

Transportation Noise Assessment

Salvation Army Multi-Purpose Building 102 Bill Leathem Drive

Ottawa, Ontario

REPORT: GWE15-009 - Transportation Noise R5

Prepared For:

Christian Simionescu
The Salvation Army
2 Overlea Boulevard
Toronto, Ontario
M4H 1P4

Prepared By:

Michael Lafortune, C.E.T., Environmental Scientist Joshua Foster, P.Eng., Partner

November 19, 2021

EXECUTIVE SUMMARY

This document describes a transportation noise assessment performed for a proposed multi-purpose single-storey development at 102 Bill Leathem Drive in Ottawa, Ontario. Phases 1 and 2 will rise approximately 9.5 and 10.5 meters above local grade, respectively. Figure 1 illustrates a site plan with surrounding context. The major sources of roadway noise are Bill Leathem Drive and Leikin Drive. The site is also situated inside the Airport Operating Influence Zone [Noise Exposure Forecast (NEF) or Noise Prediction Forecast (NEP) 30]. The development represents an infill project on a severed lot in an established business park. Under provincial and City noise guidelines, the site is not considered to be noise sensitive; however, due to sensitivity of some spaces, a noise study was competed in conforming to good engineering practice.

Gradient Wind received updated architectural drawings in November 2021. Despite some changes to the building massing, the conclusions and recommendations of this report remain unchanged.

The assessment is based on: (i) theoretical noise prediction methods that conform to the Ontario Ministry of the Environment, Conservation and Parks (MECP) and City of Ottawa requirements; (ii) noise level criteria as specified by the City of Ottawa's Environmental Noise Control Guidelines (ENCG); (iii) future vehicular traffic volumes based on the City of Ottawa's Official Plan roadway classifications; (iv) future airport operation composite NEF and NEP contours, and (v) architectural drawings received from Vandenberg & Wildeboer Architects in November 2021.

The results of the current study indicate that predicted noise levels due to roadway traffic over the site will range between 60 and 68 dBA during the daytime period (07:00-23:00) and between 53 and 60 dBA during the nighttime period (23:00-07:00). The highest predicted noise level (i.e. 68 dBA) occurs on the south façade of Phase 1 (Receptor 3), which is nearest and most exposed to Leikin Drive.

In addition to surface transportation, the site is also impacted by aircraft noise. The site is situated between NEF/NEP contours of 30 and 35, just inside the NEF/NEP 30 contour (corresponding to a 24-hour equivalent sound pressure level (L_{eq}) or 61 dBA). To verify predicted existing (NEF) noise levels, on-site monitoring was conducted 24-hours a day for a period of one month. Results of on-site monitoring

indicate existing noise levels from airport operations are below an equivalent of the NEF 30 contour (61 dBA 24-hour L_{eq}). The on-site monitoring also accounted for impacts of roadway traffic. To protect the building from possible future increases in airport noise, the building components were designed to a maximum predicted 24-hour equivalent sound pressure level of 67 dBA, due to aircraft flyovers, corresponding to the NEF/NEP 35 contour. This is a conservative approach as the NEF/NEP 35 contour is more than one kilometer from the site.

For noise control measures, upgraded Sound Transmission Class (STC) ratings are required for building components as predicted noise levels are above the ENCG criteria for roadway traffic and aircraft traffic noise, respectively, as per Section 5. In addition to upgraded building components, the installation of central air conditioning will be required for the development. Furthermore, Warning Clauses will be required on all purchase, sale, and lease agreements, as per Section 6.

Under the ENCG and NPC-300, the development is not considered noise sensitive; therefore, in keeping with Federal¹ and Provincial policies, it is permissible between NEF 30 and 35. In addition, the Provincial Policy Statement indicates that if the development were considered noise sensitive, noise sensitive land uses may be considered above the NEF/NEP 30 for infill and redevelopment developments where it is demonstrated that there will be no negative impact on the long term function of the airport. Based on the proposed architectural drawings, building components are expected to achieve the required sound transmission ratings to control indoor noise levels to below ENCG criteria for places of worship at the proposed site. Furthermore, on-site monitoring has indicated that existing noise levels at the site are well below predicted sound levels (ref. GWE15-009 – Aircraft Noise Update, dated July 12, 2018). Therefore, no long-term impact on airport operations are anticipated.

Transportation Canada, Land Use In The Vicinity of Aerodromes, Ninth Edition 2013/14

The Salvation Army – 102 Bill Leathem Drive

TABLE OF CONTENTS

				PAGE					
1.	INTRO	DUCTION		1					
2.	TERMS	S OF REFER	ENCE	1					
3.	OBJEC	TIVES		2					
4.	METH	ODOLOGY		2					
	4.1	Backgro	pund	2					
	4.2	Roadwa	ay Traffic Noise	3					
		4.2.1	Criteria for Roadway Traffic Noise	3					
		4.2.2	Roadway Traffic Volumes	4					
		4.2.3	Theoretical Roadway Noise Predictions	4					
		4.2.4	Indoor Noise Calculations Roadway	5					
	4.3	Aircraft	Traffic Noise	6					
		4.3.1	Criteria for Aircraft Traffic Noise	6					
		4.3.2	Theoretical Aircraft Noise Predictions	7					
5.	RESUL	TS AND DIS	SCUSSION	8					
	5.1	Roadwa	ay Traffic Noise Levels	8					
		5.1.1	Roadway Traffic Noise STC Requirements	9					
		5.1.2	Aircraft Noise STC Requirements	10					
6.	CONC	LUSIONS AI	ND RECOMMENDATIONS	11					
FIGU	IRES								
APPI	ENDICES:								
	Appen	idix A – Arc	chitectural Drawings and Assemblies						
	Appendix B – STAMSON 5.04 Input and Output Data								
	Appen	Appendix C – Detailed STC Calculations Roadway							
	Appen	Appendix D – INSUL Calculations for Aircraft							
	Annen	Annendiy F - Ottawa International Airport Authority Correspondence							

1. INTRODUCTION

Gradient Wind Engineering Inc. (GWE) was retained by The Salvation Army to undertake a transportation noise study of a proposed multi-purpose single-floor building development at 102 Bill Leathem Drive in Ottawa, Ontario. This report summarizes the methodology, results, and recommendations related to a transportation noise assessment. GWE's scope of work involved assessing exterior and interior noise levels generated by local roadway traffic and aircraft. The assessment was performed on the basis of theoretical noise calculation methods conforming to the City of Ottawa² and Ontario Ministry of the Environment and Climate Change³ guidelines as well as on-site monitoring of roadway traffic and aircraft flyovers. Noise calculations were based on architectural drawings received from Vandenberg & Wildeboer Architects in November 2021 (see Appendix A), with future roadway traffic volumes corresponding to the City of Ottawa's Official Plan (OP) roadway classifications.

2. TERMS OF REFERENCE

The focus of this transportation noise assessment is a proposed single-storey, two-phase, multi-purpose building, to be used as a place of worship and a community centre. The development is located on vacant land at the northwest corner of the Bill Leathem Drive and Leikin Drive intersection, and as such is considered an infill development within an established business park. The Ottawa International Airport is located approximately 4 km to the northeast. The major sources of roadway noise are Bill Leathem Drive and Leikin Drive. The site is surrounded on all sides with mixed-use land, specifically Light Industrial and Parks and Open Space zones. Figure 1 illustrates a complete site plan with surrounding context.

Upon completion, Phases 1 and 2 will rise approximately 9.5 and 10.5 meters above local grade, respectively. No Outdoor Living Areas (OLAs) are currently located on or proposed for the site.

Under the City of Ottawa Noise Control Guidelines (ENCG) and the Ontario Ministry of Environment and Climate Change Environment Noise Guidelines (NPC-300), the proposed land uses, place of worship and community centre, are not considered noise sensitive. The guidelines only make reference to place of worship and identifies this on Tables 2.2c and 4.2b of ENCG and Tables C-9 and C-10 of NPC 300. In both

² City of Ottawa, Environmental Noise Control Guidelines, January 2016

³ Ontario Ministry of the Environment and Climate Change, Environmental Noise Guideline – Publication NPC-300, August 2013

cases, the preamble to these tables identifies the criteria for *land uses not generally considered noise* sensitive but are provided as good design objectives.

3. OBJECTIVES

The main objectives of this work are to: (i) calculate the future noise levels on the study building produced by local roadway traffic and aircraft traffic, (ii) determine the feasibility of incorporating noise sensitive land uses, such as places of worship and gathering centres, within the site, (iii) ensure that interior noise levels do not exceed the allowable limits specified by the City of Ottawa's Environmental Noise Control Guidelines (ENCG) as outlined in Section 4 of this report, and (iv) demonstrate that there will be no negative impacts on the long-term function of the airport.

4. METHODOLOGY

4.1 Background

Noise can be defined as any obtrusive sound. It is created at a source, transmitted through a medium, such as air, and intercepted by a receiver. Noise may be characterized in terms of the power of the source or the sound pressure at a specific distance. While the power of a source is characteristic of that particular source, the sound pressure depends on the location of the receiver and the path that the noise takes to reach the receiver. Measurement of noise is based on the decibel unit, dBA, which is a logarithmic ratio referenced to a standard noise level (2×10^{-5} Pascals). The 'A' suffix refers to a weighting scale, which better represents how the noise is perceived by the human ear. With this scale, a doubling of power results in a 3 dBA increase in measured noise levels and is just perceptible to most people. An increase of 10 dBA is often perceived to be twice as loud.

The ENCG specifies that surface transportation noise (road and rail) and airport noise should be evaluated separately. The overall building attenuation parameters are than combined. Section 4.2 and 4.3 address the methodology for the evaluation of roadway and aircraft noise respectively. Section 4.2 also provides criteria for railway noise as background information, there is however no railway noise influencing the site.

4.2 Roadway Traffic Noise

4.2.1 Criteria for Roadway Traffic Noise

For vehicle traffic, the equivalent sound energy level, L_{eq}, provides a measure of the time varying noise levels, which is well correlated with the annoyance of sound. It is defined as the continuous sound level, which has the same energy as a time varying noise level over a period of time. For roadways, the L_{eq} is commonly calculated on the basis of a 16-hour (L_{eq16}) daytime (07:00-23:00) / 8-hour (L_{eq8}) nighttime (23:00-07:00) split to assess its impact on residential buildings. The City of Ottawa's Environmental Noise Control Guidelines (ENCG) specifies that the recommended indoor noise limit range (that is relevant to this study) is 45 dBA for conference rooms and places of worship, as listed in Table 1. The criteria listed in Table 1 relates to land uses "not generally considered noise sensitive" but are "good practice design objectives"⁴.

TABLE 1: INDOOR SOUND LEVEL CRITERIA (ROAD & RAIL)5

Type of Space	Time Period	L _{eq} (dBA)		
туре от эрасе	Time Period	Road	Rail	
General offices, reception areas, retail stores, etc.	07:00 – 23:00	50	45	
Theatres, places of worship , libraries, individual or semi- private offices, conference rooms, reading rooms etc.	07:00 – 23:00	45	40	
Sleeping quarters of hotels/motels	23:00 – 07:00	45	40	
Sleeping quarters of residences, hospitals, nursing/retirement homes, etc.	23:00 – 07:00	40	35	

Predicted noise levels at the plane of window (POW) dictate the action required to achieve the recommended sound levels. An open window is considered to provide a 10 dBA reduction in noise, while a standard closed window is capable of providing a minimum 20 dBA noise reduction⁶. Therefore, where noise levels exceed 55 dBA daytime and 50 dBA nighttime, the ventilation for the building should consider the need for having windows and doors closed, which normally triggers the need for central air

⁴ ENCG, Part 1, Section 2.2, Page 3

⁵ Adapted from ENCG 2016 – Table 2.2b,c

⁶ Burberry, P.B.. (2014). Mitchell's Environment and Services. Routledge, Page 125

conditioning. Where noise levels exceed 65 dBA daytime and 60 dBA nighttime, building components will require higher levels of sound attenuation⁷.

4.2.2 Roadway Traffic Volumes

The ENCG dictates that noise calculations should consider future sound levels based on a roadway's classification at the mature state of development. Therefore, traffic volumes are based on the roadway classifications outlined in the City of Ottawa's Official Plan (OP) and Transportation Master Plan⁸ which provides additional details on future roadway expansions. Average Annual Daily Traffic (AADT) volumes are then based on data in Table B1 of the ENCG for each roadway classification. Table 2 (below) summarizes the AADT values used for each roadway included in this assessment.

TABLE 2: ROADWAY TRAFFIC DATA

Roadway	Roadway Class	Speed Limit (km/h)	Official Plan AADT
Bill Leathem Drive	2-UMCU	60	12,000
Leikin Drive	2-UMCU	60	12,000

4.2.3 Theoretical Roadway Noise Predictions

Noise predictions were performed with the aid of the Ontario Ministry of the Environment, Conservation and Parks (MECP) computerized noise assessment program, STAMSON 5.04, for road analysis. Appendix B includes the STAMSON 5.04 input and output data.

Roadway noise calculations were performed by treating each road segment as separate line sources of noise, and by using existing building locations as noise barriers. In addition to the traffic volumes summarized in Table 4, theoretical noise predictions were based on the following parameters:

- Truck traffic on all roadways was taken to comprise 5% heavy trucks and 7% medium trucks, as
 per ENCG requirements for noise level predictions
- The day/night split was taken to be 92% / 8% respectively for all streets

⁷ MECP, Environmental Noise Guidelines, NPC 300 – Part C, Section 7.1.3

⁸ City of Ottawa Transportation Master Plan, November 2013

- Absorptive and reflective intermediate ground surfaces based on specific source-receiver path ground characteristics
- The study site was treated as having flat topography

Noise receptors were strategically placed at seven locations around the study area (see Figure 2).

4.2.4 Indoor Noise Calculations Roadway

When calculations reveal that outdoor noise levels are sufficiently high as to require investigation of indoor noise levels, calculations are performed to verify the Sound Transmission Class (STC) requirements for building components. The difference between outdoor and indoor noise levels is the noise attenuation provided by the building envelope. According to common industry practice, complete walls and individual wall elements are rated according to the Sound Transmission Class (STC). The STC ratings of common residential walls⁹ built in conformance with the Ontario Building Code (2012) typically exceed STC 35, depending on exterior cladding, thickness and interior finish details. For example, brick veneered walls can achieve STC 55. Standard good quality double-glazed non-operable windows can have STC ratings ranging from 25 to 40 depending on the window manufacturer, pane thickness and inter-pane spacing. As previously mentioned, the windows are the known weak point in a partition, according to the ENCG, when daytime noise levels (from road and rail sources) at the plane of the window exceed 65 dBA, calculations must be performed to evaluate the sound transmission quality of the building components to ensure acceptable indoor noise levels. The calculation procedure¹⁰ considers:

- Window type and total area as a percentage of total room floor area
- Exterior wall type and total area as a percentage of the total room floor area
- Acoustic absorption characteristics of the room
- Outdoor noise source type and approach geometry
- Indoor sound level criteria, which varies according to the intended use of a space

⁹ Bradley, J.S., Birta J.A. Laboratory Measurements of the Sound Insulation of Building Façade Elements, National Research Council of Canada, October 2000

¹⁰ Building Practice Note: Controlling Sound Transmission into Buildings by J.D. Quirt, National Research Council of Canada, September 1985

Based on published research¹¹, exterior walls and windows possess specific sound attenuation characteristics that are used as a basis for calculating the indoor noise levels to ensure compliance with ENCG criteria. Calculations were based on the architectural assemblies and are available in Appendix C

4.3 Aircraft Traffic Noise

4.3.1 Criteria for Aircraft Traffic Noise

The ENCG outlines the sound level criteria for aircraft noise based on a site's location near the Ottawa International Airport. The Ottawa Airport Vicinity Development Zone (AVDZ) is a zone around the airport defined by Noise Exposure Forecast (NEP) of Noise Exposure Projections (NEP) contour lines that follow fixed features, such as roads or lot boundaries. NEF/NEP contours reflect the predetermined noise levels which would impact sensitive areas around airports. These contours include the influences of noise levels from aircraft flight, take-off, and ground operations to specific urban areas. Noise generated from aircraft traffic is represented as Effective Perceived Noise Levels (EPNL), a unit of noise measurement that accounts for variations in the human perception of pure tones and noise duration. Predicted noise levels are plotted geographically to generate NEF/NEP contour maps, where lower NEF/NEP levels correspond to lower average outdoor noise levels. The AVDZ generally represents the 25 NEF/NEP contour. The Ottawa Airport Operating Influence Zone (AOIZ) generally represents the NEF/NEP 30 contour, where commercial aircraft traffic may negatively influence noise-sensitive developments. Within the AOIZ, noisesensitive development is not permitted, although infill and redevelopment may occur in specific areas within the zone in keeping with the criteria set out in the Official Plan, and be subject to detailed studies to demonstrate there will be no negative impact on long term airport operations. As stated previously, the proposed development is not considered to be noise sensitive, however, good engineering practices should incorporate noise mitigation into the design of the building to minimize noise impacts.

According to accepted research¹², Health and Welfare Canada states that people continuously exposed to NEF/NEP values less than 35 will not suffer adverse physical or psychological effects. Sociological surveys¹³ have indicated that negative community reactions to noise levels may start at about 25 NEF/NEP. Table 5 identifies the sound level criteria for relevant indoor spaces exposed to aircraft noise. Transport Canada guidelines related to aircraft noise indicated churches and other places of worship can tolerate noise levels

¹¹ CMHC, Road & Rail Noise: Effects on Housing

¹² Report of the Special Meeting on Aircraft Noise in the Vicinity of Aerodromes, Montreal ICAO, 1969.

¹³ Noise in Urban and Suburban Areas. Bolt, Beanik and Newman, Inc., Washington, January 1967.

up to NEF/NEP 35 where noise attenuation is considered in the building construction¹⁴. Where developments are within the AVDZ, building components must be designed to achieve the indoor criteria outlined in Table 3.

TABLE 3: SUPPLEMENTARY SOUND LEVEL CRITERIA¹⁵

Type of Space	NEF/NEP	Approximate L _{eq(24Hr)}
General offices, reception areas, retail stores, etc.	15	46 dBA
Individual or semi-private offices, conference rooms, etc.	10	41 dBA
Sleeping quarters of, hospitals/motels, nursing/retirement homes, etc. Living/dining areas of, theatres, libraries, places of worship, etc.	5	36 dBA

4.3.2 Theoretical Aircraft Noise Predictions

The impact of aircraft noise on the indoor environment was determined using INSUL by Marshal Day Acoustics. This software calculates indoor noise levels for standard roof, wall and window construction details for appropriate aircraft noise source spectra. Since aircraft produce uniform noise levels over large areas, building construction is more carefully considered than specific building location for interior noise level calculations. For this project, the building components were designed to an NEF value of 35 as a conservative measure to protect long term operations of the airport. However, the site is just inside the NEF contour 30, as illustrated in Figure 1. The NEF 35 contour is situated more than one kilometer from the site and noise levels are expected to be closer to NEF 30. Gradient Wind conducted a supplemental Aircraft Noise Monitoring report (ref. GWE15-009 – Aircraft Noise Update, dated July 12, 2018) confirming the NEF 35 value is conservative. No Outdoor Living Areas (OLAs) are currently located on or proposed for the site.

The influence of aircraft noise is based on NEF/NEP contours, geographically plotted values that quantify the noise levels from airport traffic on adjacent properties. The ENCG guidelines state that locations corresponding to NEF/NEP 25 or greater require improvements to the typical building envelope components, including exterior walls, roofs, windows and doors, to ensure adequate noise attenuation by the building envelope. In INSUL, construction elements are rated on the basis of STC and Outdoor-

¹⁴ https://www.tc.gc.ca/eng/civilaviation/publications/tp1247-part4-1436.htm

¹⁵ Adapted from ENCG 2016 – Tables 4.2a and b

Indoor Transmission Class (OITC). Estimates of STC performance of building assemblies have been determined using the software INSUL, which is based on extensive empirical data from countries around the world.

Based on the STC/OITC performance of the building assemblies, INSUL can determine indoor sound levels based on room size, partition area, and room absorption. Building elements with the lowest STC/OITC rating of the proposed assemblies were selected as a worst-case approach for the calculations. The resulting interior noise level was then determined using similar construction elements and room dimensions. Calculations were based on a worst-case representation of the most sensitive rooms. Details of the wall assemblies proposed are included in Appendix A. Details of the calculations are provided in Appendix D.

5. RESULTS AND DISCUSSION

5.1 Roadway Traffic Noise Levels

Appendix B contains the complete set of input and output data from all STAMSON 5.04 calculations. The results of the roadway noise calculations are summarized in Table 4 below. A sample of STAMSON 5.04 input parameters for Receptor 3 is shown in Figure 3.

TABLE 4: EXTERIOR NOISE LEVELS DUE TO ROADWAY TRAFFIC

Receptor	Plana (SMC) de	Noise Level (dBA)		
Number	Plane of Window	Day	Night	
1	POW – Phase 1 – 7 m – North Façade	63	56	
2	POW – Phase 1 – 3.2 m – East Façade	65	57	
3	POW – Phase 1 – 7 m – South Façade	68	60	
4	POW – Phase 1 – 1.5 m – West Façade	62	55	
5	POW – Phase 1 – 1.5 m – West Façade	62	54	
6	POW – Phase 2 – 1.5 m – West Façade	60	53	
7	POW – Phase 2 – 7 m – South Façade	65	57	

The results of the current analysis indicate that noise levels will range between 60 and 68 dBA during the daytime period (07:00-23:00) and between 53 and 60 dBA during the nighttime period (23:00-07:00). The

highest noise level (i.e. 68 dBA) occurs on the south façade of Phase 1 (Receptor 3), which is nearest and most exposed to Leikin Drive.

Because of elevated noise levels from roadway traffic, central air conditioning will be required to allow windows and doors to remain closed while maintaining a comfortable and quiet indoor environment.

Under the ENCG guidelines, surface transportation and aircraft noise are evaluated separately, and aircraft noise was found to be the governing source when considering a 24-hour L_{eq} up to 67 dBA for design of the building components. It should also be noted that the indoor criteria for aircraft is more stringent (see Section 5.2.1. as well as Table 1 and 5).

5.1.1 Roadway Traffic Noise STC Requirements

The current selected exterior wall and window assemblies for the development, as described below, have been rated for a particular STC rating based on the performance evaluated using INSUL software. As a conservative approach, the exterior wall assembly with the lowest STC rating was considered in our analysis and consisted of the following:

Typical Exterior Wall Construction (EX2)

- Pre-Finished Metal Siding
- Semi-Rigid Insulation (No Acoustic Value)
- 22 mm Horiz. Furring (No Acoustic Value)
- Sheathing Membrane (No Acoustic Value)
- 13 mm Exterior Sheathing
- 16 mm Wood Sheathing
- 152 mm Steel Stud
- Batt Insulation
- Vapour Barrier (No Acoustic Value)
- 16 mm Type X Gypsum Board

STC 53 - INSUL Estimated

Typical Glazing Construction

- 6 mm Inner Pane
- 13 mm Air Space
- 8 mm Outer Pane

STC 36 - INSUL Estimated

Note: Glazing elements assumed based on STC 35 (OITC 29) requirements. Window assembly may vary provided STC requirements are maintained.

The noise levels predicted due to roadway traffic exceed the criteria for upgraded building components. As discussed in Section 4.3, the anticipated indoor noise levels in various sensitive rooms have been estimated based on the methodology developed by the National Research Council. Appendix C contains the complete set of calculations performed to verify the required exterior wall and window STC performance. Detailed STC calculations show that key façades, built to a typical EX2 wall construction or better with STC 35 rated windows, would provide the necessary attenuation to control interior noise levels. The indoor noise level results are summarized in Table 5 below.

TABLE 5: INDOOR NOISE LEVELS DUE TO ROADWAY TRAFFIC

Barra Lavadia	Indoor Noise Level L _{eq(16 Hr)} (dBA)			
Room Location	NRC-Calc (dBA)	ENCG Criteria		
Multi-Purpose Room	35	45		
Sanctuary (Phase 2)	36	45		

5.1.2 Aircraft Noise STC Requirements

Similar to roadway traffic noise, the roof assembly was evaluated for sound transmission to control aircraft noise. The current selected roof assembly for the development, as described below, has been rated for a particular STC rating based on INSUL software. As a conservative approach, the roof assembly with the lowest STC rating is considered, as a worst case example.

Typical Roof Assembly Construction:

- Metal Roof
- Synthetic Under Roofing (No Acoustic Value)
- Protection Board Underlayment (No Acoustic Value)
- Roof Insulating Board (No Acoustic Value)
- Wood Roof Sheathing
- Steel Deck
- Sloped Roof Trusses
- 100 mm Batt Insulation
- 41 mm Metal Channels @400 mm O.C.
- Resilient Channel @400 mm O.C.
- One Layer 16 mm Type X Gypsum Board

STC 53 - INSUL Estimated

The window and wall assemblies in Section 5.1.1 were also considered in the INSUL calculations. Appendix D contains the complete set of input and output data from all INSUL calculations. The results of the aircraft noise assessment are summarized in Table 7 below.

TABLE 7: INDOOR NOISE LEVELS DUE TO AIRCRAFT

Down Location	Indoor Noise L	evel L _{eq(24 Hr)} (dBA)
Room Location	INSUL-Calc	ENCG Criteria
Multi-Purpose Room	36	36
Sanctuary (Phase 2)	36	36

The results of the current analysis indicate that with the proposed wall and window assemblies, predicted noise levels will be compliant to the ENCG criteria for aircraft noise. Due to aircraft noise, central air conditioning will be required to allow windows and doors to remain closed to maintain a comfortable and quiet indoor environment.

6. CONCLUSIONS AND RECOMMENDATIONS

The results of the current study indicate that predicted noise levels due to roadway traffic over the site will range between 60 and 68 dBA during the daytime period (07:00-23:00) and between 53 and 60 dBA during the nighttime period (23:00-07:00). The highest predicted noise level (i.e. 68 dBA) occurs on the south façade of Phase 1 (Receptor 3), which is nearest and most exposed to Leikin Drive.

In addition to surface transportation, the site is also impacted by aircraft noise. The site is situated between NEF/NEP contours of 30 and 35, just inside the NEF/NEP 30 contour (corresponding to a 24-hour equivalent sound pressure level ($L_{eq~(24~Hr)}$) or 61 dBA). To verify predicted noise levels, on-site monitoring was conducted 24-hours a day for a period of one month. Results of on-site monitoring indicate existing noise levels from airport operations are below an equivalent of the NEF 30 contour (61 dBA $L_{eq~(24~Hr)}$). The on-site monitoring also accounted for impacts of roadway traffic. To protect the building from possible future increases in airport noise, the building components were designed to a maximum predicted 24-hour equivalent sound pressure level of 67 dBA, due to aircraft flyovers, corresponding to the NEF/NEP 35 contour. This is a conservative approach, as the NEF/NEP 35 contour is more than one kilometer from the site.

For noise control measures for the building, upgraded Sound Transmission Class (STC) ratings are required for building components where noise levels are above the ENCG criteria for roadway traffic and aircraft traffic noise, respectively, as per Section 5. The development will be serviced with central air conditioning, which meet the ventilation requirements for noise control. As per ENCG requirements, the following Warning Clause¹⁶ in all Agreements of Lease, Purchase and Sale will be required:

_

¹⁶ City of Ottawa, Environmental Noise Control Guidelines, January 2016

"Purchasers/tenants are advised that despite the inclusion of noise control features in the development, sound levels due to increasing roadway traffic may, on occasion, interfere with some activities of the dwelling occupants as the sound levels exceed the sound level limits of the City and Ministry of the Environment

To help address the need for sound attenuation, this development includes:

Upgraded exterior walls comprising the following minimum features or brick veneer:

- Pre-Finished Metal Siding
- Semi-Rigid Insulation (No Acoustic Value)
- 22 mm Horiz. Furring (No Acoustic Value)
- Sheathing Membrane (No Acoustic Value)
- 13 mm Exterior Sheathing
- 16 mm Wood Sheathing
- 152 mm Steel Stud
- Batt Insulation
- Vapour Barrier (No Acoustic Value)
- 16 mm Type X Gypsum Board

STC 53 – INSUL Estimated

Upgraded glazing elements comprising the following features:

Minimum STC 35

Typical Roof Assembly Construction or higher rated assembly:

- Metal Roof
- Synthetic Under Roofing (No Acoustic Value)
- Protection Board Underlayment (No Acoustic Value)
- Roof Insulating Board (No Acoustic Value)
- Wood Roof Sheathing
- Steel Deck
- Sloped Roof Trusses
- 100 mm Batt Insulation
- 41 mm Metal Channels @400 mm O.C.
- Resilient Channel @400 mm O.C.
- One Layer 16 mm Type X Gypsum Board

STC 53 – INSUL Estimated

To ensure that provincial sound level limits are not exceeded, it is important to maintain these sound attenuation features.

This development has also been designed with central air conditioning. Installation of central air conditioning will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the sound level limits of the City and the Ministry of the Environment."

