Appendix A – Civil Drawing Set

- 1. C00001 General Notes & Detail Reference
- 2. CU1101 Servicing Plan
- 3. CG1101 Grading Plan (North)
- 4. CG1102 Grading Plan (South)
- 5. CG1103 Ponding Plan
- 6. CE1101 Sediment and Erosion Plan
- 7. CD1101 Details Plan 1
- 8. CD1102 Details Plan 2
- 9. CM1101 Foundation Drainage Plan

GENERAL NOTES

- 1. ALL WORK SHALL BE IN ACCORDANCE WITH THE PROEJCT AGREEMENT (PA) AND ALL CODES, BY-LAWS, REGULATIONS AND STANDARDS INCLUDING ONTARIO PROVINCIAL STANDARD DRAWINGS (OPSD), THE NATIONAL BUILDING CODE, ONTARIO BUILDING CODE, THE "OCCUPATIONAL HEALTH AND
- SAFETY ACT", AS APPLICABLE. ALL TRENCHING AND TUNNELING WORK SHALL BE DONE IN ACCORDANCE WITH THE ONTARIO HEALTH AND SAFETY ACT AND REGULATIONS. THE CONTRACTOR IS RESPONSIBLE TO CO-ORDINATE HIS SCHEDULE AND WORK ACTIVITIES WITHIN THE AREA OF THE CONTRACT. DO NOT USE LOCAL STREETS OR GRAVEL ROADS FOR STORAGE OF CONSTRUCTION MATERIAL UNLESS AUTHORIZED, IN WRITING, BY LOCAL
- MUNICIPALITY, ALL AUTHORITIES HAVING JURISDICTION AND MOBILINX CONSTRUCTION. ALL TRENCH EXCAVATIONS SHALL BE BACKFILLED AS PER CONTRACT DOCUMENTS INCLUDING SPECIFICATIONS AND THE DESIGN DRAWINGS.
- ALL EXCESS EXCAVATED MATERIAL SHALL BE DISPOSED OFF-SITE. CONSTRUCTION LAYDOWN AREAS INCLUDING PARKING, TEMPORARY OFFICES, AND MATERIALS STORAGE SHALL HAVE A MINIMUM 150mm DEPTH 19mm CRUSHED STONE SURFACE. MAINTAIN EXISTING DRAINAGE. UPON COMPLETION OF CONTRACT, RESTORE AREA TO ORIGINAL CONDITION OR AS PER
- CONTRACT DOCUMENTS DURING NON-CONSTRUCTION PERIODS, ALL OPEN EXCAVATIONS ALONG THE STREETS TO BE COMPLETELY COVERED WITH ADEQUATE TIMBER OR STEEL BEAMS SUPPORTING STEEL PLATES DESIGNED BY A PROFESSIONAL ENGINEER LICENSED TO PRACTICE IN ONTARIO AND SUBMITTED TO THE
- CONTRACTOR SHALL PREVENT CONSTRUCTION DEBRIS FROM ENTERING EXISTING CATCH BASINS, MAINTENANCE HOLES AND STORM AND SANITARY SEWERS WITHIN THE AREA OF THE CONTRACT. CONTRACTOR SHALL BE RESPONSIBLE FOR THE REMOVAL, IN A TIMELY MANNER, OF ANY CONSTRUCTION DEBRIS THAT ENTER THE EXISTING CATCH BASINS MAINTENANCE HOLES AND STORM AND SANITARY SEWERS.
- 10. ACCESS TO PRIVATE AND PUBLIC PROPERTIES SHALL BE MAINTAINED AT ALL TIMES.
- 12. ORDER OF PRECEDENCE OF STANDARD DRAWINGS IS FIRSTLY THE AGENCY'S ENGINEERING STANDARDS, SECONDLY THE CITY OF OTTAWA AS APPICABLE, STANDARD DRAWINGS, AND THIRDLY ONTARIO PROVINCIAL STANDARD DRAWINGS (OPSD)
- 13. LENGTHS OF SERVICE LINES INDICATED ON DRAWINGS ARE NOT EXACT. THE CONTRACTOR SHALL CONFIRM TOTAL LENGTHS AND PROVIDE THE FULL EXTENT OF LINES (INCLUDING REQUIRED CONNECTIONS) EVEN IF ACTUAL LENGTHS VARY FROM DESIGN VALUES.
- 14. THE CONTRACTOR SHALL COORDINATE ITS SCHEDULE AND WORK ACTIVITIES WITH ALL OTHER STAKEHOLDERS IN THE PROJECT AREA.
- 15. PROVIDE FOR THE PROTECTION AND MAINTENANCE OF ALL EXISTING UTILITIES DURING EXECUTION OF WORK. 16. GRANULAR MATERIAL, USED FOR BACKFILL WHERE INDICATED ON THE DESIGN DRAWINGS, SHALL BE PLACED IN LAYERS 150mm IN DEPTH MAXIMUM AND
- 17. CONTRACTOR SHALL MAINTAIN FLOW IN ALL EXISTING SERVICES DURING CONSTRUCTION. 18. BENCHMARKS TO BE OBTAINED FROM THE CONTRACT DRAWINGS.

BE COMPACTED TO 100% S.P.M.D.D. AND AS NOTED IN THE SPECIFICATIONS.

19. CATCH BASINS TO BE MAINTAINED DURING CONSTRUCTION UNLESS OTHERWISE SPECIFIED. 20. ALL MATERIALS AND CONSTRUCTION IS TO BE IN ACCORDANCE WITH THE CURRENT CITY OF OTTAWA STANDARD DRAWINGS & SPECIFICATIONS OR

UTILITIES PRIOR TO CONSTRUCTION AND SHALL PROTECT AND ASSUME RESPONSIBILITY OF ALL UTILITIES WHETHER OR NOT SHOW ON THESE

- OPSD / OPSS IF CITY DRAWINGS AND SPECIFICATIONS DO NOT APPLY. 21. THE CONTRACTOR IS RESPONSIBLE FOR DETERMINING THE EXACT LOCATION, SIZE, MATERIAL AND ELEVATION OF ALL EXISTING SERVICES AND
- 22. ALL SEWER SERVICE LATERALS DEEPER THAN 5.0m REQUIRE A CONTROLLED SETTLEMENT JOINT.

23. ALL EXISTING SITE SEWERS THAT WILL BE DECOMMISSIONED WILL BE REMOVED FROM SITE.

- ALL MATERIALS AND WORKMANSHIP SHALL BE IN ACCORDANCE WITH THE ONTARIO BUILDING CODE. 1.2 ALL SANITARY SEWERS AND BUILDING SERVICES TO BE CSA CERTIFIED PVC SDR 35, BELL AND SPIGOT TYPE, WITH ELSATOMERIC GASKET AS PER OPSS 1841 AND CSA B182.2 M1990. ONLY
- FACTORY FITTINGS TO BE USED, SEWER TO BE INSTALLED AS PER OPSD 1005.01. 1.3 MINIMUM DEPTH OF COVER FOR SANITARY SEWER MAINS AND LATERALS IS 1.5m.
- 1.4 SANITARY LATERAL TO BE CONNECTED TO EXISTING SEWER WITH WYE FITTING AND A LONG RADIUS BEND. 1.5 CONTRACTOR TO VERIFY EXISTING SANITARY PIPE CONDITION, LOCATION, AND ELEVATION PRIOR TO CONSTRUCTION, AND TO PROVIDE GRAVITY DRAIN FOR PROPOSED BUILDING
- 1.6 EXISTING SANITARY SEWER SERVICES PROPOSED FOR REMOVAL SHALL BE DISCONNECTED AND ABANDONED AT THE MAIN (UNLESS OTHERWISE STATED) TO THE SATISFACTION OF CITY OF OTTAWA. A NOTIFICATION OF 48 HRS IN ADVANCED SHALL BE PROVIDED TO THE CITY OF OTTAWA PRIOR TO ANY CONSTRUCTION WORKS.

2.1 ALL MATERIALS AND WORKMANSHIP SHALL BE IN ACCORDANCE WITH THE ONTARIO BUILDING CODE.

- 2.2 WATERMAIN PIPE AND SERVICES TO BE PVC OR COPPER AS PER ONTARIO BUILDING CODE. ALL PIPE AND FITTINGS SHALL BE CERTIFIED CSA B137.3. PROVIDE A MINIMUM COVER OF 2.4m AND INSTALL AS PER OPSD 1102.02 TYPE 2. PROVIDE A MINIMUM OF 0.5m VERTICAL SEPARATION BETWEEN WATERMAIN CROWN AND SEWER INVERT AT ALL CROSSINGS.
- 2.3 WATER SERVICE TIE-IN (LIVE TAP) TO BE PERFORMED BY AUTHORIZED PERSONNEL AS PER APPROVAL OF CITY OF OTTAWA. ALL SITE WORKS FOR COMPLETION OF LIVE TAP ARE TO BE PERFORMED BY THE CITY, CONTRACTOR TO BACKFILL AND PROVIDE RESTORATIONS. 2.4 ALL VALVES TO COMPLY WITH CITY OF OTTAWA DESIGN GUIDELINES .
- 2.5 THE PROPOSED WATER SERVICE PROVIDES DOMESTIC WATER SUPPLY ONLY. ALL PROPOSED BUILDING FIRE WATER SUPPLY AND PROTECTION MEASURES/SPRINKLER SYSTEMS ARE TO BE DESIGNED IN ACCORDANCE WITH BUILDING CODE REQUIREMENTS.
- 2.6 A NOTIFICATION OF 48 HRS IN ADVANCED SHALL BE PROVIDED TO CITY OF OTTAWA PRIOR TO ANY CONSTRUCTION WORKS. WATER SERVICE LINE CONNECTION FROM WATERMAIN SHALL BE PVC DR18, AWWA C900 w/ STANDARD GATE VALVE SHUT OFF LOCATED AT PROPERTY LINE. 2.8 ALL CONNECTIONS TO EXISTING WATERMAINS ARE TO BE COMPLETED BY CITY FORCES. CONTRACTOR IS TO EXCAVATE, BACKFILL, COMPACTAND REINSTATE.

WATER SERVICE LINE CONNECTION FROM WATERMAIN SHALL BE PVC DR18, AWWA C900 w/ STANDARD GATE VALVE SHUT OFF LOCATED AT PROPERTY LINE.

- FACTORY FITTINGS 4.2 STORM MAINTENANCE HOLES TO BE AS PER OPSD 701.01 FOR 1.2mØ, OPSD 701.012 FOR 1.8mØ, OPSD 701.013 FOR 2.4mØ, ALL c/w BENCHING.
- 4.3 ALL CATCH BASINS TO BE AS PER OPSD 705.01, FRAME & GRATE AS PER 400.01, LEAD TO BE HDPE 4.4 STORM MH FRAMES AND COVERS TO BE OPEN TYPE, AS PER OPSD 401.01 TYPE B. CONTRACTOR TO INSTALL FILTER CLOTH UNDER STORM MH COVERS UNTIL THE BASE COURSE OF

4.1 ALL STORM SEWER MAINS TO BE CSA CERTIFIED HDPE UNLESS OTHERWISE APPROVED/NOTED. ALL SEWERS TO BE INSTALLED AS PER MANUFACTURERS INSTRUCTIONS, USING ONLY

- 4.5 STRAW BALE CHECK DAMS SHALL BE PLACED AROUND CB'S TEMPORARILY UNTIL SITE VEGETATION HAS BEEN STABLIZED.
- 4.6 ALL CB LEADS TO BE AT LEAST 0.5m FROM WATER AND SANITARY SEWER MAIN 4.7 ALL PROPOSED CATCH BASIN COVER FRAMES (CB1, CB2 & CB3) LOCATED IN THE BIOSWALE NEED TO BE ANCHORED DIRECTLY TO THE TOP OF THE PRECAST CONCRETE AS PER S.P. No F-4070 TO PREVENT DISPLACEMENT.

TEMPORARY EROSION AND SEDIMENT CONTROLS

DETAILS AND THESE NOTES

- INSTALL SILT FENCE AT THE DOWNSLOPE SIDE OF DISTURBED AREAS AND SNOW FENCE ALONG PERIMETER OF THE DEVELOPMENT SITE, PRIOR TO THE START OF CONSTRUCTION. STOCKPILE TOPSOIL AT DESIGNATED LOCATIONS NEAR THE NORTH-EAST REGION OF THE SITE. STOCKPILES WILL BE CONTAINED BY SILT FENCES ON
- TEMPORARY SWALES WITH CHECK DAMS ARE TO BE CONSTRUCTED PRIOR TO THE BEGINNING OF SITE GRADING.
- THE ACCUMULATED SILT SHALL BE REMOVED FROM ALL SEDIMENT CONTROL DEVICES AS REQUIRED DURING CONSTRUCTION AND DISPOSED IN THE LOCATIONS APPROVED BY THE CITY AND CRCA
- ALL EXPOSED SOILS ARE TO BE STABILIZED AND VEGETATED AS SOON AS POSSIBLE USING SEED AND MULCH APPLICATION ON 100mm OF TOPSOIL, AS DIRECTED BY THE ENGINEER.
- ADDITIONAL EROSION/SEDIMENT CONTROLS MAY BE REQUIRED ON SITE AS DETERMINED BY THE ENGINEER. NO CONSTRUCTION ACTIVITY/MACHINERY SHALL INTRUDE BEYOND THE SILT/SNOW FENCE OR PROPERTY LIMIT. EXCEPT, WHERE NECESSARY TO
- COMPLETE THE WORKS. ALL INTRUSIONS ARE TO BE KEEP TO A MINIMUM AND MUST BE APPROVED WITH THE ENGINEER PRIOR TO INTRUSION BEYOND SILT FENCE/PROPERTY LIMITS. ALL CONSTRUCTION VEHICLES SHALL ENTER AND LEAVE THE SITE VIA DESIGNATED ENTRANCES.
- 8. ALL REGRADED AREAS THAT ARE NOT OCCUPIED BY DWELLINGS. ROADS. SIDEWALKS. DRIVEWAYS. PARKS AND OTHER SERVICES SHALL BE COVERED BY 100mm TOPSOIL, AND SODDED/SEEDED IMMEDIATELY AFTER COMPLETION OF FINAL GRADING OPERATIONS, AS DIRECTED BY THE ENGINEER.
- 9. ALL TEMPORARY EROSION AND SEDIMENT CONTROLS MUST BE INSTALLED PRIOR TO THE COMMENCEMENT OF SITE GRADING, MUST BE INSPECTED ON A REGULAR BASIS AND AFTER EVERY RAINFALL EVENT. AND MUST BE CLEANED AND MAINTAINED AS REQUIRED TO PREVENT THE MIGRATION OF
- SEDIMENT FROM THE SITE 10. ALL TEMPORARY EROSION AND SEDIMENT CONTROLS MUST BE REMOVED AFTER CONSTRUCTION ONCE THE DEVELOPMENT SITE HAS BEEN STABILIZED TO THE CITY'S SATISFACTION. ALL AREAS DISTURBED BY EROSION OR SEDIMENT CONTROL DEVICES ARE TO BE RESTORED WITH 100mm TOPSOIL AND
- 11. THE CONTRACTOR SHALL KEEP PUBLIC ROADWAYS FREE OF DEBRIS DURING CONSTRUCTION. ANY MATERIAL TRACKED FROM THE SITE SHALL BE PROMPTLY REMOVED FROM ROADWAYS AT THE CONTRACTOR'S EXPENSES. 12. PROPOSED WORKS WILL BE OCCURRING WITHIN THE REGULATED FLOOD PLAIN, THEREFORE IT IS IMPORTANT TO MONITOR THE WEATHER FOR LARGE
- STORM EVENTS BEFORE COMMENCING WORK. 13. CONSTRUCTION ACTIVITIES, INCLUDING MAINTENANCE PROCEDURES, WILL BE CONTROLLED TO PREVENT THE ENTRY OF PETROLEUM PRODUCTS, DEBRIS, RUBBLE, CONCRETE OR OTHER DELETERIOUS SUBSTANCE INTO THE EXISTING WATERCOURSE(S), VEHICULAR REFUELING AND MAINTENANCE
- WILL BE CONDUCTED 30 METERS FROM EXISTING WATERCOURSE. 14. ALL CONSTRUCTION MATERIALS, EQUIPMENT, VEHICLES AND MACHINERY ARE TO BE STORED OUTSIDE THE FLOODPLAIN LIMITS.
- 15. SILT FENCE TO BE ERECTED PRIOR TO EARTH WORKS BEING COMMENCED. SILT FENCE TO BE MAINTAINED UNTIL VEGETATION IS ESTABLISHED OR UNTILSTART OF SUBSEQUENT PHASE.
- 16. FABRIC TO BE PLACED AND MAINTAINED UNDER COVER OF ALL CATCHBASINS. GEOTEXTILE FABRIC IN STREET CBS TO REMAIN UNTIL ALL CURBS ARE CONSTRUCTED. GEOTEXTILE FABRIC IN RYCBS TO REMAIN UNTIL VEGETATION IS ESTABLISED. ALL CATCHBASINS TO BE REGULARLY INSPECTED AND CLEANED, AS NECESSARY, UNTIL SOD AND CURBS ARE CONSTRUCTED.
- 17. CONTRACTOR IS RESPONSIBLE TO KEEP THE ROADS FREE AND CLEAN FROM MUD OR DEBRIS. 18. THE CONTRACTOR SHALL IMPLEMENT BEST MANAGEMENT PRACTICES, TO PROVIDE FOR PROTECTION OF THE AREA DRAINAGE SYSTEM AND THE
- RECEIVING WATERCOURSE, DURING CONSTRUCTION ACTIVITIES. THE CONTRACTOR ACKNOWLEDGES THAT FAILURE TO IMPLEMENT APPROPRIATE EROSION AND SEDIMENT CONTROL MEASURES MAY BE SUBJECT TO PENALTIES IMPOSED BY ANY APPLICABLE REGULATORY AGENCY.
- 19. SEDIMENT AND EROSION CONTROL MEASURES MAY BE MODIFIED IN THE FIELD AT THE DISCRETION OF THE CITY OF OTTAWA SITE INSPECTOR OR CONSERVATION AUTHORITY
- ALL LOTS AND BLOCKS FOR PRIVATE USE ON THE LANDS CORRESPONDING TO THIS DESIGN ARE TO BE DEVELOPED IN ACCORDANCE WITH THE PLAN
- 2. THE DEVELOPER SHALL NOT BE CONSIDERED RESPONSIBLE TO THE CONTRACTOR IN ANY RESPECT FOR THE AMOUNT OF GRADING OR EARTHWORK REQUIRED TO BE PERFORMED BY THE CONTRACTOR DUE TO THE INFORMATION PROVIDED ON THESE DRAWINGS EXCEPT WHERE REQUIRED TO
- 3. ALL GROUND SURFACES SHALL BE EVENLY GRADED WITHOUT PONDING AREAS AND WITHOUT LOW POINTS EXCEPT WHERE APPROVED SWALES ARE 4. THE CONTRACTOR SHALL ENSURE POSITIVE DRAINAGE ALONG SIDE LOT LINES AS REQUIRED TO MAINTAIN THE INTENT OF THE GRADING PLAN. THE
- CONTRACTOR SHALL COMPLETE THE DRAINAGE SWALES IN THE LOCATIONS AND TO THE GRADES AND ELEVATIONS, DEPTHS AND SECTIONS SPECIFIED ON THE PLAN, PRIOR TO FINAL LANDSCAPING BY THE CONTRACTOR. THE CONTRACTOR SHALL ENSURE THAT THE REQUIRED SWALES ARE CONSTRUCTED IN ACCORDANCE WITH THE GRADING PLAN. ANY EMBANKMENT REQUIRED FOR INTERNAL GRADING IS TO BE COMMENCED ALONG THE INSIDE EDGE OF THE PROPERTY.
- THE GRADING OF ALL LOTS AND BLOCKS IS TO BE PERFORMED TO PROVIDE FINISHED PERIMETER SURFACES WHICH ARE FLUSH WITH GIVEN STREET LINE. REAR AND SIDE LINE ELEVATIONS. 7. FINAL PERIMETER GRADES FOR A LOT OR BLOCK WHERE NOT OTHERWISE SHOWN HEREON SHALL BE COINCIDENT WITH THE ADJOINING PERIMETER
- GRADES OF AN ADJACENT LOT OR BLOCK WHICH SHALL HAVE BEEN PREVIOUSLY ESTABLISHED BY, OR CONSTRUCTED IN ACCORDANCE WITH A MUNICIPAL SITE PLAN APPROVAL OR DEVELOPER GRADING APPROVAL. 8. MAXIMUM LOT OR BLOCK GRASS SURFACE GRADE AT ANY LOCATION SHALL BE 8.0% WITH EMBANKMENTS (3:1 MAX.) OR RETAINING STRUCTURES
- PROVIDED AS REQUIRED TO TAKE UP GRADE DIFFERENTIALS IN EXCESS OF SUCH SLOPES. 9. EMBANKMENTS FORMED DURING THE GRADING OF LOTS AND BLOCKS SHALL HAVE THE FOLLOWING MAXIMUM GRADES: (A) ADJACENT TO DRIVEWAYS OR SWALE SIDE SLOPES - 4:1 MAXIMUM
- (B) ELSEWHERE 3:1 MAXIMUM 10. MAXIMUM DRIVEWAY GRADES TO BE 10.0%. MAXIMUM PARKING AREA PAVEMENT GRADES TO BE 6%. 11. UNLESS OTHERWISE INDICATED, THE LOT LINE AND CORNER ELEVATIONS SHOWN HEREON ARE GENERALLY THE MINIMUM ELEVATIONS FOR THE
- SPECIFIED DRAINAGE PATTERN ANY ALTERATIONS REQUIRE THE WRITTEN APPROVAL OF THE DESIGN ENGINEER GIVEN THE PROPOSED BUILDING GRADES MAY BE RAISED TO COMPENSATE FOR DIFFERENCES BETWEEN ASSUMED AND ACTUAL BUILDING
- DIMENSIONS IN ACCORDANCE WITH THE ESTABLISHED CRITERIA FOR THE DRAINAGE PATTERN. REAR SPECIFIED BUILDING GRADE TO BE ESTABLISHED BY CONTRACTOR TO SUIT BUILDING TYPE HOWEVER ALL GRADING REQUIREMENTS IDENTIFIED ON THIS PLAN AND AS REQUIRED BY THE MUNICIPALITY SHALL BE CONFORMED TO
- 13. GRADING AND SODDING OF ADJACENT ROADWAY BOULEVARDS WILL BE PERFORMED BY THE CONTRACTOR IN ACCORDANCE WITH MUNICIPAL 14. CONTRACTOR IS RESPONSIBLE TO KEEP THE ROADS FREE AND CLEAN FROM MUD OR DEBRIS.

ENVIRONMENTAL NOTES

- 1. THE CONTRACTOR SHALL SUPPLY AND INSTALL ALL EROSION AND SEDIMENT CONTROLS (ESC) AS PER CONTRACT SPECIFICATIONS AND AT LOCATIONS AS DIRECTED BY THE ENGINEER. ALL DAMAGED EROSION AND SEDIMENT CONTROL MEASURES SHOULD BE REPAIRED AND/OR REPLACED WITHIN 48
- HOURS OF THE INSPECTION 2. CONTRACTOR TO PROVIDE SEDIMENT CONTROL MEASURES AND PRECAUTIONS TO PREVENT CONSTRUCTION DEBRIS FROM ENTERING EXISTING CATCH BASINS, MAINTENANCE HOLES, CULVERTS, CREEKS, ROAD SIDE DITCHES, AND STORM AND SANITARY SEWERS WITHIN THE AREA OF THE CONTRACT. DISTURBED AREAS WILL BE MINIMIZED TO THE EXTENT POSSIBLE AND TEMPORARILY OR PERMANENTLY STABILIZED OR RESTORED AS THE WORK
- 4. THE EROSION AND SEDIMENT CONTROL STRATEGIES OUTLINED ON THE PLANS ARE NOT STATIC AND MAY NEED TO BE UPGRADED/AMENDED AS SITE CONDITIONS CHANGE TO MINIMIZE SEDIMENT LADEN RUNOFF FROM LEAVING THE WORK AREAS. IF THE PRESCRIBED MEASURES ON THE PLANS ARE NOT EFFECTIVE IN PREVENTING THE RELEASE OF A DELETERIOUS SUBSTANCE, INCLUDING SEDIMENT, THEN ALTERNATIVE MEASURES MUST BE IMPLEMENTED IMMEDIATELY TO MINIMIZE POTENTIAL ECOLOGICAL IMPACTS. ADDITIONAL ESC MEASURES TO BE KEPT ON SITE AND PLACED AS
- SEDIMENT AND EROSION CONTROL MEASURES TO BE INSPECTED DAILY AND ANY REQUIRED REPAIRS DONE PROMPTLY. ROADS ARE TO BE CLEANED AT A MINIMUM ONCE A WEEK OR AS INSTRUCTED BY THE ENGINEER. IT WILL NOT BE CONSIDERED ACCEPTABLE TO HAVE
- MUD AND DEBRIS ON THE ROADS RESTORATION OF ANY DISTURBED AREAS TO BE DONE IN ACCORDANCE WITH CONTRACT SPECIFICATIONS. RESTORATION OF DISTURBED GRASS AREAS WITHIN THE EXISTING RIGHT-OF-WAY TO CONSIST OF SODDING AS PER OPSS 803.
- 8. ALL DEWATERING DISCHARGE EFFLUENT SHALL BE TREATED TO MEET PROVINCIAL WATER QUALITY OBJECTIVES PRIOR TO BEING DISCHARGED TO THE NATURAL ENVIRONMENT. IN CASE WATER QUALITY IS NOT SUITABLE FOR DISCHARGE INTO THE STORM SEWER, THE CONTRACTOR SHALL ACQUIRE AGENCY APPROVAL PRIOR TO DISCHARGING EFFLUENT TO THE LOCAL SANITARY SEWER SYSTEM WITH ADDITIONAL COSTS BACKCHARGED TO THE CONTRACTOR PER CUBIC METER OF DISCHARGE.

