

DESIGN BRIEF

FOR

585 BOBOLINK RIDGE TAMARACK HOMES

CITY OF OTTAWA

PROJECT NO.: 21-1261

JANUARY 2022 1ST SUBMISSION © DSEL

DESIGN BRIEF FOR 585 BOBOLINK RIDGE TAMARACK HOMES

TABLE OF CONTENTS

1.0	INTRODUCTION & BACKGROUND1			
1.1	Development Concept2			
1.2	Existing Conditions			
1.3	Required Permits / Approvals			
1.4	Pre-Consultation4			
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS			
2.1	Existing Studies, Guidelines, and Reports5			
3.0	WATER SUPPLY SERVICING7			
3.1	Existing Water Supply Services7			
3.2	Water Supply Servicing Design7			
	3.2.1 Watermain Modelling			
3.3	Water Supply Conclusion9			
4.0	WASTEWATER SERVICING10			
4.1	Existing Wastewater Services10			
4.2	Wastewater Design10			
4.3	Wastewater Servicing Conclusions11			
5.0	STORMWATER MANAGEMENT12			
5.1	Existing Stormwater Drainage12			
5.2	Stormwater Management Criteria12			
5.3	Stormwater Management Strategy			
	5.3.1 Minor System			
	5.3.2 Quantity Control145.3.3 Quantity Control14			
5.4	Stormwater Management Calculations14			
5.5	Grading & Drainage17			
5.6	Stormwater Servicing Conclusions			
c 0				

7.0	EROSION AND SEDIMENT CONTROL	. 19
8.0	CONCLUSIONS AND RECOMMENDATIONS	. 21

IN-TEXT FIGURES

Figure 1.1: Site Location 1

TABLES

Table 1.1: Development Statistic Projections	2
Table 1.2: Anticipated Permit/Approval Requirements	3
Table 3.1: Water Supply Design Criteria	7
Table 3.2: Summary of Water Demands	8
Table 3.3: Boundary Conditions	8
Table 3.4: Summary of Available Service Pressures	9
Table 3.5: Summary of Available Fire Flows	9
Table 4.1: Wastewater Design Criteria	10
Table 4.2: Wastewater Peak Flow	11
Table 5.1: Storm Sewer Design Criteria	13
Table 5.2: Storage Requirements Bobolink Ridge Outlet (south)	15
Table 5.3: Storage Requirements for Block 324 Outlet (north)	16

APPENDICES

Appendix A Legal Drawings, site plan, pre-consult notes, City checklist

Appendix B Hydraulic Network Analysis

Appendix C Sanitary Servicing Documents

Appendix D Stormwater Servicing Documents

DESIGN BRIEF FOR 585 BOBOLINK RIDGE TAMARACK HOMES

JANUARY 2022 CITY OF OTTAWA PROJECT NO.: 21-1261

1.0 INTRODUCTION & BACKGROUND

David Schaeffer Engineering Limited (DSEL) has prepared this Design Brief in support of development of 585 Bobolink Ridge on behalf of Tamarack Homes.

The study area is located within 585 Bobolink Ridge in the City of Ottawa urban boundary, in the Ward 6 – Stittsville Glen Gower as illustrated in *Figure 1.1*, the study area is bounded by Putney Crescent to the west, Bobolink Ridge to the south, Robert Grant Avenue to the east and a public pathway to the North. The site is a 1.19-hectare parcel located within CRT developments Inc. Phase 1 Westwood subdivision.

Figure 1.1: Site Location

The study area and surrounding lands are governed by the broader Fernbank Community Design Plan (*FCDP*) (*City of Ottawa, 2009*), the Master Servicing Study (*MSS*) and Environmental Management Plan (*EMP*). A Design Brief for the phase 1 of CRT lands was prepared by IBI Group in 2017 that established a municipal servicing strategy for the Phase 1 CRT lands in keeping with the planning level solutions identified in the *MSS* and

EMP. The Phase 1 CRT Lands Design Brief identifies existing infrastructure and environmental constraints, describes the neighborhood-level trunk services that will service all properties within its study area, including the 585 Bobolink Ridge parcel, establishes targets for future site-specific stormwater management plans.

This Design Brief is provided to demonstrate conformance with the design criteria of the City of Ottawa, the CRT Lands Phase 1 Design Brief, background studies including the *MSS*, and general industry practice. It provides detailed water, sanitary sewer, stormwater management and grading design information to support the development of the study area. This report should be read in conjunction with the Engineering Drawings (DSEL, Jan 13, 2022).

This Design Brief and detailed engineering submission have been prepared by **David Schaeffer Engineering Ltd**., with a watermain analysis prepared by **GeoAdvice Engineering Inc.**, and geotechnical analysis prepared by **Paterson Group Inc**.

1.1 Development Concept

The site plan for the proposed development concept at 585 Bobolink Ridge, (Block 243 on Plan 43-1619) has been included in *Appendix A*. The proposed development consists of 8 blocks for a total of 76 back-to-back townhomes. *Table 1.1* presented below provides a projected population count for the site. The private roads being proposed within the site consist of 11.6m wide Condo ROWs with 6.0m wide pavement widths, as shown in the Engineering drawing set. The proposed development concept is in general conformance with the FCDP.

Land Use	Total	Projected	Residential	Projected
	Area (ha)	Residential Units	Population per Unit *	Population *
Block 243 (585 Bobolink Ridge)	1.19	76 B2Bs	2.7	206

* NOTE: Population projections may differ from population estimates used in background Transportation Studies, Planning Rationale, and other studies. Population projection and residential population per unit values are based on Ministry of Environment, Conservation and Parks guidelines for servicing demand calculations. Local Roads are included in Total Area estimates above.

1.2 Existing Conditions

The lot is currently vacant, generally covered with grass and has a gravel access lane. The existing elevations for the site generally range between 107.5 and 109.2m. There is a slight east-west ridge located roughly at the center of the site creating fall to both the north and south.

The soil profile for this site is detailed in the *Geotechnical Investigation – Proposed Residential Development 585 Bobolink Ridge, Report: PG5858-1 (Dated July 5th, 2021, Paterson Group).* The report indicates that the subsurface profile generally consists of brown silty sand with gravel, cobbles, boulders and trace organics with glacial till encountered in some areas. As practical refusal was encountered at depths ranging from 1.7 to 3.8m, the Paterson report inferred it to be bedrock. No permissible grade raise restrictions are recommended per the Paterson report.

1.3 Required Permits / Approvals

Development of the study area is expected to be subject to the following permits and approvals presented in *Table 1.2*.

Agency	Permit/Approval Required	Trigger	Remarks
MECP/City of Ottawa	Environmental Compliance Approval	Construction of new sanitary sewers, storm sewers, and stormwater management works.	The City of Ottawa is expected to review all stormwater collection system, stormwater management, and wastewater collection system on behalf of the MECP by transfer of review authority.
MECP	Permit to Take Water (PTTW)	Construction of proposed land uses (e.g. basements for residential homes) and services.	Pumping of groundwater or surface water may be required during construction, given site conditions, proposed land uses, and on-site/off-site municipal infrastructure.
City of Ottawa	MOE Form 1 – Record of Watermains Authorized as a Future Alteration.	Construction of watermains.	The City of Ottawa is expected to review the watermains on behalf of the MECP through the Form 1 – Record of Watermains Authorized as a Future Alteration.
City of Ottawa	Commence Work Notification (CWN)	Construction of new sanitary and storm sewer throughout the subdivision.	The City of Ottawa will issue a commence work notification for construction of the sanitary and storm sewers once an ECA is issued by the MECP.

Table 1.2: Anticipated Permit/Approval Requirements

1.4 **Pre-Consultation**

Pre-application consultation was conducted on April 13th, between the City of Ottawa and the developers as part of the Site Plan Control Application process. Various stakeholders provided written comments that were recorded and formalized in meeting minutes.

Per the City of Ottawa Transfer of Review Agreement No. TOR-OTT-E-2019-01, it is assumed that MECP pre-consultation is not required, as the City of Ottawa is expected to agree that the proposed works fall under Schedule A of the agreement. As such, the City of Ottawa is expected to review the proposed infrastructure on behalf of MECP as part of issuing Environmental Compliance Approval for the appropriate works.

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following key studies were utilized in the preparation of this report:

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012 (Sewer Design Guidelines)
- Technical Bulletin ISDTB-2014-01, Revisions to Ottawa Design Guidelines -Sewer City of Ottawa, February 5, 2014. (ISDTB-2014-01)
- Technical Bulletin PIEDTB-2016-01, Revisions to Ottawa Design Guidelines – Sewer,

City of Ottawa, September 6, 2016. (PIEDTB-2016-01)

Technical Bulletin ISTB-2018-01, Revisions to Ottawa Design Guidelines – Sewer, City of Ottawa, March 21, 2018.

(ISTB-2018-01)

- Technical Bulletin ISTB-2019-02, Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, July 8, 2019. (ISTB-2019-02)
- Ottawa Design Guidelines Water Distribution, City of Ottawa, July 2010. (Water Supply Guidelines)
- Technical Bulletin ISD-2010-2 City of Ottawa, December 15, 2010. (ISDTB-2010-2)
- Technical Bulletin ISDTB-2014-02 City of Ottawa, May 27, 2014. (ISDTB-2014-02)
- Technical Bulletin ISTB-2018-02 City of Ottawa, March 21, 2018 (ISDTB-2018-02)

- Fire Underwriters Survey, 1999. (FUS)
- Design Guidelines for Sewage Works, Ministry of the Environment, 2008. (MECP Design Guidelines)
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)
- Ontario Building Code Compendium, Ministry of Municipal Affairs and Housing Building Development Branch, 2012 and as updated from time to time. (OBC)
- Ontario Building Code Compendium, Ministry of Municipal Affairs and Housing Building Development Branch, 2012 and as updated from time to time. (OBC)
- Fernbank Community Design Plan MSS Novatech Consulting Engineers 2009
- Fernbank Community Sanitary Trunk Sewer Report Novatech Consulting Engineers 2012
- CRT Lands Phase 1, Fernbank Community Servicing Brief IBI Group, July 2017

CRT Lands Phase 1, Fernbank Community Servicing Brief Blk 324 IBI Group, July 2021

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

There is an existing 200mm dia. watermain service connecting to an active 300mm dia. watermain on Bobolink Ridge at the eastern boundary of the site. A 200mm dia. watermain is also present on Putney Crescent located to the west of the site.

3.2 Water Supply Servicing Design

The site will be serviced via a local 150mm dia. and 200mm dia. watermains on private streets with individual services to units. Two connections will be made to the existing system within the vicinity of site, 1 connection will be made on the existing 200mm dia. stub connected to the 300mm dia. watermain on Bobolink Ridge, and a second connection will be on the existing 200mm dia. watermain on Putney Crescent.

Design Parameter	Value
Residential – Townhome/ Semi	2.7 p/unit
Residential Average Daily Demand	280 L/d/p
Residential – Maximum Daily Demand	4.9 x Average Daily Demand
Residential – Maximum Hourly Demand	7.4 x Maximum Daily Demand
Residential – Minimum Hourly Demand	0.1 x Average Daily Demand
Minimum Watermain Size	150 mm diameter
Minimum Depth of Cover	2.4 m from top of watermain to finished grade
During normal operating conditions desired operating pressure is within	350 kPa and 48 0kPa
During normal operating conditions pressure must not drop below	275 kPa
During normal operating conditions pressure must not exceed	552 kPa
During fire flow operating pressure must not drop below	140 kPa
Notes: • Extracted from Section 4: Ottawa Design Guidelines, Water Distribution (July 2010), Tal Consumption Potos for Subdivisions of E01 to 3 000 Persons	ble 4.1 – Per Unit Populations and Table 4.2 –

Table 3.1: Water Supply Design Criteria

Consumption Rates for Subdivisions of 501 to 3,000 Persons.

No Outdoor Water Demand considered for residential uses.
 Residential Average Daily Demand assumed to be 280 L/d/P in accordance with 2018 changes to Sanitary Design Guidelines, see Section 4.0.

All local watermains within the site were designed in accordance with the *Water Supply Guidelines*, as summarized in *Table 3.1* above.

A summary of the anticipated water demands for the study area are summarized in **Table 3.2**. Boundary conditions have been provided by the City of Ottawa based on these demands, and can be found in **Appendix B**, as part of the *Hydraulic Capacity and Modeling Analysis – Bobolink Ridge (GeoAdvice Report)* (GeoAdvice, January 11th, 2022). Small altercations were undertaken by the Developer since the water demands were calculated. The small change consists of removing 2 units therefore calculations presented below and within the GeoAdvice report reference 78 units however the plan

has been updated to consist of 76 units. The results remain valid and relevant for their intended purposes.

		Рор	ulation			Max	Peak	Min
Dwelling Type	Number of Units	Persons per unit	Population per dwelling type	Allocated Demand	Avg Day (L/s)	Day 4.9 x Avg Day (L/s)	Hour 7.4 x Max Day (L/s)	Hour 0.1 x Avg Day (L/s)
Back-to-Back Townhomes	78	2.7	2.7	280 L/c/d	0.75	3.68	5.56	0.08

Table 3.4: Summary of Water Demands

Note, a small buffer (10%) was applied to the population estimates to account for any minor changes that may occur prior to the full buildout of the development.

Fire flow calculations for the back-to-back townhouses are detailed in the GeoAdvice Report found in *Appendix B*. The fire flows are calculated in accordance with the Fire Underwriters Survey's Water Supply for Public Fire Protection Guideline (1999) as amended by ISTB-2014-02 & ISTB-2018-02. A range of fire flows (167 L/s to 283 L/s) was included in the boundary conditions request. Hydraulic grade lines (HGL) for intermediate flows between 167 L/s and 283 L/s have been interpolated using the boundary conditions provided by the City.

The boundary conditions provided by the City of Ottawa for use in the hydraulic analysis related to the subject site are summarized in *Table 3.3*.

Condition	Connection 1 HGL (m) (Bobolink Ridge)	Connection 2 HGL (m) (Putney Crescent)
Average Day Demand	161.2	161.2
Peak Hour (min. pressure)	156.4	156.4
Max Day + Fire (167 L/s)	153.7	146.5
Max Day + Fire (267 L/s)**	148.9	131.5
Max Day + Fire (283 L/s)	148.1	129.1

Table 3.5: Boundary Conditions

**interpolated value

3.2.1 Watermain Modelling

A hydraulic analysis was completed for the study area within the *GeoAdvice Report*. The analysis, including the watermain network configuration and sizing, is provided in *Appendix B.*

Modelling was carried out for minimum hour, peak hour and maximum day plus fire flow. Modelling results shown in *Table 3.4* indicate that the development can be adequately serviced for minimum hour and peak hour criteria.

Average Day Demand	Peak Hour Demand
Maximum Pressure	Minimum Pressure
(kPa)	(kPa)
75 psi (520 kPa)	67 psi (464kPa)

Table 3.6: Summary	of Available Service	Pressures
--------------------	----------------------	-----------

The results presented in the table above indicate that the pressures are within the OSDG best practices for new water distribution systems to operate between 350 kPa and 480 kPa.

Per **Table 3.1**, the minimum allowable pressure under fire flow conditions is 140 kPa (20 psi) at the location of the fire. A summary of available fire is shown below in **Table 3.5**. Further details can be found in **Appendix B**.

 Table 3.7: Summary of Available Fire Flows

Required Fire Flow	Minimum Available Fire Flow
(L/s)	(L/s)
267	292

3.3 Water Supply Conclusion

The proposed watermain network conforms to all relevant City and MECP *Water Supply Guidelines*. The hydraulic analysis of the proposed watermain network, completed within the *GeoAdvice Report*, concludes that all required domestic and fire flows can be met throughout the study area upon full buildout of the development. Anticipated fire flow requirements can be met throughout the development lands according to City Guidelines and ISTB-2018-02.

4.0 WASTEWATER SERVICING

4.1 **Existing Wastewater Services**

The subject lands are tributary to the existing 750mm dia. Stittsville Trunk Sewer located on Abbott Street and ultimately the Hazeldean Pumping Station (HPS). There is an existing capped 200 mm dia. sanitary sewer at the southern end of the subject site within the property limits. The capped sewer connects to a 250mm dia. sewer on Bobolink Ridge. The Bobolink sanitary sewer is part of a larger system that eventually connects to the Stittsville Trunk Sewer.

4.2 Wastewater Design

The study area will be serviced by a network of 200mm dia. gravity sewers. The sanitary sewer network was designed in accordance with the wastewater design parameters from ISTB-2018-01 and the Sewer Design Guidelines, summarized in Table 4.1 below.

Design Parameter	Value			
Residential - Single Family	3.4 p/unit			
Residential – Townhome/ Semi	2.7 p/unit			
Residential Townhouse/Back-to-Back	2.1 p/unit			
Residential Apartment (High Density)	1.8 p/unit			
Average Daily Demand	280 L/d/per			
Peaking Factor	Harmon's Peaking Factor, where K=0.8			
Commercial / Institutional Flows	28,000 L/gross ha/day			
Commercial / Institutional Peak Factor	1.5 if contribution >20%, otherwise 1.0			
Light Industrial Flows	35,000 L/gross ha/day			
Industrial Peaking Factor	Per Figure in Appendix 4-B, City of Ottawa Guidelines			
Infiltration and Inflow Allowance	0.33 L/s/gross ha for all areas			
Park Peaking Factor	1.0			
Sanitary sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$			
Minimum Sewer Size	200 mm diameter			
Minimum Manning's 'n'	0.013			
Minimum Depth of Cover	2.5 m from crown of sewer to grade			
Minimum Full Flowing Velocity	0.6 m/s			
Maximum Full Flowing Velocity	3.0 m/s			
Extracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, October 2012,				

Table 4.1: Wastewater Design Criteria

Technical Bulletins, and recent residential subdivisions in the City of Ottawa.

A flow allocation of 2.10 L/s was allocated for 585 Bobolink Ridge land parcel as part of the CRT Lands Phase 1 Design Brief (IBI Group, 2017). The design sheets provided in the 2017 IBI report are presented in *Appendix C*. As noted above, all of the CRT lands, including this site, are tributary to the Hazeldean Pumping Station (HPS). In 2014, the City completed upgrades to increase the capacity of the HPS and accommodate the Fernbank Community. As part of the CRT Phase 1 design brief, sanitary HGLs were

calculated and updated from the numbers presented in the 2009 FCDP MSS. The results presented in in the CRT Phase 1 design brief concluded that sanitary HGL levels within the sanitary system were lower than those previously predicted in the MSS, even with the additional flow. Different loss coefficient used between analysis was cited as the reason for this.

		Population						
Area (Ha.)	Number of Units	Persons per unit	Population	Allocated Demand	Avg Day (L/s)	1/I (L/s)	Peak Factor	Peak Flow (L/s)
Back-to-Back Townhomes	76	2.7	206	280 L/c/d	0.67	0.39	3.51	2.35

 Table 4.2: Wastewater Peak Flow

A wastewater peak flow for the proposed development of 2.35 L/s was calculated based on the parameters presented in **Table 4.1**. The peak flow is 0.25 L/s greater than the allocated flow from the CRT Lands Phase 1 design brief. Based on the sanitary design sheet for the entire CRT development presented in **Appendix C** there is sufficient residual capacity in the receiving sewer system to accommodate the small increase in peak flow.

4.3 Wastewater Servicing Conclusions

The sewers have generally been designed in conformance with all relevant City of Ottawa and MECP Guidelines and Policies, excluding the proposed deviation reducing drops at maintenance holes. Per ISTB-2018-01, the City's current design parameters represent a flow reduction from the outdated standards used within the *MSS*.

5.0 STORMWATER MANAGEMENT

5.1 Existing Stormwater Drainage

The site currently sheet drains to adjacent streets with no specific outlet or catch basins on-site. The undeveloped parcel is relatively flat with an east-west ridge in the center, therefore stormwater currently ponds on site or sheet flows to adjacent properties. There is an existing 825mm dia. storm sewer stubbed and capped at the southern portion of the parcel.

5.2 Stormwater Management Criteria

Stormwater management requirements for the study area have been adopted from the *MSS*, *EMP*, CRT Land Phase 1 design brief, the Fernbank Pond 5 Stormwater Management Facility Report and Design Brief (IBI Group, May 2016) and West Park Pond 6 Stormwater Management Report and Design Brief Report, IBI Group.

The following criteria was considered as part of the stormwater management strategy within the study area and conveyance to the proposed stormwater management Pond 5, among other requirements:

Storm sewers on local roads are designed to provide a minimum 5-year level of service per the City's latest Technical Bulletin PIEDTB-2016-01.

Under full flow conditions, the allowable velocity in storm sewers is to be no less than 0.80 m/s and no greater than 6.0 m/s.

For the 100-year storm and for local and collector roads, the maximum depth of water (static and/or dynamic) on streets, rear yards, public space and parking areas shall not exceed 0.35 m at the gutter. For arterial roads, no barrier curb overtopping is permitted.

The major system is designed with sufficient capacity to allow the excess runoff of a 100-year storm to be conveyed within the public ROW or adjacent to the right-of-way provided that the water level must not touch any part of the building envelope, and must maintain 15 cm vertical clearance between spill elevation on the street and the ground elevation at the nearest building envelope.

5.3 Stormwater Management Strategy

Stormwater runoff will be directed to a series of catch basins located at street sags that will collect the runoff and discharge to the minor system. Underground storage tanks will be utilized to store excess runoff generated by larger storm events in order to respect the allocated release rate for the site set out by the Pond's 5 and 6 design and CRT Phase 1 lands design brief. The underground storage tank flow restriction controls (Inlet Control Devices) will be located upstream of connections to the local storm sewer system, to maintain hydraulic separation from storm service connections to the proposed homes.

5.3.1 Minor System

The study area is to be serviced by a storm sewer system designed in accordance with the amendment to the storm sewer and stormwater management elements of *PIETB-2016-01*. As described in **Section 5.2**, the minor storm system is proposed to be designed for a minimum of the 5-year event as the site is comprised of local streets.

The proposed gravity storm sewer network ranges from 250 mm to 450 mm and generally follows the local road network and dedicated servicing easements, as shown in **Drawings 4-10**. The proposed sewers collect stormwater runoff from the 585 Bobolink Ridge development and directs stormwater to two separate outlets. There is an existing 675mm dia. storm sewer located at the southern edge of the property within the property limit boundaries. This storm sewer is the dedicated outlet for the southern portion of the site, roughly 0.65ha. The capped stub is connected to a storm sewer system on Bobolink Ridge that is tributary to Pond 5. The minor system release rate for this outlet is 133 L/s as per the design sheets, drainage plans and modelling files extracted from the CRT Phase 1 Design Brief are presented in **Appendix D**.

The northern portion of the site, roughly 0.56 ha. will outlet to a 450mm dia. sewer at the northeast end of the land parcel. The 450mm dia. outlet was designed as part of the Block 324 design from the neighboring property. The storm system is tributary to Pond 6. The minor system release rate for this outlet is 112.87 L/s as per the design sheets and modelling files extracted from the CRT Phase 1 BLK 324 Design Brief presented in *Appendix D.*

Table 5.1 summarizes the standards that have been employed in the detailed design of the storm sewer network, meeting the criteria described in **Section 5.2**. The storm sewer design uses inlet control devices (ICDs) to ensure that storm flows entering the minor system are limited to the flows described above.

Design Parameter	Value
Minor System Design Return Period	2-Year (Local Streets), 5-Year (Collector Streets), 10-Year
	(Arterial Streets) – PIEDTB-2016-01
Major System Design Return Period	100-Year
Intensity Duration Frequency Curve	. A
(IDF)	$i = \frac{1}{(1 - p)C}$
2-year storm event:	$(t_c + B)^2$
A = 723.951, B = 6.199, C = 0.810	
5-year storm event:	
A = 998.071, B = 6.053, C = 0.814	
Minimum Time of Concentration	10 minutes
Rational Method	Q = CiA
Runoff coefficient for paved and roof	0.90
areas	
Runoff coefficient for landscaped areas	0.20

Table 5.1: Storm Sewer Design Criteria

Storm sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$			
Minimum Sewer Size	250 mm diameter			
Minimum Manning's 'n'	0.013			
Service Lateral Size	100 mm dia PVC SDR 28 with a minimum slope of 1.0%.			
Minimum Depth of Cover	1.7m from crown of sewer to grade (based on recent residential subdivisions in City of Ottawa)			
Minimum Full Flowing Velocity	0.8 m/s			
Maximum Full Flowing Velocity	6.0 m/s			
Clearance from 100-Year Hydraulic	0.30 m			
Grade Line to Building Opening				
Max. Allowable Flow Depth on	35 cm above gutter (PIEDTB-2016-01)			
Municipal Roads				
Extracted from City of Ottawa Sewer Design Guidelines, October 2012, as amended by PIEDTB-2016-01, and based on recently approved residential subdivision designs in City of Ottawa.				

Rational method design sheets and runoff coefficient calculations are presented in *Appendix D.*

5.3.2 Quality Control

The storm outlets are tributary to two separate ponds, Pond 5 and Pond 6. Both of these facilities provide end of pipe quality control, are constructed and are operational. As such, no quality control is provided on-site.

5.3.3 Quantity Control

Minor system allowable release rates were established for both outlets based the existing reports as described in **section 5.3.1**. Excess runoff during larger storm events will be stored in underground tanks where the flow will be directed to the minor system at a controlled rate.

Stormtech® Chambers are being proposed to accomplish the required storage volumes. Street drainage will be directed towards catch basins that outlet to the storage chambers. The chambers will be connected upstream of maintenance holes that will be equipped with ICDs which will restrict the flow to the allowable release rates established in section 5.3.1. The storm sewers on the local roads are designed to convey any flow generated from the foundation drains. As the storm sewer system is not upstream of any inlet control devices, foundation drains will remain hydraulically disconnected from the site stormwater quantity controls, and basements will be protected should the tank outlets become obstructed or plugged.

5.4 Stormwater Management Calculations

The modified rational method (MRM) was used to size the storage tanks and ensure that allowable release rates are respected. Any uncontrolled flow was subtracted from the total controlled flow rate to ensure the sum of the controlled and uncontrolled peak runoffs respect the allowable release rates. As foundation drains are connected to the storm

sewers downstream of any flow controls, foundation drainage was also subtracted from the total allowable release rates.

Control Area	Area	5-year Release Rate	5-year Required Storage	100-Year Release Rate	100-Year Required Storage	100-Year Available Storage
	(Ha.)	(L/s)	(m³)	(L/s)	(m³)	(m³)
Foundation Drainage	N/A	20.7	0.0	20.7	0.0	0.0
Unattenuated Areas	0.08	16.4	0.0	35.2	0.0	0.0
Attenuated Areas	0.62	61.6	57.3	75.3	176.4	186.6
Total	0.70	98.7	57.3	131.2	176.4	186.6

Table 5.2: Storage Requirements Bobolink Ridge Outlet (south)

As indicated in **Table 5.2** the allowable release rate of 133 L/s prescribed under the CRT Phase 1 Design Brief has been respected. In order to achieve the allowable release a total storage volume of 176.4m³ will be required. Two Stormtech® chambers are being proposed in to achieve this which have a storage 186.6 m³ storage capacity as shown in **Drawings 4 and 5**.

As indicated in **Table 5.3** (below) the allowable release rate of 112.87 L/s prescribed under the CRT Phase 1 BLK 324 Design Brief has been respected. In order to achieve the allowable release a total storage volume of 93.5m³ will be required. A Stormtech ® chamber with a 94.6m³ capacity being proposed in to achieve this storage volume as shown in **Drawings 4 and 5**.

The Modified Rational Method was originally intended to be used for above grade storage where the change in head applied through the orifice equation had little variation. As the release rates fluctuate from maximum peak flow for underground storage due to the varying head, the variation in head has been accounted for in the storage volume calculations. Rather than using maximum head to calculate the release rates, the midpoint of the storage tanks was used as the design head in the orifice equation to size the

DAVID SCHAEFFER ENGINEERING LTD.

tanks. Maximum release rates were verified (maximum head) to ensure the maximum allowable was respected. Complete stormwater management calculations are presented in *Appendix D*.

Control Area	Area	5-year Release Rate	5-year Required Storage	100-Year Release Rate	100-Year Required Storage	100-Year Available Storage
	(Ha.)	(L/s)	(m³)	(L/s)	(m³)	(m³)
Foundation Drainage	N/A	13.5	0.0	13.5	0.0	0.0
Unattenuated Areas		3.6	0.0	7.7	0.0	0.0
Attenuated Areas		65.8	26.9	90.9	93.5	94.6
Total		82.9	26.9	112.1	93.5	94.6

Table 5.3: Storage Requirements for Block 324 Outlet (north)

Both the CRT Phase 1 BLK 324 Design report and the CRT Phase 1, Fernbank Community Servicing Brief confirm that both receiving outlets are free-flowing under the 1:100year storms. Underground storage tanks and inlet control devices are proposed to control the flow to the allowable release rate. As the controlled release rate is less than the 5-year flow used to size the minor system, the local sewer network is expected to be free flowing under the 1:100 year storm event.

5.5 Grading & Drainage

The following additional grading criteria and guidelines have been applied to detailed design, per City of Ottawa *Sewer Design Guidelines*:

- Driveway slopes will have a maximum slope of 6%;
- Slope in grassed areas will be between 2% and 5%;
- Grades in excess of 7% will require terracing to a maximum of a 3:1 slope;
- Swales are to be 0.15m deep with 3:1 side slopes unless otherwise indicated on the drawings; and,

Detailed grading design is presented in *Drawing* 12.

5.6 Stormwater Servicing Conclusions

A network of local gravity sewers is proposed within the study area to capture stormwater and convey the flows to the proposed trunk storm sewer network. The storm sewers have been sized by the rational method and inlet control devices and orifices are used to maintain the allowable release to the existing minor system. Quality control will be achieved via existing stormwater management facilities.

6.0 UTILITIES

Utility services were consulted for the development of the cross-sections within the development.

Hydro Ottawa is reported to have infrastructure located on Robert Grant Road that will be utilized to service the units. Hydro Ottawa has indicated that a 3-phase transformer will be required for the site. The transformer will be located within an easement east of TH units 21 & 30.

Enbridge Gas is reported to have services up to near the subject site. Connections will be made to existing infrastructure to service the units.

Bell and Rogers are reported to have services up to near the subject site. Connections will be made to existing infrastructure to service the units.

DSEL has begun coordination with the utility services to confirm the servicing plans and begin detailed utility design for the study area.

7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. The extent of erosion losses is exaggerated where vegetation has been removed during construction and the top layer of soil becomes agitated, and where increased stormwater runoff is directed to natural areas.

Prior to earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

The erosion and sediment controls will include (but are not limited to):

Minimize the area to be cleared and grubbed.

Plan construction at proper time to avoid flooding.

Provide sediment traps and basins during dewatering.

Silt fence to be installed around the perimeter of the site and to be cleaned and maintained throughout construction. Silt fence to remain in place until the working areas have been stabilized and re-vegetated. See **Drawings 17 & 18**.

A mud mat to be installed at the construction access in order to prevent mud tracking onto adjacent roads.

