

Value through service and commitment

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check √ appropriate field(s)] is either transportation engineering ^I or transportation planning ^I.

^{1,2} License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

City Of Ottawa Infrastructure Services and Community Sustainability Planning and Growth Management 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 1J1 Tel. : 613-580-2424 Fax: 613-560-6006 Ville d'Ottawa Services d 'infrastructure et Viabilité des collectivités Urbanisme et Gestion de la croissance 110, avenue Laurier Ouest Ottawa (Ontario) K1P 1J1 Tél. : 613-580-2424 Télécopieur: 613-560-6006 Ottawa

Dated at	Ottawa	this	30	_day of	August	, 20 <u>21</u> .
	(City)					
Name:	(Gordon Scol	bie			
	-				(Please Print)	
Drofossional T	itlet (.r			
Professional I	itie: <u>(</u>		21	Λ	1	
	11		/			
	He	ofn	7	A	1/ . 10	

Signature of Individual certifier that s/he meets the above four criteria

Office Contact Information (Please Print)			
Address:	864 Lady Ellen Place		
City / Postal Code:	Ottawa, ON K1Z 5M2		
Telephone / Extension:	613 728-3571		
E-Mail Address:	gscobie@jlrichards.ca		

City of Ottawa 2017 TIA Guidelines Screening Form

1. Description of Proposed Development

360 Bobolink Ridge	
8.75 acre vacant lot to be developed for residential use (refer to attached plan)	
Residential – Medium Density	
Approx. 373 dwelling units	
n/a	
One driveway connection to Bobolink Ridge and one driveway connection to Livery Street	
Single phase	
2024	

If available, <u>please attach a sketch of the development or site plan</u> to this form.

2. Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

LandUseType	Minimum Development Size
Single-family homes	40 units
Townhomes or apartments	90 units 🗸
Office	3,500 m ²
Industrial	5,000 m ²
Fast-food restaurant or coffee shop	100 m ²
Destination retail	1,000 m ²
Gas station or convenience market	75 m ²

* If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

If the proposed development size is greater than the sizes identified above, <u>the Trip Generation</u> <u>Trigger is satisfied.</u>

3. Location Triggers

	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?	\checkmark	
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone?*	\checkmark	

*DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

If any of the above questions were answered with 'Yes,' the Location Trigger is satisfied.

4. Safety Triggers

	Yes	No
Are posted speed limits on a boundary street are 80 km/hr or greater?		\checkmark
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?		\checkmark
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/suburban conditions)?	~	
Is the proposed driveway within auxiliary lanes of an intersection?		\checkmark
Does the proposed driveway make use of an existing median break that serves an existing site?		\checkmark
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		\checkmark
Does the development include a drive-thru facility?		\checkmark

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.

5. Summary		
	Yes	No
Does the development satisfy the Trip Generation Trigger?	\checkmark	
Does the development satisfy the Location Trigger?	\checkmark	
Does the development satisfy the Safety Trigger?	\checkmark	

If none of the triggers are satisfied, <u>the TIA Study is complete</u>. If one or more of the triggers is satisfied, <u>the TIA Study must continue into the next stage</u> (Screening and Scoping).

Table of Contents

Introduction 1		
1.0	Screening	. 1
2.0	Scoping	. 1
2.1	Existing and Planned Conditions	. 1
	Description of Proposed Development	. 1
	Existing Conditions	. 4
	Area Road Network	. 4
	Study Area Intersections	. 4
	Existing Driveways to Adjacent Development	. 5
	Pedestrian/Cycling Network	. 7
	Transit Network	10
	Area Traffic Management	12
	Peak Hour Travel Demands	12
	Existing Road Safety Conditions	15
	Planned Conditions	15
	Study Area Transportation Network Changes	15
	Other Area Development	16
2.2	Study Area and Time Periods	17
	Study Area	17
	Time Periods	17
	Horizon Years	17
2.3	Exemptions Review	18
3.0	Forecasting	19
3.1	Development-Generated Travel Demand	19
011	Trip Generation	19
	Travel Mode Shares	20
	Trip Distribution	21
	Trip Assignment	21
32	Background Network Travel Demands	21
0.2	Transportation Network Plans	21
	Other Area Development	22
	Background Growth	22
3.3	Demand Rationalization	23
0.0	Existing and Background Conditions	23
	Adjustments to Background Network Demand	26
	Total Projected Conditions	26
	Adjustments to Site-Generated Demand	30
4.0	Analyzia	24
4.0	Analysis	31
4.1	Development Design	ວ⊺ ວ∢
	Circulation and Access	ວ∣ ว₁
	Circulation and Access	31
4.0		3Z
4.2	Falking	3Z
	raiking Supply	32
	venicular Parking	32

	Bike Parking	.32
13	Boundary Stroot Design	.52
4.5	Mobility	.00
	Sogmont MMI OS Summary	.00
	Dedectrian LOS	24
		.34
		.34
	Truck LOS	.34
	Huck LOS	.34
	Road Salely	.30
1 1		.30
4.4	Access Intersection Design	.30
	Location and Design of Access.	.30
	Intersection Control	.37
4 5	Intersection Design	.37
4.5	I ransportation Demand Management	.37
4.6		.37
4.7	I ransit	.37
	Route Capacity	.38
	Transit Priority	.38
4.8	Review of Network Concept	.38
4.9	Intersection Design	.38
	Intersection Control	.38
	Intersection Design	.38
5.0	Findings and Recommendations	.38

List of Figures

Figure 1: Local Context	2
Figure 2: Proposed Site Plan	3
Figure 3: Adjacent Driveways	6
Figure 4: Existing Pedestrian Network	8
Figure 5: Existing Cycling Network	9
Figure 6: Transit Routes Within Study Area (Source: OC Transpo System Map)	11
Figure 7: Transit Stops Within Study Area	11
Figure 8: Existing Vehicular Volumes AM(PM)	13
Figure 9: Existing Volumes AM(PM) - Non-motorists	14
Figure 10: Collison Frequency	15
Figure 11: Upcoming Construction and Infrastructure Projects	16
Figure 12: 'New' Projected Site-Generated Traffic	21
Figure 13: Background Traffic Volumes (2024)	22
Figure 14: Background Traffic Volumes (2029)	23
Figure 15: Total Projected Traffic Volumes (2024)	27
Figure 16: Total Projected Traffic Volumes (2029)	29
Figure 17: Road Classification	33

List of Tables

Table 1: OC Transpo Stop Information	10
Table 2: OC Transpo Route Information	10
Table 3: Area Development	16
Table 4: Module Exemption Review	18
Table 5: TRANS Peak Hour Trip Generation Rates	19
Table 6: Modified Peak Period Person Trips	19
Table 7: Projected Modal Site Generated Trips	20
Table 8: Study Area Intersection Operations – Existing Conditions	24
Table 9: Study Area Intersection Operations - 2024 Background Conditions	25
Table 10: Study Area Intersection Operations - 2029 Background Conditions	
Table 11: Study Area Intersection Operations - Total Projected Conditions (2024)	
Table 12: Study Area Intersection Operations - Total Projected Conditions (2029)	
Table 13: Vehicular Parking Supply	
Table 14: Segment MMLOS – Existing LOS(Target LOS)	
Table 15: Historical Collision Data Summary by Intersection	35
5 5	

List of Appendices

- Appendix A Existing Traffic Counts
- Appendix B Collision Data
- Appendix C Existing and Background Conditions Output Data (2024, 2029)
- Appendix D Total Projected Conditions Output Data (2024, 2029)
- Appendix E Transportation Demand Management (TDM) Strategies
- Appendix F Segment MMLOS
- Appendix G Collision Analysis
- Appendix H TDM Checklist
- Appendix I Transit Route Maps
- Appendix J Transit Ridership Data

Introduction

With respect to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines, a total of five separate submissions are required for City review/approval. Each submission is a component/section of a formal TIA, which includes:

- Step 1 Screening
- Step 2 Scoping
- Step 3 Forecasting
- Step 4 Analysis
- Step 5 TIA Submission (i.e. Findings and Recommendations)

This report has been structured with these above noted *Steps 1-5* as numbered sections accordingly, as outlined in the City's TIA Guidelines.

1.0 Screening

In regards to *Step 1 – Screening*, this is a form that contains a list of triggers to determine if the proposed size, type and location of a proposed development will require a formal TIA, as part of the City's development application approval process (e.g. not all new developments require a TIA).

With respect to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines, the proposed development (described below in Section 2.1) triggered the trip generation, location and the safety criteria outlined in the City's TIA *Step – 1 Screening* form. Given these triggers were met, a formal TIA (i.e. completed steps 1-5) must accompany the subject development application.

2.0 Scoping

2.1 Existing and Planned Conditions

Description of Proposed Development

Based on the information provided, it is our understanding the proponent is seeking City approval for the development of approximately 8.76 acres of vacant land municipally known as 360 Bobolink Ridge, Ottawa, which is within the community known as Stittsville. The subject site is located within the northeast quadrant of the Bobolink/Robert Grant Avenue intersection. The latest Site Plan illustrates that the proposed development will include 4 medium density apartment buildings, accumulating to approximately 360 dwelling units. The subject development will be constructed in a single phase, with an estimated build-out year of 2024.

The latest Site Plan shows that the proposed development will include a total of three vehicle driveway connections to/from the site. One site access will be located on Bobolink Ridge approximately 110 m east of the Bobolink/Robert Grant intersection; one will be on Livery Street, approximately 85 m north of the Bobolink/Livery intersection; and the third is a potential (and to be confirmed) driveway connection to Robert Grant Avenue, approximately 100 m north of the Bobolink/Robert Grant intersection. Pedestrians will have direct access to existing sidewalks along Bobolink Ridge, Robert Grant Avenue and Livery Street, which supports active mobility between on-site facilities and the developed surrounding pedestrian network.

The local context surrounding the subject development site is depicted in the following **Figure 1**, and the proposed Site Plan is depicted in the subsequent **Figure 2**.

J.L. Richards & Associates Limited 864 Lady Ellen Place Ottawa, ON Canada K1Z 5M2 Tel: 613 728 3571 Fax: 613 728 6012

Figure 1: Local Context

J.L. Richards & Associates Limited 864 Lady Ellen Place Ottawa, ON Canada K1Z 5M2 Tel: 613 728 3571 Fax: 613 728 6012

Figure 2: Proposed Site Plan

Existing Conditions

Area Road Network

Bobolink Ridge is a two-lane local roadway (i.e. one travel lane per direction) along the subject site's frontage. It extends between Angel Heights in the west and Asturcon Street in the east. Within the vicinity of the subject site, the posted speed limit is 40 km/h and parking regulations are unposted and therefore, parking is permitted for a maximum of 3 hrs along both sides of the roadway where possible, with respect to City By-Law.

Robert Grant Avenue is a two-lane arterial roadway (i.e. one travel lane per direction), it extends between Abbott Street in the north and Fernbank Road in the south. Within the vicinity of the subject development site, the posted speed limit is 60 km/h and on-street parking regulations are unposted.

Shinny Avenue is a two-lane local roadway (i.e. one travel lane per direction), which extends from Bobolink Ridge in the north and Defence Street in the southeast. Within the vicinity of the subject site, the posted speed limit is 40 km/h and on-street parking regulations are unposted.

Livery Street is a two-lane local road (i.e. one travel lane per direction), which extends between Bobolink Ridge in the south and Tapadero Avenue in the northeast. Within the vicinity of the subject site, the posted speed limit is 40 km/h and on-street parking is prohibited on the east side of the road, and on the west side of the road, on-street parking regulations are unposted.

Study Area Intersections

Bobolink/Robert Grant

The Bobolink/Robert Grant intersection is a YEILD controlled four-legged single lane roundabout. All approaches to the roundabout consist of a single lane that accommodates all possible movements.

Bobolink/Shinny

The Bobolink/Shinny intersection is an unsignalized, three-legged intersection with STOP control on the minor approach only (Shinny Avenue). All approaches consist of a single lane that accommodates all possible movements.

All movements are permitted at this location.

Bobolink/Livery

The Bobolink/Livery intersection is an unsignalized, three-legged intersection with STOP control on the minor approach only (Livery Street). All approaches consist of a single lane that accommodates all possible movements.

All movements are permitted at this location.

Existing Driveways to Adjacent Development

As depicted in the following **Figure 3**, there are approximately 140 driveway connections within a 200 m boundary of the proposed site driveway connections. All driveways adjacent to the subject development provide access/egress for private low-rise residential land uses, such as single-family homes and townhomes/low-rise apartments.

J.L. Richards & Associates Limited 864 Lady Ellen Place Ottawa, ON Canada K1Z 5M2 rel: 613 728 3571 Fax: 613 728 6012

Figure 3: Adjacent Driveways

Pedestrian/Cycling Network

The pedestrian network within the vicinity of the subject site is fairly well developed. Along Bobolink Ridge, sidewalks are provided along the north side of the roadway, and along the subject site's frontage, a sidewalk is also provided on the south side of the Bobolink Ridge from Robert Grant Avenue to Shinny Avenue. A sidewalk is also provided on the west side of Livery Street, along the subject site's frontage only. Along Robert Grant Avenue, sidewalks are provided on both sides of the roadway.

With respect to cyclists, current cycling facilities are also fairly well established. Within the study area, a paved pathway is provided along both sides of Robert Grant Avenue, which connects to the Trans Canada Trail in the north and Fernbank Road in the south, where paved shoulders are provided.

Detailed maps of the existing study area pedestrian/cycling network, and how it connects to the greater network is depicted in the following **Figure 4** and **Figure 5**, as sourced from the City's online Open data tool. It should be noted that the sidewalks on Robert Grant Avenue have not been updated on the City's online Open data sources, but have been described above.

Figure 4: Pedestrian Network

Figure 5: Cycling Network

Transit Network

OC Transpo currently provides five bus stops within walking distance to/from the subject development site, which are serviced by three separate bus routes.

The following **Table 1** summarizes existing bus stops, their associated routes and direction of travel, and the following **Table 2** provides additional route information.

Stop #	Location	Route Identifier	Direction
1626	Abbott/Iber	62	Westbound
1646	Iber/Abbott	62	Eastbound
5050	Robert Grant/Haliburton	167, 252	Northbound, Inbound
5051	Robert Grant/Haliburton	167, 252	Southbound, Outbound
8493	Cope/Yellowtail	167, 252	Southbound, Northbound, Outbound, Inbound

Table 1: OC Transpo Stop Information

Table 2: OC Transpo Route Information

Route	Origin/Destination	Service Type	Frequency
62	Tunney's Pasture ↔ Stittsville & Terry Fox	Rapid	30 mins 7-day all-day service
167	Terry Fox ↔ Blackstone	Local	30 mins Mon-Fri selected time periods
252	Tunney's Pasture ↔ Fernbank	Connexion	15 mins Mon-Fri peak periods only

The following **Figure 6** depicts OC Transpo routes and **Figure 7** depicts transit stop locations within the vicinity of the subject development site.

Figure 6: Transit Routes Within Study Area (Source: OC Transpo System Map)

Figure 7: Transit Stops Within Study Area

Based on the foregoing, the subject development site is relatively well serviced by transit. With respect to the City's current Transportation Master Plan (TMP), Robert Grant Avenue is also a

planned transit priority corridor, which will further enhance area transit service. The timing of this future corridor is described further in the subsequent *Study Area Transportation Network Changes* section of this report.

Area Traffic Management

There are currently no traffic calming measures within the vicinity of the subject site. However, Robert Grant Avenue consists of a series of roundabouts, which are considered to be an effective tool to mitigate vehicle speeds.

Peak Hour Travel Demands

For the purpose of this assessment and based on discussions with the City staff, the following study area intersections have been identified for intersection capacity analysis:

- Bobolink/Robert Grant
- Bobolink/Shinny
- Bobolink/Livery

The following **Figure 8** depicts the observed weekday morning and afternoon peak hour vehicular movements at study area intersections, and **Figure 9** depicts pedestrian and cyclist movements over the same peak hours. Detailed traffic volume data collected on March 31, 2021, is provided as **Appendix A**.

It should be noted that at the time of data collection and with respect to Ontario's colour-coded COVID-19 response framework, Ottawa was under a "Red-Restrict" zone during field observations. While the province still encourages working from home as much as possible, the Red-Restrict zone is less restrictive than the "Grey-Lockdown" zone/stay-at-home orders. Therefore, it should be understood that field observations on March 31, 2021 do not represent a sample of typical conditions; however, the conditions observed on this day are as close to typical as possible, given the ongoing impacts on travel behaviour related to the COVID-19 pandemic.

Comparing recently collected traffic volume data to historical data collected in January 2019, there has been an approximate 38% growth in traffic volumes at the Robert Grant/Bobolink roundabout, despite the ongoing impacts related to the COVID-19 pandemic. This growth can be attributed to new housing in the area and construction related vehicle activity. At the Bobolink/Livery intersection, a traffic volume data comparison to November 2019 data reveals an approximate 25% decline in volumes, which is more inline with projected impacts related to the COVID-19 pandemic.