SITE SURVEY NOTES

- CONTRACTOR IS SOLELY RESPONSIBLE FOR SITE SURVEY AND CONSTRUCTION LAYOUT. THE ACCURACY OF ALL BENCHMARKS SHALL BE VERIFIED BY THE CONTRACTOR PRIOR TO CONSTRUCTION. ANY DEVIATIONS ARE TO BE REPORTED TO
- CONTRACTOR IS RESPONSIBLE FOR PROVIDING SUFFICIENT SURVEY MARKERS AND GRADE SHEETS AS MAY BE REQUIRED FOR THE PROPER EXECUTION
- OF THE WORKS. ALL STAKES, MARKERS AND REFERENCE POINTS SHALL BE CAREFULLY PRESERVED BY THE CONTRACTOR THROUGHOUT THE DRAWING STATIONS SHOWN ON PLAN VIEWS AND ALL LENGTHS OF PROPOSED INFRASTRUCTURE INDICATED ON THESE DRAWINGS ARE FOR DESIGN

PURPOSES ONLY. THE CONTRACTOR IS RESPONSIBLE FOR CALCULATING THE EXACT LENGTHS AND SHOWING THESE ON THEIR SHOP DRAWINGS

(INCLUDING REQUIRED CONNECTIONS) EVEN IF THE ACTUAL LENGTHS VARY FROM THE DESIGN VALUES. THE UTILITY DESIGNS ARE BASED ON TOPOGRAPHICAL SURVEYS, BASE PLANS, AERIAL DIGITAL TERRAIN MODELS, TEST PITS, AND OTHER INFORMATION RELATED TO EXISTING INFRASTRUCTURE PROVIDED BY OTHERS. THE PERFORMING CONTRACTOR SHALL VERIFY THE ACCURACY OF THE INFORMATION PRIOR TO PROCEEDING WITH CONSTRUCTION AND REPORT ANY DISCREPANCIES TO THE ENGINEER.

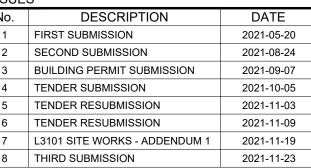
UTILITIES NOTES

- CONTRACTOR SHALL PROTECT AND MAINTAIN ALL EXISTING UNDER/ABOVEGROUND UTILITIES PRIOR TO AND DURING CONSTRUCTION. WHERE SERVICES CROSS EXISTING CONCRETE OR ASPHALT ROADWAYS OR WALKWAYS, CONTRACTOR TO SAWCUT SURFACE AND RESTORE TO
- PRE-CONSTRUCTION CONDITIONS. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE APPROXIMATE ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY OWNER OR ITS REPRESENTATIVES. THE CONTRACTOR, AS PART OF THEIR WORK SHALL VERIFY THE LOCATION OF ALL EXISTING UTILITIES WITH THE UTILITY
- COMPANIES AT LEAST 48 HOURS PRIOR TO COMMENCING WORK AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MAY BE CAUSED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES. THE CONTRACTOR IS REQUIRED TO OBTAIN STAKEOUTS OF ALL UTILITIES AND CONFIRM THE EX. SEWER INVERTS AS WELL AS THE DEPTH AND
- LOCATIONS OF UTILITIES IN THE FIELD PRIOR TO CONSTRUCTION. EXISTING SEWER INVERTS AND UTILITY DEPTHS SHALL BE CONFIRMED BY THE CONTRACTOR PRIOR TO ISSUANCE OF SHOP DRAWINGS. PERFORM TEST PIT EXCAVATIONS AT ALL LOCATIONS WHERE EXISTING UTILITIES MAY BE DISTURBED. HAND DIG AS REQUIRED TO PREVENT DAMAGE TO
- EXISTING UTILITIES. NOTIFY UTILITY OWNERS AND AGENCY'S DEPARTMENTS IN ADVANCE OF SCHEDULED WORK NEAR THESE UTILITIES. CONTRACTOR TO COORDINATE TIMING OF NOTIFICATION WITH EACH UTILITY OWNER AT TIME OF CONSTRUCTION.
- REPORT LOCATION AND ELEVATIONS OF ALL EXISTING UTILITIES NOT SHOWN ON THE DRAWINGS TO THE ENGINEER FOR REVIEW PRIOR TO
- COMMENCING WORK THE CONTRACTOR SHALL NOTIFY THE OWNER OF ANY DAMAGED UTILITY. THE OWNER MAY, AT ITS DISCRETION AND AT THE CONTRACTOR'S EXPENSE, REPAIR THE DAMAGED UTILITY OR DIRECT THE CONTRACTOR TO REPAIR THE DAMAGED UTILITY.
- THE CONTRACTOR SHALL ALLOW ACCESS BY UTILITY OWNERS TO THEIR UTILITIES FOR INSPECTION PURPOSES AT ALL TIMES DURING CONSTRUCTION. WHERE UNSHRINKABLE FILL IS USED AS BACKFILL MATERIAL, ALL EXPOSED UNDERGROUND UTILITIES MUST BE PROTECTED BY PLACING CLEARSTONE
- DUE TO UNKNOWN EMBEDMENT DEPTH OF UTILITY POLES, CONTRACTOR TO SUPPORT AS REQUIRED. CONTRACTOR TO MINIMIZE AMOUNT OF OPEN
- TRENCH IN THE VICINITY OF LITH ITY POLES.
- . ABANDONED WET UTILITIES TO BE REMOVED AND DISPOSED OF OFF SITE IF LOCATED UNDER TREE ZONE WITH LESS THAN 2.0M CLEARANCE BETWEEN TOP OF OD TO FINAL BLVD GRADE
- 13. ONTARIO ONE CALL AT 1-800-400-2255 FOR LOCATE REQUIREMENTS.

STANDARD DETAILS AND REFERENCE DETAIL / REFERENCE WATERMAIN PIPE (150mm) PVC DR18, C900/AWWA W17 (CITY OF OTTAWA) WATERMAIN TRENCHING W19 (CITY OF OTTAWA) HYDRANT INSTALLATION WATERMAIN INSULATION W22 (CITY OF OTTAWA) WATERMAIN VALVE BOX ASSEMBLY W24 (CITY OF OTTAWA) W25 (CITY OF OTTAWA) WATERMAIN CROSSING BELOW SEWER WATERMAIN CROSSING OVER SEWER W25.2 (CITY OF OTTAWA) WATERMAIN THRUST BLOCK DETAILS W25.3 (CITY OF OTTAWA) WATERMAIN THRUST BLOCK DIMENSIONS W25.4 (CITY OF OTTAWA) W25.5 (CITY OF OTTAWA) PIPE RESTRAINTS DETAILS W25.6 (CITY OF OTTAWA) PIPE RESTRAINTS LENGTHS TRACER WIRE INSTALLATION W36 (CITY OF OTTAWA) CATHODIC PROTECTION W40 (CITY OF OTTAWA) W42 (CITY OF OTTAWA) ANODE INSTALLATION W47 (CITY OF OTTAWA) TRACER WIRE WATER PROOFING SPLICES STORMWATER DETAIL / REFERENCE STORM PIPE (150-450mm) PVC DR35 / AWWA MANHOLES (1200mm) 701.010 / OPSD CATCH BASIN (600x600mm) 705.010 / OPSD S24.1 (CITY OF OTTAWA) MANHOLE COVER S25 (CITY OF OTTAWA) MANHOLE CIRCULAR FRAME CATCH BASIN COVER S19.1 (CITY OF OTTAWA) S4.1 (CITY OF OTTAWA) **VORTEX ICD INSTALLATION** S6 / S7 (CITY OF OTTAWA) SEWER TRENCHING DETAIL / REFERENCE SANITARY PIPE (150-200mm) PVC DR35 / AWWA MANHOLES (1200mm) 701.010 / OPSD S24 (CITY OF OTTAWA) MANHOLE COVER S25 (CITY OF OTTAWA) MANHOLE CIRCULAR FRAME SEWER SERVICE CONNECTION S11.1 (CITY OF OTTAWA) S12 (CITY OF OTTAWA) SEWER INTERNAL DROP STRUCTURE

ROAD / SURFACE WORKS DETAIL / REFERENCE

R25 (CITY OF OTTAWA)


BARRIER CURB SC1.1 (CITY OF OTTAWA) SIDEWALK SC4 (CITY OF OTTAWA) SIDEWALK CONSTRUCTION JOINT SC5 (CITY OF OTTAWA) SC6 (CITY OF OTTAWA) SIDEWALK RAMP TWSI DETAIL SC7.3 (CITY OF OTTAWA) STANDARD TRENCH REINSTATEMENT IN PAVED SURFACE R10 (CITY OF OTTAWA)

ASPHALT REINSTATEMENT

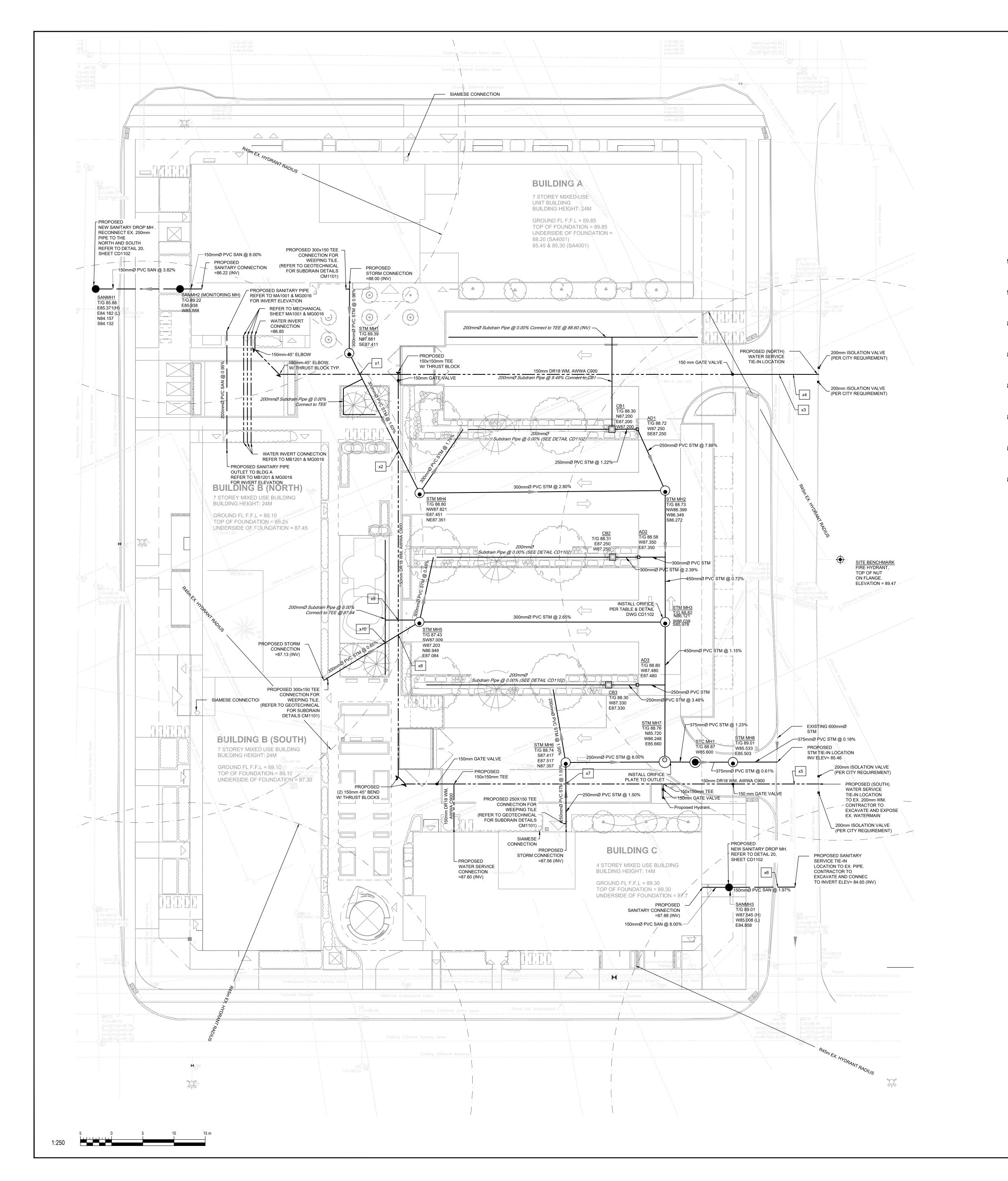
COPYRIGHT

This drawing has been prepared solely for the intended use, thus any production or distribution for any purpose other than authorized by IBI Group i Contractors shall verify and be responsible for all dimensions and conditions o the job, and IBI Group shall be informed of any variations from the dimensions ar conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.

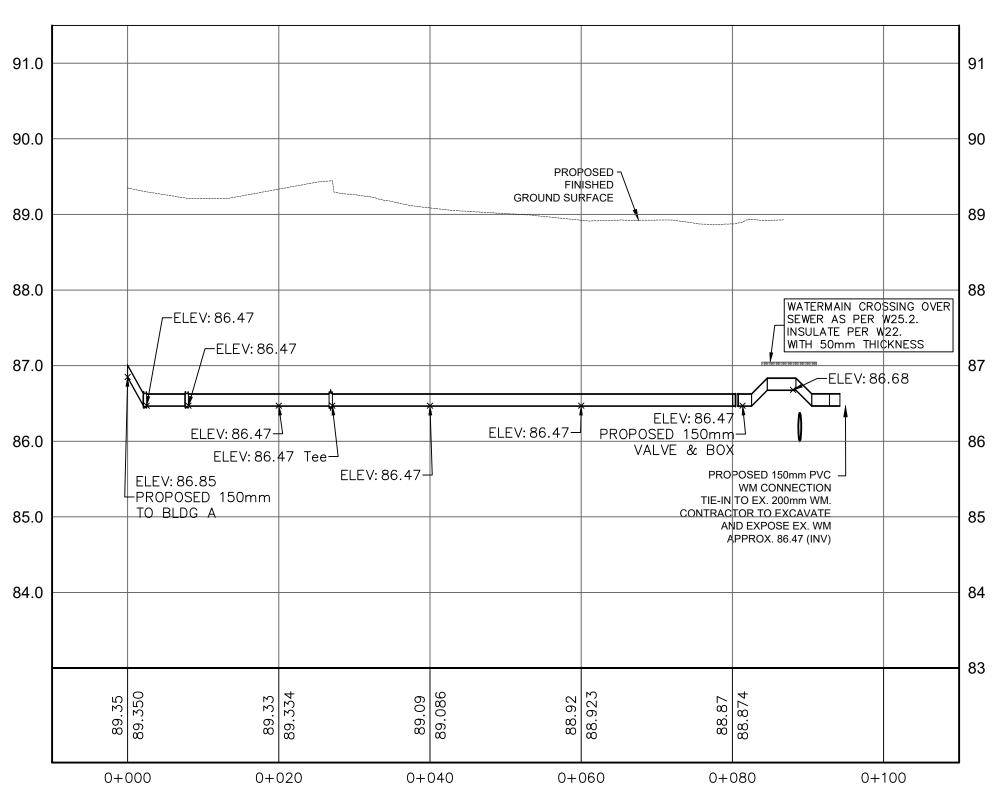
IBI Group Professional Services (Canada) Inc. is a member of the IBI Group of companies

MICHAEL STOQUA

MIKINAK REDEVELOPMENT


715 MIKINAK ROAD, OTTAWA, ON CANADA K1K 2G8 PROJECT NO:

125599	AS SHOWN
DRAWN BY:	CHECKED BY:
NA	BT
PROJECT MGR:	APPROVED BY:
CW	BT


GENERAL NOTES

& STANDARD DETAIL REFERENCE

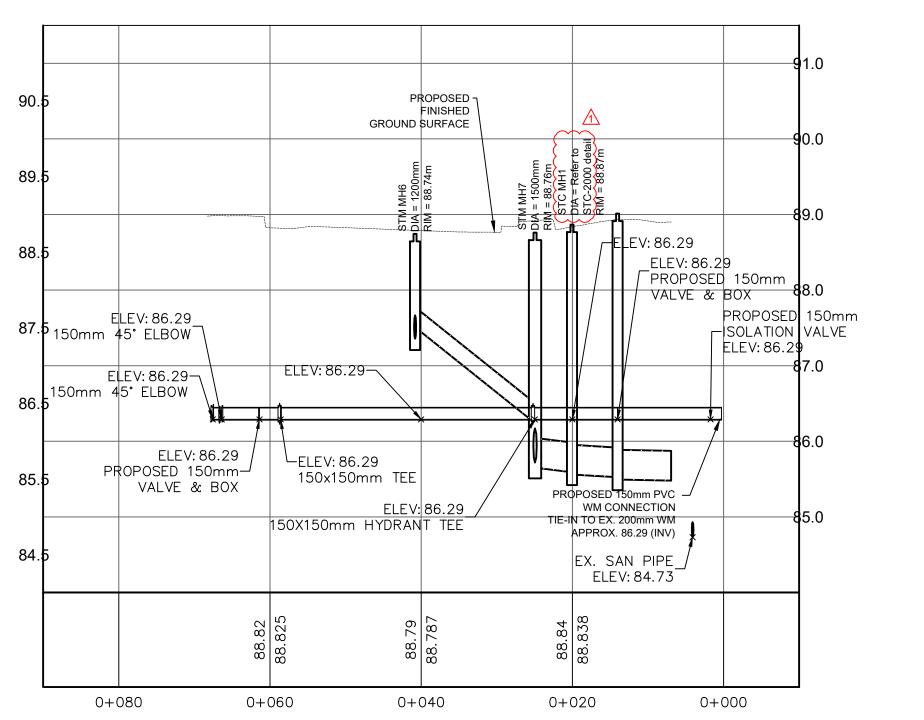
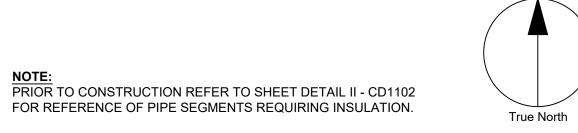

SHEET NUMBER C00001

TABLE CROSSING											
CROSSING NO.	LOWER PIPE (INVERT)	LOWER PIPE (OBVERT)	HIGHER PIPE (INVERT)	HIGHER PIPE (OBVERT)	DISTANCE (m)						
X1	86.47 (WTR)	86.62 (WTR)	87.55 (STM)	87.85 (STM)	0.93						
X2	86.45 (WTR)	86.60 (WTR)	87.77 (STM)	88.07 (STM)	1.17						
X3	85.99 (EX. STM)	86.36 (EX. STM)	86.71 (WTR)	86.86 (WTR)	0.35						
X4	85.22 (EX. SAN)	85.47 (EX. SAN)	86.47 (WTR)	86.62 (WTR)	1.00						
X5	84.72 (EX. SAN)	84.97 (EX. SAN)	86.29 (WTR)	86.44 (WTR)	1.32						
X6	84.63 (SAN)	84.83 (SAN)	85.43 (EX. STM)	86.03 (EX. STM)	0.60						
X7	86.29 (WTR)	86.44 (WTR)	87.46 (STM)	87.71 (STM)	1.02						
X8	86.36 (WTR)	86.51 (WTR)	87.03 (STM)	87.33 (STM)	0.52						
X9	86.38 (WTR)	86.53 (WTR)	87.55 (STM)	87.75 (STM)	1.02						
X10	87.04 (STM)	87.34 (STM)	87.64 (STM)	87.84 (STM)	0.30						



PROPOSED WATERMAIN NORTH CONNECTION FOR BLDG A & B

DRODOSED W	/ATERMAIN SOUT	TH CONNECTION I	EUB BI DC C
PROPUSED V	AIERIMAIN SOUT	I T CONNECTION I	TUR BLUG G

		ORIFICE CONTROL		
MANHOLE NO.	T/G	INVERT AT OUTLET	CENTERLINE ORIFICE ELEVATION	ORIFICE DIAMETER (mm)
STM MH3	88.82	85.978	86.04	122
STM MH7	88.730	85.660	85.720	118

COPYRIGHT This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.

IBI Group Professional Services (Canada) Inc. is a member of the IBI Group of companies DESCRIPTION FIRST SUBMISSION 2021-05-20 SECOND SUBMISSION 2021-08-24 BUILDING PERMIT SUBMISSION 2021-09-07

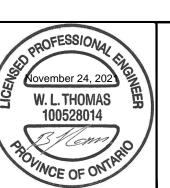
2021-10-05

2021-11-03

2021-11-09

TENDER SUBMISSION

TENDER RESUBMISSION


TENDER RESUBMISSION

L3101 SITE WORKS - ADDENDUM 1 2021-11-19 8 THIRD SUBMISSION 2021-11-23

KEY PLAN N — BAREILLE-SNOW

MICHAEL STOQUA LEGEND: PROPOSED SANITARY

PROPOSED STORM ── ─ ─ PROPOSED WATERMAIN PROPOSED STORM MH PROPOSED CATCHBASIN PROPOSED OGS

PRIME CONSULTANT IBI GROUP Unit 110 - 650 Dalton Avenue Unit 110 - 650 Dallon Avenue
Kingston ON K7M 8N7 Canada
tel 613 531 4440 fax 613 531 7789 ibigroup.com

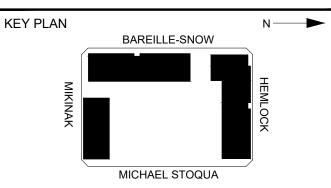
MIKINAK REDEVELOPMENT

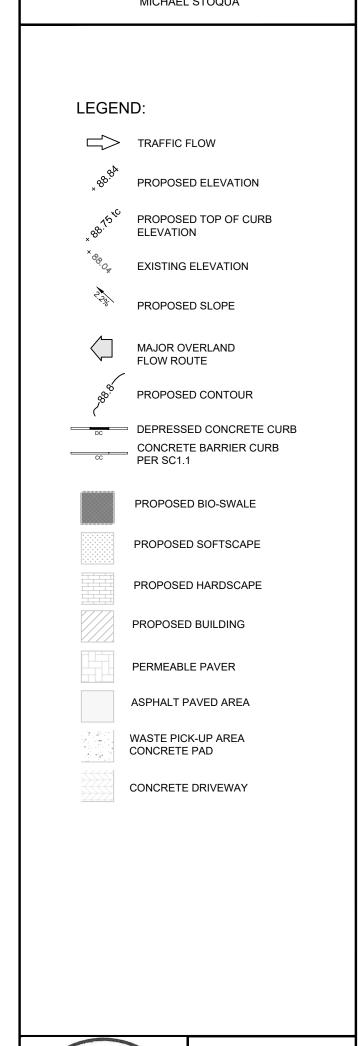
715 MIKINAK ROAD, OTTAWA, ON CANADA K1K 2G8 PROJECT NO:

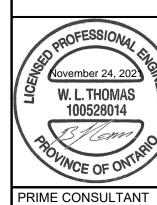
125599 AS SHOWN CHECKED BY: DRAWN BY: APPROVED BY: PROJECT MGR:

SHEET TITLE

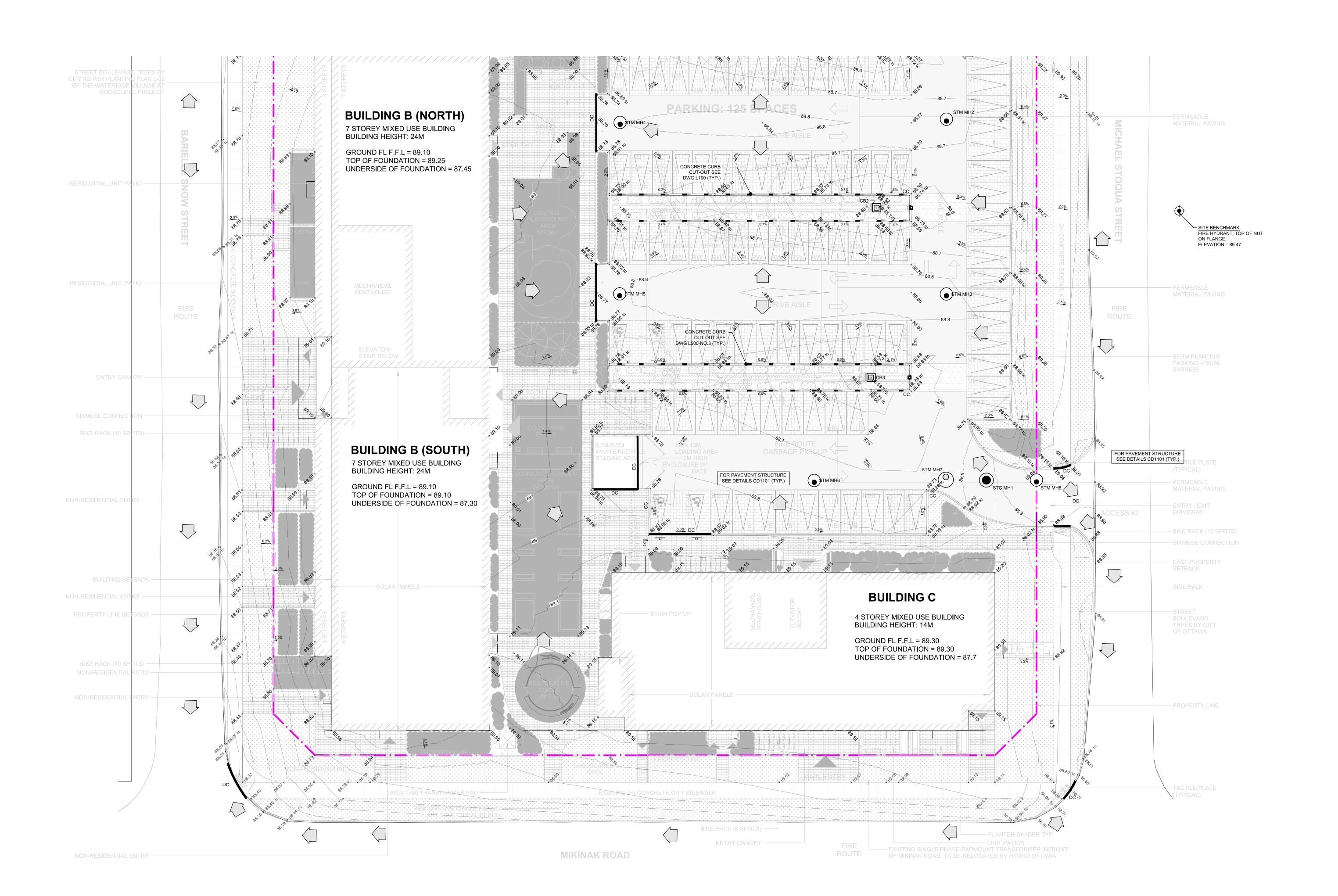
SERVICING PLAN


COPYRIGHT


This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.


