.262           |      |         |         |                |     |
| ROOF-12-0        |            | 0.075   | 1.42            |      |         |         |                |     |
| ROOF-12-0        |            | 0.1     | 1.577           |      |         |         |                |     |
| ROOF-12-0        |            | 0.125   | 1.735           |      |         |         |                |     |
| R00F-12-0        |            | 0.15    | 1.893           |      |         |         |                |     |
| ROOF-1-2-0       | Rating     | 0       | 0               |      |         |         |                |     |
| R00F-1-2-0       | - 0        | 0.025   | 2.21            |      |         |         |                |     |
| ROOF-1-2-0       |            | 0.05    | 4.42            |      |         |         |                |     |
| ROOF-1-2-0       |            | 0.075   | 5.52            |      |         |         |                |     |
|                  |            |         |                 |      |         |         |                |     |

| ROOF-1-2-0                                                                       |        | 0.1                                                 | 6.62                                                      |
|----------------------------------------------------------------------------------|--------|-----------------------------------------------------|-----------------------------------------------------------|
| ROOF-1-2-0                                                                       |        | 0.125                                               | 7.73                                                      |
| ROOF-1-2-0                                                                       |        | 0.15                                                | 8.83                                                      |
| ROOF-3-0                                                                         | Rating | 0                                                   | 0                                                         |
| ROOF-3-0                                                                         |        | 0.025                                               | 1.26                                                      |
| ROOF-3-0                                                                         |        | 0.05                                                | 2.52                                                      |
| ROOF-3-0                                                                         |        | 0.075                                               | 3.79                                                      |
| ROOF-3-0                                                                         |        | 0.1                                                 | 5.05                                                      |
| ROOF-3-0                                                                         |        | 0.125                                               | 6.31                                                      |
| ROOF-3-0                                                                         |        | 0.15                                                | 7.57                                                      |
| ROOF-4-0<br>ROOF-4-0<br>ROOF-4-0<br>ROOF-4-0<br>ROOF-4-0<br>ROOF-4-0<br>ROOF-4-0 | Rating | 0<br>0.025<br>0.05<br>0.075<br>0.1<br>0.125<br>0.15 | 0<br>1.58<br>3.15<br>3.15<br>3.15<br>3.15<br>3.15<br>3.15 |
| ROOF-5-0                                                                         | Rating | 0                                                   | 0                                                         |
| ROOF-5-0                                                                         |        | 0.025                                               | 1.26                                                      |
| ROOF-5-0                                                                         |        | 0.05                                                | 2.52                                                      |
| ROOF-5-0                                                                         |        | 0.075                                               | 3.79                                                      |
| ROOF-5-0                                                                         |        | 0.1                                                 | 5.05                                                      |
| ROOF-5-0                                                                         |        | 0.125                                               | 6.31                                                      |
| ROOF-5-0                                                                         |        | 0.15                                                | 7.57                                                      |
| ROOF-6-7-0                                                                       | Rating | 0                                                   | 0                                                         |
| ROOF-6-7-0                                                                       |        | 0.025                                               | 2.21                                                      |
| ROOF-6-7-0                                                                       |        | 0.05                                                | 4.42                                                      |
| ROOF-6-7-0                                                                       |        | 0.075                                               | 5.52                                                      |
| ROOF-6-7-0                                                                       |        | 0.1                                                 | 6.62                                                      |
| ROOF-6-7-0                                                                       |        | 0.125                                               | 7.73                                                      |
| ROOF-6-7-0                                                                       |        | 0.15                                                | 8.83                                                      |
| ROOF-8-0                                                                         | Rating | 0                                                   | 0                                                         |
| ROOF-8-0                                                                         |        | 0.025                                               | 0.63                                                      |
| ROOF-8-0                                                                         |        | 0.05                                                | 1.26                                                      |

| ROOF-8-0<br>ROOF-8-0<br>ROOF-8-0<br>ROOF-8-0                                     |         | 0.075<br>0.1<br>0.125<br>0.15                       | 1.42<br>1.58<br>1.73<br>1.89                             |  |
|----------------------------------------------------------------------------------|---------|-----------------------------------------------------|----------------------------------------------------------|--|
| R00F-9-0<br>R00F-9-0<br>R00F-9-0<br>R00F-9-0<br>R00F-9-0<br>R00F-9-0<br>R00F-9-0 | Rating  | 0<br>0.025<br>0.05<br>0.075<br>0.1<br>0.125<br>0.15 | 0<br>0.631<br>1.262<br>1.42<br>1.577<br>1.735<br>1.893   |  |
| ROOF10<br>ROOF10<br>ROOF10<br>ROOF10<br>ROOF10<br>ROOF10<br>ROOF10               | Storage | 0<br>0.025<br>0.05<br>0.075<br>0.1<br>0.125<br>0.15 | 0<br>62.44<br>249.78<br>562<br>999.11<br>1561.11<br>2248 |  |
| R00F11<br>R00F11<br>R00F11<br>R00F11<br>R00F11<br>R00F11<br>R00F11               | Storage | 0<br>0.025<br>0.05<br>0.075<br>0.1<br>0.125<br>0.15 | 0<br>2.36<br>9.42<br>21.2<br>37.69<br>58.89<br>84.8      |  |
| R00F12<br>R00F12<br>R00F12<br>R00F12<br>R00F12<br>R00F12<br>R00F12               | Storage | 0<br>0.025<br>0.05<br>0.075<br>0.1<br>0.125<br>0.15 | 0<br>2.22<br>8.89<br>20<br>35.56<br>55.56<br>80          |  |
| ROOF1and2<br>ROOF1and2                                                           | Storage | 0<br>0.025                                          | 0<br>21.2                                                |  |

| ROOF1and2 |         | 0.05  | 84.8        |
|-----------|---------|-------|-------------|
| ROOF1and2 |         | 0.075 | 190.8       |
| ROOF1and2 |         | 0.1   | 339.2       |
| ROOF1and2 |         | 0.125 | 530         |
| ROOF1and2 |         | 0.15  | 763.2       |
| ROOF3     | Storage | 0     | 0           |
| ROOF3     |         | 0.025 | 24.4        |
| ROOF3     |         | 0.05  | 97.6        |
| ROOF3     |         | 0.075 | 219.6       |
| ROOF3     |         | 0.1   | 390.4       |
| ROOF3     |         | 0.125 | 610         |
| ROOF3     |         | 0.15  | 878.4       |
| ROOF4     | Storage | 0     | 0           |
| ROOF4     |         | 0.025 | 7.822222222 |
| ROOF4     |         | 0.05  | 31.28888889 |
| ROOF4     |         | 0.075 | 70.4        |
| ROOF4     |         | 0.1   | 125.1555556 |
| ROOF4     |         | 0.125 | 195.5555556 |
| ROOF4     |         | 0.15  | 281.6       |
| R00F5     | Storage | 0     | 0           |
| R00F5     |         | 0.025 | 24.4        |
| R00F5     |         | 0.05  | 97.6        |
| R00F5     |         | 0.075 | 219.6       |
| R00F5     |         | 0.1   | 390.4       |
| R00F5     |         | 0.125 | 610         |
| R00F5     |         | 0.15  | 878.4       |
| ROOF6and7 | Storage | 0     | 0           |
| ROOF6and7 |         | 0.025 | 21.22       |
| ROOF6and7 |         | 0.05  | 84.89       |
| ROOF6and7 |         | 0.075 | 191         |
| ROOF6and7 |         | 0.1   | 339.56      |
| ROOF6and7 |         | 0.125 | 530.56      |
| ROOF6and7 |         | 0.15  | 764         |
| ROOF8     | Storage | 0     | 0           |

| ROOF8                                                        |         | 0.025                                                                                                                                                                                                           | 2.16                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ROOF8                                                        |         | 0.05                                                                                                                                                                                                            | 8.62                                                                                                                                                                                                                                                     |
| ROOF8                                                        |         | 0.075                                                                                                                                                                                                           | 19.4                                                                                                                                                                                                                                                     |
| ROOF8                                                        |         | 0.1                                                                                                                                                                                                             | 34.49                                                                                                                                                                                                                                                    |
| ROOF8                                                        |         | 0.125                                                                                                                                                                                                           | 53.89                                                                                                                                                                                                                                                    |
| ROOF8                                                        |         | 0.15                                                                                                                                                                                                            | 77.6                                                                                                                                                                                                                                                     |
| R00F9                                                        | Storage | 0                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                        |
| R00F9                                                        |         | 0.025                                                                                                                                                                                                           | 1.18                                                                                                                                                                                                                                                     |
| R00F9                                                        |         | 0.05                                                                                                                                                                                                            | 4.71                                                                                                                                                                                                                                                     |
| R00F9                                                        |         | 0.075                                                                                                                                                                                                           | 10.6                                                                                                                                                                                                                                                     |
| R00F9                                                        |         | 0.1                                                                                                                                                                                                             | 18.84                                                                                                                                                                                                                                                    |
| R00F9                                                        |         | 0.125                                                                                                                                                                                                           | 29.44                                                                                                                                                                                                                                                    |
| R00F9                                                        |         | 0.15                                                                                                                                                                                                            | 42.4                                                                                                                                                                                                                                                     |
| TANK<br>TANK<br>TANK<br>TANK<br>TANK<br>TANK<br>TANK<br>TANK | Storage | 0<br>0.026<br>0.051<br>0.077<br>0.102<br>0.127<br>0.153<br>0.178<br>0.204<br>0.229<br>0.254<br>0.28<br>0.305<br>0.331<br>0.356<br>0.381<br>0.407<br>0.432<br>0.432<br>0.458<br>0.483<br>0.508<br>0.534<br>0.534 | 560.7<br>560.7<br>560.7<br>550.7<br>559.44<br>559.44<br>558.18<br>555.66<br>555.66<br>555.66<br>555.66<br>554.4<br>551.88<br>549.36<br>546.84<br>549.36<br>543.06<br>539.28<br>534.24<br>527.94<br>521.64<br>514.08<br>505.26<br>495.18<br>483.84<br>473 |

| TANK | 0.61  | 449.82 |
|------|-------|--------|
| TANK | 0.635 | 434.7  |
| TANK | 0.661 | 419.58 |
| TANK | 0.686 | 403.2  |
| TANK | 0.712 | 383.04 |
| TANK | 0.737 | 360.36 |
| TANK | 0.762 | 347.76 |
| TANK | 0.796 | 335.16 |
| TANK | 0.813 | 320.04 |
| TANK | 0.839 | 304.92 |
| TANK | 0.864 | 289.8  |
| TANK | 0.889 | 272.16 |
| TANK | 0.915 | 258.3  |
| TANK | 0.94  | 244.44 |
| TANK | 0.965 | 233.1  |
| TANK | 0.991 | 221.76 |
| TANK | 1.016 | 211.68 |
| TANK | 1.041 | 201.6  |
| TANK | 1.067 | 192.78 |
| TANK | 1.092 | 185.22 |
| TANK | 1.118 | 180.18 |
| TANK | 1.143 | 176.4  |
| TANK | 1.168 | 172.62 |
| TANK | 1.194 | 170.1  |
| TANK | 1.219 | 167.58 |
| TANK | 1.245 | 165.06 |
| TANK | 1.27  | 163.8  |
| TANK | 1.295 | 162.54 |
| TANK | 1.321 | 162.54 |
| TANK | 1.346 | 162.54 |
| TANK | 1.372 | 161.28 |
| TANK | 1.397 | 161.28 |
| TANK | 1.422 | 161.28 |
| TANK | 1.448 | 161.28 |
| TANK | 1.473 | 161.28 |
| TANK | 1.499 | 161.28 |
| TANK | 1.524 | 161.28 |
| TANK | 1.549 | 161.28 |
| TANK | 1.575 | 161.28 |
|      |       |        |

| TANK                 | 1.6             | 161.28 |
|----------------------|-----------------|--------|
| TANK                 | 1.626           | 161.28 |
| TANK                 | 1.651           | 161.28 |
| TANK                 | 1.676           | 161.28 |
| TANK                 | 1.702           | 161.28 |
| TANK                 | 1.727           | 161.28 |
| TANK                 | 1.753           | 161.28 |
| TANK                 | 1.778           | 161.28 |
| TANK                 | 1.803           | 161.28 |
| TANK                 | 1.829           | 161.28 |
| TANK                 | 1.83            | 0      |
| TANK                 | 5               | 0      |
|                      |                 |        |
| [TIMESERIES]         |                 |        |
| ;;Name Dat           | te Time         | Value  |
| ;;                   |                 |        |
| ;MTO Distribution, 1 | 15min intervals |        |
| 002SCS               | 0:00            | 0      |
| 002SCS               | 0:15            | 1.08   |
| 002SCS               | 0:30            | 1.08   |
| 002SCS               | 0:45            | 1.08   |
| 002SCS               | 1:00            | 1.08   |
| 002SCS               | 1:15            | 1.08   |
| 002SCS               | 1:30            | 1.08   |
| 002SCS               | 1:45            | 1.08   |
| 002SCS               | 2:00            | 1.296  |
| 002SCS               | 2:15            | 1.296  |
| 002SCS               | 2:30            | 1.296  |
| 002SCS               | 2:45            | 1.296  |
| 002SCS               | 3:00            | 1.728  |
| 002SCS               | 3:15            | 1.728  |
| 002SCS               | 3:30            | 1.728  |
| 002SCS               | 3:45            | 1.728  |
| 002SCS               | 4:00            | 2.592  |
| 002SCS               | 4:15            | 2.592  |
| 002SCS               | 4:30            | 3.456  |
| 002SCS               | 4:45            | 3.456  |
| 002SCS               | 5:00            | 5.184  |
| 002SCS               | 5:15            | 5.184  |
|                      |                 |        |

| 002SCS | 5:30    | 20.736 |
|--------|---------|--------|
| 002SCS | 5:45    | 57.024 |
| 002SCS | 6:00    | 7.776  |
| 002SCS | 6:15    | 7.776  |
| 002SCS | 6:30    | 3.456  |
| 002SCS | 6:45    | 3.456  |
| 002SCS | 7:00    | 2.592  |
| 002SCS | 7:15    | 2.592  |
| 002SCS | 7:30    | 2.592  |
| 002SCS | 7:45    | 2.592  |
| 002SCS | 8:00    | 1.512  |
| 002SCS | 8:15    | 1.512  |
| 002SCS | 8:30    | 1.512  |
| 002SCS | 8:45    | 1.512  |
| 002SCS | 9:00    | 1.512  |
| 002SCS | 9:15    | 1.512  |
| 002SCS | 9:30    | 1.512  |
| 002SCS | 9:45    | 1.512  |
| 002SCS | 10:00   | 0.864  |
| 002SCS | 10:15   | 0.864  |
| 002SCS | 10:30   | 0.864  |
| 002SCS | 10:45   | 0.864  |
| 002SCS | 11:00   | 0.864  |
| 002SCS | 11:15   | 0.864  |
| 002SCS | 11:30   | 0.864  |
| 002SCS | 11:45   | 0.864  |
| 002SCS | 12:00   | 0      |
|        |         |        |
| 005SCS | 0:00:00 | 0      |
| 005SCS | 0:15:00 | 1.44   |
| 005SCS | 0:30:00 | 1.44   |
| 005SCS | 0:45:00 | 1.44   |
| 005SCS | 1:00:00 | 1.44   |
| 005SCS | 1:15:00 | 1.44   |
| 005SCS | 1:30:00 | 1.44   |
| 005SCS | 1:45:00 | 1.44   |
| 005SCS | 2:00:00 | 1.728  |
| 005SCS | 2:15:00 | 1.728  |
| 005SCS | 2:30:00 | 1.728  |
|        |         |        |

| 005SCS | 2:45:00  | 1.728  |
|--------|----------|--------|
| 005SCS | 3:00:00  | 2.304  |
| 005SCS | 3:15:00  | 2.304  |
| 005SCS | 3:30:00  | 2.304  |
| 005SCS | 3:45:00  | 2.304  |
| 005SCS | 4:00:00  | 3.456  |
| 005SCS | 4:15:00  | 3.456  |
| 005SCS | 4:30:00  | 4.608  |
| 005SCS | 4:45:00  | 4.608  |
| 005SCS | 5:00:00  | 6.912  |
| 005SCS | 5:15:00  | 6.912  |
| 005SCS | 5:30:00  | 27.648 |
| 005SCS | 5:45:00  | 76.032 |
| 005SCS | 6:00:00  | 10.368 |
| 005SCS | 6:15:00  | 10.368 |
| 005SCS | 6:30:00  | 4.608  |
| 005SCS | 6:45:00  | 4.608  |
| 005SCS | 7:00:00  | 3.456  |
| 005SCS | 7:15:00  | 3.456  |
| 005SCS | 7:30:00  | 3.456  |
| 005SCS | 7:45:00  | 3.456  |
| 005SCS | 8:00:00  | 2.016  |
| 005SCS | 8:15:00  | 2.016  |
| 005SCS | 8:30:00  | 2.016  |
| 005SCS | 8:45:00  | 2.016  |
| 005SCS | 9:00:00  | 2.016  |
| 005SCS | 9:15:00  | 2.016  |
| 005SCS | 9:30:00  | 2.016  |
| 005SCS | 9:45:00  | 2.016  |
| 005SCS | 10:00:00 | 1.152  |
| 005SCS | 10:15:00 | 1.152  |
| 005SCS | 10:30:00 | 1.152  |
| 005SCS | 10:45:00 | 1.152  |
| 005SCS | 11:00:00 | 1.152  |
| 005SCS | 11:15:00 | 1.152  |
| 005SCS | 11:30:00 | 1.152  |
| 005SCS | 11:45:00 | 1.152  |
| 005SCS | 12:00:00 | 0      |

| 0105C5 | 9:30:00  | 2.35    |
|--------|----------|---------|
|        |          |         |
|        |          |         |
|        |          |         |
|        |          |         |
|        |          |         |
| 010SCS | 9:45:00  | 2.35    |
| 010SCS | 10:00:00 | 1.34    |
| 010SCS | 10:15:00 | 1.34    |
| 010SCS | 10:30:00 | 1.34    |
| 010SCS | 10:45:00 | 1.34    |
| 010SCS | 11:00:00 | 1.34    |
| 010SCS | 11:15:00 | 1.34    |
| 010SCS | 11:30:00 | 1.34    |
| 010SCS | 11:45:00 | 1.34    |
| 010SCS | 12:00:00 | 0       |
| 025SCS | 0:00:00  | 0       |
| 025SCS | 0:15:00  | 1.98    |
| 025SCS | 0:30:00  | 1.98    |
| 025SCS | 0:45:00  | 1.98    |
| 025SCS | 1:00:00  | 1.98    |
| 025SCS | 1:15:00  | 1.98    |
| 025SCS | 1:30:00  | 1.98    |
| 025SCS | 1:45:00  | 1.98    |
| 025505 | 2:00:00  | 2.3/6   |
| 025505 | 2:15:00  | 2.3/6   |
| 025505 | 2:30:00  | 2.3/6   |
| 025505 | 2:45:00  | 2.3/6   |
| 025505 | 3:00:00  | 3.168   |
| 025505 | 3:15:00  | 3.168   |
| 025505 | 3:30:00  | 3.168   |
| 025505 | 3:45:00  | 3.168   |
| 025505 | 4:00:00  | 4.752   |
| 025505 | 4:15:00  | 4.752   |
| 025505 | 4.50.00  | 6.336   |
| 025565 | 4.45.00  | 0.550   |
| 025355 | 5.00.00  | 0 504   |
| 025505 | 5.15.00  | 38 016  |
| 025505 | 5.15.00  | 104 544 |
| 025505 | 5.45.00  | 14 256  |
| 025505 | 6.15.00  | 14 256  |
| 025505 | 6.30.00  | 6 336   |
| 025505 | 6.42.00  | 6 336   |
| 020000 | 0.45.00  | 0.000   |

| 010SCS | 0:00:00 | 0     |
|--------|---------|-------|
| 010SCS | 0:15:00 | 1.68  |
| 010SCS | 0:30:00 | 1.68  |
| 010SCS | 0:45:00 | 1.68  |
| 010SCS | 1:00:00 | 1.68  |
| 010SCS | 1:15:00 | 1.68  |
| 010SCS | 1:30:00 | 1.68  |
| 010SCS | 1:45:00 | 1.68  |
| 010SCS | 2:00:00 | 2.02  |
| 010SCS | 2:15:00 | 2.02  |
| 010SCS | 2:30:00 | 2.02  |
| 010SCS | 2:45:00 | 2.02  |
| 010SCS | 3:00:00 | 2.69  |
| 010SCS | 3:15:00 | 2.69  |
| 010SCS | 3:30:00 | 2.69  |
| 010SCS | 3:45:00 | 2.69  |
| 010SCS | 4:00:00 | 4.03  |
| 010SCS | 4:15:00 | 4.03  |
| 010SCS | 4:30:00 | 5.38  |
| 010SCS | 4:45:00 | 5.38  |
| 010SCS | 5:00:00 | 8.06  |
| 010SCS | 5:15:00 | 8.06  |
| 010SCS | 5:30:00 | 32.26 |
| 010SCS | 5:45:00 | 88.7  |
| 010SCS | 6:00:00 | 12.1  |
| 010SCS | 6:15:00 | 12.1  |
| 010SCS | 6:30:00 | 5.38  |
| 010SCS | 6:45:00 | 5.38  |
| 010SCS | 7:00:00 | 4.03  |
| 010SCS | 7:15:00 | 4.03  |
| 010SCS | 7:30:00 | 4.03  |
| 010SCS | 7:45:00 | 4.03  |
| 010SCS | 8:00:00 | 2.35  |
| 010SCS | 8:15:00 | 2.35  |
| 010SCS | 8:30:00 | 2.35  |
| 010SCS | 8:45:00 | 2.35  |
| 010SCS | 9:00:00 | 2.35  |
| 010SCS | 9:15:00 | 2.35  |
| 010SCS | 9:30:00 | 2.35  |
|        |         |       |

| 050SCS                      | 4:15:00  | 5.256   |
|-----------------------------|----------|---------|
| 050SCS                      | 4:30:00  | 7.008   |
| 050SCS                      | 4:45:00  | 7.008   |
| 050SCS                      | 5:00:00  | 10.512  |
| 050SCS                      | 5:15:00  | 10.512  |
| 050SCS                      | 5:30:00  | 42.048  |
| 050SCS                      | 5:45:00  | 115.632 |
| 050SCS                      | 6:00:00  | 15.768  |
| 050SCS                      | 6:15:00  | 15.768  |
| 050SCS                      | 6:30:00  | 7.008   |
| 050SCS                      | 6:45:00  | 7.008   |
| 050SCS                      | 7:00:00  | 5.256   |
| 050SCS                      | 7:15:00  | 5.256   |
| 050SCS                      | 7:30:00  | 5.256   |
| 050SCS                      | 7:45:00  | 5.256   |
| 050SCS                      | 8:00:00  | 3.066   |
| 050SCS                      | 8:15:00  | 3.066   |
| 050SCS                      | 8:30:00  | 3.066   |
| 050SCS                      | 8:45:00  | 3.066   |
| 050SCS                      | 9:00:00  | 3.066   |
| 050SCS                      | 9:15:00  | 3.066   |
| 050SCS                      | 9:30:00  | 3.066   |
| 050SCS                      | 9:45:00  | 3.066   |
| 050SCS                      | 10:00:00 | 1.752   |
| 050SCS                      | 10:15:00 | 1.752   |
| 050SCS                      | 10:30:00 | 1.752   |
| 050SCS                      | 10:45:00 | 1.752   |
| 050SCS                      | 11:00:00 | 1.752   |
| 050SCS                      | 11:15:00 | 1.752   |
| 050SCS                      | 11:30:00 | 1.752   |
| 050SCS                      | 11:45:00 | 1.752   |
| 050SCS                      | 12:00:00 | 0       |
|                             |          |         |
| ;MTO Distribution, 15min in | ntervals |         |
| 100SCS                      | 0:00     | 0       |
| 100SCS                      | 0:15     | 2.4     |
| 100SCS                      | 0:30     | 2.4     |
| 100SCS                      | 0:45     | 2.4     |
| 100SCS                      | 1:00     | 2.4     |
|                             |          |         |
|                             |          |         |

| 025SCS | 7:00:00  | 4.752 |
|--------|----------|-------|
| 025SCS | 7:15:00  | 4.752 |
| 025SCS | 7:30:00  | 4.752 |
| 025SCS | 7:45:00  | 4.752 |
| 025SCS | 8:00:00  | 2.772 |
| 025SCS | 8:15:00  | 2.772 |
| 025SCS | 8:30:00  | 2.772 |
| 025SCS | 8:45:00  | 2.772 |
| 025SCS | 9:00:00  | 2.772 |
| 025SCS | 9:15:00  | 2.772 |
| 025SCS | 9:30:00  | 2.772 |
| 025SCS | 9:45:00  | 2.772 |
| 025SCS | 10:00:00 | 1.584 |
| 025SCS | 10:15:00 | 1.584 |
| 025SCS | 10:30:00 | 1.584 |
| 025SCS | 10:45:00 | 1.584 |
| 025SCS | 11:00:00 | 1.584 |
| 025SCS | 11:15:00 | 1.584 |
| 025SCS | 11:30:00 | 1.584 |
| 025SCS | 11:45:00 | 1.584 |
| 025SCS | 12:00:00 | 0     |
|        |          |       |
| 050SCS | 0:00:00  | 0     |
| 050SCS | 0:15:00  | 2.19  |
| 050SCS | 0:30:00  | 2.19  |
| 050SCS | 0:45:00  | 2.19  |
| 050SCS | 1:00:00  | 2.19  |
| 050SCS | 1:15:00  | 2.19  |
| 050SCS | 1:30:00  | 2.19  |
| 050SCS | 1:45:00  | 2.19  |
| 050SCS | 2:00:00  | 2.628 |
| 050SCS | 2:15:00  | 2.628 |
| 050SCS | 2:30:00  | 2.628 |
| 050SCS | 2:45:00  | 2.628 |
| 050SCS | 3:00:00  | 3.504 |
| 050SCS | 3:15:00  | 3.504 |
| 050SCS | 3:30:00  | 3.504 |
| 050SCS | 3:45:00  | 3.504 |
| 050SCS | 4:00:00  | 5.256 |
|        |          |       |

| 100SCS          | 11:00 | 1.92       |
|-----------------|-------|------------|
| 100SCS          | 11:15 | 1.92       |
| 100SCS          | 11:30 | 1.92       |
| 100SCS          | 11:45 | 1.92       |
| 100SCS          | 12:00 | 0          |
|                 |       |            |
| 100yrHydrograph | 0:05  | 0          |
| 100yrHydrograph | 0:10  | 0          |
| 100yrHydrograph | 0:15  | 0          |
| 100yrHydrograph | 0:20  | 0          |
| 100yrHydrograph | 0:25  | 0          |
| 100yrHydrograph | 0:30  | 0          |
| 100yrHydrograph | 0:35  | 0          |
| 100yrHydrograph | 0:40  | 0          |
| 100yrHydrograph | 0:45  | 0          |
| 100yrHydrograph | 0:50  | 0          |
| 100yrHydrograph | 0:55  | 0          |
| 100yrHydrograph | 1:00  | 0          |
| 100yrHydrograph | 1:05  | 0          |
| 100yrHydrograph | 1:10  | 0          |
| 100yrHydrograph | 1:15  | 0          |
| 100yrHydrograph | 1:20  | 0          |
| 100yrHydrograph | 1:25  | 0          |
| 100yrHydrograph | 1:30  | 0          |
| 100yrHydrograph | 1:35  | 0          |
| 100yrHydrograph | 1:40  | 0          |
| 100yrHydrograph | 1:45  | 0          |
| 100yrHydrograph | 1:50  | 0          |
| 100yrHydrograph | 1:55  | 0          |
| 100yrHydrograph | 2:00  | 0          |
| 100yrHydrograph | 2:05  | 0.03368589 |
| 100yrHydrograph | 2:10  | 0.400265   |
| 100yrHydrograph | 2:15  | 0.6780789  |
| 100yrHydrograph | 2:20  | 0.8096212  |
| 100yrHydrograph | 2:25  | 0.9188437  |
| 100yrHydrograph | 2:30  | 1.041047   |
| 100yrHydrograph | 2:35  | 1.160273   |
| 100yrHydrograph | 2:40  | 1.279933   |
| 100yrHydrograph | 2:45  | 1.400491   |

| 100SCS | 1:15  | 2.4    |
|--------|-------|--------|
| 100SCS | 1:30  | 2.4    |
| 100SCS | 1:45  | 2.4    |
| 100SCS | 2:00  | 2.4    |
| 100SCS | 2:15  | 2.88   |
| 100SCS | 2:30  | 2.88   |
| 100SCS | 2:45  | 2.88   |
| 100SCS | 3:00  | 2.88   |
| 100SCS | 3:15  | 3.84   |
| 100SCS | 3:30  | 3.84   |
| 100SCS | 3:45  | 3.84   |
| 100SCS | 4:00  | 3.84   |
| 100SCS | 4:15  | 5.76   |
| 100SCS | 4:30  | 5.76   |
| 100SCS | 4:45  | 7.68   |
| 100SCS | 5:00  | 7.68   |
| 100SCS | 5:15  | 11.52  |
| 100SCS | 5:30  | 11.52  |
| 100SCS | 5:45  | 46.08  |
| 100SCS | 6:00  | 126.72 |
| 100SCS | 6:15  | 17.28  |
| 100SCS | 6:30  | 17.28  |
| 100SCS | 6:45  | 7.68   |
| 100SCS | 7:00  | 7.68   |
| 100SCS | 7:15  | 5.76   |
| 100SCS | 7:30  | 5.76   |
| 100SCS | 7:45  | 5.76   |
| 100SCS | 8:00  | 5.76   |
| 100SCS | 8:15  | 3.36   |
| 100SCS | 8:30  | 3.36   |
| 100SCS | 8:45  | 3.36   |
| 100SCS | 9:00  | 3.36   |
| 100SCS | 9:15  | 3.36   |
| 100SCS | 9:30  | 3.36   |
| 100SCS | 9:45  | 3.36   |
| 100SCS | 10:00 | 3.36   |
| 100SCS | 10:15 | 1.92   |
| 100SCS | 10:30 | 1.92   |
| 100SCS | 10:45 | 1.92   |
|        |       |        |

| 100yrHydrograph | 2:50 | 1.521803 |
|-----------------|------|----------|
| 100yrHydrograph | 2:55 | 1.6431   |
| 100yrHydrograph | 3:00 | 1.770213 |
| 100yrHydrograph | 3:05 | 1.89238  |
| 100yrHydrograph | 3:10 | 2.011746 |
| 100yrHydrograph | 3:15 | 2.129715 |
| 100yrHydrograph | 3:20 | 2.24681  |
| 100yrHydrograph | 3:25 | 2.372673 |
| 100yrHydrograph | 3:30 | 2.52147  |
| 100yrHydrograph | 3:35 | 2.690327 |
| 100yrHydrograph | 3:40 | 2.870473 |
| 100yrHydrograph | 3:45 | 3.049115 |
| 100yrHydrograph | 3:50 | 3.225464 |
| 100yrHydrograph | 3:55 | 3.398892 |
| 100yrHydrograph | 4:00 | 3.569112 |
| 100yrHydrograph | 4:05 | 3.736014 |
| 100yrHydrograph | 4:10 | 3.899172 |
| 100yrHydrograph | 4:15 | 4.062318 |
| 100yrHydrograph | 4:20 | 4.221156 |
| 100yrHydrograph | 4:25 | 4.414243 |
| 100yrHydrograph | 4:30 | 4.674353 |
| 100yrHydrograph | 4:35 | 4.971942 |
| 100yrHydrograph | 4:40 | 5.279111 |
| 100yrHydrograph | 4:45 | 6.154143 |
| 100yrHydrograph | 4:50 | 6.507444 |
| 100yrHydrograph | 4:55 | 6.698976 |
| 100yrHydrograph | 5:00 | 6.914319 |
| 100yrHydrograph | 5:05 | 7.139013 |
| 100yrHydrograph | 5:10 | 7.358335 |
| 100yrHydrograph | 5:15 | 7.568453 |
| 100yrHydrograph | 5:20 | 7.776987 |
| 100yrHydrograph | 5:25 | 8.043731 |
| 100yrHydrograph | 5:30 | 8.375088 |
| 100yrHydrograph | 5:35 | 8.720076 |
| 100yrHydrograph | 5:40 | 9.065854 |
| 100yrHydrograph | 5:45 | 9.411835 |
| 100yrHydrograph | 5:50 | 9.817601 |
| 100yrHydrograph | 5:55 | 10.7888  |
| 100yrHydrograph | 6:00 | 12.18063 |

| 100yrHydrograph | 6:05 | 13.55768 |
|-----------------|------|----------|
| 100yrHydrograph | 6:10 | 15.79406 |
| 100yrHydrograph | 6:15 | 18.70004 |
| 100yrHydrograph | 6:20 | 42.87194 |
| 100yrHydrograph | 6:25 | 89.41938 |
| 100yrHydrograph | 6:30 | 110.0801 |
| 100yrHydrograph | 6:35 | 120.6727 |
| 100yrHydrograph | 6:40 | 126.8955 |
| 100yrHydrograph | 6:45 | 131.1839 |
| 100yrHydrograph | 6:50 | 135.1019 |
| 100yrHydrograph | 6:55 | 136.1944 |
| 100yrHydrograph | 7:00 | 134.3278 |
| 100yrHydrograph | 7:05 | 133.2315 |
| 100yrHydrograph | 7:10 | 131.9975 |
| 100yrHydrograph | 7:15 | 130.5499 |
| 100yrHydrograph | 7:20 | 128.9494 |
| 100yrHydrograph | 7:25 | 127.0917 |
| 100yrHydrograph | 7:30 | 124.968  |
| 100yrHydrograph | 7:35 | 122.8077 |
| 100yrHydrograph | 7:40 | 120.8129 |
| 100yrHydrograph | 7:45 | 118.6745 |
| 100yrHydrograph | 7:50 | 116.2747 |
| 100yrHydrograph | 7:55 | 113.7336 |
| 100yrHydrograph | 8:00 | 111.03   |
| 100yrHydrograph | 8:05 | 107.4665 |
| 100yrHydrograph | 8:10 | 103.368  |
| 100yrHydrograph | 8:15 | 99.26289 |
| 100yrHydrograph | 8:20 | 95.15655 |
| 100yrHydrograph | 8:25 | 90.6512  |
| 100yrHydrograph | 8:30 | 85.96979 |
| 100yrHydrograph | 8:35 | 81.40397 |
| 100yrHydrograph | 8:40 | 77.20897 |
| 100yrHydrograph | 8:45 | 73.056   |
| 100yrHydrograph | 8:50 | 68.54881 |
| 100yrHydrograph | 8:55 | 63.82666 |
| 100yrHydrograph | 9:00 | 59.70413 |
| 100yrHydrograph | 9:05 | 56.16789 |
| 100yrHydrograph | 9:10 | 53.06845 |
| 100yrHydrograph | 9:15 | 50.40911 |
|                 |      |          |

| 100vrHvdrograph | 9:20  | 48.21593 |
|-----------------|-------|----------|
| 100yrHydrograph | 9:25  | 46.66951 |
| 100yrHydrograph | 9:30  | 45.38166 |
| 100yrHydrograph | 9:35  | 44.14623 |
| 100yrHydrograph | 9:40  | 42.96396 |
| 100yrHydrograph | 9:45  | 41.84916 |
| 100yrHydrograph | 9:50  | 40.78232 |
| 100yrHydrograph | 9:55  | 39.74205 |
| 100yrHydrograph | 10:00 | 38.7661  |
| 100yrHydrograph | 10:05 | 37.83093 |
| 100yrHydrograph | 10:10 | 36.92952 |
| 100yrHydrograph | 10:15 | 36.06311 |
| 100yrHydrograph | 10:20 | 35.16625 |
| 100yrHydrograph | 10:25 | 33.88804 |
| 100yrHydrograph | 10:30 | 32.4535  |
| 100yrHydrograph | 10:35 | 31.05881 |
| 100yrHydrograph | 10:40 | 29.78304 |
| 100yrHydrograph | 10:45 | 28.63077 |
| 100yrHydrograph | 10:50 | 27.58944 |
| 100yrHydrograph | 10:55 | 26.653   |
| 100yrHydrograph | 11:00 | 25.66802 |
| 100yrHydrograph | 11:05 | 24.91771 |
| 100yrHydrograph | 11:10 | 24.2445  |
| 100yrHydrograph | 11:15 | 23.63535 |
| 100yrHydrograph | 11:20 | 23.08379 |
| 100yrHydrograph | 11:25 | 22.58303 |
| 100yrHydrograph | 11:30 | 22.12786 |
| 100yrHydrograph | 11:35 | 21.71402 |
| 100yrHydrograph | 11:40 | 21.33782 |
| 100yrHydrograph | 11:45 | 20.99621 |
| 100yrHydrograph | 11:50 | 20.68643 |
| 100yrHydrograph | 11:55 | 20.40586 |
| 100yrHydrograph | 12:00 | 20.1529  |
| 100yrHydrograph | 12:05 | 19.91762 |
| 100yrHydrograph | 12:10 | 19.63007 |
| 100yrHydrograph | 12:15 | 19.3239  |
| 100yrHydrograph | 12:20 | 19.12781 |
| 100yrHydrograph | 12:25 | 18.97093 |
| 100yrHydrograph | 12:30 | 18.80998 |

| 100yrHydrograph | 12:35 | 18.64461 |
|-----------------|-------|----------|
| 100yrHydrograph | 12:40 | 18.47622 |
| 100yrHydrograph | 12:45 | 18.30533 |
| 100yrHydrograph | 12:50 | 18.13219 |
| 100yrHydrograph | 12:55 | 17.95722 |
| 100yrHydrograph | 13:00 | 17.74718 |
| 100yrHydrograph | 13:05 | 17.56915 |
| 100yrHydrograph | 13:10 | 17.39227 |
| 100yrHydrograph | 13:15 | 17.21504 |
| 100yrHydrograph | 13:20 | 17.03772 |
| 100yrHydrograph | 13:25 | 16.86038 |
| 100yrHydrograph | 13:30 | 16.68295 |
| 100yrHydrograph | 13:35 | 16.50546 |
| 100yrHydrograph | 13:40 | 16.32839 |
| 100yrHydrograph | 13:45 | 16.15076 |
| 100yrHydrograph | 13:50 | 15.97309 |
| 100yrHydrograph | 13:55 | 15.79539 |
| 100yrHydrograph | 14:00 | 15.61763 |
| 100yrHydrograph | 14:05 | 15.44018 |
| 100yrHydrograph | 14:10 | 15.26246 |
| 100yrHydrograph | 14:15 | 15.08446 |
| 100yrHydrograph | 14:20 | 14.90619 |
| 100yrHydrograph | 14:25 | 14.72721 |
| 100yrHydrograph | 14:30 | 14.54815 |
| 100yrHydrograph | 14:35 | 14.36913 |
| 100yrHydrograph | 14:40 | 14.19005 |
| 100yrHydrograph | 14:45 | 14.011   |
| 100yrHydrograph | 14:50 | 13.83076 |
| 100yrHydrograph | 14:55 | 13.65002 |
| 100yrHydrograph | 15:00 | 13.46919 |
| 100yrHydrograph | 15:05 | 13.27224 |
| 100yrHydrograph | 15:10 | 13.09266 |
| 100yrHydrograph | 15:15 | 12.91431 |
| 100yrHydrograph | 15:20 | 12.73593 |
| 100yrHydrograph | 15:25 | 12.55792 |
| 100yrHydrograph | 15:30 | 12.37996 |
| 100yrHydrograph | 15:35 | 12.2021  |
| 100yrHydrograph | 15:40 | 12.02427 |
| 100yrHydrograph | 15:45 | 11.84651 |
|                 |       |          |
| 19:05 | 3.932506                                                                                                                                                                                                                                                                                                       |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19:10 | 3.778864                                                                                                                                                                                                                                                                                                       |
| 19:15 | 3.629502                                                                                                                                                                                                                                                                                                       |
| 19:20 | 3.486742                                                                                                                                                                                                                                                                                                       |
| 19:25 | 3.350802                                                                                                                                                                                                                                                                                                       |
| 19:30 | 3.221082                                                                                                                                                                                                                                                                                                       |
| 19:35 | 3.097033                                                                                                                                                                                                                                                                                                       |
| 19:40 | 2.978455                                                                                                                                                                                                                                                                                                       |
| 19:45 | 2.864869                                                                                                                                                                                                                                                                                                       |
| 19:50 | 2.756282                                                                                                                                                                                                                                                                                                       |
| 19:55 | 2.654007                                                                                                                                                                                                                                                                                                       |
| 20:00 | 2.556878                                                                                                                                                                                                                                                                                                       |
| 20:05 | 2.461823                                                                                                                                                                                                                                                                                                       |
| 20:10 | 2.370567                                                                                                                                                                                                                                                                                                       |
| 20:15 | 2.283155                                                                                                                                                                                                                                                                                                       |
| 20:20 | 2.199545                                                                                                                                                                                                                                                                                                       |
| 20:25 | 2.119371                                                                                                                                                                                                                                                                                                       |
| 20:30 | 2.0424                                                                                                                                                                                                                                                                                                         |
| 20:35 | 1.968455                                                                                                                                                                                                                                                                                                       |
| 20:40 | 1.897445                                                                                                                                                                                                                                                                                                       |
| 20:45 | 1.82913                                                                                                                                                                                                                                                                                                        |
| 20:50 | 1.763424                                                                                                                                                                                                                                                                                                       |
| 20:55 | 1.701357                                                                                                                                                                                                                                                                                                       |
| 21:00 | 1.642923                                                                                                                                                                                                                                                                                                       |
| 21:05 | 1.586518                                                                                                                                                                                                                                                                                                       |
| 21:10 | 1.530593                                                                                                                                                                                                                                                                                                       |
| 21:15 | 1.476459                                                                                                                                                                                                                                                                                                       |
| 21:20 | 1.424285                                                                                                                                                                                                                                                                                                       |
| 21:25 | 1.373979                                                                                                                                                                                                                                                                                                       |
| 21:30 | 1.325569                                                                                                                                                                                                                                                                                                       |
| 21:35 | 1.278883                                                                                                                                                                                                                                                                                                       |
| 21:40 | 1.233917                                                                                                                                                                                                                                                                                                       |
| 21:45 | 1.190506                                                                                                                                                                                                                                                                                                       |
| 21:50 | 1.148588                                                                                                                                                                                                                                                                                                       |
| 21:55 | 1.108119                                                                                                                                                                                                                                                                                                       |
| 22:00 | 1.069048                                                                                                                                                                                                                                                                                                       |
| 22:05 | 1.031321                                                                                                                                                                                                                                                                                                       |
| 22:10 | 0.9948828                                                                                                                                                                                                                                                                                                      |
| 22:15 | 0.9598325                                                                                                                                                                                                                                                                                                      |
|       | 19:05<br>19:10<br>19:15<br>19:20<br>19:25<br>19:30<br>19:35<br>19:40<br>19:45<br>19:50<br>20:00<br>20:05<br>20:10<br>20:15<br>20:20<br>20:25<br>20:30<br>20:35<br>20:40<br>20:45<br>20:55<br>21:00<br>21:05<br>21:10<br>21:25<br>21:30<br>21:25<br>21:30<br>21:25<br>21:40<br>21:55<br>22:00<br>22:05<br>22:10 |

| 100yrHydrograph | 15:50 | 11.66898 |
|-----------------|-------|----------|
| 100yrHydrograph | 15:55 | 11.49166 |
| 100yrHydrograph | 16:00 | 11.3145  |
| 100yrHydrograph | 16:05 | 11.13787 |
| 100yrHydrograph | 16:10 | 10.96224 |
| 100yrHydrograph | 16:15 | 10.78573 |
| 100yrHydrograph | 16:20 | 10.60909 |
| 100yrHydrograph | 16:25 | 10.43269 |
| 100yrHydrograph | 16:30 | 10.25677 |
| 100yrHydrograph | 16:35 | 10.08101 |
| 100yrHydrograph | 16:40 | 9.904943 |
| 100yrHydrograph | 16:45 | 9.728643 |
| 100yrHydrograph | 16:50 | 9.552533 |
| 100yrHydrograph | 16:55 | 9.376752 |
| 100yrHydrograph | 17:00 | 9.201365 |
| 100yrHydrograph | 17:05 | 9.026419 |
| 100yrHydrograph | 17:10 | 8.854236 |
| 100yrHydrograph | 17:15 | 8.68074  |
| 100yrHydrograph | 17:20 | 8.507633 |
| 100yrHydrograph | 17:25 | 8.335072 |
| 100yrHydrograph | 17:30 | 8.163301 |
| 100yrHydrograph | 17:35 | 7.992058 |
| 100yrHydrograph | 17:40 | 7.821409 |
| 100yrHydrograph | 17:45 | 7.651455 |
| 100yrHydrograph | 17:50 | 7.482112 |
| 100yrHydrograph | 17:55 | 7.313401 |
| 100yrHydrograph | 18:00 | 7.145336 |
| 100yrHydrograph | 18:05 | 6.979621 |
| 100yrHydrograph | 18:10 | 6.813243 |
| 100yrHydrograph | 18:15 | 6.647324 |
| 100yrHydrograph | 18:20 | 6.482216 |
| 100yrHydrograph | 18:25 | 5.824821 |
| 100yrHydrograph | 18:30 | 5.295127 |
| 100yrHydrograph | 18:35 | 5.060137 |
| 100yrHydrograph | 18:40 | 4.84829  |
| 100yrHydrograph | 18:45 | 4.645963 |
| 100yrHydrograph | 18:50 | 4.453671 |
| 100yrHydrograph | 18:55 | 4.270811 |
| 100yrHydrograph | 19:00 | 4.09688  |
|                 |       |          |

| 100 mlludnognaph | 22.20 | 0 0265075 |
|------------------|-------|-----------|
| 100yrHydrograph  | 22.20 | 0.9205975 |
| 100yrHydrograph  | 22:25 | 0.895036  |
| 100yrHydrograph  | 22:30 | 0.8651206 |
| 100yrHydrograph  | 22:35 | 0.8349182 |
| 100yrHydrograph  | 22:40 | 0.8052853 |
| 100yrHydrograph  | 22:45 | 0.7765169 |
| 100yrHydrograph  | 22:50 | 0.7486013 |
| 100yrHydrograph  | 22:55 | 0.721274  |
| 100yrHydrograph  | 23:00 | 0.6946917 |
| 100yrHydrograph  | 23:05 | 0.6689637 |
| 100yrHydrograph  | 23:10 | 0.6440647 |
| 100yrHydrograph  | 23:15 | 0.619979  |
| 100yrHydrograph  | 23:20 | 0.5967006 |
| 100yrHydrograph  | 23:25 | 0.5741587 |
| 100yrHydrograph  | 23:30 | 0.5523183 |
| 100yrHydrograph  | 23:35 | 0.5311568 |
| 100yrHydrograph  | 23:40 | 0.5106529 |
| 100yrHydrograph  | 23:45 | 0.4907854 |
| 100yrHydrograph  | 23:50 | 0.4715335 |
| 100yrHydrograph  | 23:55 | 0.4528767 |
|                  |       |           |
| 120SCS           | 0:00  | 0         |
| 120SCS           | 0:15  | 2.88      |
| 120SCS           | 0:30  | 2.88      |
| 120SCS           | 0:45  | 2.88      |
| 120SCS           | 1:00  | 2.88      |
| 120SCS           | 1:15  | 2.88      |
| 120SCS           | 1:30  | 2.88      |
| 120SCS           | 1:45  | 2.88      |
| 120SCS           | 2:00  | 2.88      |
| 120SCS           | 2:15  | 3.456     |
| 120SCS           | 2:30  | 3.456     |
| 120SCS           | 2:45  | 3.456     |
| 120SCS           | 3:00  | 3.456     |
| 120SCS           | 3:15  | 4.608     |
| 120SCS           | 3:30  | 4.608     |
| 120SCS           | 3:45  | 4.608     |
| 120SCS           | 4:00  | 4.608     |
| 120SCS           | 4:15  | 6.912     |
|                  |       |           |

| 120SCS              | 4:30  | 6.912   |
|---------------------|-------|---------|
| 120SCS              | 4:45  | 9.216   |
| 120SCS              | 5:00  | 9.216   |
| 120SCS              | 5:15  | 13.824  |
| 120SCS              | 5:30  | 13.824  |
| 120SCS              | 5:45  | 55.296  |
| 120SCS              | 6:00  | 152.064 |
| 120SCS              | 6:15  | 20.736  |
| 120SCS              | 6:30  | 20.736  |
| 120SCS              | 6:45  | 9.216   |
| 120SCS              | 7:00  | 9.216   |
| 120SCS              | 7:15  | 6.912   |
| 120SCS              | 7:30  | 6.912   |
| 120SCS              | 7:45  | 6.912   |
| 120SCS              | 8:00  | 6.912   |
| 120SCS              | 8:15  | 4.032   |
| 120SCS              | 8:30  | 4.032   |
| 120SCS              | 8:45  | 4.032   |
| 120SCS              | 9:00  | 4.032   |
| 120SCS              | 9:15  | 4.032   |
| 120SCS              | 9:30  | 4.032   |
| 120SCS              | 9:45  | 4.032   |
| 120SCS              | 10:00 | 4.032   |
| 120SCS              | 10:15 | 2.304   |
| 120SCS              | 10:30 | 2.304   |
| 120SCS              | 10:45 | 2.304   |
| 120SCS              | 11:00 | 2.304   |
| 120SCS              | 11:15 | 2.304   |
| 120SCS              | 11:30 | 2.304   |
| 120SCS              | 11:45 | 2.304   |
| 120SCS              | 12:00 | 0       |
| [REPORT]            |       |         |
| ;;Reporting Options |       |         |
| INPUT YES           |       |         |
| CONTROLS NO         |       |         |
| SUBCATCHMENTS ALL   |       |         |
| NODES ALL           |       |         |
| LINKS ALL           |       |         |
|                     |       |         |

| 350504.706880014<br>Meters<br>X-Coord<br><br>350580.8<br>350565.848<br>350702.274<br>350547.792<br>350651.907<br>350536.617<br>350539.591<br>350565.233<br>350557.664<br>350644.317<br>350612.609<br>350676.499 | <pre>5015809.99134237 350738.979598863 5016090.1829165 Y-Coord 5016032 5016038.828 5015973.798 5015987.469 501587.3.685 5015877.154 5016022.489 5015895.797 5015958.821 5015987.934 5016011.36 5015951.256</pre> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X-Coord<br>350580.8<br>350565.848<br>350702.274<br>350547.792<br>350691.907<br>350536.617<br>350599.591<br>350555.233<br>350557.664<br>350644.317<br>350612.609<br>350676.499<br>350676.499                     | Y-Coord<br>5016032<br>5016038.828<br>5015973.798<br>5015987.469<br>5015873.685<br>5015877.154<br>5016022.489<br>5015895.797<br>5015958.821<br>5015987.934<br>5016011.36<br>5015951.256                           |
| 350580.8<br>350565.848<br>350762.274<br>350547.792<br>350691.907<br>350536.617<br>350599.591<br>350565.233<br>350597.664<br>350644.317<br>350612.609<br>350676.499                                              | 5016032<br>5016038.828<br>5015973.798<br>5015987.469<br>5015873.685<br>5015877.154<br>5016022.489<br>5015895.797<br>5015988.821<br>5015987.934<br>5016011.36<br>5015951.256                                      |
| 350565.848<br>350762.274<br>350547.792<br>350691.907<br>350536.617<br>350599.591<br>350565.233<br>350597.664<br>350644.317<br>350612.609<br>350676.499                                                          | 5016038.828<br>5015973.798<br>5015987.469<br>5015873.685<br>5015877.154<br>5016022.489<br>5015895.797<br>5015988.821<br>5015987.934<br>5016011.36<br>5015951.256                                                 |
| 350702.274<br>3507547.792<br>350691.907<br>350536.617<br>350599.591<br>350565.233<br>350597.664<br>350644.317<br>350612.609<br>350676.499                                                                       | 5015073.798<br>5015973.798<br>5015987.469<br>5015873.685<br>5015877.154<br>5016022.489<br>5015955.797<br>5015958.821<br>5015987.934<br>5016011.36<br>5015951.256                                                 |
| 350547.792<br>350691.907<br>350536.617<br>350599.591<br>350565.233<br>350597.664<br>350644.317<br>350612.609<br>350676.499                                                                                      | 5015987.469<br>5015873.685<br>5015877.154<br>5016022.489<br>5015895.797<br>5015958.821<br>5015987.934<br>5016011.36<br>5015951.256                                                                               |
| 350691.907<br>350536.617<br>350599.591<br>350565.233<br>350597.664<br>350644.317<br>350612.609<br>350676.499                                                                                                    | 5015873.685<br>5015877.154<br>5016022.489<br>5015895.797<br>5015958.821<br>5015987.934<br>5016011.36<br>5015951.256                                                                                              |
| 350536.617<br>350599.591<br>350565.233<br>350597.664<br>350644.317<br>350612.609<br>350676.499                                                                                                                  | 5015877.154<br>5016022.489<br>5015895.797<br>5015958.821<br>5015987.934<br>5016011.36<br>5015951.256                                                                                                             |
| 350599.591<br>350555.233<br>350597.664<br>350644.317<br>350612.609<br>350676.499                                                                                                                                | 5016022.489<br>5015895.797<br>5015958.821<br>5015987.934<br>5016011.36<br>5015951.256                                                                                                                            |
| 350565.233<br>350597.664<br>350644.317<br>350612.609<br>350676.499                                                                                                                                              | 5015825.797<br>5015958.821<br>5015987.934<br>5016011.36<br>5015951.256                                                                                                                                           |
| 350597.664<br>350644.317<br>350612.609<br>350676.499                                                                                                                                                            | 5015958.821<br>5015987.934<br>5016011.36<br>5015951.256                                                                                                                                                          |
| 350644.317<br>350612.609<br>350676.499                                                                                                                                                                          | 5015950.021<br>5015987.034<br>5016011.36<br>5015951.256                                                                                                                                                          |
| 350612.609<br>350676.499                                                                                                                                                                                        | 5015011.36<br>5015951.256                                                                                                                                                                                        |
| 350676.499                                                                                                                                                                                                      | 5015951.256                                                                                                                                                                                                      |
| 2506701.455                                                                                                                                                                                                     | 5015551.250                                                                                                                                                                                                      |
| 370094 740                                                                                                                                                                                                      | 5015914 342                                                                                                                                                                                                      |
| 350662 511                                                                                                                                                                                                      | 5015888 115                                                                                                                                                                                                      |
| 350638 638                                                                                                                                                                                                      | 5015863 467                                                                                                                                                                                                      |
| 350600 067                                                                                                                                                                                                      | 5015880 7/1                                                                                                                                                                                                      |
| 350571 435                                                                                                                                                                                                      | 5015020.741                                                                                                                                                                                                      |
| 350589 892                                                                                                                                                                                                      | 5015926.751                                                                                                                                                                                                      |
| 350611.749                                                                                                                                                                                                      | 5016033.953                                                                                                                                                                                                      |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                                  |
| X-Coord                                                                                                                                                                                                         | Y-Coord                                                                                                                                                                                                          |
| 350597.646                                                                                                                                                                                                      | 5016038.74                                                                                                                                                                                                       |
| X-Coord                                                                                                                                                                                                         | Y-Coord                                                                                                                                                                                                          |
|                                                                                                                                                                                                                 | X-Coord<br>X-Coord                                                                                                                                                                                               |

#### SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix C Stormwater Management March 29, 2022

## C.3 SAMPLE PCSWMM MODEL OUTPUT (12HR 100YR SCS)

| WARNING 03: negative                                                                                                                                                                                                                                                  | offset ignor                                                                                                                                                                                                            | ed for Li                                                                                                                                                | nk C2                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                          |                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                          |                                                                                                                                                                                |
| **************************************                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                          |                                                                                                                                                                                |
| ***********                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                          |                                                                                                                                                                                |
| Number of rain gages<br>Number of subcatchme<br>Number of nodes<br>Number of links<br>Number of pollutants<br>Number of land uses                                                                                                                                     | nts 24<br>19<br>15<br>0<br>0                                                                                                                                                                                            |                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                          |                                                                                                                                                                                |
| * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                          |                                                                                                                                                                                |
| Raingage Summary                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                          |                                                                                                                                                                                |
| *****                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                          |                                                                                                                                                                                |
| Namo                                                                                                                                                                                                                                                                  | Data Source                                                                                                                                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                                                    | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reco                                                               | rding                    |                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                       | Data Source                                                                                                                                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                                                    | туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    | rva1<br>                 |                                                                                                                                                                                |
| RG1                                                                                                                                                                                                                                                                   | 100SCS                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                                                                                                                    | INTENSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                                                                 | min.                     |                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                          |                                                                                                                                                                                |
| **************************************                                                                                                                                                                                                                                |                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                          |                                                                                                                                                                                |
| 3uucacciment Summary<br>********************                                                                                                                                                                                                                          |                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                          |                                                                                                                                                                                |
| Name                                                                                                                                                                                                                                                                  | Area                                                                                                                                                                                                                    | Width                                                                                                                                                    | %Imperv                                                                                                                                                                                                                            | %Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rain                                                               | Gage                     | Outlet                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                          |                                                                                                                                                                                |
| EXT-1                                                                                                                                                                                                                                                                 | 0.07                                                                                                                                                                                                                    | 95.00                                                                                                                                                    | 38.57                                                                                                                                                                                                                              | 1.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RG1                                                                |                          | CB507-S                                                                                                                                                                        |
| ROOF_10                                                                                                                                                                                                                                                               | 0.28                                                                                                                                                                                                                    | 136.00                                                                                                                                                   | 100.00                                                                                                                                                                                                                             | 1.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RG1                                                                |                          | ROOF-10-S                                                                                                                                                                      |
| KUUF_11                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                    | 21.00                                                                                                                                                    | 100.00                                                                                                                                                                                                                             | 1.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RG1                                                                |                          | ROOF-11-S                                                                                                                                                                      |
| ROOF_12<br>ROOF_3                                                                                                                                                                                                                                                     | 0.01<br>0.11                                                                                                                                                                                                            | 130.00                                                                                                                                                   | 100.00                                                                                                                                                                                                                             | 1.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RG1                                                                |                          | ROOF-12-5<br>ROOF-3-5                                                                                                                                                          |
| ROOF_4                                                                                                                                                                                                                                                                | 0.04                                                                                                                                                                                                                    | 46.00                                                                                                                                                    | 100.00                                                                                                                                                                                                                             | 1.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RG1                                                                |                          | ROOF-4-S                                                                                                                                                                       |
| R00F_5                                                                                                                                                                                                                                                                | 0.11                                                                                                                                                                                                                    | 130.00                                                                                                                                                   | 100.00                                                                                                                                                                                                                             | 1.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RG1                                                                |                          | ROOF-5-S                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                          |                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                          |                                                                                                                                                                                |
| ROOF_8                                                                                                                                                                                                                                                                | 0.01                                                                                                                                                                                                                    | 21.00                                                                                                                                                    | 100.00                                                                                                                                                                                                                             | 1.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RG1                                                                |                          | ROOF-8-S                                                                                                                                                                       |
| R00F_8<br>R00F_9                                                                                                                                                                                                                                                      | 0.01<br>0.01                                                                                                                                                                                                            | 21.00<br>15.00                                                                                                                                           | 100.00<br>100.00                                                                                                                                                                                                                   | 1.5000<br>1.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RG1<br>RG1                                                         |                          | ROOF-8-S<br>ROOF-9-S                                                                                                                                                           |
| ROOF_8<br>ROOF_9<br>ROOF_2<br>ROOF_7                                                                                                                                                                                                                                  | 0.01<br>0.01<br>0.10                                                                                                                                                                                                    | 21.00<br>15.00<br>95.00                                                                                                                                  | 100.00<br>100.00<br>100.00                                                                                                                                                                                                         | 1.5000<br>1.5000<br>1.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RG1<br>RG1<br>RG1<br>PC1                                           |                          | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S                                                                                                                                             |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1                                                                                                                                                                                                                      | 0.01<br>0.01<br>0.10<br>0.10<br>0.14                                                                                                                                                                                    | 21.00<br>15.00<br>95.00<br>95.00                                                                                                                         | 100.00<br>100.00<br>100.00<br>100.00<br>77 14                                                                                                                                                                                      | 1.5000<br>1.5000<br>1.5000<br>1.5000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1                             |                          | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS                                                                                                                      |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2                                                                                                                                                                                                            | 0.01<br>0.01<br>0.10<br>0.14<br>0.15                                                                                                                                                                                    | 21.00<br>15.00<br>95.00<br>95.00<br>115.00<br>122.00                                                                                                     | 100.00<br>100.00<br>100.00<br>100.00<br>77.14<br>80.00                                                                                                                                                                             | 1.5000<br>1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1                      |                          | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS                                                                                                             |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3                                                                                                                                                                                                  | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06                                                                                                                                                                            | 21.00<br>15.00<br>95.00<br>95.00<br>115.00<br>122.00<br>60.00                                                                                            | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57                                                                                                                                                                              | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1               |                          | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS                                                                                           |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_4                                                                                                                                                                              | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12                                                                                                                                                                    | 21.00<br>15.00<br>95.00<br>95.00<br>115.00<br>122.00<br>60.00<br>95.00                                                                                   | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00                                                                                                                                                                     | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1        |                          | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS                                                                         |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6                                                                                                                                                                    | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.22                                                                                                                                                    | 21.00<br>15.00<br>95.00<br>95.00<br>115.00<br>122.00<br>60.00<br>95.00<br>85.00<br>85.00                                                                 | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>70.00                                                                                                                                                            | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>PG1        |                          | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS                                                                |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_5<br>UGPK_6<br>UGPK_7                                                                                                                                                | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11                                                                                                                                            | 21.00<br>15.00<br>95.00<br>95.00<br>115.00<br>122.00<br>60.00<br>95.00<br>85.00<br>60.00<br>78.00                                                        | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>70.00<br>100.00<br>78.57                                                                                                                                         | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1        |                          | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS                                              |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8                                                                                                                                      | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.06                                                                                                                                    | 21.00<br>15.00<br>95.00<br>95.00<br>115.00<br>122.00<br>60.00<br>95.00<br>85.00<br>60.00<br>78.00<br>42.00                                               | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>70.00<br>100.00<br>78.57<br>75.71                                                                                                                                | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>15.0000<br>2.0000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 |                          | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS                            |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9                                                                                                                            | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.06<br>0.03                                                                                                                            | 21.00<br>15.00<br>95.00<br>95.00<br>115.00<br>122.00<br>60.00<br>95.00<br>85.00<br>60.00<br>78.00<br>42.00<br>42.00                                      | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>70.00<br>100.00<br>78.57<br>75.71<br>100.00                                                                                                                      | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>15.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 |                          | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS          |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_2<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1                                                                                                                   | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.06<br>0.03<br>0.08                                                                                                                    | 21.00<br>15.00<br>95.00<br>95.00<br>115.00<br>122.00<br>60.00<br>95.00<br>85.00<br>60.00<br>78.00<br>42.00<br>42.00<br>78.00                             | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>70.00<br>100.00<br>78.57<br>75.71<br>100.00<br>41.43                                                                                                             | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 |                          | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1            |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-1<br>UNC-2<br>UNC-3                                                                                                  | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.02<br>0.11<br>0.06<br>0.03<br>0.08<br>0.52<br>0.7                                                                                     | 21.00<br>15.00<br>95.00<br>95.00<br>115.00<br>122.00<br>60.00<br>95.00<br>85.00<br>60.00<br>78.00<br>42.00<br>42.00<br>78.00<br>25.00                    | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>70.00<br>100.00<br>78.57<br>75.71<br>100.00<br>41.43<br>8.57<br>75.11                                                                                            | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 |                          | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1<br>OF2<br>OF3                |
| ROOF_8<br>ROOF]<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>JGPK_8<br>JGPK_9<br>JNC-1<br>JNC-1<br>JNC-3<br>JNC-4                                                                               | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.02<br>0.11<br>0.03<br>0.03<br>0.03<br>0.08<br>0.52<br>0.07<br>0.05                                                                    | 21.00<br>15.00<br>95.00<br>115.00<br>122.00<br>60.00<br>95.00<br>60.00<br>78.00<br>42.00<br>42.00<br>42.00<br>78.00<br>25.00<br>122.00<br>90.00          | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>70.00<br>100.00<br>78.57<br>75.71<br>100.00<br>41.43<br>8.57<br>61.43<br>37.14                                                                                   | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 |                          | ROOF-8-S<br>ROOF-9-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1<br>OF2<br>OF3<br>CB507-S |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>JNC-1<br>JNC-2<br>JNC-3<br>JNC-4                                                                                                  | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.02<br>0.11<br>0.06<br>0.03<br>0.08<br>0.52<br>0.07<br>0.05                                                                            | 21.00<br>15.00<br>95.00<br>95.00<br>115.00<br>122.00<br>60.00<br>95.00<br>85.00<br>60.00<br>78.00<br>42.00<br>42.00<br>78.00<br>25.00<br>122.00<br>90.00 | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>100.00<br>100.00<br>78.57<br>75.71<br>100.00<br>41.43<br>8.57<br>61.43<br>37.14                                                                                  | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 |                          | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1<br>OF2<br>OF3<br>CB507-S     |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-4                                                                                         | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.02<br>0.11<br>0.03<br>0.03<br>0.03<br>0.03<br>0.05                                                                                    | 21.00<br>15.00<br>95.00<br>115.00<br>122.00<br>60.00<br>95.00<br>85.00<br>60.00<br>78.00<br>42.00<br>42.00<br>78.00<br>25.00<br>122.00<br>90.00          | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>70.00<br>100.00<br>78.57<br>75.71<br>100.00<br>41.43<br>8.57<br>61.43<br>37.14                                                                                   | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 |                          | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1<br>OF2<br>OF3<br>CB507-S     |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_5<br>UGPK_6<br>UGPK_9<br>UNC-1<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-3<br>UNC-4                                                                                | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.02<br>0.11<br>0.06<br>0.03<br>0.08<br>0.52<br>0.07<br>0.05                                                                            | 21.00<br>15.00<br>95.00<br>115.00<br>122.00<br>60.00<br>95.00<br>85.00<br>60.00<br>78.00<br>42.00<br>42.00<br>78.00<br>25.00<br>122.00<br>90.00          | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>70.00<br>100.00<br>78.57<br>75.71<br>100.00<br>41.43<br>8.57<br>61.43<br>37.14                                                                                   | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 |                          | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1<br>OF2<br>OF3<br>CB507-S     |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_5<br>UGPK_9<br>UNC-1<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-4                                                                                                   | 0.01<br>0.10<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.06<br>0.03<br>0.08<br>0.52<br>0.07<br>0.05                                                                                            | 21.00<br>15.00<br>95.00<br>115.00<br>122.00<br>60.00<br>95.00<br>85.00<br>60.00<br>78.00<br>42.00<br>78.00<br>25.00<br>122.00<br>90.00                   | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>70.00<br>100.00<br>70.00<br>100.00<br>75.71<br>100.00<br>41.43<br>8.57<br>61.43<br>37.14                                                                                           | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 | Externa<br>Inflow        | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1<br>OF2<br>OF3<br>CB507-S              |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_5<br>UGPK_6<br>UGPK_9<br>UNC-1<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-3<br>UNC-4                                                                                          | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.06<br>0.03<br>0.08<br>0.52<br>0.07<br>0.05                                                                                            | 21.00<br>15.00<br>95.00<br>115.00<br>122.00<br>60.00<br>95.00<br>85.00<br>60.00<br>78.00<br>25.00<br>122.00<br>90.00                                     | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>70.00<br>100.00<br>70.00<br>100.00<br>75.71<br>100.00<br>41.43<br>8.57<br>61.43<br>37.14                                                                                           | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.00000<br>2.00000<br>2.00000<br>2.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 | Externa<br>Inflow<br>Yes | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1<br>OF2<br>OF3<br>CB507-S              |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_3<br>UGPK_3<br>UGPK_6<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_9<br>UNC-1<br>UNC-1<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-4<br>************************************                                                  | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.02<br>0.11<br>0.03<br>0.03<br>0.08<br>0.52<br>0.07<br>0.05                                                                            | 21.00<br>15.00<br>95.00<br>115.00<br>122.00<br>60.00<br>78.00<br>60.00<br>78.00<br>42.00<br>78.00<br>25.00<br>122.00<br>90.00                            | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>70.00<br>100.00<br>41.43<br>8.57<br>61.43<br>37.14<br>nvert<br>Elev.                                                                                             | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.00000<br>2.00000<br>2.00000<br>2.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 | Externa<br>Inflow<br>Yes | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1<br>OF2<br>OF3<br>CB507-S     |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_9<br>UNC-1<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-4<br>*****************<br>Node Summary<br>****************<br>Name<br>                              | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.06<br>0.03<br>0.08<br>0.52<br>0.07<br>0.05                                                                                            | 21.00<br>15.00<br>95.00<br>115.00<br>122.00<br>60.00<br>78.00<br>42.00<br>78.00<br>25.00<br>122.00<br>90.00                                              | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>100.00<br>78.57<br>75.71<br>100.00<br>41.43<br>8.57<br>61.43<br>37.14                                                                                            | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 | Externa<br>Inflow<br>Yes | ROOF-8-S<br>ROOF-1-2-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1<br>OF2<br>OF3<br>CB507-S            |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_5<br>UGPK_5<br>UGPK_5<br>UGPK_7<br>UGPK_9<br>UNC-1<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-4<br>************************************                                                           | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.02<br>0.11<br>0.06<br>0.03<br>0.08<br>0.52<br>0.07<br>0.05                                                                            | 21.00<br>15.00<br>95.00<br>115.00<br>122.00<br>60.00<br>78.00<br>42.00<br>78.00<br>25.00<br>122.00<br>90.00                                              | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>78.57<br>70.00<br>100.00<br>78.57<br>75.71<br>100.00<br>41.43<br>8.57<br>61.43<br>37.14                                                                                            | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.00000<br>2.00000<br>2.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 | Externa<br>Inflow<br>Yes | ROOF-8-S<br>ROOF-1-2-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1<br>OF2<br>OF3<br>CB507-S            |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF1_2<br>ROOF1_1<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_5<br>UGPK_6<br>UGPK_9<br>UNC-1<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-4<br>************************************                                                          | 0.01<br>0.01<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.02<br>0.11<br>0.06<br>0.03<br>0.08<br>0.52<br>0.07<br>0.05<br>Type<br>JUNCTION<br>OUTFALL<br>OUTFALL<br>OUTFALL<br>OUTFALL<br>OUTFALL | 21.00<br>15.00<br>95.00<br>115.00<br>122.00<br>60.00<br>78.00<br>42.00<br>78.00<br>25.00<br>122.00<br>90.00                                              | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>100.00<br>78.57<br>75.71<br>100.00<br>41.43<br>8.57<br>61.43<br>37.14<br>99.40<br>99.40<br>99.70<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                         | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.00000<br>2.00000<br>2.00000<br>2.00000000                                                                                                                                                                                                                                                                                                                                                                 | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 | Externa<br>Inflow<br>Yes | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1<br>OF2<br>OF3<br>CB507-S              |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF1_2<br>ROOF1_1<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-4<br>******************<br>Node Summary<br>****************<br>Name<br>                  | 0.01<br>0.01<br>0.10<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.02<br>0.11<br>0.06<br>0.03<br>0.08<br>0.52<br>0.07<br>0.05                                                                    | 21.00<br>15.00<br>95.00<br>115.00<br>122.00<br>60.00<br>78.00<br>42.00<br>78.00<br>25.00<br>122.00<br>90.00                                              | 100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>100.00<br>78.57<br>75.71<br>100.00<br>41.43<br>8.57<br>61.43<br>37.14<br>99.40<br>99.40<br>99.70<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.           | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.00000<br>2.00000<br>2.00000<br>2.00000000                                                                                                                                                                                                                                                                                                                                                                           | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 | Externa<br>Inflow<br>Yes | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1<br>OF2<br>OF3<br>CB507-S              |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF1_2<br>ROOF1_1<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_9<br>UNC-1<br>UNC-1<br>UNC-2<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-4<br>*****************<br>Node Summary<br>****************<br>Name<br> | 0.01<br>0.01<br>0.10<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.02<br>0.11<br>0.06<br>0.03<br>0.08<br>0.52<br>0.07<br>0.05                                                                    | 21.00<br>15.00<br>95.00<br>115.00<br>122.00<br>60.00<br>78.00<br>42.00<br>78.00<br>42.00<br>78.00<br>122.00<br>90.00                                     | 100.00<br>100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>100.00<br>78.57<br>75.71<br>100.00<br>41.43<br>8.57<br>61.43<br>37.14<br>99.40<br>99.40<br>99.70<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.00000<br>2.00000<br>2.00000000                                                                                                                                                                                                                                                                                                                                                                                                                              | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 | Externa<br>Inflow<br>Yes | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1<br>OF2<br>OF3<br>CB507-S                       |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF1_2<br>ROOF1_2<br>UGPK_1<br>UGPK_3<br>UGPK_3<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-4<br>******************<br>Node Summary<br>****************<br>Name<br>                   | 0.01<br>0.01<br>0.10<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.02<br>0.11<br>0.06<br>0.03<br>0.08<br>0.52<br>0.07<br>0.05                                                                    | 21.00<br>15.00<br>95.00<br>115.00<br>122.00<br>60.00<br>78.00<br>42.00<br>78.00<br>25.00<br>122.00<br>90.00                                              | 100.00<br>100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>100.00<br>78.57<br>75.71<br>100.00<br>41.43<br>8.57<br>61.43<br>37.14<br>99.40<br>98.70<br>6.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0   | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.00000<br>2.00000<br>2.00000000                                                                                                                                                                                                                                                                                                                                                                            | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 | Externa<br>Inflow<br>Yes | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1<br>OF2<br>OF3<br>CB507-S                       |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF1_2<br>ROOF4_7<br>UGPK_1<br>UGPK_3<br>UGPK_4<br>UGPK_5<br>UGPK_6<br>UGPK_7<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-4<br>******************<br>Node Summary<br>****************<br>Name<br>                   | 0.01<br>0.01<br>0.10<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.02<br>0.11<br>0.02<br>0.03<br>0.08<br>0.52<br>0.07<br>0.05                                                                    | 21.00<br>15.00<br>95.00<br>115.00<br>122.00<br>60.00<br>78.00<br>42.00<br>78.00<br>42.00<br>78.00<br>122.00<br>90.00                                     | 100.00<br>100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>100.00<br>78.57<br>75.71<br>100.00<br>41.43<br>8.57<br>61.43<br>37.14<br>99.40<br>98.70<br>6.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0   | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.00000<br>2.00000<br>2.00000<br>2.00000000   | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 | Externa<br>Inflow<br>Yes | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1<br>OF2<br>OF3<br>CB507-S                       |
| ROOF_8<br>ROOF_9<br>ROOF1_2<br>ROOF6_7<br>UGPK_1<br>UGPK_2<br>UGPK_3<br>UGPK_6<br>UGPK_6<br>UGPK_7<br>UGPK_8<br>UGPK_9<br>UNC-1<br>UNC-2<br>UNC-3<br>UNC-4<br>************************************                                                                    | 0.01<br>0.01<br>0.10<br>0.10<br>0.14<br>0.15<br>0.06<br>0.12<br>0.11<br>0.02<br>0.11<br>0.06<br>0.03<br>0.08<br>0.52<br>0.07<br>0.05                                                                                    | 21.00<br>15.00<br>95.00<br>115.00<br>122.00<br>60.00<br>78.00<br>42.00<br>78.00<br>42.00<br>78.00<br>122.00<br>90.00                                     | 100.00<br>100.00<br>100.00<br>100.00<br>77.14<br>80.00<br>58.57<br>70.00<br>100.00<br>78.57<br>75.71<br>100.00<br>41.43<br>8.57<br>61.43<br>37.14<br>99.40<br>98.70<br>6.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0   | 1.5000<br>1.5000<br>1.5000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.00000<br>2.00000<br>2.0000000<br>2.00000000 | RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1 | Externa<br>Inflow<br>Yes | ROOF-8-S<br>ROOF-9-S<br>ROOF-1-2-S<br>ROOF-6-7-S<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>TANKS<br>OF1<br>OF2<br>OF3<br>CB507-S                       |

| ROOF-5-S   | STORAGE | 114.00 | 0.15 | 0.0 |
|------------|---------|--------|------|-----|
| R00F-6-7-S | STORAGE | 114.00 | 0.15 | 0.0 |
| R00F-8-S   | STORAGE | 114.00 | 0.15 | 0.0 |
| R00F-9-S   | STORAGE | 114.00 | 0.15 | 0.0 |
| TANKS      | STORAGE | 99.70  | 3.61 | 0.0 |
|            |         |        |      |     |

|              | _ |  |
|--------------|---|--|
| *****        |   |  |
| Link Summary |   |  |
| *****        |   |  |

| Name      | From Node  | To Node  | Туре    | Length | %Slope | Roughness |
|-----------|------------|----------|---------|--------|--------|-----------|
| C1        | CB507-S    | 0F4      | CONDUIT | 21.3   | 0.5164 | 0.0130    |
| C2        | 1000       | 100      | CONDUIT | 20.8   | 0.4327 | 0.0130    |
| Pipe_13   | 100        | HEADWALL | CONDUIT | 11.1   | 0.2515 | 0.0130    |
| CISTERN-0 | TANKS      | 1000     | ORIFICE |        |        |           |
| W1        | TANKS      | 1000     | WEIR    |        |        |           |
| R00F10-0  | ROOF-10-S  | TANKS    | OUTLET  |        |        |           |
| R00F11-0  | ROOF-11-S  | TANKS    | OUTLET  |        |        |           |
| R00F12-0  | ROOF-12-S  | TANKS    | OUTLET  |        |        |           |
| R00F1-2-0 | ROOF-1-2-S | TANKS    | OUTLET  |        |        |           |
| ROOF3-0   | R00F-3-S   | TANKS    | OUTLET  |        |        |           |
| R00F4-0   | ROOF-4-S   | TANKS    | OUTLET  |        |        |           |
| R00F5-0   | R00F-5-S   | TANKS    | OUTLET  |        |        |           |
| R00F6-7-0 | R00F-6-7-S | TANKS    | OUTLET  |        |        |           |
| R00F8-0   | R00F-8-S   | TANKS    | OUTLET  |        |        |           |
| R00F9-0   | ROOF-9-S   | TANKS    | OUTLET  |        |        |           |
|           |            |          |         |        |        |           |
|           |            |          |         |        |        |           |

| Conduit | Shape    | Full<br>Depth | Full<br>Area | Hyd.<br>Rad. | Max.<br>Width | No. of<br>Barrels | Full<br>Flow |
|---------|----------|---------------|--------------|--------------|---------------|-------------------|--------------|
| C1      | CIRCULAR | 0.25          | 0.05         | 0.06         | 0.25          | 1                 | 42.74        |
| C2      | CIRCULAR | 0.45          | 0.16         | 0.11         | 0.45          | 1                 | 187.55       |
| Pipe_13 | CIRCULAR | 0.90          | 0.64         | 0.23         | 0.90          | 1                 | 907.85       |