Despite the inconsistencies in available data, the volume data depicted in the following **Figure 8** and **Figure 9** will be sufficient for analysis purposes.

Existing Road Safety Conditions

The most recent collision history for the past five (5) years was obtained from the City (i.e. available collision data for the years of 2015 - 2019, inclusive). The collision data includes all collisions at intersections and roadway segments that occurred on boundary streets adjacent to/surrounding the subject development site.

Based on the most recent available historical collision data, the five-year total number of recorded collisions that occurred on boundary streets is 3. All the collisions that occurred on boundary streets resulted in property damage only and were angle type collisions.

The following **Figure 10** is a map that depicts the locations and year of collisions the occurred on boundary streets and within the vicinity of the subject development site. The source collision data is provided in **Appendix B**, and a more detail collision analysis is included in the subsequent *Step* 4 - Analysis section of this report.

Figure 10: Collison Frequency

Planned Conditions

Study Area Transportation Network Changes

Transit Projects

According to the City of Ottawa Transportation Master Plan (TMP), transit signal priority and queue jump lanes are planned for selected intersections along Robert Grant Avenue between Fernbank Road and Palladium Drive. This network change is referred to as the "Stittsville North-South Arterial" as part of the City's planned 2031 *Affordable Network*.

Road Projects

Referencing the City's Construction and Infrastructure Projects website, new road construction projects are anticipated to happen along Robert Grant Avenue within 4 to 7 years. Additionally, it should also be noted:

- Abbott Street is scheduled for resurfacing within the next 1-2 years; and
- Sewer works is scheduled for this year along Iber Road.

The following **Figure 12** depicts the approximate location of these infrastructure projects relative to the subject site.

Figure 11: Upcoming Construction and Infrastructure Projects

The single dot on **Figure 11**, located in the east quadrant of the map, indicates the construction of a new park, which is planned to occur this year.

Outlined in the TMP, the extension of Robert Grant Avenue, north of Abbott Street, is scheduled to take place as a Phase 2 project between 2020 and 2025, according to the City's planned 2031 *Affordable Network*.

Other Area Development

Planned developments within the vicinity of the subject development were identified using the City's online Development Application Tool. The following **Table 3** below summarizes the registered developments within the vicinity of the subject site.

Table 3: Area Development

Location Anticipated Build-Out Year		Size	Land Use	
1000 Robert Grant Avenue	2023	3 low to mid rise apartments	Residential	

It should be noted that the projected impact of the above mentioned development has accounted for in the subsequent *Step 3 – Forecasting* section of this report.

2.2 Study Area and Time Periods

Study Area

As discussed with and confirmed by City staff, the following study area intersections were selected for the purpose of this assessment:

- Bobolink/Robert Grant
- Bobolink/Shinny
- Bobolink/Livery

Time Periods

Given the surrounding road network typically experiences the heaviest volumes during the weekday morning and afternoon peak hours, this assessment considered weekday morning and afternoon peak hours for analysis purposes only.

Horizon Years

For the purpose of this assessment, the following development timeline was assumed:

- **2024** Estimated full build-out of the subject development
- 2029 5-years beyond full build-out (required with respect to the City's TIA Guidelines)

2.3 Exemptions Review

Given the size and nature of the proposed subject development site, **Table 4** outlines which elements identified in the 2017 Transportation Impact Assessment Guidelines that can be exempt from this analysis.

Module Element		Exemption Criteria	Exemption Status
Design Review			
4.1 Development	4.1.2 Circulation and Access	Required for Site Plans	Not Exempt
Design	4.1.3 New Street Network	Required for Plans of Subdivisions	Exempt
4.0 Derling	4.2.1 Parking Supply	Required for Site Plans	Not Exempt
4.2 Parking	4.2.2 Spillover Parking	Required for Site Plans where parking supply will be 15% below unconstrained demand	Exempt
Network Impact			
4.5 Transportation Demand Management	All Elements	Not required for Site Plans expected to have fewer than 60 employees and/or students on location at any given time	Exempt
4.6 Neighborhood Traffic Management	4.6.1 Adjacent Neighborhoods	Required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	Exempt
4.8 Network Concept	All Elements	Required when development is projected to generate more than 200 person-trips during the peak hour in excess of the equivalent volume permitted by established zoning	Exempt

Table 4: Module Exemption Review

3.0 Forecasting

3.1 Development-Generated Travel Demand

Trip Generation

As previously described, the latest Site Plan illustrates that the proposed development will consist of 4 medium density apartment buildings, accumulating to approximately 368 dwelling units. The proposed development will be constructed in a single phase, with an anticipated buildout year of 2024.

Consistent with the City's TIA guidelines, projected site-generated traffic was estimated using appropriate trip generation rates from the latest TRANS Trip Generation Manual Summary Report, dated October 21, 2020. Based on location and type of development envisioned, the following **Table 5** summarizes appropriate trip generation rates for estimating projected site-generated traffic.

Land Use	ITE AM Peak Hour		PM Peak Hour				
Multifamily Housing (Mid-Rise)	ITE 221 TRANS Study Table 3 & 4 Person Trips	T _A = 0.80(U) x 0.50	T _A = 0.90 (U) x 0.44				
Notes: $T_A = Average Person Trips$ U = Per Unit							

Table 5: TRANS Peak Hour Trip Generation Rates

Based on the foregoing, the projected weekday morning and afternoon peak hour person trip generation for the proposed development is summarized in **Table 6**.

Table 6: Modified Peak Period Person Trips

Land Use	Area (Units)	AM Peak Hour (Person Trips/h)			PM Peak Hour (Person Trips/h)		
		In	Out	Total	In	Out	Total
Multifamily Housing (Mid-Rise)	368	45	102	147	84	62	146

As summarized in **Table 6**, the proposed development is projected to generate an approximate two-way total of 147 and 146 person trips/h during weekday morning and afternoon peak hours, respectively. Directional splits (i.e. inbound vs outbound trips) were also obtained from the TRANS Trip Generation Manual Summary Report.

To determine the number of person trips arriving/departing by travel mode, total projected person trips were subdivided by percent mode shares. With respect to the TRANS Trip Generation Manual Summary Report, mode shares have been developed for select land uses, specific to City of Ottawa districts (e.g. Kanata-Stittsville, Orleans, Hunt Club, Ottawa Centre, etc.). Using mode share values from the TRANS Trip Generation Manual Summary Report as a baseline, other key factors were also taken into consideration, including; proximity and quality of transit, pedestrian

and cycling facilities, purpose of trips, etc. The following **Table 7** summarizes appropriate mode share values that were used for analysis purposes.

Travel Mode Shares

With respect to the TRANS Summary Report, the proposed development is located in the Kanata-Stittsville district and the AM/PM peak period modal splits within this district, reveal person trips are generally compromised of 52-56% auto drivers, 15-19% auto passengers, 15-21% transit and 10-13% non-motorized modes of travel.

Based on TRANS mode share values and other key factors that can affect mode choice, the projected site-generated person trips were subdivided into separate travel modes and summarized in **Table 7** below.

Travel Mode	Mode Share	AM Peak Hour (Person Trips/h)			PM Peak Hour (Person Trips/h)		
	Charc	In	Out	Total	In	Out	Total
Auto Driver	50%	23	51	74	42	31	73
Auto Passenger	20%	9	21	30	17	13	30
Transit	25%	11	25	36	21	15	36
Non-motorized	5%	2	5	7	4	3	7
Total Person Trips	100%	45	102	147	84	62	146
Total 'New' Vehicle Trips			51	74	42	31	73

Table 7: Projected Modal Site Generated Trips

As shown in **Table 7**, the proposed development is projected to generate approximate two-way vehicle volumes of 74 veh/h and 73 veh/h during weekday morning and afternoon peak hours, respectively.

With regard to active modes, the proposed development is projected to generate approximate two-way person trips of 7 trips/h, during both weekday morning and afternoon peak hours, respectively.

With regard to transit trips during both weekday morning and afternoon peak hours, the proposed development is projected to generate approximately two-way person trips of 36 trips/h, respectively.

Trip Distribution

The projected distribution of site-generated traffic was derived based on existing travel patterns, the site's connections to/from the surrounding road network, our local area knowledge (e.g. the location and proximity of other area shopping, communities, recreational opportunities, etc.). For analysis purposes and to be consistent with other area studies, the following approximate distribution of projected site-generated traffic was assumed:

- 70% to/from the north via Robert Grant Avenue;
- 5% to/from the east via Livery Street;

+ 25% to/from the south via Robert Grant Avenue.

Trip Assignment

Based on the above assumed distribution, projected site-generated traffic was assigned to the study area network and is depicted in the following **Figure 12**.

3.2 Background Network Travel Demands

Transportation Network Plans

According to Ottawa's current Transportation Master Plan (TMP), Phase 2 of the Robert Grant Avenue extension project is expected to start between 2020 and 2025. In addition to the extension of Robert Grant transit signal priority and queue jump lanes are planned for selected intersections along Robert Grant Avenue between Fernbank Road and Palladium Drive. This network change

is referred to as the "Stittsville North-South Arterial," which is part of the City's planned 2031 *Affordable Network*.

Other Area Development

Using the City's Development Application Tool, the only proposed development that was identified as having potential impacts on the study area network is located at 1000 Robert Grant Avenue, which is directly adjacent to the subject development site. The site-generated traffic from this identified area development was explicitly accounted for in the subsequent analysis using projected volumes obtained from a TIA report prepared by Parsons.

Background Growth

Upon review of the TIA study prepared for the previously mentioned area development published in June 2020, a 2% annum background traffic growth rate was assumed. Therefore, to be consistent with previously complete studies within proximity of the subject development, a 2% per annum background traffic growth rate was assumed along Robert Grant Avenue.

Based on a 2% per annum background traffic growth rate and explicitly accounting for projected site-generated from area development, the following **Figure 13** and **Figure 14** depict total projected 'background' traffic volumes for the 2024 and 2029 horizon years, respectively, in the absence of the subject development.

Figure 13: Background Traffic Volumes (2024)

Figure 14: Background Traffic Volumes (2029)

3.3 Demand Rationalization

The following section summarizes the vehicular intersection capacity analysis of existing, future background and future total volume scenarios.

Using the intersection capacity analysis software Synchro (v10), study area intersections were assessed in terms of vehicle delay (seconds), 95th percentile queues (meters), a volume-to-capacity ratio (V/C ratio) and a corresponding Auto Level of Service (LOS or Auto-LOS). It should be noted that the overall performance of an unsignalized and roundabout intersection is an Auto-LOS output from Synchro, which is based on an Intersection Capacity Utilization (ICU) method, and each movement is assigned a LOS based on delay.

Existing and Background Conditions

The following **Table 8**, **Table 9** and **Table 10** summarize existing and projected background conditions at study area intersections, in the absence of the proposed development. The objective of this analysis is to determine if network improvements are, or will be required to support background traffic, or if projected future demand should be adjusted (e.g. once an auto network becomes saturated, a modal shift can be expected). Detailed Synchro output data for existing and future background conditions are provided in **Appendix C**.

			AM Pea	ak Hour		PM Peak Hour			
Dir	Lanes	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
			S	hinny/Bobo	olink - Unsig	nalized			
EB	1 T/R	0.03	0.0	A	0	0.06	0.0	A	0
WB	1 L/T	0.00	0.2	А	0	0.00	0.4	А	0
NB	1 L/R	0.01	8.8	А	0	0.01	9.0	А	0
0\	verall	0.16	0.4	Α	-	0.17	0.7	Α	-
			E	Bobolink/Liv	very - Unsigr	nalized			
EB	1 L/T	0.01	3.3	А	0	0.02	2.8	А	1
WB	1 T/R	0.03	0.0	А	0	0.02	0.0	А	0
SB	1 L/R	0.04	8.8	А	1	0.04	8.8	А	1
0\	verall	0.19	3.5	Α	-	0.22	3.8	Α	-
			Rob	ert Grant/B	obolink - Ro	undabout			
EB	1 L/T/R	0.09	4.8	А	0	0.11	5.5	А	0
WB	1 L/T/R	0.01	5.2	А	0	0.09	5.0	А	0
NB	1 L/T/R	0.24	5.9	А	7	0.23	5.9	А	7
SB	1 L/T/R	0.21	5.3	А	7	0.32	6.6	А	7
0\	verall	0.38	5.4	Α	-	0.47	6.1	Α	-

Table 8: Study Area Intersection Operations – Existing Conditions

As shown in **Table 8**, study area intersections are currently operating well with an overall Auto-LOS 'A' during weekday morning and afternoon peak hours. With regard to 'critical' movements, they are also operating with an Auto-LOS of 'A' during both peak hours, this is indicative of significant spare network capacity.

In terms of 95th percentile queues, vehicle queues are not anticipated to block adjacent driveways or intersections.

The following **Table 9** summarizes intersection operations for the 2024 horizon year with the addition of background traffic volumes only. This future background scenario assumes no intersection or network improvements.

			AM Pea	ak Hour		PM Peak Hour			
Dir	Lanes	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
			S	hinny/Bobc	olink - Unsig	nalized			
EB	1 T/R	0.04	0.0	A	0	0.09	0.0	A	0
WB	1 L/T	0.00	0.1	А	0	0.00	0.3	А	0
NB	1 L/R	0.01	9.1	А	0	0.01	9.5	А	0
0\	/erall	0.19	0.3	Α	-	0.19	0.5	Α	-
			E	Bobolink/Liv	very - Unsigr	nalized			
EB	1 L/T	0.03	4.4	А	1	0.06	4.8	А	2
WB	1 T/R	0.03	0.0	А	0	0.02	0.0	А	0
SB	1 L/R	0.10	9.0	А	3	0.08	9.0	А	2
0\	/erall	0.23	5.4	Α	-	0.27	5.5	Α	-
			Rob	ert Grant/B	obolink - Ro	undabout			
EB	1 L/T/R	0.11	5.5	А	0	0.13	6.6	А	0
WB	1 L/T/R	0.18	6.5	А	7	0.14	6.0	А	0
NB	1 L/T/R	0.32	7.0	А	7	0.40	8.8	А	14
SB	1 L/T/R	0.30	6.6	A	7	0.46	8.7	A	14
0\	/erall	0.48	6.6	Α	-	0.60	8.2	Α	-

 Table 9: Study Area Intersection Operations – 2024 Background Conditions

As shown in **Table 9**, study area intersections are projected to continue operating well and with significant overall spare capacity (i.e. operating with an overall Auto-LOS 'A' during weekday morning and afternoon peak hours). With regard to 'critical' movements, they are projected to operate with an Auto-LOS of 'A' during both peak hours, this is indicative of significant spare network capacity.

In terms of 95th percentile queues, vehicle queues are not anticipated to block adjacent driveways or intersections.

The following **Table 10** summarizes intersection operations for the 2029 horizon year with the addition of background traffic volumes only. This future background scenario assumes no intersection improvements or network improvements.

		AM Peak Hour				PM Peak Hour			
Dir	Lanes	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
			S	hinny/Bobo	olink - Unsig	nalized			
EB	1 T/R	0.04	0.0	А	0	0.09	0.0	А	0
WB	1 L/T	0.00	0.1	А	0	0.00	0.3	А	0
NB	1 L/R	0.01	9.1	А	0	0.01	9.5	А	0
0\	/erall	0.19	0.3	А	-	0.19	0.5	Α	-
			E	Bobolink/Liv	very - Unsigr	nalized			
EB	1 L/T	0.03	4.4	А	1	0.06	4.8	А	2
WB	1 T/R	0.03	0.0	А	0	0.02	0.0	А	0
SB	1 L/R	0.10	9.0	А	3	0.08	9.0	А	2
0\	/erall	0.23	5.4	Α	-	0.27	5.5	Α	-
			Rob	ert Grant/B	obolink - Ro	undabout			
EB	1 L/T/R	0.11	5.6	А	0	0.13	6.7	А	0
WB	1 L/T/R	0.18	6.7	A	7	0.15	6.2	A	7
NB	1 L/T/R	0.35	7.3	A	14	0.43	9.1	A	14
SB	1 L/T/R	0.31	6.7	А	7	0.48	9.0	А	21
0\	/erall	0.50	6.8	Α	-	0.62	8.6	Α	-

Table 10: Study Area Intersection Operations – 2029 Background Conditions

As shown in **Table 10**, study area intersections are projected to continue operating well and with significant overall spare capacity (i.e. operating with an overall Auto-LOS 'A' during weekday morning and afternoon peak hours). With regard to 'critical' movements, they are projected to operate with an Auto-LOS of 'A' during both peak hours, this is indicative of significant spare network capacity.

In terms of 95th percentile queues, vehicle queues are again, not anticipated to block adjacent driveways or intersections. Based on the foregoing, projected increases in future background traffic will not warrant any network modifications.

