Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

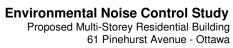
Archaeological Services

patersongroup

Environmental Noise Control Study

Proposed Multi-Storey Residential Building 61 Pinehurst Avenue, Ottawa

Prepared For


Mr. Ali Karimi

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca April 19, 2021

Report: PG5723-1

Table of (Contents	Page
1.0	Introduction	1
2.0	Background	1
3.0	Methodology and Noise Assessment Criteria	2
4.0	Analysis	5
5.0	Results	8
6.0	Discussion and Recommendations 6.1 Outdoor Living Areas	
7.0	Summary of Findings	10
8.0	Statement of Limitations	11

Appendices

Appendix 1 Table 8 - Summary of Reception Points and Geometry

Drawing PG5723-1 - Site Plan

Drawing PG5723-2 - Receptor Location Plan

Drawing PG5723-3 - Site Geometry

Drawing PG5723-3A - Site Geometry (REC 1-1 and REC 1-3)

Drawing PG5723-3B - Site Geometry (REC 2-1 and REC 2-3) Drawing PG5723-3C - Site Geometry (REC 3-1 and REC 3-3)

Drawing PG5723-3D - Site Geometry (REC 4-1 and REC 4-3)

Drawing PG5723-3E - Site Geometry (REC 5)

Appendix 2 STAMSON Results

Proposed Multi-Storey Residential Building 61 Pinehurst Avenue - Ottawa

1.0 Introduction

Paterson Group (Paterson) was commissioned by Mr. Ali Karimi to conduct an environmental noise control study for the proposed residential building to be located at 61 Pinehurst Avenue, in the City of Ottawa.

The objective of the current study is to:

Determine the primary noise sources impacting the site and compare the
projected sound levels to guidelines set out by the Ministry of Environment and
Climate Change (MOECC) and the City of Ottawa.

Review the projected noise levels and offer recommendations regarding warning classes, construction materials or alternative sound barriers.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes acoustical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

This study has been conducted according to City of Ottawa document - Engineering Noise Control Guidelines (ENCG), dated January 2016, and the Ontario Ministry of the Environment Guideline NPC-300.

2.0 Background

It is understood that the proposed project will consist of a three storey residential building. Associated at-grade walkways, parking areas and landscaped areas are also anticipated. A rooftop patio is further anticipated at the building.

3.0 Methodology and Noise Assessment Criteria

The City of Ottawa outlines three (3) sources of environmental noise that must be analyzed separately: Surface Transportation Noise Stationary Noise new noise-sensitive development applications (noise receptors) in proximity to existing or approved stationary sources of noise, and new stationary sources of noise (noise generating) in proximity to existing or approved noise-sensitive developments Aircraft noise **Surface Transportation Noise** The City of Ottawa's Official Plan, in addition to the ENCG dictate that the influence area must contain any of following conditions to classify as a surface transportation noise source for a subject site:

- ☐ Within 100 m of the right-of-way of an existing or proposed arterial, collector or major collector road; a light rail transit corridor; bus rapid transit, or transit priority corridor
- ☐ Within 250 m of the right-of-way for an existing or proposed highway or secondary rail line
- Within 300 m from the right of way of a proposed or existing rail corridor or a secondary main railway line
- ☐ Within 500 m of an existing 400 series provincial highway, freeway or principle main railway line.

The NPC-300 outlines the limitations of the stationary and environmental noise levels in relation to the location of the receptors. These can be found in the following tables:

Table 1 - Sound Level Limits for Outdoor Living Areas							
	Time Period	Required L _{eq(16)} (dBA)					
	16-hour, 7:00-23:00	55					
	Standards taken from Table 2.2a; Sound Rail	Level Limit for Outdoor Living Areas - Road and					

Rail

Table 2 - Sound Level Limits for Indoor Living Area										
Turns of Conses	Time	Required L _{eq} (dBA)								
Type of Space	Period	Road	Rail							
Living/Dining, den areas of residences, hospitals, nursing homes, schools, daycare centres, etc	7:00-23:00	45	40							
Theaters, place of worship, libraries, individual or semi- private offices, conference rooms, reading rooms	23:00-7:00	45	40							
	7:00-23:00	45	40							
Sleeping quarters	23:00-7:00	40	35							
☐ Standards taken from Table 2.2b: Sound Level Limit for Indoor Living Areas - Boad and										

It is noted in the ENCG that the limits outlined in Table 2 are for the sound levels on the interior of the glass pane. The ENCG further goes on to state that the limit for the exterior of the pane of glass will be 55 dBA.