#### 

| Transect | Overland |        |        |        |        |
|----------|----------|--------|--------|--------|--------|
| Area:    |          |        |        |        |        |
|          | 0.0196   | 0.0392 | 0.0588 | 0.0784 | 0.0980 |
|          | 0.1177   | 0.1374 | 0.1571 | 0.1768 | 0.1965 |
|          | 0.2162   | 0.2360 | 0.2558 | 0.2756 | 0.2954 |
|          | 0.3152   | 0.3351 | 0.3550 | 0.3748 | 0.3947 |
|          | 0.4147   | 0.4346 | 0.4546 | 0.4745 | 0.4945 |
|          | 0.5145   | 0.5346 | 0.5546 | 0.5747 | 0.5947 |
|          | 0.6148   | 0.6350 | 0.6551 | 0.6752 | 0.6954 |
|          | 0.7156   | 0.7358 | 0.7560 | 0.7762 | 0.7965 |
|          | 0.8168   | 0.8371 | 0.8574 | 0.8777 | 0.8980 |
|          | 0.9184   | 0.9388 | 0.9592 | 0.9796 | 1.0000 |
| Hrad:    |          |        |        |        |        |
|          | 0.0208   | 0.0415 | 0.0622 | 0.0829 | 0.1036 |
|          | 0.1242   | 0.1448 | 0.1653 | 0.1858 | 0.2063 |
|          | 0.2268   | 0.2472 | 0.2676 | 0.2879 | 0.3083 |
|          | 0.3285   | 0.3488 | 0.3690 | 0.3892 | 0.4094 |
|          | 0.4295   | 0.4496 | 0.4697 | 0.4897 | 0.5097 |
|          | 0.5297   | 0.5496 | 0.5695 | 0.5894 | 0.6093 |
|          | 0.6291   | 0.6489 | 0.6686 | 0.6884 | 0.7081 |
|          | 0.7277   | 0.7474 | 0.7670 | 0.7865 | 0.8061 |
|          | 0.8256   | 0.8451 | 0.8646 | 0.8840 | 0.9034 |
|          | 0.9228   | 0.9421 | 0.9614 | 0.9807 | 1.0000 |
| Width:   |          |        |        |        |        |
|          | 0.9580   | 0.9589 | 0.9597 | 0.9606 | 0.9614 |
|          | 0.9623   | 0.9631 | 0.9640 | 0.9649 | 0.9657 |
|          | 0.9666   | 0.9674 | 0.9683 | 0.9691 | 0.9700 |
|          | 0.9709   | 0.9717 | 0.9726 | 0.9734 | 0.9743 |
|          | 0.9751   | 0.9760 | 0.9769 | 0.9777 | 0.9786 |
|          | 0.9794   | 0.9803 | 0.9811 | 0.9820 | 0.9829 |
|          | 0.9837   | 0.9846 | 0.9854 | 0.9863 | 0.9871 |
|          | 0.9880   | 0.9889 | 0.9897 | 0.9906 | 0.9914 |
|          | 0.9923   | 0.9931 | 0.9940 | 0.9949 | 0.9957 |

|          | 0.9966         | 0.9974 | 0.9983 | 0.9991 | 1.0000 |
|----------|----------------|--------|--------|--------|--------|
| Transect | Overland(or    | iø)    |        |        |        |
| Area:    | over runa(or . | -6/    |        |        |        |
| , a cur  | 0.0196         | 0.0392 | 0.0588 | 0.0784 | 0.0980 |
|          | 0.1177         | 0.1374 | 0.1571 | 0.1768 | 0.1965 |
|          | 0.2162         | 0.2360 | 0.2558 | 0.2756 | 0.2954 |
|          | 0.3152         | 0.3351 | 0.3550 | 0.3748 | 0.3947 |
|          | 0.4147         | 0.4346 | 0.4546 | 0.4745 | 0.4945 |
|          | 0.5145         | 0.5346 | 0.5546 | 0.5747 | 0.5947 |
|          | 0.6148         | 0.6350 | 0.6551 | 0.6752 | 0.6954 |
|          | 0.7156         | 0.7358 | 0.7560 | 0.7762 | 0.7965 |
|          | 0.8168         | 0.8371 | 0.8574 | 0.8777 | 0.8980 |
|          | 0.9184         | 0.9388 | 0.9592 | 0.9796 | 1.0000 |
| Hrad:    |                |        |        |        |        |
|          | 0.0208         | 0.0415 | 0.0622 | 0.0829 | 0.1036 |
|          | 0.1242         | 0.1448 | 0.1653 | 0.1858 | 0.2063 |
|          | 0.2268         | 0.2472 | 0.2676 | 0.2879 | 0.3083 |
|          | 0.3285         | 0.3488 | 0.3690 | 0.3892 | 0.4094 |
|          | 0.4295         | 0.4496 | 0.4697 | 0.4897 | 0.5097 |
|          | 0.5297         | 0.5496 | 0.5695 | 0.5894 | 0.6093 |
|          | 0.6291         | 0.6489 | 0.6686 | 0.6884 | 0.7081 |
|          | 0.7277         | 0.7474 | 0.7670 | 0.7865 | 0.8061 |
|          | 0.8256         | 0.8451 | 0.8646 | 0.8840 | 0.9034 |
|          | 0.9228         | 0.9421 | 0.9614 | 0.9807 | 1.0000 |
| Width:   |                |        |        |        |        |
|          | 0.9580         | 0.9589 | 0.9597 | 0.9606 | 0.9614 |
|          | 0.9623         | 0.9631 | 0.9640 | 0.9649 | 0.9657 |
|          | 0.9666         | 0.9674 | 0.9683 | 0.9691 | 0.9700 |
|          | 0.9709         | 0.9717 | 0.9726 | 0.9734 | 0.9743 |
|          | 0.9751         | 0.9760 | 0.9769 | 0.9777 | 0.9786 |
|          | 0.9794         | 0.9803 | 0.9811 | 0.9820 | 0.9829 |
|          | 0.9837         | 0.9846 | 0.9854 | 0.9863 | 0.9871 |
|          | 0.9880         | 0.9889 | 0.9897 | 0.9906 | 0.9914 |
|          | 0.9923         | 0.9931 | 0.9940 | 0.9949 | 0.9957 |
|          | 0.9966         | 0.9974 | 0.9983 | 0.9991 | 1.0000 |

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

\*\*\*\*\* Analysis Options \*\*\*\*\* Flow Units ..... LPS Process Models: Rainfall/Runoff ..... YES RDII ..... NO Snowmelt ..... NO Groundwater ..... NO Flow Routing ..... YES Ponding Allowed ..... YES Water Quality ..... NO Infiltration Method ..... HORTON Flow Routing Method ..... DYNWAVE Surcharge Method ..... EXTRAN Starting Date ..... 07/23/2009 00:00:00 Ending Date ..... 07/24/2009 00:00:00 Antecedent Dry Days ..... 0.0 Report Time Step ..... 00:05:00 Maximum Trials ..... 8 Number of Threads ..... 1 Head Tolerance ..... 0.001500 m

| Volume    | Depth                                          |
|-----------|------------------------------------------------|
| hectare-m | mm                                             |
|           |                                                |
| 0.226     | 95.520                                         |
| 0.000     | 0.000                                          |
| 0.063     | 26.653                                         |
|           | Volume<br>hectare-m<br>0.226<br>0.000<br>0.063 |

| Surface Runoff       | 0.161  | 68.040 |
|----------------------|--------|--------|
| Final Storage        | 0.002  | 1.029  |
| Continuity Error (%) | -0.212 |        |

| *****                   | Volume    | Volume   |
|-------------------------|-----------|----------|
| Flow Routing Continuity | hectare-m | 10^6 ltr |
| *****                   |           |          |
| Dry Weather Inflow      | 0.000     | 0.000    |
| Wet Weather Inflow      | 0.161     | 1.607    |
| Groundwater Inflow      | 0.000     | 0.000    |
| RDII Inflow             | 0.000     | 0.000    |
| External Inflow         | 0.183     | 1.828    |
| External Outflow        | 0.336     | 3.358    |
| Flooding Loss           | 0.000     | 0.000    |
| Evaporation Loss        | 0.000     | 0.000    |
| Exfiltration Loss       | 0.000     | 0.000    |
| Initial Stored Volume   | 0.000     | 0.000    |
| Final Stored Volume     | 0.008     | 0.077    |
| Continuity Error (%)    | 0.005     |          |

### 

#### 

| Total Boak            | Pupoff  | Total  | Total | Total | Total | Imperv | Perv   | Total  |      |
|-----------------------|---------|--------|-------|-------|-------|--------|--------|--------|------|
| TOLAL PEAK            | RUNOTT  | Precin | Runon | Evan  | Infil | Runoff | Runoff | Runoff |      |
| Runoff Runoff         | f Coeff | meerp  | Ranon | LVUP  | 10011 | Runorr | Runorr | Runorr |      |
| Subcatchment          |         | mm     | mm    | mm    | mm    | mm     | mm     | mm     | 10^6 |
| ltr LPS               |         |        |       |       |       |        |        |        |      |
|                       |         |        |       |       |       |        |        |        |      |
| EXT-1                 |         | 95.52  | 0.00  | 0.00  | 52.83 | 36.25  | 42.60  | 42.60  |      |
| 0.03 22.66            | 0.446   |        |       |       |       |        |        |        |      |
| ROOF_10               | 0.000   | 95.52  | 0.00  | 0.00  | 0.00  | 94.22  | 0.00   | 94.22  |      |
| ROOF 11               | 0.980   | 95 52  | 0 00  | 0 00  | 0 00  | 93 99  | 0 00   | 93 99  |      |
| 0.01 3.73             | 0.984   | JJ.J2  | 0.00  | 0.00  | 0.00  | 55.55  | 0.00   |        |      |
| ROOF_12               |         | 95.52  | 0.00  | 0.00  | 0.00  | 94.03  | 0.00   | 94.03  |      |
| 0.01 4.41             | 0.984   |        |       |       |       |        |        |        |      |
| ROOF_3                |         | 95.52  | 0.00  | 0.00  | 0.00  | 94.04  | 0.00   | 94.04  |      |
| 0.10 38.65            | 0.985   | 05 53  | 0.00  | 0.00  | 0.00  | 04 02  | 0.00   | 04.02  |      |
| ROUF_4<br>0 03 12 /0  | 0 981   | 95.52  | 0.00  | 0.00  | 0.00  | 94.05  | 0.00   | 94.05  |      |
| ROOF 5                | 0.904   | 95.52  | 0.00  | 0.00  | 0.00  | 94.04  | 0.00   | 94.04  |      |
| 0.10 38.66            | 0.985   |        |       |       |       |        |        |        |      |
| ROOF_8                |         | 95.52  | 0.00  | 0.00  | 0.00  | 93.99  | 0.00   | 93.99  |      |
| 0.01 3.43             | 0.984   |        |       |       |       |        |        |        |      |
| ROOF_9                | 0.004   | 95.52  | 0.00  | 0.00  | 0.00  | 93.98  | 0.00   | 93.98  |      |
| 0.00 1.8/             | 0.984   | 05 52  | 0 00  | 0 00  | 0 00  | 04 07  | 0 00   | 04 07  |      |
| ROUF1_2<br>0.09 33.58 | 0 985   | 95.52  | 0.00  | 0.00  | 0.00  | 94.07  | 0.00   | 94.07  |      |
| R00F6 7               | 0.205   | 95.52  | 0.00  | 0.00  | 0.00  | 94.07  | 0.00   | 94.07  |      |
| 0.09 33.62            | 0.985   |        |       |       |       |        |        |        |      |
| UGPK_1                |         | 95.52  | 0.00  | 0.00  | 14.36 | 80.16  | 7.64   | 80.16  |      |

| 0.12  | 49.41          | 0.839 |               |      |      |       |       |       |         |
|-------|----------------|-------|---------------|------|------|-------|-------|-------|---------|
| UGPK  | _2             |       | 95.52         | 0.00 | 0.00 | 12.55 | 81.90 | 6.69  | 81.90   |
| 0.12  | 52.49          | 0.857 |               |      |      |       |       |       |         |
| UGPK  | _3             |       | 95.52         | 0.00 | 0.00 | 26.08 | 68.85 | 13.80 | 68.85   |
| 0.04  | 20.01          | 0.721 |               |      |      |       |       |       |         |
| UGPK  | _4             |       | 95.52         | 0.00 | 0.00 | 18.87 | 75.81 | 10.00 | 75.81   |
| 0.09  | 40.79          | 0.794 |               |      |      |       |       |       |         |
| UGPK  | _5             |       | 95.52         | 0.00 | 0.00 | 18.87 | 75.81 | 10.00 | 75.81   |
| 0.08  | 37.46          | 0.794 |               |      |      |       |       |       |         |
| UGPK  | _6             |       | 95.52         | 0.00 | 0.00 | 0.00  | 93.99 | 0.00  | 93.99   |
| 0.02  | 7.74           | 0.984 |               |      |      |       | ~ ~ ~ |       | ~ ~ ~ ~ |
| UGPK  | -1             |       | 95.52         | 0.00 | 0.00 | 13.46 | 81.04 | 7.16  | 81.04   |
| 0.09  | 38.52          | 0.848 | 05 50         | 0.00 | 0.00 | 45 07 | 70.00 | 0.40  | 70.00   |
| UGPK  | _8             | 0 000 | 95.52         | 0.00 | 0.00 | 15.2/ | 79.30 | 8.10  | 79.30   |
| 0.05  | 21.12          | 0.830 | 05 52         | 0.00 | 0.00 | 0.00  | 04 01 | 0.00  | 04 01   |
|       | _ <sup>9</sup> | 0.004 | 95.52         | 0.00 | 0.00 | 0.00  | 94.01 | 0.00  | 94.01   |
| 0.05  | 11.45          | 0.984 | 05 52         | 0.00 | 0.00 | F1 02 | 28 04 | 42 47 | 42 47   |
| 0 02  | 1<br>25 77     | 0 455 | 95.52         | 0.00 | 0.00 | 51.92 | 58.94 | 45.47 | 43.47   |
|       | 23.77          | 0.455 | 05 52         | 0 00 | 0 00 | 72 25 | 8 08  | 23 25 | 23 25   |
| 0 1 2 | 2 39 00        | 0 2/3 | 95.52         | 0.00 | 0.00 | 12.25 | 0.00  | 23.25 | 23.25   |
| UNC-  | 3              | 0.245 | 95 52         | 0 00 | 0 00 | 43 07 | 57 73 | 51 73 | 51 73   |
| 0.04  | 23.41          | 0.542 | 55.5 <u>2</u> | 0.00 | 0.00 | 43.07 | 57.75 | 51.75 | 51.75   |
| UNC-  | 4              | 01012 | 95.52         | 0.00 | 0.00 | 53.22 | 34,91 | 42.20 | 42.20   |
| 0.02  | 16.94          | 0.442 |               | 1.00 |      |       |       |       |         |
|       |                |       |               |      |      |       |       |       |         |

\*\*\*\*\*

Node Depth Summary \*\*\*\*\*\*\*\*\*

| Node     | Туре     | Average<br>Depth<br>Meters | Maximum<br>Depth<br>Meters | Maximum<br>HGL<br>Meters | Time<br>Occu<br>days | of Max<br>Irrence<br>hr:min | Reported<br>Max Depth<br>Meters |
|----------|----------|----------------------------|----------------------------|--------------------------|----------------------|-----------------------------|---------------------------------|
| 100      | JUNCTION | 0.23                       | 0.43                       | 99.83                    | 0                    | 06:46                       | 0.43                            |
| HEADWALL | OUTFALL  | 0.00                       | 0.00                       | 98.70                    | 0                    | 00:00                       | 0.00                            |
| OF1      | OUTFALL  | 0.00                       | 0.00                       | 0.00                     | 0                    | 00:00                       | 0.00                            |

| 0F2        | OUTFALL | 0.00 | 0.00 | 0.00   | 0 | 00:00 | 0.00 |
|------------|---------|------|------|--------|---|-------|------|
| 0F3        | OUTFALL | 0.00 | 0.00 | 0.00   | 0 | 00:00 | 0.00 |
| 0F4        | OUTFALL | 0.30 | 0.30 | 102.17 | 0 | 00:00 | 0.30 |
| 1000       | STORAGE | 0.07 | 0.25 | 100.17 | 0 | 06:23 | 0.25 |
| CB507-S    | STORAGE | 0.00 | 0.18 | 102.74 | 0 | 06:15 | 0.18 |
| ROOF-10-S  | STORAGE | 0.02 | 0.14 | 114.14 | 0 | 06:19 | 0.14 |
| ROOF-11-S  | STORAGE | 0.01 | 0.12 | 114.12 | 0 | 06:18 | 0.12 |
| ROOF-12-S  | STORAGE | 0.01 | 0.13 | 114.13 | 0 | 06:18 | 0.13 |
| ROOF-1-2-S | STORAGE | 0.01 | 0.14 | 114.14 | 0 | 06:19 | 0.14 |
| ROOF-3-S   | STORAGE | 0.02 | 0.15 | 114.15 | 0 | 06:19 | 0.15 |
| ROOF-4-S   | STORAGE | 0.01 | 0.13 | 114.13 | 0 | 06:19 | 0.13 |
| ROOF-5-S   | STORAGE | 0.02 | 0.15 | 114.15 | 0 | 06:19 | 0.15 |
| R00F-6-7-S | STORAGE | 0.01 | 0.14 | 114.14 | 0 | 06:19 | 0.14 |
| ROOF-8-S   | STORAGE | 0.01 | 0.11 | 114.11 | 0 | 06:18 | 0.11 |
| ROOF-9-S   | STORAGE | 0.00 | 0.09 | 114.09 | 0 | 06:16 | 0.08 |
| TANKS      | STORAGE | 1.26 | 2.78 | 102.48 | 0 | 06:23 | 2.78 |

| Node      | Туре     | Maximum<br>Lateral<br>Inflow<br>LPS | Maximum<br>Total<br>Inflow<br>LPS | Time<br>Occu<br>days | of Max<br>nrrence<br>hr:min | Lateral<br>Inflow<br>Volume<br>10^6 ltr | Total<br>Inflow<br>Volume<br>10^6 ltr | Flow<br>Balance<br>Error<br>Percent |
|-----------|----------|-------------------------------------|-----------------------------------|----------------------|-----------------------------|-----------------------------------------|---------------------------------------|-------------------------------------|
| 100       | JUNCTION | 136.19                              | 222.37                            | 0                    | 06:46                       | 1.83                                    | 3.12                                  | 0.008                               |
| HEADWALL  | OUTFALL  | 0.00                                | 222.38                            | 0                    | 06:46                       | 0                                       | 3.12                                  | 0.000                               |
| 0F1       | OUTFALL  | 25.77                               | 25.77                             | 0                    | 06:15                       | 0.0339                                  | 0.0339                                | 0.000                               |
| 0F2       | OUTFALL  | 39.00                               | 39.00                             | 0                    | 06:15                       | 0.12                                    | 0.12                                  | 0.000                               |
| 0F3       | OUTFALL  | 23.41                               | 23.41                             | 0                    | 06:15                       | 0.0359                                  | 0.0359                                | 0.000                               |
| 0F4       | OUTFALL  | 0.00                                | 39.58                             | 0                    | 06:15                       | 0                                       | 0.0511                                | 0.000                               |
| 1000      | STORAGE  | 0.00                                | 111.32                            | 0                    | 06:23                       | 0                                       | 1.29                                  | 0.010                               |
| CB507-S   | STORAGE  | 39.61                               | 39.61                             | 0                    | 06:15                       | 0.0511                                  | 0.0511                                | -0.001                              |
| R00F-10-S | STORAGE  | 98.91                               | 98.91                             | 0                    | 06:10                       | 0.265                                   | 0.265                                 | -0.001                              |
| R00F-11-S | STORAGE  | 3.73                                | 3.73                              | 0                    | 06:05                       | 0.00997                                 | 0.00997                               | -0.001                              |
| R00F-12-S | STORAGE  | 4.41                                | 4.41                              | 0                    | 06:10                       | 0.0118                                  | 0.0118                                | -0.001                              |

| ROOF-1-2-S | STORAGE | 33.58  | 33.58  | 0 | 06:10 | 0.0897  | 0.0897  | -0.001 |
|------------|---------|--------|--------|---|-------|---------|---------|--------|
| R00F-3-S   | STORAGE | 38.65  | 38.65  | 0 | 06:10 | 0.103   | 0.103   | -0.001 |
| R00F-4-S   | STORAGE | 12.40  | 12.40  | 0 | 06:15 | 0.0331  | 0.0331  | -0.001 |
| R00F-5-S   | STORAGE | 38.66  | 38.66  | 0 | 06:10 | 0.103   | 0.103   | -0.001 |
| R00F-6-7-S | STORAGE | 33.62  | 33.62  | 0 | 06:10 | 0.0898  | 0.0898  | -0.001 |
| R00F-8-S   | STORAGE | 3.43   | 3.43   | 0 | 06:05 | 0.00916 | 0.00916 | -0.001 |
| R00F-9-S   | STORAGE | 1.87   | 1.87   | 0 | 06:10 | 0.00499 | 0.00499 | -0.001 |
| TANKS      | STORAGE | 278.96 | 337.67 | 0 | 06:15 | 0.647   | 1.37    | 0.001  |

\*\*\*\*\* Node Surcharge Summary \*\*\*\*\*

No nodes were surcharged.

\*\*\*\*\* Node Flooding Summary

No nodes were flooded.

\*\*\*\*\* Storage Volume Summary \*\*\*\*\*

| Storage Unit | Average<br>Volume<br>1000 m3 | Avg<br>Pcnt<br>Full | Evap<br>Pcnt<br>Loss | Exfil<br>Pcnt<br>Loss | Maximum<br>Volume<br>1000 m3 | Max<br>Pcnt<br>Full | Time<br>Occu<br>days | of Max<br>rrence<br>hr:min | Maximum<br>Outflow<br>LPS |
|--------------|------------------------------|---------------------|----------------------|-----------------------|------------------------------|---------------------|----------------------|----------------------------|---------------------------|
| 1000         | 0.000                        | 2                   | 0                    | 0                     | 0.000                        | 6                   | 0                    | 06:23                      | 111.34                    |
| CB507-S      | 0.000                        | 0                   | 0                    | 0                     | 0.000                        | 0                   | 0                    | 00:00                      | 39.58                     |
| R00F-10-S    | 0.006                        | 5                   | 0                    | 0                     | 0.093                        | 82                  | 0                    | 06:19                      | 19.23                     |
| ROOF-11-S    | 0.000                        | 1                   | 0                    | 0                     | 0.002                        | 48                  | 0                    | 06:18                      | 1.68                      |
| ROOF-12-S    | 0.000                        | 2                   | 0                    | 0                     | 0.003                        | 67                  | 0                    | 06:18                      | 1.77                      |
| ROOF-1-2-S   | 0.002                        | 4                   | 0                    | 0                     | 0.030                        | 78                  | 0                    | 06:19                      | 8.29                      |

| ROOF-3-S   | 0.003 | 7  | 0 | 0 | 0.041 | 91 | 0 | 06:19 | 7.34   |
|------------|-------|----|---|---|-------|----|---|-------|--------|
| ROOF-4-S   | 0.000 | 3  | 0 | 0 | 0.010 | 67 | 0 | 06:19 | 3.15   |
| R00F-5-S   | 0.003 | 7  | 0 | 0 | 0.041 | 91 | 0 | 06:19 | 7.34   |
| R00F-6-7-S | 0.002 | 4  | 0 | 0 | 0.030 | 78 | 0 | 06:19 | 8.29   |
| ROOF-8-S   | 0.000 | 1  | 0 | 0 | 0.002 | 44 | 0 | 06:18 | 1.66   |
| ROOF-9-S   | 0.000 | 0  | 0 | 0 | 0.000 | 19 | 0 | 06:16 | 1.48   |
| TANKS      | 0.281 | 35 | 0 | 0 | 0.618 | 77 | 0 | 06:23 | 111.32 |

#### \*\*\*\*\*

Outfall Loading Summary \*\*\*\*\*

| Outfall Node | Flow  | Avg   | Max    | Total    |
|--------------|-------|-------|--------|----------|
|              | Freq  | Flow  | Flow   | Volume   |
|              | Pcnt  | LPS   | LPS    | 10^6 ltr |
| HEADWALL     | 90.72 | 39.77 | 222.38 | 3.117    |
| OF1          | 6.58  | 5.97  | 25.77  | 0.034    |
| OF2          | 11.58 | 11.97 | 39.00  | 0.120    |
| OF3          | 12.63 | 3.29  | 23.41  | 0.036    |
| OF4          | 6.36  | 9.30  | 39.58  | 0.051    |
| System       | 25.57 | 70.29 | 253.17 | 3.358    |

\*\*\*\*\*

Link Flow Summary \*\*\*\*\*\*\*\*\*

| Link    | Туре    | Maximum<br> Flow <br>LPS | Time o<br>Occur<br>days ł | of Max<br>rrence<br>nr:min | Maximum<br> Veloc <br>m/sec | Max/<br>Full<br>Flow | Max/<br>Full<br>Depth |
|---------|---------|--------------------------|---------------------------|----------------------------|-----------------------------|----------------------|-----------------------|
| C1      | CONDUIT | 39.58                    | 0                         | 06:15                      | 1.09                        | 0.93                 | 0.69                  |
| C2      | CONDUIT | 111.34                   | 0                         | 06:24                      | 1.28                        | 0.59                 | 0.54                  |
| Pipe_13 | CONDUIT | 222.38                   | 0                         | 06:46                      | 1.35                        | 0.24                 | 0.31                  |

| CISTERN-0 | ORIFICE | 18.15 | 0 | 06:23 |
|-----------|---------|-------|---|-------|
| W1        | WEIR    | 93.17 | 0 | 06:23 |
| R00F10-0  | DUMMY   | 19.23 | 0 | 06:19 |
| ROOF11-0  | DUMMY   | 1.68  | 0 | 06:18 |
| ROOF12-0  | DUMMY   | 1.77  | 0 | 06:18 |
| R00F1-2-0 | DUMMY   | 8.29  | 0 | 06:19 |
| ROOF3-0   | DUMMY   | 7.34  | 0 | 06:19 |
| ROOF4-0   | DUMMY   | 3.15  | 0 | 05:52 |
| ROOF5-0   | DUMMY   | 7.34  | 0 | 06:19 |
| R00F6-7-0 | DUMMY   | 8.29  | 0 | 06:19 |
| ROOF8-0   | DUMMY   | 1.66  | 0 | 06:18 |
| ROOF9-0   | DUMMY   | 1.48  | 0 | 06:16 |

 Adjusted
 ----- Fraction of Time in Flow Class

 /Actual
 Up
 Down
 Sub
 Sup
 Up
 Down
 Norm
 Inlet

 Conduit
 Length
 Dry
 Dry
 Dry
 Crit
 Crit
 Crit
 Ltd
 Ctrl

 C1
 1.00
 0.24
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0

1.00 0.23

No conduits were surcharged.

Analysis begun on: Tue Mar 29 13:35:49 2022 Analysis ended on: Tue Mar 29 13:35:50 2022 Total elapsed time: 00:00:01

#### SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix C Stormwater Management March 29, 2022

### C.4 OIL/GRIT SEPARATOR SIZING CALCULATIONS





### **Detailed Stormceptor Sizing Report – WOS PH2 20 Cedarow Crt**

| Project Information & Location |                                                                                                                 |                              |           |  |  |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|-----------|--|--|--|
| Project Name                   | WOS PH2                                                                                                         | Project Number               | 20349     |  |  |  |
| City                           | Ottawa                                                                                                          | Ottawa State/ Province       |           |  |  |  |
| Country                        | Canada Date                                                                                                     |                              | 11/4/2019 |  |  |  |
| <b>Designer Information</b>    | l de la constante de la constante de la constante de la constante de la constante de la constante de la constan | EOR Information (optional)   |           |  |  |  |
| Name                           | thakshika rathnasooriya                                                                                         | thakshika rathnasooriya Name |           |  |  |  |
| Company stantec Company        |                                                                                                                 | Company                      |           |  |  |  |
| Phone #                        | 613-724-4081                                                                                                    | Phone #                      |           |  |  |  |
| Email                          | thakshika.rathnasooriya@stantec.com                                                                             | Email                        |           |  |  |  |

#### Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

| Site Name                     | WOS PH2 20 Cedarow Crt           |  |
|-------------------------------|----------------------------------|--|
| Recommended Stormceptor Model | STC 300                          |  |
| Target TSS Removal (%)        | 80.0                             |  |
| TSS Removal (%) Provided      | 80                               |  |
| PSD                           | Fine Distribution                |  |
| Rainfall Station              | OTTAWA MACDONALD-CARTIER INT'L A |  |

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

| Stormceptor Sizing Summary |                           |  |  |  |
|----------------------------|---------------------------|--|--|--|
| Stormceptor Model          | % TSS Removal<br>Provided |  |  |  |
| STC 300                    | 80                        |  |  |  |
| STC 750                    | 85                        |  |  |  |
| STC 1000                   | 85                        |  |  |  |
| STC 1500                   | 85                        |  |  |  |
| STC 2000                   | 86                        |  |  |  |
| STC 3000                   | 87                        |  |  |  |
| STC 4000                   | 88                        |  |  |  |
| STC 5000                   | 89                        |  |  |  |
| STC 6000                   | 90                        |  |  |  |
| STC 9000                   | 92                        |  |  |  |
| STC 10000                  | 92                        |  |  |  |
| STC 14000                  | 94                        |  |  |  |
| StormceptorMAX             | Custom                    |  |  |  |





#### Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

#### **Design Methodology**

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- · Detention time of the system

#### Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

| Rainfall Station       |                                      |                                         |         |  |  |  |
|------------------------|--------------------------------------|-----------------------------------------|---------|--|--|--|
| State/Province         | Ontario                              | Ontario Total Number of Rainfall Events |         |  |  |  |
| Rainfall Station Name  | OTTAWA MACDONALD-<br>CARTIER INT'L A | Total Rainfall (mm)                     | 20978.1 |  |  |  |
| Station ID #           | 6000                                 | Average Annual Rainfall (mm)            | 567.0   |  |  |  |
| Coordinates            | 45°19'N, 75°40'W                     | Total Evaporation (mm)                  | 982.0   |  |  |  |
| Elevation (ft)         | 370                                  | Total Infiltration (mm)                 | 10341.2 |  |  |  |
| Years of Rainfall Data | 37                                   | Total Rainfall that is Runoff (mm)      | 9654.9  |  |  |  |

#### Notes

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

# FORTERRA<sup>®</sup>

| Drainage Area                                                                           |                                                                                                                                                                                                                                                                                             | Up Stream Storage        |                  |                |                       |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|----------------|-----------------------|
| Total Area (ha)                                                                         | 1.60                                                                                                                                                                                                                                                                                        | Storage                  | (ha-m)           | Discha         | rge (cms)             |
| Imperviousness %                                                                        | 50.60                                                                                                                                                                                                                                                                                       | 0.0                      | 00               | 0.000          |                       |
|                                                                                         |                                                                                                                                                                                                                                                                                             | 0.0                      | 30               | 0.             | 007                   |
|                                                                                         |                                                                                                                                                                                                                                                                                             | 0.0                      | 60               | 0.             | 015                   |
|                                                                                         |                                                                                                                                                                                                                                                                                             | 0.0                      | 90               | 0.             | 022                   |
| Water Quality Objectiv                                                                  | ′e                                                                                                                                                                                                                                                                                          |                          | Up Stream        | Flow Diversion | on                    |
| TSS Removal (%)                                                                         | 80.0                                                                                                                                                                                                                                                                                        | Max. Flo                 | w to Stormcer    | otor (cms)     |                       |
| Runoff Volume Capture (%)                                                               |                                                                                                                                                                                                                                                                                             |                          | Desi             | gn Details     |                       |
| Oil Spill Capture Volume (L)                                                            |                                                                                                                                                                                                                                                                                             | Stormce                  | ptor Inlet Inve  | rt Elev (m)    |                       |
| Peak Conveyed Flow Rate (L/s)                                                           | 126.00                                                                                                                                                                                                                                                                                      | Stormcep                 | tor Outlet Inve  | ert Elev (m)   |                       |
| Water Quality Flow Rate (L/s)                                                           |                                                                                                                                                                                                                                                                                             | Stormceptor Rim Elev (m) |                  |                |                       |
| Normal Water I                                                                          |                                                                                                                                                                                                                                                                                             |                          | /ater Level Ele  | evation (m)    |                       |
|                                                                                         |                                                                                                                                                                                                                                                                                             | Pipe Diameter (mm)       |                  |                |                       |
|                                                                                         |                                                                                                                                                                                                                                                                                             | Pipe Material            |                  |                |                       |
|                                                                                         | Μι                                                                                                                                                                                                                                                                                          | ultiple Inlets (\        | (/N)             | No             |                       |
|                                                                                         |                                                                                                                                                                                                                                                                                             | Grate Inlet (Y/N)        |                  | No             |                       |
|                                                                                         | Particle Size D                                                                                                                                                                                                                                                                             | istribution (F           | PSD)             |                |                       |
| Removing the smallest fraction<br>metals, hydrocarbons and<br>Distribution (PSD) that v | Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design. |                          |                  |                | such as<br>Size<br>n. |
|                                                                                         | Fine Di                                                                                                                                                                                                                                                                                     | stribution               |                  |                |                       |
| Particle Diameter<br>(microns)                                                          | Distribut<br>%                                                                                                                                                                                                                                                                              | ion                      | Specific Gravity |                |                       |
| 20.0                                                                                    | 20.0                                                                                                                                                                                                                                                                                        |                          | 1.30             |                |                       |
| 60.0                                                                                    | 20.0                                                                                                                                                                                                                                                                                        |                          | 1.80             |                |                       |
| 150.0                                                                                   | 20.0                                                                                                                                                                                                                                                                                        |                          | 2.20             |                |                       |
| 400.0                                                                                   | 20.0                                                                                                                                                                                                                                                                                        |                          | 2.65             |                |                       |
| 2000.0                                                                                  | 20.0                                                                                                                                                                                                                                                                                        |                          | 2.65             |                |                       |

# Stormceptor\*

| FODTEDDA"       |
|-----------------|
| <b>FURILARA</b> |
|                 |

| Site Name                           | WOS PH2 20 Cedarow Crt       | WOS PH2 20 Cedarow Crt                               |                  |  |  |
|-------------------------------------|------------------------------|------------------------------------------------------|------------------|--|--|
| Site Details                        |                              |                                                      |                  |  |  |
| Drainage Area                       |                              | Infiltration Parameters                              |                  |  |  |
| Total Area (ha)                     | 1.60                         | Horton's equation is used to estimate infiltra       | ation            |  |  |
| Imperviousness %                    | 50.60                        | Max. Infiltration Rate (mm/hr)                       | 61.98            |  |  |
| Surface Characteristics             | \$                           | Min. Infiltration Rate (mm/hr)                       | 10.16            |  |  |
| Width (m)                           | 253.00                       | Decay Rate (1/sec) 0                                 | .00055           |  |  |
| Slope %                             | 2                            | Regeneration Rate (1/sec)                            | 0.01             |  |  |
| Impervious Depression Storage (mm)  | 0.508                        | Evaporation                                          |                  |  |  |
| Pervious Depression Storage (mm)    | 5.08                         | Daily Evaporation Rate (mm/day)                      | 2.54             |  |  |
| Impervious Manning's n              | Impervious Manning's n 0.015 |                                                      | Dry Weather Flow |  |  |
| Pervious Manning's n                | 0.25                         | Dry Weather Flow (Ips)                               |                  |  |  |
| Maintenance Frequency               | y                            | Winter Months                                        |                  |  |  |
| Maintenance Frequency (months) > 12 |                              | Winter Infiltration                                  | 0                |  |  |
|                                     | TSS Loadin                   | Parameters                                           |                  |  |  |
| TSS Loading Function                |                              |                                                      |                  |  |  |
| Buildup/Wash-off Parame             | eters                        | TSS Availability Parameters                          |                  |  |  |
| Target Event Mean Conc. (EMC) mg/L  |                              | Availability Constant A                              |                  |  |  |
| Exponential Buildup Power           |                              | Availability Factor B                                |                  |  |  |
| Exponential Washoff Exponent        |                              | Availability Exponent C                              |                  |  |  |
|                                     |                              | Min. Particle Size Affected by Availability (micron) |                  |  |  |

## FORTERRA"

| Cumulative Runoff Volume by Runoff Rate |                                             |       |                                 |  |  |  |
|-----------------------------------------|---------------------------------------------|-------|---------------------------------|--|--|--|
| Runoff Rate (L/s)                       | Runoff Volume (m <sup>3</sup> ) Volume Over |       | Cumulative Runoff Volume<br>(%) |  |  |  |
| 1                                       | 111983                                      | 43648 | 72.1                            |  |  |  |
| 4                                       | 151637                                      | 3654  | 97.7                            |  |  |  |
| 9                                       | 154907                                      | 370   | 99.8                            |  |  |  |
| 16                                      | 155201                                      | 73    | 100.0                           |  |  |  |
| 25                                      | 155273                                      | 0     | 100.0                           |  |  |  |
| 36                                      | 155273                                      | 0     | 100.0                           |  |  |  |

### Cumulative Runoff Volume by Runoff Rate

For area: 1.60(ha), imperviousness: 50.60%, rainfall station: OTTAWA MACDONALD-CARTIER INT'L A



# FORTERRA"

| Rainfall Event Analysis |               |                                   |                   |                                    |  |
|-------------------------|---------------|-----------------------------------|-------------------|------------------------------------|--|
| Rainfall Depth<br>(mm)  | No. of Events | Percentage of Total<br>Events (%) | Total Volume (mm) | Percentage of Annual<br>Volume (%) |  |
| 6.35                    | 3113          | 76.1                              | 5230              | 24.9                               |  |
| 12.70                   | 501           | 12.2                              | 4497              | 21.4                               |  |
| 19.05                   | 225           | 5.5                               | 3469              | 16.5                               |  |
| 25.40                   | 105           | 2.6                               | 2317              | 11.0                               |  |
| 31.75                   | 62            | 1.5                               | 1765              | 8.4                                |  |
| 38.10                   | 35            | 0.9                               | 1206              | 5.8                                |  |
| 44.45                   | 28            | 0.7                               | 1163              | 5.5                                |  |
| 50.80                   | 12            | 0.3                               | 557               | 2.7                                |  |
| 57.15                   | 7             | 0.2                               | 378               | 1.8                                |  |
| 63.50                   | 1             | 0.0                               | 63                | 0.3                                |  |
| 69.85                   | 1             | 0.0                               | 64                | 0.3                                |  |
| 76.20                   | 1             | 0.0                               | 76                | 0.4                                |  |
| 82.55                   | 0             | 0.0                               | 0                 | 0.0                                |  |
| 88.90                   | 1             | 0.0                               | 84                | 0.4                                |  |
| 95.25                   | 0             | 0.0                               | 0                 | 0.0                                |  |
| 101.60                  | 0             | 0.0                               | 0                 | 0.0                                |  |
| 107.95                  | 0             | 0.0                               | 0                 | 0.0                                |  |
| 114.30                  | 1             | 0.0                               | 109               | 0.5                                |  |
| 120.65                  | 0             | 0.0                               | 0                 | 0.0                                |  |
| 127.00                  | 0             | 0.0                               | 0                 | 0.0                                |  |



• FORTERRA

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications



#### SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix C Stormwater Management March 29, 2022

### C.5 TANK SPECIFICATIONS



1. ALL DIMENSIONS ARE IN MILLIMETERS UNLESS NOTED OTHERWISE.

PRECAST CONCRETE TANK DESIGNED TO 2012 ONTARIO BUILDING CODE CSA B66-16. BEDDING, WATERPROOFING, BACKFILL, AND ALL OTHER SITE

CONCRETE WORK TO BE IN ACCORDANCE WITH CAN/CSA A23.1 CONCRETE MATERIALS AND METHODS OF CONCRETE CONSTRUCTION, AND CAN/CSA A23.4 PRECAST CONCRETE MATERIALS AND CONSTRUCTION.

BOX DESIGNED FOR A MAXIMUM FILL HEIGHT OF 760 mm WITH 12 kPa LIVE LOAD. DESIGN FILL COVER ON THIS TANK IS 610 mm.

CONCRETE TO BE 45 MPa SCC WITH 600 mm ±70 mm SLUMP.

CONCRETE COVER AS NOTED. WITH ±10 mm TOLERANCE.

REINFORCING STEEL TO BE GRADE 400W BLACK DEFORMED BARS

DO NOT LIFT UNITS UNTIL CONCRETE HAS REACHED A MINIMUM STRENGTH OF 25 MPa, AS DETERMINED BY COMPRESSIVE TESTING OF CONCRETE

GROUT TO BE NON-SHRINK CEMENTITIOUS GROUT WITH MINIMUM

10. JOINT SEAL TO BE CONSEAL CS-102 BUTYL RUBBER SEALANT (CONFORMS TO AASHTO M-198B AND ASTM C-990-91). STORE, HANDLE AND APPLY JOINT SEALS IN STRICT ACCORDANCE WITH MANUFACTURER

11. IT IS STRUCTURALLY IMPORTANT THAT THE SEALS IN THE HORIZONTAL JOINTS BE INSTALLED CORRECTLY. TOP PIECES MUST BE INSTALLED WITHOUT SLIDING THE PIECES ON THE SEALS.

12. DESIGN BASED ON GRANULAR BEDDING AND BACKFILL COMPACTED TO 95%

13. LIFTING INSERTS TO BE GROUTED ON SITE BY OTHERS.

14. DELIVERY IS MADE BY CRANE-EQUIPPED TRUCKS.

15. EXCAVATION MUST BE READY, SAFE AND ACCESSIBLE FOR UNLOADING

16. MINIMUM OVERHEAD CLEARANCE OF 18 FT. IS REQUIRED.

17. ALL UNITS MUST BE HANDLED WITH PROPER LIFTING EQUIPMENT (i.e.

| TTSVILLE | TANK DIMENSIONS |         |            |  |  |  |
|----------|-----------------|---------|------------|--|--|--|
|          | Scale<br>1:50   |         |            |  |  |  |
|          | DWG No.         | Version | Date       |  |  |  |
|          | S-1             | 1       | 2018-08-28 |  |  |  |







|             | · — Ţ — Ţ                  |                                        |                                                      |
|-------------|----------------------------|----------------------------------------|------------------------------------------------------|
| LEGEN       | <b>ID</b>                  |                                        |                                                      |
| OP<br>OTTOM | TUL<br>TLL<br>BUL<br>BLL   | TOP UPP<br>TOP LOV<br>BOTTOM<br>BOTTOM | PER LAYER<br>VER LAYER<br>UPPER LAYER<br>LOWER LAYER |
| ITTSVILLE   | Scale                      | SECT                                   | IONS                                                 |
|             | AS NOTED<br>DWG No.<br>S-4 | Version<br>1                           | Date<br>2018-08-28                                   |

Nott01fpIdata1lshared\proj\2170737\CAD\PRECAST CULVERT BLOCKS.dwg



| TTSVILLE | DETAILS           |              |                    |           |  |  |  |  |  |  |
|----------|-------------------|--------------|--------------------|-----------|--|--|--|--|--|--|
|          | Scale<br>AS NOTED |              |                    |           |  |  |  |  |  |  |
|          | DWG No.<br>S-5    | Version<br>1 | Date<br>2018-08-28 | \\ott01fp |  |  |  |  |  |  |

#### SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix C Stormwater Management March 29, 2022

### C.6 CEDAROW COURT STORM SEWER CAPACITY







| () Stantec    |            | Cedarow Co  | urt      |          |           |            | STORM<br>DESIGN | SEWEI    | R<br>T   |           | DESIGN<br>I = a / (t+l | PARAME <sup>*</sup><br>b) <sup>c</sup> | TERS      | (As per ( | City of Otta | awa Guide  | elines, 2012        | 2)         |             |           |                     |                     |                      |                       |                      |                      |                  |        |            |        |          |          |          |       |                  |        |        |       |         |
|---------------|------------|-------------|----------|----------|-----------|------------|-----------------|----------|----------|-----------|------------------------|----------------------------------------|-----------|-----------|--------------|------------|---------------------|------------|-------------|-----------|---------------------|---------------------|----------------------|-----------------------|----------------------|----------------------|------------------|--------|------------|--------|----------|----------|----------|-------|------------------|--------|--------|-------|---------|
|               | DATE:      |             | 2021-    | -09-01   |           |            | (City of        | Ottawa)  |          |           |                        | 1:2 yr                                 | 1:5 yr    | 1:10 yr   | 1:100 yr     |            |                     |            |             |           |                     |                     |                      |                       |                      |                      |                  |        |            |        |          |          |          |       |                  |        |        |       |         |
|               | REVISION:  |             |          | 1        |           |            |                 |          |          |           | a =                    | 732.951                                | 998.071   | 1174.184  | 1735.688     | B MANNIN   | G'S n =             | 0.013      |             | BEDDING ( | CLASS =             | В                   |                      |                       |                      |                      |                  |        |            |        |          |          |          |       |                  |        |        |       |         |
|               | DESIGNED E | IY:         | Т        | R        | FILE NUN  | IBER:      | 16040151        | 1        |          |           | b =                    | 6.199                                  | 6.053     | 6.014     | 6.014        | MINIMUN    | I COVER:            | 2.00       | m           |           |                     |                     |                      |                       |                      |                      |                  |        |            |        |          |          |          |       |                  |        |        |       |         |
|               | CHECKED B  | Y:          |          | -        |           |            |                 |          |          |           | c =                    | 0.810                                  | 0.814     | 0.816     | 0.820        | TIME OF    | ENTRY               | 10         | min         |           |                     |                     |                      |                       |                      |                      |                  |        |            |        |          |          |          |       |                  |        |        |       |         |
| LOCATI        | ION        |             |          |          |           |            |                 |          |          |           |                        |                                        | -         | DI        | RAINAGE A    | REA        |                     |            |             |           |                     |                     |                      |                       |                      |                      |                  |        |            |        |          | P        | PE SELEC | TION  |                  |        |        |       |         |
| AREA ID       | FROM       | то          | AREA     | AREA     | AREA      | AREA       | AREA            | С        | С        | С         | С                      | AxC                                    | ACCUM     | AxC       | ACCUM.       | AxC        | ACCUM.              | AxC        | ACCUM.      | T of C    | I <sub>2-YEAR</sub> | I <sub>5-YEAR</sub> | I <sub>10-YEAR</sub> | I <sub>100-YEAR</sub> | Q <sub>CONTROL</sub> | ACCUM.               | Q <sub>ACT</sub> | LENGTH | PIPE WIDTH | PIPE   | PIPE     | MATERIAL | CLASS    | SLOPE | Q <sub>CAP</sub> | % FULL | VEL.   | VEL.  | TIME OF |
| NUMBER        | M.H.       | M.H.        | (2-YEAR) | (5-YEAR) | (10-YEAR) | (100-YEAR) | (ROOF)          | (2-YEAR) | (5-YEAR) | (10-YEAR) | (100-YEAR)             | (2-YEAR)                               | AxC (2YR) | (5-YEAR)  | AxC (5YR     | ) (10-YEAR | <li>AxC (10YR)</li> | (100-YEAR) | AxC (100YR) |           |                     |                     |                      |                       |                      | Q <sub>CONTROL</sub> | (CIA/360)        |        | OR DIAMETE | HEIGHT | SHAPE    |          |          |       | (FULL)           |        | (FULL) | (ACT) | FLOW    |
|               |            |             | (ha)     | (ha)     | (ha)      | (ha)       | (ha)            | (-)      | (-)      | (-)       | (-)                    | (ha)                                   | (ha)      | (ha)      | (ha)         | (ha)       | (ha)                | (ha)       | (ha)        | (min)     | (mm/h)              | (mm/h)              | (mm/h)               | (mm/h)                | (L/s)                | (L/s)                | (L/s)            | (m)    | (mm)       | (mm)   | (-)      | (-)      | (-)      | %     | (L/s)            | (-)    | (m/s)  | (m/s) | (min)   |
| UNC-4 + EXT-1 | CB507      | EX1         | 0.00     | 0.12     | 0.00      | 0.00       | 0.00            | 0.00     | 0.47     | 0.00      | 0.00                   | 0.000                                  | 0.000     | 0.056     | 0.056        | 0.000      | 0.000               | 0.000      | 0.000       | 10.00     | 76.81               | 104.19              | 122.14               | 178.56                | 0.0                  | 0.0                  | 16.2             | 21.3   | 250        | 250    | CIRCULAR | CONCRETE | -        | 0.50  | 42.7             | 37.91% | 0.86   | 0.68  | 0.52    |
|               |            |             |          |          |           |            |                 |          |          |           |                        |                                        |           |           |              |            |                     |            |             |           |                     |                     |                      |                       |                      |                      |                  | -      |            |        |          |          |          |       |                  |        |        |       |         |
| OFF-1         | EX1        | EX2         | 0.00     | 0.21     | 0.00      | 0.00       | 0.00            | 0.00     | 0.75     | 0.00      | 0.00                   | 0.000                                  | 0.000     | 0.154     | 0.210        | 0.000      | 0.000               | 0.000      | 0.000       | 10.52     | 74.85               | 101.50              | 118.97               | 173.90                | 0.0                  | 0.0                  | 59.2             | 39.0   | 300        | 300    | CIRCULAR | CONCRETE |          | 0.50  | 68.0             | 87.02% | 0.97   | 0.98  | 0.67    |
| OFF-2         | EX2        | POOLE CREEK | 0.00     | 1.25     | 0.00      | 0.00       | 0.00            | 0.00     | 0.75     | 0.00      | 0.00                   | 0.000                                  | 0.000     | 0.937     | 1.147        | 0.000      | 0.000               | 0.000      | 0.000       | 11.19     | 72.52               | 98.30               | 115.20               | 168.37                | 0.0                  | 0.0                  | 313.1            | 86.8   | 525        | 525    | CIRCULAR | CONCRETE |          | 0.62  | 353.3            | 88.62% | 1.58   | 1.61  | 0.90    |
|               | 1          |             |          | -        |           |            |                 |          |          |           |                        |                                        |           |           |              |            |                     |            |             |           |                     |                     |                      |                       |                      |                      |                  |        |            |        |          |          |          |       |                  |        |        |       |         |

#### SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix C Stormwater Management March 29, 2022

### C.7 EXCERPTS FROM WOS PHASE 1

Stormwater Management March 22, 2017

### 5.0 STORMWATER MANAGEMENT

### 5.1 OBJECTIVES

The objective of this stormwater management plan is to determine the measures necessary to control the quantity of stormwater released from the proposed development to established criteria, and to provide sufficient detail for approval and construction. The proposed development will discharge treated and controlled stormwater runoff to Poole Creek.

### 5.2 SWM CRITERIA AND CONSTRAINTS

Criteria were established by combining current design practices outlined by the City of Ottawa Design Guidelines (2012), Ministry of Environment and Climate Change (MOECC) and Mississippi Valley Conservation Authority (MVCA). The following summarizes the criteria, with the source of each criterion indicated in italics:

### General

- Use of the dual drainage principle (City of Ottawa)
- Wherever feasible and practical, site-level measures should be used to reduce and control the volume and rate of runoff (City of Ottawa)
- Site-level infiltration measures to be implemented to meet infiltration criteria of minimum 50 mm/yr (MVCA)
- Assess impact of 100 year event outlined in the City of Ottawa Sewer Design Guidelines, and climate change scenarios with a 20% increase of rainfall intensity, on major & minor drainage system (City of Ottawa)
- Quality control to be provided for 80% TSS removal (MVCA, MOECC)
- Site discharge to be controlled to pre-development rates (MVCA, City of Ottawa)
- Site design to mitigate erosion impacts on Poole Creek (City of Ottawa)

### Storm Sewer & Inlet Controls

- Size storm sewers to convey the 5 year storm event under free-flow conditions using City of Ottawa I-D-F parameters (City of Ottawa) with the exception of the outlet sewer from the proposed underground storage facility.
- Minimum sewer inlet capture rates to be set such that no ponding occurs at the end of the 5-year event (City of Ottawa)
- Hydraulic Grade Line (HGL) analysis to be conducted using the 100 year 12 hour SCS storm distribution (City of Ottawa).
- 100-year Storm HGL to be a minimum of 0.30 m below building foundation footing otherwise foundation drains will be pumped (City of Ottawa)

Stormwater Management March 22, 2017

### Surface Storage & Overland Flow

- Building openings to be a minimum of 0.30m above the 100-year water level (City of Ottawa)
- Maximum depth of flow under either static or dynamic conditions shall be less than 0.30m (City of Ottawa)
- Subdrains required in swales where longitudinal gradient is less than 1.5% (City of Ottawa)
- Provide adequate emergency overflow conveyance off-site (City of Ottawa)

### 5.2.1 Pre-Development Conditions

A lumped catchment PCSWMM model was created for the subject site based on a site area of 2.9ha, and utilizing an existing SCS curve number of 80 per background documents. Additional subcatchment parameters were defined based upon recent topographical survey of the property:

| Area (ha) | Width (m) | Slope (%) | Imperv. (%) | Subarea Routing |
|-----------|-----------|-----------|-------------|-----------------|
| 2.90      | 161.1     | 1.0       | 0.0         | Outlet          |

Based on the above and during the 2 through 100-year 12hr SCS events (MTO Distribution curves), peak pre-development outflow rates from the subject site were identified per the tables below:

| Storm Event       | 2-Year  | 5-Year  | 10-Year |  |  |  |  |  |
|-------------------|---------|---------|---------|--|--|--|--|--|
| Peak Outflow Rate | 17.7L/s | 43.9L/s | 66.2L/s |  |  |  |  |  |

| Storm Event       | 25-Year  | 50-Year  | 100-Year |
|-------------------|----------|----------|----------|
| Peak Outflow Rate | 103.7L/s | 136.5L/s | 176.3L/s |

PCSWMM model input and output files for the predevelopment scenario are included within **Appendix C.** 

### 5.3 STORMWATER MANAGEMENT DESIGN

### 5.3.1 Rationale for Design and Servicing Deviations

### 5.3.1.1 Deviation from Kanata West MSS

Per the findings of the Kanata West MSS, stormwater outflows from the proposed site were intended to be directed to the storm sewer within Huntmar Drive, and in turn directed to the

Stormwater Management March 22, 2017

downstream Fairwinds temporary pond 5. The MSS had assumed that the entire area of land west of Huntmar Drive and bound by Poole creek to the north and Hazeldean Road to the south was to be directed to the Huntmar Drive sewer, however, the proposed site forms only part of the tributary area, within lands owned by others blocking direct access to the storm sewer within Huntmar Drive. Rather than encumbering the adjacent property, and to avoid considerable connection fees associated with the outlet from the Kanata West Owners Group (KWOG), a separate outlet for the site to Poole Creek has been considered. As the downstream Pond 5 discharges to Poole Creek as well, by restricting flows to predevelopment levels, and assessing the erosive potential of such flows for the Poole Creek reach between the site outlet and that of the downstream Pond 5, no deleterious effects to the downstream watercourse are expected. Additionally, this option provides additional potential to supplement baseflows to Poole Creek in accordance with recommendations from the MVCA.

### 5.3.1.2 Deviation from Standard SWM Design

The proposed SWM design includes three LID measures to encourage on-site infiltration and water re-use for irrigation. It is recognized that these measures are not currently standard SWM controls and when they are used for water balance purposes are not traditionally included in SWM calculations due to concerns over longterm reliability. The proposed SWM design has included some of the storage and infiltration/reuse rates from these measures in the supporting analysis as discussed in the following sections. However the analysis has also included simulations assuming that these measures fail in order to assess the potential associated impacts. The benefit of including some of the storage an infiltration losses associated with the LID measures was that the end-of-pipe underground storage component of the infiltration gallery was able to be reduced by 30% as compared to previous design requirements when no credit was assigned for the LID measures. As discussed later in this report, a monitoring plan will be developed and implemented to ensure that constructed LID measures are performing as designed.

### 5.3.2 Design Methodology

The intent of the stormwater management plan presented herein is to mitigate negative impacts that the proposed development might have on the receiving watercourse (Poole Creek), while providing adequate capacity to service the proposed buildings, underground parking and access areas. The proposed stormwater management plan is designed to detain runoff on the rooftop, surface and in the subsurface (StormTech chamber) to ensure that peak flows after construction will not exceed the target discharge rates and erosion mitigation requirements.

Runoff from the site is captured via catchbasins, landscaping drains and roof drains and conveyed to a hydrodynamic separator for water quality treatment followed by an underground storage unit for quantity control. The storage unit is restricted by an ICD at the downstream end and is an open bottom unit designed to also promote infiltration. Roof runoff is controlled via roof drains discharging through the internal building plumbing to rainwater harvesting tanks. Two rainwater harvesting tanks are proposed for each building. Each rainwater

Stormwater Management March 22, 2017

tank is capable of storing up to 91m<sup>3</sup> of runoff (approximately 32mm of rainfall) beyond which it will overflow into the storm sewer and be conveyed to the storage unit. The underground storage unit is sized assuming that the rainwater harvesting tanks are available at the start of the rainfall event.

Additional infiltration will be achieved on-site through the implementation of a bioswale along the east side of the site. The granular subbase of the swale is sized to store runoff from its tributary area. An overflow drain is also provided to convey excess water to the underground storage unit.

The site discharge will be conveyed to the approved outlet location for the adjacent CMHC lands to the west of the subject site. The outlet will be sized to convey flows from both sites. Utilizing this location addresses concerns regarding an additional outlet to Poole Creek and prevents disturbance of the natural area to the north of the site.

### 5.3.3 Modeling Rationale

A comprehensive hydrologic modeling exercise was completed with PCSWMM, accounting for the estimated major and minor systems to evaluate the storm sewer infrastructure. The use of PCSWMM for modeling of the site hydrology and hydraulics allowed for an analysis of the systems response during various storm events. Surface storage estimates were based on the final grading plan design (see **Drawing GP-1**). The following assumptions were applied to the detailed model:

- Hydrologic parameters as per Ottawa Sewer Design Guidelines, including Horton infiltration, Manning's 'n', and depression storage values
- 12-hour SCS Storm distribution for the 100-year analysis to model 'worst-case' scenario in regards to on-site HGLs.
- 12hr SCS distributions (2 and 100-year events) with free flowing boundary condition to model 'worst-case' scenario in regards to site discharge rates to meet target rate.
- To 'stress test' the system a 'climate change' scenario was created by adding 20% of the individual intensity values of the 100-year SCS storm event at their specified time step.
- All LID measures were designed outside of PCSWMM (as documented in the report and calculations included in **Appendix E**) in order to allow routing of LID overflows to the next downstream LID which cannot be done in PCSWMM where an LID is defined as part of a given subcatchment. Total design storage and calculated infiltration losses were then input into PCSWMM as storage nodes with separate outlets for infiltration losses.
- Percent imperviousness calculated based on actual soft and hard surfaces on each subcatchment, converted to equivalent Runoff Coefficient using the relationship C = (Imp. x 0.7) + 0.2
- Subcatchment areas are defined from high-point to high-point where sags occur. Subcatchment width (average length of overland sheet flow) determined by dividing

hazeldean road\design\report\servicing\2017-03-20\rpt\_2017-03-20\_servicing.docx

Stormwater Management March 22, 2017

subcatchment area by subcatchment length (length of overland flow path measured from high-point to high-point).

- Number of catchbasins based on servicing plan (Drawing SP-1)
- Catchbasin inflow restricted with inlet-control devices (ICDs) as necessary to maintain inflow target rate and maximize use of surface storage where possible.
- Surface ponding in sag storage calculated based on grading plans (Drawing GP-1).

### 5.3.3.1 SWMM Dual Drainage Methodology

The proposed site is modeled in one modeling program as a dual conduit system (see **Figure 3**), with: 1) circular conduits representing the sewers & junction nodes representing manholes; 2) irregular conduits using street-shaped cross-sections to represent the sawtoothed overland road network from high-point to low-point and storage nodes representing catchbasins. The dual drainage systems are connected via outlet link objects (or orifices) from storage node (i.e. CB) to junction (i.e. MH), and represent inlet control devices (ICDs). Subcatchments are linked to the storage node on the surface so that generated hydrographs are directed there firstly.

### Figure 3: Schematic Representing Model Object Roles



Storage nodes are used in the model to represent catchbasins as well as major system junctions. For storage nodes representing catchbasins (CBs), the invert of the storage node represents the invert of the CB and the rim of the storage node is the top of the CB plus the maximum above ground storage depth. An additional 0.3m has been added to rim elevations to allow routing from one surface storage to the next, and is unused where no spillage occurs between ponding areas. Ponding at low points is represented via storage area-depth curves for each individual storage node to match ponding volumes demonstrated on the grading plan **Drawing GP-1**. Storage volumes exceeding the sag storage available in the node will route through the system until, ultimately, flows either re-enter the minor system or reach the outfall of the major system.

Stormwater Management March 22, 2017

Inlet control devices, as represented by orifice links, use a user-specified discharge coefficient to approximate manufacturer's specifications for the chosen ICD model.

Subcatchment imperviousness was calculated via impervious area measured from **Drawing SSP-**1.

### 5.3.3.2 Boundary Conditions

The detailed PCSWMM hydrology and the proposed storm sewers were used to assess the peak inflows and hydraulic grade line (HGL) for the site. The elevation of the outlet sewer at MH100 immediately upstream of Poole Creek has been set conservatively to be above the 100-Year water elevation of the Creek per MVCA Flood Risk Mapping at an invert elevation of 99.7m to enable free-flowing model condition for the site outlet.

### 5.3.4 Input Parameters

**Drawing SD-1** summarizes the discretized subcatchments used in the analysis of the proposed site, and outlines the major overland flow paths. The grading plans are also enclosed for review.

Appendices A1 to A3 summarize the modeling input parameters and results for the subject area; an example input and output file are provided for the 100-year 12hr SCS storm. For all other input files and results of storm scenarios, please examine the electronic model files located on the CD provided with this report. This analysis was performed using PCSWMM, which is a front-end GUI to the EPA-SWMM engine. Model files can be examined in any program which can read EPA-SWMM files version 5.1.010.

### 5.3.4.1 Hydrologic Parameters

Table 4 presents the general subcatchment parameters used:

### **Table 4: General Subcatchment Parameters**

| Parameter           | Value        |
|---------------------|--------------|
| Infiltration Method | Curve Number |
| Drying Time (days)  | 7            |
| Curve Number        | 80           |
| N Impervious        | 0.013        |
| N Pervious          | 0.2          |
| Dstore Imperv. (mm) | 1.57         |
| Dstore perv. (mm)   | 4.67         |
| Zero Imperv. (%)    | 0            |
Stormwater Management March 22, 2017

Table 5 presents the individual parameters that vary for each of the proposed subcatchments.

| Name   | Outlet   | Area<br>(ha) | Width<br>(m) | Slope<br>(%) | Imperv.<br>(%) |
|--------|----------|--------------|--------------|--------------|----------------|
| EXT1   | EXT1-OF  | 0.07         | 15.1         | 33.3         | 0              |
| EXT2   | EXT2-OF  | 0.06         | 14.4         | 2            | 72.857         |
| ST104A | ST104A-S | 0.15         | 69           | 2            | 84.286         |
| ST107A | ST107A-S | 0.37         | 225.0        | 1.5          | 64.286         |
| ST108A | ST108A-S | 0.40         | 90.9         | 1.5          | 100            |
| ST108B | ST108B-S | 0.36         | 82.0         | 1.5          | 100            |
| ST108C | ST108C-S | 0.05         | 12.1         | 1.5          | 100            |
| ST108D | ST108D-S | 0.05         | 10.9         | 1.5          | 100            |
| ST108E | ST108E-S | 0.03         | 25.0         | 1.5          | 100            |
| ST108F | 108      | 0.38         | 86.0         | 1.2          | 44.286         |
| ST109A | 109      | 0.01         | 18.2         | 10           | 100            |
| ST109C | ST109C-S | 0.06         | 25.8         | 1            | 100            |
| ST109B | ST109B-S | 0.05         | 24.8         | 1            | 100            |
| ST110A | 110      | 0.07         | 16.8         | 0.8          | 7.143          |
| ST110B | 110      | 0.03         | 24.5         | 10           | 100            |
| ST110C | 110      | 0.03         | 26.6         | 10           | 100            |
| ST110D | 110      | 0.07         | 16.7         | 0.8          | 7.143          |
| ST111A | ST111A-S | 0.24         | 107.5        | 0.8          | 72.857         |
| ST111B | ST111B-S | 0.04         | 88.0         | 0.8          | 100            |
| ST111C | ST111C-S | 0.04         | 36.8         | 1.5          | 85.714         |
| ST507A | ST507A-S | 0.05         | 33.5         | 1.5          | 72.857         |
| ST508A | 508      | 0.34         | 189.2        | 1            | 7.143          |

## Table 5: Subcatchment Parameters

Table 6 summarizes the storage node parameters used in the model. Storage curves for each node have been created based on volumes presented for each individual ponding area within Drawing GP-1. Rim elevations for each node correspond to the rim elevation of the associated area's catchbasin plus maximum depth of storage plus 0.30m to allow for demonstration of overland flow in the climate change event scenario. The 0.30m buffer is unused during other modeled events.

Stormwater Management March 22, 2017

Storage volumes and release rates for the rainwater harvesting tank, bioswale/rain garden, and infiltration basin were obtained through iterations between design sizing calculations (final sizing attached in **Appendix E**) and PCSWMM hydrologic/hydraulic modeling.

| Name     | Invert<br>El. (m) | Rim<br>Elev.<br>(m) | Depth (m) | Coefficient | Exponent | Constant<br>(m²) | Curve<br>Name | Storage<br>Curve |
|----------|-------------------|---------------------|-----------|-------------|----------|------------------|---------------|------------------|
| 108      | 99.27             | 104.37              | 5.10      | 0           | 0        | 0                | RWHtank       | TABULAR          |
| 508      | 101.06            | 102.85              | 1.79      | 0           | 0        | 0                | ST508A-S      | TABULAR          |
| ST104A-S | 101.52            | 103.62              | 2.1       | 1000        | 0        | 0                | ST104A-S      | TABULAR          |
| ST107A-S | 101.13            | 103.23              | 2.1       | 1000        | 0        | 0                | ST107A-S      | TABULAR          |
| ST108A-S | 118.6             | 118.75              | 0.15      | 1000        | 0        | 0                | ST108A        | TABULAR          |
| ST108B-S | 115.75            | 115.9               | 0.15      | 1000        | 0        | 0                | ST108B        | TABULAR          |
| ST108C-S | 110.4             | 110.55              | 0.15      | 1000        | 0        | 0                | ST108C        | TABULAR          |
| ST108D-S | 110.1             | 110.25              | 0.15      | 1000        | 0        | 0                | ST108D        | TABULAR          |
| ST108E-S | 107.2             | 107.35              | 0.15      | 1000        | 0        | 0                | ST108E        | TABULAR          |
| ST109B-S | 102.81            | 104.31              | 1.5       | 0           | 0        | 0                | *             | FUNCTIONAL       |
| ST109C-S | 102.81            | 104.31              | 1.5       | 0           | 0        | 0                | *             | FUNCTIONAL       |
| ST111A-S | 101.86            | 104.26              | 2.4       | 1000        | 0        | 0                | ST111A-S      | TABULAR          |
| ST111C-S | 101.95            | 104.05              | 2.1       | 0           | 0        | 0                | *             | FUNCTIONAL       |
| ST507A-S | 101.57            | 103.67              | 2.1       | 1000        | 0        | 0                | ST504A-S      | TABULAR          |
| TANK     | 100.10            | 103.37              | 3.27      | 1000        | 0        | 0                | TANK          | TABULAR          |

### Table 6: Storage Node Parameters

## 5.3.4.2 Hydraulic Parameters

As per the Ottawa Sewer Design Guidelines (OSDG 2012), Manning's roughness values of 0.013 were used for sewer modeling and overland flow corridors representing roadways.

Storm sewers were modeled to confirm flow capacities and hydraulic grade lines (HGLs) in the proposed condition. The detailed storm sewer design sheet is included in **Appendix C**.

**Table 7** below presents the parameters for the orifice and outlet link objects in the model, which represent ICDs and restricted roof release drains respectively. CB leads modeled as orifices were assigned a discharge coefficient of 0.65. The roof release discharge curves assume the use of standard Zurn model Z-105-5 controlled release roof drains as noted in the calculation sheet in **Appendix C**. The number of roof notches for each building area is to be confirmed with the

Stormwater Management March 22, 2017

building mechanical engineer. Details for the IPEX ICDs and Zurn drains are included as part of **Appendix G**.

| Name      | Inlet    | Outlet | Inlet<br>Elev. | Туре        | Diameter |
|-----------|----------|--------|----------------|-------------|----------|
| OR1       | TANK     | 102    | 100.10         | CIRCULAR    | 0.11     |
| OR2       | TANK     | 102    | 100.70         | CIRCULAR    | 0.15     |
| OR3       | TANK     | 102    | 101.00         | CIRCULAR    | 0.15     |
| ST104A-O  | ST104A-S | 104    | 101.52         | IPEX HF     | 0.140    |
| ST107A-O  | ST107A-S | 107    | 101.13         | CIRCULAR    | 0.2      |
| ST109B-O  | ST109B-S | 109    | 102.81         | CIRCULAR    | 0.2      |
| ST109C-O  | ST109C-S | 109    | 102.81         | CIRCULAR    | 0.2      |
| ST111A-O  | ST111A-S | 111    | 101.86         | IPEX HF     | 0.076    |
| ST111C-O  | ST111C-S | 111    | 101.95         | CIRCULAR    | 0.2      |
| ST111C-01 | ST111C-S | 111    | 101.95         | CIRCULAR    | 0.2      |
| OL-1      | TANK     | P_OF1  | 100.10         | 0.66L/s     | -        |
| OL-2      | 508      | P_OF2  | 101.06         | 0.3L/s      | -        |
| ST507A-O  | ST507A-S | TANK   | 101.57         | IPEX LMF 95 | -        |
| ST108A-O  | ST108A-S | 108    | 118.60         | ROOF        | -        |
| ST108B-O  | ST108B-S | 108    | 115.75         | ROOF        | -        |
| ST108C-0  | ST108C-S | 108    | 110.40         | ROOF        | -        |
| ST108D-0  | ST108D-S | 108    | 110.10         | ROOF        | -        |
| ST108E-O  | ST108E-S | 108    | 107.20         | ROOF        | -        |

## Table 7: Outlet/Orifice Parameters

## 5.3.5 Model Results

The following section summarizes the key hydrologic and hydraulic model results. For detailed model results or inputs please refer to the example input file in **Appendix C.2 and C.3** and the electronic model files on the enclosed CD.

## 5.3.5.1 Hydrologic Results

The following tables demonstrate the peak outflow from each modeled outfall during the design storm (12hr SCS 2-100yr) events. A free-flowing outfall condition has been modeled for these events to be conservative with respect to site peak release rates. Outfalls EXT1-OF and EXT2-OF denote uncontrolled flows from the perimeter of the site that, due to grading restrictions, are captured by the existing right-of-way/Poole Creek at the south and north boundaries of the site.

Stormwater Management March 22, 2017

Flows from area EXT2 will have a minimal contribution to the infrastructure within Hazeldean Road. Peaks from these uncontrolled flows are non-coincident with peaks from the subsurface storage tank/weir, and as such, flows from the outlet headwall are the only values considered in meeting the release rate target. The required subsurface storage tank volume was determined through iteration of each event, and sized to mirror the site release rate target.

| Event                        | Location        | Discharge Rate (L/s) | Target (L/s) |
|------------------------------|-----------------|----------------------|--------------|
| 2-Year 12 Hour SCS           | Outlet Headwall | 15.2                 | 17.7         |
| 5-Year 12 Hour SCS           | Outlet Headwall | 38.6                 | 43.9         |
| 10-Year 12 Hour SCS          | Outlet Headwall | 64.5                 | 66.2         |
| 25-Year 12 Hour SCS          | Outlet Headwall | 98.7                 | 103.7        |
| 50-Year 12 Hour SCS          | Outlet Headwall | 116.2                | 136.5        |
| 100-Year 12 Hour SCS         | Outlet Headwall | 136.3                | 176.3        |
| 100-Year 12 Hour SCS<br>+20% | Outlet Headwall | 317.0                | -            |

### Table 8: Site Peak Discharge Rates

## 5.3.5.2 Hydraulic Results

**Table 9** summarizes the HGL results within the site for the 100 year storm events and the 'climate change' scenario storm required by the City of Ottawa Sewer Design Guidelines (2012), where intensities are increased by 20%. The City of Ottawa requires that during major storm events, the maximum hydraulic grade line be kept at least 0.30 m below the underside-of-footing (USF) of any adjacent units connected to the storm sewer during design storm events. As the proposed building perimeter drain and ramp drains will be disconnected from the storm sewer and pumped to the surface, USFs are considered at 0.3m below the lowest finished floor elevation of the building.

| Table | 9٠ | Modeled | H | vdraulic | Grade | line  | Results |
|-------|----|---------|---|----------|-------|-------|---------|
| lable | 7. | Modeled | п | yuluulic | Glude | LILLE | VE20113 |

| Drawaaad |                     | 100-yeai | 12hr SCS                    | 100-year 12hr SCS + 20% |                          |  |
|----------|---------------------|----------|-----------------------------|-------------------------|--------------------------|--|
| STM MH   | Ground<br>Elev. (m) | HGL (m)  | USF-HGL<br>Clearance<br>(m) | HGL (m)                 | USF-HGL<br>Clearance (m) |  |
| 103      | 104.20              | 101.97   | 2.23                        | 102.78                  | 1.42                     |  |
| 104      | 104.20              | 101.98   | 2.22                        | 102.80                  | 1.40                     |  |
| 105      | 104.20              | 101.99   | 2.21                        | 102.86                  | 1.34                     |  |
| 106      | 104.20              | 101.99   | 2.21                        | 102.87                  | 1.33                     |  |
| 107      | 104.20              | 102.00   | 2.20                        | 102.89                  | 1.31                     |  |

Stormwater Management March 22, 2017

| Dranaaad |                     | 100-yeai | 12hr SCS                    | 100-year 12hr SCS + 20% |                          |  |
|----------|---------------------|----------|-----------------------------|-------------------------|--------------------------|--|
| STM MH   | Ground<br>Elev. (m) | HGL (m)  | USF-HGL<br>Clearance<br>(m) | HGL (m)                 | USF-HGL<br>Clearance (m) |  |
| 108      | 104.20              | 102.04   | 2.16                        | 103.04                  | 1.16                     |  |

As is demonstrated in the table above, the worst-case scenario results in HGL elevations remain at least 0.30 m below the proposed surface elevations, and HGL elevations remain below the proposed surface elevations during the 20% increased intensity 'climate change' scenario.

**Table 10** presents the maximum total surface water depths (static ponding depth + dynamic flow) above the top-of-grate of catchbasins for the 100-year design storm and climate change storm. Based on the model results, the total ponding depth (static + dynamic) does not exceed the required 0.30m maximum during the 100-year event. Total ponding depths during the climate change scenario are below adjacent building openings and should not impact the proposed building.

|                    |              |                         | 100 year, 12hr SCS |                                     | 100 year, 1    | 12hr SCS +20%                       |
|--------------------|--------------|-------------------------|--------------------|-------------------------------------|----------------|-------------------------------------|
| Storage<br>node ID | Structure ID | Rim<br>Elevation<br>(m) | Max HGL<br>(m)     | Total Surface<br>Water Depth<br>(m) | Max HGL<br>(m) | Total Surface<br>Water Depth<br>(m) |
| ST104A-S           | CB 506       | 103.32                  | 103.23             | 0.00                                | 103.47         | 0.15                                |
| ST107A-S           | CB 505       | 102.93                  | 102.85             | 0.00                                | 103.09         | 0.16                                |
| ST111A-S           | CB 501       | 103.96                  | 104.18             | 0.22                                | 104.22         | 0.26                                |
| ST111C-S           | CB 504       | 103.75                  | 102.03             | 0.00                                | 102.91         | 0.00                                |
| ST507A-S           | CB 507       | 103.37                  | 103.44             | 0.07                                | 103.47         | 0.10                                |
| 508                | CB T 508     | 102.60                  | 102.01             | 0.00                                | 102.83         | 0.23                                |

## Table 10: Maximum Surface Water Depths

## 5.3.6 Water Quality Control

On-site water quality control is required to provide 80% TSS removal prior to discharging to Poole Creek. A Stormceptor unit STC300 is proposed upstream of the underground storage/infiltration basin. The Stormceptor will provide greater than 80% TSS removal in the 25mm event and will act as pre-treatment for the storage/ infiltration basin thereby reducing maintenance requirements of the facility and improving long-term performance. The Stormceptor unit will be privately maintained. The location and general arrangement of the Stormceptor unit is indicated on **Drawing SD-1**. Detailed sizing calculations for the Stormceptor unit are included in **Appendix C.5** 

Stormwater Management March 22, 2017

## 5.3.7 Infiltration Targets

The MVCA requires that BMP measures be implemented on-site to meet the minimum infiltration target rate of 50 mm/yr (as identified in the Kanata West Master Servicing Study, Stantec, 2006). For a site area of 2.9ha with an average imperviousness of 56% the total annual infiltration requirement is therefore 812m<sup>3</sup>/yr. The KWMSS also requires a 25% augmentation to site infiltration requirements to account for off-site road areas for which no infiltration measures were required. Therefore, the total site infiltration target is 1,015 m<sup>3</sup>/yr. Past correspondence with the MVCA indicated that the target infiltration rates were in fact "target hydrograph volume reduction rates".

The LID bioswale and infiltration gallery proposed for the site will provide significant opportunity for stormwater infiltration. Infiltration calculations completed for the design and sizing of these LID measures were used to approximate an expected annual infiltration rate. Water balance calculations for a continuous rainfall scenario from August 2, 2009 to March 1, 2012 (see **Appendix E**) were used to determine an average daily infiltration rate over a one year period. The average rate was estimated to be 44m<sup>3</sup>/day. Note that this rate is averaged over 365 days per year and would underestimate summer months and overestimate winter. Nevertheless, the average annual infiltration that could be provided through the LID measures would be approximately 16,262 m<sup>3</sup>/yr. Therefore, only about 10% of the total possible infiltration is required to meet the infiltration target for the site.

The infiltration contribution from the bioswale and infiltration gallery is included in **Table 11** below. Note that this summary does not include infiltration resulting from the rainwater harvesting reuse for irrigation. The results in **Table 11** suggest that the infiltration target could be met with the bioswale infiltration only.

| LID Feature          | Estimated Total Annual<br>Infiltration (m3/yr) |
|----------------------|------------------------------------------------|
| Bioswale             | 2,568                                          |
| Infiltration Gallery | 13,694                                         |
| Total Infiltration   | 16,262                                         |

## Table 11: Summary of Infiltration from LID Features

## 5.3.7.1 Potential Groundwater Mounding

Groundwater levels at the site were measured by Paterson Group during two separate site visits and are summarized in the attached Paterson memos in **Appendix F**. Based on the results of the

Stormwater Management March 22, 2017

groundwater monitoring Paterson Group prepared a memo discussing the variation in groundwater level measurements and anticipated seasonally high and normal groundwater levels. The results for the boreholes near the LID features are summarized in **Table 12** below. The complete memo dated January 25, 2017 is included in **Appendix F**.

| Borehole | Ground | Long<br>Grour<br>Le | g-term<br>ndwater<br>vels | Seasonally High<br>Groundwater Level |                  |  |
|----------|--------|---------------------|---------------------------|--------------------------------------|------------------|--|
| Number   | (m)    | Depth<br>(m)        | Elevation<br>(m)          | Depth<br>(m)                         | Elevation<br>(m) |  |
| BH 1     | 102.93 | 3.7                 | 99.23                     | 3.2                                  | 99.73            |  |
| BH 2     | 103.02 | 3.7                 | 99.32                     | 3.2                                  | 99.82            |  |
| BH 3     | 103.07 | 3.7                 | 99.37                     | 3.2                                  | 99.87            |  |
| BH 4     | 103.15 | 3.7                 | 99.45                     | 3.2                                  | 99.95            |  |
| BH 5     | 103.22 | 3.7                 | 99.52                     | 3.2                                  | 100.02           |  |
| BH 6     | 103.25 | 3.7                 | 99.55                     | 3.2                                  | 100.05           |  |
| BH 7     | 102.91 | 4.5                 | 98.41                     | 4.0                                  | 98.91            |  |

Table 12: Expected Seasonal Variation of Groundwater Levels

Since the clearance from the bottom of the infiltration tank to the groundwater table is less than 1.0m the potential for groundwater mounding was considered. Groundwater mounding calculations were completed for both the seasonally high groundwater condition and the normal groundwater condition. However, per the Paterson memo, the seasonally high level is expected to occur during March-April, as such historical rainfall data was used to establish the average rainfall event volume for March-April. The analysis indicated approximately a 10mm event. The duration of infiltration for the infiltration gallery was obtained from the PCSWMM hydraulic model based on the modeled time for the infiltration gallery to empty. No PCSWMM model was run for the 10mm event so the 2-year event was used as a conservative estimate. These durations were input into the groundwater mounding calculation spreadsheet in **Appendix E**. It is noted that the calculations are based on the Hantush (1967) equation for groundwater mounding and use the hydraulic conductivity (measured by Paterson and summarized in the attached memo from September 2016) as the recharge rate and typical specific yield for silty clay. It is also noted that spreadsheet inputs and results are in imperial units. **Table 13** below summarizes the results of the groundwater mounding calculations.