Adjustments to Background Network Demand

Given study area intersections are projected to operate with significant overall spare capacity for future background conditions, it is not considered necessary to adjust projected background demands at this time.

Total Projected Conditions

The following **Figure 15** depicts 'total' projected volumes for the horizon year of 2024, which were derived by superimposing site-generated traffic volumes onto projected background traffic volumes (e.g. summing together volumes depicted in **Figure 12** and **Figure 13**, resulting in **Figure 15**).

Figure 15: Total Projected Traffic Volumes (2024)

Similar to existing and future background conditions, total projected conditions were assessed using the intersection capacity analysis software Synchro (v10). Metrics such as Auto-LOS, V/C ratio, 95th percentile queue (metres) and vehicular delay (seconds) were analyzed. Assuming no intersection improvements, the following **Table 11** summarizes the intersection operational analysis of the study area intersections for the total projected 2024 horizon year.

Detailed Synchro output data for future total projected conditions is provided in Appendix D.
			AM Pea	ak Hour		PM Peak Hour				
Dir	Lanes	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)	
Shinny/Site Driveway/Bobolink - Unsignalized										
EB	1 L/T/R	0.01	1.7	А	0	0.02	1.4	А	1	
WB	1 L/T/R	0.00	0.1	А	0	0.00	0.3	Α	0	
NB	1 L/T/R	0.01	9.4	А	0	0.01	10.0	Α	0	
SB	1 L/T/R	0.02	9.1	А	1	0.01	8.9	Α	0	
0\	/erall	0.24	1.6	Α	-	0.28	1.6	Α	-	
Bobolink/Livery - Unsignalized										
EB	1 L/T	0.03	4.5	Α	1	0.06	4.9	Α	2	
WB	1 T/R	0.03	0.0	Α	0	0.02	0.0	Α	0	
SBL	1 L/R	0.10	9.0	А	3	0.09	9.0	А	2	
0\	/erall	0.23	5.5	Α	-	0.27	5.6	Α	-	
			Rob	ert Grant/B	obolink - Ro	undabout				
EB	1 L/T/R	0.11	5.7	А	0	0.13	6.9	А	0	
WB	1 L/T/R	0.22	7.0	А	7	0.16	6.3	Α	7	
NB	1 L/T/R	0.33	7.3	А	7	0.43	9.5	Α	14	
SB	1 L/T/R	0.32	6.9	А	7	0.49	9.4	Α	21	
0\	verall	0.57	7.0	Α	-	0.69	8.8	Α	-	
			Livery/S	Site Drivewa	ay/Ginseng -	Unsignalize	ed			
EB	1 L/T/R	0.01	9.0	А	0	0.01	9.1	А	0	
WB	1 L/T/R	0.00	0.0	А	0	0.00	0.0	А	0	
NB	1 L/T/R	0.00	0.3	А	0	0.00	0.3	Α	0	
SB	1 L/T/R	0.00	0.0	А	0	0.00	0.0	Α	0	
0\	verall	0.15	0.6	Α	-	0.18	0.4	Α	-	
			Robert	Grant/Site	Driveway -	Unsignalize	d			
WBR	1 R	0.04	11.0	А	1	0.03	11.2	А	1	
NB	1 T/R	0.25	0.0	А	0	0.28	0.0	А	0	
SBT	1 T	0.19	0.0	А	0	0.30	0.0	А	0	
0\	verall	0.32	0.4	Α	-	0.34	0.2	Α	-	

 Table 11: Study Area Intersection Operations – Total Projected Conditions (2024)

As shown in **Table 11**, assuming no intersection or network improvements, study area intersections are projected to continue operating well and with significant overall spare capacity (i.e. operating with an overall Auto-LOS 'A' during weekday morning and afternoon peak hours).

With regard to 'critical' movements, they are projected to continue to operate with an Auto-LOS of 'A' during both peak hours, and in terms of 95th percentile queues, vehicle queues are not anticipated to block adjacent driveways or intersections with additional traffic generated by the subject development.

Five years beyond full site build-out, the following **Figure 16** depicts the future 'total' volumes for the horizon year of 2029, which were derived by superimposing site-generated traffic volumes onto projected background traffic volumes (e.g. summing volumes together from **Figure 12** and **Figure 14**, resulting in **Figure 16**).

Transportation Impact Assessment 360 Bobolink Ridge

Figure 16: Total Projected Traffic Volumes (2029)

The following **Table 12** summarizes the intersection operational analysis of the study area intersections for the total projected 2029 horizon year, using the intersection capacity analysis software Synchro (v10) and metrics such as Auto-LOS, V/C ratio, 95th percentile queue (metres) and vehicular delay (seconds).

Detailed Synchro output data for future total projected conditions is provided in Appendix D.

			AM Pea	ak Hour			PM Peak Hour			
Dir	Lanes	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)	
Shinny/Site Driveway/Bobolink - Unsignalized										
EB	1 L/T/R	0.01	1.7	А	0	0.02	1.4	А	1	
WB	1 L/T/R	0.00	0.1	A	0	0.00	0.3	Α	0	
NB	1 L/T/R	0.01	9.4	A	0	0.01	10.0	Α	0	
SB	1 L/T/R	0.02	9.1	А	1	0.01	8.9	А	0	
0\	/erall	0.24	1.6	Α	-	0.28	1.6	Α	-	
Bobolink/Livery - Unsignalized										
EB	1 L/T	0.03	4.5	А	1	0.06	4.9	А	2	
WB	1 T/R	0.03	0.0	Α	0	0.02	0.0	Α	0	
SB	1 L/R	0.10	9.0	A	3	0.09	9.0	Α	2	
0\	/erall	0.23	5.5	Α	-	0.27	5.6	Α	-	
			Rob	ert Grant/B	obolink - Ro	undabout				
EB	1 L/T/R	0.11	5.8	А	0	0.14	7.1	А	0	
WB	1 L/T/R	0.22	7.3	А	7	0.17	6.5	А	7	
SB	1 L/T/R	0.36	7.6	Α	14	0.45	9.9	Α	14	
NB	1 L/T/R	0.33	7.1	Α	7	0.51	9.8	Α	21	
0\	verall	0.59	7.2	Α	-	0.72	9.2	Α	-	
			Livery/S	Site Drivewa	y/Ginseng -	Unsignalize	ed			
EB	1 L/T/R	0.01	9.0	А	0	0.01	9.1	А	0	
WB	1 L/T/R	0.00	0.0	Α	0	0.00	0.0	Α	0	
NB	1 L/T/R	0.00	0.3	Α	0	0.00	0.3	Α	0	
SB	1 L/T/R	0.00	0.0	Α	0	0.00	0.0	Α	0	
0\	verall	0.15	0.15	0.6	Α	-	0.18	0.4	Α	
			Robert	Grant/Site	Driveway -	Unsignalize	d			
WBR	1 R	0.04	11.3	А	1	0.03	11.5	А	1	
NB	1 T/R	0.27	0.0	А	0	0.30	0.0	А	0	
SBT	1 T	0.20	0.0	А	0	0.32	0.0	А	0	
0\	verall	0.33	0.4	Α	-	0.35	0.2	Α	-	

Table 12: Study Area Intersection Operations – Total Projected Conditions (2029)

As shown in **Table 12**, assuming no intersection improvements, study area intersections are projected to continue operating well and with significant overall spare capacity (i.e. operating with an overall Auto-LOS 'A' during weekday morning and afternoon peak hours).

With regard to 'critical' movements, they are projected to continue to operate with an Auto-LOS of 'A' during both peak hours, and in terms of 95th percentile queues, vehicle queues are not anticipated to block adjacent driveways or intersections with additional background traffic and traffic generated by the subject development.

Based on the foregoing, the existing study are network has sufficient spare intersection capacity to support future background traffic and projected site-generated traffic.

Adjustments to Site-Generated Demand

With respect to projected site-generated traffic for the subject development lands and other area developments, adjusting modal splits away from projected auto trips further is difficult to justify, given study area intersections are projected to operate with significant spare capacity. It should

Transportation Impact Assessment 360 Bobolink Ridge

also be noted that certain individuals will ultimately be required to drive for one reason or another (e.g. distance between origin/destination is too great, travel is a requirement for employment, physical disabilities limit travel options to personal vehicle etc.), despite the convenience/availability of alternative travel modes.

4.0 Analysis

With respect to the City of Ottawa TIA Guidelines, this module reviews the proposed transportation network elements within the development study area to ensure that they provide effective access for all users, while creating an environment that encourages walking, cycling, and transit use and prioritizes safety.

4.1 Development Design

Design for Sustainable Modes

Pedestrian Facilities: Sidewalks are currently provided along both sides of Robert Grant Avenue and along Bobolink Ridge from Robert Grant Avenue to Shinny Avenue. East of Shinny Avenue, sidewalks are provided along the north side of Bobolink Ridge only. Along the west side of Livery Street, sidewalks are also provided. Throughout the proposed development, sidewalks will be provided, connecting pedestrians to the surrounding pedestrian network.

Sidewalks must be continuous and depressed through all three unsignalized accesses. There is also a missing section of sidewalk on Bobolink Ridge that should be replaced with concrete. Additionally, given the existing sidewalk and MUP are significantly set back from the Robert Grant Avenue, there should be no obstacles that could impede sightlines between drivers and pedestrians or cyclists. Increasing visibility of this conflict zone through signage and green thermoplastic pavement markings is recommended.

Cycle Facilities: As mentioned in the *Step 2 – Scoping* section, the surrounding cycling network is fairly well established. A paved pathway is provided along both sides of Robert Grant Avenue, which connects to the Trans Canada Trail in the north and Fernbank Road in the south, where paved shoulders are provided. On-site bicycle parking will be provided in well-lit areas that are in close proximity to the building's main entrances, satisfying Zoning By-Law requirements.

Transit Facilities: As mentioned in the *Step 2 – Scoping* section, there are five transit stops located within the vicinity of the subject development site. It should be noted that the only transit stop located within the OC Transpo service design guidelines of 400 m walking distance to/from the site, is located at Cope/Yellowtail Walk. The other four transit stops previously listed in **Table 1** are located approximately 700 m to/from the subject development site.

With respect to the City's TIA Guidelines, a Transportation Demand Management (TDM) – *Supportive Development Design and Infrastructure* checklist has been completed. A copy of the TDM checklist is provided in **Appendix E**. All required TDM-supportive design and infrastructure measures in the TDM checklist were met.

Circulation and Access

As depicted in **Figure 2**, the current access/egress design for the subject development indicates that 6.7 m wide drive aisles will be provided throughout the proposed parking lot, which satisfies the City's Zoning By-Law provisions for *"Aisles and Driveways"*. In addition, this also complies with Building Code requirements for emergency vehicle access, which require a clear 6 m wide

Transportation Impact Assessment 360 Bobolink Ridge

fire route. Based on the proposed locations of garbage receptacles, an AutoTurn truck turning analysis should be conducted to ensure sufficient turning radii will be provided.

New Street Networks

With respect to the City's TIA guidelines and as previously summarized in **Table 4**, this element is exempt.

4.2 Parking

With respect to the City's TIA guidelines, this module reviews the development's planned parking supply to ensure there is a balance between operational needs, the encouragement of sustainable travel modes, and the desire to minimize neighbourhood impacts.

Parking Supply

Vehicular Parking

The proposed development is located in Area C (Suburban), identified in Schedule 1A of the City's Zoning By-law, and the following **Table 13** summarizes the minimum parking space requirements for mid-rise apartments, in accordance with the City's Zoning By-law, Section 101, Table 101.

Required Parking	Zoning Requirement	Dwelling Units/GFA	Minimum Parking Requirement
Parking	1.2 per dwelling unit	354 DU	425
Visitor Parking	0.2 per dwelling unit	354 DU	71
Office Parking	2.3 per 100 m ² of gross floor area	171 m ²	4
Business Parking	3.4 per 100 m ² of gross floor area	342 m ²	12
		Total Required	512
	Provided (As s	shown on Site Plan)	513

Table 13: Vehicular Parking Supply

As summarized in **Table 13**, the amount of provided auto parking satisfies the City's Zoning Bylaw provisions for "*Parking, Queuing and Loading Provisions*". Additionally, by not over-supplying parking, the proposed development encourages residents to consider alternative travel modes for their daily commute, by limiting the majority of the proposed dwellings to a single car.

Bike Parking

The subject site is proposed to have 180 bicycle parking spaces, which satisfies the requirements with respect to the City's Zoning By-law, Section 111 "*Bicycle Parking Space Rates and Provisions*". As previously mentioned, on-site bicycle parking will be provided in well-lit areas, close to the building's main entrances. The proposed parking and the proximity to dedicated cycling facilities will encourage residents to consider cycling as a viable travel mode for their daily commute.

Spillover Parking

With respect to the City's TIA Guidelines and given the proponent will not be seeking a reduction in the minimum supply of parking for the subject development, this module is exempt.

4.3 Boundary Street Design

With respect to the City's TIA Guidelines, this module determines design elements of boundary streets required to accommodate the proposed development, consistent with the City's complete streets philosophy and its urban design objectives for the development area. The identified boundary streets for the subject site are Bobolink Ridge, Robert Grant Avenue and Livery Street, which are all owned and maintained by the City of Ottawa.

Mobility

A Multi-Modal Level of Service (MMLOS) analysis was conducted for the subject site's boundary streets, which is a measure of risk, comfort and stress for active modes and a measure of impedance, delay and reliability for trucks/buses. With respect to the City of Ottawa's MMLOS guidelines, target MMLOS values were obtained from Exhibit 22 of the MMLOS guidelines and are identified in brackets in the following **Table 14**. The detailed MMLOS assessment is included as **Appendix F**.

Segment MMLOS Summary

The following **Figure 17** depicts the road classifications from the City's GeoOttawa website. It should be noted that there are no designated truck routes within the study area network.

Figure 17: Road Classification

The following **Table 14** is a MMLOS analysis summary of existing conditions for all modes (i.e. Pedestrian, Cycling, Transit and Trucks) along the road segments described above. Any LOS results highlighted in red indicate that the target MMLOS was not met for that segment.

It should be noted that a MMLOS segment analysis focuses on local transit provided along boundary streets only.

No.	Road Name	Segment Between	PLOS	BLOS	TLOS	TkLOS	
1	Robert Grant Avenue	Site Driveway - Bobolink	C(C)	A(C)	D(D)	B(E)	
2	Bobolink Ridge	Robert Grant - Site Driveway	B(C)	A(D)	n/a(D)	No Target	
2	Bobolink Ridge EB	Site Driveway -	n/a(C)	A(D)	r/c(D)	No Target	
3	Bobolink Ridge WB	Livery	B(C)	A(D)	n/a(D)		
4	Livery Street NB	Bobolink - Site	n/a(C)	A(D)	n/n(D)	No	
4 Livery Street SB		Driveway	B(C)	A(D)	n/a(D)	Target	
Notes:	'n/a' denotes insufficient ir	nput data					

Table 14: Segment MMLOS – Existing LOS(Target LOS)

Based on the results summarized in Table 14, the following should be noted/considered:

Pedestrian LOS

- The sections of Bobolink Ridge and Livery Street that do not meet the PLOS targets is due to lack of provided sidewalks.
- It should be noted that due to the high volume of traffic on Robert Grant Avenue, the PLOS target for that road segment only meets the minimum LOS target, despite all design guidelines being met and a large buffer between the sidewalk and active travel lanes.

Bike LOS

• All road segments exceed BLOS targets.

Transit LOS

- The sections of Bobolink Ridge and Livery Street that do not meet the TLOS targets is due to the lack of transit services operating on these segments. It is recommended that consideration is given to providing new bus stops at the Robert Grant/Bobolink intersection.
- It should be noted that the only way to improve the TLOS, is to implement dedicated transit lanes. As outlined in the City's "2031 Affordable Network Plan", Robert Grant Avenue is planned to be extended north past Abbott Street and transit priority measures are planned to be implemented from Fernbank Road to Palladium Drive. The implementation of these measures will provide improved transit service/reliability; however, the TLOS will be unchanged until a dedicated facility is provided.

Truck LOS

• Boundary street segments meet TkLOS targets.

Given the planned network improvements will not improve the study area MMLOS, a future segment MMLOS analysis will result in the same LOS results summarized in **Table 14**. Therefore, no additional analysis is required.

Road Safety

For the purpose of a road safety review, collision records for boundary streets were examined to determine if locations exhibit any collision trends that might be mitigated by engineering intervention. If there is a collision trend that is outside the norm of what is expected, then the potential exists to reduce the collision experience by addressing the over-represented collision trend. Whenever changes are being made to the road environment, it is an opportunity to examine whether a safety intervention could result in meaningful safety benefits. Where there are identifiable safety trends, it is worthwhile to mitigate those, such that the added traffic from a new development does not increase the risk of new collisions.