Also, because the development is located inside the Airport Operating Influence Zone (AOIZ) but outside the NEP 35 contour, the following Warning Clause related to aircraft noise influence on-site will be required:

"Purchasers/building occupants are forewarned that this property is located in a noise sensitive area due to its proximity to Ottawa Macdonald-Cartier International Airport.

In order to reduce the impact of aircraft noise in the indoor spaces, the development has been designed and built to meet provincial standards for noise control by the use of components and building systems that provide sound attenuation. In addition to the building components (i.e. walls, windows, doors, ceiling-roof), since the benefit of sound attenuation is lost when windows or doors are left open, this development has been fitted with central air conditioning.

Despite the inclusion of noise control features within the development, noise due to aircraft operations may continue to interfere with some indoor activities and with outdoor activities, particularly during the summer months. The purchaser/building occupant is further advised that the Airport is open and operates 24 hours a day, and that changes to operations or expansion of the airport facilities, including the construction of new runways, may affect the living environment of the residents of this property/area.

The Ottawa Macdonald-Cartier International Airport Authority, its acoustical consultants and the City of Ottawa are not responsible if, regardless of the implementation of noise control features, the purchaser/occupant of this development finds that the indoor and/or outdoor noise levels due to aircraft operations are offensive."

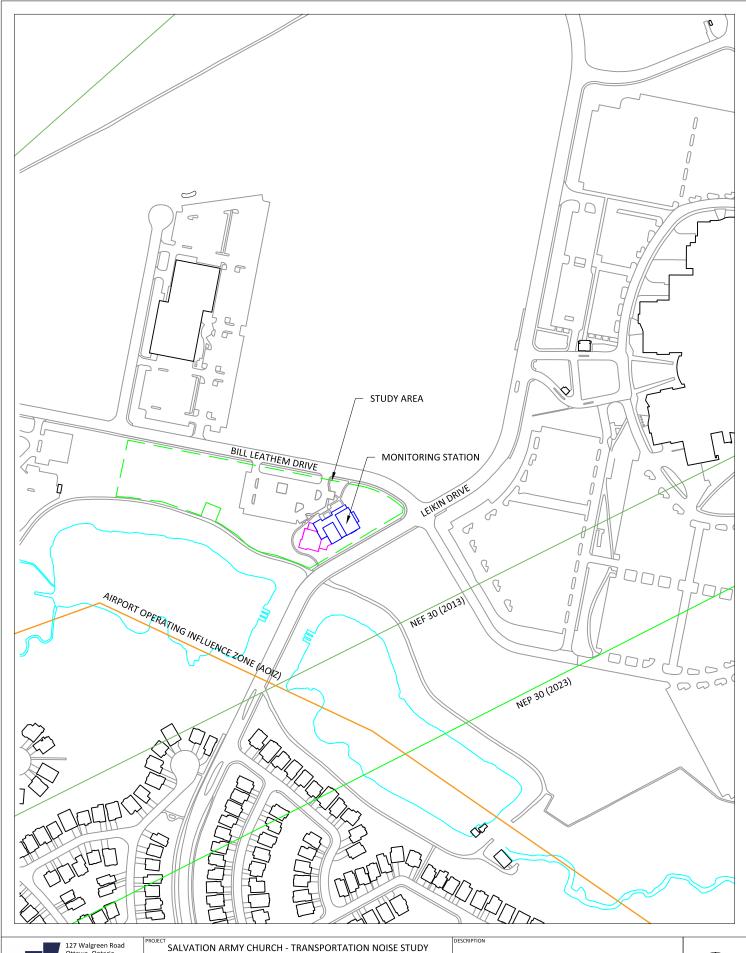
Under the ENCG and NPC-300, the development is not considered noise sensitive; therefore, in keeping with Federal¹⁷ and Provincial policies, it is permissible between NEF 30 and 35. In addition, the Provincial Policy Statement indicates that if the development were considered noise sensitive, noise sensitive land uses may be considered above the NEF/NEP 30 for infill and redevelopment developments where it is demonstrated that there will be no negative impact on the long term function of the airport. Based on the proposed architectural drawings, building components are expected to achieve the required sound transmission ratings to control indoor noise levels to below ENCG criteria for places of worship at the proposed site. Furthermore, on-site monitoring has indicated that existing noise levels at the site are well below predicted sound levels (ref. GWE15-009 – Aircraft Noise Update, dated July 12, 2018). Therefore, no long-term impact on airport operations are anticipated.

This concludes our assessment and report. If you have any questions or wish to discuss our findings please advise us. In the interim, we thank you for the opportunity to be of service.

Yours truly,

Gradient Wind Engineering Inc.

Michael Lafortune, C.E.T. Environmental Scientist


GWE15-009 - Transportation Noise R5

J. R. FOSTER
190155655

Mov/9,2021

Joshua Foster, P.Eng. Partner

 $^{^{17}}$ Transportation Canada, Land Use In The Vicinity of Aerodromes, Ninth Edition 2013/14

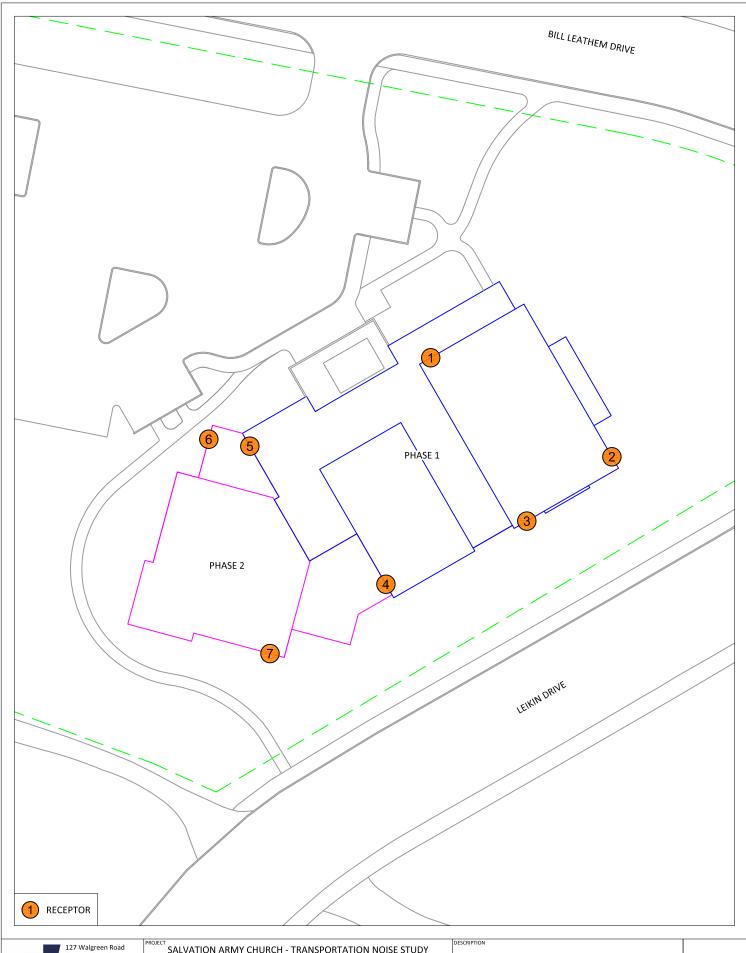
127 Walgreen Road Ottawa, Ontario Canada KOA 1L0 (613) 836 0934 www.gradientwind.com

SALVATION ARMY CHURCH - TRANSPORTATION NOISE STUDY

TALE

1:4000 (APPROX.)

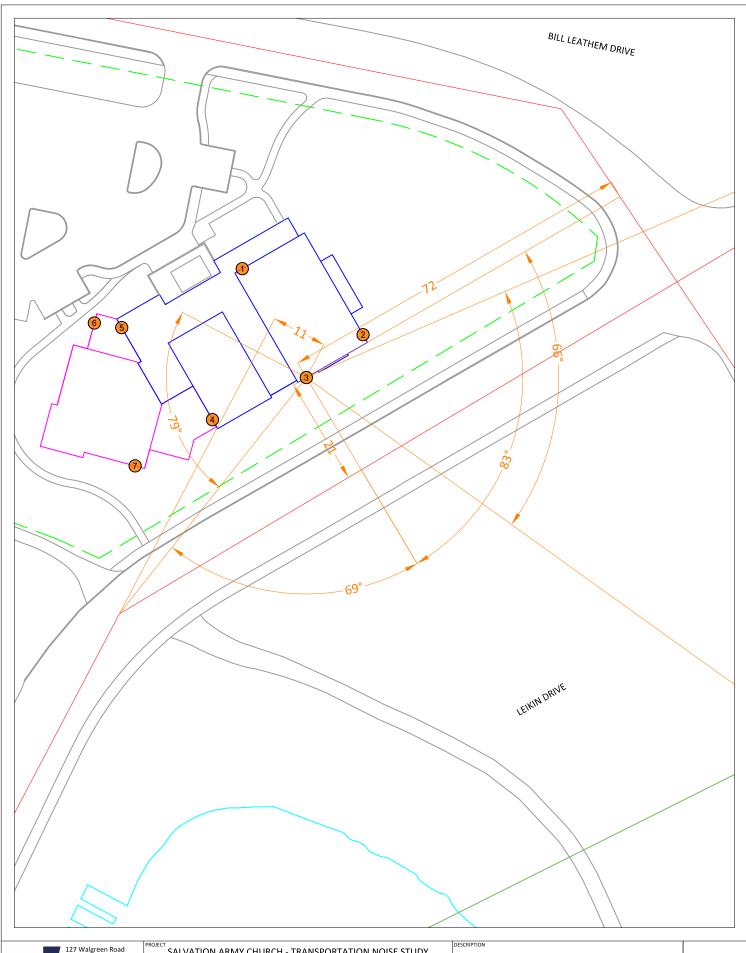
DRAWING NO.


GWE15-009-1

DRAWN BY

M.L

FIGURE 1: SITE PLAN AND SURROUNDING CONTEXT

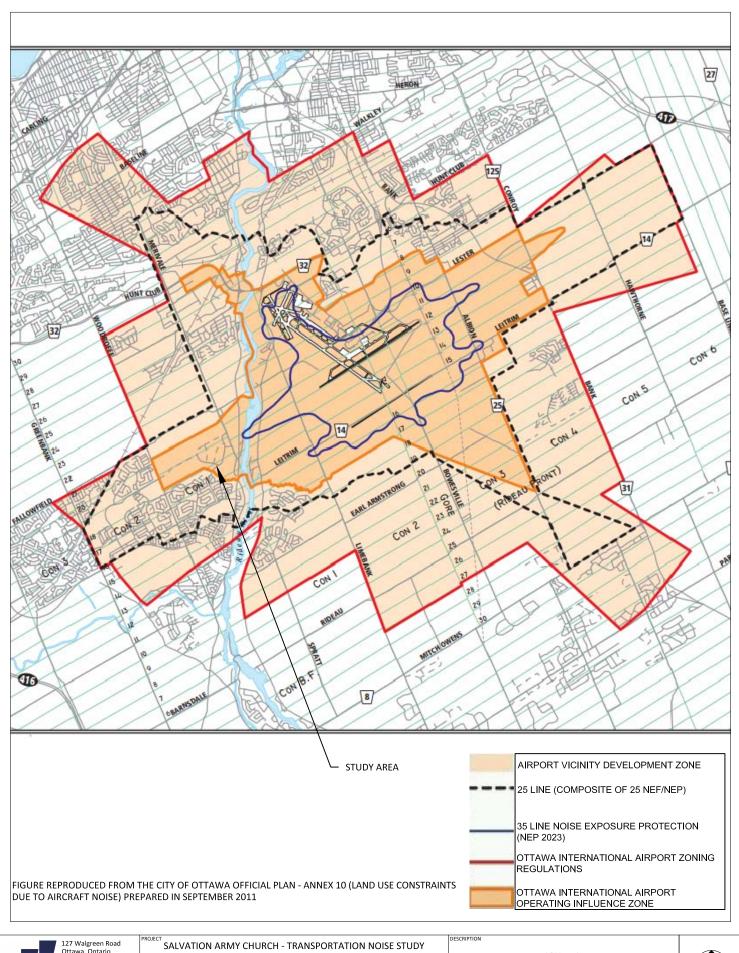

127 Walgreen Road Ottawa, Ontario Canada KOA 1L0

(613) 836 0934 www.gradientwind.com

	SALVATION ARMY CHURCH - TRANSPORTATION NOISE STUDY						
CALE	1:2000 (APPROX.)	GWE15-009-2					
ATE	OCTOBER 23, 2017	DRAWN BY M.L					

FIGURE 2: RECEPTOR LOCATIONS

 $\mathsf{M}.\mathsf{L}$



reen Road olhatario OA 11.0 SCALE 1:750 (APPROX.) DRAWING NO. GWE15-009-3

OCTOBER 23, 2017

FIGURE 3: STAMSON SAMPLE INPUT

127 Walgreen Road Ottawa, Ontario Canada KOA 1L0 (613) 836 0934

NTS GWE15-009-4 OCTOBER 23, 2017 M.L

FIGURE 4: DEVELOPMENT LOCATION IN REFERENCE TO THE

OTTAWA AIRPORT OPERATING INFLUENCE ZONE

APPENDIX A

Architectural Drawings and Assemblies

SALVATION ARMY BARRHAVEN CHURCH

102 BILL LEATHEM DRIVE, BARRHAVEN, ONTARIO, K2J 0R3

ISSUED FOR TENDER - NOVEMBER 5th, 2021

460-505 March Road, Kanata, Ontario K2K 3A4

400-1331 Clyde Avenue, Ottawa, Ontario K2C 3G4

700 Long Point Circle, Gloucester, Ontario K1T 4E9

ELECTRICAL

Chuck Wood

Tel: 613-224-5566

Brian Webster

Tel: 613-722-2799

Douglas Gray

Tel: 613-425-8044

SURVEYOR

Bouthillette Parizeau Inc.

Stantec Geomatics Ltd.

PROJECT TEAM:

CLIENT

MECHANICAL

John Bekolay

Tel: 613-224-5566

Bekolay & Associates Ltd.

460-505 March Road, Kanata, Ontario K2K 3A4

Jim Mercer Salvation Army Barrhaven Church 102 Bill Leathem Drive, Barrhaven, Ontario K2J 0R3 Tel: 613-440-7555 (x102) **ARCHITECT** Ralph Vandenberg Vandenberg & Wildeboer Architects 160 Flamborough Way, Ottawa, Ontario K2K 3H9 Tel: 613-287-0144 (x200) STRUCTURAL Brian Johnson Cleland Jardine Engineering Ltd. 200-580 Terry Fox Drive, Kanata, Ontario K2L 4B9 Tel: 613-591-1533 (x226)

LANDSCAPE Rudy Levstek Levstek Consultants Inc. 5871 Hugh Crescent, Ottawa, Ontario K0A 2W0 Tel: 613-826-0518

Douglas B. Gray Engineering Inc.

DRAWING LIST:

A801 - Kitchen Plan & Details

DRAWING LIST:	
ARCHITECTURAL:	STRUCTURAL:
A000 - Title Sheet	S000 - General Notes & Details
A001 - Site Plan	S001 - General Notes & Details
A002 - Life Safety / OBC Matrix	S002 - General Notes & Details
A003 - Notes & Assemblies	\$100 - Foundation / Ground Plan
A004 - Schedules	S101 - Roof Plan
A005 - Window Tie-In Details	\$102 - Anticipated Roof Plan
A101 - Foundation/Ground Plans	w/ Future Expansion
A102 - Clerestory/Roof Plans	S200 - Sections & Details
A120 - Reflected Ceiling Plan	S201 - Sections & Details
A201 - Elevations	S301 - Brace Frame Elevations
A301 - Building Sections	
A401 - Wall Sections	MECHANICAL:
A501 - Plan Details	
A502 - Plan Details	M1 - Plumbing & Piping
A551 - Section Details	M2 - HVAC
A552 - Section Details	M3 - Specifications
A601 - Finishes Plan & Notes	
A701 - Universal Washroom Plan & Details	
A702 - Washroom Plan & Details	ELECTRICAL:
A720 - Stair & Ramp Details	E1 - Site Plan, Electrical Room Layou

Single Line Diagram & Legend

E2 - Electrical Specification

E4 - Electrical Lighting

Protection

E3 - Electrical Power & Systems

E5 - Electrical Roof Plan & Lightning

GENERAL CONSTRUCTION NOTES:

AUTHORITIES. MOST STRINGENT REQUIREMENTS APPLY.

- 1. THE INFORMATION PRESENTED IN THESE DRAWINGS HAS BEEN DESIGNED AND ANALYZED IN ACCORDANCE WITH THE 2012 ONTARIO BUILDING CODE AND THE 2010 NATIONAL BUILDING CODE OF CANADA AND ALL OTHER APPLICABLE CODES.
- 2. OBSERVE CONSTRUCTION SAFETY MEASURES OF THE BUILDING CODE, PROVINCIAL GOVERNMENT OCCUPATIONAL HEALTH AND SAFETY ACTS, AND THE REGULATIONS GOVERNING COUNCIL WORKMAN'S COMPENSATION BOARD AND MUNICIPAL
- 3. THE CONTRACTOR IS RESPONSIBLE FOR PROCUREMENT OF PERMITS, LICENSES, INSPECTIONS AND CERTIFICATES WHICH ARE NECESSARY FOR THE PERFORMANCE OF THE WORK CUSTOMARILY OBTAINED BY CONTRACTORS AFTER ISSUANCE OF BUILDING PERMIT. THE CONTRACT PRICE INCLUDES THE COST FOR SUCH PERMITS, LICENSES, INSPECTIONS, CERTIFICATES AND THEIR PROCUREMENT.
- 4. EXAMINE SITE AND ALL CONDITIONS THAT WILL AFFECT THIS WORK SUBMISSION OF TENDER DEEMED CONFIRMATION THAT TENDERER HAS INSPECTED SITE AND IS KNOWLEDGEABLE OF EXISTING CONDITIONS. CONTRACTOR IS TO INFORM THE CONSULTANT OF ANY DISCREPANCIES OR CHANGES OF SITE CONDITIONS. ANY DISCREPANCIES WITH THE DRAWING SHALL BE REPORTED TO THE CONSULTANT PRIOR
- 5. CONTRACTOR TO PROVIDE ADEQUATE PROTECTION OF ALL EXISTING COMPONENTS DURING CONSTRUCTION. DAMAGE OCCURRING TO NEW OR EXISTING COMPONENTS SHALL BE REPAIRED OR REPLACED AT THE CONTRACTORS' EXPENSE. CONTRACTOR IS TO PROVIDE ADEQUATE PROTECTION OF NEW FLOORING GOODS DURING CONSTRUCTION. ON CARPET, PROTECT WITH LINOLEUM. ON WOOD, PROTECT WITH LAYERS OF CARDBOARD. PROTECT FINISHED WORK AGAINST DAMAGE UNTIL
- 6. ALL MATERIALS SHALL BE NEW AND CONFORM TO THE MINIMUM APPLICABLE STANDARDS OF THE CANADIAN STANDARDS BOARD, THE ONTARIO BUILDING CODE AND THE APPLICABLE PROVINCIAL AND MUNICIPAL CODES.
- 7. DURING CONSTRUCTION, THE SITE SHALL BE KEPT IN A NEAT AND ORDERLY CONDITION WITH GARBAGE REMOVED DAILY. UPON COMPLETION OF EACH PHASE, CONTRACTOR AND SUB-TRADES ARE TO REMOVE ALL SURPLUS MATERIALS, RUBBISH AND GARBAGE, AND LEAVE THE PREMISES IN A CLEAN STATE READY FOR THE CLIENT TO MOVE IN.
- 8. CONTRACTOR IS TO ENSURE THAT ALL TRADES; ELECTRICAL, MECHANICAL, TELECOMMUNICATIONS ETC. HAVE COMPLETED THEIR PORTION OF WORK BEFORE BOARDING UP BOTH SIDES OF THE STUDS. THIS IS TO INCLUDE ALL INSPECTIONS AS REQUIRED BY LOCAL AND PROVINCIAL BY-LAWS AND BUILDING CODES.
- 9. THE CONTRACTOR SHALL NOTIFY THE CHIEF BUILDING OFFICIAL AT THE READINESS AND COMPLETION OF CONSTRUCTION STAGES AS PER 2.4.5.1.(2). AND 2.4.5.2. OF BUILDING CODE. THE CONTRACTOR SHALL BE PRESENT AT EACH INSPECTION AS APPLICABLE UNDER 2.4.5.3. OF THE CODE.
- 10. THE CONTRACTOR SHALL FORWARD ALL CITY INSPECTION REPORTS TO APPLICABLE CONSULTANTS AS SOON AS RECEIVED.
- 11. SOIL CONSULTANT TO REVIEW AND VERIFY SOIL CONDITIONS PRIOR TO POURING FOOTINGS
- 12. THE CONTRACTOR IS RESPONSIBLE TO ENSURE ALL MATERIALS USED IN BUILDING COMPONENTS AND ASSEMBLIES SEPARATING DISSIMILAR ENVIRONMENTS AND ASSEMBLIES EXPOSED TO THE EXTERIOR, INCLUDING CONNECTIONS, SHALL BE COMPATIBLE WITH ADJOINING MATERIALS AND RESISTANT TO MECHANISMS OF DETERIORATION THAT MAY BE REASONABLY EXPECTED.
- 13. WHERE POSSIBLE, MATERIALS OR COMBINATIONS OF MATERIALS USED TO SEPARATE DISSIMILAR ENVIRONMENTS AND ASSEMBLIES SHOULD BE PART OF A SYSTEM DESIGNED FOR THE PURPOSE INTENDED.
- 14. CONTRACTOR IS TO INFORM THE CONSULTANT OF ANY MATERIAL THAT IS UNAVAILABLE AS SPECIFIED OR REQUIRING A DELIVERY TIME WHICH CAN'T MATCH CONSTRUCTION SCHEDULE / PROJECT DELIVERY DATE.
- 15. CAD VERSIONS OF THE ARCHITECTURAL DRAWINGS SHALL BE MADE AVAILABLE TO THE CONTRACTOR FOR A STIPULATED COST UPON THE COMPLETION OF A RELEASE FORM INDEMNIFYING THE CONSULTANT FROM ANY ERRORS OR OMISSIONS ASSOCIATED WITH THE CAD FILES.
- 16. DO NOT SCALE DRAWINGS. DIMENSIONS SHALL BE VERIFIED ON SITE BY CONTRACTOR WHO SHALL BE FULLY RESPONSIBLE FOR THEIR ACCURACY.

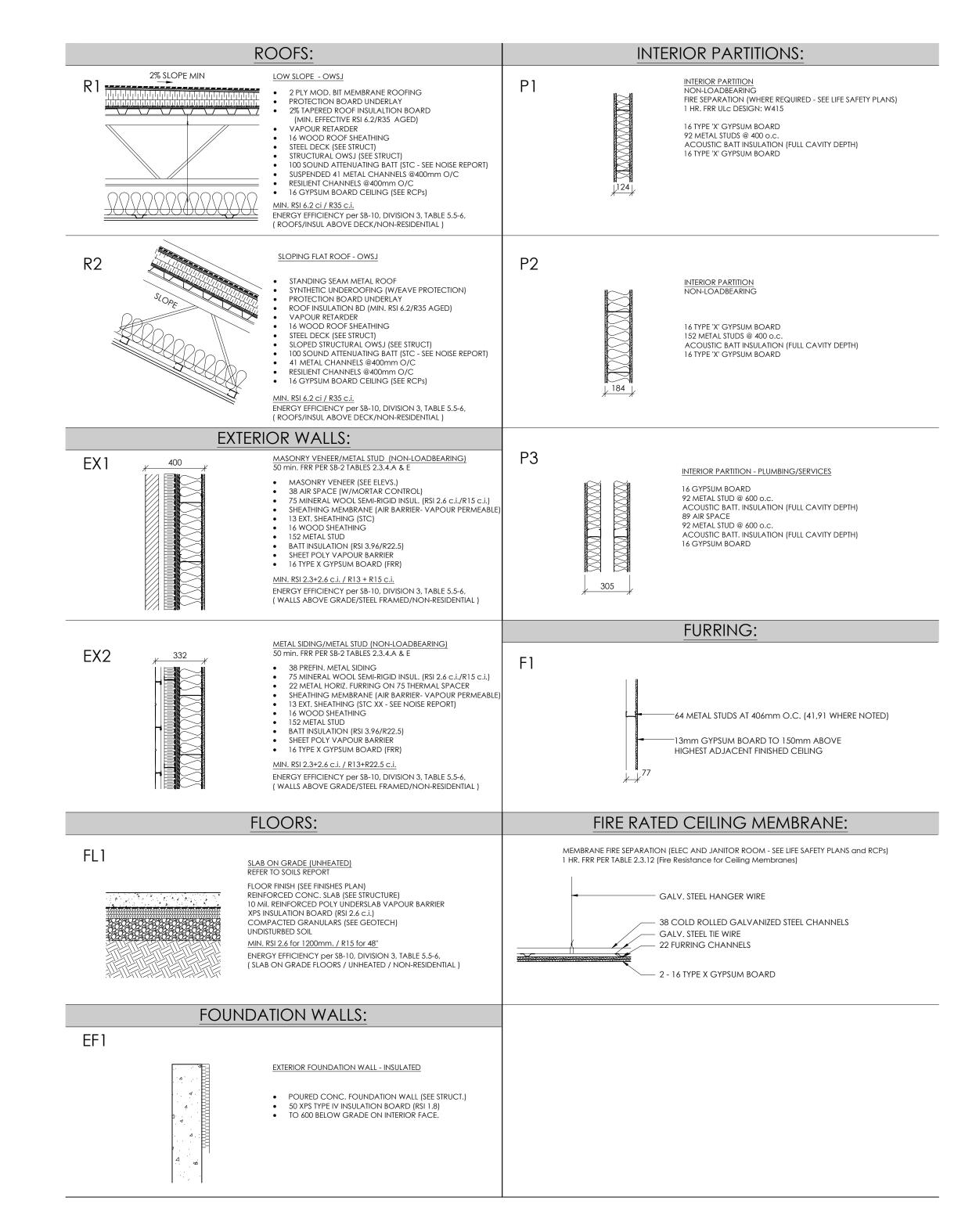
19. EXTERIOR DIMENSIONS ARE MEASURED FROM CENTRE OF GRIDLINE AND/OR FACE OF

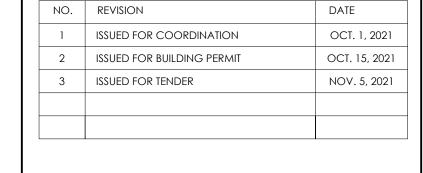
- 17. ALL DIMENSIONS ARE IN MILLIMETERS UNLESS OTHERWISE NOTED.
- 18. INTERIOR DIMENSIONS ARE MEASURED FROM TO THE FACE OF FINISHED WALL AND/OR FINISHED FRAMES AT OPENINGS.
- STRUCTURE.

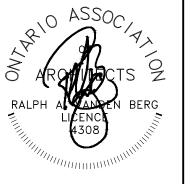
 20. CONTRACTOR IS TO VERIFY ALL DOOR AND WINDOW SIZES PRIOR TO FRAMING OF
- ALL OPENINGS. PROVIDE LINTEL SUPPORT AS REQUIRED ABOVE OPENINGS IN CMU WALLS OR OTHER AS PER STRUCTURAL DRAWINGS & SPECIFICATIONS.

 21. CONTRACTOR TO SITE VERIFY ALL HEADROOM CLEARANCES ARE IN CONFORMANCE
- WITH BUILDING CODE DURING CONSTRUCTION. REPORT TO CONSULTANT ANY DISCREPANCIES WHICH MAY ADVERSELY AFFECT THE REQUIRED HEADROOM CLEARANCES.
- 22. ALL WALLS TO BE CONSTRUCTED AT 45° AND 90° TO EACH OTHER UNLESS NOTED OTHERWISE.
- 23. ALL FIREWALLS TO BE EXTENDED TO EDGE OF FASCIA.
- 24. ASSUME ALL WALLS IDENTIFIED FOR REMOVAL ARE FULL HEIGHT AND SPAN FROM SLAB TO SLAB.
- 25. SITE VERIFY ALL DIMENSIONS FOR MILLWORK, DOORS, STAIRS, MAILBOX, ETC. PRIOR TO CONSTRUCTION AND INSTALLATION.
- 26. CHECK ALL WALLS AFFECTED BY RENOVATION FOR DEVICES THAT MAY NEED TO BE REMOVED AND RELOCATED.
- 27. STEEL STUDS GAUGE AND SPACING TO BE CO-ORDINATED WITH MECHANICAL IN STORAGE ROOMS. UNISTRUTS TO BE FASTENED TO STEEL STUDS TO SUPPORT UNIT HEATERS.
- 28. CONTRACTOR TO ALLOW FOR WOOD FRAMING SHRINKAGE IN THE VERTICAL DIRECTION AT THE WINDOW/MASONRY JUNCTIONS. ENSURE SUFFICIENT SPACE IS PROVIDED BETWEEN BOTTOM OF WINDOW SILL AND TOP OF MASONRY SILL. ALSO, PROVIDE SHRINKAGE JOINTS IN THE GYPSUM BOARD AT THE FLOOR LEVEL AND ALL FLOOR-TO-FLOOR STAIRCASES.
- REQUIRED FOR WALL MOUNTED UNITS SUCH AS COUNTER TOPS, SHELVES, MILLWORK, WALL HUNG VANITIES, VALANCES, GRAB BARS, AND WASHROOM ACCESSORIES PER O.B.C. SECTION 3.3.4.8.