Stormwater Management March 22, 2017

| Groundwater<br>Conditon    | Mounding<br>Height (m) | Mounding<br>Elevation<br>(m) | Distance to Bottom<br>of Infiltration<br>Gallery (m) |
|----------------------------|------------------------|------------------------------|------------------------------------------------------|
| Long-term (99.23)          | 0.31                   | 99.54                        | 0.56                                                 |
| Seasonally High<br>(99.73) | 0.26                   | 99.99                        | 0.11                                                 |

### Table 13: Estimated Maximum Groundwater Mounding below Infiltration Gallery

It is noted the above mounding depths are still below the bottom of the infiltration gallery. Should a larger rainfall even occur during the seasonally high groundwater condition there could be potential for the groundwater mound to extend into the infiltration gallery. However, there is a storm sewer outlet proposed at the bottom of the infiltration gallery (Invert =100.10m per attached **Drawing SSP-1**) which will limit the maximum groundwater height to the bottom of the infiltration gallery. Once the mounding reaches the bottom, the stored stormwater would discharge only through the controlled outlets and would not infiltrate. Since the groundwater mounding is caused only by infiltrating stormwater and not by external sources, there should be no loss of storage volume due to groundwater mounding.

## 5.3.8 Thermal Controls

The MVCA and MOECC confirmed that Poole Creek is designated as a "cool-water fish habitat". As the proposed development will increase the amount of impervious area on the site and roof top detention will increase water temperatures, thermal mitigation measures are required for the site.

As the majority of heat transfer from paved surfaces occurs during the first flush (considered as the initial 10mm of each design event), storage of the 10mm event has been given priority. With exception of the rooftop areas, the site is designed with minimal surface storage. All runoff will be captured and detained in the underground storage unit which will allow for heat dumping into the surrounding ground and granular material. Similarly, runoff conveyed through the granular subbase of the bioswale will experience cooling. Roof discharge will be the most thermally impacted water as it will be retained on the rooftops for several hours. This water will be discharged to the underground rainwater harvesting tank and will inlet at the bottom of the tank such that if the tank is full, the cooler water will be discharged first through the overflow. With 167m<sup>3</sup> of storage available in each of the rainwater harvesting tanks, the only occurrence where roof discharge would not experience any temperature mitigation via mixing or detention would be when total rainfall exceeds approximately a 2-year event. The reverse temperature mitigation effect (warming water during cold weather) would also occur with these measures as ground temperatures would warm the runoff.

Stormwater Management March 22, 2017

## 5.3.9 Monitoring Plan

In addition to monitoring requirements to be identified by the MOECC in the Environmental Compliance Approval (ECA), the site will require regular monitoring of the LID measures installed on the site. A detailed monitoring program will be developed through consultation with the City of Ottawa and MVCA. In general, the monitoring plan will required pre-construction, during construction and post-construction monitoring and include the following:

- Installation of water level loggers in both the rainwater harvesting tank, infiltration gallery, and bioswale (monitoring "well" to be installed) to assess frequency of overflow and drawdown rates and compare with design values;
- Installation of temperature logger in the outlet manhole from the site to monitor temperature of the storm discharge. The temperature logger cannot be installed at the outlet to Poole Creek as this outlet will include discharge from the CMHC lands as well and would not be representative of the subject site;
- Collection of water quality samples upstream and downstream of the proposed OGS unit;
- Visual inspection of all LID systems at least once per month and following all large rainfall events. Including observations for:
  - o Debris accumulation on the surface
  - Measurement of/inspection for sediment accumulation in rainwater harvesting tank and infiltration gallery
  - Presence of ponded water on the surface of the bioswale beyond design duration
  - o Outlet/inlet blockages of tanks and OGS

A detailed monitoring plan is included in **Appendix H**.

## 5.3.10 Contingency Plan

It is recognized that the proposed stormwater management plan is considered a "pilot project" by the City of Ottawa and has allowed for credit from the LID measures toward the stormwater management design. As such the monitoring plan for the site will be critical in assessing the performance of the system. Should either the pre-construction monitoring result in findings that will impact the function of the system, then additional assessment of the design will be required to assess system performance and determine whether additional storage is required. Additional storage would be provided by expanding the size of the proposed infiltration gallery. This assessment would be required prior to constructing the facility. A memo will be issued to the City of Ottawa outlining the monitoring results and confirming whether there is any need for expansion of the infiltration system.

Similarly, post-construction monitoring will assess the performance of the system. Data analysis and reporting will be completed and review whether any retrofits to the system are required. The

Stormwater Management March 22, 2017

greatest benefit to the SWM design is the storage available in the rainwater harvesting system. It is estimated that the greatest impact to the system storage requirements would be if this system does not operate as designed and this entire volume cannot be relied upon for the SWM system. This would result in the need for an additional 335m<sup>3</sup> to be added to the infiltration gallery. While this extreme is assumed to be unlikely, it is recommended that the site MOECC ECA include this contingency volume of 335m<sup>3</sup> to allow for the expansion if needed without requiring an amendment to the ECA before proceeding.

Post-construction monitoring will include groundwater level monitoring and water level monitoring within the infiltration gallery. Results will be monitored to ensure no storage volume is lost as a result of groundwater influences and storage volume would be adjusted as necessary. However, it is anticipated that since the infiltration gallery design includes and outlet at the bottom of the storage area, there should be no significant loss of volume caused by seasonal groundwater fluctuations or mounding.

## 5.4 SUMMARY OF FINDINGS

Based on the preceding, the following conclusions can be drawn:

- The proposed stormwater management plan is in compliance with the criteria established for the site and the 2012 City of Ottawa Sewer Guidelines.
- Inlet control devices are proposed to limit inflow from the site area into the minor system to maximize the use of surface storage.
- Subsurface storage has been provided to further limit site outflows to the peak site discharge rate determined via PCSWMM model (See **Table 14** below).
- The storm sewer hydraulic grade line is maintained at least 0.30 m below finished ground elevations during design storm events.
- All dynamic surface water depths are less than 0.30 m during all design storm events.
- Quality control is provided by a Stormceptor model STC3000 upstream of the underground storage facility to maintain water quality objectives outlined in the background reports.

## Table 14: Site Peak Discharge Rates/Targets

| Storm Event               | Site Peak Discharge Rate (L/s) | Target Discharge Rate (L/s) |
|---------------------------|--------------------------------|-----------------------------|
| 2-Year 12 Hour SCS        | 15.2                           | 17.7                        |
| 5-Year 12 Hour SCS        | 38.6                           | 43.9                        |
| 10-Year 12 Hour SCS       | 64.5                           | 66.2                        |
| 25-Year 12 Hour SCS       | 98.7                           | 103.7                       |
| 50-Year 12 Hour SCS       | 116.2                          | 136.5                       |
| 100-Year 12 Hour SCS      | 136.3                          | 176.3                       |
| 100-Year 12 Hour SCS +20% | 317.0                          | _                           |

Appendix C Stormwater Management March 22, 2017

## Appendix C STORMWATER MANAGEMENT

## C.1 STORM SEWER DESIGN SHEET AND ROOF STORAGE CALCULATIONS



This map and the associated information displayed are to be used for general illustrative purposes only. Although best efforts have been made to create accuracy; due to the complex and extensive nature of the data, all representations and/or information provided herein are approximate and to be verified by user. User hereby acknowledges that this map is not intended for true and accurate navigational purposes and hereby accepts and assumes all inherent risks associated with the use of this map.

This map is produced in part with data provided by the Ontario Geographic Data Exchange under Licence with the Ontario Ministry ofNatural Resources and the Queen's Printer for Ontario, 2013

Imagery © City of Ottawa, 2011 Digital Elevation Information © GeoDigital International Inc, Spring 2008



This map and the associated information displayed are to be used for general illustrative purposes only. Although best efforts have been made to create accuracy; due to the complex and extensive nature of the data, all representations and/or information provided herein are approximate and to be verified by user. User hereby acknowledges that this map is not intended for true and accurate navigational purposes and hereby accepts and assumes all inherent risks associated with the use of this map.

This map is produced in part with data provided by the Ontario Geographic Data Exchange under Licence with the Ontario Ministry ofNatural Resources and the Queen's Printer for Ontario, 2013

Imagery © City of Ottawa, 2011 Digital Elevation Information © GeoDigital International Inc, Spring 2008



| Revision #       | Issue          | COFESSION        |
|------------------|----------------|------------------|
| 1 - Nov. 14 2013 | Public review  | 10 TON           |
| 2 - Dec. 4, 2013 | Board approval | (3 Amtud 2)      |
| 3 - Jan. 21,2015 | Final          | S I. S. A. PRICE |
| •                |                |                  |
|                  |                | 3 Jan. 20/15     |
|                  |                | White or ONTAIL  |
|                  |                | COF COF          |

| TA        |                   | 5731 Hazeldear        | n Road               |                      |                      |                      |                      | SEWE<br>SHEE            | R<br>T                  |                      | DESIGN<br>I = a / (t+   | PARAME <sup>.</sup><br>b) <sup>c</sup> | <u>TERS</u>                             | (As per C                  | ity of Otta                | wa Guide             | lines, 201        | 2)                 |                     |                          |                                 |                                  |                                  |           |                      |                      |                          |                      |                      |                      |
|-----------|-------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|-------------------------|----------------------|-------------------------|----------------------------------------|-----------------------------------------|----------------------------|----------------------------|----------------------|-------------------|--------------------|---------------------|--------------------------|---------------------------------|----------------------------------|----------------------------------|-----------|----------------------|----------------------|--------------------------|----------------------|----------------------|----------------------|
| Stantos   | DATE:             |                       | 23-Ma                | ar-2017              |                      |                      | (City of             | Ottawa)                 |                         |                      |                         | 1:5 yr                                 | 1:100 yr                                |                            | -                          |                      |                   |                    |                     |                          |                                 |                                  |                                  |           |                      |                      |                          |                      |                      |                      |
| Stantet   | REVISION:         | <i>.</i>              | r<br>F               | 3<br>)T              |                      | IRER: 160            | 14-01195             |                         |                         |                      | a =<br>h =              | 998.071<br>6.053                       | 1735.688                                |                            | S'S n =                    | 0.013                | m                 | BEDDING            | CLASS =             | В                        |                                 |                                  |                                  |           |                      |                      |                          |                      |                      |                      |
|           | CHECKED BY        | :                     | 4                    | AL.                  | TILL NON             | IDEIX. 100           | 4-01133              |                         |                         |                      | c =                     | 0.033                                  | 0.820                                   | TIME OF I                  | ENTRY                      | 10                   | min               |                    |                     |                          |                                 |                                  |                                  |           |                      |                      |                          |                      |                      |                      |
| LO        | CATION            |                       |                      |                      |                      |                      |                      |                         |                         | DRAINA               | GE AREA                 |                                        |                                         |                            |                            |                      |                   |                    |                     |                          |                                 |                                  |                                  | PIPE SELE | CTION                |                      |                          |                      |                      |                      |
|           | FROM              | ТО                    | AREA                 | AREA                 | AREA                 | С                    | ACCUM.               | A x C                   | ACCUM.                  | ACCUM.               |                         | ACCUM.                                 | T of C                                  | I <sub>5-YEAR</sub>        | I <sub>10-YEAR</sub>       | Q <sub>CONTROL</sub> | ACCUM.            | Q <sub>ACT</sub>   | LENGTH              | PIPE WIDTH               | PIPE                            | PIPE                             | MATERIAL                         | CLASS     | SLOPE                | Q <sub>CAP</sub>     | % FULL                   | VEL.                 | VEL.                 | TIME OF              |
| NUMBER    | М.п.              | WI.FT.                | (5-TEAR)<br>(ha)     | (100-TEAR)<br>(ha)   | (ROOF)<br>(ha)       | (-)                  | (ha)                 | (5-TEAR)<br>(ha)        | (ha)                    | (ha)                 | (100-TEAR)<br>(ha)      | (ha)                                   | (min)                                   | (mm/h)                     | (mm/h)                     | (NOTE I)<br>(L/s)    | (L/s)             | (CIA/360)<br>(L/s) | (m)                 | (mm)                     | (mm)                            | (-)                              | (-)                              | (-)       | %                    | (FULL)<br>(L/s)      | (-)                      | (FOLL)<br>(m/s)      | (ACT)<br>(m/s)       | (min)                |
|           | TANKOUT           | 102                   | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.000                   | 0.000                   | 0.00                 | 0.000                   | 0.000                                  | 13.91<br><b>13.98</b>                   | 87.26                      | 149.29                     | 44.9                 | 44.9              | 44.9               | 2.8                 | 450                      | 450                             | CIRCULAR                         | CONCRETE                         |           | 0.20                 | 133.0                | 33.76%                   | 0.81                 | 0.62                 | 0.08                 |
|           | 102               | 100                   | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.000                   | 0.000                   | 0.00                 | 0.000                   | 0.000                                  | 10.00                                   | 104 10                     | 170 50                     | 0.0                  | 0.0               | 0.0                | 2.0                 | 450                      | 450                             |                                  | CONCRETE                         |           | 1.00                 | 200.4                | 0.00%                    | 1 0 0                | 0.00                 | 0.00                 |
|           | 103               | 102                   | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.000                   | 0.000                   | 0.00                 | 0.000                   | 0.000                                  | 10.00                                   | 104.19                     | 170.00                     | 0.0                  | 0.0               | 0.0                | 3.0                 | 450                      | 450                             | CIRCULAR                         | CONCRETE                         | -         | 1.00                 | 290.1                | 0.00%                    | 1.02                 | 0.00                 | 0.00                 |
|           | 102               | 101                   | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.000                   | 0.000                   | 0.00                 | 0.000                   | 0.000                                  | 13.98                                   | 86.99                      | 148.82                     | 0.0                  | 44.9              | 44.9               | 70.7                | 450                      | 450                             | CIRCULAR                         | CONCRETE                         | -         | 0.20                 | 133.0                | 33.76%                   | 0.81                 | 0.62                 | 1.92                 |
|           | 101               | HEADWALL              | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.000                   | 0.000                   | 0.00                 | 0.000                   | 0.000                                  | 18.65                                   | 73.36                      | 125.30                     | 62.4                 | 44.9<br>107.3     | 44.9<br>107.3      | 101.6               | 450<br>675               | 450<br>675                      | CIRCULAR                         | CONCRETE                         | -         | 1.40                 | 1037.6               | 33.76%<br>10.34%         | 2.81                 | 1.50                 | 2.75<br>0.12         |
|           |                   |                       |                      |                      |                      |                      |                      |                         |                         |                      |                         |                                        | 18.77                                   |                            |                            |                      |                   |                    |                     | 675                      | 675                             |                                  |                                  |           |                      |                      |                          |                      |                      |                      |
| ST109A-C  | 109               | 104                   | 0.13                 | 0.00                 | 0.00                 | 0.90                 | 0.13                 | 0.114                   | 0.114                   | 0.00                 | 0.000                   | 0.000                                  | 10.00<br><b>10.63</b>                   | 104.19                     | 178.56                     | 0.0                  | 0.0               | 32.9               | 38.2                | 375                      | 375                             | CIRCULAR                         | PVC                              | -         | 1.00                 | 164.8                | 19.94%                   | 1.56                 | 1.01                 | 0.63                 |
| ST110A-D  | 110               | 106                   | 0.21                 | 0.00                 | 0.00                 | 0.44                 | 0.21                 | 0.093                   | 0.093                   | 0.00                 | 0.000                   | 0.000                                  | 10.00<br>10.22                          | 104.19                     | 178.56                     | 0.0                  | 0.0               | 26.8               | 12.5                | 375                      | 375                             | CIRCULAR                         | PVC                              | -         | 1.00                 | 164.8                | 16.24%                   | 1.56                 | 0.95                 | 0.22                 |
|           | 500               | 501                   | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.000                   | 0.000                   | 0.00                 | 0.000                   | 0.000                                  | 10.00                                   | 10/ 19                     | 178 56                     | 0.0                  | 0.0               | 0.0                | 26.1                | 200                      | 200                             |                                  | PVC                              | -         | 1.00                 | 33.3                 | 0.00%                    | 1.05                 | 0.00                 | 0.00                 |
|           | 501               | 111                   | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.000                   | 0.000                   | 0.00                 | 0.000                   | 0.000                                  | 10.00<br>10.00<br><b>10.00</b>          | 104.19                     | 178.56                     | 0.0                  | 0.0               | 0.0                | 4.0                 | 200                      | 200                             | CIRCULAR                         | PVC                              | -         | 1.00                 | 33.3                 | 0.00%                    | 1.05                 | 0.00                 | 0.00                 |
|           | 502               | 111                   | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.000                   | 0.000                   | 0.00                 | 0.000                   | 0.000                                  | 10.00<br><b>10.00</b>                   | 104.19                     | 178.56                     | 0.0                  | 0.0               | 0.0                | 2.8                 | 200                      | 200                             | CIRCULAR                         | PVC                              | -         | 1.00                 | 33.3                 | 0.00%                    | 1.05                 | 0.00                 | 0.00                 |
| ST1110 C  | 111               | 107                   | 0.32                 | 0.00                 | 0.00                 | 0.68                 | 0.32                 | 0 221                   | 0.221                   | 0.00                 | 0.000                   | 0.000                                  | 10.00                                   | 104 10                     | 179 56                     | 0.0                  | 0.0               | 64.0               | 110.4               | 375                      | 375                             |                                  | PV/C                             |           | 0.70                 | 137.0                | 16 11%                   | 1 31                 | 1 10                 | 1 69                 |
| ST107A    | 107               | 106                   | 0.32                 | 0.00                 | 0.00                 | 0.65                 | 0.70                 | 0.221                   | 0.464                   | 0.00                 | 0.000                   | 0.000                                  | 11.68<br>12.59                          | 96.10                      | 164.56                     | 0.0                  | 0.0               | 123.8              | 63.3                | 450                      | 450                             | CIRCULAR                         | CONCRETE                         | -         | 0.50                 | 210.3                | 58.87%                   | 1.28                 | 1.15                 | 0.91                 |
|           | 106               | 105                   | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.91                 | 0.000                   | 0.556                   | 0.00                 | 0.000                   | 0.000                                  | <mark>12.59</mark><br>12.93             | 92.25                      | 157.90                     | 0.0                  | 0.0               | 142.6              | 17.6                | 525                      | 525                             | CIRCULAR                         | CONCRETE                         | -         | 0.20                 | 200.6                | 71.05%                   | 0.90                 | 0.85                 | 0.34                 |
| ST108C-F  | 108A              | 108                   | 0.38                 | 0.00                 | 0.13                 | 0.51                 | 0.38                 | 0 195                   | 0 195                   | 0.00                 | 0.000                   | 0.000                                  | 10 00                                   | 104 19                     | 178 56                     | 8.0                  | 8.0               | 64 4               | 85.0                | 375                      | 375                             | CIRCULAR                         | PVC                              | -         | 0.50                 | 116.6                | 55.25%                   | 1 11                 | 0.97                 | 1 46                 |
| ST108A, B | 108               | 105                   | 0.00                 | 0.00                 | 0.77                 | 0.25                 | 0.38                 | 0.000                   | 0.195                   | 0.00                 | 0.000                   | 0.000                                  | 11.46<br><b>12.12</b>                   | 97.07                      | 166.24                     | 43.7                 | 51.7              | 104.2              | 36.3                | 450                      | 450                             | CIRCULAR                         | CONCRETE                         | -         | 0.30                 | 162.9                | 63.98%                   | 0.99                 | 0.92                 | 0.66                 |
|           | 105               | 104                   | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 1.29                 | 0.000                   | 0.751                   | 0.00                 | 0.000                   | 0.000                                  | 12.93<br>13.60                          | 90.89                      | 155.55                     | 0.0                  | 51.7              | 241.3              | 39.1                | 600                      | 600                             | CIRCULAR                         | CONCRETE                         | -         | 0.20                 | 286.5                | 84.25%                   | 0.98                 | 0.98                 | 0.66                 |
| ST104A    | 104               | 103                   | 0.15                 | 0.00                 | 0.00                 | 0.79                 | 1.57                 | 0.118                   | 0.983                   | 0.00                 | 0.000                   | 0.000                                  | 13.60                                   | 88.38                      | 151.22                     | 0.0                  | 51.7              | 293.1              | 16.3                | 675                      | 675                             | CIRCULAR                         | CONCRETE                         | -         | 0.20                 | 392.2                | 74.73%                   | 1.06                 | 1.03                 | 0.26                 |
|           | 103               | TANKIN2               | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 1.57                 | 0.000                   | 0.983                   | 0.00                 | 0.000                   | 0.000                                  | 13.86<br><b>13.91</b>                   | 87.43                      | 149.57                     | 0.0                  | 51.7              | 290.5              | 2.8                 | 675<br>675               | 675<br>675                      | CIRCULAR                         | CONCRETE                         | -         | 0.20                 | 392.1                | 74.08%                   | 1.06                 | 1.02                 | 0.05                 |
| ST507A    | 507               | TANKIN3               | 0.05                 | 0.00                 | 0.00                 | 0.90                 | 0.05                 | 0.049                   | 0.049                   | 0.00                 | 0.000                   | 0.000                                  | 10.00<br><b>10.02</b>                   | 104.19                     | 178.56                     | 0.0                  | 0.0               | 14.2               | 0.9                 | 200<br>200               | 200<br>200                      | CIRCULAR                         | PVC                              | -         | 1.00                 | 33.3                 | 42.56%                   | 1.05                 | 0.85                 | 0.02                 |
|           | 511               | 510                   | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.00                 | 0.000                   | 0.000                   | 0.00                 | 0.000                   | 0.000                                  | 10.00                                   | 104.19                     | 178.56                     | 0.0                  | 0.0               | 0.0                | 24.0                | 250                      | 250                             | CIRCULAR                         | CONCRETE                         | -         | 0.25                 | 30.2                 | 0.00%                    | 0.61                 | 0.00                 | 0.00                 |
| ST508A    | 510<br>509<br>508 | 509<br>508<br>TANKIN1 | 0.00<br>0.00<br>0.34 | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.25 | 0.00<br>0.00<br>0.34 | 0.000<br>0.000<br>0.084 | 0.000<br>0.000<br>0.084 | 0.00<br>0.00<br>0.00 | 0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000                | 10.00<br>10.00<br>10.00<br><b>10.24</b> | 104.19<br>104.19<br>104.19 | 178.56<br>178.56<br>178.56 | 0.0<br>0.0<br>0.0    | 0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>24.3 | 41.2<br>40.4<br>8.7 | 250<br>250<br>250<br>250 | 250<br>250<br>250<br><b>250</b> | CIRCULAR<br>CIRCULAR<br>CIRCULAR | CONCRETE<br>CONCRETE<br>CONCRETE | -         | 0.25<br>0.25<br>0.25 | 30.0<br>30.2<br>30.4 | 0.00%<br>0.00%<br>79.77% | 0.61<br>0.61<br>0.61 | 0.00<br>0.00<br>0.60 | 0.00<br>0.00<br>0.24 |

File No: 160401195 Project: 5731 Hazeldean Date: 30-Jan-17

SWM Approach: Post-development to Pre-development flows

#### Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

|                                                                                       |                                  | Runoff C                | oefficient Table            |          |                          |                |       |                                  |
|---------------------------------------------------------------------------------------|----------------------------------|-------------------------|-----------------------------|----------|--------------------------|----------------|-------|----------------------------------|
| Sub-cate<br>Are<br>Catchment Type                                                     | chment<br>ea<br>ID / Description |                         | Area<br>(ha)<br>"A"         | R<br>Coe | unoff<br>fficient<br>"C" | "A 3           | x C"  | Overall<br>Runoff<br>Coefficient |
| Roof                                                                                  | ST108D                           | Hard<br>Soft            | 0.05<br>0.00                | 0.052    | 0.9<br>0.2               | 0.047<br>0.000 | 0.047 | 0 900                            |
| Roof                                                                                  | ST108E<br>St                     | Hard<br>Soft<br>Ibtotal | 0.03<br>0.00                | 0.032    | 0.9<br>0.2               | 0.024<br>0.000 | 0.047 | 0.900                            |
| Roof                                                                                  | ST108B<br>Su                     | Hard<br>Soft<br>ıbtotal | 0.36<br>0.00                | 0.364    | 0.9<br>0.2               | 0.328<br>0.000 | 0.328 | 0.900                            |
| Roof                                                                                  | ST108A<br>Su                     | Hard<br>Soft<br>ıbtotal | 0.40<br>0.00                | 0.404    | 0.9<br>0.2               | 0.363<br>0.000 | 0.363 | 0.900                            |
| Roof                                                                                  | ST108C<br>Su                     | Hard<br>Soft<br>ıbtotal | 0.05<br>0.00                | 0.047    | 0.9<br>0.2               | 0.042<br>0.000 | 0.042 | 0.900                            |
| Total<br>Overall Runoff Coefficient= C:                                               |                                  |                         |                             | 0.894    |                          |                | 0.805 | 0.90                             |
| Total Roof Areas<br>Total Tributary Surface Areas (<br>Total Tributary Area to Outlet | Controlled and Uncontro          | olled)                  | 0.894  <br>0.000  <br>0.894 | ha<br>ha |                          |                |       |                                  |
| otal Uncontrolled Areas (Non-Tributary)                                               |                                  |                         | 0.000                       | ha       |                          |                |       |                                  |

#### Stormwater Management Calculations

Project #160401195, 5731 Hazeldean

#### Project #160401195, 5731 Hazeldean Modified Rational Method Calculaton s for Storage

| mounicu  | Rational                                                                                 | ictiou (                                                                                                                       | Juiculatonio                                                                               | ior otorag                                                                                     | •                                                                                         |                                                                                          |                                                                                            |                                                              |
|----------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|          | 5 yr Intens                                                                              | ity                                                                                                                            | $I = a/(t + b)^{c}$                                                                        | a =                                                                                            | 998.071                                                                                   | t (min)                                                                                  | l (mm/hr)                                                                                  |                                                              |
|          | City of Otta                                                                             | awa                                                                                                                            |                                                                                            | b =                                                                                            | 6.053                                                                                     | 5                                                                                        | 141.18                                                                                     |                                                              |
|          |                                                                                          |                                                                                                                                |                                                                                            | C =                                                                                            | 0.814                                                                                     | 10                                                                                       | 83.56                                                                                      |                                                              |
|          |                                                                                          |                                                                                                                                |                                                                                            |                                                                                                |                                                                                           | 20                                                                                       | 70.25                                                                                      |                                                              |
|          |                                                                                          |                                                                                                                                |                                                                                            |                                                                                                |                                                                                           | 25                                                                                       | 60.90                                                                                      |                                                              |
|          |                                                                                          |                                                                                                                                |                                                                                            |                                                                                                |                                                                                           | 30                                                                                       | 53.93                                                                                      |                                                              |
|          |                                                                                          |                                                                                                                                |                                                                                            |                                                                                                |                                                                                           | 35                                                                                       | 48.52                                                                                      |                                                              |
|          |                                                                                          |                                                                                                                                |                                                                                            |                                                                                                |                                                                                           | 40                                                                                       | 44.10                                                                                      |                                                              |
|          |                                                                                          |                                                                                                                                |                                                                                            |                                                                                                |                                                                                           | 50                                                                                       | 37.65                                                                                      |                                                              |
|          |                                                                                          |                                                                                                                                |                                                                                            |                                                                                                |                                                                                           | 55                                                                                       | 35.12                                                                                      |                                                              |
|          |                                                                                          |                                                                                                                                |                                                                                            |                                                                                                |                                                                                           | 60                                                                                       | 32.94                                                                                      | _                                                            |
|          | 5 YEAR M                                                                                 | Aodified I                                                                                                                     | Rational Met                                                                               | hod for Enti                                                                                   | re Site                                                                                   |                                                                                          |                                                                                            |                                                              |
|          | •••=                                                                                     |                                                                                                                                | actional mot                                                                               |                                                                                                | 0 0110                                                                                    |                                                                                          |                                                                                            |                                                              |
| 0        |                                                                                          | 074000                                                                                                                         |                                                                                            |                                                                                                |                                                                                           |                                                                                          | D                                                                                          |                                                              |
| Subura   | Area (ha):                                                                               | 0.05                                                                                                                           |                                                                                            | M                                                                                              | laximum Sto                                                                               | rage Depth:                                                                              | 15                                                                                         | 0 mm                                                         |
|          | Ć:                                                                                       | 0.90                                                                                                                           |                                                                                            |                                                                                                |                                                                                           | • •                                                                                      |                                                                                            |                                                              |
|          | to                                                                                       | 1 ( <b>5</b> yr)                                                                                                               | Opertual                                                                                   | Oroloaco                                                                                       | Octored                                                                                   | Vetorod                                                                                  | Donth                                                                                      | -                                                            |
|          | (min)                                                                                    | (mm/hr)                                                                                                                        | (L/s)                                                                                      | (L/s)                                                                                          | (L/s)                                                                                     | (m^3)                                                                                    | (mm)                                                                                       |                                                              |
|          | 5                                                                                        | 141.18                                                                                                                         | 18.26                                                                                      | 2.75                                                                                           | 15.51                                                                                     | 4.65                                                                                     | 89.6                                                                                       | 0.00                                                         |
|          | 10                                                                                       | 104.19                                                                                                                         | 13.48                                                                                      | 3.09                                                                                           | 10.39                                                                                     | 6.24                                                                                     | 100.5                                                                                      | 0.00                                                         |
|          | 15<br>20                                                                                 | 83.56                                                                                                                          | 10.81                                                                                      | 3.17                                                                                           | 7.64                                                                                      | 6.88<br>7.07                                                                             | 103.2                                                                                      | 0.00                                                         |
|          | 25                                                                                       | 60.90                                                                                                                          | 7.88                                                                                       | 3.19                                                                                           | 4.69                                                                                      | 7.03                                                                                     | 103.9                                                                                      | 0.00                                                         |
|          | 30                                                                                       | 53.93                                                                                                                          | 6.98                                                                                       | 3.17                                                                                           | 3.81                                                                                      | 6.86                                                                                     | 103.1                                                                                      | 0.00                                                         |
|          | 35                                                                                       | 48.52                                                                                                                          | 6.28                                                                                       | 3.13                                                                                           | 3.14                                                                                      | 6.60                                                                                     | 102.0                                                                                      | 0.00                                                         |
|          | 40                                                                                       | 40.63                                                                                                                          | 5.26                                                                                       | 3.09                                                                                           | 2.02                                                                                      | 5.98                                                                                     | 99.0                                                                                       | 0.00                                                         |
|          | 50                                                                                       | 37.65                                                                                                                          | 4.87                                                                                       | 2.98                                                                                           | 1.90                                                                                      | 5.69                                                                                     | 96.9                                                                                       | 0.00                                                         |
|          | 55                                                                                       | 35.12                                                                                                                          | 4.54                                                                                       | 2.91                                                                                           | 1.63                                                                                      | 5.39                                                                                     | 94.8                                                                                       | 0.00                                                         |
|          | 60                                                                                       | 32.94                                                                                                                          | 4.26                                                                                       | 2.85                                                                                           | 1.41                                                                                      | 5.09                                                                                     | 92.7                                                                                       | 0.00                                                         |
| Storage: | Roof Storag                                                                              | ge                                                                                                                             |                                                                                            |                                                                                                |                                                                                           |                                                                                          |                                                                                            |                                                              |
| ,        |                                                                                          |                                                                                                                                |                                                                                            |                                                                                                |                                                                                           |                                                                                          |                                                                                            | _                                                            |
|          |                                                                                          | Depth                                                                                                                          | Head                                                                                       | Discharge                                                                                      | Vreq                                                                                      | Vavail                                                                                   | Discharge                                                                                  |                                                              |
| 5-vear   | Water Level                                                                              | 104.03                                                                                                                         | 0.10                                                                                       | 3.20                                                                                           | 7.07                                                                                      | 20.68                                                                                    | 0.00                                                                                       | -                                                            |
|          |                                                                                          |                                                                                                                                |                                                                                            |                                                                                                |                                                                                           |                                                                                          |                                                                                            | -                                                            |
| Subdra   | inage Area:                                                                              | ST108F                                                                                                                         |                                                                                            |                                                                                                |                                                                                           |                                                                                          | Por                                                                                        | of                                                           |
| oubura   | Area (ha):                                                                               | 0.03                                                                                                                           |                                                                                            | M                                                                                              | laximum Sto                                                                               | rage Depth:                                                                              | 15                                                                                         | 0 mm                                                         |
|          | C:                                                                                       | 0.90                                                                                                                           |                                                                                            |                                                                                                |                                                                                           |                                                                                          |                                                                                            |                                                              |
|          | tc                                                                                       | l (5 vr)                                                                                                                       | Oactual                                                                                    | Orelease                                                                                       | Ostored                                                                                   | Vstored                                                                                  | Denth                                                                                      | Т                                                            |
|          | (min)                                                                                    | (mm/hr)                                                                                                                        | (L/s)                                                                                      | (L/s)                                                                                          | (L/s)                                                                                     | (m^3)                                                                                    | (mm)                                                                                       |                                                              |
|          | 5                                                                                        | 141.18                                                                                                                         | 9.61                                                                                       | 1.38                                                                                           | 8.23                                                                                      | 2.47                                                                                     | 89.9                                                                                       | 0.00                                                         |
|          | 10                                                                                       | 104.19                                                                                                                         | 7.09                                                                                       | 1.55                                                                                           | 5.54                                                                                      | 3.32                                                                                     | 100.8                                                                                      | 0.00                                                         |
|          | 20                                                                                       | 83.50                                                                                                                          | 5.68                                                                                       | 1.59                                                                                           | 4.09                                                                                      | 3.08                                                                                     | 103.7                                                                                      | 0.00                                                         |
|          | 25                                                                                       | 60.90                                                                                                                          | 4.14                                                                                       | 1.61                                                                                           | 2.53                                                                                      | 3.80                                                                                     | 104.7                                                                                      | 0.00                                                         |
|          | 30                                                                                       | 53.93                                                                                                                          | 3.67                                                                                       | 1.60                                                                                           | 2.07                                                                                      | 3.73                                                                                     | 104.1                                                                                      | 0.00                                                         |
|          | 35                                                                                       | 48.52                                                                                                                          | 3.30                                                                                       | 1.58                                                                                           | 1.72                                                                                      | 3.61                                                                                     | 103.1                                                                                      | 0.00                                                         |
|          | 40                                                                                       | 44.18                                                                                                                          | 2.76                                                                                       | 1.57                                                                                           | 1.44                                                                                      | 3.40                                                                                     | 101.9                                                                                      | 0.00                                                         |
|          | 50                                                                                       | 37.65                                                                                                                          | 2.56                                                                                       | 1.52                                                                                           | 1.04                                                                                      | 3.13                                                                                     | 98.8                                                                                       | 0.00                                                         |
|          | 55                                                                                       | 35.12                                                                                                                          | 2.39                                                                                       | 1.49                                                                                           | 0.90                                                                                      | 2.98                                                                                     | 96.8                                                                                       | 0.00                                                         |
|          | 60                                                                                       | 32.94                                                                                                                          | 2.24                                                                                       | 1.46                                                                                           | 0.79                                                                                      | 2.83                                                                                     | 94.7                                                                                       | 0.00                                                         |
| Storage: | Roof Storag                                                                              | je                                                                                                                             |                                                                                            |                                                                                                |                                                                                           |                                                                                          |                                                                                            |                                                              |
|          | i                                                                                        | Death                                                                                                                          | Used                                                                                       | Discharge                                                                                      | 1/                                                                                        | Marria                                                                                   | Discharge                                                                                  | -                                                            |
|          |                                                                                          | (mm)                                                                                                                           | (m)                                                                                        | (L/s)                                                                                          | (cu, m)                                                                                   | (cu, m)                                                                                  | Check                                                                                      |                                                              |
| 5-year   | Water Level                                                                              | 104.74                                                                                                                         | 0.10                                                                                       | 1.61                                                                                           | 3.81                                                                                      | 10.88                                                                                    | 0.00                                                                                       |                                                              |
|          |                                                                                          |                                                                                                                                |                                                                                            |                                                                                                |                                                                                           |                                                                                          |                                                                                            |                                                              |
| Subdra   | ainage Area:                                                                             | ST108B                                                                                                                         |                                                                                            |                                                                                                |                                                                                           |                                                                                          | Roc                                                                                        | of                                                           |
|          | Area (ha):                                                                               | 0.36                                                                                                                           |                                                                                            | M                                                                                              | laximum Sto                                                                               | rage Depth:                                                                              | 15                                                                                         | 0 mm                                                         |
|          | C:                                                                                       | 0.90                                                                                                                           |                                                                                            |                                                                                                |                                                                                           |                                                                                          |                                                                                            |                                                              |
|          | tc                                                                                       | l (5 yr)                                                                                                                       | Qactual                                                                                    | Qrelease                                                                                       | Qstored                                                                                   | Vstored                                                                                  | Depth                                                                                      | Т                                                            |
|          | (min)                                                                                    | (mm/hr)                                                                                                                        | (L/s)                                                                                      | (L/s)                                                                                          | (L/s)                                                                                     | (m^3)                                                                                    | (mm)                                                                                       |                                                              |
|          | 5                                                                                        | 141.18                                                                                                                         | 128.71                                                                                     | 17.98                                                                                          | 110.73                                                                                    | 33.22                                                                                    | 90.0                                                                                       | 0.00                                                         |
|          | 15                                                                                       | 83,56                                                                                                                          | 94.99<br>76.18                                                                             | 20.17                                                                                          | 55.40                                                                                     | 49.86                                                                                    | 101.0                                                                                      | 0.00                                                         |
|          | 20                                                                                       | 70.25                                                                                                                          | 64.04                                                                                      | 21.00                                                                                          | 43.05                                                                                     | 51.66                                                                                    | 105.1                                                                                      | 0.00                                                         |
|          | 25                                                                                       | 60.90                                                                                                                          | 55.52                                                                                      | 21.01                                                                                          | 34.51                                                                                     | 51.76                                                                                    | 105.2                                                                                      | 0.00                                                         |
|          | 30                                                                                       | 53.93                                                                                                                          | 49.16                                                                                      | 20.90                                                                                          | 28.26                                                                                     | 50.87                                                                                    | 104.7                                                                                      | 0.00                                                         |
|          | 40                                                                                       | 44.18                                                                                                                          | 40.28                                                                                      | 20.72                                                                                          | 19.79                                                                                     | 47.50                                                                                    | 102.6                                                                                      | 0.00                                                         |
|          | 45                                                                                       | 40.63                                                                                                                          | 37.04                                                                                      | 20.23                                                                                          | 16.81                                                                                     | 45.38                                                                                    | 101.3                                                                                      | 0.00                                                         |
|          | 50                                                                                       | 37.65                                                                                                                          | 34.33                                                                                      | 19.95                                                                                          | 14.37                                                                                     | 43.12                                                                                    | 99.9                                                                                       | 0.00                                                         |
|          | 55<br>60                                                                                 | 35.12                                                                                                                          | 32.02                                                                                      | 19.56                                                                                          | 12.46                                                                                     | 41.13                                                                                    | 97.9                                                                                       | 0.00<br>0 nn                                                 |
|          | 50                                                                                       |                                                                                                                                | - 5.00                                                                                     |                                                                                                |                                                                                           |                                                                                          | - 5.0                                                                                      | 2.00                                                         |
| Storage: | Roof Storag                                                                              | ge                                                                                                                             |                                                                                            |                                                                                                |                                                                                           |                                                                                          |                                                                                            |                                                              |
|          | 1                                                                                        | Depth                                                                                                                          | Head                                                                                       | Discharge                                                                                      | Vrea                                                                                      | Vavail                                                                                   | Discharge                                                                                  | ן ך                                                          |
|          |                                                                                          | (mm)                                                                                                                           | (m)                                                                                        | (L/s)                                                                                          | (cu. m)                                                                                   | (cu. m)                                                                                  | Check                                                                                      |                                                              |
| 5-year   | Water Level                                                                              | 105.21                                                                                                                         | 0.11                                                                                       | 21.01                                                                                          | 51.76                                                                                     | 145.75                                                                                   | 0.00                                                                                       |                                                              |
|          |                                                                                          |                                                                                                                                |                                                                                            |                                                                                                |                                                                                           |                                                                                          |                                                                                            |                                                              |
|          |                                                                                          |                                                                                                                                |                                                                                            |                                                                                                |                                                                                           |                                                                                          | Roc                                                                                        | of                                                           |
| Subdra   | ainage Area:                                                                             | ST108A                                                                                                                         |                                                                                            |                                                                                                |                                                                                           |                                                                                          |                                                                                            | ~                                                            |
| Subdra   | ainage Area:<br>Area (ha):                                                               | ST108A<br>0.40                                                                                                                 |                                                                                            | Μ                                                                                              | laximum Sto                                                                               | rage Depth:                                                                              | 15                                                                                         | 0 mm                                                         |
| Subdra   | ainage Area:<br>Area (ha):<br>C:                                                         | ST108A<br>0.40<br>0.90                                                                                                         |                                                                                            | Μ                                                                                              | laximum Sto                                                                               | rage Depth:                                                                              | 15                                                                                         | 0 mm                                                         |
| Subdra   | ainage Area:<br>Area (ha):<br>C:<br>tc                                                   | ST108A<br>0.40<br>0.90                                                                                                         | Qactual                                                                                    | M<br>Qrelease                                                                                  | aximum Sto                                                                                | vrage Depth:                                                                             | 15<br>Depth                                                                                | U mm                                                         |
| Subdra   | ainage Area:<br>Area (ha):<br>C:<br>tc<br>(min)                                          | ST108A<br>0.40<br>0.90<br>I (5 yr)<br>(mm/hr)                                                                                  | Qactual<br>(L/s)                                                                           | Qrelease<br>(L/s)                                                                              | Qstored<br>(L/s)                                                                          | Vstored<br>(m^3)                                                                         | 15<br>Depth<br>(mm)                                                                        | 0 mm                                                         |
| Subdra   | ainage Area:<br>Area (ha):<br>C:<br>tc<br>(min)<br>5                                     | ST108A<br>0.40<br>0.90<br>I (5 yr)<br>(mm/hr)<br>141.18                                                                        | Qactual<br>(L/s)<br>142.64                                                                 | Qrelease<br>(L/s)<br>19.39<br>21.77                                                            | Qstored<br>(L/s)<br>123.25                                                                | Vstored<br>(m^3)<br>36.97                                                                | 15<br>Depth<br>(mm)<br>90.2                                                                | 0 mm                                                         |
| Subdra   | ainage Area:<br>Area (ha):<br>C:<br>tc<br>(min)<br>5<br>10<br>15                         | ST108A<br>0.40<br>0.90<br>I (5 yr)<br>(mm/hr)<br>141.18<br>104.19<br>83.56                                                     | Qactual<br>(L/s)<br>142.64<br>105.27<br>84.42                                              | <b>Qrelease</b><br>(L/s)<br>19.39<br>21.77<br>22.44                                            | Qstored<br>(L/s)<br>123.25<br>83.50<br>61.98                                              | Vstored<br>(m^3)<br>36.97<br>50.10<br>55.78                                              | 15<br>Depth<br>(mm)<br>90.2<br>101.2<br>104 3                                              | 0 mm<br>0.00<br>0.00                                         |
| Subdra   | ainage Area:<br>Area (ha):<br>C:<br>(min)<br>5<br>10<br>15<br>20                         | ST108A<br>0.40<br>0.90<br>I (5 yr)<br>(mm/hr)<br>141.18<br>104.19<br>83.56<br>70.25                                            | Qactual<br>(L/s)<br>142.64<br>105.27<br>84.42<br>70.98                                     | <b>Qrelease</b><br>(L/s)<br>19.39<br>21.77<br>22.44<br>22.69                                   | Qstored<br>(L/s)<br>123.25<br>83.50<br>61.98<br>48.28                                     | Vstored<br>(m^3)<br>36.97<br>50.10<br>55.78<br>57.94                                     | 15<br>Depth<br>(mm)<br>90.2<br>101.2<br>104.3<br>105.5                                     | 0 mm<br>0.00<br>0.00<br>0.00<br>0.00                         |
| Subdra   | ainage Area:<br>Area (ha):<br>C:<br>(min)<br>5<br>10<br>15<br>20<br>25                   | ST108A<br>0.40<br>0.90<br>I (5 yr)<br>(mm/hr)<br>141.18<br>104.19<br>83.56<br>70.25<br>60.90                                   | Qactual<br>(L/s)<br>142.64<br>105.27<br>84.42<br>70.98<br>61.53                            | M<br>Qrelease<br>(L/s)<br>19.39<br>21.77<br>22.44<br>22.69<br>22.72                            | Qstored<br>(L/s)<br>123.25<br>83.50<br>61.98<br>48.28<br>38.80                            | Vstored<br>(m^3)<br>36.97<br>50.10<br>55.78<br>57.94<br>58.20                            | 15<br>Depth<br>(mm)<br>90.2<br>101.2<br>104.3<br>105.5<br>105.7                            | 0 mm<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 |
| Subdra   | ainage Area:<br>Area (ha):<br>C:<br>(min)<br>5<br>10<br>15<br>20<br>25<br>30<br>25       | ST108A<br>0.40<br>0.90<br>I (5 yr)<br>(mm/hr)<br>141.18<br>104.19<br>83.56<br>70.25<br>60.90<br>53.93<br>48.52                 | Qactual<br>(L/s)<br>142.64<br>105.27<br>84.42<br>70.98<br>61.53<br>54.48<br>40.00          | M<br>Qrelease<br>(L/s)<br>19.39<br>21.77<br>22.44<br>22.69<br>22.72<br>22.62<br>22.62<br>22.44 | Qstored<br>(L/s)<br>123.25<br>83.50<br>61.98<br>48.28<br>38.80<br>31.86<br>26.59          | Vstored<br>(m^3)<br>36.97<br>50.10<br>55.78<br>57.94<br>58.20<br>57.35<br>55.94          | 15<br>Depth<br>(mm)<br>90.2<br>101.2<br>104.3<br>105.5<br>105.7<br>105.2<br>104.4          | 0 mm<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         |
| Subdra   | ainage Area:<br>Area (ha):<br>C:<br>(min)<br>5<br>10<br>15<br>20<br>25<br>30<br>35<br>40 | ST108A<br>0.40<br>0.90<br><b>I (5 yr)</b><br>(mm/hr)<br>141.18<br>104.19<br>83.56<br>70.25<br>60.90<br>53.93<br>48.52<br>44.18 | Qactual<br>(L/s)<br>142.64<br>105.27<br>84.42<br>70.98<br>61.53<br>54.48<br>49.02<br>44.64 | M<br>Qrelease<br>(L/s)<br>19.39<br>21.77<br>22.44<br>22.69<br>22.72<br>22.62<br>22.44<br>22.21 | Qstored<br>(L/s)<br>123.25<br>83.50<br>61.98<br>48.28<br>38.80<br>31.86<br>26.58<br>22.43 | Vstored<br>(m^3)<br>36.97<br>50.10<br>55.78<br>57.94<br>58.20<br>57.35<br>55.81<br>53.84 | 15<br>Depth<br>(mm)<br>90.2<br>101.2<br>104.3<br>105.5<br>105.7<br>105.2<br>104.4<br>103.3 | 0 mm<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 |

#### Modified Rational Method Calculatons for Storage 100 yr Intensity City of Ottawa $I = a/(t + b)^{6}$ 1735.688 t (min) l (mm/hr) a = b = 6.01 242.70 0.82 10 15 178.56 142.89 142.89 119.95 103.85 91.87 82.58 75.15 69.05 53.05 20 25 30 35 40 45 50 55 60 63.95 59.62 55.89 100 YEAR Modified Rational Method for Entire Site ST108D 0.05 1.00 Subdrainage Area: Area (ha): C: Roof 150 Maximum Storage Depth: l (100 yr) tc Qactua Qrelease Qstored Vstored Depth (min) 10 (mm/hr (L/s) 25.67 (L/s) 3.93 (L/s) 21.73 (m^3) 13.04 15.69 16.19 15.88 15.20 14.35 13.40 12.42 11.50 10.67 9.87 9.11 (mm) 128.1 135.7 137.1 136.2 134.3 131.8 129.1 126.3 178.56 178.56 119.95 91.87 75.15 63.95 55.89 25.07 17.24 13.21 10.80 9.19 8.03 4.17 4.21 4.18 4.13 4.05 3.97 3.88 13.07 8.99 6.62 5.07 3.98 3.19 2.59 20 30 40 50 60 70 80 90 100 110 120 0.00 49.79 44.99 7.16 6.47 0.00 44.99 41.11 37.90 35.20 32.89 5.91 5.45 5.06 4.73 3.78 3.67 3.56 3.46 2.39 2.13 1.78 1.50 1.26 120.3 123.0 119.5 116.0 112.7 Storage Roof Storage Discharge Discharge Check 0.00 Depth Head Vreq Vavai (m) 0.14 (L/s) 4.21 (cu. m) 16.19 (cu. m 20.68 100-year Water Level 137.1 Subdrainage Area: ST108F Roof 0.03 Area (ha): C: Maximum Storage Depth 150 m Vstored (m^3) 6.92 (100 yr) Qstored Depth tc Qactua (L/s) 13.50 (L/s) 1.97 (min) 10 (mm/hr) 178.56 (L/s) 11.53 (mm) 128.4 2.09 8.37 20 119.95 9.07 6.97 136.3 138.0 137.4 135.7 133.4 130.9 128.2 125.4 0.0 5.68 4.83 4.23 3.76 30 40 50 60 70 80 90 100 110 120 91.87 75.15 2.12 4.82 3.57 2.75 2.18 1.75 1.43 1.18 8.68 8.57 8.25 7.83 7.37 6.88 6.38 0.0 0.0 75.15 63.95 55.89 49.79 44.99 41.11 2.11 2.08 2.05 2.01 1.97 1.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.40 3.11 37.90 35.20 32.89 2.87 2.66 2.49 1.88 1.82 1.77 0.99 0.84 0.71 5.94 5.53 5.13 122.1 122.1 118.8 115.5 Roof Storage Storage Depth Head Discharge Vreq Vavail Discharge (m) 0.14 (L/s) 2.12 (cu. m) 8.68 (cu. m) 10.88 Check 0.00 100-year Water Level 138.04 Subdrainage Area: ST108B Roof 150 m Maximum Storage Depth: Area (ha): 0.36 C: 1.00 Depth (mm) 128.6 tr (100 yı Qactua Orelea Qstore Vstorer (mm/hr) 178.56 (L/s) 180.87 (m^3) 93.12 (min) 10 (L/s) 25.67 (L/s) 27.29 27.67 94.21 65.39 113.05 117.70 136.7 138.6 138.1 136.5 134.3 131.9 129.3 126.6 123.7 120.4 117.2 20 30 40 50 60 70 80 90 100 110 119.95 121.50 93.06 0.0 91.87 0.0 75.15 76.12 64.78 56.62 50.43 45.57 41.64 38.39 35.66 27.57 48.54 37.53 116.51 112.58 0.00 63.95 27.26 63.95 55.89 49.79 44.99 41.11 37.90 35.20 37.53 29.80 24.10 19.76 16.36 13.70 11.62 26.82 26.33 25.81 25.28 107.26 101.23 94.85 88.34 0.00 82.18 76.72 71.45 24.70 24.03 120 32.89 33.32 23.40 9.92 Roof Storage Storage Vreq Vavail Depth Head Discharge Discharge (m) 0.14 (L/s) 27.67 (cu. m) 117.70 (cu. m) 145.75 Check 0.00 100-year Water Level 138.58 ST108A Roof 150 r Subdrainage Area: Area (ha): C: Maximum Storage Depth: 0.40 1.00 tc l (100 vr Qactua Qreleas Qstored Vstored Depth (min) 10 (mm/hr 178.56 (L/s) 200.45 (L/s) (L/s) (m^3) (mm) 172.76 105.19 73.22 54.52 42.28 33.67 27.33 128.7 137.0 139.1 138.7 137.3 135.2 132.8 29.47 29.91 29.83 29.52 126.23 131.80 130.86 126.84 134.66 103.13 119.95 91.87 20 30 40 50 60 70 80 90 0.00 75.15 63.95 84.36 71.79 0.0 0.00 55.89 49.79 44.99 41.11 62.75 55.89 29.07 121.23 114.78 0.00 28.56

130.3

127.7

22.48

107.93

100.90

28.02 27.47

50.51 46.15

### **Stormwater Management Calculations**

#### Project #160401195, 5731 Hazeldean

|          | 50                                                                            | 37.65                                                                                                  | 38.04                                                                                        | 21.66                                                                                | 16.39                                                                                                   | 49.16                                                                                                    | 100.7                                                                                                          | 0.0                                                                |
|----------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|          | 55                                                                            | 35.12                                                                                                  | 35.49                                                                                        | 21.30                                                                                | 14.19                                                                                                   | 46.81                                                                                                    | 99.1                                                                                                           | 0.0                                                                |
|          | 60                                                                            | 32.94                                                                                                  | 33.28                                                                                        | 20.88                                                                                | 12.40                                                                                                   | 44.65                                                                                                    | 97.1                                                                                                           | 0.0                                                                |
| Storage: | Roof Storag                                                                   | je                                                                                                     |                                                                                              |                                                                                      |                                                                                                         |                                                                                                          |                                                                                                                |                                                                    |
|          | [                                                                             | Depth                                                                                                  | Head                                                                                         | Discharge                                                                            | Vreq                                                                                                    | Vavail                                                                                                   | Discharge                                                                                                      | ٦                                                                  |
|          |                                                                               | (mm)                                                                                                   | (m)                                                                                          | (L/s)                                                                                | (cu. m)                                                                                                 | (cu. m)                                                                                                  | Check                                                                                                          |                                                                    |
| 5-year   | Water Level                                                                   | 105.67                                                                                                 | 0.11                                                                                         | 22.72                                                                                | 58.20                                                                                                   | 161.52                                                                                                   | 0.00                                                                                                           |                                                                    |
| Subdr    |                                                                               | ST109C                                                                                                 |                                                                                              |                                                                                      |                                                                                                         |                                                                                                          | Poo                                                                                                            | f.                                                                 |
| Subura   | Aroa (ba):                                                                    | 0.05                                                                                                   |                                                                                              | M                                                                                    | lovimum Sto                                                                                             | rago Dopth:                                                                                              | 150                                                                                                            | וי<br>היייים ר                                                     |
|          | Area (IIa):                                                                   | 0.05                                                                                                   |                                                                                              | IV.                                                                                  | axinulli Stu                                                                                            | aye Depth.                                                                                               | 150                                                                                                            | , inn                                                              |
|          | υ.                                                                            | 0.50                                                                                                   |                                                                                              |                                                                                      |                                                                                                         |                                                                                                          |                                                                                                                |                                                                    |
|          | tc                                                                            | l (5 yr)                                                                                               | Qactual                                                                                      | Qrelease                                                                             | Qstored                                                                                                 | Vstored                                                                                                  | Depth                                                                                                          | ٦                                                                  |
|          | (min)                                                                         | (mm/hr)                                                                                                | (L/s)                                                                                        | (L/s)                                                                                | (L/s)                                                                                                   | (m^3)                                                                                                    | (mm)                                                                                                           |                                                                    |
|          | 5                                                                             | 141.18                                                                                                 | 16.63                                                                                        | 2.74                                                                                 | 13.90                                                                                                   | 4.17                                                                                                     | 89.1                                                                                                           | 0.0                                                                |
|          | 10                                                                            | 10110                                                                                                  |                                                                                              | 0.00                                                                                 | 0.01                                                                                                    | F F0                                                                                                     |                                                                                                                |                                                                    |
|          | 10                                                                            | 104.19                                                                                                 | 12.27                                                                                        | 3.06                                                                                 | 9.21                                                                                                    | 5.53                                                                                                     | 99.6                                                                                                           | 0.0                                                                |
|          | 10<br>15                                                                      | 104.19<br>83.56                                                                                        | 12.27<br>9.84                                                                                | 3.06                                                                                 | 6.71                                                                                                    | 5.53<br>6.03                                                                                             | 99.6<br>102.1                                                                                                  | 0.0                                                                |
|          | 10<br>15<br>20                                                                | 104.19<br>83.56<br>70.25                                                                               | 12.27<br>9.84<br>8.28                                                                        | 3.06<br>3.14<br>3.15                                                                 | 6.71<br>5.12                                                                                            | 6.03<br>6.15                                                                                             | 99.6<br>102.1<br>102.7                                                                                         | 0.0                                                                |
|          | 10<br>15<br>20<br>25                                                          | 104.19<br>83.56<br>70.25<br>60.90                                                                      | 12.27<br>9.84<br>8.28<br>7.17                                                                | 3.06<br>3.14<br>3.15<br>3.14                                                         | 6.71<br>5.12<br>4.03                                                                                    | 6.03<br>6.05<br>6.05                                                                                     | 99.6<br>102.1<br>102.7<br>102.2                                                                                | 0.0 0.0 0.0 0.0                                                    |
|          | 10<br>15<br>20<br>25<br>30                                                    | 104.19<br>83.56<br>70.25<br>60.90<br>53.93                                                             | 12.27<br>9.84<br>8.28<br>7.17<br>6.35                                                        | 3.06<br>3.14<br>3.15<br>3.14<br>3.11                                                 | 9.21<br>6.71<br>5.12<br>4.03<br>3.24                                                                    | 5.53<br>6.03<br><b>6.15</b><br>6.05<br>5.84                                                              | 99.6<br>102.1<br>102.7<br>102.2<br>101.2                                                                       | 0.0<br>0.0<br>0.0<br>0.0                                           |
|          | 10<br>15<br>20<br>25<br>30<br>35                                              | 104.19<br>83.56<br>70.25<br>60.90<br>53.93<br>48.52                                                    | 12.27<br>9.84<br>8.28<br>7.17<br>6.35<br>5.72                                                | 3.06<br>3.14<br>3.15<br>3.14<br>3.11<br>3.07                                         | 9.21<br>6.71<br>5.12<br>4.03<br>3.24<br>2.65                                                            | 5.53<br>6.03<br>6.05<br>5.84<br>5.56                                                                     | 99.6<br>102.1<br>102.7<br>102.2<br>101.2<br>99.9                                                               | 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                        |
|          | 10<br>15<br>20<br>25<br>30<br>35<br>40                                        | 104.19<br>83.56<br>70.25<br>60.90<br>53.93<br>48.52<br>44.18                                           | 12.27<br>9.84<br>8.28<br>7.17<br>6.35<br>5.72<br>5.21                                        | 3.06<br>3.14<br>3.15<br>3.14<br>3.11<br>3.07<br>3.00                                 | 9.21<br>6.71<br>5.12<br>4.03<br>3.24<br>2.65<br>2.20                                                    | 5.53<br>6.03<br>6.05<br>5.84<br>5.56<br>5.29                                                             | 99.6<br>102.1<br>102.7<br>102.2<br>101.2<br>99.9<br>97.7                                                       | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                |
|          | 10<br>15<br>20<br>25<br>30<br>35<br>40<br>45                                  | 104.19<br>83.56<br>70.25<br>60.90<br>53.93<br>48.52<br>44.18<br>40.63                                  | 12.27<br>9.84<br>8.28<br>7.17<br>6.35<br>5.72<br>5.21<br>4.79                                | 3.06<br>3.14<br>3.15<br>3.14<br>3.11<br>3.07<br>3.00<br>2.93                         | 9.21<br>6.71<br>5.12<br>4.03<br>3.24<br>2.65<br>2.20<br>1.85                                            | 5.53<br>6.03<br><b>6.15</b><br>6.05<br>5.84<br>5.56<br>5.29<br>5.00                                      | 99.6<br>102.1<br>102.7<br>102.2<br>101.2<br>99.9<br>97.7<br>95.5                                               | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                            |
|          | 10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50                            | 104.19<br>83.56<br>70.25<br>60.90<br>53.93<br>48.52<br>44.18<br>40.63<br>37.65                         | 12.27<br>9.84<br>8.28<br>7.17<br>6.35<br>5.72<br>5.21<br>4.79<br>4.44                        | 3.06<br>3.14<br>3.15<br>3.14<br>3.11<br>3.07<br>3.00<br>2.93<br>2.87                 | 9.21<br>6.71<br>5.12<br>4.03<br>3.24<br>2.65<br>2.20<br>1.85<br>1.57                                    | 5.53<br>6.03<br><b>6.15</b><br>6.05<br>5.84<br>5.56<br>5.29<br>5.00<br>4.71                              | 99.6<br>102.1<br>102.7<br>102.2<br>101.2<br>99.9<br>97.7<br>95.5<br>93.3                                       | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                            |
|          | 10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>55                      | 104.19<br>83.56<br>70.25<br>60.90<br>53.93<br>48.52<br>44.18<br>40.63<br>37.65<br>35.12                | 12.27<br>9.84<br>8.28<br>7.17<br>6.35<br>5.72<br>5.21<br>4.79<br>4.44<br>4.14                | 3.06<br>3.14<br>3.15<br>3.14<br>3.11<br>3.07<br>3.00<br>2.93<br>2.87<br>2.80         | 9.21<br>6.71<br>5.12<br>4.03<br>3.24<br>2.65<br>2.20<br>1.85<br>1.57<br>1.34                            | 5.53<br>6.03<br><b>6.15</b><br>6.05<br>5.84<br>5.56<br>5.29<br>5.00<br>4.71<br>4.42                      | 99.6<br>102.1<br>102.7<br>102.2<br>99.9<br>97.7<br>95.5<br>93.3<br>91.0                                        | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                            |
|          | 10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60                | 104.19<br>83.56<br>70.25<br>60.90<br>53.93<br>48.52<br>44.18<br>40.63<br>37.65<br>35.12<br>32.94       | 12.27<br>9.84<br>8.28<br>7.17<br>6.35<br>5.72<br>5.21<br>4.79<br>4.44<br>4.14<br>3.88        | 3.06<br>3.14<br>3.15<br>3.14<br>3.11<br>3.07<br>3.00<br>2.93<br>2.87<br>2.80<br>2.73 | 6.71<br>5.12<br>4.03<br>3.24<br>2.65<br>2.20<br>1.85<br>1.57<br>1.34<br>1.15                            | 5.53<br>6.03<br><b>6.15</b><br>6.05<br>5.84<br>5.56<br>5.29<br>5.00<br>4.71<br>4.42<br>4.14              | 99.6<br>102.1<br>102.7<br>102.2<br>101.2<br>99.9<br>97.7<br>95.5<br>93.3<br>91.0<br>88.9                       | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |
| Storage: | 10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>Roof Storag | 104.19<br>83.56<br>70.25<br>60.90<br>53.93<br>48.52<br>44.18<br>40.63<br>37.65<br>35.12<br>32.94       | 12.27<br>9.84<br>8.28<br>7.17<br>6.35<br>5.72<br>5.21<br>4.79<br>4.44<br>4.14<br>3.88        | 3.06<br>3.14<br>3.15<br>3.14<br>3.07<br>3.00<br>2.93<br>2.87<br>2.80<br>2.73         | 9.21<br>6.71<br>5.12<br>4.03<br>3.24<br>2.65<br>2.20<br>1.85<br>1.57<br>1.34<br>1.15                    | 5.53<br>6.03<br><b>6.15</b><br>6.05<br>5.84<br>5.56<br>5.29<br>5.00<br>4.71<br>4.42<br>4.14              | 99.6<br>102.1<br>102.7<br>102.2<br>101.2<br>99.9<br>97.7<br>95.5<br>93.3<br>91.0<br>88.9                       | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |
| Storage: | 10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>Roof Storag | 104.19<br>83.56<br>70.25<br>60.90<br>53.93<br>48.52<br>44.18<br>40.63<br>37.65<br>35.12<br>32.94<br>ge | 12.27<br>9.84<br>8.28<br>7.17<br>6.35<br>5.71<br>5.21<br>4.79<br>4.44<br>4.14<br>3.88        | 3.06<br>3.14<br>3.15<br>3.14<br>3.07<br>3.00<br>2.93<br>2.87<br>2.80<br>2.73         | 9.21<br>6.71<br>5.12<br>4.03<br>3.24<br>2.65<br>2.20<br>1.85<br>1.57<br>1.34<br>1.15                    | 5.53<br>6.03<br><b>6.15</b><br>6.05<br>5.84<br>5.56<br>5.29<br>5.00<br>4.71<br>4.42<br>4.14              | 99.6<br>102.1<br>102.7<br>102.2<br>101.2<br>99.9<br>97.7<br>95.5<br>93.3<br>91.0<br>88.9<br>Discharge          | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        |
| itorage: | 10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>Roof Storag | 104.19<br>83.56<br>70.25<br>60.90<br>53.93<br>48.52<br>44.18<br>40.63<br>37.65<br>35.12<br>32.94<br>ge | 12.27<br>9.84<br>8.28<br>7.17<br>6.35<br>5.21<br>4.79<br>4.44<br>4.14<br>3.88<br>Head<br>(m) | 3.14<br>3.15<br>3.14<br>3.17<br>3.07<br>3.00<br>2.93<br>2.87<br>2.80<br>2.73         | 9.21<br>6.71<br>5.12<br>4.03<br>3.24<br>2.65<br>2.20<br>1.85<br>1.57<br>1.34<br>1.15<br>Vreq<br>(cu. m) | 5.53<br>6.03<br><b>6.15</b><br>6.05<br>5.84<br>5.29<br>5.00<br>4.71<br>4.42<br>4.14<br>Vavail<br>(cu. m) | 99.6<br>102.1<br>102.7<br>102.2<br>101.2<br>99.9<br>97.7<br>95.5<br>93.3<br>91.0<br>88.9<br>Discharge<br>Check | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                            |

### Project #160401195, 5731 Hazeldean

| Modified | Rational M  | lethod Ca  | alculatons | for Storag | е          |            |           |      |
|----------|-------------|------------|------------|------------|------------|------------|-----------|------|
|          | 100         | 37.90      | 42.55      | 26.91      | 15.64      | 93.84      | 125.1     | 0.00 |
|          | 110         | 35.20      | 39.52      | 26.21      | 13.31      | 87.81      | 121.9     | 0.00 |
|          | 120         | 32.89      | 36.93      | 25.53      | 11.39      | 82.04      | 118.7     | 0.00 |
| Storage: | Roof Storad | 1e         |            |            |            |            |           |      |
| otorugo. | 11001 01010 | ,0         |            |            |            |            |           |      |
|          |             | Depth      | Head       | Discharge  | Vreg       | Vavail     | Discharge | 1    |
|          |             | (mm)       | (m)        | (L/s)      | (cu. m)    | (cu. m)    | Check     |      |
| 100-year | Water Level | 139.08     | 0.14       | 29.91      | 131.80     | 161.52     | 0.00      |      |
|          |             |            |            |            |            |            |           | ·    |
| Subdra   | inago Aroa: | ST109C     |            |            |            |            | Pool      | F    |
| Subura   | Aroa (ba):  | 0.05       |            | 14         | avimum Sto | rago Donth | 150       |      |
|          | C:          | 1.00       |            | IVI.       | aximum 3to | age Depth. | 130       |      |
|          | υ.          | 1.00       |            |            |            |            |           |      |
|          | tc          | l (100 yr) | Qactual    | Qrelease   | Qstored    | Vstored    | Depth     | 1    |
|          | (min)       | (mm/hr)    | (L/s)      | (L/s)      | (L/s)      | (m^3)      | (mm)      |      |
|          | 10          | 178.56     | 23.37      | 3.92       | 19.46      | 11.67      | 127.4     | 0.00 |
|          | 20          | 119.95     | 15.70      | 4.13       | 11.57      | 13.89      | 134.4     | 0.00 |
|          | 30          | 91.87      | 12.02      | 4.16       | 7.87       | 14.16      | 135.3     | 0.00 |
|          | 40          | 75.15      | 9.84       | 4.11       | 5.72       | 13.73      | 133.9     | 0.00 |
|          | 50          | 63.95      | 8.37       | 4.04       | 4.33       | 12.99      | 131.6     | 0.00 |
|          | 60          | 55.89      | 7.32       | 3.96       | 3.36       | 12.10      | 128.8     | 0.00 |
|          | 70          | 49.79      | 6.52       | 3.86       | 2.65       | 11.14      | 125.8     | 0.00 |
|          | 80          | 44.99      | 5.89       | 3.75       | 2.14       | 10.27      | 122.0     | 0.00 |
|          | 90          | 41.11      | 5.38       | 3.63       | 1.75       | 9.45       | 118.2     | 0.00 |
|          | 100         | 37.90      | 4.96       | 3.52       | 1.44       | 8.66       | 114.5     | 0.00 |
|          | 110         | 35.20      | 4.61       | 3.41       | 1.20       | 7.91       | 111.0     | 0.00 |
|          | 120         | 32.89      | 4.31       | 3.31       | 1.00       | 7.20       | 107.6     | 0.00 |
| Storage: | Roof Storag | je         |            |            |            |            |           |      |
|          | 1           | Depth      | Head       | Discharge  | Vreq       | Vavail     | Discharge | 1    |
|          |             | (mm)       | (m)        | (L/s)      | (cu. m)    | (cu. m)    | Check     | 1    |
| 100-year | Water Level | 135.29     | 0.14       | 4.16       | 14.16      | 18.83      | 0.00      |      |
|          |             |            |            |            |            |            |           |      |

#### Project #160401195, 5731 Hazeldean Roof Drain Design Sheet, Area ST108A Standard Zurn Model Z-105-5 Control-Flo Single Notch Roof Drain

| ſ |           | Rating                | j Curve          |         |           |         |           |             |             |
|---|-----------|-----------------------|------------------|---------|-----------|---------|-----------|-------------|-------------|
| ſ | Elevation | <b>Discharge Rate</b> | Outlet Discharge | Storage | Elevation | Area    | Volume    | e (cu. m)   | Water Depth |
|   | (m)       | (cu.m/s)              | (cu.m/s)         | (cu. m) | (m)       | (sq. m) | Increment | Accumulated | (m)         |
| ſ | 0.000     | 0.0000                | 0.0000           | 0       | 0.000     | 0       | 0         | 0           | 0.000       |
|   | 0.025     | 0.0004                | 0.0054           | 1       | 0.025     | 90      | 1         | 1           | 0.025       |
|   | 0.050     | 0.0008                | 0.0108           | 6       | 0.050     | 359     | 5         | 6           | 0.050       |
|   | 0.075     | 0.0012                | 0.0161           | 20      | 0.075     | 808     | 14        | 20          | 0.075       |
|   | 0.100     | 0.0015                | 0.0215           | 48      | 0.100     | 1436    | 28        | 48          | 0.100       |
|   | 0.125     | 0.0019                | 0.0269           | 93      | 0.125     | 2243    | 46        | 93          | 0.125       |
|   | 0.150     | 0.0023                | 0.0323           | 162     | 0.150     | 3230    | 68        | 162         | 0.150       |

|        | Drawdow | n Estimate |           |
|--------|---------|------------|-----------|
| Total  | Total   |            |           |
| Volume | Time    | Vol        | Detention |
| (cu.m) | (sec)   | (cu.m)     | Time (hr) |
|        |         |            |           |
| 0.0    | 0.0     | 0.0        | 0         |
| 5.2    | 486.8   | 5.2        | 0.13523   |
| 19.4   | 881.0   | 14.2       | 0.37995   |
| 47.1   | 1286.7  | 27.7       | 0.73735   |
| 92.7   | 1697.0  | 45.6       | 1.20874   |
| 160.8  | 2109.7  | 68.0       | 1.79476   |

Notch Rating

232

#### **Rooftop Storage Summary**

| Total Building Area (sq.m)               |     | 4038 |                                                             |
|------------------------------------------|-----|------|-------------------------------------------------------------|
| Assume Available Roof Area (sq.          | 80% | 3230 |                                                             |
| Roof Imperviousness                      |     | 0.99 |                                                             |
| Roof Drain Requirement (sq.m/Notch)      |     | 232  |                                                             |
| Number of Roof Notches*                  |     | 14   |                                                             |
| Max. Allowable Depth of Roof Ponding (m) |     | 0.15 | * As per Ontario Building Code section OBC 7.4.10.4.(2)(c). |
| Max. Allowable Storage (cu.m)            |     | 162  |                                                             |
| Estimated 100 Year Drawdown Time (h)     |     | 1.5  |                                                             |

From Zurn Drain Catalogue Head (m) L/min L/s

0.051 45.5 0.00076

\* Note: Number of drains can be reduced if multiple-notch drain used.

| Calculation Results | 5yr   | 100yr | Available |
|---------------------|-------|-------|-----------|
| Qresult (cu.m/s)    | 0.023 | 0.030 | -         |
| Depth (m)           | 0.106 | 0.139 | 0.150     |
| Volume (cu.m)       | 58.2  | 131.8 | 161.5     |
| Draintime (hrs)     | 0.9   | 1.5   |           |

#### Project #160401195, 5731 Hazeldean Roof Drain Design Sheet, Area ST108B Standard Zurn Model Z-105-5 Control-Flo Single Notch Roof Drain

|           | Rating                | j Curve          |         |           |         |           |             |             |
|-----------|-----------------------|------------------|---------|-----------|---------|-----------|-------------|-------------|
| Elevation | <b>Discharge Rate</b> | Outlet Discharge | Storage | Elevation | Area    | Volume    | e (cu. m)   | Water Depth |
| (m)       | (cu.m/s)              | (cu.m/s)         | (cu. m) | (m)       | (sq. m) | Increment | Accumulated | (m)         |
| 0.000     | 0.0000                | 0.0000           | 0       | 0.000     | 0       | 0         | 0           | 0.000       |
| 0.025     | 0.0004                | 0.0050           | 1       | 0.025     | 81      | 1         | 1           | 0.025       |
| 0.050     | 0.0008                | 0.0100           | 5       | 0.050     | 324     | 5         | 5           | 0.050       |
| 0.075     | 0.0012                | 0.0150           | 18      | 0.075     | 729     | 13        | 18          | 0.075       |
| 0.100     | 0.0015                | 0.0200           | 43      | 0.100     | 1296    | 25        | 43          | 0.100       |
| 0.125     | 0.0019                | 0.0250           | 84      | 0.125     | 2024    | 41        | 84          | 0.125       |
| 0.150     | 0.0023                | 0.0300           | 146     | 0.150     | 2915    | 61        | 146         | 0.150       |

|        | Drawdow | n Estimate |           |
|--------|---------|------------|-----------|
| Total  | Total   |            |           |
| Volume | Time    | Vol        | Detention |
| (cu.m) | (sec)   | (cu.m)     | Time (hr) |
|        |         |            |           |
| 0.0    | 0.0     | 0.0        | 0         |
| 4.7    | 473.1   | 4.7        | 0.13141   |
| 17.5   | 856.1   | 12.8       | 0.36921   |
| 42.5   | 1250.3  | 25.0       | 0.71652   |
| 83.7   | 1649.1  | 41.2       | 1.17459   |
| 145.1  | 2050.0  | 61.4       | 1.74404   |

Notch Rating

232

From Zurn Drain Catalogue Head (m) L/min L/s

0.051 45.5 0.00076

#### Rooftop Storage Summary

| Total Building Area (sq.m)               |     | 3644 |
|------------------------------------------|-----|------|
| Assume Available Roof Area (sq.          | 80% | 2915 |
| Roof Imperviousness                      |     | 0.99 |
| Roof Drain Requirement (sq.m/Notch)      |     | 232  |
| Number of Roof Notches*                  |     | 13   |
| Max. Allowable Depth of Roof Ponding (m) |     | 0.15 |
| Max. Allowable Storage (cu.m)            |     | 146  |
| Estimated 100 Year Drawdown Time (h)     |     | 1.5  |

\* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).

\* Note: Number of drains can be reduced if multiple-notch drain used.

| Calculation Results | 5yr   | 100yr | Available |
|---------------------|-------|-------|-----------|
| Qresult (cu.m/s)    | 0.021 | 0.028 | -         |
| Depth (m)           | 0.105 | 0.139 | 0.150     |
| Volume (cu.m)       | 51.8  | 117.7 | 145.7     |
| Draintime (hrs)     | 0.8   | 1.5   |           |

#### Project #160401195, 5731 Hazeldean Roof Drain Design Sheet, Area ST108C Standard Zurn Model Z-105-5 Control-Flo Single Notch Roof Drain

| Rating Curve |           |                |                  | Volume Estimation |           |         |           |             |             |
|--------------|-----------|----------------|------------------|-------------------|-----------|---------|-----------|-------------|-------------|
| ľ            | Elevation | Discharge Rate | Outlet Discharge | Storage           | Elevation | Area    | Volume    | e (cu. m)   | Water Depth |
|              | (m)       | (cu.m/s)       | (cu.m/s)         | (cu. m)           | (m)       | (sq. m) | Increment | Accumulated | (m)         |
| ľ            | 0.000     | 0.0000         | 0.0000           | 0                 | 0.000     | 0       | 0         | 0           | 0.000       |
|              | 0.025     | 0.0004         | 0.0008           | 0                 | 0.025     | 10      | 0         | 0           | 0.025       |
|              | 0.050     | 0.0008         | 0.0015           | 1                 | 0.050     | 42      | 1         | 1           | 0.050       |
|              | 0.075     | 0.0012         | 0.0023           | 2                 | 0.075     | 94      | 2         | 2           | 0.075       |
|              | 0.100     | 0.0015         | 0.0031           | 6                 | 0.100     | 167     | 3         | 6           | 0.100       |
|              | 0.125     | 0.0019         | 0.0038           | 11                | 0.125     | 262     | 5         | 11          | 0.125       |
|              | 0.150     | 0.0023         | 0.0046           | 19                | 0.150     | 377     | 8         | 19          | 0.150       |

| Drawdown Estimate |        |        |           |  |  |  |
|-------------------|--------|--------|-----------|--|--|--|
| Total             | Total  |        |           |  |  |  |
| Volume            | Time   | Vol    | Detention |  |  |  |
| (cu.m)            | (sec)  | (cu.m) | Time (hr) |  |  |  |
|                   |        |        |           |  |  |  |
| 0.0               | 0.0    | 0.0    | 0         |  |  |  |
| 0.6               | 397.4  | 0.6    | 0.11038   |  |  |  |
| 2.3               | 719.0  | 1.7    | 0.3101    |  |  |  |
| 5.5               | 1050.1 | 3.2    | 0.60181   |  |  |  |
| 10.8              | 1385.1 | 5.3    | 0.98655   |  |  |  |
| 18.7              | 1721.9 | 7.9    | 1.46485   |  |  |  |

#### Rooftop Storage Summary

| Total Building Area (sq.m)               |     | 471  |   |
|------------------------------------------|-----|------|---|
| Assume Available Roof Area (sq.          | 80% | 377  |   |
| Roof Imperviousness                      |     | 0.99 |   |
| Roof Drain Requirement (sq.m/Notch)      |     | 232  |   |
| Number of Roof Notches*                  |     | 2    |   |
| Max. Allowable Depth of Roof Ponding (m) |     | 0.15 | , |
| Max. Allowable Storage (cu.m)            |     | 19   |   |
| Estimated 100 Year Drawdown Time (h)     |     | 1.2  |   |
|                                          |     |      |   |

\* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).