Based on a review of the most recent five (5) years of historical collision data (collected from January 1st, 2015 to December 31st, 2019), the following **Table 15** summarizes the number and rate (i.e. collisions per million entering vehicles) of collisions within the vicinity of the subject development site, at study area intersections. It should be noted that no collisions were reported along road segments adjacent to the subject development site.

	Total Collisions	Pato	Classification			
Intersection	(5-year Total)	(C/MEV)	Property Damage	Non-fatal Injury	Fatal Injury	
Robert Grant/Bobolink	2	0.38	2	0	0	
Bobolink/Shinny	0	0.00	0	0	0	
Bobolink/Livery	1	0.84	1	0	0	
Total	3	-	3	0	0	
Notes: C/MEV = Collisions	per Million Entering Ver	nicles	•			

Table 15: Historical Collision Data Summary by Intersection

As shown in **Table 15**, the rate of collisions within the study area are considered to be infrequent and relatively minor (e.g. no fatal or non-fatal injuries have been reported).

A more detailed collision analysis is included as **Appendix G** and source collision data is included as **Appendix B**.

Neighbourhood Traffic Management (NTM)

This section reviews the development location to determine if the proposed will exacerbate existing operational concerns on boundary streets.

The subject development site will have one connection to/from Bobolink Ridge and one connection to/from Livery Street, which are both classified as local roadways. Current and projected traffic volumes on Livery Street are proposed to continue to remain under the vehicle threshold for a local street classification (i.e. 120 veh/h during peak hours). However, Bobolink Ridge is projected to operate over the vehicle threshold for a local street classification with approximate peak hour volumes of 130 veh/h.

Given Bobolink Ridge collects traffic from local streets and feeds Robert Grant Avenue, which is an arterial roadway, Bobolink Ridge technically operates more as a collector roadway than a local roadway, by definition. If Bobolink Ridge is regarded as a collector roadway, the projected peak hour volumes are well within the volume threshold of 300 veh/h during peak hours for a collector roadway classification, with respect to the City's TIA Guidelines. Without this reclassification of Bobolink Ridge, changes to the proposed development's access scheme will have notable implications. For example, forcing more site-generated traffic to use the proposed Robert Grant Avenue driveway connection will result in additional conflicting turning volumes at this location (in close proximity to the Robert Grant/Bobolink roundabout). Forcing this would also likely require a raised median on Bobolink Ridge from Robert Grant Avenue to approximately 30 m east of Shinny Avenue (to restrict movements to/from driveway connections), or full closure of the proposed driveway connections to local streets may be necessary to limit traffic volumes on Bobolink Ridge.

Based on the foregoing, it is our opinion that the benefits of having alternative driveway connections should outweigh the benefits of restricting Bobolink Ridge to 120 veh/h during peak hours (e.g. ease for heavy vehicle circulation, emergency access, vehicle capacity, etc.). As such, NTM strategies and/or an alternative access scheme are not recommended for the subject development site.

4.4 Access Intersection Design

With respect to the City's TIA Guidelines, this module determines design elements of the points of access to/from the subject development site, consistent with the City's Complete Streets philosophy, MMLOS guidelines, and its urban design objectives for the development area.

Location and Design of Access

There are three site driveway connections to/from the subject development being proposed. One driveway connection will be located on Bobolink Ridge approximately 110 m east of the Bobolink/Robert Grant intersection; one will be on Livery Street, approximately 85 m north of the Bobolink/Livery intersection; and the third driveway connection will be located on Robert Grant Avenue, approximately 100 m north of the Bobolink/Robert Grant intersection. With respect to the City's Private Approach By-Law No. 2003-447, the new proposed driveway connections will satisfy By-Law requirements.

All three site driveways are proposed to be approximately 7 m in width, which satisfies the City's Zoning By-law provisions for "*Aisles and Driveways*". As depicted in **Figure 2**, proposed driveway connections to Bobolink Ridge and Livery Street will be full movement, and the one driveway connection to Robert Grant Avenue will be restricted to right-in/right-out only, due to safety/operational concerns, given its proximity to the Bobolink/Robert Grant intersection. It should be noted that following the widening of Robert Grant Avenue, direct access/egress to Robert Grant Avenue could be permanently closed, if operations prove to be problematic.

A clear throat length is the area provided as part of a driveway, to store vehicles that are queued to enter the network or site and is provided to avoid spillover of queued vehicles onto the connecting roadway. With respect to TAC's 2017 *Geometric Design Guide for Canadian Roads*, the minimum clear throat lengths for driveways are based on the proposed land use, development size and abutting road classification (collector or arterial). As depicted in **Figure 17**, Bobolink Ridge and Livery Street are both classified as a local streets and Robert Grant Avenue is classified as an arterial roadway. Therefore, based on Table 8.9.3 found in the TAC Geometric Design Guide, a clear throat length of 25 m is recommended for both site driveways to Bobolink Ridge and Livery Street, and a 40 m clear throat length is recommended for the site driveway connection to Robert Grant Avenue. Based on the foregoing, the proposed throat lengths will satisfy the TAC Design Guide.

Intersection Control

The new site driveway connections are proposed to be YEILD or STOP controlled on the minor approach only, which will be sufficient from an operational perspective. It should also be noted that the proposed site driveways to Bobolink and Livery will form the fourth leg of these existing three-legged STOP controlled 'T' intersections, which will result in 2-way STOP control.

Intersection Design

Given there are no existing or proposed signalized intersections within the vicinity of the subject development site, additional MMLOS analysis is not required.

4.5 Transportation Demand Management

With respect to the City's TIA Guidelines, a review of Transportation Demand Management (TDM) strategies is a requirement for the subject development. Determining which TDM strategies maybe appropriate for implementation, a formal TDM checklist is provided by the City for review by the proponent.

Following a review of the City's TDM checklist and based on available information, a completed TDM checklist is attached as **Appendix H**, which identified the following strategies for implementation:

- Designate an on-site TDM coordinator;
- Conduct periodic surveys;
- Provide transit schedules in all lobbies and site office;
- Implement bikeshare and/or carshare stations based on tenant demand;
- Only a single parking stall will be included in the monthly rent;
- Include transit information in welcome packages for new tenants; and
- Offer personalized trip planning to new residents provided by the TDM coordinator.

Implementing the above strategies will help increase the likelihood, and frequency of people choosing sustainable travel modes that are not only better for the environment, but also benefit physical and mental health.

4.6 Neighbourhood Traffic Management

With respect to the City's TIA Guidelines, this module reviews significant access routes to/from the development and identifies any required neighbourhood traffic management (NTM) measures to mitigate impacts on collector and local roads.

As mentioned previously in the 4.3 – Boundary Street Design section of this report, the proposed development is projected to generate relatively low site-generated traffic volumes, and therefore, additional NTM measures are not recommended.

4.7 Transit

Transit stops that serve the development site were previously mentioned in the *Step 2 – Scoping* section, which included stop information, routes and location (summarized in **Table 1**). Additionally, transit route information, including frequency and service type, were previously summarized in **Table 2**. It should be noted that the only transit stop located within the OC Transpo service design guidelines (i.e. within 400 m walking distance to/from the site) is located at the Cope/Yellowtail Walk intersection. It should be noted that there are four other transit stops located in relatively close proximity to the subject site, which are located at the Iber/Abbott Street and

Transportation Impact Assessment 360 Bobolink Ridge

Robert Grant/Haliburton Heights intersections, approximately 700 m walking distance to/from the subject development site. Detailed transit maps are included in **Appendix I**.

Route Capacity

Current transit ridership data for the bus stops listed in **Table 1** was provided by the City and is included as **Appendix J**. Based on the projected modal split of site-generated traffic, it was estimated that 25% of the trips generated by the site will be accommodated by transit, which equates to approximately 36 additional transit person trips for each peak hour.

With respect to local transit, the study area is serviced by 40 ft buses on approximate 15-30 min headways, which have a person capacity of approximately 50 passengers per bus. According to passenger on/off data provided by the City, there are approximately 1 to 25 passengers per bus that arrive/depart at the bus stops within the vicinity of the subject development site during peak hours.

Assuming projected site-generated transit trips to/from the subject development will be spread between the handful of local bus stops within the vicinity of the site (e.g. beyond 400 m walking distance), it is projected that future transit users can be easily accommodated by the existing area transit service.

Transit Priority

Given the relatively low volume of projected site-generated traffic, transit travel times should not be impacted. However, as mentioned previously, transit signal priority and queue jump lanes are planned for selected intersections along Robert Grant Avenue between Fernbank Road and Palladium Drive.

4.8 Review of Network Concept

With respect to the City's TIA Guidelines, this module is exempt.

4.9 Intersection Design

With respect to the City's TIA Guidelines, this module determines the design elements of the study area intersections required to accommodate the proposed development, consistent with the City's Complete Streets philosophy and MMLOS practices.

Intersection Control

All site driveways are currently proposed to be STOP or YEILD control on the minor approach. Based on the intersection capacity analysis in the *Step 3 – Forecasting* section, and consistent with the City's policies, goals and objectives, additional signal or intersection control will not be warranted.

Intersection Design

Based on the intersection capacity analysis in the *Step 3 – Forecasting* section, and consistent with the City's policies, goals and objectives, additional intersection or road widenings will not be warranted.

5.0 Findings and Recommendations

As with any infill development, the introduction of a new land use will have impacts on the surrounding transportation network. J.L. Richards and Associates Limited has completed a review of these impacts and summarized the findings within this transportation assessment, which

follows the format of a Transportation Impact Assessment (TIA) Study, as requested by the City of Ottawa. At this stage, and with respect to the City's TIA Guidelines, the following findings and conclusions are offered:

- Study area intersections are currently operating with spare capacity and are projected to continue operating with spare capacity with additional traffic generated by the proposed development. There are also no prevailing safety concerns, based on historical collision data.
- Given the local context, the private auto is projected to be the primary mode choice for travel with an approximate mode share of 50% for the proposed development.
- The proposed development is projected to generate 'new' two-way vehicle volumes of 74 veh/h and 73 veh/h during weekday morning and afternoon peak hours, respectively.
- With regard to active modes, the proposed development is projected to generate approximate two-way person trips of 7 trips/h for both weekday morning and afternoon peak hours.
- With regard to transit trips during weekday morning and afternoon peak hours, the proposed development is projected to generate approximately two-way person trips of 36 trips/h for each peak hour.
- The proposed parking supply for the subject development site meets the minimum By-Law requirements.
- Bobolink Ridge is projected to exceed the vehicle threshold of a local road during peak hours with 131 veh/h. However, NTM strategies and/or an alternative access scheme are not recommended.
- Existing MMLOS targets for transit are not met for the majority of study area road segments due to lack of transit service provided. It is recommended that consideration is given to providing new bus stops at the Robert Grant/Bobolink intersection.
- The overall layout of the site is laid out effectively and should operate acceptably. However, an AutoTurn truck turning analysis should be conducted to ensure sufficient turning radii will be provided for larger vehicles (e.g. fire and garbage trucks, etc.).
- Sidewalks must be continuous and depressed through all three unsignalized accesses. There is also a missing section of sidewalk on Bobolink Ridge that should be replaced with concrete.
- There should be no obstacles that could impede sightlines between drivers and pedestrians or cyclists at the driveway connection to Robert Grant Avenue. Increasing visibility of this conflict zone through signage and green thermoplastic pavement markings is recommended.
- Based on projected volumes and intersection capacity analysis, additional intersection control or road widenings will not be warranted. However, the driveway connection to Robert Grant Avenue could be permanently closed, if operations prove to be problematic.

The proposed development fits well into the context of the surrounding area and it is projected to have minimal impact on the surrounding transportation network.

Transportation Impact Assessment 360 Bobolink Ridge

Based on the foregoing, the proposed development located at 360 Bobolink Ridge is recommended from a transportation perspective, as the design and location of the proposed development serves the City of Ottawa's policies, goals and objectives.

J.L. RICHARDS & ASSOCIATES LIMITED

Prepared by:

20

Paige Harrison, Dipl.T. Civil Designer, Transportation

Reviewed by:

Gordon Scobie, P.Eng. Civil Engineer, Transportation

Existing Traffic Counts

Prepared by: thetrafficspecialist@gmail.com

Flow Diagrams: AM PM Peak

Turning Movement Count

Summary, AM and PM Peak Hour

Flow Diagrams

All Vehicles Except Bicycles

Stittsville, ON

Collision Data

OBJECTID	DATE ANOM	ID YEAR	TIME	LOCATION	GEO_ID	ACCIDENT_LOCLASS_OF_ACIMPACT_TY	PEENVIRONME	N'LIGHT	ROAD_SURF.	A TRAFFIC_CONTRAFFIC_CONTROL_CONDITION
61273	10/5/2017 4:00	2036	2017 12/31/1899 5:	4(BOBOLINK RDG @ ROBERT GRANT AVE		03 - At intersect03 - P.D. only 02 - Angle	01 - Clear	01 - Daylight	01 - Dry	11 - Roundabout
77765	4/10/2019 19-433	6	2019 06:50:00+00	BOBOLINK RDG @ ROBERT GRANT AVE	147	90 03 - At intersect 03 - P.D. only 02 - Angle	01 - Clear	01 - Daylight	02 - Wet	11 - Roundaboi 01 - Functioning
61272	9/11/2017 4:00	2035	2017 12/31/1899 12	2: BOBOLINK RDG @ LIVERY ST		03 - At intersect03 - P.D. only 02 - Angle	01 - Clear	01 - Daylight	01 - Dry	02 - Stop sign

Appendix C

Existing and Background Conditions Output Data (2024, 2029)

AM	.syn

Intersection				
Intersection Delay, s/veh	5.4			
Intersection LOS	A			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	85	80	238	219
Demand Flow Rate, veh/h	86	81	243	224
Vehicles Circulating, veh/h	191	290	97	44
Vehicles Exiting, veh/h	77	50	180	327
Follow-Up Headway, s	3.186	3.186	3.186	3.186
Ped Vol Crossing Leg, #/h	3	1	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	4.8	5.2	5.9	5.3
Approach LOS	А	А	А	А
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Critical Headway, s	5.193	5.193	5.193	5.193
Entry Flow, veh/h	86	81	243	224
Cap Entry Lane, veh/h	933	845	1025	1081
Entry HV Adj Factor	0.988	0.987	0.979	0.979
Flow Entry, veh/h	85	80	238	219
Cap Entry, veh/h	922	835	1004	1058
V/C Ratio	0.092	0.096	0.237	0.207
Control Delay, s/veh	4.8	5.2	5.9	5.3
LOS	А	А	A	А
95th %tile Queue, veh	0	0	1	1

Existing Conditions 2: Shinny & Bobolink

	-	\mathbf{F}	1	+	▲	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1.			4	M	
Traffic Volume (veh/h)	43	0	2	72	2	3
Future Volume (Veh/h)	43	0	2	72	2	3
Sian Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	48	0	2	80	2	3
Pedestrians				1	1	
Lane Width (m)				3.6	3.6	
Walking Speed (m/s)				1.0	1.0	
Percent Blockage				0	0	
Right turn flare (veh)				Ū	Ū	
Median type	None			None		
Median storage veh)	None			NONC		
Linstream signal (m)						
nX nlatoon unblocked						
vC conflicting volume			/0		122	50
vC1 stage 1 conf vol			77		155	50
vC2 stage 2 conf vol						
			/0		122	50
tC single (s)			47		6.4	6.2
tC, 2 stage (s)			4.1		0.4	0.2
tC, 2 stage (s)			2.2		2 5	2.2
IF (S)			2.2		3.0 100	3.3 100
p0 queue liee %			100		100	101/
			1000		809	1010
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	48	82	5			
Volume Left	0	2	2			
Volume Right	0	0	3			
cSH	1700	1556	947			
Volume to Capacity	0.03	0.00	0.01			
Queue Length 95th (m)	0.0	0.0	0.1			
Control Delay (s)	0.0	0.2	8.8			
Lane LOS		А	А			
Approach Delay (s)	0.0	0.2	8.8			
Approach LOS			А			
Intersection Summary						
Average Delay			0.4			
Average Delay			0.4	10		ondoo
			10.0%	IC	O LEVELUI S	ervice
Analysis Period (min)			15			