29. CONTRACTOR TO PROVIDE ADEQUATE/SECURE BLOCKING IN PARTITIONS WHERE


- 30. ALL CLOTHES CLOSETS TO HAVE A MINIMUM CLEAR INSIDE DIMENSION OF 610mm. EACH COAT CLOSET IS TO BE COMPLETE WITH COAT ROD AND HAT SHELF. SHELF TO BE 400mm DEEP C/W WALL SUPPORT CLEATS 3 SIDES.
- 31. ALL GYPSUM BOARD ABUTTING CONCRETE OR BLOCK TO BE EDGED WITH METAL "J" TRIM.
- 32. ALL DRAIN PIPING TO BE WRAPPED CONTINUOUS WITH 1" (25mm) MINIMUM SOUND ATTENUATION BATT INSULATION.
- 33. EACH TRADE TO PROVIDE FIRE STOPPING WHEN PENETRATING A FIRE SEPARATION. FIRE STOPPING TO BE A CUL LISTED SYSTEM APPLICABLE FOR THE PENETRATION CONDITIONS WITH A RATING NOT LESS THAN AFFECTED FIRE SEPARATION.
- 34. GYPSUM BOARD TO BE SEALED AROUND ALL NEW AND EXISTING PENETRATIONS, PIPES, EQUIPMENT AND DUCTWORK WHERE REQUIRED TO MAINTAIN SOUND CONTROL AND FIRE RESISTANCE RATINGS.
- 35. REFER TO ACOUSTICAL CONSTRUCTION NOTES FOR ELECTRICAL AND MECHANICAL COMPONENTS IN PARTY WALLS.
- 36. ALL ELECTRICAL SWITCHES TO BE LOCATED 100 200mm FROM ENTRANCE DOOR TO A ROOM. LOCATE STUDS TO ACCOMMODATE SWITCH LOCATIONS. HORIZONTALLY ALIGN LIGHT SWITCHES WITH THERMOSTATS AND OTHER RELATED SWITCHING DEVICES WHERE POSSIBLE. PROVIDE SUITE MOCK-UP FOR ARCHITECT REVIEW AND APPROVAL.
- 37. DESIGN RAILINGS/GUARDS & CONNECTIONS TO O.B.C. VERTICAL AND HORIZONTAL LIVE LOAD REQUIREMENTS. PROVIDE SHOP DWGS c/w STAMP OF REGISTERED QUALIFIED PROF. ENG. REGISTERED IN PROVINCE OF ONTARIO

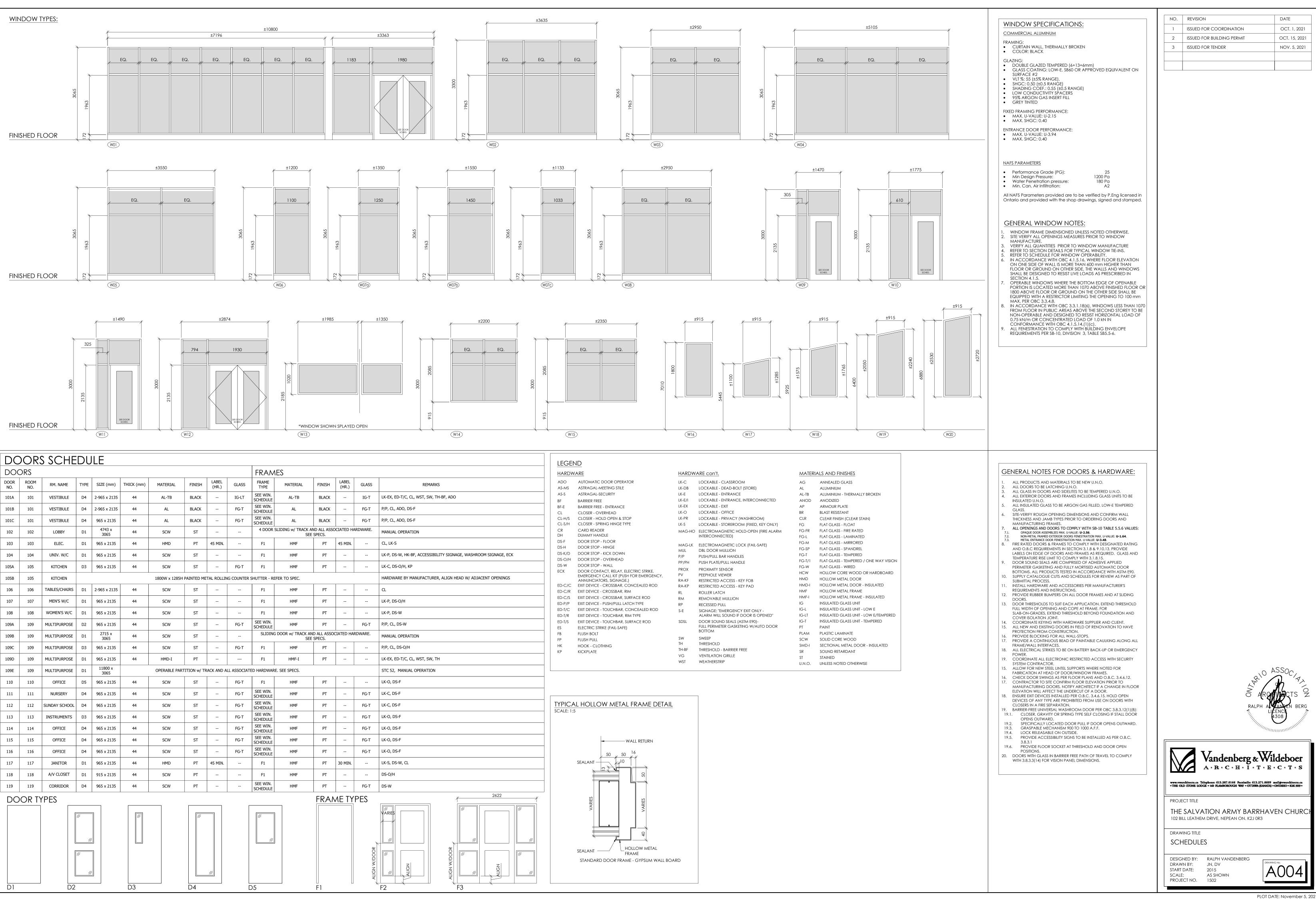

PARTITION/FURRING NOTES:

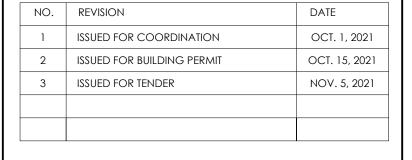

- 1. WHERE NOTED, CONSTRUCT ALL ASSEMBLIES IN ACCORDANCE WITH THE REQUIREMENTS OF THE IDENTIFIED LABELING AGENCY. ALL MATERIALS SHALL BE AS SPECIFIED IN THE ULC DESIGN AND ULC LABELLED.
- 2. CONTRACTOR IS RESPONSIBLE TO CO-ORDINATE ALL LOCATIONS OF FIRE RATINGS WITH FIRE SEPARATION DRAWINGS. ENSURE ALL FIRE RATINGS ARE CONTINUOUS AND MAINTAINED FOR ENTIRE LENGTH / EXTENT OF WALL AND CEILING.
- 3. ALL PARTITION SHALL BE TYPE 'P1' UNLESS OTHERWISE NOTED ON DRAWINGS.
- 4. ALL FURRING SHALL BE 'F1' UNLESS NOTED OTHERWISE.
- 5. ALL LIGHTWEIGHT STEEL STUD INTERIOR FRAMING SHALL BE 25-ga. (0.455 mm MIN. THICKNESS) INCLUDING FRAMED OPENINGS FOR DOORS UP TO 810 mm (2'-8") WIDE AND NOT MORE THAN 45 kg (100 lb).
- 6. ROUGH FRAMING FOR DOORS WIDER THAN 810 mm (2'-8") AND UP TO 91 kg (200 lb) ARE TO BE REINFORCED USING 20-ga. (.836 mm) STEEL STUDS AND RUNNERS. HEAVY DOORS UP TO 1220 mm (4'-0") WIDE AND 136 kg (300 lb) MAX ARE TO USE TWO 20-ga. STUDS.
- 7. MOISTURE BARRIER MUST BE PROVIDED IN ALL AREAS WHERE UNTREATED WOOD IS IN CONTACT WITH CONCRETE OR CONCRETE MASONRY UNITS.
- 8. BUILD OUT WALLS AS REQUIRED TO ACCOMMODATE RECESSED ELECTRICAL PANELS AND MECHANICAL SERVICES. ALLOW MINIMUM 25mm FRAME CLEARANCE AROUND DRAIN PIPES FOR INSULATION WRAP.
- 9. ALL ELECTRICAL SWITCHES TO BE LOCATED 100 200mm FROM ENTRANCE DOOR TO A ROOM. LOCATE STUDS TO ACCOMMODATE SWITCH LOCATIONS. HORIZONTALLY ALIGN LIGHT SWITCHES WITH THERMOSTATS AND OTHER RELATED SWITCHING DEVICES WHERE POSSIBLE. PROVIDE SUITE MOCK-UP FOR ARCHITECT REVIEW AND APPROVAL.
- 10. ALL ELECTRICAL BOXES ON OPPOSING FACES OF WALLS SHALL BE LOCATED IN SEPARATE STUD CAVITIES.
- 11. WHERE ELECTRICAL PANELS ARE LOCATED IN ACOUSTIC OR FIRE RATED WALLS, EXTEND FIRE RATED GYPSUM BOARD ALONG SIDES AND BACK OF PANELS TO MAINTAIN SOUND ATTENUATION OR FIRE RATING.
- 12. SUBSTITUTE GYPSUM BOARD WITH FIRE RATED GYPSUM BOARD FOR ALL SOUND CONTROL ASSEMBLIES.

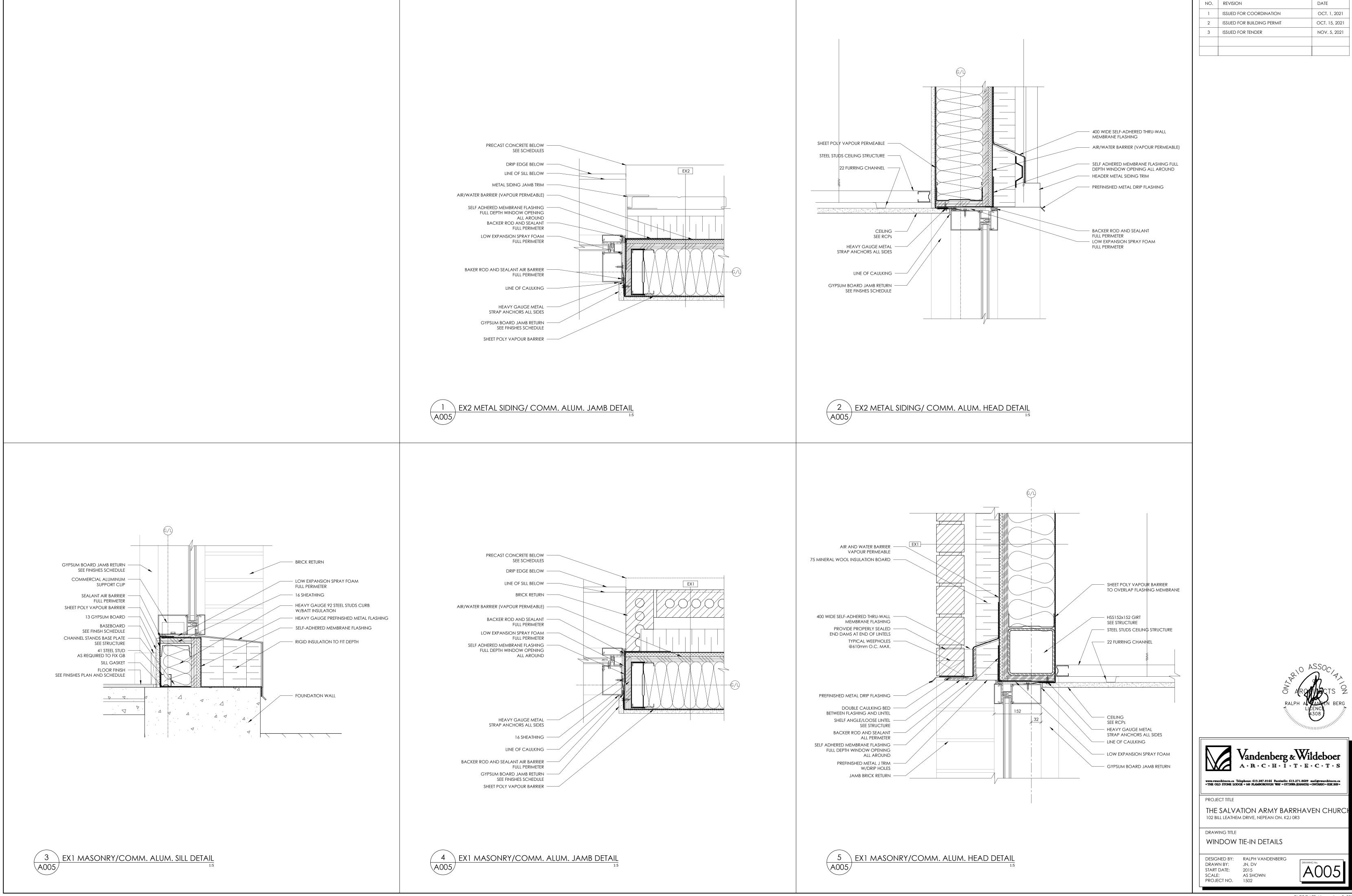
FACTOR, EXCLUDING WALL SCHEDULE FOR TILE FINISH.

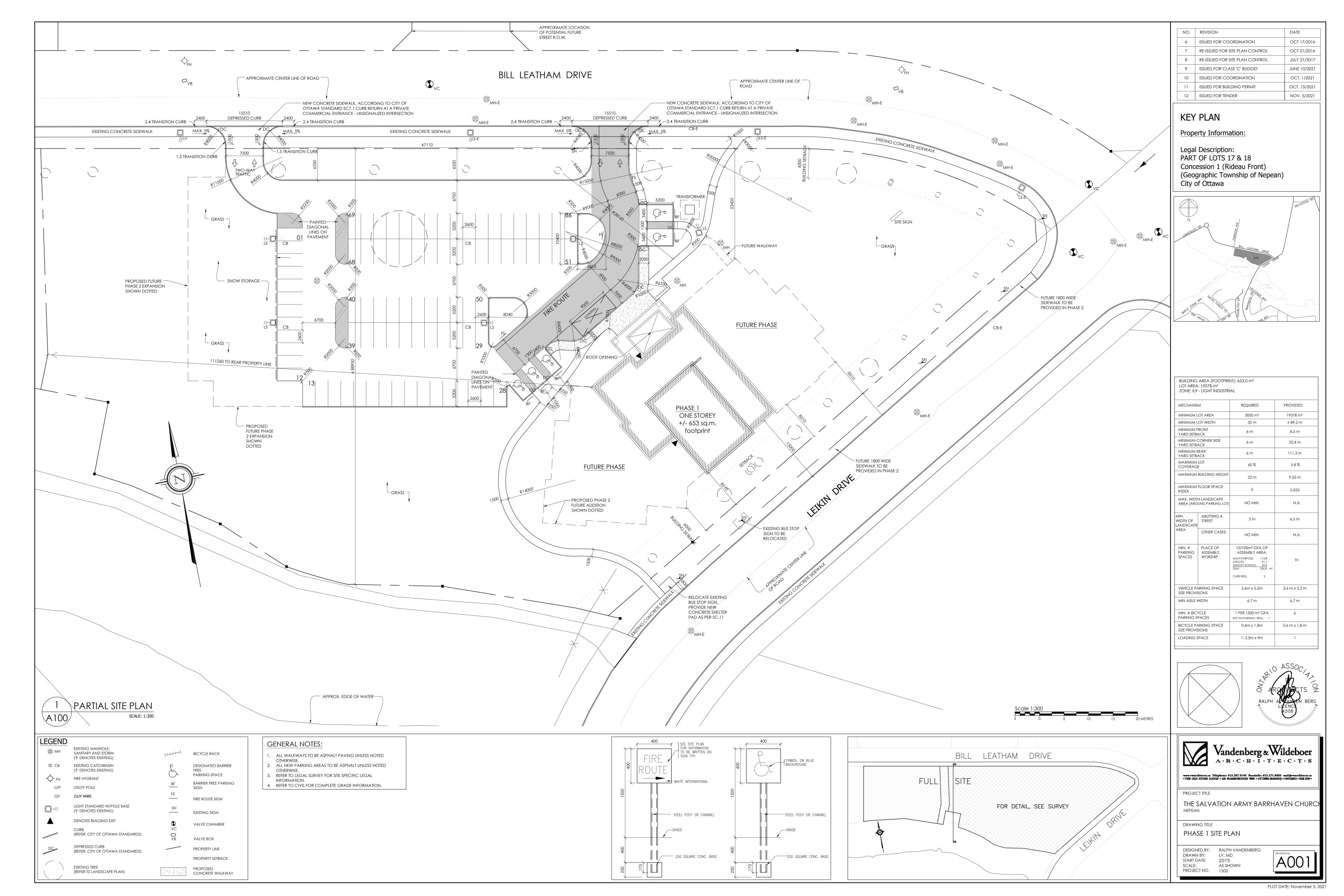
- 13. SUBSTITUTE GYPSUM BOARD WITH MOISTURE OR MOULD RESISTANT GYPSUM BOARD (TO ASTM D 3273) IN WASHROOMS, KITCHENS AND WHEREVER MOISTURE IS A
- 14. SUBSTITUTE GYPSUM BOARD WITH GLASS MAT TILE BACKER BOARD (TO ASTM C 1178) FOR ALL WALLS TO RECEIVE TILE FINISH. ASSUME ALL SHOWERS AND BATHTUBS TO
- 15. ALL LAYERS OF GYPSUM BOARD SHOULD HAVE NO GAPS OVER 6mm.
- 16. INNER LAYERS OF GYPSUM BOARD SHALL BE TAPED AND COMPOUNDED.
- 17. PROVIDE COMPRESSIBLE BACKER ROD FOR SEALANT JOINTS OVER 6mm.
- 18. ALL GYPSUM BOARD FINISHES, ACCESSORIES AND INTERIOR VENEER MATERIAL SHALL EXTEND A MINIMUM 150mm ABOVE HIGHEST ADJACENT FINISHED CEILING UNLESS NOTED OTHERWISE
- ALL PARTITIONS INSULATED FOR SOUND CONTROL TO HAVE GYPSUM BOARD SEALED CONTINUOUS. INCLUDES SILL PLATES, END WALLS, AND TOP PLATES.
- 20. ALL GYPSUM BOARD CONTRIBUTING TO FIRE RESISTANCE RATING OF A WALL, ROOF OR FLOOR ASSEMBLY SHALL BE INSTALLED SO THAT ALL EDGES ARE SUPPORTED EXCEPT THAT 15.9 TYPE X GYPSUM BOARD MAY BE INSTALLED HORIZONTALLY WITH HORIZONTAL JOINTS UNSUPPORTED WHEN FRAMING MEMBERS ARE SPACED AT 400 O.C. MAX.
- 21. GALVANIZED METAL RESILIENT OR FURRING CHANNELS (0.5 MM MINIMUM THICKNESS SPACED NOT MORE THAN 610 MM) CAN BE USED TO ATTACH GYPSUM BOARD AS PART OF FIRE RATED FLOOR OR ROOF ASSEMBLY. ENSURE SPLICES ARE OVERLAPPED AS REQUIRED BY CODE AND END CLEARANCE IS PROVIDED.
- 22. PROVIDE MINIMUM ALLOWABLE FASTENER PENETRATION INTO WOOD MEMBERS PER SB-2 TABLE 2.3.9. WHERE MEMBRANE USED FOR FIRE RATING.
- 23. SEAL ALL FIRE RATED PARTITIONS TO FLOOR SLAB AND TO UNDERSIDE OF STRUCTURE ABOVE WITH APPROVED FIRE STOP MATERIALS OR SYSTEMS. PROVIDE CONTINUOUS FIRE STOPPING AT JUNCTIONS OF FIRE RATED PARTITIONS AND SOLID CONCRETE/CMU
- 24. REFER TO GENERAL CONSTRUCTION NOTES AND SPECIFICATIONS DOCUMENT FOR ADDITIONAL INFORMATION.

PROJECT TITLE

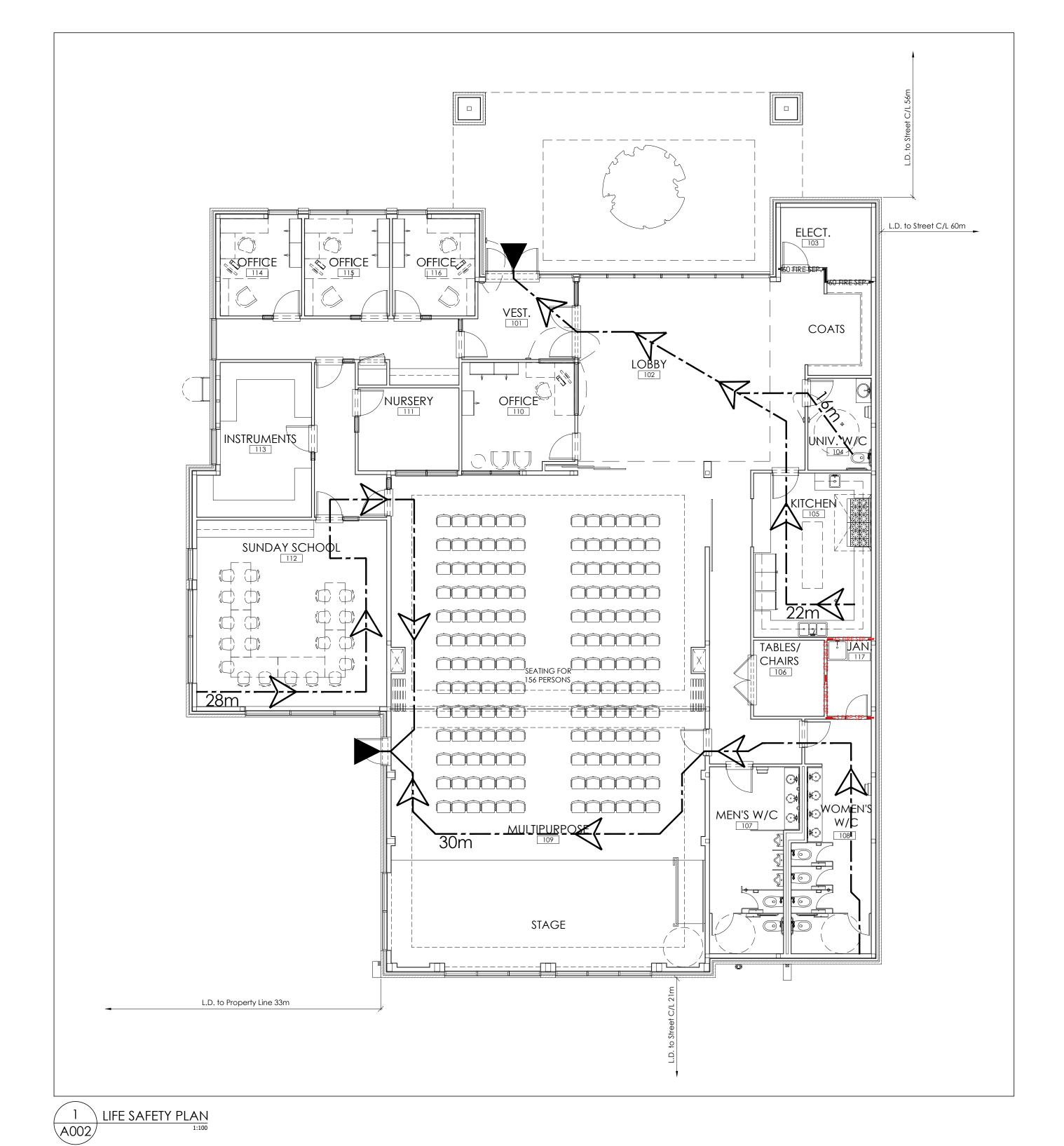

THE SALVATION ARMY BARRHAVEN CHURCI 102 BILL LEATHEM DRIVE, NEPEAN ON. K2J 0R3

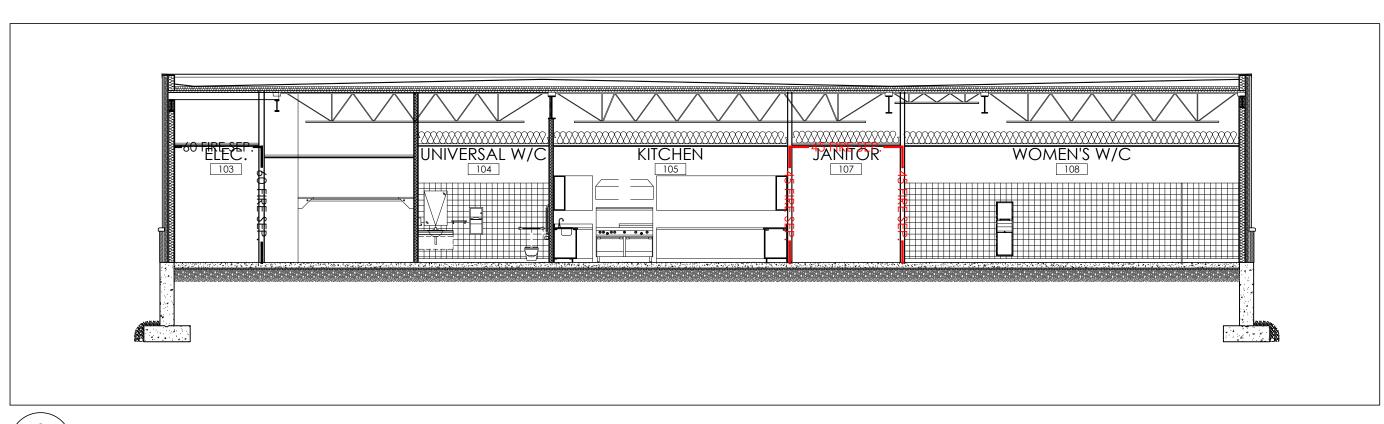

DRAWING TITLE


NOTES & ASSEMBLIES


DESIGNED BY: RALPH VANDENBERG
DRAWN BY: JN, DV
START DATE: 2015
SCALE: AS SHOWN
PROJECT NO. 1502

1003

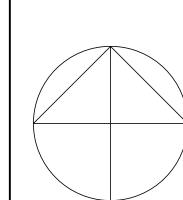


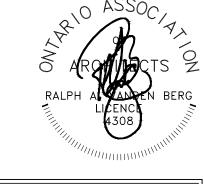

160 Flo	oany into: amboroug a, Ontaric	gh Way									
	37.0144										
Name	of Projec	t: 1502	2 Salvatio	on Army I	Barrhaven Ch	urch					
Projec	ct location	n: Nep	ean, ON	1							
										HITECT NOTED ABOVE HAS EXERCISED R S. THE ARCHITECTS SEAL NUMBER IS THE	ESPONSIBLE CONTROL WITH RESPECT TO DESIGN ARCHITECTS BCDN.
Item			Ontario B	uildina C	ode Data Mc	atrix Parts 3 8	₹ 9			2012 C	OBC Reference
			211101110 2		0 0.0 2 0.1 0. 7 1.0					References are to Divisi	on B unless noted
										[A] for Division A or [C]	for Division C.
1	Project	Descriptio	n			New		art 11		Part 3	☐ Part 9
				Chana		Addition			'	.1.2[A]	1.1.2[A]
2	Major	200110000		Change	SSEMBLY - PLA	Alteration	CLIID		2.1.4) 1 /1)	9.10.1.3
)ccupanc	,							2.1.(1)	9.10.2
3		Area (m2		sting:	New			l: ±65	_	B.[A], 1.4.1.2[A]	(same)
4		Height (m			Ave. Grade		Height			B.[A], 1.4.1.2[A]	(same)
5	_	r of Storey			Above Grade		w Grade	:		3.2[A] & 3.2.1.1	(same)
6					ess Routes:	IV	VO			2.10 & 3.2.5.5	9.10.20
7		Classifica		3.2.2.25		D 11 11				2.2083	N/A
8	Sprinkle	er System Pi	roposed			re Building				2.2083	9.10.8.2
						ement Only			3.2.		
						eu of Roof I	_		3.2.2	2.17	
						ected floor c	areas				
	Chaus also	in a Danwin	= =l			Required			200	<u> </u>	0.10.1.2(0)
9 10		ipe Require			☐ Yes				3.2.9		9.10.1.3(8)
11		rm Require		doguato	YesYes				3.2.4 3.2.5		9.10.18.2 N/A
12		Service/Sup	opiy is Ac	aequale	■ res				3.2.		N/A
13	High Bu	ed Constru	ıction	□ Cor		Non-Comb	ustible	■ Во		2.2083	9.10.6
10		Constructi			mbustible			Во		2.2003	7.10.0
14		nine(s) Area				11011 COITID	OSTIDIC			1.1.(3)-(8)	9.10.4.1
15		ant Load B) 🔳 1	m2/Person	□ Desic	gn of Build	dina	3.1.		9.9.1.3
. •	Baseme		ccupana		tipurpose	Load:		_	sons	,	7.7.1.0
	1st Floo		ccupana	,		Load:	8		sons		
	1311100		ccupana	•	hen	Load:	3		sons		
			ccupana	-	ssroom	Load:	27		sons		
				,. 0.0.		otal Load:	332		sons		
16	Barrier F	ree Desigr	า:	Yes					3.8		9.5.2
17		ous Substa		☐ Yes						1.2 & 3.3.1.19	9.10.1.3(4)
18	Require	ed Horizo	ontal Ass	emblies	Required	Provided	Listed Des		3.2.2	2.2083 & 3.2.1.4	9.10.8
	Fire		RR (hour	s)	NGQ0IIG0	TIOVICEC	or SB-2 De	escriptic	on		9.10.9
	Resistan				0 hrs.						
	Rating	-			0 hrs.						
	(FRR)	Mezz			N/A	N/A					
		FR	R of Supp	-	Required	Provided	Desc	riptior	n		
		_	Memb	ers	·			.,5 .,01			
		Beam			0 hrs.						
			nns / L.B.	. Walls	0 hrs.						
10	0 11 1	Other			0 hrs.						0.10.1.4
19					of Exterior Wall				3.2.3		9.10.14
	Wall	Area of	L.D.	L/H	Permitted	Proposed		I	Listed	EBF Construction:	EBF Cladding Const.
		EBF	(m)	or	Max % of	% of	Hour	- 1	Design or	Combustible or	Combustible or
	N L	(m2)	F,	H/L	Openings 100%	Opening			escription	Non-Combustible	Non-Combustible
	North	151.81	56	3:1	100%	32.27%			2-TABLES A&E	ВОТН	ВОТН
	South	153.13	21	3:1	100%	26.25%			2-TABLES A&E	·	(TABLE 3.2.3.7)
	East	217.40	60	4:1	100%	5.18%	45mi		2-TABLES A&E		(IADLE 3.2.3./)
	West	170.18	33	6:1	100%	20.83%	45MI	11 2R7	2-TABLES A&E		

Firm's name: Vandenberg & Wildeboer Architects Inc.