Catch basins to have inserts installed under the grate during construction to protect from silt entering the storm sewer system.

Extent of exposed soils to be limited at any given time, and exposed areas will be revegetated as soon as possible.

Exposed slopes to be protected with plastic or synthetic mulches.

Stockpiles of cleared materials as well as equipment fueling and maintenance areas to be located away from swales, watercourses, and other conveyance routes.

Seepage barriers such as silt fencing, straw bale check dams and other sediment and erosion control measures to be installed in any temporary drainage stormwater conveyance channels and around disturbed areas during construction and stockpiles of fine material.

Filter inserts to remain on open surface structures such as manholes and catch basins until these structures are commissioned and put into use, streets are asphalted and curbed, and the surrounding landscape is stabilized.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- Verification that water is not flowing under silt barriers.
- Clean and change inserts at catch basins.

A qualified Inspector will give recommendations related to the mitigation measures that are being implemented and maintained. Bulkhead barriers, filter clothes on open surface structures, silt fencing, and other ES&C measures may require removal of sediment and repairs. The City of Ottawa's Protocol for Wildlife Protection is to be followed during construction.

After build-out of the development, applicable sewers will be inspected and cleaned. All sediment and construction fencing should be removed following construction, providing there is no exposed soil or other potential sources of sedimentation.

8.0 CONCLUSIONS AND RECOMMENDATIONS

This Design Brief has been prepared on behalf of Tamarack Homes.

This Design Brief is to be read in conjunction with the first submission of the 585 Bobolink Drive detailed engineering drawing package, dated January 13th, 2022.

The key features of the detailed design of the proposed development are as follows:

- Two connections will be made to the existing watermains located on Putney Drive and Bobolink Ridge. The proposed watermain network conforms to all relevant City and MECP Water Supply Guidelines. The hydraulic analysis of the proposed watermain network, completed within the GeoAdvice Report, concludes that all required domestic and fire flows can be met throughout the study area upon full buildout of the development. Anticipated fire flow requirements can be met throughout the development lands according to City Guidelines and ISTB-2018-02.
- Wastewater service will be provided through gravity sewers that have generally been designed in conformance with all relevant City of Ottawa and MECP Guidelines and Policies. A series of gravity sewers will collect wastewater to an existing service stub located on Bobolink Drive.
- Stormwater management will be achieved using a series of local storm sewers to collect foundation drains and retention tanks that collect surface water. Two designated outlets on Bobolink Ridge and to adjacent Block 324 will be utilized as downstream receivers and established release rates for the system will be respected.
- The infrastructure identified in this Design Brief is expected to require approval from the City of Ottawa, Ontario Ministry of the Environment, Conservation and Parks prior to construction.

Prepared by, David Schaeffer Engineering Ltd.

David Schaeffer Engineering Ltd.

Per: Alexandre Tourigny, P.Eng.

Per: Matt Wingate, P.Eng

© DSEL

DAVID SCHAEFFER ENGINEERING LTD.

APPENDIX A

Legal Plan and Site Plan

© Annis, O'Sullivan, Vollebekk Ltd, 2021. "THIS PLAN IS PROTECTED BY COPYRIGHT"

A Concourse Gate, Suite 500 Nepean, Ont. K2E 7S6 Phone: (613) 727-0850 / Fax: (613) 727-107 Email: Nepean@aovltd.com Land Surveyors Job No. 22111-21 Tamarack Bik 343 4M-1619 SP D5

ANNIS, O'SULLIVAN, VOLLEBEKK LTD. 14 Concourse Gate, Suite 500 Nepean, Ont. K2E 7S6 Phone: (613) 727-0850 / Fax: (613) 727-1079 Email: Nepean@aovltd.com

PLAN AM- 1617 CERTIFY THAT THIS PLAN CERTIFY THAT THIS PLAN CERTIFY THAT THIS PLAN I CERTIFY THAT THIS PLAN I REDISTRED IN THE LAND ERGISTRY OFFICE FOR THE LAND THES DWISION OF OTTAWA-CARLETON NO. 4 AT 191-23 LOCLOCK ON THE 12, DAY OF MARCH. 2004 AD ENTERED IN THE REQUIRED IN THE RECORDERS ORGANY OFFICE FOR THE FEOURED ON THE 2, DAY OF MARCH. 2004 AT 191-23 LOCLOCK ON THE 12, DAY OF MARCH. 2004 AD ENTERED IN THE REQUIRED IN THE RECOURSENS ARE REGISTERED AS AT 191-23 LOCLOCK ON THE 12, DAY OF MARCH. 2004 AD THE RECOURSENS ARE REGISTERED AS AD THE RECOURSENS ARE REGISTERED AS AD THE RECOURSENS ARE REGISTERED AS AD THE RECOURSENS AND ADDOLOGING AND ADDOLOGING ADD	Metric DISTRUES AND COORDINATES SHOWN ON THIS PLAN DATE IN METRIES AND COORDINATES SHOWN ON THIS PLAN DATE IN METRIES AND COORDINATES SHOWN ON THIS PLAN DECEMPTRY THAT CERTIFICATE CERTIFICATE CERTIFICATE CERTIFICATE CERTIFICATE CERTIFICATE CERTIFICATE CERTIFICATE Date Date DATE DATE CONCELLATE CONCERTED TO FEET BY DATE ROUND BY CASH OF CONCERTED TO FEET BY DATE TO THE CONCERTED TO THE CONCERTED TO FEET BY DATE TO THE CONCERTED TO THE CONCERTED TO FEET BY DATE TO THE CONCERTED TO THE CONCERTED TO FEET BY DATE TO THE CONCERTED TO THE CONCERTED TO FEET BY DATE TO THE CONCERTED TO THE CONCER	In the structure of the st	Distances shown on this plan are ground distances and can be converted to grid distances by multiplying by the control head scale actor of 0.896913. Bearings are grid, derived from Can-Net 3.0 Real Time Network CPS observations on reference points A and 8, shown hereon, having a bearing of 14,75500°E and are reterenced to Specified Control Points 01919750706 and 01919770923. MTM Zone 9 (76°30' West Longitude) NLD-83 (original). Coordinates are derived from Can-Net 3.0 Real Time Network CPS observations referenced to Specified Control Points 01919750705 and 0191975075 and 0191975075075 and 0100750756 and 0100750756 and 010750756 and 010750756 and 010750756 and 010750756 and 01818500 a
PART IL CITORS SECTION S1 OF THE PLANNING ACT THE M DAY THE CITORS OTTAM. THE M DAY OF CITARA THE M DAY OF CITA	12200 Sacol 12200 Sacol	Arr CURVE SCHEDULE 27700 12.9 N1144000W 7 27700 12.9 N114400W 7 27700 12.9 N175710W 7 27700 12.9 N174400W 7 27700 12.9 N175710W 7 27700 13.9 N175710W 27700 13.9 11.9 N175710W 27700 13.9 N175710W N15560W 27700 13.9 11.9 N175710W	64 20000 1041 1041 M165720W 51 20000 1055 1056 N1055700W 52 20000 781 781 N812570W 54 182.00 1336 1336 N1755720E 56 182.00 1336 1336 N1755720E 56 182.00 1336 1336 N175570E 56 182.00 1336 1336 N175570E 56 182.00 1336 1336 N175570E 56 182.00 1236 1336 N175570E 57 182.00 1236 1336 N175570E 56 182.00 1236 1236 N17507E 57 182.00 1336 1346 N17507E 244 150.00 538 536 N177507E 256 188.00 1038 1438 N175607E 257 386.00 1036 1336 N177507E 256 386.00

Ī · ·

Pre-Application Consultation Meeting (Via Teams) Site Plan Control Application: 585 Bobolink Ridge

April 13, 2021, 2:30:pm

Attendees

Kathy Rygus - Development Review Planner, City of Ottawa Eric Surprenant - Project Manager (Infrastructure), City of Ottawa Randolph Wang - Urban Design Planner, City of Ottawa Peter Hume – HP Urban Michelle Taggart - Taggart

Applicant's overview of proposal

- The site is a 1.19-hectare parcel (Block 243 on Plan 4M-1619) located at 585 Bobolink Ridge in CRT Developments Inc. Phase 1 Westwood subdivision. The property is bounded by Putney Crescent on the west, Bobolink Ridge on the south, Robert Grant Avenue on the east and a public pathway block on the north. The site is currently vacant.
- The zoning of the site is R4Z, permitting back-to-back townhouses, stacked units and low rise apartments.
- The proposed site plan is for 8 blocks of back-to-back townhouses on private streets, with 72 units total. Each unit would have a garage and driveway; no visitor parking is required or provided. One access is proposed from Putney Crescent.

Process

- The application type for the proposed development is Site Plan Control, Complex, Manager Approval. The application is subject to public notification through the Devapps website and an onsite sign. The fee is \$59,338.80 with additional engineering fees and a \$1,040 Conservation Authority fee. Information on process, timeline and fees for the different applications can be found <u>here.</u>
- 2. Fees are not required to be paid at the time of application submission. An email with instructions for payment of fees will be sent by the assigned planner once a file number has been assigned.
- 3. Information on process, timeline and fees can be found here.
- 4. The application should be submitted digitally with PDFs of all documents (attached in the e-mail or link to dropbox provided). Please send application to <u>planningcirculations@ottawa.ca</u>. Please cc the Senior Planner in Development Review West, Wendy Tse: <u>Wendy.tse@ottawa.ca</u>
- 5. A list of required plans and studies is provided.

Planning & Urban Design

Please accept these comments on behalf of PRUD for the proposed Site Plan Control.

- 1. A Design Brief is required as part of the submission. The Terms of Reference of the Design Brief is attached for convenience.
- 2. Robert Grant is an Arterial Mainstreet and the site is within a Design Priority Area. However, it is exempted from UDRP review due to the proposed building heights.
- 3. With respect to the site plan presented at the preconsultation meeting:
 - a. The intent to limit vehicular access is understood;
 - b. However, the resulting site plan shows roads throughout the entire site with "double street" conditions along Robert Grant, Bobolink, Putney, and the multi-use pathway.
- 4. Please study alternative site plan options.
 - a. Such options should aim to reduce the amount of roadway, increase landscaping and provide building frontages on public street.
 - b. As an alternative to the long "double streets", please consider short "window street".
 - c. When studying the options please take into consideration the CRT proposal to the north to ensure some coordination.
 - d. For reference, the attached PDF shows a possible option that mimics some design elements of the CRT proposal. Such an option is not without its own challenges, for example, private driveways on Putney.
 - e. The design should also include a pedestrian entrance on Robert Grant to allow for easy pedestrian movement between the future BRT station and the site.
 - f. The design should provide continuous tree canopies along all public streets as well as the multi-use pathway to the north. Coordination of tree planting along the multi-use pathway is required between this site and the CRT site.
 - g. Visitor parking should be located internal to the site.

Please contact Randolph Wang for questions: <u>Randolph.wang@ottawa.ca</u>

Infrastructure

- 1. The easterly lot line is abutting Robert Grant Avenue. Tie-in of grading is important and noise walls or retaining walls are to be avoided.
- 2. The site is zoned to accommodate the type of development proposed, so we do not anticipate servicing constraints.
- 3. The servicing connections (water and sewers) are on Bobolink Ridge. The servicing proposal must abide by the sanitary and storm drainage plan for the subdivision. Even if multiple access points from Putney are proposed in the Urban Design suggestions, the sewer connections should still be provided from a single connection point.

PC2021-0126

- 4. As it relates to stormwater management; there are no anticipated issues however there will be a need to demonstrate that imperviousness ratios are in accordance with Master Servicing study requirements etc. and stormwater management on site is provided as required...
- 5. A request for boundary conditions will need to be submitted.
- 6. As a residential site plan block, there will be requirements to demonstrate Fire Flow, via FUS methodology with all required measures implemented for fire area compartmentalization. At minimum there will be a need for water-loss leak detection chamber at property line and potential for fire-flow bypass metre at lot line is anticipated with sub-metering at units.
- 7. The Servicing Study Guidelines for Development Applications are available at the following address: <u>http://ottawa.ca/en/development-application-review-process-</u><u>O/servicing-study-guidelines-development-applications</u>
- 8. Servicing and site works shall be in accordance with the following documents:
- Ottawa Sewer Design Guidelines (October 2012)
- Ottawa Design Guidelines Water Distribution (2010)
- Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007)
- City of Ottawa Slope Stability Guidelines for Development Applications (revised 2012)
- City of Ottawa Environmental Noise Control Guidelines (January, 2016)
- City of Ottawa Accessibility Design Standards (2012)
- Ottawa Standard Tender Documents (latest version)
- Ontario Provincial Standards for Roads & Public Works (2013)
- Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at <u>InformationCentre@ottawa.ca</u> or by phone at 613- 580-2424 x.44455.

Should you have any questions or require additional information, please contact Eric Surprenant by e-mail: <u>Eric.surprenant@ottawa.ca</u>

Transportation/Noise

- 1. No TIA is required (less than 90 units)
- 2. A noise impact assessment is required

Feel free to contact Mike Giampa for follow-up questions: Mike.giampa@ottawa.ca

Tree Conservation

- 1. A Tree Conservation Report (TCR) is required if trees are present on site. If there are no private or city owned trees on/near the site, a TCR is not required and an email stating no trees are present will be sufficient.
- 2. Any removal of privately-owned trees 10 cm or larger in diameter requires a tree permit issued under the Urban Tree Conservation Bylaw.
- 3. The TCR must list all trees on-site by species, diameter and health condition. Note that TCR must address all trees with a critical root zone that extends into the developable area.
- 4. If trees are to be removed, the TCR must clearly show where they are and document the reason they cannot be retained.
- 5. All retained trees must also be shown and all retained trees within the area impacted by the development process must be protected as per the City guidelines listed on Ottawa.ca.
- 6. The City encourages the retention of healthy trees wherever possible.
- 7. The removal of City-owned trees will require the permission of Forestry Services who will also review the submitted TCR.

Please contact Mark Richardson <u>Mark.richardson@ottawa.ca</u> for questions.

Please refer to the links to "<u>Guide to preparing studies and plans</u>" and <u>fees</u> for further information. Additional information is available related to <u>building permits</u>, <u>development</u> <u>charges</u>, and the <u>Accessibility Design Standards</u>. Be aware that other fees and permits may be required, outside of the development review process. You may obtain background drawings by contacting <u>informationcentre@ottawa.ca</u>

These preconsultation comments are valid for one year. If you submit a development application after this time, you may be required to meet for another preconsultation meeting and/or the submission requirements may change. You are as well encouraged to contact us for a follow-up meeting if the plan/concept will be further refined.

Feel free to contact me at <u>Kathy.rygus@ottawa.ca</u> if you have any questions.

Kathy Rypes

Kathy Rygus Planner, Development Review West

APPENDIX B

Hydraulic Network Analysis

Hydraulic Capacity and Modeling Analysis Bobolink Ridge

Final Report

Prepared for: David Schaeffer Engineering Ltd. 120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

Prepared by: GeoAdvice Engineering Inc. Unit 203, 2502 St. John's Street Port Moody, BC V3H 2B4

Submission Date: January 11, 2022

Contact: Mr. Werner de Schaetzen, Ph.D., P.Eng. **Project:** 2021-110-DSE

Copyright © 2022 GeoAdvice Engineering Inc.

Project ID: 2021-110-DSE Practice to Permit Number: 1000623

Document History and Version Control

Revision No.	Date	Document Description	Revised By	Reviewed By
RO	December 22, 2021	Draft	Ben Loewen	Werner de Schaetzen
R1	January 11, 2022	Final	Ben Loewen	Werner de Schaetzen

Confidentiality and Copyright

This document was prepared by GeoAdvice Engineering Inc. for David Schaeffer Engineering Ltd. The material in this document reflects the best judgment of GeoAdvice in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. GeoAdvice accepts no responsibility for damages, if any, suffered by any third party as a result of decision made or actions based on this document. Information in this document is to be considered the intellectual property of GeoAdvice Engineering Inc. in accordance with Canadian copyright law.

Statement of Qualifications and Limitations

This document represents GeoAdvice Engineering Inc. best professional judgment based on the information available at the time of its completion and as appropriate for the project scope of work. Services performed in developing the content of this document have been conducted in a manner consistent with that level and skill ordinarily exercised by a member of the engineering profession currently practicing under similar conditions. No warranty, express or implied is made.

Contents

1		Introduction	4
2		Modeling Considerations	6
	2.1	Water Main Configuration	6
	2.2	Elevations	6
	2.3	Consumer Demands	6
	2.4	Fire Flow Demand	7
	2.5	Boundary Conditions	7
3		Hydraulic Capacity Design Criteria	9
	3.1	Pipe Characteristics	9
	3.2	Pressure Requirements	9
4		Hydraulic Capacity Analysis1	0
	4.1	Development Pressure Analysis1	0
	4.2	Development Fire Flow Analysis1	0
5		Other Servicing Considerations	2
	5.1	Water Supply Security1	2
	5.2	Valves1	2
	5.3	Hydrants1	3
	5.4	Water Quality	3
6		Conclusions 1	4
۸r	nor	ndix A Domestic Water Demand Calculations and Allocation	
Δr	ner	ndix A Bonnestic Water Bernand Calculations and Allocation	•
Δr	ner	ndix C Boundary Conditions	•
Ωr	ner	ndix D Pine and Junction Model Innuts	•
Δr	ner	ndix E ADD and PHD Model Results	•
~r ^r	nor	adiy E MDD+EE Model Results	•
~	'hei		•

1 Introduction

GeoAdvice Engineering Inc. ("GeoAdvice") was retained by David Schaeffer Engineering Ltd. ("DSEL") to size the proposed water main network for Bobolink Ridge development ("Development") in the City of Ottawa, ON ("City").

The development will have two (2) connections to the City water distribution system:

- Connection 1: Bobolink Ridge
- Connection 2: Putney Crescent

The development site is shown in **Figure 1.1** on the following page, with the final recommended pipe diameters.

This report describes the assumptions and results of the hydraulic modeling and capacity analysis using InfoWater (Innovyze), a GIS water distribution system modeling and management software application.

The results presented in this report are based on the analysis of steady state simulations. The predicted available fire flows, as calculated by the hydraulic model, represent the flow available in the water main while maintaining a residual pressure of 20 psi at the hydrant. No extended period simulations were completed in this analysis to assess the water quality or to assess the hydraulic impact on storage and pumping.

2 Modeling Considerations

2.1 Water Main Configuration

The water main network was modeled based on drawings prepared by DSEL and provided to GeoAdvice on November 16th, 2021.

2.2 Elevations

Elevations of the modeled junctions were assigned according to a preliminary site grading plan prepared by DSEL and provided to GeoAdvice on December 21st, 2021.

2.3 Consumer Demands

The proposed residential demands for the development were based on a demand rate of 280 L/cap/d as per the City of Ottawa technical bulletin ISTB 2018-01. Demand factors used for this analysis were taken according to the Ministry of Environment (MOE) Design Guidelines *Table 3-3 Peaking Factors for Drinking-Water Systems Serving Fewer than 500 People*. Population densities were assigned according to *Table 4.1 Per Unit Populations* from the City of Ottawa Design Guidelines. A 10% buffer was applied to population estimates to account for any minor changes that may occur during the detailed design of the subdivision. A summary of these tables highlighting relevant data for this development is shown in **Table 2.1**.

Demand Type	Amount	Units			
Average Day Demand					
Residential	280	L/c/d			
Maximum Daily Demand					
Residential	4.9 x avg. day	L/c/d			
Peak Hour Demand					
Residential	7.4 x avg. day	L/c/d			
Minimum Hour Demand					
Residential	0.1 x avg. day	L/c/d			

Table 2.1: City of Ottawa Demand Factors

Table 2.2 summarizes the water demand calculations for development.

							0-
Dwelling Type	Number of Units	Persons Per Unit*	Population **	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)	Minimum Hour Demand (L/s)
Back-to-Back Townhouse	78	2.7	280	0.75	3.68	5.56	0.08

Table 2.2: Development Population and Demand Calculations – Bobolink Ridge

*City of Ottawa Design Guidelines.

**10% buffer was applied to population estimates to account for any minor changes that may occur during the detailed design of the subdivision.

Demands were uniformly distributed to the model nodes. Detailed calculations of demands are shown in **Appendix A**.

2.4 Fire Flow Demand

Fire flow calculations were completed in accordance with the Fire Underwriters Survey's (FUS) Water Supply for Public Fire Protection Guideline (1999) and City of Ottawa Technical Bulletin ISTB-2018-02. The FUS calculations for the back-to-back townhouse blocks yielded the following required fire flows:

- 10-unit back-to-back townhouse: 16,000 L/min (267 L/s), no firewall accounted for
- 8-unit back-to-back townhouse: 12,000 L/min (200 L/s), no firewall accounted for

Using the more conservative flow, the water network was assessed using a fire flow of 267 L/s.

Fire flow simulations were completed at each model node representing a proposed hydrant location. Hydrant locations were provided by DSEL provided to GeoAdvice on December 17th, 2021.

Detailed FUS fire flow calculations as well as the illustrated spatial allocation of the required fire flows are shown in **Appendix B**.

2.5 Boundary Conditions

The boundary conditions were provided by the City of Ottawa in the form of Hydraulic Grade Line (HGL) at the following locations:

- Connection 1: Bobolink Ridge
- Connection 2: Putney Crescent

The above connection points are illustrated in **Figure 1.1**.

Boundary conditions were provided for Peak Hour (PHD), Maximum Day plus Fire (MDD+FF) and Average Day (ADD) demand conditions. The City boundary conditions were provided to GeoAdvice on December 14, 2021 and can be found in **Appendix C**.

Table 2.3 summarizes the City of Ottawa boundary conditions used to size the water network.

Condition	Connection 1 HGL (m)	Connection 2 HGL (m)
Average Day Demand	161.2	161.2
Peak Hour (min. pressure)	156.4	156.4
Max Day + Fire Flow (167 L/s)	153.7	146.5
Max Day + Fire Flow (267 L/s)*	148.9	131.5
Max Day + Fire Flow (283 L/s)	148.1	129.1

Table 2.3: Boundary Conditions

* Interpolated values

3 Hydraulic Capacity Design Criteria

3.1 Pipe Characteristics

Pipe characteristics of internal diameter (ID) and Hazen-Williams C factors were assigned in the model according to the City of Ottawa Design Guidelines for PVC water main material. Pipe characteristics used for the development are outlined in **Table 3.1** below.

Nominal Diameter (mm)	ID PVC (mm)	Hazen Williams C-Factor (/)
150	155	100
200	204	110
250	250	110
300	297	120
400	400	120

Table 3.1: Model Pipe Characteristics

3.2 Pressure Requirements

As outlined in the City of Ottawa Design Guidelines, the generally accepted best practice is to design new water distribution systems to operate between 350 kPa (50 psi) and 480 kPa (70 psi). The maximum pressure at any point in the distribution system in occupied areas outside of the public right-of-way shall not exceed 552 kPa (80 psi). Pressure requirements are outlined in **Table 3.2**.

Table 3.2: Pressure Requirements

Demand Condition	Minimum	Pressure	Maximum Pressure	
	(kPa)	(psi)	(kPa)	(psi)
Normal Operating Pressure (maximum daily flow)	350	50	480	70
Peak Hour Demand (minimum allowable pressure)	276	40	-	-
Maximum Fixture Pressure (Ontario Building Code)	-	-	552	80
Maximum Distribution Pressure (minimum hour check)	-	-	552	80
Maximum Day Plus Fire	140	20	-	-

4 Hydraulic Capacity Analysis

The proposed water mains within the development were sized to the minimum diameter which would satisfy the greater of maximum day plus fire and peak hour demand. Modeling was carried out for average day, peak hour and maximum day plus fire flow using InfoWater.

Detailed pipe and junction model input data can be found in **Appendix D**.

4.1 Development Pressure Analysis

The modeling results indicate that the development can be adequately serviced by the proposed water main layout shown in **Figure 1.1**. Modeled service pressures for the development are summarized in **Table 4.1** below.

Table 4.1: Summary of Available Service Pressures

Average Day Demand	Peak Hour Demand
Maximum Pressure	Minimum Pressure
75 psi (520 kPa)	67 psi (464 kPa)

As outlined in the City of Ottawa Design Guidelines, the generally accepted best practice is to design new water distribution systems to operate between 350 kPa (50 psi) and 480 kPa (70 psi). The maximum pressure at any point in the distribution system in occupied areas outside of the public right-of-way shall not exceed 552 kPa (80 psi).

Detailed pipe and junction result tables and maps can be found in **Appendix E**.

4.2 Development Fire Flow Analysis

Summaries of the minimum available fire flow in the development is shown in Table 4.2.

Table 4.2: Summary of Minimum Available Fire Flows

Required Fire Flow	Minimum Available Flow*	Junction ID
267 L/s	292 L/s	J-13

As shown in **Table 4.2**, the fire flow requirements can be met at all hydrant junctions within the development.

Summaries of the residual pressures in the development are shown in **Table 4.3**. The minimum allowable pressure under fire flow conditions is 140 kPa (20 psi) at the location of the fire.

Table 4.5. Summary of the Residual (Results (MDD + 11)					
Maximum Residual	Average Residual	Minimum Residual			
Pressure	Pressure	Pressure			
27 psi (189 kPa)	25 psi (172 kPa)	23 psi (159 kPa)			

Table 4.3: Summary of the Residual Pressures (MDD + FF)

As shown in **Table 4.3**, there is sufficient residual pressure at all the hydrant junctions within the development.

Detailed fire flow results and figures illustrating the fire flow results can be found in **Appendix F**.

5 Other Servicing Considerations

5.1 Water Supply Security

The City of Ottawa Design Guidelines allow single feed systems for developments up to a total average day demand of 50 m³/day and require two (2) feeds if the development exceeds 50 m³/day for supply security, according to Technical Bulletin ISDTB-2018-02.

The Bobolink Ridge development services a total average day demand of 65 m^3 /day; as such, two (2) feeds are required. Two (2) feeds to the development from Bobolink Ridge and Putney Crescent were modeled as part of the analysis.

5.2 Valves

No comment has been made in this report with respect to exact placement of isolation valves within the distribution network for the development other than to summarize the City of Ottawa Design Guidelines for number, location, and spacing of isolation valves:

- Tee intersection two (2) valves
- Cross intersection three (3) valves
- Valves shall be located 2 m away from the intersection
- 300 m spacing for 150 mm to 400 mm diameter valves
- Gate valves for 100 mm to 300 mm diameter mains
- Butterfly valves for 400 mm and larger diameter mains

Drain valves are not strictly required under the City of Ottawa Design Guidelines for water mains under 600 mm in diameter. The Guidelines indicate that "small diameter water mains shall be drained through hydrant via pumping if needed."

Air valves are not strictly required under the City of Ottawa Design Guidelines for water mains up to and including 400 mm in diameter. The Guidelines indicate that air removal "can be accomplished by the strategic positioning of hydrant at the high points to remove the air or by installing or utilizing available 50 mm chlorination nozzles in 300 mm and 400 mm chambers."

The detailed engineering drawings for the development are expected to identify valves in accordance with the requirements noted above.

5.3 Hydrants

No additional comment has been made in this report with respect to exact placement of hydrants within the distribution network for the development other than to summarize the City of Ottawa Design Guidelines for maximum hydrant spacing:

- 125 m for single family unit residential areas on lots where frontage at the street line is 15 m or longer
- 110 m for single family unit residential areas on lots where frontage at the street line is less than 15 m and for residential areas zoned for row housing, doubles or duplexes
- 90 m for institutional, commercial, industrial, apartments and high-density areas

Additionally, based on the FUS document *Water Supply for Public Fire Protection (1999)*, the hydrant coverage areas for the following fire flows are:

• 267 L/s: 9,500 m² (radial coverage of 55 m)

The detailed engineering drawings for the development are expected to identify hydrant locations in accordance with the requirements noted above.

5.4 Water Quality

The turnover rate of the water within the development network, calculated from the connections to the development is about 5 hours (ADD is $65 \text{ m}^3/\text{day}$).

The above rate is based on the volume of the development network and the development average day demand.

6 Conclusions

The hydraulic capacity and modeling analysis of the Bobolink Ridge development yielded the following conclusions:

- The proposed water main network can deliver all domestic flows, with service pressures expected to range between 67 psi (464 kPa) and 75 psi (520 kPa).
- The proposed water main network is able to deliver fire flows at all junctions.

Hydraulic Capacity and Modeling Analysis Bobolink Ridge

Submission

Prepared by:

Benjamintoeuen

Ben Loewen, P.Eng., PMP Hydraulic Modeler / Project Engineer

Approved by: SIONA 0 010 Werner de Schaetzen, Ph.D., P.Eng.

Werner de Schaetzen, Ph.D., P.Eng. Senior Modeling Review / Project Manager

Page | 15

Appendix A Domestic Water Demand Calculations and Allocation

Consumer Water Demands

Residential Demands

	Number of Units	Population*		Average Day Demand			Max Day	Peak Hour	Min Hour
Dwelling Type		Persons per	Population Per Dwelling	(I /a /d)	(1 /d)	(1. (2)	4.9 x Avg. Day	7.4 x Avg. Day	0.1 x Avg. Day
		Unit	Туре	(L/C/U)	(L/d)	(L/S)	(L/s)	(L/s)	(L/s)
Back-to-Back Townhome**	78	2.7	232	280	64,960	0.75	3.68	5.56	0.08
Subtotal	78		232		64,960	0.75	3.68	5.56	0.08

	Max Day	Peak Hour	Min Hour
Total	3.68	5.56	0.08
\$100/ increases and indicates a second from			

*10% increase applied to account for possible future refinements in concept plan, as per DSEL **Peaking factors based on development population <500 capita from the MOE Design Guidelines

Domestic Demand Calculations and Allocation

Bobolink Domestic Demands

Demand Polygon	Junction ID	Dwelling Type	Number of Units	umber of Units Population Average Day Demand Max Day 4.9 x Avg. Day		Average Day Demand		Peak Hour 7.4 x Avg. Day	Min Hour 0.1 x Avg. Day	
					L/c/d	L/d	L/s	(1/3)	(Ľ/3)	(Ľ/3)
	J-01						0.05	0.25	0.37	0.01
	J-02						0.05	0.25	0.37	0.01
	J-03			232	280	64,960	0.05	0.25	0.37	0.01
	J-04						0.05	0.25	0.37	0.01
	J-05		78				0.05	0.25	0.37	0.01
	J-06						0.05	0.25	0.37	0.01
	J-07						0.05	0.25	0.37	0.01
1	J-08	Back-to-Back Townhouse					0.05	0.25	0.37	0.01
	J-09						0.05	0.25	0.37	0.01
	J-10						0.05	0.25	0.37	0.01
	J-11						0.05	0.25	0.37	0.01
	J-12						0.05	0.25	0.37	0.01
	J-13						0.05	0.25	0.37	0.01
	J-14						0.05	0.25	0.37	0.01
	J-15						0.05	0.25	0.37	0.01

Appendix B FUS Fire Flow Calculations and Allocation

FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd. Project: 2021-110-DSE

Development: 585 Bobolink Ridge Zoning: Multi Family Residential

Date: November 19, 2021

Calculations Based on "Water Supply for Public Fire Protection", Fire Underwriters Survey, 1999.