Existing Conditions 3: Bobolink & Livery

	≯	→	-	•	1	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		۸.	۴.		M	
Traffic Volume (veh/h)	20	25	42	6	5	28
Future Volume (Veh/h)	20	25	42	6	5	28
Sign Control	20	Free	Free	0	Stop	20
Grade		0%	0%		0%	
Peak Hour Factor	0.00	0,0	0,0	0 00	0,0	0.00
Hourly flow rate (yph)	0.30	0.90	0.30	0.90	0.70	21
Podostrians	22	20	47	1	2	31
Lane Width (m)					36	
Lane Width (III)					3.0 1.0	
Walking Speed (III/S)					1.0	
Percent Blockage					U	
Right turn flare (ven)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	57				126	54
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	57				126	54
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	99				99	97
cM capacity (veh/h)	1543				854	1011
Direction Lane #	FR 1	W/R 1	SR 1			
Volumo Total	EDT	EA	100			
Volume Loft	50	54	37			
Volume Leit	22	0	0			
	0	1700	31			
CSH	1543	1700	982			
Volume to Capacity	0.01	0.03	0.04			
Queue Length 95th (m)	0.3	0.0	0.9			
Control Delay (s)	3.3	0.0	8.8			
Lane LOS	A		А			
Approach Delay (s)	3.3	0.0	8.8			
Approach LOS			А			
Intersection Summary						
Average Delay			3.5			
Intersection Capacity Utilization			19.2%	ICI	U Level of S	ervice
Analysis Period (min)			15			

PM.	syn

Intersection				
Intersection Delay, s/veh	6.1			
Intersection LOS	А			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	90	73	223	341
Demand Flow Rate, veh/h	92	74	227	347
Vehicles Circulating, veh/h	295	257	130	43
Vehicles Exiting, veh/h	95	100	257	288
Follow-Up Headway, s	3.186	3.186	3.186	3.186
Ped Vol Crossing Leg, #/h	1	2	0	2
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	5.5	5.0	5.9	6.6
Approach LOS	А	А	А	А
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Critical Headway, s	5.193	5.193	5.193	5.193
Entry Flow, veh/h	92	74	227	347
Cap Entry Lane, veh/h	841	874	992	1082
Entry HV Adj Factor	0.976	0.985	0.984	0.982
Flow Entry, veh/h	90	73	223	341
Cap Entry, veh/h	821	860	977	1063
V/C Ratio	0.109	0.085	0.229	0.321
Control Delay, s/veh	5.5	5.0	5.9	6.6
LOS	А	A	А	А
95th %tile Queue, veh	0	0	1	1

Existing Conditions 2: Shinny & Bobolink

	-	\mathbf{r}	1	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations				4	M	
Traffic Volume (veh/h)	78	8	4	59	4	5
Future Volume (Veh/h)	78	8	4	59	4	5
Sign Control	Free	Ū		Free	Stop	Ū
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	87	9	4	66	4	6
Pedestrians	1	,		1	1	Ū
Lane Width (m)	3.6			3.6	3.6	
Walking Speed (m/s)	1.0			1.0	1.0	
Percent Blockage	0			0	0	
Right turn flare (veh)	0			0	U	
Median type	None			None		
Median storage veh)	NULLE			NULLE		
Linstream signal (m)						
nX platoon upblocked						
vC conflicting volume			07		168	0/
vC1 stage 1 confive			71		100	74
vC1, stage 2 confivel						
			07		160	04
			97		100	94 4 0
tC, Single (S)			4.1		0.4	0.2
10, 2 sidye (s) +E (c)			2.2		2 5	2.2
u (s)			2.Z 100		ა.ე 100	ა.ა იი
pu queue nee 70			1405		010	99
			1490		819	902
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	96	70	10			
Volume Left	0	4	4			
Volume Right	9	0	6			
cSH	1700	1495	899			
Volume to Capacity	0.06	0.00	0.01			
Queue Length 95th (m)	0.0	0.1	0.3			
Control Delay (s)	0.0	0.4	9.0			
Lane LOS		А	А			
Approach Delay (s)	0.0	0.4	9.0			
Approach LOS			А			
Intersection Summary						
Average Delay			0.7			
Average Delay			U./ 17 10/	101		onvico
			1/.1%	ICI	o reveror 2	ervice
Analysis Period (min)			15			

Existing Conditions 3: Bobolink & Livery

	٠	→	←	•	1	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		1	1		11	
Traffic Volume (veh/h)	29	50	25	5	5	33
Future Volume (Veh/h)	29	50	25	5	5	33
Sign Control	27	Free	Free	0	Stop	00
Grade		0%	0%		0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (yph)	32	56	28	6	6	37
Dedestrians	JZ	2	20	0	5	57
Lane Width (m)		3.6			3.6	
Malking Spood (m/s)		1.0			1.0	
Dercont Plackage		1.0			1.0	
Percent Blockage		U			I	
Right turn flare (ven)		News	News			
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	39				156	39
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	39				156	39
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	98				99	96
cM capacity (veh/h)	1563				814	1024
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	88	34	43			
Volume Left	32	0	6			
Volume Right	0	6	37			
cSH	1563	1700	989			
Volume to Capacity	0.02	0.02	0.04			
Queue Length 95th (m)	0.5	0.0	1.1			
Control Delay (s)	2.8	0.0	8.8			
Lane LOS	A		A			
Approach Delay (s)	2.8	0.0	8.8			
Approach LOS	2.0	0.0	Δ			
Approach 200			~			
Intersection Summary						
Average Delay			3.8			
Intersection Capacity Utilization			22.1%	ICI	J Level of S	ervice
Analysis Period (min)			15			

Intersection				
Intersection Delay, s/veh	6.6			
Intersection LOS	А			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	85	140	314	299
Demand Flow Rate, veh/h	86	142	321	305
Vehicles Circulating, veh/h	324	351	124	96
Vehicles Exiting, veh/h	77	94	286	397
Follow-Up Headway, s	3.186	3.186	3.186	3.186
Ped Vol Crossing Leg, #/h	3	1	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	5.5	6.5	7.0	6.6
Approach LOS	А	А	А	А
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Critical Headway, s	5.193	5.193	5.193	5.193
Entry Flow, veh/h	86	142	321	305
Cap Entry Lane, veh/h	817	795	998	1027
Entry HV Adj Factor	0.988	0.986	0.978	0.981
Flow Entry, veh/h	85	140	314	299
Cap Entry, veh/h	807	784	976	1007
V/C Ratio	0.105	0.179	0.322	0.297
Control Delay, s/veh	5.5	6.5	7.0	6.6
LOS	A	А	А	А
95th %tile Queue, veh	0	1	1	1

2024 Background Conditions 2: Shinny & Bobolink

	-	\mathbf{i}	1	+	•	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1.			្ព	W.		
Traffic Volume (veh/h)	59	0	2	126	2	3	
Future Volume (Veh/h)	59	0	2	126	2	3	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	66	0	2	140	2	3	
Pedestrians				1	1		
Lane Width (m)				3.6	3.6		
Walking Speed (m/s)				1.0	1.0		
Percent Blockage				0	0		
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX. platoon unblocked							
vC, conflicting volume			67		211	68	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			67		211	68	
tC. sinale (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		100	100	
cM capacity (veh/h)			1533		776	993	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	66	142	5				
Volume Left	0	2	2				
Volume Right	0	0	3				
cSH	1700	1533	893				
Volume to Capacity	0.04	0.00	0.01				
Queue Length 95th (m)	0.0	0.0	0.1				
Control Delay (s)	0.0	0.1	9.1				
Lane LOS		А	А				
Approach Delay (s)	0.0	0.1	9.1				
Approach LOS			А				
Intersection Summary							
Average Delay			0.3				
Intersection Capacity Utilization			19.0%	IC	U Level of S	ervice	А
Analysis Period (min)			15				

2024 Background Conditions 3: Bobolink & Livery

	≯	-	+	•	×	-	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	1.		₩.		
Traffic Volume (veh/h)	36	25	42	6	5	82	
Future Volume (Veh/h)	36	25	42	6	5	82	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	40	28	47	7	6	91	
Pedestrians					3		
₋ane Width (m)					3.6		
Valking Speed (m/s)					1.0		
Percent Blockage					0		
Right turn flare (veh)							
Vedian type		None	None				
Median storage veh)							
Upstream signal (m)							
X, platoon unblocked							
/C, conflicting volume	57				162	54	
/C1, stage 1 conf vol							
vC2, stage 2 conf vol							
/Cu, unblocked vol	57				162	54	
C, single (s)	4.1				6.4	6.2	
C, 2 stage (s)							
F (s)	2.2				3.5	3.3	
00 queue free %	97				99	91	
M capacity (veh/h)	1543				805	1011	
Direction, Lane #	EB 1	WB 1	SB 1				
/olume Total	68	54	97				
/olume Left	40	0	6				
/olume Right	0	7	91				
SH	1543	1700	995				
Volume to Capacity	0.03	0.03	0.10				
Queue Length 95th (m)	0.6	0.0	2.6				
Control Delay (s)	4.4	0.0	9.0				
Lane LOS	А		А				
Approach Delay (s)	4.4	0.0	9.0				
Approach LOS			А				
ntersection Summary							
Average Delay			5.4				
Intersection Capacity Utilization			22.5%	ICI	U Level of S	ervice	А
Analysis Period (min)			15				

AM.syn

Intersection				
Intersection Delay, s/veh	8.2			
Intersection LOS	A			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	90	112	359	467
Demand Flow Rate, veh/h	92	114	366	476
Vehicles Circulating, veh/h	458	341	218	77
Vehicles Exiting, veh/h	95	243	332	378
Follow-Up Headway, s	3.186	3.186	3.186	3.186
Ped Vol Crossing Leg, #/h	1	2	0	2
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	6.6	6.0	8.8	8.7
Approach LOS	А	А	А	А
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Critical Headway, s	5.193	5.193	5.193	5.193
Entry Flow, veh/h	92	114	366	476
Cap Entry Lane, veh/h	715	803	909	1046
Entry HV Adj Factor	0.976	0.981	0.980	0.981
Flow Entry, veh/h	90	112	359	467
Cap Entry, veh/h	698	788	891	1026
V/C Ratio	0.129	0.142	0.403	0.455
Control Delay, s/veh	6.6	6.0	8.8	8.7
LOS	А	А	А	А
95th %tile Queue, veh	0	0	2	2

2024 Background Conditions 2: Shinny & Bobolink

	-	\mathbf{r}	•	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	۴.			4	M	
Traffic Volume (veh/h)	132	8	4	93	4	5
Future Volume (Veh/h)	132	8	4	93	4	5
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	147	9	4	103	4	6
Pedestrians	1			1	1	
Lane Width (m)	3.6			3.6	3.6	
Walking Speed (m/s)	1.0			1.0	1.0	
Percent Blockage	0			0	0	
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			157		264	154
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			157		264	154
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			100		99	99
cM capacity (veh/h)			1421		721	891
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	156	107	10			
Volume Left	0	4	4			
Volume Right	9	0	6			
cSH	1700	1421	814			
Volume to Capacity	0.09	0.00	0.01			
Queue Length 95th (m)	0.0	0.1	0.3			
Control Delay (s)	0.0	0.3	9.5			
Lane LOS	010	A	A			
Approach Delay (s)	0.0	0.3	95			
Approach LOS			A			
Intersection Summary						
Average Delay			0.5			
Intersection Capacity Utilization			18.9%	IC	U Level of S	ervice
Analysis Period (min)			15	10		000

PM.syn

2024 Background Conditions 3: Bobolink & Livery

	≯	-	←		1	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		.	۰.		M	
Traffic Volume (veh/h)	83	50	25	5	5	67
Future Volume (Veh/h)	83	50	25	5	5	67
Sign Control	00	Free	Free	U	Ston	01
Grade		0%	0%		0%	
Peak Hour Factor	0 90	0,0	0,0	0.00	0,0	0 00
Hourly flow rate (vph)	92	56	28	6.00	6.00	74
Pedestrians	52	3	20	U	5	17
I ane Width (m)		36			36	
Malking Spood (m/s)		1.0			1.0	
Dereent Pleekage		1.0			1.0	
Percent DIOCKage		U			I	
Right turn flare (ven)		Nerr	Nerr			
Median storage web		None	ivone			
iviedian storage ven)						
Upstream signal (m)						
pX, platoon unblocked	00				070	00
vC, conflicting volume	39				276	39
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	39				276	39
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	94				99	93
cM capacity (veh/h)	1563				668	1024
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	148	34	80			
Volume Left	92	0	6			
Volume Right	0	6	74			
cSH	1563	1700	985			
Volume to Capacity	0.06	0.02	0.08			
Queue Length 95th (m)	1.5	0.0	2.1			
Control Delay (s)	4.8	0.0	9.0			
Lane LOS	A		Α			
Approach Delay (s)	4.8	0.0	9.0			
Approach LOS			A			
Intersection Summary						
Average Delay			5.5			
Intersection Capacity Utilization			26.7%	ICI	J Level of S	ervice
Analysis Period (min)			15	.01		

PM.syn

Intersection				
Intersection Delay, s/veh	6.8			
Intersection LOS	A			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	85	140	336	313
Demand Flow Rate, veh/h	86	142	344	319
Vehicles Circulating, veh/h	338	374	124	96
Vehicles Exiting, veh/h	77	94	300	420
Follow-Up Headway, s	3.186	3.186	3.186	3.186
Ped Vol Crossing Leg, #/h	3	1	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	5.6	6.7	7.3	6.7
Approach LOS	А	А	А	А
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Critical Headway, s	5.193	5.193	5.193	5.193
Entry Flow, veh/h	86	142	344	319
Cap Entry Lane, veh/h	806	777	998	1027
Entry HV Adj Factor	0.988	0.986	0.978	0.981
Flow Entry, veh/h	85	140	336	313
Cap Entry, veh/h	796	766	976	1007
V/C Ratio	0.107	0.183	0.345	0.311
Control Delay, s/veh	5.6	6.7	7.3	6.7
LOS	А	A	A	А
95th %tile Queue, veh	0	1	2	1

2029 Background Conditions 2: Shinny & Bobolink

	→	\mathbf{r}	1	+	٩.	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	۴.			្ឋ	W.		
Traffic Volume (veh/h)	59	0	2	126	2	3	
Future Volume (Veh/h)	59	0	2	126	2	3	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	66	0	2	140	2	3	
Pedestrians				1	1		
Lane Width (m)				3.6	3.6		
Walking Speed (m/s)				1.0	1.0		
Percent Blockage				0	0		
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			67		211	68	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			67		211	68	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		100	100	
cM capacity (veh/h)			1533		776	993	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	66	142	5				
Volume Left	0	2	2				
Volume Right	0	0	3				
cSH	1700	1533	893				
Volume to Capacity	0.04	0.00	0.01				
Queue Length 95th (m)	0.0	0.0	0.1				
Control Delay (s)	0.0	0.1	9.1				
Lane LOS		А	А				
Approach Delay (s)	0.0	0.1	9.1				
Approach LOS			А				
Intersection Summary							
Average Delay			0.3				
Intersection Capacity Utilization			19.0%	IC	U Level of Se	ervice	
Analysis Period (min)			15				

2029 Background Conditions 3: Bobolink & Livery

	≯	-	+	•	×	-	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	1.		₩.		
Traffic Volume (veh/h)	36	25	42	6	5	82	
Future Volume (Veh/h)	36	25	42	6	5	82	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	40	28	47	7	6	91	
Pedestrians					3		
₋ane Width (m)					3.6		
Valking Speed (m/s)					1.0		
Percent Blockage					0		
Right turn flare (veh)							
Vedian type		None	None				
Median storage veh)							
Upstream signal (m)							
X, platoon unblocked							
/C, conflicting volume	57				162	54	
/C1, stage 1 conf vol							
vC2, stage 2 conf vol							
/Cu, unblocked vol	57				162	54	
C, single (s)	4.1				6.4	6.2	
C, 2 stage (s)							
F (s)	2.2				3.5	3.3	
0 queue free %	97				99	91	
M capacity (veh/h)	1543				805	1011	
Direction, Lane #	EB 1	WB 1	SB 1				
/olume Total	68	54	97				
/olume Left	40	0	6				
/olume Right	0	7	91				
SH	1543	1700	995				
Volume to Capacity	0.03	0.03	0.10				
Queue Length 95th (m)	0.6	0.0	2.6				
Control Delay (s)	4.4	0.0	9.0				
Lane LOS	А		А				
Approach Delay (s)	4.4	0.0	9.0				
Approach LOS			А				
ntersection Summary							
Average Delay			5.4				
Intersection Capacity Utilization			22.5%	ICI	U Level of S	ervice	А
Analysis Period (min)			15				

AM.syn

Intersection				
Intersection Delay, s/veh	8.6			
Intersection LOS	А			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	90	112	378	489
Demand Flow Rate, veh/h	92	114	386	498
Vehicles Circulating, veh/h	480	361	218	77
Vehicles Exiting, veh/h	95	243	354	398
Follow-Up Headway, s	3.186	3.186	3.186	3.186
Ped Vol Crossing Leg, #/h	1	2	0	2
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	6.7	6.2	9.1	9.0
Approach LOS	А	А	А	А
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Critical Headway, s	5.193	5.193	5.193	5.193
Entry Flow, veh/h	92	114	386	498
Cap Entry Lane, veh/h	699	788	909	1046
Entry HV Adj Factor	0.976	0.981	0.980	0.981
Flow Entry, veh/h	90	112	378	489
Cap Entry, veh/h	683	773	891	1026
V/C Ratio	0.132	0.145	0.425	0.476
1011000				
Control Delay, s/veh	6.7	6.2	9.1	9.0
Control Delay, s/veh LOS	6.7 A	6.2 A	9.1 A	9.0 A
2029 Background Conditions 2: Shinny & Bobolink