Company Info:

FIRE SEPARATION DESIGNATION: REFER TO LIFE SAFETY PLAN A003 EXITS TYPICAL FLOORS: EXIT DOOR WIDTH REQUIRED:		
EXIT DOOR WIDTH REQUIRED:		
	790mm (2'-7")	O.B.C. 3.4.3.2(7)(g)
EXIT CORRIDOR WIDTH REQUIRED:	1100mm (3'-7")	O.B.C. 3.4.3.2(7)(a)
DEAD END CORRIDOR:	NO	O.B.C. 3.3.3.3
MAX. TRAVEL DISTANCE TO AN EXIT:	30m	O.B.C. 3.4.2.5(1)(f)
W/C CALCULATIONS:		
WASHROOMS REQUIRED:		O.B.C. 3.7.4.3(16)
REQUIRED: 1 FIXTURE PER 150 PERSONS OF EACH SEX		
OCCUPANT LOAD: 470 PERSONS. 235 MALES, 235 FEMALES. 332 / 150 = 3 FIXTURES PER SEX		
WASHROOMS PROVIDED:		
1 FEMALE WASHROOM WITH 3 WATER CLOSETS, 1 BF WATER C	CLOSET AND 4 SINKS	
1 MALE WASHROOM WITH 1 WATER CLOSET, 1BF WATER CLO		
1 UNIVERSAL WASHROOM WITH 1 WATER CLOSET & 1 SINK		
PART 12 - RESOURCE CONSERVATION		

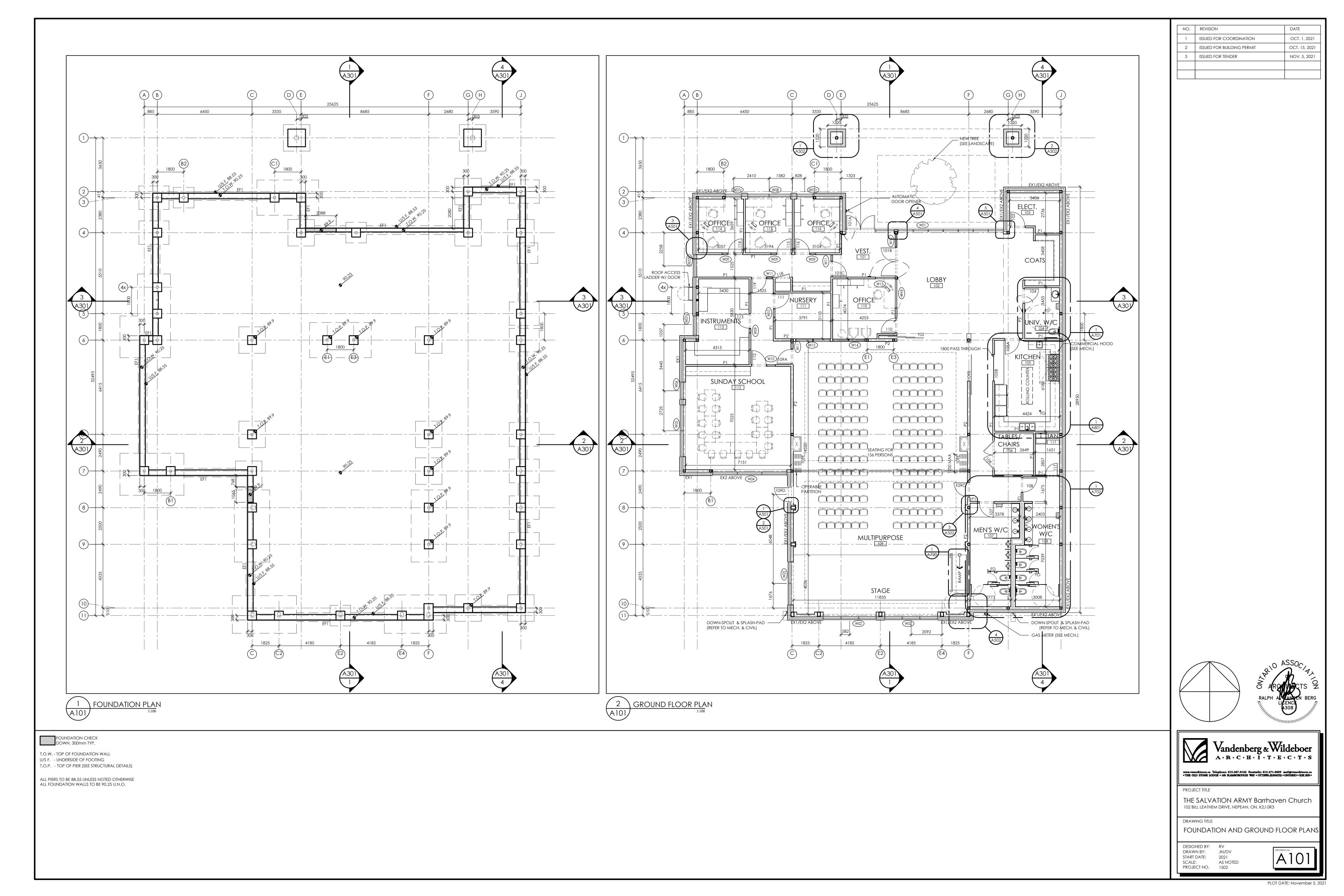

	NO.	REVISION	DATE
	1	ISSUED FOR COORDINATION	OCT. 1, 2021
	2	ISSUED FOR BUILDING PERMIT	OCT. 15, 2021
	3	ISSUED FOR TENDER	NOV. 5, 2021

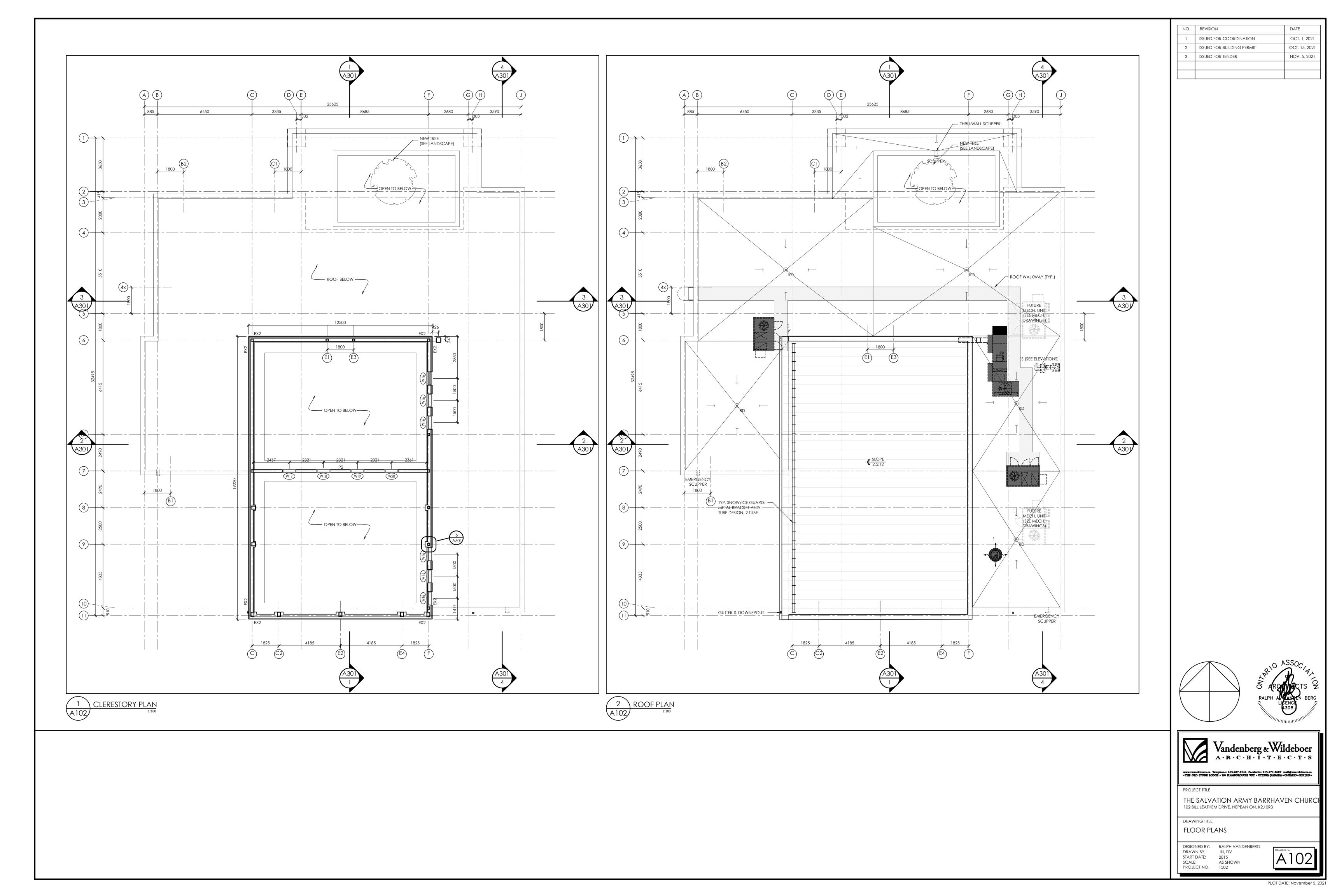

MINIMUM REQUIRED FIRE RESISTANCE RATINGS:

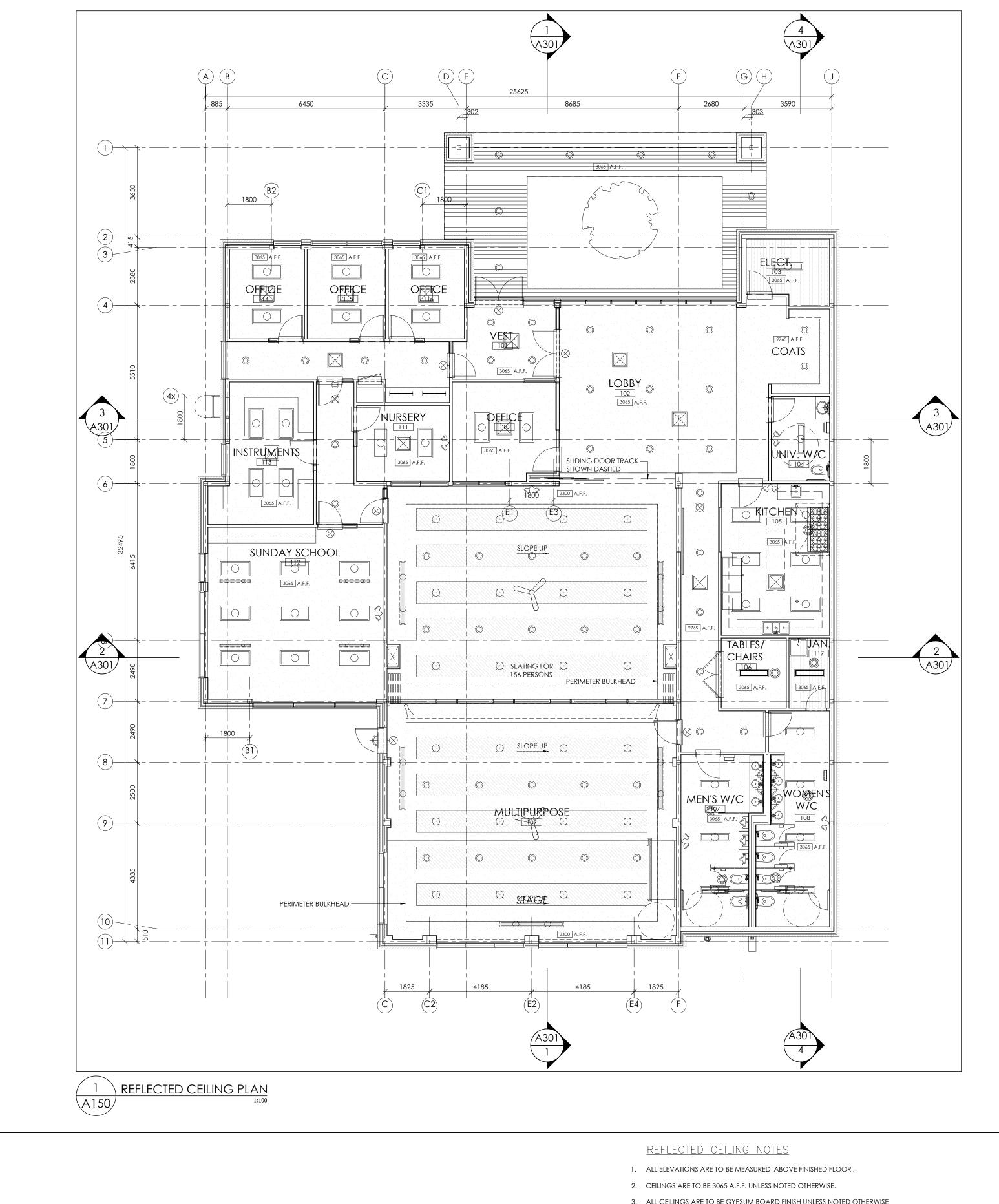
45 Min. FRR FIRE SEPARATION —45 FIRE SEP.—45 FIRE SEP.— 60 Min. FRR FIRE SEPARATION —60 FIRE SEP.—60 FIRE SEP.—

TRAVEL DISTANCE

DESIGNATED EXIT


www.vwarchitects.ca Telephone: 613.287.0144 Facsimile: 613.271.8609 mail@vwarchitects.ca = THE OLD STONE LODGE = 160 FLAMBOROUGH WAY = OTTAWA (KANATA) = ONTARIO = K2K3H9 =


THE SALVATION ARMY BARRHAVEN CHURCH 102 BILL LEATHEM DRIVE, NEPEAN ON. K2J 0R3


DRAWING TITLE

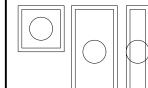
LIFE SAFETY PLAN & SECTIONS

DESIGNED BY: RALPH VANDENBERG
DRAWN BY: JN, DV
START DATE: 2015 SCALE: AS SHOWN PROJECT NO. 1502

DATE NO. REVISION ISSUED FOR COORDINATION OCT. 1, 2021 2 ISSUED FOR BUILDING PERMIT OCT. 15, 2021 3 ISSUED FOR TENDER NOV. 5, 2021

REFLECTED CEILING PLAN LEGEND

(SUPPLY, RETURN) (SEE MECH. PLAN) MECHANICAL DIFFUSERS (ROUND):


(SUPPLY) (SEE MECH. PLAN)

MECHANICAL DIFFUSERS:

MECHANICAL DIFFUSERS (LINEAR): (SUPPLY) (SEE MECH. PLAN)

> FLUORESCENT LIGHTS IN-CEILING

(24X24, 24X48, 12X48)

FLUORESCENT LIGHTS SURFACE MOUNT

(24X24, 24X48, 12X48)

VALANCE LIGHTING (UNDER-CABINET)

SPOTLIGHTS

PENDANT LIGHT FIXTURE

RECESSED LIGHTING

WALL SCONCE

SINGLE OR DBL WALL MTD

EXIT LIGHT

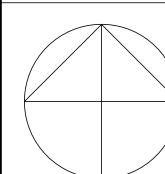
EMERGENCY LIGHTING

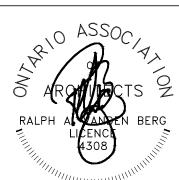
GYPSUM BOARD CEILING -1 LAYER 16mm TYPE X GYPSUM BOARD

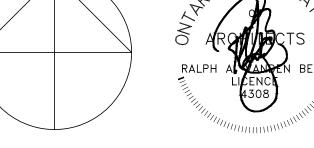
2 LAYERS 16mm TYPE X GYPSUM BOARD (SEE LIFE SAFETY PLANS AND ASSEMBLIES)

ACOUSTIC WOOD CEILING

(SEE SPECS)




CEILING HEIGHT DESIGNATION IN MILLIMETERS ABOVE FINISHED FLOOR SURFACE


PRE-FIN METAL SOFFIT

CEILING FAN (SEE MECH.)

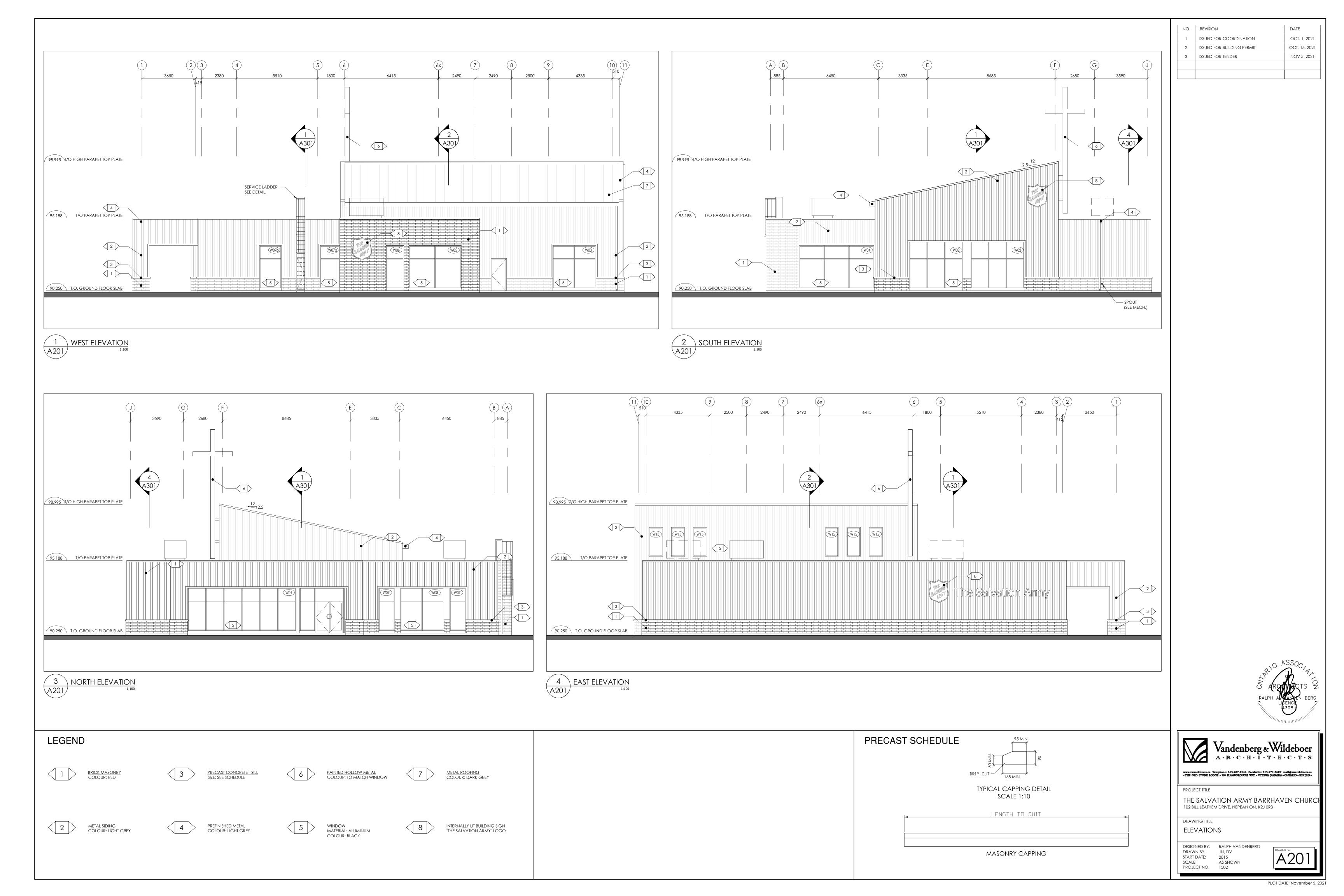
3. ALL CEILINGS ARE TO BE GYPSUM BOARD FINISH UNLESS NOTED OTHERWISE

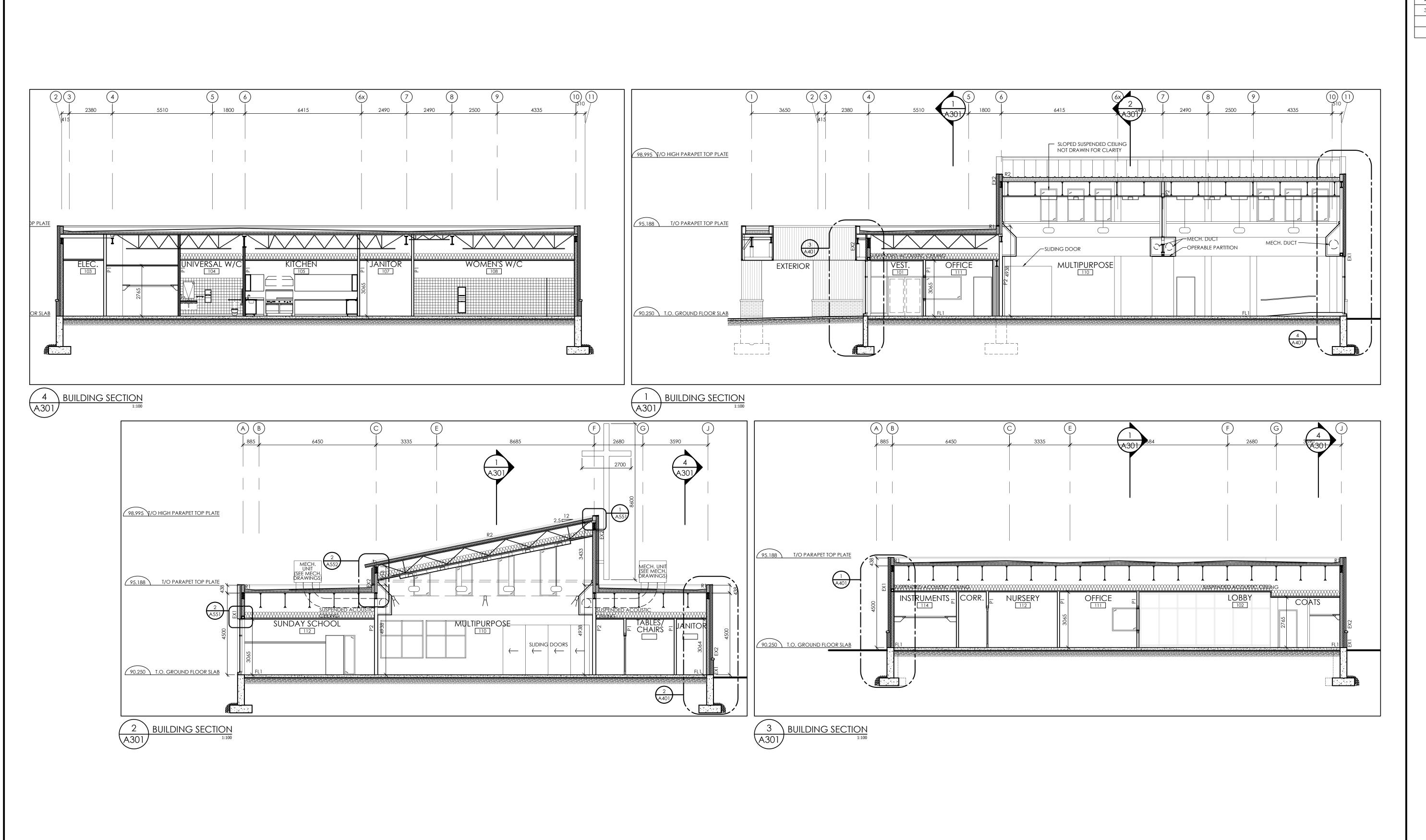
PLACEMENT.