Note: For other back-to-back townhouse blocks, a similar fire flow as calculated below will be used.

10-unit back-to-back townhouse

A. Type of (Constructi	on:	Wood Frame Constru	ction						
B. Ground	Floor Area	:	N/A	m²	Note: The back-	to-back tov	wnhouse d	welling	s are sep	arated
					by less than 3 m	; therefore	e, they mus	t be co	nsidered	as one
C. Number	of Storeys	5:	3		fire area. The co	mbined ar	ea of 10 ur	nits is co	onsidered	d in this
					calculation.					
D. Required	d Fire Flow	<i>ı</i> *:	$F = 220C\sqrt{A}$							
C: Coeffi	cient relate	ed to the type	of construction		C = 1.5					
A: Effect	ive area				A = 1359	m²	(Combine	d area	of 10 uni	ts)
The total f	loor area in r	m ² in the building	being considered				·			
					F = 12,164	L/min		D =	12,000	L/min*
E. Occupan	icy					-			-	-
Occupan	cy content	t hazard	Limited Combustible		<u>-15</u> % of D	-1,800	L/min	E =	10,200	L/min
F. Sprinkle	r Protectio	on								
Automat	ic sprinkle	r protection	None		0 % of E	0	L/min	F =	10,200	L/min
G. Exposure	es									
	Side	Separation Distance	Length-Height Factor Adjacent Structure	r - Constru	uction Type - Adja	cent Struc	ture	I	Exposure	9
	East	3.1 to 10 m	31-60 m-storeys	v	Vood Frame or No	on-Combus	tible		18%	
	South	10.1 to 20 m	61-90 m-storeys	V	Vood Frame or No	on-Combus	tible		14%	
	West	20.1 to 30 m	31-60 m-storeys	V	Vood Frame or No	on-Combus	tible		8%	
	North	10.1 to 20 m	91-120 m-storeys	V	Vood Frame or No	on-Combus	tible	-	15%	_
								Total	55%	_
					% of E	+ 5,610	L/min	G =	15,810	L/min
H. Wood Sh	nake Charg	ge	No		0	L/min		H =	15,810	L/min
For wood	d shingle o	r shake roofs								
				Total Fire	e Flow Required	16,000	L/min**	ſ		
				Required Dura	tion of Fire Flow	20/	L/S Hrs			
						3.5	ms ³			
				Required Volu	ime of Fire Flow	3,360	m			

*Rounded to the nearest 1,000 L/min

The Total Required Fire Flow for the 585 Bobolink Ridge development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change, the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

* The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

^{**} Rounded to the nearest 1,000 L/min

FUS Required Fire Flow Calculation

Client: David Schaeffer Engineering Ltd. Project: 2021-110-DSE

Development: 585 Bobolink Ridge Zoning: Multi Family Residential

Date: November 19, 2021

Calculations Based on "Water Supply for Public Fire Protection", Fire Underwriters Survey, 1999.

8-unit back-to-back townhouse Note: For other back-to-back townhouse blocks, a similar fire flow as calculated below will be used.

A. Type of Construction:	Wood Frame Construction	1			
B. Ground Floor Area:	n	n ² Note: The back-to-	back townhouse d	wellings are sep	arated
		by less than 3 m; th	herefore, they mus	t be considered	as one
C. Number of Storeys:	3	fire area. The comb	pined area of 8 uni	ts is considered	in this
	_	calculation.			
D. Required Fire Flow*:	$F = 220C\sqrt{A}$				
C: Coefficient related to the type	of construction	C = <u>1.5</u>			
A: Effective area		A = 1092 m	ا ² (Combine	ed area of 8 unit	s)
The total floor area in m ² in the building	being considered				
		F = 10,904	L/min	D = 11,000	L/min*
E. Occupancy					
Occupancy content hazard	Limited Combustible	<u>-15</u> % of D	<u>-1,650</u> L/min	E = 9,350	L/min
F. Sprinkler Protection					
Automatic sprinkler protection	None	<u> </u>	0 L/min	F = 9,350	L/min
G. Exposures					
Side Separation Distance	Length-Height Factor - Adjacent Structure	Construction Type - Adjace	nt Structure	Exposure	e
East Beyond 45 m	0-30 m-storeys	Wood Frame or Non-	Combustible	0%	
South Beyond 45 m	0-30 m-storeys	Wood Frame or Non-	Combustible	0%	
West 3.1 to 10 m	31-60 m-storeys	Wood Frame or Non-	Combustible	18%	
North 10.1 to 20 m	61-90 m-storeys	Wood Frame or Non-	Combustible	14%	_
				Total 32%	_
		% of E	<u>+ 2,992</u> L/min	G = 12,342	L/min
H. Wood Shake Charge	No	L/	/min	H = 12,342	L/min
For wood shingle or shake roofs					
		Total Fire Flow Required	12,000 L/min**	Ĩ	
			200 L/s		
	Req	uired Duration of Fire Flow	2.5 Hrs		
	Re	quired Volume of Fire Flow	1,800 m ³		

*Rounded to the nearest 1,000 L/min

The Total Required Fire Flow for the 585 Bobolink Ridge development should be reviewed when drawings and site plans have been finalized. The Total Required Fire Flow may be reduced or increased depending on area, construction, occupancy, exposures, and level of sprinkler protection. If any of these items change, the Total Required Fire Flow should be reviewed to determine the impact.

Consideration should be given for fire prevention during construction phases as the required fire flows during construction of buildings is substantially higher than after the buildings are occupied. This is due to exposed framing and inactive sprinkler systems. Fires starting in unprotected portion of buildings quickly become too strong for sprinkler systems in protected portion of buildings. As such, special precautions should be taken any time construction is occurring.

* The amount and rate of water application required in firefighting to confine and control the fires possible in a building or group of buildings which comprise essentially the same fire area by virtue of immediate exposure.

^{**} Rounded to the nearest 1,000 L/min

Appendix C Boundary Conditions

Boundary Conditions 585 Bobolink Ridge

Provided Information

Soonaria	Demand			
Scenario	L/min	L/s		
Average Daily Demand	45	0.75		
Maximum Daily Demand	221	3.68		
Peak Hour	334	5.56		
Fire Flow Demand #1	10,000	166.67		
Fire Flow Demand #2	17,000	283.33		

Location

<u>Results</u>

Connection 1 – Bobolink Ridge

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	161.2	74.9
Peak Hour	156.4	68.1
Max Day plus Fire 1	153.7	64.1
Max Day plus Fire 2	148.1	56.2

Ground Elevation = 108.6 m

Connection 2 – Putney Cres.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	161.2	75.7
Peak Hour	156.4	68.9
Max Day plus Fire 1	146.5	54.8
Max Day plus Fire 2	129.1	30.0

Ground Elevation = 108.0 m

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Appendix D Pipe and Junction Model Inputs

Model Inputs

ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness ()
P-01	J-17	J-01	16.73	204	110
P-02	J-01	J-02	37.04	155	100
P-03	J-01	J-03	35.31	204	110
P-04	J-03	J-04	31.33	204	110
P-05	J-04	J-05	33.26	155	100
P-06	J-05	J-06	38.53	155	100
P-07	J-04	J-07	35.09	204	110
P-08	J-07	J-08	39.87	155	100
P-09	J-08	J-09	38.28	155	100
P-10	J-07	J-10	31.70	204	110
P-11	J-10	J-11	43.03	155	100
P-12	J-11	J-12	38.32	155	100
P-13	J-10	J-13	32.31	204	110
P-14	J-13	J-14	43.36	204	110
P-15	J-14	J-15	40.42	204	110
P-16	J-15	J-16	10.22	204	110
P-17	J-16	RES-02	4.18	204	110
P-18	RES-01	J-17	5.98	204	110

ID	Elevation (m)
J-01	108.52
J-02	108.79
J-03	108.56
J-04	108.57
J-05	108.59
J-06	108.81
J-07	108.44
J-08	108.75
J-09	109.01
J-10	108.28
J-11	108.48
J-12	108.79
J-13	108.15
J-14	108.41
J-15	108.47
J-16	108.40
J-17	108.87

Appendix E ADD and PHD Model Results

Average Day Demand Modeling Results - Bobolink Ridge

ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)
P-01	J-17	J-01	16.73	204	110	0.41	0.01	0.00	0.00
P-02	J-01	J-02	37.04	155	100	0.05	0.00	0.00	0.00
P-03	J-01	J-03	35.31	204	110	0.30	0.01	0.00	0.00
P-04	J-03	J-04	31.33	204	110	0.25	0.01	0.00	0.00
P-05	J-04	J-05	33.26	155	100	0.10	0.01	0.00	0.00
P-06	J-05	J-06	38.53	155	100	0.05	0.00	0.00	0.00
P-07	J-04	J-07	35.09	204	110	0.10	0.00	0.00	0.00
P-08	J-07	J-08	39.87	155	100	0.10	0.01	0.00	0.00
P-09	J-08	J-09	38.28	155	100	0.05	0.00	0.00	0.00
P-10	J-07	J-10	31.70	204	110	-0.05	0.00	0.00	0.00
P-11	J-10	J-11	43.03	155	100	0.10	0.01	0.00	0.00
P-12	J-11	J-12	38.32	155	100	0.05	0.00	0.00	0.00
P-13	J-10	J-13	32.31	204	110	-0.20	0.01	0.00	0.00
P-14	J-13	J-14	43.36	204	110	-0.25	0.01	0.00	0.00
P-15	J-14	J-15	40.42	204	110	-0.30	0.01	0.00	0.00
P-16	J-15	J-16	10.22	204	110	-0.35	0.01	0.00	0.00
P-17	J-16	RES-02	4.18	204	110	-0.35	0.01	0.00	0.00
P-18	RES-01	J-17	5.98	204	110	0.41	0.01	0.00	0.00

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
J-01	0.05	108.52	161	75
J-02	0.05	108.79	161	75
J-03	0.05	108.56	161	75
J-04	0.05	108.57	161	75
J-05	0.05	108.59	161	75
J-06	0.05	108.81	161	74
J-07	0.05	108.44	161	75
J-08	0.05	108.75	161	75
J-09	0.05	109.01	161	74
J-10	0.05	108.28	161	75
J-11	0.05	108.48	161	75
J-12	0.05	108.79	161	75
J-13	0.05	108.15	161	75
J-14	0.05	108.41	161	75
J-15	0.05	108.47	161	75
J-16	0.00	108.40	161	75
J-17	0.00	108.87	161	74

Peak Hour Demand Modeling Results - Bobolink Ridge

ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)	HL/1000 (m/k-m)
P-01	J-17	J-01	16.73	204	110	3.00	0.09	0.00	0.09
P-02	J-01	J-02	37.04	155	100	0.37	0.02	0.00	0.01
P-03	J-01	J-03	35.31	204	110	2.26	0.07	0.00	0.05
P-04	J-03	J-04	31.33	204	110	1.89	0.06	0.00	0.04
P-05	J-04	J-05	33.26	155	100	0.74	0.04	0.00	0.03
P-06	J-05	J-06	38.53	155	100	0.37	0.02	0.00	0.01
P-07	J-04	J-07	35.09	204	110	0.77	0.02	0.00	0.01
P-08	J-07	J-08	39.87	155	100	0.74	0.04	0.00	0.03
P-09	J-08	J-09	38.28	155	100	0.37	0.02	0.00	0.01
P-10	J-07	J-10	31.70	204	110	-0.34	0.01	0.00	0.00
P-11	J-10	J-11	43.03	155	100	0.74	0.04	0.00	0.03
P-12	J-11	J-12	38.32	155	100	0.37	0.02	0.00	0.01
P-13	J-10	J-13	32.31	204	110	-1.45	0.04	0.00	0.02
P-14	J-13	J-14	43.36	204	110	-1.82	0.06	0.00	0.03
P-15	J-14	J-15	40.42	204	110	-2.19	0.07	0.00	0.05
P-16	J-15	J-16	10.22	204	110	-2.56	0.08	0.00	0.07
P-17	J-16	RES-02	4.18	204	110	-2.56	0.08	0.00	0.06
P-18	RES-01	J-17	5.98	204	110	3.00	0.09	0.00	0.09

ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (psi)
J-01	0.37	108.52	156	68
J-02	0.37	108.79	156	68
J-03	0.37	108.56	156	68
J-04	0.37	108.57	156	68
J-05	0.37	108.59	156	68
J-06	0.37	108.81	156	68
J-07	0.37	108.44	156	68
J-08	0.37	108.75	156	68
J-09	0.37	109.01	156	67
J-10	0.37	108.28	156	68
J-11	0.37	108.48	156	68
J-12	0.37	108.79	156	68
J-13	0.37	108.15	156	69
J-14	0.37	108.41	156	68
J-15	0.37	108.47	156	68
J-16	0.00	108.40	156	68
J-17	0.00	108.87	156	68

Appendix F MDD+FF Model Results

Fire Flow Modeling Results - Bobolink Ridge

ID	Static Demand (L/s)	Static Pressure (psi)	Static Head (m)	Fire-Flow Demand (L/s)	Residual Pressure (psi)	Available Flow at Hydrant (L/s)	Available Flow Pressure (psi)
J-04	0.25	49	143	267	27	327	20
J-07	0.25	47	141	267	24	299	20
J-13	0.25	41	137	267	23	292	20

APPENDIX C

Sanitary Servicing Documents

SANITARY SEWER CALCULATION SHEET

		ALCULA	TION SH	IEET																					6	ttav	va	
ina ing o in on	LOCATION				RESIDEN	TAL AREA AND	POPULATION					CC	ОММ	INSTIT	Р	ARK	C+I+I		INFILTRATIO	ON					PIPE			
S	STREET	FROM	TO	AREA	UNITS UNITS	UNITS	POP.	CUMU	LATIVE	PEAK	PEAK	AREA	ACCU.	AREA ACC	J. AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	DIST	DIA	SLOPE	CAP.	RATIO	V	/EL.
		M.H.	M.H.	(ha)	Singles	Townhouse		AREA	POP.	FACT.	FLOW	(ha)	AREA	ARE (ba) (ba	A (bo)	AREA	FLOW	AREA	AREA	FLOW	FLOW	(m)	(mm)	(9/)	(FULL)	Q act/Q cap	(FULL)	(ACT.)
				(114)				(11d)			(1/5)	(11a)	(IId)	(11d) (11d	(11a)	(11a)	(1/5)	(IId)	(IId)	(1/5)	(1/5)	(11)	(11111)	(%)	(1/5)		(11/5)	(11/5)
PRIVATE ROAD) 3																											
		9A	10A	0.23	18		49	0.23	49	3.65	0.58		0.00	0.0)	0.00	0.00	0.23	0.23	0.08	0.66	71.0	200	0.65	26.44	0.02	0.84	0.35
TO PRIVATE RO	DAD 2, Pipe 10A - 11A	N						0.23	49				0.00	0.0)	0.00			0.23			<u> </u>				<u> </u>	<u> </u>	
PRIVATE BOAD) 1															-						<u> </u>			+	<u> </u>		+
	•	ЗA	4A	0.26	20		54	0.26	54	3.65	0.64		0.00	0.0)	0.00	0.00	0.26	0.26	0.09	0.72	77.0	200	0.65	26.44	0.03	0.84	0.36
To SERVICING 2	2, Pipe 4A - 5A							0.26	54				0.00	0.0)	0.00			0.26									
				0.40											_											L	<u> </u>	
		16A	1A	0.16	10		27	0.16	27	3.69	0.32		0.00	0.0)	0.00	0.00	0.16	0.16	0.05	0.38	/3.0	200	0.65	26.44	0.01	0.84	0.29
		2A	<u>2Α</u> 4Δ					0.16	27	3.69	0.32		0.00	0.0		0.00	0.00	0.00	0.16	0.05	0.38	29.5	200	0.35	19.40	0.02	0.62	0.24
To SERVICING 2	2. Pipe 4A - 5A	20						0.16	27	0.00	0.02		0.00	0.0)	0.00	0.00	0.00	0.16	0.00	0.00	20.0	200	0.00	10.40	0.02	0.02	0.24
																						1			1			
SERVICING 2																												
Contribution From	m PRIVATE ROAD 1,	Pipe 2A - 4A						0.16	27				0.00	0.0)	0.00		0.16	0.16						───	<u> </u>	<u> </u>	
Contribution From	M PRIVATE ROAD 1,	Pipe 3A - 4A 4Δ	5۵					0.26	54 81	3.61	0.95		0.00	0.0		0.00	0.00	0.26	0.42	0.14	1.09	35	200	0.35	19.40	0.06	0.62	0.33
		5A	6A					0.42	81	3.61	0.95		0.00	0.0)	0.00	0.00	0.00	0.42	0.14	1.09	31.5	200	0.35	19.40	0.06	0.62	0.33
		6A	8A					0.42	81	3.61	0.95		0.00	0.0)	0.00	0.00	0.00	0.42	0.14	1.09	4.0	200	0.35	19.40	0.06	0.62	0.33
To PRIVATE RO	AD 2, Pipe 8A - 10A							0.42	81				0.00	0.0)	0.00			0.42									
				-												_						<u> </u>				<u> </u>	<u> </u>	
PRIVATE ROAD	02	124	140	0.00	5		14	0.00	14	2 72	0.17		0.00	0.0		0.00	0.00	0.00	0.00	0.02	0.20	21.0	200	0.65	26.44	0.01	0.94	0.24
To SERVICING 1	1. Pipe 14A - EX. 129	A	14A	0.03	5		14	0.09	14	3.72	0.17		0.00	0.0)	0.00	0.00	0.09	0.09	0.03	0.20	31.0	200	0.05	20.44	0.01	0.04	0.24
10 02111101110	i, i po i ni Exi i Eo							0.00					0.00	0.0	-	0.00			0.00			<u> </u>			1			1
		7A	8A	0.25	19		52	0.25	52	3.65	0.61		0.00	0.0)	0.00	0.00	0.25	0.25	0.08	0.70	73.0	200	0.65	26.44	0.03	0.84	0.36
Contribution From	m SERVICING 2, Pip	e 6A - 8A						0.42	81				0.00	0.0)	0.00		0.42	0.67		. = .					L		
Contribution From		8A	10A					0.67	133	3.57	1.54		0.00	0.0)	0.00	0.00	0.00	0.67	0.22	1.76	33.0	200	0.35	19.40	0.09	0.62	0.38
Contribution From	III PRIVATE ROAD 3,	10A	11A					0.23	49	3 53	2.08		0.00	0.0)	0.00	0.00	0.23	0.90	0.30	2.38	28.5	200	0.35	19.40	0.12	0.62	0.42
		11A	12A					0.90	182	3.53	2.08		0.00	0.0)	0.00	0.00	0.00	0.90	0.30	2.38	10.0	200	0.35	19.40	0.12	0.62	0.42
		12A	14A	0.06	4		11	0.96	193	3.52	2.20		0.00	0.0)	0.00	0.00	0.06	0.96	0.32	2.52	29.5	200	0.35	19.40	0.13	0.62	0.42
To SERVICING 1	1, Pipe 14A - EX. 129	A						0.96	193				0.00	0.0)	0.00			0.96									
					OFES	SIONA,				_	-						-		-	-		<u> </u>			<u> </u>	<u> </u>	<u> </u>	
SERVICING 1		Bino 124 14	^		2	- W		0.06	102				0.00	0.0		0.00		0.06	0.06							<u> </u>	<u> </u>	
Contribution From	m PRIVATE ROAD 2.	Pipe 13A - 14	A		19/1	11.0	6	0.90	193				0.00	0.0)	0.00		0.90	1.05			<u> </u>		-		<u> </u>	<u> </u>	
Contribution		14A	EX. 129A		1311	10000	ZI	1.05	207	3.51	2.36		0.00	0.0	5	0.00	0.00	0.00	1.05	0.35	2.70	15.5	200	0.35	19.40	0.14	0.62	0.43
					U .	TODIOV	51																					
					S.L.W	ERHIUN	D			_												<u> </u>				└───	<u> </u>	
					1001	86523																				<u> </u>	<u> </u>	
						0																<u> </u>			+	<u> </u>		
					2022	-01-15	0/															<u> </u>			1			1
					12		8															1			1			
					OVIA	ONT																<u> </u>						
				-	WCE	OF U.		-			-				_	-	-		-	-		──	-	-		───	<u> </u>	
						2.06	<u>۱</u>			-	-			+ +		-				-		<u> </u>				├───	├───	+
					DESIGN PARAME	TERS				1	1	1	1	Desid	ned:			1	PROJEC	T:	1	<u> </u>		1		<u> </u>	L	
Park Flow =		9300	L/ha/da	0.10764	l/s/Ha											GGG						F	BOBALIN	IK DRIVE	- PHASE	1		
Average Daily Flow	w =	280	l/p/day					Industrial	Peak Fac	ctor = as p	per MOE C	Graph																
Comm/Inst Flow =		28000	L/ha/da	0.3241	l/s/Ha			Extraneou	is Flow =	_	0.330	L/s/ha		Chec	ked:	CI M			LOCATIO	ON:				City of	Ottowo			
Max Res Peak Ea	actor –	4 00	L/Ha/da	0.40509	i/s/Ha			Manning's	velocity =	= (Conc)	0.000	(Pvc)	0.012			SLIVI								City Of				
Commercial/Inst /F	Park Peak Factor =	1,00						Townhous	se coeff=	(0010)	2.7	(1 10)	0.013	Dwa	Reference				File Ref [.]		10.100		Date:			Sheet	No.	1
Institutional =		0.32	l/s/Ha					Single ho	use coeff	=	3.4			Sanita	ry Drainage	Plan, Dwg	s. No. 14				12-1261		1	13 Jan 202	.2	2	of	f 1

TURING - BOARD SATE OF ALL AND	Date Plan Number LEGEND : 145A AREA III 0.3427.5 POPULA AREA IN DIRECT NOTES: 1. THIS ALLOWANCE IS FO AREAS 6a, 6b AND 6c. 2. AN ALLOWANCE OF 100 FLOWS TRIBUTARY TO TH	2017 2017 # ATION # HECTARES E MINOR FLOW ION NR OPA66 EXPANSION
DRY POND 3 How were and a real of a	Plan Number LEGEND : 145A AREA III 0.3427.5 POPULA AREA IN DIRECT NOTES: 1. THIS ALLOWANCE IS FO AREAS 6a, 6b AND 6c. 2. AN ALLOWANCE OF 100 FLOWS TRIBUTARY TO TH) # ATION N HECTARES E MINOR FLOW ION NR OPA66 EXPANSION
46A 0.030.0 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	STATION.	II/s HAS BEEN MADE FOF
REST Labers	14 13 12 11 10 9 8 7 RESUBMISSION FOR MODE 5 SUBMISSION FOR MODE 5 SUBMISSION #5 FOR 0 4 SUBMISSION #4 FOR 0 3 SUBMISSION #2 FOR 0 1 SUBMISSION #1 FOR 0 No. REVISIO	DE APPROVAL JIM 17:07:14 APPROVAL JIM 17:02:10 CITY REVIEW JIM 16:11:10 CITY REVIEW JIM 16:11:10 CITY REVIEW JIM 16:11:20 CITY REVIEW JIM 14:08:22 CITY REVIEW JIM 14:01:22 CITY REVIEW JIM 14:01:22 CITY REVIEW JIM 13:08:29 NS By Date
BOBOLINK RIDGE	CRT DEVELO IBI GROU 400 - 333 Ottawa ON tel 613 225 ibigroup.o	PMENT INC. P Preston Street V K1S 5N4 Canada 5 1311 fax 613 225 9868 com
	Drawing Title BANITARY AREA	DRAINAGE
	Scale 1	:1250
	Design JIM	Date OCTOBFR '12
	Drawn M.M.	Checked P.K.
	Project No.	

IBI Group 400-333 Preston Street

Ottawa, Ontario

P K1S 5N4

	LOCATIO	N					RESIDENTIAL	L							ICI AREAS			INFIL	FRATION ALLO	WANCE	TOTAL			PROP	OSED SEWER	DESIGN		
	LOCATIO	N			UNIT TYPES		AREA	POPU	LATION	PEAK	PEAK			AREA	(Ha)		PEAK	ARE	A (Ha)	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAI	LABLE
CTREET		FROM	то	6E C	<u>т</u> и	ADT	(Ha)	IND	CUM	FACTOR	FLOW	INSTITUTION	NAL	COMME	ERCIAL	INDUSTRIAL	FLOW	IND	CUM	(1/c)	(1/c)	(1/c)	(m)	(mm)	(%)	(full)	CAP	ACITY
JIKEET	AREA ID	MH	МН	3r 3	, III	AFT	(па)	IND	COIM		(L/s)	IND C	CUM	IND	CUM	IND CUM	(L/s)	IND	COM	(L/3)	(L/3)	(L/3)	(11)	(1111)	(78)	(m/s)	L/s	(%)
PUTNEY CRESCENT	141A	141A	142A		1		0.06	2.5	2.5	4.00	0.04	(0.00		0.00	0.00	0.00	0.06	0.06	0.02	0.06	24.19	9.07	200	0.50	0.746	24.14	99.76
PUTNEY CRESCENT	142A	142A	143A		11		0.35	27.5	30.0	4.00	0.49	(0.00		0.00	0.00	0.00	0.35	0.41	0.11	0.60	47.16	55.56	200	1.90	1.454	46.56	98.73
PUTNEY CRESCENT	143A	143A	144A		17		0.49	42.5	72.5	4.00	1.17	(0.00		0.00	0.00	0.00	0.49	0.90	0.25	1.43	41.91	64.86	200	1.50	1.292	40.48	96.60
FINSBURY AVENUE	136AA	136A	144A		21		0.65	52.5	52.5	4.00	0.85	(0.00		0.00	0.00	0.00	0.65	0.65	0.18	1.03	53.56	110.44	200	2.45	1.652	52.52	98.07
PUTNEY CRESCENT	144A	144A	145A		10		0.36	25.0	150.0	4.00	2.43	(0.00		0.00	0.00	0.00	0.36	1.91	0.53	2.97	32.46	80.25	200	0.90	1.001	29.50	90.86
CLAPHAM TERRACE	136AB	136A	137A		10		0.37	25.0	25.0	4.00	0.41	(0.00		0.00	0.00	0.00	0.37	0.37	0.10	0.51	24.19	78.00	200	0.50	0.746	23.69	97.90
BRIXTON WAY	137AA	137A	160A		12		0.35	30.0	55.0	4.00	0.89	(0.00		0.00	0.00	0.00	0.35	0.72	0.20	1.09	41.91	50.77	200	1.50	1.292	40.81	97.39
BRIXTON WAY	160A	160A	145A		18		0.54	45.0	100.0	4.00	1.62	(0.00		0.00	0.00	0.00	0.54	1.26	0.35	1.97	52.45	78.53	200	2.35	1.617	50.48	96.24
PUTNEY CRESCENT	145A	145A	146A		11		0.34	27.5	277.5	4.00	4.50	(0.00		0.00	0.00	0.00	0.34	3.51	0.98	5.48	39.76	70.87	200	1.35	1.226	34.28	86.22
CLAPHAM WAY	137AB	137A	138A		9		0.38	22.5	22.5	4.00	0.36	(0.00		0.00	0.00	0.00	0.38	0.38	0.11	0.47	37.48	78.00	200	1.20	1.156	37.01	98.74
PUTNEY CRESCENT	138A	138A	148A		10		0.35	25.0	47.5	4.00	0.77	(0.00		0.00	0.00	0.00	0.35	0.73	0.20	0.97	40.49	77.95	200	1.40	1.248	39.51	97.59
PUTNEY CRESCENT	148A	148A	147A		7		0.26	17.5	65.0	4.00	1.05	(0.00		0.00	0.00	0.00	0.26	0.99	0.28	1.33	55.70	59.50	200	2.65	1.718	54.37	97.61
PUTNEY CRESCENT	147A	147A	146A		0		0.03	0.0	65.0	4.00	1.05	(0.00		0.00	0.00	0.00	0.03	1.02	0.29	1.34	55.70	12.47	200	2.65	1.718	54.36	97.60
BLOCK 323	146A	146A	161A		0		0.03	0.0	342.5	4.00	5.55	(0.00		0.00	0.00	0.00	0.03	4.56	1.28	6.83	28.63	38.97	200	0.70	0.883	21.80	76.15
BLOCK 316	HYD. 2	161A	Ex.209		0		5.12	0.0	342.5	4.00	5.55	(0.00		0.00	0.00	0.00	5.12	9.68	2.71	8.26	28.63	53.67	200	0.70	0.883	20.37	71.15
BLOCK 324	RES.1	BULKHEAD	Ex.209				1.89	170.1	170.1	4.00	2.76	(0.00		0.00	0.00	0.00	1.89	1.89	0.53	3.29	43.87	8.00	250	0.50	0.866	40.58	92.51
				Refer to ECA No. 9	079-9LNNZC dat	ed July 9, 2014	for descripti	ion of existi	ng sewers.																			
Design Parameters:				Notes:						Designed:		J.I.M.		_	No. Revision											Date		
				 Mannings coeff 	cient (n) =		0.013							_	1.			Submis	sion No. 1 to (2013-08-29				
Residential		ICI Areas		2. Demand (per ca	oita):	350	L/day								2.			Submis	ssion No. 2 to (City of Ottawa						2014-01-22		
SF 3.3 p/p/u			Peak Factor	Infiltration allow	ance:	0.28	L/s/Ha			Checked:		P.K.		Ļ	3.			Submis	sion No. 3 to (City of Ottawa						2014-08-22		
TH/SD 2.5 p/p/u	INST	50,000 L/Ha/day	1.5	4. Residential Peal	ing Factor:									Ļ	4.			Submis	sion No. 4 to (City of Ottawa						2015-06-15		
APT 1.8 p/p/u	COM	50,000 L/Ha/day	1.5	Harmo	n Formula = 1+(14/(4+P^0.5))									5.			Submis	ssion No. 5 to (City of Ottawa						2016-11-10		
Low 60 p/p/Ha	IND	35,000 L/Ha/day	MOE Chart	where	P = population i	n thousands				Dwg. Refere	ence:	27970 - 501, 501	1A, 501B		6.			Subr	mission for MC	DE Approval						2017-02-10		
Med 75 p/p/Ha															7.			Resul	omission for M	OE Approval						2017-07-14		
High 90 p/p/Ha															Fi	le Reference:				Date:						Sheet No:		
										1						27970.5.7.1				2017-07-14						1 of 4		