IBI Group Professional Services (Canada) Inc. is a member of the IBI Group of companies

SUE	S	
Ο.	DESCRIPTION	DATE
1	FIRST SUBMISSION	2021-05-20
2	SECOND SUBMISSION	2021-08-24
3	BUILDING PERMIT SUBMISSION	2021-09-07
4	TENDER SUBMISSION	2021-10-05
5	TENDER RESUBMISSION	2021-11-03
6	TENDER RESUBMISSION	2021-11-09
7	L3101 SITE WORKS - ADDENDUM 1	2021-11-19
8	THIRD SUBMISSION	2021-11-23

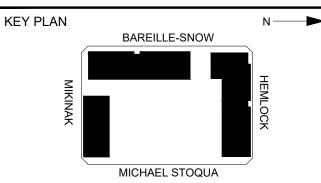

IBI GROUP Unit 110 - 650 Dalton Avenue
Kingston ON K7M 8N7 Canada
tel 613 531 4440 fax 613 531 7789 ibigroup.com

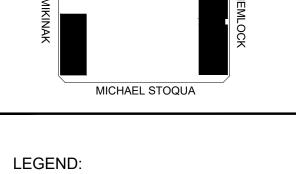
MIKINAK REDEVELOPMENT

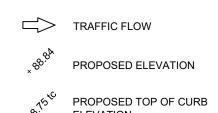
715 MIKINAK ROAD, OTTAWA, ON CANADA K1K 2G8

SCALE: AS SHOWN APPROVED BY: PROJECT MGR:

GRADING PLAN (NORTH)


COPYRIGHT


This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.


IBI Group Professional Services (Canada) Inc. is a member of the IBI Group of companies

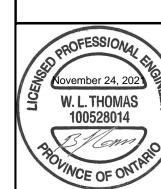
SUE	S	
Vo.	DESCRIPTION	DATE
1	FIRST SUBMISSION	2021-05-20
2	SECOND SUBMISSION	2021-08-24
3	BUILDING PERMIT SUBMISSION	2021-09-07
4	TENDER SUBMISSION	2021-10-05
5	TENDER RESUBMISSION	2021-11-03
6	TENDER RESUBMISSION	2021-11-09
7	L3101 SITE WORKS - ADDENDUM 1	2021-11-19
8	THIRD SUBMISSION	2021-11-23

ELEVATION EXISTING ELEVATION

PROPOSED SLOPE

OVERLAND FLOW PROPOSED CONTOUR

DEPRESSED CONCRETE CURB CONCRETE BARRIER CURB
PER OPSD 600.110


PROPOSED BIO-SWALE PROPOSED SOFTSCAPE

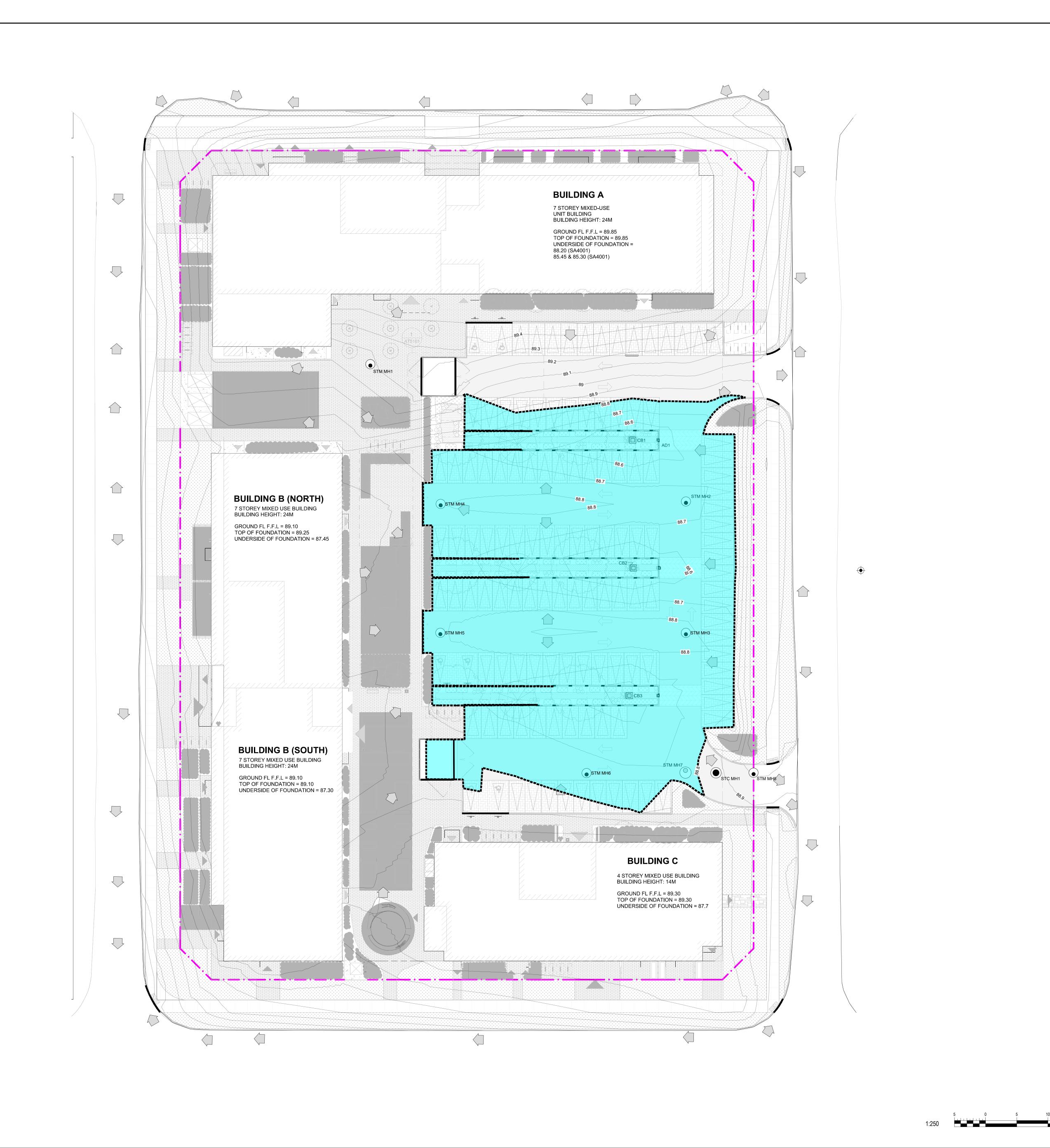
PROPOSED HARDSCAPE PROPOSED BUILDING

PERMEABLE PAVER ASPHALT PAVED AREA

CONCRETE PAD CONCRETE DRIVEWAY

WASTE PICK-UP AREA

PRIME CONSULTANT IBI GROUP
Unit 110 - 650 Dalton Avenue
Kingston ON K7M 8N7 Canada
tel 613 531 4440 fax 613 531 7789 ibigroup.com

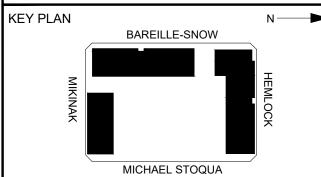

MIKINAK REDEVELOPMENT

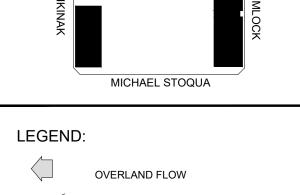
715 MIKINAK ROAD, OTTAWA, ON CANADA K1K 2G8

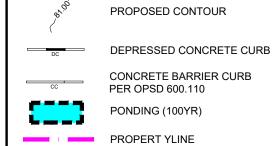
PROJECT NO: 125599 SCALE: AS SHOWN APPROVED BY: PROJECT MGR:

GRADING PLAN (SOUTH)

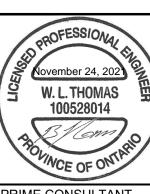
SHEET NUMBER CG1102


COPYRIGHT


This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.


IBI Group Professional Services (Canada) Inc. is a member of the IBI Group of companies

ISSUE	S	
No.	DESCRIPTION	DATE
1	FIRST SUBMISSION	2021-05-20
2	SECOND SUBMISSION	2021-08-24
3	BUILDING PERMIT SUBMISSION	2021-09-07
4	TENDER SUBMISSION	2021-10-05
5	TENDER RESUBMISSION	2021-11-03
6	TENDER RESUBMISSION	2021-11-09
7	L3101 SITE WORKS - ADDENDUM 1	2021-11-19
8	THIRD SUBMISSION	2021-11-23
	•	•


PROPOSED BIO-SWALE PROPOSED SOFTSCAPE

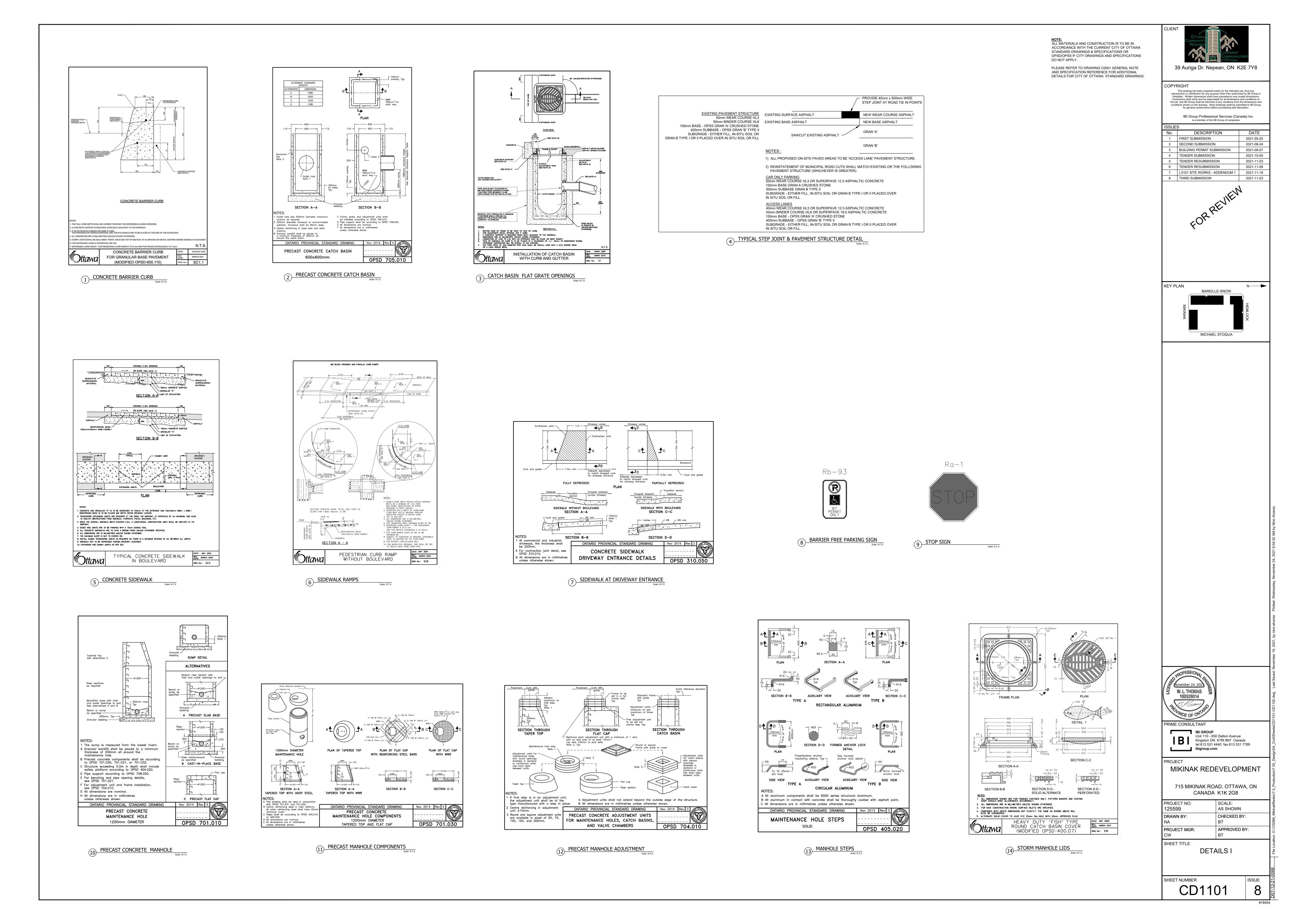
PROPOSED HARDSCAPE PROPOSED BUILDING

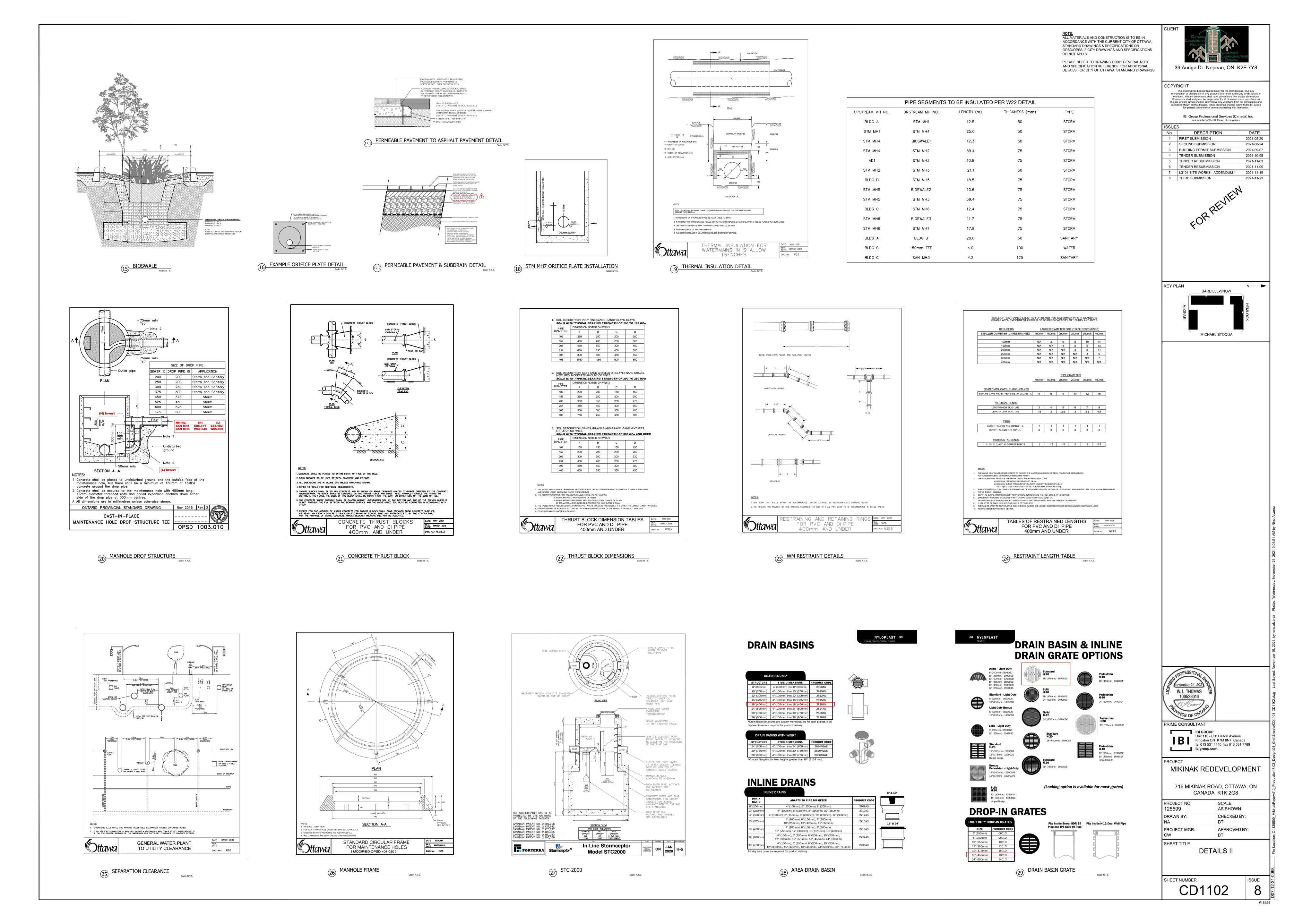
ASPHALT PAVED AREA WASTE PICK-UP AREA CONCRETE PAD

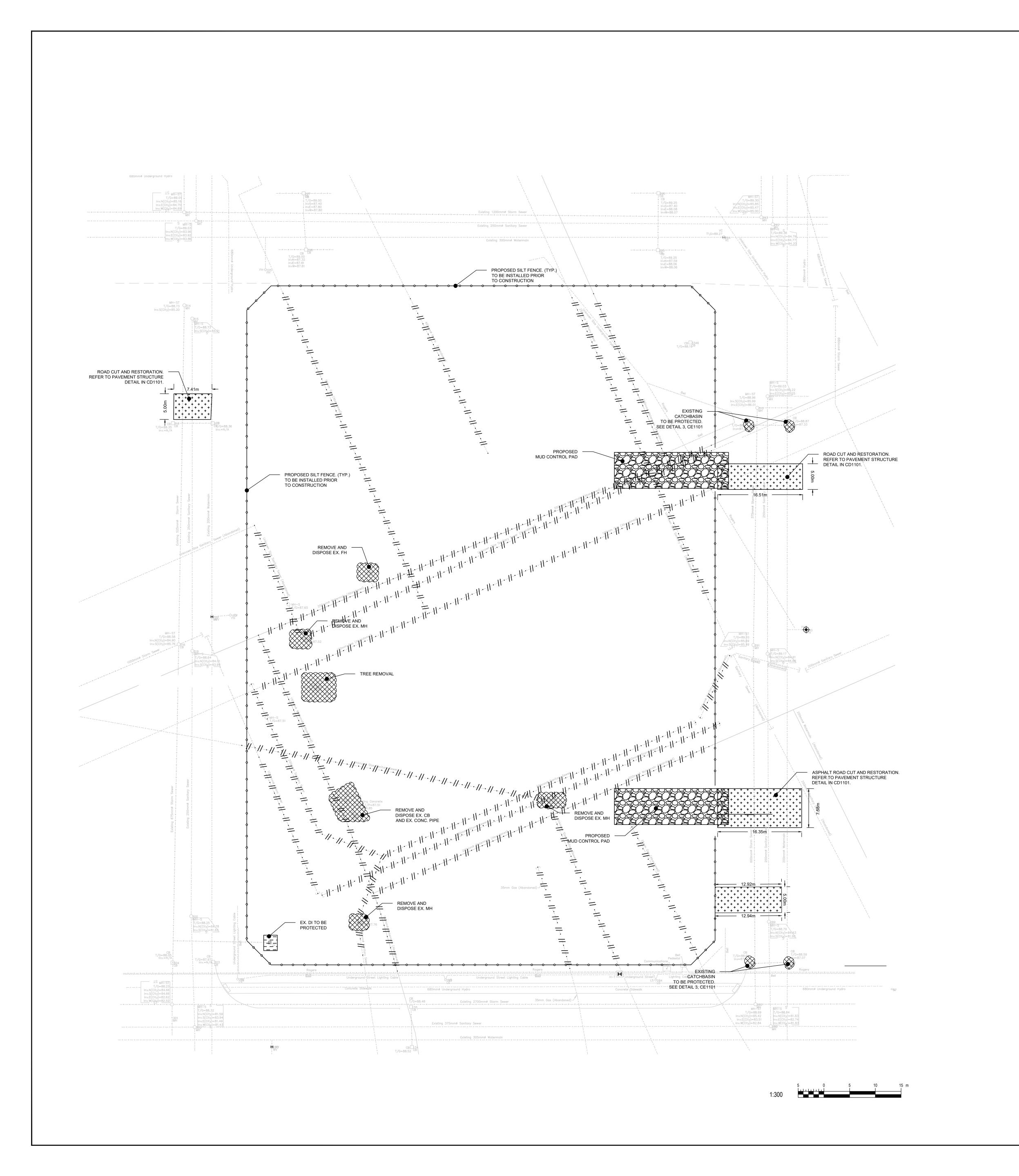
CONCRETE DRIVEWAY

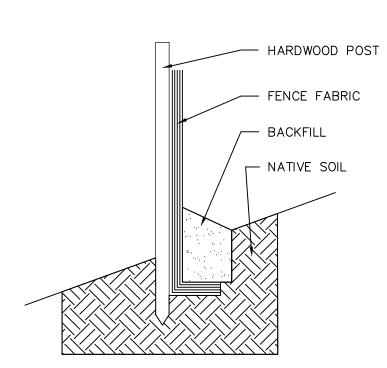
PERMEABLE PAVER

PRIME CONSULTANT IBI GROUP
Unit 110 - 650 Dalton Avenue
Kingston ON K7M 8N7 Canada
tel 613 531 4440 fax 613 531 7789 ibigroup.com


MIKINAK REDEVELOPMENT


715 MIKINAK ROAD, OTTAWA, ON CANADA K1K 2G8

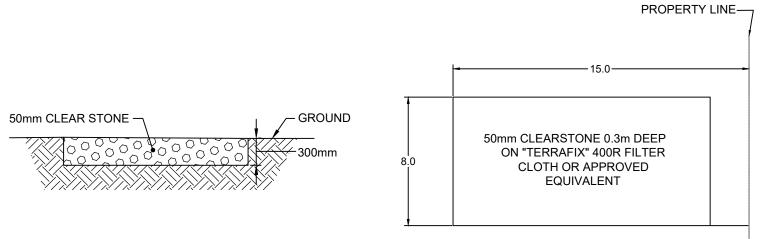

SCALE: AS SHOWN APPROVED BY: PROJECT MGR:


PONDING PLAN

SHEET NUMBER
CG1103

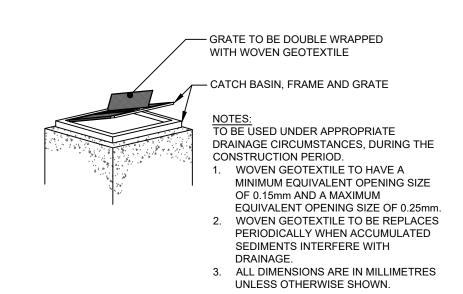
NOTES:

1. SILTATION FENCE FARIC TO BE "TERRAFENCE" OR APPROVED EQUAL.

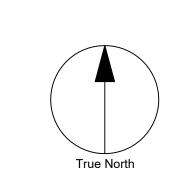

2. FABRIC WIDTH TO BE 0.6m MINIMUM.

3. WOOD POSTS TO BE 0.9m HIGH AND INSTALLED AT 2.3m MAXIMUM SPACING.

4. FENCE INSTALLATION TO BE IN ACCORDANCE WITH MANUFACTURES RECOMENDATIONS AND TO THE SATISFACTION OF THE C.R.C.A.


5. CONTRACTOR TO INSTALL FENCE UPON COMMENCEMENT OF CONSTRUCTION. FENCE SHALL BE MAINTAINED UNTIL DISTURBED AREAS HAVE BEEN REVEGITATED.

SILTATION FENCE DETAI

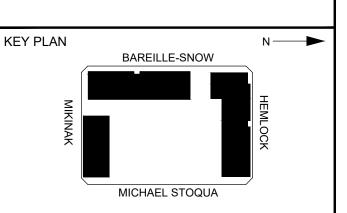


NOTES
REQUEST FOR TEMPORARY CONSTRUCTION ACCESS REQUIRES CONSENT FROM LOCAL MUNICIPALITY.

MUD MAT - TEMPORARY ACCESS DETAIL

3 CATCH BASIN SEDIMENT PROTECTION DETAIL
Scale: N.T.S.

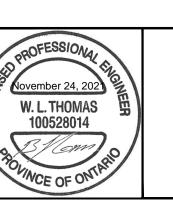
COPYRIGHT


This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.