If the sound level limits are exceeded at the window panes for the indoor living areas, the following Warning Clauses may be referenced:

Table 3 - Warning Clauses for Sound Level Exceedances									
Warning Clause	Description								
Warning Clause Type A	"Purchasers/tenants are advised that sound levels due to increasing road traffic (rail traffic) (air traffic) may occasionally interfere with some activities of the dwelling occupants as the sound levels exceed the sound level limits of the Municipality and the Ministry of the Environment."								
Warning Clause Type B	"Purchasers/tenants are advised that despite the inclusion of noise control features in the development and within the building units, sound levels due to increasing road traffic (rail traffic) (air traffic) may on occasions interfere with some activities of the dwelling occupants as the sound levels exceed the sound level limits of the Municipality and the Ministry of the Environment."								
Warning Clause Type C	"This dwelling unit has been designed with the provision for adding central air conditioning at the occupant's discretion. Installation of central air conditioning by the occupant in low and medium density developments will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the sound level limits of the Municipality and the Ministry of the Environment."								
Warning Clause Type D	"This dwelling unit has been supplied with a central air conditioning system which will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the sound level limits of the Municipality and the Ministry of the Environment."								
☐ Clauses take 300	n from section C8 Warning Clauses; Environmental Noise Guidelines - NPC-								

Stationary Noise

Stationary noise sources include sources or facilities that are fixed or mobile and can cause a combination of sound and vibration levels emitted beyond the property line. These sources may include commercial air conditioner units, generators and fans. Facilities that may contribute to stationary noise may include car washes, snow disposal sites, transit stations and manufacturing facilities.

The subject site is not in proximity to existing or approved stationary sources of noise. Therefore, a stationary noise analysis will not be required.

Aircraft/Airport Noise

The subject site is not located within the Airport Vicinity Development Zone. Therefore this project will not require an aircraft/airport noise analysis. No warning clauses regarding aircraft or airport noise will be required.

4.0 Analysis

Surface Transportation Noise

The subject building is bordered to the north by residential dwellings and commercial buildings, followed by Scott Street and the Confederation Rail Line, to the east by residential dwellings and Hinchey Avenue, to the west by Pinehurst Avenue followed by residential dwellings, commercial buildings and Parkdale Avenue, and to the south by residential dwellings followed by Bullman Street. Scott Street, Hinchey Avenue, Bullman Street, Pinehurst Avenue and Parkdale Avenue are identified within the 100 m radius of proposed development.

Based on the City of Ottawa Official Plan, Schedule F, Scott Street is considered a 4 lane urban arterial road undivided (4-UAU). Parkdale Avenue is considered a 2 lane urban arterial road (2-UAU). Other roads within the 100 m radius of the development are not classified as either arterial, collector or major collector roads and are therefore not included in this study.

The Confederation Rail Line is located within 300 m of the proposed development. It is understood the Confederation Rail Line is used by O-Train Rail. Based on a phone discussion with OC Transpo personnel, the method to determine the volume of trains along the rail line is to count the number of departures off of the train schedule. The copy of train schedule is included in Appendix 3. It was further confirmed by OC Transpo that each O-Train consists of an electric locomotive pulling 1 car.

All noise sources are presented in Drawing PG5723-3 - Site Geometry located in Appendix 1.

The noise levels from road traffic are provided by the City of Ottawa, taking into consideration the right-of-way width and the implied roadway class. It is understood that these values represent the maximum allowable capacity of the proposed roadways. The parameters to be used for sound level predictions can be found below.