SANITARY SEWER DESIGN SHEET

IBI Group 400-333 Preston Street

Ottawa, Ontario K1S 5N4

								RESIDENTIA	L							ICI AREAS				INFIL	TRATION ALLO	NANCE	TOTAL			PRO	OSED SEWER	DESIGN		
	LOCATION				UNIT	T TYPES		AREA	POPU	LATION	PEAK	PEAK			ARE	A (Ha)			PEAK	ARE	A (Ha)	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAI	LABLE
STREET	AREA ID	FROM	то	SE	SD	тн	ΔΡΤ	(Ha)	IND	СПМ	FACTOR	FLOW	INSTIT	UTIONAL	COMN	IERCIAL	INDU	STRIAL	FLOW	IND	сим	(1/s)	(1/s)	(1/s)	(m)	(mm)	(%)	(full)	CAP/	ACITY
STREET	AREA ID	МН	МН	51	30		A11	(114)		com		(L/s)	IND	CUM	IND	CUM	IND	CUM	(L/s)		com	(1/3)	(1/3)	(1/3)	(,	()	(73)	(m/s)	L/s	(%)
																												'		
																												<u> </u>	,	
CLAPHAM TERRACE	136AC	136A	135A			11		0.41	27.5	27.5	4.00	0.45		0.00		0.00		0.00	0.00	0.41	0.41	0.11	0.56	27.59	65.31	200	0.65	0.851	27.03	97.97
CLAPHAM TERRACE	135A	135A	134A			9		0.31	22.5	50.0	4.00	0.81		0.00		0.00		0.00	0.00	0.31	0.72	0.20	1.01	27.59	57.36	200	0.65	0.851	26.57	96.33
			1244			-			22.5	22 F		0.00			-				0.00			0.40	0.45	22.46	75.00	200		1 001		00.50
PUTNEY CRESCENT	141A	141A	134A			9		0.34	22.5	22.5	4.00	0.36		0.00		0.00		0.00	0.00	0.34	0.34	0.10	0.46	32.46	75.02	200	0.90	1.001	32.00	98.58
DUTNEY ORECONT	1244	1244	1404	6				0.24	10.0	02.2	4.00	1 50		0.00	-	0.00		0.00	0.00	0.24	1.40	0.30	1.90	32.46	78.00	200	0.00	1 001	20.57	04.19
PUTINET CRESCENT	154A	154A	140A	0				0.54	19.0	92.5	4.00	1.50		0.00		0.00		0.00	0.00	0.54	1.40	0.59	1.69	52.40	78.00	200	0.90	1.001	50.57	94.16
OSTERI FY WAY	1534	1534	1524	8				0.51	26.4	26.4	4.00	0.43		0.00		0.00		0.00	0.00	0.51	0.51	0.14	0.57	29.63	49.25	200	0.75	0.914	29.06	98.07
OSTERLEY WAY	152A	152A	151A	17				0.78	56.1	82.5	4.00	1.34		0.00		0.00		0.00	0.00	0.78	1.29	0.36	1.70	29.63	95.75	200	0.75	0.914	27.93	94.27
OSTERLEY WAY	151A	151A	150A	10				0.47	33.0	115.5	4.00	1.87		0.00		0.00		0.00	0.00	0.47	1.76	0.49	2.36	29.63	59.68	200	0.75	0.914	27.27	92.02
OSTERLEY WAY	150A	150A	140A	9				0.42	29.7	145.2	4.00	2.35		0.00		0.00		0.00	0.00	0.42	2.18	0.61	2.96	29.63	62.98	200	0.75	0.914	26.67	90.00
																							1					1 1		
PUTNEY CRESCENT	140A	140A	124A	3				0.24	9.9	247.4	4.00	4.01		0.00		0.00		0.00	0.00	0.24	3.82	1.07	5.08	32.46	78.00	200	0.90	1.001	27.38	84.36
BLOCK 343	RES.2	BLKHD	129A					1.21	108.9	108.9	4.00	1.76		0.00		0.00		0.00	0.00	1.21	1.21	0.34	2.10	20.24	19.00	200	0.35	0.624	18.14	89.61
DODOLININ MIDOL					+		+	0.00	0.0	100.0		2.70	-	0.00	+	0.00		0.00	0.00	0.05	1.00	0.50				200				
BOBOLINK RIDGE	128AA	128A	127A	6				0.41	19.8	128.7	4.00	2.09		0.00		0.00		0.00	0.00	0.41	1.71	0.48	2.56	31.02	78.00	250	0.25	0.612	28.46	91.73
BOBOLINK RIDGE	127AA	127A	126A	10				0.53	33.0	161.7	4.00	2.62		0.00		0.00		0.00	0.00	0.53	2.24	0.63	3.25	31.02	78.00	250	0.25	0.612	27.77	89.53
BOBOLINK RIDGE	126A	126A	125A	12				0.33	16.5	1/8.2	4.00	2.89		0.00		0.00		0.00	0.00	0.33	2.57	0.72	3.61	31.02	47.81	250	0.25	0.612	27.41	88.37
BOBOLINK RIDGE	125A	125A	124A	12				0.50	59.0	217.0	4.00	3.33		0.00	-	0.00		0.00	0.00	0.56	5.15	0.00	4.41	51.02	74.65	250	0.25	0.012	20.01	65.60
BOBOLINK RIDGE	1244	1244	1234	11				0.61	36.3	501 5	3 97	8 07		0.00		0.00		0.00	0.00	0.61	7 56	2 12	10 19	31.02	88.85	250	0.25	0.612	20.83	67 15
DODOLINIK NIDGE	12474	12-70	1234					0.01	30.3	501.5	5.57	0.07		0.00		0.00		0.00	0.00	0.01	7.50	2.12	10.15	51.02	00.05	250	0.25	0.011		07.13
DAGENHAM STREET	PARK1, 131A	131A	130A	7				1.70	23.1	23.1	4.00	0.37		0.00		0.00		0.00	0.00	1.70	1.70	0.48	0.85	34.22	43.00	200	1.00	1.055	33.37	97.51
DAGENHAM STREET	130A	130A	123A	8				0.46	26.4	49.5	4.00	0.80		0.00		0.00		0.00	0.00	0.46	2.16	0.60	1.41	34.22	87.11	200	1.00	1.055	32.81	95.89
BOBOLINK RIDGE	123A	123A	122A	2				0.14	6.6	557.6	3.95	8.92		0.00		0.00		0.00	0.00	0.14	9.86	2.76	11.68	31.02	25.98	250	0.25	0.612	19.34	62.34
BOBOLINK RIDGE	122A	122A	121A	5				0.26	16.5	574.1	3.94	9.17		0.00		0.00		0.00	0.00	0.26	10.12	2.83	12.00	31.02	36.36	250	0.25	0.612	19.02	61.31
BOBOLINK RIDGE	121A	121A	120A	6				0.30	19.8	593.9	3.93	9.47		0.00		0.00		0.00	0.00	0.30	10.42	2.92	12.38	31.02	40.43	250	0.25	0.612	18.64	60.08
																												<u> </u>		
ANGEL HEIGHTS	111A	111A	112A	1				0.08	3.3	3.3	4.00	0.05		0.00		0.00		0.00	0.00	0.08	0.08	0.02	0.08	28.63	12.92	200	0.70	0.883	28.55	99.73
	112A	112A 113A	113A 114A	13				0.77	42.9	40.2	4.00	0.75		0.00	+	0.00		0.00	0.00	0.77	0.85	0.24	0.99	28.03	95.21 38.92	200	0.70	0.883	27.04	90.55
ANGEL HEIGHTS	1144	113A	1204	6				0.35	19.8	85.8	4.00	1.39	1	0.00	+	0.00		0.00	0.00	0.35	1.49	0.42	1.81	28.63	70.46	200	0.70	0.883	26.82	93.69
	70			Ť				0.00				2.00	1	5.00		0.00		0.00	0.00	0.00		\$17L	2.01	_3.03			+			55105
BOBOLINK RIDGE	120A	120A	105A	11	1			0.62	36.3	716.0	3.89	11.28	1	0.00		0.00		0.00	0.00	0.62	12.53	3.51	14.79	36.70	90.60	250	0.35	0.724	21.91	59.71
																												1 1		
Design Parameters:				Notes:							Designed:		J.I.M.			No.	N. Revision											Date		
				1. Manning	gs coefficient	: (n) =		0.013								1.	Submission No. 1 to City of Ottawa											2013-08-29		
Residential		ICI Areas		2. Demand	l (per capita)	:	350) L/day								2.				Submis	sion No. 2 to C	ity of Ottawa						2014-01-22		
SF 3.3 p/p/u			Peak Factor	3. Infiltration	on allowance	:	0.28	3 L/s/Ha			Checked:		P.K.			3.				Submis	sion No. 3 to C	ity of Ottawa						2014-08-22		
TH/SD 2.5 p/p/u	INST 50,000	0 L/Ha/day	1.5	4. Resident	tial Peaking F	actor:										4.				Submis	sion No. 4 to C	ity of Ottawa						2015-06-15		
APT 1.8 p/p/u	COM 50,000	0 L/Ha/day	1.5		Harmon Fo	rmula = 1+(1	4/(4+P^0.5))				<u> </u>					5.				Submis	ssion No. 5 to C	ity of Ottawa						2016-11-10		
Low 60 p/p/Ha	IND 35,000	0 L/Ha/day	MOE Chart	1	where P = p	population in	thousands				Dwg. Refer	ence:	27970 - 502	1, 501A, 501E	3	6.				Subr	mission for MO	E Approval						2017-02-10		
Med 75 p/p/Ha																7.			-	Resul	omission for M	JE Approval						2017-07-14		
High 90 p/p/Ha	High 90 p/p/Ha															F	27970.5.7.1	ie:				Date: 2017-07-14	L .					Sheet No: 2 of 4		

SANITARY SEWER DESIGN SHEET

IBI Group 400-333 Preston Street Ottawa, Ontario

K1S 5N4

	LOCATION						RESIDENTIAL							ICI AREAS			INFI	LTRATION ALLC	WANCE	TOTAL			PROP	OSED SEWER I	DESIGN		
	LOCATION		1		UNIT TYPES		AREA	POPU	LATION	PEAK	PEAK		ARE	A (Ha)		PEAK	AR	EA (Ha)	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAI	LABLE
STREET	AREA ID	FROM	TO	SF	SD TH	APT	(Ha)	IND	сим	FACTOR	FLOW	INSTITUTIONAL	COMN	AERCIAL	INDUSTRIAL	FLOW	IND	сим	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(full)	CAPA	ACITY
		IVIN	IVIT							1	(L/S)		IND	COIVI		(L/S)		-	1						(11/5)	L/S	(70)
																		-							+		
EMBANKMENT STREET	128AB	128A	188A	16			0.74	52.8	52.8	4.00	0.86	0.00		0.00	0.00	0.00	0.74	0.74	0.21	1.06	27.59	98.00	200	0.65	0.851	26.52	96.15
EMBANKMENT STREET	188A	188A	189A	11			0.52	36.3	89.1	4.00	1.44	0.00		0.00	0.00	0.00	0.52	1.26	0.35	1.80	27.59	74.80	200	0.65	0.851	25.79	93.49
				_																							
BLOCK 344	RES.3	192A	189A				1.52	136.8	136.8	4.00	2.22	0.00		0.00	0.00	0.00	1.52	1.52	0.43	2.64	20.24	40.00	200	0.35	0.624	17.60	86.95
EMBANKMENT STREET	1894	1894	190A	14			0.69	46.2	272.1	4.00	4.41	0.00		0.00	0.00	0.00	0.69	3.47	0.97	5.38	20.24	92.53	200	0.35	0.624	14.86	73.42
EMBANKMENT STREET	20071	190A	176A	0			0.00	0.0	272.1	4.00	4.41	0.00		0.00	0.00	0.00	0.00	3.47	0.97	5.38	20.24	10.78	200	0.35	0.624	14.86	73.42
BLOCK 345	INST.2	BULKHEAD	176A	0			0.00	0.0	0.0	4.00	0.00	6.53 6.53		0.00	0.00	5.67	6.53	6.53	1.83	7.50	20.24	21.00	200	0.35	0.624	12.75	62.97
COPE DRIVE	176A	176A	175A 174A	3			0.63	9.9	282.0	4.00	4.57	6.53		0.00	0.00	5.67	0.63	10.63	2.98	13.21	20.24	76.03	200	0.35	0.624	7.03	34.72
COLEDNIVE	1/54	1/38	1/46	5			0.40	10.5	230.5	4.00	4.04	0.55		0.00	0.00	5.07	0.40	11.05	3.11	13.01	20.24	04.54	200	0.55	0.024	0.05	32.70
BELSIZE WAY	127AB	127A	185A	11			0.53	36.3	36.3	4.00	0.59	0.00		0.00	0.00	0.00	0.53	0.53	0.15	0.74	27.59	88.50	200	0.65	0.851	26.85	97.33
BELSIZE WAY	185A	185A	186A	13			0.59	42.9	79.2	4.00	1.28	0.00		0.00	0.00	0.00	0.59	1.12	0.31	1.60	27.59	83.61	200	0.65	0.851	25.99	94.21
PINNER ROAD	191A	191A	186A	3	<u>├───</u>		0.24	9.9	9.9	4.00	0.16	0.00		0.00	0.00	0.00	0.24	0.24	0.07	0.23	27.59	43.00	200	0.65	0.851	27.36	99.17
PINNER ROAD	1864	1864	1874	5			0.35	16.5	105.6	4.00	1.71	0.00	1	0.00	0.00	0.00	0.35	1.71	0.48	2.19	20.24	70.39	200	0,35	0,624	18.05	89.18
PINNER ROAD	-000	187A	183A	0			0.00	0.0	105.6	4.00	1.71	0.00		0.00	0.00	0.00	0.00	1.71	0.48	2.19	20.24	9.00	200	0.35	0.624	18.05	89.18
																				1							
FINSBURY AVENUE	182A	182A	183A	16			0.97	52.8	52.8	4.00	0.86	0.00		0.00	0.00	0.00	0.97	0.97	0.27	1.13	32.46	117.13	200	0.90	1.001	31.33	96.53
	1034	1034	10/4		<u> </u>		0.32	13.3	171.0	4.00	3 70	0.00		0.00	0.00	0.00	0.22	3.01	0.04	2.62	20.24	CE 74	200	0.35	0.634	16.63	03.10
FINSBURY AVENUE	183A	183A 184A	184A 174A	4	<u>├ </u>		0.33	0.0	171.6	4.00	2.78	0.00	+	0.00	0.00	0.00	0.33	3.01	0.84	3.62	20.24	17.89	200	0.35	0.624	16.62	82.10
		1076	1/15	Ť			0.00	0.0	1/1.0	4.00	2.70	0.00	1	0.00	0.00	0.00	0.00	5.01	0.04	5.52	20.27	17.05		0.00	5.024	10.02	52.20
COPE DRIVE	174A	174A	173A	7			0.47	23.1	493.2	3.98	7.95	6.53		0.00	0.00	5.67	0.47	14.57	4.08	17.69	31.02	82.90	250	0.25	0.612	13.33	42.96
COPE DRIVE	173A	173A	172A	6			0.41	19.8	513.0	3.97	8.25	6.53		0.00	0.00	5.67	0.41	14.98	4.19	18.11	31.02	76.02	250	0.25	0.612	12.91	41.62
BLOCK 313	INST.1	BULKHEAD	172A	0			0.00	0.0	0.0	4.00	0.00	2.88 2.88		0.00	0.00	2.50	2.88	2.88	0.81	3.31	20.24	16.00	200	0.35	0.624	16.94	83.67
COPE DRIVE	1724	1724	171B	3			0.23	9,9	522.9	3.96	8.40	9.41		0.00	0.00	8.17	0.23	18.09	5.07	21.63	31.02	36.96	250	0.25	0.612	9,39	30.27
COPE DRIVE	171B	171B	171A	2			0.22	6.6	529.5	3.96	8.50	9.41		0.00	0.00	8.17	0.22	18.31	5.13	21.79	31.02	41.21	250	0.25	0.612	9.23	29.75
DAGENHAM STREET	180A	180A	181A	7			0.50	23.1	23.1	4.00	0.37	0.00		0.00	0.00	0.00	0.50	0.50	0.14	0.51	20.24	90.00	200	0.35	0.624	19.73	97.46
DAGENHAM STREET	181A	181A	171A	0			0.11	0.0	23.1	4.00	0.37	0.00		0.00	0.00	0.00	0.11	0.61	0.17	0.55	20.24	67.50	200	0.35	0.624	19.70	97.31
COPE DRIVE	171A	171A	170B	1			0.17	3.3	555.9	3.95	8.90	9.41		0.00	0.00	8.17	0.17	19.09	5.35	22.41	45.12	37.91	300	0.20	0.618	22.71	50.33
COPE DRIVE	170B	170B	170A	3			0.25	9.9	565.8	3.95	9.04	9.41		0.00	0.00	8.17	0.25	19.34	5.42	22.63	45.12	43.98	300	0.20	0.618	22.49	49.84
BLOCK 312	RES.3A	BULKHEAD	sewer	0			3.26	195.6	195.6	4.00	3.17	0.00		0.00	0.00	0.00	3.26	3.26	0.91	4.08	20.24	16.22	200	0.35	0.624	16.16	79.83
	1704	170.0	1104	6			0.62	10.9	701.2	2 07	12.24	0.41		0.00	0.00	0 17	0.62	22.22	6 50	26.01	45.10	120.00	200	0.20	0.618	10 31	40.26
COPE DRIVE	170A	170A	IIUA	0			0.62	19.8	761.2	5.67	12.24	9.41		0.00	0.00	6.17	0.02	23.22	0.50	20.91	45.12	120.00	500	0.20	0.010	10.21	40.50
GOLDHAWK DRIVE	306A	SOUTH	303A	31			1.83	102.3	102.3	4.00	1.66	0.00		0.00	0.00	0.00	1.83	1.83									
		<u> </u>															<u> </u>								<u> </u>		
STREET NO. 26	304A	WEST	303A	14	<u> </u>	_	0.69	46.2	46.2	4.00	0.75	0.00	+	0.00	0.00	0.00	0.69	0.69	0.19	0.94		ł			+		
GOLDHAWK DRIVF	303A	303A	302A	10			0,62	33.0	181.5	4.00	2,94	0.00	1	0.00	0.00	0.00	0.62	3.14	0.88	3.82	20.24	94.58	200	0.35	0.624	16.42	81.13
Burt		- COSA									+		1		0.00	0.00	0.02		0.00	0.02				0.00			52.25
Future Street	RES.5, 5A, Park3	EAST	302A				23.97	1421.4	1421.4	3.70	21.28	0.00		0.00	0.00	0.00	23.97	23.97	6.71	28.00							
																									<u> </u>		
GOLDHAWK DRIVE	302A	302A	301A	10	├		0.56	33.0	1635.9	3.65	24.20	0.00	1	0.00	0.00	0.00	0.56	27.67	7.75	31.95	50.44	70.68	300	0.25	0.691	18.49	36.66
GOLDHAWK DRIVE	501A	SUIA	20/A	U			0.37	13.9	1055./	5.05	24.47	0.00	1	0.00	0.00	0.00	0.37	28.04	52.32	50.44	70.00	500	0.25	0.091	10.12	33.93	
STREET NO. 2	RES.4	EAST	207A				13.88	832.8	832.8	3.85	12.99	0.00		0.00	0.00	0.00	13.88	13.88	16.87					<u> </u>			
GOLDHAWK DRIVE	207A	207A	206A	17			0.86	56.1	2544.6	3.50	36.10	0.00		0.00	0.00	0.00	0.86	42.78	11.98	48.08	70.84	107.19	375	0.15	0.621	22.76	32.13
GOLDHAWK DRIVE	206A	206A	205A	12	<u> </u>		0.69	39.6	2584.2	3.50	36.60	0.00		0.00	0.00	0.00	0.69	43.47	12.17	48.78	70.84	106.61	375	0.15	0.621	22.07	31.15
GOLDHAWK DRIVE	205A	205A	110A	5	<u>├ </u>	-	0.44	16.5	2600.7	3.49	36.81	0.00	+	0.00	0.00	0.00	0.44	43.91	12.29	49.11	70.84	100.61	3/5	0.15	0.621	21.73	30.68
Design Parameters:		1	1	Notes:	II		1	1	1	Designed:	1	J.I.M.	1	No.				Revisio	n	1		1		1	Date		
				1. Manning	s coefficient (n) =		0.013							1.			Subm	ission No. 1 to	City of Ottawa						2013-08-29		
Residential		ICI Areas		2. Demand	(per capita):	350	L/day							2.			Subm	ission No. 2 to	City of Ottawa						2014-01-22		
SF 3.3 p/p/u			Peak Factor	3. Infiltratio	n allowance:	0.28	L/s/Ha			Checked:		Р.К.		3.			Subm	ission No. 3 to	City of Ottawa						2014-08-22		
TH/SD 2.5 p/p/u	INST 50,0	00 L/Ha/day	1.5	4. Resident	al Peaking Factor:	(14/(4+DAO E))								4. F			Subm	ission No. 4 to	City of Ottawa						2015-06-15		
Low 60 n/n/Ha	IND 25.0	00 L/Ha/day 00 L/Ha/day	1.5 MOF Chart		where P = nonulation	in thousands				Dwg Refere	ence.	27970 - 501 5014 5016	2	э. 6			nauc 	mission for MC	DE Annroval						2010-11-10		
Med 75 p/p/Ha		co Lyniay ddy	MOL CIUIT							Sw5. Neiele		2, 3, 0 - 301, 301A, 301E		7.			Resi	ubmission for M	IOE Approval				1		2017-02-10		
High 90 p/p/Ha														F	ile Reference:				Date:				-		Sheet No:		
											File Reference: Date: Sneet No: 27970.5.7.1 2017-07-14 3 of 4																

SANITARY SEWER DESIGN SHEET

IBI Group 400-333 Preston Street Ottawa, Ontario

K1S 5N4

	100171011						F	RESIDENTIAL								ICI AREAS				INFILT	RATION ALLO	WANCE	TOTAL	I		PROP	OSED SEWER	DESIGN		
	LOCATION				UNIT	TYPES		AREA	POPU	ATION	PEAK	PEAK			ARE	A (Ha)			PEAK	ARE	A (Ha)	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAI	LABLE
CTREET	4854 18	FROM	то				4.07	(11.)		C 1114	FACTOR	FLOW	INSTITU	UTIONAL	COMM	IERCIAL	INDUS	STRIAL	FLOW			(1.1.)			()	((0()	(full)	CAP	ACITY
SIREEI	AREA ID	МН	МН	51-	SD	ін	APT	(на)	IND	COIVI		(L/s)	IND	CUM	IND	CUM	IND	CUM	(L/s)	IND	COM	(L/S)	(L/S)	(L/S)	(m)	(mm)	(%)	(m/s)	L/s	(%)
																							0.00							
	LSPS	Allov	wance					0.00	0.0	0.0													108.00							
	STITTSVILLE 6 PS		110A					0.00	0.0	0.0				0.00		0.00		0.00	0.00				84.00							
Future Street	INST.3	BLKHD	110A					0.00	0.0	0.0			2.47	2.47		0.00		0.00	2.14											
	PARK4	BLKHD	110A					0.83	0.0	0.0				0.00		0.00		0.00	0.00											
	PARK5	BLKHD	110A					1.04	0.0	0.0				0.00		0.00		0.00	0.00											
	RES.9	BLKHD	110A					34.81	2610.8	2610.8				0.00		0.00		0.00	0.00											
	RES.7	BLKHD	110A					4.24	318.0	318.0				0.00		0.00		0.00	0.00											
	RES.13	BLKHD	110A					2.22	133.2	133.2				0.00		0.00		0.00	0.00											
	RES.12	BLKHD	110A					43.89	2633.4	2633.4				0.00		0.00		0.00	0.00											
	INST.4	BLKHD	110A					0.00	0.0	0.0			2.44	2.44		0.00		0.00	2.12											
	COMM.	BLKHD	110A					0.00	0.0	0.0				0.00	0.63	0.63		0.00	0.55											
	HYD.4	BLKHD	110A					3.06	0.0	0.0				0.00		0.00		0.00	0.00											
	RES.8	BLKHD	110A					2.30	172.5	172.5				0.00		0.00		0.00	0.00											
	HYD.5	BLKHD	110A					5.20	0.0	0.0				0.00		0.00		0.00	0.00											
Future Street	RES.11	BLKHD	110A					6.91	414.6	414.6				0.00		0.00		0.00	0.00											
	PARK6	BLKHD	110A					1.19	0.0	0.0				0.00		0.00		0.00	0.00									ļ/		
	RES.10	BLKHD	110A					1.92	115.2	115.2				0.00		0.00		0.00	0.00									ļ/		
	HYD.3	BLKHD	110A					6.31	0.0	0.0				0.00		0.00		0.00	0.00									ļ/		
																												ļ/		
TOT	AL	BLKHD	110A					113.92		6397.7	3.14	81.49		4.91		0.63		0.00	4.81	119.46	119.46	33.45	311.74	320.28	24.02	600	0.25	1.097	8.54	2.67
																												↓ /		
						-																						<u> </u>		
GOLDHAWK DRIVE		110A	109A					0.00	0.0	9779.6	2.96	117.43		14.32		0.63		0.00	12.98	0.00	186.59	52.25	374.66	378.96	61.28	600	0.35	1.298	4.30	1.14
GOLDHAWK DRIVE	110A	1101A	1092A	1				0.18	3.3	3.3	4.00	0.05		44.33		0.62			43.00	0.18	0.18	0.05	0.10	28.63	61.28	200	0.70	0.883	28.52	99.64
GOLDHAWK DRIVE	100.4	109A	108A	5				0.00	0.0	9782.9	2.96	117.47		14.32		0.63		0.00	12.98	0.00	186.77	52.30	374.74	378.96	57.50	600	0.35	1.298	4.22	1.11
GOLDHAWK DRIVE	109A	1091A	1082A	5				0.32	16.5	10.5	4.00	0.27		14.33		0.63		0.00	12.09	0.32	187.00	0.09	0.36	28.03	57.50	200	0.70	0.883	28.27	98.75
	1094	1084	1072	4		ł		0.00	12.2	9799.4 12.2	2.90	0.21		14.52		0.05	-	0.00	12.98	0.00	187.09	52.39	0.20	378.90	53.32	200	0.35	1.290	3.90	1.05
	1004	1081A	1072A	-		ł		0.30	13.2	0912.6	4.00	117 77		14.22		0.62	-	0.00	12.00	0.30	197.20	52 47	275 22	20.03	62.04	200	0.70	1 209	20.33	0.00
GOLDHAWK DRIVE	1074	1074	10624	7				0.00	23.1	22.1	2.50	0.37		0.00		0.03		0.00	0.00	0.00	0.31	0.09	0.46	28.63	62.94	200	0.33	0.883	28 17	98.39
GOLDHAWK DRIVE	10/A	10/16	1054	,				0.01	0.0	9835.7	2.00	118.01		14.32		0.63		0.00	12.98	0.01	187 70	52.56	375 54	378.96	60.09	600	0.70	1 298	3 / 2	0.90
GOLDHAWK DRIVE	1064	10614	10524	2		-		0.00	6.6	6.6	4.00	0.11		0.00		0.00		0.00	0.00	0.00	0.24	0.07	0.17	28.63	60.09	200	0.35	0.883	28.45	99.39
GOLDHAMR DRIVE	1004	1001A	10524	-		-		0.24	0.0	0.0	4.00	0.11		0.00		0.00		0.00	0.00	0.24	0.24	0.07	0.17	20.05	00.05	200	0.70	0.005	20.45	55.55
																									1			├─── ┩		
		105A	104A					0.00	0.0	10558.3	2.93	125.37		14.32		0.63		0.00	12.98	0.00	200.47	56.13	386.48	389.64	72.85	600	0.37	1.335	3.16	0.81
GOLDHAWK DRIVE	105A	1051A	1042A	7		1		0.45	23.1	23.1	4.00	0.37		1		1				0.45	0.45	0.13	0.50	27.59	72.85	200	0.65	0.851	27.09	98.19
GOLDHAWK DRIVE		104A	103A					0.00	0.0	10581.4	2.93	125.60		14.32		0.63		0.00	12.98	0.00	200.92	56.26	386.84	389.64	48.77	600	0.37	1.335	2.80	0.72
GOLDHAWK DRIVE	104A	1041A	1032A	9				0.47	29.7	29.7	4.00	0.48							0.00	0.47	0.47	0.13	0.61	27.59	48.77	200	0.65	0.851	26.97	97.78
GOLDHAWK DRIVE		103A	102A			1		0.00	0.0	10611.1	2.93	125.90		14.32		0.63		0.00	12.98	0.00	201.39	56.39	387.27	389.64	45.00	600	0.37	1.335	2.37	0.61
GOLDHAWK DRIVE	103A, HYD1	1031A	1021A	6				2.01	19.8	19.8	4.00	0.32							0.00	2.01	2.01	0.56	0.88	27.59	45.00	200	0.65	0.851	26.70	96.80
GOLDHAWK DRIVE	102A	102A	FT-24 (EX)					0.12	0.0	10630.9	2.93	126.10		14.32		0.63		0.00	12.98	0.12	203.52	56.99	388.07	389.64	102.59	600	0.37	1.335	1.57	0.40
HYDRO EASEMENT		FT-24 (EX)	FT-23 (EX)					0.00	0.0	10650.7	2.93	126.30		14.32		0.63		0.00	12.98	0.00	205.53	57.55	388.83	400.03	107.50	600	0.39	1.371	11.20	2.80
Design Parameters:				Notes:							Designed:		J.I.M.			No.					Revision					Date				
				1. Mannings	coefficient ((n) =		0.013								1.				Submis	sion No. 1 to C	ity of Ottawa						2013-08-29		
Residential		ICI Areas		2. Demand	(per capita):		350	L/day								2.				Submis	sion No. 2 to C	ity of Ottawa						2014-01-22		
SF 3.3 p/p/u			Peak Factor	3. Infiltratio	n allowance:		0.28	L/s/Ha			Checked:		P.K.			3.				Submis	sion No. 3 to C	ity of Ottawa						2014-08-22		
TH/SD 2.5 p/p/u	INST 50,000	L/Ha/day	1.5	4. Residenti	al Peaking Fa	actor:										4.				Submis	sion No. 4 to C	ity of Ottawa						2015-06-15		
APT 1.8 p/p/u	COM 50,000	L/Ha/day	1.5		Harmon For	mula = 1+(14	/(4+P^0.5))									5.				Submis	sion No. 5 to C	ity of Ottawa						2016-11-10		
Low 60 p/p/Ha	IND 35,000	L/Ha/day	MOE Chart		where P = po	opulation in	thousands				Dwg. Refere	ence:	27970 - 501	, 501A, 501B		6.				Subr	nission for MO	E Approval						2017-02-10		
Med 75 p/p/Ha																7.				Resub	mission for M	DE Approval						2017-07-14		
High 90 p/p/Ha																F	ile Reference	e:				Date:						Sheet No:		
											27970.5.7.1					2017-07-14						4 of 4								

SANITARY SEWER DESIGN SHEET

APPENDIX D

Stormwater Servicing Documents

STORM SEWER CALCULATION SHEET (RATIONAL METHOD)