	-	\mathbf{r}	1	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1⊳			4	M		
Traffic Volume (veh/h)	132	8	4	93	4	5	
Future Volume (Veh/h)	132	8	4	93	4	5	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	147	9	4	103	4	6	
Pedestrians	1			1	1		
Lane Width (m)	3.6			3.6	3.6		
Walking Speed (m/s)	1.0			1.0	1.0		
Percent Blockage	0			0	0		
Right turn flare (veh)	-						
Median type	None			None			
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume			157		264	154	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			157		264	154	
tC. single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		99	99	
cM capacity (veh/h)			1421		721	891	
Direction Lane #	FR 1	WR 1	NR 1				
Volumo Total	156	107	10				
Volume Loff	100	107	10				
Volume Dight	0	4	4				
	9 1700	1/21	0 81/				
Volume to Canacity	0.00	0.00	0.04				
Output Longth 05th (m)	0.09	0.00	0.01				
Control Doloy (c)	0.0	0.1	0.5				
	0.0	0.5	9.0				
Lane LUS Approach Dolay (a)	0.0	A	A				
Approach LOS	0.0	0.3	9.0				
			A				
Intersection Summary							
Average Delay			0.5				
Intersection Capacity Utilization			18.9%	IC	U Level of S	ervice	
Analysis Period (min)			15				

2029 Background Conditions 3: Bobolink & Livery

	≯	-	-	•	1	-
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			1.		M	
Traffic Volume (veh/h)	83	50	25	5	5	67
Future Volume (Veh/h)	83	50	25	5	5	67
Sign Control		Free	Free	Ŭ	Stop	•.
Grade		0%	0%		0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	92	56	28	6	6	74
Pedestrians	02	3	20	Ŭ	5	
Lane Width (m)		36			36	
Walking Speed (m/s)		1.0			1.0	
Percent Blockage		0			1	
Right turn flare (veh)		U			1	
Median type		None	None			
Median storage yeh)		NULLE	NULLE			
Linstream signal (m)						
ny platoon unblocked						
vC conflicting volume	30				276	30
	29				270	29
vC1, stage 1 conti vol						
VCZ, Stage Z COTH VOI	20				076	20
vou, unbiockea voi	39				2/6	39
to, single (s)	4.1				0.4	6.2
I_{C} , Z stage (s)					0.5	0.0
t⊢ (S)	2.2				3.5	3.3
pU queue free %	94				99	93
cM capacity (veh/h)	1563				668	1024
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	148	34	80			
Volume Left	92	0	6			
Volume Right	0	6	74			
cSH	1563	1700	985			
Volume to Capacity	0.06	0.02	0.08			
Queue Length 95th (m)	1.5	0.0	2.1			
Control Delay (s)	4.8	0.0	9.0			
Lane LOS	A		A			
Approach Delay (s)	4.8	0.0	9.0			
Approach LOS			A			
Intersection Summary						
Average Delay			5.5			
Intersection Capacity Utilization			26.7%	ICI	Level of S	ervice
Analysis Period (min)			15			

PM.syn

Total Projected Conditions Output Data (2024, 2029)

Intersection				
Intersection Delay, s/veh	7.0			
Intersection LOS	А			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	85	169	320	317
Demand Flow Rate, veh/h	86	173	327	324
Vehicles Circulating, veh/h	358	355	143	111
Vehicles Exiting, veh/h	77	115	301	417
Follow-Up Headway, s	3.186	3.186	3.186	3.186
Ped Vol Crossing Leg, #/h	3	1	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	5.7	7.0	7.3	6.9
Approach LOS	А	А	А	А
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Critical Headway, s	5.193	5.193	5.193	5.193
Entry Flow, veh/h	86	173	327	324
Cap Entry Lane, veh/h	790	792	979	1011
Entry HV Adj Factor	0.988	0.977	0.978	0.979
Flow Entry, veh/h	85	169	320	317
Cap Entry, veh/h	780	774	958	990
V/C Ratio	0.109	0.218	0.334	0.320
Control Delay, s/veh	5.7	7.0	7.3	6.9
LOS	А	A	A	А
95th %tile Queue, veh	0	1	1	1

2024 Projected Conditions 2: Shinny/Site Driveway & Bobolink

2: Shinny/Site Driveway &	Bobolink											AM.syn
	≯	+	\mathbf{F}	4	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	16	61	0	2	131	0	2	0	3	0	0	20
Future Volume (Veh/h)	16	61	0	2	131	0	2	0	3	0	0	20
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	18	68	0	2	146	0	2	0	3	0	0	22
Pedestrians					1			1				
Lane Width (m)					3.6			3.6				
Walking Speed (m/s)					1.0			1.0				
Percent Blockage					0			0				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	146			69			277	255	70	258	255	146
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	146			69			277	255	70	258	255	146
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	99			100			100	100	100	100	100	98
cM capacity (veh/h)	1436			1530			651	639	991	684	639	901
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	86	148	5	22								
Volume Left	18	2	2	0								
Volume Right	0	0	3	22								
cSH	1436	1530	820	901								
Volume to Capacity	0.01	0.00	0.01	0.02								
Queue Length 95th (m)	0.3	0.0	0.1	0.6								
Control Delay (s)	1.7	0.1	9.4	9.1								
Lane LOS	А	А	А	А								
Approach Delay (s)	1.7	0.1	9.4	9.1								
Approach LOS			А	А								
Intersection Summary												
Average Delay			1.6									
Intersection Capacity Utilization			24.4%	IC	U Level of Se	ervice			A			
Analysis Period (min)			15									

2024 Projected Conditions 3: Bobolink & Livery

	≯	-	←	•	1	-
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1		M	
Traffic Volume (veh/h)	38	25	42	6	5	87
Future Volume (Veh/h)	38	25	42	6	5	87
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	42	28	47	7	6	97
Pedestrians					3	
Lane Width (m)					3.6	
Walking Speed (m/s)					1.0	
Percent Blockage					0	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX. platoon unblocked						
vC, conflicting volume	57				166	54
vC1. stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	57				166	54
tC, single (s)	4.1				6.4	6.2
tC. 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	97				99	90
cM capacity (veh/h)	1543				800	1011
Direction Long #	ED 1	\M/D 1	CD 1			-
			102			
	70	54	103			
Volume Left	42	0	0			
	0	1	97			
CSH	1543	1700	995			
Volume to Capacity	0.03	0.03	0.10			
Queue Length 95th (m)	0.7	0.0	2.8			
Control Delay (s)	4.5	0.0	9.0			
Lane LOS	A	0.0	A			
Approach Delay (s)	4.5	0.0	9.0			
Approach LOS			A			
Intersection Summary						
Average Delay			5.5			
Intersection Capacity Utilization			22.9%	ICL	J Level of S	ervice
Analysis Period (min)			15			

AM.syn

2024 Projected Conditions 4: Livery & Site Driveway/Ginseng

4: Livery & Site Driveway/	Ginseng											AM.syn
	۶	-	\mathbf{i}	4	-	*	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	3	0	5	0	0	0	2	42	0	0	87	1
Future Volume (Veh/h)	3	0	5	0	0	0	2	42	0	0	87	1
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	3	0	6	0	0	0	2	47	0	0	97	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	148	148	98	154	149	47	98			47		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	148	148	98	154	149	47	98			47		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	99	100	100	100	100			100		
cM capacity (veh/h)	819	742	959	806	742	1022	1495			1560		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	9	0	49	98								
Volume Left	3	0	2	0								
Volume Right	6	0	0	1								
cSH	907	1700	1495	1560								
Volume to Capacity	0.01	0.00	0.00	0.00								
Queue Length 95th (m)	0.2	0.0	0.0	0.0								
Control Delay (s)	9.0	0.0	0.3	0.0								
Lane LOS	А	А	А									
Approach Delay (s)	9.0	0.0	0.3	0.0								
Approach LOS	А	А										
Intersection Summary												
Average Delay			0.6									
Intersection Capacity Utilization			14.9%	IC	U Level of S	ervice			А			
Analysis Period (min)			15									

2024 Projected Conditions 5: Robert Grant & Site Driveway

	-	•	†	1	\	ŧ.
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		#	1			
Traffic Volume (veh/h)	0	23	385	4	0	289
Future Volume (Veh/h)	0	23	385	4	0	289
Sign Control	Yield	20	Free		Ű	Free
Grade	0%		0%			0%
Peak Hour Factor	0.90	0.90	0.90	0 90	0.90	0.90
Hourly flow rate (yph)	0.00	26	428	0.00	0.00	321
Pedestrians	Ū	20	420	-	Ū	021
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			NUTIC			
Linstream signal (m)						
pX platoon unblocked						
vC conflicting volume	751	/30			132	
vC1_stage 1_conf_vol	751	400			452	
vC1, stage 1 conf vol						
	751	130			132	
	64	430			432	
tC, single (s) $tC = 2 \operatorname{stage}(s)$	0.4	0.Z			4.1	
(0, 2) stage (s)	2 5	2.2			2.2	
(3)	3.5 100	3.3			2.2	
p0 queue nee %	100	90			1100	
civi capacity (ven/n)	370	020			1120	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	26	432	321			
Volume Left	0	0	0			
Volume Right	26	4	0			
cSH	625	1700	1700			
Volume to Capacity	0.04	0.25	0.19			
Queue Length 95th (m)	1.0	0.0	0.0			
Control Delay (s)	11.0	0.0	0.0			
Lane LOS	В					
Approach Delay (s)	11.0	0.0	0.0			
Approach LOS	В					
Intersection Summarv						
Average Delay			0.4			
Intersection Canacity Utilization			31.6%	ICI	LL evel of Serv	vice
Analysis Period (min)			15	100		
			15			

AM.syn

Internetion				
Intersection Delay, aluah	 			
Intersection Delay, s/ven	0.0			
Intersection LOS	A			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	90	129	371	500
Demand Flow Rate, veh/h	92	131	378	510
Vehicles Circulating, veh/h	500	349	252	85
Vehicles Exiting, veh/h	95	281	340	395
Follow-Up Headway, s	3.186	3.186	3.186	3.186
Ped Vol Crossing Leg, #/h	1	2	0	2
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	6.9	6.3	9.5	9.4
Approach LOS	A	А	A	А
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Lane Util Critical Headway, s	1.000 5.193	1.000 5.193	1.000 5.193	1.000 5.193
Lane Util Critical Headway, s Entry Flow, veh/h	1.000 5.193 92	1.000 5.193 131	1.000 5.193 378	1.000 5.193 510
Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	1.000 5.193 92 685	1.000 5.193 131 797	1.000 5.193 378 878	1.000 5.193 510 1038
Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor	1.000 5.193 92 685 0.976	1.000 5.193 131 797 0.984	1.000 5.193 378 878 0.981	1.000 5.193 510 1038 0.980
Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	1.000 5.193 92 685 0.976 90	1.000 5.193 131 797 0.984 129	1.000 5.193 378 878 0.981 371	1.000 5.193 510 1038 0.980 500
Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	1.000 5.193 92 685 0.976 90 669	1.000 5.193 131 797 0.984 129 784	1.000 5.193 378 878 0.981 371 861	1.000 5.193 510 1038 0.980 500 1017
Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	1.000 5.193 92 685 0.976 90 669 0.134	1.000 5.193 131 797 0.984 129 784 0.164	1.000 5.193 378 878 0.981 371 861 0.430	1.000 5.193 510 1038 0.980 500 1017 0.492
Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	1.000 5.193 92 685 0.976 90 669 0.134 6.9	1.000 5.193 131 797 0.984 129 784 0.164 6.3	1.000 5.193 378 878 0.981 371 861 0.430 9.5	1.000 5.193 510 1038 0.980 500 1017 0.492 9.4
Lane Util Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh LOS	1.000 5.193 92 685 0.976 90 669 0.134 6.9 A	1.000 5.193 131 797 0.984 129 784 0.164 6.3 A	1.000 5.193 378 878 0.981 371 861 0.430 9.5 A	1.000 5.193 510 1038 0.980 500 1017 0.492 9.4 A

2024 Projected Conditions 2: Shinny/Site Driveway & Bobolink

2: Shinny/Site Driveway &	Bobolink											PM.syn
	≯	+	\mathbf{F}	4	-	•	•	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	29	136	8	4	96	0	4	0	5	0	0	12
Future Volume (Veh/h)	29	136	8	4	96	0	4	0	5	0	0	12
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	32	151	9	4	107	0	4	0	6	0	0	13
Pedestrians					1			1				
Lane Width (m)					3.6			3.6				
Walking Speed (m/s)					1.0			1.0				
Percent Blockage					0			0				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC. conflicting volume	107			161			348	336	158	342	340	107
vC1. stage 1 conf vol												-
vC2, stage 2 conf vol												
vCu, unblocked vol	107			161			348	336	158	342	340	107
tC. single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC. 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	98			100			99	100	99	100	100	99
cM capacity (veh/h)	1484			1417			586	570	886	596	567	947
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	192	111	10	13								
Volume Left	32	4	4	0								
Volume Right	9	0	6	13								
cSH	1484	1417	735	947								
Volume to Capacity	0.02	0.00	0.01	0.01								
Queue Length 95th (m)	0.5	0.1	0.3	0.3								
Control Delay (s)	1.4	0.3	10.0	8.9								
Lane LOS	А	А	А	А								
Approach Delay (s)	1.4	0.3	10.0	8.9								
Approach LOS			А	А								
Intersection Summary												
Average Delay			1.6									
Intersection Capacity Utilization			27.9%	IC	U Level of Se	ervice			А			
Analysis Period (min)			15									

2024 Projected Conditions 3: Bobolink & Livery

	≯	-	-	•	×	-
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	↑.		M	-
Traffic Volume (veh/h)	87	50	25	5	5	70
Future Volume (Veh/h)	87	50	25	5	5	70
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	97	56	28	6	6	78
Pedestrians		3			5	
Lane Width (m)		3.6			3.6	
Walking Speed (m/s)		10			10	
Percent Blockage		0			1	
Right turn flare (veh)		v				
Median type		None	None			
Median storage veh)		10110	TONO			
Unstream signal (m)						
nX platoon unblocked						
vC conflicting volume	39				286	39
vC1_stage 1 conf vol	00				200	00
vC2 stage 2 conf vol						
	39				286	39
tC single (s)	/ 1				6.4	6.2
tC, single (s)	4.1				0.4	0.2
tE (c)	2.2				35	33
$p_{0}^{(s)}$	2.2				00	02
oM capacity (vob/b)	1563				99 657	92 1024
civi capacity (ven/n)	1505				037	1024
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	153	34	84			
Volume Left	97	0	6			
Volume Right	0	6	78			
cSH	1563	1700	985			
Volume to Capacity	0.06	0.02	0.09			
Queue Length 95th (m)	1.6	0.0	2.2			
Control Delay (s)	4.9	0.0	9.0			
Lane LOS	A		A			
Approach Delay (s)	4.9	0.0	9.0			
Approach LOS			A			
Intersection Summary						
Average Delay			5.6			
Intersection Canacity Litilization			27.1%	ICI	III evel of S	ervice
Analysis Period (min)			15			0.1100

PM.syn

2024 Projected Conditions 4: Livery & Site Driveway/Ginseng

4: Livery & Site Driveway/	Ginseng											PM.syn
	≯	+	\mathbf{F}	4	+	*	•	1	1	\mathbf{F}	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			.	
Traffic Volume (veh/h)	2	0	3	0	0	0	4	88	0	0	72	2
Future Volume (Veh/h)	2	0	3	0	0	0	4	88	0	0	72	2
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	2	0	3	0	0	0	4	98	0	0	80	2
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	187	187	81	190	188	98	82			98		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	187	187	81	190	188	98	82			98		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	100	100	100	100			100		
cM capacity (veh/h)	772	706	979	766	705	958	1515			1495		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	5	0	102	82								
Volume Left	2	0	4	0								
Volume Right	3	0	0	2								
cSH	884	1700	1515	1495								
Volume to Capacity	0.01	0.00	0.00	0.00								
Queue Length 95th (m)	0.1	0.0	0.1	0.0								
Control Delay (s)	9.1	0.0	0.3	0.0								
Lane LOS	А	А	А									
Approach Delay (s)	9.1	0.0	0.3	0.0								
Approach LOS	А	А										
Intersection Summary												
Average Delay			0.4									
Intersection Capacity Utilization			18.3%	IC	U Level of S	ervice			А			
Analysis Period (min)			15									