\* Note: Number of drains can be reduced if multiple-notch drain used.

| Calculation Results | 5yr      | 100yr | Available |
|---------------------|----------|-------|-----------|
| Qresult (cu.m/s     | s) 0.003 | 0.004 | -         |
| Depth (m)           | 0.103    | 0.135 | 0.150     |
| Volume (cu.m)       | 6.1      | 14.2  | 18.8      |
| Draintime (hrs      | ) 0.6    | 1.2   |           |

#### From Zurn Drain Catalogue

Head (m) L/min L/s Notch Rating 0.051 45.5 0.00076 232

#### Project #160401195, 5731 Hazeldean Roof Drain Design Sheet, Area ST108D Standard Zurn Model Z-105-5 Control-Flo Single Notch Roof Drain

|           | Rating                | l Curve          |         |           |         |           |             |             |
|-----------|-----------------------|------------------|---------|-----------|---------|-----------|-------------|-------------|
| Elevation | <b>Discharge Rate</b> | Outlet Discharge | Storage | Elevation | Area    | Volume    | e (cu. m)   | Water Depth |
| (m)       | (cu.m/s)              | (cu.m/s)         | (cu. m) | (m)       | (sq. m) | Increment | Accumulated | (m)         |
| 0.000     | 0.0000                | 0.0000           | 0       | 0.000     | 0       | 0         | 0           | 0.000       |
| 0.025     | 0.0004                | 0.0008           | 0       | 0.025     | 11      | 0         | 0           | 0.025       |
| 0.050     | 0.0008                | 0.0015           | 1       | 0.050     | 46      | 1         | 1           | 0.050       |
| 0.075     | 0.0012                | 0.0023           | 3       | 0.075     | 103     | 2         | 3           | 0.075       |
| 0.100     | 0.0015                | 0.0031           | 6       | 0.100     | 184     | 4         | 6           | 0.100       |
| 0.125     | 0.0019                | 0.0038           | 12      | 0.125     | 287     | 6         | 12          | 0.125       |
| 0.150     | 0.0023                | 0.0046           | 21      | 0.150     | 414     | 9         | 21          | 0.150       |

| Drawdown Estimate |        |        |           |  |  |  |
|-------------------|--------|--------|-----------|--|--|--|
| Total             | Total  |        |           |  |  |  |
| Volume            | Time   | Vol    | Detention |  |  |  |
| (cu.m)            | (sec)  | (cu.m) | Time (hr) |  |  |  |
|                   |        |        |           |  |  |  |
| 0.0               | 0.0    | 0.0    | 0         |  |  |  |
| 0.7               | 436.4  | 0.7    | 0.12121   |  |  |  |
| 2.5               | 789.6  | 1.8    | 0.34055   |  |  |  |
| 6.0               | 1153.3 | 3.5    | 0.6609    |  |  |  |
| 11.9              | 1521.1 | 5.8    | 1.08342   |  |  |  |
| 20.6              | 1890.9 | 8.7    | 1.60868   |  |  |  |

#### Rooftop Storage Summary

| Total Building Area (sq.m)               |     | 517  |   |
|------------------------------------------|-----|------|---|
| Assume Available Roof Area (sq.          | 80% | 414  |   |
| Roof Imperviousness                      |     | 0.99 |   |
| Roof Drain Requirement (sq.m/Notch)      |     | 232  |   |
| Number of Roof Notches*                  |     | 2    |   |
| Max. Allowable Depth of Roof Ponding (m) |     | 0.15 | , |
| Max. Allowable Storage (cu.m)            |     | 21   |   |
| Estimated 100 Year Drawdown Time (h)     |     | 1.3  |   |
|                                          |     |      |   |

\* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).

\* Note: Number of drains can be reduced if multiple-notch drain used.

| Calculation Results | 5yr   | 100yr | Available |
|---------------------|-------|-------|-----------|
| Qresult (cu.m/s)    | 0.003 | 0.004 | -         |
| Depth (m)           | 0.104 | 0.137 | 0.150     |
| Volume (cu.m)       | 7.1   | 16.2  | 20.7      |
| Draintime (hrs)     | 0.7   | 1.3   |           |

#### From Zurn Drain Catalogue

Head (m) L/min L/s Notch Rating 0.051 45.5 0.00076 232

#### Project #160401195, 5731 Hazeldean Roof Drain Design Sheet, Area ST108E Standard Zurn Model Z-105-5 Control-Flo Single Notch Roof Drain

| Rating Curve |                       |                  |         | Volume Estimation |         |           |             |             |
|--------------|-----------------------|------------------|---------|-------------------|---------|-----------|-------------|-------------|
| Elevation    | <b>Discharge Rate</b> | Outlet Discharge | Storage | Elevation         | Area    | Volume    | e (cu. m)   | Water Depth |
| (m)          | (cu.m/s)              | (cu.m/s)         | (cu. m) | (m)               | (sq. m) | Increment | Accumulated | (m)         |
| 0.000        | 0.0000                | 0.0000           | 0       | 0.000             | 0       | 0         | 0           | 0.000       |
| 0.025        | 0.0004                | 0.0004           | 0       | 0.025             | 6       | 0         | 0           | 0.025       |
| 0.050        | 0.0008                | 0.0008           | 0       | 0.050             | 24      | 0         | 0           | 0.050       |
| 0.075        | 0.0012                | 0.0012           | 1       | 0.075             | 54      | 1         | 1           | 0.075       |
| 0.100        | 0.0015                | 0.0015           | 3       | 0.100             | 97      | 2         | 3           | 0.100       |
| 0.125        | 0.0019                | 0.0019           | 6       | 0.125             | 151     | 3         | 6           | 0.125       |
| 0.150        | 0.0023                | 0.0023           | 11      | 0.150             | 218     | 5         | 11          | 0.150       |

|        | Drawdown Estimate |        |           |  |  |  |  |
|--------|-------------------|--------|-----------|--|--|--|--|
| Total  | Total             |        |           |  |  |  |  |
| Volume | Time              | Vol    | Detention |  |  |  |  |
| (cu.m) | (sec)             | (cu.m) | Time (hr) |  |  |  |  |
|        |                   |        |           |  |  |  |  |
| 0.0    | 0.0               | 0.0    | 0         |  |  |  |  |
| 0.4    | 459.0             | 0.4    | 0.1275    |  |  |  |  |
| 1.3    | 830.5             | 1.0    | 0.3582    |  |  |  |  |
| 3.2    | 1213.0            | 1.9    | 0.69516   |  |  |  |  |
| 6.2    | 1599.9            | 3.1    | 1.13957   |  |  |  |  |
| 10.8   | 1988.9            | 4.6    | 1.69206   |  |  |  |  |

#### Rooftop Storage Summary

| Total Building Area (sq.m)               |     | 272  |
|------------------------------------------|-----|------|
| Assume Available Roof Area (sq.          | 80% | 218  |
| Roof Imperviousness                      |     | 0.99 |
| Roof Drain Requirement (sq.m/Notch)      |     | 232  |
| Number of Roof Notches*                  |     | 1    |
| Max. Allowable Depth of Roof Ponding (m) |     | 0.15 |
| Max. Allowable Storage (cu.m)            |     | 11   |
| Estimated 100 Year Drawdown Time (h)     |     | 1.4  |

\* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).

\* Note: Number of drains can be reduced if multiple-notch drain used.

| Calculation Results | 5yr   | 100yr | Available |
|---------------------|-------|-------|-----------|
| Qresult (cu.m/s)    | 0.002 | 0.002 | -         |
| Depth (m)           | 0.105 | 0.138 | 0.150     |
| Volume (cu.m)       | 3.8   | 8.7   | 10.9      |
| Draintime (hrs)     | 0.8   | 1.4   |           |

#### From Zurn Drain Catalogue Head (m) L/min L/s

ead (m) L/min L/s Notch Rating 0.051 45.5 0.00076 232

# **Outlet Rip-Rap Sizing**

| <b>US Arr</b><br><b>1991 P</b><br>EM160<br>Commo | ny Corps o<br>rocedure<br>1<br>on values | f Enginne  | rs           |              |        |
|--------------------------------------------------|------------------------------------------|------------|--------------|--------------|--------|
| V                                                | 1.62                                     | m/s        |              |              |        |
| v                                                | 0.27125                                  | m          |              |              |        |
| y<br>Z                                           | 0.37123                                  |            |              |              |        |
| <u>_</u><br>امان                                 | 3.00                                     |            |              |              |        |
| phi                                              | 42                                       | degrees    |              |              |        |
| ۲<br>۱۸۷                                         | 300                                      | m          |              |              |        |
| VV                                               | 1                                        | m          |              |              |        |
| Ss                                               | 2.5                                      | rock speci | ific gravity |              |        |
| g                                                | 9.806                                    | m/s²       |              |              |        |
| theta                                            | 18.4                                     | degrees    | bank ang     | le with hori | zontal |
|                                                  |                                          |            |              |              |        |
| SF                                               | 1.1                                      |            |              |              |        |
| Cs                                               | 0.3                                      |            |              |              |        |
| KI                                               | 1                                        |            |              |              |        |
| Cv                                               | 0.79                                     |            |              |              |        |
| Ct                                               | 1                                        |            |              |              |        |
|                                                  |                                          |            |              |              |        |
| D <sub>50</sub> =                                | 0.048                                    | m          |              |              |        |
| M <sub>50</sub> =                                | 0.147                                    | kg         |              |              |        |
|                                                  |                                          |            |              |              |        |
|                                                  | Selected D                               | )50        | 0.060        | m            |        |
|                                                  | Min. thick                               | ness       | 0.120        | m            |        |

Appendix C Stormwater Management March 22, 2017

## C.2 SAMPLE PCSWMM MODEL INPUT (12HR 100YR SCS)



[TITLE]

| [OPTIONS]<br>;;Options      |                                                        | Value                                                                                                                                                                                                                                              |                                                                                        |               |                |
|-----------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------|----------------|
| ;;                          | DATE<br>TIME<br>ING<br>TEP<br>IMITED<br>TATE<br>UATION | LPS<br>CURVE<br>DYNWA<br>07/23<br>00:00<br>07/23<br>00:00<br>07/24<br>00:00<br>01/01<br>12/31<br>0<br>00:05<br>00:05<br>1<br>0<br>00:05<br>00:05<br>1<br>VES<br>PARTI.<br>0<br>0<br>0<br>BOTH<br>NO<br>H-W<br>ELEVA<br>0<br>0.001<br>5<br>0.5<br>4 | NUMBER<br>VE<br>/2009<br>:00<br>/2009<br>:00<br>:00<br>:00<br>:00<br>:00<br>AL<br>TION |               |                |
| [EVAPORATION]<br>;;Type     | Para                                                   | ameters                                                                                                                                                                                                                                            |                                                                                        |               |                |
| CONSTANT<br>DRY_ONLY        | 0.0<br>NO                                              |                                                                                                                                                                                                                                                    |                                                                                        |               |                |
| [RAINGAGES]<br>;;<br>;;Name | Ra<br>Tyj                                              | in<br>De                                                                                                                                                                                                                                           | Time<br>Intrvl                                                                         | Snow<br>Catch | Data<br>Source |

Page 1

| 160401195_100scs.inp          |                |               |                    |                 |        |                |                |              |
|-------------------------------|----------------|---------------|--------------------|-----------------|--------|----------------|----------------|--------------|
| ;;<br>RG1                     | INTENSITY 0:15 | 1.0 TIMESERIE | -<br>s 100scs      |                 |        |                |                |              |
| [SUBCATCHMENTS]<br>;;<br>Name | Raingage       | Outlet        | Total<br>Area      | Pcnt.<br>Imperv | Width  | Pcnt.<br>Slope | Curb<br>Length | Snow<br>Pack |
| EXT1                          | RG1            | EXT1-OF       | 0.067219           | 0               | 15.124 | 33.3           | 0              |              |
| EXT2                          | RG1            | EXT2-OF       | 0.063791           | 72.857          | 14.353 | 2              | 0              |              |
| ST104A                        | RG1            | ST104A-S      | 0.149935           | 84.286          | 69     | 2              | 0              |              |
| ST107A                        | RG1            | ST107A-S      | 0.373344           | 64.286          | 225    | 1.5            | 0              |              |
| ST108A                        | RG1            | ST108A-S      | 0.403809           | 100             | 90.857 | 1.5            | 0              |              |
| ST108B                        | RG1            | ST108B-S      | 0.36437            | 100             | 81.983 | 1.5            | 0              |              |
| S⊤108C                        | RG1            | S⊤108C-S      | 0.047083           | 100             | 12.1   | 1.5            | 0              |              |
| ST108D                        | RG1            | S⊤108D-S      | 0.051706           | 100             | 10.9   | 1.5            | 0              |              |
| ST108E                        | RG1            | S⊤108E-S      | 0.027193           | 100             | 25     | 1.5            | 0              |              |
| ST108F                        | RG1            | 108           | 0.382042           | 44.286          | 85.96  | 1.2            | 0              |              |
| ST109A                        | RG1            | 109           | 0.013537           | 100             | 18.2   | 10             | 0              |              |
| Ѕ⊤109в                        | RG1            | S⊤109B-S      | 0.054305           | 100             | 24.8   | 1              | 0              |              |
| ST109C                        | RG1            | ST109C-S      | 0.058618           | 100             | 25.8   | 1              | 0              |              |
| ST110A                        | RG1            | 110           | 0.074661           | 7.143           | 16.799 | 0.8            | 0              |              |
| ST110B                        | RG1            | 110           | 0.031906           | 100             | 24.5   | 10             | 0              |              |
| ST110C                        | RG1            | 110           | 0.029561           | 100             | 26.6   | 10             | 0              |              |
| ST110D                        | RG1            | 110           | 0.074098           | 7.143           | 16.672 | 0.8            | 0              |              |
| ST111A                        | RG1            | ST111A-S      | 0.242699           | 72.857          | 107.5  | 0.8            | 0              |              |
| S⊤111B                        | RG1            | 111           | 0.037296           | 100             | 88     | 0.8            | 0              |              |
| ST111C                        | RG1            | ST111C-S      | 0.043507           | 85.714          | 36.8   | 1.5            | 0              |              |
| ST507A                        | RG1            | ST507A-S      | 0.054432<br>Page 2 | 72.857          | 33.5   | 1.5            | 0              |              |

|                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                       |                                                                                   | 1604011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L95_100SC                                                          | S.inp                                                                                  |                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                             |                            |   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---|--|
| ST508A                                                                                                                                                                                                                                                                       | RG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                       | 508                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3356                                                             | 7.143                                                                                  | 189.2                                                                                                                                                                   | 1                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                           |                            |   |  |
| [SUBAREAS]<br>;;Subcatchment                                                                                                                                                                                                                                                 | N-Imperv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N-Perv                                                                                                | S-I                                                                               | mperv S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -Perv                                                              | PctZero                                                                                | Route                                                                                                                                                                   | To                                                                                                                                                                                 | PctRou                                                                                                                                                                                                                                                                                                                                                                                                      | ited                       |   |  |
| ;;<br>EXT1<br>EXT2<br>ST104A<br>ST107A<br>ST108A<br>ST108B<br>ST108C<br>ST108F<br>ST109B<br>ST109A<br>ST109A<br>ST109A<br>ST109A<br>ST109C<br>ST110A<br>ST110D<br>ST110C<br>ST111A<br>ST111B<br>ST111B<br>ST111C<br>ST111A<br>ST111C<br>ST111A<br>ST111C<br>ST507A<br>ST508A | $\begin{array}{c} 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.013\\ 0.$ | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2                                    | 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                | 7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4       7     4 | .67<br>.67<br>.67<br>.67<br>.67<br>.67<br>.67<br>.67<br>.67<br>.67 |                                                                                        | PERVI<br>PERVI<br>IMPEF<br>IMPEF<br>IMPEF<br>IMPEF<br>IMPEF<br>IMPEF<br>IMPEF<br>IMPEF<br>PERVI<br>IMPEF<br>IMPEF<br>IMPEF<br>IMPEF<br>IMPEF<br>IMPEF<br>IMPEF<br>IMPEF | COUS<br>COUS<br>COUS<br>COUS<br>CVIOUS<br>CVIOUS<br>CVIOUS<br>CVIOUS<br>COUS<br>CVIOUS<br>COUS<br>CVIOUS<br>COUS<br>CVIOUS<br>CVIOUS<br>CVIOUS<br>CVIOUS<br>CVIOUS<br>COUS<br>COUS | 100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100           100 |                            |   |  |
| [INFILTRATION];;Subcatchment                                                                                                                                                                                                                                                 | CurveNum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HydCon                                                                                                | Dry                                                                               | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                        |                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                             |                            |   |  |
| ;;<br>EXT1<br>EXT2<br>ST104A<br>ST107A<br>ST108A<br>ST108B<br>ST108C<br>ST108E<br>ST108F<br>ST109A<br>ST109A<br>ST109C<br>ST110A<br>ST110B                                                                                                                                   | 80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |                                                                                        |                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                             |                            |   |  |
| 311106                                                                                                                                                                                                                                                                       | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                     | ,                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Page 3                                                             |                                                                                        |                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                             |                            |   |  |
| <br>ST110C<br>ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A                                                                                                                                                                                                       | 80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0.5<br>0<br>0                                                                               | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                              | 1604011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 195_100sc                                                          | S.inp                                                                                  |                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                             |                            |   |  |
| [JUNCTIONS]                                                                                                                                                                                                                                                                  | Invert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max.                                                                                                  | Ini                                                                               | t. S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | urcharge                                                           | Ponded                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                             |                            |   |  |
| 100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>109<br>110<br>111                                                                                                                                                                                                    | 99.4<br>99.60313<br>99.7793<br>100.035<br>100.0785<br>100.2317<br>100.3418<br>100.8033<br>100.83<br>100.686<br>101.4225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.735<br>3.691<br>3.752<br>3.526<br>3.492<br>3.406<br>2.976<br>2.417<br>3.67<br>3.67<br>3.814<br>2.65 |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                             |                            |   |  |
| [OUTFALLS]<br>;;<br>;;Name                                                                                                                                                                                                                                                   | Invert<br>Elev.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Outfal<br>Type                                                                                        | 1 s<br>т                                                                          | tage/Tabl<br>ime Serie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e T<br>s G                                                         | ide<br>ate Route                                                                       | То                                                                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                             |                            |   |  |
| ;;<br>EXTI-OF<br>HEADWALL<br>POOLE_OF1<br>POOLE_OF2<br>ST104A-OF<br>ST107A-OF                                                                                                                                                                                                | 102.88<br>104.2<br>98.7<br>100.1<br>101.059<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FREE<br>FREE<br>FREE<br>FREE<br>FREE<br>FREE<br>FREE<br>FREE                                          |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NG<br>NG<br>NG<br>NG<br>NG<br>NG                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              |                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                             |                            |   |  |
| [STORAGE]<br>;;<br>;;Name<br>Infiltration para<br>;;                                                                                                                                                                                                                         | Invert<br>Elev.<br>ameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max.<br>Depth                                                                                         | Init.<br>Depth                                                                    | Storage<br>Curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Curv<br>Para                                                       | e<br>ns                                                                                |                                                                                                                                                                         | ۱<br>/<br>                                                                                                                                                                         | Ponded<br>Area                                                                                                                                                                                                                                                                                                                                                                                              | Evap.<br>Frac.             | - |  |
| 108<br>508<br>ST104A-S<br>ST107A-S<br>ST108A-S<br>ST108B-S                                                                                                                                                                                                                   | 97.239<br>101.06<br>101.52<br>101.13<br>118.6<br>115.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.127<br>1.79<br>2.1<br>2.1<br>0.15<br>0.15                                                           | 0<br>0<br>0<br>0<br>0                                                             | TABULAR<br>TABULAR<br>TABULAR<br>TABULAR<br>TABULAR<br>TABULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RWHt<br>ST50<br>ST10<br>ST10<br>ST10<br>ST10<br>Page 4             | ank<br>8A-S<br>4A-S<br>7A-S<br>8A<br>8B                                                |                                                                                                                                                                         |                                                                                                                                                                                    | )<br>)<br>).01<br>).01<br>).01<br>).01                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>0<br>0<br>0<br>0 |   |  |

| ST108C-S<br>ST108D-S<br>ST109E-S<br>ST109C-S<br>ST111A-S<br>ST111C-S<br>ST507A-S<br>TANK | 110.4       0.15         110.1       0.15         107.2       0.15         102.81       1.5         102.81       1.5         101.86       2.4         101.95       2.1         101.57       2.1         100.1       3.27 | 16040<br>0 TABUL<br>0 TABUL<br>0 FUNCT<br>0 FUNCT<br>0 FUNCT<br>0 TABUL<br>0 FUNCT<br>0 TABUL<br>0 TABUL | 1195_100scs<br>AR ST108(<br>AR ST108[<br>IONAL 0<br>IONAL 0<br>AR ST111/<br>IONAL 0<br>AR ST504/<br>AR TANK | .inp<br>5<br>5<br>5<br>5<br>6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 0             | $\begin{array}{cccc} 0.01 & 0 \\ 0.01 & 0 \\ 0.01 & 0 \\ 0.01 & 0 \\ 0.01 & 0 \\ 0.01 & 0 \\ 0.01 & 0 \\ 0.01 & 0 \\ 0.01 & 0 \\ 0.01 & 0 \\ 0.01 & 0 \end{array}$ |               |   |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---|
| [CONDUITS]<br>;;<br>Max.<br>;;Name<br>Flow                                               | Inlet<br>Node                                                                                                                                                                                                            | Outlet<br>Node                                                                                           | Length                                                                                                      | Manning<br>N                                                                                             | Inlet<br>Offset | Outlet<br>Offset                                                                                                                                                   | Init.<br>Flow |   |
| ;;                                                                                       |                                                                                                                                                                                                                          |                                                                                                          |                                                                                                             |                                                                                                          |                 |                                                                                                                                                                    |               | - |
| Pipe_13                                                                                  | 100                                                                                                                                                                                                                      | HEADWALL                                                                                                 | 11.135                                                                                                      | 0.013                                                                                                    | 99.548          | 99.52                                                                                                                                                              | 0             | 0 |
| Pipe_14                                                                                  | 106                                                                                                                                                                                                                      | 105                                                                                                      | 17.55995                                                                                                    | 0.013                                                                                                    | 100.411         | 100.376                                                                                                                                                            | 0             | 0 |
| Pipe_14_(1)                                                                              | 105                                                                                                                                                                                                                      | 104                                                                                                      | 39.10268                                                                                                    | 0.013                                                                                                    | 100.301         | 100.222                                                                                                                                                            | 0             | 0 |
| Pipe_15                                                                                  | 109                                                                                                                                                                                                                      | 104                                                                                                      | 38.24086                                                                                                    | 0.013                                                                                                    | 100.83          | 100.447                                                                                                                                                            | 0             | 0 |
| Pipe_16                                                                                  | 110                                                                                                                                                                                                                      | 106                                                                                                      | 12.50838                                                                                                    | 0.013                                                                                                    | 100.686         | 100.561                                                                                                                                                            | 0             | 0 |
| Pipe_17                                                                                  | 111                                                                                                                                                                                                                      | 107                                                                                                      | 110.3626                                                                                                    | 0.013                                                                                                    | 101.65          | 100.877                                                                                                                                                            | 0             | 0 |
| Pipe_21                                                                                  | 104                                                                                                                                                                                                                      | 103                                                                                                      | 16.284                                                                                                      | 0.013                                                                                                    | 100.143         | 100.11                                                                                                                                                             | 0             | 0 |
| Pipe_23                                                                                  | 508                                                                                                                                                                                                                      | TANK                                                                                                     | 8.730414                                                                                                    | 0.013                                                                                                    | 101.6588        | 101.637                                                                                                                                                            | 0             | 0 |
| Pipe_26                                                                                  | 101                                                                                                                                                                                                                      | 100                                                                                                      | 101.5684                                                                                                    | 0.013                                                                                                    | 99.936          | 99.733                                                                                                                                                             | 0             | 0 |
| Pipe_27                                                                                  | 108                                                                                                                                                                                                                      | 105                                                                                                      | 36.34                                                                                                       | 0.013                                                                                                    | 100.441         | 100.332                                                                                                                                                            | 0             | 0 |
| Pipe_29                                                                                  | 107                                                                                                                                                                                                                      | 106                                                                                                      | 63.29649                                                                                                    | 0.013                                                                                                    | 100.802         | 100.486                                                                                                                                                            | 0             | 0 |
| Pipe_31                                                                                  | 102                                                                                                                                                                                                                      | 101                                                                                                      | 70.701                                                                                                      | 0.013                                                                                                    | 100.083         | 99.942                                                                                                                                                             | 0             | 0 |
| Pipe_34                                                                                  | 103                                                                                                                                                                                                                      | TANK                                                                                                     | 2.81                                                                                                        | 0.013                                                                                                    | 100.106         | 100.1                                                                                                                                                              | 0             | 0 |
| ST104A-T                                                                                 | ST104A-S                                                                                                                                                                                                                 | ST104A-OF                                                                                                | 2.5                                                                                                         | 0.025                                                                                                    | 103.47          | 102.88                                                                                                                                                             | 0             | 0 |
| ST107A-T                                                                                 | ST107A-S                                                                                                                                                                                                                 | ST107A-OF                                                                                                | 2.5                                                                                                         | 0.025                                                                                                    | 103.08          | 103.04                                                                                                                                                             | 0             | 0 |
| ST111A-T                                                                                 | ST111A-S                                                                                                                                                                                                                 | ST111C-S                                                                                                 | 40.9<br>Page 5                                                                                              | 0.013                                                                                                    | 104.26          | 103.75                                                                                                                                                             | 0             | 0 |

|                                                                                                                         |                                                                                                              | 160401                                                             | 195_100scs.                                                  | inp                                                                                         |                                                                                       |                                                    |                                                                              |    |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------|----|
| ST111B-T                                                                                                                | ST111C-S                                                                                                     | ST107A-S                                                           | 60                                                           | 0.013                                                                                       | 103.75                                                                                | 103.08                                             | 0                                                                            | 0  |
| ST507А-Т                                                                                                                | ST507A-S                                                                                                     | ST104A-S                                                           | 14.9                                                         | 0.013                                                                                       | 103.5                                                                                 | 103.47                                             | 0                                                                            | 0  |
| wl                                                                                                                      | 103                                                                                                          | 102                                                                | 3                                                            | 0.013                                                                                       | 102                                                                                   | 101.97                                             | 0                                                                            | 0  |
| [ORIFICES]<br>;;<br>;;Name                                                                                              | Inlet<br>Node                                                                                                | Outlet<br>Node                                                     | Orifice<br>Type                                              | Crest<br>Height                                                                             | Disch.<br>Coeff.                                                                      | Flap<br>Gate                                       | Open/Close<br>Time                                                           | 5  |
| ::<br>OR1<br>OR2<br>OR3<br>ST104A-O<br>ST107A-O<br>ST109B-O<br>ST109C-O<br>ST109C-O<br>ST111A-O<br>ST111C-O<br>ST111C-O | TANK<br>TANK<br>ST104A-S<br>ST107A-S<br>ST107B-S<br>ST109C-S<br>ST109C-S<br>ST111A-S<br>ST111C-S<br>ST111C-S | 102<br>102<br>102<br>104<br>107<br>109<br>109<br>111<br>111<br>111 | SIDE<br>SIDE<br>SIDE<br>SIDE<br>SIDE<br>SIDE<br>SIDE<br>SIDE | 100.1<br>100.7<br>101<br>101.52<br>101.13<br>102.81<br>102.81<br>101.86<br>101.95<br>101.95 | 0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.65<br>0.572<br>0.65<br>0.65<br>0.65 | NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO<br>NO | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |    |
| [OUTLETS]                                                                                                               | Inlet                                                                                                        | Outlet                                                             | Outflow                                                      | Outlet                                                                                      | QCO                                                                                   | eff/                                               |                                                                              |    |
| ;;Name<br>Gate                                                                                                          | Node                                                                                                         | Node                                                               | Height                                                       | Туре                                                                                        | QTal                                                                                  | ble                                                | Qexpo                                                                        | on |
| ;;                                                                                                                      |                                                                                                              |                                                                    | 100 1                                                        |                                                                                             |                                                                                       |                                                    | ·                                                                            |    |
| NO                                                                                                                      | IANK                                                                                                         | POOLE_OF1                                                          | 100.1                                                        | TABULAR/HE                                                                                  | AD IANI                                                                               | C_BASEFLC                                          | W .                                                                          |    |
| OL2<br>NO                                                                                                               | 508                                                                                                          | POOLE_OF2                                                          | 101.06                                                       | TABULAR/HE                                                                                  | AD BIO                                                                                | SWALE_BAS                                          | SEFLOW                                                                       |    |
| ST108A-0                                                                                                                | ST108A-S                                                                                                     | 108                                                                | 118.6                                                        | TABULAR/HE                                                                                  | AD ST1                                                                                | 08A-0                                              |                                                                              |    |
| ST108B-0                                                                                                                | ST108B-S                                                                                                     | 108                                                                | 115.75                                                       | TABULAR/HE                                                                                  | AD ST1                                                                                | 08B-0                                              |                                                                              |    |
| NO<br>ST108C-0                                                                                                          | ST108C-S                                                                                                     | 108                                                                | 110.4                                                        | TABULAR/HE                                                                                  | AD ST1                                                                                | 08C-0                                              |                                                                              |    |
| ST108D-0                                                                                                                | ST108D-S                                                                                                     | 108                                                                | 110.1                                                        | TABULAR/HE                                                                                  | AD ST1                                                                                | 08D-0                                              |                                                                              |    |
| NU<br>ST108E-0<br>NO                                                                                                    | ST108E-S                                                                                                     | 108                                                                | 107.2                                                        | TABULAR/HE                                                                                  | AD ST1                                                                                | 08E-0                                              |                                                                              |    |
| ST507A-0<br>NO                                                                                                          | ST507A-S                                                                                                     | TANK                                                               | 101.57                                                       | FUNCTIONAL                                                                                  | /HEAD 7.9                                                                             | 96                                                 | 0.499                                                                        | )  |

[XSECTIONS]

| ;;Link                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Shape                                                                                                                                                                                                                                                                                                                                                                                           | Geom1                                                                                                                   | 16                                               | 50401195_<br>Geom2                | 100scs.i<br>Geom                                                                            | np<br>3 Geo | m4 B        | arrels   |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------|-------------|-------------|----------|-----|
| ;;<br>Pipe_13<br>Pipe_14_(1)<br>Pipe_15<br>Pipe_15<br>Pipe_16<br>Pipe_21<br>Pipe_23<br>Pipe_26<br>Pipe_27<br>Pipe_31<br>Pipe_34<br>ST104A-T<br>ST111B-T<br>ST507A-T<br>W1<br>OR1<br>OR2<br>OR3<br>ST104A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST107A-0<br>ST10 | CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>IRREGULAR<br>IRREGULAR<br>IRREGULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR<br>CIRCULAR | 0.675<br>0.525<br>0.6<br>0.375<br>0.375<br>0.675<br>0.25<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.4 | nd<br>nd<br>nd<br>nd                             |                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |             |             |          |     |
| [TRANSECTS]<br>NC 0.013 0.0<br>X1 Overland<br>GR 0.15 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 013 0.013<br>5<br>0                                                                                                                                                                                                                                                                                                                                                                             | 0.15<br>0.15                                                                                                            | 6.85<br>0                                        | 0.0<br>6.85                       | 0.0<br>0.15                                                                                 | 0.0<br>7    | 0.0<br>0.15 | 0.0<br>7 |     |
| ;[LE: 0][RE: 7]<br>NC 0.013 0.0<br>X1 Overland(ori<br>GR 0.15 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 013 0.013<br>g) 4<br>0                                                                                                                                                                                                                                                                                                                                                                          | 0.15<br>0.15                                                                                                            | 6.85<br>0                                        | 0.0<br>6.85                       | 0.0<br>0.15                                                                                 | 0.0<br>7    | 0.0         | 0.0      |     |
| [LOSSES]<br>;;Link                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Inlet                                                                                                                                                                                                                                                                                                                                                                                           | Outlet                                                                                                                  | Average                                          | Flap                              | Gate S                                                                                      | eepageRate  |             |          |     |
| ,,<br>Pipe_14<br>Pipe_14_(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0                                                                                                                                                                                                                                                                                                                                                                                          | 0.053<br>0.022                                                                                                          | 0                                                | NO<br>NO                          | 0                                                                                           |             |             |          |     |
| Pipe_15<br>Pipe_16<br>Pipe_17<br>Pipe_21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                | 1.344<br>1.344<br>1.344<br>0.022                                                                                        | 16<br>0<br>0<br>0                                | 50401195_<br>NO<br>NO<br>NO<br>NO | 100scs.i<br>0<br>0<br>0<br>0<br>0                                                           | np          |             |          |     |
| Pipe_26<br>Pipe_27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                               | 0.423                                                                                                                   | 0                                                | NO<br>NO                          | 0                                                                                           |             |             |          |     |
| Pipe_29<br>Pipe_31<br>w1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                               | 0.053<br>1.344<br>1.344                                                                                                 | 0                                                | NO<br>NO<br>NO                    | 0                                                                                           |             |             |          |     |
| [INFLOWS]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | °                                                                                                                                                                                                                                                                                                                                                                                               | 21011                                                                                                                   | Ū                                                |                                   |                                                                                             |             | 1           | .1:      | 1   |
| , Node                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Parameter                                                                                                                                                                                                                                                                                                                                                                                       | Tir                                                                                                                     | me Series                                        | Раг<br>Тур                        | am Un<br>e Fa<br>                                                                           | ctor Fac    | tor Val     | ue Patt  | ern |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FLOW                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                         |                                                  | FLO                               | w 1.                                                                                        | 0 1         | 175         |          |     |
| ;;Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Туре                                                                                                                                                                                                                                                                                                                                                                                            | x-value                                                                                                                 | Y-Value                                          |                                   |                                                                                             |             |             |          |     |
| ÉÍOSWALE_BASEFL<br>BIOSWALE_BASEFL<br>BIOSWALE_BASEFL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .OW Rating<br>.OW<br>.OW                                                                                                                                                                                                                                                                                                                                                                        | 0.00<br>0.01<br>10.00                                                                                                   | 0<br>0.3<br>0.3                                  |                                   |                                                                                             |             |             |          |     |
| ST108A-0<br>ST108A-0<br>ST108A-0<br>ST108A-0<br>ST108A-0<br>ST108A-0<br>ST108A-0<br>ST108A-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rating                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>0.025<br>0.050<br>0.075<br>0.100<br>0.125<br>0.150                                                                 | 0<br>5.4<br>10.8<br>16.1<br>21.5<br>26.9<br>32.3 |                                   |                                                                                             |             |             |          |     |
| ST108B-0<br>ST108B-0<br>ST108B-0<br>ST108B-0<br>ST108B-0<br>ST108B-0<br>ST108B-0<br>ST108B-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rating                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>0.025<br>0.050<br>0.075<br>0.100<br>0.125<br>0.150                                                                 | 0<br>5.0<br>10.0<br>25.0<br>25.0<br>30.0         |                                   |                                                                                             |             |             |          |     |
| ST108C-0<br>ST108C-0<br>ST108C-0<br>ST108C-0<br>ST108C-0<br>ST108C-0<br>ST108C-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rating                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>0.025<br>0.050<br>0.075<br>0.100<br>0.125<br>0.150                                                                 | 0<br>0.8<br>1.5<br>2.3<br>3.1<br>3.8<br>4.6      |                                   |                                                                                             |             |             |          |     |
| ST108D-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rating                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                       | 0                                                |                                   |                                                                                             |             |             |          |     |

Page 8

|                                                                                              |         |                                                         | 100401105 100000                                               |
|----------------------------------------------------------------------------------------------|---------|---------------------------------------------------------|----------------------------------------------------------------|
| ST108D-0<br>ST108D-0<br>ST108D-0<br>ST108D-0<br>ST108D-0<br>ST108D-0<br>ST108D-0             |         | 0.025<br>0.050<br>0.075<br>0.100<br>0.125<br>0.150      | 160401195_1005CS.1np<br>0.8<br>1.5<br>2.3<br>3.1<br>3.8<br>4.6 |
| ST108E-0<br>ST108E-0<br>ST108E-0<br>ST108E-0<br>ST108E-0<br>ST108E-0<br>ST108E-0<br>ST108E-0 | Rating  | 0<br>0.025<br>0.050<br>0.075<br>0.100<br>0.125<br>0.150 | 0<br>0.4<br>0.8<br>1.2<br>1.5<br>1.9<br>2.3                    |
| TANK_BASEFLOW                                                                                | Rating  | 0.00                                                    | 0                                                              |
| TANK_BASEFLOW                                                                                |         | 0.01                                                    | 0.66                                                           |
| TANK_BASEFLOW                                                                                |         | 10.00                                                   | 0.66                                                           |
| RWHtank                                                                                      | Storage | 0                                                       | 113.747                                                        |
| RWHtank                                                                                      |         | 3.202                                                   | 113.747                                                        |
| RWHtank                                                                                      |         | 3.203                                                   | 0                                                              |
| RWHtank                                                                                      |         | 5                                                       | 0                                                              |
| ST104A-S                                                                                     | Storage | 0                                                       | 0                                                              |
| ST104A-S                                                                                     |         | 1.8                                                     | 0                                                              |
| ST104A-S                                                                                     |         | 1.95                                                    | 32                                                             |
| ST107A-S                                                                                     | Storage | 0                                                       | 0                                                              |
| ST107A-S                                                                                     |         | 1.8                                                     | 0                                                              |
| ST107A-S                                                                                     |         | 1.95                                                    | 30.67                                                          |
| ST108A                                                                                       | Storage | 0                                                       | 0                                                              |
| ST108A                                                                                       |         | 0.025                                                   | 90                                                             |
| ST108A                                                                                       |         | 0.050                                                   | 359                                                            |
| ST108A                                                                                       |         | 0.075                                                   | 808                                                            |
| ST108A                                                                                       |         | 0.100                                                   | 1436                                                           |
| ST108A                                                                                       |         | 0.125                                                   | 2243                                                           |
| ST108A                                                                                       |         | 0.150                                                   | 3230                                                           |
| ST108B<br>ST108B<br>ST108B<br>ST108B<br>ST108B<br>ST108B<br>ST108B<br>ST108B                 | Storage | 0<br>0.025<br>0.050<br>0.075<br>0.100<br>0.125<br>0.150 | 0<br>81<br>324<br>729<br>1296<br>2024<br>2915                  |

Page 9

| ST108C<br>ST108C<br>ST108C<br>ST108C<br>ST108C<br>ST108C<br>ST108C<br>ST108C | Storage | 0<br>0.025<br>0.050<br>0.075<br>0.100<br>0.125<br>0.150                            | 0<br>10<br>42<br>94<br>167<br>262<br>377                                           |
|------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| ST108D<br>ST108D<br>ST108D<br>ST108D<br>ST108D<br>ST108D<br>ST108D<br>ST108D | Storage | 0<br>0.025<br>0.050<br>0.075<br>0.100<br>0.125<br>0.150                            | 0<br>11<br>46<br>103<br>184<br>287<br>414                                          |
| ST108E<br>ST108E<br>ST108E<br>ST108E<br>ST108E<br>ST108E<br>ST108E<br>ST108E | Storage | 0<br>0.025<br>0.050<br>0.075<br>0.100<br>0.125<br>0.150                            | 0<br>6<br>24<br>54<br>97<br>151<br>218                                             |
| ST111A-S<br>ST111A-S<br>ST111A-S                                             | Storage | 0<br>2.10<br>2.40                                                                  | 0<br>0<br>724                                                                      |
| ST504A-S<br>ST504A-S<br>ST504A-S                                             | Storage | 0<br>1.8<br>1.93                                                                   | 0<br>0<br>181.54                                                                   |
| ST508A-S<br>ST508A-S<br>ST508A-S<br>ST508A-S<br>ST508A-S<br>ST508A-S         | Storage | 0<br>0.7<br>0.701<br>1.741<br>1.991                                                | 0<br>152<br>0<br>114.4                                                             |
| TANK<br>TANK<br>TANK<br>TANK<br>TANK<br>TANK<br>TANK<br>TANK                 | Storage | 0<br>0.026<br>0.051<br>0.077<br>0.102<br>0.127<br>0.153<br>0.178<br>0.204<br>0.229 | 560.7<br>560.7<br>560.7<br>559.44<br>559.44<br>558.18<br>556.92<br>555.66<br>554.4 |

160401195\_100scs.inp

| TANK<br>TANK<br>TANK<br>TANK<br>TANK<br>TANK<br>TANK<br>TANK | 0.254<br>0.28<br>0.305<br>0.331<br>0.356<br>0.381<br>0.407<br>0.432<br>0.458<br>0.463<br>0.534<br>0.559<br>0.585<br>0.61<br>0.6651<br>0.6651<br>0.6661<br>0.6660<br>0.712<br>0.7762<br>0.7762<br>0.7762<br>0.762<br>0.889<br>0.991<br>1.016<br>1.041<br>1.067<br>1.092<br>1.118<br>1.143<br>1.168<br>1.194<br>1.219<br>1.245<br>1.372<br>1.397<br>1.422<br>1.448 | 10001195_100SCS.inp         51.88         54.84         53.92         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928         53.928        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                              |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TANK<br>TANK<br>TANK<br>TANK<br>TANK<br>TANK<br>TANK<br>TANK | $\begin{array}{c} 1.473\\ 1.499\\ 1.524\\ 1.549\\ 1.575\\ 1.6\\ 1.626\\ 1.651\\ 1.676\\ 1.702\\ 1.777\\ 1.773\\ 1.778\\ 1.803\\ 1.829\\ 1.83\\ 5\end{array}$                                                                                                                                                                                                     | 160401195_100scs.inp<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28<br>161.28 |

Appendix C Stormwater Management March 22, 2017

## C.3 SAMPLE PCSWMM MODEL OUTPUT (12HR 100YR SCS)





| WARNING 03: negat                                                                                                            | ive offset ianor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed for Li                                                                                                                                           | nk Pipe 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                               |                           |                                                       |  |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------|--|
| **************************************                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2 . UI EI                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                           |                                                       |  |
| Number of rain ga                                                                                                            | ges 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                           |                                                       |  |
| Number of subcatc<br>Number of nodes .                                                                                       | hments 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                           |                                                       |  |
| Number of links<br>Number of polluta                                                                                         | 37<br>nts 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                           |                                                       |  |
| Number of land us                                                                                                            | es 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                           |                                                       |  |
| **********************<br>Raingage Summary                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                           |                                                       |  |
| Name                                                                                                                         | Data Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Data<br>Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Record<br>Interv                                                                                                                | ling<br>'al               |                                                       |  |
| <br>RG1                                                                                                                      | 100scs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INTENSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15 mi                                                                                                                           | n.                        |                                                       |  |
| ****                                                                                                                         | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                           |                                                       |  |
| Subcatchment Summ                                                                                                            | ary<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                           |                                                       |  |
| Name                                                                                                                         | Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Width                                                                                                                                               | %Imperv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rain Ga                                                                                                                         | ige                       | Outlet                                                |  |
| EXT1<br>EXT2                                                                                                                 | 0.07<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.12<br>14.35                                                                                                                                      | 0.00<br>72.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33.3000<br>2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RG1<br>RG1                                                                                                                      |                           | EXT1-OF<br>EXT2-OF                                    |  |
| ST104A<br>ST107A                                                                                                             | 0.15<br>0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 69.00<br>225.00                                                                                                                                     | 84.29<br>64.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0000<br>1.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RG1<br>RG1                                                                                                                      |                           | ST104A-S<br>ST107A-S                                  |  |
| ST108A<br>ST108B                                                                                                             | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90.86<br>81.98                                                                                                                                      | 100.00<br>100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RG1<br>RG1                                                                                                                      |                           | ST108A-S<br>ST108B-S                                  |  |
| ST108C<br>ST108D<br>ST108F                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.10<br>10.90                                                                                                                                      | 100.00<br>100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RG1<br>RG1                                                                                                                      |                           | ST108C-S<br>ST108D-S                                  |  |
| ST108F<br>ST109A                                                                                                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.00<br>85.96<br>18.20                                                                                                                             | 44.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RG1<br>RG1                                                                                                                      |                           | 108<br>109                                            |  |
| ST109в<br>ST109C                                                                                                             | 0.05<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.80<br>25.80                                                                                                                                      | 100.00<br>100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RG1<br>RG1                                                                                                                      |                           | ST109в-S<br>ST109C-S                                  |  |
| ST110A<br>ST110B                                                                                                             | 0.07<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.80<br>24.50                                                                                                                                      | 7.14<br>100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RG1<br>RG1                                                                                                                      |                           | 110<br>110                                            |  |
| ST110C                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.60                                                                                                                                               | 100.00<br>Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0000<br>ge 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RG1                                                                                                                             |                           | 110                                                   |  |
|                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                           |                                                       |  |
|                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                           |                                                       |  |
|                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                           |                                                       |  |
|                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                           |                                                       |  |
|                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |                           |                                                       |  |
| ST110D                                                                                                                       | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.67                                                                                                                                               | 160401195<br>_7.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _100scs.rp<br>0.8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ot<br>RG <u>1</u>                                                                                                               |                           | 110                                                   |  |
| ST110D<br>ST111A<br>ST111B<br>ST1116                                                                                         | 0.07<br>0.24<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.67<br>107.50<br>88.00                                                                                                                            | 160401195<br>7.14<br>72.86<br>100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _100SCS.rp<br>0.8000<br>0.8000<br>0.8000<br>0.8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rt<br>RG1<br>RG1<br>RG1<br>RG1                                                                                                  |                           | 110<br>ST111A-S<br>111                                |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A                                                                     | 0.07<br>0.24<br>0.04<br>0.04<br>0.05<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.67<br>107.50<br>88.00<br>36.80<br>33.50<br>189.20                                                                                                | 160401195,<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _1005CS.rp<br>0.8000<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rt<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1                                                                                    |                           | 110<br>ST111A-S<br>111<br>ST111C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A                                                                     | $\begin{array}{c} 0.07\\ 0.24\\ 0.04\\ 0.04\\ 0.05\\ 0.34\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.67<br>107.50<br>88.00<br>36.80<br>33.50<br>189.20                                                                                                | 160401195<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _100SCS.rq<br>0.8000<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rt<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1                                                                             |                           | 110<br>ST111A-S<br>111<br>ST111C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A<br>************************************                             | $\begin{array}{c} 0.07\\ 0.24\\ 0.04\\ 0.04\\ 0.05\\ 0.34 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.67<br>107.50<br>88.00<br>36.80<br>33.50<br>189.20                                                                                                | 160401195<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _100SCS.rp<br>0.8000<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rt<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1                                                                                    |                           | 110<br>ST111A-S<br>111<br>ST111C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A<br>************************************                             | 0.07<br>0.24<br>0.04<br>0.05<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.67<br>107.50<br>88.00<br>36.80<br>33.50<br>189.20                                                                                                | 160401195<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14<br>7.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _1005C5.rp<br>0.8000<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.0000<br>Max.<br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rt<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>Ponded<br>Area                                                                  | External<br>Inflow        | 110<br>ST111A-S<br>111<br>ST111C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A<br>************************************                             | 0.07<br>0.24<br>0.04<br>0.05<br>0.34<br>Type<br>JUNCTION<br>JUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.67<br>107.50<br>88.00<br>36.80<br>33.50<br>189.20                                                                                                | 160401195<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14<br>Powert<br>Elev.<br>99.40<br>99.40<br>99.60<br>90.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _100SCS.rp<br>0.8000<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.0000<br>Max.<br>Depth<br>2.73<br>3.69<br>3.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rt<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>Area<br>0.0<br>0.0                                                       | External<br>Inflow<br>Yes | 110<br>ST111A-S<br>111<br>ST111C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A<br>*************<br>Node Summary<br>***************<br>Name<br>     | 0.07<br>0.24<br>0.04<br>0.05<br>0.34<br>Type<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.67<br>107.50<br>88.00<br>36.80<br>33.50<br>189.20                                                                                                | 160401195<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14<br>99.40<br>99.60<br>99.78<br>00.04<br>00.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _100SCS.rp<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.0000<br>2.73<br>3.69<br>3.75<br>3.349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ponded<br>Area<br>0.0<br>0.0<br>0.0                                                                                             | External<br>Inflow<br>Yes | 110<br>ST111A-S<br>111<br>ST111C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A<br>************<br>Node Summary<br>*************<br>Name<br>        | 0.07<br>0.24<br>0.04<br>0.05<br>0.34<br>Type<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.67<br>107.50<br>88.00<br>36.80<br>33.50<br>189.20<br>I                                                                                           | 160401195<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14<br>Elev.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _100SCS.rp<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.0000<br>Max.<br>Depth<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ponded<br>Area<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                        | External<br>Inflow<br>Yes | 110<br>ST111A-S<br>111<br>ST111C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A<br>************************************                             | 0.07<br>0.24<br>0.04<br>0.05<br>0.34<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.67<br>107.50<br>88.00<br>36.80<br>33.50<br>189.20<br>I<br>I<br>I<br>I<br>I<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                               | 160401195<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14<br>99.60<br>99.60<br>99.78<br>00.04<br>00.08<br>00.04<br>00.23<br>00.34<br>00.80<br>00.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _100SCS.rp<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.0000<br>2.73<br>3.69<br>3.75<br>3.53<br>3.49<br>3.49<br>3.49<br>3.41<br>2.98<br>2.42<br>3.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pr<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>Area<br>                                                                        | External<br>Inflow<br>Yes | 110<br>ST111A-S<br>111<br>ST111C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A<br>*************<br>Name<br>                                        | 0.07<br>0.24<br>0.04<br>0.05<br>0.34<br>Type<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.67<br>107.50<br>88.00<br>36.80<br>33.50<br>189.20<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | 160401195<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14<br>99.40<br>99.60<br>99.78<br>00.04<br>00.23<br>00.23<br>00.34<br>00.83<br>00.83<br>00.69<br>01.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _100SCS.rp<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.5000<br>1.0000<br>2.73<br>3.69<br>3.75<br>3.53<br>3.49<br>3.75<br>3.53<br>3.49<br>3.41<br>2.98<br>2.42<br>3.67<br>3.81<br>2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pri RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.   | External<br>Inflow<br>Yes | 110<br>ST111A-S<br>111<br>ST111C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A<br>*************<br>Node Summary<br>**************<br>Name<br>      | 0.07<br>0.24<br>0.04<br>0.04<br>0.05<br>0.34<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.67<br>107.50<br>88.00<br>36.80<br>189.20<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I          | 160401195<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14<br>elev.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _100SCS.rp<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.5000<br>1.0000<br>2.73<br>3.75<br>3.75<br>3.75<br>3.75<br>3.75<br>3.75<br>3.75<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ponded<br>Area<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                             | External<br>Inflow<br>Yes | 110<br>ST111A-S<br>111<br>ST111C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A<br>************************************                             | 0.07<br>0.24<br>0.04<br>0.05<br>0.34<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.67<br>107.50<br>88.00<br>36.80<br>189.20<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I          | 160401195<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14<br>99.60<br>99.60<br>99.78<br>00.04<br>00.08<br>00.04<br>00.08<br>00.034<br>00.80<br>00.34<br>00.83<br>00.69<br>01.42<br>02.88<br>04.20<br>98.70<br>00.10<br>01.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _100SCS.rp<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.0000<br>2.73<br>3.69<br>3.75<br>3.53<br>3.49<br>3.49<br>3.49<br>3.41<br>2.98<br>2.42<br>3.67<br>3.81<br>2.98<br>2.42<br>3.67<br>3.81<br>2.65<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pr<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>Area<br><br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                              | External<br>Inflow<br>Yes | 110<br>STI11A-S<br>111<br>STI11C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A<br>************************************                             | 0.07<br>0.24<br>0.04<br>0.04<br>0.05<br>0.34<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION    | 16.67<br>107.50<br>88.00<br>36.80<br>33.50<br>189.20<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | 160401195<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14<br>72.86<br>7.14<br>99.60<br>99.78<br>90.78<br>90.78<br>90.78<br>90.78<br>90.78<br>90.23<br>00.34<br>00.83<br>00.69<br>00.23<br>00.83<br>00.69<br>00.23<br>00.83<br>00.69<br>00.42<br>00.83<br>00.69<br>00.42<br>00.83<br>00.69<br>01.42<br>02.88<br>00.42<br>00.83<br>00.69<br>01.42<br>02.88<br>00.69<br>00.10<br>00.10<br>00.10<br>00.00<br>10.00<br>00.00<br>10.00<br>00.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.0 | _100SCS.rp<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.5000<br>1.0000<br>2.73<br>3.69<br>3.75<br>3.53<br>3.49<br>3.41<br>2.98<br>2.42<br>3.67<br>3.81<br>2.98<br>2.42<br>3.67<br>3.81<br>2.65<br>0.00<br>0.00<br>1.50<br>0.00<br>0.00<br>0.00<br>0.303<br>03 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Print RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | External<br>Inflow<br>Yes | 110<br>ST111A-S<br>111<br>ST111C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A<br>***************<br>Node Summary<br>*****************<br>Name<br> | 0.07<br>0.24<br>0.04<br>0.04<br>0.05<br>0.34<br>Type<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUN | 16.67<br>107.50<br>88.00<br>36.80<br>189.20<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I          | 160401195.<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14<br>99.40<br>99.78<br>00.04<br>00.08<br>00.23<br>00.04<br>00.08<br>00.34<br>00.69<br>01.42<br>00.83<br>00.69<br>01.42<br>02.88<br>04.20<br>98.70<br>00.10<br>00.10<br>01.06<br>0.00 1<br>0.00                                                                                                                                       | _100SCS.rg<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.5000<br>1.0000<br>2.73<br>3.63<br>3.75<br>3.53<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.75<br>3.53<br>3.41<br>2.42<br>3.67<br>3.61<br>3.41<br>2.42<br>3.67<br>3.61<br>3.41<br>2.42<br>3.67<br>3.61<br>3.41<br>2.65<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.000000 | Ponded<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>Area<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.   | External<br>Inflow<br>Yes | 110<br>ST111A-S<br>111<br>ST111C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A<br>************************************                             | 0.07<br>0.24<br>0.04<br>0.04<br>0.05<br>0.34<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION    | 16.67<br>107.50<br>88.00<br>36.80<br>189.20<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I          | 160401195<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14<br>7.14<br>99.40<br>99.60<br>99.78<br>00.04<br>00.08<br>00.23<br>00.04<br>00.08<br>00.23<br>00.04<br>00.34<br>00.80<br>00.23<br>00.69<br>01.42<br>02.88<br>04.20<br>98.70<br>00.10<br>01.06<br>0.00 1<br>0.00 1<br>0.00 1<br>0.00 1<br>0.00 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1<br>0.10 1                                                                                                                                         | _100SCS.rp<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.5000<br>1.0000<br>2.73<br>3.75<br>3.75<br>3.75<br>3.75<br>3.75<br>3.75<br>3.75<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ponded<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>Area<br><br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0            | External<br>Inflow<br>Yes | 110<br>ST111A-S<br>111<br>ST111C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A<br>************************************                             | 0.07<br>0.24<br>0.04<br>0.04<br>0.05<br>0.34<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION    | 16.67<br>107.50<br>88.00<br>36.80<br>189.20<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I          | 160401195<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14<br>99.40<br>99.60<br>99.78<br>00.04<br>00.08<br>00.04<br>00.08<br>00.04<br>00.08<br>00.034<br>00.83<br>00.69<br>01.42<br>02.88<br>04.20<br>98.70<br>00.10<br>01.66<br>01.06<br>0.00 1<br>0.00 1<br>97.24<br>01.06<br>01.52<br>01.13<br>18.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _100SCS.rp<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.0000<br>2.73<br>3.69<br>3.75<br>3.69<br>3.75<br>3.69<br>3.75<br>3.53<br>3.49<br>3.41<br>2.98<br>2.42<br>3.67<br>3.81<br>2.98<br>2.42<br>3.67<br>3.81<br>2.98<br>2.42<br>3.67<br>3.81<br>2.65<br>0.00<br>0.000<br>0.000<br>0.50<br>0.00<br>0.15<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pr<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                      | External<br>Inflow<br>Yes | 110<br>STI11A-S<br>111<br>STI11C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A<br>************************************                             | 0.07<br>0.24<br>0.04<br>0.04<br>0.05<br>0.34<br>Type<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUN | 16.67<br>107.50<br>88.00<br>33.50<br>189.20<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I          | 160401195.<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14<br>99.40<br>99.78<br>00.04<br>00.08<br>00.23<br>00.04<br>00.08<br>00.34<br>00.80<br>00.34<br>00.69<br>01.42<br>02.88<br>00.69<br>01.42<br>02.88<br>00.69<br>01.42<br>02.88<br>00.69<br>01.42<br>00.10<br>01.06<br>0.00 1<br>97.24<br>01.05<br>01.06<br>01.52<br>01.13<br>18.60<br>15.75<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _100SCS.rg<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.5000<br>1.5000<br>1.0000<br>2.73<br>3.75<br>3.53<br>3.41<br>2.98<br>2.42<br>3.67<br>3.41<br>2.42<br>3.67<br>3.41<br>2.65<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.03.09<br>7.13<br>1.79<br>2.10<br>0.15<br>0.15<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ponded<br>Area<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.   | External<br>Inflow<br>Yes | 110<br>ST111A-S<br>111<br>ST111C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A<br>************************************                             | 0.07<br>0.24<br>0.04<br>0.04<br>0.05<br>0.34<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION    | 16.67<br>107.50<br>88.00<br>36.80<br>189.20<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1          | 160401195<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14<br>7.14<br>7.14<br>99.40<br>99.40<br>99.40<br>99.40<br>99.40<br>99.40<br>99.40<br>99.78<br>00.04<br>00.08<br>00.04<br>00.08<br>00.23<br>00.04<br>00.03<br>00.42<br>02.88<br>04.20<br>98.70<br>00.10<br>01.06<br>0.00<br>15.75<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40<br>10.40  | _100SCS.rp<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.5000<br>1.0000<br>2.73<br>3.75<br>3.75<br>3.75<br>3.75<br>3.75<br>3.75<br>3.75<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ponded<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.    | External<br>Inflow<br>Yes | 110<br>ST111A-S<br>111<br>ST111C-S<br>ST507A-S<br>508 |  |
| ST110D<br>ST111A<br>ST111B<br>ST111C<br>ST507A<br>ST508A<br>************************************                             | 0.07<br>0.24<br>0.04<br>0.04<br>0.05<br>0.34<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>SUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION    | 16.67<br>107.50<br>88.00<br>36.80<br>33.50<br>189.20<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I | 160401195<br>7.14<br>72.86<br>100.00<br>85.71<br>72.86<br>7.14<br>99.40<br>99.60<br>99.78<br>00.04<br>00.08<br>00.034<br>00.08<br>00.034<br>00.34<br>00.83<br>00.69<br>01.42<br>02.88<br>04.20<br>98.70<br>00.10<br>01.06<br>0.00<br>15.75<br>10.40<br>10.10<br>07.20<br>02.81<br>10.25<br>10.25<br>10.25<br>10.25<br>10.25<br>10.25<br>10.25<br>10.10<br>10.25<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10<br>10.10                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _100SCS.rp<br>0.8000<br>0.8000<br>1.5000<br>1.5000<br>1.0000<br>2.73<br>3.69<br>3.75<br>3.69<br>3.75<br>3.69<br>3.75<br>3.69<br>3.75<br>3.69<br>3.75<br>3.69<br>3.75<br>3.69<br>3.49<br>3.41<br>2.98<br>2.42<br>3.67<br>3.81<br>2.98<br>2.42<br>3.67<br>3.81<br>2.98<br>2.42<br>3.67<br>3.81<br>2.98<br>2.42<br>3.67<br>3.61<br>3.61<br>3.61<br>3.61<br>3.61<br>3.61<br>3.61<br>3.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pronded<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>RG1<br>O.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0         | External<br>Inflow<br>Yes | 110<br>STI11A-S<br>111<br>STI11C-S<br>ST507A-S<br>508 |  |

#### 160401195\_100scs.rpt

| Link Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | From Node                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | To Node                                                                                                                                                                                                                                                                                                                                       | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Length                                                                                                             | %Slope Roughness                                     |
| Pipe_13<br>Pipe_14<br>Pipe_14_(1)<br>Pipe_15<br>Pipe_16<br>Pipe_17<br>Pipe_21<br>Pipe_27<br>Pipe_29<br>Pipe_29<br>Pipe_31<br>Pipe_34<br>ST107A-T<br>ST111A-T<br>ST111A-T<br>ST111A-T<br>ST111A-T<br>ST111A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST104A-T<br>ST107A-T<br>ST107A-T<br>ST104A-T<br>ST107A-T<br>ST104A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST107A-T<br>ST10 | 100<br>106<br>105<br>109<br>110<br>111<br>104<br>508<br>101<br>108<br>107<br>102<br>103<br>ST104A-S<br>ST107A-S<br>ST111A-S<br>ST111A-S<br>ST111A-S<br>ST111A-S<br>ST507A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S<br>ST107A-S | HEADWALL<br>105<br>104<br>106<br>107<br>103<br>TANK<br>100<br>105<br>106<br>101<br>TANK<br>ST104A-OF<br>ST107A-OF<br>ST111C-S<br>ST107A-OF<br>ST111C-S<br>ST107A-S<br>ST104A-S<br>102<br>102<br>102<br>102<br>102<br>104<br>107<br>109<br>111<br>111<br>111<br>POOLE_OF1<br>POOLE_OF2<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108 | CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUI | 11.1<br>17.6<br>39.1<br>38.2<br>12.5<br>110.4<br>16.3<br>63.3<br>70.7<br>2.8<br>2.5<br>40.9<br>60.0<br>14.9<br>3.0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |                                                      |

#### Page 3

| Conduit     | Shape    | 1<br>Full<br>Depth | 60401195_1<br>Full<br>Area | .00SCS.rp1<br>Hyd.<br>Rad. | Max.<br>Width | No. of<br>Barrels | Full<br>Flow |
|-------------|----------|--------------------|----------------------------|----------------------------|---------------|-------------------|--------------|
| Pipe_13     | CIRCULAR | 0.68               | 0.36                       | 0.17                       | 0.68          | 1                 | 421.55       |
| Pipe_14     | CIRCULAR | 0.53               | 0.22                       | 0.13                       | 0.53          | 1                 | 192.01       |
| Pipe_14_(1) | CIRCULAR | 0.60               | 0.28                       | 0.15                       | 0.60          | 1                 | 276.00       |
| Pipe_15     | CIRCULAR | 0.38               | 0.11                       | 0.09                       | 0.38          | 1                 | 175.48       |
| Pipe_16     | CIRCULAR | 0.38               | 0.11                       | 0.09                       | 0.38          | 1                 | 175.29       |
| Pipe_17     | CIRCULAR | 0.38               | 0.11                       | 0.09                       | 0.38          | 1                 | 146.75       |
| Pipe_21     | CIRCULAR | 0.68               | 0.36                       | 0.17                       | 0.68          | 1                 | 378.43       |
| Pipe_23     | CIRCULAR | 0.25               | 0.05                       | 0.06                       | 0.25          | 1                 | 29.72        |
| Pipe_26     | CIRCULAR | 0.45               | 0.16                       | 0.11                       | 0.45          | 1                 | 127.47       |
| Pipe_27     | CIRCULAR | 0.45               | 0.16                       | 0.11                       | 0.45          | 1                 | 156.15       |
| Pipe_29     | CIRCULAR | 0.45               | 0.16                       | 0.11                       | 0.45          | 1                 | 201.87       |
| Pipe_31     | CIRCULAR | 0.45               | 0.16                       | 0.11                       | 0.45          | 1                 | 127.33       |
| Pipe_34     | CIRCULAR | 0.68               | 0.36                       | 0.17                       | 0.68          | 1                 | 388.45       |
| ST104A-T    | Overland | 0.15               | 1.03                       | 0.14                       | 7.00          | 1                 | 10684.06     |
| ST107A-T    | Overland | 0.15               | 1.03                       | 0.14                       | 7.00          | 1                 | 2742.50      |
| ST111A-T    | Overland | 0.15               | 1.03                       | 0.14                       | 7.00          | 1                 | 2421.02      |
| ST111B-T    | Overland | 0.15               | 1.03                       | 0.14                       | 7.00          | 1                 | 2291.05      |
| ST507А-Т    | Overland | 0.15               | 1.03                       | 0.14                       | 7.00          | 1                 | 972.81       |
| W1          | CIRCULAR | 0.45               | 0.16                       | 0.11                       | 0.45          | 1                 | 285.13       |

#### \*\*\*\*\* Transect Summary

\*\*\*\*\*

## Transect Overland

| Area: |        |        |        |        |        |
|-------|--------|--------|--------|--------|--------|
|       | 0.0196 | 0.0392 | 0.0588 | 0.0784 | 0.0980 |
|       | 0.1177 | 0.1374 | 0.1571 | 0.1768 | 0.1965 |
|       | 0 2162 | 0 2360 | 0 2558 | 0 2756 | 0 2954 |
|       | 0 3152 | 0 3351 | 0 3550 | 0 3748 | 0 3947 |
|       | 0.3132 | 0.3331 | 0.3530 | 0.3740 | 0.3347 |
|       | 0.4147 | 0.4340 | 0.4340 | 0.4743 | 0.4943 |
|       | 0.5145 | 0.5346 | 0.5546 | 0.5747 | 0.5947 |
|       | 0.6148 | 0.6350 | 0.6551 | 0.6752 | 0.6954 |
|       | 0.7156 | 0.7358 | 0.7560 | 0.7762 | 0.7965 |
|       | 0.8168 | 0.8371 | 0.8574 | 0.8777 | 0.8980 |
|       | 0.9184 | 0.9388 | 0.9592 | 0.9796 | 1.0000 |
| Hrad: |        |        |        |        |        |
|       | 0.0208 | 0.0415 | 0.0622 | 0.0829 | 0.1036 |
|       | 0.1242 | 0.1448 | 0.1653 | 0.1858 | 0.2063 |
|       | 0 2268 | 0 2472 | 0 2676 | 0 2879 | 0 3083 |
|       | 0.2200 | 0.3488 | 0.2670 | 0 3892 | 0.3003 |
|       | 0.3205 | 0.1406 | 0.3030 | 0.3032 | 0.4034 |
|       | 0.4293 | 0.4490 | 0.4097 | 0.4097 | 0.3097 |
|       | 0.5297 | 0.5496 | 0.5695 | 0.5894 | 0.6093 |
|       |        |        |        | Page   | 4      |
|       |        |        |        | •      |        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6291<br>0.7277<br>0.8256<br>0.9228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.6489<br>0.7474<br>0.8451<br>0.9421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.6686<br>0.7670<br>0.8646<br>0.9614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 160401195_1<br>0.6884<br>0.7865<br>0.8840<br>0.9807                          | 00SCS.rpt<br>0.7081<br>0.8061<br>0.9034<br>1.0000                                      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| width:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9580<br>0.9623<br>0.9666<br>0.9709<br>0.9751<br>0.9794<br>0.9837<br>0.9880<br>0.9923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9589<br>0.9631<br>0.9674<br>0.9717<br>0.9760<br>0.9803<br>0.9846<br>0.9889<br>0.9931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9597<br>0.9640<br>0.9683<br>0.9726<br>0.9769<br>0.9851<br>0.9854<br>0.9897<br>0.9940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9606<br>0.9649<br>0.9734<br>0.9777<br>0.9820<br>0.9863<br>0.9906<br>0.9949 | 0.9614<br>0.9657<br>0.9700<br>0.9743<br>0.9786<br>0.9829<br>0.9871<br>0.9914<br>0.9957 |  |
| Transect (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9966<br>Overland(or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9974<br>ig)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9991                                                                       | 1.0000                                                                                 |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0196<br>0.1177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0392<br>0.1374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0588<br>0.1571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0784<br>0.1768                                                             | 0.0980<br>0.1965                                                                       |  |
| Hrad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2162<br>0.3152<br>0.4147<br>0.5145<br>0.6148<br>0.7156<br>0.8168<br>0.9184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2360<br>0.3351<br>0.4346<br>0.5346<br>0.6350<br>0.7358<br>0.8371<br>0.9388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2558<br>0.3550<br>0.4546<br>0.5546<br>0.6551<br>0.7560<br>0.8574<br>0.9592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2756<br>0.3748<br>0.4745<br>0.5747<br>0.6752<br>0.7762<br>0.8777<br>0.9796 | 0.2954<br>0.3947<br>0.4945<br>0.5947<br>0.6954<br>0.7965<br>0.8980<br>1.0000           |  |
| mau.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0415<br>0.1448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0829<br>0.1858                                                             | 0.1036                                                                                 |  |
| vi deb -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2288<br>0.3285<br>0.4295<br>0.5297<br>0.6291<br>0.7277<br>0.8256<br>0.9228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2472<br>0.3488<br>0.4496<br>0.5496<br>0.6489<br>0.7474<br>0.8451<br>0.9421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2670<br>0.3690<br>0.4697<br>0.5695<br>0.6686<br>0.7670<br>0.8646<br>0.9614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2879<br>0.3892<br>0.4897<br>0.5894<br>0.6884<br>0.7865<br>0.8840<br>0.9807 | 0.3083<br>0.4094<br>0.5097<br>0.6093<br>0.7081<br>0.8061<br>0.9034<br>1.0000           |  |
| wiatn:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9580<br>0.9623<br>0.9666<br>0.9709<br>0.9751<br>0.9794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9589<br>0.9631<br>0.9674<br>0.9717<br>0.9760<br>0.9803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9597<br>0.9640<br>0.9683<br>0.9726<br>0.9769<br>0.9811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9606<br>0.9649<br>0.9691<br>0.9734<br>0.9777<br>0.9820                     | 0.9614<br>0.9657<br>0.9700<br>0.9743<br>0.9786<br>0.9829                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9837<br>0.9880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9846<br>0.9889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9854<br>0.9897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9863<br>0.9906                                                             | 0.9871<br>0.9914                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9923<br>0.9966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9931<br>0.9974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9940<br>0.9983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 160401195_1<br>0.9949<br>0.9991                                              | 00SCS.rpt<br>0.9957<br>1.0000                                                          |  |
| NOTE: The<br>based on i<br>not just (<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9923<br>0.9966<br>********<br>results fou<br>on results **<br>******<br>options<br>******<br>s<br>odels:<br>1/Runoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9931<br>0.9974<br>atistics dis<br>nd at every<br>from each re<br>LPS<br>YES<br>NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9940<br>0.9983<br>splayed in<br>computation<br>porting t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 160401195_1<br>0.9949<br>0.9991<br>this report<br>onal time ste<br>ime step. | 00SCS.rpt<br>0.9957<br>1.0000<br>****<br>are<br>2p,<br>****                            |  |
| *********<br>NOTE: The<br>based on i<br>not just (<br>***********<br>Flow Units<br>Process MC<br>Rainfal<br>RDII<br>Snowmelt<br>Groundwa<br>Flow Rou<br>Infiltrat<br>Flow Rout<br>Starting L<br>Ending Dat<br>Antecedeni<br>Report Tim<br>Wet Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Dry | 0.9923<br>0.9966<br>*******<br>results fou<br>on results '<br>******<br>sor<br>odels:<br>1/Runoff<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t | 0.9931<br>0.9974<br>atistics dis<br>nd at every<br>from each re<br>From each re<br>NO<br>NO<br>NO<br>NO<br>YES<br>NO<br>VES<br>NO<br>O7/22<br>0.0<br>07/22<br>0.0<br>07/22<br>0.0<br>07/22<br>0.0<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:00<br>00:000000 | 0.9940<br>0.9983<br>splayed in<br>computating<br>territing t<br>sporting t<br>version of the second<br>second<br>to the second<br>to the seco | 160401195_1<br>0.9949<br>0.9991<br>**********************************        | 005CS.rpt<br>0.9957<br>1.0000                                                          |  |
| *********<br>NOTE: The<br>based on a<br>not just (<br>**********<br>Flow Units<br>Process M(<br>Rainfal<br>RDII<br>Snowmell<br>Groundwa<br>Flow Rout<br>Ponding<br>Water Q(<br>Infiltrat<br>Flow Rout<br>Starting L<br>Hoding Dat<br>Anteceden<br>Wet Time S<br>Dry Time S<br>Dry Time S<br>Dry Time S<br>Maximum Ti<br>Number of<br>Head Toler<br>***********<br>Routing T<br>Yariable -<br>Maximum Ti<br>Number of<br>Head Toler<br>***********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9923<br>0.9966<br>**********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9931<br>0.9974<br>atistics dis<br>nd at every<br>From each re<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9940<br>0.9983<br>splayed in<br>computation<br>computation<br>porting t<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 160401195_1<br>0.9949<br>0.9991<br>**********************************        | 005CS.rpt<br>0.9957<br>1.0000<br>*****<br>are<br>2p,<br>*****                          |  |

| Flow Routing Continu<br>Dry Weather Inflow .<br>Wet Weather Inflow .<br>Groundwater Inflow .<br>RDII Inflow<br>External Outflow<br>Flooding Loss<br>Exaporation Loss<br>Exaparation Loss<br>Initial Stored Volume<br>Final Stored Volume<br>Continuity Error (%) | ******<br>ity <u>+</u><br>******<br>                                                                                                                                                                                                  | Volume<br>hectare-m<br>0.000<br>0.239<br>0.000<br>1.512<br>1.711<br>0.000<br>0.000<br>0.000<br>0.000<br>0.001<br>-0.017                                                                                                            | 16040:<br>10<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1195_1005c<br>Volume<br>Volltr<br><br>0.000<br>2.394<br>0.000<br>0.000<br>15.120<br>17.108<br>0.000<br>0.000<br>0.000<br>0.000<br>0.409                                              | CS.rpt                                                                                                                       |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                                                                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Highest Flow Instabi<br>************************************                                                                                                                                                                                                     | **************************************                                                                                                                                                                                                | 1.00 sec<br>1.00 sec<br>1.00 sec<br>0.00<br>2.00<br>0.05                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                                                                                         |  |
| Subcatchment Runoff                                                                                                                                                                                                                                              | ******<br>Summary<br>******                                                                                                                                                                                                           |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                                                                                         |  |
| Subcatchment                                                                                                                                                                                                                                                     | Total<br>Precip<br>mm                                                                                                                                                                                                                 | Total<br>Runon<br>mm                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total<br>Evap<br>mm                                                                                                                                                                  | Total<br>Infil<br>mm                                                                                                         | Total<br>Runoff<br>mm                                                                                                                        | Total<br>Runoff<br>10^6 ltr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Peak<br>Runoff<br>LPS                                                                                                                                 | Runoff<br>Coeff                                                                                                                                                         |  |
| EXT1<br>EXT2<br>ST104A<br>ST107A<br>ST108A                                                                                                                                                                                                                       | 95.52<br>95.52<br>95.52<br>95.52<br>95.52<br>95.52                                                                                                                                                                                    | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>Page 7                                                                                                                                       | 41.82<br>11.35<br>6.56<br>14.94<br>0.00                                                                                      | 52.63<br>83.12<br>87.63<br>79.28<br>94.37                                                                                                    | 0.04<br>0.05<br>0.13<br>0.30<br>0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.91<br>20.73<br>50.18<br>115.66<br>142.13                                                                                                           | 0.551<br>0.870<br>0.917<br>0.830<br>0.988                                                                                                                               |  |
| ST108B<br>ST108C<br>ST108D<br>ST108F<br>ST108F<br>ST109A<br>ST109G<br>ST110A<br>ST110A<br>ST110C<br>ST1110C<br>ST111A<br>ST111B<br>ST111B<br>ST111B<br>ST111B<br>ST111B<br>ST111B<br>ST111B<br>ST111C<br>ST507A<br>ST508A                                        | 95.52<br>95.52<br>95.52<br>95.52<br>95.52<br>95.52<br>95.52<br>95.52<br>95.52<br>95.52<br>95.52<br>95.52<br>95.52<br>95.52<br>95.52<br>95.52                                                                                          | $egin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00 \end{array}$                                                      | 16040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1195_10050<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                   | 25.rpt<br>0.00<br>0.00<br>0.00<br>23.30<br>0.00<br>0.00<br>38.83<br>0.00<br>38.83<br>11.35<br>0.00<br>5.96<br>11.34<br>38.83 | 94.37<br>94.37<br>94.37<br>94.08<br>70.82<br>93.98<br>94.28<br>94.29<br>93.99<br>93.99<br>94.74<br>82.89<br>94.00<br>88.16<br>82.85<br>55.31 | $\begin{array}{c} 0.34\\ 0.04\\ 0.05\\ 0.03\\ 0.27\\ 0.01\\ 0.05\\ 0.06\\ 0.04\\ 0.03\\ 0.03\\ 0.04\\ 0.20\\ 0.20\\ 0.04\\ 0.04\\ 0.05\\ 0.19\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 128.25<br>16.57<br>18.20<br>9.57<br>102.04<br>4.76<br>19.11<br>20.63<br>12.92<br>11.23<br>10.41<br>12.82<br>77.09<br>13.13<br>14.64<br>17.48<br>79.58 | 0.988<br>0.988<br>0.985<br>0.741<br>0.987<br>0.573<br>0.984<br>0.984<br>0.984<br>0.984<br>0.984<br>0.984<br>0.984<br>0.984<br>0.985<br>0.984<br>0.923<br>0.867<br>0.579 |  |
| **************************************                                                                                                                                                                                                                           |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |                                                                                                                              |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                                                                                         |  |
| Node                                                                                                                                                                                                                                                             | А                                                                                                                                                                                                                                     | verage Ma<br>Depth<br>Meters M                                                                                                                                                                                                     | <br>ximum<br>Depth<br>eters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maximum<br>HGL<br>Meters                                                                                                                                                             | Time of Max<br>Occurrence<br>days hr:min                                                                                     | Repo<br>Max D<br>Me                                                                                                                          | orted<br>Depth<br>Sters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                         |  |
| 100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>109<br>110<br>111<br>EXT1-OF<br>EXT2-OF<br>HEADWALL<br>POOLE_OF1<br>POOLE_OF1<br>POOLE_OF1<br>ST107A-OF<br>108<br>508                                                                                    | JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>OUTFALL<br>OUTFALL<br>OUTFALL<br>OUTFALL<br>OUTFALL<br>STORAGE<br>STORAGE | $\begin{array}{c} 0.44\\ 0.41\\ 0.39\\ 0.45\\ 0.41\\ 0.29\\ 0.12\\ 0.10\\ 0.13\\ 0.25\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.46\\ \end{array}$ | $\begin{array}{c} 0.52\\ 0.74\\ 1.94\\ 1.90\\ 1.76\\ 1.65\\ 1.25\\ 1.31\\ 0.59\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\$ | 99.92<br>100.34<br>100.54<br>101.97<br>101.98<br>101.99<br>102.00<br>101.98<br>101.99<br>102.02<br>102.88<br>104.20<br>98.70<br>100.10<br>101.06<br>0.00<br>0.00<br>102.01<br>Page 8 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                         |                                                                                                                                              | 0.52<br>0.74<br>0.76<br>1.93<br>1.89<br>1.75<br>1.64<br>1.19<br>1.14<br>1.30<br>0.59<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.95 |                                                                                                                                                       |                                                                                                                                                                         |  |

|          |         |      | 160401 | 195_100scs | .rpt |       |      |
|----------|---------|------|--------|------------|------|-------|------|
| ST104A-S | STORAGE | 0.05 | 1.71   | 103.23     | 0    | 06:15 | 1.71 |
| ST107A-S | STORAGE | 0.09 | 1.72   | 102.85     | 0    | 06:15 | 1.71 |
| ST108A-S | STORAGE | 0.02 | 0.14   | 118.74     | 0    | 06:20 | 0.14 |
| ST108B-S | STORAGE | 0.02 | 0.14   | 115.89     | 0    | 06:20 | 0.14 |
| ST108C-S | STORAGE | 0.02 | 0.14   | 110.54     | 0    | 06:19 | 0.14 |
| ST108D-S | STORAGE | 0.02 | 0.14   | 110.24     | 0    | 06:19 | 0.14 |
| ST108E-S | STORAGE | 0.02 | 0.14   | 107.34     | 0    | 06:19 | 0.14 |
| ST109B-S | STORAGE | 0.01 | 0.15   | 102.96     | 0    | 06:10 | 0.15 |
| ST109C-S | STORAGE | 0.01 | 0.16   | 102.97     | 0    | 06:15 | 0.16 |
| ST111A-S | STORAGE | 0.23 | 2.32   | 104.18     | 0    | 06:24 | 2.32 |
| ST111C-S | STORAGE | 0.01 | 0.08   | 102.03     | 0    | 06:15 | 0.08 |
| ST507A-S | STORAGE | 0.06 | 1.87   | 103.44     | 0    | 06:17 | 1.87 |
| TANK     | STORAGE | 0.38 | 1.87   | 101.97     | 0    | 06:52 | 1.86 |

Node Inflow Summary

| Node                                                                                                                                                                                                                                        | Туре                                                                                                                                                                                                                                                        | Maximum<br>Lateral<br>Inflow<br>LPS                                                                                                                                                                                   | Maximum<br>Total<br>Inflow<br>LPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Time<br>Occu<br>days | of Max<br>rrence<br>hr:min                                                                                                                                                       | Lateral<br>Inflow<br>Volume<br>10^6 ltr                                       | Total<br>Inflow<br>Volume<br>10^6 ltr                                                                                                                                                                                   | Flow<br>Balance<br>Error<br>Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>109<br>110<br>111<br>EXT1-OF<br>EXT2-OF<br>HEADWALL<br>POOLE_OF1<br>POOLE_OF1<br>POOLE_OF1<br>POOLE_OF1<br>POOLE_OF1<br>ST107A-OF<br>108<br>508<br>ST104A-S<br>ST107A-S<br>ST107A-S | JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>JUNCTION<br>OUTFALL<br>OUTFALL<br>OUTFALL<br>OUTFALL<br>OUTFALL<br>STORAGE<br>STORAGE<br>STORAGE<br>STORAGE | $\begin{array}{c} 175.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 4.76\\ 47.37\\ 13.13\\ 16.91\\ 120.73\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 102.04\\ 79.58\\ 50.18\\ 115.66\\ 142.13\\ \end{array}$ | $\begin{array}{c} 311.33\\ 136.63\\ 136.71\\ 457.04\\ 457.02\\ 368.34\\ 206.19\\ 159.99\\ 44.51\\ 74.61\\ 45.04\\ 16.91\\ 10.73\\ 311.33\\ 311.33\\ 311.33\\ 311.33\\ 311.33\\ 50.6\\ 0.30\\ 0.00\\ 240.16\\ 0.30\\ 0.00\\ 240.16\\ 15.66\\ 142.13\\ 312.22\\ 132.22\\ 142.13\\ 15.66\\ 142.13\\ 15.66\\ 142.13\\ 15.66\\ 142.13\\ 15.66\\ 142.13\\ 15.66\\ 142.13\\ 15.66\\ 142.13\\ 15.66\\ 142.13\\ 15.66\\ 142.13\\ 15.66\\ 142.13\\ 15.66\\ 142.13\\ 15.66\\ 142.13\\ 15.66\\ 142.13\\ 15.66\\ 142.13\\ 15.66\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.13\\ 142.1$ |                      | 06:53<br>06:52<br>06:52<br>06:14<br>06:14<br>06:14<br>06:14<br>06:15<br>06:15<br>06:15<br>06:54<br>01:27<br>05:14<br>00:00<br>00:00<br>06:13<br>06:15<br>06:15<br>06:15<br>06:15 | $\begin{array}{c} 15.1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$ | $\begin{array}{c} 16.9\\ 1.83\\ 1.83\\ 1.71\\ 1.71\\ 1.71\\ 0.707\\ 0.569\\ 0.119\\ 0.139\\ 0.275\\ 0.0354\\ 0.053\\ 16.9\\ 0.053\\ 16.9\\ 0.054\\ 0.0203\\ 0\\ 0\\ 1.14\\ 0.186\\ 0.131\\ 0.296\\ 0.381\\ \end{array}$ | 0.017<br>-0.075<br>0.036<br>-0.003<br>-0.145<br>0.141<br>-0.315<br>0.194<br>0.473<br>0.082<br>0.493<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 |
|                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Page 9               | )                                                                                                                                                                                |                                                                               |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

 160401195\_100SCS.rpt

 ST108B-S
 STORAGE
 128.25
 128.25
 0.6:15
 0.344
 0.344
 -0.001

 ST108D-S
 STORAGE
 16.57
 16.57
 0.6:15
 0.0444
 0.0444
 -0.001

 ST108D-S
 STORAGE
 18.20
 0.6:15
 0.0488
 0.0488
 -0.001

 ST108D-S
 STORAGE
 19.57
 9.57
 0.66:10
 0.0256
 0.0256
 -0.000

 ST109B-S
 STORAGE
 19.11
 19.11
 0.61:10
 0.0512
 0.0512
 -0.000

 ST109B-S
 STORAGE
 20.63
 20.63
 0.61:15
 0.201
 -0.001

 ST109C-S
 STORAGE
 77.09
 77.09
 0.61:15
 0.201
 -0.001

 ST111A-S
 STORAGE
 77.09
 77.09
 0.61:15
 0.201
 -0.001

 ST111A-S
 STORAGE
 14.64
 0.61:15
 0.0384
 0.0384
 0.078

 ST107A-S
 STORAGE
 17.48
 17.48
 0.61:15
 0.0451
 -0.002

 <tr

Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

| Node | Туре     | Hours<br>Surcharged | Max. Height<br>Above Crown<br>Meters                                           | Min. Depth<br>Below Rim<br>Meters |
|------|----------|---------------------|--------------------------------------------------------------------------------|-----------------------------------|
| 104  | JUNCTION | 4.28                | $ \begin{array}{r} 1.156\\ 1.092\\ 1.058\\ 0.747\\ 0.773\\ 0.933 \end{array} $ | 1.592                             |
| 105  | JUNCTION | 3.62                |                                                                                | 1.645                             |
| 106  | JUNCTION | 3.40                |                                                                                | 1.324                             |
| 107  | JUNCTION | 2.19                |                                                                                | 1.220                             |
| 109  | JUNCTION | 2.28                |                                                                                | 2.522                             |
| 110  | JUNCTION | 2.81                |                                                                                | 2.506                             |

Node Flooding Summary

No nodes were flooded.