Proposed Multi-Storey Residential Building 61 Pinehurst Avenue - Ottawa

Table 4 - Traffic and Road Parameters											
Road	Implied AADT (Veh/day)		Posted Speed (km/h)	Day/Night Split %	Medium Truck %	Heavy Truck %					
Scott Street	4-UAU	30000	50	92/8	7	5					
Parkdale Avenue	2-UAU	15000	40	92/8	7	5					

Data obtained from the City of Ottawa document ENCG or calculated from OC Transpo online schedules

Table 5 - Rail Parameters										
Rail Line	Engine Type	Maximum Speed (km/hr)	Number of Trips/day	Length of Train						
O-Train Rail	Electric	80	468	2						

Three (3) levels of reception points were selected for this analysis. The following elevations were selected from the heights provided on the survey plan for the subject building.

Table 6 - Elevation of Reception Points											
Floor Number Elevation at Centre Window (m)		Floor Use	Daytime/Nighttime Analysis								
Ground Floor	1.5	Living Area/Bedroom	daytime/nighttime								
Third Floor	7.5	Living Area/Bedroom	daytime/nighttime								
Rooftop	10.5		Outdoor Living Area								

For this analysis, a reception point was taken at the centre of each floor, at the ground floor and third floor. An outdoor living area - rooftop patio is anticipated at the proposed building. A reception point in the centre of rooftop, 10.5 m high, was selected for the analysis of this area. Reception points are detailed on Drawing PG5723-2 - Receptor Locations presented in Appendix 1.

Environmental Noise Control Study

All horizontal distances have been measured from the reception point to the edge of the right-of-way. The rail line was analyzed where it intersects the 300 m buffer zone, the roadways were analyzed where they intersected the 100 m buffer zone, which is reflected in the local angles described in Paterson Drawings PG5723-3A to 3E - Site Geometry in Appendix 1.

Table 8 - Summary of Reception Points and Geometry, located in Appendix 1, provides a summary of the points of reception and their geometry with respect to the noise sources. The analysis is completed so that no effects of sound reflection off of the building facade are considered, as stipulated by the ENCG.

The subject site is gently sloping downward to north and at grade with the neighbouring roads within 100 m radius. It should be noted that the rail line is located within a trench that is 2 m lower than the neighbouring properties and roads.

The analysis was completed using STAMSON version 5.04, a computer program which uses the road and rail traffic noise prediction methods using ORNAMENT (Ontario Road Noise Analysis Method for Environment and Transportation) and STEAM (Sound from Trains Environment Analysis Method), publications from the Ontario Ministry of Environment and Energy.

5.0 Results

Surface Transportation

The primary descriptors are the 16-hour daytime and the 8-hour night time equivalent sound levels, $L_{eq(16)}$ and the $L_{eq(8)}$ for City roads.

The proposed traffic noise levels were analyzed at all reception points. The results of the STAMSON software can be located in Appendix 2, and the summary of the results can be noted in Table 7.

Table 7 - Proposed Noise Levels										
Reception Point	Description	OLA (dBA)	Daytime at Facade L _{EQ(16)} (dBA)	Nighttime at Facade L _{eq(8)} (dBA)						
REC 1-1	Eastern Elevation, 1st Floor		54.59	46.47						
REC 1-3	Eastern Elevation, 3rd Floor		55.86	47.70						
REC 2-1	Southern Elevation, 1st Floor		41.59	34.00						
REC 2-3	Southern Elevation, 3rd Floor		43.11	35.52						
REC 3-1	Western Elevation, 1st Floor		57.71	49.78						
REC 3-3	Western Elevation, 3rd Floor		58.93	50.97						
REC 4-1	Northern Elevation, 1st Floor		59.98	52.05						
REC 4-3	Northern Elevation, 3rd Floor		61.10	53.10						
REC 5	Rooftop Patio	61.68								

6.0 Discussion and Recommendations

6.1 Outdoor Living Areas

A roof top patio is anticipated in the centre of the proposed building. One (1) receptor point was selected for the analysis at outdoor living area (REC 5). It is assumed that the roof top patio will only be utilized as an outdoor living area provided that the proposed building is constructed. The proposed $L_{eq(16)}$ at the roof top patio will be 61.68 dBA, which exceeds the 55 dBA threshold value specified by the ENCG.