Local Roads Return Frequency = 2 years

	0.010		Collector	Roads Retu	urn Frequency = 5 years	8																							100	JU	UW	U
Manning	0.01.	5	Arterial I	Roads Retur	n Frequency = 10 years	5			ADE	A (Ha)								1		E	LOW			1					T 4			
	LOC	ATION		2	VEAR		5	VEAR	And	.A (11a)	10 \	VEAR		r –	100	VEAR		Time of	Intensity	Intensity	Intensity	Intensity	Peak Flow	DIA (mm)	DIA (mm)	TYPE	SI OPE	LENGTH		VELOCIT	TIME OF	E RATIO
			AREA	-	Indiv Accum	AREA	1	Indiv	Accum	AREA	10	Indiv	Accum	AREA	100	Indiv	Accum	Conc	2 Year	5 Year	10 Year	100 Year	I Cak I low	Dirt. (iiiii)	DEA: (mm)	1111	BLOIL	LENGIN	en nem	LLOCH	I LUIL OI	
Location	From Nod	e To Node	(Ha)	R	2.78 AC 2.78 AC	(Ha)	R	2.78 AC	2.78 AC	(Ha)	R	2.78 AC	2.78 AC	(Ha)	R	2.78 AC	2.78 AC	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	Q (1/s)	(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	LOW (mi	in Q/Q full
PRIVAT	ROAD 3					_																								<u> </u>		
FOUNDA	TION FLOW	(0.45 L/s/u	unit)				_		_									10.00				170 50	8		050	51/0		=	10.0100	0.0500		
	203	204	0.4 0.05															10.00	/6.81	104.19	122.14	1/8.56	8	250	250	PVC	0.50	/1.0	42.0499	0.8566	1.3814	0.190
TO PRIV	ATE ROAL	2, Pipe 2	04 - 205	_				-										11.38					8									
						0.01	0.85	0.02	0.02								1			1											1	
						0.09	0.85	0.21	0.24								1			1											1	
						0.13	0.85	0.31	0.54																							
						0.15	0.85	0.35	0.90																							
	210	204				0.18	0.85	0.43	1.32									10.00	76.81	104.19	122.14	178.56	138	450	450	CONC	0.40	3.0	180.3170	1.1338	0.0441	0.765
To PRIV	ATE ROAD	2, Pipe 2	04 - 205						1.32									10.04														
PRIVAT	E ROAD 2						_																									
FOUNDA	FION FLOW	(0.45 L/s/u	unit)			0.00	0.00	0.00	0.00														2									
						0.01	0.85	0.02	0.02																							
	-	-				0.01	0.85	0.02	0.05			-	-			-		-														
	007	000		_		0.03	0.76	0.06	0.11							-		10.00	70.04	101.10	100.14	170 50	0.4	000	000	DV/O	0.05	04.5	57.0000	0.0000	0.0407	0.440
	207	208				0.04	0.85	0.09	0.21							-		10.00	76.81	104.19	122.14	1/8.56	24	300	300	PVC	0.35	31.5	57.2089	0.8093	0.6487	0.413
10 SERV		-1pe 208 -	EX. IVIH I	29			-		0.21				-					10.65			-		2					-			-	
		0.451/s/	unit)																				0						1			
I CONDA	201	202	, int)															10.00	76.81	10/ 19	122.14	178 56	9	250	250	PVC	0.45	73.0	39 8920	0.8127	1 / 971	0.214
	202	202										1						11.50	71.50	96.90	113 55	165.94	9	250	250	PVC	0.45	33.0	39,8920	0.8127	0.6768	0.214
Contribu	ion From F		BOAD 3	Pine 203 -	204				0.00									11.38	71.00	00.00	110.00	100.04	8	200	200	1.40	0.40	00.0	00.0020	0.0127	0.0700	0.214
Contribu	ion From F		ROAD 3.	Pipe 210 -	204				1.32									10.04					Ű							1		-
Continou	204	205	10/15 0, 1					0.00	1.32									12.17	69.36	93.96	110.09	160.86	141	450	450	CONC	0.35	31.5	168.6711	1.0605	0.4950	0.835
	205	206						0.00	1.32									12.67	67.88	91.93	107.71	157.36	138	450	450	CONC	0.30	10.0	156,1591	0.9819	0.1697	0.885
FOUNDA	TION FLOW	(0.45 L/s/u	unit)					0.00	1.32														2									
	206	208						0.00	1.32									12.84	67.39	91.26	106.91	156.19	139	450	450	CONC	0.35	29.5	168.6711	1.0605	0.4636	0.825
To SER\	ICING 1, F	- 208 -	EX. MH 1	29					1.32									13.30					18									
SERVIC	NG 1																															
Contribu	ion From F	PRIVATE P	ROAD 2, I	Pipe 206 -	208				1.32									13.30					18									
Contribu	ion From I	PRIVATE	ROAD 2, I	Pipe 207 -	208		_		0.21									10.65					2									
	208	EX. MH 1	129				_	0.00	1.53									13.30	66.09	89.48	104.81	153.11	157	675	675	CONC	0.12	11.0	291.1883	0.8137	0.2253	0.540
PRIVAT	ROAD 1	10 15 1 1-1						0.00	0.00														-									
FOUNDA	100 FLOW	104 (0.45 L/S/L	init)				_	0.00	0.00									10.00	70.01	104.10	100.14	170.50	5	050	050	DV/O	0.45	70.0	00.0000	0.0107	1 0000	0.110
	103	104 2ipo 104	105				_	0.00	0.00									10.00	/6.81	104.19	122.14	1/8.56	5	250	250	PVC	0.45	79.0	39.8920	0.8127	1.6202	0.113
10 SERV		-ipe 104 -	105	+	+ +	+		+	0.00	+		-	-	<u> </u>		-	<u> </u>	11.02		+	+		5					+		+	+	+
		0.451/6/	unit)	+		-	-	0.00	0.00	+	 	+	1			+	 	+		+	+	 	٩					+		+	+	+
. SONDA	101	102						0.00	0.00	1		-						10.00	76.81	104 10	122.14	178 56	9	250	250	PVC.	0.50	77.0	42 0400	0.8566	1 4981	0.214
	102	104		1		+		0.00	0.00	1	1		OF	ISSION	14.		1	11.50	71.49	96.89	113.55	165.93	9	250	250	PVC	0.45	37.5	39.8920	0.8127	0.7691	0.226
To SERV	ICING 3.	Pipe 104 -	105	1					0.00	1	1		opur		YA		1	12.27					9							1		
				-			- 1			-			-			1 1		· · · · ·										-	1			

Rainfall Intensity (mm/h) Runoff Coefficient															Dwg. Refere	ence:	Dwg 15	File Ref:		21-1261	Date: 13 Jan	2022	Sheet No. SHEET	1 OF 1
= Peak Flow in Litres per second (L/s) = Areas in hectares (ha)				1) Ottawa Rainfall-Intensity Curve 2) Min. Velocity = 0.80 m/s											Checked:	SI	LM	LOCATIC	DN:		City of	Ottawa		
finitions: = 2.78 AIR, where				Notes:											Designed:	GG	GG	PROJECT	:		BOBALINK	DRIVE - B	-OCK 343	
						944																		<u> </u>
105 MH 202 (B.O.)			0.00	1.06		105	a (, , , ,			12.29	69.01	93.48	109.53	160.03	113	450	450	PVC	0.25	10.5	142.5531	0.8963	0.1952	0.792
ontribution From SERVICING 3, Pipe 104 - 105				0.00			2.006	1		12.29					14									
107 105	0.15	0.85	0.35	1.06		NCE	OFON			10.00	76.81	104.19	122.14	178.56	111	450	450	CONC	0.25	3.0	142.5531	0.8963	0.0558	0.777
	0.13	0.85	0.31	0.71		Ola	Tie																	i
	0.12	0.85	0.28	0.40	12			\$`																1
	0.05	0.85	0.12	0.12		2022	-01-15/	.0/																1
ERVICING 3							17		1															1
						1001	0005	-																
SERVICING 3, Pipe 105 - MH 202 (B.O.)				0.00	-	1001	86523		R.	12.29					14									1
104 105			0.00	0.00	2	S. L. W	CUUIC	R	1	12.27	69.07	93.57	109.63	160.19	14	300	300	PVC	1.95	2.5	135.0353	1.9104	0.0218	0.100
Intribution From PRIVATE ROAD 1, Pipe 103 - 104				0.00	Ш, Г		FDDICK	'n	4	11.62					5									I
Intribution From PRIVATE ROAD 1, Pipe 102 - 104				0.00	21	10110	ALC: NO.	5	1	12.27					9									1
ERVICING 3					8	NGA	Jun	141	1															1
							11 11 12																	

Drainage Area

Area ID	DCB 1	
Area	0.05 ha	
С	0.85 Ration	al Method runoff coefficient
t _c	10.0 min	
Cascading Flow	52.2 L/s	< From CB 3

	5-year	100-year
i	104.2	178.6 mm/hr
Q	12.3	21.1 L/s
Q w/ Cascading	64.5	73.3 L/s

Grate Capacity

Ponding Depth	0.15 m	
Single CB Capacity	120 L/s	OK
Twin CB Capacity	169 L/s	OK

Depth	OPSD 400.01	
Ĥ	SINGLE * TWIN *	
(m)	(L/s)	(L/s)
0	0	0
0.01	1	1
0.02	2	3
0.03	4	5
0.04	7	9
0.05	11	16
0.06	16	27
0.07	20	36
0.08	36	54
0.09	48	71
0.1	61	91
0.11	73	109
0.12	86	127
0.13	99	140
0.14	109	155
0.15	120	169
0.16	129	183
0.17	136	196
0.18	145	211
0.19	150	228
0.2	156	243
0.21	161	259
0.22	167	275
0.23	172	291
0.24	176	307
0.25	181	322
0.26	186	337
0.27	189	354
0.28	194	371
0.29	199	387
0.3	202	403

CB Lead Capacity

Upstream Flow	0 L/s	
Diameter	300 mm	
Slope	1.00 %	
A _{hydraulic}	0.071 m ²	
R	0.075 m	
CB Lead Capacity	96.7 L/s	OK

Cascading Flow

Cascading Flow NO CASCADING FLOW Flow Directed

Drainage Area

Area ID	DCB 2	
Area	0.25 ha	
С	0.85 Rational Method runoff coefficient	(
t _c	10.0 min	
Cascading Flow	0.0 L/s	

	5-year	100-year
i	104.2	178.6 mm/hr
Q	61.5	105.4 L/s
Q w/ Cascading	61.5	105.4 L/s

Grate Capacity

Ponding Depth	0.11 m	
Single CB Capacity	73 L/s	CHECK
Twin CB Capacity	109 L/s	OK

Depth	OPSD 400.01	
H	SINGLE *	TWIN *
(m)	(L/s)	(L/s)
0	0	0
0.01	1	1
0.02	2	3
0.03	4	5
0.04	7	9
0.05	11	16
0.06	16	27
0.07	20	36
0.08	36	54
0.09	48	71
0.1	61	91
0.11	73	109
0.12	86	127
0.13	99	140
0.14	109	155
0.15	120	169
0.16	129	183
0.17	136	196
0.18	145	211
0.19	150	228
0.2	156	243
0.21	161	259
0.22	167	275
0.23	172	291
0.24	176	307
0.25	181	322
0.26	186	337
0.27	189	354
0.28	194	371
0.29	199	387
0.3	202	403

CB Lead Capacity

Upstream Flow	0 L/s	
Diameter	375 mm	
Slope	0.50 %	
A _{hydraulic}	0.110 m ²	
R	0.094 m	
CB Lead Capacity	124.0 L/s	OK

Cascading Flow

Cascading Flow NO CASCADING FLOW Cascading Flow Directed To

Drainage Area

Area ID	CB 3
Area	0.15 ha
С	0.85 Rational Method runoff coefficient
t _c	10.0 min
Cascading Flow	0.0 L/s

	5-year	100-year
i	104.2	178.6 mm/hr
Q	36.9	63.2 L/s
Q w/ Cascading	36.9	63.2 L/s

Grate Capacity

Ponding Depth	0.05 m	
Single CB Capacity	11 L/s	CHECK
Twin CB Capacity	16 L/s	CHECK

Depth	OPSD 400.01	
Ĥ	SINGLE * TWIN *	
(m)	(L/s)	(L/s)
0	0	0
0.01	1	1
0.02	2	3
0.03	4	5
0.04	7	9
0.05	11	16
0.06	16	27
0.07	20	36
0.08	36	54
0.09	48	71
0.1	61	91
0.11	73	109
0.12	86	127
0.13	99	140
0.14	109	155
0.15	120	169
0.16	129	183
0.17	136	196
0.18	145	211
0.19	150	228
0.2	156	243
0.21	161	259
0.22	167	275
0.23	172	291
0.24	176	307
0.25	181	322
0.26	186	337
0.27	189	354
0.28	194	371
0.29	199	387
0.3	202	403

CB Lead Capacity

Upstream Flow	0 L/s	
Diameter	200 mm	
Slope	1.00 %	
A _{hydraulic}	0.031 m ²	
R	0.050 m	
CB Lead Capacity	32.8 L/s	CHECK
Cascading Flow		

Cascading Flow

Cascading Flow	52.2 L/s
Flow Directed	DCB 1

Drainage Area

Area ID	DCB 5	
Area	0.13 ha	
С	0.85 Rationa	I Method runoff coefficient
t _c	10.0 min	
Cascading Flow	26.9 L/s	<- From CB 8

	5-year	100-year
i	104.2	178.6 mm/hr
Q	32.0	54.8 L/s
Q w/ Cascading	58.9	81.8 L/s

Grate Capacity

Ponding Depth	0.15 m	
Single CB Capacity	120 L/s	OK
Twin CB Capacity	169 L/s	OK

Depth	OPSD 400.01	
н	SINGLE * TWIN *	
(m)	(L/s)	(L/s)
0	0	0
0.01	1	1
0.02	2	3
0.03	4	5
0.04	7	9
0.05	11	16
0.06	16	27
0.07	20	36
0.08	36	54
0.09	48	71
0.1	61	91
0.11	73	109
0.12	86	127
0.13	99	140
0.14	109	155
0.15	120	169
0.16	129	183
0.17	136	196
0.18	145	211
0.19	150	228
0.2	156	243
0.21	161	259
0.22	167	275
0.23	172	291
0.24	176	307
0.25	181	322
0.26	186	337
0.27	189	354
0.28	194	371
0.29	199	387
0.3	202	403

CB Lead Capacity

Upstream Flow	0 L/s	
Diameter	375 mm	
Slope	1.00 %	
A _{hydraulic}	0.110 m ²	
R	0.094 m	
CB Lead Capacity	175.3 L/s	ОК

Cascading Flow

Cascading Flow NO CASCADING FLOW Cascading Flow Directed To

Drainage Area

Area ID	DCB 6
Area	0.19 ha
С	0.85 Rational Method runoff coefficient
t _c	10.0 min
Cascading Flow	0.0 L/s

	5-year	100-year
i	104.2	178.6 mm/hr
Q	46.7	80.1 L/s
Q w/ Cascading	46.7	80.1 L/s

Grate Capacity

Ponding Depth	0.25 m	
Single CB Capacity	181 L/s	OK
Twin CB Capacity	322 L/s	OK

Depth	OPSD 400.01	
н	SINGLE * TWIN *	
(m)	(L/s)	(L/s)
0	0	0
0.01	1	1
0.02	2	3
0.03	4	5
0.04	7	9
0.05	11	16
0.06	16	27
0.07	20	36
0.08	36	54
0.09	48	71
0.1	61	91
0.11	73	109
0.12	86	127
0.13	99	140
0.14	109	155
0.15	120	169
0.16	129	183
0.17	136	196
0.18	145	211
0.19	150	228
0.2	156	243
0.21	161	259
0.22	167	275
0.23	172	291
0.24	176	307
0.25	181	322
0.26	186	337
0.27	189	354
0.28	194	371
0.29	199	387
0.3	202	403

CB Lead Capacity

Upstream Flow	0 L/s	
Diameter	300 mm	
Slope	1.00 %	
A _{hydraulic}	0.071 m ²	
Ŕ	0.075 m	
CB Lead Capacity	96.7 L/s	OK

Cascading Flow

Cascading Flow NO CASCADING FLOW Cascading Flow Directed To

Drainage Area

Area ID	DCB 7
Area	0.15 ha
С	0.85 Rational Method runoff coefficient
t _c	10.0 min
Cascading Flow	0.0 L/s

	5-year	100-year
i	104.2	178.6 mm/hr
Q	36.9	63.2 L/s
Q w/ Cascading	36.9	63.2 L/s

Grate Capacity

Ponding Depth	0.09 m	
Single CB Capacity	48 L/s	CHECK
Twin CB Capacity	71 L/s	OK

Depth	OPSD 400.01		
н	SINGLE *	TWIN *	
(m)	(L/s)	(L/s)	
0	0	0	
0.01	1	1	
0.02	2	3	
0.03	4	5	
0.04	7	9	
0.05	11	16	
0.06	16	27	
0.07	20	36	
0.08	36	54	
0.09	48	71	
0.1	61	91	
0.11	73	109	
0.12	86	127	
0.13	99	140	
0.14	109	155	
0.15	120	169	
0.16	129	183	
0.17	136	196	
0.18	145	211	
0.19	150	228	
0.2	156	243	
0.21	161	259	
0.22	167	275	
0.23	172	291	
0.24	176	307	
0.25	181	322	
0.26	186	337	
0.27	189	354	
0.28	194	371	
0.29	199	387	
0.3	202	403	

CB Lead Capacity

Upstream Flow	11 L/s	<- From CB 8	
Diameter	300 mm		
Slope	1.00 %		
A hydraulic	0.071 m ²		
R	0.075 m		
CB Lead Capacity	96.7 L/s	OK	

Cascading Flow

Cascading Flow NO CASCADING FLOW Cascading Flow Directed To

Drainage Area

Area ID	CB 8	
Area	0.09 ha	
С	0.85 Rational	Method runoff coefficient
t _c	10.0 min	
Cascading Flow	0.0 L/s	<- From CB 7

	5-year	100-year	
i	104.2	178.6	mm/hr
Q	22.1	37.9	L/s
Q w/ Cascading	22.1	37.9	L/s

Grate Capacity

Ponding Depth	0.05 m	
Single CB Capacity	11 L/s	CHECK
Twin CB Capacity	16 L/s	CHECK

Depth	OPSD 400.01	
н	SINGLE *	TWIN *
(m)	(L/s)	(L/s)
0	0	0
0.01	1	1
0.02	2	3
0.03	4	5
0.04	7	9
0.05	11	16
0.06	16	27
0.07	20	36
0.08	36	54
0.09	48	71
0.1	61	91
0.11	73	109
0.12	86	127
0.13	99	140
0.14	109	155
0.15	120	169
0.16	129	183
0.17	136	196
0.18	145	211
0.19	150	228
0.2	156	243
0.21	161	259
0.22	167	275
0.23	172	291
0.24	176	307
0.25	181	322
0.26	186	337
0.27	189	354
0.28	194	371
0.29	199	387
0.3	202	403

CB Lead Capacity

Upstream Flow Diameter Slope A _{hydraulic}	0 L/s 200 mm 1.00 % 0.031 m ²	
R	0.050 m	
CB Lead Capacity	32.8 L/s	CHECK
Cascading Flow		
Cascading Flow Cascading Flow Directed To	26.9 DCB 5	

Drainage Area

Area ID	CB 10
Area	0.04 ha
С	0.85 Rational Method runoff coefficient
t _c	10.0 min
Cascading Flow	0.0 L/s

	5-year	100-year
i	104.2	178.6 mm/hr
Q	9.8	16.9 L/s
Q w/ Cascading	9.8	16.9 L/s

Grate Capacity

Ponding Depth	0.07 m	
Single CB Capacity	20 L/s	OK
Twin CB Capacity	36 L/s	OK

Depth	OPSD 400.01	
н	SINGLE * TWIN *	
(m)	(L/s)	(L/s)
0	0	0
0.01	1	1
0.02	2	3
0.03	4	5
0.04	7	9
0.05	11	16
0.06	16	27
0.07	20	36
0.08	36	54
0.09	48	71
0.1	61	91
0.11	73	109
0.12	86	127
0.13	99	140
0.14	109	155
0.15	120	169
0.16	129	183
0.17	136	196
0.18	145	211
0.19	150	228
0.2	156	243
0.21	161	259
0.22	167	275
0.23	172	291
0.24	176	307
0.25	181	322
0.26	186	337
0.27	189	354
0.28	194	371
0.29	199	387
0.3	202	403

CB Lead Capacity

Upstream Flow	0 L/s	
Diameter	200 mm	
Slope	1.00 %	
A hydraulic	0.031 m ²	
R	0.050 m	
CB Lead Capacity	32.8 L/s	ОК

Cascading Flow

Cascading Flow NO CASCADING FLOW Cascading Flow Directed To

Drainage Area

Area ID	CB 11
Area	0.01 ha
С	0.85 Rational Method runoff coefficient
t _c	10.0 min
Cascading Flow	0.0 L/s

	5-year	100-year
i	104.2	178.6 mm/hr
Q	2.5	4.2 L/s
Q w/ Cascading	2.5	4.2 L/s

Grate Capacity

Ponding Depth	0.07 m	
Single CB Capacity	20 L/s	OK
Twin CB Capacity	36 L/s	OK

Depth	OPSD 400.01	
н	SINGLE * TWIN *	
(m)	(L/s)	(L/s)
0	0	0
0.01	1	1
0.02	2	3
0.03	4	5
0.04	7	9
0.05	11	16
0.06	16	27
0.07	20	36
0.08	36	54
0.09	48	71
0.1	61	91
0.11	73	109
0.12	86	127
0.13	99	140
0.14	109	155
0.15	120	169
0.16	129	183
0.17	136	196
0.18	145	211
0.19	150	228
0.2	156	243
0.21	161	259
0.22	167	275
0.23	172	291
0.24	176	307
0.25	181	322
0.26	186	337
0.27	189	354
0.28	194	371
0.29	199	387
0.3	202	403

CB Lead Capacity

Upstream Flow	16.9 L/s	< From CB 10
Diameter	200 mm	
Slope	1.00 %	
A _{hydraulic}	0.031 m ²	
R	0.050 m	
CB Lead Capacity	32.8 L/s	OK

Cascading Flow

Cascading Flow NO CASCADING FLOW Cascading Flow Directed To

Drainage Area

Area ID	CB 13
Area	0.01 ha
С	0.85 Rational Method runoff coefficient
t _c	10.0 min
Cascading Flow	0.0 L/s

	5-year	100-year
i	104.2	178.6 mm/hr
Q	2.5	4.2 L/s
Q w/ Cascading	2.5	4.2 L/s

Grate Capacity

Ponding Depth	0.04 m	
Single CB Capacity	7 L/s	OK
Twin CB Capacity	9 L/s	OK

Depth	OPSD 400.01	
Ĥ	SINGLE * TWIN *	
(m)	(L/s)	(L/s)
0	0	0
0.01	1	1
0.02	2	3
0.03	4	5
0.04	7	9
0.05	11	16
0.06	16	27
0.07	20	36
0.08	36	54
0.09	48	71
0.1	61	91
0.11	73	109
0.12	86	127
0.13	99	140
0.14	109	155
0.15	120	169
0.16	129	183
0.17	136	196
0.18	145	211
0.19	150	228
0.2	156	243
0.21	161	259
0.22	167	275
0.23	172	291
0.24	176	307
0.25	181	322
0.26	186	337
0.27	189	354
0.28	194	371
0.29	199	387
0.0	202	400

0.3202403* From MTO Drainage Management Manual (1997) Design Chart 4.19

CB Lead Capacity

6.6 L/s	< 5-Yr Flow from CB 12
200 mm	
1.00 %	
0.031 m ²	
0.050 m	
32.8 L/s	ОК
	6.6 L/s 200 mm 1.00 % 0.031 m ² 0.050 m 32.8 L/s

Cascading Flow

Cascading Flow NO CASCADING FLOW Flow Directed

Target Flow Rate

Q 133.00 L/s

L/s -- Per CRT Phase 1 Design Brief prepared by IBI dated July 2017

Estimate Flow from Foundation Drainage

Groundwater flow rate
Unit Count0.45 L/s/home
46(per Ottawa Sewer Design Guidelines 5.4.7)Q20.7 L/s

Estimated Post Development Peak Flow from Unattenuated Areas

Area EX 149-128	0.05
С	0.68
Area CB 12	0.03 < Assume drainage to CB 12 uncontrolled, CB is not at a low point
С	0.76

Total Area 0.08 ha

C 0.71 Rational Method runoff coefficient

	5-year					100-year				
t _c	i	Q _{actual}	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual} *	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10.0	104.2	16.4	16.4	0.0	0.0	178.6	35.2	35.2	0.0	0.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas

Area ID210-204Available Sub-surface Storage

Total Subsurface Storage (m³) 169.8 <-- Provided storage excludes storage volume below system invert

Stage Attenuated Areas Storage Summary

		Surface Storage			Surfa	Surface and Subsurface Storage			
	Stage	Ponding	h₀	delta d	V *	V _{acc} **	Q _{release} †	V _{drawdown}	
	(m)	(m²)	(m)	(m)	(m³)	(m ³)	(L/s)	(hr)	
Orifice INV	105.42		0.00			0.0	0.0	0.00	
Storage Chamber INV	106.15		0.73	0.73		0.0	38.3	0.00	
Storage Chamber SL	106.72		1.30	0.57	84.9	84.9	51.0	0.46	
StorageChamber OBV	107.29		1.88	0.57	84.9	169.8	61.1	0.77	

* V=Incremental storage volume

**V_{acc}=Total surface and sub-surface

145

 $\uparrow Q_{release}$ = Release rate calculated from orifice equation

Orifice Location

Total Area

С

MH 210 Dia

0.56 ha <--- Sum of Drainage to DCB 6, DCB 5, DCB 7, CB 8, CB 9

0.85 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

	5-year					100-year				
t _c	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	137.8	46.8	90.9	54.6	178.6	277.8	51.0	226.8	136.1
15	83.6	110.5	46.8	63.6	57.3	142.9	222.3	51.0	171.3	154.2
20	70.3	92.9	46.8	46.1	55.3	120.0	186.6	51.0	135.6	162.7
25	60.9	80.5	46.8	33.7	50.5	103.8	161.5	51.0	110.6	165.9
30	53.9	71.3	46.8	24.5	44.0	91.9	142.9	51.0	91.9	165.5
35	48.5	64.2	46.8	17.3	36.4	82.6	128.5	51.0	77.5	162.7
40	44.2	58.4	46.8	11.6	27.8	75.1	116.9	51.0	65.9	158.2
45	40.6	53.7	46.8	6.9	18.6	69.1	107.4	51.0	56.4	152.4
50	37.7	49.8	46.8	3.0	8.9	64.0	99.5	51.0	48.5	145.5
55	35.1	46.4	46.4	0.0	0.0	59.6	92.7	51.0	41.8	137.9
60	32.9	43.6	43.6	0.0	0.0	55.9	86.9	51.0	36.0	129.5
65	31.0	41.0	41.0	0.0	0.0	52.6	81.9	51.0	30.9	120.6
70	29.4	38.8	38.8	0.0	0.0	49.8	77.5	51.0	26.5	111.2
75	27.9	36.9	36.9	0.0	0.0	47.3	73.5	51.0	22.5	101.4
80	26.6	35.1	35.1	0.0	0.0	45.0	70.0	51.0	19.0	91.3
85	25.4	33.5	33.5	0.0	0.0	43.0	66.8	51.0	15.8	80.8
90	24.3	32.1	32.1	0.0	0.0	41.1	64.0	51.0	13.0	70.1
95	23.3	30.8	30.8	0.0	0.0	39.4	61.3	51.0	10.4	59.1
100	22.4	29.6	29.6	0.0	0.0	37.9	59.0	51.0	8.0	47.9
105	21.6	28.5	28.5	0.0	0.0	36.5	56.8	51.0	5.8	36.6
110	20.8	27.5	27.5	0.0	0.0	35.2	54.8	51.0	3.8	25.0

5-year Qattenuated	46.8 L/s	100-year Q _{attenuated}	61.1 L/s
5-year Max. Storage Required	57.3 m ³	100-year Max. Storage Required	165.9 m ³
Est. 5-year Storage Elevation	106.5 m	Est. 100-year Storage Elevation	107.3 m

Notes:

- Required storage volumes calculated using Q Release at the midpoint of the Storage tank

- Flow from the storage tank assumes maximum Q Release at the tank obvert

Area ID 207-208 Available Sub-surface Storage

Total Subsurface Storage (m³)

16.8 <-- Provided storage excludes storage volume below system invert

Stage Attenuated Areas Storage Summary

		Surface Storage			Surfa	Surface and Subsurface Storage			
	Stage	Ponding	h _o	delta d	V*	V _{acc} **	Q _{release} †	V _{drawdown}	
	(m)	(m²)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)	
Orifice INV	106.05		0.00			0.0	0.0	0.00	
Storage Chamber INV	106.70		0.65	0.65		0.0	9.6	0.00	
Storage Chamber SL	107.08		1.03	0.38	8.4	8.4	12.1	0.19	
Storage Chamber OBV	107.46		1.41	0.38	8.4	16.8	14.2	0.33	

* V=Incremental storage volume

**V_{acc}=Total surface and sub-surface

 $\dagger Q_{release}$ = Release rate calculated from orifice equation

Orifice Location

MH 207 Dia

75 <-- Sum of Drainage to CB 10, CB 11, CB 13 0.06 ha

Total Area С

0.85 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

	5-year					100-year				
t _c	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	14.8	14.8	0.0	0.0	178.6	29.8	12.1	17.7	10.6
15	83.6	11.8	11.8	0.0	0.0	142.9	23.8	12.1	11.7	10.5
20	70.3	10.0	10.0	0.0	0.0	120.0	20.0	12.1	7.9	9.5
25	60.9	8.6	8.6	0.0	0.0	103.8	17.3	12.1	5.2	7.8
30	53.9	7.6	7.6	0.0	0.0	91.9	15.3	12.1	3.2	5.8
35	48.5	6.9	6.9	0.0	0.0	82.6	13.8	12.1	1.7	3.5
40	44.2	6.3	6.3	0.0	0.0	75.1	12.5	12.1	0.4	1.0
45	40.6	5.8	5.8	0.0	0.0	69.1	11.5	11.5	0.0	0.0
50	37.7	5.3	5.3	0.0	0.0	64.0	10.7	10.7	0.0	0.0
55	35.1	5.0	5.0	0.0	0.0	59.6	9.9	9.9	0.0	0.0
60	32.9	4.7	4.7	0.0	0.0	55.9	9.3	9.3	0.0	0.0
65	31.0	4.4	4.4	0.0	0.0	52.6	8.8	8.8	0.0	0.0
70	29.4	4.2	4.2	0.0	0.0	49.8	8.3	8.3	0.0	0.0
75	27.9	4.0	4.0	0.0	0.0	47.3	7.9	7.9	0.0	0.0
80	26.6	3.8	3.8	0.0	0.0	45.0	7.5	7.5	0.0	0.0
85	25.4	3.6	3.6	0.0	0.0	43.0	7.2	7.2	0.0	0.0
90	24.3	3.4	3.4	0.0	0.0	41.1	6.9	6.9	0.0	0.0
95	23.3	3.3	3.3	0.0	0.0	39.4	6.6	6.6	0.0	0.0
100	22.4	3.2	3.2	0.0	0.0	37.9	6.3	6.3	0.0	0.0
105	21.6	3.1	3.1	0.0	0.0	36.5	6.1	6.1	0.0	0.0
110	20.8	2.9	2.9	0.0	0.0	35.2	5.9	5.9	0.0	0.0