Storage Volume Summary

| Storage Unit | Average        | Avg      | Evap   | Exfil         | Maximum                | Max       | Time   | of Max         | Maximum         |
|--------------|----------------|----------|--------|---------------|------------------------|-----------|--------|----------------|-----------------|
|              | Volume         | Pcnt     | Pcnt   | Pcnt          | Volume                 | Pcnt      | Occu   | Irrence        | Outflow         |
|              | 1000 m3        | Full     | Loss   | Loss          | 1000 m3                | Full      | days   | hr:min         | LPS             |
| 108<br>508   | 0.288<br>0.030 | 79<br>55 | 0<br>0 | 0<br>0<br>Pag | 0.364<br>0.053<br>e 10 | 100<br>99 | 0<br>0 | 06:13<br>06:13 | 210.40<br>79.31 |
|       |                                                                                                                                                      | 1604                                                                                                                                                                                                                       | 01195_1                                              | .00SCS.rpt                                           |                                                       |                                                       |                                                       |                                                        |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| 0.000 | 0                                                                                                                                                    | 0                                                                                                                                                                                                                          | 0                                                    | 0.000                                                | 0                                                     | 0                                                     | 00:00                                                 | 49.96                                                  |
| 0.000 | 0                                                                                                                                                    | 0                                                                                                                                                                                                                          | 0                                                    | 0.000                                                | 0                                                     | 0                                                     | 00:00                                                 | 114.99                                                 |
| 0.010 | 6                                                                                                                                                    | 0                                                                                                                                                                                                                          | 0                                                    | 0.141                                                | 86                                                    | 0                                                     | 06:20                                                 | 30.68                                                  |
| 0.008 | 6                                                                                                                                                    | 0                                                                                                                                                                                                                          | 0                                                    | 0.126                                                | 85                                                    | 0                                                     | 06:20                                                 | 28.40                                                  |
| 0.001 | 4                                                                                                                                                    | 0                                                                                                                                                                                                                          | 0                                                    | 0.015                                                | 80                                                    | 0                                                     | 06:19                                                 | 4.26                                                   |
| 0.001 | 5                                                                                                                                                    | 0                                                                                                                                                                                                                          | 0                                                    | 0.017                                                | 83                                                    | 0                                                     | 06:19                                                 | 4.30                                                   |
| 0.001 | 5                                                                                                                                                    | 0                                                                                                                                                                                                                          | 0                                                    | 0.009                                                | 85                                                    | 0                                                     | 06:19                                                 | 2.17                                                   |
| 0.000 | 0                                                                                                                                                    | 0                                                                                                                                                                                                                          | 0                                                    | 0.000                                                | 0                                                     | 0                                                     | 00:00                                                 | 19.11                                                  |
| 0.000 | 0                                                                                                                                                    | 0                                                                                                                                                                                                                          | 0                                                    | 0.000                                                | 0                                                     | 0                                                     | 00:00                                                 | 20.63                                                  |
| 0.003 | 3                                                                                                                                                    | 0                                                                                                                                                                                                                          | 0                                                    | 0.058                                                | 53                                                    | 0                                                     | 06:24                                                 | 17.36                                                  |
| 0.000 | 0                                                                                                                                                    | 0                                                                                                                                                                                                                          | 0                                                    | 0.000                                                | 0                                                     | 0                                                     | 00:00                                                 | 14.64                                                  |
| 0.000 | 0                                                                                                                                                    | 0                                                                                                                                                                                                                          | 0                                                    | 0.004                                                | 6                                                     | 0                                                     | 06:17                                                 | 10.93                                                  |
| 0.175 | 30                                                                                                                                                   | 0                                                                                                                                                                                                                          | 0                                                    | 0.592                                                | 100                                                   | 0                                                     | 06:47                                                 | 137.37                                                 |
|       | $\begin{array}{c} 0.000\\ 0.000\\ 0.010\\ 0.008\\ 0.001\\ 0.001\\ 0.001\\ 0.000\\ 0.000\\ 0.000\\ 0.003\\ 0.000\\ 0.000\\ 0.000\\ 0.175 \end{array}$ | $\begin{array}{cccccc} 0.000 & 0 \\ 0.000 & 0 \\ 0.010 & 6 \\ 0.008 & 6 \\ 0.001 & 4 \\ 0.001 & 5 \\ 0.001 & 5 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0.003 & 3 \\ 0.000 & 0 \\ 0.000 & 0 \\ 0.175 & 30 \\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

|              | Flow<br>Freq | A∨g<br>Flow | Max<br>Flow | Total<br>Volume |
|--------------|--------------|-------------|-------------|-----------------|
| Outfall Node | Pcnt         | LPS         | LPS         | 10^6 ltr        |
| EXT1-OF      | 30.18        | 1.36        | 16.91       | 0.035           |
| EXT2-OF      | 45.84        | 1.34        | 20.73       | 0.053           |
| HEADWALL     | 100.00       | 196.13      | 311.33      | 16.945          |
| POOLE_OF1    | 95.39        | 0.65        | 0.66        | 0.054           |
| POOLE_OF2    | 78.72        | 0.30        | 0.30        | 0.020           |
| ST104A-OF    | 0.00         | 0.00        | 0.00        | 0.000           |
| ST107A-OF    | 0.00         | 0.00        | 0.00        | 0.000           |
| System       | 50.02        | 199.78      | 316.10      | 17.108          |

### 

 Maximum
 Time of Max
 Maximum
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/
 Max/</th

| Page 1 |
|--------|
|--------|

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0401195 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00SCS.rpt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONDUIT | 64.13                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CONDUIT | 45.00                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CONDUIT | 457.04                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CONDUIT | 79.01                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CONDUIT | 136.33                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CONDUIT | 210.40                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CONDUIT | 158.73                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CONDUIT | 136.63                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CONDUIT | 458.73                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CHANNEL | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CHANNEL | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CHANNEL | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CHANNEL | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CHANNEL | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CONDULT | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ORIFICE | 32.79                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 06:48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ORIFICE | 22.72                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ORIFICE | 40.25                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ORIFICE | 49.90                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ORIFICE | 10 11                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ORIFICE | 20.63                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ŏ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ORIFICE | 17 36                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ORIFICE | 7 32                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ň                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ORTETCE | 7 32                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ŏ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DUMMY   | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ŏ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DUMMY   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ŏ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 05.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DUMMY   | 30.68                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ŏ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DUMMY   | 28.40                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ŏ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DUMMY   | 4.26                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ŏ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DUMMY   | 4.30                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ŏ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DUMMY   | 2.17                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ŏ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DUMMY   | 10.93                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06:17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CONDUIT<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CONDUIT<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>ORIFICE<br>DUMMY<br>DUMMY<br>DUMMY<br>DUMMY | CONDUIT         64.13           CONDUIT         45.00           CONDUIT         45.00           CONDUIT         45.00           CONDUIT         457.04           CONDUIT         136.33           CONDUIT         136.33           CONDUIT         136.63           CONDUIT         0.00           CHANNEL         0.00           CHANNEL         0.00           CHANNEL         0.00           CONDUIT         0.00           CHANNEL         0.00           CONDIT         0.00           CONFICE         2 | 166           CONDUIT         64.13         0           CONDUIT         457.04         0           CONDUIT         457.04         0           CONDUIT         79.01         0           CONDUIT         136.33         0           CONDUIT         136.63         0           CONDUIT         0.00         0           CHANNEL         0.00         0           CHANNEL         0.00         0           CHANNEL         0.00         0           CONDUIT         0.00         0           CHANNEL         0.00         0           CHANNEL         0.00         0           CONDUIT         0.00         0           CHANNEL         0.00         0           ORIFICE         32.79         0           ORIFICE         14.99         0           ORIFICE         14.99         0           ORIFI | 160401195_1           CONDUIT         64.13         0         06:14           CONDUIT         45.00         0         06:15           CONDUIT         45.00         0         06:15           CONDUIT         457.04         0         06:15           CONDUIT         79.01         0         06:15           CONDUIT         136.33         0         06:53           CONDUIT         136.63         0         06:14           CONDUIT         136.63         0         06:15           CONDUIT         136.63         0         06:14           CONDUIT         136.63         0         00:00           CHANNEL         0.00         0         00:00           CHANNEL         0.00         0         00:00           CHANNEL         0.00         0         00:00           CONDUIT         0.00         0         00:00           CHANNEL         0.00         0         00:00           CHANNEL         0.00         0         00:00           CONDUIT         0.00         0         00:00           CONDUT         0.00         0         00:00           CONDUT | 160401195_100SCS.rpt           CONDUIT         64.13         0         06:14         0.94           CONDUIT         45.00         0         06:15         1.00           CONDUIT         457.04         0         06:14         1.28           CONDUIT         79.01         0         06:15         1.65           CONDUIT         136.33         0         06:53         1.08           CONDUIT         136.63         0         06:14         1.45           CONDUIT         136.63         0         06:15         1.35           CONDUIT         136.63         0         06:00         0.00           CHANNEL         0.00         0         0.00         0.00         0.00           CHANNEL         0.00         0         0.00         0.00         0.00         0.00           CHANNEL         0.00         0         0.00         0.00         0.00         0.00         0.00         0.00           CHANNEL         0.00         0         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <t< td=""><td>160401195_100SCS.rpt           CONDUIT         64.13         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0</td></t<> | 160401195_100SCS.rpt           CONDUIT         64.13         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 |

Flow Classification Summary

| Conduit                                      | Adjusted<br>/Actual<br>Length          | <br>Dry                      | Up<br>Dry                                                      | Fract<br>Down<br>Dry                                           | ion of<br>Sub<br>Crit                  | Time<br>Sup<br>Crit                | in Flo<br>Up<br>Crit                                           | w Clas<br>Down<br>Crit       | s<br>Norm<br>Ltd             | Inlet<br>Ctrl                |
|----------------------------------------------|----------------------------------------|------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------|------------------------------------|----------------------------------------------------------------|------------------------------|------------------------------|------------------------------|
| Pipe_13<br>Pipe_14<br>Pipe_14_(1)<br>Pipe_15 | $1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00$ | 0.00<br>0.04<br>0.04<br>0.04 | $\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\end{array}$ | $\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\end{array}$ | 0.00<br>0.39<br>0.51<br>0.36<br>Page 1 | 0.00<br>0.00<br>0.00<br>0.00<br>12 | $\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\end{array}$ | 1.00<br>0.56<br>0.45<br>0.61 | 0.00<br>0.02<br>0.06<br>0.19 | 0.00<br>0.00<br>0.00<br>0.00 |

|          |      |      |      | 160401 | .195_10 | 1.2320 | pt   |      |      |      |
|----------|------|------|------|--------|---------|--------|------|------|------|------|
| Pipe_16  | 1.00 | 0.04 | 0.00 | 0.00   | 0.31    | 0.00   | 0.00 | 0.65 | 0.05 | 0.00 |
| Pipe_17  | 1.00 | 0.04 | 0.00 | 0.00   | 0.15    | 0.00   | 0.00 | 0.80 | 0.11 | 0.00 |
| Pipe_21  | 1.00 | 0.04 | 0.00 | 0.00   | 0.94    | 0.00   | 0.00 | 0.02 | 0.14 | 0.00 |
| Pipe_23  | 1.00 | 0.62 | 0.00 | 0.00   | 0.05    | 0.00   | 0.00 | 0.33 | 0.00 | 0.00 |
| Pipe_26  | 1.00 | 0.00 | 0.09 | 0.00   | 0.72    | 0.00   | 0.00 | 0.19 | 0.54 | 0.00 |
| Pipe_27  | 1.00 | 0.05 | 0.20 | 0.00   | 0.42    | 0.00   | 0.02 | 0.32 | 0.06 | 0.00 |
| Pipe_29  | 1.00 | 0.04 | 0.00 | 0.00   | 0.34    | 0.00   | 0.00 | 0.63 | 0.17 | 0.00 |
| Pipe_31  | 1.00 | 0.07 | 0.00 | 0.00   | 0.90    | 0.00   | 0.00 | 0.02 | 0.00 | 0.00 |
| Pipe_34  | 1.00 | 0.04 | 0.00 | 0.00   | 0.89    | 0.07   | 0.00 | 0.00 | 0.01 | 0.00 |
| ST104A-T | 1.00 | 1.00 | 0.00 | 0.00   | 0.00    | 0.00   | 0.00 | 0.00 | 0.00 | 0.00 |
| ST107A-T | 1.00 | 1.00 | 0.00 | 0.00   | 0.00    | 0.00   | 0.00 | 0.00 | 0.00 | 0.00 |
| ST111A-T | 1.00 | 1.00 | 0.00 | 0.00   | 0.00    | 0.00   | 0.00 | 0.00 | 0.00 | 0.00 |
| ST111B-T | 1.00 | 1.00 | 0.00 | 0.00   | 0.00    | 0.00   | 0.00 | 0.00 | 0.00 | 0.00 |
| ST507A-T | 1.00 | 1.00 | 0.00 | 0.00   | 0.00    | 0.00   | 0.00 | 0.00 | 0.00 | 0.00 |
| W1       | 1.00 | 1.00 | 0.00 | 0.00   | 0.00    | 0.00   | 0.00 | 0.00 | 0.00 | 0.00 |

### Conduit Surcharge Summary

|                                                                                                                                                 |                                                                                                                 |                                                                                                                 |                                                                                                                 | Hours                                                                                | Hours                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Conduit                                                                                                                                         | Both Ends                                                                                                       | Hours Full<br>Upstream                                                                                          | Dnstream                                                                                                        | Above Full<br>Normal Flow                                                            | Capacity<br>Limited                                                          |
| Pipe_14<br>Pipe_14_(1)<br>Pipe_15<br>Pipe_16<br>Pipe_17<br>Pipe_21<br>Pipe_23<br>Pipe_23<br>Pipe_26<br>Pipe_27<br>Pipe_29<br>Pipe_31<br>Pipe_34 | $\begin{array}{c} 3.40\\ 3.61\\ 2.28\\ 2.81\\ 0.01\\ 4.31\\ 0.34\\ 0.01\\ 3.71\\ 2.19\\ 0.01\\ 4.68\end{array}$ | $\begin{array}{c} 3.40\\ 3.62\\ 2.28\\ 2.81\\ 0.01\\ 4.31\\ 0.42\\ 0.01\\ 3.71\\ 2.19\\ 0.16\\ 4.68\end{array}$ | $\begin{array}{c} 3.62\\ 4.28\\ 4.28\\ 3.40\\ 2.19\\ 4.63\\ 0.44\\ 0.01\\ 4.69\\ 3.40\\ 0.01\\ 4.75\end{array}$ | 0.05<br>0.07<br>0.01<br>0.01<br>0.05<br>0.19<br>0.72<br>0.06<br>0.01<br>0.73<br>0.04 | 0.01<br>0.05<br>0.01<br>0.01<br>0.03<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 |
|                                                                                                                                                 |                                                                                                                 | 02 56 201                                                                                                       | -                                                                                                               |                                                                                      |                                                                              |

Analysis begun on: Thu Mar 23 14:03:56 2017 Analysis ended on: Thu Mar 23 14:03:58 2017 Total elapsed time: 00:00:02

Page 13

### SERVICING AND STORMWATER MANAGEMENT BRIEF -**5731 HAZELDEAN ROAD**

Appendix C Stormwater Management March 22, 2017

### C.4 OIL/GRIT SEPARATOR SIZING CALCULATIONS





### Stormceptor Design Summary PCSWMM for Stormceptor

### **Project Information**

| Designer Information |                |  |  |
|----------------------|----------------|--|--|
| Location Ottawa, ON  |                |  |  |
| Project Number       | 160401195      |  |  |
| Project Name         | 5731 Hazeldean |  |  |
| Date                 | 11/4/2016      |  |  |

| Designer mormation |                         |  |  |
|--------------------|-------------------------|--|--|
| Company            | Stantec Consulting Ltd. |  |  |
| Contact            | N/A                     |  |  |

### Notes

| N/A |  |  |
|-----|--|--|
|-----|--|--|

### Drainage Area

| 0                  |      |
|--------------------|------|
| Total Area (ha)    | 2.72 |
| Imperviousness (%) | 70   |

The Stormceptor System model STC 3000 achieves the water quality objective removing 80% TSS for a CLOCA (clay, silt and sand) particle size distribution.

### Stormceptor Sizing Summary

### Rainfall

| Name             | OTTAWA<br>MACDONALD-CARTIER INT'L<br>A |
|------------------|----------------------------------------|
| State            | ON                                     |
| ID               | 6000                                   |
| Years of Records | 1967 to 2003                           |
| Latitude         | 45°19'N                                |
| Longitude        | 75°40'W                                |

### Water Quality Objective

| TSS Removal (%) | 80 |
|-----------------|----|
|                 |    |

### **Upstream Storage**

| Storage | Discharge |
|---------|-----------|
| (ha-m)  | (L/s)     |
| 0       | 0         |
|         |           |
|         |           |
|         |           |
|         |           |

| Stormceptor Model | TSS Removal |
|-------------------|-------------|
|                   | %           |
| STC 300           | 60          |
| STC 750           | 73          |
| STC 1000          | 73          |
| STC 1500          | 74          |
| STC 2000          | 79          |
| STC 3000          | 80          |
| STC 4000          | 84          |
| STC 5000          | 84          |
| STC 6000          | 87          |
| STC 9000          | 90          |
| STC 10000         | 90          |
| STC 14000         | 92          |



### **Particle Size Distribution**

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

| CLOCA (clay, silt and sand) |              |                     |                      |  |               |              |                     |                      |
|-----------------------------|--------------|---------------------|----------------------|--|---------------|--------------|---------------------|----------------------|
| Particle Size               | Distribution | Specific<br>Gravity | Settling<br>Velocity |  | Particle Size | Distribution | Specific<br>Gravity | Settling<br>Velocity |
| μm                          | %            | ,                   | m/s ์                |  | μm            | %            | ,                   | m/s ُ                |
| 850                         | 3.3          | 2.65                | 0.1465               |  | 50            | 3.9          | 2.65                | 0.0022               |
| 425                         | 23.4         | 2.65                | 0.0698               |  | 36            | 2.6          | 2.65                | 0.0012               |
| 300                         | 17.5         | 2.65                | 0.0439               |  | 22            | 1.3          | 2.65                | 0.0004               |
| 250                         | 6.5          | 2.65                | 0.0335               |  | 12            | 1.9          | 2.65                | 0.0004               |
| 212                         | 6.5          | 2.65                | 0.0259               |  | 9             | 0            | 2.65                | 0.0004               |
| 150                         | 11.7         | 2.65                | 0.0145               |  | 6.5           | 1.3          | 2.65                | 0.0004               |
| 125                         | 5.2          | 2.65                | 0.0105               |  | 3             | 1.3          | 2.65                | 0.0004               |
| 100                         | 3.9          | 2.65                | 0.0070               |  | 1.5           | 1.3          | 2.65                | 0.0004               |
| 75                          | 3.9          | 2.65                | 0.0040               |  | 1             | 4.5          | 2.65                | 0.0004               |

### **Stormceptor Design Notes**

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor version 1.0

- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 300 is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 750 to STC 6000 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:
  - Inlet and Outlet Pipe Invert Elevations Differences

| Inlet Pipe Configuration | STC 300 | STC 750 to STC<br>6000 | STC 9000 to<br>STC 14000 |
|--------------------------|---------|------------------------|--------------------------|
| Single inlet pipe        | 75 mm   | 25 mm                  | 75 mm                    |
| Multiple inlet pipes     | 75 mm   | 75 mm                  | Only one inlet<br>pipe.  |

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Imbrium Systems Inc., 1-800-565-4801.



### SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix C Stormwater Management March 29, 2022

### C.8 WATER BALANCE CALCULATIONS

## Project #160401511 - 20 Cedarrow Drive

### Infiltration calculations

| Required Infiltration Rate (KWMSS)              | 73 mm/yr                  |
|-------------------------------------------------|---------------------------|
| Site Area<br>Pre-Develonment Imperviousness     | 2.29 ha<br>0 %            |
| Pre-Development Infiltration                    | 1674.5 m <sup>3</sup> /yr |
| Post Development Imperviousness                 | 66.3 %                    |
| Post Development Pervious Area                  | 0.69 ha                   |
| Post Development Infiltration in Pervious Areas | 503.4 m <sup>3</sup> /yr  |
|                                                 |                           |

# Determine Volume of Water to be Sequestered in Infiltration Trench (Assume storage up to 25mm event)

1171.1 m<sup>3</sup>/yr

Post Development Infiltration Volume Req.

| Area Tributary to Infiltration Trench                        | 3517 m <sup>2</sup>     |                                                             |
|--------------------------------------------------------------|-------------------------|-------------------------------------------------------------|
| Impervious Area to Infiltration Trench                       | 3517 m <sup>2</sup>     | 100.0 % Impervious                                          |
| Total Depth of Annual Runoff to Infiltration Trench          | 760.5 mm/yr             | (910.5mm/yr annual precipitation less urban ET of 150mm/yr) |
| Volume of Runoff from Impervious Area to Infiltration Trench | 2674.7 m³/yr            | for events with rainfall <25mm                              |
| In order to store up to 25mm from catchment area:            |                         |                                                             |
| Max. Capacity Required (25mm)=                               | 88 m <sup>3</sup> volum | e of runoff                                                 |
| Trench Length (m)                                            | 40.00 m                 | 40% Trench Porosity                                         |
| Trench Width (m)                                             | 5.50 m                  |                                                             |
| Trench Height (m)                                            | 1.00 m                  |                                                             |
| Volume Provided                                              | 88 m <sup>3</sup>       |                                                             |

### SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix D Geotechnical Investigation March 29, 2022

### Appendix D GEOTECHNICAL INVESTIGATION

### patersongroup

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

**Materials Testing** 

**Building Science** 

**Archaeological Services** 

### **Geotechnical Investigation**

Proposed Mixed-Use Development Wellings of Stittsville - Phase 2 20 Cedarow Court Ottawa, Ontario

**Prepared For** 

Nautical Lands Group

### Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca March 7, 2019

Report PG4772-1

### **Table of Contents**

| 1.0        | Pag                                                                                                                                                                                                                                                                                                             | <b>je</b><br>1                         |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 2.0        | Proposed Project                                                                                                                                                                                                                                                                                                | 1                                      |
| 3.0        | Method of Investigation3.1Field Investigation3.2Field Survey3.3Laboratory Testing3.4Analytical Testing                                                                                                                                                                                                          | 2<br>3<br>3<br>3                       |
| 4.0        | Observations4.1Surface Conditions4.2Subsurface Profile4.3Groundwater                                                                                                                                                                                                                                            | 4<br>4<br>4                            |
| 5.0        | Discussion5.1Geotechnical Assessment.5.2Site Grading and Preparation5.3Foundation Design5.4Design for Earthquakes.5.5Basement Slab5.6Basement Wall5.7Pavement Structure.                                                                                                                                        | 5<br>5<br>10<br>11<br>11               |
| 6.0        | Design and Construction Precautions6.1Foundation Drainage and Backfill6.2Protection of Footings Against Frost Action6.3Excavation Side Slopes.6.4Pipe Bedding and Backfill6.5Groundwater Control6.6Winter Construction.6.7Corrosion Potential and Sulphate6.8Limit of Hazard Lands6.9Landscaping Considerations | 14<br>15<br>17<br>18<br>19<br>19<br>22 |
| 7.0<br>8.0 | Recommendations                                                                                                                                                                                                                                                                                                 | 23<br>24                               |



Geotechnical Investigation Proposed Mixed-Use Development 20 Cedarow Court - Ottawa

### Appendices

| Appendix 1 | Soil Profile and Test Data Sheets<br>Symbols and Terms<br>Analytical Testing Results                                    |
|------------|-------------------------------------------------------------------------------------------------------------------------|
| Appendix 2 | Figure 1 - Key Plan<br>Figures 2 to 4 - Slope Stability Analysis Sections<br>Drawing PG4772-1 - Test Hole Location Plan |

### 1.0 Introduction

Paterson Group (Paterson) was commissioned by Nautical Lands Group to conduct a geotechnical investigation for the proposed mixed-use development to be located at 20 Cedarow Court in the City of Ottawa, Ontario (refer to Figure 1 - Key Plan in Appendix 2).

The objectives of the current investigation were to:

- Determine the subsurface conditions by means of boreholes.
- □ Provide geotechnical recommendations for the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project. This report contains geotechnical findings and includes recommendations pertaining to the design and construction of the proposed development as understood at the time of writing this report.

### 2.0 Proposed Development

Based on the available drawings, it is our understanding that the proposed development will consist of four, five (5) storey mixed-use buildings with a shared underground parking level occupying the majority of the footprint of the subject site. The buildings are understood to include retail, office space and residential units. A one (1) storey restaurant building is also proposed within the centre of the site. At-grade parking areas, access lanes and landscaped areas are also anticipated a part of the development. It is anticipated that the proposed development will be municipally serviced.

### 3.0 Method of Investigation

### 3.1 Field Investigation

### **Field Program**

The field program for the current investigation was carried out from January 14, 2019 to January 18, 2019. At that time, 29 boreholes were drilled to a maximum depth of 4 m below existing grade. The borehole locations were distributed in a manner to provide general coverage of the proposed development. The locations of the boreholes are shown on Drawing PG4772-1 - Test Hole Location Plan included in Appendix 2.

The boreholes were drilled using a track-mounted auger drill rig operated by a two-person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel with the direction of a senior engineer. The drilling procedure consisted of augering to the required depths at the selected locations, sampling and testing the overburden.

### Sampling and In Situ Testing

Soil samples were recovered from a 50 mm diameter split-spoon or the auger flights. The split-spoon and auger samples were classified on site and placed in sealed plastic bags. All samples were transported to our laboratory. The depths at which the split-spoon and auger samples were recovered from the boreholes are presented as SS and AU, respectively, on the Soil Profile and Test Data sheets.

Standard Penetration Tests (SPT) were conducted and recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sample 300 mm into the soil after the initial penetration of 150 mm using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength tests were conducted in cohesive soils with a field vane apparatus.

The subsurface conditions observed in the boreholes were recorded in detail in the field. The soil profiles are presented on the Soil Profile and Test Data sheets in Appendix 1.

### Groundwater

Flexible polyethylene standpipes were installed in the majority of the boreholes to permit groundwater results subsequent to the sampling program completion. Monitoring wells were installed in BH 4, BH 9, BH 15, BH 22, and BH 27 to provide general site coverage as part of our hydrogeological study. The groundwater observations are discussed in Subsection 4.3 and presented in the Soil Profile and Test Data Sheets in Appendix 1.

### Sample Storage

All samples will be stored in the laboratory for a period of one month after issuance of this report at which time the samples will be discarded unless otherwise directed.

### 3.2 Field Survey

The borehole locations were selected by Paterson taking in consideration site features. The ground surface at the test pit locations was located and surveyed by Annis, O'Sullivan, Vollebekk LTD. It is understood that the ground surface elevations at the borehole locations were referenced to a geodetic datum. The locations and ground surface elevation at the boreholes are presented on Drawing PG4772-1 - Test Hole Location Plan in Appendix 2.

### 3.3 Laboratory Testing

Soil samples recovered from the subject site were visually examined in our laboratory to review the field logs. All samples will be stored in the laboratory for a period of one month after the issuance of this report. They will then be discarded unless we are otherwise directed.

### 3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the potential for exposed ferrous metals and the sulphate potential against subsurface concrete structures. The results are discussed further in Subsection 6.7.

### 4.0 Observations

### 4.1 Surface Conditions

The subject site is currently undeveloped and grass covered with a tree-line located along the west boundary line of Cedarow Court. The ground surface across the site is relatively flat and approximately 1 m lower than adjacent properties and Hazeldean Road. Poole Creek ravine runs along the western border of the subject site approximately 3 m below the subject site.

The subject site is bordered by an active construction site for Phase 1 of the Wellings of Stittsville development along the north, Hazeldean Road along the east, and commercial buildings at the edge of Cedarow Court along the south.

### 4.2 Subsurface Profile

### Overburden

The subsurface profile at the borehole locations consists of topsoil overlying a hard to very stiff silty clay crust followed by a grey, very stiff to stiff silty clay layer. Glacial till was encountered below the silty clay layer consisting of compact silty sand to sandy silt with clay, gravel, cobbles and boulders. A deposit of very stiff to hard clayey silt was encountered below the topsoil in BH 17, BH 18, BH 24, BH 25, BH 26, and BH 27. Practical refusal to augering on inferred bedrock was encountered in all boreholes at depths ranging between 1.6 to 4.0 m. Specific details of the soil profile at each test hole location are presented on the Soil Profile and Test Data sheets provided in Appendix 1.

### Bedrock

Based on available geological mapping, the subject site consists of interbedded dolostone and limestone of the Gull River formation and an approximate drift thickness of 2 to 15 m.

### 4.3 Groundwater

The measured groundwater levels at the borehole locations are presented in Table 1. Groundwater readings recorded in flexible piezometers could be influenced by surface water infiltrating the backfilled boreholes. The long-term groundwater level can also be estimated based on observations of the recovered soil samples, such as the moisture level, soil consistency and colouring. Based on these observations, the long-term groundwater level is anticipated at a depth ranging between 2.5 to 3.5 m below existing grade. Groundwater levels are subject to seasonal fluctuations and could vary at the time of construction.

Proposed Mixed-Use Development 20 Cedarow Court - Ottawa

| Table 1 - Groundwater Readings Summary                                                                         |               |          |                |                  |
|----------------------------------------------------------------------------------------------------------------|---------------|----------|----------------|------------------|
| Test Hole                                                                                                      | Ground        | Groundwa | ter Levels (m) | De condina Dete  |
| Number                                                                                                         | Elevation (m) | Depth    | Elevation      | Recording Date   |
| BH 1                                                                                                           | 104.37        | DRY      | n/a            | January 29, 2019 |
| BH 2                                                                                                           | 103.59        | 3.05     | 100.54         | January 29, 2019 |
| BH 3                                                                                                           | 103.55        | 1.81     | 101.74         | January 29, 2019 |
| BH 4                                                                                                           | 103.28        | 3.05     | 100.23         | January 29, 2019 |
| BH 5                                                                                                           | 103.45        | 3.05     | 100.40         | January 29, 2019 |
| BH 6                                                                                                           | 103.49        | 3.04     | 100.45         | January 29, 2019 |
| BH 7                                                                                                           | 103.41        | DRY      | n/a            | January 29, 2019 |
| BH 8                                                                                                           | 103.46        | DRY      | n/a            | January 29, 2019 |
| BH 9                                                                                                           | 103.42        | 3.17     | 100.25         | January 29, 2019 |
| BH 10                                                                                                          | 103.31        | 2.18     | 101.13         | January 29, 2019 |
| BH 11                                                                                                          | 103.44        | DRY      | n/a            | January 29, 2019 |
| BH 12                                                                                                          | 103.58        | DRY      | n/a            | January 29, 2019 |
| BH 13                                                                                                          | 103.55        | DRY      | n/a            | January 29, 2019 |
| BH 14                                                                                                          | 104.18        | DRY      | n/a            | January 29, 2019 |
| BH 15                                                                                                          | 103.65        | 2.92     | 100.73         | January 29, 2019 |
| BH 16                                                                                                          | 103.66        | DRY      | n/a            | January 29, 2019 |
| BH 17                                                                                                          | 104.19        | DRY      | n/a            | January 29, 2019 |
| BH 18                                                                                                          | 104.15        | DRY      | n/a            | January 29, 2019 |
| BH 19                                                                                                          | 103.78        | DRY      | n/a            | January 29, 2019 |
| BH 20                                                                                                          | 103.59        | DRY      | n/a            | January 29, 2019 |
| BH 21                                                                                                          | 103.58        | DRY      | n/a            | January 29, 2019 |
| BH 22                                                                                                          | 103.65        | DRY      | n/a            | January 29, 2019 |
| BH 23                                                                                                          | 103.87        | 2.62     | 101.25         | January 29, 2019 |
| BH 24                                                                                                          | 104.04        | 2.55     | 101.49         | January 29, 2019 |
| BH 25                                                                                                          | 104.07        | 1.68     | 102.39         | January 29, 2019 |
| BH 26                                                                                                          | 104.30        | DRY      | n/a            | January 29, 2019 |
| BH 27                                                                                                          | 103.97        | DRY      | n/a            | January 29, 2019 |
| BH 28                                                                                                          | 103.78        | DRY      | n/a            | January 29, 2019 |
| BH 29                                                                                                          | 103.71        | DRY      | n/a            | January 29, 2019 |
| Note: The ground surface elevation at the borehole locations was provided by Annis, O'Sullivan, Vollebekk Ltd. |               |          |                |                  |

### 5.0 Discussion

### 5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is suitable for the proposed development. The proposed structures will be founded on conventional shallow foundations placed on an undisturbed, hard to very stiff silty clay, compact to dense glacial till and/or clean, surface sounded bedrock bearing surface. Alternatively, conventional shallow footings can be placed over a near vertical, zero entry, concrete in-filled trenches extending to a clean, surface sounded bedrock bearing surface.

Permissible grade raise restriction areas are also required due to the silty clay deposit. A permissible grade raise restriction of **2 m** is recommended for areas where settlement sensitive structures are founded over the silty clay deposit.

Depending on the extent of the underground parking garage and potential grade raise, the bedrock may be encountered during excavation and construction. All contractors should be prepared for bedrock removal within the subject site.

Prior to considering blasting operations, if required, the blasting effects on the existing services, buildings and other structures should be addressed. A pre-blast or preconstruction survey of the existing structures located in proximity of the blasting operations should be carried out prior to commencing site activities. The extent of the survey should be determined by the blasting consultant and should be sufficient to respond to any inquiries/claims related to the blasting operations.

The blasting operations should be planned and conducted under the supervision of a licensed professional engineer who is also an experienced blasting consultant.

The above and other considerations are discussed in the following sections.

### 5.2 Site Grading and Preparation

### **Stripping Depth**

Topsoil and deleterious fill, such as those containing organic materials, should be stripped from under any buildings, paved areas, pipe bedding, and other settlement sensitive structures.

### **Bedrock Removal**

Bedrock removal can be accomplished by hoe ramming where only small quantity of the bedrock needs to be removed. Sound bedrock may be removed by line drilling and controlled blasting and/or hoe ramming.

Prior to considering blasting operations, the blasting effects on the existing services, buildings and other structures should be addressed. A pre-blast or pre-construction survey of the existing structures located in proximity of the blasting operations should be completed prior to commencing site activities. The extent of the survey should be determined by the blasting consultant and should be sufficient to respond to any inquiries/claims related to the blasting operations.

As a general guideline, peak particle velocities (measured at the structures) should not exceed 25 mm/s during the blasting program to reduce the risks of damage to the existing structures.

The blasting operations should be planned and conducted under the supervision of a licensed professional engineer who is also an experienced blasting consultant.

Excavation side slopes in sound bedrock can be excavated almost vertical side walls. A minimum 1 m horizontal ledge, should remain between the overburden excavation and the bedrock surface. The ledge will provide an area to allow for potential sloughing or a stable base for the overburden shoring system.

### **Vibration Considerations**

Construction operations are the cause of vibrations, and possibly, sources of nuisance to the community. Therefore, means to reduce the vibration levels as much as possible should be incorporated in the construction operations to maintain, as much as possible, a cooperative environment with the residents.

The following construction equipments could be the source of vibrations: hoe ram, compactor, dozer, crane, truck traffic, etc. Vibrations, whether caused by blasting operations or by construction operations, could be the source of detrimental vibrations on the nearby buildings and structures. Therefore, all vibrations are recommended to be limited.

Two parameters are used to determine the permissible vibrations, namely, the maximum peak particle velocity and the frequency. For low frequency vibrations, the maximum allowable peak particle velocity is less than that for high frequency vibrations. As a guideline, the peak particle velocity should be less than 15 mm/s between frequencies of 4 to 12 Hz, and 50 mm/s above a frequency of 40 Hz (interpolate between 12 and 40 Hz). The guidelines are for current construction standards. Considering that these guidelines are above perceptible human level and, in some cases, could be very disturbing to some people, a pre-construction survey is recommended be completed to minimize the risks of claims during or following the construction of the proposed buildings.

### Fill Placement

Fill placed for grading beneath the structure(s) or other settlement sensitive areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. This material should be tested and approved prior to delivery to the site. The engineered fill should be placed in maximum 300 mm thick lifts and compacted to 98% of the material's standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil can be placed as general landscaping fill where surface settlement is a minor concern. The backfill materials should be spread in thin lifts and at a minimum compacted by the tracks of the spreading equipment to minimize voids. If the non-specified backfill is to be placed to increase the subgrade level for areas to be paved, the fill should be compacted in maximum 300 mm lifts and compacted to 95% of the material's SPMDD. Non-specified existing fill and site-excavated soils are not suitable for placement as backfill against foundation walls unless a composite drainage blanket connected to a perimeter drainage system is provided.

### 5.3 Foundation Design

### **Bearing Resistance Values (Shallow Foundation)**

Footings for the proposed buildings can be designed with the following bearing resistance values presented in Table 2.

| Table 2 - Bearing Resistance Values                                                                                                                                                                                                                                                                                                 |                                          |                                                      |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------|--|--|
| Bearing Surface                                                                                                                                                                                                                                                                                                                     | Bearing Resistance<br>Value at SLS (kPa) | Factored Bearing<br>Resistance Value at<br>ULS (kPa) |  |  |
| Very stiff to hard silty clay                                                                                                                                                                                                                                                                                                       | 150                                      | 250                                                  |  |  |
| Compact to dense glacial till                                                                                                                                                                                                                                                                                                       | 200                                      | 300                                                  |  |  |
| Lean Concrete In-filled Trenches                                                                                                                                                                                                                                                                                                    | -                                        | 1,500                                                |  |  |
| Clean, Surface Sounded Limestone<br>Bedrock                                                                                                                                                                                                                                                                                         | -                                        | 1,500                                                |  |  |
| <ul> <li>Note: Strip footings, up to 3 m wide, and pad footings, up to 8 m wide, placed over an undisturbed, silty clay bearing surface can be designed using the abovenoted bearing resistance values.</li> <li>A geotechnical resistance factor of 0.5 was applied to the above noted bearing resistance value at ULS.</li> </ul> |                                          |                                                      |  |  |

The above-noted bearing resistance values at SLS for soil bearing surfaces will be subjected to potential post-construction total and differential settlements of 25 and 20 mm, respectively. Footings bearing on an acceptable bedrock bearing surface and designed for the bearing resistance values provided herein will be subjected to negligible potential post-construction total and differential settlements.

The bearing resistance values are provided on the assumption that the footings are placed on undisturbed soil bearing surfaces. An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

A clean, surface-sounded bedrock bearing surface should be free of loose materials, and have no near surface seams, voids, fissures or open joints which can be detected from surface sounding with a rock hammer.

### Lean Concrete Filled Trenches

Where bedrock is encountered below the design underside of footing elevation, consideration should be given to excavating vertical trenches to expose the underlying bedrock surface and backfilling with lean concrete (**15 MPa** 28-day compressive strength). Typically, the excavation sidewalls will be used as the form to support the concrete. The additional width of the concrete poured against an undisturbed trench sidewall will suffice in providing a direct transfer of the footing load to the underlying bedrock.

The effectiveness of this operation will depend on the ability of maintaining vertical trenches until the lean concrete can be poured. It is suggested that once the bottom of the excavation is exposed, an assessment should be completed to determine the water infiltration and stability of the excavation sidewalls extending to the bedrock surface.

The trench excavation should be at least 300 mm wider than all sides of the footing at the base of the excavation. The excavation bottom should be relatively clean using the hydraulic shovel only (workers will not be permitted in the excavation below a 1.5 m depth). Once approved by the geotechnical engineer, lean concrete can be poured up to the proposed founding elevation.

### Bedrock/Soil Transition

Where a building is founded partly on bedrock and partly on soil, it is recommended to decrease the soil bearing resistance value by 25% for the footings placed on soil bearing media to reduce the potential long term total and differential settlements. Also, at the soil/bedrock and bedrock/soil transitions, it is recommended that the upper 0.5 m of the bedrock be removed for a minimum length of 2 m (on the bedrock side) and replaced with nominally compacted OPSS Granular A or Granular B Type II material. The width of the sub-excavation should be at least the proposed footing width plus 0.5 m. Steel reinforcement, extending at least 3 m on both sides of the 2 m long transition, should be placed in the top part of the footings and foundation walls.

### Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to an engineered fill, stiff silty clay or glacial till above the groundwater table when a plane extending horizontally and vertically from the underside of the footing at a minimum of 1.5H:1V passing through in situ soil of the same or higher bearing capacity as the bearing medium soil.

### Permissible Grade Raise Restriction

Based on the current borehole information, a **permissible grade raise restriction of 2 m** is recommended for the proposed buildings and settlement sensitive structures where founded over a silty clay deposit. A post-development groundwater lowering of 0.5 m was assumed for our calculations.

### 5.4 Design for Earthquakes

The site class for seismic site response can be taken as **Class C** for the foundations considered at this site. However, a higher site class, such as Class A or B can be provided if a site specific shear wave velocity test is completed to confirm the seismic site classification. The soils underlying the subject site are not susceptible to liquefaction. Refer to the latest revision of the Ontario Building Code for a full discussion of the earthquake design requirements.

### 5.5 Basement Slab

The basement area for the proposed project will be mostly parking and the recommended pavement structure noted in Subsection 5.7 will be applicable. However, if storage or other uses of the lower level where a concrete floor slab will be constructed, the upper 200 mm of sub-slab fill is recommended to consist of 19 mm clear crushed stone. The upper 200 mm of sub-slab fill is recommended to consist of OPSS Granular A crushed stone for slab on grade construction. All backfill material within the footprint of the proposed building(s) should be placed in maximum 300 mm thick loose layers and compacted to a minimum of 98% of the SPMDD.

Any soft areas should be removed and backfilled with appropriate backfill material prior to placing any fill. OPSS Granular A or Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab. All backfill material within the footprint of the proposed building(s) should be placed in maximum 300 mm thick loose layers and compacted to a minimum of 98% of the SPMDD.

A subfloor drainage system, consisting of lines of perforated drainage pipe subdrains connected to a positive outlet, should be provided in the clear stone under the lower basement floor (discussed in Subsection 6.1).

### 5.6 Basement Wall

There are several combinations of backfill materials and retained soils that could be applicable for the proposed structure's basement walls. However, the conditions can be well-represented by assuming the retained soil consists of a material with an angle of internal friction of 30 degrees and a dry unit weight of 20 kN/m<sup>3</sup>.

The foundation wall is anticipated to be provided with a perimeter drainage system; therefore, the retained soils should be considered drained. For the undrained conditions, the applicable effective unit weight of the retained soil can be designed with13 kN/m<sup>3</sup>. A hydrostatic pressure should be added to the total static earth pressure when calculating the effective unit weight. The total earth pressure ( $P_{AE}$ ) includes both the static earth pressure component ( $P_o$ ) and the seismic component ( $\Delta P_{AE}$ ).

Two distinct conditions, static and seismic, should be reviewed for design calculations. The parameters for design calculations for the two conditions are presented below.

### **Static Conditions**

The static horizontal earth pressure ( $p_o$ ) could be calculated with a triangular earth pressure distribution equal to  $K_o \cdot \gamma \cdot H$  where:

- $K_{o}$  = at-rest earth pressure coefficient of the applicable retained soil, 0.5
- $\gamma$  = unit weight of fill of the applicable retained soil (kN/m<sup>3</sup>)
- H = height of the wall (m)

An additional pressure with a magnitude equal to  $K_0 \cdot q$  and acting on the entire height of the wall should be added to the above formula for any surcharge loading, q (kPa), that may be placed at ground surface adjacent to the wall. The surcharge pressure should only be applicable for static analyses and not be calculated in conjunction with the seismic loading case. Actual earth pressures could be higher than the "at-rest" case if care is not exercised during the compaction of the backfill materials to maintain a minimum separation of 0.3 m from the walls with the compaction equipment.

### Seismic Conditions

The total seismic force ( $P_{AE}$ ) includes both the earth force component ( $P_o$ ) and the seismic component ( $\Delta P_{AE}$ ).

The seismic earth force ( $\Delta P_{AE}$ ) could be calculated using 0.375  $\cdot a_c \cdot \gamma \cdot H^2/g$  where:

 $a_c = (1.45 - a_{max}/g)a_{max}$   $\gamma = unit weight of fill of the applicable retained soil (kN/m<sup>3</sup>)$ H = height of the wall (m)g = gravity, 9.81 m/s<sup>2</sup>

The peak ground acceleration,  $(a_{max})$ , for the Ottawa area is 0.32g according to OBC 2012. The vertical seismic coefficient is assumed to be zero. The earth force component (P<sub>o</sub>) under seismic conditions could be calculated using P<sub>o</sub> = 0.5 K<sub>o</sub>  $\gamma$  H<sup>2</sup>, where K<sub>o</sub> = 0.5 for the soil conditions presented above.

The total earth force  $(P_{AE})$  is considered to act at a height, h (m), from the base of the wall, where:

 $h = \{P_{o} \cdot (H/3) + \Delta P_{AE} \cdot (0.6 \cdot H)\} / P_{AE}$ 

The earth forces calculated are unfactored. For the ULS case, the earth loads should be factored as live loads, as per OBC 2012.

### 5.7 Pavement Structure

For design purposes, the pavement structure presented in the following tables could be used for the design of car only parking areas and access lanes, if required.

| Table 3 - Recommended Flexible Pavement Structure - At-Grade Parking Areas |                                                                                                   |  |  |  |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|
| Thickness (mm)                                                             | Material Description                                                                              |  |  |  |
| 50                                                                         | Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete                                           |  |  |  |
| 150                                                                        | BASE - OPSS Granular A Crushed Stone                                                              |  |  |  |
| 300                                                                        | SUBBASE - OPSS Granular B Type II                                                                 |  |  |  |
|                                                                            | <b>SUBGRADE</b> - In situ soil, or OPSS Granular B Type I or II material placed over in situ soil |  |  |  |

| Table 4 - Recommended Flexible Pavement Structure -         Access Lanes and Heavy Truck Parking Areas |                                                                                                   |  |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| Thickness (mm)                                                                                         | Material Description                                                                              |  |
| 40                                                                                                     | Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete                                           |  |
| 50                                                                                                     | Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete                                         |  |
| 150                                                                                                    | BASE - OPSS Granular A Crushed Stone                                                              |  |
| 450                                                                                                    | SUBBASE - OPSS Granular B Type II                                                                 |  |
|                                                                                                        | <b>SUBGRADE</b> - In situ soil, or OPSS Granular B Type I or II material placed over in situ soil |  |

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be sub-excavated and replaced with OPSS Granular B Type II material.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 98% of the SPMDD.

### 6.0 Design and Construction Precautions

### 6.1 Foundation Drainage and Backfill

### Foundation Drainage

A perimeter foundation drainage system is recommended to be provided for the proposed structures. The composite drainage system (such as Miradrain G100N, Delta Drain 6000 or an approved equivalent) is recommended to extend to the footing level. Sleeves, 150 mm diameter, at 3 m centres are recommended to be placed in the footing or at the foundation wall/footing interface for blind sided pours to allow the infiltration of water to flow to the interior perimeter drainage pipe. The perimeter drainage pipe and underfloor drainage system should direct water to sump pit(s) within the lower basement area.

### Underfloor Drainage

Underfloor drainage is recommend to control water infiltration for the proposed structures. For design purposes, Paterson recommends 150 mm diameter PVC, corrugated, perforated pipes be placed at 3 to 6 m centres. The spacing of the underfloor drainage system should be confirmed at the time of completing the excavation when water infiltration can be better assessed.

### Adverse Effects of Dewatering on Adjacent Properties

Due to the low permeability of the subsoils profile, any minor dewatering will be considered relatively minor due to the proposed building. Therefore, adverse effects to the surrounding buildings or properties are not expected with respect to any groundwater lowering.

### Foundation Backfill

Backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls where frost heave sensitive structures, such as a concrete sidewalk, will be placed. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material may be used for this purpose. A composite drainage system, such as Delta Drain 6000, Miradrain G100 or an approved equivalent, should be placed against the foundation wall to promote drainage toward the perimeter drainage pipe.

### 6.2 Protection of Footings Against Frost Action

Perimeter footings of heated structures are recommended to be protected against the deleterious effects of frost action. A minimum of 1.5 m of soil cover alone, or a combination of soil cover and foundation insulation should be provided.

Exterior unheated footings, such as isolated exterior piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure proper and require additional protection, such as soil cover of 2.1 m or a combination of soil cover and foundation insulation.

The parking garage should not require protection against frost action due to the founding depth. Unheated structures, such as the access ramp wall footings, may be required to be insulated against the deleterious effect of frost action. A minimum of 2.1 m of soil cover alone, or a minimum of 0.6 m of soil cover, in conjunction with foundation insulation, should be provided.

### 6.3 Excavation Side Slopes

### **Temporary Side Slopes**

The temporary excavation side slopes should either be excavated to acceptable slopes or retained by shoring systems from the beginning of the excavation until the structure is backfilled.

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be excavated at 1H:1V or shallower. The shallower slope is required for excavation below groundwater level. The subsurface soil is considered to be mainly Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should maintain safe working distance from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

A trench box is recommended to be installed at all times to protect personnel working in trenches with steep or vertical sides. Services are expected to be installed by "cut and cover" methods and excavations should not be remain exposed for extended periods of time.

### **Temporary Shoring**

Temporary shoring may be required for the overburden soil to complete the required excavations where insufficient room is available for open cut methods. The shoring requirements designed by a structural engineer specializing in those works will depend on the excavation depths, the proximity of the adjacent structures and the elevation of the adjacent building foundations and underground services. The design and implementation of these temporary systems will be the responsibility of the excavation contractor and their design team. Inspections and approval of the temporary system will also be the responsibility of the designer. Geotechnical information provided below is to assist the designer in completing a suitable and safe shoring system. The designer should take into account the impact of a significant precipitation event and designate design measures to ensure that a precipitation will not negatively impact the shoring system should be reported immediately to the owner's structural designer prior to implementation.

The temporary system could consist of soldier pile and lagging system or interlocking steel sheet piling. Any additional loading due to street traffic, construction equipment, adjacent structures and facilities, etc., should be included to the earth pressures described below. These systems could be cantilevered, anchored or braced. Generally, it is expected that the shoring systems will be provided with tie-back rock anchors to ensure their stability. The shoring system is recommended to be adequately supported to resist toe failure and inspected to ensure that the sheet piles extend well below the excavation base. It should be noted if consideration is being given to utilizing a raker style support for the shoring system that lateral movements can occur and the structural engineer should ensure that the design selected minimizes these movements to tolerable levels.

| Table 6 - Soil Parameters                             |        |  |
|-------------------------------------------------------|--------|--|
| Parameters                                            | Values |  |
| Active Earth Pressure Coefficient (K <sub>a</sub> )   | 0.33   |  |
| Passive Earth Pressure Coefficient $(K_p)$            | 3      |  |
| At-Rest Earth Pressure Coefficient ( $K_o$ )          | 0.5    |  |
| Dry Unit Weight (γ), kN/m <sup>3</sup>                | 20     |  |
| Effective Unit Weight ( $\gamma$ ), kN/m <sup>3</sup> | 13     |  |

The earth pressures acting on the shoring system may be calculated with the following parameters.

The active earth pressure should be calculated where wall movements are permissible while the at-rest pressure should be calculated if no movement is permissible. The dry unit weight should be calculated above the groundwater level while the effective unit weight should be calculated below the groundwater level.

The hydrostatic groundwater pressure should be included to the earth pressure distribution wherever the effective unit weight are calculated for earth pressures. If the groundwater level is lowered, the dry unit weight for the soil/bedrock should be calculated full weight, with no hydrostatic groundwater pressure component.

For design purposes, the minimum factor of safety of 1.5 should be calculated.

### 6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications and Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

A minimum of a 150 mm layer of OPSS Granular A crushed stone should be placed for pipe bedding for sewer and water pipes for a soil subgrade. The bedding thickness should be increased to 300 mm for areas where the subgrade consists of bedrock. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to at least 300 mm above the obvert of the pipe should consist of OPSS Granular A. The bedding and cover materials should be placed in maximum 300 mm thick lifts compacted to a minimum of 95% of the SPMDD.

The site excavated material may be placed above cover material if the excavation operations are completed in dry weather conditions and the site excavated material is approved by the geotechnical consultant. All cobbles greater than 200 mm in the longest dimension should be removed prior to the site materials being reused.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to reduce differential frost heaving. The trench backfill should be placed in maximum 225 mm thick loose lifts and compacted to a minimum of 95% of the SPMDD. Within the frost zone (1.8 m below finished grade), non frost susceptible materials should be used when backfilling trenches below the original bedrock level.

Clay seals are recommended for the subject site. The seals should be a minimum of 1.5 m long (in the trench direction) and should extend from trench wall to trench wall. Generally, the seals should extend from the frost line and fully penetrate the bedding, subbedding and cover material. The barriers should consist of relatively dry and compactable brown silty clay placed in maximum 225 mm thick loose layers and compacted to a minimum of 95% of the SPMDD. The clay seals should be placed at the site boundaries, roadway intersections and at a maximum distance of every 50 m in the service trenches.

### 6.5 Groundwater Control

### **Groundwater Control for Building Construction**

It is anticipated that groundwater infiltration into the excavations should be low and controllable using open sumps. Pumping from open sumps should be sufficient to control the groundwater influx through the sides of shallow excavations. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

A temporary Ministry of the Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MECP.

For typical ground or surface water volumes, being pumped during the construction phase, between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.

### 6.6 Winter Construction

Precautions must be provided if winter construction is considered for this project. Where excavations are completed in proximity of existing structures which may be adversely affected due to the freezing conditions. In particular, where a shoring system is constructed, the soil behind the shoring system will be subjected to freezing conditions and could result in heaving of the structure(s) placed within or above frozen soil. Provisions in the contract documents should be provided to protect the excavation walls from freezing, if applicable. In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the installation of straw, propane heaters and tarpaulins or other suitable means. The excavation base should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be considered if such activities are to be completed during freezing conditions. Additional information could be provided, if required.

### 6.7 Corrosion Potential and Sulphate

The results on analytical testing show that the sulphate content is less than 0.1%. The results are indicative that Type 10 Portland Cement (Type GU) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity in indicative of a low to moderate corrosive environment.

### 6.8 Limit of Hazard Lands

### **Field Observations**

Paterson conducted a site visit on January 13, 2019 to review the slope located along the west boundary of the subject site, assess the current slope conditions and confirm the grades provided in the existing topographic mapping. A section of Poole Creek is located within the west portion of the site and shown in Drawing PG4772-1 - Test Hole Location Plan.

Three (3) slope cross-sections were reviewed in the field as the worst case scenarios. The cross section locations are presented on Drawing PG4772-1 - Test Hole Location Plan in Appendix 2. Generally, the riverbanks along both sides of Poole Creek are currently well vegetated and were observed in an acceptable condition. Poole Creek was observed within a 20 to 40 m wide flood plain. The slope along the east side of Poole Creek ranged in height between 3 and 5 m with an inclination ranging between 2.3H:1V and 3.3H:1V. The upper slope was observed to be well vegetated with little to no signs of active surficial erosion.

### **Slope Stability Analysis**

### Limit of Hazard Lands

The slope condition was reviewed based on available topographic mapping along the east side slopes of Poole Creek within the west portion of the subject development. A total of 3 slope cross-sections were assessed as the worst case scenarios. The cross section locations are presented on Drawing PG4772-1 - Test Hole Location Plan in Appendix 2.

A slope stability assessment was carried out to determine the required stable slope allowance setback from the top of slope based on a factor of safety of 1.5. A toe erosion and 6 m erosion access allowances were also included in the determination of limits of hazard lands and are discussed below. The proposed limit of hazard lands (as shown on Drawing PG4772-1 - Test Hole Location Plan) includes:

- a geotechnical slope stability allowance with a factor of safety of 1.5
- a toe erosion allowance
- a 6 m erosion access allowance and top of slope

### Slope Stability Analysis

The analysis of the stability of the slope sections was carried out using SLIDE, a computer program which permits a two-dimensional slope stability analysis using several methods including the Bishop's method, which is a widely used and accepted analysis method. The program calculates a factor of safety, which represents the ratio of the forces resisting failure to those favoring failure. Theoretically, a factor of safety of 1.0 represents a condition where the slope is stable. However, due to intrinsic limitations of the calculation methods and the variability of the subsoil and groundwater conditions, a factor of safety greater than one is usually required to ascertain than the risks of failure are acceptable. A minimum factor of safety of 1.5 is generally recommended for conditions where the failure of the slope would endanger permanent structures.

An analysis considering seismic loading was also completed. A horizontal acceleration of 0.16G was considered for the sections for the seismic loading condition. A factor of safety of 1.1 is considered to be satisfactory for stability analyses including seismic loading.

The cross-sections were analysed taking into account a groundwater level at ground surface, which represents a worse-case scenario that can be reasonably expected to occur in cohesive soils. The stability analysis assumes full saturation of the soil with groundwater flow parallel to the slope face. Subsoil conditions at the cross-sections were inferred based on the findings at borehole locations along the top of slope and general knowledge of the area's geology.

### Stable Slope Allowance

The results of the stability analysis for static conditions at Sections A through C are presented in Figures 2A to 4A in Appendix 2. All the reviewed slope sections along the subject creek were noted to be shaped to at least a 2.3H:1V. Based on the soil conditions observed and the results of the slope stability analysis, the slope stability factor of safety was calculated to be 1.5 or greater for all the slope sections which indicates that a stable slope allowance is not required for the subject slope.

The results of the analyses including seismic loading are shown in Figures 2B to 4B for the slope sections. The results indicate that the factor of safety for the sections are greater than 1.1.

It should be noted that the existing vegetation on the slope face should not be removed as it contributes to the stability of the slope and reduces erosion. If the existing vegetation needs to be removed, it is recommended that a 100 to 150 mm of topsoil mixed with a hardy seed and/or topped with an erosion control blanket be which can be placed across the exposed slope face.

### Toe Erosion and Erosion Access Allowance

The toe erosion allowance for the valley corridor wall slope was based on the cohesive nature of the top layers of the subsoils, the observed current erosional activities and the width and location of the current watercourse. It should be noted that if the flood plain is measured to be greater than 20 m, no toe erosion will be required. Therefore, based on the above factors, no toe erosion allowance is considered for the subject slope.

An erosion access allowance of 6 m is required from the top of slope to ensure access is provided should future maintenance to the slope face is required. The limit of hazard lands, which includes these allowances, is indicated on Drawing PG4772-1 - Test Hole Location Plan in Appendix 2.

### 6.9 Landscaping Considerations

### Tree Planting Restrictions

According to the City of Ottawa Guidelines for tree planting, where a sensitive silty clay deposit is present within the vicinity of the site, tree planting restrictions should be determined. However, for this site, based on the founding medium of the underground parking level which will occupy the majority of the site, tree planting restrictions are not required from a geotechnical perspective.

### 7.0 Recommendations

A materials testing and observation services program is a requirement for the provided foundation design data to be applicable. The following aspects of the program should be performed by the geotechnical consultant:

- **Q** Review detailed grading plan(s) from a geotechnical perspective.
- Review groundwater conditions at the time of construction to determine if waterproofing is required.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials used.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- **G** Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that the construction work has been conducted in general accordance with the above recommendations could be issued, upon request, following the completion of a satisfactory materials testing and observation program by the geotechnical consultant.

### 8.0 Statement of Limitations

The recommendations provided in the report are in accordance with Paterson's present understanding of the project. Paterson request permission to review the recommendations when the drawings and specifications are completed.

A geotechnical investigation is a limited sampling of a site. Should any conditions encountered during construction differ from the borehole locations, Paterson requests immediate notification to permit reassessment of the recommendations provided herein.

The recommendations provided should only be used by the design professionals associated with this project. The recommendations are not intended for contractors bidding on or constructing the project. The latter should evaluate the factual information provided in the report. The contractor should also determine the suitability and completeness for the intended construction schedule and methods. Additional testing may be required for the contractors purpose.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Nautical Lands Group or their agent(s) is not authorized without review by Paterson for the applicability of our recommendations to the altered use of the report.

### Paterson Group Inc.

Faisal I. Abou-Seido, P.Eng.

### **Report Distribution:**

- Nautical Lands Group (3 copies)
- Paterson Group (1 copy)



David J. Gilbert, P.Eng.
# **APPENDIX 1**

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

ANALYTICAL TESTING RESULTS

| natersonar                                        |         | In     | Con   | sulting    |                | SOIL                  | PRO                    | FILE AI                | ND TE                         | ST DATA                          |                  |
|---------------------------------------------------|---------|--------|-------|------------|----------------|-----------------------|------------------------|------------------------|-------------------------------|----------------------------------|------------------|
| 154 Colonnade Road South, Ottawa, Ont             | tario ł | (2E 7J | Eng   | ineers     | Ge<br>Pro      | eotechnic<br>oposed N | al Invest<br>/lixed-Us | igation<br>e Develop   | ment - 20                     | ) Cedarow C                      | t.               |
| DATUM Ground surface elevations                   | prov    | ided b | y Anr | nis, O'S   | ulliva         | an, Vollet            | ekk Ltd.               |                        | FILE NO.                      | DC4772                           |                  |
| REMARKS                                           |         |        |       |            |                |                       |                        |                        | HOLE NO                       | PG4//2                           |                  |
| BORINGS BY CME 55 Power Auger                     |         |        |       | DA         | TE 2           | 2019 Jan              | uary 14                |                        |                               | BH 1                             |                  |
| SOIL DESCRIPTION                                  | PLOT    |        | SAN   |            |                | DEPTH                 | ELEV.                  | Pen. R<br>● 5          | esist. Bl<br>0 mm Dia         | ows/0.3m<br>a. Cone              | er<br>ion        |
|                                                   | TRATA   | ТҮРЕ   | UMBER | %<br>COVER | VALUE<br>E RQD | ()                    | ()                     | • <b>v</b>             | Vater Cor                     | ntent %                          | ezomete          |
| GROUND SURFACE                                    |         | 8      | 2     | RE         | z <sup>o</sup> | 0-                    | -104.37                | 20                     | 40 6                          | 60 80                            | ы<br>С<br>Т<br>С |
| FILL: Compact brown silty sand, some gravel       |         |        | 1     |            |                |                       |                        |                        |                               |                                  |                  |
|                                                   |         | SS     | 2     | 38         | 15             | 1-                    | -103.37                |                        |                               |                                  |                  |
| 1.52                                              |         |        |       |            |                |                       |                        |                        |                               |                                  |                  |
|                                                   |         | SS     | 3     | 42         | 7              | 2-                    | -102.37                |                        |                               |                                  |                  |
| Very stiff, brown <b>SILTY CLAY,</b> trace gravel |         | ss     | 4     | 58         | 4              |                       |                        |                        |                               |                                  |                  |
|                                                   |         |        |       |            |                | 3-                    | -101.37                |                        |                               | 1                                | 29               |
| <u>3.73</u><br>End of Borehole                    |         |        |       |            |                |                       |                        |                        |                               |                                  |                  |
| Practical refusal to augering at 3.73m depth      |         |        |       |            |                |                       |                        |                        |                               |                                  |                  |
| (BH dry - Jan 29/19)                              |         |        |       |            |                |                       |                        |                        |                               |                                  |                  |
|                                                   |         |        |       |            |                |                       |                        | 20<br>Shea<br>▲ Undist | 40 €<br>ar Streng<br>turbed △ | 50 80 1<br>th (kPa)<br>Remoulded | ⊣<br>00          |

| natersonar                                   |         | ır     | Con    | sulting    |         | SOIL                                | - PRO                            | FILE AI                | ND TES                           | T DATA                               |                     |
|----------------------------------------------|---------|--------|--------|------------|---------|-------------------------------------|----------------------------------|------------------------|----------------------------------|--------------------------------------|---------------------|
| 154 Colonnade Road South, Ottawa, On         | tario ł | (2E 7J | Eng    | ineers     | P<br>C  | eotechnic<br>roposed M<br>ttawa, Or | al Invest<br>/lixed-Us<br>ntario | igation<br>e Develop   | oment - 20                       | Cedarow C                            | t.                  |
| DATUM Ground surface elevations              | prov    | ided b | y Anr  | nis, O'S   | Sulliv  | /an, Vollet                         | oekk Ltd.                        |                        | FILE NO.                         | PG4772                               |                     |
| REMARKS                                      |         |        |        |            |         |                                     |                                  |                        | HOLE NO.                         |                                      | 1                   |
| BORINGS BY CME 55 Power Auger                |         |        |        | DA         | TE      | 2019 Jan                            | uary 14                          |                        |                                  | BH 2                                 |                     |
| SOIL DESCRIPTION                             | PLOT .  |        | SAN    | /IPLE<br>거 | 61      | DEPTH<br>(m)                        | ELEV.<br>(m)                     | Pen. R<br>● 5          | tesist. Blo<br>50 mm Dia.        | ws/0.3m<br>Cone                      | ter<br>tion         |
|                                              | STRATA  | ТҮРЕ   | NUMBER | ECOVER     | N VALUE |                                     |                                  | • V                    | Nater Cont                       | ent %                                | iezome:<br>tonstruc |
| GROUND SURFACE                               |         | XX     |        | <u></u>    | 4       | - 0-                                | 103.59                           | 20                     | 40 60                            | 80                                   |                     |
| FILL: Brown silty sand, some gravel          |         |        | 1      |            |         |                                     |                                  |                        |                                  |                                      |                     |
|                                              |         | ss     | 2      | 33         | 4       | 1-                                  | -102.59                          |                        |                                  |                                      |                     |
| Very stiff to stiff, brown <b>SILTY CLAY</b> |         |        |        |            |         | 2-                                  | - 101.59                         |                        | <u></u>                          |                                      |                     |
| - grey and trace gravel by 3.0m depth        |         |        | 2      |            | 50.     | 3-                                  | - 100.59                         |                        |                                  |                                      |                     |
| 3.51                                         |         | _ 55   | 3      |            | 504     |                                     |                                  |                        |                                  |                                      |                     |
| Practical refusal to augering at 3.51m depth |         |        |        |            |         |                                     |                                  |                        |                                  |                                      |                     |
| (GWL @ 3.05m depth - Jan 29/19)              |         |        |        |            |         |                                     |                                  |                        |                                  |                                      |                     |
|                                              |         |        |        |            |         |                                     |                                  |                        |                                  |                                      |                     |
|                                              |         |        |        |            |         |                                     |                                  | 20<br>Shea<br>▲ Undist | 40 60<br>ar Strengtl<br>turbed △ | 80 1<br>n ( <b>kPa)</b><br>Remoulded | ⊣<br>00             |

| natersonar                                   |         | In     | Con      | sulting  |                 | SOIL                                | PRO                              |                      | ND TES                              | T DATA                              |                               |
|----------------------------------------------|---------|--------|----------|----------|-----------------|-------------------------------------|----------------------------------|----------------------|-------------------------------------|-------------------------------------|-------------------------------|
| 154 Colonnade Road South, Ottawa, Ont        | tario I | 2E 7J  | Eng      | ineers   | G<br>Pr<br>Ot   | eotechnic<br>roposed M<br>ttawa, Or | al Invest<br>/lixed-Us<br>ntario | igation<br>e Develop | oment - 20 (                        | Cedarow C                           | t.                            |
| <b>DATUM</b> Ground surface elevations       | prov    | ided b | y Anr    | nis, O'S | ulliv           | an, Vollet                          | ekk Ltd.                         |                      | FILE NO.                            | PG4772                              |                               |
| REMARKS                                      |         |        |          |          |                 |                                     |                                  |                      | HOLE NO.                            | BH 3                                |                               |
| BORINGS BY CME 55 Power Auger                |         |        |          |          | TE              | 2019 Jan                            | uary 14                          | Dem D                |                                     |                                     |                               |
| SOIL DESCRIPTION                             | A PLOT  |        | 5AN<br>& |          | Ĕ٥.             | DEPTH<br>(m)                        | ELEV.<br>(m)                     | Pen. R<br>● 5        | 50 mm Dia.                          | vs/0.3m<br>Cone                     | eter<br>ction                 |
|                                              | STRAT   | ТҮРЕ   | NUMBE    | RECOVE.  | N VALU<br>of RQ |                                     |                                  | 0 N<br>20            | Nater Conte                         | ent %                               | <sup>D</sup> iezom<br>Constru |
|                                              |         | ×      |          |          |                 | - 0-                                | -103.55                          |                      |                                     |                                     |                               |
| TOPSOIL<br>0.33                              |         | AU     | 1        |          |                 |                                     |                                  |                      |                                     |                                     |                               |
|                                              |         | ss     | 2        | 21       | 7               | 1-                                  | -102.55                          |                      |                                     |                                     |                               |
| Very stiff to stiff, brown <b>SILTY CLAY</b> |         |        |          |          |                 |                                     |                                  |                      |                                     |                                     |                               |
|                                              |         | SS     | 3        | 62       | 7               | 2-                                  | -101.55                          |                      |                                     |                                     |                               |
| - grey by 2.3m depth                         |         |        |          |          |                 |                                     |                                  |                      |                                     |                                     |                               |
|                                              |         |        |          |          |                 | 3-                                  | -100.55                          |                      |                                     | <u> </u>                            |                               |
|                                              |         |        |          |          |                 |                                     |                                  | ▲                    |                                     |                                     |                               |
| End of Borehole <u>3.66</u>                  |         |        |          |          |                 |                                     |                                  |                      |                                     |                                     |                               |
| Practical refusal to augering at 3.66m depth |         |        |          |          |                 |                                     |                                  |                      |                                     |                                     |                               |
| (GWL @ 1.81m depth - Jan 29/19)              |         |        |          |          |                 |                                     |                                  |                      |                                     |                                     |                               |
|                                              |         |        |          |          |                 |                                     |                                  |                      |                                     |                                     |                               |
|                                              |         |        |          |          |                 |                                     |                                  | 20<br>She<br>▲ Undis | 40 60<br>ar Strength<br>sturbed △ F | 80 1<br>I <b>(kPa)</b><br>Remoulded | <sup>⊣</sup><br>00            |

| natersonar                                                                         |         | ın     | Con    | sulting  |                   | SOIL                             | - PRO                  | FILE AI               |                                | ST DATA                                 |                                           |
|------------------------------------------------------------------------------------|---------|--------|--------|----------|-------------------|----------------------------------|------------------------|-----------------------|--------------------------------|-----------------------------------------|-------------------------------------------|
| 154 Colonnade Road South, Ottawa, On                                               | tario I | K2E 7J | Eng    | ineers   | Ge<br>Pr          | eotechnic<br>oposed M<br>tawa Or | al Invest<br>/lixed-Us | igation<br>e Develop  | oment - 20                     | Cedarow C                               | t.                                        |
| DATUM Ground surface elevations                                                    | prov    | ided b | y Anr  | nis, O'S | ulliva            | an, Vollet                       | bekk Ltd.              |                       | FILE NO.                       | <b>PC</b> 4772                          | ,                                         |
| REMARKS                                                                            |         |        |        |          |                   |                                  |                        |                       | HOLE NO                        | PG4/72                                  |                                           |
| BORINGS BY CME 55 Power Auger                                                      |         |        |        | DA       | TE 2              | 2019 Jan                         | uary 14                |                       |                                | BH 4                                    |                                           |
| SOIL DESCRIPTION                                                                   | PLOT    |        | SAN    |          |                   | DEPTH<br>(m)                     | ELEV.<br>(m)           | Pen. R<br>● 5         | esist. Blo<br>60 mm Dia        | ows/0.3m<br>. Cone                      | g Well<br>ion                             |
|                                                                                    | STRATA  | ТҮРЕ   | NUMBER | ECOVER   | I VALUE<br>or RQD |                                  |                        | • <b>v</b>            | Vater Con                      | tent %                                  | lonitorinç<br>onstruct                    |
|                                                                                    |         | 8      |        | <u>к</u> | 4                 | 0-                               | -103.28                | 20                    | 40 6                           | 0 80                                    | ≥0<br>≣≣                                  |
| TOPSOIL                                                                            |         |        | 1      |          |                   |                                  |                        |                       |                                |                                         | արերիներիներիներիներիներիներիներիներիների |
| Very stiff, brown <b>SILTY CLAY</b>                                                |         | ss     | 2      | 25       | 6                 | 1-                               | - 102.28               |                       | 4                              |                                         |                                           |
| - grey by 2.4m depth<br>- trace sand and gravel by 3.0m<br>depth                   |         | ∑ SS   | 3      | 100      | 50+               | 3-                               | -101.28                |                       |                                | 1                                       | 59<br>•                                   |
| End of Borehole                                                                    |         |        |        |          | 00.               |                                  |                        |                       |                                |                                         |                                           |
| Practical refusal to augering at 3.18m<br>depth<br>(GWL @ 3.05m depth - Jan 29/19) |         |        |        |          |                   |                                  |                        |                       |                                |                                         |                                           |
|                                                                                    |         |        |        |          |                   |                                  |                        | 20<br>Shea<br>▲ Undis | 40 6<br>ar Strengt<br>turbed △ | 0 80 1<br>t <b>h (kPa)</b><br>Remoulded |                                           |

| natersonar                                     |        | In    | Con       | sulting    |                  | SOIL                              | PRO                              | FILE AI                               | ND TEST                                | DATA                    |                     |
|------------------------------------------------|--------|-------|-----------|------------|------------------|-----------------------------------|----------------------------------|---------------------------------------|----------------------------------------|-------------------------|---------------------|
| 154 Colonnade Road South, Ottawa, Ont          | ario k | 2E 7J | Engi<br>5 | ineers     | Ge<br>Pre<br>Ot  | eotechnic<br>oposed M<br>tawa. Or | al Invest<br>/lixed-Us<br>ntario | igation<br>e Develop                  | oment - 20 Ce                          | darow Ct                | t.                  |
| DATUM Ground surface elevations                | prov   | ded b | y Anr     | nis, O'S   | ulliva           | an, Vollet                        | pekk Ltd.                        |                                       | FILE NO.                               | PG4772                  |                     |
| REMARKS                                        |        |       |           |            |                  |                                   |                                  |                                       | HOLE NO.                               |                         |                     |
| BORINGS BY CME 55 Power Auger                  |        |       |           | DA         | TE 2             | 2019 Jan                          | uary 14                          |                                       |                                        | бпэ                     |                     |
| SOIL DESCRIPTION                               | PLOT   |       | SAN       | NPLE<br>ਮੁ | ы .              | DEPTH<br>(m)                      | ELEV.<br>(m)                     | Pen. R<br>● 5                         | esist. Blows<br>i0 mm Dia. C           | s/0.3m<br>one           | ter<br>tion         |
| GROUND SURFACE                                 | STRATZ | ТҮРЕ  | NUMBER    | RECOVEI    | N VALU<br>or RQI |                                   |                                  | 0 V<br>20                             | Vater Conten                           | nt %<br>80              | Piezome<br>Construc |
| TOPSOIL                                        |        | AU    | 1         |            |                  | 0-                                | -103.45                          |                                       |                                        |                         |                     |
| Hard to very stiff, brown <b>SILTY</b><br>CLAY |        | SS    | 2         | 38         | 6                | 1-                                | -102.45                          |                                       |                                        |                         |                     |
| - grey by 2.1m depth                           |        |       |           |            |                  | 2-                                | - 101.45                         |                                       |                                        |                         | 39                  |
| 3.40                                           |        |       |           |            |                  | 3-                                | - 100.45                         | · · · · · · · · · · · · · · · · · · · |                                        |                         | 79                  |
| End of Borehole                                |        | -     |           |            |                  |                                   |                                  |                                       |                                        |                         |                     |
| Practical refusal to augering at 3.40m depth   |        |       |           |            |                  |                                   |                                  |                                       |                                        |                         |                     |
| (GWL @ 3.05m depth - Jan 29/19)                |        |       |           |            |                  |                                   |                                  | 20<br>Shea<br>▲ Undist                | 40 60<br>ar Strength (<br>turbed △ Rei | 80 1<br>kPa)<br>moulded | 00                  |