The outdoor living area was designed as a roof top patio, which will increase the total distance between the noise and receptor points. Utilizing this type of outdoor living area, the exterior cladding of the building will act as a noise barrier, providing noise relief to the roof top patio. Utilizing the exterior of the building as a barrier, including the 1 m solid railing that will extend around the perimeter of the roof top patio, the proposed $L_{eq(16)}$ at the roof top patio will be 60.62 dBA. Although the anticipated noise level is reduced by our mitigation measures, it still exceeds the 55 dBA threshold value specified by the ENCG. Therefore, a phase 2 analysis will be required to reduce the anticipated noise level to the 55 dBA threshold value specified by the ENCG.

6.2 Indoor Living Areas and Ventilation

The results of the STAMSON modeling indicates that the daytime $L_{\rm eq(16)}$ ranges between 41.59 dBA and 61.10 dBA. The ENCG states that the limits for the exterior of the pane of glass is 55 dBA. This value was exceeded at eastern, western and northern elevations. Therefore, units on the eastern, western and northern elevations should be designed with the provision for a central air conditioning unit. Additionally, warning clause Type C, as outlined in Table 3, is required for all units on the eastern, western and northern elevations of the building. It is also noted that the modeling indicates that the $L_{\rm eq(16)}$ is below 65 dBA, and therefore standard building materials are acceptable to provide adequate soundproofing.

7.0 Summary of Findings

The subject site is located at 61 Pinehurst Avenue in the City of Ottawa. It is understood that the proposed development will consist of a 3-storey residential building. The associated analysis identified three surface transportation noise sources: Scott Street, Parkdale Avenue, and the Confederation Corridor O-Train Rail Line.

A roof top patio is anticipated at the building. The preliminary analysis indicated that there was an exceedance at this reception point. After utilizing the mitigation measures, including maximizing the distance setback, the anticipated noise level at the outdoor living area is reduced, but it still exceeds the 55 dBA guideline specified by the ENCG. Therefore, a phase 2 analysis will be required to reduce the anticipated noise level to the 55 dBA guideline specified by the ENCG.

Several reception points were selected for the analysis, consisting of pane of glass reception points on both the first and top level. The northern, eastern and western elevations of the proposed building exceeded the 55 dBA guideline specified by the ENCG. Therefore, a warning clause Type C will be required for units on the eastern, western and northern elevations. Additionally, units on the eastern, western and northern elevations should be designed with the provision for a central air conditioning unit.

The following warning clause is to be included on all Offers of Purchase and Sale and/or lease agreements:

"This dwelling unit has been designed with the provision for adding central air conditioning at the occupant's discretion. Installation of central air conditioning by the occupant in low and medium density developments will allow windows and exterior doors to remain closed, thereby ensuring that the indoor sound levels are within the sound level limits of the Municipality and the Ministry of the Environment."

8.0 Statement of Limitations

The recommendations made in this report are in accordance with our present understanding of the project. Our recommendations should be reviewed when the project drawings and specifications are complete.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Mr. Ali Karimi or his agent(s) is not authorized without review by this firm for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

Stephanie A. Boisvenue, P.Eng.

Scott S. Dennis, P.Eng.