14.2 L/s

10.6 m³

107.2 m

5-year Qattenuated	14.8 L/s	100-year Q _{attenuated}
5-year Max. Storage Required	0.0 m ³	100-year Max. Storage Required
Est. 5-year Storage Elevation	106.1 m	Est. 100-year Storage Elevation

Notes:

- Required storage volumes calculated using Q Release at the midpoint of the Storage tank

- Flow from the storage tank assumes maximum Q Release at the tank obvert

Summary of Release Rates and Storage Volumes

Control Area	5-year	5-year	100-Year	100-Year	100-Year
	Release	Required	Release	Required	Available
	Rate	Storage	Rate	Storage	Storage
	(L/s)	(m ³)	(L/s)	(m ³)	(m ³)
Foundation Drainage	20.7	0.0	20.7	0.0	0.0

Total	98.7	57.3	131.2	176.4	186.6
Attenutated Areas	61.6	57.3	75.3	176.4	186.6
Unattenuated Areas	16.4	0.0	35.2	0.0	0.0

Target Flow Rate

112.87 L/s CRT Phase 1 Blk 324 Design Brief prepared by IBI dated July 2021

Estimated Flow from Foundation Drainage

Q

Groundwater flow rate	0.45 L/s/home	(per Ottawa Sewer Design Guidelines 5.4.7)
Unit Count	30	
Q	13.5 L/s	

Estimated Post Development Peak Flow from Unattenuated Areas

Area EXT	0.01
С	0.2
Area EX138-148	0.02
С	0.52

Total Area 0.03 ha

C 0.41 Rational Method runoff coefficient

_		5-year					100-year				
ſ	t _c (min)	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} * (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)
- H	()	(,	(=,=)	(=,=)	(=,=,)	()	()	(=,=)	(=,=)	(=,=)	()
	10.0	104.2	3.6	3.6	0.0	0.0	178.6	7.7	7.7	0.0	0.0

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

Estimated Post Development Peak Flow from Attenuated Areas

107-105 Area ID Available Sub-surface Storage

Total Subsurface Storage (m³)

94.6 <-- Provided storage excludes storage volume below system invert

Stage Attenuated Areas Storage Summary

		Si	urface Stora	ge	Surfa	ace and Sub	surface Sto	rage
	Stage	Ponding	h _o	delta d	۷*	V _{acc} **	Q _{release} †	V _{drawdown}
	(m)	(m²)	(m)	(m)	(m³)	(m³)	(L/s)	(hr)
Orifice INV	104.72		0.00			0.0	0.0	0.00
Storage Chamber INV	105.55		0.83	0.83		0.0	54.0	0.00
Storage Chamber SL	106.31		1.59	0.76	47.3	47.3	74.7	0.18
Storage Chamber OBV	107.08		2.36	0.76	47.3	94.6	90.9	0.29

* V=Incremental storage volume

**V $_{acc} = Total \ surface \ and \ sub-surface$

 $\dagger Q_{release}$ = Release rate calculated from orifice equation

Orifice Location MH 107 Dia 167

Total Area

С

<-- Sum of Drainage to DCB 1, DCB 2, CB 3, CB 4 0.45 ha

0.85 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

	5-year					100-year				
t _c	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	110.7	65.8	44.9	26.9	178.6	223.2	74.7	148.5	89.1
15	83.6	88.8	65.8	23.0	20.7	142.9	178.6	74.7	103.9	93.5
20	70.3	74.6	65.8	8.8	10.6	120.0	149.9	74.7	75.2	90.2
25	60.9	64.7	64.7	0.0	0.0	103.8	129.8	74.7	55.1	82.6
30	53.9	57.3	57.3	0.0	0.0	91.9	114.8	74.7	40.1	72.2
35	48.5	51.5	51.5	0.0	0.0	82.6	103.2	74.7	28.5	59.8
40	44.2	46.9	46.9	0.0	0.0	75.1	93.9	74.7	19.2	46.1
45	40.6	43.2	43.2	0.0	0.0	69.1	86.3	74.7	11.6	31.3
50	37.7	40.0	40.0	0.0	0.0	64.0	79.9	74.7	5.2	15.6
55	35.1	37.3	37.3	0.0	0.0	59.6	74.5	74.5	0.0	0.0
60	32.9	35.0	35.0	0.0	0.0	55.9	69.9	69.9	0.0	0.0
65	31.0	33.0	33.0	0.0	0.0	52.6	65.8	65.8	0.0	0.0
70	29.4	31.2	31.2	0.0	0.0	49.8	62.2	62.2	0.0	0.0
75	27.9	29.6	29.6	0.0	0.0	47.3	59.1	59.1	0.0	0.0
80	26.6	28.2	28.2	0.0	0.0	45.0	56.2	56.2	0.0	0.0
85	25.4	27.0	27.0	0.0	0.0	43.0	53.7	53.7	0.0	0.0
90	24.3	25.8	25.8	0.0	0.0	41.1	51.4	51.4	0.0	0.0
95	23.3	24.8	24.8	0.0	0.0	39.4	49.3	49.3	0.0	0.0
100	22.4	23.8	23.8	0.0	0.0	37.9	47.4	47.4	0.0	0.0
105	21.6	22.9	22.9	0.0	0.0	36.5	45.6	45.6	0.0	0.0
110	20.8	22.1	22.1	0.0	0.0	35.2	44.0	44.0	0.0	0.0

5-year Qattenuated	65.8 L/s
5-year Max. Storage Required	26.9 m ³
Est. 5-year Storage Elevation	106.0 m

100-year Qattenuated 100-year Max. Storage Required Est. 100-year Storage Elevation

90.9 L/s 93.5 m³

107.1 m

Notes:

- Required storage volumes calculated using Q Release at the midpoint of the Storage tank

- Flow from the storage tank assumes maximum Q Release at the tank obvert

Summary of Release Rates and Storage Volumes

Control Area	5-year Release Rate (L/s)	5-year Required Storage (m ³)	100-Year Release Rate (L/s)	100-Year Required Storage (m ³)	100-Year Available Storage (m ³)
Foundation Drainage	13.5	0.0	13.5	0.0	0.0
Unattenuated Areas	3.6	0.0	7.7	0.0	0.0
Attenutated Areas	65.8	26.9	90.9	93.5	94.6
Total	82.9	26.9	112.0	93.5	94.6

	PROJECT	INFORMATION
--	---------	-------------

ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO	

BOBOLINK RIDGE - MH 207 OTTAWA, ONTARIO

SC-740 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH SC-740. 1.
- CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE 2 COPOLYMERS.
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET 3. THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD Δ IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS. SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 6 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- REQUIREMENTS FOR HANDLING AND INSTALLATION: 7
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 50 mm (2")
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 550 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN 8. ENGINEER OR OWNER. THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 9

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF THE SC-740 SYSTEM

- STORMTECH SC-740 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A 1 PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2.
- 3 CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 4.
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS. 6.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 20-50 mm (3/4-2"). 7.
- 8 THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 9. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- 1.
- 2. THE USE OF CONSTRUCTION EQUIPMENT OVER SC-740 CHAMBERS IS LIMITED:
- NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
- WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE

*INVERT ABO	OVE BAS	E OF CHAMBER				щ
	INVERT*	MAX FLOW	2			LTIMAT
24BR / TYP OF ALL 600 mm	3 mm		H 20		NA I	S THE L
			Ψ.	BC C	ED: N	ON. IT I
			Ц Ц С	SAWN	ЩСK	TRUCT
				5 亡	ㅎ	CONS
			N F			RIOR TO
				<u>כ</u>		WING P
			OBC		CT #:	IIS DRA
			ă	ATE:	ROJE	VIEW TH
						IALL REY
						EER SH
					NOI	N ENGIN
					RIPT	DESIGN
					DESC	HE SITE
						TIVE. TI
I				\square		ESENTA TIONS, ⊭
					CHĚ	T REPR REGULA
					DRW	PROJEC
					Ë	DTHER
		 			DA	ER OR
		1.905 m	StormTech®	Chamber System	888-892-2694 WWW.STORMTECH.COM	ROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINE AT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET A
ND COUPLE ADDITIONAL PIPE TO S QUIREMENTS ARE MET.		RD MANIFOLD	4640 TRUEMAN BLVD HILLARD, 0H 43026 1-800-733-7473		SCALE = 1.30	HIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PF (ESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THA
E DESIGN ENGINEER IS RESPONS OR DECREASED ONCE THIS INFOR	IBLE FOR	≺ IS	S	L HEET	-	Ē
AGE VOLUME CAN BE ACHIEVED O	N SITE.		2 (ЭF	6	

ACCEPTABLE FILL MATERIALS: STORMTECH SC-740 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMF
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER.	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPA INSTA
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN CC THE CHAM 6" (150 mr WELL GF PROC VEHICLE
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE C

PLEASE NOTE:

THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE". 1.

STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 2

WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR 3. COMPACTION REQUIREMENTS.

ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION. 4

NOTES:

- CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". 1.
- 2. SC-740 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH 3 CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 550 ٠ LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

PACTION / DENSITY REQUIREMENT

ARE PER SITE DESIGN ENGINEER'S PLANS. PAVED LLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.

MPACTIONS AFTER 12" (300 mm) OF MATERIAL OVER BERS IS REACHED. COMPACT ADDITIONAL LAYERS IN m) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR RADED MATERIAL AND 95% RELATIVE DENSITY FOR ESSED AGGREGATE MATERIALS. ROLLER GROSS WEIGHT NOT TO EXCEED 12,000 lbs (53 kN). DYNAMIC FORCE NOT TO EXCEED 20,000 lbs (89 kN).

NO COMPACTION REQUIRED.

COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.^{2,3}

Officient Material Inclution Material Incluti								
Office StormTech® StormTech® OTTAWA, ONTARIO Office 1-800-733-7473 OTTAWA, ONTARIO OTTAWA, ONTARIO	4	4640 IKUEMAN BLVD					ROBOLINK RI	IDGF - MH 207
And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here And Here	3	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	StormTach®					
J H Date Date: Drawn: BC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	sн С						OTTAWA	, ONTARIO
B88-892-2694 WWW.STORMTECH.COM DATE DRW CHK DESCRIPTION PROJECT #: CHECKED: N/A	EE)F		Chamber System				DATE.	
B88-892-2694 WWW.STORMTECH.COM DATE DRW CHK DESCRIPTION PROJECT #: CHECKED: N/A	T							
	6		888-892-2694 WWW.STORMTECH.COM	DATE DRW	CHK	DESCRIPTION	PROJECT #:	CHECKED: N/A

SC-740 ISOLATOR ROW PLUS DETAIL

NTS

INSPECTION & MAINTENANCE

INSPECT ISOLATOR ROW PLUS FOR SEDIMENT STEP 1)

- A. INSPECTION PORTS (IF PRESENT)
 - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
 - A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED
 - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.3.
 - A.4.
 - A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- B. ALL ISOLATOR PLUS ROWS
- B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE B.2.
- i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- STEP 2)
 - CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN Β.
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.

NOTES

- 1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

			WOVEN GEOTEXTILE BETWEEN AMBERS DUS FABRIC WITHOUT SEAMS		SC-740 END CAP	ION PORT
4	4640 TRUEMAN BLVD HILLIARD, OH 43026	¢			BOBOLINK RI	DGE - MH 207
sн С	1-800-733-7473				OTTAWA,	ONTARIO
EET)F		Chamber System			DATE:	DRAWN: BC
6		888-892-2694 WWW.STORMTECH.COM	DATE DRW CHK	DESCRIPTION	PROJECT #:	CHECKED: N/A
;	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVI RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT TH	HE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETALS MEET AL	ER OR OTHER PROJECT REPRESENTATI	VE. THE SITE DESIGN ENGINEER SHALL ID PROJECT REQUIREMENTS.	- REVIEW THIS DRAWING PRIOR TO CO	ONSTRUCTION. IT IS THE ULTIMATE

E (W X H X INSTALLED LENGTH)	
MBER STORAGE	
MUM INSTALLED STORAGE*	
GHT	

PART #	STUB	Α	
SC740EPE06T / SC740EPE06TPC	6" (150 mm)	10.0" (277 mm)	
SC740EPE06B / SC740EPE06BPC	0 (130 mm)	10.9 (277 1111)	
SC740EPE08T /SC740EPE08TPC	8" (200 mm)	12.2" (310 mm)	
SC740EPE08B / SC740EPE08BPC	0 (200 mm)	12.2 (310 1111)	
SC740EPE10T / SC740EPE10TPC	10" (250 mm)	13 //" (3/0 mm)	
SC740EPE10B / SC740EPE10BPC	10 (200 mm)	10.4 (040 mm)	
SC740EPE12T / SC740EPE12TPC	12" (300 mm)	14 7" (373 mm)	
SC740EPE12B / SC740EPE12BPC	12 (300 mm)	14.7 (070 mm)	
SC740EPE15T / SC740EPE15TPC	15" (375 mm)	18 /" (/67 mm)	
SC740EPE15B / SC740EPE15BPC	15 (575 mm)	10.4 (407 1111)	
SC740EPE18T / SC740EPE18TPC	18" (450 mm)	10.7" (500 mm)	
SC740EPE18B / SC740EPE18BPC	10 (400 mm)	19.7 (500 mm)	
SC740EPE24B*	24" (600 mm)	18.5" (470 mm)	
SC740EPE24BR*	24" (600 mm)	18.5" (470 mm)	

NOTE: ALL DIMENSIONS ARE NOMINAL

NOTES

- 1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
- 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
 DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS
- DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 4.
- FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC 5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM
- 6. TO ORDER CALL: 800-821-6710

Α	PART #	GRATE/S	SOLID COVER OPTIONS			
8" (200 mm)	2808AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY		
10" (250 mm)	2810AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY		
12"	2812AG	PEDESTRIAN	STANDARD AASHTO	SOLID		
(300 mm)		AASHTO H-10	H-20	AASHTO H-20		
15"	2815AG	PEDESTRIAN	STANDARD AASHTO	SOLID		
(375 mm)		AASHTO H-10	H-20	AASHTO H-20		
18"	2818AG	PEDESTRIAN	STANDARD AASHTO	SOLID		
(450 mm)		AASHTO H-10	H-20	AASHTO H-20		
24"	2824AG	PEDESTRIAN	STANDARD AASHTO	SOLID		
(600 mm)		AASHTO H-10	H-20	AASHTO H-20		
30"	2830AG	PEDESTRIAN	STANDARD AASHTO	SOLID		
(750 mm)		AASHTO H-20	H-20	AASHTO H-20		

Propriet Atto TRUEMAN BLVD BOBOLINK RIDGE - MH 207 Province Initiarz, oH 43026 BOBOLINK RIDGE - MH 207 Province Initiarz, oH 43026 Initiarz, oH 43026 Province Initiarz, oH 43026 Initiarz, oH 43026 Initiarz, oH 43026 Province Initiarz, oH 43026 Initiarz, oH 43026 Initiarz, oH 43026 Initiarz, oH 43026 Province Initiarz, oH 43026 Province Initiarz, oH 43026 Province Initiarz, oH 43026 Province Initiarz, oH 43026 Initiarz, oH 43026 Initiarz, oH 43026						_		_	
Diame OTTAWA	6	SCA //	4640 TRUEMAN BLVD HILLIARD, OH 43026	®				BOBOLINK RI	DGE - MH 207
The service has been prepared based on information provided to able under the precision of the site desion envinement of the site desion envinement of the site desion envinement. DTATE: DRAWN: BC Drawning has been prepared based on information provided to able under the precision of the site desion envinement of the site desion envinement. DESCRIPTION PROJECT #: CHECKED: N/A	sн С	SH	c / + / - 000 - / - 000 - 1	Nyiopiasi				OTTAWA,	ONTARIO
O 770-932-2443 WWW.NYLOPLAST-US.COM DATE DRW DESCRIPTION PROJECT #: CHECKED: N/A THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMAT RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS. PROJECT #: CHECKED: N/A)F	FFT						DATE:	DRAWN: BC
THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMAT RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	6			770-932-2443 WWW.NYLOPLAST-US.COM	DATE DR	RW CHK	DESCRIPTION	PROJECT #:	CHECKED: N/A
		THIS DRAWING HAS BEEN F RESPONSIBILITY OF THE SI	PREPARED BASED ON INFORMATION PROV ITE DESIGN ENGINEER TO ENSURE THAT TI	VIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEE THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETALS MEET ALL	R OR OTHER PRC - APPLICABLE LAV	JJECT REPRES NS, REGULATI	SENTATIVE. THE SITE DESIGN ENGINEER SH/ IONS, AND PROJECT REQUIREMENTS.	ALL REVIEW THIS DRAWING PRIOR TO CO	DNSTRUCTION. IT IS THE ULTIMATE

PROJE	CT INFORMATION
ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

BOBOLINK RIDGE - MH 210 (A) OTTAWA, ONTARIO

MC-3500 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH MC-3500. 1.
- CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE 2. COPOLYMERS.
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET 3. THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD Δ IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS. SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 6 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- REQUIREMENTS FOR HANDLING AND INSTALLATION: 7
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 75 mm (3")
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN 8. ENGINEER OR OWNER. THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 9

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM

- STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 2.
- 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 4.
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS. 6.
- INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 300 mm (12") INTO CHAMBER END CAPS. 7
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE WELL GRADED BETWEEN 3/4" AND 2" (20-50 mm). 8.
- 9. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.
- 10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN FNGINFFR
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 11. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 1
- THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED: 2
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE . WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE"
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

	PROPOSED LAYOUT	CONCEPTUAL ELEVATIONS				
					ITEM ON	DESCRIPTION
20	STORMTECH MC-3500 CHAMBERS	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	3.810	PARITIPE	LAYOUT	DESCRIPTION
4	STORMTECH MC-3500 END CAPS	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC):	1.98	1		600 mm BOTTOM CORED END CAP. PART# MC3500IEPP24BC / T
305	STONE ABOVE (mm)	MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):	1.829	PREFABRICATED END CAP	A	
229	STONE BELOW (mm)	MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT):	1.829		<u> </u>	
40	STONE VOID	MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):	1 829	PREFABRICATED END CAP	В	300 mm TOP CORED END CAP, PART#: MC35001EPP121 / TYP OF
	INSTALLED SYSTEM VOLUME (m ³)	TOP OF STONE	1.676	FLAMP	C	INSTALL FLAMP ON 600 mm ACCESS PIPE / PART#: MC350024RAI
			1.07	MANIFOLD	D	300 mm x 300 mm TOP MANIFOLD, ADS N-12
116.1			1.372	NYLOPLAST (INLET W/ ISO		
		300 mm x 300 mm TOP MANIFOLD INVERT:	0.898		E	750 mm DIAMETER (610 mm SUMP MIN)
	(BASE STONE INCLUDED)	600 mm ISOLATOR ROW PLUS INVERT:	0.28			, , ,
115.9	SYSTEM AREA (m ⁻)	BOTTOM OF MC-3500 CHAMBER:	0.229	Ð		
58.9	SYSTEM PERIMETER (m)	BOTTOM OF STONE:	0.000			

PLACE MINIMUM 5.334 m OF ADSPLUS175 WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

MOTES
 MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE.
 DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AN COMPONENTS IN THE FIELD.
 THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUINES CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DETERMINING
 THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED OF PROVIDED.
 MOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE

BED LIMITS

*INVERT AB	OVE BAS	E OF CHAMBER	(ΤE
	INVERT*	MAX FLOW	₹				ILTIMA
YP OF ALL 600 mm BOTTOM	52 mm		210			Ă,	THE L
ALL 300 mm TOP CONNECTIONS	671 mm		Ц	~	BC	Ż	N. IT IS
VIF (1 TF 2 FLAGES)	670 mm		Σ	ARIC	WN:	CKE	JCTIO
		70 L/s IN	Щ	ONT,	DRA	CHÊ	NSTRL
			BOBOLINK RIDG	OTTAWA, (DATE:	PROJECT #: 0	L REVIEW THIS DRAWING PRIOR TO COI
						DESCRIPTION	NTIVE. THE SITE DESIGN ENGINEER SHAL AND PROJECT REQUIREMENTS.
-						RW CHK	DJECT REPRESENT/ NS, REGULATIONS,
						DATE DR	EER OR OTHER PRC
E 4.064 m 4.06			StormTech®			888-892-2694 WWW.STORMTECH.COM	VIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGIN THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET A
ND COUPLE ADDITIONAL PIPE TO S QUIREMENTS ARE MET.		RD MANIFOLD	4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473				HIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PRO ESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT
OR DECREASED ONCE THIS INFO	RMATION	IS	2	sн С	EET)F	6	ΓĽ

ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMF
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPA INSTA
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN CC THE CHAM 12" (300 m WELL GI
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	
А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	PLATE C

PLEASE NOTE:

THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE". 1.

STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 2

WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR 3. COMPACTION REQUIREMENTS.

ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION 4.

NOTES:

- CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 1. 45x76 DESIGNATION SS.
- 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. ٠ AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

PACTION / DENSITY REQUIREMENT

ARE PER SITE DESIGN ENGINEER'S PLANS. PAVED LLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.

MPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER BERS IS REACHED. COMPACT ADDITIONAL LAYERS IN m) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR RÁDED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS.

NO COMPACTION REQUIRED.

COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.^{2,3}

	4640 TRUEMAN BLVD					
3	HILLIARD, OH 43026 1-800-733-7473	Storm Tach®				(א) ייד אווע ביט (א)
sн С					OTTAWA,	ONTARIO
EE)F		Chamber System			DATE.	
Т -						
6		888-892-2694 WWW.STORMTECH.COM	DATE DRW CH	C DESCRIPTION	PROJECT #:	CHECKED: N/A
	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVII RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT TH	IDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINE IF PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET AL	ER OR OTHER PROJECT REPR LAPPLICABLE LAWS, REGULA	ESENTATIVE. THE SITE DESIGN ENGINEER SH TIONS, AND PROJECT REQUIREMENTS.	ALL REVIEW THIS DRAWING PRIOR TO CO	ONSTRUCTION. IT IS THE ULTIMATE

MC-3500 ISOLATOR ROW PLUS DETAIL

NTS

INSPECTION & MAINTENANCE

STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT

- A. INSPECTION PORTS (IF PRESENT)
 - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
 - REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.2.
 - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.3.
 - A.4.
 - A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2, IF NOT, PROCEED TO STEP 3.
- B. ALL ISOLATOR PLUS ROWS
- B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE B.2.
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. B.3.
- STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN Β.
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.

NOTES

- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS 1. OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

						1
L INSPECTION PORT		(A) או או או אי שב	ONTARIO	DRAWN: BC	CHECKED: N/A	NSTRUCTION. IT IS THE ULTIMATE
			OTTAWA,	DATE:	PROJECT #:	ALL REVIEW THIS DRAWING PRIOR TO CC
					DESCRIPTION	TIVE. THE SITE DESIGN ENGINEER SH AND PROJECT REQUIREMENTS.
OTEXTILE BETWEEN		+		_	~	RESENTA
BRIC WITHOUT SEAMS					 CHI 	ECT REPF S, REGUL
		-		_	DRV	ER PROJ BLE LAWS
					DATE	R OR OTH APPLICA
		CtormTach®		Chamber System	888-892-2694 WWW.STORMTECH.COM	VIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEE THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET AL
	4640 TRUEMAN BLVD	HILLIARD, OH 43026 1-800-733-7473				HIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROV ESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT T
			SH	EET	~	<u>, ⊢ ≃</u>
		4	C	ト	6)

FOR A PROPER FIT IN END CAP OPENING.

NOTES

- 1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
- 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
 DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS
- DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 4.
- FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC 5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM
- 6. TO ORDER CALL: 800-821-6710

Α	PART #	GRATE/S	SOLID COVER (OPTIONS
8" (200 mm)	2808AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
10" (250 mm)	2810AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
12" (300 mm)	2812AG	PEDESTRIAN AASHTO H-10	STANDARD AASHTO H-20	SOLID AASHTO H-20
15" (375 mm)	2815AG	PEDESTRIAN AASHTO H-10	STANDARD AASHTO H-20	SOLID AASHTO H-20
18" (450 mm)	2818AG 2824AG	PEDESTRIAN AASHTO H-10	STANDARD AASHTO H-20	SOLID AASHTO H-20
24" (600 mm)		PEDESTRIAN AASHTO H-10	STANDARD AASHTO H-20	SOLID AASHTO H-20
30" (750 mm)	2830AG	PEDESTRIAN AASHTO H-20	STANDARD AASHTO H-20	SOLID AASHTO H-20

< RIDGE - MH 210 (A)	TTAWA, ONTARIO	DRAWN: BC	CHECKED: N/A	PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE
BOBOLIN	Ö	DATE:	PROJECT #:	HALL REVIEW THIS DRAWING F
			DESCRIPTION	VTIVE. THE SITE DESIGN ENGINEER SI AND PROJECT REQUIREMENTS.
			CHK	DT REPRESENTA REGULATIONS, J
			DATE DRW	R OR OTHER PROJEC APPLICABLE LAWS,
e e	Nyiopiast		770-932-2443 WWW.NYLOPLAST-US.COM	DED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEE! IE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL
HILLIARD, OH 43026	1-800-733-7473			HIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVI ESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT TH
6	sн С	EET	6	

PROJEC	T INFORMATION
ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

BOBOLINK RIDGE - MH 210 (B) OTTAWA, ONTARIO

MC-3500 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH MC-3500. 1.
- CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE 2. COPOLYMERS.
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET 3. THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD Δ IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS. SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 6 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- REQUIREMENTS FOR HANDLING AND INSTALLATION: 7
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 75 mm (3")
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN 8. ENGINEER OR OWNER. THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 9

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM

- STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 2.
- 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 4.
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS. 6.
- INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 300 mm (12") INTO CHAMBER END CAPS. 7
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE WELL GRADED BETWEEN 3/4" AND 2" (20-50 mm). 8.
- 9. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.
- 10. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN FNGINFFR
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 11. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 1
- THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED: 2
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE . WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE"
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

NOTES

MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE. DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AN COMPONENTS IN THE FIELD.

THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REC THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SIT

DETERMINING THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED (PROVIDED.

NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STOR/

BED LIMITS

*INVERT AB	OVE BAS	E OF CHAMBER					νте
	INVERT*	MAX FLOW	B				JLTIMA
YP OF ALL 600 mm BOTTOM	52 mm		210			NA	S THE I
MP (TYP 2 PLACES)			Η	0	: BC	Z.	N. IT I
			2	TARI	AWN	ECK	RUCTIO
			Ц	S.	DR	R	CONST
			RID	AWA			DR TO (
			¥	E			IG PRIC
			DLII			;;	DRAWIN
			OB(JECT	/ THIS I
			В		DATE	PRO,	REVIEW
					Ī		SHALLI
						_	INEER (TS.
						TION	SN ENG
						CRIP	E DESIC REQUI
						DES	HE SITI OJECT
							TIVE. T ND PR
				_			SENTA IONS, /
						SHK	REPRE
>				+		ΝŇ	ROJECT WS, RE
				+	+		HER PF ABLE L/
						DAT	OR OT APPLIC
	-						GINEER
						.coM	IGN EN
1.9565 2.565						TECH	TE DES D DET A
			®			ORM	THE SI
	-		с <mark>Р</mark>	۶	=	W.ST	ION OF
			ě	ster	מנ	MM	DIRECT AND A
			۲ ۲	ŝ	5	694	R THE I PICTED
				٩qu		892-2	s UNDE
			St	hai	<u>ה</u>	888	TO ADS SODUC ⁻
			••	T	-		OVIDED THE PF
			و «				ON PRC E THAT
			4 BLV 43026		\leq	Ś	ENSUR
			EMAN OH 4 7473		1	2	DN INFC ER TO I
			TRUE ARD, -733-		~	-	ASED (ENGINE
			4640 41LLI/ 1-800		I	I.	ARED E ESIGN E
					Ц		N PREP. SITE DE
			R		<	ç	S BEEN
			2		ŭ	5	ING HA
ND COUPLE ADDITIONAL PIPE TO S	STANDAF	RD MANIFOLD					5 DRAW PONSIB
E DESIGN ENGINEER IS RESPONS	IBLE FOI	R					THIS RESI
OR DECREASED ONCE THIS INFOR	RMATION	IIS	ິ ົ	ыне С	ET	2	
AGE VOLUME CAN BE ACHIEVED O	N SITE.		2	$\overline{\mathbf{O}}$	Г	O	

ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS

		MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMF
	D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPA INSTA
	С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN CC THE CHAM 12" (300 m WELL GI
	В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	
ĺ	А	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	PLATE C

PLEASE NOTE:

THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE". 1.

STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 2

WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR 3. COMPACTION REQUIREMENTS.

ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION 4.

NOTES:

- CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 1. 45x76 DESIGNATION SS.
- 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. ٠ AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

PACTION / DENSITY REQUIREMENT

ARE PER SITE DESIGN ENGINEER'S PLANS. PAVED LLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.

MPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER BERS IS REACHED. COMPACT ADDITIONAL LAYERS IN m) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR RÁDED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS.

NO COMPACTION REQUIRED.

COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.^{2,3}

	4640 TRUEMAN BLVD					
3	HILLIARD, OH 43026	œ				GE - MH 210 (B)
s⊦ C	1-800-733-7473	Storm I ech			OTTAWA,	ONTARIO
iee DF		Chamber System			DATE.	
=T						
6		888-892-2694 WWW.STORMTECH.COM	DATE DRW CHK	DESCRIPTION	PROJECT #:	CHECKED: N/A
	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVI RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT TH	IDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEE IF PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALI	R OR OTHER PROJECT REPRESE APPLICABLE LAWS, REGULATION	VTATIVE. THE SITE DESIGN ENGINEER SH/ IS, AND PROJECT REQUIREMENTS.	ALL REVIEW THIS DRAWING PRIOR TO CO	ONSTRUCTION. IT IS THE ULTIMATE

MC-3500 ISOLATOR ROW PLUS DETAIL

NTS

INSPECTION & MAINTENANCE

STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT

- A. INSPECTION PORTS (IF PRESENT)
 - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
 - REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.2.
 - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.3.
 - A.4.
 - A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2, IF NOT, PROCEED TO STEP 3.
- B. ALL ISOLATOR PLUS ROWS
- B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE B.2.
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. B.3.
- STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN Β.
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.

NOTES

- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS 1. OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

FOR A PROPER FIT IN END CAP OPENING.