IBI Group Professional Services (Canada) Inc.

ISSUE	S	
No.	DESCRIPTION	DATE
1	FIRST SUBMISSION	2021-05-20
2	SECOND SUBMISSION	2021-08-24
3	BUILDING PERMIT SUBMISSION	2021-09-07
4	TENDER SUBMISSION	2021-10-05
5	TENDER RESUBMISSION	2021-11-03
6	TENDER RESUBMISSION	2021-11-09
7	L3101 SITE WORKS - ADDENDUM 1	2021-11-19
8	THIRD SUBMISSION	2021-11-23

is a member of the IBI Group of companies



ROAD CUT AND RESTORATION

EXISTING TO BE PROTECTED

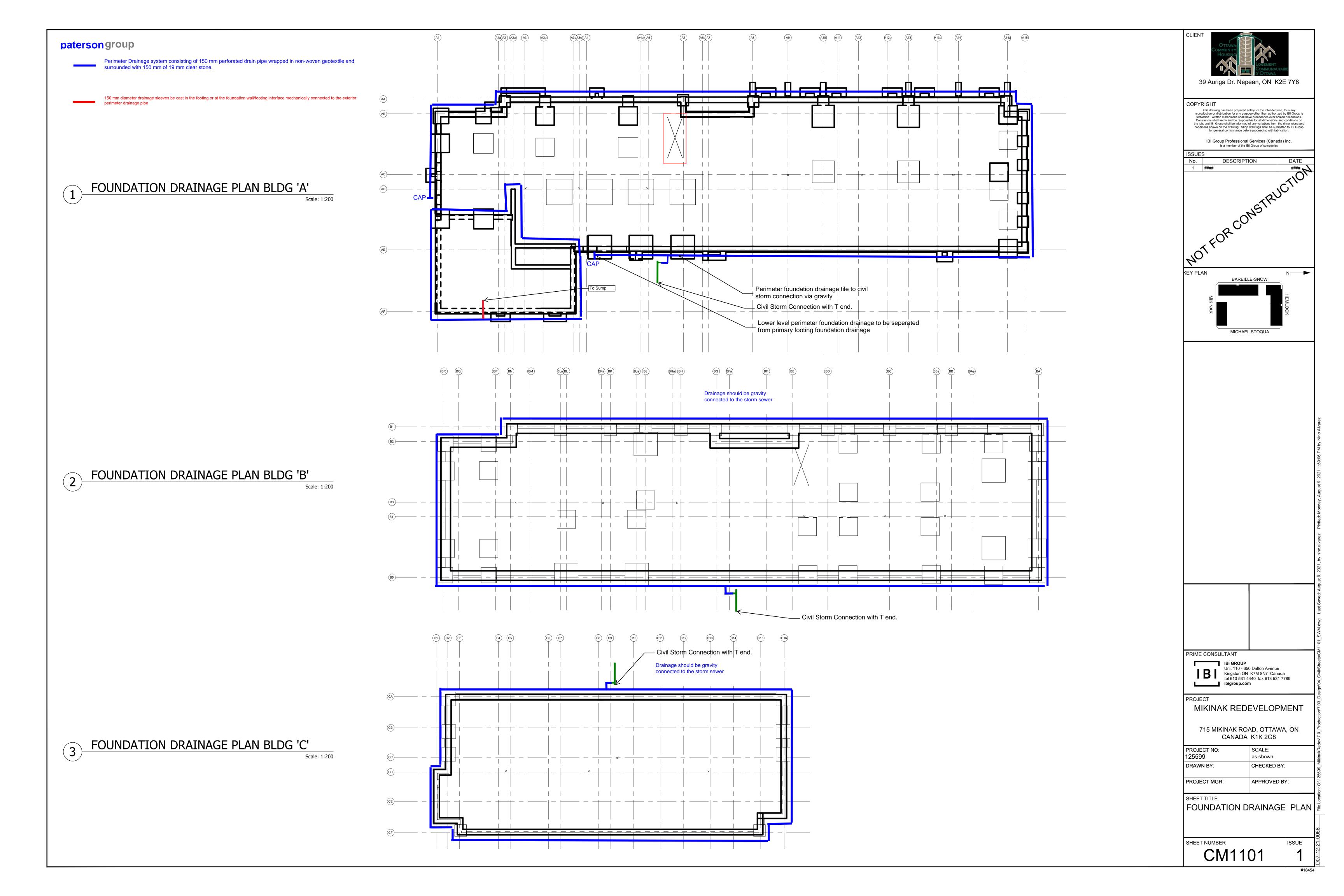
REMOVE AND DISPOSE

PRIME CONSULTANT

IBI GROUP
Unit 110 - 650 Dalton Avenue
Kingston ON K7M 8N7 Canada
tel 613 531 4440 fax 613 531 7789
ibigroup.com

MIKINAK REDEVELOPMENT

715 MIKINAK ROAD, OTTAWA, ON CANADA K1K 2G8


PROJECT NO: 125599	SCALE: AS SHOWN
DRAWN BY: NA	CHECKED BY: BT
PROJECT MGR: CW	APPROVED BY: BT

SHEET TITLE
SEDI

SEDIMENT & EROSION CONTROL PLAN

SHEET NUMBER
CE1101

8

Appendix B – Water Distribution

- 1. Water Demand Calculation Sheet
- 2. FUS Fire Flow Calculation

WATERMAIN DEMAND CALCULATION SHEET

IBI GROUP 650 Dalton Avenue Kingston ON K7M 8N7 Canada tel 613 531 4440 ___ ibigroup.com

FILE: 125599 PROJECT: 715 MIKINAK RD DATE PRINTED: CLIENT: OTTAWA COMMUNITY HOUSING DESIGN: N.A. PAGE: 1 OF 1

		RESIDEN	TIAL		NON	NON-RESIDENTIAL (ICI)			AVERAGE DAILY DEMAND (I/s) MAXIMUM DAILY DEMAND (I/s)					MAXIMUN			
NODE	STUDIO /	2	3														FIRE
	1 BEDROOM	BEDROOM	BEDROOM	POPULATION	INDUST.	COMM.	INSTIT.	RESIDENTIAL	ICI	TOTAL	RESIDENTIAL	ICI	TOTAL	RESIDENTIAL	ICI	TOTAL	DEMAND
	UNIT	UNITS	UNITS		(ha)	(ha)	(ha)										(l/min)
Building A	66	32	16	209		0.0083		0.68	0.0024	0.68	1.69	0.0036	1.70	3.73	0.0043	3.73	11,000
Building B	58	35	22	222.9		0.0083		0.72	0.0024	0.72	1.81	0.0036	1.81	3.97	0.0043	3.98	13,000
Building C	42	-	-	58.8		0.0073		0.19	0.0021	0.19	0.48	0.0032	0.48	1.05	0.0038	1.05	7,000
<u>Total</u>	166	67	38	491		•		1.59	0.0069	1.60	3.98	0.0104	3.99	8.75	0.0124	8.76	

<u>F</u>	POPULATION DENSITY			WATER DEMAND RATES			FIRE DEMANDS	NOTE	
3	3 Bedroom Unit	3.1 persons/unit	Residential	280 l/cap/day	Maximum Daily Residential	2.5 x avg. day	Single Family 10,000 l/min (166.7 l/s)		Person per/unit population based on COO Water Design Guidelines Table 4.1
				Commercial Shopping Center		1.5 x avg. day	Semi Detached &		-
2	2 Bedroom unit	2.1 persons/unit		2,500 L/(1000m2)/day	Maximum Hourly	,	Townhouse 10,000 l/min (166.7 l/s)		
					Residential	2.2 x avg. day			
5	Studio/1 Bedroom Unit	1.4 persons/unit			Commercial	1.8 x avg. day	Medium Density 15,000 l/min (250 l/s)		

WATERMAIN DEMAND CALCULATION SHEET

IBI GROUP
650 Dalton Avenue
Kingston ON K7M 8N7 Canada
tel 613 531 4440
ibigroup.com

PROJECT: 715 MIKINAK RD

CLIENT: OTTAWA COMMUNITY HOUSING

FILE: 125599

DATE PRINTED: 23-Aug-21

DESIGN: N.A.

PAGE: 1 OF 1

		RESIDEN	TIAL		NON	NON-RESIDENTIAL (ICI)			AVERAGE DAILY DEMAND (I/s) MAXIMUM DAILY DEMAND (I/s)				AND (I/s)	MAXIMUI			
NODE	STUDIO /	2	3														FIRE
	1 BEDROOM	BEDROOM	BEDROOM	POPULATION	INDUST.	COMM.	INSTIT.	RESIDENTIAL	ICI	TOTAL	RESIDENTIAL	ICI	TOTAL	RESIDENTIAL	ICI	TOTAL	DEMAND
	UNIT	UNITS	UNITS		(ha)	(ha)	(ha)										(l/min)
Building A	66	32	16	267		0.0083		0.87	0.0024	0.87	2.16	0.0036	2.17	4.76	0.0043	4.76	11,000
Building B	58	35	22	291.0		0.0083		0.94	0.0024	0.95	2.36	0.0036	2.36	5.19	0.0043	5.19	13,000
Building C	42	-	-	63.0		0.0073		0.20	0.0021	0.21	0.51	0.0032	0.51	1.12	0.0038	1.13	7,000
<u>Total</u>	166	67	38	621		•		2.01	0.0069	2.02	5.03	0.0104	5.04	11.07	0.0124	11.08	

POPULATION DENSITY		WATER DEMAND RATES	<u>3</u>	PEAKING FACTORS		FIRE DEMANDS		NOTE	
3 Bedroom Unit	4.5 persons/unit	Residential	280 l/cap/day	Maximum Daily		Single Family	10,000 l/min (166.7 l/s)		Person per/unit population preferred and approved by OCH for design calculation and
		Commercial Shopping Cer	nter	Residential Commercial	2.5 x avg. day 1.5 x avg. day	Semi Detached &			sizing.
2 Bedroom unit	3.0 persons/unit		2,500 L/(1000m2)/day	Maximum Hourly	,	Townhouse	10,000 l/min (166.7 l/s)		
				Residential	2.2 x avg. day				
Studio/1 Bedroom Unit	1.5 persons/unit			Commercial	1.8 x avg. day	Medium Density	15,000 l/min (250 l/s)		

Fire Flow Requirement from Fire Underwriters Survey - 715 Mikinak Street, Ottawa, ON

Proposed Building A

Floor Area of Largest building 1,663 m²
Storeys 7

Total Floor Area 9,799 m²

1.0) F = $220C\sqrt{A}$ (Fire Underwriters Survey)

С	0.8	C =	1.5 wood frame
Α	9,799 m ²		1.0 ordinary
			0.8 non-combustible
F	17,422 l/min		0.6 fire-resistive
use	17,000 l/min		

FLOOR AREA	BUILDING A
	sq.m
BASEMENT	185.3
LEVEL 1	1662.9
LEVEL 2	1662.9
LEVEL 3	1662.9
LEVEL 4	1414.9
LEVEL 5	1317.7
LEVEL 6	1317.7
LEVEL 7	625.2
PENTHOUSE	135.0
	·
TOTAL GFA	9799.2

2.0) Occupancy Adjustment

Use -25%

Adjustment -4356 l/min

Fire flow 12,644 I/min

3.0) Sprinkler Adjustment

Use -30%

Adjustment 3793 l/min Fire flow (8,851) l/min

-30% system conforming to NFPA 13

-10% Additional if water supply standard toboth system and fire department hose lines.

-50% complete automatic system

-25% non-combustible -15% limited combustible

0% combustible +15% free burning

+25% rapid burning

4.0) Exposure Adjustment

Building	Separation	Adja	Adjacent Exposed Wall		
Face	(m)	Length	Stories	L*H Factor	Charge
north	>45	0.0	0	0	0%
east	>45	0.0	0	0	0%
south	17.3	21.0	7	147	15%
west	>45	0.0	0	0	0%
Total					15%
Adjustme	nt		(1,328)) I/min	_

0 to 3m	25%
3.1 to 10m	20%
10.1 to 20m	15%
20.1 to 30m	10%
30.1 to 45m	5%
45m>	0%
Maximum charge not exceed 75%	shall

Fire flow	(10,179) l/min
Use	(10,000) l/min
	(167) I/s

Fire Flow Requirement from Fire Underwriters Survey - 715 Mikinak Street, Ottawa, ON

Proposed Building B

1,571 m² Floor Area of Largest building Storeys 7 9,670 m² Total Floor Area

1.0) F = 220C√A (Fire Underwriters Survey)

> С 8.0 1.5 wood frame C= $9,670 \text{ m}^2$ Α 1.0 ordinary 0.8 non-combustible F 17,307 l/min 0.6 fire-resistive **17,000** l/min use

FLOOR AREA	BUILDING B
	sq.m
BASEMENT	na
LEVEL 1	1549.6
LEVEL 2	1570.9
LEVEL 3	1570.9
LEVEL 4	1403.2
LEVEL 5	1403.2
LEVEL 6	1403.2
LEVEL 7	631.1
PENTHOUSE	137.7
TOTAL GFA	9669.8

2.0) Occupancy Adjustment

> -25% Use

Adjustment -4250 l/min

Fire flow 13,057 l/min

-25% non-combustible -15% limited combustible

0% combustible +15% free burning

+25% rapid burning

3.0) Sprinkler Adjustment

> -30% Use

Adjustment 3917 I/min Fire flow (9,140) l/min -30% system conforming to NFPA 13

-10% Additional if water supply standard toboth system and fire department hose lines.

-50% complete automatic system

4.0) Exposure Adjustment

Building	Separation	Adja	Adjacent Exposed Wall		
Face	(m)	Length	Stories	L*H Factor	Charge
north	17.3	21.0	7	147	15%
east	14.8	19.2	4	77	15%
south	>45	0.0	0	0	0%
west	>45	0.0	0	0	0%
Total					30%
Adjustme	nt		(2,742	2) I/min	

0 to 3m	25%	
3.1 to 10m	20%	
10.1 to 20m	15%	
20.1 to 30m	10%	
30.1 to 45m	5%	
45m>	0%	
Maximum charge shall		
not exceed 75%		

Fire flow	(11,882) I/min
Use	(12,000) I/min
	(200) I/s

Fire Flow Requirement from Fire Underwriters Survey - 715 Mikinak Street, Ottawa, ON

Proposed Building C

Floor Area of Largest building 805 m²
Storeys 4

Total Floor Area 3,315 m²

1.0) F = $220C\sqrt{A}$ (Fire Underwriters Survey)

С	0.8	
Α	3,315	m ²
F	10,134	l/min
use	10,000	l/min

_	
C =	1.5 wood frame
	1.0 ordinary
	0.8 non-combustible
	0.6 fire-resistive

FLOOR AREA	BUILDING C
	sq.m
BASEMENT	na
LEVEL 1	805.4
LEVEL 2	805.4
LEVEL 3	805.4
LEVEL 4	805.4
LEVEL 5	na
LEVEL 6	na
LEVEL 7	na
PENTHOUSE	93.5
TOTAL GFA	3315.1

2.0) Occupancy Adjustment

Use -25%

Adjustment -2533 l/min Fire flow 7,467 l/min

-25% non-combustible
-15% limited combustible
0% combustible
+15% free burning
+25% rapid burning

3.0) Sprinkler Adjustment

Use -30%

Adjustment 2240 l/min Fire flow (5,227) l/min

-30% system conforming to NFPA 13

-10% Additional if water supply standard toboth system and fire department hose lines.

-50% complete automatic system

4.0) Exposure Adjustment

Building	Separation	Adja	cent Expos	ed Wall	Exposure
Face	(m)	Length	Stories	L*H Factor	Charge
north	>45	0.0	0	0	0%
east	>45	0.0	0	0	0%
south	>45	0.0	0	0	0%
west	14.8	81.4	7	570	15%
Total					15%

Adjustment (784) I/min

0 to 3m	25%
3.1 to 10m	20%
10.1 to 20m	15%
20.1 to 30m	10%
30.1 to 45m	5%
45m>	0%
Maximum charge	shall
not exceed 75%	

Fire flow	(6,011) I/min
Use	(7,000) I/min
	(117) I/s

Appendix C – Sanitary Sewer

- 1. Sanitary Sewer Design Sheet
- 2. Former CFB Rockcliffe Sanitary Sewer Design Sheet, CLC.
- 3. CFB Rockcliffe Master Servicing Study Wastewater Plan
- 4. CFB Rockcliffe Master Servicing Study Phase 1B Wastewater Plan

IBI GROUP 650 Dalton Avenue Kingston ON K7M 8N7 Canada tel 613 531 4440 fax 613 531 7789 ibigroup.com

SANITARY SEWER DESIGN SHEET

PROJECT: 125599 LOCATION: 715 MIKINAK ROAD, OTTAWA, ON CLIENT: OTTAWA COMMUNITY HOUSING

LOCATION		Tributar	y Area				RESIDEN	TIAL					INSTIT	UTIONAL	COMMERC	IAL INDUSTE	RIAL	INFILTRA	ATION ALLOV	ANCE	TOTAL			PR	OPOSED S	SEWER DESIG	N		
					UN	IT		POPU	LATION	FL	OWS			ARE	A (ha)						FLOW		Pipe			Velocity @	Vel @		
Street	Area	From	То	Studio / 1	2	3	Area	INDIV.	CUM.	Peaking	Peak Flow	INST	ITUITION	COMME	RCIAL II	NDUSTRIAL	Pk. Flow	Incr. Area	Cum. Area	Flow		Capacity	Size	Length	Slope	Full Pipe	Design	Avail	. Cap.
	ID	BLDG	MH	Bedroom	Bedroom	Bedroom	(Ha.)			Factor	(I/s)	Indiv	Cumm.	Indiv	Cumm. Ind	iv Cumm.	(I/s)	(Ha.)	(Ha.)	(I/s)	(I/s)	(l/s)	(mm)	(m)	(%)	(m/s)	(m/s)	L/s	(%)
Existing sanitary sewer - Barielle-Snow Street		MH-208A (Upstream)	MH-209A (Downstream)																		3.64	50.02	250	64.85	0.65	0.99		46.37	92.72
Existing sanitary sewer - Michael Stoqua Street		MH-211A (Upstream)	MH-166B (Downstream)																		1.91	50.02	250	52.19	0.65	0.98		48.11	96.18
BLDG C	1	BLDG C	SAN MH3 EX. MH	42	0	0	0.24	58.8	59	4.00	0.76			0.0073				0.25	0.25	0.08	0.84	43.07 21.37	150	4.2	8.00	2.44	0.95	43.05	
	1	SAN MH3	EX. MH			1		1				+						1	1		0.84	21.37	150	11.4	1.97	1.21	0.58	21.35	99.91
BLDG B	2	Proposed	BLDG A	58	35	22	0.72	222.9	223	4.00	2.89			0.0083				0.73	0.73	0.24	3.13	15.23	150	20.0	1.00	0.86	0.68	12.10	79.44
BLDG A	3	BLDG A	SAN MH2	66	32	16	0.72	209.2	432	4.00	5.60			0.0083				0.73	0.73	0.24	5.84	43.07	150	3.6	8.00	2.44	1.70	37.23	86.44
		SAN MH 2	SAN MH 1						432	4.00	5.60							0.00	0.00	0.00	5.60	29.76	150	13.5	3.82	1.68	1.29	24.16	81.18
Designed: NA				1	<u>I</u>	<u> </u>							<u> </u>			ICI Rates		<u> </u>	<u> </u>			Pop. Per Bedr Pop. Per Bedr	room (2 Bed	droom):	2.1	Bedroom/Unit Bedroom/Unit			
Checked:																Institution Commercial	30000 50000)				Pop. Per Bedr Avg. Per Cap	ita Flow Ra		280	Bedroom/Unit L/day/cap			
В				REVISION				D/	ATE	-						Industrial	35000	J				Infiltration Allo Assumed pipe		cient =	0.33	l/sec/Ha			
Dwg Reference: CU1101 - Servicing Plan		File Ref: 125599	Date: 2021-10-					Sheet No. 1 of 1	=	1												Residential Pe	eaking Facto	or:	4.00	n Ottawa Design	Guidelines Ta	ble 4.2	

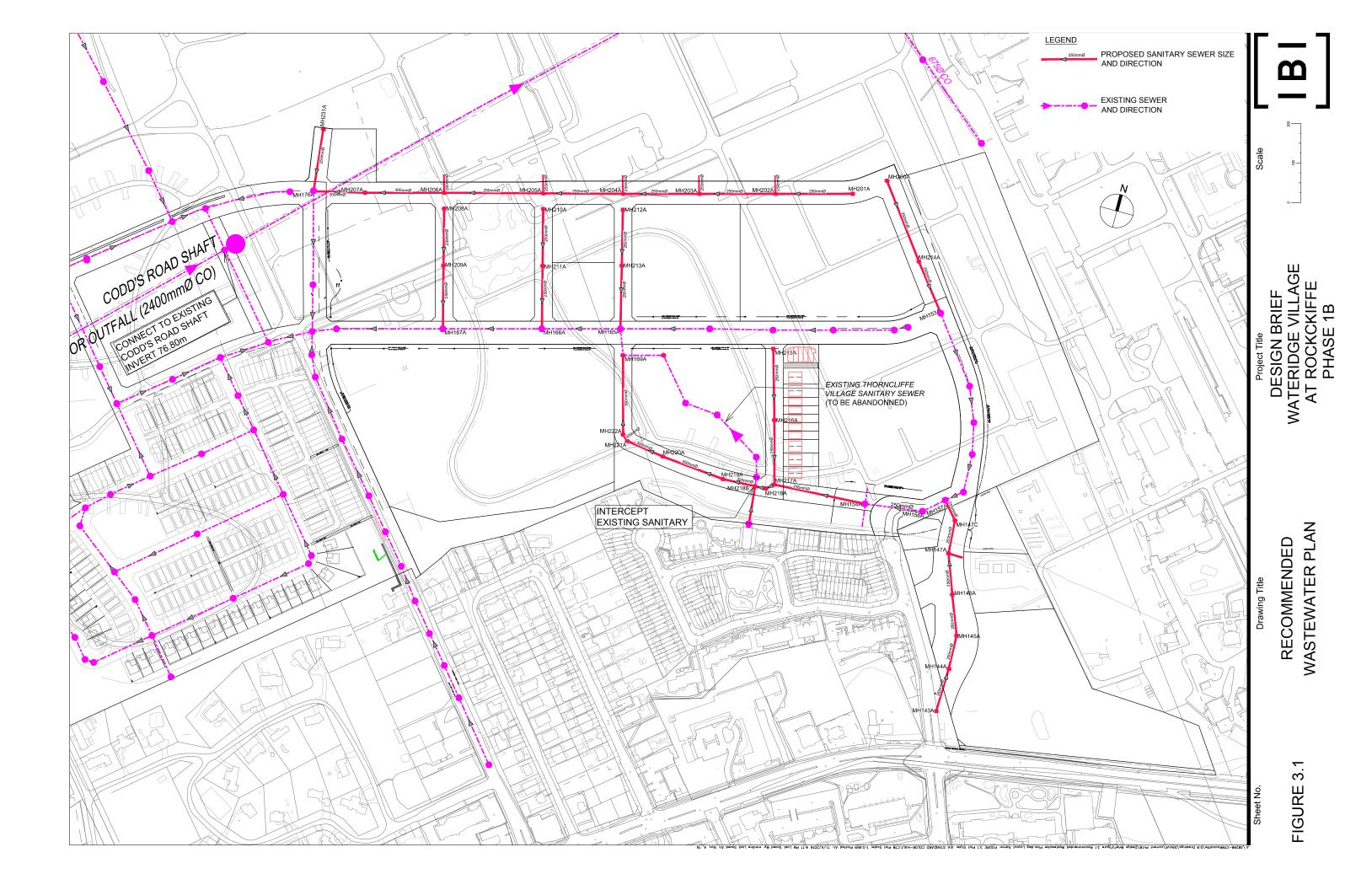
IBI GROUP 650 Dalton Avenue Kingston ON K7M 8N7 Canada tel 613 531 4440 fax 613 531 7789 ibigroup.com