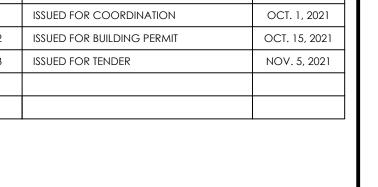
- 4. MECH AND ELEC DEVICES ARE IN PART SHOWN DIAGRAMMATIC AND INTENDED TO CONVEY ARCHITECTURAL INTENT ONLY- REFER TO MECH AND ELEC FOR COORDINATION. REPORT ANY DISCREPANCIES WITH PLACEMENT TO THE ARCHITECT FOR VERIFICATION PRIOR TO
- 5. ALL MECHANICAL AND ELECTRICAL DEVICES REQUIRING ACCESS DOORS ARE TO BE COORDINATED WITH ARCHITECT AND GENERAL CONTRACTOR AND CONFIRMED PRIOR TO INSTALLATION.
- ACCESS PANELS QUANTITIES ARE TO BE MINIMIZED BY LOCATING SUCH DEVICES IN SUSPENDED ACOUSTIC TILE CEILINGS WHERE POSSIBLE.
- 7. UNLESS OTHERWISE NOTED, ALL NEW DRYWALL CEILINGS AND BULKHEADS ARE TO RECEIVE PAINT FINISH.
- 8. ALL SUSPENDED CEILINGS AND DEVICES ARE TO BE INSTALLED IN ACCORDANCE TO LOCAL SEISMIC REQUIREMENTS.

|--|--|

Vandenberg & Wildeboer A·R·C·H·I·T·E·C·T·S

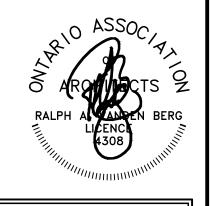

www.vwarchitects.ca Telephone: 613.287.0144 Facsimile: 613.271.8609 mail@vwarchitects.ca = THE OLD STONE LODGE = 160 FLAMBOROUGH WAY = OTTAWA (KANATA) = ONTARIO = K2K 3H9 =

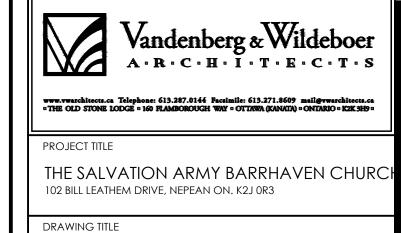

THE SALVATION ARMY BARRHAVEN CHURCH 102 BILL LEATHEM DRIVE, NEPEAN ON. K2J 0R3


DRAWING TITLE

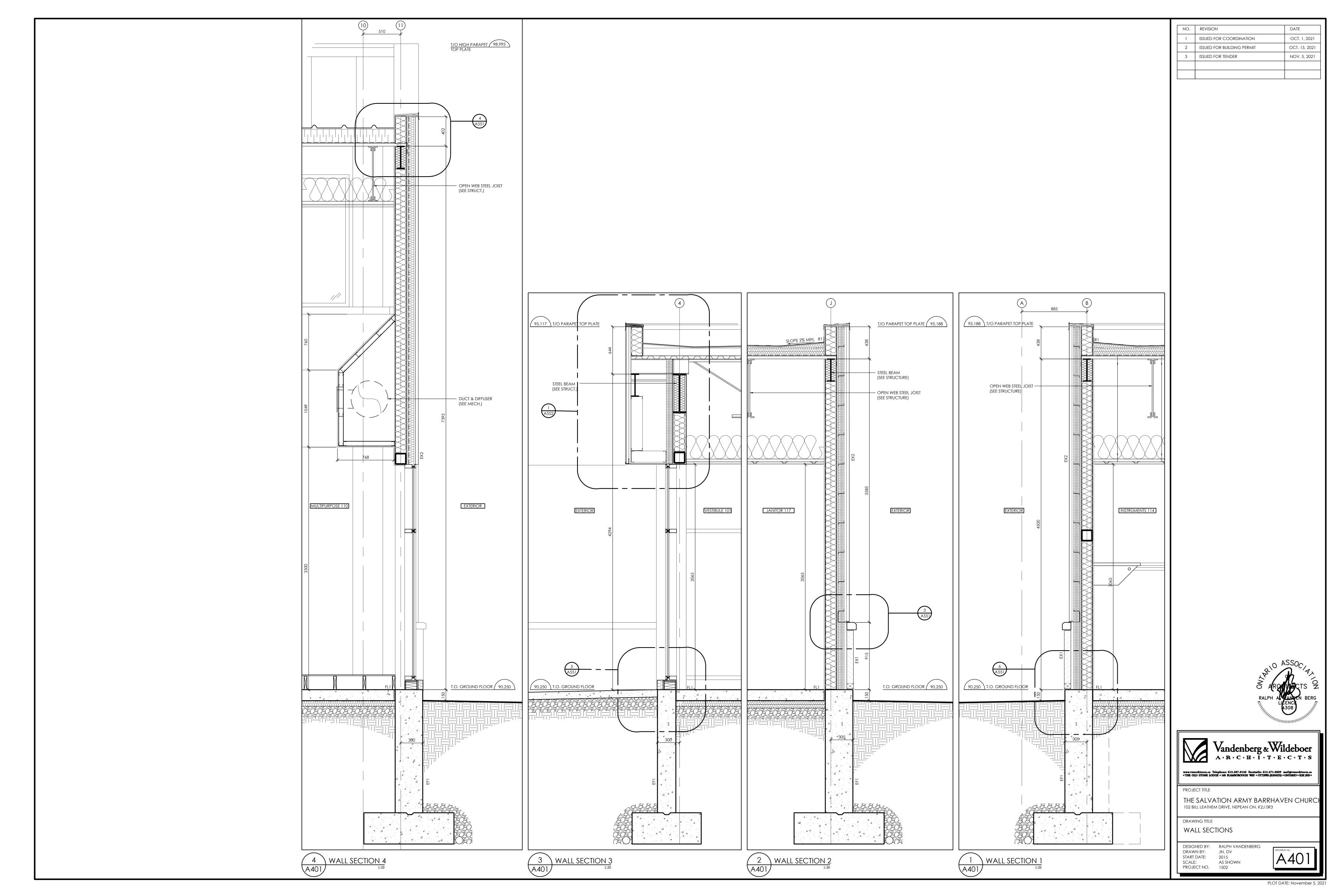
REFLECTED CEILING PLAN

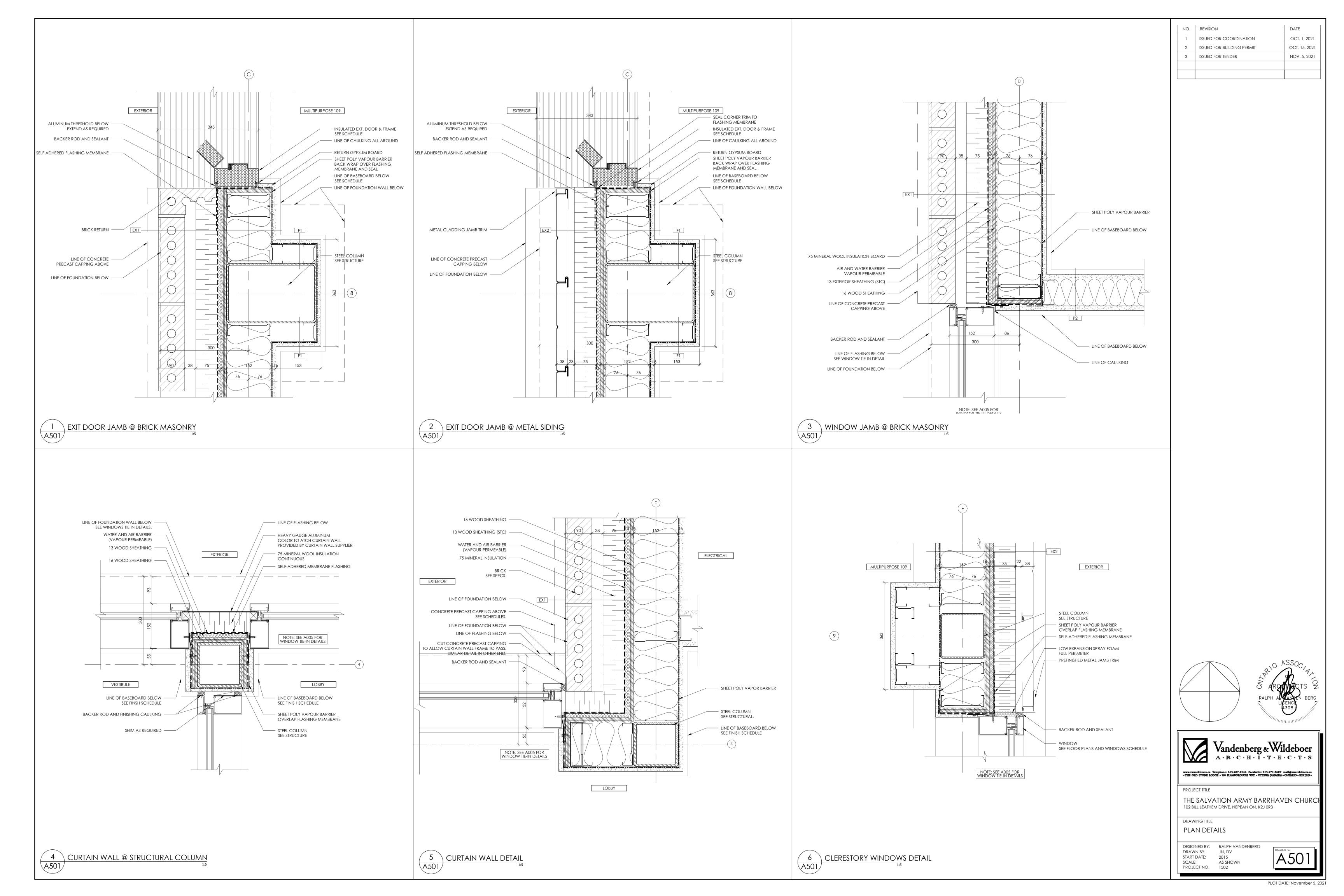
DESIGNED BY: RALPH VANDENBERG DRAWN BY: JN, DV START DATE: SCALE: **AS SHOWN** PROJECT NO. 1502