NOTES

- 1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
- 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
 DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS
- DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 4.
- FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC 5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM
- 6. TO ORDER CALL: 800-821-6710

Α	PART #	GRATE/S	SOLID COVER (OPTIONS
8" (200 mm)	2808AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
10" (250 mm)	2810AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
12" (300 mm)	2812AG	PEDESTRIAN AASHTO H-10	STANDARD AASHTO H-20	SOLID AASHTO H-20
15" (375 mm)	2815AG	PEDESTRIAN AASHTO H-10	STANDARD AASHTO H-20	SOLID AASHTO H-20
18" (450 mm)	2818AG 2824AG	PEDESTRIAN AASHTO H-10	STANDARD AASHTO H-20	SOLID AASHTO H-20
24" (600 mm)		PEDESTRIAN AASHTO H-10	STANDARD AASHTO H-20	SOLID AASHTO H-20
30" (750 mm)	2830AG	PEDESTRIAN AASHTO H-20	STANDARD AASHTO H-20	SOLID AASHTO H-20

6	4640 TRUEMAN BLVD HILLIARD, OH 43026	œ				BOBOLINK F	RIDGE - MH 210 (B)
s⊦ C	1-800-733-7473	Nylopiast				OTTA	WA, ONTARIO
IEET DF						DATE:	DRAWN: BC
6		770-932-2443 WWW.NYLOPLAST-US.COM	DATE	RW CHK	DESCRIPTION	PROJECT #:	CHECKED: N/A
THIS DRA	WING HAS BEEN PREPARED BASED ON INFORMATION PROVIE	IDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEE	R OR OTHER PR	OJECT REPRESEN	VTATIVE. THE SITE DESIGN ENGINEER SH	4ALL REVIEW THIS DRAWING PRIOR	TO CONSTRUCTION. IT IS THE ULTIMATE
	SUBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT TH	HE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL	APPLICABLE LA	WS, REGULATION	IS, AND PROJECT REQUIREMENTS.	האאייווייט דאוטר	

|--|

ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO	

BOBOLINK RIDGE - MH 107 OTTAWA, ONTARIO

MC-4500 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH MC-4500. 1.
- CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE 2 COPOLYMERS.
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUCTURES", AND MEET 3. THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 60x101.
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD Δ IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS. SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 6 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- REQUIREMENTS FOR HANDLING AND INSTALLATION: 7
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 75 mm (3")
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 23° C / 73° F), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN 8. ENGINEER OR OWNER. THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 9

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-4500 CHAMBER SYSTEM

- STORMTECH MC-4500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- STORMTECH MC-4500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 2.
- 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 4.
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- MAINTAIN MINIMUM 230 mm (9") SPACING BETWEEN THE CHAMBER ROWS. 6.
- INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 300 mm (12") INTO CHAMBER END CAPS. 7
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE WELL GRADED BETWEEN 3/4" AND 2" (20-50 mm). 8.
- STONE SHALL BE BROUGHT UP EVENLY AROUND CHAMBERS SO AS NOT TO DISTORT THE CHAMBER SHAPE. STONE DEPTHS SHOULD NEVER 9 DIFFER BY MORE THAN 300 mm (12") BETWEEN ADJACENT CHAMBER ROWS.
- STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING. 10
- 11. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIAL BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
- 12. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- 1
- THE USE OF EQUIPMENT OVER MC-4500 CHAMBERS IS LIMITED: 2
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

©2013 ADS INC

ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE

STORMTECH MC-4500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".

NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE

NO WOVEN GEOTEXTILE

BED LIMITS

NOTES

MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE. DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AN COMPONENTS IN THE FIELD.

THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REC THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SIT DETERMINING THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED (PROVIDED.

NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORA

*INVERT AE	OVE BAS	E OF CHAMBER				E
	INVERT*	MAX FLOW	20			JLTIMA
B / TYP OF ALL 600 mm BOTTOM	57 mm		110		Ă	S THE L
MP (TYP 2 PLACES)			Δ,	BC	Z	N. IT IS
			Ш	AWN	CKE	RUCTIC
				N R	E	CONSTI
			х К	AWA		DR TO (
				5		IG PRIG
			BOI		;;	JRAWIN
			BOI		JECT	/ THIS I
				DATE	PRO,	REVIEW
				ΤŢ		SHALL
						INEER ; TS.
					TION	SN ENG
					CRIP	E DESIC REQUI
					DES	THE SIT. OJECT
						AND PR
						ESENTA FIONS, J
					SH	T REPRI
					DRW	PROJEC LAWS, F
					ATE	OTHER
†					6	IEER OR ALL APP
2.540 m			StormTech®	Chamber System	888-892-2694 WWW.STORMTECH.COM	VIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGI THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET
ND COUPLE ADDITIONAL PIPE TO		RD MANIFOLD	4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473		SCALE = 1 : 100	HIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PRO SESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT I
E DESIGN ENGINEER IS RESPON	SIBLE FOI	r. I IS	S	HEET	Г	ΙΗ̈́Ω
AGE VOLUME CAN BE ACHIEVED (ON SITE.		2	OF	5	

ACCEPTABLE FILL MATERIALS: STORMTECH MC-4500 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMF
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPA INSTA
с	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN CO THE CHAM 12" (300 m WELL GF
в	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	
A	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 4	PLATE C

PLEASE NOTE:

THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE". 1.

STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 2

WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR 3. COMPACTION REQUIREMENTS.

ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION. 4.

NOTES:

- CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 60x101 1.
- 2. MC-4500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3".
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

PACTION / DENSITY REQUIREMENT

ARE PER SITE DESIGN ENGINEER'S PLANS. PAVED LLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.

MPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER BERS IS REACHED. COMPACT ADDITIONAL LAYERS IN m) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR RADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS.

NO COMPACTION REQUIRED.

COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.^{2,3}

4	4640 T	TRUEMAN BLVD				ROROI INK RI	DGF - MH 107
3		4RU, UM 43020 -733-7473	StormTach®				
sн С		0				OTTAWA,	, ONTARIO
EE) F			Chamber System			DATE.	
T							
5			888-892-2694 WWW.STORMTECH.COM	DATE DRW CHK	DESCRIPTION	PROJECT #:	CHECKED: N/A
	THIS DRAWING HAS BEEN PREPARED BA RESPONSIBILITY OF THE SITE DESIGN EN	ASED ON INFORMATION PROVIE ENGINEER TO ENSURE THAT TH	DED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEE E PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALI	R OR OTHER PROJECT REPRESE . APPLICABLE LAWS, REGULATIO	NTATIVE. THE SITE DESIGN ENGINEER SH. NS, AND PROJECT REQUIREMENTS.	ALL REVIEW THIS DRAWING PRIOR TO C	ONSTRUCTION. IT IS THE ULTIMATE

MC-4500 ISOLATOR ROW PLUS DETAIL

NTS

INSPECTION & MAINTENANCE

STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT

- A. INSPECTION PORTS (IF PRESENT)
 - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
 - REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.2.
 - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.3.
 - A.4.
 - A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2, IF NOT, PROCEED TO STEP 3.
- B. ALL ISOLATOR PLUS ROWS
- B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE B.2.
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN Β.
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS.
- STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.

NOTES

- INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS 1. OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

							Щ
L INSPECTION PORT		20					ULTIMAT
		1H 1			v	: N/A	IT IS THE
END CAP		≥ י ⊔ا	:	ARIO	WN: B	CKED:	JCTION. I
		DG		, ONT	DRA	CHE	ONSTRU
		Х В		TAWA			IOR TO C
		DLIN		D D			WING PR
		OBC	,)			:CT #:	HIS DRA
		Ш	1		DATE:	ROJE	EVIEW T
							SHALL R
						z	IGINEER INTS.
						RIPTIO	SIGN EN QUIREME
						DESCF	E SITE DE
							ND PRO.
BRIC WITHOUT SEAMS					_		ESENTAT TIONS, A
						Ğ	CT REPR REGULA
						DRW	R PROJE E LAWS,
						DATE	R OTHEI
	-						SINEER C
						H.COM	SIGN ENC
						ATECH	SITE DES "ED DET/
		(e C	1		STOR	OF THE SSOCIAT
			ec		tem	.wwv	RECTION
			Ĕ	, (Sys	394 \	THE DIF
			orr		mber	-892-2(S UNDEF T(S) DEP
			St		Chai	888	D TO AD
							PROVIDE
		3LVD	040				AATION F SURE TH
		MAN E DH 43	473				N INFORM
			-733-7				BASED OF
		4640 HILL	1-800				PARED E
		U	Ď				EEN PRE
		5	5				G HAS BI
							DRAWIN
			-	21			THIS RESP
		2	; 1	ы С)F	5	,
	1					-	

MC-SERIES END CAP INSERTION DETAIL

NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL FOR A PROPER FIT IN END CAP OPENING.

IBI Group 400-333 Preston Street

Ottawa, Ontario

	LOCATION							AREA	A (Ha)											RATIONAL D	ESIGN FLOW									SEWER DAT	Γ A			
CTREET		FROM	TO	C=	C=	C=	C=	C=	C=	C= C	= C=	C=	IND	CUN	M I	NLET	TIME	TOTAL	i (5)	i (10)	i (100)	5yr PEAK	10yr PEAK	100yr PEAK	FIXED	DESIGN	CAPACITY	LENGTH		PIPE SIZE (mm)	SLOPE	VELOCITY	AVAIL	CAP (5yr)
SIREEI	AREA ID	МН	МН	0.20	0.55	0.65	0.66	0.75	0.80	0.90			2.78A	C 2.78	AC ((min)	IN PIPE	(min)	(mm/hr)	(mm/hr)	(mm/hr)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	FLOW (L/s)	(L/s)	(m)	DIA	W H	(%)	(m/s)	(L/s)	(%)
PUTNEY CRESCENT		141	142	_				0.00					0.00	0.0	0 1	10.00	0.12	10.12	104.19	122.14	178.56	0.00				0.00	62.04	8.84	250		1.00	1.224	62.04	100.00%
PUTNEY CRESCENT	R142A, B	142	143		0.33								0.50	0.5	0 1	10.12	0.48	10.60	103.56	121.40	177.47	52.25				52.25	139.06	54.71	300		1.90	1.906	86.80	62.42%
PUTNEY CRESCENT	\$143	143	144					0.32					0.67	1.1	7 1	10.60	0.68	11.28	101.13	118.54	173.26	118.50				118.50	266.03	65.86	450		0.80	1.620	147.53	55.45%
FINSBURY AVENUE	S136B, E, R136A	136	144		0.27			0.44					1.33	1.3	3 1	10.00	0.87	10.87	104.19	122.14	178.56	138.60				138.60	154.65	110.07	300		2.35	2.119	16.05	10.38%
PUTNEY CRESCENT	S144, R144A, B, C	144	145	-	0.57			0.25				_	1.39	3.8	9 1	11.28	0.74	12.02	97.90	114.73	167.68	381.31				381.31	401.29	80.25	525		0.80	1.796	19.98	4.98%
	,,.,.,.,.,.,																																	
CLAPHAM TERRACE	S136C, D, R136B	136	137		0.23			0.18					0.73	0.7	3 1	10.00	0.94	10.94	104.19	122.14	178.56	75.75				75.75	100.88	77.99	300		1.00	1.383	25.14	24.92%
BRIXTON WAY	R137A	137	160		0.11								0.17	0.9	0 1	10.94	0.42	11.36	99.48	116.59	170.40	89.05				89.05	224.02	50.00	375		1.50	1.965	134.97	60.25%
BRIXTON WAY	S160A, B	160	145					0.43					0.90) 1.79	9 1	11.36	0.54	11.90	97.50	114.26	166.98	174.69	+			174.69	280.40	78.98	375		2.35	2.459	105.71	37.70%
PUTNEY CRESCENT	S145A, B, R145	145	146		0.30			<u>0.55</u>					1.61	7.2	9 1	12.02	0.70	12.72	94.61	110.85	161.98	689.86				689.86	821.24	75.47	750		0.50	1.801	131.38	16.00%
CLAPHAM TERRACE	S137A B R137B	137	138	_	0.30			0.27					1.02	1.0	2 1	10.00	1 19	11 19	104 19	122 14	178 56	106.45				106.45	129 34	81.01	375		0.50	1 134	22.89	17 70%
PUTNEY CRESCENT	S138, R138	138	148		0.14			0.15					0.53	1.5	5 1	11.19	0.67	11.86	98.30	115.20	168.37	152.21		1		152.21	220.25	78.01	375		1.45	1.932	68.04	30.89%
PUTNEY CRESCENT	S148	148	147					0.22					0.46	2.0	1 1	11.86	0.38	12.24	95.28	111.65	163.15	191.25	1			191.25	297.76	59.30	375		2.65	2.612	106.51	35.77%
PUTNEY CRESCENT		147	146					0.00					0.00	2.0	1 1	12.24	0.10	12.34	93.68	109.76	160.37	188.02				188.02	332.54	12.13	450		1.25	2.026	144.52	43.46%
BLOCK 324		146	161										0.00	9.3	0 1	12.72	0.40	13.12	91.73	107.47	157.01	853.01				853.01	944.29	34.88	900		0.25	1.438	91.28	9.67%
BLOCK 324	R146	161	Ex. 180		0.14								0.21	9.5	1 1	13.12	0.56	13.68	90.15	105.61	154.28	857.65				857.65	944.29	48.00	900		0.25	1.438	86.65	9.18%
BLOCK 324	RES.1, RES. 2B	BULKHEAD	Ex. 180						2.45				5.45	5.4	5 1	13.00	0.07	13.07	90.63	106.17	155.11	493.82				493.82	731.45	5.00	900		0.15	1.114	237.62	32.49%
				_			_						Refer 1	to ECA No	o. 9079-9	PLNNZC d	ated July 9,	2014 for des	cription of ex	kisting sewer	s.													┥──┦
Definitions:				Notes:											Desi	igned:		LIM			No.					Revision						Date	<u> </u>	
Q = 2.78CiA, where:				1. Mar	nings coe	efficient	t (n) =		0.013									•			1.				Submission	No. 1 to City	of Ottawa					2013-08-29	; 	
Q = Peak Flow in Litres pe	er Second (L/s)																				2.				Submission	No. 2 to City	of Ottawa					2014-01-22		
A = Area in Hectares (Ha)															Che	cked:		P.K.			3.				Submission	No. 3 to City	of Ottawa					2014-08-22	<u> </u>	
i = Rainfall intensity in m	illimeters per hour (mm/hi	r)																			4.				Submission	No. 4 to City	of Ottawa					2015-06-15		
[I = 998.0/1 / (TC+6.05)]	3)^U.814] 14)40 816]	5 YEAR													Dure	. Poforor		27070 500			5. c				Submission	NO. 5 to City	of Uttawa					2016-11-10		
i = 11/4.164 / (1C+6.0) i = 1735.688 / (TC+6.0)	14)^0.820]	10 TEAR													Dwg	s. Reierer	ice:	2/9/0-500	, JUUA, JUUB		7.				Resubmiss	sion for MOF	Approval					2017-02-10		
,, , , , , , , , , , , , , , , , ,	,,																					File Reference	:e:				Date:					Sheet No:		
																						27970.5.7.3	1				2017-07-14					1 of 3		

STORM SEWER DESIGN SHEET

PROJECT: CRT DEVELOPMENT LOCATION: CITY OF OTTAWA CLIENT: CRT DEVELOPMENT INC.

IBI Group 400-333 Preston Street

Ottawa, Ontario

	LOCATION						ARE	A (Ha)							R	ATIONAL DE	SIGN FLOW									S	SEWER DATA				
070557		FROM	то	C=	C=	C= C=	C=	C= C=	C= C= C=	IND C	CUM	INLET	TIME	TOTAL	i (5)	i (10)	i (100)	5yr PEAK	10yr PEAK	100yr PEAK	FIXED	DESIGN	CAPACITY	LENGTH		PIPE SIZE (mm')	SLOPE	VELOCITY	AVAIL C	AP (5yr)
SIREEI	AREA ID	мн	мн	0.20	0.55	0.65 0.66	0.75	0.80 0.90		2.78AC 2.	78AC	(min)	IN PIPF	(min)	(mm/hr)	(mm/hr)	(mm/hr)	FLOW (1/s)	FLOW (L/s)	FLOW (1/s)	FLOW (L/s)	FLOW (1/s)	(1/s)	(m)	DIA	W	H	(%)	(m/s)	(1/s)	(%)
				0.20	0.55	0.05 0.00	0.75	0.00 0.50		2.70AC 2.	JOAC	()		()	()	((,	12010 (2/3)	12010 (2/3)	12010 (2/3)	12010 (2/3)	12010 (2/3)	(1/3)	()	DIA			(70)	(1173)	(4,3)	(70)
CLAPHAM TERRACE	S136A	136	135				0.17			0.35	0.35	10.00	1.03	11.03	104.19	122.14	178.56	36.93				36.93	50.02	61.00	250			0.65	0.987	13.09	26.16%
CLAPHAM TERRACE	S135A B	135	134				0.26			0.54	0 90	11.03	1.08	12 11	99.05	116.08	169.66	88 80				88 80	108 21	61.66	375			0.35	0 949	19 41	17 94%
CEATHAMTERIKACE	5155A, D	133	134	-	-		0.20			0.34	0.50	11.05	1.00	12.11	55.05	110.00	105.00	00.00	-			00.00	100.21	01.00		++		0.55	0.545	13.41	17.34/0
PUTNEY CRESCENT		141	134		0.00					0.00	0.00	10.00	1.31	11.31	104.19	122.14	178.56	0.00				0.00	108.21	74.74	375			0.35	0.949	108.21	100.00%
DUTNEY ODECCENT	6124A B C B124	124	140		0.21		0.20			1 1 2	2.02	12.11	1 10	12.21	04.22	110.20	161 21	101.24	-			101.24	265 42	79.10	525	++		0.25	1 100	74.00	27.019/
PUTNEY CRESCENT	5134A, B, C, R134	134	140		0.21		0.39			1.13	2.03	12.11	1.10	13.21	94.22	110.39	161.31	191.34				191.34	265.43	78.10	525	$ \rightarrow $		0.35	1.188	74.09	27.91%
OSTERLEY WAY	S153	153	152				0.12			0.25	0.25	10.00	1.04	11.04	104.19	122.14	178.56	26.07				26.07	43.87	53.80	250			0.50	0.866	17.80	40.57%
	S1E2A P	152	151				0.40			0.02	1 00	11.04	1 97	17 PE	00.02	116 OF	160.61	107.26				107.26	149 77	09 77	450	+		0.25	0.006	41.26	27 019/
OSTERLET WAT	3132A, B	152	151	-			0.40			0.65	1.00	11.04	1.02	12.05	99.0Z	110.03	109.01	107.30				107.30	140.72	50.72	430	++		0.23	0.900	41.30	27.01/0
OSTERLEY WAY	\$151A, R151A	151	150		0.18		0.10			0.48	1.57	12.85	0.96	13.81	91.21	106.85	156.10	143.00				143.00	170.86	59.71	450			0.33	1.041	27.86	16.30%
OSTERLEY WAY	S150A, B	150	140				0.32			0.67	2.24	13.81	0.91	14.72	87.62	102.63	149.90	195.83				195.83	257.73	63.00	525			0.33	1.153	61.90	24.02%
DUTNEY ODECCENT	C4 40 D4 40	140	124	-	0.24		0.35			0.04	F 44	44.70	0.01	45.62	04.40	00.00	1 4 4 4 0	424 52				424 52	626.42	76 57	750	++		0.20	4 305	204.00	22.4.00/
PUTNEY CRESCENT	5140, R140	140	124	_	0.21		0.25			0.84	5.11	14.72	0.91	15.63	84.48	98.93	144.48	431.53	_			431.53	636.13	/6.5/	/50			0.30	1.395	204.60	32.16%
PUTNEY CRESCENT	S149A, B, S129C	149	128				0.22			0.46	0.46	10.00	0.61	10.61	104.19	122.14	178.56	47.79				47.79	62.04	45.00	250			1.00	1.224	14.25	22.96%
	250.00		100					0.00				40.00		40.07	00.00	406.47		404.04			1	101.01	000 70	40.50		++		0.40	0.000	470.70	
BLOCK 343	RES.2A	BULKHEAD	129					0.65		1.45	1.45	13.00	0.27	13.27	90.63	106.17	155.11	131.01				131.01	303.78	13.50	6/5			0.12	0.822	1/2./6	56.87%
BOBOLINK RIDCE		120	129	_	_		0.00			0.00	1.45	13.00	0.01	12.01	99.63	106.17	155.11	121.01	_			131.01	202.79	45.00	675			0.12	0.922	172.70	FC 97%
_																															
BOBOLINK DIDCE	C1304 D1304	130	127		0.14		0.10			0.50	2 40	12.01	1 57	15.40	07.25	102.10	140.26	217 56	-			217.56	472.55	81.00	025	++		0.10	0.050	355.00	F4.0C9/
BOBOLINK RIDGE	3120M, K128A	120	12/		0.14	↓ ↓ ↓ ↓ ↓	0.18	+		0.59	2.43	12.31	1.5/	13.49	07.25	102.19	149.20	21/.30	+	l	I	21/.30	4/3.33	01.00	025	++		0.10	0.058	233.99	54.00%
BOBOLINK RIDGE	S127A, R127A	127	126	1	0.19		0.17			0.64	3.14	15.49	1.51	17.00	82.02	96.05	140.25	257.44		1	1	257.44	473.55	78.00	825			0.10	0.858	216.11	45.64%
				1																											
FINSBURY AVENUE	\$151B.C. R151R	151	126	1	0.20	1 1	0.25	1 1		0.83	0.83	10.00	0.79	10 79	104 19	122 14	178 56	86 17	1	1	1	86 17	117 21	76 50	300	+		1.35	1.606	31.04	26.48%
. HISDORT AVENUE	51510, C, N1510	1.51	120	+	0.20	+ +	5.23	+ +		0.05		10.00	0.75	10.75	10-7.15	126.17	1,0.30	00.17	+	+	+	55.17	11/.21	, 5.50		++		1.35	1.000	31.04	20.40/0
├ ────		L	I	-	-	+ $-$	_										L .			I	I			I	<u> </u>	+					
BOBOLINK RIDGE		126	125				0.00			0.00	3.97	17.00	0.81	17.81	77.61	90.86	132.63	307.77				307.77	597.22	44.30	900			0.10	0.909	289.46	48.47%
BOBOLINK RIDGE	S125, R125A, B	125	124		0.35		0.39			1.35	5.31	17.81	1.39	19.20	75.45	88.32	128.91	400.95				400.95	739.33	80.07	975			0.10	0.959	338.38	45.77%
Dependent	0110) 11120/13 0			-	0.00		0.05			1.00	0.01	1/101	2.05	15.20	75115	00102	120.01						705100	00.07		++		0.10	0.505	000.00	1017770
				_			_												_												
BOBOLINK RIDGE	S124, R124A, B	124	123		0.32		0.26			1.03 1	1.45	19.20	1.23	20.44	72.05	84.32	123.05	825.24				825.24	1,760.81	88.10	1350			0.10	1.192	935.57	53.13%
DAGENHAM STREET	D101	121	120		0.20					0.21	0 21	10.00	0.94	10.94	104 10	122.14	179 EC	21.96				21.96	E0 69	41 20	200	+		0.25	0.010	22 62	AC C19/
DAGENHAM STREET	KI31	131	130	-	0.20					0.31	0.51	10.00	0.84	10.84	104.19	122.14	178.30	31.00				31.80	35.00	41.35	300	++		0.33	0.010	27.82	40.01%
DAGENHAM STREET	S130, R130A, B	130	123		0.33		0.36			1.26	1.56	10.84	1.75	12.59	99.94	117.13	171.20	156.00				156.00	179.46	84.37	525			0.16	0.803	23.46	13.07%
BOBOLINK RIDGE		123	122		0.00					0.00 1	3 01	20 44	0 30	20 74	69 31	81 11	118 33	902.05				902.05	1 760 81	21 46	1350			0 10	1 192	858 77	48 77%
BOBOEINK RIBGE		125	122	-	0.00					0.00 1	13.01	20.44	0.30	20.74	05.51	01.11	110.55	302.05				302.05	1,700.81	21.40	1550	++		0.10	1.152	030.77	40.7776
BOBOLINK RIDGE	S122, R122	122	121		0.17		0.31			0.91 1	3.92	20.74	0.39	21.13	68.68	80.36	117.24	956.05				956.05	3,040.59	39.49	1500			0.17	1.667	2084.54	68.56%
BOBOLINK RIDGE	R121	121	120		0.13					0.20 1	4.12	21.13	0.37	21.50	67.86	79.41	115.84	958.22				958.22	3,040.59	36.84	1500			0.17	1.667	2082.37	68.49%
										1 1																					
				-	0.00							40.00	0.07				470.54	0.00					40.00	10 50		++		0.10			400.000/
ANGEL HEIGHTS		111	112		0.00					0.00	0.00	10.00	0.27	10.27	104.19	122.14	178.56	0.00				0.00	42.08	13.58	250	$ \rightarrow $		0.46	0.830	42.08	100.00%
ANGEL HEIGHTS	S112, R112A, B	112	113		0.20		0.27			0.87	0.87	10.27	1.68	11.95	102.77	120.47	176.10	89.29				89.29	139.51	85.60	450			0.22	0.850	50.22	36.00%
DAGENHAM STREET	DARK1	DICR	122	1 27						0.71	0 71	12.00	0.20	12 20	04 70	110.06	162 12	66.97	-			66 97	100.99	22 70	200	++		1.00	1 202	24.02	22 779/
DAGENHAM STREET	FARKI	DICB	152	1.27	-					0.71	0.71	12.00	0.29	12.25	94.70	110.90	102.15	00.07	-			00.87	100.88	23.70	300	+		1.00	1.305	34.02	33.72/0
DAGENHAM STREET	S132	132	113				0.24			0.50	1.21	12.29	0.55	12.83	93.49	109.54	160.05	112.80				112.80	210.32	42.00	450			0.50	1.281	97.52	46.37%
	\$112	112	11/				0.30			0.63	1 /10	12.83	0.85	12.68	01 20	106.94	156.24	136.40				136.40	2/18 00	/12 12	600			0.15	0.850	111 60	45.02%
	5115	113	114	+	0.70	+	0.50			0.03	2.75	12.03	0.05	13.00	31.23	100.34	130.24	130.40				130.40	240.03			+		0.15	0.000	111.03	-J.UZ/0
ANGEL HEIGHTS	5114, R114	114	120	1	0.50		0.24			1.26	2./6	13.68	1.43	15.11	88.09	103.18	150.72	243.05	1			243.05	367.27	69.17	/50			0.10	0.805	124.22	33.82%
I		1		1							1	T			1 T							I				1 T	Т				
BOBOLINK RIDGE	\$120	120	105	1	1	1 1	0.28	1 1		0.58 1	7.46	21.50	0.96	22.45	67,13	78.54	114.57	1.172.18	1	1	1	1.172.18	3.040.59	95.64	1500	+		0.17	1.667	1868.41	61.45%
				1	+	1 1	5.20	1 1		0.00 1			0.50					-,-,10	+	1	1	-,-/10	0,0 10.00	23.04		++		J.1/	2.007	2000.71	02.40/0
├ ────		L		1	-												L	I			I				<u> </u>	+					
ANGEL HEIGHTS	<u>\$101</u>	101	102				0.20			0.42	0.42	10.00	0.52	10.52	104.19	122.14	178.56	43.45				43.45	129.34	35.48	375			0.50	1.134	85.89	66.41%
GOLDHAWK DRIVE	B102	102	102	1	0.21	1 1	1	1 1		0.32	0 74	10 52	0 83	11 25	101 52	118 00	172 02	7/ 02	1	1	1	7/ 02	126 10	38 36	/50	++		0.19	0 769	51 26	40.62%
COLDHANK DRIVE	C403 D1004 D	102	105	+	0.21	+ +		+ +		0.02	2.24	10.32	0.00	11.35	101.52	110.00	1,3.35	74.55	+	+	+	74.55	200.15	30.30		++		0.10	0.705	00.00	-0.02/0
GOLDHAWK DRIVE	5103, R103A, B	103	104	1	0.50		0.34			1.47	2.21	11.35	1.01	12.36	97.55	114.32	167.07	215.73	1			215.73	303.78	49.62	675			0.12	0.822	88.05	28.98%
GOLDHAWK DRIVE	S104, R104A, B, C	104	105		0.59		0.30			1.53	3.74	12.36	1.35	13.71	93.19	109.19	159.53	348.45		1	1	348.45	473.55	69.59	825			0.10	0.858	125.10	26.42%
		T								1 1				T			1					Γ									
COLDUANS DODIE	510FA 510FD 540F	105	107	1	0.42	0.00	+	+ +		1 02 2	2 02	22.45	1.24	22.27	65.20	76.20	111.40	1 500 00	+	1	1	1 502 22	F 720 4C	120.40	2100	++		0.10	1 600	4216.02	72 720/
GOLDHAWK DRIVE	5105A, 5105B, R105	105	101	1	0.13	0.90	_			1.83 2	5.05	22.45	1.31	23.//	65.29	/6.38	111.40	1,503.33	_	1	1	1,503.33	5,720.16	126.10	2100	4		0.10	1.600	4216.82	/3./2%
GOLDHAWK DRIVE	<u>\$1</u> 07	107	109			0.61				1.10 2	24.13	23.77	1.17	24.94	62.94	73.62	107.36	1,518.58				1,518.58	5,720.16	112.64	2100			0.10	1.600	4201.58	73.45%
GOLDHAWK DRIVE	S109	109	110			0.52				0.94 2	25.07	24.94	0.67	25.62	60.99	71.33	104.01	1,528.92				1,528.92	5,720.16	64.64	2100			0.10	1.600	4191.24	73.27%
												-														+				-	
			1		1									<u> </u>					1	I	I		I	I		4			_		I
Definitions:				Notes:							D	esigned:		J.I.M.			No. Revision									Date					
Q = 2.78CiA, where:				1. Man	nings coe	efficient (n) =		0.013									1. Submission No. 1 to City of Ottawa									2013-08-29					
O - Peak Flow in Litres no	ar Second (L/s)										1						2	1			Submission	No. 2 to City	of Ottawa			+			2014-01 22		
Q = Peak Flow III Litres pe	er second (L/s)										_						Ζ.				SUDITIISSION	NO. 2 TO CITY	OI ULLAWA						2014-01-22		
A = Area in Hectares (Ha)				1							Cl	hecked:		P.K.			3.				Submission	No. 3 to City	of Ottawa						2014-08-22		
i = Rainfall intensity in mi	illimeters per hour (mm/hr)			1							I						4.	1			Submission	No. 4 to Citv	of Ottawa						2015-06-15		
[i - 998 071 //TC+6 057	2)00 81/1	5 VEAD		1							I						 E	1			Submission	No. 5 to City	of Ottawa			+			2016-11 10		
[I = 330.0/1/(IC+0.053	5/ 0.014]	JTEAK		1							F						э.	+			JUDITISSION	110. 3 to city	UI ULLAWA						2010-11-10		
li = 1174.184 / (TC+6.01	14)^0.816]	10 YEAR		1							D	wg. Referer	nce:	27970 - 500,	500A, 500B		6.	I			Submissio	on for MOE A	pproval						2017-02-10		
[i = 1735.688 / (TC+6.01	14)^0.820]	100 YEAR		1													7.				Resubmiss	ion for MOE	Approval						2017-07-14		
				1														File Poferen	· • ·				Data			t			Shoot No:		
1				1														rile ketereno	.e.				Date:						Sheet NO:		
				1														27970.5.7.1	1				2017-07-14						2 of 3		

STORM SEWER DESIGN SHEET

PROJECT: CRT DEVELOPMENT LOCATION: CITY OF OTTAWA CLIENT: CRT DEVELOPMENT INC.