SANITARY SEWER DESIGN SHEET

PROJECT: 125599 LOCATION: 715 MIKINAK ROAD, OTTAWA, ON CLIENT: OTTAWA COMMUNITY HOUSING

LOCATION		Tributar	y Area				RESIDEN	TIAL					INSTIT	UTIONAL COM	ERCIA	L INDUSTRI	AL	INFILTRA	ATION ALLOV	/ANCE	TOTAL			PRO	POSED S	EWER DESIG	N		
					UNI	IT		POPUL	ATION	FL	.ows			AREA (ha)							FLOW		Pipe			Velocity @	Vel @		
Street	Area	From	То	Studio / 1	2	3	Area	INDIV.	CUM.	Peaking	Peak Flow	INST	TUITION	COMMERCIAL	IND	USTRIAL	Pk. Flow	Incr. Area	Cum. Area	Flow		Capacity	Size	Length	Slope	Full Pipe	Design	Avail.	Сар.
	ID	BLDG	МН	Bedroom	Bedroom	Bedroom	(Ha.)			Factor	(I/s)	Indiv	Cumm.	Indiv Cumm.	Indiv	Cumm.	(I/s)	(Ha.)	(Ha.)	(I/s)	(I/s)	(I/s)	(mm)	(m)	(%)	(m/s)	(m/s)	L/s	(%)
Existing sanitary sewer - Barielle-Snow Street		MH-208A (Upstream)	MH-209A (Downstream)																		3.64	50.02	250	64.85	0.65	0.99		46.37	92.72
Existing sanitary sewer - Michael Stoqua Street		MH-211A (Upstream)	MH-166B (Downstream)																		1.91	50.02	250	52.19	0.65	0.98		48.11	96.18
DI DO O		BLDG C	SAN MH3	40	0		0.04	00	60	4.00	0.00			0.0073				0.05	0.05	0.00	0.00	40.07	450	4.0	0.00	0.44	0.00	40.05	00.05
BLDG C	1	SAN MH3	EX. MH	42	U	U	0.24	63	63	4.00	0.82			0.0073				0.25	0.25	0.08	0.90 0.90	43.07 21.37	150 150	4.2 11.4	8.00 1.97	2.44 1.21	0.98 0.60	21.35	99.95 99.91
BLDG B	2	Proposed	BLDG A	58	35	22	0.72	291	291	4.00	3.77			0.0083				0.73	0.73	0.24	4.01	15.23	150	20.0	1.00	0.86	0.73	11.22	73.66
BLDG A	3	BLDG A	SAN MH2	66	32	16	0.72	267	558	3.95	7.14			0.0083				0.73	0.73	0.24	7.38	43.07	150	3.6	8.00	2.44	1.82	35.69	82.87
		SAN MH 2	SAN MH 1						558	3.95	7.14							0.00	0.00	0.00	7.14	29.76	150	13.5	3.82	1.68	1.38	22.62	76.01
Designed: NA				I	I	I	<u> </u>									ICI Rates Institution	30000		1			Pop. Per Bedr Pop. Per Bedr Pop. Per Bedr	room (2 Bed	room):	3	Bedroom/Unit Bedroom/Unit Bedroom/Unit			
Checked: BT																Commercial Industrial	50000 35000					Avg. Per Cap Infiltration Allo		e:		L/day/cap l/sec/Ha			
				REVISION	_			DA'	TE													Assumed pipe			0.013				
Dwg Reference: CU1101 - Servicing Plan		File Ref: 125599	Date: 2021-10-2	25				Sheet No. 1 of 1																	4.00 ion preferred	d and approved l	by OCH for de	sign calcula	ition and

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com


SANTAKT SEWER DESIGN SHEET

Former CFB Rockcliffe City of Ottawa Canada Lands Company

	LOGATION			1				RESIDI	ENTIAL					I			ICI AREAS			1	INFILTE	RATION ALL	OWANCE	FIXED	TOTAL	I		PROPO	SED SEWER	DESIGN		
	LOCATION			AREA		UNIT	TYPES		AREA	POPU	LATION	PEAK	PEAK			ARE	A (Ha)			PEAK	ARE	A (Ha)	FLOW	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVAII	LABLE
STREET	AREA ID	FROM MH	TO MH	Phase 1B	SF	SD	TH	APT	EXTERNAL	IND	CUM	FACTOR			UTIONAL		IERCIAL	INDUSTRI		FLOW	IND	CUM	(L/s)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(full)		ACITY
		MH	MH	(Ha)					(Ha)				(L/s)	IND	CUM	IND	CUM	IND (CUM	(L/s)			` ,	, ,	` '	<u> </u>	` ,	` ′		(m/s)	L/s	(%)
Phase 1A					1	1								1															+	 		
croissant Squadron Crescent		MH169A	MH165A							0.0	3078.5	3.43	42.81		2.62		3.83		0.00	5.60	0.00	36.35	10.18	0.00	58.59	63.80	27.00	300	0.40	0.874	5.22	8.18%
Phase 1B rue Moses Tennisco Street	212A	MH213A	MH212A	1.20		1				252.0	252.0	4.00	4.08	1	0.00	1	0.00		0.00	0.00	1.20	1.20	0.34	0.00	4.42	50.02	44.22	250	0.65	0.987	45.60	91.16%
rue Moses Termisco Otreet	212/(1411121071	WII IZ IZX	1.20		1				202.0	202.0	4.00	4.00		0.00		0.00		0.00	0.00	1.20	1.20	0.04	0.00	7.72	00.02	77.22	200	0.00	0.007	40.00	31.1070
rue Moses Tennisco Street	BLOCK 24	BLK212AE	MH212A											Desig	n by Others											62.04	10.00	250	1.00	1.224	62.04	100.00%
rue Moses Tennisco Street	213A	MUIOAOA	BULK165AN	0.35						52.5	304.5	4.00	4.93		0.00		0.00		0.00	0.00	0.25	4.55	0.43	0.00	5.37	39.24	10.84	250	0.40	0.774	22.07	86.32%
rue Moses Tennisco Street	213A	IVITIZ IZA	BULKIOSAN	0.35						52.5	304.5	4.00	4.93		0.00		0.00		0.00	0.00	0.35	1.55	0.43	0.00	5.37	39.24	10.84	250	0.40	0.774	33.87	80.32%
Phase 1A																																
rue Moses Tennisco Street		BULK165AN	MH165A							0.0	304.5	4.00	4.93		0.00		0.00		0.00	0.00	0.00	1.55	0.43	0.00	5.37	39.24	22.50	250	0.40	0.774	33.87	86.32%
Phase 1B		1	 	1	1	 	-	-	-	-		1		1	1	1								<u> </u>	-				+	 		-
rue Michael Stoqua Street	BLOCK 22	BLK210AE	MH210A											Desid	n by Others											62.04	10.00	250	1.00	1.224	62.04	100.00%
·																																
rue Michael Stoqua Street	210A		MH211A	0.40						52.5	52.5	4.00	0.85		0.00		0.00			0.00	0.40	0.40	0.11						0.65			
rue Michael Stoqua Street	211A	WHZTTA	MH166B	0.35						52.5	105.0	4.00	1.70		0.00		0.00		0.00	0.00	0.35	0.75	0.21	0.00	1.91	50.02	52.19	∠50	0.65	0.987	48.11	96.18%
Phase 1A																								_								
rue Michael Stoqua Street		MH166B	MH166A							0.0	105.0	4.00	1.70		0.00		0.00	(0.00	0.00	0.00	0.75	0.21	0.00	1.91	39.24	21.10	250	0.40	0.774	37.33	95.13%
Phase 1B			1																					_						<u> </u>		
rue Bareille-Snow Street	208A	MH208A	MH209A	1.01						207.4	207.4	4.00	3.36		0.00		0.00		0.00	0.00	1.01	1.01	0.28	0.00	3.64	50.02	64.85	250	0.65	0.987	46.37	92.72%
rue Bareille-Snow Street	209A	MH209A	MH167B	0.35						52.6	260.0	4.00	4.21		0.00		0.00			0.00	0.35	1.36	0.38	0.00					0.65		45.42	
Phase 1A rue Bareille-Snow Street		MU167B	MH167A		1					0.0	260.0	4.00	4.21		0.00		0.00		0.00	0.00	0.00	1.36	0.38	0.00	4.59	63.80	20.43	300	0.40	0.874	59.21	92.80%
Tue Barellie-Show Street		WITTOTE	WITTOTA		1	1				0.0	200.0	4.00	4.21	1	0.00		0.00		0.00	0.00	0.00	1.30	0.30	0.00	4.33	03.00	20.43	300	0.40	0.074	39.21	92.0070
Phase 1B																																
Codd's Road	230A		MH231A						0.87	85.7	85.7	4.00	1.39		0.00		0.00			0.00	0.87	0.87	0.24	0.00	1.63	75.98	3.00	250	1.50	1.500	74.35	97.85%
Codd's Road	231A, EXPARK1	MH231A	BULK176AN						<u>0.76</u>	43.3	129.0	4.00	2.09		0.00		0.00		0.00	0.00	0.76	1.63	0.46	0.00	2.55	87.74	50.22	250	2.00	1.731	85.19	97.10%
Phase 1A																													+			
Codd's Road		BULK176AN	I MH176A							0.0	129.0	4.00	2.09		0.00		0.00	(0.00	0.00	0.00	1.63	0.46	0.00	2.55	55.49	23.23	250	0.80	1.095	52.94	95.41%
			1																										 	 '		
			-																										+	 		
		1	<u> </u>	<u> </u>	1	1						1		1	<u> </u>	1								1	<u> </u>		<u> </u>		<u> </u>			
																														\bot		
			 		1	-	-	-		-		1		 	-	<u> </u>								1	-				+	 		
			<u> </u>		1	1								1	1	1									1				+			
																													1			
						<u> </u>	<u> </u>		<u> </u>																<u> </u>					 		
			+		1	+	-	-		1		1		1	+	+	+ -							1	1	 			+	 		
Design Parameters:		1	1	Notes:	1	1	1		1		1	Designed	:	WY	1	1	No.					R	evision							Date		
					coefficient	(n) =		0.013				1					1.						mission No. 1							2016-07-08		
Residential		ICI Areas	Dook Foot-		(per capita):			L/day	300	L/day		Chookod		IIM			2.						mission No. 2					-		2016-11-04		
SF 3.4 p/p/u TH/SD 2.7 p/p/u	INST 50,000	0 L/Ha/day	Peak Factor 1.5	 3. Infiltration 4. Residentia 		actor.	0.28	L/s/Ha				Checked:		JIM			3. 4.						mission No. 3 er Mattamy's I					-		2017-01-25 2017-12-08		
APT 1.8 p/p/u		0 L/Ha/day	1.5				·(14/(4+P^0.5	5))									7.				<u>'</u>	oca as pi		_ Joseph						2017 12 00		
Other 60 p/p/Ha		0 L/Ha/day	MOE Chart	Ī	where P =	population i	in thousands					Dwg. Refe	erence:	38298-501	1																	
	17000	0 L/Ha/day																le Reference:						Date:						Sheet No:		
																		38298.5.7.1					2016	6-07-08						2 of 2		

C:\Users\nno.alvarez\Desktop\38298-1B-CCS_sanitary_2017-12-08

Appendix D – Stormwater

- 1. Storm Sewer Design Sheet
- 2. SWM Pre-Post Figures
- 3. Storage Volume Calculations
- 4. Orifice Plate Calculation
- 5. Stormceptor STC-2000
- 6. Ponding Plan
- 7. Storm HGL Calculation Sheet
- 8. Wateridge Village Ph1B Michael Stoqua St.

IBI GROUP 650 Dalton Avenue Kingston ON K7M 8N7 Canada tel 613 531 4440 fax 613 531 7789 ibigroup.com

WEIGHTED RUNOFF COEFFICIENTS

PROJECT: 125599

LOCATION: 715 MIKINAK ROAD, OTTAWA, ON **CLIENT:** OTTAWA COMMUNITY HOUSING

Drain	age Area			We	ighted R	Runoff Coefficient	
		Grass		Pavers	_	Bldg/Asphalt/C oncrete	
ID	Total Area (m²)	0.25	0.40	0.60	0.80	0.90	Cw
Existing - See	SWM1						
100	12,184	12,184	0	0	0	0	0.25
Total	12,184	12,184	0	0	0	0	0.25
Proposed - Se	e SWM2					•	
UNC1	180	59	0	0	0	107	0.62
UNC2	633	410	0	0	0	198	0.44
BLDG A	1,879	0	0	0	0	1,879	0.90
100	2,409	603	0	1,230	0	576	0.58
BLDG B	1,742	0	0	0	0	1,742	0.90
UNC3	646	439	0	94	0	115	0.42
200	1,242	262	0	587	0	393	0.62
300	2,300	562	0	1,136	0	600	0.59
BLDG C	929	0	0	0	0	929	0.90
UNC4	223	137	0	0	0	86	0.50
Total	12,184	2,472	0	3,047	0	6,625	0.69

IBI GROUP ibigroup.com

650 Dalton Avenue Kingston ON K7M 8N7 Canada tel 613 531 4440 fax 613 531 7789

EXISTING MINOR STORM EVENT

PROJECT: 125599

LOCATION: 715 MIKINAK ROAD, OTTAWA, ON **CLIENT: OTTAWA COMMUNITY HOUSING**

	Drainage Area				AREA	\ (ha)						RATIONAL [DESIGN FLOW	
СР	Area ID	Area	C= 0.25	C= 0.40	C= 0.60	C= 0.80	C= 0.90	Cw	Indiv. 2.78AC	Accum. 2.78AC	Inlet (min.)	Total Time (min.)	l (mm/Hr)	Peak Flow (L/s)
											,			· ·
CP # 1	100	1.22	1.22	0.00	0.00	0.00	0.00	0.25	0.85	0.85	15.00	15.00	83.56	70.8
Designed: NA											Q = 2.78AIC, w Q = Peak Flow A = Area in He	in Litres per S ctares (ha.)		
Checked: BT											I = Rainfall Inte [I=998.071/(tc+	ensity in Millim	neters per Hour (mi 5yr	m/hr)
Dwg. Referenc	0:		1		Shee		Revisio	n	Da	ıto.				
	e. VM1 - EXISTING DRAINAG	E EXHIBIT			1 c				2021-					

IBI GROUP 650 Dalton Avenue Kingston ON K7M 8N7 Canada tal 613 531 4440 fax 613 531 7789 ibigroup.com

EXISTING MAJOR STORM EVENT

PROJECT: 125599

LOCATION: 715 MIKINAK ROAD, OTTAWA, ON CLIENT: OTTAWA COMMUNITY HOUSING

	Drainage Area				ARE/	(ha)					RATIO	NAL DESIGN	FLOW	
СР	Area ID	Area	C= 0.25	C= 0.40	C= 0.60	C= 0.80	C= 0.90	Cw	Indiv. 2.78AC	Accum. 2.78AC	Inlet (min.)	Total Time (min.)	l (mm/Hr)	Peak Flow (L/s)
CP # 1	100	1.22	1.22	0.00	0.00	0.00	0.00	0.25	0.85	0.85	15.00	15.00	142.89	121.0
Designed: NA											Q = 2.78AIC, wl Q = Peak Flow A = Area in Hec	in Litres per S tares (ha.)		
Checked: BT							Revision				I = Rainfall Inte [l=1735.688/(tc+		eters per Hour (r	nm/hr)
Dwg. Referenc	e: VM1 - EXISTING DRAINAGE	FXHIRIT			Shee 1 o	t No:	CE VISIOI		Da 2021-					

STORM SEWER DESIGN - MINOR STORM

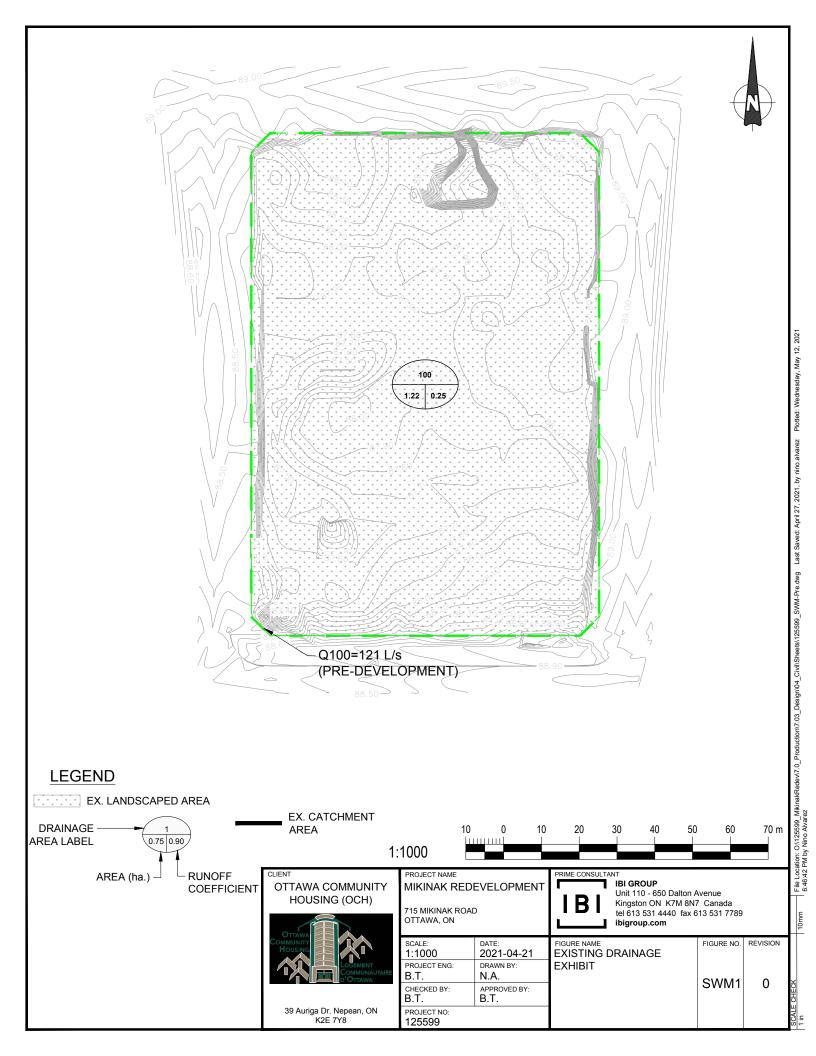
IBI GROUP
650 Dalton Avenue
Kingston ON K7M 8N7 Canada
tel 613 531 4440 fax 613 531 7789 ___ibigroup.com

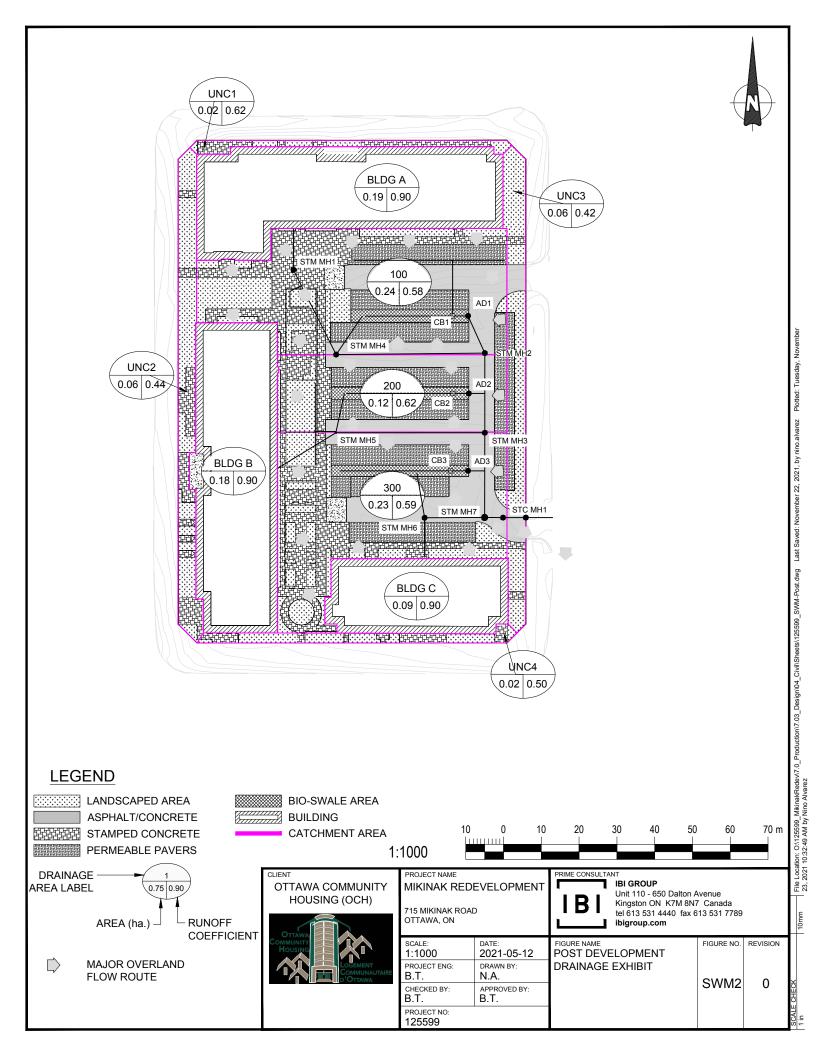
PROJECT: 125599

LOCATION: 715 MIKINAK ROAD, OTTAWA, ON CLIENT: OTTAWA COMMUNITY HOUSING

LC	OCATION							AREA	(ha)							RATIO	NAL DESIG	N FLOW					SEWER	DATA			
										•				Time In								B' B'		Full Pipe	Design		_
Concentration Point	Area ID	FROM MH	TO MH	Area (ha)	C= 0.25	C= 0.40	C= 0.60	C= 0.80	C= 0.90	Cw	Indiv. 2.78AC	Accum. 2.78AC	Inlet (min.)	Pipe (min.)	Time (min.)	I (2YR) (mm/Hr)	I (5YR) (mm/Hr)	Peak Flow (2YR) (L/s)	Peak Flow (5YR) (L/s)	Cap. (L/s)	Length (m)	Pipe Dia. (mm)	Slope (%)	Vel. (m/s)	Vel. (m/s)	Avail.	(%)
Proposed																											
•	UNC1	Site	Ex. CB	0.0180	0.006		0.000	0.000	0.011	0.616	0.031	0.031	15.00	0.00					2.6								
	UNC2	Site	Ex. CB	0.0633 0.1879	0.041 0.000	0.000	0.000	0.000	0.020 0.188	0.443	0.078 0.470	0.078	15.00	0.00		61.77			6.5 39.3	00.4	10.6	200	0.05	1 25	1.07	E0 00	60.10/
	100 100	BLDG A STMMH1	STMMH1 STMMH4	0.1879	0.000	0.000	0.000	0.000	0.188	0.900	0.470	0.470 0.470	15.00 15.00	0.16 0.27		61.77			39.3	98.4 128.8					1.27 1.55		60.1% 69.5%
	100	STMMH4	BIO SWALE1									0.470	15.00	0.13		61.77			39.3	133.8	12.3				1.59		70.6%
	100	STMMH4	STMMH2									0.470	15.00	0.34		61.77			39.3	173.3				2.38	1.92	134.01	77.3%
	100	CB1	AD1	0.2409	0.066	0.000	0.062	0.000	0.113	0.644	0.431	0.431	15.00	0.05	15.05	61.77	7 83.56	26.6	36.0	68.5	4.1	250	1.22	1.35	1.37	32.49	47.4%
	100	AD1	STMMH2	0.2400	0.000	0.000	0.002	0.000	0.110	0.011	0.101	0.431	15.00	0.07					36.0	174.2							79.3%
	200	BLDG B	STMMH5	0.1742	0.000	0.000	0.000	0.000	0.174	0.900	0.436	0.436	15.00	0.27					36.4	81.4							55.2%
	200 200	STMMH5 STMMH5	BIO SWALE 2 STMMH3									0.436 0.436	15.00 15.00	0.18 0.36		61.77			36.4 36.4	69.9 166.4					0.97 1.82		47.9% 78.1%
	200	CB2	AD2	0.1242	0.031	0.000	0.045	0.000	0.049	0.632	0.218	0.436	15.00	0.36					54.7	155.9							65.0%
	200	AD2	TEE	VZ-12	0.001	5.000	3.010	3.000	3.0-10	3.002	0.210	0.654	15.00	0.02					54.7	285.4							80.8%
	UNC3	Site	Ex. CB	0.0646	0.044	0.000	0.009	0.000	0.011	0.417	0.075	0.075	15.00	0.00	15.00	61.77	7 83.56	4.6	6.3								
		STMMH2	STMMH3									0.634	15.00	0.29	15.29	61.77	7 83.56	39.2	53.0	252.3	21.1	450	0.72	1.54	1.21	199.33	79.0%
		252	150	0.0000	0.007	0.000	0.000	0.000	0.400		0.404	0.404	45.00		45.04			05.0	20.0		4.0		0.40	0.00	4.00	04.50	70 70/
	300 300	CB3 AD3	AD3 TEE	0.2300	0.067	0.000	0.060	0.000	0.103	0.632	0.404	0.404 0.404	15.00 15.00	0.04					33.8 33.8	115.4 175.5					1.98 2.67		70.7% 80.7%
	300	BLDG C	STMMH6	0.0929	0.000	0.000	0.000	0.000	0.093	0.900	0.233	0.233	15.00	0.03					19.4	73.1					1.22		73.4%
	300	STMMH6	BIO SWALE 3	0.0020	0.000	0.000	0.000	0.000	0.000	0.000	0.200	0.233	15.00	0.18					19.4	62.0					1.08		68.7%
	300	STMMH6	STMMH7									0.233	15.00	0.12	15.12	61.77	7 83.56	14.4	19.4	175.5	15.9	250	8.00	3.46	2.28		88.9%
	300	STMMH3	STMMH7									0.634	15.00	0.26	15.26	61.77	7 83.56	39.2	53.0	319.0	22.4	450	1.15	1.94	1 //3	265.99	83.4%
	300	STIMINITIS	3114114117									0.034	13.00	0.20	13.20	01.77	7 05.50	39.2	33.0	319.0	22.4	450	1.13	1.54	1.43	200.99	03.470
	300	STMMH7	STC MH1									0.634	15.00	0.05					53.0	202.8					1.50		73.9%
	300	STC MH1	STMMH8									0.634	15.00	0.09	15.09	61.77	7 83.56	39.2	53.0	142.9	6.0	375	0.61	1.25	1.16	89.85	62.9%
		STMMH8	EX. STM									0.634	15.00	0.16	15.16	61.77	7 83.56	39.2	53.0	77.6	7.1	375	0.18	0.68	0.73	24.64	31.7%
	UNC4	Site	Ex. CB	0.0223	0.014	0.000	0.000	0.000	0.009	0.501	0.031	0.031	15.00	0.00	15.00	61.77	7 83.56	1.9	2.6								
		+																	+								
			1									t					1		1								
																			<u> </u>								
			1	-								-				-	-										
Designed:		+	1	<u> </u>								1			J	1		<u>l</u>			<u> </u>		<u> </u>	<u> </u>			
NA													Q = 2.78A	IC, where	:						Mai	nning's Coeffi	cient (n) =	0.013			
																econd (I/s)						J	` '				
Checked:				•					•				A = Area	n Hectare	s (ha.)				1		Max Ve	elocity @Des	ign Flow =	6.0	m/s		
вт																	our (mm/hr)		1			elocity @ Des					
Dwg. Reference:	_	+	File Re		evision		Date:			Da Shee			[I=732.95 [I=998.07						1		Flow limit	controlled with	Orifice Plat	te at 53.0 L/s	S		
FIGURE SWM 2 - POST DEV. DRAINAGE EXHIBIT	т		12559			3	Date:				t NO: f 1						ın development										
1001 L STAN 2 - 1 OUT DEV. DIVANAGE EXHIBIT			12009	~			-UZ 1-11-UZ			10			/ v mmmmul	10 1111	atou was t	acou ioi ucoly	, acvolopinelli										