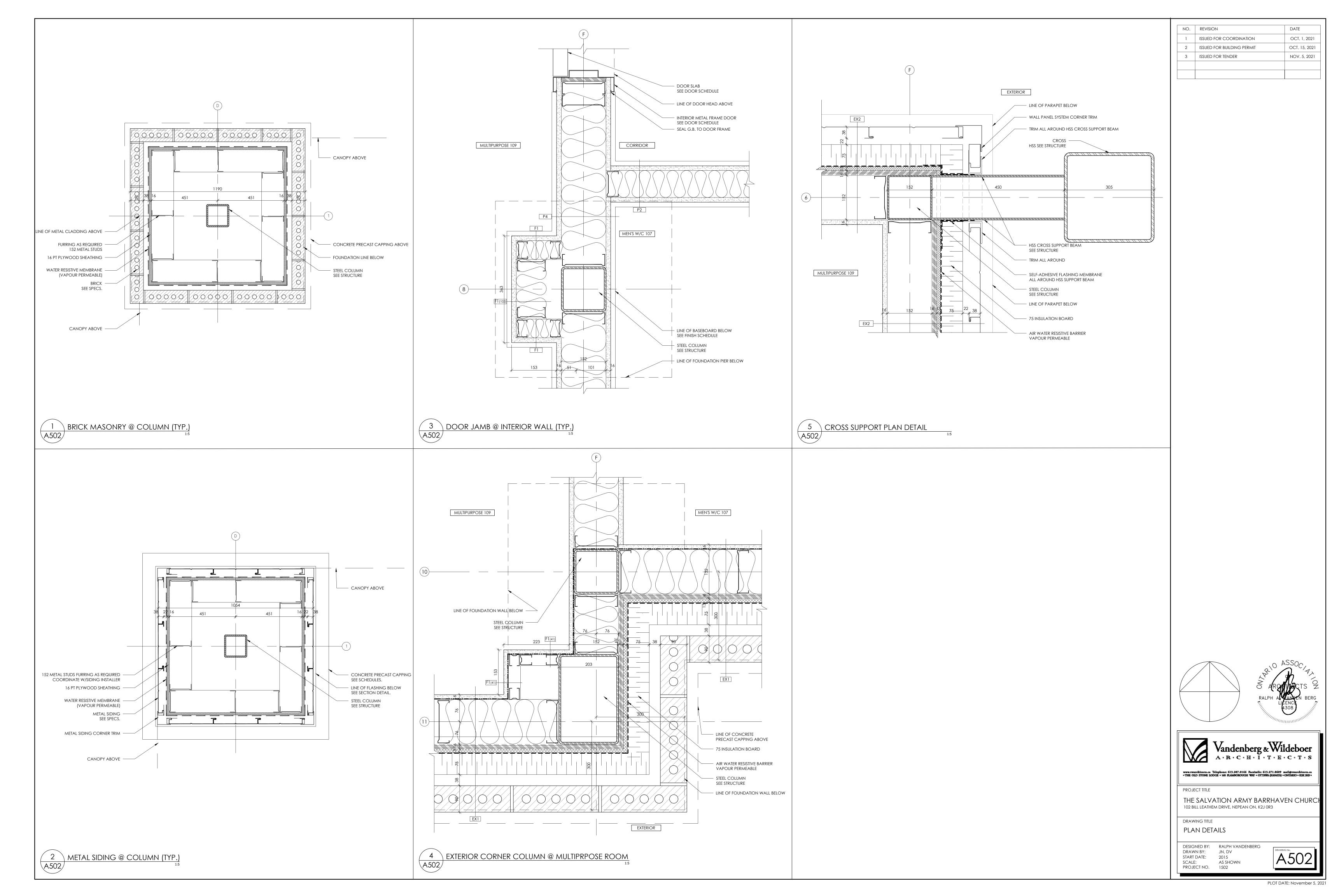


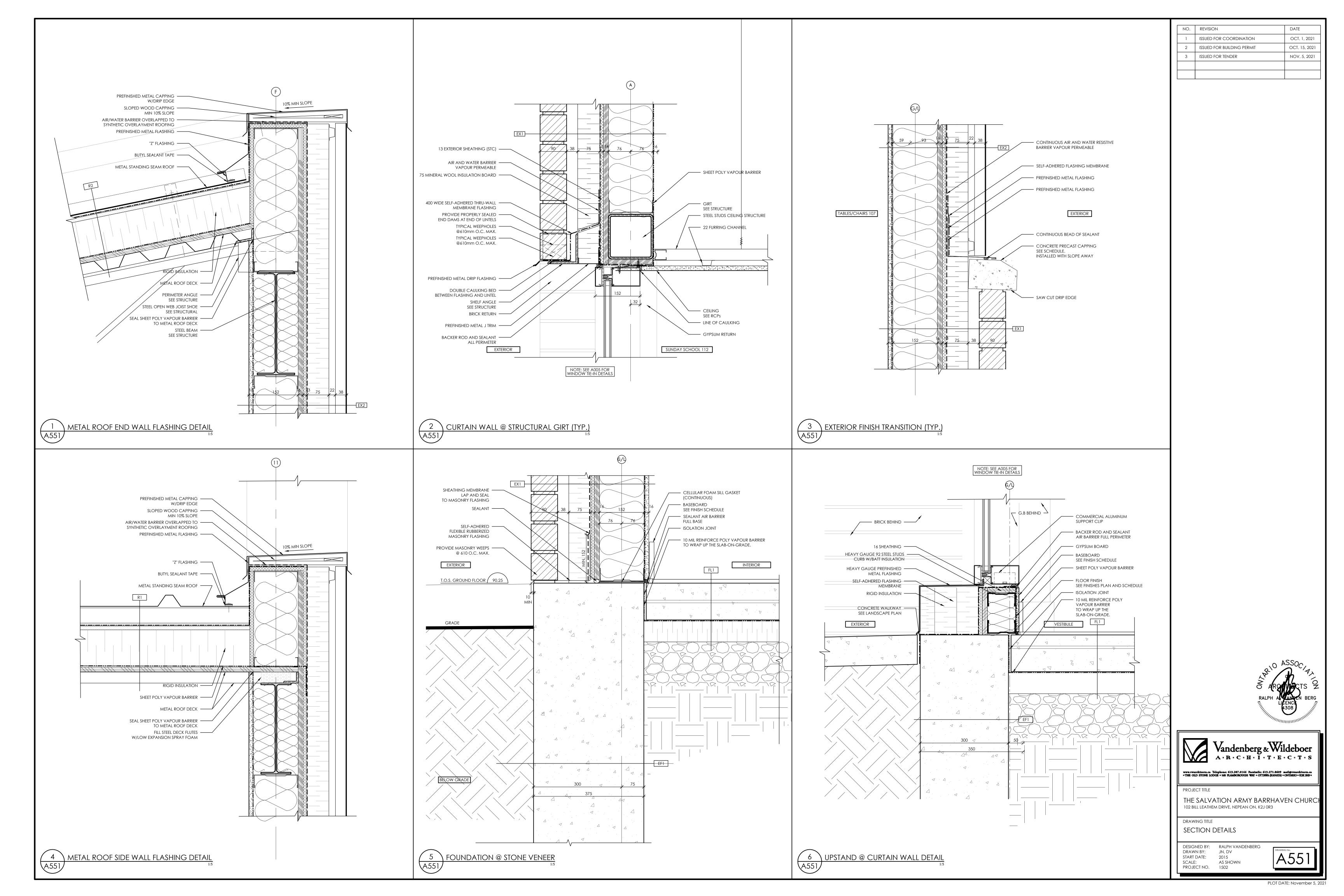


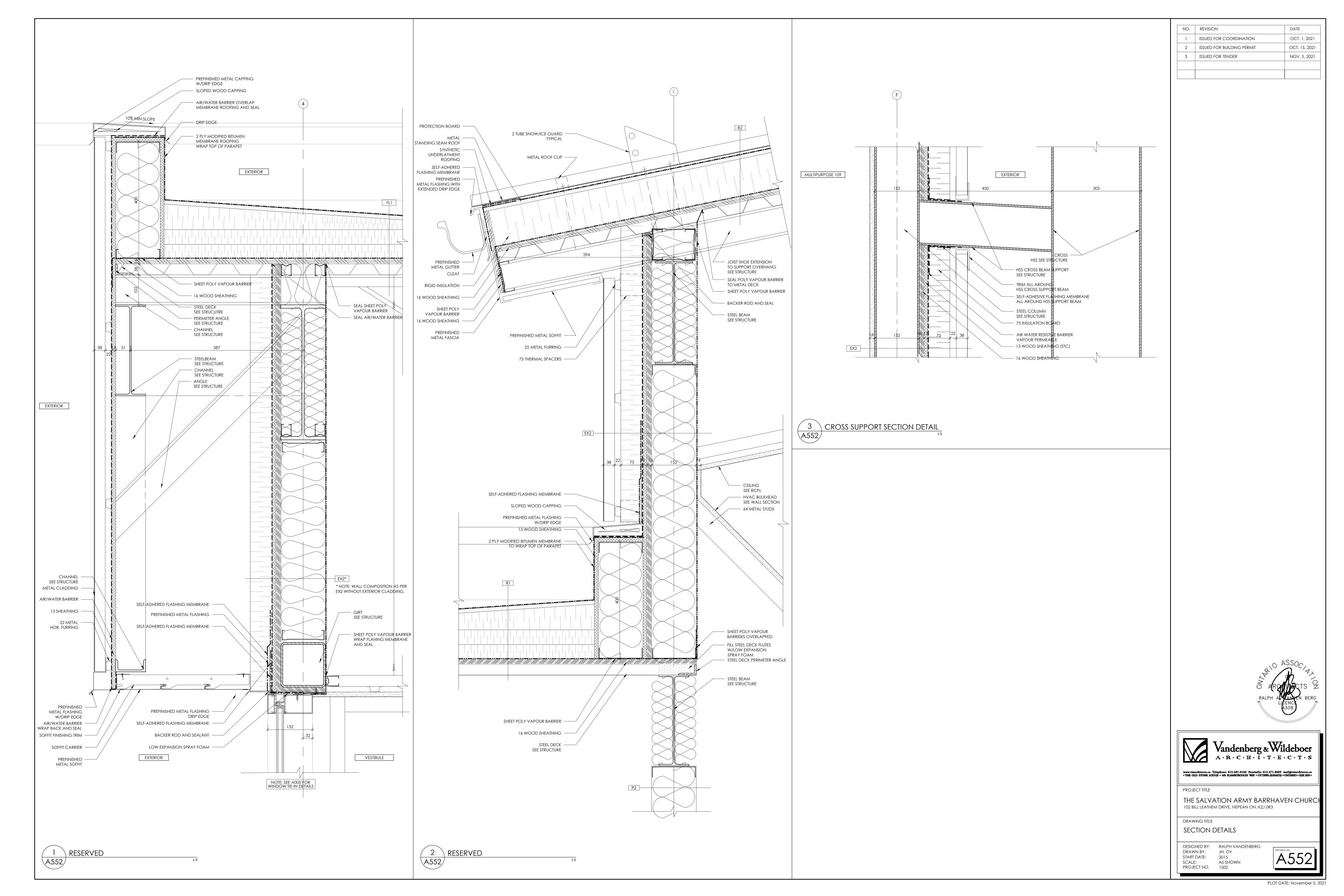
DATE

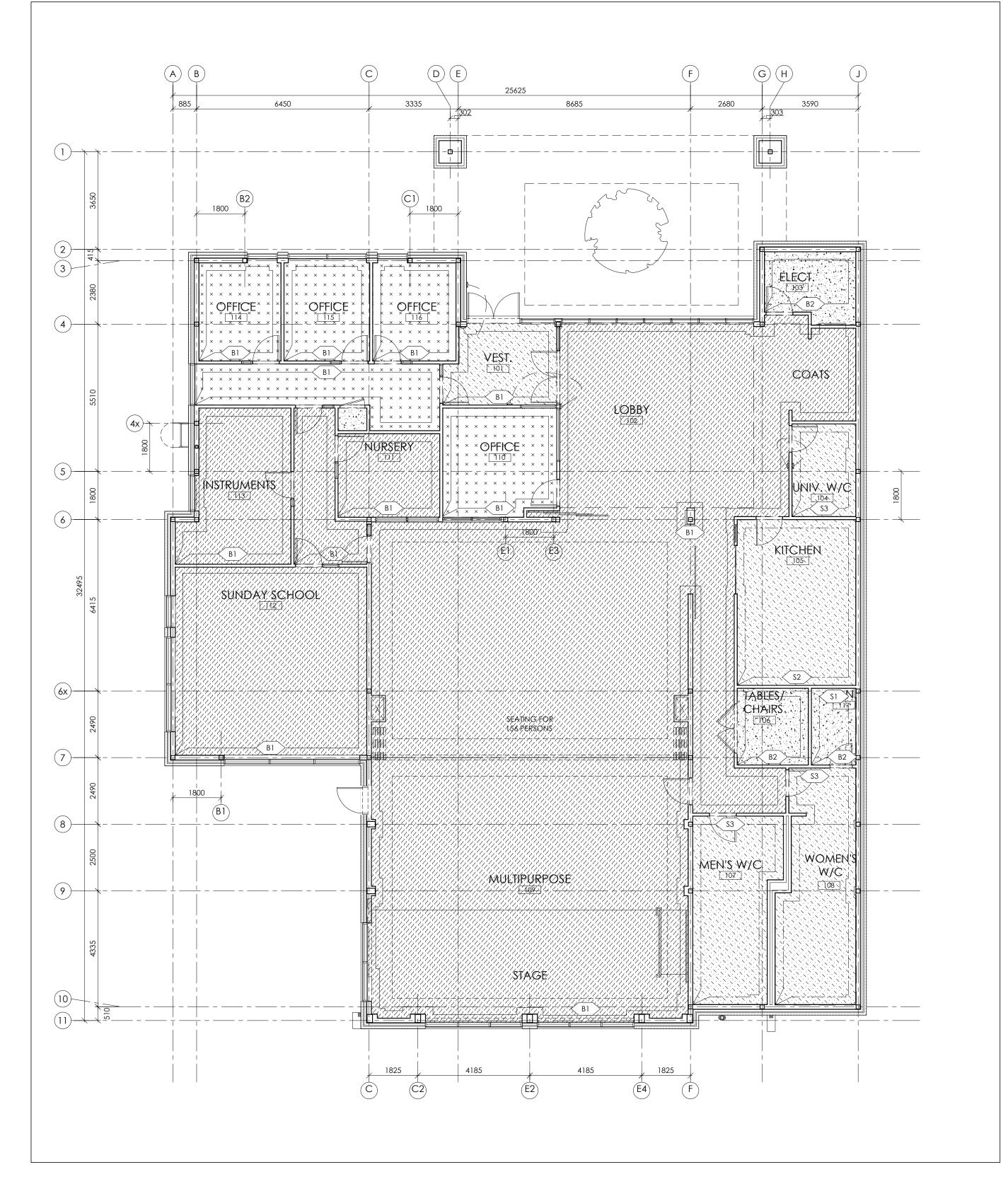

NO. REVISION

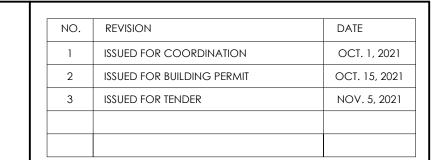


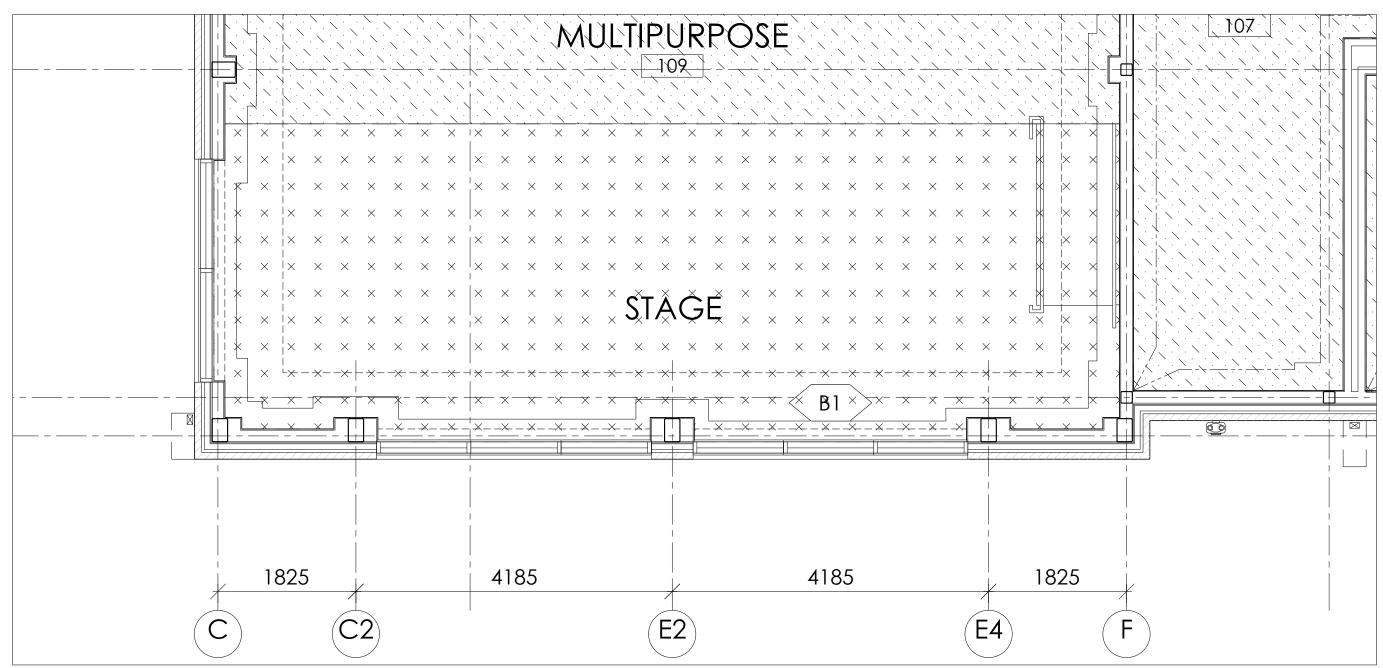


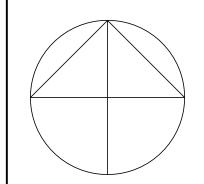

BUILDING SECTIONS


DESIGNED BY: RALPH VANDENBERG
DRAWN BY: JN, DV
START DATE: 2015
SCALE: AS SHOWN
PROJECT NO. 1502









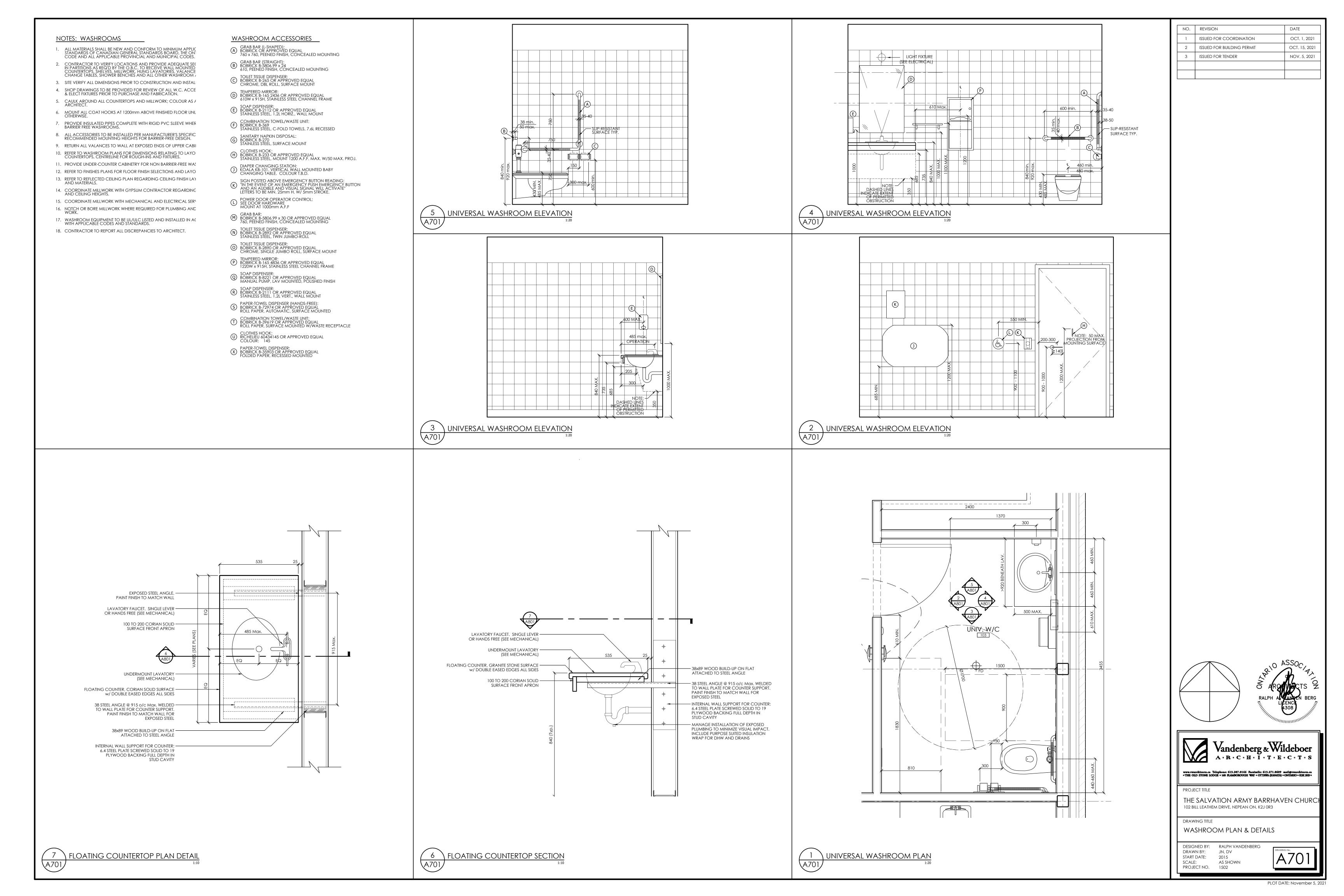
2 PARTIAL PLAN - STAGE PLATFORM FINISH

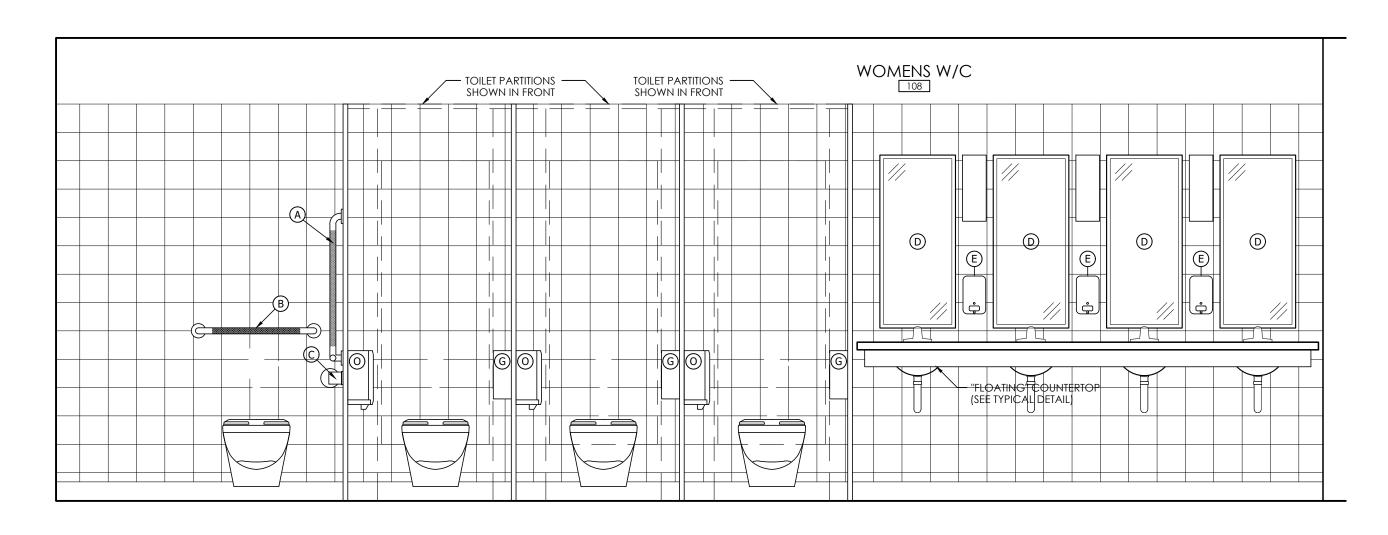
A101

FINISHES SCHEDULE							
Level	#	Room Name	Base	Walls	Floor	Ceiling	Comments
	GR-01	VESTIBULE	4.5" PAINTED MDF (Modern Profile)	PAINT	CERAMIC TILE	PAINT	
	GR-02	LOBBY	4.5" PAINTED MDF (Modern Profile)	PAINT	LUXURY VINYL TILE	PAINT	
	GR-03	ELECTRICAL		PAINT	SEALED CONCRETE	PAINT	
	GR-04	UNIVERSAL W/C	4.5" PAINTED MDF (Modern Profile)	PAINT	CERAMIC TILE	PAINT	
EVEI	GR-05	KITCHEN	4.5" PAINTED MDF (Modern Profile)	PAINT	LUXURY VINYL TILE	PAINT	
	GR-06	TABLES/CHAIRS	4" VINYL WALL BASE	PAINT	SEALED CONCRETE	PAINT	
	GR-07	MEN'S W/C	4.5" PAINTED MDF (Modern Profile)	PAINT	CERAMIC TILE	PAINT	
N	GR-08	WOMEN'S W/C	4.5" PAINTED MDF (Modern Profile)	PAINT	CERAMIC TILE	PAINT	
	GR-09	MULTIPURPOSE	4.5" PAINTED MDF (Modern Profile)	PAINT	LUXURY VINYL TILE	PAINT	
GRO	GR-10	OFFICE	4.5" PAINTED MDF (Modern Profile)	PAINT	LUXURY VINYL TILE	PAINT	
Ū	GR-11	NURSERY	4.5" PAINTED MDF (Modern Profile)	PAINT	LUXURY VINYL TILE	PAINT	
	GR-12	SUNDAY SCHOOL	4.5" PAINTED MDF (Modern Profile)	PAINT	LUXURY VINYL TILE	PAINT	
	GR-13	INSTRUMENTS	4" VINYL WALL BASE	PAINT	LUXURY VINYL TILE	PAINT	
	GR-14	CORRIDOR	4.5" PAINTED MDF (Modern Profile)	PAINT	LUXURY VINYL TILE	PAINT	
	GR-15	OFFICES	4.5" PAINTED MDF (Modern Profile)	PAINT	LUXURY VINYL TILE	PAINT	

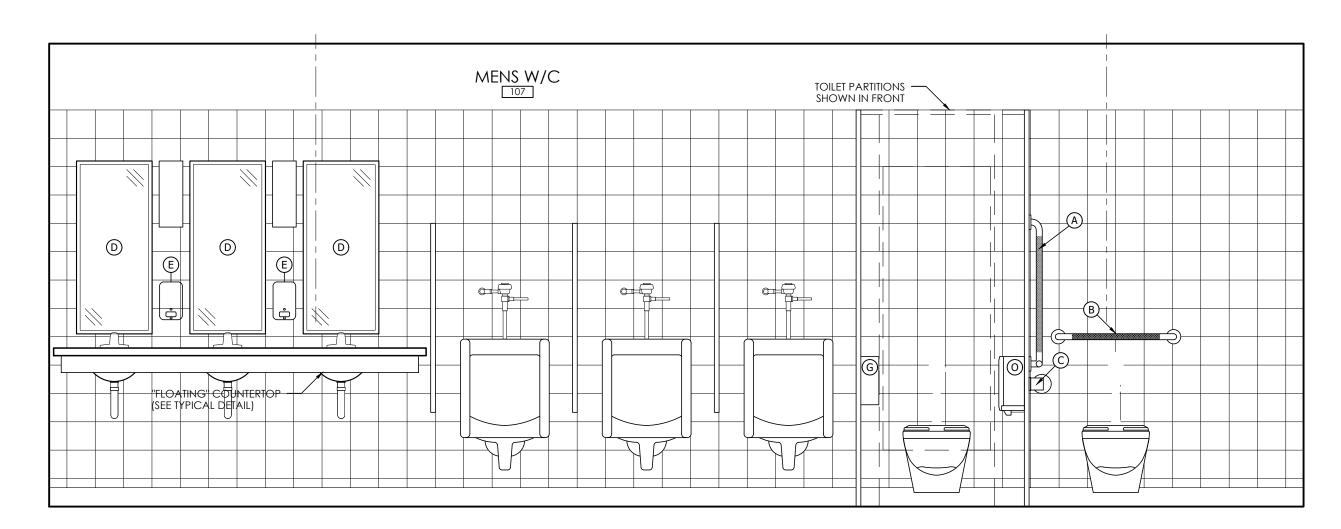
LEGEND:						FLOOR FINISH NOTES
FLOOR TILE: T1:	PORCELAIN TILE MAN: OLYMPIA TILE+STONE INTERNATIONAL. INC. SERIE: COLORS SERIES, MATTE COLOUR: GREY SIZE: 610 x 610 mm	FLOOR FINISH: FL1:	SEALED CONCRETE	WALL FINISH: — — S1:	FIBERGLASS REINFORCED PLASTIC (FRP) MANUFACTURER: NUMBER: NAME:	1. CONTRACTOR ASSUMES RESPONSIBILITY FOR IN FLOOR FINISH UPON ACCEPTANCE OF SUBSTRAE SISTING CONDITIONS. CONTRACTOR ASSUME: RESPONSIBILITY TO FLAG AND MAKE OWNER AND DEFECTIVE PRODUCT OR MATERIAL PRIOR TO IN INSTALLATION OF MATERIALS IN QUESTION SHAIPROCEED WITHOUT OWNER APPROVAL. 2. THE GENERAL CONTRACTOR SHALL INSTALL ALL FINISHES AS PER MANUFACTURER'S INSTALLATION SPECIFICATIONS.
RESILIENT:	PATTERN / LAYOUT: STRAIGHT LUXURY VINYL TILE	WALL BASE:		——— S2:	CERAMIC WALL TILE MANUFACTURER: OLYMPIA TILE+STONE INTERNATIONAL. INC. SERIE: PLAIN WALL - GLAZED COLOR: WHITE	3. ALL FLOORING MATERIALS TO BE INSTALLED PRI INSTALLATION OF BASE. 4. NEW CARPET TO BE ROLLED OUT IN A WELL VEN WAREHOUSE, REMOTE FROM THE BUILDING, FO
LVIII	MAN: INTERSOURCE SERIE: DURA SERIES COLOUR: POPLAR WHITE SIZE:178W X 1524L 5.5T mm PATTERN / LAYOUT: STAGGERED	B1:	4.5" PAINTED MDF BASE MANUFACTURER: PATTERN: COLOUR: TO MATCH WALL COLOR 4" VINYL WALL BASE	— s3:	CERAMIC WALL TILE MANUFACTURER: OLYMPIA TILE+STONE INTERNATIONAL INC. SERIE: SHADEBRICK - GLAZED COLOR: OFF WHITE	THREE DAYS PRIOR TO INSTALLATION. 5. FLOORING PATTERNS TO BE CHALKED OUT FOR DESIGN CONSULTANT PRIOR TO COMMENCING 6. SUPPLY AND INSTALL TRANSITION STRIPS OF SAT ALUMINUM OR SIMILAR AT JUNCTIONS OF ALL IFLOOR FINISHES.
$\frac{CARPET:}{\left\lceil ^{\times }\right. \times \left\lceil ^{\times }\right\rceil} CPT1:$	CARPET TILE		COLOUR: DARK GREY			7. THE GENERAL CONTRACTOR SHALL APPLY FLOG AND SEALING COMPOUND TO MANUFACTURE INSTRUCTIONS TO ALL SLABS ON GRADE. CURE MANUFACTURER'S RECOMMENDATIONS.
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x	MAN: VENTURE CARPETS INC. SERIE: FRASER SERIES COLOUR: LAMP CHARCOAL SIZE: 500 X 500 mm. PATTERN / LAYOUT: STRAIGHT		CTS ARE PERMITTED TO BE SUBSTITUTED SUBJECT TO CC ERIES AND COLORS ARE FOR REFERENCE, FINAL SELEC			8. PROTECT NEWLY LAID FLOOR MATERIALS FROM CONSTRUCTION TRAFFIC FOR A PERIOD OF FIVE 9. GENERAL CONTRACTOR TO PROVIDE INITIAL C WAXING OF ALL SHEET AND TILE FLOORING AS MATERIAL MANUFACTURER'S GUIDELINES AND I

FLOOR FINISH NOTES WALL FINISH NOTES 1. CONTRACTOR ASSUMES RESPONSIBILITY FOR INSTALLATION OF FLOOR FINISH UPON ACCEPTANCE OF SUBSTRATE AND EXISTING CONDITIONS, CONTRACTOR ASSUMES RESPONSIBILITY TO FLAG AND MAKE OWNER AWARE OF ANY DEFECTIVE PRODUCT OR MATERIAL PRIOR TO INSTALLATION. INSTALLATION OF MATERIALS IN QUESTION SHALL NOT NOT PROCEED WITHOUT OWNER APPROVAL. THE CONTRACTOR SHALL PROVIDE SAMPLES FOR APPROVAL BY DESIGNER OF ALL PAINTS SPECIFIED. 12" x 12" SAMPLES TO BE TAGGED ACCORDING TO PAINT FINISHES LEGEND. ALL PAINT SAMPLES SHALL BE APPROVED BY DESIGNER PRIOR TO APPLICATION. UNLESS OTHERWISE NOTED, ALL INTERIOR EXPOSED SURFACES OF GYPSUM BOARD WALLS, PARTITIONS AND CEILINGS ARE TO RECEIVE PAINT FINISH. THE GENERAL CONTRACTOR SHALL INSTALL ALL NEW FLOOR FINISHES AS PER MANUFACTURER'S INSTALLATION SPECIFICATIONS. PAINT FINISH: PRIME WITH ONE COAT LATEX SEALER, REPAIR DEPRESSIONS ETC., WITH DRYWALL COMPOUND, SAND ALL SURFACES, SPOT PRIME ALL PATCHED AREAS, RE-SAND AND PREPARE FOR PAINT, APPLY MIN, TWO COATS PAINT (TYPE AND COLOUR AS SPECIFIED), TOUCH UP AS REQUIRED. 3. ALL FLOORING MATERIALS TO BE INSTALLED PRIOR TO INSTALLATION OF BASE. NEW CARPET TO BE ROLLED OUT IN A WELL VENTILATED WAREHOUSE, REMOTE FROM THE BUILDING, FOR TWO TO THREE DAYS PRIOR TO INSTALLATION. . WHERE DARK COLOURS HAVE BEEN SPECIFIED, APPLY 3 (THREE) COATS OF PAINT TO WALL. IN MAIN CORRIDORS OR HIGH TRAFFIC AREAS, APPLY ONE COAT OF MAITE CLEAR COAT TO PROTECT COLOUR. CONTRACTOR IS TO ENSURE THAT ALL DARK COLOURED WALLS HAVE A DARK BASE PRIMER APPLIED. 5. FLOORING PATTERNS TO BE CHALKED OUT FOR APPROVAL BY DESIGN CONSULTANT PRIOR TO COMMENCING WORK. 6. SUPPLY AND INSTALL TRANSITION STRIPS OF SATIN ANODIZED ALUMINUM OR SIMILAR AT JUNCTIONS OF ALL DISSIMILAR FLOOR FINISHES. EXCEPT WHERE OTHERWISE NOTED, PAINT FINISH FOR WALLS TO BE LATEX FINISH WITH 25% TO 35% SHEEN. PAINTED DOORS TO RECEIVE 45%. 7. THE GENERAL CONTRACTOR SHALL APPLY FLOOR CURING AND SEALING COMPOUND TO MANUFACTURER'S INSTRUCTIONS TO ALL SLABS ON GRADE. CURE TO MANUFACTURER'S RECOMMENDATIONS. ONCE PAINT HAS CURED, FINISHES TO BE DURABLE ENOUGH TO ENABLE CLEANING OF FINGER MARKS AND MINOR SCUFFING WITHOUT DISTURBING THE ORIGINAL PAINT SHEEN. 8. PROTECT NEWLY LAID FLOOR MATERIALS FROM CONSTRUCTION TRAFFIC FOR A PERIOD OF FIVE DAYS. CONTRACTOR TO USE ENVIRONMENTALLY FRIENDLY, NON-TOXIC WATER BASED PAINTS WITH FAST OUT-GAS CHARACTERISTICS.


ALL PREPARATION, PAINT AND APPLICATION TO CONFORM TO MPI (MASTER PAINTERS INSTITUTE) AND CGSB STANDARDS.


Vandenberg & Wildeboer
A-R-C-H-I-T-E-C-T-S www.vwarchitects.ca Telephone: 613.287.0144 Facsimile: 613.271.8609 mail@vwarchitects.ca "THE OLD STONE LODGE " 160 FLAMBOROUGH WAY " OTTAWA (KANATA) " ONTARIO " K2K3H9" THE SALVATION ARMY BARRHAVEN CHURCH 102 BILL LEATHEM DRIVE, NEPEAN ON. K2J 0R3 DRAWING TITLE FINISHES PLAN & NOTES

DESIGNED BY: RALPH VANDENBERG DRAWN BY: JN, DV START DATE: SCALE: **AS SHOWN** PROJECT NO. 1502

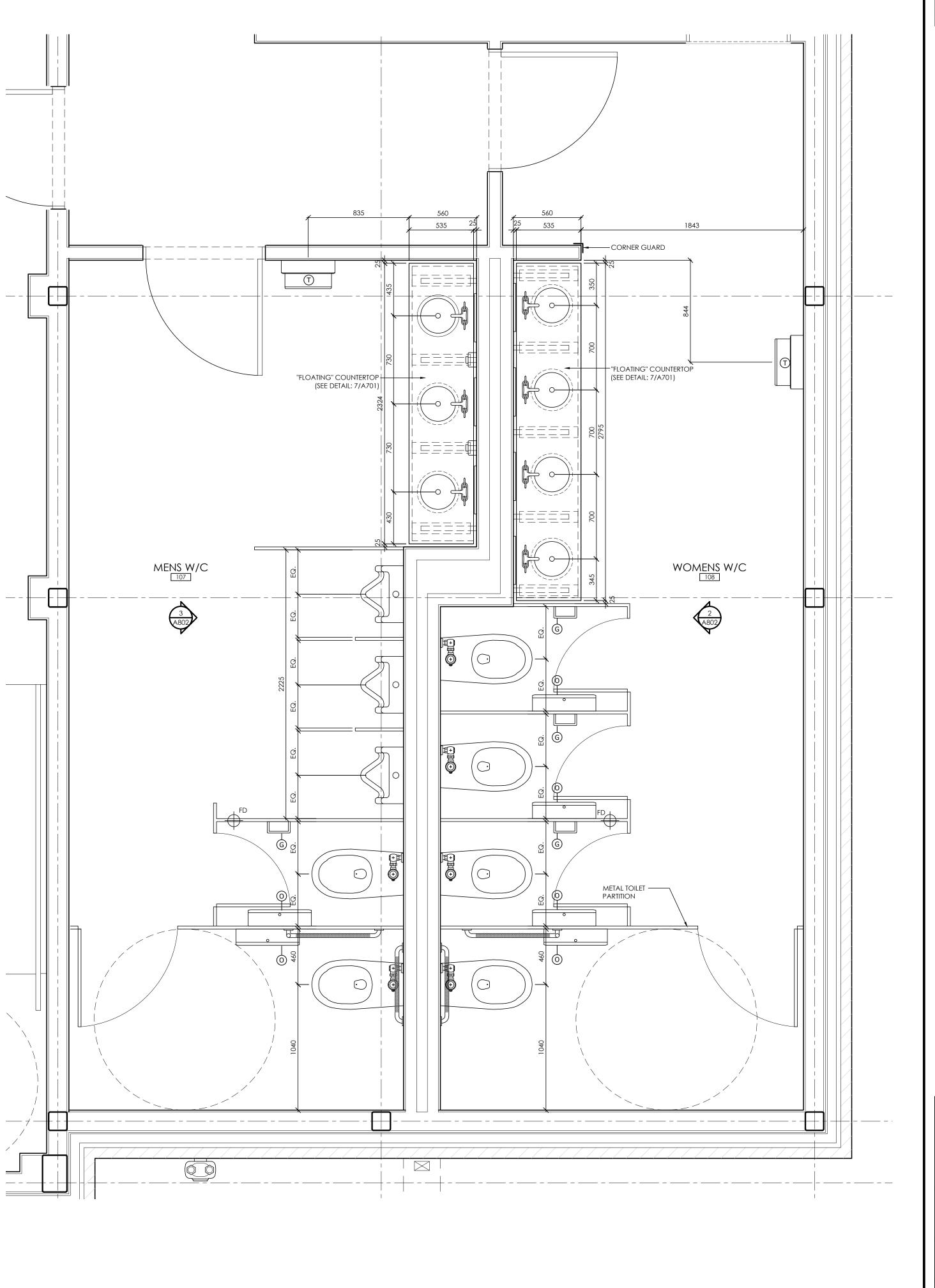

PLOT DATE: November 5, 2021

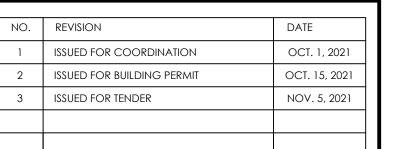
A601

WOMENS WASHROOM ELEVATION A702

NOTES: WASHROOMS

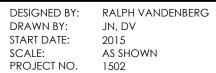
- ALL MATERIALS SHALL BE NEW AND CONFORM TO MINIMUM APPLICABLE STANDARDS OF CANADIAN GENERAL STANDARDS BOARD, THE ONTARIO BUILDING CODE AND ALL APPLICABLE PROVINCIAL AND MUNICIPAL CODES. 2. CONTRACTOR TO VERIFY LOCATIONS AND PROVIDE ADEQUATE SECURE BLOCKING IN PARTITIONS AS REQ'D BY THE O.B.C. TO RECEIVE WALL MOUNTED UNITS SUCH AS COUNTERTOPS, SHELVES, MILLWORK, HUNG LAVATORIES, VALANCES, GRAB BARS, CHANGE TABLES, SHOWER BENCHES AND ALL OTHER WASHROOM ACCESSORIES.
- 3. SITE VERIFY ALL DIMENSIONS PRIOR TO CONSTRUCTION AND INSTALLATION.
- 4. SHOP DRAWINGS TO BE PROVIDED FOR REVIEW OF ALL W.C. ACCESSORIES, MECH. & ELECT FIXTURES PRIOR TO PURCHASE AND FABRICATION.
- 5. CAULK AROUND ALL COUNTERTOPS AND MILLWORK; COLOUR AS APPROVED BY ARCHITECT. 6. MOUNT ALL COAT HOOKS AT 1200mm ABOVE FINISHED FLOOR UNLESS NOTED OTHERWISE.
- 7. PROVIDE INSULATED PIPES COMPLETE WITH RIGID PVC SLEEVE WHERE EXPOSED IN BARRIER FREE WASHROOMS.
- 8. ALL ACCESSORIES TO BE INSTALLED PER MANUFACTURER'S SPECIFICATIONS AND RECOMMENDED MOUNTING HEIGHTS FOR BARRIER-FREE DESIGN.
- 9. RETURN ALL VALANCES TO WALL AT EXPOSED ENDS OF UPPER CABINETS. 10. REFER TO WASHROOM PLANS FOR DIMENSIONS RELATING TO LAYOUTS, COUNTERTOPS, CENTRELINE FOR ROUGH-INS AND FIXTURES.
- 11. PROVIDE UNDER-COUNTER CABINETRY FOR NON BARRIER-FREE WASHROOMS.
- 12. REFER TO FINISHES PLANS FOR FLOOR FINISH SELECTIONS AND LAYOUTS.
- 13. REFER TO REFLECTED CEILING PLAN REGARDING CEILING FINISH LAYOUT, HEIGHTS AND MATERIALS. 14. COORDINATE MILLWORK WITH GYPSUM CONTRACTOR REGARDING BULKHEADS AND CEILING HEIGHTS.
- 15. COORDINATE MILLWORK WITH MECHANICAL AND ELECTRICAL SERVICES. 16. NOTCH OR BORE MILLWORK WHERE REQUIRED FOR PLUMBING AND ELECTRICAL WORK.
- 17. WASHROOM EQUIPMENT TO BE UL/ULC LISTED AND INSTALLED IN ACCORDANCE WITH APPLICABLE CODES AND STANDARDS.
- 18. CONTRACTOR TO REPORT ALL DISCREPANCIES TO ARCHITECT.

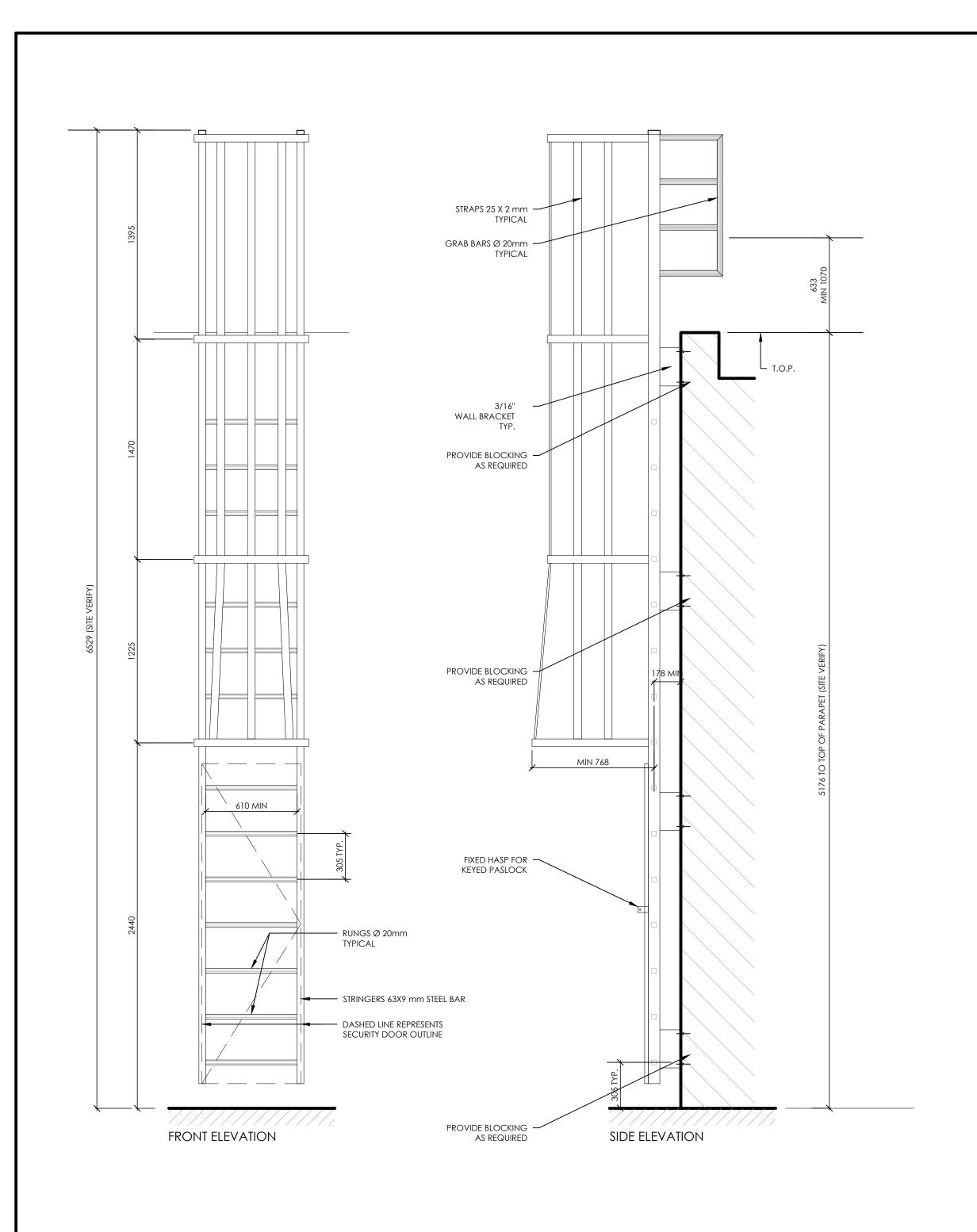

- WASHROOM ACCESSORIES
- GRAB BAR (L-SHAPED):
 BOBRICK OR APPROVED EQUAL
 760 x 760, PEENED FINISH, CONCEALED MOUNTING
- GRAB BAR (STRAIGHT):
 BOBRICK B-5806.99 x 24
 610, PEENED FINISH, CONCEALED MOUNTING
- TOILET TISSUE DISPENSER:
 BOBRICK B-265 OR APPROVED EQUAL
 CHROME, DBL ROLL, SURFACE MOUNT
- TEMPERED MIRROR:
 BOBRICK B-165 2436 OR APPROVED EQUAL
 610W x 915H, STAINLESS STEEL CHANNEL FRAME
- E SOAP DISPENSER:
 BOBRICK B-2112 OR APPROVED EQUAL STAINLESS STEEL, 1.2L HORIZ., WALL MOUNT
- F COMBINATION TOWEL/WASTE UNIT:
 BOBRICK B-369
 STAINLESS STEEL, C-FOLD TOWELS, 7.6L RECESSED
- G SANITARY NAPKIN DISPOSAL: BOBRICK B-270 STAINLESS STEEL, SURFACE MOUNT
- CLOTHES HOOK:
 BOBRICK B-233 OR APPROVED EQUAL
 STAINLESS STEEL, MOUNT 1200 A.F.F. MAX. W/50 MAX. PROJ.
- DIAPER CHANGING STATION:
 KOALA KB-101. VERTICAL WALL MOUNTED BABY
 CHANGING TABLE. COLOUR T.B.D.
- SIGN POSTED ABOVE EMERGENCY BUTTON READING:
 "IN THE EVENT OF AN EMERGENCY PUSH EMERGENCY BUTTON AND AN AUDIBLE AND VISUAL SIGNAL WILL ACTIVATE" LETTERS TO BE MIN. 25mm H. W/ 5mm STROKE.
- POWER DOOR OPERATOR CONTROL:
 SEE DOOR HARDWARE
 MOUNT AT 1000mm A.F.F