| natersonar                                   |         | In             | Con    | sulting                  |                   | SOIL                                | PRO                              | FILE AN                | ND TEST DA                         | ٩ΤΑ           |
|----------------------------------------------|---------|----------------|--------|--------------------------|-------------------|-------------------------------------|----------------------------------|------------------------|------------------------------------|---------------|
| 154 Colonnade Road South, Ottawa, On         | tario I | K2E 7J         | Eng    | ineers                   | G<br>Pi<br>O      | eotechnic<br>roposed M<br>ttawa. Or | al Invest<br>/lixed-Us<br>ntario | tigation<br>e Developi | ment - 20 Cedar                    | ow Ct.        |
| DATUM Ground surface elevations              | prov    | ided b         | y Anr  | nis, O'S                 | ulliv             | an, Vollet                          | oekk Ltd.                        |                        | FILE NO.                           | 4772          |
| REMARKS                                      |         |                |        |                          |                   |                                     |                                  |                        | HOLE NO.                           |               |
| BORINGS BY CME 55 Power Auger                |         |                |        | DA                       | TE                | 2019 Jan                            | uary 14                          |                        | BH                                 | 5             |
| SOIL DESCRIPTION                             | PLOT    |                | SAN    |                          |                   | DEPTH<br>(m)                        | ELEV.<br>(m)                     | Pen. Re                | esist. Blows/0.3<br>0 mm Dia. Cone | im<br>Lo. Lo. |
|                                              | STRATA  | ТҮРЕ           | NUMBER | <sup>∞</sup><br>RECOVER! | N VALUE<br>or RQD |                                     |                                  | 0 W                    | /ater Content %                    | Diezomet      |
|                                              |         | ×              |        |                          |                   | - 0-                                | 103.49                           |                        |                                    |               |
| TOPSOIL                                      |         | × AU           | 1      |                          |                   |                                     |                                  |                        |                                    |               |
| <u>0.30</u>                                  |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         | $\overline{1}$ |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         | ss             | 2      | 58                       | 8                 | 1-                                  | -102.49                          |                        |                                    |               |
| Very stiff, brown SILTY CLAY                 |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        | _                        |                   |                                     |                                  |                        |                                    |               |
|                                              |         | SS             | 3      | 71                       | 9                 | 2-                                  | 101 /0                           |                        |                                    |               |
| - grey by 2.0m depth                         |         |                |        |                          |                   | 2                                   | 101.49                           |                        |                                    |               |
|                                              |         | 17             |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         | ss             | 4      | 100                      | 5                 |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   | 3-                                  | -100.49                          |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    | 249           |
| 3.56                                         |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
| Practical refusal to augering at 3.56m depth |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
| (GWL @ 3.04m depth - Jan 29/19)              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  | 20<br>Shea             | 40 60 80<br>Ir Strength (kPa       | ) 100<br>)    |
|                                              |         |                |        |                          |                   |                                     |                                  | ▲ Undist               | urbed $	riangle$ Remoul            | ded           |

| natersonar                                   |         | In     | Con    | sulting   |                  | SOIL                                | PRO                              | FILE AND TEST DATA                                                                                                                       |
|----------------------------------------------|---------|--------|--------|-----------|------------------|-------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 154 Colonnade Road South, Ottawa, Ont        | tario ł | (2E 7J | Eng    | ineers    | G<br>Pi<br>O     | eotechnic<br>roposed M<br>ttawa, Or | al Invest<br>/lixed-Us<br>ntario | tigation<br>se Development - 20 Cedarow Ct.                                                                                              |
| DATUM Ground surface elevations              | prov    | ided b | y Anr  | nis, O'S  | ulliv            | an, Vollet                          | ekk Ltd.                         | . FILE NO. <b>PG4772</b>                                                                                                                 |
| REMARKS                                      |         |        |        |           |                  |                                     |                                  | HOLE NO.                                                                                                                                 |
| BORINGS BY CME 55 Power Auger                |         |        |        | DA        | TE               | 2019 Jan                            | uary 14                          |                                                                                                                                          |
| SOIL DESCRIPTION                             | PLOT    |        | SAN    | /PLE<br>것 | E .              | DEPTH<br>(m)                        | ELEV.<br>(m)                     | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone                                                                                             |
|                                              | STRATA  | ТҮРЕ   | NUMBER | VECOVER   | N VALU<br>of RQD |                                     |                                  | • Water Content %                                                                                                                        |
| GROUND SURFACE                               |         | ×      |        | щ         |                  | - 0-                                | -103.41                          |                                                                                                                                          |
| <b>TOPSOIL</b>                               |         | AU     | 1      |           |                  |                                     |                                  |                                                                                                                                          |
| Very stiff to hard, brown <b>SILTY</b>       |         | ss     | 2      | 58        | 7                | 1-                                  | -102.41                          |                                                                                                                                          |
| CLAY                                         |         |        |        |           |                  |                                     |                                  |                                                                                                                                          |
| - grey by 1.8m depth                         |         | SS     | 3      | 92        | 6                | 2-                                  | -101.41                          |                                                                                                                                          |
|                                              |         |        |        |           |                  |                                     |                                  | 139                                                                                                                                      |
|                                              |         |        |        |           |                  | 3-                                  | -100.41                          |                                                                                                                                          |
|                                              |         |        |        |           |                  |                                     |                                  | 209                                                                                                                                      |
| <u>3.83</u>                                  |         |        |        |           |                  |                                     |                                  |                                                                                                                                          |
| Practical refusal to augering at 3.83m depth |         |        |        |           |                  |                                     |                                  |                                                                                                                                          |
| (BH dry - Jan 29/19)                         |         |        |        |           |                  |                                     |                                  |                                                                                                                                          |
|                                              |         |        |        |           |                  |                                     |                                  | 20         40         60         80         100           Shear Strength (kPa)         ▲         Undisturbed         △         Remoulded |

| natersonar                                   |         | In       | Con    | sulting   |                  | SOIL                                | _ PRO                            | FILE AI                | ND TEST                               | DATA                    |                     |
|----------------------------------------------|---------|----------|--------|-----------|------------------|-------------------------------------|----------------------------------|------------------------|---------------------------------------|-------------------------|---------------------|
| 154 Colonnade Road South, Ottawa, Ont        | tario ł | K2E 7J   | Eng    | ineers    | G<br>P<br>O      | eotechnic<br>roposed M<br>ttawa, Or | cal Invest<br>Mixed-Us<br>ntario | tigation<br>e Develop  | ment - 20 Ce                          | edarow C                | t.                  |
| DATUM Ground surface elevations              | prov    | ided b   | y Anr  | nis, O'S  | ulliv            | an, Vollet                          | oekk Ltd.                        |                        | FILE NO.                              | PG4772                  |                     |
| REMARKS                                      |         |          |        |           |                  |                                     |                                  |                        | HOLE NO.                              | 211 2                   |                     |
| BORINGS BY CME 55 Power Auger                |         |          |        |           | TE               | 2019 Jan                            | uary 14                          |                        |                                       | /0 0                    |                     |
| SOIL DESCRIPTION                             | A PLOT  |          | SAN    | /PLE<br>≿ | ы<br>ы           | DEPTH<br>(m)                        | ELEV.<br>(m)                     | Pen. R<br>• 5          | esist. Blows<br>0 mm Dia. C           | s/0.3m<br>one           | eter<br>ction       |
| GROUND SURFACE                               | STRAT2  | ТҮРЕ     | NUMBEI | RECOVEI   | N VALU<br>or RQI |                                     |                                  | 0 V<br>20              | Vater Conter                          | nt %                    | Piezome<br>Construc |
|                                              |         | XXX      |        |           |                  | - 0-                                | 103.46                           |                        |                                       |                         |                     |
| TOPSOIL                                      | XX      | AU       | 1      |           |                  |                                     |                                  |                        |                                       |                         |                     |
|                                              |         | <b>滚</b> |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
|                                              |         | 22       | 2      | 67        | 7                | 1-                                  | 102.46                           |                        |                                       |                         |                     |
| Very stiff, brown <b>SILTY CLAY</b>          |         |          | 2      |           | ,                |                                     |                                  |                        |                                       |                         |                     |
|                                              |         | 1        |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
|                                              |         | ss       | 3      | 92        | 6                |                                     |                                  |                        |                                       |                         |                     |
| - grey by 2.0m depth                         |         |          |        |           |                  | 2-                                  | -101.46                          |                        |                                       |                         |                     |
|                                              |         |          |        |           |                  |                                     |                                  |                        |                                       | 1                       | 89                  |
|                                              |         |          |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
| 3.02<br>End of Borehole                      |         |          |        |           |                  | 3-                                  | -100.46                          |                        |                                       |                         |                     |
| Practical refusal to augering at 3.02m depth |         |          |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
| (BH Dry - Jan 29/19)                         |         |          |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
|                                              |         |          |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
|                                              |         |          |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
|                                              |         |          |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
|                                              |         |          |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
|                                              |         |          |        |           |                  |                                     |                                  | 20<br>Shea<br>▲ Undist | 40 60<br>ar Strength (<br>turbed △ Re | 80 1<br>kPa)<br>moulded | 00                  |

| natersonar                                                                          |        | ır     | Con    | sulting  |                | SOII                               | _ PRO                 | FILE AND TEST DAT                                 | Α                                       |
|-------------------------------------------------------------------------------------|--------|--------|--------|----------|----------------|------------------------------------|-----------------------|---------------------------------------------------|-----------------------------------------|
| 154 Colonnade Road South, Ottawa, Ont                                               | ario ł | (2E 7J | Eng    | ineers   | G<br>P<br>O    | eotechnic<br>roposed M<br>ttawa Or | al Invest<br>Nixed-Us | igation<br>e Development - 20 Cedarow             | Ct.                                     |
| DATUM Ground surface elevations                                                     | prov   | ided b | y Anr  | nis, O'S | ulliv          | an, Vollet                         | oekk Ltd.             | FILE NO.                                          | 72                                      |
| REMARKS                                                                             |        |        |        |          |                |                                    |                       | HOLE NO. DU O                                     | -                                       |
| BORINGS BY CME 55 Power Auger                                                       |        |        |        | DA       | TE             | 2019 Jan                           | uary 15               | BH 9                                              |                                         |
| SOIL DESCRIPTION                                                                    | PLOT   |        | SAN    | /IPLE    |                | DEPTH<br>(m)                       | ELEV.<br>(m)          | Pen. Resist. Blows/0.3m<br>• 50 mm Dia. Cone      | g Well<br>tion                          |
|                                                                                     | TRATA  | ТҮРЕ   | IUMBER | COVER'   | VALUE<br>F ROD |                                    |                       | • Water Content %                                 | onitorin                                |
| GROUND SURFACE                                                                      | 02     | ~      | 2      | RE       | z <sup>o</sup> | - 0-                               | 103.42                | 20 40 60 80                                       | žŭ<br>T                                 |
| TOPSOIL<br><u>0.38</u>                                                              |        |        | 1      |          |                |                                    |                       |                                                   | 10,000,000,000,000,000,000,000,000,000, |
|                                                                                     |        | ss     | 2      | 71       | 4              | 1-                                 | -102.42               |                                                   |                                         |
| Hard to very stiff, brown <b>SILTY</b><br>CLAY                                      |        |        |        |          |                |                                    |                       | <u></u>                                           |                                         |
|                                                                                     |        |        |        |          |                | 2-                                 | -101.42               |                                                   |                                         |
|                                                                                     |        | ss     | 3      | 71       | 14             | 3-                                 | -100.42               |                                                   |                                         |
| 3.76                                                                                | XX.    | 1      |        |          |                |                                    |                       |                                                   |                                         |
| Practical refusal to augering at 3.76m<br>depth<br>(GWL @ 3.17 m depth - Jan 29/19) |        |        |        |          |                |                                    |                       |                                                   |                                         |
|                                                                                     |        |        |        |          |                |                                    |                       | 20 40 60 80                                       | 100                                     |
|                                                                                     |        |        |        |          |                |                                    |                       | Shear Strength (kPa)<br>▲ Undisturbed △ Remoulded |                                         |

| natersonar                                                                                      |         | In     | Con    | sulting  |                   | SOIL                  | PRO                    | FILE AN                | ND TES                         | ST DATA                               |           |
|-------------------------------------------------------------------------------------------------|---------|--------|--------|----------|-------------------|-----------------------|------------------------|------------------------|--------------------------------|---------------------------------------|-----------|
| 154 Colonnade Road South, Ottawa, Ont                                                           | tario ł | (2E 7J | Eng    | ineers   | Ge<br>Pr          | eotechnic<br>oposed N | al Invest<br>/lixed-Us | tigation<br>e Develop  | ment - 20                      | Cedarow C                             | t.        |
| <b>DATUM</b> Ground surface elevations                                                          | prov    | ided b | y Anr  | nis, O'S | ulliva            | an, Vollet            | bekk Ltd.              |                        | FILE NO.                       | DC 4770                               |           |
| REMARKS                                                                                         |         |        |        |          |                   |                       |                        |                        | HOLE NO                        | PG4//2                                | •         |
| BORINGS BY CME 55 Power Auger                                                                   |         |        |        | DA       | TE 2              | 2019 Jan              | uary 15                |                        |                                | BH10                                  |           |
| SOIL DESCRIPTION                                                                                | PLOT    |        | SAN    |          |                   | DEPTH<br>(m)          | ELEV.<br>(m)           | Pen. R<br>• 5          | esist. Blo<br>0 mm Dia         | ows/0.3m<br>. Cone                    | er<br>ion |
|                                                                                                 | STRATA  | ТҮРЕ   | NUMBER | ECOVER   | N VALUE<br>or RQD |                       |                        | • <b>v</b>             | Vater Con                      | tent %                                | iezomet   |
| GROUND SURFACE                                                                                  |         | ×      |        | <u>д</u> | -                 | 0-                    | 103.31                 | 20                     | 40 60                          | 0 80                                  |           |
| TOPSOIL<br><u>0.41</u>                                                                          |         | AU     | 1      |          |                   |                       |                        |                        |                                |                                       |           |
| Very stiff, brown SILTY CLAY                                                                    |         | SS     | 2      | 67       | 9                 | 1-                    | -102.31                |                        |                                |                                       |           |
|                                                                                                 |         |        |        |          |                   |                       |                        |                        |                                |                                       |           |
| - grey by 2.1m depth                                                                            |         | SS     | 3      | 75       | 6                 | 2-                    | -101.31                | 2                      | <b>y</b>                       |                                       |           |
| GLACIAL TILL: Compact, brown sandy silt, trace clay and gravel, occasional cobbles and boulders |         | ss     | 4      | 83       | 19                | 3-                    | -100.31                |                        |                                |                                       |           |
| <u>3.66</u>                                                                                     |         | Į.     |        |          |                   |                       |                        |                        |                                |                                       |           |
| Practical refusal to augering at 3.66m                                                          |         |        |        |          |                   |                       |                        |                        |                                |                                       |           |
| depth<br>(GWL @ 2.18m depth - Jan 29/19)                                                        |         |        |        |          |                   |                       |                        |                        |                                |                                       |           |
|                                                                                                 |         |        |        |          |                   |                       |                        | 20<br>Shea<br>▲ Undist | 40 60<br>ar Strengt<br>urbed △ | 0 80 1<br><b>h (kPa)</b><br>Remoulded | IÓO       |

| natersonar                                                                                                                                                |         | In     | Con      | sulting   |                   | SOII                                | _ PRO                 | FILE AN                | ND TEST                              | DATA                              |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----------|-----------|-------------------|-------------------------------------|-----------------------|------------------------|--------------------------------------|-----------------------------------|---------------------|
| 154 Colonnade Road South, Ottawa, Ont                                                                                                                     | tario k | (2E 7J | Eng<br>5 | ineers    | G<br>P<br>C       | eotechnic<br>roposed M<br>ttawa, Or | al Invest<br>Mixed-Us | tigation<br>e Develop  | ment - 20 Ce                         | edarow Ct                         | t.                  |
| DATUM Ground surface elevations                                                                                                                           | prov    | ided b | y Anr    | nis, O'S  | Sulliv            | van, Vollet                         | oekk Ltd.             |                        | FILE NO.                             | PG4772                            |                     |
| REMARKS                                                                                                                                                   |         |        |          |           |                   |                                     |                       |                        | HOLE NO.                             |                                   |                     |
| BORINGS BY CME 55 Power Auger                                                                                                                             |         |        |          | DA        | TE                | 2019 Jan                            | uary 15               |                        | E                                    | 5H11                              |                     |
| SOIL DESCRIPTION                                                                                                                                          | PLOT    |        | SAN      | NPLE<br>건 | M -               | DEPTH<br>(m)                        | ELEV.<br>(m)          | Pen. R<br>• 5          | esist. Blows<br>0 mm Dia. C          | s/0.3m<br>Cone                    | ter<br>tion         |
|                                                                                                                                                           | STRATA  | ТҮРЕ   | NUMBER   | KECOVER   | N VALUI<br>or ROD | 1                                   |                       | • V                    | Vater Conter                         | nt %                              | Piezome<br>Construc |
| GROUND SURFACE                                                                                                                                            |         | ×      |          | щ         |                   | - 0-                                | 103.44                | 20                     | 40 60                                | 80                                |                     |
| TOPSOIL                                                                                                                                                   |         | AU     | 1        |           |                   |                                     |                       |                        |                                      |                                   |                     |
| Very stiff, brown <b>SILTY CLAY</b>                                                                                                                       |         | ss     | 2        | 71        | 4                 | 1-                                  | -102.44               |                        |                                      |                                   |                     |
|                                                                                                                                                           |         |        |          |           |                   | 2-                                  | -101.44               |                        |                                      | 2                                 | 49                  |
| 3.05<br><b>GLACIAL TILL:</b> Very dense brown<br>to grey sandy silt, trace clay and<br>gravel, occasional cobbles and 3.35<br>boulders<br>End of Borehole |         | ss     | 3        | 100       | 50+               | 3-                                  | -100.44               |                        |                                      |                                   |                     |
| (BH Dry - Jan 29/19)                                                                                                                                      |         |        |          |           |                   |                                     |                       |                        |                                      |                                   |                     |
|                                                                                                                                                           |         |        |          |           |                   |                                     |                       | 20<br>Shea<br>▲ Undist | 40 60<br>ar Strength (<br>urbed △ Re | 80 1<br>( <b>kPa)</b><br>emoulded | 00                  |

| natersonar                                                                                                          |         | In     | Con       | sulting  |                | SOIL                                | - PRO                  | ILE AND TEST                                          | ΑΤΑ                       |
|---------------------------------------------------------------------------------------------------------------------|---------|--------|-----------|----------|----------------|-------------------------------------|------------------------|-------------------------------------------------------|---------------------------|
| 154 Colonnade Road South, Ottawa, Ont                                                                               | tario ł | (2E 7J | Engi<br>5 | ineers   | G<br>Pi<br>O   | eotechnic<br>roposed M<br>ttawa, Or | al Invest<br>/lixed-Us | gation<br>Development - 20 Ced                        | larow Ct.                 |
| DATUM Ground surface elevations                                                                                     | prov    | ided b | y Anr     | nis, O'S | ulliv          | an, Vollet                          | oekk Ltd.              | FILE NO.                                              | G4772                     |
| REMARKS                                                                                                             |         |        |           |          |                |                                     |                        | HOLE NO.                                              |                           |
| BORINGS BY CME 55 Power Auger                                                                                       |         |        |           | DA       | TE             | 2019 Jan                            | uary 15                | BI                                                    | 112                       |
| SOIL DESCRIPTION                                                                                                    | PLOT    |        | SAN       | IPLE     |                | DEPTH<br>(m)                        | ELEV.<br>(m)           | Pen. Resist. Blows/<br>• 50 mm Dia. Co                | ).3m<br>ne <sub>ພ</sub> ູ |
|                                                                                                                     | TRATA   | ТҮРЕ   | UMBER     | COVER'   | VALUE<br>r RQD |                                     |                        | • Water Content                                       | szomet                    |
| GROUND SURFACE                                                                                                      | ß       | ~      | Z         | RE       | z <sup>0</sup> | - 0-                                | -103.58                | 20 40 60                                              | 80 1                      |
| <b>TOPSOIL</b>                                                                                                      |         |        | 1         |          |                |                                     |                        |                                                       |                           |
|                                                                                                                     |         | ss     | 2         | 88       | 6              | 1-                                  | -102.58                |                                                       |                           |
| Very stiff, brown <b>SILTY CLAY</b>                                                                                 |         | ss     | 3         | 96       | 5              | 2-                                  | - 101 58               |                                                       |                           |
|                                                                                                                     |         |        |           |          |                |                                     |                        | <u></u>                                               | 139                       |
| GLACIAL TILL: Compact, brown to<br>grey clayey silt, some sand, trace<br>gravel, occasional cobbles and<br>boulders |         | ss     | 4         | 90       | 11             | 3-                                  | -100.58                |                                                       |                           |
| End of Borehole<br>Practical refusal to augering at 3.58m<br>depth                                                  |         |        |           |          |                |                                     |                        |                                                       |                           |
| (BH Dry - Jan 29/19)                                                                                                |         |        |           |          |                |                                     |                        |                                                       |                           |
|                                                                                                                     |         |        |           |          |                |                                     |                        | 20 40 60<br>Shear Strength (kl<br>▲ Undisturbed △ Rem | 80 100<br>Pa)<br>oulded   |

| natersonar                                                |         | In     | Con      | sulting    | ,                                                                                                | SOII         | _ PRO        | FILE AN             | D TEST DAT                        | 4           |  |  |  |  |
|-----------------------------------------------------------|---------|--------|----------|------------|--------------------------------------------------------------------------------------------------|--------------|--------------|---------------------|-----------------------------------|-------------|--|--|--|--|
| 154 Colonnade Road South, Ottawa, Ont                     | tario P | (2E 7J | Eng<br>5 | ineers     | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |              |              |                     |                                   |             |  |  |  |  |
| DATUM Ground surface elevations                           | prov    | ided b | y Anr    | nis, O'S   | Sulliv                                                                                           | van, Vollet  | pekk Ltd.    |                     | FILE NO.<br>PG477                 | 2           |  |  |  |  |
| REMARKS                                                   |         |        |          |            |                                                                                                  |              |              | -                   |                                   | -           |  |  |  |  |
| BORINGS BY CME 55 Power Auger                             |         |        |          | DA         | ΔTE                                                                                              | 2019 Jan     | uary 15      |                     | BH13                              |             |  |  |  |  |
| SOIL DESCRIPTION                                          | PLOT    |        | SAN      | /IPLE<br>것 | 61 -                                                                                             | DEPTH<br>(m) | ELEV.<br>(m) | Pen. Res<br>● 50    | sist. Blows/0.3m<br>mm Dia. Cone  | ter<br>tion |  |  |  |  |
|                                                           | STRATA  | TYPE   | NUMBER   | ECOVER     | N VALU                                                                                           |              |              | ⊖ Wa                | ter Content %                     | iezome      |  |  |  |  |
| GROUND SURFACE                                            |         | ×      |          | <u></u>    | 4                                                                                                | - 0-         | 103.55       | 20                  | 40 60 80                          |             |  |  |  |  |
| TOPSOIL<br>0.36                                           |         |        | 1        |            |                                                                                                  |              |              |                     |                                   |             |  |  |  |  |
| Hard, brown <b>SILTY CLAY</b>                             |         | SS     | 2        | 88         | 4                                                                                                | 1-           | -102.55      |                     | 4                                 |             |  |  |  |  |
| 2.90                                                      |         |        |          |            |                                                                                                  | 2-           | -101.55      |                     | · A                               | 229         |  |  |  |  |
| End of Borehole<br>Practical refusal to augering at 2.90m |         |        |          |            |                                                                                                  |              |              |                     |                                   |             |  |  |  |  |
| depth<br>(BH Dry - Jan 29/19)                             |         |        |          |            |                                                                                                  |              |              | 20                  | 40 60 80                          | 100         |  |  |  |  |
|                                                           |         |        |          |            |                                                                                                  |              |              | Shear<br>▲ Undistur | Strength (kPa)<br>bed △ Remoulded | 100         |  |  |  |  |

| natorsonar                                       |             | ın      | Con    | sulting   |                                                                                                  | SOIL         | - PRO        | FILE AI       | ND TES                    | T DATA          |                     |  |  |
|--------------------------------------------------|-------------|---------|--------|-----------|--------------------------------------------------------------------------------------------------|--------------|--------------|---------------|---------------------------|-----------------|---------------------|--|--|
| 154 Colonnade Road South, Ottawa, Ont            | tario ł     | 4 2E 7J | Eng    | jineers   | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |              |              |               |                           |                 |                     |  |  |
| DATUM Ground surface elevations                  | prov        | ided b  | y Anı  | nis, O'S  | Sulliv                                                                                           | /an, Vollet  | oekk Ltd.    |               | FILE NO.                  | PG4772          |                     |  |  |
| REMARKS                                          |             |         |        |           |                                                                                                  |              |              |               | HOLE NO.                  |                 |                     |  |  |
| BORINGS BY CME 55 Power Auger                    |             |         |        | DA        | ATE                                                                                              | 2019 Jan     | uary 15      |               |                           | <b>БП</b> 14    |                     |  |  |
| SOIL DESCRIPTION                                 | <b>PLOT</b> |         | SAN    | MPLE<br>것 | ы.<br>Ы.                                                                                         | DEPTH<br>(m) | ELEV.<br>(m) | Pen. R<br>• 5 | esist. Blov<br>i0 mm Dia. | vs/0.3m<br>Cone | ter<br>stion        |  |  |
| GROUND SURFACE                                   | STRATZ      | ТҮРЕ    | NUMBEF | RECOVEF   | N VALU<br>or ROL                                                                                 |              |              | ○ V<br>20     | Vater Conte               | ent %           | Piezome<br>Construc |  |  |
|                                                  |             | XX      |        |           |                                                                                                  | - 0-         | -104.18      |               |                           |                 |                     |  |  |
| TOPSOIL<br>0.41                                  |             | AU      | 1      |           |                                                                                                  |              |              |               |                           |                 |                     |  |  |
|                                                  |             |         |        |           |                                                                                                  |              |              |               |                           |                 |                     |  |  |
|                                                  |             | 17      |        |           |                                                                                                  |              |              |               |                           |                 |                     |  |  |
| Very stiff, brown <b>SILTY CLAY</b>              |             | ss      | 2      | 67        | 7                                                                                                | 1-           | -103.18      |               |                           |                 |                     |  |  |
|                                                  |             |         |        |           |                                                                                                  |              |              |               |                           |                 |                     |  |  |
|                                                  |             |         |        |           |                                                                                                  |              |              |               |                           |                 |                     |  |  |
|                                                  |             |         | 0      |           | 0                                                                                                |              |              |               |                           |                 |                     |  |  |
| - grey by 2.0m depth                             |             | 55      | 3      | 96        | 6                                                                                                | 2-           | -102.18      |               |                           |                 |                     |  |  |
| 2.29                                             |             |         |        |           |                                                                                                  |              |              |               |                           |                 |                     |  |  |
| GLACIAL TILL: Grey silty clay, trace             |             |         |        |           |                                                                                                  |              |              |               |                           |                 |                     |  |  |
| sand and gravel, occasional cobbles and boulders |             |         |        |           |                                                                                                  |              |              |               |                           |                 |                     |  |  |
| 3.00                                             |             |         |        |           |                                                                                                  | 2            | 101 19       |               |                           |                 |                     |  |  |
| End of Borehole                                  |             |         |        |           |                                                                                                  | 5            | 101.10       |               |                           |                 |                     |  |  |
| Practical refusal to augering at 3.00m depth     |             |         |        |           |                                                                                                  |              |              |               |                           |                 |                     |  |  |
| (BH Dry - Jan 29/19)                             |             |         |        |           |                                                                                                  |              |              |               |                           |                 |                     |  |  |
|                                                  |             |         |        |           |                                                                                                  |              |              |               |                           |                 |                     |  |  |
|                                                  |             |         |        |           |                                                                                                  |              |              |               |                           |                 |                     |  |  |
|                                                  |             |         |        |           |                                                                                                  |              |              |               |                           |                 |                     |  |  |
|                                                  |             |         |        |           |                                                                                                  |              |              |               |                           |                 |                     |  |  |
|                                                  |             |         |        |           |                                                                                                  |              |              |               |                           |                 |                     |  |  |
|                                                  |             |         |        |           |                                                                                                  |              |              | 20<br>Shea    | 40 60<br>ar Strenath      | 80 1<br>(kPa)   | 00                  |  |  |
|                                                  |             |         |        |           |                                                                                                  |              |              | ▲ Undist      | turbed $\triangle$ F      | Remoulded       |                     |  |  |

| natersonar                                                                                                             |         | In       | Con   | sulting     |                                                                               | SOIL     | PRO      | FILE AND TEST DATA                                                  |                                               |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|---------|----------|-------|-------------|-------------------------------------------------------------------------------|----------|----------|---------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|
| 154 Colonnade Road South, Ottawa, Ont                                                                                  | tario k | 2E 7J    | Eng   | ineers      | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct. |          |          |                                                                     |                                               |  |  |  |  |
| DATUM Ground surface elevations                                                                                        | prov    | ided b   | y Anr | nis, O'S    | Sullivan, Vollebekk Ltd. FILE NO.                                             |          |          |                                                                     |                                               |  |  |  |  |
| REMARKS                                                                                                                |         |          |       |             | HOLE NO                                                                       |          |          |                                                                     |                                               |  |  |  |  |
| BORINGS BY CME 55 Power Auger                                                                                          | 1       |          |       | DA          | TE                                                                            | 2019 Jan | uary 15  | BH15                                                                |                                               |  |  |  |  |
| SOIL DESCRIPTION                                                                                                       | PLOT    |          | SAN   | IPLE        |                                                                               |          | ELEV.    | Pen. Resist. Blows/0.3m<br>• 50 mm Dia. Cone                        | Well<br>on                                    |  |  |  |  |
|                                                                                                                        | RATA    | Ч        | MBER  | °∾<br>OVERY | VALUE<br>ROD                                                                  |          | (11)     | • Water Content %                                                   | nitoring                                      |  |  |  |  |
| GROUND SURFACE                                                                                                         | LS      | L        | NC    | REC         | z <sup>0</sup>                                                                | 0        | 102 65   | 20 40 60 80                                                         | C Q                                           |  |  |  |  |
| TOPSOIL<br>0.36                                                                                                        |         |          | 1     |             |                                                                               | 0-       | - 103.65 |                                                                     | լիրերերերերերերեր<br>երերերերերերեր           |  |  |  |  |
| Very stiff, brown <b>SILTY CLAY</b>                                                                                    |         | SS       | 2     | 71          | 6                                                                             | 1-       | -102.65  |                                                                     | իլիկիկիկիկիկիկիկինինին<br>Սենդեններիներիներին |  |  |  |  |
| 2.29                                                                                                                   |         | -        |       |             |                                                                               | 2-       | -101.65  |                                                                     |                                               |  |  |  |  |
| Hard, brown <b>CLAYEY SILT</b>                                                                                         |         |          |       |             |                                                                               | 3-       | -100.65  | 24                                                                  | 9                                             |  |  |  |  |
| <b>GLACIAL TILL:</b> Compact to very dense, grey clayey silt, some sand, trace gravel, occasional cobbles and boulders |         | ss       | 3     | 79          | 24                                                                            |          |          |                                                                     |                                               |  |  |  |  |
| <u>3.99</u>                                                                                                            |         | ∐<br>∑ss | 4     | 100         | 50+                                                                           |          |          |                                                                     |                                               |  |  |  |  |
| Practical refusal to augering at 3.99m                                                                                 |         |          |       |             |                                                                               |          |          |                                                                     |                                               |  |  |  |  |
| (GWL @ 2.92m depth - Jan 29/19)                                                                                        |         |          |       |             |                                                                               |          |          |                                                                     |                                               |  |  |  |  |
|                                                                                                                        |         |          |       |             |                                                                               |          |          | 20 40 60 80 10<br>Shear Strength (kPa)<br>▲ Undisturbed △ Remoulded | 00                                            |  |  |  |  |

| natersonar                                                                                    |         | In       | Con    | sulting  |                                                                                                  | SOIL         | PRO          | FILE AI       | ND TE                     |                                 | 1                  |  |  |  |
|-----------------------------------------------------------------------------------------------|---------|----------|--------|----------|--------------------------------------------------------------------------------------------------|--------------|--------------|---------------|---------------------------|---------------------------------|--------------------|--|--|--|
| 154 Colonnade Road South, Ottawa, Ont                                                         | tario ł | (2E 7J   | Eng    | ineers   | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |              |              |               |                           |                                 |                    |  |  |  |
| DATUM Ground surface elevations                                                               | prov    | ided b   | y Anr  | nis, O'S | ulliv                                                                                            | an, Vollet   | ekk Ltd.     |               | FILE N                    | D.                              | 2                  |  |  |  |
| REMARKS                                                                                       |         |          |        |          |                                                                                                  |              |              |               | HOLE                      | NO. DUMO                        | <b></b>            |  |  |  |
| BORINGS BY CME 55 Power Auger                                                                 |         |          |        | DA       | TE                                                                                               | 2019 Jan     | uary 15      |               |                           | BH16                            |                    |  |  |  |
| SOIL DESCRIPTION                                                                              | PLOT    |          | SAN    | MPLE     |                                                                                                  | DEPTH<br>(m) | ELEV.<br>(m) | Pen. R<br>● 5 | esist. E<br>i0 mm D       | Blows/0.3m<br>ia. Cone          | er<br>tion         |  |  |  |
|                                                                                               | TRATA   | ТҮРЕ     | IUMBER | COVER    | VALUE<br>SE ROD                                                                                  |              |              | • <b>v</b>    | Vater Co                  | ontent %                        | ezomet<br>onstruct |  |  |  |
| GROUND SURFACE                                                                                | 01      | 8        | 4      | RE       | z º                                                                                              | - 0-         | -103.66      | 20            | 40                        | 60 80                           | ŭ ja<br>www        |  |  |  |
| TOPSOIL<br><u>0.33</u>                                                                        |         |          | 1      |          |                                                                                                  |              |              |               |                           |                                 |                    |  |  |  |
| Hard, brown SILTY CLAY                                                                        |         | ss       | 2      | 75       | 4                                                                                                | 1-           | -102.66      |               |                           |                                 |                    |  |  |  |
|                                                                                               |         |          |        |          |                                                                                                  | 2-           | -101.66      | Z             | 2                         |                                 | 209                |  |  |  |
| GLACIAL TILL: Dense, brown to<br>grey clayey silt, some sand, gravel,<br>cobbles and boulders |         | SS       | 3      | 46       | 31                                                                                               |              |              |               |                           |                                 |                    |  |  |  |
| End of Borehole                                                                               |         | <u> </u> |        |          |                                                                                                  |              |              |               |                           |                                 |                    |  |  |  |
| Practical refusal to augering at 2.95m depth                                                  |         |          |        |          |                                                                                                  |              |              |               |                           |                                 |                    |  |  |  |
| (BH Dry - Jan 29/19)                                                                          |         |          |        |          |                                                                                                  |              |              | 20            | 40                        | 60 80                           | 100                |  |  |  |
|                                                                                               |         |          |        |          |                                                                                                  |              |              | Shea          | <b>ar Stren</b><br>turbed | <b>gth (kPa)</b><br>△ Remoulded |                    |  |  |  |

| natorsonar                                      |         | In     | Con      | sulting  |                                                                                                  | SOIL         | - PRO        | FILE AI                | ND TEST DA                                        | TA         |  |  |  |  |
|-------------------------------------------------|---------|--------|----------|----------|--------------------------------------------------------------------------------------------------|--------------|--------------|------------------------|---------------------------------------------------|------------|--|--|--|--|
| 154 Colonnade Road South, Ottawa, Ont           | tario ł | (2E 7J | Eng<br>5 | ineers   | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |              |              |                        |                                                   |            |  |  |  |  |
| DATUM Ground surface elevations                 | prov    | ided b | y Anr    | nis, O'S | ulliv                                                                                            | an, Vollet   | oekk Ltd.    |                        | FILE NO.                                          | 1772       |  |  |  |  |
| REMARKS                                         |         |        |          |          |                                                                                                  |              |              |                        |                                                   |            |  |  |  |  |
| BORINGS BY CME 55 Power Auger                   |         |        |          | DA       | TE                                                                                               | 2019 Jan     | uary 16      |                        | BH1                                               | 7          |  |  |  |  |
| SOIL DESCRIPTION                                | PLOT    |        | SAN      |          |                                                                                                  | DEPTH<br>(m) | ELEV.<br>(m) | Pen. R<br>● 5          | esist. Blows/0.3<br>0 mm Dia. Cone                | m<br>ioi e |  |  |  |  |
|                                                 | STRATA  | ТҮРЕ   | NUMBER   | RECOVER! | N VALUE<br>or RQD                                                                                |              |              | • V                    | Vater Content %                                   | Piezomet   |  |  |  |  |
| GROUND SURFACE                                  |         | XXX    |          |          |                                                                                                  | - 0-         | 104.19       | 20                     |                                                   |            |  |  |  |  |
| TOPSOIL<br>0.38                                 |         |        | 1        |          |                                                                                                  |              |              |                        |                                                   |            |  |  |  |  |
| Very stiff to hard, brown <b>CLAYEY</b><br>SILT |         | ss     | 2        | 79       | 7                                                                                                | 1-           | -103.19      |                        |                                                   |            |  |  |  |  |
| - grey by 1.8m depth                            |         | ss     | 3        | 100      | 55                                                                                               | 2-           | - 102 10     |                        |                                                   |            |  |  |  |  |
| 2.23                                            |         |        |          |          |                                                                                                  |              | 102.10       |                        |                                                   |            |  |  |  |  |
| End of Borehole                                 |         | _      |          |          |                                                                                                  |              |              |                        |                                                   |            |  |  |  |  |
| Practical refusal to augering at 2.23m depth    |         |        |          |          |                                                                                                  |              |              |                        |                                                   |            |  |  |  |  |
| (BH Dry - Jan 29/19)                            |         |        |          |          |                                                                                                  |              |              |                        |                                                   |            |  |  |  |  |
|                                                 |         |        |          |          |                                                                                                  |              |              |                        |                                                   |            |  |  |  |  |
|                                                 |         |        |          |          |                                                                                                  |              |              |                        |                                                   |            |  |  |  |  |
|                                                 |         |        |          |          |                                                                                                  |              |              |                        |                                                   |            |  |  |  |  |
|                                                 |         |        |          |          |                                                                                                  |              |              |                        |                                                   |            |  |  |  |  |
|                                                 |         |        |          |          |                                                                                                  |              |              |                        |                                                   |            |  |  |  |  |
|                                                 |         |        |          |          |                                                                                                  |              |              |                        |                                                   |            |  |  |  |  |
|                                                 |         |        |          |          |                                                                                                  |              |              | 20<br>Shea<br>▲ Undist | 40 60 80<br>ar Strength (kPa)<br>turbed △ Remould | <b>100</b> |  |  |  |  |

| natoreonar                                   |        | In                      | Con    | sulting                                                                                          |                   | SOII         | _ PRO        |                        |                              | ST DATA                          |                     |  |  |
|----------------------------------------------|--------|-------------------------|--------|--------------------------------------------------------------------------------------------------|-------------------|--------------|--------------|------------------------|------------------------------|----------------------------------|---------------------|--|--|
| 154 Colonnade Road South, Ottawa, Ont        | K2E 7J | Eng                     | ineers | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |                   |              |              |                        |                              |                                  |                     |  |  |
| DATUM Ground surface elevations              | prov   | ided b                  | y Anr  | nis, O'S                                                                                         | ulliva            | an, Vollet   | pekk Ltd.    |                        | FILE NO.                     | <b>BC</b> 4772                   |                     |  |  |
| REMARKS                                      |        |                         |        |                                                                                                  |                   |              |              |                        | HOLE NO                      | PG4/72                           |                     |  |  |
| BORINGS BY CME 55 Power Auger                |        |                         |        | DA                                                                                               | TE 2              | 2019 Jan     | uary 16      |                        |                              | BH18                             | 1                   |  |  |
| SOIL DESCRIPTION                             | PLOT   |                         | SAN    | /IPLE                                                                                            |                   | DEPTH<br>(m) | ELEV.<br>(m) | Pen. R<br>• 5          | esist. Bl<br>0 mm Dia        | ows/0.3m<br>a. Cone              | er<br>ion           |  |  |
|                                              | STRATA | ТҮРЕ                    | NUMBER | ECOVER                                                                                           | I VALUE<br>or RQD |              |              | • <b>v</b>             | Vater Cor                    | ntent %                          | iezomet<br>onstruct |  |  |
| GROUND SURFACE                               |        | ×                       | I      | 8                                                                                                | z °               | 0-           | 104.15       | 20                     | 40 6                         | 60 80                            | i⊑ ŭ<br>⊠ ⊠         |  |  |
| TOPSOIL                                      |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
| <u>0.33</u>                                  |        | S AU                    | 1      |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
|                                              |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
| Hard, brown CLAYEY SILT                      |        | 17                      |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
| , -                                          |        | ss                      | 2      | 88                                                                                               | 11                | 1-           | 103.15       |                        |                              |                                  | ज्ञातीत<br>ज्ञातात  |  |  |
|                                              |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
|                                              |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
|                                              |        | $\overline{\mathbb{N}}$ | -      |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
| - grey by 1.8m depth                         |        | ss                      | 3      | 88                                                                                               | 50+               |              |              |                        |                              |                                  |                     |  |  |
| End of Borehole                              |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
| Practical refusal to augering at 1.96m depth |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
| (BH Dry - Jan 29/19)                         |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
|                                              |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
|                                              |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
|                                              |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
|                                              |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
|                                              |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
|                                              |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
|                                              |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
|                                              |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
|                                              |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
|                                              |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
|                                              |        |                         |        |                                                                                                  |                   |              |              |                        |                              |                                  |                     |  |  |
|                                              |        |                         |        |                                                                                                  |                   |              |              | 20<br>Shea<br>▲ Undist | 40 6<br>ar Streng<br>urbed △ | 60 80 1<br>th (kPa)<br>Remoulded | <sup>¬</sup><br>00  |  |  |

| natorsonar                                   |         | In     | Con    | sulting  |                                                                                                  | SOII       | _ PRO     | FILE AND TEST DATA                                                                                                         |  |  |  |  |  |
|----------------------------------------------|---------|--------|--------|----------|--------------------------------------------------------------------------------------------------|------------|-----------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 154 Colonnade Road South, Ottawa, On         | tario I | (2E 7) | Eng    | ineers   | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa. Ontario |            |           |                                                                                                                            |  |  |  |  |  |
| DATUM Ground surface elevations              | s prov  | ided b | y Anr  | nis, O'S | ulliv                                                                                            | an, Vollet | oekk Ltd. | FILE NO.                                                                                                                   |  |  |  |  |  |
| REMARKS                                      |         |        |        |          |                                                                                                  |            |           | HOLE NO.                                                                                                                   |  |  |  |  |  |
| BORINGS BY CME 55 Power Auger                |         | 1      |        | DA       | TE                                                                                               | 2019 Jan   | uary 16   | BH19                                                                                                                       |  |  |  |  |  |
| SOIL DESCRIPTION                             | PLOT    |        | SAN    |          |                                                                                                  | DEPTH      | ELEV.     | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone                                                                               |  |  |  |  |  |
|                                              | STRATA  | ТҮРЕ   | IUMBER | COVERY   | VALUE<br>Sr RQD                                                                                  |            | (,        | O Water Content %                                                                                                          |  |  |  |  |  |
| GROUND SURFACE                               | 01      | ×      | 4      | RE       | z                                                                                                | - 0-       | 103.78    | 20 40 60 80 Ö                                                                                                              |  |  |  |  |  |
| <b>TOPSOIL</b>                               |         | AU     | 1      |          |                                                                                                  |            |           |                                                                                                                            |  |  |  |  |  |
|                                              |         |        |        |          |                                                                                                  |            |           |                                                                                                                            |  |  |  |  |  |
|                                              |         | ss     | 2      | 88       | 3                                                                                                | 1-         | -102.78   |                                                                                                                            |  |  |  |  |  |
| Hard, brown to grey <b>SILTY CLAY</b>        |         |        |        |          | U                                                                                                |            |           |                                                                                                                            |  |  |  |  |  |
|                                              |         |        |        |          |                                                                                                  | 2-         | -101.78   | 234                                                                                                                        |  |  |  |  |  |
| 2.44<br>End of Borehole                      |         | ss     | 3      | 100      | 50+                                                                                              |            |           |                                                                                                                            |  |  |  |  |  |
| Practical refusal to augering at 2.44m depth |         |        |        |          |                                                                                                  |            |           |                                                                                                                            |  |  |  |  |  |
| (BH Dry - Jan 29/19)                         |         |        |        |          |                                                                                                  |            |           |                                                                                                                            |  |  |  |  |  |
|                                              |         |        |        |          |                                                                                                  |            |           |                                                                                                                            |  |  |  |  |  |
|                                              |         |        |        |          |                                                                                                  |            |           |                                                                                                                            |  |  |  |  |  |
|                                              |         |        |        |          |                                                                                                  |            |           |                                                                                                                            |  |  |  |  |  |
|                                              |         |        |        |          |                                                                                                  |            |           |                                                                                                                            |  |  |  |  |  |
|                                              |         |        |        |          |                                                                                                  |            |           | 20         40         60         80         100           Shear Strength (kPa)           ▲ Undisturbed         △ Remoulded |  |  |  |  |  |

| natersonar                             |             | ır           | Con    | sulting  |                                                                                                  | SOI          | _ PRO        | FILE AND TEST DATA                           |            |  |  |  |  |
|----------------------------------------|-------------|--------------|--------|----------|--------------------------------------------------------------------------------------------------|--------------|--------------|----------------------------------------------|------------|--|--|--|--|
| 154 Colonnade Road South, Ottawa, On   | tario I     | K2E 7J       | Eng    | ineers   | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |              |              |                                              |            |  |  |  |  |
| DATUM Ground surface elevations        | s prov      | ided b       | oy Anr | nis, O'S | ulliv                                                                                            | van, Vollel  | pekk Ltd.    | FILE NO.                                     |            |  |  |  |  |
| REMARKS                                |             |              |        |          |                                                                                                  |              |              | HOLE NO.                                     |            |  |  |  |  |
| BORINGS BY CME 55 Power Auger          |             |              |        | DA       | TE                                                                                               | 2019 Jan     | uary 16      | BH20                                         |            |  |  |  |  |
| SOIL DESCRIPTION                       | PLOT        |              | SAN    |          |                                                                                                  | DEPTH<br>(m) | ELEV.<br>(m) | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone | er<br>ion  |  |  |  |  |
|                                        | TRATA       | ТҮРЕ         | UMBER  | COVER    | VALUE<br>r ROD                                                                                   | 1            |              | • Water Content %                            | ezomet     |  |  |  |  |
| GROUND SURFACE                         | ß           | ~            | N      | RE       | z <sup>0</sup>                                                                                   | - 0-         | -103.59      | 20 40 60 80                                  | ±°S<br>∞∞∞ |  |  |  |  |
| TOPSOIL                                |             |              |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
| <u>0.3</u> 3                           |             | AU           | 1      |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
|                                        |             |              |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
|                                        |             | 17           |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
| Very stiff, brown <b>SILTY CLAY</b>    |             | ss           | 2      | 83       | 4                                                                                                | 1            | 102.59       |                                              |            |  |  |  |  |
| , -                                    |             | 1            |        |          | -                                                                                                |              |              |                                              |            |  |  |  |  |
|                                        |             |              |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
|                                        |             |              |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
| - grey by 1.8m depth                   |             |              |        |          |                                                                                                  |              |              | 1 <b>59</b>                                  |            |  |  |  |  |
|                                        |             |              |        |          |                                                                                                  | 2            | 101.59       |                                              |            |  |  |  |  |
| 2.30                                   |             |              |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
|                                        |             | $\mathbb{N}$ |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
| sand and gravel                        |             | SS           | 3      | 83       | 9                                                                                                |              |              |                                              |            |  |  |  |  |
|                                        |             |              |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
| 3.05                                   | <u>1</u> 2X |              |        |          |                                                                                                  | 3-           | -100.59      |                                              |            |  |  |  |  |
| Practical refusal to augering at 3.05m |             |              |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
| (BH Dry Jon 20/10)                     |             |              |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
| (Dri Diy - Jail 29/19)                 |             |              |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
|                                        |             |              |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
|                                        |             |              |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
|                                        |             |              |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
|                                        |             |              |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
|                                        |             |              |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
|                                        |             |              |        |          |                                                                                                  |              |              |                                              |            |  |  |  |  |
|                                        |             |              |        |          |                                                                                                  |              |              | 20 40 60 80 100<br>Shear Strength (kPa)      |            |  |  |  |  |
|                                        |             |              |        |          |                                                                                                  |              |              | ▲ Undisturbed △ Remoulded                    |            |  |  |  |  |

| natersonar                                                                                                    |         | ın     | Con    | sulting       |                                                                                                 | SOII       | _ PRO     | FILE AND TEST DATA                                                              |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|---------|--------|--------|---------------|-------------------------------------------------------------------------------------------------|------------|-----------|---------------------------------------------------------------------------------|--|--|--|--|--|
| 154 Colonnade Road South, Ottawa, On                                                                          | tario I | (2E 7J | Eng    | ineers        | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa Ontario |            |           |                                                                                 |  |  |  |  |  |
| <b>DATUM</b> Ground surface elevations                                                                        | prov    | ided b | y Anr  | nis, O'S      | ulliva                                                                                          | an, Vollei | pekk Ltd. | FILE NO.                                                                        |  |  |  |  |  |
| REMARKS                                                                                                       |         |        |        |               |                                                                                                 |            |           | HOLE NO                                                                         |  |  |  |  |  |
| BORINGS BY CME 55 Power Auger                                                                                 |         |        |        | DA            | TE 2                                                                                            | 2019 Jan   | uary 16   | BH21                                                                            |  |  |  |  |  |
| SOIL DESCRIPTION                                                                                              | PLOT    |        | SAN    |               |                                                                                                 | DEPTH      | ELEV.     | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone                                    |  |  |  |  |  |
| GROUND SURFACE                                                                                                | STRATA  | ТҮРЕ   | NUMBER | ~<br>RECOVER¹ | N VALUE<br>or RQD                                                                               | (,         | (,        | O     Water Content %     During to the content %       20     40     60     80 |  |  |  |  |  |
| TOPSOIL                                                                                                       |         |        |        |               |                                                                                                 | 0-         | -103.58   |                                                                                 |  |  |  |  |  |
| <u>0.33</u>                                                                                                   |         | AU     | 1      |               |                                                                                                 |            |           |                                                                                 |  |  |  |  |  |
| Very stiff, brown <b>SILTY CLAY</b>                                                                           |         | ss     | 2      | 79            | 5                                                                                               | 1-         | -102.58   |                                                                                 |  |  |  |  |  |
|                                                                                                               |         |        |        |               |                                                                                                 |            |           |                                                                                 |  |  |  |  |  |
| - grey by 1.8m depth                                                                                          |         |        |        |               |                                                                                                 | 2-         | -101.58   |                                                                                 |  |  |  |  |  |
| <b>GLACIAL TILL:</b> Compact to very dense, brown to grey sandy silt, some clay, gravel, cobbles and boulders |         | ss     | 3      | 71            | 13                                                                                              |            |           |                                                                                 |  |  |  |  |  |
| 3.20<br>End of Borehole                                                                                       |         | ss     | 4      | 100           | 50+                                                                                             | 3-         | -100.58   |                                                                                 |  |  |  |  |  |
| Practical refusal to augering at 3.20m depth                                                                  |         |        |        |               |                                                                                                 |            |           |                                                                                 |  |  |  |  |  |
| (BH Dry - Jan 29/19)                                                                                          |         |        |        |               |                                                                                                 |            |           |                                                                                 |  |  |  |  |  |
|                                                                                                               |         |        |        |               |                                                                                                 |            |           |                                                                                 |  |  |  |  |  |
|                                                                                                               |         |        |        |               |                                                                                                 |            |           | 20 40 60 80 100<br>Shear Strength (kPa)<br>▲ Undisturbed △ Remoulded            |  |  |  |  |  |

| natersonar                                                              |         | In     | Con    | sulting  |                                                                               | SOIL         | - PRO        | FILE AI               | ND TE                    | ST DATA                             |                      |  |  |  |
|-------------------------------------------------------------------------|---------|--------|--------|----------|-------------------------------------------------------------------------------|--------------|--------------|-----------------------|--------------------------|-------------------------------------|----------------------|--|--|--|
| 154 Colonnade Road South, Ottawa, Ont                                   | tario ł | (2E 7J | Eng    | ineers   | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct. |              |              |                       |                          |                                     |                      |  |  |  |
| DATUM Ground surface elevations                                         | prov    | ided b | y Anr  | nis, O'S | ulliv                                                                         | an, Vollet   | bekk Ltd.    |                       | FILE NO                  | ).<br>PG4772                        | )                    |  |  |  |
| REMARKS                                                                 |         |        |        |          |                                                                               |              |              |                       | HOLE                     | FG4772                              | -                    |  |  |  |
| BORINGS BY CME 55 Power Auger                                           |         |        |        | DA       | TE                                                                            | 2019 Jan     | uary 16      |                       |                          | BH22                                | _                    |  |  |  |
| SOIL DESCRIPTION                                                        | PLOT    |        | SAN    | MPLE     |                                                                               | DEPTH<br>(m) | ELEV.<br>(m) | Pen. R                | esist. B<br>50 mm D      | lows/0.3m<br>ia. Cone               | g Well<br>tion       |  |  |  |
|                                                                         | STRATA  | ТҮРЕ   | NUMBER | ECOVER'  | I VALUE<br>or RQD                                                             |              |              | • V                   | Vater Co                 | ontent %                            | onitorin<br>onstruct |  |  |  |
| GROUND SURFACE                                                          | 0,      | ×      |        | R        | z v                                                                           | - 0-         | 103.65       | 20                    | 40                       | 60 80                               | ZŬ<br>⊒ ⊒            |  |  |  |
| TOPSOIL0.25                                                             |         |        | 1      |          |                                                                               |              |              |                       |                          |                                     |                      |  |  |  |
| Very stiff, brown <b>SILTY CLAY</b>                                     |         | ss     | 2      | 71       | 5                                                                             | 1-           | - 102.65     |                       |                          |                                     |                      |  |  |  |
| - grey by 2.0m depth                                                    |         |        |        |          |                                                                               | 2-           | -101.65      |                       | 2                        |                                     |                      |  |  |  |
| End of Borehole                                                         |         |        |        |          |                                                                               |              |              |                       |                          |                                     |                      |  |  |  |
| Practical refusal to augering at 2.29m<br>depth<br>(BH Dry - Jan 29/19) |         |        |        |          |                                                                               |              |              |                       |                          |                                     |                      |  |  |  |
|                                                                         |         |        |        |          |                                                                               |              |              |                       |                          |                                     |                      |  |  |  |
|                                                                         |         |        |        |          |                                                                               |              |              |                       |                          |                                     |                      |  |  |  |
|                                                                         |         |        |        |          |                                                                               |              |              |                       |                          |                                     |                      |  |  |  |
|                                                                         |         |        |        |          |                                                                               |              |              | 20<br>Shea<br>▲ Undis | 40<br>ar Stren<br>turbed | 60 80 ∕<br>gth (kPa)<br>∆ Remoulded | _ <br>100            |  |  |  |

| natersonar                                                           |          | ır           | Con    | sulting                                                                                          |                | SOII       | _ PRO     | FILE AND TEST DATA                           |  |  |  |  |
|----------------------------------------------------------------------|----------|--------------|--------|--------------------------------------------------------------------------------------------------|----------------|------------|-----------|----------------------------------------------|--|--|--|--|
| 154 Colonnade Road South, Ottawa, On                                 | tario I  | 4 P 6 2E 7 J | ineers | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |                |            |           |                                              |  |  |  |  |
| DATUM Ground surface elevations                                      | s prov   | ided b       | y Anr  | nis, O'S                                                                                         | Sulliv         | an, Vollei | pekk Ltd. | FILE NO.                                     |  |  |  |  |
| REMARKS                                                              |          |              |        |                                                                                                  |                |            |           | HOLE NO                                      |  |  |  |  |
| BORINGS BY CME 55 Power Auger                                        |          |              |        | DA                                                                                               | TE             | 2019 Jan   | uary 16   | BH23                                         |  |  |  |  |
| SOIL DESCRIPTION                                                     | PLOT     |              | SAN    | <b>IPLE</b>                                                                                      |                | DEPTH      | ELEV.     | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone |  |  |  |  |
|                                                                      | TRATA    | ТҮРЕ         | IUMBER | COVERY                                                                                           | VALUE<br>F ROD |            | (,        | ○ Water Content %                            |  |  |  |  |
| GROUND SURFACE                                                       | Ø        | ×            | Z      | RE                                                                                               | z <sup>o</sup> | - 0-       | 103.87    | 20 40 60 80 ÖČČ                              |  |  |  |  |
| TOPSOIL                                                              |          |              |        |                                                                                                  |                |            |           |                                              |  |  |  |  |
| <u>0.3</u> (                                                         |          | AU           | 1      |                                                                                                  |                |            |           |                                              |  |  |  |  |
|                                                                      |          |              |        |                                                                                                  |                |            |           |                                              |  |  |  |  |
|                                                                      |          | 1            |        |                                                                                                  |                |            |           |                                              |  |  |  |  |
| Very stiff, brown <b>SILTY CLAY</b> , some sand                      |          | ss           | 2      | 0                                                                                                | 6              | 1-         | 102.87    |                                              |  |  |  |  |
|                                                                      |          |              |        |                                                                                                  | Ū              |            |           |                                              |  |  |  |  |
| 1.52                                                                 |          |              |        |                                                                                                  |                |            |           |                                              |  |  |  |  |
|                                                                      |          |              |        |                                                                                                  |                |            |           |                                              |  |  |  |  |
|                                                                      |          | ss           | 3      | 83                                                                                               | 11             |            |           |                                              |  |  |  |  |
|                                                                      |          |              |        |                                                                                                  |                | 2-         | 101.87    |                                              |  |  |  |  |
|                                                                      |          |              |        |                                                                                                  |                |            |           |                                              |  |  |  |  |
| <b>GLACIAL TILL:</b> Dense to very dense, grey silty sand with clay, |          |              |        |                                                                                                  |                |            |           |                                              |  |  |  |  |
| gravel, cobbles and boulders                                         |          | ss           | 4      | 75                                                                                               | 36             |            |           |                                              |  |  |  |  |
|                                                                      |          |              |        |                                                                                                  |                |            |           |                                              |  |  |  |  |
|                                                                      |          |              |        |                                                                                                  |                | 3-         | 100.87    |                                              |  |  |  |  |
| 3.36                                                                 | <b>5</b> | ∬ss          | 5      | 31                                                                                               | 50+            |            |           |                                              |  |  |  |  |
| End of Borehole                                                      |          |              |        |                                                                                                  |                |            |           |                                              |  |  |  |  |
| Practical refusal to augering at 3.36m depth                         |          |              |        |                                                                                                  |                |            |           |                                              |  |  |  |  |
| (GWL @ 2.62m depth - Jan 29/19)                                      |          |              |        |                                                                                                  |                |            |           |                                              |  |  |  |  |
|                                                                      |          |              |        |                                                                                                  |                |            |           |                                              |  |  |  |  |
|                                                                      |          |              |        |                                                                                                  |                |            |           |                                              |  |  |  |  |
|                                                                      |          |              |        |                                                                                                  |                |            |           |                                              |  |  |  |  |
|                                                                      |          |              |        |                                                                                                  |                |            |           |                                              |  |  |  |  |
|                                                                      |          |              |        |                                                                                                  |                |            |           |                                              |  |  |  |  |
|                                                                      |          |              |        |                                                                                                  |                |            |           | 20 40 60 80 100<br>Shear Strength (kPa)      |  |  |  |  |
|                                                                      |          |              |        |                                                                                                  |                |            |           | ▲ Undisturbed △ Remoulded                    |  |  |  |  |

| natorsonar                                                                                            |         | ın        | Con    | sulting  |                                                                                                  | SOIL        | _ PRO        | FILE AND TEST DATA                                                   |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|---------|-----------|--------|----------|--------------------------------------------------------------------------------------------------|-------------|--------------|----------------------------------------------------------------------|--|--|--|--|--|--|
| 154 Colonnade Road South, Ottawa, Ont                                                                 | tario ł | (2E 7J    | Eng    | ineers   | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |             |              |                                                                      |  |  |  |  |  |  |
| DATUM Ground surface elevations                                                                       | prov    | ided b    | y Anr  | nis, O'S | Sulliv                                                                                           | van, Vollet | oekk Ltd.    | FILE NO.                                                             |  |  |  |  |  |  |
| REMARKS                                                                                               |         |           |        |          |                                                                                                  |             |              | HOLE NO.                                                             |  |  |  |  |  |  |
| BORINGS BY CME 55 Power Auger                                                                         |         |           |        | DA       | TE                                                                                               | 2019 Jan    | uary 16      | BH24                                                                 |  |  |  |  |  |  |
| SOIL DESCRIPTION                                                                                      | PLOT    |           | SAN    | /IPLE    |                                                                                                  | DEPTH       | ELEV.<br>(m) | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone ਾਹੁ ਹੁ                  |  |  |  |  |  |  |
|                                                                                                       | STRATA  | ТҮРЕ      | NUMBER | ECOVER)  | I VALUE                                                                                          |             |              | • Water Content %                                                    |  |  |  |  |  |  |
| GROUND SURFACE                                                                                        |         | ×         |        | 2        | Z *                                                                                              | - 0-        | 104.04       |                                                                      |  |  |  |  |  |  |
| <b>TOPSOIL</b>                                                                                        |         | AU        | 1      |          |                                                                                                  |             |              |                                                                      |  |  |  |  |  |  |
| Very stiff, brown to grey <b>CLAYEY</b>                                                               |         | ss        | 2      | 67       | 10                                                                                               | 1-          | -103.04      |                                                                      |  |  |  |  |  |  |
| SILI                                                                                                  |         |           |        |          |                                                                                                  |             |              |                                                                      |  |  |  |  |  |  |
|                                                                                                       |         | SS        | 3      | 79       | 29                                                                                               | 2-          | -102.04      |                                                                      |  |  |  |  |  |  |
| GLACIAL TILL: Compact to very<br>dense, brown clayey silt, some sand,<br>gravel, cobbles and boulders |         | ss        | 4      | 58       | 23                                                                                               |             |              |                                                                      |  |  |  |  |  |  |
| 3.15                                                                                                  |         | ⊔<br>⊻ ss | 5      | 100      | 50+                                                                                              | 3-          | -101.04      |                                                                      |  |  |  |  |  |  |
| End of Borehole<br>Practical refusal to augering at 3.15m                                             |         |           |        |          |                                                                                                  |             |              |                                                                      |  |  |  |  |  |  |
| (GWL @ 2.55m depth - Jan 29/19)                                                                       |         |           |        |          |                                                                                                  |             |              |                                                                      |  |  |  |  |  |  |
|                                                                                                       |         |           |        |          |                                                                                                  |             |              |                                                                      |  |  |  |  |  |  |
|                                                                                                       |         |           |        |          |                                                                                                  |             |              | 20 40 60 80 100<br>Shear Strength (kPa)<br>▲ Undisturbed △ Remoulded |  |  |  |  |  |  |

| natorsonar                                                                                                    |                 | ın     | Con    | sulting     | 1     | SOIL                     | - PRO                 | FILE AI               | ND TE                    | ST DATA                               |                   |
|---------------------------------------------------------------------------------------------------------------|-----------------|--------|--------|-------------|-------|--------------------------|-----------------------|-----------------------|--------------------------|---------------------------------------|-------------------|
| 154 Colonnade Road South, Ottawa, Ont                                                                         | ario k          | (2E 7J | Eng    | ineers      | F     | Geotechnic<br>Proposed M | al Invest<br>/ixed-Us | tigation<br>e Develop | oment - 2                | 0 Cedarow C                           | ;t.               |
| DATUM Ground surface elevations                                                                               | prov            | ided b | y Anr  | nis, O'S    | Sulli | van, Vollet              | bekk Ltd.             |                       | FILE NO                  | ).<br>DC 4770                         |                   |
| REMARKS                                                                                                       |                 |        |        |             |       |                          |                       |                       | HOLE                     | PG4//2                                | •                 |
| BORINGS BY CME 55 Power Auger                                                                                 |                 | 1      |        | D           | ATE   | 2019 Jan                 | uary 16               |                       |                          | BH25                                  |                   |
| SOIL DESCRIPTION                                                                                              | РГОТ            |        | SAN    |             |       | DEPTH                    | ELEV.                 | Pen. R<br>● 5         | lesist. B<br>50 mm D     | lows/0.3m<br>ia. Cone                 | er                |
|                                                                                                               | STRATA          | ТҮРЕ   | NUMBER | °<br>€COVER | VALUE |                          | (,                    | • V                   | Vater Co                 | ontent %                              | ezomete           |
| GROUND SURFACE                                                                                                | 07              | ×      | 4      | R           | z     | 0-                       | 104.07                | 20                    | 40                       | 60 80                                 | ŭ <u>ה</u><br>www |
| <b>TOPSOIL</b>                                                                                                |                 | AU     | 1      |             |       |                          |                       |                       |                          |                                       |                   |
| Very stiff, brown <b>CLAYEY SILT</b>                                                                          |                 |        | 2      | 75          | 11    | 1-                       | -103.07               |                       |                          |                                       |                   |
| <u>1.52</u>                                                                                                   |                 |        | 2      | 73          |       |                          |                       |                       |                          | · · · · · · · · · · · · · · · · · · · |                   |
| GLACIAL TILL: Very dense, grey 1.62<br>clayey silt with sand, gravel, cobbles,<br>boulders<br>End of Borehole | /^_^^/<br>/<br> | × ss   | 3      | 75          | 504   | +                        |                       |                       |                          | · · · · · · · · · · · · · · · · · · · | Ţ                 |
| Practical refusal to augering at 1.62m depth                                                                  |                 |        |        |             |       |                          |                       |                       |                          |                                       |                   |
| (GWL @ 1.68m depth - Jan 29/19)                                                                               |                 |        |        |             |       |                          |                       |                       |                          |                                       |                   |
|                                                                                                               |                 |        |        |             |       |                          |                       |                       |                          |                                       |                   |
|                                                                                                               |                 |        |        |             |       |                          |                       |                       |                          |                                       |                   |
|                                                                                                               |                 |        |        |             |       |                          |                       |                       |                          |                                       |                   |
|                                                                                                               |                 |        |        |             |       |                          |                       |                       |                          |                                       |                   |
|                                                                                                               |                 |        |        |             |       |                          |                       |                       |                          |                                       |                   |
|                                                                                                               |                 |        |        |             |       |                          |                       | 20<br>Shea<br>▲ Undis | 40<br>ar Stren<br>turbed | 60 80 1<br>gth (kPa)<br>∆ Remoulded   | ⊣<br>100          |

| natorsonar                                                                                     |        | ın                                                                                               | Con    | sulting  |                   | SOIL         | _ PRO        | FILE AN                |                         | EST D/                       | ATA               |                       |
|------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------|--------|----------|-------------------|--------------|--------------|------------------------|-------------------------|------------------------------|-------------------|-----------------------|
| 154 Colonnade Road South, Ottawa, Ont                                                          | ineers | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |        |          |                   |              |              |                        |                         |                              |                   |                       |
| DATUM Ground surface elevations                                                                | prov   | ided b                                                                                           | y Anr  | nis, O'S | ulliv             | an, Vollet   | oekk Ltd.    |                        | FILE N                  | 10.<br>PG                    | 4772              |                       |
| REMARKS                                                                                        |        |                                                                                                  |        |          |                   |              |              |                        | HOLE                    | NO                           | 4//2              |                       |
| BORINGS BY CME 55 Power Auger                                                                  |        |                                                                                                  |        | DA       | TE                | 2019 Jan     | uary 17      |                        |                         | BH2                          | 26                |                       |
| SOIL DESCRIPTION                                                                               | PLOT   |                                                                                                  | SAN    | IPLE     |                   | DEPTH<br>(m) | ELEV.<br>(m) | Pen. R<br>• 5          | esist.<br>0 mm l        | Blows/0.3<br>Dia. Cone       | 3m<br>9           | er<br>tion            |
|                                                                                                | STRATA | ТҮРЕ                                                                                             | NUMBER | NECOVER. | N VALUE<br>of RQD |              |              | • V                    | Vater C                 | ontent %                     | 6                 | Piezomet<br>Construct |
| GROUND SURFACE                                                                                 |        | XX                                                                                               |        | щ        |                   | - 0-         | 104.30       | 20                     | 40                      | 60 8                         | 0                 |                       |
| TOPSOIL<br>0. <u>38</u>                                                                        |        |                                                                                                  | 1      |          |                   |              |              |                        |                         |                              |                   |                       |
| Very stiff, brown <b>CLAYEY SILT</b>                                                           |        | SS                                                                                               | 2      | 75       | 9                 | 1-           | -103.30      |                        |                         |                              |                   |                       |
| <u>1.83</u>                                                                                    |        | ss                                                                                               | 3      | 50       | 19                | 2-           | - 102 30     |                        |                         |                              |                   |                       |
| <b>GLACIAL TILL:</b> Compact to dense,<br>grey silty clay with gravel, cobbles<br>and boulders |        | ss                                                                                               | 4      | 100      | 46                |              | 102.00       |                        |                         |                              |                   |                       |
| <u>2.87</u>                                                                                    |        |                                                                                                  |        |          |                   |              |              |                        |                         |                              |                   |                       |
| End of Borehole<br>Practical refusal to augering at 2.87m<br>depth                             |        |                                                                                                  |        |          |                   |              |              |                        |                         |                              |                   |                       |
| (BH Dry - Jan 29/19)                                                                           |        |                                                                                                  |        |          |                   |              |              |                        |                         |                              |                   |                       |
|                                                                                                |        |                                                                                                  |        |          |                   |              |              |                        |                         |                              |                   |                       |
|                                                                                                |        |                                                                                                  |        |          |                   |              |              |                        |                         |                              |                   |                       |
|                                                                                                |        |                                                                                                  |        |          |                   |              |              | 20<br>Shea<br>▲ Undist | 40<br>ar Strei<br>urbed | 60 8<br>ngth (kPa<br>∆ Remou | 0 10<br>)<br>Ided | 00                    |

| natoreonar                                   |        | In                                                                                               | Con    | sulting  |                  | SOII         | _ PRO        | FILE AN    | ID TES             | T DATA                   |          |
|----------------------------------------------|--------|--------------------------------------------------------------------------------------------------|--------|----------|------------------|--------------|--------------|------------|--------------------|--------------------------|----------|
| 154 Colonnade Road South, Ottawa, On         | ineers | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |        |          |                  |              |              |            |                    |                          |          |
| <b>DATUM</b> Ground surface elevations       | s prov | ided b                                                                                           | y Anr  | nis, O'S | ulliva           | an, Vollet   | oekk Ltd.    |            | FILE NO.           | PG4772                   |          |
| REMARKS                                      |        |                                                                                                  |        |          |                  |              |              | -          | HOLE NO            | BH27                     |          |
| BORINGS BY CME 55 Power Auger                |        |                                                                                                  |        |          | TE 2             | 2019 Jan     | uary 17      | Dara Da    |                    |                          | Τ_       |
| SOIL DESCRIPTION                             | PLOT   |                                                                                                  | 5AN    |          | ы о              | DEPTH<br>(m) | ELEV.<br>(m) | ● 50       | ) mm Dia           | . Cone                   | ng Wel   |
|                                              | STRAT  | TYPE                                                                                             | NUMBEI | RECOVEI  | N VALU<br>or RQI |              |              | 0 W        | ater Con           | tent %                   | Monitori |
| GROUND SURFACE                               |        |                                                                                                  |        | н<br>    |                  | 0-           | 103.97       |            | 40 00              |                          |          |
| TOPSOIL                                      | B      | ₩<br>AU                                                                                          | 1      |          |                  |              |              |            |                    |                          |          |
|                                              |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
|                                              |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
| Very stiff, brown <b>CLAYEY SILT</b>         |        |                                                                                                  |        |          | •                | 1-           | 102.97       |            |                    |                          |          |
|                                              |        | SS                                                                                               | 2      | /1       | 8                |              |              |            |                    |                          |          |
|                                              |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
|                                              |        | $\overline{\mathbb{N}}$                                                                          |        |          |                  |              |              |            |                    |                          |          |
| _ grey by 1.7m depth                         |        | ss                                                                                               | 3      | 88       | 50+              |              |              |            |                    |                          |          |
| End of Borehole                              |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
| Practical refusal to augering at 1.93m depth |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
| (BH Dry - Jan 29/19)                         |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
|                                              |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
|                                              |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
|                                              |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
|                                              |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
|                                              |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
|                                              |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
|                                              |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
|                                              |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
|                                              |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
|                                              |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
|                                              |        |                                                                                                  |        |          |                  |              |              |            |                    |                          |          |
|                                              |        |                                                                                                  |        |          |                  |              |              | 20<br>Shea | 40 60<br>r Strengt | 0 80 1<br><b>h (kPa)</b> | 00       |
|                                              | 1      |                                                                                                  |        |          |                  |              |              | ▲ Undistu  | irbed $\triangle$  | Remoulded                | ſ        |

| natersonar                                                           |         | ın     | Con       | sulting  |                | SOII                              | _ PRO                  | FILE AND TEST DATA                                                                                                         |
|----------------------------------------------------------------------|---------|--------|-----------|----------|----------------|-----------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 154 Colonnade Road South, Ottawa, On                                 | tario k | (2E 7J | Engi<br>5 | ineers   | G<br>Pr        | eotechnic<br>oposed M<br>ttawa Or | cal Invest<br>Mixed-Us | igation<br>e Development - 20 Cedarow Ct.                                                                                  |
| DATUM Ground surface elevations                                      | prov    | ided b | y Anr     | nis, O'S | ulliv          | an, Vollet                        | pekk Ltd.              | FILE NO.                                                                                                                   |
| REMARKS                                                              |         |        |           |          |                |                                   |                        | HOLE NO. DUDO                                                                                                              |
| BORINGS BY CME 55 Power Auger                                        |         |        |           | DA       | TE             | 2019 Jan                          | uary 17                | BH28                                                                                                                       |
| SOIL DESCRIPTION                                                     | PLOT    |        | SAN       | MPLE     |                | DEPTH<br>(m)                      | ELEV.<br>(m)           | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone                                                                               |
|                                                                      | TRATA   | ТҮРЕ   | UMBER     | COVER    | VALUE<br>F ROD |                                   |                        | O Water Content %                                                                                                          |
| GROUND SURFACE                                                       | Ω<br>Ω  | ~      | z         | RE       | z <sup>0</sup> | - 0-                              | 103.78                 | 20 40 60 80 ĒŬ                                                                                                             |
| TOPSOIL<br>0.36                                                      |         | AU     | 1         |          |                |                                   |                        |                                                                                                                            |
|                                                                      |         |        |           |          |                |                                   |                        |                                                                                                                            |
| Very stiff, brown <b>SILTY CLAY</b>                                  |         | ss     | 2         | 38       | 6              | 1-                                | -102.78                |                                                                                                                            |
|                                                                      |         |        |           |          |                |                                   |                        |                                                                                                                            |
|                                                                      |         |        |           |          |                |                                   |                        | 179                                                                                                                        |
|                                                                      |         |        |           |          |                | 2-                                | -101.78                |                                                                                                                            |
| 2.29                                                                 |         |        |           |          |                |                                   |                        |                                                                                                                            |
| <b>GLACIAL TILL:</b> Loose to very dense, grey silty clay with sand, |         | ss     | 3         | 8        | 2              |                                   |                        |                                                                                                                            |
| gravel, cooples and boulders                                         |         |        | 4         |          | 50±            | 3-                                | -100.78                |                                                                                                                            |
| 3.18                                                                 |         |        | 4         | 0        | J0+            |                                   |                        |                                                                                                                            |
| Practical refusal to augering at 3.18m depth                         |         |        |           |          |                |                                   |                        |                                                                                                                            |
| (BH Dry - Jan 29/19)                                                 |         |        |           |          |                |                                   |                        |                                                                                                                            |
|                                                                      |         |        |           |          |                |                                   |                        |                                                                                                                            |
|                                                                      |         |        |           |          |                |                                   |                        |                                                                                                                            |
|                                                                      |         |        |           |          |                |                                   |                        |                                                                                                                            |
|                                                                      |         |        |           |          |                |                                   |                        | 20         40         60         80         100           Shear Strength (kPa)           ▲ Undisturbed         △ Remoulded |

| natersonar                                      |         | In     | Con    | sulting                                                                                          |                  | SOII         | _ PRO        | FILE AND TEST DATA                                                                                                         |  |  |
|-------------------------------------------------|---------|--------|--------|--------------------------------------------------------------------------------------------------|------------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------------------|--|--|
| 154 Colonnade Road South, Ottawa, On            | tario ł | (2E 7J | ineers | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |                  |              |              |                                                                                                                            |  |  |
| <b>DATUM</b> Ground surface elevations          | prov    | ided b | y Anr  | nis, O'S                                                                                         | ulliv            | van, Vollet  | oekk Ltd.    | FILE NO.<br>PG4772                                                                                                         |  |  |
| REMARKS                                         |         |        |        |                                                                                                  |                  |              |              | HOLE NO. PH20                                                                                                              |  |  |
| BORINGS BY CME 55 Power Auger                   |         |        |        | DA                                                                                               | TE               | 2019 Jan     | uary 17      |                                                                                                                            |  |  |
| SOIL DESCRIPTION                                | A PLOT  |        | SAN    | /PLE<br>것                                                                                        | ы о              | DEPTH<br>(m) | ELEV.<br>(m) | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone                                                                               |  |  |
|                                                 | STRATZ  | TYPE   | NUMBEF | ECOVEF                                                                                           | N VALU<br>OF RQI | 1            |              | • Water Content %                                                                                                          |  |  |
| GROUND SURFACE                                  |         | XXX    |        | щ                                                                                                |                  | - 0-         | 103.71       |                                                                                                                            |  |  |
| TOPSOIL<br>0.38                                 |         | AU     | 1      |                                                                                                  |                  |              |              |                                                                                                                            |  |  |
|                                                 |         |        |        |                                                                                                  |                  | 1            | 100 71       |                                                                                                                            |  |  |
| Very stiff, brown <b>SILTY CLAY</b>             |         | SS     | 2      | 50                                                                                               | 7                |              | 102.71       |                                                                                                                            |  |  |
|                                                 |         | ss     | 3      | 71                                                                                               | 4                |              |              |                                                                                                                            |  |  |
| 2.29                                            |         |        |        |                                                                                                  |                  | 2-           | -101.71      |                                                                                                                            |  |  |
| clay with sand, gravel, cobbles and<br>boulders |         | ss     | 4      | 17                                                                                               | 7                |              |              |                                                                                                                            |  |  |
| 2.95                                            |         | ľ.     |        |                                                                                                  |                  |              |              |                                                                                                                            |  |  |
| Practical refusal to augering at 2.95m depth    |         |        |        |                                                                                                  |                  |              |              |                                                                                                                            |  |  |
| (BH Dry - Jan 29/19)                            |         |        |        |                                                                                                  |                  |              |              |                                                                                                                            |  |  |
|                                                 |         |        |        |                                                                                                  |                  |              |              |                                                                                                                            |  |  |
|                                                 |         |        |        |                                                                                                  |                  |              |              |                                                                                                                            |  |  |
|                                                 |         |        |        |                                                                                                  |                  |              |              | 20         40         60         80         100           Shear Strength (kPa)           ▲ Undisturbed         △ Remoulded |  |  |

# SYMBOLS AND TERMS

#### SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

| Desiccated       | - | having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.                                   |
|------------------|---|----------------------------------------------------------------------------------------------------------------------------|
| Fissured         | - | having cracks, and hence a blocky structure.                                                                               |
| Varved           | - | composed of regular alternating layers of silt and clay.                                                                   |
| Stratified       | - | composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.                               |
| Well-Graded      | - | Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution). |
| Uniformly-Graded | - | Predominantly of one grain size (see Grain Size Distribution).                                                             |

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

| Relative Density | 'N' Value | Relative Density % |
|------------------|-----------|--------------------|
| Very Loose       | <4        | <15                |
| Loose            | 4-10      | 15-35              |
| Compact          | 10-30     | 35-65              |
| Dense            | 30-50     | 65-85              |
| Very Dense       | >50       | >85                |

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

| Consistency | Undrained Shear Strength (kPa) | 'N' Value |
|-------------|--------------------------------|-----------|
| Very Soft   | <12                            | <2        |
| Soft        | 12-25                          | 2-4       |
| Firm        | 25-50                          | 4-8       |
| Stiff       | 50-100                         | 8-15      |
| Very Stiff  | 100-200                        | 15-30     |
| Hard        | >200                           | >30       |

# SYMBOLS AND TERMS (continued)

#### **SOIL DESCRIPTION (continued)**

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

#### **ROCK DESCRIPTION**

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

#### RQD % ROCK QUALITY

| 90-100 | Excellent, intact, very sound                                |
|--------|--------------------------------------------------------------|
| 75-90  | Good, massive, moderately jointed or sound                   |
| 50-75  | Fair, blocky and seamy, fractured                            |
| 25-50  | Poor, shattered and very seamy or blocky, severely fractured |
| 0-25   | Very poor, crushed, very severely fractured                  |

#### SAMPLE TYPES

| SS | - | Split spoon sample (obtained in conjunction with the performing of the Standard |
|----|---|---------------------------------------------------------------------------------|
|    |   | Penetration Test (SPT))                                                         |

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

# SYMBOLS AND TERMS (continued)

#### **GRAIN SIZE DISTRIBUTION**

| MC%    | -      | Natural moisture content or water content of sample, %                                                                                       |
|--------|--------|----------------------------------------------------------------------------------------------------------------------------------------------|
| LL     | -      | Liquid Limit, % (water content above which soil behaves as a liquid)                                                                         |
| PL     | -      | Plastic limit, % (water content above which soil behaves plastically)                                                                        |
| PI     | -      | Plasticity index, % (difference between LL and PL)                                                                                           |
| Dxx    | -      | Grain size which xx% of the soil, by weight, is of finer grain sizes<br>These grain size descriptions are not used below 0.075 mm grain size |
| D10    | -      | Grain size at which 10% of the soil is finer (effective grain size)                                                                          |
| D60    | -      | Grain size at which 60% of the soil is finer                                                                                                 |
| Сс     | -      | Concavity coefficient = $(D30)^2 / (D10 \times D60)$                                                                                         |
| Cu     | -      | Uniformity coefficient = D60 / D10                                                                                                           |
| Cc and | Cu are | used to assess the grading of sands and gravels:                                                                                             |

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

# **CONSOLIDATION TEST**

| p'o        | - | Present effective overburden pressure at sample depth          |
|------------|---|----------------------------------------------------------------|
| p'c        | - | Preconsolidation pressure of (maximum past pressure on) sample |
| Ccr        | - | Recompression index (in effect at pressures below p'c)         |
| Сс         | - | Compression index (in effect at pressures above p'c)           |
| OC Ratio   |   | Overconsolidaton ratio = p'c / p'o                             |
| Void Ratio | D | Initial sample void ratio = volume of voids / volume of solids |
| Wo         | - | Initial water content (at start of consolidation test)         |

# PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

# SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

### MONITORING WELL AND PIEZOMETER CONSTRUCTION









#### Certificate of Analysis **Client: Paterson Group Consulting Engineers** Client PO: 25648

Report Date: 22-Jan-2019

Order Date: 16-Jan-2019

Project Description: PG4772

|                          | Client ID:    | BH#16-19 SS#3    | - | - | - |
|--------------------------|---------------|------------------|---|---|---|
|                          | Sample Date:  | 01/15/2019 09:00 | - | - | - |
|                          | Sample ID:    | 1903309-01       | - | - | - |
|                          | MDL/Units     | Soil             | - | - | - |
| Physical Characteristics |               |                  |   |   |   |
| % Solids                 | 0.1 % by Wt.  | 85.8             | - | - | - |
| General Inorganics       | -             |                  | - |   |   |
| рН                       | 0.05 pH Units | 7.80             | - | - | - |
| Resistivity              | 0.10 Ohm.m    | 76.2             | - | - | - |
| Anions                   |               |                  |   |   |   |
| Chloride                 | 5 ug/g dry    | 6                | - | - | - |
| Sulphate                 | 5 ug/g dry    | 6                | - | - | - |

# **APPENDIX 2**

FIGURE 1 - KEY PLAN

FIGURES 2 TO 4 - SLOPE STABILITY ANALYSIS SECTIONS

DRAWING PG4772-1 - TEST HOLE LOCATION PLAN
# **KEY PLAN**

# **FIGURE 1**

















# patersongroup

# memorandum

consulting engineers

#### re: **Grading Plan Review** Proposed Mixed-Use Development – Wellings of Stittsville Phase 2 20 Cedarow Court - Ottawa

cc: Stantec - Mr. Mike Sharp - Mike.Sharp@stantec.com

date: August 12, 2021

file: PG4772-MEMO.03

Following your request and authorization, Paterson Group (Paterson) prepared the current memorandum to complete a grading plan review from a geotechnical perspective for Phase 2 of the mixed-use development to be constructed at the aforementioned site. The following memorandum should be read in conjunction with Paterson Group Report PG4772-1 Revision 1, dated September 29, 2020.