STORM SEWER DESIGN - MAJOR STORM


IBI


IBI GROUP 650 Dalton Avenue Kingston ON K7M 8N7 Canada tel 613 531 4440 fax 613 531 7789 ibigroup.com

PROJECT: 125599

LOCATION: 715 MIKINAK ROAD, OTTAWA, ON CLIENT: OTTAWA COMMUNITY HOUSING

LOCA	TION							AREA	(ha)					RA	TIONAL	DESIGN FLO	OW				SEWER	R DATA			
Concentration Point	Area ID	FROM MH	TO MH	Area (ha)	C= 0.25	C= 0.40	C= 0.60	C= 0.80	C= 0.90	Cw	Indiv. 2.78AC	Accum. 2.78AC	Inlet (min.)	Time In Pipe (min.)	Total Time (min.)	l (mm/Hr)	Peak Flow (L/s)	Cap. (L/s)	Length (m)	Pipe Dia. (mm)	Slope (%)	Full Pipe Vel. (m/s)	Design Vel. (m/s)	Avail	. Сар. (%)
	.5			(nu)	0.20	0.40	0.00	0.00	0.00		2.707.0	2.707.0	()	()	()	()	(=.0)	(2.0)	()	()	(70)	(11110)	(11110)	(2/0)	(70)
Proposed	UNC1	Site	Ex. CB	0.0180	0.006	0.000	0.000	0.000	0.011	0.616	0.031	0.031	15.00	0.00	15.00	142.89	4.4								
	UNC2	Site BLDG A	Ex. CB STMMH1	0.0633 0.1879	0.041 0.000	0.000	0.000		0.020 0.188	0.443 0.900	0.078 0.470	0.078 0.470	15.00 15.00				11.1 67.2	98.	4 12.6	300	0.95	1.35	1.45	31.18	31.7%
	100 100	STMMH1	STMMH4	0.1079	0.000	0.000	0.000	0.000	0.100	0.900	0.470	0.470	15.00				67.2	128.	_						47.8%
	100	STMMH4	BIO SWALE1									0.470	15.00	0.11	15.11		67.2	133.	.8 12.3	300					49.8%
	100	STMMH4	STMMH2									0.470	15.00	0.29	15.29	142.89	67.2	173.	.3 39.4	300	2.95	2.38	2.22	106.12	61.2%
	100	CB1	AD1	0.2409	0.066	0.000	0.062	0.000	0.113	0.644	0.431	0.431	15.00				61.6	68.					1.53		10.1%
	100	AD1	STMMH2									0.431	15.00	0.06	15.06	142.89	61.6	174.	.2 10.8	250	7.88	3.44	3.14	112.56	64.6%
	200	BLDG B	STMMH5	0.1742	0.000	0.000	0.000	0.000	0.174	0.900	0.436	0.436	15.00				62.3	81.							23.5%
	200	STMMH5	BIO SWALE 2 STMMH3									0.436 0.436					62.3 62.3	69. 166							10.9%
	200 200	STMMH5 CB2	AD2	0.1242	0.031	0.000	0.045	0.000	0.049	0.632	0.218	0.436	15.00 15.00		15.31 15.03	142.89 142.89	62.3 93.5	166. 155.							62.6% 40.1%
	200	AD2	TEE					2.220				0.654					93.5	285.					3.49		67.2%
	UNC3	Site	Ex. CB	0.0646	0.044	0.000	0.009	0.000	0.011	0.417	0.075	0.075	15.00	0.00	15.00	142.89	10.7							\vdash	
	01403	Oite	EX. OB	0.0040	0.044	0.000	0.000	0.000	0.011	0.417	0.070	0.070	10.00	0.00	10.00	142.00	10.7								
		STMMH2	STMMH3									0.371	15.00	0.29	15.29	142.89	53.0	252.	.3 21.1	450	0.72	1.54	1.21	199.33	79.0%
	300	CB3	AD3	0.2300	0.067	0.000	0.060	0.000	0.103	0.632	0.404	0.404	15.00	0.03	15.03	142.89	57.8	115.	4 4.3	250	3.46	2.28	2.28	57.60	49.9%
	300	AD3	TEE									0.404	15.00	0.02	15.02	142.89	57.8	175.	.5 4.4	250	8.00	3.46	3.10	117.69	67.1%
	300 300	BLDG C STMMH6	STMMH6 BIO SWALE 3	0.0929	0.000	0.000	0.000	0.000	0.093	0.900	0.233	0.233 0.233	15.00 15.00				33.2 33.2	76. 62.							56.3% 46.4%
	300	STMMH6	STMMH7									0.233	15.00				33.2	175.							81.1%
	300	STMMH3	STMMH7									0.371	15.00	0.26	15.26	142.89	53.0	319.	.0 22.4	450	1.15	1.94	1.43	265.99	83.4%
	300	STMMH7	STC MH1									0.371	15.00	0.05	15.05	142.89	53.0	202.			1.23	1.78	1.50	149.81	73.9%
	300	STC MH1	STMMH8									0.371	15.00	0.10	15.10	142.89	53.0	114.	.0 6.0	375	0.61	1.00	0.98	61.00	53.5%
		STMMH8	EX. STM									0.371	15.00	0.15	15.15	142.89	53.0	82.	.1 7.1	375	0.18	0.72	0.77	29.07	35.4%
	UNC4	Site	Ex. CB	0.0223	0.014	0.000	0.000	0.000	0.009	0.501	0.031	0.031	15.00	0.00	15.00	142.89	4.4							\longmapsto	
																		-						\vdash	
																								\vdash	
																		-						\vdash	
																								\vdash	
									-									1			1	1		\vdash	
									+									1			†			 	
																			1						
Designed		-]														<u> </u>			1				
Designed: NA													$\Omega = 2.784$	AIC, where:					Mar	ning's Coeffi	icient (n) =	0.013			
													Q = Peak	Flow in Lit	ers per S	econd (I/s)				_					
Checked:													A = Area	in Hectares	s (ha.)	, ,			Max Ve	elocity @Desi	ign Flow =	6.0	m/s		
ВТ				р.	evision					Dat	·•		I = Rainfa	all Intensity 5.688/(tc+6	in Millime	eters per Hou	ır (mm/hr)			locity @ Desi					
Dwg. Reference:		+	File Ref		vision		Date:			Sheet			[1-173	J.000/(10+6	J.U 14) U.8	zuj iuuyi			riow limit	controlled with	Ornice Pla	te at 53.0 L/9	•		
FIGURE SWM 2 - POST DEV. DRAINAGE EXHIBIT			125599				2021-11-02			1 of			* A minimur	m tc of 15 mir	nutes was u	sed for design	development								

STORAGE ATTENUATION CALCULATIONS

PROJECT: 125599 LOCATION: CITY OF OTTAWA

CLIENT: OCH

1.0 SITE DESCRIPTION

PRE DEVELOPMENT DRAINAGE

External Catchment Area 0.000 ha
Onsite Catchment Area 1.22 ha
Total Catchment Area 1.22 ha

Detailed Drainage Areas:

Drainage Area ID Area (ha) Cw
100 1.22 0.25

TOTAL 1.22 0.25

POST DEVELOPMENT DRAINAGE

External Catchment Area 0.00 ha
Onsite Catchment Area 1.22 ha
Total Catchment Area 1.22 ha

Attenuated Drainage Areas:

Drainage Area ID	Area (ha)	Cw
100	0.2409	0.58
200	0.1242	0.62
300	0.2300	0.59
BLDG A	0.1879	0.90
BLDG B	0.1742	0.90
BLDG C	0.0929	0.90
TOTAL ATTENUATED	1.05	0.73

Unattenuated Drainage Areas:

	Drainage Area ID	Area (ha)	Cw
	UNC1	0.0180	0.62
	UNC2	0.0633	0.44
	UNC3	0.0646	0.42
	UNC4	0.0223	0.50
TO	TAL UNATTENUATED	0.17	0.39
	TOTAL	1.22	0.68

2.0 ALLOWABLE POST DEVELOPMENT FLOW

Runoff analysis

For a Minor Storm event, the 5-yr Ottawa formula for intensity equation is used:

[I=998.071/(tc+6.053)^0.814]

For the Major Storm event, 100-yr, the Ottawa formula for intensity equation is used:

[I=1735.688/(tc+6.014)^0.820]

Post development flows from the site during the post development Minor and 100 year storm events are to be controlled to predevelopment flow rates reduced by 25% as recommended under "Former CFB Rockcliffe Master Servicing Study" prepared by IBI GROUP

with Tc = 15 minutes for pre development event.

Qpre = AIR/360, where R = runoff coefficient = 0.25

I = Rainfall Intensity for a Minor Stm. = 83.6 mm/hr

Tc = 15 minutes

A = area of the site = 1.22 ha

Qpre = 70.7 L/sec Qpre (reduced) = Qpre * 0.75

Therefore, during the Minor storm event, post development flows are to be controlled to

53.0 L/sec

Qpre = AIR/360, where R = runoff coefficient =

R = runoff coefficient = 0.25
I = Rainfall Intensity for a 100 yr. Stm. = 142.9 mm/hr

Tc = 15 minutes

A = area of the site = 1.22 ha

Qpre = 120.9 L/sec Qpre (reduced) = Qpre * 0.75

Therefore, during the 100 year storm event, post development flows are to be controlled to

90.7 L/sec

3.0 STORAGE REQUIRED

STORAGE REQUIRED TO CONTROL FLOWS DURING THE MINOR STORM (5YR) EVENT TO PREDEVELOPMENT LEVELS

		Minor Storm	Attenuated	Unattenuated	Total	Allowable	Required	Aprox.
Rainfall		Rainfall	Flow	Flow	Runoff	Release	Storage	Detention
Duration		Intensity (I)	From Site	From Site	From Site	Rate	Rate	Volumes
min.	s	mm/h	m³/s	m³/s	m³/s	m³/s	m³/s	m ³
15	900	83.6	0.1772	0.0153	0.1772	0.053	0.1242	111.8
20	1200	70.3	0.1490	0.0129	0.1490	0.053	0.0960	115.2
25	1500	60.9	0.1292	0.0112	0.1292	0.053	0.0761	114.2
30	1800	53.9	0.1144	0.0099	0.1144	0.053	0.0614	110.4
40	2400	44.2	0.0937	0.0081	0.0937	0.053	0.0407	97.7
50	3000	37.7	0.0799	0.0069	0.0799	0.053	0.0268	80.5
60	3600	32.9	0.0699	0.0060	0.0699	0.053	0.0168	60.7
65	3900	31.0	0.0658	0.0057	0.0658	0.053	0.0128	50.0
70	4200	29.4	0.0623	0.0054	0.0623	0.053	0.0093	39.0
75	4500	27.9	0.0592	0.0051	0.0592	0.053	0.0061	27.6

Minor Storm Event

Volume Required: 115.2 cu.m

		100 Year	Attenuated	Unattenuated	Total	Allowable	Required	Aprox.
Rainfall		Rainfall	Flow	Flow	Runoff	Release	Storage	Detention
Duration		Intensity (I)	From Site	From Site	From Site	Rate	Rate	Volumes
min.	s	mm/h	m³/s	m³/s	m³/s	m³/s	m³/s	m³
15	900	142.89	0.3031	0.0262	0.3031	0.0530	0.2501	225.0
20	1200	119.95	0.2544	0.0220	0.2544	0.0530	0.2014	241.7
25	1500	103.85	0.2203	0.0191	0.2203	0.0530	0.1672	250.9
30	1800	91.87	0.1949	0.0169	0.1949	0.0530	0.1418	255.3
35	2100	82.58	0.1751	0.0152	0.1751	0.0530	0.1221	256.5
40	2400	75.15	0.1594	0.0138	0.1594	0.0530	0.1064	255.3
50	3000	63.95	0.1356	0.0117	0.1356	0.0530	0.0826	247.9
60	3600	55.89	0.1186	0.0103	0.1186	0.0530	0.0655	235.9
65	3900	52.65	0.1117	0.0097	0.1117	0.0530	0.0586	228.7
70	4200	49.79	0.1056	0.0091	0.1056	0.0530	0.0526	220.8
80	4800	44.99	0.0954	0.0083	0.0954	0.0530	0.0424	203.5
90	5400	41.11	0.0872	0.0075	0.0872	0.0530	0.0342	184.5
		84	0.1772	0.0153	0.177	0.0530	0.1242	111.8

100 Year Storm

Max Volume Required: 256.5 cu.m

4.0 STORAGE PROVIDED

DETENTION VOLUME AVAILABLE WITHIN THE STORM PIPES

From	То	Diameter (mm)	Length (m)	Volume (m³)
BLDG A	STM MH 1	300	12.55	0.887
STM MH 1	STM MH 4	300	25.04	1.770
STM MH 4	BIO SWALE1	300	12.37	0.874
STM MH 4	STM MH 2	300	39.47	2.790
CB1	AD1	250	4.09	0.201
AD1	STM MH 2	250	10.81	0.531
STM MH 2	STM MH 3	450	21.08	3.353
BLDG B	STM MH 5	300	17.46	1.234
STM MH 5	BIO SWALE2	300	10.89	0.770
STM MH 5	STM MH 3	300	40.55	2.866
CB2	AD2	300	4.18	0.295
AD2	TEE	300	4.24	0.300
STM MH 3	STM MH 7	450	23.13	3.679
CB3	AD3	250	4.33	0.21
AD3	TEE	250	4.41	0.22
BLDG C	STM MH 6	250	10.60	0.52
STM MH 6	BIO SWALE3	250	12.31	0.60
STM MH 6	STM MH 7	250	17.91	0.88

Total Pipe Storage: 21.98 m³

DETENTION VOLUME AVAILABLE WITHIN THE PARKING LOT PONDING AREAS

Structure	Grate Elevation	Ponding Elevation	Area (m²)	Max Depth (m)	Volume (m³)
CB1	88.52	88.80		0.28	
CB2	88.53	88.80	2925.52	0.27	171.49
CB3	88.56	88.80		0.24	

Total Ponding Surface Volume: 171.49 m³

DETENTION VOLUME AVAILABLE WITHIN THE PERMEABLE PAVERS

Based on the foregoing calculations, a permeable paver stone area with a total infiltration surface of 1203.503 m², and a depth of 0.3 m within the parking area filled with river rock that provide 30% voids, will provide total storage volume of 108.32 m³

DETENTION VOLUME AVAILABLE WITHIN THE BIO-SWALES

Based on the foregoing calculations, a Bio-swale with a cross-sectional area of filled with river rock with 30% voids, will provide a total storage volume of 24.1 m². Based on three proposed bio-swales located along the parking lot

the total volume amounts to 72.33 m³

TOTAL ATTENUATION VOLUME

Storage	Volume (m³)
Detention Volume Available Within the Storm Pipes	22.0
Detention Volume Available Within the Parking Lot Ponding Areas	171.50
Detention Volume Available Within the Permeable Pavers	108.3
Detention Volume Available Within the Bio-Swales	72.3

Total attenuation volume provided is: 374.1 m³

According to the calculation for the major storm event, the max volume required is

Therefore, the provided attenuation volume amounts to a total of

146%

5.0 ORIFICE CONTROL

An orifice plate will be installed over the outlet of the STM MH3 outfall that will control peak flows during the Minor Storm and the 100 year storm events to the predeveloment flow rates.

5.1 ORIFICE CALCULATION - MINOR STORM EVENT

Determine the diameter of the orifice required to control the flow from the site during the Minor Storm to less than

53.0 l/sec.

 STM MH3
 Invert at controlled outlet =
 85.98 m

 Ponding Elev. during Minor Storm =
 88.80 m

 Centreline Orifice Elevation =
 86.04 m

Maximum Head on Orifice (H) 2.76 m

Orifice Equation: Qa = $(CA^*(2gh)^1/2)$

WHERE $\bf C$ co-efficient of discharge (-) $\bf g$ gravitational constant (9.81m/s^2)

A cross-sectional area (sq.m.) h distance between the orifice centreline and the HWL Qa orifice discharge flow (m³/s)

 Head (H) =
 2.76 m
 Area (A) =
 0.012 m²
 g =
 9.81

 Discharge (Q) =
 0.0533 m³/s
 Diameter =
 122 mm.
 C =
 0.62

Therefore, a 122 mm orifice will control the Minor Storm post development flows to approximately 53.3 l/sec.

which is equivalent to the maximum allowable control flow of: 53.0 l/sec.

5.2 ORIFICE CALCULATION - MAJOR STORM EVENT

The controlled flow rate with the selected orifice based on 100 yr ponding elevation is as follows:

 STM MH3
 Invert at controlled outlet =
 85.98 m.

 Ponding Elev. during 1:100 yr. storm =
 88.80 m

 Centreline Orifice Elevation =
 86.04 m

Maximum Head on Orifice (H) 2.76 m

 Head (H) =
 2.76 m Area (A) =
 0.012 m^2 g =
 9.81

 Discharge (Q) =
 $0.0533 \text{ m}^3/\text{s}$ Diameter =
 122 mm C =
 0.62

Therefore, a 122 mm orifice will control post development flows to approximately 53.3 l/sec.

which is less than the maximum allowable control flow of: 90.7 L/s

5.2 ORIFICE CALCULATION - MAJOR STORM EVENT

The controlled flow rate with the selected orifice based on 100 yr ponding elevation is as follows:

 STM MH7
 Invert at controlled outlet =
 85.66 m.

 Ponding Elev. during 1:100 yr. storm =
 88.80 m

 Centreline Orifice Elevation =
 85.75 m

Maximum Head on Orifice (H) 3.05 m

 Head (H) =
 3.05 m
 Area (A) =
 0.011 m²
 g =
 9.81

 Discharge (Q) =
 0.0524 m³/s
 Diameter =
 118 mm
 C =
 0.62

Therefore, a 118 mm orifice will control post development flows to approximately 52.4 l/sec.

which is less than the maximum allowable control flow of: 90.7 L/s

Detailed Stormceptor Sizing Report – OCH

Project Information & Location						
Project Name	ОСН	Project Number	125599			
City Ottawa		State/ Province	Ontario			
Country Canada		Date	5/18/2021			
Designer Information		EOR Information (optional)				
Name	Nino Alvarez	Name				
Company	IBI Group	Company				
Phone #	613-531-4440	Phone #				
Email	nino.alvarez@ibigroup.com	Email				

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	ОСН
Recommended Stormceptor Model	STC 2000
Target TSS Removal (%)	80.0
TSS Removal (%) Provided	80
PSD	Fine Distribution
Rainfall Station	OTTAWA MACDONALD-CARTIER INT'L A

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary					
Stormceptor Model	% TSS Removal Provided	% Runoff Volume Captured Provided			
STC 300	64	80			
STC 750	75	90			
STC 1000	76	90			
STC 1500	77	90			
STC 2000	80	95			
STC 3000	82	95			
STC 4000	85	98			
STC 5000	86	98			
STC 6000	88	99			
STC 9000	91	100			
STC 10000	91	100			
STC 14000	93	100			
StormceptorMAX	Custom	Custom			

Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- · Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station					
State/Province	Ontario	Total Number of Rainfall Events	4093		
Rainfall Station Name	OTTAWA MACDONALD- CARTIER INT'L A	Total Rainfall (mm)	20978.1		
Station ID #	6000	Average Annual Rainfall (mm)	567.0		
Coordinates	45°19'N, 75°40'W	Total Evaporation (mm)	1223.9		
Elevation (ft)	370	Total Infiltration (mm)	7742.3		
Years of Rainfall Data	37	Total Rainfall that is Runoff (mm)	12011.9		

Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal
 defined by the selected PSD, and based on stable site conditions only, after construction is completed.
- For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

Drainage Area	
Total Area (ha)	1.22
Imperviousness %	63.00
Water Quality Objective	•
TSS Removal (%)	80.0
Runoff Volume Capture (%)	62.00
Oil Spill Capture Volume (L)	
Peak Conveyed Flow Rate (L/s)	247.00
Water Quality Flow Rate (L/s)	156.00

Storage (na-m)	Discharge (cms)						
0.000	0.091						
Up Stream Flow Diversion							
Max. Flow to Stormceptor (cms)							
Desi	gn Details						
Stormceptor Inlet Inve	rt Elev (m)	85.65					
Stormceptor Outlet Inve	85.60						
Stormceptor Rim E	lev (m)	86.51					
Normal Water Level Ele	evation (m)						
Pipe Diameter (r	nm)	450					
Pipe Materia	l	PVC - plastic					
Multiple Inlets (//N)	No					
Grate Inlet (Y/I	N)	No					

Up Stream Storage

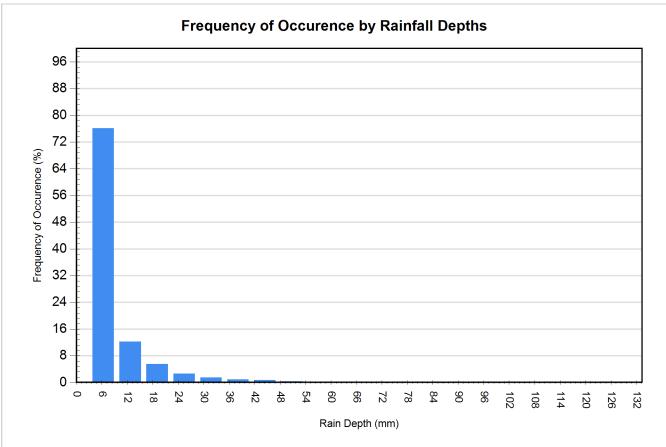
Particle Size Distribution (PSD)

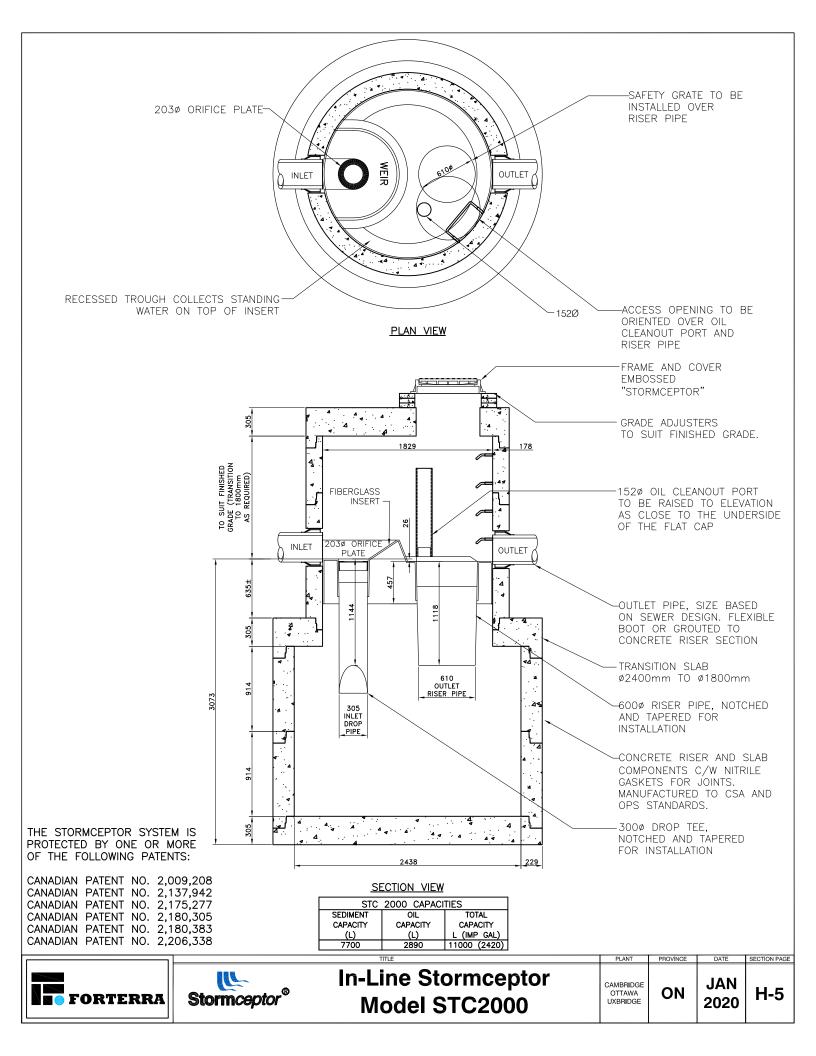
Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