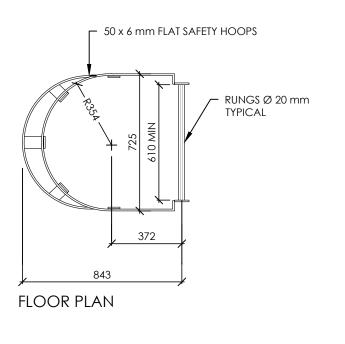

- GRAB BAR:

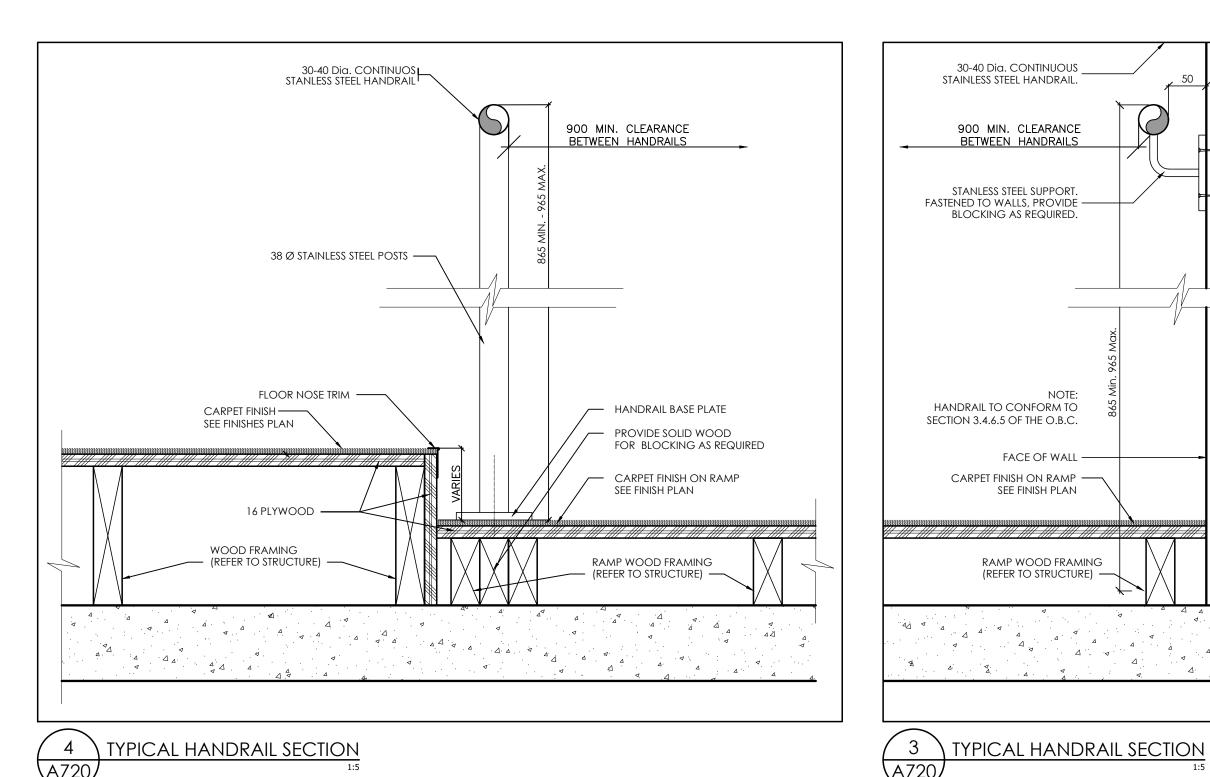
 BOBRICK B-5806.99 x 30 OR APPROVED EQUAL 760, PEENED FINISH, CONCEALED MOUNTING
- N TOILET TISSUE DISPENSER:
 BOBRICK B-2892 OR APPROVED EQUAL
 STAINLESS STEEL, TWIN JUMBO-ROLL
- TOILET TISSUE DISPENSER:
 BOBRICK B-2890 OR APPROVED EQUAL
 CHROME, SINGLE JUMBO ROLL, SURFACE MOUNT
- P TEMPERED MIRROR:
 BOBRICK B-165 4836 OR APPROVED EQUAL
 1220W x 915H, STAINLESS STEEL CHANNEL FRAME
- SOAP DISPENSER:
 BOBRICK B-8221 OR APPROVED EQUAL
 MANUAL PUMP, LAV MOUNTED, POLISHED FINISH
- SOAP DISPENSER:
 BOBRICK B-2111 OR APPROVED EQUAL
 STAINLESS STEEL, 1.2L VERT., WALL MOUNT
- S PAPER-TOWEL DISPENSER (HANDS-FREE):
 BOBRICK B-72974 OR APPROVED EQUAL
 ROLL PAPER, AUTOMATIC, SURFACE MOUNTED
- COMBINATION TOWEL/WASTE UNIT:
 BOBRICK B-39619 OR APPROVED EQUAL
 ROLL PAPER, SURFACE MOUNTED W/WASTE RECEPTACLE
- CLOTHES HOOK:
 RICHELIEU 60434145 OR APPROVED EQUAL
 COLOUR: 145
- PAPER-TOWEL DISPENSER:
 BOBRICK B-35903 OR APPROVED EQUAL FOLDED PAPER, RECESSED MOUNTED
- SHELF:
 BOBRICK B-295 x 16
 STAINLESS STEEL, 405L x 125W

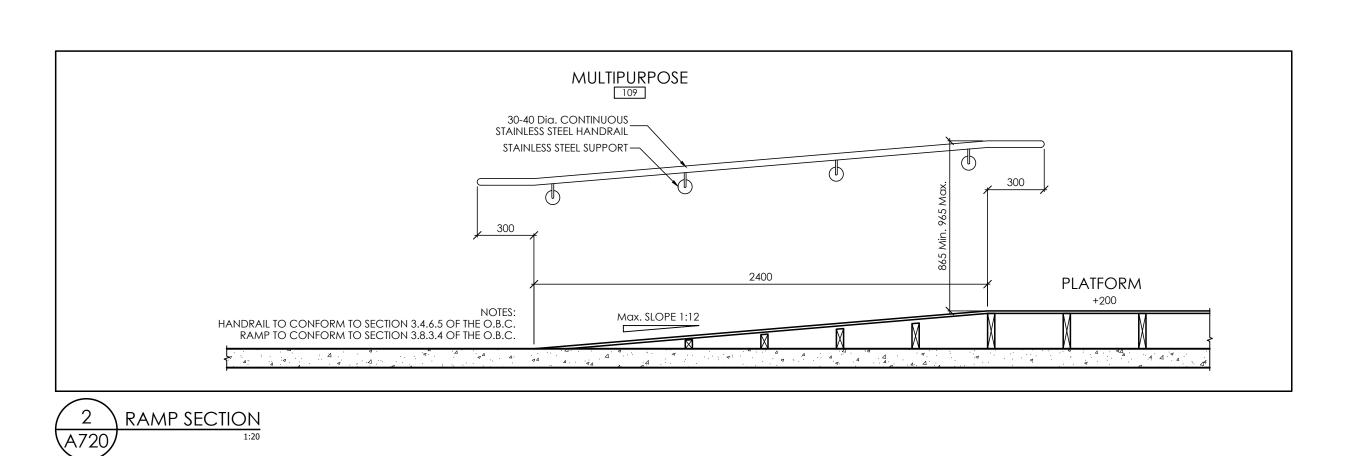
A702

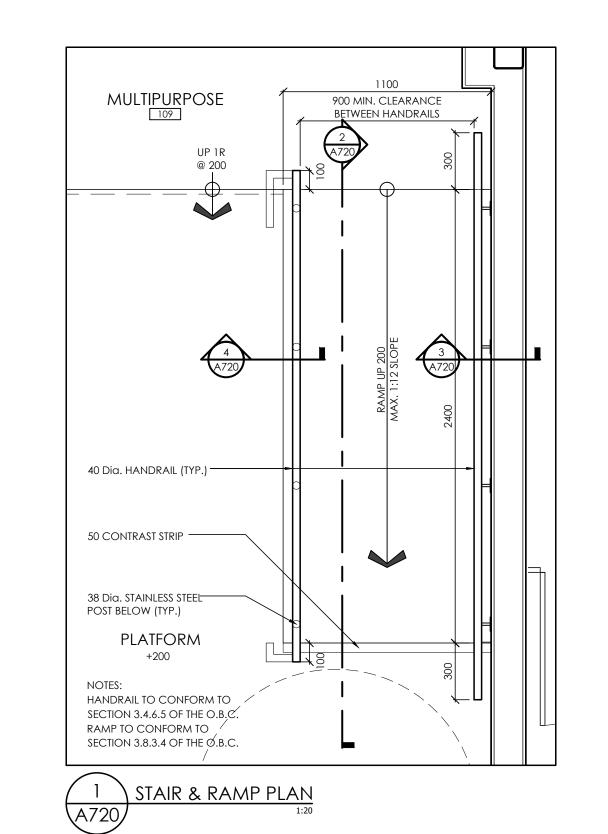







THE SALVATION ARMY BARRHAVEN CHURCI 102 BILL LEATHEM DRIVE, NEPEAN ON. K2J 0R3


WASHROOM PLAN & DETAILS



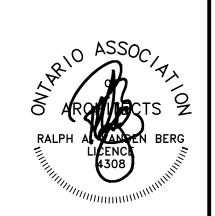
30-40 Dia. CONTINUOUS _ STAINLESS STEEL HANDRAIL.

900 MIN. CLEARANCE BETWEEN HANDRAILS

STANLESS STEEL SUPPORT.
FASTENED TO WALLS, PROVIDE —
BLOCKING AS REQUIRED.

HANDRAIL TO CONFORM TO

FACE OF WALL —

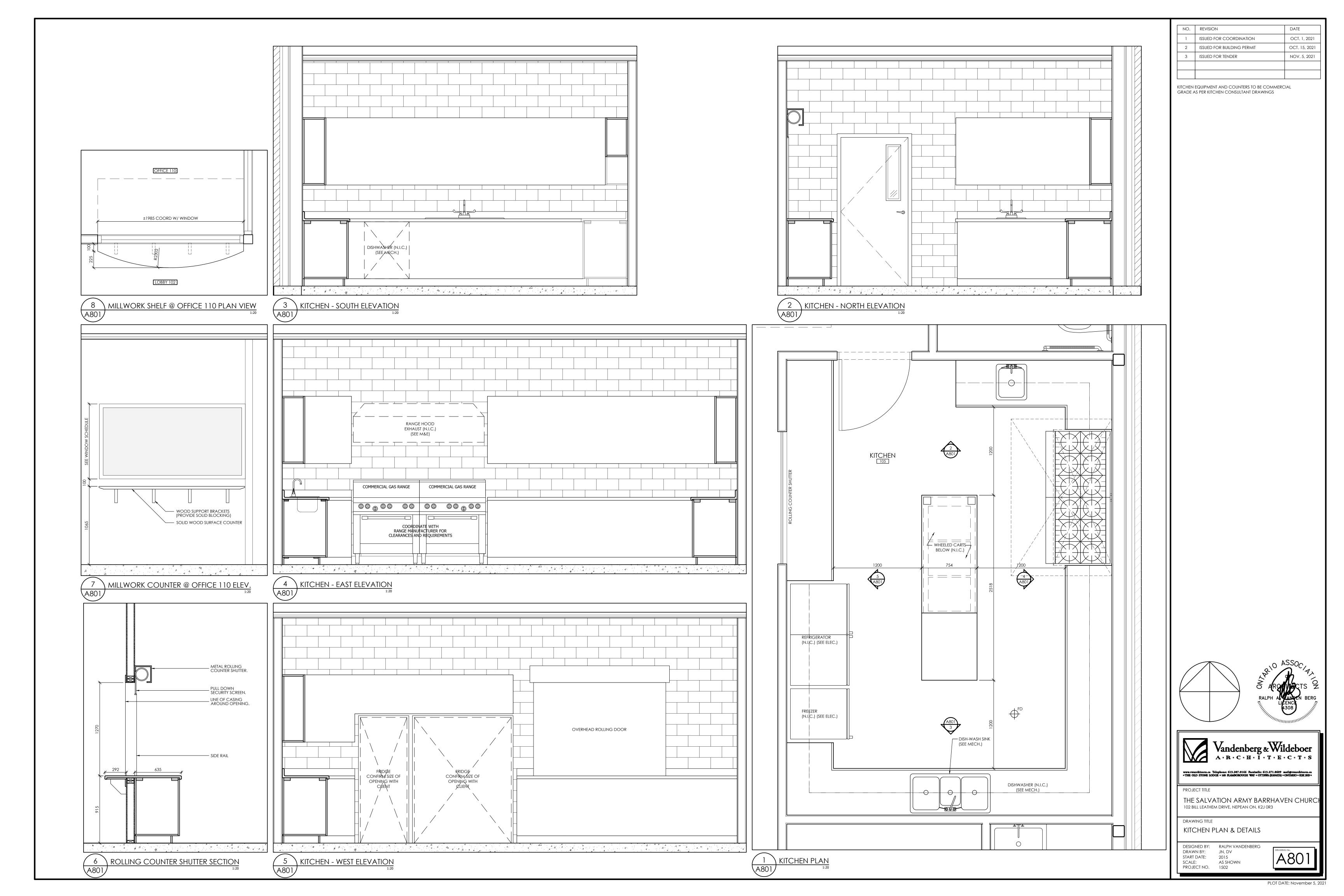

SEE FINISH PLAN

RAMP WOOD FRAMING (REFER TO STRUCTURE) —

CARPET FINISH ON RAMP —

SECTION 3.4.6.5 OF THE O.B.C.

NO.	revision	DATE
1	ISSUED FOR COORDINATION	OCT. 1, 2021
2	ISSUED FOR BUILDING PERMIT	OCT. 15, 2021
3	ISSUED FOR TENDER	NOV. 5, 2021


THE SALVATION ARMY BARRHAVEN CHURCI 102 BILL LEATHEM DRIVE, NEPEAN ON. K2J 0R3

DRAWING TITLE

STAIR, RAMP & LADDER DETAILS

DESIGNED BY: RALPH VANDENBERG DRAWN BY: START DATE: SCALE: **AS SHOWN** PROJECT NO. 1502

APPENDIX B STAMSON 5.04 - INPUT AND OUTPUT DATA

NORMAL REPORT Date: 01-04-2016 10:20:10 STAMSON 5.0

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r1.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Bill (day/night) _____

Car traffic volume : 9715/845 veh/TimePeriod * Medium truck volume : 773/67 veh/TimePeriod *
Heavy truck volume : 552/48 veh/TimePeriod *

Posted speed limit : 60 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 12000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Bill (day/night)

: -90.00 deg 49.00 deg Angle1 Angle2 Wood depth Wood depth : 0
No of house rows : 0 / 0
Surface : 2 0 / 0 (No woods.)

2 (Reflective ground surface)

Receiver source distance : 43.00 / 43.00 m Receiver height : 7.00 / 7.00 m

Topography : 1
Reference angle : 0.00 1 (Flat/gentle slope; no barrier)

Results segment # 1: Bill (day)

Source height = 1.50 m

ROAD (0.00 + 63.33 + 0.00) = 63.33 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

--

-90 49 0.00 69.03 0.00 -4.57 -1.12 0.00 0.00 0.00 63.33

63.33

--

Segment Leq : 63.33 dBA

Total Leq All Segments: 63.33 dBA

Results segment # 1: Bill (night)

Source height = 1.50 m

ROAD (0.00 + 55.73 + 0.00) = 55.73 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

--

-90 49 0.00 61.43 0.00 -4.57 -1.12 0.00 0.00 0.00 55.73

Segment Leq: 55.73 dBA

Total Leq All Segments: 55.73 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 63.33 (NIGHT): 55.73

NORMAL REPORT Date: 28-06-2017 10:08:48 STAMSON 5.0

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r2.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: BillL (day/night) _____

Car traffic volume : 9715/845 veh/TimePeriod * Medium truck volume : 773/67 veh/TimePeriod *
Heavy truck volume : 552/48 veh/TimePeriod *

Posted speed limit : 60 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 12000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: BillL (day/night)

Angle1 Angle2 : -41.00 deg 30.00 deg Wood depth : 0 (No woods Wood depth : 0
No of house rows : 0 / 0
Surface : 1 0 / 0 1 (No woods.)

(Absorptive ground surface)

Receiver source distance : 52.00 / 52.00 m Receiver height: 3.20 / 3.20 m

Topography: 2 (Flat/gentle slope; with barrier)

Barrier angle1: -41.00 deg Angle2: -12.00 deg

Barrier height: 6.00 m

Barrier receiver distance : 5.00 / 5.00 m

Source elevation : 0.00 m
Receiver elevation : 0.00 m
Barrier elevation : 0.00 m
Reference angle : 0.00

Road data, segment # 2: BillR (day/night)

Car traffic volume : 9715/845 veh/TimePeriod * Medium truck volume : 773/67 veh/TimePeriod * Heavy truck volume : 552/48 veh/TimePeriod *

Posted speed limit : 60 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 12000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 2: BillR (day/night)

Angle1 Angle2 : -15.00 deg 24.00 deg
Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 58.00 / 58.00 m Receiver height : 3.20 / 3.20 m

Topography : 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Road data, segment # 3: Leikin (day/night)

Car traffic volume : 9715/845 veh/TimePeriod * Medium truck volume : 773/67 veh/TimePeriod * Heavy truck volume : 552/48 veh/TimePeriod *

Posted speed limit : 60 km/h Road gradient :

: 0 %
: 1 (Typical asphalt or concrete) Road pavement

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 12000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 3: Leikin (day/night)

Angle1 Angle2 : -81.00 deg 0.00 deg
Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 23.00 / 23.00 m Receiver height : 3.20 / 3.20 m

Topography : 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00


```
Results segment # 1: BillL (day)
```

Source height = 1.50 m

Barrier height for grazing incidence

ROAD (0.00 + 37.51 + 53.93) = 54.02 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

--

Segment Leq: 54.02 dBA

Results segment # 2: BillR (day)

Source height = 1.50 m

ROAD (0.00 + 56.51 + 0.00) = 56.51 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

--

-15 24 0.00 69.03 0.00 -5.87 -6.64 0.00 0.00 0.00

56.51

Segment Leq: 56.51 dBA

Results segment # 3: Leikin (day)

Source height = 1.50 m

ROAD (0.00 + 63.70 + 0.00) = 63.70 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

. -----

--

-81 0 0.00 69.03 0.00 -1.86 -3.47 0.00 0.00 0.00 63.70

__

Segment Leq: 63.70 dBA

Total Leq All Segments: 64.83 dBA


```
Results segment # 1: BillL (night)
_____
Source height = 1.50 m
Barrier height for grazing incidence
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Barrier Top (m)
-----
    1.50 ! 3.20 ! 3.04 !
                                3.04
ROAD (0.00 + 29.91 + 46.33) = 46.42 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj
SubLeq
______
 -41 -12 0.25 61.43 0.00 -6.74 -8.06 0.00 0.00 -16.71
29.91
 -12
      30 0.61 61.43 0.00 -8.69 -6.41 0.00 0.00 0.00
46.33
_____
Segment Leq: 46.42 dBA
Results segment # 2: BillR (night)
_____
Source height = 1.50 \text{ m}
ROAD (0.00 + 48.91 + 0.00) = 48.91 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj
SubLeq
______
 -15
      24 0.00 61.43 0.00 -5.87 -6.64 0.00 0.00 0.00
```

Segment Leq: 48.91 dBA

Results segment # 3: Leikin (night)

Source height = 1.50 m

ROAD (0.00 + 56.10 + 0.00) = 56.10 dBA

Anglel Anglel Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

--

-81 0 0.00 61.43 0.00 -1.86 -3.47 0.00 0.00 0.00

56.10

--

Segment Leq : 56.10 dBA

Total Leq All Segments: 57.23 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 64.83 (NIGHT): 57.23

NORMAL REPORT Date: 01-04-2016 10:20:23 STAMSON 5.0

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r3.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Bill (day/night) _____

Car traffic volume : 9715/845 veh/TimePeriod * Medium truck volume : 773/67 veh/TimePeriod *
Heavy truck volume : 552/48 veh/TimePeriod *

Posted speed limit : 60 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 12000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Bill (day/night)

: 0.00 deg 66.00 deg Angle1 Angle2 Wood depth Wood depth : 0
No of house rows : 0 / 0
Surface : 2 (No woods.)

(Reflective ground surface)

Receiver source distance : 72.00 / 72.00 m Receiver height : 7.00 / 7.00 m

Topography : 1
Reference angle : 0.00 1 (Flat/gentle slope; no barrier)

Road data, segment # 2: LeikinL (day/night)

Car traffic volume : 9715/845 veh/TimePeriod * Medium truck volume : 773/67 veh/TimePeriod * Heavy truck volume : 552/48 veh/TimePeriod *

Posted speed limit : 60 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 12000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 2: LeikinL (day/night)

Angle1 Angle2 : -83.00 deg 69.00 deg
Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 21.00 / 21.00 m

Receiver height : 7.00 / 7.00 m

Topography : 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Road data, segment # 3: LeikinR (day/night)

Car traffic volume : 9715/845 veh/TimePeriod * Medium truck volume : 773/67 veh/TimePeriod * Heavy truck volume : 552/48 veh/TimePeriod *

Posted speed limit : 60 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 12000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 3: LeikinR (day/night)

Angle1 Angle2 : -90.00 deg -79.00 deg : 0 Wood depth (No woods.)

: No of house rows

0 / 0 (Reflective ground surface) Surface :

Receiver source distance : 15.00 / 15.00 mReceiver height : 7.00 / 7.00 m

Topography : 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Results segment # 1: Bill (day) ______

Source height = 1.50 m

ROAD (0.00 + 57.86 + 0.00) = 57.86 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj

66 0.00 69.03 0.00 -6.81 -4.36 0.00 0.00 0.00 0 57.86

Segment Leq: 57.86 dBA

Results segment # 2: LeikinL (day) _____

Source height = 1.50 m

ROAD (0.00 + 66.83 + 0.00) = 66.83 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-83 69 0.00 69.03 0.00 -1.46 -0.73 0.00 0.00 0.00 66.83

Segment Leq: 66.83 dBA


```
Results segment # 3: LeikinR (day)
_____
Source height = 1.50 m
ROAD (0.00 + 56.89 + 0.00) = 56.89 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj
SubLeq
       _____
  -90 -79 0.00 69.03 0.00 0.00 -12.14 0.00 0.00 0.00
56.89
Segment Leg: 56.89 dBA
Total Leq All Segments: 67.72 dBA
Results segment # 1: Bill (night)
______
Source height = 1.50 \text{ m}
ROAD (0.00 + 50.26 + 0.00) = 50.26 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj
       66 0.00 61.43 0.00 -6.81 -4.36 0.00 0.00 0.00
  0
50.26
Segment Leq: 50.26 dBA
Results segment # 2: LeikinL (night)
Source height = 1.50 \text{ m}
ROAD (0.00 + 59.23 + 0.00) = 59.23 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj
SubLeq
 -83
       69 0.00 61.43 0.00 -1.46 -0.73 0.00 0.00 0.00
_____
```


Segment Leq: 59.23 dBA

Results segment # 3: LeikinR (night)

Source height = 1.50 m

ROAD (0.00 + 49.29 + 0.00) = 49.29 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

49.29

Segment Leq: 49.29 dBA

Total Leq All Segments: 60.12 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 67.72 (NIGHT): 60.12

STAMSON 5.0 NORMAL REPORT Date: 01-04-2016 10:20:33

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r4.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Bill (day/night)

Car traffic volume : 9715/845 veh/TimePeriod * Medium truck volume: 773/67 veh/TimePeriod * Heavy truck volume : 552/48 veh/TimePeriod *

Posted speed limit : 60 km/h Road gradient :

: 0 %
: 1 (Typical asphalt or concrete) Road pavement

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 12000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Bill (day/night) _____

Angle1 Angle2 : -90.00 deg
Wood depth : 0
No of house rows : 0 / 0
Surface : 2 -41.00 deg (No woods.)

(Reflective ground surface)

Receiver source distance : 74.00 / 74.00 m Receiver height : 1.50 / 1.50 m $\,$

Topography : 2 (Flat/gentle slope; with barrier)

Barrier angle1 : -84.00 deg Angle2 : -41.00 deg Barrier height : 4.20 m

Barrier receiver distance : 1.00 / 1.00 m

Source elevation : 0.00 m Receiver elevation : 0.00 m
Barrier elevation : 0.00 m
Reference angle : 0.00

Road data, segment # 2: LeikinL (day/night)

Car traffic volume : 9715/845 veh/TimePeriod * Medium truck volume : 773/67 veh/TimePeriod * Heavy truck volume : 552/48 veh/TimePeriod *

Posted speed limit : 60 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 12000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 2: LeikinL (day/night)

Angle1 Angle2 : 0.00 deg 56.00 deg
Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 24.00 / 24.00 m Receiver height : 1.50 / 1.50 m

Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00

Road data, segment # 3: LeikinR (day/night)

Car traffic volume : 9715/845 veh/TimePeriod * Medium truck volume : 773/67 veh/TimePeriod * Heavy truck volume : 552/48 veh/TimePeriod *

Posted speed limit : 60 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 12000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 3: LeikinR (day/night)

Angle1 Angle2 : 88.00 deg 90.00 deg
Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 15.00 / 15.00 m Receiver height : 1.50 / 1.50 m

Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00


```
Results segment # 1: Bill (day)
______
Source height = 1.50 m
Barrier height for grazing incidence
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Barrier Top (m)
______
    1.50! 1.50! 1.50!
                                1.50
ROAD (47.32 + 39.92 + 0.00) = 48.05 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj
SubLeq
______
 -90 -84 0.00 69.03 0.00 -6.93 -14.77 0.00 0.00 0.00
47.32
 -84
     -41 0.00 69.03 0.00 -6.93 -6.22 0.00 0.00 -15.96
39.92
_____
Segment Leg: 48.05 dBA
Results segment # 2: LeikinL (day)
_____
Source height = 1.50 \text{ m}
ROAD (0.00 + 61.92 + 0.00) = 61.92 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj
SubLeq
______
      56 0.00 69.03 0.00 -2.04 -5.07 0.00 0.00 0.00
```

Segment Leq: 61.92 dBA

Results segment # 3: LeikinR (day) _____ Source height = 1.50 m ROAD (0.00 + 49.48 + 0.00) = 49.48 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq 88 90 0.00 69.03 0.00 0.00 -19.54 0.00 0.00 0.00 49.48 Segment Leg: 49.48 dBA Total Leq All Segments: 62.33 dBA Results segment # 1: Bill (night) ______ Source height = 1.50 mBarrier height for grazing incidence Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----1.50 ! 1.50 ! 1.50 ! ROAD (39.73 + 32.32 + 0.00) = 40.45 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -90 -84 0.00 61.43 0.00 -6.93 -14.77 0.00 0.00 0.00 39.73 -84 -41 0.00 61.43 0.00 -6.93 -6.22 0.00 0.00 -15.96 _____

Segment Leq: 40.45 dBA

Results segment # 2: LeikinL (night)

Source height = 1.50 m

ROAD (0.00 + 54.32 + 0.00) = 54.32 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

--

0 56 0.00 61.43 0.00 -2.04 -5.07 0.00 0.00 0.00

54.32

--

Segment Leq: 54.32 dBA

Results segment # 3: LeikinR (night)

Source height = 1.50 m

ROAD (0.00 + 41.89 + 0.00) = 41.89 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

. -----

--

88 90 0.00 61.43 0.00 0.00 -19.54 0.00 0.00 0.00

41.89

__

Segment Leq : 41.89 dBA

Total Leq All Segments: 54.73 dBA

TOTAL Leg FROM ALL SOURCES (DAY): 62.33

(NIGHT): 54.73

STAMSON 5.0 NORMAL REPORT Date: 01-04-2016 10:20:41

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r5.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Bill (day/night)

Car traffic volume : 9715/845 veh/TimePeriod * Medium truck volume: 773/67 veh/TimePeriod * Heavy truck volume : 552/48 veh/TimePeriod *

Posted speed limit : 60 km/h Road gradient :

: 0 %
: 1 (Typical asphalt or concrete) Road pavement

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 12000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Bill (day/night) _____

Angle1 Angle2 : -90.00 deg -41.00 deg
Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 2 (Reflective (No woods.)