Report Distribution:

- ☐ Mr. Ali Karimi (3 copies)
- ☐ Paterson Group (1 copy)

APPENDIX 1

TABLE 8 - SUMMARY OF RECEPTION POINTS AND GEOMETRY

DRAWING PG5723-1 - SITE PLAN

DRAWING PG5723-2 - RECEPTOR LOCATION PLAN

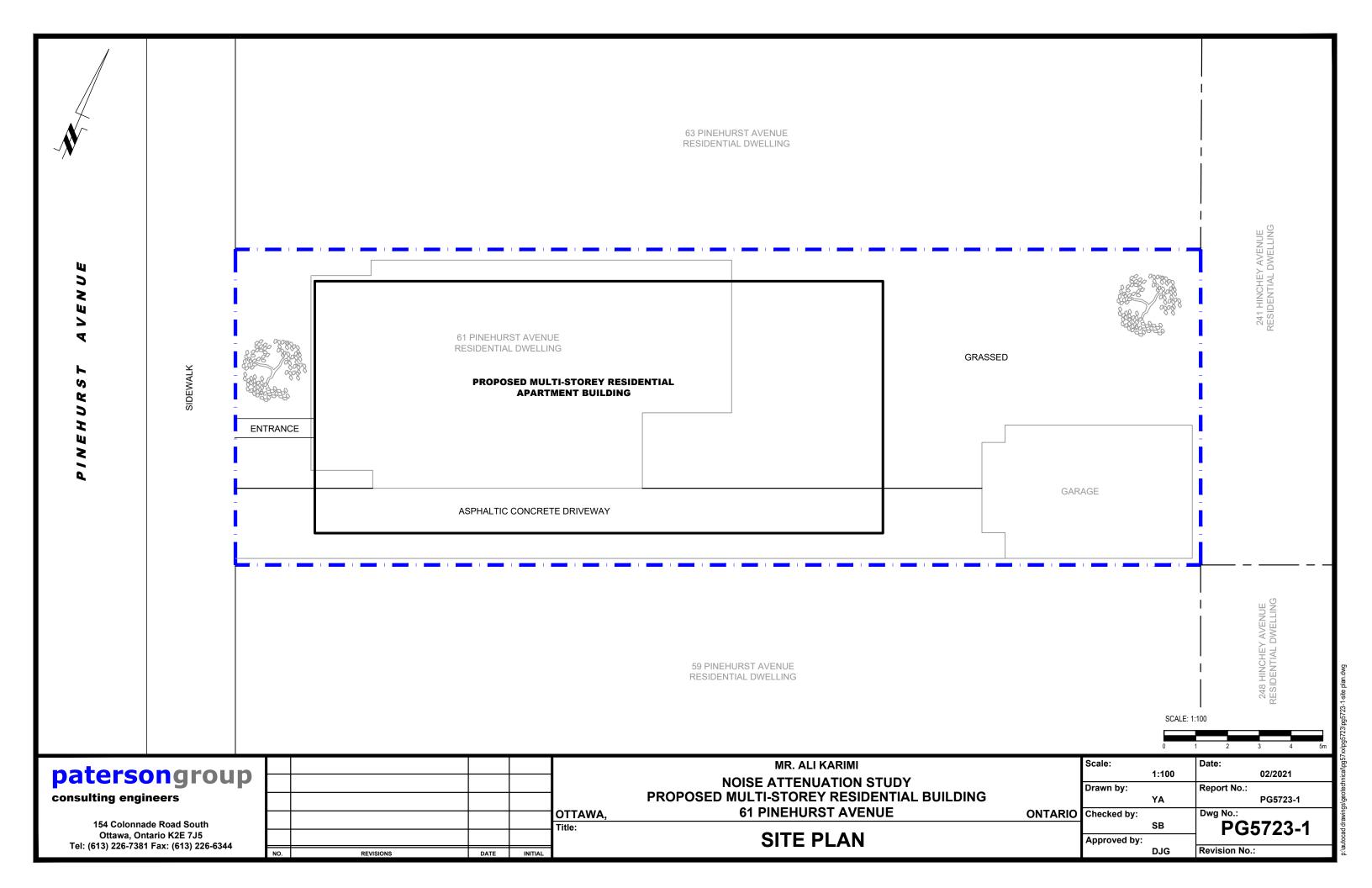
DRAWING PG5723-3 - SITE GEOMETRY

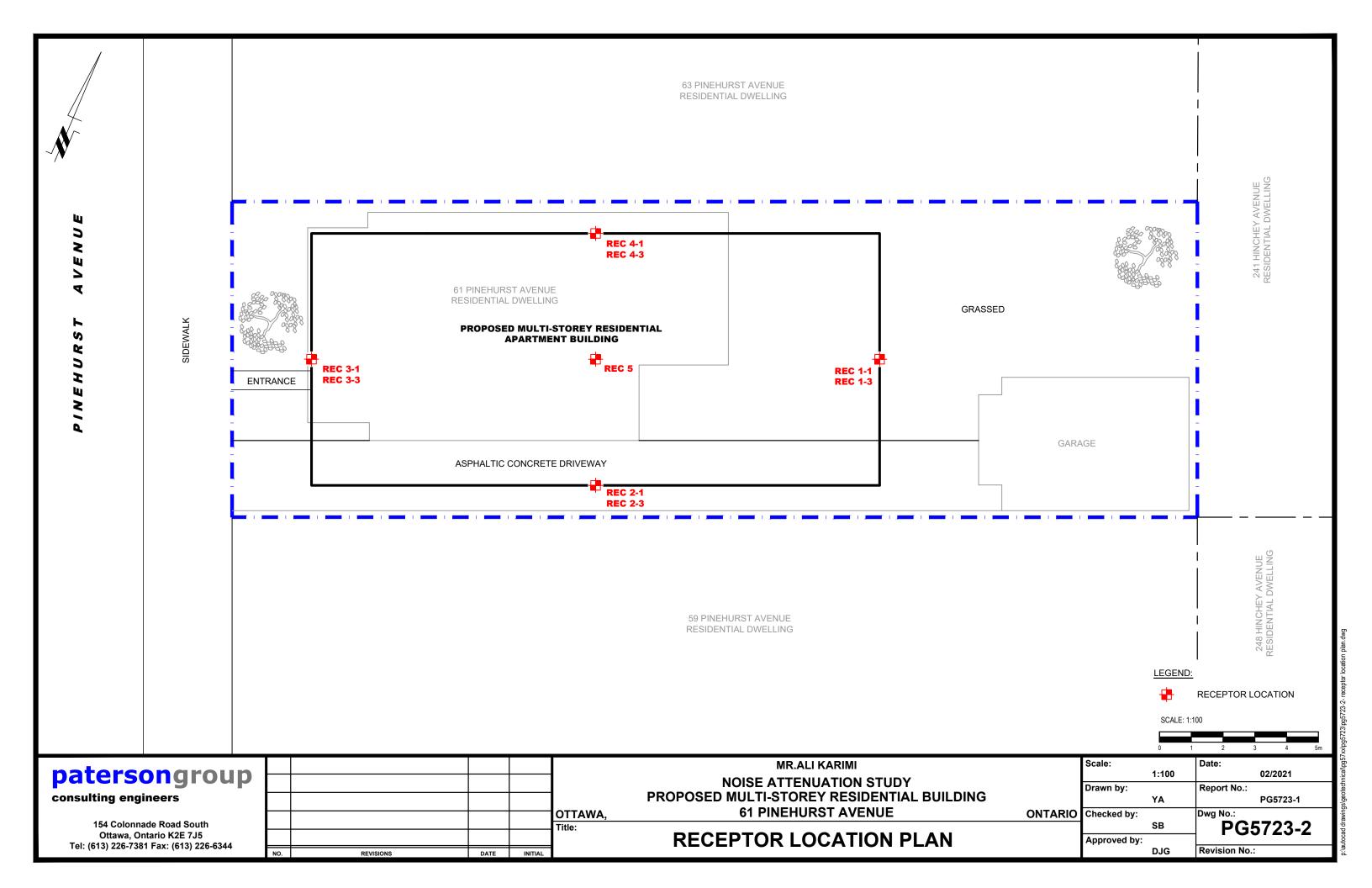
DRAWING PG5723-3A - SITE GEOMETRY (REC 1-1 and REC 1-3)