2024 Projected Conditions 5: Robert Grant & Site Driveway

	1	•	1	1	1	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		*	Λ.			
Traffic Volume (veh/h)	0	14	418	7	0	457
Future Volume (Veh/h)	0	14	418	7	0	457
Sign Control	Yield		Free	•	,	Free
Grade	0%		0%			0%
Peak Hour Factor	0.90	0.90	0.90	0 90	0.90	0.90
Hourly flow rate (vph)	0.00	16	464	8	0.00	508
Pedestrians	Ū	10	TOT	Ū	Ū	000
Lane Width (m)						
Walking Spood (m/s)						
Percent Plackage						
Pight turn flare (voh)						
Median type			Nono			Nono
Median storage yeb			None			NOTIE
opsiream signal (m)						
pA, platoon unblocked	070	400			470	
vC, conflicting volume	976	468			472	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol		100			(=0	
vCu, unblocked vol	976	468			4/2	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	97			100	
cM capacity (veh/h)	279	595			1090	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	16	472	508			
Volume Left	0	0	0			
Volume Right	16	8	0			
cSH	595	1700	1700			
Volume to Capacity	0.03	0.28	0.30			
Queue Length 95th (m)	0.7	0.0	0.0			
Control Delay (s)	11.2	0.0	0.0			
Lane LOS	B	0.0	0.0			
Approach Delay (s)	11.2	0.0	0.0			
Approach LOS	В	0.0	0.0			
Intersection Summary						
Average Delay			0.2			
Intersection Canacity Utilization			33 7%			vico
Intersection Capacity Offization			33.1%	ICC	J Level of Ser	vice
Analysis Period (min)			15			

PM.syn

Intersection				
Intersection Delay, s/veh	7.2			
Intersection LOS	А			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	85	169	343	331
Demand Flow Rate, veh/h	86	173	351	338
Vehicles Circulating, veh/h	372	379	143	111
Vehicles Exiting, veh/h	77	115	315	441
Follow-Up Headway, s	3.186	3.186	3.186	3.186
Ped Vol Crossing Leg, #/h	3	1	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	5.8	7.3	7.6	7.1
Approach LOS	А	А	А	А
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Critical Headway, s	5.193	5.193	5.193	5.193
Entry Flow, veh/h	86	173	351	338
Cap Entry Lane, veh/h	779	773	979	1011
Entry HV Adj Factor	0.988	0.977	0.978	0.979
Flow Entry, veh/h	85	169	343	331
Cap Entry, veh/h	769	755	958	990
V/C Ratio	0.110	0.224	0.358	0.334
Control Delay, s/veh	5.8	7.3	7.6	7.1
LOS	А	A	А	А
95th %tile Queue, veh	0	1	2	1

2029 Projected Conditions 2: Shinny/Site Driveway & Bobolink

2: Shinny/Site Driveway &	Bobolink											AM.syn
	۶	+	\mathbf{F}	4	+	•	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	16	61	0	2	131	0	2	0	3	0	0	20
Future Volume (Veh/h)	16	61	0	2	131	0	2	0	3	0	0	20
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	18	68	0	2	146	0	2	0	3	0	0	22
Pedestrians					1			1				
Lane Width (m)					3.6			3.6				
Walking Speed (m/s)					1.0			1.0				
Percent Blockage					0			0				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX platoon unblocked												
vC conflicting volume	146			69			277	255	70	258	255	146
vC1_stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	146			69			277	255	70	258	255	146
tC single (s)	4 1			4 1			71	6.5	62	71	6.5	6.2
tC. 2 stage (s)												
tF (s)	22			22			35	4 0	33	35	4 0	33
p0 queue free %	99			100			100	100	100	100	100	98
cM capacity (veh/h)	1436			1530			651	639	991	684	639	901
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	86	148	5	22								
Volume Left	18	2	2	0								
Volume Right	0	0	3	22								
cSH	1436	1530	820	901								
Volume to Capacity	0.01	0.00	0.01	0.02								
Queue Length 95th (m)	0.3	0.0	0.1	0.6								
Control Delay (s)	1.7	0.1	9.4	9.1								
Lane LOS	А	А	А	А								
Approach Delay (s)	1.7	0.1	9.4	9.1								
Approach LOS			А	А								
Intersection Summary												
Average Delay			1.6									
Intersection Capacity Utilization			24.4%	IC	U Level of Se	rvice			А			
Analysis Period (min)			15									

2029 Projected Conditions 3: Bobolink & Livery

	≯	-	←	•	1	-
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1		M	
Traffic Volume (veh/h)	38	25	42	6	5	87
Future Volume (Veh/h)	38	25	42	6	5	87
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	42	28	47	7	6	97
Pedestrians					3	
Lane Width (m)					3.6	
Walking Speed (m/s)					1.0	
Percent Blockage					0	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (m)						
pX. platoon unblocked						
vC, conflicting volume	57				166	54
vC1. stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	57				166	54
tC, single (s)	4.1				6.4	6.2
tC. 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	97				99	90
cM capacity (veh/h)	1543				800	1011
Direction Long #	ED 1	\M/D 1	CD 1			-
			102			
	70	54	103			
Volume Left	42	0	0			
	0	1	97			
CSH	1543	1700	995			
Volume to Capacity	0.03	0.03	0.10			
Queue Length 95th (m)	0.7	0.0	2.8			
Control Delay (s)	4.5	0.0	9.0			
Lane LOS	A	0.0	A			
Approach Delay (s)	4.5	0.0	9.0			
Approach LOS			A			
Intersection Summary						
Average Delay			5.5			
Intersection Capacity Utilization			22.9%	ICL	J Level of S	ervice
Analysis Period (min)			15			

AM.syn

2029 Projected Conditions 4: Livery & Site Driveway/Ginseng

4: Livery & Site Driveway/	Ginseng											AM.syn
	۶	-	\mathbf{i}	•	-	*	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	3	0	5	0	0	0	2	42	0	0	87	1
Future Volume (Veh/h)	3	0	5	0	0	0	2	42	0	0	87	1
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	3	0	6	0	0	0	2	47	0	0	97	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	148	148	98	154	149	47	98			47		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	148	148	98	154	149	47	98			47		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	99	100	100	100	100			100		
cM capacity (veh/h)	819	742	959	806	742	1022	1495			1560		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	9	0	49	98								
Volume Left	3	0	2	0								
Volume Right	6	0	0	1								
cSH	907	1700	1495	1560								
Volume to Capacity	0.01	0.00	0.00	0.00								
Queue Length 95th (m)	0.2	0.0	0.0	0.0								
Control Delay (s)	9.0	0.0	0.3	0.0								
Lane LOS	А	А	А									
Approach Delay (s)	9.0	0.0	0.3	0.0								
Approach LOS	А	А										
Intersection Summary												
Average Delay			0.6									
Intersection Capacity Utilization			14.9%	IC	U Level of S	ervice			А			
Analysis Period (min)			15									

2029 Projected Conditions 5: Robert Grant & Site Driveway

Alvi.5yii

	4	•	1	1	1	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	#	↑.		~~L	
Traffic Volume (veh/h)	0	23	417	4	0	311
Future Volume (Veh/h)	0	23	417	т Л	0	311
Sign Control	Yield	20	Free	т	U	Free
Grado	0%		0%			0%
Blade Dook Hour Foster	0 /0	0.00	0.00	0.00	0.00	0 /0
Hourly flow rate (uph)	0.90	0.90	0.90	0.90	0.90	246
Houriy now rate (vpri)	0	20	403	4	0	340
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	811	465			467	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	811	465			467	
tC, single (s)	6.4	6.2			4.1	
tC. 2 stage (s)		-				
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	96			100	
cM capacity (veh/h)	349	597			1094	
	0.0	001			1001	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	26	467	346			
Volume Left	0	0	0			
Volume Right	26	4	0			
cSH	597	1700	1700			
Volume to Capacity	0.04	0.27	0.20			
Queue Length 95th (m)	1.1	0.0	0.0			
Control Delay (s)	11.3	0.0	0.0			
Lane LOS	B					
Approach Delay (s)	11.3	0.0	0.0			
Approach LOS	B	0.0	0.0			
Interpretion Cummers	_					
Intersection Summary			0.1			
Average Delay			0.4			
Intersection Capacity Utilization			33.4%	ICL	J Level of Serv	ice
Analysis Period (min)			15			

Intersection				
Intersection Delay, s/veh	9.2			
Intersection LOS	А			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	90	129	390	522
Demand Flow Rate, veh/h	92	131	398	532
Vehicles Circulating, veh/h	522	369	252	85
Vehicles Exiting, veh/h	95	281	362	415
Follow-Up Headway, s	3.186	3.186	3.186	3.186
Ped Vol Crossing Leg, #/h	1	2	0	2
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	7.1	6.5	9.9	9.8
Approach LOS	А	A	А	А
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Critical Headway, s	5.193	5.193	5.193	5.193
Entry Flow, veh/h	92	131	398	532
Cap Entry Lane, veh/h	670	781	878	1038
Entry HV Adj Factor	0.976	0.984	0.981	0.980
Flow Entry, veh/h	90	129	390	522
Cap Entry, veh/h	654	768	861	1017
V/C Ratio	0.137	0.168	0.453	0.513
Control Delay, s/veh	7.1	6.5	9.9	9.8
LOS	A	А	A	А
95th %tile Queue, veh	0	1	2	3

2029 Projected Conditions 2: Shinny/Site Driveway & Bobolink

2: Shinny/Site Driveway &	Bobolink											PM.syn
	۶	+	\mathbf{F}	4	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	29	136	8	4	96	0	4	0	5	0	0	12
Future Volume (Veh/h)	29	136	8	4	96	0	4	0	5	0	0	12
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	32	151	9	4	107	0	4	0	6	0	0	13
Pedestrians					1			1				
Lane Width (m)					3.6			3.6				
Walking Speed (m/s)					1.0			1.0				
Percent Blockage					0			0				
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	107			161			348	336	158	342	340	107
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	107			161			348	336	158	342	340	107
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	98			100			99	100	99	100	100	99
cM capacity (veh/h)	1484			1417			586	570	886	596	567	947
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	192	111	10	13								
Volume Left	32	4	4	0								
Volume Right	9	0	6	13								
cSH	1484	1417	735	947								
Volume to Capacity	0.02	0.00	0.01	0.01								
Queue Length 95th (m)	0.5	0.1	0.3	0.3								
Control Delay (s)	1.4	0.3	10.0	8.9								
Lane LOS	А	А	А	А								
Approach Delay (s)	1.4	0.3	10.0	8.9								
Approach LOS			А	А								
Intersection Summary												
Average Delay			1.6									
Intersection Capacity Utilization			27.9%	IC	U Level of Ser	vice			А			
Analysis Period (min)			15									

2029 Projected Conditions 3: Bobolink & Livery

	≯	-	-	•	×	-
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	↑.		M	-
Traffic Volume (veh/h)	87	50	25	5	5	70
Future Volume (Veh/h)	87	50	25	5	5	70
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	97	56	28	6	6	78
Pedestrians		3			5	
Lane Width (m)		3.6			3.6	
Walking Speed (m/s)		10			10	
Percent Blockage		0			1	
Right turn flare (veh)		v				
Median type		None	None			
Median storage veh)		10110	TONO			
Unstream signal (m)						
nX platoon unblocked						
vC conflicting volume	39				286	39
vC1_stage 1 conf vol	00				200	00
vC2 stage 2 conf vol						
	39				286	39
tC single (s)	/ 1				6.4	6.2
tC, single (s)	4.1				0.4	0.2
tE (c)	2.2				35	33
$p_{0}^{(s)}$	2.2				00	02
oM capacity (vob/b)	1563				99 657	92 1024
	1505				037	1024
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	153	34	84			
Volume Left	97	0	6			
Volume Right	0	6	78			
cSH	1563	1700	985			
Volume to Capacity	0.06	0.02	0.09			
Queue Length 95th (m)	1.6	0.0	2.2			
Control Delay (s)	4.9	0.0	9.0			
Lane LOS	A		A			
Approach Delay (s)	4.9	0.0	9.0			
Approach LOS			A			
Intersection Summary						
Average Delay			5.6			
Intersection Canacity Litilization			27.1%	ICI	III evel of S	ervice
Analysis Period (min)			15			0.1100

PM.syn

2029 Projected Conditions 4: Livery & Site Driveway/Ginseng

4: Livery & Site Driveway/	Ginseng											PM.syn
	≯	+	\mathbf{F}	4	+	*	•	1	1	\mathbf{F}	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			ala.	
Traffic Volume (veh/h)	2	0	3	0	0	0	4	88	0	0	72	2
Future Volume (Veh/h)	2	0	3	0	0	0	4	88	0	0	72	2
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	2	0	3	0	0	0	4	98	0	0	80	2
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	187	187	81	190	188	98	82			98		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	187	187	81	190	188	98	82			98		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	100	100	100	100			100		
cM capacity (veh/h)	772	706	979	766	705	958	1515			1495		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	5	0	102	82								
Volume Left	2	0	4	0								
Volume Right	3	0	0	2								
cSH	884	1700	1515	1495								
Volume to Capacity	0.01	0.00	0.00	0.00								
Queue Length 95th (m)	0.1	0.0	0.1	0.0								
Control Delay (s)	9.1	0.0	0.3	0.0								
Lane LOS	А	А	А									
Approach Delay (s)	9.1	0.0	0.3	0.0								
Approach LOS	А	А										
Intersection Summary												
Average Delay			0.4									
Intersection Capacity Utilization			18.3%	IC	U Level of S	ervice			А			
Analysis Period (min)			15									

2029 Projected Conditions 5: Robert Grant & Site Driveway

	1	•	1	1	1	Ļ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		*	↑.			٠
Traffic Volume (veh/h)	0	14	446	7	0	491
Future Volume (Veh/h)	0	14	446	7	0	491
Sign Control	Yield		Free	•	Ū	Free
Grade	0%		0%			0%
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0.00	16	496	8	0.00	546
Pedestrians	Ū	10	100	Ŭ	Ū	010
Lane Width (m)						
Walking Speed (m/s)						
Porcent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage yeb)			NOTE			NULLE
Upstroom signal (m)						
pA, platoon unblocked	1040	500			504	
	1040	500			504	
VC1, stage 1 conf vol						
VC2, stage 2 cont vol	1010	500			504	
vCu, unblocked vol	1046	500			504	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	97			100	
cM capacity (veh/h)	253	571			1061	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	16	504	546			
Volume Left	0	0	0			
Volume Right	16	8	0			
cSH	571	1700	1700			
Volume to Capacity	0.03	0.30	0.32			
Queue Length 95th (m)	0.7	0.0	0.0			
Control Delay (s)	11.5	0.0	0.0			
Lane LOS	B	0.0	0.0			
Approach Delay (s)	11.5	0.0	0.0			
Approach LOS	В	0.0	0.0			
Intersection Summary						
Average Delev			0.0			
Interpretion Connective Little-attion			0.Z 25.20/		L aval of Com	ino
Intersection Capacity Ounzation			30.2%	ICL	J Level of Ser	lice
Analysis Period (min)			15			

PM.syn

Appendix E

Transportation Demand Management (TDM) Strategies

Introduction

The City of Ottawa's *Transportation Impact Assessment (TIA) Guidelines* (specifically Module 4.1—Development Design) requires proponents of qualifying developments to use the City's **TDM-Supportive Development Design and Infrastructure Checklist** to assess the opportunity to implement design elements that are supportive of sustainable modes. The goal of this assessment is to ensure that the development provides safe and efficient access for all users, while creating an environment that encourages walking, cycling and transit use.

The remaining sections of this document are:

- Using the Checklist
- Glossary
- TDM-Supportive Development Design and Infrastructure Checklist: Non-Residential Developments
- TDM-Supportive Development Design and Infrastructure Checklist: Residential Developments

Readers are encouraged to contact the City of Ottawa's TDM Officer for any guidance and assistance they require to complete this checklist.

Using the Checklist

This **TDM-Supportive Development Design and Infrastructure Checklist** document includes two actual checklists, one for non-residential developments (office, institutional, retail or industrial) and one for residential developments (multi-family or condominium only; subdivisions are exempt). Readers may download the applicable checklist in electronic format and complete it electronically, or print it out and complete it by hand. As an alternative, they may create a freestanding document that lists the design and infrastructure measures being proposed and provides additional detail on them.

Each measure in the checklist is numbered for easy reference. Each measure is also flagged as:

- REQUIRED The Official Plan or Zoning By-law provides related guidance that must be followed.
- **BASIC** —The measure is generally feasible and effective, and in most cases would benefit the development and its users.
- **BETTER** —The measure could maximize support for users of sustainable modes, and optimize development performance.