IBI Group 400-333 Preston Street

Ottawa, Ontario

	LOCATION						ARE	A (Ha)							RATI	IONAL DES	GIGN FLOW								!	SEWER DATA	۱			
STREET	AREA ID	FROM	то	C=	C=	C= C=	C=	C= C=	C= C=	C= IND	CUM	INLET	TIME	TOTAL	i (5)	i (10)	i (100)	5yr PEAK	10yr PEAK 100yr PEAK	FIXED	DESIGN	CAPACITY	LENGTH	<u> </u>	PIPE SIZE (mm	ı) 	SLOPE	VELOCITY	AVAIL C	AP (5yr)
		MH	MH	0.20	0.55	0.65 0.66	0.75	0.80 0.9	0	2.78A	2.78AC	(min)	IN PIPE	(min)	(mm/nr) (n	mm/hr)	(mm/hr)	FLOW (L/s)	FLOW (L/S) FLOW (L/S)	FLOW (L/s)	FLOW (L/S)	(L/S)	(m)	DIA	w	н	(%)	(m/s)	(L/S)	(%)
ENAD A NIKAZNIT CTOFFT	C1200 01200	139	100	-	0.00		0.21	<u> </u>		0.79	0.70	10.00	1 70	11 70	104.10	122.14	170 56	91.69			91.69	100.31	100.00	275		′	0.25	0.040	26.52	24 529/
EMBANKMENT STREET	S188, R188A, B	128	189		0.19		0.30			0.78	1.70	11.76	0.97	12.72	95.75	112.20	163.96	162.77			162.77	210.32	74.32	450	++	[_]	0.50	1.281	47.54	24.32%
	,,-																								+ +					
BLOCK 344	RES.3	BULKHEAD	189					1.58		3.51	3.51	13.95	0.66	14.61	87.11 1	102.03	149.03	306.10			306.10	402.33	35.00	750			0.12	0.882	96.23	23.92%
																								ļ						L
EMBANKMENT STREET	S189, R189	189	190		0.09		0.28			0.72	5.94	14.61	1.69	16.30	84.83	99.35	145.10	503.52			503.52	739.33	97.00	975	I	ا ا	0.10	0.959	235.81	31.89%
EMBANKMENT STREET	S190	190	176				0.05	<u>↓ </u>		0.10	6.04	16.30	0.20	16.50	79.59	93.19	136.05	480.69		-	480.69	739.33	11.54	975	───┦	·'	0.10	0.959	258.64	34.98%
	C177 D177	177	176	-	0.09		0.14			0.41	0.41	10.00	1 17	11 17	104.10	122.14	170 56	42.16			42.16	50.69	F7 46	200		′	0.25	0.010	16.52	27.00%
COPE DRIVE	51/7, R1/7	1//	1/6		0.08		0.14			0.41	0.41	10.00	1.17	11.17	104.19	122.14	1/8.50	45.10			45.10	59.00	57.40	500	++	[_]	0.35	0.818	10.52	27.09%
BLOCK 345 (SCHOOL)	INST.2	BULKHEAD	176					6.57		14.61	14.61	12.00	0.15	12.15	94.70 1	110.96	162.13	1.383.66			1.383.66	1.575.26	12.00	1200	++		0.15	1.349	191.60	12.16%
						1																		1	1					
COPE DRIVE	S176	176	175				0.14			0.29	21.36	16.50	1.05	17.55	79.01	92.51	135.05	1,687.52			1,687.52	2,332.02	80.65	1500		· · · · ·	0.10	1.278	644.51	27.64%
COPE DRIVE	S175, R175	175	174		0.36		0.42			1.43	22.78	17.55	1.12	18.67	76.14	89.13	130.09	1,734.64			1,734.64	2,332.02	86.28	1500			0.10	1.278	597.38	25.62%
																								<u> </u>	l	·'				<u> </u>
FINSBURY AVENUE	\$182A,B, R182A,B,C	182	183		0.58		0.58	+ +		2.10	2.10	10.00	1.57	11.57	104.19	122.14	178.56	218.40			218.40	283.76	119.30	525	+	·'	0.40	1.270	65.35	23.03%
DINNER POAD	S101 P101A	101	186		0.10		0.60	+ +		1 5/	1 5/	10.00	0.55	10.55	10/ 19 1	122 14	178 56	160.61			160.61	378.96	/13.00	600	++	J	0.35	1 208	218 25	57 62%
THREE ROAD	5151, KI51A	151	100		0.15		0.00	1 1		1.04	1.54	10.00	0.55	10.55	104.15	122.14	170.50	100.01			100.01	570.50	43.00		++		0.55	1.250	210.55	57.02/0
BELSIZE WAY	S127B, R127B, C	127	185		0.41		0.26			1.17	1.17	10.00	1.31	11.31	104.19 1	122.14	178.56	121.80			121.80	188.11	90.00	450	+ +	I	0.40	1.146	66.31	35.25%
BELSIZE WAY		185	186							0.00	1.17	11.31	1.29	12.60	97.75 1	114.56	167.42	114.27			114.27	175.96	82.92	450			0.35	1.072	61.69	35.06%
																										'				
PINNER ROAD	S186, R186	186	187		0.23		0.23			0.83	3.54	12.60	1.38	13.97	92.21 1	108.04	157.85	326.60			326.60	473.55	70.83	825	I	ا ا	0.10	0.858	146.95	31.03%
PINNER ROAD		187	183			├	0.00			0.00	3.54	13.97	0.19	14.17	87.03 1	101.93	148.88	308.22			308.22	473.55	10.00	825	↓ Į	<u>'</u> '	0.10	0.858	165.33	34.91%
	\$182 P182	192	19/		0.22	 	0.24	+ +		0.84	6.47	14 17	1 1 4	15 30	86.34 1	101 13	147 71	559.05			559.05	900.97	68 70	1050	++	[_]	0.10	1.008	2/11 82	37.0/%
FINSBURY AVENUE		185	174		0.22		0.00			0.00	6.47	15.30	0.32	15.62	82.59	96.71	141.22	534.72			534.72	900.87	19.07	1050	++	l	0.10	1.008	366.15	40.64%
																							-0.01		+ +					
COPE DRIVE	S174, R174	174	173		0.12		0.25			0.70	29.96	18.67	0.94	19.61	73.30	85.80	125.21	2,196.41			2,196.41	3,792.13	81.44	1800			0.10	1.444	1595.72	42.08%
COPE DRIVE	S173	173	172				0.29			0.60	30.57	19.61	0.84	20.46	71.11	83.22	121.43	2,173.69			2,173.69	3,792.13	73.01	1800			0.10	1.444	1618.44	42.68%
							_																	<u> </u>		ا				<u> </u>
BLOCK 313 (SCHOOL)	INST.1	BULKHEAD	172					2.88		6.41	6.41	12.00	0.25	12.25	94.70 1	110.96	162.13	606.54			606.54	755.43	17.02	900	+	·'	0.16	1.150	148.90	19.71%
	\$172	172	171			 	0.23	+ +		0.48	37.45	20.46	0.03	21 20	69.27	81.05	118 25	2 50/ 12			2 50/ 12	3 707 13	80.84	1800	++	[_]	0.10	1 444	1108.00	21 50%
COFE DRIVE	5172	1/2	1/1				0.25	1 1		0.40	37.43	20.40	0.55	21.35	05.27	81.05	110.25	2,334.13			2,334.13	3,732.13	00.04	1000	++		0.10	1.444	1158.00	31.3576
DAGENHAM STREET	S180A,B, R180A	180	181		0.09		0.37			0.91	0.91	10.00	1.42	11.42	104.19 1	122.14	178.56	94.72			94.72	245.74	94.00	525	+ +	I	0.30	1.100	151.02	61.46%
DAGENHAM STREET	S181, R181	181	171		0.09		0.14			0.43	1.34	11.42	1.23	12.66	97.23 1	113.94	166.51	130.14			130.14	286.47	72.50	600			0.20	0.982	156.32	54.57%
																								<u> </u>			\square			Ļ
COPE DRIVE	\$171	171	170				0.26			0.54	39.33	21.39	0.94	22.33	67.34	78.79	114.94	2,648.73			2,648.73	3,792.13	81.06	1800	<u> </u>	└──── [!]	0.10	1.444	1143.40	30.15%
BLOCK 212	DEC 2A		cowor			2.26	:			E 09	E 09	12.00	0.22	12.22	94.70 1	110.06	162 12	E66 42			E66 43	844.60	16 74	900	+	[_]	0.20	1 296	370 10	22.04%
DEDEK JIL	NE3.3A	CBINIIS45	Jewei			5.20		1 1		3.50	5.50	12.00	0.22	12.22	54.70	110.50	102.15	500.42			500.42	044.00	10.74	500	++		0.20	1.200	270.10	52.5470
COPE DRIVE	S170A,B	170	110			1	0.33			0.69	46.00	22.33	1.33	23.66	65.53	76.66	111.82	3,014.45			3,014.45	4,694.42	121.89	1950	1		0.10	1.523	1679.97	35.79%
																								í		ii				
																								Ļ						Ļ
GOLDHAWK DRIVE	\$110B	110	205			0.47				0.85	71.92	25.62	0.83	26.45	59.93	70.09	102.19	4,310.29			4,310.29	11,180.46	94.32	2700	l	·'	0.10	1.892	6870.17	61.45%
	INCT 2	BUUKUEAD	205					2.47		0.00	F 40	12.00	0.17	12.17	04.70	110.06	162.12	F 20 10			F20 10	620.00	17.00	675	+	·'	0.50	1.670	00.00	16 119/
GOLDHAWK DRIVE		BOLKHEAD	205					2.47		5.45	5.45	12.00	0.17	12.17	54.70	110.90	102.13	520.19			520.19	020.05	17.00	0/3	++	[_]	0.50	1.075	55.50	10.11%
GOLDHAWK DRIVE	205A, 205B	205	206			1.46		1 1		2.64	80.05	26.45	0.94	27.39	58.68	68.62	100.04	4,697.53			4,697.53	11,180.46	107.00	2700	++	·	0.10	1.892	6482.93	57.98%
GOLDHAWK DRIVE	S206	206	207			0.84				1.52	81.57	27.39	0.90	28.29	57.33	67.04	97.72	4,676.48			4,676.48	11,726.17	107.16	2700	1		0.11	1.984	7049.69	60.12%
										0.00																				
STREET NO. 2	RES. 4, 6 & 7		207	<u> </u>		22.96		1.89		45.69	45.69	10.00	0.83	10.83	104.19 1	122.14	178.56	4,760.80			4,760.80	5,720.16	80.00	2100	\square	ر	0.10	1.600	959.36	16.77%
CTREET NO. 0	<u></u>		AU					+					I	I				l		L		40.000		4500	+	<mark>ا</mark> ــــــــــــــــــــــــــــــــــــ	<u>⊢ , </u>	7.000	4000- 10	100 0001
STREET NO. 2	5305	305		+	+	0.03	+	<u>├</u>		0.05	0.05	-										13,335.43	22.00	1500	+	[_]	3.2/	6 896	13335.43	100.00%
FUTURE STREET	5304 \$304R	304	303			0.69	+			1 25	1.25	-										5,720 16	98.94	2100	++	J	0.10	1.600	5720.16	100.00%
GOLDHAWK DRIVE	\$303, \$306	303	302	1	1	3.19				5.76	7.01	1										5,720.16	94.58	2100		ł	0.10	1.600	5720.16	100.00%
GOLDHAWK DRIVE	S302,Park3,Res 5	302	301	1.36		10.06				18.93	25.95	These pi	ipes are sized	l by stormwat	er modeling (See	e Design B	rief-Fernbanl	k Pond 5 Stori	mwater Management Facili	ty Report)		5,720.16	70.65	2100			0.10	1.600	5720.16	100.00%
GOLDHAWK DRIVE	\$301	301	207			0.49				0.89	26.83											5,720.16	70.00	2100		1	0.10	1.600	5720.16	100.00%
				<u> </u>								4													\square	ر	\square			
STREET NO. 25		207	300	0.00				+		0.00	154.09	-										2,332.02	93.73	1500	+	<mark>ا</mark> ــــــــــــــــــــــــــــــــــــ	0.10	1.278	2332.02	100.00%
POND		300	HEADWALL	9.21		52./4				100.42	254.51		1	1	I I			1	<u> </u>	1		3,006.86	/5.63	1650	+	[]	0.10	1.362	3006.86	100.00%
Definitions:				Notes	1	I		1			1	Designed	1	LIM	I I		No			-	Revision				<u> </u>		ł	Date		
Q = 2.78CiA, where:				1. Man	nings coe	efficient (n) =		0.013				Sesigned.				ŀ	1			Submission	No. 1 to City	of Ottawa						2013-08-29		_
Q = Peak Flow in Litres pe	er Second (L/s)															ŀ	2.			Submission I	No. 2 to City	of Ottawa						2014-01-22		
A = Area in Hectares (Ha)												Checked:		P.K.			3.			Submission I	No. 3 to City	of Ottawa				<u> </u>		2014-08-22		
i = Rainfall intensity in mi	illimeters per hour (mm/h	ır)		1]	4.			Submission I	No. 4 to City	of Ottawa						2015-06-15		
[i = 998.071 / (TC+6.053	3)^0.814]	5 YEAR															5.			Submission I	No. 5 to City	of Ottawa						2016-11-10		
[i = 1174.184 / (TC+6.02	14)^0.816]	10 YEAR		1								Dwg. Refere	ence:	27970 - 500,	500A, 500B	Ļ	6.			Submissio	n for MOE A	oproval						2017-02-10		
μ = 1735.688 / (TC+6.0)	14)^0.820]	100 YEAR															7.	Filo Poferer -	o:	Resubmissi	on for MOE	Approval						2017-07-14		
				1														27970 5 7 1	e.			2017-07-14					_	3 of 3		
				1								1						21010.0.1.1				201/ 0/-14				(5015		

STORM SEWER DESIGN SHEET

PROJECT: CRT DEVELOPMENT LOCATION: CITY OF OTTAWA CLIENT: CRT DEVELOPMENT INC.

Node77 MH304 MH305 SWMF Node78	
SWMM 27970 CRT Version 9.12 Version 9.12	10/25/16 Page 1/1

HGL SUMMARY PHASE 1 AND PHASE 1A

DUACE	ML	USF or Propos	ed Ground	100 year 3 h	our Chicago	100 year 3 hour	Chicago + 20%	July	1979	Augus	it 1988	Augus	st 1996
PHASE			Elevation (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)
Taunalista	MH207	Proposed Ground	107.17	104.53	2.64	104.58	2.59	104.55	2.62	104.54	2.63	104.23	2.94
Pond 5	MH206	Proposed Ground	107.15	104.57	2.58	104.63	2.52	104.60	2.55	104.58	2.57	104.25	2.90
T ONG 5	MH205	Proposed Ground	107.28	104.62	2.66	104.68	2.60	104.64	2.64	104.62	2.66	104.28	3.00
1	MH110	Proposed Ground	107.52	104.69	2.83	104.75	2.77	104.71	2.81	104.69	2.83	104.33	3.19
1	MH109	Proposed Ground	107.45	104.71	2.74	104.77	2.68	104.72	2.73	104.71	2.74	104.33	3.12
1	MH107	Proposed Ground	107.41	104.73	2.68	104.80	2.61	104.75	2.66	104.73	2.68	Free flow	N/A
1	MH105	USF	105.65	104.76	0.89	104.83	0.82	104.79	0.86	104.77	0.88	Free flow	N/A
1	MH104	USF	105.85	104.80	1.05	104.87	0.98	104.83	1.02	104.81	1.04	Free flow	N/A
1	MH103	USF	105.75	104.81	0.94	104.89	0.86	104.85	0.90	104.83	0.92	Free flow	N/A
1	MH102	USF	105.95	104.82	1.13	104.89	1.06	104.85	1.10	104.84	1.11	Free flow	N/A
1	MH110C	Proposed Ground	107.93	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH170	USF	105.50	104.86	0.64	104.94	0.56	104.87	0.63	104.86	0.64	104.43	1.07
1	MH171	USF	105.35	104.96	0.39	105.04	0.31	104.96	0.39	104.96	0.39	104.48	0.87
1	MH172	USF	105.50	105.03	0.47	105.12	0.38	105.03	0.47	105.05	0.45	Free flow	N/A
1	MH173	USF	105.65	105.07	0.58	105.17	0.48	105.08	0.57	105.10	0.55	Free flow	N/A
1	MH174	USF	105.80	105.13	0.67	105.24	0.56	105.14	0.66	105.18	0.62	Free flow	N/A
1	MH175	USF	106.00	105.18	0.82	105.28	0.72	105.19	0.81	105.22	0.78	Free flow	N/A
1	MH176	USF	106.10	105.23	0.87	105.33	0.77	105.24	0.86	105.27	0.83	Free flow	N/A
1	MH177	Proposed Ground	106.55	105.28	1.27	105.34	1.21	105.30	1.25	105.34	1.21	Free flow	N/A
1	MH181	USF	105.65	105.19	0.46	105.28	0.37	105.06	0.59	105.06	0.59	Free flow	N/A
1	MH180	USF	105.85	105.42	0.43	105.52	0.33	105.18	0.67	105.19	0.66	Free flow	N/A
1	MH184	USF	105.68	105.19	0.49	105.30	0.38	105.20	0.48	105.24	0.44	Free flow	N/A
1	MH183	USF	105.95	105.32	0.63	105.42	0.53	105.34	0.61	105.38	0.57	Free flow	N/A
1	MH182	USF	106 19	105.83	0.36	105.96	0.23	105.86	0.33	105.92	0.27	Free flow	N/A
1	MH187	USF	105.75	105.37	0.38	105.00	0.28	105.39	0.36	105.44	0.31	Free flow	N/A
1	MH186	USF	106.05	105.53	0.52	105.68	0.37	105.57	0.00	105.63	0.42	Free flow	N/A
1	MH191	USF	106.02	105.61	0.02	105.28	0.24	105.67	0.10	105.00	0.12	Free flow	N/A
1	MH185	USF	106.62	105.66	0.41	105.82	0.24	105.27	0.00	105.77	0.20	Free flow	N/A
1	MH127	USF	106.40	105.80	0.75	105.02	0.00	105.72	0.70	105.77	0.00	Free flow	N/A
1	MH190	USF	106.76	105.86	1.09	105.35	0.71	105.07	1.09	105.32	1.05	Free flow	N/A
1	MH180	USE	106.05	105.20	0.74	105.00	0.55	105.20	0.74	105.34	0.71	Free flow	N/A
1	MH188		106.55	105.31	1 11	105.41	0.04	105.01	1.09	105.54	1.06	Free flow	Ν/Α Ν/Δ
1	MH128		106.65	Free flow	Ν/Δ	105.50	0.97	Free flow	1.05 Ν/Δ	Free flow	N/A	Free flow	N/A
1	MH120		105.70	104 87	0.83	100.70	0.07	104 90	0.80	104 87	0.83	Free flow	N/A
1	MH121		105.70	104.88	0.00	104.96	0.73	104.00	0.00	104.88	0.03	Free flow	N/A
1	MH122		105.70	Free flow	0.02 N/A	104.90	0.74	104.92	0.70	Free flow	0.02 N/A	Free flow	N/A
1	MH123		106.00	Free flow	N/A	105.01	0.92	104.94	1.03	Free flow	N/A	Free flow	Ν/Α Ν/Δ
1	MH124		106.00	Free flow		105.01	1.03	Eree flow	N/A	Free flow	N/A	Free flow	N/A
1	MH125		106.10	Free flow		105.07	1.03	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH126		106.20	Free flow		105.13	1.07	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH120	Dropogod Ground	100.33	Free flow		Free flow	N/A	Free flow		Free flow		Free flow	
1		LISE	106.00		1.03	105.08	0.02	105.03	0.07	104.08	1 02	Free flow	N/A N/A
1			106.00	104.97	1.03	105.00	0.92	105.03	0.97	104.90	0.02	Free flow	IN/A
1			106.05	105.09	0.90	105.21	0.04	105.17	0.00	105.12	0.93	Free flow	IN/A
1		Dropogod Crawed	100.10		0.94	103.28	0.82	105.25	0.80	105.19	0.91		N/A
1		Froposea Ground	108.19		IN/A	105.28	2.91	105.25	2.94	105.20	2.99		IN/A
			100.15		N/A	105.34	0.81	105.30	0.85		IN/A		N/A
1		USF	100.25	105.02	123	105.12	1.13	105.09	1.16	105.02	1.23		N/A
1		USF	100.15		N/A	105.14	1.01	105.13	1.03		N/A		N/A
	IVIH140		106.25		N/A		N/A		N/A		N/A		N/A
1	IVIH 134	USF	106.40	Free flow	N/A	Free TIOW	IN/A	Free flow	N/A	Free tiow	N/A	Free flow	N/A

CONNECTION POINT AT BOBLINK J:\27970-FernbankPlan\5.7 Calculations\5.7.4 SWM\PHA______

MH U/S OF CONNECTION POINT

HGL SUMMARY PHASE 1 AND PHASE 1A

	мц	USF or Propos	sed Ground	100 year 3 h	our Chicago	100 year 3 hour	Chicago + 20%	July	1979	Augus	st 1988	Augus	st 1996
PHASE			Elevation (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)
1	MH141	Proposed Ground	108.40	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH135	USF	106.76	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH150	USF	106.65	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH152	USF	107.40	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH153	USF	107.25	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH151	USF	107.00	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1	MH149	USF	106.71	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	CRT1	Proposed Ground	103.30	100.89	N/A	100.89	N/A	100.89	N/A	100.89	N/A	100.89	N/A
1A	MH162	Proposed Ground	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH161	Proposed Ground	104.20	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH146	USF	103.61	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH147	USF	104.06	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH148	USF	104.56	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH138	USF	106.01	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH145	USF	103.61	102.75	0.86	102.76	0.85	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH160	USF	105.53	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH137	USF	106.26	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH136	USF	106.71	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH144	USF	104.81	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH143	USF	105.11	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A
1A	MH142	USF	106.11	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A	Free flow	N/A

HGL SUMMARY PHASE 1 (TRIB. TO POND 5)

DUASE	ML	USF or Propos	ed Ground	100 year 24	I hour SCS	100 year 24 ho	our SCS + 20%
PHASE			Elevation (m)	HGL (m)	Freeboard (m)	HGL (m)	Freeboard (m)
Trunk to	MH207	Proposed Ground	107.17	104.49	2.68	104.67	2.50
Pond 5	MH206	Proposed Ground	107.15	104.53	2.62	104.73	2.42
1 ond 5	MH205	Proposed Ground	107.28	104.57	2.71	104.78	2.50
1	MH110	Proposed Ground	107.52	104.64	2.88	104.86	2.66
1	MH109	Proposed Ground	107.45	104.65	2.80	104.88	2.57
1	MH107	Proposed Ground	107.41	104.68	2.73	104.90	2.51
1	MH105	USF	105.65	104.71	0.94	104.94	0.71
1	MH104	USF	105.85	104.75	1.10	104.98	0.87
1	MH103	USF	105.75	104.76	0.99	105.00	0.75
1	MH102	USF	105.95	Free flow	N/A	105.00	0.95
1	MH1100	Proposed Ground	107.93	Free flow	N/A	105.01	2.92
1	MH170	USF	105.50	104.79	0.71	105.05	0.45
1	MH171	USF	105.35	104.87	0.48	105.16	0.19
1	MH172	USF	105.50	104.93	0.57	105.23	0.27
1	MH173	USF	105.65	104.97	0.68	105.28	0.37
1	MH174	USF	105.80	105.02	0.78	105.35	0.45
1	MH175	USF	106.00	105.06	0.94	105.39	0.61
1	MH176	USF	106.10	105.10	1.00	105.44	0.66
1	MH177	Proposed Ground	106.55	Free flow	N/A	105.45	1.10
1	MH181	USF	105.65	105.00	0.65	105.40	0.25
1	MH180	USF	105.85	105.23	0.62	105.63	0.22
1	MH184	USF	105.68	105.06	0.62	105.41	0.27
1	MH183	USF	105.95	105.14	0.81	105.54	0.41
1	MH182	USF	106.19	105.62	0.57	106.05	0.14
1	MH187	USF	105.75	105.16	0.59	105.59	0.16
1	MH186	USF	106.05	105.27	0.78	105.76	0.29
1	MH191	USF	106.02	105.33	0.69	105.84	0.18
1	MH185	USF	106.45	105.42	1.03	105.91	0.54
1	MH127	USF	106.70	Free flow	N/A	106.05	0.65
1	MH190	USF	106.35	105.13	1.22	105.47	0.88
1	MH189	USF	106.05	105.17	0.88	105.52	0.53
1	MH188	USF	106.55	Free flow	N/A	105.67	0.88
1	MH128	USF	106.65	Free flow	N/A	105.90	0.75
1	MH120	USF	105.70	104.81	0.89	105.05	0.65
1	MH121	USF	105.70	Free flow	N/A	105.07	0.63
1	MH122	USF	105.90	Free flow	N/A	105.09	0.81
1	MH123	USF	106.00	Free flow	N/A	105.12	0.88
1	MH124	USF	106.10	Free flow	N/A	105.16	0.94
1	MH125	USF	106.20	Free flow	N/A	105.21	0.99
1	MH126	USF	106.35	Free flow	N/A	105.25	1.10
<mark>1</mark>	MH129	Proposed Ground	<mark>109.23</mark>	Free flow	N/A	Free flow	N/A
<mark>1</mark>	<mark>M</mark> H114	USF	106.00	104.93	1.07	105.18	0.82
1	MH113	USF	106.05	105.05	1.00	105.32	0.73
1	MH112	USF	106.10	105.12	0.98	105.39	0.71
1	MH111	Proposed Ground	108.19	Free flow	N/A	105.40	2.79
1	MH132	USF	106.15	Free flow	N/A	105.46	0.69
1	MH130	USF	106.25	104.98	1.27	105.22	1.03
1	MH131	USF	106.15	Free flow	N/A	105.26	0.89
1	MH140	USF	106.25	Free flow	N/A	105.33	0.92
1	MH134	USF	106.40	Free flow	N/A	Free flow	N/A
1	MH141	Proposed Ground	108.40	Free flow	N/A	Free flow	N/A
1	MH135	USF	106.76	Free flow	N/A	Free flow	N/A
1	MH150	USF	106.65	Free flow	N/A	Free flow	N/A
1	MH152	USF	107.40	Free flow	N/A	Free flow	N/A
1	MH153	USF	107.25	Free flow	N/A	Free flow	N/A
1	MH151	USF	107.00	Free flow	N/A	Free flow	N/A
1	MH149	USF	106.71	Free flow	N/A	Free flow	N/A

HGL SUMMARY PHASE 1 (TRIB. TO POND 5) 25% SEDIMENT ACCUMULATION

BUAGE		USF or Prop	osed Ground	100 year 3 h	our Chicago
PHASE	MH		Elevation (m)	HGL (m)	Freeboard (m)
	MH207	Proposed Ground	107.17	105.00	2.17
I runk to	MH206	Proposed Ground	107.15	105.10	2.05
Folia 5	MH205	Proposed Ground	107.28	105.20	2.08
1	MH110	Proposed Ground	107.52	105.35	2.17
1	MH109	Proposed Ground	107.45	105.38	2.07
1	MH107	Proposed Ground	107.41	105.43	1.98
1	MH105	USF	105.65	105.48	0.17
1	MH104	USF	105.85	105.54	0.31
1	MH103	USF	105.75	105.61	0.14
1	MH102	USF	105.95	105.67	0.28
1	MH110C	Proposed Ground	107.93	105.82	2.11
1	MH170	USF	105.50	105.56	-0.06
1	MH171	USF	105.35	105.67	-0.32
1	MH172	USF	105.50	105.75	-0.25
1	MH173	USF	105.65	105.80	-0.15
1	MH174	USF	105.80	105.87	-0.07
1	MH175	USF	106.00	105.91	0.09
1	MH176	USF	106.10	105.96	0.14
1	MH177	Proposed Ground	106.55	106.04	0.51
1	MH181	USF	105.65	105.90	-0.25
1	MH180	USF	105.85	106.14	-0.29
1	MH184	USF	105.68	105.92	-0.24
1	MH183	USF	105.95	106.05	-0.10
1	MH182	USF	106.19	106.55	-0.36
1	MH187	USF	105.75	106.10	-0.35
1	MH186	USF	106.05	106.26	-0.21
1	MH191	USF	106.02	106.35	-0.33
1	MH185	USF	106.45	106.44	0.01
1	MH127	USF	106.70	106.68	0.02
1	MH190	USF	106.35	105.98	0.37
1	MH189	USF	106.05	106.04	0.01
1	MH188	USF	106.55	106.35	0.20
1	MH120	USF	105.70	105.67	0.03
1	MH121	USF	105.70	105.71	-0.01
1	MH122	USF	105.90	105.74	0.16
1	MH123	USF	106.00	105.79	0.21
1	MH124	USF	106.10	105.92	0.18
1	MH125	USF	106.20	106.14	0.06
1	MH126	USF	106.35	106.31	0.04
1	MH128	USF	106.65	106.91	-0.26
1	MH129	Proposed Ground	109.23	106.91	2.32
1	MH114	USF	106.00	105.79	0.21
1	MH113	USF	106.05	105.90	0.15
1	MH112	USF	106.10	106.06	0.04
1	MH111	Proposed Ground	108.19	106.08	2.11
1	MH132	USF	106.15	106.06	0.09
1	MH130	USF	106.25	105.89	0.36
1	MH131	USF	106.15	106.09	0.06
1	MH140	USF	106.25	106.00	0.25

The above results indicate that there is no major system flow from the site during the 100 year 3 hour Chicago analysis. Supporting information, the Velocity x Depth Calculation sheets are included within **Appendix D** for reference. Therefore, the proposed design will not have a negative impact on the existing downstream system.

All the total depths of flow and ponding during the 100 year storm event increased by 20%, the major system remains at or below 0.20m and therefore below the building openings at all locations, see the Velocity x Depth Calculation sheets provided in **Appendix D**.

4.8 Hydraulic Grade Line Analysis

As part of the Phase 1 design the storm HGL was established at various points, at MH 209 the HGL was established at 100.97, the invert of the storm sewer at MH 109 which connect to MH 209 is 100.89, since the sewers are sized to accommodate the 5 yr design event, and ICD's limit flow into the sewers to the 5yr even the HGL within the site is deemed to follow the obvert of the sewer.