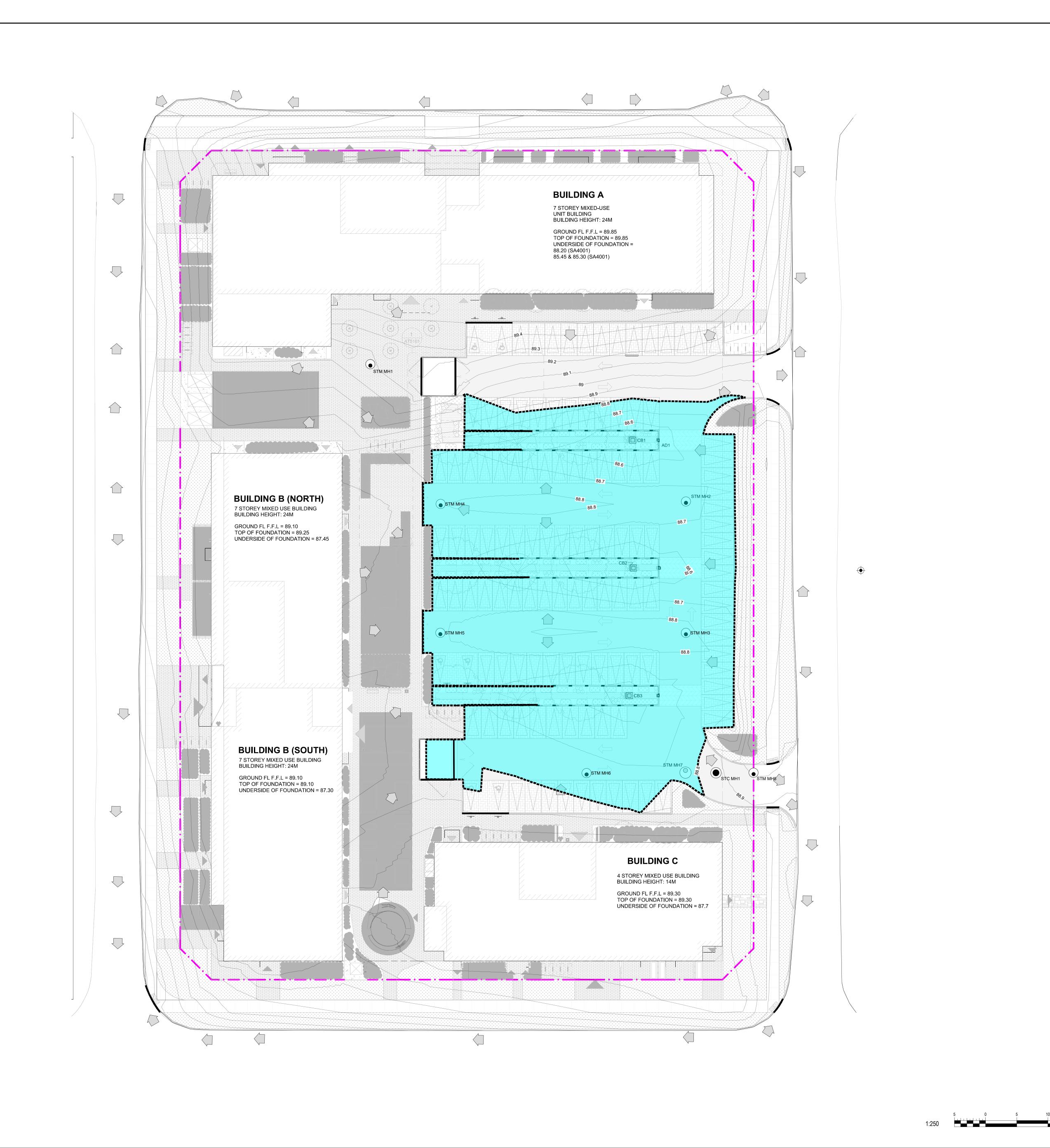
	Fine Distribution	
Particle Diameter (microns)	Distribution %	Specific Gravity
20.0	20.0	1.30
60.0	20.0	1.80
150.0	20.0	2.20
400.0	20.0	2.65
2000.0	20.0	2.65

Site Name		осн			
	Site I	Details			
Drainage Area		Infiltration Parameters			
Total Area (ha)	1.22	Horton's equation is used to estimate infiltration			
Imperviousness %	63.00	Max. Infiltration Rate (mm/hr) 61.98			
Surface Characteristics	5	Min. Infiltration Rate (mm/hr) 10.16			
Width (m)	221.00	Decay Rate (1/sec) 0.00055			
Slope %	2	Regeneration Rate (1/sec) 0.01			
Impervious Depression Storage (mm)	0.508	Evaporation			
Pervious Depression Storage (mm)	5.08	Daily Evaporation Rate (mm/day) 2.54			
Impervious Manning's n	0.015	Dry Weather Flow			
Pervious Manning's n	0.25	Dry Weather Flow (lps) 0			
Maintenance Frequency	у	Winter Months			
Maintenance Frequency (months) >	12	Winter Infiltration 0			
	TSS Loading	g Parameters			
TSS Loading Function					
Buildup/Wash-off Parame	eters	TSS Availability Parameters			
Target Event Mean Conc. (EMC) mg/L		Availability Constant A			
Exponential Buildup Power		Availability Factor B			
Exponential Washoff Exponent		Availability Exponent C			
		Min. Particle Size Affected by Availability (micron)			

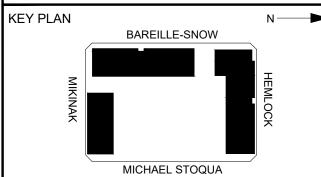
	Cumulative Runof	ff Volume by Runoff Ra	ate
Runoff Rate (L/s)	Runoff Volume (m³)	Volume Over (m³)	Cumulative Runoff Volume (%)
1	32611	114868	22.1
4	86643	60830	58.7
9	117092	30400	79.4
16	130870	16609	88.7
25	138215	9266	93.7
36	142256	5223	96.5
49	144621	2858	98.1
64	145949	1530	99.0
81	146786	692	99.5
100	147199	279	99.8
121	147380	99	99.9
144	147459	20	100.0
169	147479	0	100.0

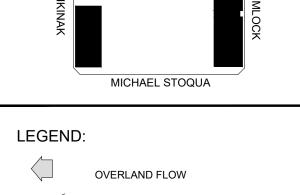


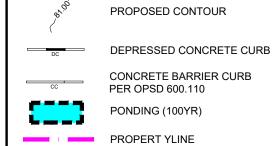

		Rainfall Event Analy	ysis	
Rainfall Depth (mm)	No. of Events	Percentage of Total Events (%)	Total Volume (mm)	Percentage of Annual Volume (%)
6.35	3113	76.1	5230	24.9
12.70	501	12.2	4497	21.4
19.05	225	5.5	3469	16.5
25.40	105	2.6	2317	11.0
31.75	62	1.5	1765	8.4
38.10	35	0.9	1206	5.8
44.45	28	0.7	1163	5.5
50.80	12	0.3	557	2.7
57.15	7	0.2	378	1.8
63.50	1	0.0	63	0.3
69.85	1	0.0	64	0.3
76.20	1	0.0	76	0.4
82.55	0	0.0	0	0.0
88.90	1	0.0	84	0.4
95.25	0	0.0	0	0.0
101.60	0	0.0	0	0.0
107.95	0	0.0	0	0.0
114.30	1	0.0	109	0.5
120.65	0	0.0	0	0.0
127.00	0	0.0	0	0.0



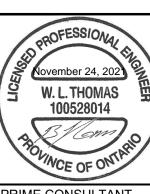
For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications


COPYRIGHT


This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.


IBI Group Professional Services (Canada) Inc. is a member of the IBI Group of companies

ISSUE	S	
No.	DESCRIPTION	DATE
1	FIRST SUBMISSION	2021-05-20
2	SECOND SUBMISSION	2021-08-24
3	BUILDING PERMIT SUBMISSION	2021-09-07
4	TENDER SUBMISSION	2021-10-05
5	TENDER RESUBMISSION	2021-11-03
6	TENDER RESUBMISSION	2021-11-09
7	L3101 SITE WORKS - ADDENDUM 1	2021-11-19
8	THIRD SUBMISSION	2021-11-23


PROPOSED BIO-SWALE PROPOSED SOFTSCAPE

PROPOSED HARDSCAPE PROPOSED BUILDING

ASPHALT PAVED AREA WASTE PICK-UP AREA CONCRETE PAD

CONCRETE DRIVEWAY

PERMEABLE PAVER

PRIME CONSULTANT IBI GROUP
Unit 110 - 650 Dalton Avenue
Kingston ON K7M 8N7 Canada
tel 613 531 4440 fax 613 531 7789 ibigroup.com

MIKINAK REDEVELOPMENT

715 MIKINAK ROAD, OTTAWA, ON CANADA K1K 2G8

SCALE: AS SHOWN APPROVED BY: PROJECT MGR:

PONDING PLAN

SHEET NUMBER
CG1103

| IBI GROUP | 650 Dalton Avenue | Kingston ON K7M 8N7 Canada | tel 613 531 4440 fax 613 531 7789 | Ibigroup.com

STORM HYDRAULIC GRADE LINE DESIGN SHEET (MAJOR STORM) MIKINAK REDEVELOPMENT CITY OF OTTAWA

OTTAWA COMMUNITY HOUSING

PROJECT #: 125599

DATE: 2021-10-25

DESIGN: NA

CHECKED: BT

REV#:

				- 1						
FRICTION LOSS	FROM	TO	PIPE	MANNING E	ODMIII A EI	LOWING FULL				
-RICTION LOSS	MH	MH	ID	MAINING F	ORIVIOLA - FI	LOWING FULL				
	Ex	TIE-IN		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
			1	(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)
NVERT ELEVATION (m)	85.445	85.491		0.6	0.28	1.88	0.080	0.15	0.62	175.4
OBVERT ELEVATION (m)	86.045	86.091		HYDRAULIC	SLOPE =	0.01	%			
DIAMETER (mm)	1		600	DESIGN FLO	OW TO FULL	FLOW RATIO (Q/Qf	0.302	Ì		
ENGTH (m)			55.7	DESIGN FLO	OW DEPTH =		0.222			
FLOW (I/s)			53.00					<u>. 1</u>		
	05.040	05.044	1	1	Llaad laaa in	manhala aimmifiad m	anthod a 71 /	MAAADAA		
HGL (m) ***	85.940	85.944	0.004			manhole simplified r		MM DIM)		
			1		fig1.7.1, Krat	io = 0.75 for 45 bend	ls		K∟=0.75	
MANHOLE COEF K= 0.75	LOSS (m)	0.001			Velocity = Flo	ow / Area =		0.19	m/s	
					HL = K _L * \	/^2/ 2g				
TOTAL HGL (m)	i i	85.945	1							
MAX. SURCHARGE (mm)		-145	1							
				<u>-1</u> 1						
FRICTION LOSS	FROM	TO	PIPE	MANNING F	ORMULA - FI	OWING FULL				
	MH	MH	ID							
	TIE-IN	STM MH8		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
			1	(m)	(m2)	(m)	(%)	(m)	(m/s)	(I/s)
INVERT ELEVATION (m)	85.460	85.503	1	0.375	0.11	1.18	0.610	0.09	1.34	147.8
OBVERT ELEVATION (m)	85.835	85.878	1	HYDRAULIC		0.24			-	
DIAMETER (mm)	1		375			FLOW RATIO (Q/Qt		Ï		
ENGTH (m)			6.0		OW DEPTH =	,	0.154			
FLOW (I/s)			53.00					1		
				4						ì
HGL (m) ***	85.944	85.950	0.006		Head loss in	manhole simplified r	nethod p. 71 (MWDM)		
					fig1.7.1, Krat	io = 0.75 for 45 bend	ls		K∟=0.75	
MANHOLE COEF K= 0.75	LOSS (m)	0.009			Velocity = Flo	ow / Area =		0.48	m/s	
			1		HL = K∟ * \	/^2/ 2a				
TOTAL HGL (m)	i	85.958	╡		<u> </u>	. 3				ļ
MAX. SURCHARGE (mm)		80	╡							
	1		-11							
FRICTION LOSS	FROM	TO	PIPE	MANNING F	ORMULA - FI	OWING FULL				
	MH	MH	ID							
	STM MH8	STC MH1		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
			1	(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)
NVERT ELEVATION (m)	85.533	85.570	1	0.375	0.11	1.18	0.610	0.09	1.24	137.1
OBVERT ELEVATION (m)	85.908	85.945		HYDRAULIC	SLOPE =	0.24	%		•	
DIAMETER (mm)	1		375	DESIGN FLO	OW TO FULL	FLOW RATIO (Q/Qf	0.386	İ		
ENGTH (m)			6.0		OW DEPTH =	,	0.161	<u>.</u>		
FLOW (I/s)			53.00					Ц		
				4						ı
HGL (m) ***	85.958	85.964	0.006		Head loss in	manhole simplified n	nethod p. 71 (,		
					fig1.7.1, Krat	io = 0.75 for 45 bend	ls		K∟=0.75	
MANHOLE COEF K= 0.75	LOSS (m)	0.009	1		Velocity = Flo	ow / Area =		0.48	m/s	
	 ` 		1		HL = KL * \					
TOTAL HGL (m)	 	85.973	1			. –3				
MAX. SURCHARGE (mm)	 	28	1							
WITM. GUITGI IANGE (IIIII)	<u> </u>	40	1	1						
				7						
FRICTION LOSS	FROM	ТО	PIPE	MANNING E	ORMUI A - EI	OWING FULL				
THO HOLL LOOP	MH	MH	ID	IIVIZI VINING F	CANOLA - FI	LOVE IN TO I OLL				
	STC MH1	STM MH7		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
	313 WIIII	O 1 101 101 17	1	(m)	(m2)	(m)	(%)	(m)	(m/s)	(I/s)
NVERT ELEVATION (m)	85.600	85.660	1	0.375	0.11	1.18	1.230	0.09	1.76	193.9
DBVERT ELEVATION (III)	85.975	86.035	-	HYDRAULIC		0.10		0.08	1.70	190.8
()	00.875	00.033	275					ll Ii		
DIAMETER (mm)	 		375			FLOW RATIO (Q/Q1	,			
LENGTH (m)	ļ		4.9	DESIGN FLO	OW DEPTH =		0.131			
FLOW (I/s)	<u> </u>		53.00							
HGL (m) ***	85.973	85.977	0.004	71	Head loss in	manhole simplified r	nethod p. 71 (MWDM)		
` '	1		1			•	F (,	KL=0.05	
14441101 F 00FF 17	1005 ()	2.55.	4		straight throu	-		0.40		
MANHOLE COEF K= 0.05	LOSS (m)	0.001	4		Velocity = Flo			0.48	m/s	
			1		HL = K∟ * \	/^2/ 2g				
TOTAL HGL (m)		85.978]							
MAX. SURCHARGE (mm)		-57	1	╝						

IBI GROUP 650 Dalton Avenue Kingston ON K7M 8N7 Canada tel 613 531 4440 fax 613 531 7789 ibigroup.com STORM HYDRAULIC GRADE LINE DESIGN SHEET (MAJOR STORM) MIKINAK REDEVELOPMENT

CITY OF OTTAWA
OTTAWA COMMUNITY HOUSING

PROJECT #: 125599

DATE: 2021-10-25

DESIGN: NA

CHECKED: BT

REV#: MANNING FORMULA - FLOWING FULL FRICTION LOSS FROM МН STM MH7 STM MH3 Hyd.R (m) (m2)(m) (%) (m) (m/s) (I/s) INVERT ELEVATION (m) 85.720 85.978 0.45 0.16 1.41 0.11 305.82 OBVERT ELEVATION (m) HYDRAULIC SLOPE = 86.170 86.428 0.56 % DESIGN FLOW TO FULL FLOW RATIO (Q/Qf) DIAMETER (mm) 450 LENGTH (m) 22.4 DESIGN FLOW DEPTH = 0.126 FLOW (I/s) 53.00 HGL (m) 85.978 85.986 0.008 Head loss in manhole simplified method p. 71 (MWDM) KL=0.05 straight through LOSS (m) Velocity = Flow / Area = 0.33 m/s MANHOLE COEF K= 0.000 HL = K̃∟ * V^2/ 2g TOTAL HGL (m) MAX. SURCHARGE (mm) Flow restriction installed at STM MH7 (OUTLET) = 53.0 L/s FRICTION LOSS MANNING FORMULA - FLOWING FULL FROM МН МН ID STM MH3 STM MH2 Perim. Slope Hyd.R (m2) (m) (%) (m) (m/s) (l/s) INVERT ELEVATION (m) 86.121 86.272 YDRAULIC SLOPE OBVERT ELEVATION (m) 86.571 86.722 DIAMETER (mm) LENGTH (m) DESIGN FLOW TO FULL FLOW RATIO (Q/Qf) 450 0.220 DESIGN FLOW DEPTH = 21 1 0 140 FLOW (I/s) 53.00 HGL (m) 86.104 86.111 0.007 Head loss in manhole simplified method p. 71 (MWDM) $K_1 = 0.05$ straight through 0.33 m/sMANHOLE COEF K= 0.05 LOSS (m) 0.000 Velocity = Flow / Area = HL = K∟ * V^2/ 2g TOTAL HGL (m) MAX. SURCHARGE (mm) Flow restriction installed at STM MH3 (OUTLET) = 53.0 L/s -311 FRICTION LOSS FROM TΩ MANNING FORMULA - FLOWING FULL МН МН ID STM MH2 STM MH4 Area Perim. Slope Hyd.R Vel 0 (m) (m2)(m) (%) (m) (m/s) (I/s)INVERT ELEVATION (m) 86 349 87 511 0.3 0.07 N 94 2.950 0.08 166.09 OBVERT ELEVATION (m) 86.649 87.811 YDRAULIC SLOPE DIAMETER (mm) 300 DESIGN FLOW TO FULL FLOW RATIO (Q/Qf) 0.405 LENGTH (m) DESIGN FLOW DEPTH = 0.132 39.4 FLOW (I/s) 67 20 HGL (m) 86 412 86 602 Head loss in manhole simplified method p. 71 (MWDM) 0.190 KL=0.05 straight through LOSS (m) 0.95 m/s MANHOLE COEF K= 0.05 0.002 Velocity = Flow / Area = HL = K_L * V^2/ 2g TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS TC MANNING FORMULA - FLOWING FULL МН ID STM MH4 STM MH1 DIA Perim. Slope Hyd.R Vel. Area Q (m2 (m/s) INVERT ELEVATION (m) 87.821 87.411 #NUM! 1.630 0.08 #NUM! 0.94 0.3 0.07 OBVERT ELEVATION (m)
DIAMETER (mm) #NUM! 88.121 87.711 HYDRAULIC SLOPE DESIGN FLOW TO FULL FLOW RATIO (Q/Qf) 300 #NUM DESIGN FLOW DEPTH = #NUM! LENGTH (m) 25.1 FLOW (I/s) 67.20 HGL (m) 87.643 87.764 Head loss in manhole simplified method p. 71 (MWDM) straight through $K_L = 0.05$ MANHOLE COEF K= 0.05 LOSS (m) 0.002 Velocity = Flow / Area = 0.95 m/sHL = K_L * V^2/ 2g TOTAL HGL (m) MAX. SURCHARGE (mm)

IBI GROUP
650 Dalton Avenue
Kingston ON K7M 8N7 Canada
tel 613 531 4440 fax 613 531 7789
ibigroup.com

STORM HYDRAULIC GRADE LINE DESIGN SHEET (MINOR STORM)
MIKINAK REDEVELOPMENT
CITY OF OTTAWA
OTTAWA COMMUNITY HOUSING

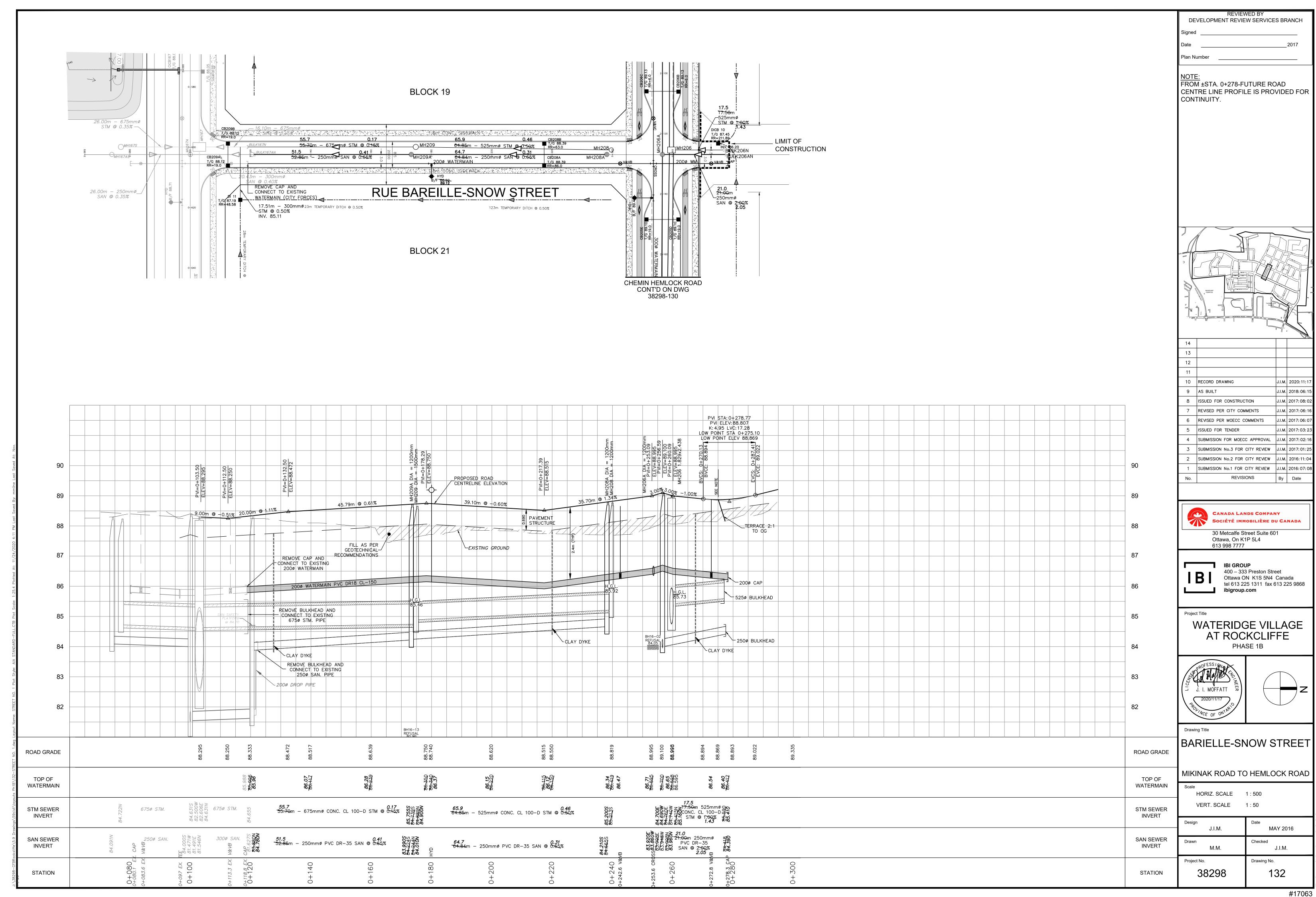
PROJECT #: 132870
DATE: 2021-10-25
DESIGN: NA
CHECKED: BT
REV #: -