(Reflective ground surface)

Receiver source distance : 60.00 / 60.00 m Receiver height : 1.50 / 1.50 m $\,$

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Road data, segment # 2: LeikinL (day/night)

Car traffic volume : 9715/845 veh/TimePeriod * Medium truck volume : 773/67 veh/TimePeriod *
Heavy truck volume : 552/48 veh/TimePeriod *

Posted speed limit : 60 km/h Road gradient :

: 0 %
: 1 (Typical asphalt or concrete) Road pavement

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 12000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 2: LeikinL (day/night)

Angle1 Angle2 : 0.00 deg 31.00 deg
Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 49.00 / 49.00 m Receiver height : 1.50 / 1.50 m

Topography : 2 (Flat/gentle slope Barrier angle1 : 0.00 deg Angle2 : 6.00 deg Barrier height : 4.20 m 2 (Flat/gentle slope; with barrier)

Barrier receiver distance: 8.00 / 8.00 m

Source elevation : 0.00 mReceiver elevation : 0.00 m
Barrier elevation : 0.00 m
Reference angle : 0.00

Road data, segment # 3: LeikinR (day/night)

Car traffic volume : 9715/845 veh/TimePeriod * Medium truck volume : 773/67 veh/TimePeriod * Heavy truck volume : 552/48 veh/TimePeriod *

Posted speed limit : 60 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 12000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 3: LeikinR (day/night)

Angle1 Angle2 : 63.00 deg 90.00 deg
Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 26.00 / 26.00 m Receiver height : 1.50 / 1.50 m

Topography : 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Results segment # 1: Bill (day) _____

Source height = 1.50 m

ROAD (0.00 + 57.36 + 0.00) = 57.36 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 -41 0.00 69.03 0.00 -6.02 -5.65 0.00 0.00 0.00 57.36

Segment Leg: 57.36 dBA

Results segment # 2: LeikinL (day) _____ Source height = 1.50 m Barrier height for grazing incidence Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Barrier Top (m) _____ 1.50! 1.50! 1.50! 1.50 ROAD (0.00 + 34.20 + 55.31) = 55.35 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ 6 0.00 69.03 0.00 -5.14 -14.77 0.00 0.00 -14.92 34.20 31 0.00 69.03 0.00 -5.14 -8.57 0.00 0.00 0.00 55.31 _____ Segment Leq: 55.35 dBA Results segment # 3: LeikinR (day) _____

Source height = 1.50 m

ROAD (0.00 + 58.40 + 0.00) = 58.40 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj

SubLeq

--63 90 0.00 69.03 0.00 -2.39 -8.24 0.00 0.00 0.00 58.40

Segment Leq: 58.40 dBA

Total Leq All Segments: 61.98 dBA


```
Results segment # 1: Bill (night)
_____
Source height = 1.50 m
ROAD (0.00 + 49.76 + 0.00) = 49.76 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj
SubLeq
      _____
 -90 -41 0.00 61.43 0.00 -6.02 -5.65 0.00 0.00 0.00
49.76
Segment Leg: 49.76 dBA
Results segment # 2: LeikinL (night)
Source height = 1.50 \text{ m}
Barrier height for grazing incidence
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Barrier Top (m)
1.50 ! 1.50 ! 1.50 !
                                1.50
ROAD (0.00 + 26.60 + 47.71) = 47.75 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj
SubLeq
      6 0.00 61.43 0.00 -5.14 -14.77 0.00 0.00 -14.92
26.60
_____
  6
      31 0.00 61.43 0.00 -5.14 -8.57 0.00 0.00 0.00
47.71
______
```

Segment Leq: 47.75 dBA

Results segment # 3: LeikinR (night)

Source height = 1.50 m

ROAD (0.00 + 50.80 + 0.00) = 50.80 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj

SubLeq

--

63 90 0.00 61.43 0.00 -2.39 -8.24 0.00 0.00 0.00

50.80

--

Segment Leq : 50.80 dBA

Total Leq All Segments: 54.38 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 61.98 (NIGHT): 54.38

STAMSON 5.0 NORMAL REPORT Date: 01-04-2016 10:20:46

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r6.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Bill (day/night)

Car traffic volume : 9715/845 veh/TimePeriod * Medium truck volume: 773/67 veh/TimePeriod * Heavy truck volume : 552/48 veh/TimePeriod *

Posted speed limit : 60 km/h Road gradient :

: 0 %
: 1 (Typical asphalt or concrete) Road pavement

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 12000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Bill (day/night) ______

Angle1 Angle2 : -90.00 deg 4.00 deg Wood depth : 0 (No woods No of house rows : 0 / 0 Surface : 2 (Reflection (No woods.)

(Reflective ground surface)

Receiver source distance : 60.00 / 60.00 m Receiver height : 1.50 / 1.50 m $\,$

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Bill (day)

Source height = 1.50 m

ROAD (0.00 + 60.19 + 0.00) = 60.19 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

--

-90 4 0.00 69.03 0.00 -6.02 -2.82 0.00 0.00 0.00

60.19

--

Segment Leq : 60.19 dBA

Total Leq All Segments: 60.19 dBA

Results segment # 1: Bill (night)

Source height = 1.50 m

ROAD (0.00 + 52.59 + 0.00) = 52.59 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

--

-90 4 0.00 61.43 0.00 -6.02 -2.82 0.00 0.00 52.59

Segment Leq: 52.59 dBA

Total Leq All Segments: 52.59 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 60.19 (NIGHT): 52.59

STAMSON 5.0 NORMAL REPORT Date: 01-04-2016 10:20:52

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r7.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: LeikinL (day/night)

Car traffic volume : 9715/845 veh/TimePeriod * Medium truck volume : 773/67 veh/TimePeriod * Heavy truck volume : 552/48 veh/TimePeriod *

Posted speed limit : 60 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 12000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: LeikinL (day/night) _____

Angle1 Angle2 : -44.00 deg 37.00 deg Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 2 (Reflective

(Reflective ground surface)

Receiver source distance : 24.00 / 24.00 m Receiver height : 7.00 / 7.00 m

Topography : 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Road data, segment # 2: LeikinR (day/night)

Car traffic volume : 9715/845 veh/TimePeriod * Medium truck volume : 773/67 veh/TimePeriod * Heavy truck volume : 552/48 veh/TimePeriod *

Posted speed limit : 60 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 12000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 2: LeikinR (day/night)

Angle1 Angle2 : 68.00 deg 90.00 deg
Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 15.00 / 15.00 m Receiver height : 7.00 / 7.00 m

Topography : 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Results segment # 1: LeikinL (day) _____

Source height = 1.50 m

ROAD (0.00 + 63.52 + 0.00) = 63.52 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-44 37 0.00 69.03 0.00 -2.04 -3.47 0.00 0.00 0.00 63.52

Segment Leg: 63.52 dBA

Results segment # 2: LeikinR (day)

Source height = 1.50 m

ROAD (0.00 + 59.90 + 0.00) = 59.90 dBA Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

--

68 90 0.00 69.03 0.00 0.00 -9.13 0.00 0.00 0.00 59.90

--

Segment Leq : 59.90 dBA

Total Leq All Segments: 65.09 dBA

Results segment # 1: LeikinL (night)

Source height = 1.50 m

ROAD (0.00 + 55.92 + 0.00) = 55.92 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

·-----

--

-44 37 0.00 61.43 0.00 -2.04 -3.47 0.00 0.00 55.92

--

Segment Leq: 55.92 dBA

Results segment # 2: LeikinR (night)

Source height = 1.50 m

ROAD (0.00 + 52.30 + 0.00) = 52.30 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

--

68 90 0.00 61.43 0.00 0.00 -9.13 0.00 0.00 0.00

52.30

--

Segment Leq : 52.30 dBA

Total Leq All Segments: 57.49 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 65.09 (NIGHT): 57.49

APPENDIX C

Detailed STC Calculations

Project: Salvation Army - Sancturary

Date:9/23/2016 **ProjectID:** GWE15-009

Outdoor level: NEF 35 or Leq24 67 or Ldn 68 dBA

Source Spectrum details:

100% Standard Aircraft

Corrections:

Receiving room:

Floor Area: 441 m²

Absorbtion: 80% of floor area

Construction Description:

Element 1: EX2

Construction Type: Custom Wall

Area: 394.00 m² Test ID: EX2 Test Date: 4/4/2016

Element 2: GL3_AIR13_GL6

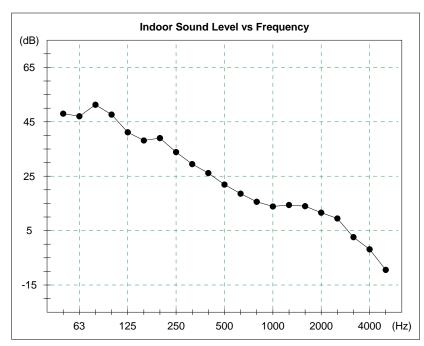
Construction Type: Window

Area: 60.00 m²

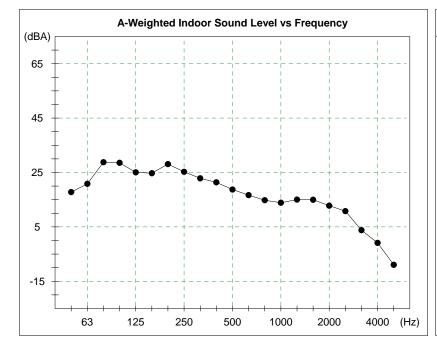
Test ID: CMHC177.961.13

Test Date: 11/1/1996

Wood casement

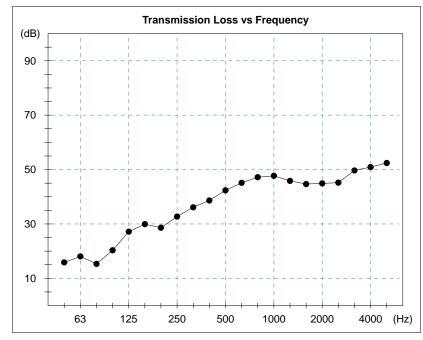

Element 3: R2

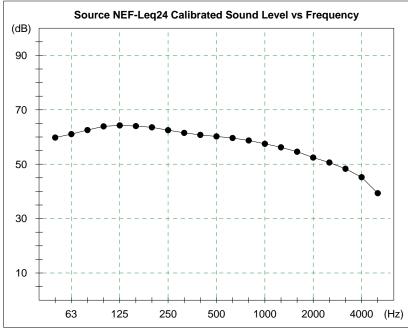
Construction Type: Custom Roof-ceiling


Area: 441.00 m² Test ID: InsulR2 Test Date: 9/23/2016

Project: Salvation Army - Sancturary

Date:9/23/2016 **ProjectID:** GWE15-009


Frequency (Hz)	Sound Level (dB)
50	48.0
63	47.0
80	51.3
100	47.7
125	41.1
160	38.1
200	39.0
250	33.9
315	29.4
400	26.2
500	21.9
630	18.6
800	15.6
1000	13.9
1250	14.4
1600	14.0
2000	11.6
2500	9.5
3150	2.6
4000	-1.9
5000	-9.4


Frequency (Hz)	Sound Level (dBA)
50	17.8
63	20.8
80	28.8
100	28.6
125	25.0
160	24.7
200	28.1
250	25.3
315	22.8
400	21.4
500	18.7
630	16.7
800	14.8
1000	13.9
1250	15.0
1600	15.0
2000	12.8
2500	10.8
3150	3.8
4000	-0.9
5000	-8.9

Project: Salvation Army - Sancturary

Date:9/23/2016 **ProjectID:** GWE15-009

Frequency (Hz)	TL (dB)
50	16
63	18
80	15
100	20
125	27
160	30
200	29
250	33
315	36
400	39
500	42
630	45
800	47
1000	48
1250	46
1600	45
2000	45
2500	45
3150	50
4000	51
5000	52

Frequency (Hz)	Sound Level (dB)
50	59.8
63	61.0
80	62.5
100	63.9
125	64.3
160	64.0
200	63.5
250	62.5
315	61.5
400	60.8
500	60.2
630	59.6
800	58.7
1000	57.5
1250	56.2
1600	54.6
2000	52.4
2500	50.6
3150	48.3
4000	45.2
5000	39.3

Single Number Ratings:

Outdoor Sound Level: 67 dBA
Indoor Sound Level: 36 dBA
A-wtd Level Reduction: 31 dB
A-wtd Reduction re Standard Source: 31 dB
OITC Rating: 32 dB

Project: Salvation Army - Multi-Purpose

Date:9/23/2016 ProjectID: GWE15-009

Outdoor level: NEF 35 or Leq24 67 or Ldn 68 dBA

Source Spectrum details:

100% Standard Aircraft

Corrections:

Receiving room:

Floor Area: 120 m²

Absorbtion: 80% of floor area

Construction Description:

Element 1: EX2

Construction Type: Custom Wall

Area: 5.00 m² Test ID: EX2 Test Date: 4/4/2016

Element 2: GL3_AIR13_GL6

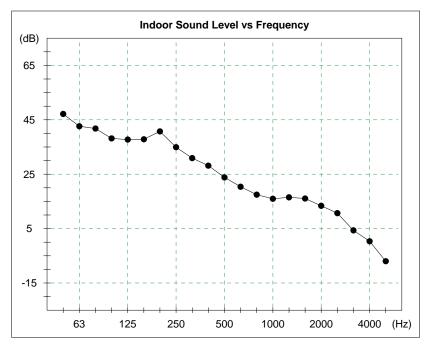
Construction Type: Window

Area: 30.00 m²

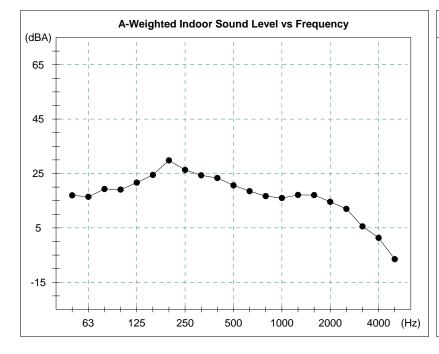
Test ID: CMHC177.961.13

Test Date: 11/1/1996

Wood casement

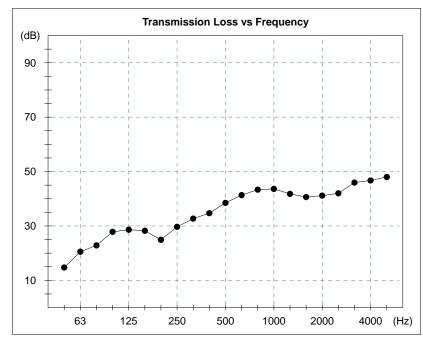

Element 3: R2

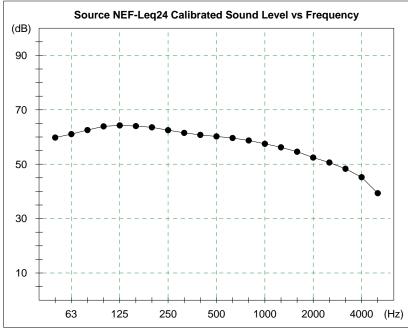
Construction Type: Custom Roof-ceiling


Area: 120.00 m² Test ID: InsulR2 Test Date: 9/23/2016

Project: Salvation Army - Multi-Purpose

Date:9/23/2016 **ProjectID:** GWE15-009


Frequency (Hz)	Sound Level (dB)
50	47.2
63	42.6
80	41.8
100	38.2
125	37.7
160	37.8
200	40.7
250	34.9
315	30.9
400	28.1
500	23.8
630	20.4
800	17.5
1000	16.0
1250	16.5
1600	16.0
2000	13.4
2500	10.7
3150	4.4
4000	0.3
5000	-7.0


Frequency (Hz)	Sound Level (dBA)
50	17.0
63	16.4
80	19.3
100	19.1
125	21.6
160	24.4
200	29.8
250	26.3
315	24.3
400	23.3
500	20.6
630	18.5
800	16.7
1000	16.0
1250	17.1
1600	17.0
2000	14.6
2500	12.0
3150	5.6
4000	1.3
5000	-6.5

Project: Salvation Army - Multi-Purpose

Date:9/23/2016 **ProjectID:** GWE15-009

Frequency (Hz)	TL (dB)
50	15
63	21
80	23
100	28
125	29
160	28
200	25
250	30
315	33
400	35
500	38
630	41
800	43
1000	44
1250	42
1600	41
2000	41
2500	42
3150	46
4000	47
5000	48

Frequency (Hz)	Sound Level (dB)
50	59.8
63	61.0
80	62.5
100	63.9
125	64.3
160	64.0
200	63.5
250	62.5
315	61.5
400	60.8
500	60.2
630	59.6
800	58.7
1000	57.5
1250	56.2
1600	54.6
2000	52.4
2500	50.6
3150	48.3
4000	45.2
5000	39.3

Single Number Ratings:

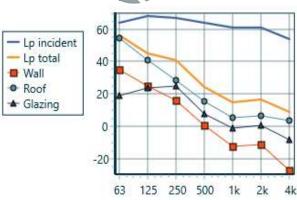
Outdoor Sound Level: 67 dBA
Indoor Sound Level: 35 dBA
A-wtd Level Reduction: 32 dB
A-wtd Reduction re Standard Source: 32 dB
OITC Rating: 34 dB

APPENDIX D

INSUL Calculations

Outdoor To Indoor Sound Transmission (v9.0.20)

Program copyright Marshall Day Acoustics 2017 Margin of error is generally within STC ±3 dB


- Key No. 4807

Job Name: Job No.:

Initials:mlafortune

Date:11/19/2021 Sanctuary

Comment:

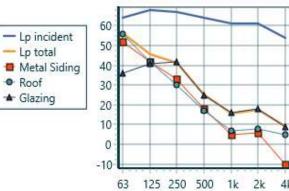
			Oct	ave Band	Centre Fi	requency	(Hz)		
Source		63	125	250	500	1k	2k	4k	Overall dBA
Incident sound level (freefi	eld)	64.0	68.0	67.0	64.0	61.0	61.0	54.0	67
Path									
Element 1 ,Wall STL		-17	-31	-39	-51	-61	-60	-69	
Facade Shape factor Level	diff.	0	0	0	0	0	0	0	
Insertion Loss		0	0	0	0	0	0	0	
Area(+10LogA)	[394 m²]	26	26	26	26	26	26	26	
Element sound level contril	bution	35	25	16	1	-12	-11	-27	13
Element 2 ,Roof STL		-13	-31	-42	-52	-59	-58	-54	
Facade Shape factor Level	diff.	0	0	0	0	0	0	0	
Insertion Loss		0	0	0	0	0	0	0	
Area(+10LogA)	[441 m²]	26	26	26	26	26	26	26	
Element sound level contribution		55	41	29	16	6	7	4	30
Element 3 ,Glazing STL		-25	-24	-22	-36	-42	-40	-42	
Facade Shape factor Level	diff.	0	0	0	0	0	0	0	
Insertion Loss		0	0	0	0	0	0	0	
Area(+10LogA)	[60 m²]	18	18	18	18	18	18	18	
Element sound level contril	bution	19	24	25	8	-1	1	-8	17
Receiver									
Room volume(-10LogV)	[3528 m3]	-35	-35	-35	-35	-35	-35	-35	
Reverberation time (s)		1.5	1.5	1.5	1.5	1.5	1.5	1.5	
RT (+10LogT)		1.8	1.8	1.8	1.8	1.8	1.8	1.8	
Equation Constant		11	11	11	11	11	11	11	
Room sound level		56	45	41	24	15	17	9	36

Outdoor To Indoor Sound Transmission (v9.0.20)

Program copyright Marshall Day Acoustics 2017 Margin of error is generally within STC ±3 dB

- Key No. 4807

Job Name: Job No.:


Initials:mlafortune

Date:11/19/2021

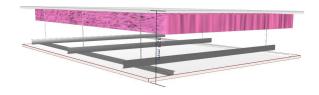
Multi-Purpose

Comment:

Octave Band Centre Frequency (Hz)								
Source	63	125	250	500	1k	2k	4k	Overall dBA
Incident sound level (freefield)	64.0	68.0	67.0	64.0	61.0	61.0	54.0	67
Path	-							
Element 1 ,Metal Siding STL	-17	-31	-39	-51	-61	-60	-69	
Facade Shape factor Level diff.	0	0	0	0	0	0	0	
Insertion Loss	0	0	0	0	0	0	0	
Area(+10LogA) [300 r	n ²] 25	25	25	25	25	25	25	
Element sound level contribution	52	42	33	18	5	6	-10	30
Element 2 ,Roof STL	-13	-31	-42	-52	-59	-58	-54	
Facade Shape factor Level diff.	0	0	0	0	0	0	0	
Insertion Loss	0	0	0	0	0	0	0	
Area(+10LogA) [230 r	n²] 24	24	24	24	24	24	24	
Element sound level contribution	56	42	30	17	7	8	5	32
Element 3 ,Glazing STL	-25	-24	-22	-36	-42	-40	-42	
Facade Shape factor Level diff.	0	0	0	0	0	0	0	
Insertion Loss	0	0	0	0	0	0	0	
Area(+10LogA) [36 r	n²] 16	16	16	16	16	16	16	
Element sound level contribution	36	41	42	25	16	18	9	34
Receiver								
Room volume(-10LogV) [1824 n	13] -33	-33	-33	-33	-33	-33	-33	
Reverberation time (s)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
RT (+10LogT)	1.8	1.8	1.8	1.8	1.8	1.8	1.8	
Equation Constant	11	11	11	11	11	11	11	
Room sound level	57	46	42	25	16	17	9	36

Sound Insulation Prediction (v9.0.20)

Program copyright Marshall Day Acoustics 2017 Margin of error is generally within STC ±3 dB


- Key No. 4807 Job Name:

Job No.: Date:11/18/2021 Initials:mlafortune

Date:11/18/2021 File Name:R2 R1.ixl

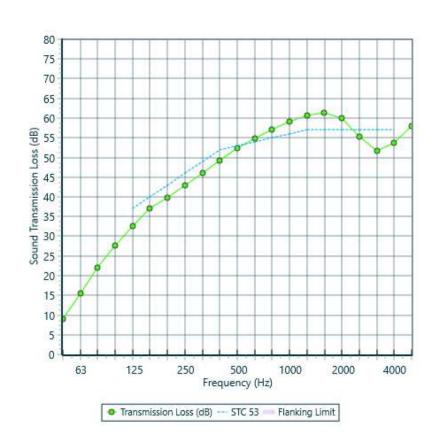
Notes:

STC 53 OITC 39

Mass-air-mass resonant frequency = =43 Hz

Panel Size = $2.7 \text{ m} \times 4.0 \text{ m}$

Partition surface mass = 21 kg/m²

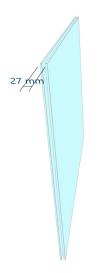

System description

Panel 1 : 1 x 12.7 mm DensGlass® Sheathing Georgia Pa

Frame: Suspended Light Steel Grid (3E2 mm x 45 mm), Stud spacing 600 mm; Cavity Width 300 mm, 1 x fiberglass (0.6 lb/ft3) Thickness 100 mm

Panel 2 $$: 1 x 15.9 mm Type X Gypsum Board

freq.(Hz)	TL(dB)	TL(dB)
50	9	
63	16	13
80	22	
100	28	
125	33	31
160	37	
200	40	
250	43	42
315	46	
400	49	
500	52	52
630	55	
800	57	
1000	59	59
1250	61	
1600	61	
2000	60	58
2500	55	
3150	52	
4000	54	54
5000	58	


Sound Insulation Prediction (v9.0.20)

Program copyright Marshall Day Acoustics 2017 Margin of error is generally within STC ±3 dB

- Key No. 4807 Job Name:

Job No.: Date:11/19/2021 File Name:R2 R1.ixl Initials:mlafortune

19/2021

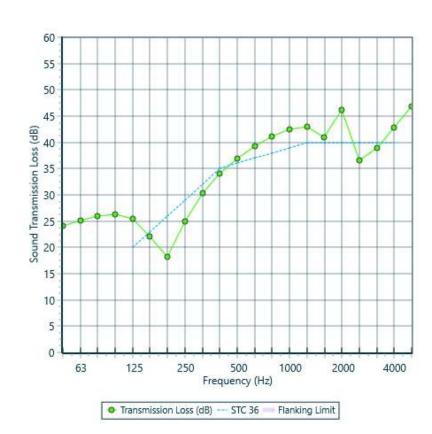
Notes:

STC 36 OITC 29

Mass-air-mass resonant frequency = =179 Hz

Panel Size = 2.0 m x 1.5 m

Partition surface mass = 35 kg/m²

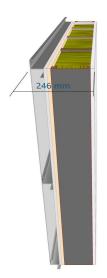

System description

Pane 1 : 1 x 6 mm Glass

air: 13 mm

Pane 2 : 1 x 8 mm Glass

freq.(Hz)	TL(dB)	TL(dB)
50	24	
63	25	25
80	26	
100	26	
125	25	24
160	22	
200	18	
250	25	22
315	30	
400	34	
500	37	36
630	39	
800	41	
1000	42	42
1250	43	
1600	41	
2000	46	40
2500	37	
3150	39	
4000	43	42
5000	47	


Sound Insulation Prediction (v9.0.20)

Program copyright Marshall Day Acoustics 2017 Margin of error is generally within STC ±3 dB

- Key No. 4807 Job Name: Job No.:

Initials:mlafortune

Date:11/18/2021 File Name:EX2 R1.ixl

Notes:

STC 53 OITC 38

Mass-air-mass resonant frequency = = 58 Hz , 236 Hz

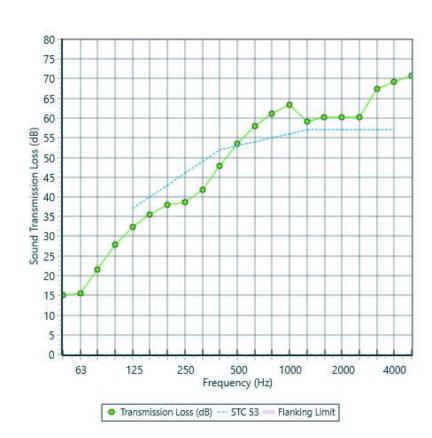
Panel Size = 2.7 m x 4.0 m

Partition surface mass = 32.6 kg/m²

System description

Panel 1 : 1 x 0.7 mm Aluminium

Frame: Z Girt (50 mm x 38 mm), Stud spacing $\,$ 599 mm ; Cavity Width 50 mm


Panel 2 $$: 1 x 12.7 mm DensGlass® Sheathing Georgia Pa

+ 1 x 15.1 mm OSB (Oriented Strand Board)

Frame: Steel Stud (0.55mm) (1.5E2 mm x 38 mm), Stud spacing 400 mm ; Cavity Width 152 mm , 1 x Fibreglass (10kg/m3) Thickness 152 mm

Panel 3 $$: 1 x 15.9 mm Type X Gypsum Board

freq.(Hz)	TL(dB)	TL(dB)
50	15	
63	15	17
80	22	
100	28	
125	32	31
160	36	
200	38	
250	39	39
315	42	
400	48	
500	53	51
630	58	
800	61	
1000	63	61
1250	59	
1600	60	
2000	60	60
2500	60	
3150	67	
4000	69	69
5000	71	

APPENDIX E

Ottawa International Airport Authority Correspondence

Michael Lafortune

From: Stecky-Efantis, Alexander <alexander.stecky-efantis@yow.ca>

Sent: October-04-16 3:24 PM
To: Beth Henderson; Kealey, Krista

Cc: Joshua Foster

Subject: RE: Barrhaven Salvation Army proposal

Hi Beth,

Thank you for coming to the airport last week to meet with us regarding the development proposal and for your follow-up call.

As requested, I would like to provide some additional information on the limited operations on runway 07/25 this August. There were three weeks when the runway was open; however, taxiway bravo, which is one of the ways to access runway 07/25 was restricted to certain size aircraft due to construction. During this time from August 6th to the end of the month, aircraft movement on runway 07/25 were limited. There were also two days (August 9th and 10th) where the runway was closed for pest control. Finally, the runway was also closed on August 31st and September 2nd for rubber removal maintenance.

Please let me know if you have any questions or require additional information.

Regards, Alex

Alexander Stecky-Efantis

Manager, Airport Planning and Municipal Affairs Ottawa International Airport Authority Gestionnaire, Planification aéroportuaire et affaires municipales Administration de l'aéroport international d'Ottawa

Tel. / Tél. : 613-248-2000x1909 Fax / Téléc. : 613-248-2021

From: Beth Henderson [mailto:bethhenderson@bell.net]

Sent: September-28-16 3:57 PM

To: Stecky-Efantis, Alexander; Kealey, Krista

Cc: <u>Jeff_Barrett@can.salvationarmy.org</u>; <u>James_Mercer@can.salvationarmy.org</u>; 'Joshua Foster'; Miguel Tremblay; <u>Michaela_Jones@can.salvationarmy.org</u>

Subject: Barrhaven Salvation Army proposal

Good afternoon Krista and Alex

Thank you for taking the time to meet with us today to discuss the Salvation Army Church's proposal at 102 Bill Leathem Drive. I believe the exchange of information and ideas was constructive and beneficial as we move forward in the development application process.

Through this email I will request that Joshua Foster contact Alex to obtain the dates that the main east west runway was not active or significantly below the normal usage due to the resurfacing during the on site monitoring that was conducted by Gradient engineering on the proposed site.

Also it would be great if you could send the proposed 2043 contour mapping that was discussed.

As discussed I will contact the city planner on this file and ensure that the airport authority is circulated on the next submission.

Thank you again for your time and consideration and we look forward to discussing the application with you or answering any of your questions that may arise upon review of the second submission.

Sincerely, Beth Henderson