## **Grading Plan Review**

Paterson reviewed the following grading plan prepared by Stantec regarding the aforementioned development:

□ Grading Plan - Wellings of Stittsville Phase 2 - Project No. 160401511 - Drawing No. GP-1 - Sheet No. 4 of 7 - Revision 2 - dated August 3, 2021.

Based on our review of the above noted grading plan, the proposed grades within Phase 2 of the aforementioned development are within the permissible grade raise restriction of 2 m provided throughout the subject site in the aforementioned geotechnical investigation report. Therefore, the proposed grading is considered acceptable from a geotechnical perspective. No exceedances of the grade raise restriction were noted, therefore lightweight fill or other considerations to accommodate the proposed grades are not required at this time.

We trust that this information satisfies your immediate requirements.

Best Regards,

Paterson Group Inc.

Maha Saleh, Provisional P. Eng.

Paterson Group Inc.

Ottawa Head Office 154 Colonnade Road South Ottawa – Ontario – K2E 7S8 Tel: (613) 226-7381



Ottawa Laboratory 28 Concourse Gate Ottawa – Ontario – K2E 7T7 Tel: (613) 226-7381

Faisal Abou-Seido, P. Eng.

Northern Office and Laboratory 63 Gibson Street North Bay – Ontario – P1B 8Z4 Tel: (705) 472-5331

to: Nautical Lands Group – Mr. Mark Williams – mwilliams@nauticallandsgroup.com

# patersongroup

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

**Materials Testing** 

**Building Science** 

**Noise & Vibration Studies** 

## **Geotechnical Investigation**

Proposed Mixed-Use Development Wellings of Stittsville - Phase 2, 3 and 4 20 Cedarow Court Ottawa, Ontario

**Prepared For** 

Nautical Lands Group

#### Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca February 17, 2022

Report PG4772-1 Revision 2

| Report: PG4772-1 Revision 2<br>February 17, 2022 |  |
|--------------------------------------------------|--|

| Table | of | Content | ę |
|-------|----|---------|---|
|-------|----|---------|---|

|            |                                                                                                                                                                                                                                                                                                                                            | Page                                                     |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 1.0        | Introduction                                                                                                                                                                                                                                                                                                                               | 1                                                        |
| 2.0        | Proposed Project                                                                                                                                                                                                                                                                                                                           | 1                                                        |
| 3.0        | Method of Investigation3.1Field Investigation3.2Field Survey3.3Laboratory Testing3.4Analytical Testing                                                                                                                                                                                                                                     | 2<br>3<br>3<br>4                                         |
| 4.0        | Observations4.1Surface Conditions4.2Subsurface Profile4.3Groundwater                                                                                                                                                                                                                                                                       | 5<br>5<br>6                                              |
| 5.0        | Discussion5.1Geotechnical Assessment.5.2Site Grading and Preparation5.3Foundation Design5.4Design for Earthquakes.5.5Basement Slab5.6Basement Wall5.7Pavement Structure.                                                                                                                                                                   |                                                          |
| 6.0        | Design and Construction Precautions6.1Foundation Drainage and Backfill6.2Protection of Footings Against Frost Action6.3Excavation Side Slopes6.4Pipe Bedding and Backfill6.5Groundwater Control6.6Winter Construction6.7Corrosion Potential and Sulphate6.8Limit of Hazard Lands6.9Landscaping Considerations6.10Storm Water Storage Tanks | 16<br>17<br>17<br>19<br>20<br>21<br>22<br>22<br>24<br>25 |
| 7.0<br>8.0 | Recommendations                                                                                                                                                                                                                                                                                                                            | 26<br>27                                                 |

## **Appendices**

| Soil Profile and Test Data Sheets |
|-----------------------------------|
| Symbols and Terms                 |
| Analytical Testing Results        |
|                                   |

Appendix 2Figure 1 - Key PlanFigures 2 to 4 - Slope Stability Analysis SectionsDrawing PG4772-1 - Test Hole Location Plan

## 1.0 Introduction

Paterson Group (Paterson) was commissioned by Nautical Lands Group to conduct a geotechnical investigation for the proposed mixed-use development to be located at 20 Cedarow Court in the City of Ottawa, Ontario (refer to Figure 1 - Key Plan in Appendix 2).

The objectives of the current investigation were to:

- Determine the subsurface conditions by means of boreholes.
- □ Provide geotechnical recommendations for the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project. This report contains geotechnical findings and includes recommendations pertaining to the design and construction of the proposed development as understood at the time of writing this report.

## 2.0 Proposed Development

Based on the available drawings, it is our understanding that the proposed development will consist of four, six (6) storey mixed-use buildings with a shared underground parking level occupying the majority of the footprint of the subject site. The buildings are understood to include retail, office space and residential units. Associate at-grade parking areas, access lanes, amenity and landscaped areas are also anticipated a part of the development. It is also anticipated that the proposed development will be municipally serviced.



North Bay

## 3.1 Field Investigation

patersondroup

Ottawa

#### **Field Program**

The field program for the current investigation was carried out from January 14, 2019 to January 18, 2019. At that time, 29 boreholes were drilled to a maximum depth of 4 m below existing grade.

A supplemental field investigation was conducted on February 2, 2022. At that time, 3 boreholes were advanced to the bedrock surface and cored a maximum depth of 3.2 m into the bedrock surface.

The borehole locations were distributed in a manner to provide general coverage of the proposed development. The locations of the boreholes are shown on Drawing PG4772-1 - Test Hole Location Plan included in Appendix 2.

The boreholes were drilled using a track-mounted auger drill rig operated by a two-person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel with the direction of a senior engineer. The drilling procedure consisted of augering to the required depths at the selected locations, sampling and testing the overburden.

#### Sampling and In Situ Testing

Soil samples were recovered from a 50 mm diameter split-spoon or the auger flights. The split-spoon and auger samples were classified on site and placed in sealed plastic bags. All samples were transported to our laboratory. The depths at which the split-spoon and auger samples were recovered from the boreholes are presented as SS and AU, respectively, on the Soil Profile and Test Data sheets.

Standard Penetration Tests (SPT) were conducted and recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sample 300 mm into the soil after the initial penetration of 150 mm using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength tests were conducted in cohesive soils with a field vane apparatus.

Rock core samples were recovered from boreholes BH 1-22, BH 2-22 and BH 3-22 drilled during the supplemental investigation using a core barrel and diamond drilling techniques.

The bedrock samples were classified on site, placed in hard cardboard core boxes and transported to Paterson's laboratory. The depths at which rock core samples were recovered from the boreholes are presented as RC on the Soil Profile and Test Data sheets in Appendix 1.

The recovery value and a Rock Quality Designation (RQD) value were calculated for each drilled section of bedrock and are presented on the borehole logs. The recovery value is the length of the bedrock sample recovered over the length of the drilled section. The RQD value is the total length of intact rock pieces longer than 100 mm over the length of the core run. The values indicate the bedrock quality

The subsurface conditions observed in the boreholes were recorded in detail in the field. The soil profiles are presented on the Soil Profile and Test Data sheets in Appendix 1.

#### Groundwater

Flexible polyethylene standpipes were installed in the majority of the boreholes to permit groundwater results subsequent to the sampling program completion. Monitoring wells were installed in BH 4, BH 9, BH 15, BH 22, and BH 27 to provide general site coverage as part of our hydrogeological study. The groundwater observations are discussed in Subsection 4.3 and presented in the Soil Profile and Test Data Sheets in Appendix 1.

#### Sample Storage

All rock core samples from the supplemental investigation will be stored in the laboratory for a period of one month after issuance of this report at which time the samples will be discarded unless otherwise directed.

## 3.2 Field Survey

The borehole locations were selected by Paterson taking in consideration site features. The ground surface at the test pit locations was located and surveyed by Annis, O'Sullivan, Vollebekk LTD. It is understood that the ground surface elevations at the borehole locations were referenced to a geodetic datum. The locations and ground surface elevation at the boreholes are presented on Drawing PG4772-1 - Test Hole Location Plan in Appendix 2.

## 3.3 Laboratory Testing

Soil samples recovered from the subject site were visually examined in our laboratory to review the field logs.

## 3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the potential for exposed ferrous metals and the sulphate potential against subsurface concrete structures. The results are discussed further in Subsection 6.7.

## 4.0 Observations

## 4.1 Surface Conditions

The subject site is currently undeveloped and grass covered with a tree-line located along the west boundary line of Cedarow Court. The ground surface across the site is relatively flat and approximately 1 m lower than adjacent properties and Hazeldean Road. Poole Creek ravine runs along the western border of the subject site approximately 3 m below the subject site.

The subject site is bordered by an active construction site for Phase 1 of the Wellings of Stittsville development along the north, Hazeldean Road along the east, and commercial buildings at the edge of Cedarow Court along the south.

## 4.2 Subsurface Profile

#### Overburden

The subsurface profile at the borehole locations consists of topsoil overlying a hard to very stiff silty clay crust followed by a grey, very stiff to stiff silty clay layer. Glacial till was encountered below the silty clay layer consisting of compact silty sand to sandy silt with clay, gravel, cobbles and boulders. A deposit of very stiff to hard clayey silt was encountered below the topsoil in BH 17, BH 18, BH 24, BH 25, BH 26, and BH 27. Practical refusal to augering on inferred bedrock was encountered in all boreholes at depths ranging between 1.6 to 4.0 m. Specific details of the soil profile at each test hole location are presented on the Soil Profile and Test Data sheets provided in Appendix 1.

## Bedrock

Bedrock was cored in 3 boreholes to a maximum depth of 3.2 m below the bedrock surface. The bedrock in borehole BH 1-22 was observed to have an RQD value of 100%. This is indicative of a fair to excellent quality bedrock. The average RQD value in boreholes BH 2-21 was generally between 82 and 100% which is an indicative of good to excellent quality bedrock. The upper portion of the bedrock in borehole BH 3-21 had an RQD value of 64%, indicative of fair quality bedrock whereas the remainder of the bedrock was found to be in good to excellent quality. Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for the details of the soil profile encountered at borehole location.

Based on available geological mapping, the subject site consists of interbedded dolostone and limestone of the Gull River formation and an approximate drift thickness of 2 to 15 m.

## 4.3 Groundwater

The measured groundwater levels at the borehole locations are presented in Table 1. Groundwater readings recorded in flexible piezometers could be influenced by surface water infiltrating the backfilled boreholes. The long-term groundwater level can also be estimated based on observations of the recovered soil samples, such as the moisture level, soil consistency and colouring. Based on these observations, the long-term groundwater level is anticipated at a depth ranging between 2.5 to 3.5 m below existing grade. Groundwater levels are subject to seasonal fluctuations and could vary at the time of construction.

Geotechnical Investigation Proposed Mixed-Use Development Wellings of Stittsville - Phase 2, 3 and 4 20 Cedarow Court - Ottawa

| paterso | ngroup    |
|---------|-----------|
| Ottawa  | North Bay |

| Table 1 - Groundwater Readings Summary                                                                                |                                       |       |           |                  |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------|-----------|------------------|
| Test Hole                                                                                                             | st Hole Ground Groundwater Levels (m) |       |           |                  |
| Number                                                                                                                | Elevation (m)                         | Depth | Elevation | Recording Date   |
| BH 1                                                                                                                  | 104.37                                | DRY   | n/a       | January 29, 2019 |
| BH 2                                                                                                                  | 103.59                                | 3.05  | 100.54    | January 29, 2019 |
| BH 3                                                                                                                  | 103.55                                | 1.81  | 101.74    | January 29, 2019 |
| BH 4                                                                                                                  | 103.28                                | 3.05  | 100.23    | January 29, 2019 |
| BH 5                                                                                                                  | 103.45                                | 3.05  | 100.40    | January 29, 2019 |
| BH 6                                                                                                                  | 103.49                                | 3.04  | 100.45    | January 29, 2019 |
| BH 7                                                                                                                  | 103.41                                | DRY   | n/a       | January 29, 2019 |
| BH 8                                                                                                                  | 103.46                                | DRY   | n/a       | January 29, 2019 |
| BH 9                                                                                                                  | 103.42                                | 3.17  | 100.25    | January 29, 2019 |
| BH 10                                                                                                                 | 103.31                                | 2.18  | 101.13    | January 29, 2019 |
| BH 11                                                                                                                 | 103.44                                | DRY   | n/a       | January 29, 2019 |
| BH 12                                                                                                                 | 103.58                                | DRY   | n/a       | January 29, 2019 |
| BH 13                                                                                                                 | 103.55                                | DRY   | n/a       | January 29, 2019 |
| BH 14                                                                                                                 | 104.18                                | DRY   | n/a       | January 29, 2019 |
| BH 15                                                                                                                 | 103.65                                | 2.92  | 100.73    | January 29, 2019 |
| BH 16                                                                                                                 | 103.66                                | DRY   | n/a       | January 29, 2019 |
| BH 17                                                                                                                 | 104.19                                | DRY   | n/a       | January 29, 2019 |
| BH 18                                                                                                                 | 104.15                                | DRY   | n/a       | January 29, 2019 |
| BH 19                                                                                                                 | 103.78                                | DRY   | n/a       | January 29, 2019 |
| BH 20                                                                                                                 | 103.59                                | DRY   | n/a       | January 29, 2019 |
| BH 21                                                                                                                 | 103.58                                | DRY   | n/a       | January 29, 2019 |
| BH 22                                                                                                                 | 103.65                                | DRY   | n/a       | January 29, 2019 |
| BH 23                                                                                                                 | 103.87                                | 2.62  | 101.25    | January 29, 2019 |
| BH 24                                                                                                                 | 104.04                                | 2.55  | 101.49    | January 29, 2019 |
| BH 25                                                                                                                 | 104.07                                | 1.68  | 102.39    | January 29, 2019 |
| BH 26                                                                                                                 | 104.30                                | DRY   | n/a       | January 29, 2019 |
| BH 27                                                                                                                 | 103.97                                | DRY   | n/a       | January 29, 2019 |
| BH 28                                                                                                                 | 103.78                                | DRY   | n/a       | January 29, 2019 |
| BH 29                                                                                                                 | 103.71                                | DRY   | n/a       | January 29, 2019 |
| <b>Note:</b> The ground surface elevation at the borehole locations was provided by Annis, O'Sullivan, Vollebekk Ltd. |                                       |       |           |                  |

## 5.0 Discussion

## 5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is suitable for the proposed development. The proposed structures will be founded on conventional shallow foundations placed on an undisturbed, hard to very stiff silty clay, compact to dense glacial till and/or clean, surface sounded bedrock bearing surface. Alternatively, conventional shallow footings can be placed over a near vertical, zero entry, concrete in-filled trenches extending to a clean, surface sounded bedrock bearing surface.

Permissible grade raise restriction areas are also required due to the silty clay deposit. A permissible grade raise restriction of **2 m** is recommended for areas where settlement sensitive structures are founded over the silty clay deposit.

Depending on the extent of the underground parking garage and potential grade raise, the bedrock may be encountered during excavation and construction. All contractors should be prepared for bedrock removal within the subject site.

Prior to considering blasting operations, if required, the blasting effects on the existing services, buildings and other structures should be addressed. A pre-blast or preconstruction survey of the existing structures located in proximity of the blasting operations should be carried out prior to commencing site activities. The extent of the survey should be determined by the blasting consultant and should be sufficient to respond to any inquiries/claims related to the blasting operations.

The blasting operations should be planned and conducted under the supervision of a licensed professional engineer who is also an experienced blasting consultant.

The above and other considerations are discussed in the following sections.

## 5.2 Site Grading and Preparation

#### **Stripping Depth**

Topsoil and deleterious fill, such as those containing organic materials, should be stripped from under any buildings, paved areas, pipe bedding, and other settlement sensitive structures.

#### **Bedrock Removal**

Bedrock removal can be accomplished by hoe ramming where only small quantity of the bedrock needs to be removed. Sound bedrock may be removed by line drilling and controlled blasting and/or hoe ramming.

Prior to considering blasting operations, the blasting effects on the existing services, buildings and other structures should be addressed. A pre-blast or pre-construction survey of the existing structures located in proximity of the blasting operations should be completed prior to commencing site activities. The extent of the survey should be determined by the blasting consultant and should be sufficient to respond to any inquiries/claims related to the blasting operations.

As a general guideline, peak particle velocities (measured at the structures) should not exceed 25 mm/s during the blasting program to reduce the risks of damage to the existing structures.

The blasting operations should be planned and conducted under the supervision of a licensed professional engineer who is also an experienced blasting consultant.

Excavation side slopes in sound bedrock can be excavated almost vertical side walls. A minimum 1 m horizontal ledge, should remain between the overburden excavation and the bedrock surface. The ledge will provide an area to allow for potential sloughing or a stable base for the overburden shoring system.

#### **Vibration Considerations**

Construction operations are the cause of vibrations, and possibly, sources of nuisance to the community. Therefore, means to reduce the vibration levels as much as possible should be incorporated in the construction operations to maintain, as much as possible, a cooperative environment with the residents.

The following construction equipments could be the source of vibrations: hoe ram, compactor, dozer, crane, truck traffic, etc. Vibrations, whether caused by blasting operations or by construction operations, could be the source of detrimental vibrations on the nearby buildings and structures. Therefore, all vibrations are recommended to be limited.

Two parameters are used to determine the permissible vibrations, namely, the maximum peak particle velocity and the frequency. For low frequency vibrations, the maximum allowable peak particle velocity is less than that for high frequency vibrations. As a guideline, the peak particle velocity should be less than 15 mm/s between frequencies of 4 to 12 Hz, and 50 mm/s above a frequency of 40 Hz (interpolate between 12 and 40 Hz). The guidelines are for current construction standards.

Considering that these guidelines are above perceptible human level and, in some cases, could be very disturbing to some people, a pre-construction survey is recommended be completed to minimize the risks of claims during or following the construction of the proposed buildings.

#### Fill Placement

Fill placed for grading beneath the structure(s) or other settlement sensitive areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. This material should be tested and approved prior to delivery to the site. The engineered fill should be placed in maximum 300 mm thick lifts and compacted to 98% of the material's standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil can be placed as general landscaping fill where surface settlement is a minor concern. The backfill materials should be spread in thin lifts and at a minimum compacted by the tracks of the spreading equipment to minimize voids. If the non-specified backfill is to be placed to increase the subgrade level for areas to be paved, the fill should be compacted in maximum 300 mm lifts and compacted to 95% of the material's SPMDD. Non-specified existing fill and site-excavated soils are not suitable for placement as backfill against foundation walls unless a composite drainage blanket connected to a perimeter drainage system is provided.

## 5.3 Foundation Design

#### **Bearing Resistance Values (Shallow Foundation)**

Footings for the proposed buildings can be designed with the following bearing resistance values presented in Table 2.

| Table 2 - Bearing Resistance Values         |                                          |                                                      |
|---------------------------------------------|------------------------------------------|------------------------------------------------------|
| Bearing Surface                             | Bearing Resistance<br>Value at SLS (kPa) | Factored Bearing<br>Resistance Value at<br>ULS (kPa) |
| Very stiff to hard silty clay               | 150                                      | 250                                                  |
| Compact to dense glacial till               | 200                                      | 300                                                  |
| Weathered Limestone Bedrock                 | -                                        | 1500                                                 |
| Clean, Surface Sounded Limestone<br>Bedrock | -                                        | 2000                                                 |

| Table 2 - Bearing Resistance Values                                                                                                                                                                                                                                                                         |                                          |                                                      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------|--|
| Bearing Surface                                                                                                                                                                                                                                                                                             | Bearing Resistance<br>Value at SLS (kPa) | Factored Bearing<br>Resistance Value at<br>ULS (kPa) |  |
| Lean Concrete In-filled Trenches                                                                                                                                                                                                                                                                            | -                                        | 2000                                                 |  |
| Note: Strip footings, up to 3 m wide, and pad footings, up to 8 m wide, placed over an undisturbed, silty clay bearing surface can be designed using the abovenoted bearing resistance values.<br>- A geotechnical resistance factor of 0.5 was applied to the above noted bearing resistance value at ULS. |                                          |                                                      |  |

The above-noted bearing resistance values at SLS for soil bearing surfaces will be subjected to potential post-construction total and differential settlements of 25 and 20 mm, respectively. Footings bearing on an acceptable bedrock bearing surface and designed for the bearing resistance values provided herein will be subjected to negligible potential post-construction total and differential settlements.

The bearing resistance values are provided on the assumption that the footings are placed on undisturbed soil bearing surfaces. An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

A clean, surface-sounded bedrock bearing surface should be free of loose materials, and have no near surface seams, voids, fissures or open joints which can be detected from surface sounding with a rock hammer.

## Lean Concrete Filled Trenches

Where bedrock is encountered below the design underside of footing elevation, consideration should be given to excavating vertical trenches to expose the underlying bedrock surface and backfilling with lean concrete (**15 MPa** 28-day compressive strength). Typically, the excavation sidewalls will be used as the form to support the concrete. The additional width of the concrete poured against an undisturbed trench sidewall will suffice in providing a direct transfer of the footing load to the underlying bedrock.

The effectiveness of this operation will depend on the ability of maintaining vertical trenches until the lean concrete can be poured. It is suggested that once the bottom of the excavation is exposed, an assessment should be completed to determine the water infiltration and stability of the excavation sidewalls extending to the bedrock surface.

The trench excavation should be at least 300 mm wider than all sides of the footing at the base of the excavation. The excavation bottom should be relatively clean using the hydraulic shovel only (workers will not be permitted in the excavation below a 1.5 m depth). Once approved by the geotechnical engineer, lean concrete can be poured up to the proposed founding elevation.

#### **Bedrock/Soil Transition**

Where a building is founded partly on bedrock and partly on soil, it is recommended to decrease the soil bearing resistance value by 25% for the footings placed on soil bearing media to reduce the potential long term total and differential settlements. Also, at the soil/bedrock and bedrock/soil transitions, it is recommended that the upper 0.5 m of the bedrock be removed for a minimum length of 2 m (on the bedrock side) and replaced with nominally compacted OPSS Granular A or Granular B Type II material. The width of the sub-excavation should be at least the proposed footing width plus 0.5 m. Steel reinforcement, extending at least 3 m on both sides of the 2 m long transition, should be placed in the top part of the footings and foundation walls.

#### Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to an engineered fill, stiff silty clay or glacial till above the groundwater table when a plane extending horizontally and vertically from the underside of the footing at a minimum of 1.5H:1V passing through in situ soil of the same or higher bearing capacity as the bearing medium soil.

#### Permissible Grade Raise Restriction

Based on the current borehole information, a **permissible grade raise restriction of 2 m** is recommended for the proposed buildings and settlement sensitive structures where founded over a silty clay deposit. A post-development groundwater lowering of 0.5 m was assumed for our calculations.

## 5.4 Design for Earthquakes

The site class for seismic site response can be taken as **Class C** for the foundations considered at this site. However, a higher site class, such as Class A or B can be provided if a site specific shear wave velocity test is completed to confirm the seismic site classification. The soils underlying the subject site are not susceptible to liquefaction. Refer to the latest revision of the Ontario Building Code for a full discussion of the earthquake design requirements.

## 5.5 Basement Slab

The basement area for the proposed project will be mostly parking and the recommended pavement structure noted in Subsection 5.7 will be applicable. However, if storage or other uses of the lower level where a concrete floor slab will be constructed, the upper 200 mm of sub-slab fill is recommended to consist of 19 mm clear crushed stone. The upper 200 mm of sub-slab fill is recommended to consist of OPSS Granular A crushed stone for slab on grade construction. All backfill material within the footprint of the proposed building(s) should be placed in maximum 300 mm thick loose layers and compacted to a minimum of 98% of the SPMDD.

Any soft areas should be removed and backfilled with appropriate backfill material prior to placing any fill. OPSS Granular A or Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab. All backfill material within the footprint of the proposed building(s) should be placed in maximum 300 mm thick loose layers and compacted to a minimum of 98% of the SPMDD.

A subfloor drainage system, consisting of lines of perforated drainage pipe subdrains connected to a positive outlet, should be provided in the clear stone under the lower basement floor (discussed in Subsection 6.1).

## 5.6 Basement Wall

There are several combinations of backfill materials and retained soils that could be applicable for the proposed structure's basement walls. However, the conditions can be well-represented by assuming the retained soil consists of a material with an angle of internal friction of 30 degrees and a dry unit weight of 20 kN/m<sup>3</sup>.

The foundation wall is anticipated to be provided with a perimeter drainage system; therefore, the retained soils should be considered drained. For the undrained conditions, the applicable effective unit weight of the retained soil can be designed with13 kN/m<sup>3</sup>. A hydrostatic pressure should be added to the total static earth pressure when calculating the effective unit weight. The total earth pressure ( $P_{AE}$ ) includes both the static earth pressure component ( $P_o$ ) and the seismic component ( $\Delta P_{AE}$ ).

Two distinct conditions, static and seismic, should be reviewed for design calculations. The parameters for design calculations for the two conditions are presented below.

## **Static Conditions**

The static horizontal earth pressure ( $p_o$ ) could be calculated with a triangular earth pressure distribution equal to  $K_o \cdot \gamma \cdot H$  where:

- $K_{o}$  = at-rest earth pressure coefficient of the applicable retained soil, 0.5
- $\gamma$  = unit weight of fill of the applicable retained soil (kN/m<sup>3</sup>)
- H = height of the wall (m)

An additional pressure with a magnitude equal to  $K_0 \cdot q$  and acting on the entire height of the wall should be added to the above formula for any surcharge loading, q (kPa), that may be placed at ground surface adjacent to the wall. The surcharge pressure should only be applicable for static analyses and not be calculated in conjunction with the seismic loading case. Actual earth pressures could be higher than the "at-rest" case if care is not exercised during the compaction of the backfill materials to maintain a minimum separation of 0.3 m from the walls with the compaction equipment.

## **Seismic Conditions**

The total seismic force ( $P_{AE}$ ) includes both the earth force component ( $P_o$ ) and the seismic component ( $\Delta P_{AE}$ ).

The seismic earth force ( $\Delta P_{AE}$ ) could be calculated using 0.375  $\cdot a_c \cdot \gamma \cdot H^2/g$  where:

 $a_c = (1.45 - a_{max}/g)a_{max}$   $\gamma = unit weight of fill of the applicable retained soil (kN/m<sup>3</sup>)$ H = height of the wall (m)g = gravity, 9.81 m/s<sup>2</sup>

The peak ground acceleration,  $(a_{max})$ , for the Ottawa area is 0.32g according to OBC 2012. The vertical seismic coefficient is assumed to be zero. The earth force component (P<sub>o</sub>) under seismic conditions could be calculated using P<sub>o</sub> = 0.5 K<sub>o</sub>  $\gamma$  H<sup>2</sup>, where K<sub>o</sub> = 0.5 for the soil conditions presented above.

The total earth force  $(P_{AE})$  is considered to act at a height, h (m), from the base of the wall, where:

 $h = \{P_{o} \cdot (H/3) + \Delta P_{AE} \cdot (0.6 \cdot H)\} / P_{AE}$ 

The earth forces calculated are unfactored. For the ULS case, the earth loads should be factored as live loads, as per OBC 2012.

## 5.7 Pavement Structure

For design purposes, the pavement structure presented in the following tables could be used for the design of car only parking areas and access lanes, if required.

| Table 3 - Recommended Flexible Pavement Structure - At-Grade Parking Areas |                                                                                            |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| Thickness (mm)                                                             | Material Description                                                                       |  |
| 50                                                                         | Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete                                    |  |
| 150                                                                        | BASE - OPSS Granular A Crushed Stone                                                       |  |
| 300                                                                        | SUBBASE - OPSS Granular B Type II                                                          |  |
|                                                                            | SUBGRADE - In situ soil, or OPSS Granular B Type I or II material placed over in situ soil |  |

| Table 4 - Recommended Flexible Pavement Structure -   Access Lanes and Heavy Truck Parking Areas |                                                                                                   |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| Thickness (mm)                                                                                   | Material Description                                                                              |  |
| 40                                                                                               | Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete                                           |  |
| 50                                                                                               | Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete                                         |  |
| 150                                                                                              | BASE - OPSS Granular A Crushed Stone                                                              |  |
| 450                                                                                              | SUBBASE - OPSS Granular B Type II                                                                 |  |
|                                                                                                  | <b>SUBGRADE</b> - In situ soil, or OPSS Granular B Type I or II material placed over in situ soil |  |

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be sub-excavated and replaced with OPSS Granular B Type II material.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 98% of the SPMDD.

## 6.0 Design and Construction Precautions

## 6.1 Foundation Drainage and Backfill

## Foundation Drainage

A perimeter foundation drainage system is recommended to be provided for the proposed structures. The composite drainage system (such as Miradrain G100N, Delta Drain 6000 or an approved equivalent) is recommended to extend to the footing level. Sleeves, 150 mm diameter, at 3 m centres are recommended to be placed in the footing or at the foundation wall/footing interface for blind sided pours to allow the infiltration of water to flow to the interior perimeter drainage pipe. The perimeter drainage pipe and underfloor drainage system should direct water to sump pit(s) within the lower basement area.

#### Underfloor Drainage

Underfloor drainage is recommend to control water infiltration for the proposed structures. For design purposes, Paterson recommends 150 mm diameter PVC, corrugated, perforated pipes be placed at 3 to 6 m centres. The spacing of the underfloor drainage system should be confirmed at the time of completing the excavation when water infiltration can be better assessed.

#### Adverse Effects of Dewatering on Adjacent Properties

Due to the low permeability of the subsoils profile, any dewatering will be considered relatively minor as a result of the proposed construction. Therefore, adverse effects to the surrounding buildings or properties are not expected with respect to any groundwater lowering.

## Foundation Backfill

Backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls where frost heave sensitive structures, such as a concrete sidewalk, will be placed. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material may be used for this purpose. A composite drainage system, such as Delta Drain 6000, Miradrain G100 or an approved equivalent, should be placed against the foundation wall to promote drainage toward the perimeter drainage pipe.

## 6.2 **Protection of Footings Against Frost Action**

Perimeter footings of heated structures are recommended to be protected against the deleterious effects of frost action. A minimum of 1.5 m of soil cover alone, or a combination of soil cover and foundation insulation should be provided.

Exterior unheated footings, such as isolated exterior piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure proper and require additional protection, such as soil cover of 2.1 m or a combination of soil cover and foundation insulation.

The parking garage should not require protection against frost action due to the founding depth. Unheated structures, such as the access ramp wall footings, may be required to be insulated against the deleterious effect of frost action. A minimum of 2.1 m of soil cover alone, or a minimum of 0.6 m of soil cover, in conjunction with foundation insulation, should be provided.

## 6.3 Excavation Side Slopes

#### Temporary Side Slopes

The temporary excavation side slopes should either be excavated to acceptable slopes or retained by shoring systems from the beginning of the excavation until the structure is backfilled.

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be excavated at 1H:1V or shallower. The shallower slope is required for excavation below groundwater level. The subsurface soil is considered to be mainly Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should maintain safe working distance from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

A trench box is recommended to be installed at all times to protect personnel working in trenches with steep or vertical sides. Services are expected to be installed by "cut and cover" methods and excavations should not be remain exposed for extended periods of time.

#### **Temporary Shoring**

Temporary shoring may be required for the overburden soil to complete the required excavations where insufficient room is available for open cut methods. The shoring requirements designed by a structural engineer specializing in those works will depend on the excavation depths, the proximity of the adjacent structures and the elevation of the adjacent building foundations and underground services. The design and implementation of these temporary systems will be the responsibility of the excavation contractor and their design team. Inspections and approval of the temporary system will also be the responsibility of the designer. Geotechnical information provided below is to assist the designer in completing a suitable and safe shoring system. The designer should take into account the impact of a significant precipitation event and designate design measures to ensure that a precipitation will not negatively impact the shoring system or soils supported by the system. Any changes to the approved shoring design system should be reported immediately to the owner's structural designer prior to implementation.

The temporary system could consist of soldier pile and lagging system or interlocking steel sheet piling. Any additional loading due to street traffic, construction equipment, adjacent structures and facilities, etc., should be included to the earth pressures described below. These systems could be cantilevered, anchored or braced. Generally, it is expected that the shoring systems will be provided with tie-back rock anchors to ensure their stability. The shoring system is recommended to be adequately supported to resist toe failure and inspected to ensure that the sheet piles extend well below the excavation base. It should be noted if consideration is being given to utilizing a raker style support for the shoring system that lateral movements can occur and the structural engineer should ensure that the design selected minimizes these movements to tolerable levels.

| Table 6 - Soil Parameters                             |        |  |
|-------------------------------------------------------|--------|--|
| Parameters                                            | Values |  |
| Active Earth Pressure Coefficient (K <sub>a</sub> )   | 0.33   |  |
| Passive Earth Pressure Coefficient $(K_p)$            | 3      |  |
| At-Rest Earth Pressure Coefficient ( $K_o$ )          | 0.5    |  |
| Dry Unit Weight ( $\gamma$ ), kN/m <sup>3</sup>       | 20     |  |
| Effective Unit Weight ( $\gamma$ ), kN/m <sup>3</sup> | 13     |  |

The earth pressures acting on the shoring system may be calculated with the following parameters.

The active earth pressure should be calculated where wall movements are permissible while the at-rest pressure should be calculated if no movement is permissible. The dry unit weight should be calculated above the groundwater level while the effective unit weight should be calculated below the groundwater level.

The hydrostatic groundwater pressure should be included to the earth pressure distribution wherever the effective unit weight are calculated for earth pressures. If the groundwater level is lowered, the dry unit weight for the soil/bedrock should be calculated full weight, with no hydrostatic groundwater pressure component.

For design purposes, the minimum factor of safety of 1.5 should be calculated.

## 6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications and Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

A minimum of a 150 mm layer of OPSS Granular A crushed stone should be placed for pipe bedding for sewer and water pipes for a soil subgrade. The bedding thickness should be increased to 300 mm for areas where the subgrade consists of bedrock. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to at least 300 mm above the obvert of the pipe should consist of OPSS Granular A. The bedding and cover materials should be placed in maximum 300 mm thick lifts compacted to a minimum of 95% of the SPMDD.

The site excavated material may be placed above cover material if the excavation operations are completed in dry weather conditions and the site excavated material is approved by the geotechnical consultant. All cobbles greater than 200 mm in the longest dimension should be removed prior to the site materials being reused.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to reduce differential frost heaving. The trench backfill should be placed in maximum 225 mm thick loose lifts and compacted to a minimum of 95% of the SPMDD. Within the frost zone (1.8 m below finished grade), non frost susceptible materials should be used when backfilling trenches below the original bedrock level.

Clay seals are recommended for the subject site. The seals should be a minimum of 1.5 m long (in the trench direction) and should extend from trench wall to trench wall. Generally, the seals should extend from the frost line and fully penetrate the bedding, subbedding and cover material. The barriers should consist of relatively dry and compactable brown silty clay placed in maximum 225 mm thick loose layers and compacted to a minimum of 95% of the SPMDD. The clay seals should be placed at the site boundaries, roadway intersections and at a maximum distance of every 50 m in the service trenches.

## 6.5 Groundwater Control

#### Groundwater Control for Building Construction

It is anticipated that groundwater infiltration into the excavations should be low and controllable using open sumps. Pumping from open sumps should be sufficient to control the groundwater influx through the sides of shallow excavations. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

A temporary Ministry of the Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MECP.

For typical ground or surface water volumes, being pumped during the construction phase, between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.

#### Long-term Groundwater Control

Any groundwater encountered along the buildings' perimeter or sub-slab drainage system will be directed to the proposed buildings' cistern/sump pit. Provided the proposed groundwater infiltration control system is properly implemented and approved by the geotechnical consultant at the time of construction, the expected long-term groundwater flow should be low (i.e. less than 25,000 L/day) with peak periods noted after rain events. A more accurate estimate can be provided at the time of construction, once groundwater infiltration levels are observed. The long-term groundwater flow is anticipated to be controllable using conventional open sumps.

#### Impacts on Neighbouring Properties

A local groundwater lowering is anticipated under short-term conditions due to construction of the proposed buildings. It should be noted that the neighbouring multistorey buildings are expected to be founded over the bedrock surface and would not be affected by the short-term groundwater lowering during construction. The water table is located within the glacial till layer and/or bedrock surface. Based on the existing groundwater level, the extent of any significant groundwater lowering will take place within a limited range of the proposed building. Based on the proximity of neighbouring buildings and minimal zone impacted by the groundwater lowering, the proposed development will not negatively impact the neighbouring structures or City infrastructures.

## 6.6 Winter Construction

Precautions must be provided if winter construction is considered for this project. Where excavations are completed in proximity of existing structures which may be adversely affected due to the freezing conditions. In particular, where a shoring system is constructed, the soil behind the shoring system will be subjected to freezing conditions and could result in heaving of the structure(s) placed within or above frozen soil. Provisions in the contract documents should be provided to protect the excavation walls from freezing, if applicable.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the installation of straw, propane heaters and tarpaulins or other suitable means. The excavation base should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be considered if such activities are to be completed during freezing conditions. Additional information could be provided, if required.

## 6.7 Corrosion Potential and Sulphate

The results on analytical testing show that the sulphate content is less than 0.1%. The results are indicative that Type 10 Portland Cement (Type GU) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity in indicative of a low to moderate corrosive environment.

## 6.8 Limit of Hazard Lands

#### **Field Observations**

Paterson conducted a site visit on January 13, 2019 to review the slope located along the west boundary of the subject site, assess the current slope conditions and confirm the grades provided in the existing topographic mapping. A section of Poole Creek is located within the west portion of the site and shown in Drawing PG4772-1 - Test Hole Location Plan.

Three (3) slope cross-sections were reviewed in the field as the worst case scenarios. The cross section locations are presented on Drawing PG4772-1 - Test Hole Location Plan in Appendix 2. Generally, the riverbanks along both sides of Poole Creek are currently well vegetated and were observed in an acceptable condition. Poole Creek was observed within a 20 to 40 m wide flood plain. The slope along the east side of Poole Creek ranged in height between 3 and 5 m with an inclination ranging between 2.3H:1V and 3.3H:1V. The upper slope was observed to be well vegetated with little to no signs of active surficial erosion.

## **Slope Stability Analysis**

## Limit of Hazard Lands

The slope condition was reviewed based on available topographic mapping along the east side slopes of Poole Creek within the west portion of the subject development. A total of 3 slope cross-sections were assessed as the worst case scenarios. The cross section locations are presented on Drawing PG4772-1 - Test Hole Location Plan in Appendix 2.

A slope stability assessment was carried out to determine the required stable slope allowance setback from the top of slope based on a factor of safety of 1.5. A toe erosion and 6 m erosion access allowances were also included in the determination of limits of hazard lands and are discussed below. The proposed limit of hazard lands (as shown on Drawing PG4772-1 - Test Hole Location Plan) includes:

- a geotechnical slope stability allowance with a factor of safety of 1.5
- a toe erosion allowance
- a 6 m erosion access allowance and top of slope

#### Slope Stability Analysis

The analysis of the stability of the slope sections was carried out using SLIDE, a computer program which permits a two-dimensional slope stability analysis using several methods including the Bishop's method, which is a widely used and accepted analysis method. The program calculates a factor of safety, which represents the ratio of the forces resisting failure to those favoring failure. Theoretically, a factor of safety of 1.0 represents a condition where the slope is stable. However, due to intrinsic limitations of the calculation methods and the variability of the subsoil and groundwater conditions, a factor of safety greater than one is usually required to ascertain than the risks of failure are acceptable. A minimum factor of safety of 1.5 is generally recommended for conditions where the failure of the slope would endanger permanent structures.

An analysis considering seismic loading was also completed. A horizontal acceleration of 0.16G was considered for the sections for the seismic loading condition. A factor of safety of 1.1 is considered to be satisfactory for stability analyses including seismic loading.

The cross-sections were analysed taking into account a groundwater level at ground surface, which represents a worse-case scenario that can be reasonably expected to occur in cohesive soils. The stability analysis assumes full saturation of the soil with groundwater flow parallel to the slope face. Subsoil conditions at the cross-sections were inferred based on the findings at borehole locations along the top of slope and general knowledge of the area's geology.

#### Stable Slope Allowance

The results of the stability analysis for static conditions at Sections A through C are presented in Figures 2A to 4A in Appendix 2. All the reviewed slope sections along the subject creek were noted to be shaped to at least a 2.3H:1V. Based on the soil conditions observed and the results of the slope stability analysis, the slope stability factor of safety was calculated to be 1.5 or greater for all the slope sections which indicates that a stable slope allowance is not required for the subject slope.

The results of the analyses including seismic loading are shown in Figures 2B to 4B for the slope sections. The results indicate that the factor of safety for the sections are greater than 1.1.

It should be noted that the existing vegetation on the slope face should not be removed as it contributes to the stability of the slope and reduces erosion. If the existing vegetation needs to be removed, it is recommended that a 100 to 150 mm of topsoil mixed with a hardy seed and/or topped with an erosion control blanket be which can be placed across the exposed slope face.

#### Toe Erosion and Erosion Access Allowance

The toe erosion allowance for the valley corridor wall slope was based on the cohesive nature of the top layers of the subsoils, the observed current erosional activities and the width and location of the current watercourse. It should be noted that if the flood plain is measured to be greater than 20 m, no toe erosion will be required. Therefore, based on the above factors, no toe erosion allowance is considered for the subject slope.

An erosion access allowance of 6 m is required from the top of slope to ensure access is provided should future maintenance to the slope face is required. The limit of hazard lands, which includes these allowances, is indicated on Drawing PG4772-1 - Test Hole Location Plan in Appendix 2.

#### Proposed Conditions

An analysis was conducted following a review of the proposed grade raise and development. It is understood that storm water storage tanks are proposed on the north portion of the site. The proposed conditions are presented in Figure 2C, 3C and 4C in Appendix 1. Following a review of the proposed conditions, the slope will not be impacted by the proposed development.

## 6.9 Landscaping Considerations

#### **Tree Planting Restrictions**

According to the City of Ottawa Guidelines for tree planting, where a sensitive silty clay deposit is present within the vicinity of the site, tree planting restrictions should be determined. However, for this site, based on the founding medium of the underground parking level which will occupy the majority of the site, tree planting restrictions are not required from a geotechnical perspective.
### 6.10 Storm water storage tanks

Based on existing servicing drawings, it is understood that storm water storage tanks are proposed along the north portion of the site. The tanks are approximately 3.6 m wide, 3.6 m deep and 9.1 m long. The tanks are expected to be fully buried with an invert level of approximately 99.7 m with a soil cover of approximately 1 m above the top of the tanks. Frost protection will not be required due to the founding depth.

Due to the depth of the storm tanks and the estimated depth of the groundwater table, the tanks should be waterproofed up to 1 m above the estimated groundwater table. It should be noted that the fill placed around and above the water tanks will provide sufficient resistance to the expected buoyancy forces resulting from the long-term groundwater table. Therefore, the proposed water storage tanks are considered acceptable from a geotechnical perspective.

Due to the expected founding depth, the tanks should be installed on OPSS Granular A or Granular B Type II extending to the bedrock surface and compacted to a minimum 98% of the material's SPMDD.

Reference should be made to subsection 6.8 for slope stability analysis and limit of hazard lands setback for the development. The setback from the top of slope and the tanks is sufficient, therefore, the slope will not be negatively impacted by the proposed storm water storage tanks.

## 7.0 Recommendations

A materials testing and observation services program is a requirement for the provided foundation design data to be applicable. The following aspects of the program should be performed by the geotechnical consultant:

- Review detailed grading plan(s) from a geotechnical perspective.
- Review groundwater conditions at the time of construction to determine if waterproofing is required.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials used.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- **G** Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that the construction work has been conducted in general accordance with the above recommendations could be issued, upon request, following the completion of a satisfactory materials testing and observation program by the geotechnical consultant.

## 8.0 Statement of Limitations

The recommendations provided in the report are in accordance with Paterson's present understanding of the project. Paterson request permission to review the recommendations when the drawings and specifications are completed.

A geotechnical investigation is a limited sampling of a site. Should any conditions encountered during construction differ from the borehole locations, Paterson requests immediate notification to permit reassessment of the recommendations provided herein.

The recommendations provided should only be used by the design professionals associated with this project. The recommendations are not intended for contractors bidding on or constructing the project. The latter should evaluate the factual information provided in the report. The contractor should also determine the suitability and completeness for the intended construction schedule and methods. Additional testing may be required for the contractors purpose.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Nautical Lands Group or their agent(s) is not authorized without review by Paterson for the applicability of our recommendations to the altered use of the report.

#### Paterson Group Inc.

Owen Canton, E.I.T.

#### **Report Distribution:**

- Nautical Lands Group (Digital copy)
- Paterson Group (1 copy)



Faisal I. Abou-Seido, P.Eng.

# **APPENDIX 1**

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

ANALYTICAL TESTING RESULTS

| natersonar                            |         | ır     | Con   | sulting       |                | SOIL                               | - PRO                 | FILE AI                     |                               | ST DATA                          |               |
|---------------------------------------|---------|--------|-------|---------------|----------------|------------------------------------|-----------------------|-----------------------------|-------------------------------|----------------------------------|---------------|
| 154 Colonnade Road South, Ottawa, Ont | tario ł | (2E 7J | Eng   | ineers        | G<br>P<br>O    | eotechnic<br>roposed N<br>ttawa Or | al Invest<br>Mixed-Us | tigation<br>e Develop       | oment - 20                    | ) Cedarow C                      | t.            |
| DATUM Ground surface elevations       | prov    | ided b | y Anr | nis, O'S      | Sulliv         | van, Vollet                        | pekk Ltd.             |                             | FILE NO.                      | DC 4770                          |               |
| REMARKS                               |         |        |       |               |                |                                    |                       |                             | HOLE NO                       | PG4//2                           |               |
| BORINGS BY CME 55 Power Auger         |         |        |       | DA            | TE             | February                           | 2, 2022               |                             |                               | BH1-22                           |               |
| SOIL DESCRIPTION                      | PLOT    |        | SAN   |               |                | DEPTH                              | ELEV.                 | Pen. R<br>5                 | esist. Bl                     | ows/0.3m<br>a. Cone              | eter<br>ction |
|                                       | TRATA   | ТҮРЕ   | UMBER | ~ %<br>COVER} | VALUE<br>r rod |                                    | (,                    | • V                         | Vater Cor                     | ntent %                          | Piezom        |
| GROUND SURFACE                        | ß       |        | N     | RE            | z              | 0-                                 | -103 32               | 20                          | 40 6                          | 50 80<br>                        | шО            |
|                                       |         |        |       |               |                |                                    | 100.02                |                             |                               |                                  |               |
|                                       |         |        |       |               |                |                                    |                       |                             |                               |                                  |               |
|                                       |         |        |       |               |                |                                    |                       |                             |                               |                                  | -             |
|                                       |         |        |       |               |                | 1-                                 | 102.32                | · · · · · · · · · · · · · · |                               |                                  | -             |
|                                       |         |        |       |               |                |                                    |                       |                             |                               |                                  |               |
| OVERBURDEN                            |         |        |       |               |                |                                    |                       |                             |                               |                                  |               |
|                                       |         |        |       |               |                | 2-                                 | 101.32                |                             |                               |                                  |               |
|                                       |         |        |       |               |                |                                    |                       |                             |                               |                                  |               |
|                                       |         |        |       |               |                |                                    |                       |                             |                               |                                  |               |
|                                       |         |        |       |               |                | 3-                                 | 100.32                |                             |                               |                                  | -             |
|                                       |         |        |       |               |                |                                    |                       |                             |                               |                                  |               |
| <u>3.73</u>                           |         |        |       |               |                |                                    |                       |                             |                               |                                  | -             |
|                                       |         | _      |       |               |                | 4-                                 | -99.32                |                             |                               |                                  |               |
|                                       |         |        |       |               |                |                                    |                       |                             |                               |                                  |               |
|                                       |         | RC     | 1     | 100           | 100            | 1                                  |                       |                             |                               |                                  |               |
|                                       |         |        |       |               |                | 5                                  | 00.00                 |                             |                               |                                  |               |
|                                       |         |        |       |               |                | 5-                                 | -90.32                |                             |                               |                                  |               |
| BEDROCK                               |         | _      |       |               |                |                                    |                       |                             |                               |                                  |               |
|                                       |         |        |       |               |                |                                    |                       |                             |                               |                                  |               |
|                                       |         | BC     | 2     | 100           | 100            | 6-                                 | -97.32                |                             |                               |                                  |               |
|                                       |         |        | _     |               |                |                                    |                       |                             |                               |                                  |               |
|                                       |         |        |       |               |                |                                    |                       |                             |                               |                                  |               |
| 6.99<br>End of Borehole               |         |        |       |               |                |                                    |                       |                             |                               |                                  |               |
|                                       |         |        |       |               |                |                                    |                       |                             |                               |                                  |               |
|                                       |         |        |       |               |                |                                    |                       |                             |                               |                                  |               |
|                                       |         |        |       |               |                |                                    |                       | 20<br>Shea<br>▲ Undist      | 40 €<br>ar Streng<br>turbed △ | 50 80 1<br>th (kPa)<br>Remoulded | ⊣<br>00       |

| natersonar                           |         | ır     | Con   | sulting     |                | SOIL                               | - PRO                                                   | FILE AND TEST                                    | DATA                               |                    |
|--------------------------------------|---------|--------|-------|-------------|----------------|------------------------------------|---------------------------------------------------------|--------------------------------------------------|------------------------------------|--------------------|
| 154 Colonnade Road South, Ottawa, On | tario ł | 2E 7J  | Eng   | ineers      | G<br>P<br>C    | eotechnic<br>roposed N<br>ttawa Or | al Invest<br>/lixed-Us                                  | gation<br>e Development - 20 C                   | edarow Ct                          |                    |
| DATUM Ground surface elevations      | prov    | ided b | y Anr | nis, O'S    | Sulliv         | van, Vollet                        | pekk Ltd.                                               | FILE NO.                                         | DC/770                             |                    |
| REMARKS                              |         |        |       |             |                |                                    |                                                         | HOLE NO.                                         | PG4//2                             |                    |
| BORINGS BY CME 55 Power Auger        | 1       | 1      |       | DA          | TE             | February                           | 2, 2022                                                 |                                                  | BH2-22                             |                    |
| SOIL DESCRIPTION                     | PLOT    |        | SAN   | <b>IPLE</b> |                | DEPTH                              | ELEV.                                                   | Pen. Resist. Blow<br>• 50 mm Dia. 0              | rs/0.3m<br>Cone                    | eter<br>ction      |
|                                      | TRATA   | гурб   | UMBER | %<br>COVERY | VALUE<br>r ROD |                                    | (11)                                                    | • Water Conte                                    | nt %                               | iezome<br>Construe |
| GROUND SURFACE                       | Ω       |        | Ń     | REC         | zö             | 0-                                 | -103 34                                                 | 20 40 60                                         | 80                                 | шU                 |
| OVERBURDEN                           |         | RC     | 1     | 100         | 100            | - 0-<br>1-<br>2-<br>3-             | - 103.34<br>- 102.34<br>- 101.34<br>- 100.34<br>- 99.34 |                                                  |                                    |                    |
| BEDROCK                              |         | RC     | 2     | 97          | 82             | 5-                                 | -98.34                                                  |                                                  |                                    |                    |
| End of Borehole                      |         |        |       |             |                |                                    |                                                         | 20 40 60<br>Shear Strength<br>▲ Undisturbed △ Re | 80 10<br>( <b>kPa)</b><br>emoulded | 00                 |

| natoreonar                           |       | In     | Con    | sulting      |               | SOIL                           | - PRO                  | FILE AI               |               | EST                | DATA          |       |
|--------------------------------------|-------|--------|--------|--------------|---------------|--------------------------------|------------------------|-----------------------|---------------|--------------------|---------------|-------|
|                                      |       |        | Eng    | ineers       | Ge<br>Pr      | eotechnic<br>oposed N          | al Invest<br>/lixed-Us | tigation<br>e Develop | ment          | - 20 Ce            | darow Ct      | t.    |
| 154 Colonnade Road South, Ottawa, On |       | ided b | 5<br>  | nie N'S      |               | t <b>tawa, Or</b><br>an Vollet | ntario                 | •                     |               | NO                 |               |       |
| REMARKS                              | piov  |        | y Aiii | 113, 00      | univ          | an, voner                      | JERK LIU.              |                       |               | P                  | G4772         |       |
| BORINGS BY CME 55 Power Auger        |       |        |        | DA           | TE            | February                       | 2, 2022                |                       | HOL           | <sup>Е NO.</sup> В | H3-22         |       |
|                                      | от    |        | SAN    | <b>I</b> PLE |               | DEDTU                          |                        | Pen. R                | esist.        | Blows              | /0.3m         | 'n    |
| SOIL DESCRIPTION                     | A PL  |        | ĸ      | RY           | ЩО            | (m)                            | (m)                    | • 5                   | 60 mm         | Dia. Co            | one           | meter |
|                                      | TRAT. | TYPE   | UMBEI  | COVE)        | VALU<br>r RQI |                                |                        | • •                   | Vater         | Conten             | t %           | lezol |
| GROUND SURFACE                       | ō     |        | IN     | REC          | zö            | - 0-                           | -103.81                | 20                    | 40            | 60                 | 80            | шU    |
|                                      |       |        |        |              |               |                                |                        |                       |               |                    |               |       |
|                                      |       |        |        |              |               |                                |                        |                       |               |                    |               | -     |
|                                      |       |        |        |              |               | 1-                             | -102.81                |                       |               |                    |               | -     |
|                                      |       |        |        |              |               |                                |                        |                       |               |                    |               |       |
|                                      |       |        |        |              |               |                                |                        |                       |               |                    |               |       |
|                                      |       |        |        |              |               | 2-                             | -101.81                |                       |               |                    |               |       |
| 2. <u>29</u>                         |       |        |        |              |               |                                |                        |                       |               |                    |               | -     |
|                                      |       | RC     | 1      | 100          | 64            |                                |                        |                       |               |                    |               |       |
|                                      |       |        |        |              |               | 3-                             | 100.81                 |                       |               |                    |               |       |
|                                      |       |        |        |              |               |                                |                        |                       |               |                    |               |       |
| BEDROCK                              |       | RC     | 2      | 100          | 95            |                                |                        |                       |               |                    |               |       |
|                                      |       |        |        |              |               | 4-                             | -99.81                 |                       |               |                    |               |       |
|                                      |       | RC     | 3      | 97           | 97            |                                |                        |                       |               |                    |               |       |
| <u>4.90</u>                          |       |        |        |              |               |                                |                        |                       |               |                    |               |       |
| End of Borehole                      |       |        |        |              |               |                                |                        |                       |               |                    |               |       |
|                                      |       |        |        |              |               |                                |                        |                       |               |                    |               |       |
|                                      |       |        |        |              |               |                                |                        |                       |               |                    |               |       |
|                                      |       |        |        |              |               |                                |                        |                       |               |                    |               |       |
|                                      |       |        |        |              |               |                                |                        |                       |               |                    |               |       |
|                                      |       |        |        |              |               |                                |                        |                       |               |                    |               |       |
|                                      |       |        |        |              |               |                                |                        |                       |               |                    |               |       |
|                                      |       |        |        |              |               |                                |                        |                       |               |                    |               |       |
|                                      |       |        |        |              |               |                                |                        |                       |               |                    |               |       |
|                                      |       |        |        |              |               |                                |                        | 20<br>She             | 40<br>ar Stre | 60<br>enath (k     | 80 1(<br>(Pa) | 00    |
|                                      |       |        |        |              |               |                                |                        | ▲ Undis               | turbed        | ∆ Ren              | noulded       |       |

| natersonar                                        |         | In     | Con   | sulting    |                | SOIL                 | PRO                    | FILE AI                | ND TE                         | ST DATA                          |                  |
|---------------------------------------------------|---------|--------|-------|------------|----------------|----------------------|------------------------|------------------------|-------------------------------|----------------------------------|------------------|
| 154 Colonnade Road South, Ottawa, Ont             | tario ł | (2E 7J | Eng   | ineers     | Ge<br>Pro      | otechnic<br>oposed N | al Invest<br>/lixed-Us | igation<br>e Develop   | ment - 20                     | ) Cedarow C                      | t.               |
| DATUM Ground surface elevations                   | prov    | ided b | y Anr | nis, O'S   | ulliva         | an, Vollet           | ekk Ltd.               |                        | FILE NO.                      | DC4772                           |                  |
| REMARKS                                           |         |        |       |            |                |                      |                        |                        | HOLE NO                       | PG4//2                           |                  |
| BORINGS BY CME 55 Power Auger                     |         |        |       | DA         | TE 2           | 2019 Jan             | uary 14                |                        |                               | BH 1                             |                  |
| SOIL DESCRIPTION                                  | PLOT    |        | SAN   |            |                | DEPTH                | ELEV.                  | Pen. R<br>● 5          | esist. Bl<br>0 mm Dia         | ows/0.3m<br>a. Cone              | er<br>ion        |
|                                                   | TRATA   | ТҮРЕ   | UMBER | %<br>COVER | VALUE<br>r RQD | ()                   | ()                     | • <b>v</b>             | Vater Cor                     | ntent %                          | ezomete          |
| GROUND SURFACE                                    |         | 8      | 2     | RE         | z <sup>o</sup> | 0-                   | -104.37                | 20                     | 40 6                          | 60 80                            | ы<br>С<br>Т<br>С |
| FILL: Compact brown silty sand, some gravel       |         |        | 1     |            |                |                      |                        |                        |                               |                                  |                  |
|                                                   |         | SS     | 2     | 38         | 15             | 1-                   | -103.37                |                        |                               |                                  |                  |
| 1.52                                              |         |        |       |            |                |                      |                        |                        |                               |                                  |                  |
|                                                   |         | SS     | 3     | 42         | 7              | 2-                   | -102.37                |                        |                               |                                  |                  |
| Very stiff, brown <b>SILTY CLAY,</b> trace gravel |         | ss     | 4     | 58         | 4              |                      |                        |                        |                               |                                  |                  |
|                                                   |         |        |       |            |                | 3-                   | -101.37                |                        |                               | 1                                | 29               |
| <u>3.73</u><br>End of Borehole                    |         |        |       |            |                |                      |                        |                        |                               |                                  |                  |
| Practical refusal to augering at 3.73m depth      |         |        |       |            |                |                      |                        |                        |                               |                                  |                  |
| (BH dry - Jan 29/19)                              |         |        |       |            |                |                      |                        |                        |                               |                                  |                  |
|                                                   |         |        |       |            |                |                      |                        | 20<br>Shea<br>▲ Undist | 40 €<br>ar Streng<br>turbed △ | 50 80 1<br>th (kPa)<br>Remoulded | ⊣<br>00          |

| natersonar                                   |         | ır     | Con    | sulting    |         | SOIL                                | - PRO                            | FILE AI                | ND TES                           | T DATA                               |                     |
|----------------------------------------------|---------|--------|--------|------------|---------|-------------------------------------|----------------------------------|------------------------|----------------------------------|--------------------------------------|---------------------|
| 154 Colonnade Road South, Ottawa, On         | tario ł | (2E 7J | Eng    | ineers     | P<br>C  | eotechnic<br>roposed M<br>ttawa, Or | al Invest<br>/lixed-Us<br>ntario | igation<br>e Develop   | oment - 20                       | Cedarow C                            | t.                  |
| DATUM Ground surface elevations              | prov    | ided b | y Anr  | nis, O'S   | Sulliv  | /an, Vollet                         | oekk Ltd.                        |                        | FILE NO.                         | PG4772                               |                     |
| REMARKS                                      |         |        |        |            |         |                                     |                                  |                        | HOLE NO.                         |                                      | 1                   |
| BORINGS BY CME 55 Power Auger                |         |        |        | DA         | TE      | 2019 Jan                            | uary 14                          |                        |                                  | BH 2                                 |                     |
| SOIL DESCRIPTION                             | PLOT .  |        | SAN    | /IPLE<br>거 | 61      | DEPTH<br>(m)                        | ELEV.<br>(m)                     | Pen. R<br>● 5          | tesist. Blo<br>50 mm Dia.        | ws/0.3m<br>Cone                      | ter<br>tion         |
|                                              | STRATA  | ТҮРЕ   | NUMBER | ECOVER     | N VALUE |                                     |                                  | • V                    | Nater Cont                       | ent %                                | iezome:<br>tonstruc |
| GROUND SURFACE                               |         | XX     |        | <u></u>    | 4       | - 0-                                | 103.59                           | 20                     | 40 60                            | 80                                   |                     |
| FILL: Brown silty sand, some gravel          |         |        | 1      |            |         |                                     |                                  |                        |                                  |                                      |                     |
|                                              |         | ss     | 2      | 33         | 4       | 1-                                  | -102.59                          |                        |                                  |                                      |                     |
| Very stiff to stiff, brown <b>SILTY CLAY</b> |         |        |        |            |         | 2-                                  | - 101.59                         |                        | <u></u>                          |                                      |                     |
| - grey and trace gravel by 3.0m depth        |         |        | 2      |            | 50.     | 3-                                  | - 100.59                         |                        |                                  |                                      |                     |
| 3.51                                         |         | _ 55   | 3      |            | 504     |                                     |                                  |                        |                                  |                                      |                     |
| Practical refusal to augering at 3.51m depth |         |        |        |            |         |                                     |                                  |                        |                                  |                                      |                     |
| (GWL @ 3.05m depth - Jan 29/19)              |         |        |        |            |         |                                     |                                  |                        |                                  |                                      |                     |
|                                              |         |        |        |            |         |                                     |                                  |                        |                                  |                                      |                     |
|                                              |         |        |        |            |         |                                     |                                  | 20<br>Shea<br>▲ Undist | 40 60<br>ar Strengtl<br>turbed △ | 80 1<br>n ( <b>kPa)</b><br>Remoulded | ⊣<br>00             |

| natersonar                                   |         | In     | Con      | sulting  |                 | SOIL                                | PRO                              |                      | ND TES                              | T DATA                              |                               |
|----------------------------------------------|---------|--------|----------|----------|-----------------|-------------------------------------|----------------------------------|----------------------|-------------------------------------|-------------------------------------|-------------------------------|
| 154 Colonnade Road South, Ottawa, Ont        | tario I | 2E 7J  | Eng      | ineers   | G<br>Pr<br>Ot   | eotechnic<br>roposed N<br>ttawa, Or | al Invest<br>/lixed-Us<br>ntario | igation<br>e Develop | oment - 20 (                        | Cedarow C                           | t.                            |
| <b>DATUM</b> Ground surface elevations       | prov    | ided b | y Anr    | nis, O'S | ulliv           | an, Vollet                          | ekk Ltd.                         |                      | FILE NO.                            | PG4772                              |                               |
| REMARKS                                      |         |        |          |          |                 |                                     |                                  |                      | HOLE NO.                            | BH 3                                |                               |
| BORINGS BY CME 55 Power Auger                |         |        |          |          | TE              | 2019 Jan                            | uary 14                          | Der D                |                                     |                                     |                               |
| SOIL DESCRIPTION                             | A PLOT  |        | 5AN<br>& |          | Ĕ٥.             | DEPTH<br>(m)                        | ELEV.<br>(m)                     | Pen. R<br>● 5        | 50 mm Dia.                          | vs/0.3m<br>Cone                     | eter<br>ction                 |
|                                              | STRAT   | ТҮРЕ   | NUMBE    | RECOVE.  | N VALU<br>of RQ |                                     |                                  | 0 N<br>20            | Nater Conte                         | ent %                               | <sup>D</sup> iezom<br>Constru |
|                                              |         | ×      |          |          |                 | - 0-                                | -103.55                          |                      |                                     |                                     |                               |
| TOPSOIL<br>0.33                              |         | AU     | 1        |          |                 |                                     |                                  |                      |                                     |                                     |                               |
|                                              |         | ss     | 2        | 21       | 7               | 1-                                  | -102.55                          |                      |                                     |                                     |                               |
| Very stiff to stiff, brown <b>SILTY CLAY</b> |         |        |          |          |                 |                                     |                                  |                      |                                     |                                     |                               |
|                                              |         | SS     | 3        | 62       | 7               | 2-                                  | -101.55                          |                      |                                     |                                     |                               |
| - grey by 2.3m depth                         |         |        |          |          |                 |                                     |                                  |                      |                                     |                                     |                               |
|                                              |         |        |          |          |                 | 3-                                  | -100.55                          |                      |                                     | <u> </u>                            |                               |
|                                              |         |        |          |          |                 |                                     |                                  | ▲                    |                                     |                                     |                               |
| End of Borehole <u>3.66</u>                  |         |        |          |          |                 |                                     |                                  |                      |                                     |                                     |                               |
| Practical refusal to augering at 3.66m depth |         |        |          |          |                 |                                     |                                  |                      |                                     |                                     |                               |
| (GWL @ 1.81m depth - Jan 29/19)              |         |        |          |          |                 |                                     |                                  |                      |                                     |                                     |                               |
|                                              |         |        |          |          |                 |                                     |                                  |                      |                                     |                                     |                               |
|                                              |         |        |          |          |                 |                                     |                                  | 20<br>She<br>▲ Undis | 40 60<br>ar Strength<br>sturbed △ F | 80 1<br>I <b>(kPa)</b><br>Remoulded | <sup>⊣</sup><br>00            |

| natersonar                                                                         |         |        |        |          |                   |                                  | SOIL PROFILE AND TEST DATA |                       |                                |                                         |                                           |  |
|------------------------------------------------------------------------------------|---------|--------|--------|----------|-------------------|----------------------------------|----------------------------|-----------------------|--------------------------------|-----------------------------------------|-------------------------------------------|--|
| 154 Colonnade Road South, Ottawa, On                                               | tario I | K2E 7J | Eng    | ineers   | Ge<br>Pr          | eotechnic<br>oposed M<br>tawa Or | al Invest<br>/lixed-Us     | igation<br>e Develop  | oment - 20                     | Cedarow C                               | t.                                        |  |
| DATUM Ground surface elevations                                                    | prov    | ided b | y Anr  | nis, O'S | ulliva            | an, Vollet                       | bekk Ltd.                  |                       | FILE NO.                       | <b>PC</b> 4772                          | ,                                         |  |
| REMARKS                                                                            |         |        |        |          |                   |                                  |                            |                       | HOLE NO                        | PG4/72                                  |                                           |  |
| BORINGS BY CME 55 Power Auger                                                      |         |        |        | DA       | TE 2              | 2019 Jan                         | uary 14                    |                       |                                | BH 4                                    |                                           |  |
| SOIL DESCRIPTION                                                                   | PLOT    |        | SAN    |          |                   | DEPTH<br>(m)                     | ELEV.<br>(m)               | Pen. R<br>● 5         | esist. Blo<br>60 mm Dia        | ows/0.3m<br>. Cone                      | g Well<br>ion                             |  |
|                                                                                    | STRATA  | ТҮРЕ   | NUMBER | ECOVER   | I VALUE<br>or RQD |                                  |                            | • <b>v</b>            | Vater Con                      | tent %                                  | lonitorinç<br>onstruct                    |  |
|                                                                                    |         | 8      |        | <u>к</u> | 4                 | 0-                               | -103.28                    | 20                    | 40 6                           | 0 80                                    | ≥0<br>≣≣                                  |  |
| TOPSOIL                                                                            |         |        | 1      |          |                   |                                  |                            |                       |                                |                                         | արերիներիներիներիներիներիներիներիներիների |  |
| Very stiff, brown <b>SILTY CLAY</b>                                                |         | ss     | 2      | 25       | 6                 | 1-                               | - 102.28                   |                       | 4                              |                                         |                                           |  |
| - grey by 2.4m depth<br>- trace sand and gravel by 3.0m<br>depth                   |         | ∑ SS   | 3      | 100      | 50+               | 3-                               | -101.28                    |                       |                                | 1                                       | 59<br>•                                   |  |
| End of Borehole                                                                    |         |        |        |          | 00.               |                                  |                            |                       |                                |                                         |                                           |  |
| Practical refusal to augering at 3.18m<br>depth<br>(GWL @ 3.05m depth - Jan 29/19) |         |        |        |          |                   |                                  |                            |                       |                                |                                         |                                           |  |
|                                                                                    |         |        |        |          |                   |                                  |                            | 20<br>Shea<br>▲ Undis | 40 6<br>ar Strengt<br>turbed △ | 0 80 1<br>t <b>h (kPa)</b><br>Remoulded |                                           |  |

| natersonar                                     |        | In    | Con       | sulting    |                  | SOIL                              | PRO                              | FILE AI                               | ND TEST                                | DATA                    |                     |
|------------------------------------------------|--------|-------|-----------|------------|------------------|-----------------------------------|----------------------------------|---------------------------------------|----------------------------------------|-------------------------|---------------------|
| 154 Colonnade Road South, Ottawa, Ont          | ario k | 2E 7J | Engi<br>5 | ineers     | Ge<br>Pre<br>Ot  | eotechnic<br>oposed M<br>tawa. Or | al Invest<br>/lixed-Us<br>ntario | igation<br>e Develop                  | oment - 20 Ce                          | darow Ct                | t.                  |
| DATUM Ground surface elevations                | prov   | ded b | y Anr     | nis, O'S   | ulliva           | an, Vollet                        | pekk Ltd.                        |                                       | FILE NO.                               | PG4772                  |                     |
| REMARKS                                        |        |       |           |            |                  |                                   |                                  |                                       | HOLE NO.                               |                         |                     |
| BORINGS BY CME 55 Power Auger                  |        |       |           | DA         | TE 2             | 2019 Jan                          | uary 14                          |                                       |                                        | бпэ                     |                     |
| SOIL DESCRIPTION                               | PLOT   |       | SAN       | NPLE<br>ਮੁ | ы .              | DEPTH<br>(m)                      | ELEV.<br>(m)                     | Pen. R<br>● 5                         | esist. Blows<br>i0 mm Dia. C           | s/0.3m<br>one           | ter<br>tion         |
| GROUND SURFACE                                 | STRAT? | ТҮРЕ  | NUMBER    | RECOVEI    | N VALU<br>or RQI |                                   |                                  | 0 V<br>20                             | Vater Conten                           | nt %<br>80              | Piezome<br>Construc |
| TOPSOIL                                        |        | AU    | 1         |            |                  | 0-                                | -103.45                          |                                       |                                        |                         |                     |
| Hard to very stiff, brown <b>SILTY</b><br>CLAY |        | SS    | 2         | 38         | 6                | 1-                                | -102.45                          |                                       |                                        |                         |                     |
| - grey by 2.1m depth                           |        |       |           |            |                  | 2-                                | - 101.45                         |                                       |                                        |                         | 39                  |
| 3.40                                           |        |       |           |            |                  | 3-                                | - 100.45                         | · · · · · · · · · · · · · · · · · · · |                                        |                         | 79                  |
| End of Borehole                                |        | -     |           |            |                  |                                   |                                  |                                       |                                        |                         |                     |
| Practical refusal to augering at 3.40m depth   |        |       |           |            |                  |                                   |                                  |                                       |                                        |                         |                     |
| (GWL @ 3.05m depth - Jan 29/19)                |        |       |           |            |                  |                                   |                                  | 20<br>Shea<br>▲ Undist                | 40 60<br>ar Strength (<br>turbed △ Rei | 80 1<br>kPa)<br>moulded | 00                  |

| natersonar                                   |         |                |        |                          |                   | SOIL                                | PRO                              | FILE AN                | ND TEST DA                         | ٩ΤΑ           |
|----------------------------------------------|---------|----------------|--------|--------------------------|-------------------|-------------------------------------|----------------------------------|------------------------|------------------------------------|---------------|
| 154 Colonnade Road South, Ottawa, On         | tario I | K2E 7J         | Eng    | ineers                   | G<br>Pi<br>O      | eotechnic<br>roposed M<br>ttawa. Or | al Invest<br>/lixed-Us<br>ntario | tigation<br>e Developi | ment - 20 Cedar                    | ow Ct.        |
| DATUM Ground surface elevations              | prov    | ided b         | y Anr  | nis, O'S                 | ulliv             | an, Vollet                          | oekk Ltd.                        |                        | FILE NO.                           | 4772          |
| REMARKS                                      |         |                |        |                          |                   |                                     |                                  |                        | HOLE NO.                           |               |
| BORINGS BY CME 55 Power Auger                |         |                |        | DA                       | TE                | 2019 Jan                            | uary 14                          |                        | BH                                 | 5             |
| SOIL DESCRIPTION                             | PLOT    |                | SAN    |                          |                   | DEPTH<br>(m)                        | ELEV.<br>(m)                     | Pen. Re                | esist. Blows/0.3<br>0 mm Dia. Cone | im<br>Lo. Lo. |
|                                              | STRATA  | ТҮРЕ           | NUMBER | <sup>∞</sup><br>RECOVER! | N VALUE<br>or RQD |                                     |                                  | 0 W                    | /ater Content %                    | Diezomet      |
|                                              |         | ×              |        |                          |                   | - 0-                                | 103.49                           |                        |                                    |               |
| TOPSOIL                                      |         | × AU           | 1      |                          |                   |                                     |                                  |                        |                                    |               |
| <u>0.30</u>                                  |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         | ×              |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         | $\overline{1}$ |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         | ss             | 2      | 58                       | 8                 | 1-                                  | -102.49                          |                        |                                    |               |
| Very stiff, brown SILTY CLAY                 |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         | SS             | 3      | 71                       | 9                 | 2-                                  | 101 /0                           |                        |                                    |               |
| - grey by 2.0m depth                         |         |                |        |                          |                   | 2                                   | 101.49                           |                        |                                    |               |
|                                              |         | 17             |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         | ss             | 4      | 100                      | 5                 |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   | 3-                                  | -100.49                          |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    | 249           |
| 3.56                                         |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
| Practical refusal to augering at 3.56m depth |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
| (GWL @ 3.04m depth - Jan 29/19)              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  |                        |                                    |               |
|                                              |         |                |        |                          |                   |                                     |                                  | 20<br>Shea             | 40 60 80<br>Ir Strength (kPa       | ) 100<br>)    |
|                                              |         |                |        |                          |                   |                                     |                                  | ▲ Undist               | urbed $	riangle$ Remoul            | ded           |

| natersonar                                   |         | In     | Con    | sulting   |                  | SOIL                                | PRO                              | FILE AND TEST DATA                                                                                                                       |
|----------------------------------------------|---------|--------|--------|-----------|------------------|-------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 154 Colonnade Road South, Ottawa, Ont        | tario ł | (2E 7J | Eng    | ineers    | G<br>Pi<br>O     | eotechnic<br>roposed M<br>ttawa, Or | al Invest<br>/lixed-Us<br>ntario | tigation<br>se Development - 20 Cedarow Ct.                                                                                              |
| DATUM Ground surface elevations              | prov    | ided b | y Anr  | nis, O'S  | ulliv            | an, Vollet                          | ekk Ltd.                         | . FILE NO. <b>PG4772</b>                                                                                                                 |
| REMARKS                                      |         |        |        |           |                  |                                     |                                  | HOLE NO.                                                                                                                                 |
| BORINGS BY CME 55 Power Auger                |         |        |        | DA        | TE               | 2019 Jan                            | uary 14                          |                                                                                                                                          |
| SOIL DESCRIPTION                             | PLOT    |        | SAN    | /PLE<br>것 | E .              | DEPTH<br>(m)                        | ELEV.<br>(m)                     | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone                                                                                             |
|                                              | STRATA  | ТҮРЕ   | NUMBER | VECOVER   | N VALU<br>of RQD |                                     |                                  | • Water Content %                                                                                                                        |
| GROUND SURFACE                               |         | ×      |        | щ         |                  | - 0-                                | -103.41                          |                                                                                                                                          |
| <b>TOPSOIL</b>                               |         | AU     | 1      |           |                  |                                     |                                  |                                                                                                                                          |
| Very stiff to hard, brown <b>SILTY</b>       |         | ss     | 2      | 58        | 7                | 1-                                  | -102.41                          |                                                                                                                                          |
| CLAY                                         |         |        |        |           |                  |                                     |                                  |                                                                                                                                          |
| - grey by 1.8m depth                         |         | SS     | 3      | 92        | 6                | 2-                                  | -101.41                          |                                                                                                                                          |
|                                              |         |        |        |           |                  |                                     |                                  | 139                                                                                                                                      |
|                                              |         |        |        |           |                  | 3-                                  | -100.41                          |                                                                                                                                          |
|                                              |         |        |        |           |                  |                                     |                                  | 209                                                                                                                                      |
| <u>3.83</u>                                  |         |        |        |           |                  |                                     |                                  |                                                                                                                                          |
| Practical refusal to augering at 3.83m depth |         |        |        |           |                  |                                     |                                  |                                                                                                                                          |
| (BH dry - Jan 29/19)                         |         |        |        |           |                  |                                     |                                  |                                                                                                                                          |
|                                              |         |        |        |           |                  |                                     |                                  | 20         40         60         80         100           Shear Strength (kPa)         ▲         Undisturbed         △         Remoulded |