Glossary

This glossary defines and describes the following measures that are identified in the **TDM-Supportive Development Design and Infrastructure Checklist**:

Walking & cycling: Routes

- Building location & access points
- Facilities for walking & cycling
- Amenities for walking & cycling

Walking & cycling: End-of-trip facilities

- Bicycle parking
- Secure bicycle parking
- Shower & change facilities
- Bicycle repair station

Transit

- Walking routes to transit
- Customer amenities

Ridesharing

- Pick-up & drop-off facilities
- Carpool parking

Carsharing & bikesharing

- Carshare parking spaces
- Bikeshare station location

Parking

- Number of parking spaces
- Separate long-term & short-term parking areas

Other

• On-site amenities to minimize off-site trips

In addition to specific references made in this glossary, readers should consult the City of Ottawa's design and planning guidelines for a variety of different land uses and contexts, available on the City's website at www.ottawa.ca. Readers may also find the following resources to be helpful:

- Promoting Sustainable Transportation through Site Design, Institute of Transportation Engineers, 2004 (www.cite7.org/wpdm-package/iterp-promoting-sustainable-transportation)
- Bicycle End-of-Trip Facilities: A Guide for Canadian Municipalities and Employers, Transport Canada, 2010 (www.fcm.ca/Documents/tools/GMF/Transport_Canada/BikeEndofTrip_EN.pdf)

Walking & cycling: Routes

Building location & access points. Correctly positioning buildings and their entrances can help make walking convenient, comfortable and safe. Minimizing travel distances and maximizing visibility are key.

Facilities for walking & cycling. The Official Plan gives clear direction on the provision and design of walking and cycling facilities for both access and circulation. On larger, busier sites (e.g. multi-building campuses) the inclusion of sidewalks, pathways, marked crossings, stop signs and traffic calming features can create a safer and more supportive environment for active transportation.

Amenities for walking & cycling. Lighting, landscaping, benches and wayfinding can make walking and cycling safer and more secure, comfortable and accessible.

Walking & cycling: End-of-trip facilities

Bicycle parking. The Official Plan and Zoning By-law both address the need for adequate bicycle parking at developments. Weather protection and theft prevention are major concerns for commuters who spend hundreds or thousands of dollars on a quality bicycle. Bicycle racks should have a design that enables secure locking while preventing damage to wheels. They should be located within sight of busy areas such as main building entrances or staffed parking kiosks.

Secure bicycle parking. Ottawa's Zoning By-law requires a secure area for bicycles at office or residential developments having more than 50 bicycle parking spaces. Lockable outdoor bike cages or indoor storage rooms that limit access to registered users are ideal.

Shower & change facilities. Longer-distance cyclists, joggers and even pedestrians can need a place to shower and change at work; the lack of such facilities is a major barrier to active commuting. Lockers and drying racks provide a place to store gear away from workspaces, and showers and grooming stations allow commuters to make themselves presentable for the office.

Bicycle repair station. Cycling commuters can experience maintenance issues that make the homeward trip difficult or impossible. A small supply of tools (e.g. air pump, Allen keys, wrenches) and supplies (e.g. inner tube patches, chain lubricant) in the workplace can help.

Transit

Customer amenities. Larger developments that feature an on-site transit stop can make transit use more attractive by providing shelters, lighting and benches. Even better, they could integrate the passenger waiting area into a building entrance.

Ridesharing

Pick-up & drop-off facilities. Having a safe place to load or unload passengers (for carpools as well as taxis and ride-hailing services) without obstructing pedestrians, cyclists or other vehicles can help make carpooling work.

Carpool parking. At destinations with large parking lots (or lots that regularly fill to capacity), signed priority carpool parking spaces can be an effective ridesharing incentive. Priority spaces are frequently abused by non-carpoolers, so a system to provide registered users with vehicle identification tags is recommended.

Carsharing & bikesharing

Carshare parking spaces. For developments where carsharing could be an attractive option for employees, visitors or residents, ensuring an attractive location for future carshare parking spaces can avoid challenges associated with future retrofits.

Bikeshare station location. For developments where bikesharing could be an attractive option for employees, visitor or residents, ensuring an attractive location for a future bikeshare station can avoid challenges associated with future retrofits.

Parking

Number of parking spaces. Parking capacity is an important variable in development design, as it can either support or subvert the mode share targets set during the transportation impact analysis (TIA). While the Zoning By-law establishes any minimum and/or maximum requirements for parking capacity, it also allows a reduction in any minimum to reflect the existence of on-site shower, change and locker rooms provided for cyclists.

Separate long-term & short-term parking areas. Because access to unused parking spaces can be a powerful incentive to drive, developments can better manage their parking supply and travel behaviours by separating long-term from short-term parking through the use of landscaping, gated controls or signs. Doing so makes it difficult for long-term parkers (e.g. commuters) to park in short-term areas (e.g. for visitors) as long as enforcement occurs; it also protects long-term parking capacity for its intended users.

Other

On-site amenities to minimize off-site trips. Developments that offer facilities to limit employees' need for a car during their commute (e.g. to drop off children at daycare) or during their workday (e.g. to hit the gym) can free employees to make the commuting decision that otherwise works best for them.

TDM-Supportive Development Design and Infrastructure Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

	Legend
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance

TDM-supportive design & infrastructure measures: Non-residential developments			Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official <i>Plan policy 4.3.12</i>)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and on- road cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well- used areas (see Zoning By-law Section 111)	
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored <i>(see Zoning By-law Section 111)</i>	
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	
	2.3	Shower & change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	
	2.4	Bicycle repair station	
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	

TDM-supportive design & infrastructure measures: Non-residential developments			Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non- residential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	

TDM-supportive design & infrastructure measures: Non-residential developments			Check if completed & add descriptions, explanations or plan/drawing references
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly <i>(see Zoning By-law</i> <i>Section 104)</i>	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking <i>(see Zoning By-law Section 111)</i>	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	
	7.	OTHER	
	7.1	On-site amenities to minimize off-site trips	
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands	

TDM-Supportive Development Design and Infrastructure Checklist: *Residential Developments (multi-family or condominium)*

Legend		
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed	
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users	
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance	

TDM-supportive design & infrastructure measures: Residential developments			Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	\checkmark
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	\checkmark
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official <i>Plan policy 4.3.12</i>)	

	TDM-s	upportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	\checkmark
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and on- road cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	\square
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	\checkmark
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	\checkmark
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	\checkmark
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

	TDM-s	upportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	\checkmark
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well- used areas (<i>see Zoning By-law Section 111</i>)	
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored <i>(see Zoning By-law Section 111)</i>	\checkmark
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of resident-owned bicycles, plus the expected peak number of visitor cyclists	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to at least the number of units at condominiums or multi- family residential developments	
	2.3	Bicycle repair station	
BETTER	2.3.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	
	TDM-s	upportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
----------	-------	---	--
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses <i>(see Zoning By-law Section 94)</i>	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	\checkmark
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly <i>(see Zoning By-law</i> <i>Section 104)</i>	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking <i>(see Zoning By-law Section 111)</i>	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa)	

Segment MMLOS

SEGMENTS		105	Robert Grant	Bobolink	Bobolink EB	Bobolink WB	Livery NB	Livery SB
		LOO	Site Drwy/Bobo	Robert/Site Drwy	Site Drwy/Livery	Site Drwy/Livery	Bobo/Site Drwy	Bobo/Site Drwy
	Sidewalk Width Boulevard Width		≥ 2 m > 2 m	≥ 2 m < 0.5	no sidewalk n/a	≥ 2 m < 0.5	no sidewalk n/a	≥ 2 m < 0.5
	Avg Daily Curb Lane Traffic Volume		> 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000	≤ 3000
rian	Operating Speed On-Street Parking		> 50 to 60 km/h no	> 30 to 50 km/h yes				
sti	Exposure to Traffic PLoS	С	С	В	F	В	F	В
qe	Effective Sidewalk Width	Ŭ	2.0 m	2.0 m		2.0 m		2.0 m
Ъе	Pedestrian Volume		250 ped/hr	250 ped/hr		250 ped/hr		250 ped/hr
	Crowding PLoS		В	В	-	В	-	В
	Level of Service		С	В	-	В	-	В
	Type of Cycling Facility		Physically Separated	Mixed Traffic				
	Number of Travel Lanes			≤ 2 (no centreline)	≤ 2 (no centreline)	≤ 2 (no centreline)	≤ 2 (no centreline)	≤ 2 (no centreline)
	Operating Speed			≤ 40 km/h				
	# of Lanes & Operating Speed LoS		-	А	А	А	Α	Α
e	Bike Lane (+ Parking Lane) Width							
- S	Bike Lane Width LoS	Α	-	-	-	-	-	-
Bic	Bike Lane Blockages							
	Blockage LoS		-	-	-	-	-	-
	Median Refuge Width (no median = < 1.8 m)			< 1.8 m refuge				
	No. of Lanes at Unsignalized Crossing			≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	\leq 3 lanes
	Sidestreet Operating Speed			≤ 40 km/n				
	Unsignalized Crossing - Lowest Los		<u>^</u>	<u>A</u>	A	A	A	A
	Level of Service		Α	A	Α	Α	A	Α
ij	Facility Type							
Trans	Friction or Ratio Transit:Posted Speed	D	Vt/Vp ≥ 0.8					
	Level of Service		D	-	-	-	-	-
	Truck Lane Width		> 3.7 m	> 3.7 m	> 3.7 m	> 3.7 m	> 3.7 m	> 3.7 m
ICK	Travel Lanes per Direction	D	1	1	1	1	1	1
Tru	Level of Service	В	В	В	В	В	В	В

Collision Analysis

Total Area

Classification of Accident	01 - Approaching	02 - Angle	03 - Rear end	04 - Sideswipe	05 - Turning movement	06 - SMV unattended vehicle	07 - SMV other	99 - Other	Total	
03 - P.D. only	0	3	0	0	0	0	0	0	3	100%
02 - Non-fatal injury	0	0	0	0	0	0	0	0	0	0%
01 - Fatal injury	0	0	0	0	0	0	0	0	0	0%
Total	0	3	0	0	0	0	0	0	3	100%
	#2 or 0%	#1 or 100%	#2 or 0%	#2 or 0%	#2 or 0%	#2 or 0%	#2 or 0%	#2 or 0%		-

BOBOLINK RDG @ ROBERT GRANT AVE

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2017-2019	2	4,860	1095	0.38

Classification of Accident	01 - Approaching	02 - Angle	03 - Rear end	04 - Sideswipe	05 - Turning movement	06 - SMV unattended vehicle	07 - SMV other	99 - Other	Total	
03 - P.D. only	0	2	0	0	0	0	0	0	2	100%
02 - Non-fatal injury	0	0	0	0	0	0	0	0	0	0%
01 - Fatal injury	0	0	0	0	0	0	0	0	0	0%
Total	0	2	0	0	0	0	0	0	2	100%
	0%	100%	0%	0%	0%	0%	0%	0%		

BOBOLINK RDG @ LIVERY ST

2017-2019 1 1.088 1095 0.84	Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
	2017-2019	1	1,088	1095	0.84

Classification of Accident	01 - Approaching	02 - Angle	03 - Rear end	04 - Sideswipe	05 - Turning movement	06 - SMV unattended vehicle	07 - SMV other	99 - Other	Total	
03 - P.D. only	0	1	0	0	0	0	0	0	1	100%
02 - Non-fatal injury	0	0	0	0	0	0	0	0	0	0%
01 - Fatal injury	0	0	0	0	0	0	0	0	0	0%
Total	0	1	0	0	0	0	0	0	1	100%
	0%	100%	0%	0%	0%	0%	0%	0%		

TDM Checklist

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

BASIC The measure is generally feasible and effective, and in most cases would benefit the development and its users

BETTER The measure could maximize support for users of sustainable modes, and optimize development performance

The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC	★ 1.1.1	Designate an internal coordinator, or contract with an external coordinator	On site management; site manage will designate a program coordinate
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	Periodic surveys will be initiated by TDM coordinator
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	stinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	

		TDM	measures: Residential developments	Check if proposed & add descriptions
		3.	TRANSIT	
		3.1	Transit information	
BASIC		3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	Transit schedules will be provided in lobbies and site office
BETTER		3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	
		3.2	Transit fare incentives	
BASIC	*	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	
BETTER		3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	
		3.3	Enhanced public transit service	
BETTER	*	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels <i>(subdivision)</i>	not applicable
		3.4	Private transit service	
BETTER		3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
		4.	CARSHARING & BIKESHARING	
		4.1	Bikeshare stations & memberships	
BETTER		4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)	May be implemented based on tenant demand
BETTER		4.1.2	Provide residents with bikeshare memberships, either free or subsidized <i>(multi-family)</i>	May be implemented based on tenant demand
		4.2	Carshare vehicles & memberships	
BETTER		4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	May be implemented based on tenant demand
BETTER		4.2.2	Provide residents with carshare memberships, either free or subsidized	
		5.	PARKING	
		5.1	Priced parking	
BASIC	*	5.1.1	Unbundle parking cost from purchase price (condominium)	not applicable
BASIC	*	5.1.2	Unbundle parking cost from monthly rent (multi-family)	One parking stall can be included in monthly rent

	TDM	measures: Residential developments	Check if proposed & add descriptions
	6.	TDM MARKETING & COMMUNICATION	S
	6.1	Multimodal travel information	
BASIC 🖈	6.1.1	Provide a multimodal travel option information package to new residents	Welcome package for new tenants will contain transit information, optio
	6.2	Personalized trip planning	at site office.
BETTER	6.2.1	Offer personalized trip planning to new residents	Provided by TDM coordinator

Transit Route Maps

TERRY FOX STITTSVILLE TUNNEY'S PASTURE

7 days a week / 7 jours par semaine

All day service Service toute la journée

INFO 613-741-4390 octranspo.com

TERRY FOX BLACKSTONE

Monday to Friday/ Lundi au vendredi

Selected time periods Périodes selectionnées

plus your four digit bus stop number / plus votre numéro d'arrêt à quatre chiffres

Customer Service Service à la clientèle	613-741-4390
Lost and Found / Objets perdus	613-563-4011
Security / Sécurité	613-741-2478

Effective December 24, 2017 En vigueur 24 décembre 2017

CC Transpo

INFO 613-741-4390 octranspo.com

FERNBANK TUNNEY'S PASTURE

Monday to Friday / Lundi au vendredi

Peak periods only Périodes de pointe seulement

Transitway & Station

Limited stops: Off only in AM / No stop in PM Arrêts limités : Débarquement en AM seul. / Aucun arrêt en PM

AM: Off only - PM: Full Service AM: Débarquement seul. - PM: Service complet

2019.07

Future route after O-Train Line 1 is open Trajet du circuit après l'ouverture de la Ligne 1 de l'O-Train

Lost and Found / Objets perdus..... 613-563-4011 Security / Sécurité 613-741-2478

Transit Ridership Data

Stop No.	Location	Route	Direction	AM (6:00-9:00)			PM (15:00-18:00)			24-HR		
				Boardings	Alightings	Avg Load at Departure	Boardings	Alightings	Avg Load at Departure	Boardings	Alightings	Avg Load at Departure
8493	Cope / Yellowtail	167	SB	-	-	-	0	7	0	0	16	0
		167	NB	4	0	1	2	0	1	10	0	1
		252	OB	-	-	-	0	13	0	0	25	0
		252	IB	15	0	1	-	-	-	16	0	1
1626	Abbott / Iber	62	WB	0	8	1	-	-	-	1	16	1
1646	Iber / Abbott	62	EB	-	-	-	7	1	3	11	2	2
5050	Robert Grant W /	167	NB	0	2	1	0	0	1	1	0	1
	Haliburton Heights	252	IB	9	0	3	-	-	-	0	0	1
5051	Robert Grant E /	167	SB	-	-	-	0	2	1	0	2	1
	Haliburton Heights	252	OB	-	_	-	2	8	2	0	2	2

Winter 2020 (5 Jan 2020 - 7 Mar 2020)

www.jlrichards.ca

Ottawa

864 Lady Ellen Place Ottawa ON Canada K1Z 5M2 Tel: 613 728-3571

ottawa@jlrichards.ca

North Bay

501-555 Oak Street E North Bay ON Canada P1B 8L3 Tel: 705 495-7597

northbay@jlrichards.ca

Kingston

203-863 Princess Street Kingston ON Canada K7L 5N4 Tel: 613 544-1424

kingston@jlrichards.ca

Hawkesbury

326 Bertha Street Hawkesbury ON Canada K6A 2A8 Tel: 613 632-0287

hawkesbury@jlrichards.ca

Sudbury

314 Countryside Drive Sudbury ON Canada P3E 6G2 Tel: 705 522-8174

sudbury@jlrichards.ca

Guelph

107-450 Speedvale Ave. West Guelph ON Canada N1H 7Y6 Tel: 519 763-0713

guelph@jlrichards.ca

JLR Logo is a Registered Trademark ® 2009, all rights are reserved

Timmins

834 Mountjoy Street S Timmins ON Canada P4N 7C5 Tel: 705 360-1899

timmins@jlrichards.ca