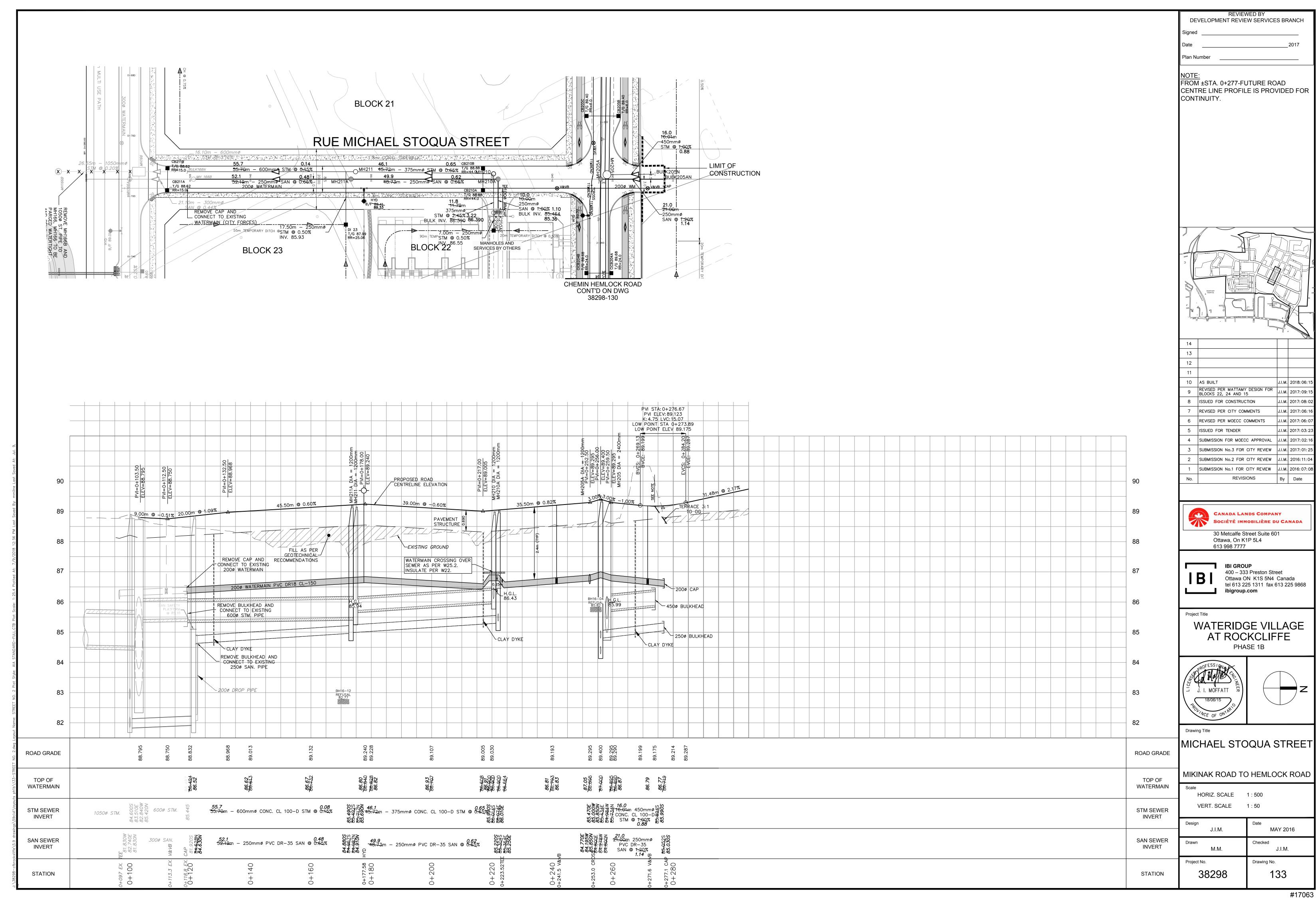
				╗						
FRICTION LOSS	FROM	TO	PIPE	MANNING F	ORMUI A - FI	OWING FULL				
	MH	MH	ID	AND ALVINO	STANOLA - IL	-S.TINO I OLL				
	Ex.	TIE-IN		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
			1	(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)
INVERT ELEVATION (m)	85.445	85.491	4	0.6	0.28	1.88	0.080	0.15	0.62	175.40
OBVERT ELEVATION (m)	86.045	86.091	000		C SLOPE =	0.0]		
DIAMETER (mm)			600		OW TO FULL OW DEPTH =	FLOW RATIO (Q/Qf) =				
LENGTH (m)			55.7	DESIGN FL	OW DEPTH =		0.222	<u>l</u>		
FLOW (I/s)			53.00	4						7
HGL (m) ***	85.940	85.944	0.004			manhole simplified me	thod p. 71 (M)	NDM)		
			4			io = 0.75 for 45 bends			K∟=0.75	
MANHOLE COEF K= 0.75	LOSS (m)	0.001	_		Velocity = Flo			0.19	m/s	
			_		HL = K _L * \	/^2/ 2g				
TOTAL HGL (m)		85.945								
MAX. SURCHARGE (mm)	<u> </u>	-145]							
EDIOTION LOGO	T EDOLL			1644444444	.					
FRICTION LOSS	FROM MH	TO MH	PIPE ID	MANNING I	-ORMULA - FL	OWING FULL				
	TIE-IN	STM MH8	ID	DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
	115-114	OTHE WITH	1	(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)
INVERT ELEVATION (m)	85.460	85.503	1	0.375	0.11	1.18	0.610	0.09	1.34	147.86
OBVERT ELEVATION (m)	85.835	85.878	1		C SLOPE =	0.24		İ	•	
DIAMETER (mm)			375	DESIGN FL	OW TO FULL	FLOW RATIO (Q/Qf) =	0.358	Ī		
LENGTH (m)			6.0	DESIGN FL	OW DEPTH =		0.154	1		
FLOW (I/s)			53.00					_		
HGL (m) ***	85.944	85.950	0.006	1	Head loss in	manhole simplified me	thod p. 71 (M\	WDM)		1
			1		fig1 7 1 Krat	io = 0.75 for 45 bends		,	KL=0.75	
MANHOLE COEF K= 0.75	LOSS (m)	0.009	1		Velocity = Flo			0.48		
WANTOLL COLT R- 0.73	LO33 (III)	0.009	-		HL = KL * \			0.40	111/5	
TOTAL HGL (m)		85.958	-		TIL - IXL	7 27 2g				J
MAX. SURCHARGE (mm)		80	1							
WOOL GOTTOTIVITGE (IIIII)			1	II						
FRICTION LOSS	FROM	TO	PIPE	MANNING F	ORMULA - FL	OWING FULL				
	MH	MH	ID							
	TIE-IN	STC MH1		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
			4	(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)
INVERT ELEVATION (m)	85.533	85.570	4	0.375	0.11	1.18	0.610	0.09	1.25	137.61
OBVERT ELEVATION (m) DIAMETER (mm)	85.908	85.945	375		C SLOPE =	0.24 FLOW RATIO (Q/Qf) =		<u> </u>		
LENGTH (m)			6.0		OW DEPTH =	FLOW RATIO (Q/QI) -	0.363	21		
FLOW (I/s)			53.00	DESIGNTE	OW DEFIII-		0.101			
` /	05.045	05.054	1	-			d	MDM)		7
HGL (m) ***	85.945	85.951	0.005			manhole simplified me	tnoa p. 71 (IVI)	NDM)	14 0 75	
						io = 0.75 for 45 bends			K∟=0.75	
MANHOLE COEF K= 0.75	LOSS (m)	0.009	4		Velocity = Flo			0.48	m/s	
			_		$HL = K_L * V$	/^2/ 2g				
TOTAL HGL (m)		85.960	4							
MAX. SURCHARGE (mm)		15								
				_						
EDICTION LOCC	FDOM	T0	PIDE	MANINING	ODMI'' A T	OWING FULL				
FRICTION LOSS	FROM MH	TO MH	PIPE ID	IVIAININING	-UKIVIULA - FL	OWING FULL				
	STC MH1	STM MH7	10	DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
	310	O. III. III. 17	1	(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)
INVERT ELEVATION (m)	85.600	85.660	1	0.375	0.11	1.18	1.230	0.09	1.76	193.92
OBVERT ELEVATION (m)	85.975	86.035	1		SLOPE =	0.10		1	•	
DIAMETER (mm)			375			FLOW RATIO (Q/Qf) =		Ĭ		
LENGTH (m)		-	4.9	DESIGN FL	OW DEPTH =		0.131	1		
FLOW (I/s)			53.00					_		
HGL (m) ***	85.960	85.964	0.004	1	Head loss in	manhole simplified me	thod p. 71 (M\	NDM)		1
` '	l		1		straight throu	•		,	KL=0.05	Ī
MANHOLE COEF K= 0.05	LOSS (m)	0.001	1		Velocity = Flo	-		0.48		Ī
IVIAINITULE COEF N= 0.05	LO35 (III)	0.001	-		HL = KL * V			0.40	111/5	
TOTAL HGL (m)	-	85.065	-		IIL - KL	1 21 2y				J
MAX. SURCHARGE (mm)	 	85.965 -70	4							
IVIAA. GUNUI IANGE (IIIIII)	!	-70	Ц							

IBI GROUP
650 Dalton Avenue
Kingston ON KTM 8N7 Canada
tel 613 531 4440 fax 613 531 7789
ibigroup.com

STORM HYDRAULIC GRADE LINE DESIGN SHEET (MINOR STORM)
MIKINAK REDEVELOPMENT
CITY OF OTTAWA
OTTAWA COMMUNITY HOUSING

PROJECT#: 132870


DATE: 2021-10-25


DESIGN: NA

CHECKED: BT

REV#: -

				7						
FRICTION LOSS	FROM MH	TO MH	PIPE ID	MANNING FOR	RMULA - FLO	WING FULL				
	STM MH7	STM MH3	טו	DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
			1	(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)
INVERT ELEVATION (m)	85.720	85.978		0.45	0.16	1.41	1.150	0.11	1.92	305.82
OBVERT ELEVATION (m)	86.170	86.428		HYDRAULIC S			2 %			
DIAMETER (mm)			450			OW RATIO (Q/Qf):				
LENGTH (m)			22.4	DESIGN FLOW	DEPTH =		0.126			
FLOW (I/s)	-		53.00	 						
HGL (m) ***	85.965	85.973	0.008			anhole simplified me	ethod p. 71 (MV	VDM)		
			-	str	raight through	1			K _L =0.05	
MANHOLE COEF K= 0.0	05 LOSS (m)	0.000	_	II I	elocity = Flow			0.33	m/s	
			_	H	L = K _L * V^	2/ 2g				
TOTAL HGL (m)		86.104	4	<u> </u>						
MAX. SURCHARGE (mm)		-324	<u> </u>	<u> </u>	F	ow restriction inst	alled at STM N	MH7 (OUTLE	T) = 53.0 L/s	
				7						
FRICTION LOSS	FROM	TO	PIPE	MANNING FOR	MIII A - FI O	WING FULL				
TRICTION LOSS	MH	MH	ID	WANTING FOR	NIOLA - I LO	WINGTOLL				
	STM MH3	STM MH2	1	DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
]	(m)	(m2)	(m)	(%)	(m)	(m/s)	(l/s)
INVERT ELEVATION (m)	86.121	86.272	_	0.45	0.16	1.41	0.720	0.11	1.52	241.64
OBVERT ELEVATION (m)	86.571	86.722		HYDRAULIC S			6 %	ļ		
DIAMETER (mm)	_		450			OW RATIO (Q/Qf):				
LENGTH (m)			21.0	DESIGN FLOW	/ DEPTH =		0.140			
FLOW (I/s)			53.00	<u> </u>					-	
HGL (m) ***	86.104	86.111	0.007	He	ead loss in m	anhole simplified me	ethod p. 71 (MV	VDM)		
					raight through				KL=0.05	
MANHOLE COEF K= 0.0	05 LOSS (m)	0.000	_		elocity = Flow			0.33	m/s	
			_	Н	L = K∟ * V^	2/ 2g				
TOTAL HGL (m)		86.412								
MAX. SURCHARGE (mm)		-311	<u> </u>	<u> </u>	F	ow restriction inst	alled at STM N	MH7 (OUTLE	T) = 53.0 L/s	
г				7						
FRICTION LOSS	FROM	TO	PIPE	MANNING FOR	MIII A - FI O	WING FULL				
THO HON EGGS	MH	MH	ID	IVIJ UNITALITO I OLI	WOLK I LO	WINGTOLL				
	STM MH2	STM MH4		DIA	Area	Perim.	Slope	Hyd.R.	Vel.	Q
					(m2)	(m)	(0/)			
				(m)	. ,	. ,	(%)	(m)	(m/s)	(l/s)
INVERT ELEVATION (m)	86.349	87.511]	0.3	0.07	0.94	2.950	(m) 0.08	(m/s) 2.35	(l/s) 165.98
OBVERT ELEVATION (m)	86.349 86.649	87.511 87.811		0.3 HYDRAULIC S	0.07 SLOPE =	0.94	2.950 4 %	. ,		
OBVERT ELEVATION (m) DIAMETER (mm)			300	0.3 HYDRAULIC S DESIGN FLOW	0.07 SLOPE = 7 TO FULL FL	0.94	2.950 4 % = 0.237	. ,		
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m)			39.4	0.3 HYDRAULIC S	0.07 SLOPE = 7 TO FULL FL	0.94	2.950 4 %	. ,		. ,
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s)	86.649	87.811	39.4 39.30	0.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW	0.07 SLOPE = / TO FULL FL / DEPTH =	0.94 3.0 OW RATIO (Q/Qf) :	2.950 4 % = 0.237 0.099	0.08		. ,
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m)			39.4	0.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW	0.07 SLOPE = 7 TO FULL FL DEPTH = ead loss in m	0.94 3.0 OW RATIO (Q/Qf)	2.950 4 % = 0.237 0.099	0.08	2.35	. ,
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) ***	86.649 86.412	87.811 86.477	39.4 39.30	0.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW	0.07 SLOPE = 7 TO FULL FL 7 DEPTH = ead loss in m raight through	0.94 3.0 OW RATIO (Q/Qf):	2.950 4 % = 0.237 0.099	0.08 VDM)	2.35 K _L =0.05	. ,
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s)	86.649 86.412	87.811	39.4 39.30	0.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW He str	0.07 SLOPE = 7 TO FULL FL DEPTH = ead loss in m raight through	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me	2.950 4 % = 0.237 0.099	0.08	2.35 K _L =0.05	. ,
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (Vs) HGL (m) **** MANHOLE COEF K= 0.0	86.649 86.412	87.811 86.477	39.4 39.30	0.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW He str	0.07 SLOPE = 7 TO FULL FL 7 DEPTH = ead loss in m raight through	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me	2.950 4 % = 0.237 0.099	0.08 VDM)	2.35 K _L =0.05	. ,
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) *** MANHOLE COEF K= 0.0	86.649 86.412	86.477 0.001 87.610	39.4 39.30	0.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW He str	0.07 SLOPE = 7 TO FULL FL DEPTH = ead loss in m raight through	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me	2.950 4 % = 0.237 0.099	0.08 VDM)	2.35 K _L =0.05	
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (Vs) HGL (m) **** MANHOLE COEF K= 0.0	86.649 86.412	87.811 86.477	39.4 39.30	0.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW He str	0.07 SLOPE = 7 TO FULL FL DEPTH = ead loss in m raight through	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me / Area =	2.950 4 % = 0.237 0.099	0.08 VDM)	2.35 K _L =0.05	. ,
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) **** MANHOLE COEF K= 0.0	86.649 86.412	86.477 0.001 87.610	39.4 39.30	0.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW He str	0.07 SLOPE = 7 TO FULL FL DEPTH = ead loss in m raight through	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me / Area =	2.950 4 % = 0.237 0.099	0.08 VDM)	2.35 K _L =0.05	. ,
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.0 TOTAL HGL (m) MAX. SURCHARGE (mm)	86.649 86.412 55 LOSS (m)	87.811 86.477 0.001 87.610 -201	39.4 39.30 0.065	0.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW HH	0.07 SLOPE = 7 TO FULL FL 7 DEPTH = ead loss in m raight through elocity = Flow L = KL * V^	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me / Area = 2/ 2g	2.950 4 % = 0.237 0.099	0.08 VDM)	2.35 K _L =0.05	. ,
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.0 TOTAL HGL (m) MAX. SURCHARGE (mm)	86.649 86.412	86.477 0.001 87.610	39.4 39.30	0.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW He str	0.07 SLOPE = 7 TO FULL FL 7 DEPTH = ead loss in m raight through elocity = Flow L = KL * V^	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me / Area = 2/ 2g	2.950 4 % = 0.237 0.099	0.08 VDM)	2.35 K _L =0.05	. ,
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.0 TOTAL HGL (m) MAX. SURCHARGE (mm)	86.649 86.412 86.412 5 LOSS (m)	87.811 86.477 0.001 87.610 -201	39.4 39.30 0.065	0.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW HH	0.07 SLOPE = 7 TO FULL FL 7 DEPTH = ead loss in m raight through elocity = Flow L = KL * V^	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me / Area = 2/ 2g	2.950 4 % = 0.237 0.099	0.08 VDM)	2.35 K _L =0.05	165.98
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (<i>I</i> /s) HGL (m) MANHOLE COEF K= 0.0 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS	86.649 86.412 55 LOSS (m) FROM MH STM MH4	87.811 86.477 0.001 87.610 -201 TO MH STM MH1	39.4 39.30 0.065	0.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW HH str Ve H MANNING FOR	0.07 SLOPE = / TO FULL FL / DEPTH = ead loss in m raight through elocity = Flow L = KL * V^4 RMULA - FLO Area (m2)	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me / Area = 2/ 2g WING FULL Perim. (m)	2.950 4 % = 0.237 0.099 ethod p. 71 (MV	0.08 VDM) 0.56	2.35 KL=0.05 m/s Vel. (m/s)	165.98
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.0 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS INVERT ELEVATION (m)	86.649 86.412 SECOND	87.811 86.477 0.001 87.610 -201 TO MH STM MH1 87.411	39.4 39.30 0.065	DESIGN FLOW DESIGN FLOW DESIGN FLOW HH Str Ve H MANNING FOR DIA (m) 0.3	0.07 SLOPE = / TO FULL FL / DEPTH = ead loss in m raight through elocity = Flow L = KL * V^A RMULA - FLO Area (m2) 0.07	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me / Area = 2/ 2g WING FULL Perim. (m) 0.94	2.950 4 % = 0.237 0.099 ethod p. 71 (MV	0.08 VDM) 0.56	2.35 KL=0.05 m/s	165.98
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.0 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS INVERT ELEVATION (m) OBVERT ELEVATION (m)	86.649 86.412 55 LOSS (m) FROM MH STM MH4	87.811 86.477 0.001 87.610 -201 TO MH STM MH1	39.4 39.30 0.065	0.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW HHE Str Ve H MANNING FOR DIA (m) 0.3 HYDRAULIC S	0.07 BLOPE = 7 TO FULL FL 7 DEPTH = ead loss in m raight through elocity = Flow L = KL * V^A RMULA - FLO Area (m2) 0.07 BLOPE =	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me / Area = 2/ 2g WING FULL Perim. (m) 0.94 #NUM!	2.950 4 % = 0.237 0.099 ethod p. 71 (MV Slope (%) 1.630 %	0.08 VDM) 0.56	2.35 KL=0.05 m/s Vel. (m/s)	165.98
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.0 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm)	86.649 86.412 SECOND	87.811 86.477 0.001 87.610 -201 TO MH STM MH1 87.411	39.4 39.30 0.065	MANNING FOR DIA (m) 0.3 HYDRAULIC S DESIGN FLOW He str Ve H MANNING FOR DIA (m) 0.3 HYDRAULIC S DESIGN FLOW	0.07 BLOPE = TO FULL FL DEPTH = ead loss in m raight through elocity = Flow L = KL * V^	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me / Area = 2/ 2g WING FULL Perim. (m) 0.94	2.950 4 % = 0.237 0.099 ethod p. 71 (MV Slope (%) 1.630 % = #NUM!	0.08 VDM) 0.56	2.35 KL=0.05 m/s Vel. (m/s)	165.98
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.0 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m)	86.649 86.412 SECOND	87.811 86.477 0.001 87.610 -201 TO MH STM MH1 87.411	39.4 39.30 0.065	0.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW HHE Str Ve H MANNING FOR DIA (m) 0.3 HYDRAULIC S	0.07 BLOPE = TO FULL FL DEPTH = ead loss in m raight through elocity = Flow L = KL * V^	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me / Area = 2/ 2g WING FULL Perim. (m) 0.94 #NUM!	2.950 4 % = 0.237 0.099 ethod p. 71 (MV Slope (%) 1.630 %	0.08 VDM) 0.56	2.35 KL=0.05 m/s Vel. (m/s)	165.98
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.0 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s)	86.649 86.412 D5 LOSS (m) FROM MH STM MH4 87.821 88.121	87.811 86.477 0.001 87.610 -201 TO MH STM MH1 87.411 87.711	39.4 39.30 0.065 PIPE ID 300 25.1 39.30	MANNING FOR DIA (m) 0.3 DIA (m) DESIGN FLOW	0.07 SLOPE = / TO FULL FL / DEPTH = ead loss in m raight through elocity = Flow L = KL * V^A RMULA - FLO Area (m2) 0.07 SLOPE = / TO FULL FL / DEPTH =	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me / Area = 2/ 2g WING FULL Perim. (m) 0.94 #NUM! OW RATIO (Q/Qf):	2.950 4 % = 0.237 0.099 ethod p. 71 (Mv Slope (%) 1.630 % #NUM!	0.08 VDM) 0.56 Hyd.R. (m) 0.08	2.35 KL=0.05 m/s Vel. (m/s)	165.98
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.0 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m)	86.649 86.412 SECOND	87.811 86.477 0.001 87.610 -201 TO MH STM MH1 87.411	39.4 39.30 0.065	MANNING FOR DIA (m) 0.3 DIA (m) DESIGN FLOW	0.07 SLOPE = / TO FULL FL / DEPTH = ead loss in m raight through elocity = Flow L = KL * V^A RMULA - FLO Area (m2) 0.07 SLOPE = / TO FULL FL / DEPTH =	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me / Area = 2/ 2g WING FULL Perim. (m) 0.94 #NUM!	2.950 4 % = 0.237 0.099 ethod p. 71 (Mv Slope (%) 1.630 % #NUM!	0.08 VDM) 0.56 Hyd.R. (m) 0.08	2.35 K _L =0.05 m/s Vel. (m/s) #NUM!	165.98
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.0 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s)	86.649 86.412 D5 LOSS (m) FROM MH STM MH4 87.821 88.121	87.811 86.477 0.001 87.610 -201 TO MH STM MH1 87.411 87.711	39.4 39.30 0.065 PIPE ID 300 25.1 39.30	MANNING FOR DIA (m) 0.3 DESIGN FLOW DESIGN FLOW HE str Ve H DIA (m) 0.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW	0.07 SLOPE = / TO FULL FL / DEPTH = ead loss in m raight through elocity = Flow L = KL * V^A RMULA - FLO Area (m2) 0.07 SLOPE = / TO FULL FL / DEPTH =	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me / Area = 2/ 2g WING FULL Perim. (m) 0.94 #NUM! OW RATIO (Q/Qf):	2.950 4 % = 0.237 0.099 ethod p. 71 (Mv Slope (%) 1.630 % #NUM!	0.08 VDM) 0.56 Hyd.R. (m) 0.08	2.35 KL=0.05 m/s Vel. (m/s) #NUM!	165.98
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.0 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s)	86.649 86.412 55 LOSS (m) FROM MH STM MH4 87.821 88.121 87.610	87.811 86.477 0.001 87.610 -201 TO MH STM MH1 87.411 87.711	39.4 39.30 0.065 PIPE ID 300 25.1 39.30	MANNING FOR DIA (m) 0.3 HYDRAULIC S DESIGN FLOW HE str Ve H DIA (m) 0.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW H H H HYDRAULIC S DESIGN FLOW H H H H H Str	0.07 SLOPE = 7 TO FULL FL / DEPTH = ead loss in m raight through elocity = Flow L = KL * V^A RMULA - FLO Area (m2) 0.07 SLOPE = 7 TO FULL FL / DEPTH = ead loss in m	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me / Area = 2/ 2g WING FULL Perim. (m) 0.94 #NUM! OW RATIO (Q/Qf):	2.950 4 % = 0.237 0.099 ethod p. 71 (Mv Slope (%) 1.630 % #NUM!	0.08 VDM) 0.56 Hyd.R. (m) 0.08	2.35 KL=0.05 m/s Vel. (m/s) #NUM!	165.98
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.0 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) ***	86.649 86.412 55 LOSS (m) FROM MH STM MH4 87.821 88.121 87.610	87.811 86.477 0.001 87.610 -201 TO MH STM MH1 87.411 87.711	39.4 39.30 0.065 PIPE ID 300 25.1 39.30	MANNING FOR DIA (m) DESIGN FLOW DESIGN FLOW HE Str Ve DESIGN FLOW HE STR DIA (m) D.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW DESIGN FLOW HE STR Ve	O.07 SLOPE = / TO FULL FL / DEPTH = ead loss in m raight through elocity = Flow L = KL * V^4 Area (m2) 0.07 SLOPE = / TO FULL FL / DEPTH = ead loss in m raight through elocity = Flow L = KL * V^4 Area (m2) 0.07 SLOPE = / TO FULL FL ead loss in m raight through	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me / Area = 2/ 2g WING FULL Perim. (m) 0.94 #NUM! OW RATIO (Q/Qf): anhole simplified me / Area =	2.950 4 % = 0.237 0.099 ethod p. 71 (Mv Slope (%) 1.630 % #NUM!	0.08 VDM) 0.56 Hyd.R. (m) 0.08	2.35 KL=0.05 m/s Vel. (m/s) #NUM!	165.98
OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) MANHOLE COEF K= 0.0 TOTAL HGL (m) MAX. SURCHARGE (mm) FRICTION LOSS INVERT ELEVATION (m) OBVERT ELEVATION (m) DIAMETER (mm) LENGTH (m) FLOW (l/s) HGL (m) ***	86.649 86.412 55 LOSS (m) FROM MH STM MH4 87.821 88.121 87.610	87.811 86.477 0.001 87.610 -201 TO MH STM MH1 87.411 87.711	39.4 39.30 0.065 PIPE ID 300 25.1 39.30	MANNING FOR DIA (m) DESIGN FLOW DESIGN FLOW HE Str Ve DESIGN FLOW HE STR DIA (m) D.3 HYDRAULIC S DESIGN FLOW DESIGN FLOW DESIGN FLOW HE STR Ve	0.07 BLOPE = / TO FULL FL / DEPTH = ead loss in m raight through elocity = Flow L = KL * V^A. RMULA - FLO Area (m2) 0.07 BLOPE = / TO FULL FL / DEPTH = ead loss in m raight through elocity = Flow elocity =	0.94 3.0 OW RATIO (Q/Qf): anhole simplified me / Area = 2/ 2g WING FULL Perim. (m) 0.94 #NUM! OW RATIO (Q/Qf): anhole simplified me / Area =	2.950 4 % = 0.237 0.099 ethod p. 71 (Mv Slope (%) 1.630 % #NUM!	0.08 VDM) 0.56 Hyd.R. (m) 0.08	2.35 KL=0.05 m/s Vel. (m/s) #NUM!	165.98