| natersonar                                   |         | In       | Con    | sulting   |                  | SOIL                                | _ PRO                            | FILE AI                | ND TEST                               | DATA                    |                     |
|----------------------------------------------|---------|----------|--------|-----------|------------------|-------------------------------------|----------------------------------|------------------------|---------------------------------------|-------------------------|---------------------|
| 154 Colonnade Road South, Ottawa, Ont        | tario ł | K2E 7J   | Eng    | ineers    | G<br>P<br>O      | eotechnic<br>roposed M<br>ttawa, Or | cal Invest<br>Mixed-Us<br>ntario | tigation<br>e Develop  | ment - 20 Ce                          | edarow C                | t.                  |
| DATUM Ground surface elevations              | prov    | ided b   | y Anr  | nis, O'S  | ulliv            | an, Vollet                          | oekk Ltd.                        |                        | FILE NO.                              | PG4772                  |                     |
| REMARKS                                      |         |          |        |           |                  |                                     |                                  |                        | HOLE NO.                              | 211 2                   |                     |
| BORINGS BY CME 55 Power Auger                |         |          |        |           | TE               | 2019 Jan                            | uary 14                          |                        |                                       | /0 0                    |                     |
| SOIL DESCRIPTION                             | A PLOT  |          | SAN    | /PLE<br>≿ | ы<br>ы           | DEPTH<br>(m)                        | ELEV.<br>(m)                     | Pen. R<br>• 5          | esist. Blows<br>0 mm Dia. C           | s/0.3m<br>one           | eter<br>ction       |
| GROUND SURFACE                               | STRAT2  | ТҮРЕ     | NUMBEI | RECOVEI   | N VALU<br>or RQI |                                     |                                  | 0 V<br>20              | Vater Conter                          | nt %                    | Piezome<br>Construc |
|                                              |         | XXX      |        |           |                  | - 0-                                | 103.46                           |                        |                                       |                         |                     |
| TOPSOIL                                      | XX      | AU       | 1      |           |                  |                                     |                                  |                        |                                       |                         |                     |
|                                              |         | <b>滚</b> |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
|                                              |         | 22       | 2      | 67        | 7                | 1-                                  | 102.46                           |                        |                                       |                         |                     |
| Very stiff, brown <b>SILTY CLAY</b>          |         |          | 2      |           | ,                |                                     |                                  |                        |                                       |                         |                     |
|                                              |         | 1        |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
|                                              |         | ss       | 3      | 92        | 6                |                                     |                                  |                        |                                       |                         |                     |
| - grey by 2.0m depth                         |         |          |        |           |                  | 2-                                  | -101.46                          |                        |                                       |                         |                     |
|                                              |         |          |        |           |                  |                                     |                                  |                        |                                       | 1                       | 89                  |
|                                              |         |          |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
| 3.02<br>End of Borehole                      |         |          |        |           |                  | 3-                                  | -100.46                          |                        |                                       |                         |                     |
| Practical refusal to augering at 3.02m depth |         |          |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
| (BH Dry - Jan 29/19)                         |         |          |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
|                                              |         |          |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
|                                              |         |          |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
|                                              |         |          |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
|                                              |         |          |        |           |                  |                                     |                                  |                        |                                       |                         |                     |
|                                              |         |          |        |           |                  |                                     |                                  | 20<br>Shea<br>▲ Undist | 40 60<br>ar Strength (<br>turbed △ Re | 80 1<br>kPa)<br>moulded | 00                  |

| natersonar                                                                          |        | ır     | Con    | sulting  |                | SOII                               | _ PRO                 | FILE AND TEST DAT                                 | Α                                       |
|-------------------------------------------------------------------------------------|--------|--------|--------|----------|----------------|------------------------------------|-----------------------|---------------------------------------------------|-----------------------------------------|
| 154 Colonnade Road South, Ottawa, Ont                                               | ario ł | (2E 7J | Eng    | ineers   | G<br>P<br>O    | eotechnic<br>roposed M<br>ttawa Or | al Invest<br>Nixed-Us | igation<br>e Development - 20 Cedarow             | Ct.                                     |
| DATUM Ground surface elevations                                                     | prov   | ided b | y Anr  | nis, O'S | ulliv          | an, Vollet                         | oekk Ltd.             | FILE NO.                                          | 72                                      |
| REMARKS                                                                             |        |        |        |          |                |                                    |                       | HOLE NO. DU O                                     | -                                       |
| BORINGS BY CME 55 Power Auger                                                       |        |        |        | DA       | TE             | 2019 Jan                           | uary 15               | BH 9                                              |                                         |
| SOIL DESCRIPTION                                                                    | PLOT   |        | SAN    | /IPLE    |                | DEPTH<br>(m)                       | ELEV.<br>(m)          | Pen. Resist. Blows/0.3m<br>• 50 mm Dia. Cone      | g Well<br>tion                          |
|                                                                                     | TRATA  | ТҮРЕ   | IUMBER | COVER'   | VALUE<br>F ROD |                                    |                       | • Water Content %                                 | onitorin                                |
| GROUND SURFACE                                                                      | 02     | ~      | 2      | RE       | z <sup>o</sup> | - 0-                               | 103.42                | 20 40 60 80                                       | žŭ<br>T                                 |
| TOPSOIL<br><u>0.38</u>                                                              |        |        | 1      |          |                |                                    |                       |                                                   | 10,000,000,000,000,000,000,000,000,000, |
|                                                                                     |        | ss     | 2      | 71       | 4              | 1-                                 | -102.42               |                                                   |                                         |
| Hard to very stiff, brown <b>SILTY</b><br>CLAY                                      |        |        |        |          |                |                                    |                       | <u></u>                                           |                                         |
|                                                                                     |        |        |        |          |                | 2-                                 | -101.42               |                                                   |                                         |
|                                                                                     |        | ss     | 3      | 71       | 14             | 3-                                 | -100.42               |                                                   |                                         |
| 3.76                                                                                | XX.    | 1      |        |          |                |                                    |                       |                                                   |                                         |
| Practical refusal to augering at 3.76m<br>depth<br>(GWL @ 3.17 m depth - Jan 29/19) |        |        |        |          |                |                                    |                       |                                                   |                                         |
|                                                                                     |        |        |        |          |                |                                    |                       | 20 40 60 80                                       | 100                                     |
|                                                                                     |        |        |        |          |                |                                    |                       | Shear Strength (kPa)<br>▲ Undisturbed △ Remoulded |                                         |

| natersonar                                                                                      |         | In     | Con    | sulting  |                   | SOIL                  | PRO                    | FILE AN                | ND TES                         | ST DATA                               |           |
|-------------------------------------------------------------------------------------------------|---------|--------|--------|----------|-------------------|-----------------------|------------------------|------------------------|--------------------------------|---------------------------------------|-----------|
| 154 Colonnade Road South, Ottawa, Ont                                                           | tario ł | (2E 7J | Eng    | ineers   | Ge<br>Pr          | eotechnic<br>oposed N | al Invest<br>/lixed-Us | tigation<br>e Develop  | ment - 20                      | Cedarow C                             | t.        |
| <b>DATUM</b> Ground surface elevations                                                          | prov    | ided b | y Anr  | nis, O'S | ulliva            | an, Vollet            | bekk Ltd.              |                        | FILE NO.                       | DC 4770                               |           |
| REMARKS                                                                                         |         |        |        |          |                   |                       |                        |                        | HOLE NO                        | PG4//2                                | •         |
| BORINGS BY CME 55 Power Auger                                                                   |         |        |        | DA       | TE 2              | 2019 Jan              | uary 15                |                        |                                | BH10                                  |           |
| SOIL DESCRIPTION                                                                                | PLOT    |        | SAN    |          |                   | DEPTH<br>(m)          | ELEV.<br>(m)           | Pen. R<br>• 5          | esist. Blo<br>0 mm Dia         | ows/0.3m<br>. Cone                    | er<br>ion |
|                                                                                                 | STRATA  | ТҮРЕ   | NUMBER | ECOVER   | N VALUE<br>or RQD |                       |                        | • <b>v</b>             | Vater Con                      | tent %                                | iezomet   |
| GROUND SURFACE                                                                                  |         | ×      |        | <u>д</u> | -                 | 0-                    | 103.31                 | 20                     | 40 60                          | 0 80                                  |           |
| TOPSOIL<br><u>0.41</u>                                                                          |         | AU     | 1      |          |                   |                       |                        |                        |                                |                                       |           |
| Very stiff, brown SILTY CLAY                                                                    |         | SS     | 2      | 67       | 9                 | 1-                    | -102.31                |                        |                                |                                       |           |
|                                                                                                 |         |        |        |          |                   |                       |                        |                        |                                |                                       |           |
| - grey by 2.1m depth                                                                            |         | SS     | 3      | 75       | 6                 | 2-                    | -101.31                | 2                      | <b>y</b>                       |                                       |           |
| GLACIAL TILL: Compact, brown sandy silt, trace clay and gravel, occasional cobbles and boulders |         | ss     | 4      | 83       | 19                | 3-                    | -100.31                |                        |                                |                                       |           |
| <u>3.66</u>                                                                                     |         | Į.     |        |          |                   |                       |                        |                        |                                |                                       |           |
| Practical refusal to augering at 3.66m                                                          |         |        |        |          |                   |                       |                        |                        |                                |                                       |           |
| depth<br>(GWL @ 2.18m depth - Jan 29/19)                                                        |         |        |        |          |                   |                       |                        |                        |                                |                                       |           |
|                                                                                                 |         |        |        |          |                   |                       |                        | 20<br>Shea<br>▲ Undist | 40 60<br>ar Strengt<br>urbed △ | 0 80 1<br><b>h (kPa)</b><br>Remoulded | IÓO       |

| natersonar                                                                                                                                                |         | In     | Con      | sulting   |                   | SOII                                | _ PRO                 | FILE AN                | ND TEST                              | DATA                              |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----------|-----------|-------------------|-------------------------------------|-----------------------|------------------------|--------------------------------------|-----------------------------------|---------------------|
| 154 Colonnade Road South, Ottawa, Ont                                                                                                                     | tario k | (2E 7J | Eng<br>5 | ineers    | G<br>P<br>C       | eotechnic<br>roposed M<br>ttawa, Or | al Invest<br>Mixed-Us | tigation<br>e Develop  | ment - 20 Ce                         | edarow Ct                         | t.                  |
| DATUM Ground surface elevations                                                                                                                           | prov    | ided b | y Anr    | nis, O'S  | Sulliv            | van, Vollet                         | oekk Ltd.             |                        | FILE NO.                             | PG4772                            |                     |
| REMARKS                                                                                                                                                   |         |        |          |           |                   |                                     |                       |                        | HOLE NO.                             |                                   |                     |
| BORINGS BY CME 55 Power Auger                                                                                                                             |         |        |          | DA        | TE                | 2019 Jan                            | uary 15               |                        | E                                    | 5H11                              |                     |
| SOIL DESCRIPTION                                                                                                                                          | PLOT    |        | SAN      | NPLE<br>건 | M -               | DEPTH<br>(m)                        | ELEV.<br>(m)          | Pen. R<br>• 5          | esist. Blows<br>0 mm Dia. C          | s/0.3m<br>Cone                    | ter<br>tion         |
|                                                                                                                                                           | STRATA  | ТҮРЕ   | NUMBER   | KECOVER   | N VALUI<br>or ROD | 1                                   |                       | • V                    | Vater Conter                         | nt %                              | Piezome<br>Construc |
| GROUND SURFACE                                                                                                                                            |         | ×      |          | щ         |                   | - 0-                                | 103.44                | 20                     | 40 60                                | 80                                |                     |
| TOPSOIL                                                                                                                                                   |         | AU     | 1        |           |                   |                                     |                       |                        |                                      |                                   |                     |
| Very stiff, brown <b>SILTY CLAY</b>                                                                                                                       |         | ss     | 2        | 71        | 4                 | 1-                                  | -102.44               |                        |                                      |                                   |                     |
|                                                                                                                                                           |         |        |          |           |                   | 2-                                  | -101.44               |                        |                                      | 2                                 | 49                  |
| 3.05<br><b>GLACIAL TILL:</b> Very dense brown<br>to grey sandy silt, trace clay and<br>gravel, occasional cobbles and 3.35<br>boulders<br>End of Borehole |         | ss     | 3        | 100       | 50+               | 3-                                  | -100.44               |                        |                                      |                                   |                     |
| (BH Dry - Jan 29/19)                                                                                                                                      |         |        |          |           |                   |                                     |                       |                        |                                      |                                   |                     |
|                                                                                                                                                           |         |        |          |           |                   |                                     |                       | 20<br>Shea<br>▲ Undist | 40 60<br>ar Strength (<br>urbed △ Re | 80 1<br>( <b>kPa)</b><br>emoulded | 00                  |

| natersonar                                                                                                          |         | ın     | Con       | sulting  |                | SOIL                                | - PRO                  | ILE AND TEST                                          | ΑΤΑ                       |
|---------------------------------------------------------------------------------------------------------------------|---------|--------|-----------|----------|----------------|-------------------------------------|------------------------|-------------------------------------------------------|---------------------------|
| 154 Colonnade Road South, Ottawa, Ont                                                                               | tario ł | (2E 7J | Engi<br>5 | ineers   | G<br>Pi<br>O   | eotechnic<br>roposed M<br>ttawa, Or | al Invest<br>/lixed-Us | gation<br>Development - 20 Ced                        | larow Ct.                 |
| DATUM Ground surface elevations                                                                                     | prov    | ided b | y Anr     | nis, O'S | ulliv          | an, Vollet                          | oekk Ltd.              | FILE NO.                                              | G4772                     |
| REMARKS                                                                                                             |         |        |           |          |                |                                     |                        | HOLE NO.                                              |                           |
| BORINGS BY CME 55 Power Auger                                                                                       |         |        |           | DA       | TE             | 2019 Jan                            | uary 15                | BI                                                    | 112                       |
| SOIL DESCRIPTION                                                                                                    | PLOT    |        | SAN       | IPLE     |                | DEPTH<br>(m)                        | ELEV.<br>(m)           | Pen. Resist. Blows/<br>• 50 mm Dia. Co                | ).3m<br>ne <sub>ພ</sub> ູ |
|                                                                                                                     | TRATA   | ТҮРЕ   | UMBER     | COVER'   | VALUE<br>r RQD |                                     |                        | • Water Content                                       | szomet                    |
| GROUND SURFACE                                                                                                      | ß       | ~      | Z         | RE       | z <sup>0</sup> | - 0-                                | -103.58                | 20 40 60                                              | 80 1                      |
| <b>TOPSOIL</b>                                                                                                      |         |        | 1         |          |                |                                     |                        |                                                       |                           |
|                                                                                                                     |         | ss     | 2         | 88       | 6              | 1-                                  | -102.58                |                                                       |                           |
| Very stiff, brown <b>SILTY CLAY</b>                                                                                 |         | ss     | 3         | 96       | 5              | 2-                                  | - 101 58               |                                                       |                           |
|                                                                                                                     |         |        |           |          |                |                                     |                        | <u></u>                                               | 139                       |
| GLACIAL TILL: Compact, brown to<br>grey clayey silt, some sand, trace<br>gravel, occasional cobbles and<br>boulders |         | ss     | 4         | 90       | 11             | 3-                                  | -100.58                |                                                       |                           |
| End of Borehole<br>Practical refusal to augering at 3.58m<br>depth                                                  |         |        |           |          |                |                                     |                        |                                                       |                           |
| (BH Dry - Jan 29/19)                                                                                                |         |        |           |          |                |                                     |                        |                                                       |                           |
|                                                                                                                     |         |        |           |          |                |                                     |                        | 20 40 60<br>Shear Strength (kl<br>▲ Undisturbed △ Rem | 80 100<br>Pa)<br>oulded   |

| natersonar                                                |                                                                                                           | In     | Con    | sulting    | ,      | SOII         | _ PRO        | FILE AN             | D TEST DAT                        | 4           |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------|--------|------------|--------|--------------|--------------|---------------------|-----------------------------------|-------------|
| 154 Colonnade Road South, Ottawa, Ont                     | 154 Colonnade Road South, Ottawa, Ontario K2E 7J5<br>DATUM Ground surface elevations provided by Annis. C |        |        |            |        |              |              |                     | ent - 20 Cedarow                  | Ct.         |
| DATUM Ground surface elevations                           | prov                                                                                                      | ided b | y Anr  | nis, O'S   | Sulliv | van, Vollet  | pekk Ltd.    |                     | FILE NO.<br>PG477                 | 2           |
| REMARKS                                                   |                                                                                                           |        |        |            |        |              |              | -                   |                                   | -           |
| BORINGS BY CME 55 Power Auger                             |                                                                                                           |        |        | DA         | ΔTE    | 2019 Jan     | uary 15      |                     | BH13                              |             |
| SOIL DESCRIPTION                                          | PLOT                                                                                                      |        | SAN    | /IPLE<br>것 | 61 -   | DEPTH<br>(m) | ELEV.<br>(m) | Pen. Res<br>● 50    | sist. Blows/0.3m<br>mm Dia. Cone  | ter<br>tion |
|                                                           | STRATA                                                                                                    | TYPE   | NUMBER | ECOVER     | N VALU |              |              | ⊖ Wa                | ter Content %                     | iezome      |
| GROUND SURFACE                                            |                                                                                                           | ×      |        | <u></u>    | 4      | - 0-         | 103.55       | 20                  | 40 60 80                          |             |
| TOPSOIL<br>0.36                                           |                                                                                                           |        | 1      |            |        |              |              |                     |                                   |             |
| Hard, brown <b>SILTY CLAY</b>                             |                                                                                                           | SS     | 2      | 88         | 4      | 1-           | -102.55      |                     | 4                                 |             |
| 2.90                                                      |                                                                                                           |        |        |            |        | 2-           | -101.55      |                     | · A                               | 229         |
| End of Borehole<br>Practical refusal to augering at 2.90m |                                                                                                           |        |        |            |        |              |              |                     |                                   |             |
| depth<br>(BH Dry - Jan 29/19)                             |                                                                                                           |        |        |            |        |              |              | 20                  | 40 60 80                          | 100         |
|                                                           |                                                                                                           |        |        |            |        |              |              | Shear<br>▲ Undistur | Strength (kPa)<br>bed △ Remoulded | 100         |

| natorsonar                                       |         | ın          | Con                                  | sulting                          |                       | SOIL         | - PRO        | FILE AI       | ND TES                    | T DATA          |                     |
|--------------------------------------------------|---------|-------------|--------------------------------------|----------------------------------|-----------------------|--------------|--------------|---------------|---------------------------|-----------------|---------------------|
| 154 Colonnade Road South, Ottawa, Ont            | jineers | G<br>P<br>O | eotechnic<br>roposed M<br>Ottawa, Or | al Invest<br>/lixed-Us<br>ntario | tigation<br>e Develop | oment - 20 ( | Cedarow C    | t.            |                           |                 |                     |
| DATUM Ground surface elevations                  | prov    | ided b      | y Anı                                | nis, O'S                         | Sulliv                | /an, Vollet  | oekk Ltd.    |               | FILE NO.                  | PG4772          |                     |
| REMARKS                                          |         |             |                                      |                                  |                       |              |              |               | HOLE NO.                  |                 |                     |
| BORINGS BY CME 55 Power Auger                    |         |             |                                      | DA                               | ATE                   | 2019 Jan     | uary 15      |               |                           | <b>БП</b> 14    |                     |
| SOIL DESCRIPTION                                 |         |             |                                      |                                  | ы.<br>Ы.              | DEPTH<br>(m) | ELEV.<br>(m) | Pen. R<br>• 5 | esist. Blov<br>i0 mm Dia. | vs/0.3m<br>Cone | ter<br>stion        |
| GROUND SURFACE                                   | STRATZ  | ТҮРЕ        | NUMBEF                               | RECOVEF                          | N VALU<br>or ROL      |              |              | ○ V<br>20     | Vater Conte               | ent %           | Piezome<br>Construc |
|                                                  |         | XX          |                                      |                                  |                       | - 0-         | -104.18      |               |                           |                 |                     |
| TOPSOIL<br>0.41                                  |         | AU          | 1                                    |                                  |                       |              |              |               |                           |                 |                     |
|                                                  |         |             |                                      |                                  |                       |              |              |               |                           |                 |                     |
|                                                  |         | 17          |                                      |                                  |                       |              |              |               |                           |                 |                     |
| Very stiff, brown <b>SILTY CLAY</b>              |         | ss          | 2                                    | 67                               | 7                     | 1-           | -103.18      |               |                           |                 |                     |
|                                                  |         |             |                                      |                                  |                       |              |              |               |                           |                 |                     |
|                                                  |         |             |                                      |                                  |                       |              |              |               |                           |                 |                     |
|                                                  |         |             | 0                                    |                                  | 0                     |              |              |               |                           |                 |                     |
| - grey by 2.0m depth                             |         | 55          | 3                                    | 96                               | 6                     | 2-           | -102.18      |               |                           |                 |                     |
| 2.29                                             |         |             |                                      |                                  |                       |              |              |               |                           |                 |                     |
| GLACIAL TILL: Grey silty clay, trace             |         |             |                                      |                                  |                       |              |              |               |                           |                 |                     |
| sand and gravel, occasional cobbles and boulders |         |             |                                      |                                  |                       |              |              |               |                           |                 |                     |
| 3.00                                             |         |             |                                      |                                  |                       | 2            | 101 19       |               |                           |                 |                     |
| End of Borehole                                  |         |             |                                      |                                  |                       | 5            | 101.10       |               |                           |                 |                     |
| Practical refusal to augering at 3.00m depth     |         |             |                                      |                                  |                       |              |              |               |                           |                 |                     |
| (BH Dry - Jan 29/19)                             |         |             |                                      |                                  |                       |              |              |               |                           |                 |                     |
|                                                  |         |             |                                      |                                  |                       |              |              |               |                           |                 |                     |
|                                                  |         |             |                                      |                                  |                       |              |              |               |                           |                 |                     |
|                                                  |         |             |                                      |                                  |                       |              |              |               |                           |                 |                     |
|                                                  |         |             |                                      |                                  |                       |              |              |               |                           |                 |                     |
|                                                  |         |             |                                      |                                  |                       |              |              |               |                           |                 |                     |
|                                                  |         |             |                                      |                                  |                       |              |              | 20<br>Shea    | 40 60<br>ar Strenath      | 80 1<br>(kPa)   | 00                  |
|                                                  |         |             |                                      |                                  |                       |              |              | ▲ Undist      | turbed $\triangle$ F      | Remoulded       |                     |

| natersonar                                                                                                             |         | In       | Con   | sulting     |                | SOIL                   | PRO                    | FILE AND TEST DATA                                                  |                                               |
|------------------------------------------------------------------------------------------------------------------------|---------|----------|-------|-------------|----------------|------------------------|------------------------|---------------------------------------------------------------------|-----------------------------------------------|
| 154 Colonnade Road South, Ottawa, Ont                                                                                  | tario k | 2E 7J    | Eng   | ineers      | G<br>Pi        | eotechnic<br>roposed M | al Invest<br>/lixed-Us | igation<br>e Development - 20 Cedarow Ct.                           | -                                             |
| DATUM Ground surface elevations                                                                                        | prov    | ided b   | y Anr | nis, O'S    | ulliv          | an, Vollet             | bekk Ltd.              | FILE NO.                                                            |                                               |
| REMARKS                                                                                                                |         |          |       |             |                |                        |                        | PG4772                                                              |                                               |
| BORINGS BY CME 55 Power Auger                                                                                          | 1       |          |       | DA          | TE             | 2019 Jan               | uary 15                | BH15                                                                |                                               |
| SOIL DESCRIPTION                                                                                                       | PLOT    |          | SAN   | IPLE        |                |                        | ELEV.                  | Pen. Resist. Blows/0.3m<br>• 50 mm Dia. Cone                        | Well<br>on                                    |
|                                                                                                                        | RATA    | Ч        | MBER  | °∾<br>OVERY | VALUE<br>ROD   |                        | (11)                   | • Water Content %                                                   | nitoring                                      |
| GROUND SURFACE                                                                                                         | LS      | L        | NC    | REC         | z <sup>0</sup> | 0                      | 102 65                 | 20 40 60 80                                                         | C Q                                           |
| TOPSOIL<br>0.36                                                                                                        |         |          | 1     |             |                | 0-                     | - 103.65               |                                                                     | Արիներիներիներիներին<br>Մերնեններներիներիների |
| Very stiff, brown <b>SILTY CLAY</b>                                                                                    |         | SS       | 2     | 71          | 6              | 1-                     | -102.65                |                                                                     | իլիկիկիկիկիկիկիկինինին<br>Սենդեններիներիներ   |
| 2.29                                                                                                                   |         | -        |       |             |                | 2-                     | - 101.65               |                                                                     |                                               |
| Hard, brown <b>CLAYEY SILT</b>                                                                                         |         |          |       |             |                | 3-                     | -100.65                | 24                                                                  | 9                                             |
| <b>GLACIAL TILL:</b> Compact to very dense, grey clayey silt, some sand, trace gravel, occasional cobbles and boulders |         | ss       | 3     | 79          | 24             |                        |                        |                                                                     |                                               |
| <u>3.99</u>                                                                                                            |         | ∐<br>∑ss | 4     | 100         | 50+            |                        |                        |                                                                     |                                               |
| Practical refusal to augering at 3.99m                                                                                 |         |          |       |             |                |                        |                        |                                                                     |                                               |
| (GWL @ 2.92m depth - Jan 29/19)                                                                                        |         |          |       |             |                |                        |                        |                                                                     |                                               |
|                                                                                                                        |         |          |       |             |                |                        |                        | 20 40 60 80 10<br>Shear Strength (kPa)<br>▲ Undisturbed △ Remoulded | 00                                            |

| natersonar                                                                                    |         | In       | Con    | sulting  |                 | SOIL                               | PRO                    | FILE AI              | ND TE                     |                                 | 1                  |
|-----------------------------------------------------------------------------------------------|---------|----------|--------|----------|-----------------|------------------------------------|------------------------|----------------------|---------------------------|---------------------------------|--------------------|
| 154 Colonnade Road South, Ottawa, Ont                                                         | tario ł | (2E 7J   | Eng    | ineers   | G<br>Pi         | eotechnic<br>roposed N<br>ttawa Or | al Invest<br>/lixed-Us | igation<br>e Develop | oment - 2                 | 20 Cedarow (                    | Ct.                |
| DATUM Ground surface elevations                                                               | prov    | ided b   | y Anr  | nis, O'S | ulliv           | an, Vollet                         | ekk Ltd.               |                      | FILE N                    | D.                              | 2                  |
| REMARKS                                                                                       |         |          |        |          |                 |                                    |                        |                      | HOLE                      | NO. DUMO                        | <b></b>            |
| BORINGS BY CME 55 Power Auger                                                                 |         |          |        | DA       | TE              | 2019 Jan                           | uary 15                |                      |                           | BH16                            |                    |
| SOIL DESCRIPTION                                                                              | PLOT    |          | SAN    | MPLE     |                 | DEPTH<br>(m)                       | ELEV.<br>(m)           | Pen. R<br>● 5        | esist. E<br>i0 mm D       | Blows/0.3m<br>ia. Cone          | er<br>tion         |
|                                                                                               | TRATA   | ТҮРЕ     | IUMBER | COVER    | VALUE<br>SE ROD |                                    |                        | • <b>v</b>           | Vater Co                  | ontent %                        | ezomet<br>onstruct |
| GROUND SURFACE                                                                                | 01      | 8        | 4      | RE       | z º             | - 0-                               | -103.66                | 20                   | 40                        | 60 80                           | ŭ ja<br>www        |
| TOPSOIL<br><u>0.33</u>                                                                        |         |          | 1      |          |                 |                                    |                        |                      |                           |                                 |                    |
| Hard, brown SILTY CLAY                                                                        |         | ss       | 2      | 75       | 4               | 1-                                 | -102.66                |                      |                           |                                 |                    |
|                                                                                               |         |          |        |          |                 | 2-                                 | -101.66                | Z                    | 2                         |                                 | 209                |
| GLACIAL TILL: Dense, brown to<br>grey clayey silt, some sand, gravel,<br>cobbles and boulders |         | SS       | 3      | 46       | 31              |                                    |                        |                      |                           |                                 |                    |
| End of Borehole                                                                               |         | <u> </u> |        |          |                 |                                    |                        |                      |                           |                                 |                    |
| Practical refusal to augering at 2.95m depth                                                  |         |          |        |          |                 |                                    |                        |                      |                           |                                 |                    |
| (BH Dry - Jan 29/19)                                                                          |         |          |        |          |                 |                                    |                        | 20                   | 40                        | 60 80                           | 100                |
|                                                                                               |         |          |        |          |                 |                                    |                        | Shea                 | <b>ar Stren</b><br>turbed | <b>gth (kPa)</b><br>△ Remoulded |                    |

| natorsonar                                      |         | In     | Con      | sulting  |                   | SOIL                                | - PRO                  | FILE AI                | ND TEST DA                                        | TA         |
|-------------------------------------------------|---------|--------|----------|----------|-------------------|-------------------------------------|------------------------|------------------------|---------------------------------------------------|------------|
| 154 Colonnade Road South, Ottawa, Ont           | tario ł | (2E 7J | Eng<br>5 | ineers   | G<br>Pi<br>O      | eotechnic<br>roposed M<br>ttawa, Or | al Invest<br>/lixed-Us | tigation<br>e Develop  | ment - 20 Cedaro                                  | ow Ct.     |
| DATUM Ground surface elevations                 | prov    | ided b | y Anr    | nis, O'S | ulliv             | an, Vollet                          | oekk Ltd.              |                        | FILE NO.                                          | 1772       |
| REMARKS                                         |         |        |          |          |                   |                                     |                        |                        |                                                   |            |
| BORINGS BY CME 55 Power Auger                   |         |        |          | DA       | TE                | 2019 Jan                            | uary 16                |                        | BH1                                               | 7          |
| SOIL DESCRIPTION                                | PLOT    |        | SAN      |          |                   | DEPTH<br>(m)                        | ELEV.<br>(m)           | Pen. R<br>• 5          | esist. Blows/0.3<br>0 mm Dia. Cone                | m<br>ioi e |
|                                                 | STRATA  | ТҮРЕ   | NUMBER   | RECOVER! | N VALUE<br>of RQD |                                     |                        | • V                    | Vater Content %                                   | Piezomet   |
| GROUND SURFACE                                  |         | XXX    |          |          |                   | - 0-                                | 104.19                 | 20                     |                                                   |            |
| TOPSOIL<br>0.38                                 |         |        | 1        |          |                   |                                     |                        |                        |                                                   |            |
| Very stiff to hard, brown <b>CLAYEY</b><br>SILT |         | ss     | 2        | 79       | 7                 | 1-                                  | -103.19                |                        |                                                   |            |
| - grey by 1.8m depth                            |         | ss     | 3        | 100      | 55                | 2-                                  | - 102 10               |                        |                                                   |            |
| 2.23                                            |         |        |          |          |                   |                                     | 102.10                 |                        |                                                   |            |
| End of Borehole                                 |         | _      |          |          |                   |                                     |                        |                        |                                                   |            |
| Practical refusal to augering at 2.23m depth    |         |        |          |          |                   |                                     |                        |                        |                                                   |            |
| (BH Dry - Jan 29/19)                            |         |        |          |          |                   |                                     |                        |                        |                                                   |            |
|                                                 |         |        |          |          |                   |                                     |                        |                        |                                                   |            |
|                                                 |         |        |          |          |                   |                                     |                        |                        |                                                   |            |
|                                                 |         |        |          |          |                   |                                     |                        |                        |                                                   |            |
|                                                 |         |        |          |          |                   |                                     |                        |                        |                                                   |            |
|                                                 |         |        |          |          |                   |                                     |                        |                        |                                                   |            |
|                                                 |         |        |          |          |                   |                                     |                        |                        |                                                   |            |
|                                                 |         |        |          |          |                   |                                     |                        | 20<br>Shea<br>▲ Undist | 40 60 80<br>ar Strength (kPa)<br>turbed △ Remould | <b>100</b> |

| natoreonar                                   |                                                                                                 | In                      | Con    | sulting  |                   | SOII         | _ PRO        |                        |                              | ST DATA                          |                     |
|----------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------|--------|----------|-------------------|--------------|--------------|------------------------|------------------------------|----------------------------------|---------------------|
| 154 Colonnade Road South, Ottawa, Ont        | Colonnade Road South, Ottawa, Ontario K2E 7J5<br>Ground surface elevations provided by Annis, C |                         |        |          |                   |              |              | tigation<br>e Develop  | ment - 20                    | ) Cedarow C                      | t.                  |
| DATUM Ground surface elevations              | prov                                                                                            | ided b                  | y Anr  | nis, O'S | ulliva            | an, Vollet   | pekk Ltd.    |                        | FILE NO.                     | <b>PC</b> 4772                   |                     |
| REMARKS                                      |                                                                                                 |                         |        |          |                   |              |              |                        | HOLE NO                      | PG4/72                           |                     |
| BORINGS BY CME 55 Power Auger                |                                                                                                 |                         |        | DA       | TE 2              | 2019 Jan     | uary 16      |                        |                              | BH18                             | 1                   |
| SOIL DESCRIPTION                             | PLOT                                                                                            |                         | SAN    | /IPLE    |                   | DEPTH<br>(m) | ELEV.<br>(m) | Pen. R<br>• 5          | esist. Bl<br>0 mm Dia        | ows/0.3m<br>a. Cone              | er<br>ion           |
|                                              | STRATA                                                                                          | ТҮРЕ                    | NUMBER | ECOVER   | I VALUE<br>or RQD |              |              | • <b>v</b>             | Vater Cor                    | ntent %                          | iezomet<br>onstruct |
| GROUND SURFACE                               |                                                                                                 | ×                       | I      | 8        | z °               | 0-           | 104.15       | 20                     | 40 6                         | 60 80                            | i⊑ ŭ<br>⊠ ⊠         |
| TOPSOIL                                      |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
| <u>0.33</u>                                  |                                                                                                 | S AU                    | 1      |          |                   |              |              |                        |                              |                                  |                     |
|                                              |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
| Hard, brown CLAYEY SILT                      |                                                                                                 | 17                      |        |          |                   |              |              |                        |                              |                                  |                     |
| , -                                          |                                                                                                 | ss                      | 2      | 88       | 11                | 1-           | 103.15       |                        |                              |                                  | ज्ञातीत<br>ज्ञातात  |
|                                              |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
|                                              |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
|                                              |                                                                                                 | $\overline{\mathbb{N}}$ | -      |          |                   |              |              |                        |                              |                                  |                     |
| - grey by 1.8m depth                         |                                                                                                 | ss                      | 3      | 88       | 50+               |              |              |                        |                              |                                  |                     |
| End of Borehole                              |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
| Practical refusal to augering at 1.96m depth |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
| (BH Dry - Jan 29/19)                         |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
|                                              |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
|                                              |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
|                                              |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
|                                              |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
|                                              |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
|                                              |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
|                                              |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
|                                              |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
|                                              |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
|                                              |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
|                                              |                                                                                                 |                         |        |          |                   |              |              |                        |                              |                                  |                     |
|                                              |                                                                                                 |                         |        |          |                   |              |              | 20<br>Shea<br>▲ Undist | 40 €<br>ar Streng<br>urbed △ | 60 80 1<br>th (kPa)<br>Remoulded | <sup>¬</sup><br>00  |

| natorsonar                                   |         | In     | Con    | sulting  |                 | SOII                                | _ PRO                            | FILE AND TEST DATA                                                                                                                       |
|----------------------------------------------|---------|--------|--------|----------|-----------------|-------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 154 Colonnade Road South, Ottawa, On         | tario I | (2E 7) | Eng    | ineers   | G<br>P<br>O     | eotechnic<br>roposed M<br>ttawa, Or | cal Invest<br>Mixed-Us<br>ntario | tigation<br>e Development - 20 Cedarow Ct.                                                                                               |
| DATUM Ground surface elevations              | s prov  | ided b | y Anr  | nis, O'S | ulliv           | an, Vollet                          | oekk Ltd.                        | FILE NO.                                                                                                                                 |
| REMARKS                                      |         |        |        |          |                 |                                     |                                  | HOLE NO.                                                                                                                                 |
| BORINGS BY CME 55 Power Auger                |         | 1      |        | DA       | TE              | 2019 Jan                            | uary 16                          | BH19                                                                                                                                     |
| SOIL DESCRIPTION                             | PLOT    |        | SAN    |          |                 | DEPTH                               | ELEV.                            | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone                                                                                             |
|                                              | STRATA  | ТҮРЕ   | IUMBER | COVERY   | VALUE<br>Sr RQD |                                     | (,                               | O Water Content %                                                                                                                        |
| GROUND SURFACE                               | 01      | ×      | 4      | RE       | z               | - 0-                                | 103.78                           | 20 40 60 80 Ö                                                                                                                            |
| <b>TOPSOIL</b>                               |         | AU     | 1      |          |                 |                                     |                                  |                                                                                                                                          |
|                                              |         |        |        |          |                 |                                     |                                  |                                                                                                                                          |
|                                              |         | ss     | 2      | 88       | 3               | 1-                                  | -102.78                          |                                                                                                                                          |
| Hard, brown to grey <b>SILTY CLAY</b>        |         |        |        |          | U               |                                     |                                  |                                                                                                                                          |
|                                              |         |        |        |          |                 | 2-                                  | -101.78                          | 234                                                                                                                                      |
| 2.44<br>End of Borehole                      |         | ss     | 3      | 100      | 50+             |                                     |                                  |                                                                                                                                          |
| Practical refusal to augering at 2.44m depth |         |        |        |          |                 |                                     |                                  |                                                                                                                                          |
| (BH Dry - Jan 29/19)                         |         |        |        |          |                 |                                     |                                  |                                                                                                                                          |
|                                              |         |        |        |          |                 |                                     |                                  |                                                                                                                                          |
|                                              |         |        |        |          |                 |                                     |                                  |                                                                                                                                          |
|                                              |         |        |        |          |                 |                                     |                                  |                                                                                                                                          |
|                                              |         |        |        |          |                 |                                     |                                  |                                                                                                                                          |
|                                              |         |        |        |          |                 |                                     |                                  | 20         40         60         80         100           Shear Strength (kPa)         ▲         Undisturbed         △         Remoulded |

| natersonar                             |             | ır           | Con    | sulting  |                | SOI                    | _ PRO                  | FILE AND TEST DATA                           |            |
|----------------------------------------|-------------|--------------|--------|----------|----------------|------------------------|------------------------|----------------------------------------------|------------|
| 154 Colonnade Road South, Ottawa, On   | tario I     | K2E 7J       | Eng    | ineers   | G<br>P<br>C    | eotechnic<br>roposed I | cal Invest<br>Mixed-Us | igation<br>e Development - 20 Cedarow Ct.    |            |
| DATUM Ground surface elevations        | s prov      | ided b       | oy Anr | nis, O'S | ulliv          | van, Vollel            | pekk Ltd.              | FILE NO.                                     |            |
| REMARKS                                |             |              |        |          |                |                        |                        | HOLE NO.                                     |            |
| BORINGS BY CME 55 Power Auger          |             |              |        | DA       | TE             | 2019 Jan               | uary 16                | BH20                                         |            |
| SOIL DESCRIPTION                       | PLOT        |              | SAN    |          |                | DEPTH<br>(m)           | ELEV.<br>(m)           | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone | er<br>ion  |
|                                        | TRATA       | ТҮРЕ         | UMBER  | COVER    | VALUE<br>r ROD | 1                      |                        | • Water Content %                            | ezomet     |
| GROUND SURFACE                         | ß           | ~            | N      | RE       | z <sup>0</sup> | - 0-                   | -103.59                | 20 40 60 80                                  | ±°S<br>∞∞∞ |
| TOPSOIL                                |             |              |        |          |                |                        |                        |                                              |            |
| <u>0.3</u> 3                           |             | AU           | 1      |          |                |                        |                        |                                              |            |
|                                        |             |              |        |          |                |                        |                        |                                              |            |
|                                        |             | 17           |        |          |                |                        |                        |                                              |            |
| Very stiff, brown <b>SILTY CLAY</b>    |             | ss           | 2      | 83       | 4              | 1                      | 102.59                 |                                              |            |
| , -                                    |             | 1            |        |          | -              |                        |                        |                                              |            |
|                                        |             |              |        |          |                |                        |                        |                                              |            |
|                                        |             |              |        |          |                |                        |                        |                                              |            |
| - grey by 1.8m depth                   |             |              |        |          |                |                        |                        | 1 <b>59</b>                                  |            |
|                                        |             |              |        |          |                | 2                      | 101.59                 |                                              |            |
| 2.30                                   |             |              |        |          |                |                        |                        |                                              |            |
|                                        |             | $\mathbb{N}$ |        |          |                |                        |                        |                                              |            |
| sand and gravel                        |             | SS           | 3      | 83       | 9              |                        |                        |                                              |            |
|                                        |             |              |        |          |                |                        |                        |                                              |            |
| 3.05                                   | <u>1</u> 2X |              |        |          |                | 3-                     | -100.59                |                                              |            |
| Practical refusal to augering at 3.05m |             |              |        |          |                |                        |                        |                                              |            |
| (BH Dry Jon 20/10)                     |             |              |        |          |                |                        |                        |                                              |            |
| (Dri Diy - Jail 29/19)                 |             |              |        |          |                |                        |                        |                                              |            |
|                                        |             |              |        |          |                |                        |                        |                                              |            |
|                                        |             |              |        |          |                |                        |                        |                                              |            |
|                                        |             |              |        |          |                |                        |                        |                                              |            |
|                                        |             |              |        |          |                |                        |                        |                                              |            |
|                                        |             |              |        |          |                |                        |                        |                                              |            |
|                                        |             |              |        |          |                |                        |                        |                                              |            |
|                                        |             |              |        |          |                |                        |                        | 20 40 60 80 100<br>Shear Strength (kPa)      |            |
|                                        |             |              |        |          |                |                        |                        | ▲ Undisturbed △ Remoulded                    |            |

| natersonar                                                                                                    |         | ın     | Con    | sulting       |                   | SOII                             | _ PRO                  | FILE AND TEST DATA                                                              |
|---------------------------------------------------------------------------------------------------------------|---------|--------|--------|---------------|-------------------|----------------------------------|------------------------|---------------------------------------------------------------------------------|
| 154 Colonnade Road South, Ottawa, On                                                                          | tario I | (2E 7J | Eng    | ineers        | Ge<br>Pr          | eotechnic<br>oposed I<br>tawa Ou | cal Invest<br>Mixed-Us | tigation<br>e Development - 20 Cedarow Ct.                                      |
| <b>DATUM</b> Ground surface elevations                                                                        | prov    | ided b | y Anr  | nis, O'S      | ulliva            | an, Vollei                       | pekk Ltd.              | FILE NO.                                                                        |
| REMARKS                                                                                                       |         |        |        |               |                   |                                  |                        | HOLE NO                                                                         |
| BORINGS BY CME 55 Power Auger                                                                                 |         |        |        | DA            | TE 2              | 2019 Jan                         | uary 16                | BH21                                                                            |
| SOIL DESCRIPTION                                                                                              | PLOT    |        | SAN    |               |                   | DEPTH                            | ELEV.                  | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone                                    |
| GROUND SURFACE                                                                                                | STRATA  | ТҮРЕ   | NUMBER | ~<br>RECOVER¹ | N VALUE<br>or RQD | (,                               | (,                     | O     Water Content %     During to the content %       20     40     60     80 |
| TOPSOIL                                                                                                       |         |        |        |               |                   | 0-                               | -103.58                |                                                                                 |
| <u>0.33</u>                                                                                                   |         | AU     | 1      |               |                   |                                  |                        |                                                                                 |
| Very stiff, brown <b>SILTY CLAY</b>                                                                           |         | ss     | 2      | 79            | 5                 | 1-                               | -102.58                |                                                                                 |
|                                                                                                               |         |        |        |               |                   |                                  |                        |                                                                                 |
| - grey by 1.8m depth                                                                                          |         |        |        |               |                   | 2-                               | -101.58                |                                                                                 |
| <b>GLACIAL TILL:</b> Compact to very dense, brown to grey sandy silt, some clay, gravel, cobbles and boulders |         | ss     | 3      | 71            | 13                |                                  |                        |                                                                                 |
| 3.20<br>End of Borehole                                                                                       |         | ss     | 4      | 100           | 50+               | 3-                               | -100.58                |                                                                                 |
| Practical refusal to augering at 3.20m depth                                                                  |         |        |        |               |                   |                                  |                        |                                                                                 |
| (BH Dry - Jan 29/19)                                                                                          |         |        |        |               |                   |                                  |                        |                                                                                 |
|                                                                                                               |         |        |        |               |                   |                                  |                        |                                                                                 |
|                                                                                                               |         |        |        |               |                   |                                  |                        | 20 40 60 80 100<br>Shear Strength (kPa)<br>▲ Undisturbed △ Remoulded            |

| natersonar                                                              |         | In                                | Con   | sulting           |                                                                                                  | SOIL         | - PRO        | FILE AI               | ND TE                    |                                          |           |  |  |
|-------------------------------------------------------------------------|---------|-----------------------------------|-------|-------------------|--------------------------------------------------------------------------------------------------|--------------|--------------|-----------------------|--------------------------|------------------------------------------|-----------|--|--|
| 154 Colonnade Road South, Ottawa, Ont                                   | tario ł | (2E 7J                            | Eng   | ineers            | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa. Ontario |              |              |                       |                          |                                          |           |  |  |
| DATUM Ground surface elevations                                         | prov    | ided b                            | y Anr | nis, O'S          | ulliv                                                                                            | an, Vollet   | bekk Ltd.    |                       | FILE NO                  | ).<br>PG4772                             | )         |  |  |
| REMARKS                                                                 |         | HOLE NO.                          |       |                   |                                                                                                  |              |              |                       |                          |                                          |           |  |  |
| BORINGS BY CME 55 Power Auger DATE 2019 January 16                      |         |                                   |       |                   |                                                                                                  |              |              |                       |                          | BH22                                     | _         |  |  |
| SOIL DESCRIPTION                                                        | PLOT    | TYPE<br>SAMPLE<br>COVERY<br>VALUE |       | /IPLE             |                                                                                                  | DEPTH<br>(m) | ELEV.<br>(m) | Pen. R                | esist. E<br>50 mm D      | esist. Blows/0.3m                        |           |  |  |
|                                                                         | STRATA  |                                   |       | I VALUE<br>or RQD |                                                                                                  |              | • V          | onitorin<br>onstruct  |                          |                                          |           |  |  |
| GROUND SURFACE                                                          | 0,      | ×                                 |       | R                 | z v                                                                                              | - 0-         | 103.65       | 20                    | 40                       | 60 80                                    | ZŬ<br>⊒ ⊒ |  |  |
| TOPSOIL0.25                                                             |         |                                   | 1     |                   |                                                                                                  |              |              |                       |                          |                                          |           |  |  |
| Very stiff, brown <b>SILTY CLAY</b>                                     |         | ss                                | 2     | 71                | 5                                                                                                | 1-           | - 102.65     |                       |                          |                                          |           |  |  |
| - grey by 2.0m depth                                                    |         |                                   |       |                   |                                                                                                  | 2-           | -101.65      |                       | 2                        |                                          |           |  |  |
| End of Borehole                                                         |         |                                   |       |                   |                                                                                                  |              |              |                       |                          |                                          |           |  |  |
| Practical refusal to augering at 2.29m<br>depth<br>(BH Dry - Jan 29/19) |         |                                   |       |                   |                                                                                                  |              |              |                       |                          |                                          |           |  |  |
|                                                                         |         |                                   |       |                   |                                                                                                  |              |              |                       |                          |                                          |           |  |  |
|                                                                         |         |                                   |       |                   |                                                                                                  |              |              |                       |                          |                                          |           |  |  |
|                                                                         |         |                                   |       |                   |                                                                                                  |              |              |                       |                          |                                          |           |  |  |
|                                                                         |         |                                   |       |                   |                                                                                                  |              |              | 20<br>Shea<br>▲ Undis | 40<br>ar Stren<br>turbed | 60 80<br>60 k0<br>60 kPa)<br>△ Remoulded | _ <br>100 |  |  |

| natersonar                                      | ır      | SOIL PROFILE AND TEST DATA |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
|-------------------------------------------------|---------|----------------------------|---------------------------------------|----------|-----------------------------------|--------------------------------------------------------------------------------------------------|---------|----------------------------------------------|--|--|--|--|--|
| 154 Colonnade Road South, Ottawa, On            | tario I | 4 P 6 2E 7 J               | Eng                                   | ineers   | G<br>P<br>O                       | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |         |                                              |  |  |  |  |  |
| DATUM Ground surface elevations                 | s prov  | ided b                     | y Anr                                 | nis, O'S | Sullivan, Vollebekk Ltd. FILE NO. |                                                                                                  |         |                                              |  |  |  |  |  |
| REMARKS                                         | REMARKS |                            |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
| BORINGS BY CME 55 Power Auger                   | uary 16 | BH23                       |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
| SOIL DESCRIPTION                                | PLOT    |                            | SAN                                   | /IPLE    |                                   | DEPTH                                                                                            | ELEV.   | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone |  |  |  |  |  |
|                                                 | TRATA   | ТҮРЕ                       | TYPE<br>UMBER<br>%<br>COVERY<br>VALUE |          | VALUE<br>F ROD                    |                                                                                                  | (,      | ○ Water Content %                            |  |  |  |  |  |
| GROUND SURFACE                                  | Ø       | ×                          | Z                                     | RE       | z <sup>o</sup>                    | - 0-                                                                                             | 103.87  | 20 40 60 80 🛱 C                              |  |  |  |  |  |
| TOPSOIL                                         |         |                            |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
| <u>0.3</u> (                                    |         | AU                         | 1                                     |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
|                                                 |         |                            |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
|                                                 |         | 1                          |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
| Very stiff, brown <b>SILTY CLAY</b> , some sand |         | ss                         | 2                                     | 0        | 6                                 | 1-                                                                                               | 102.87  |                                              |  |  |  |  |  |
|                                                 |         | 1                          |                                       |          | U                                 |                                                                                                  |         |                                              |  |  |  |  |  |
| 1.52                                            |         |                            |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
|                                                 |         |                            |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
|                                                 |         | ss                         | 3                                     | 83       | 11                                |                                                                                                  |         |                                              |  |  |  |  |  |
|                                                 |         |                            |                                       |          |                                   | 2-                                                                                               | 101.87  |                                              |  |  |  |  |  |
|                                                 |         |                            |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
| dense, grey silty sand with clay,               |         | Ŵ                          |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
| gravel, cobbles and boulders                    |         | ss 🛛                       | 4                                     | 75       | 36                                |                                                                                                  |         |                                              |  |  |  |  |  |
|                                                 |         |                            |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
|                                                 |         | $\overline{\mathbf{N}}$    |                                       |          |                                   | 3-                                                                                               | -100.87 |                                              |  |  |  |  |  |
| <u>3.3</u> 6                                    |         | ∦ ss                       | 5                                     | 31       | 50+                               |                                                                                                  |         |                                              |  |  |  |  |  |
| End of Borehole                                 |         |                            |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
| Practical refusal to augering at 3.36m depth    |         |                            |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
| (GWL @ 2.62m depth - Jan 29/19)                 |         |                            |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
|                                                 |         |                            |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
|                                                 |         |                            |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
|                                                 |         |                            |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
|                                                 |         |                            |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
|                                                 |         |                            |                                       |          |                                   |                                                                                                  |         |                                              |  |  |  |  |  |
|                                                 |         |                            |                                       |          |                                   |                                                                                                  |         | 20 40 60 80 100<br>Shear Strength (kPa)      |  |  |  |  |  |
|                                                 |         |                            |                                       |          |                                   |                                                                                                  |         | ▲ Undisturbed △ Remoulded                    |  |  |  |  |  |

| natorsonar                                                                                            |          | In                   | Con   | sulting           | SOIL PROFILE AND TEST DATA |                                                                                                  |                                                       |                                                                                                                    |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|----------|----------------------|-------|-------------------|----------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 154 Colonnade Road South, Ottawa, Ont                                                                 | tario ł  | (2E 7J               | Eng   | ineers            | G<br>P<br>O                | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |                                                       |                                                                                                                    |  |  |  |  |  |
| DATUM Ground surface elevations                                                                       | prov     | ided b               | y Anr | nis, O'S          | ulliv                      | an, Vollet                                                                                       | oekk Ltd.                                             | FILE NO.                                                                                                           |  |  |  |  |  |
| REMARKS                                                                                               | HOLE NO. |                      |       |                   |                            |                                                                                                  |                                                       |                                                                                                                    |  |  |  |  |  |
| BORINGS BY CME 55 Power Auger                                                                         | BH24     |                      |       |                   |                            |                                                                                                  |                                                       |                                                                                                                    |  |  |  |  |  |
| SOIL DESCRIPTION                                                                                      | LI SAM   |                      |       | SAMPLE            |                            |                                                                                                  | ELEV.                                                 | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone ਨਾ ਹੁੰ                                                                |  |  |  |  |  |
|                                                                                                       | STRATA   | TYPE<br>IUMBER<br>©© |       | I VALUE<br>or RQD |                            |                                                                                                  | • Water Content % • • • • • • • • • • • • • • • • • • |                                                                                                                    |  |  |  |  |  |
| GROUND SURFACE                                                                                        |          | ×                    |       | R                 | Z ·                        | - 0-                                                                                             | 104.04                                                |                                                                                                                    |  |  |  |  |  |
| <b>TOPSOIL</b>                                                                                        |          | AU                   | 1     |                   |                            |                                                                                                  |                                                       |                                                                                                                    |  |  |  |  |  |
| Very stiff, brown to grey <b>CLAYEY</b>                                                               |          | ss                   | 2     | 67                | 10                         | 1-                                                                                               | -103.04                                               |                                                                                                                    |  |  |  |  |  |
| SILI                                                                                                  |          |                      |       |                   |                            |                                                                                                  |                                                       |                                                                                                                    |  |  |  |  |  |
|                                                                                                       |          | SS                   | 3     | 79                | 29                         | 2-                                                                                               | -102.04                                               |                                                                                                                    |  |  |  |  |  |
| GLACIAL TILL: Compact to very<br>dense, brown clayey silt, some sand,<br>gravel, cobbles and boulders |          | ss                   | 4     | 58                | 23                         |                                                                                                  |                                                       |                                                                                                                    |  |  |  |  |  |
| 3.15                                                                                                  |          | ⊔<br>⊻ ss            | 5     | 100               | 50+                        | 3-                                                                                               | -101.04                                               |                                                                                                                    |  |  |  |  |  |
| End of Borehole<br>Practical refusal to augering at 3.15m                                             |          |                      |       |                   |                            |                                                                                                  |                                                       |                                                                                                                    |  |  |  |  |  |
| (GWL @ 2.55m depth - Jan 29/19)                                                                       |          |                      |       |                   |                            |                                                                                                  |                                                       |                                                                                                                    |  |  |  |  |  |
|                                                                                                       |          |                      |       |                   |                            |                                                                                                  |                                                       |                                                                                                                    |  |  |  |  |  |
|                                                                                                       |          |                      |       |                   |                            |                                                                                                  |                                                       | 20         40         60         80         100           Shear Strength (kPa)           ▲ Undisturbed △ Remoulded |  |  |  |  |  |

| natorsonar                                                                                                    |                 | ın                                    | Con   | sulting  | 1     | SOIL                                                                                             | - PRO     | FILE AI               | ND TE                    | ST DATA                                |                   |  |  |
|---------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------|-------|----------|-------|--------------------------------------------------------------------------------------------------|-----------|-----------------------|--------------------------|----------------------------------------|-------------------|--|--|
| 154 Colonnade Road South, Ottawa, Ont                                                                         | ario k          | (2E 7J                                | Eng   | ineers   | F     | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |           |                       |                          |                                        |                   |  |  |
| DATUM Ground surface elevations                                                                               | prov            | ided b                                | y Anr | nis, O'S | Sulli | van, Vollet                                                                                      | bekk Ltd. |                       | FILE NO.                 |                                        |                   |  |  |
| REMARKS                                                                                                       |                 |                                       |       |          |       |                                                                                                  |           |                       | HOLE                     | PG4//2                                 |                   |  |  |
| BORINGS BY CME 55 Power Auger                                                                                 |                 | 1                                     |       | D        | ATE   | 2019 Jan                                                                                         | uary 16   | 1                     |                          | BH25                                   |                   |  |  |
| SOIL DESCRIPTION                                                                                              | РГОТ            |                                       | SAN   |          |       | DEPTH                                                                                            | ELEV.     | Pen. R<br>● 5         | lesist. B<br>50 mm D     | esist. Blows/0.3m<br>0 mm Dia. Cone    |                   |  |  |
|                                                                                                               | STRATA          | TYPE<br>UMBER<br>%<br>COVERY<br>VALUE |       |          | VALUE |                                                                                                  | (,        | • Water Content %     |                          |                                        |                   |  |  |
| GROUND SURFACE                                                                                                | 07              | ×                                     | 4     | R        | z     | 0-                                                                                               | 104.07    | 20                    | 40                       | 60 80                                  | ŭ <u>ה</u><br>www |  |  |
| <b>TOPSOIL</b>                                                                                                |                 | AU                                    | 1     |          |       |                                                                                                  |           |                       |                          |                                        |                   |  |  |
| Very stiff, brown <b>CLAYEY SILT</b>                                                                          |                 |                                       | 2     | 75       | 11    | 1-                                                                                               | -103.07   |                       |                          |                                        |                   |  |  |
| <u>1.52</u>                                                                                                   |                 |                                       | 2     | 73       |       |                                                                                                  |           |                       |                          |                                        |                   |  |  |
| GLACIAL TILL: Very dense, grey 1.62<br>clayey silt with sand, gravel, cobbles,<br>boulders<br>End of Borehole | /^^^^/<br>/<br> | × ss                                  | 3     | 75       | 504   | +                                                                                                |           |                       |                          | ······································ | ¥                 |  |  |
| Practical refusal to augering at 1.62m depth                                                                  |                 |                                       |       |          |       |                                                                                                  |           |                       |                          |                                        |                   |  |  |
| (GWL @ 1.68m depth - Jan 29/19)                                                                               |                 |                                       |       |          |       |                                                                                                  |           |                       |                          |                                        |                   |  |  |
|                                                                                                               |                 |                                       |       |          |       |                                                                                                  |           |                       |                          |                                        |                   |  |  |
|                                                                                                               |                 |                                       |       |          |       |                                                                                                  |           |                       |                          |                                        |                   |  |  |
|                                                                                                               |                 |                                       |       |          |       |                                                                                                  |           |                       |                          |                                        |                   |  |  |
|                                                                                                               |                 |                                       |       |          |       |                                                                                                  |           |                       |                          |                                        |                   |  |  |
|                                                                                                               |                 |                                       |       |          |       |                                                                                                  |           |                       |                          |                                        |                   |  |  |
|                                                                                                               |                 |                                       |       |          |       |                                                                                                  |           | 20<br>Shea<br>▲ Undis | 40<br>ar Stren<br>turbed | 60  80  1<br>gth (kPa)<br>△ Remoulded  | _ <br>100         |  |  |

| natorsonar                                                           |                                                                    | In                                    | Con       | sulting           | SOIL PROFILE AND TEST DATA<br>Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |            |           |                        |                          |                                   |     |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------|-----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------|------------|-----------|------------------------|--------------------------|-----------------------------------|-----|--|
| 154 Colonnade Road South, Ottawa, Ont                                | ario k                                                             | (2E 7J                                | Engi<br>5 | ineers            |                                                                                                                                |            |           |                        |                          |                                   |     |  |
| DATUM Ground surface elevations                                      | prov                                                               | ided b                                | y Anr     | nis, O'S          | ulliva                                                                                                                         | an, Vollek | oekk Ltd. |                        | FILE NO                  | ).<br>PG4772                      | ,   |  |
| REMARKS                                                              | HOLE                                                               | HOLE NO                               |           |                   |                                                                                                                                |            |           |                        |                          |                                   |     |  |
| BORINGS BY CME 55 Power Auger                                        | BY         CME 55 Power Auger         DATE         2019 January 17 |                                       |           |                   |                                                                                                                                |            |           |                        |                          |                                   |     |  |
| SOIL DESCRIPTION                                                     | PLOT                                                               | SAMPLE                                |           |                   | DEPTH ELEV.                                                                                                                    |            |           | Pen. R<br>• 5          | esist. E<br>0 mm D       | sist. Blows/0.3m<br>mm Dia. Cone  |     |  |
|                                                                      | STRATA                                                             | TYPE<br>TYPE<br>NUMBER<br>©<br>COVERY |           | N VALUE<br>or RQD |                                                                                                                                |            | • V       | • Water Content %      |                          |                                   |     |  |
| GROUND SURFACE                                                       |                                                                    | ×                                     |           | щ                 |                                                                                                                                | 0-         | 104.30    | 20                     | 40                       | 60 80                             |     |  |
| TOPSOIL<br><u>0.38</u>                                               |                                                                    | AU                                    | 1         |                   |                                                                                                                                |            |           |                        |                          |                                   |     |  |
| Very stiff, brown <b>CLAYEY SILT</b>                                 |                                                                    | ss                                    | 2         | 75                | 9                                                                                                                              | 1-         | -103.30   |                        |                          |                                   |     |  |
| GLACIAL TILL: Compact to dense, grey silty clay with gravel, cobbles |                                                                    | ss                                    | 3         | 50                | 19                                                                                                                             | 2-         | -102.30   |                        |                          |                                   |     |  |
| and boulders                                                         |                                                                    | ss                                    | 4         | 100               | 46                                                                                                                             |            |           |                        |                          |                                   |     |  |
| End of Borehole                                                      |                                                                    | -                                     |           |                   |                                                                                                                                |            |           |                        |                          |                                   |     |  |
| depth<br>(BH Dry - Jan 29/19)                                        |                                                                    |                                       |           |                   |                                                                                                                                |            |           |                        |                          |                                   |     |  |
|                                                                      |                                                                    |                                       |           |                   |                                                                                                                                |            |           | 20<br>Shea<br>▲ Undist | 40<br>ar Stren<br>turbed | 60 80<br>gth (kPa)<br>∆ Remoulded | 100 |  |

| natoreonar                                   |         |                         |       |          |                                                                                                  |              | SOIL PROFILE AND TEST DATA |            |                                       |                    |        |  |  |  |
|----------------------------------------------|---------|-------------------------|-------|----------|--------------------------------------------------------------------------------------------------|--------------|----------------------------|------------|---------------------------------------|--------------------|--------|--|--|--|
| 154 Colonnade Road South, Ottawa, On         | tario k | (2E 7J                  | Eng   | ineers   | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |              |                            |            |                                       |                    |        |  |  |  |
| DATUM Ground surface elevations              | s prov  | ided b                  | y Anr | nis, O'S | ulliva                                                                                           | an, Vollet   | oekk Ltd.                  |            | FILE NO.                              | PG4772             |        |  |  |  |
| REMARKS                                      |         |                         |       |          |                                                                                                  |              |                            |            | HOLE NO                               | BH27               |        |  |  |  |
| BORINGS BY CME 55 Power Auger                |         |                         | C A A |          | TE 2                                                                                             | 2019 Jan     | uary 17                    | Den De     |                                       |                    |        |  |  |  |
| SOIL DESCRIPTION                             | PLOI    |                         | 5AN   |          | ы о                                                                                              | DEPTH<br>(m) | ELEV.<br>(m)               | ● 50       | D mm Dia                              | . Cone             | ng Wel |  |  |  |
|                                              | STRAT   | TYPE<br>NUMBER<br>©     |       |          | N VALU<br>or RQI                                                                                 |              |                            | 0 W        | • Water Content %                     |                    |        |  |  |  |
| GROUND SURFACE                               |         |                         |       | н<br>    |                                                                                                  | 0-           | 103.97                     |            | 40 0                                  |                    |        |  |  |  |
| TOPSOIL                                      | 3       | ₩<br>AU                 | 1     |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
|                                              |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
|                                              |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
| Very stiff, brown <b>CLAYEY SILT</b>         |         |                         | •     |          | 0                                                                                                | 1-           | - 102.97                   |            |                                       |                    |        |  |  |  |
|                                              |         | SS                      | 2     | /1       | 8                                                                                                |              |                            |            | · · · · · · · · · · · · · · · · · · · |                    |        |  |  |  |
|                                              |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
|                                              |         | $\overline{\mathbb{N}}$ |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
| - grey by 1.7m depth                         | 3       | ss                      | 3     | 88       | 50+                                                                                              |              |                            |            |                                       |                    |        |  |  |  |
| End of Borehole                              |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
| Practical refusal to augering at 1.93m depth |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
| (BH Dry - Jan 29/19)                         |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
|                                              |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
|                                              |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
|                                              |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
|                                              |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
|                                              |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
|                                              |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
|                                              |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
|                                              |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
|                                              |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
|                                              |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
|                                              |         |                         |       |          |                                                                                                  |              |                            |            |                                       |                    |        |  |  |  |
|                                              |         |                         |       |          |                                                                                                  |              |                            | 20<br>Shea | 40 6<br>r Strengt                     | 0 80 1<br>:h (kPa) | 00     |  |  |  |
|                                              |         |                         |       |          |                                                                                                  |              |                            | ▲ Undistu  | urbed $	riangle$                      | Remoulded          |        |  |  |  |

| natersonar                                                           |               | In                      | Con                          | sulting  |                                                                                                  | SOIL PROFILE AND TEST DATA |              |                                                                                                                            |  |  |  |  |  |
|----------------------------------------------------------------------|---------------|-------------------------|------------------------------|----------|--------------------------------------------------------------------------------------------------|----------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 154 Colonnade Road South, Ottawa, On                                 | tario k       | (2E 7J                  | Eng<br>5                     | ineers   | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |                            |              |                                                                                                                            |  |  |  |  |  |
| DATUM Ground surface elevations                                      | prov          | ided b                  | y Anr                        | nis, O'S | ulliv                                                                                            | an, Vollet                 | pekk Ltd.    | FILE NO.                                                                                                                   |  |  |  |  |  |
| REMARKS                                                              | HOLE NO. DUDO |                         |                              |          |                                                                                                  |                            |              |                                                                                                                            |  |  |  |  |  |
| BORINGS BY CME 55 Power Auger                                        | 2019 Jan      | uary 17                 | BH28                         |          |                                                                                                  |                            |              |                                                                                                                            |  |  |  |  |  |
| SOIL DESCRIPTION                                                     | PLOT          |                         | SAN                          | MPLE     |                                                                                                  | DEPTH<br>(m)               | ELEV.<br>(m) | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone                                                                               |  |  |  |  |  |
|                                                                      | TRATA         | TYPE                    | TYPE<br>UMBER<br>%<br>COVER3 |          | VALUE<br>F ROD                                                                                   |                            |              | O Water Content %                                                                                                          |  |  |  |  |  |
| GROUND SURFACE                                                       | Ω<br>Ω        | ×                       | z                            | RE       | z <sup>0</sup>                                                                                   | - 0-                       | 103.78       | 20 40 60 80 ĒŬ                                                                                                             |  |  |  |  |  |
| TOPSOIL<br>0.36                                                      |               | AU                      | 1                            |          |                                                                                                  |                            |              |                                                                                                                            |  |  |  |  |  |
|                                                                      |               |                         |                              |          |                                                                                                  |                            |              |                                                                                                                            |  |  |  |  |  |
| Very stiff, brown <b>SILTY CLAY</b>                                  |               | SS                      | 2                            | 38       | 6                                                                                                | 1-                         | -102.78      |                                                                                                                            |  |  |  |  |  |
|                                                                      |               |                         |                              |          |                                                                                                  |                            |              |                                                                                                                            |  |  |  |  |  |
|                                                                      |               |                         |                              |          |                                                                                                  |                            |              | 179                                                                                                                        |  |  |  |  |  |
|                                                                      |               |                         |                              |          |                                                                                                  | 2-                         | -101.78      |                                                                                                                            |  |  |  |  |  |
| 2.29                                                                 |               | $\overline{\mathbf{n}}$ |                              |          |                                                                                                  |                            |              |                                                                                                                            |  |  |  |  |  |
| <b>GLACIAL TILL:</b> Loose to very dense, grey silty clay with sand, |               | ss                      | 3                            | 8        | 2                                                                                                |                            |              |                                                                                                                            |  |  |  |  |  |
| gravel, cooples and boulders                                         |               |                         | 4                            |          | 50±                                                                                              | 3-                         | -100.78      |                                                                                                                            |  |  |  |  |  |
| 3.18                                                                 |               |                         | 4                            | 0        | J0+                                                                                              |                            |              |                                                                                                                            |  |  |  |  |  |
| Practical refusal to augering at 3.18m depth                         |               |                         |                              |          |                                                                                                  |                            |              |                                                                                                                            |  |  |  |  |  |
| (BH Dry - Jan 29/19)                                                 |               |                         |                              |          |                                                                                                  |                            |              |                                                                                                                            |  |  |  |  |  |
|                                                                      |               |                         |                              |          |                                                                                                  |                            |              |                                                                                                                            |  |  |  |  |  |
|                                                                      |               |                         |                              |          |                                                                                                  |                            |              |                                                                                                                            |  |  |  |  |  |
|                                                                      |               |                         |                              |          |                                                                                                  |                            |              |                                                                                                                            |  |  |  |  |  |
|                                                                      |               |                         |                              |          |                                                                                                  |                            |              | 20         40         60         80         100           Shear Strength (kPa)           ▲ Undisturbed         △ Remoulded |  |  |  |  |  |

| natersonar                                                                          |         | In     | Con    | sulting   |                                                                                                  | SOII         | _ PRO        | FILE AND TEST DATA                                |  |  |  |  |
|-------------------------------------------------------------------------------------|---------|--------|--------|-----------|--------------------------------------------------------------------------------------------------|--------------|--------------|---------------------------------------------------|--|--|--|--|
| 154 Colonnade Road South, Ottawa, On                                                | tario ł | K2E 7J | Eng    | ineers    | Geotechnical Investigation<br>Proposed Mixed-Use Development - 20 Cedarow Ct.<br>Ottawa, Ontario |              |              |                                                   |  |  |  |  |
| <b>DATUM</b> Ground surface elevations                                              | prov    | ided b | y Anr  | nis, O'S  | ulliv                                                                                            | an, Vollet   | oekk Ltd.    | FILE NO.<br>PG4772                                |  |  |  |  |
| REMARKS                                                                             |         |        |        |           |                                                                                                  |              |              | HOLE NO. PH20                                     |  |  |  |  |
| BORINGS BY CME 55 Power Auger                                                       |         |        | DA     | TE        | 2019 Jan                                                                                         | uary 17      |              |                                                   |  |  |  |  |
| SOIL DESCRIPTION                                                                    | A PLOT  |        | SAN    | /PLE<br>것 | <u>لا</u> م                                                                                      | DEPTH<br>(m) | ELEV.<br>(m) | Pen. Resist. Blows/0.3m<br>● 50 mm Dia. Cone      |  |  |  |  |
|                                                                                     | STRAT?  | ТҮРЕ   | NUMBEF | ECOVEF    | N VALU<br>or RQI                                                                                 |              |              | • Water Content %                                 |  |  |  |  |
| GROUND SURFACE                                                                      |         | XX     |        | щ         |                                                                                                  | - 0-         | 103.71       |                                                   |  |  |  |  |
| TOPSOIL<br>0.38                                                                     |         | AU     | 1      |           |                                                                                                  |              |              |                                                   |  |  |  |  |
|                                                                                     |         |        |        |           |                                                                                                  |              |              |                                                   |  |  |  |  |
| Very stiff, brown <b>SILTY CLAY</b>                                                 |         | ss     | 2      | 50        | 7                                                                                                | 1-           | +102.71      |                                                   |  |  |  |  |
|                                                                                     |         | ss     | 3      | 71        | 4                                                                                                |              |              |                                                   |  |  |  |  |
| 2.29                                                                                |         |        |        |           |                                                                                                  | 2-           | -101.71      |                                                   |  |  |  |  |
| <b>GLACIAL TILL:</b> Loose, grey silty clay with sand, gravel, cobbles and boulders |         | ss     | 4      | 17        | 7                                                                                                |              |              |                                                   |  |  |  |  |
| <u>2.95</u>                                                                         |         | Į.     |        |           |                                                                                                  |              |              |                                                   |  |  |  |  |
| End of Borehole<br>Practical refusal to augering at 2.95m<br>depth                  |         |        |        |           |                                                                                                  |              |              |                                                   |  |  |  |  |
| (BH Dry - Jan 29/19)                                                                |         |        |        |           |                                                                                                  |              |              |                                                   |  |  |  |  |
|                                                                                     |         |        |        |           |                                                                                                  |              |              |                                                   |  |  |  |  |
|                                                                                     |         |        |        |           |                                                                                                  |              |              |                                                   |  |  |  |  |
|                                                                                     |         |        |        |           |                                                                                                  |              |              | 20 40 60 80 100                                   |  |  |  |  |
|                                                                                     |         |        |        |           |                                                                                                  |              |              | Shear Strength (kPa)<br>▲ Undisturbed △ Remoulded |  |  |  |  |
## SYMBOLS AND TERMS

#### SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

| Desiccated       | - | having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.                                   |
|------------------|---|----------------------------------------------------------------------------------------------------------------------------|
| Fissured         | - | having cracks, and hence a blocky structure.                                                                               |
| Varved           | - | composed of regular alternating layers of silt and clay.                                                                   |
| Stratified       | - | composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.                               |
| Well-Graded      | - | Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution). |
| Uniformly-Graded | - | Predominantly of one grain size (see Grain Size Distribution).                                                             |

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

| Compactness Condition | 'N' Value | Relative Density % |
|-----------------------|-----------|--------------------|
|                       |           |                    |
| Very Loose            | <4        | <15                |
| Loose                 | 4-10      | 15-35              |
| Compact               | 10-30     | 35-65              |
| Dense                 | 30-50     | 65-85              |
| Very Dense            | >50       | >85                |
| -                     |           |                    |

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

| Consistency | Undrained Shear Strength (kPa) | 'N' Value |  |
|-------------|--------------------------------|-----------|--|
| Very Soft   | <12                            | <2        |  |
| Soft        | 12-25                          | 2-4       |  |
| Firm        | 25-50                          | 4-8       |  |
| Stiff       | 50-100                         | 8-15      |  |
| Very Stiff  | 100-200                        | 15-30     |  |
| Hard        | >200                           | >30       |  |

#### SYMBOLS AND TERMS (continued)

#### **SOIL DESCRIPTION (continued)**

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, St, is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

| Low Sensitivity:    | St < 2        |
|---------------------|---------------|
| Medium Sensitivity: | $2 < S_t < 4$ |
| Sensitive:          | $4 < S_t < 8$ |
| Extra Sensitive:    | 8 < St < 16   |
| Quick Clay:         | St > 16       |

#### **ROCK DESCRIPTION**

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

#### RQD % ROCK QUALITY

| 90-100 | Excellent, intact, very sound                                |
|--------|--------------------------------------------------------------|
| 75-90  | Good, massive, moderately jointed or sound                   |
| 50-75  | Fair, blocky and seamy, fractured                            |
| 25-50  | Poor, shattered and very seamy or blocky, severely fractured |
| 0-25   | Very poor, crushed, very severely fractured                  |
|        |                                                              |

#### SAMPLE TYPES

| SS | - | Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))                           |  |  |  |  |
|----|---|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| TW | - | Thin wall tube or Shelby tube, generally recovered using a piston sampler                                                         |  |  |  |  |
| G  | - | "Grab" sample from test pit or surface materials                                                                                  |  |  |  |  |
| AU | - | Auger sample or bulk sample                                                                                                       |  |  |  |  |
| WS | - | Wash sample                                                                                                                       |  |  |  |  |
| RC | - | Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits. |  |  |  |  |

### SYMBOLS AND TERMS (continued)

#### PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

| WC% | - | Natural water content or water content of sample, %                                                                                             |  |  |  |
|-----|---|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| LL  | - | Liquid Limit, % (water content above which soil behaves as a liquid)                                                                            |  |  |  |
| PL  | - | Plastic Limit, % (water content above which soil behaves plastically)                                                                           |  |  |  |
| PI  | - | Plasticity Index, % (difference between LL and PL)                                                                                              |  |  |  |
| Dxx | - | Grain size at which xx% of the soil, by weight, is of finer grain sizes<br>These grain size descriptions are not used below 0.075 mm grain size |  |  |  |
| D10 | - | Grain size at which 10% of the soil is finer (effective grain size)                                                                             |  |  |  |
| D60 | - | Grain size at which 60% of the soil is finer                                                                                                    |  |  |  |
| Сс  | - | Concavity coefficient = $(D30)^2 / (D10 \times D60)$                                                                                            |  |  |  |
| Cu  | - | Uniformity coefficient = D60 / D10                                                                                                              |  |  |  |
|     |   |                                                                                                                                                 |  |  |  |

Cc and Cu are used to assess the grading of sands and gravels: Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

#### **CONSOLIDATION TEST**

| p'o       | - | Present effective overburden pressure at sample depth          |
|-----------|---|----------------------------------------------------------------|
| p'c       | - | Preconsolidation pressure of (maximum past pressure on) sample |
| Ccr       | - | Recompression index (in effect at pressures below p'c)         |
| Сс        | - | Compression index (in effect at pressures above p'c)           |
| OC Ratio  |   | Overconsolidaton ratio = $p'_{c} / p'_{o}$                     |
| Void Rati | 0 | Initial sample void ratio = volume of voids / volume of solids |
| Wo        | - | Initial water content (at start of consolidation test)         |

#### PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

### SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

#### MONITORING WELL AND PIEZOMETER CONSTRUCTION









#### Certificate of Analysis **Client: Paterson Group Consulting Engineers** Client PO: 25648

Report Date: 22-Jan-2019

Order Date: 16-Jan-2019

Project Description: PG4772

|                          | Client ID:               | BH#16-19 SS#3    | - | - | - |  |  |
|--------------------------|--------------------------|------------------|---|---|---|--|--|
|                          | Sample Date:             | 01/15/2019 09:00 | - | - | - |  |  |
|                          | Sample ID:               | 1903309-01       | - | - | - |  |  |
|                          | MDL/Units                | Soil             | - | - | - |  |  |
| Physical Characteristics | Physical Characteristics |                  |   |   |   |  |  |
| % Solids                 | 0.1 % by Wt.             | 85.8             | - | - | - |  |  |
| General Inorganics       |                          |                  |   |   |   |  |  |
| рН                       | 0.05 pH Units            | 7.80             | - | - | - |  |  |
| Resistivity              | 0.10 Ohm.m               | 76.2             | - | - | - |  |  |
| Anions                   |                          |                  |   |   |   |  |  |
| Chloride                 | 5 ug/g dry               | 6                | - | - | - |  |  |
| Sulphate                 | 5 ug/g dry               | 6                | - | - | - |  |  |

# **APPENDIX 2**

FIGURE 1 - KEY PLAN

FIGURES 2 TO 4 - SLOPE STABILITY ANALYSIS SECTIONS

DRAWING PG4772-1 - TEST HOLE LOCATION PLAN

# **KEY PLAN**

# **FIGURE 1**

















#### SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix E Drawings March 29, 2022

## Appendix E DRAWINGS