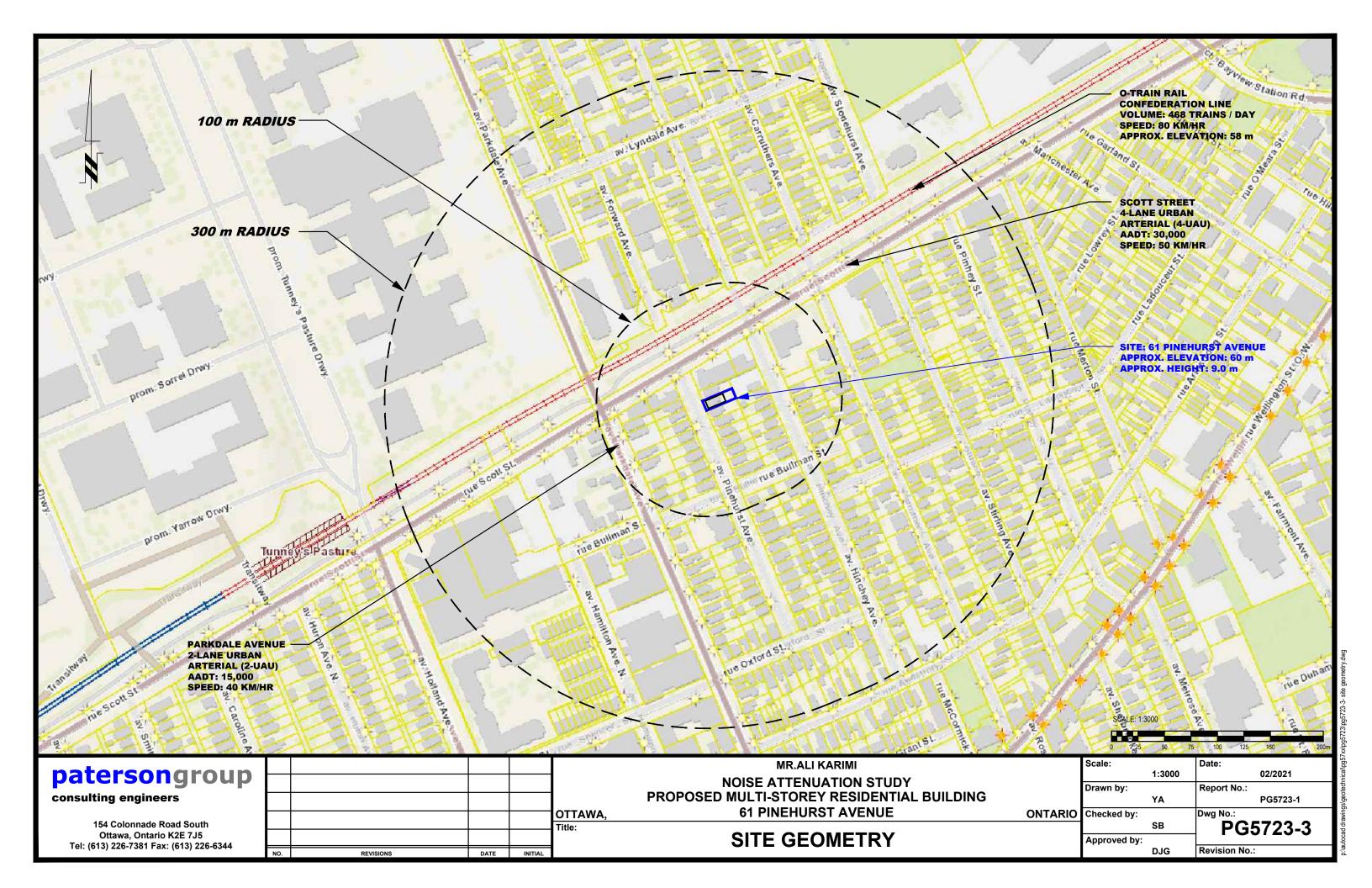
DRAWING PG5723-3B - SITE GEOMETRY (REC 2-1 and REC 2-3)

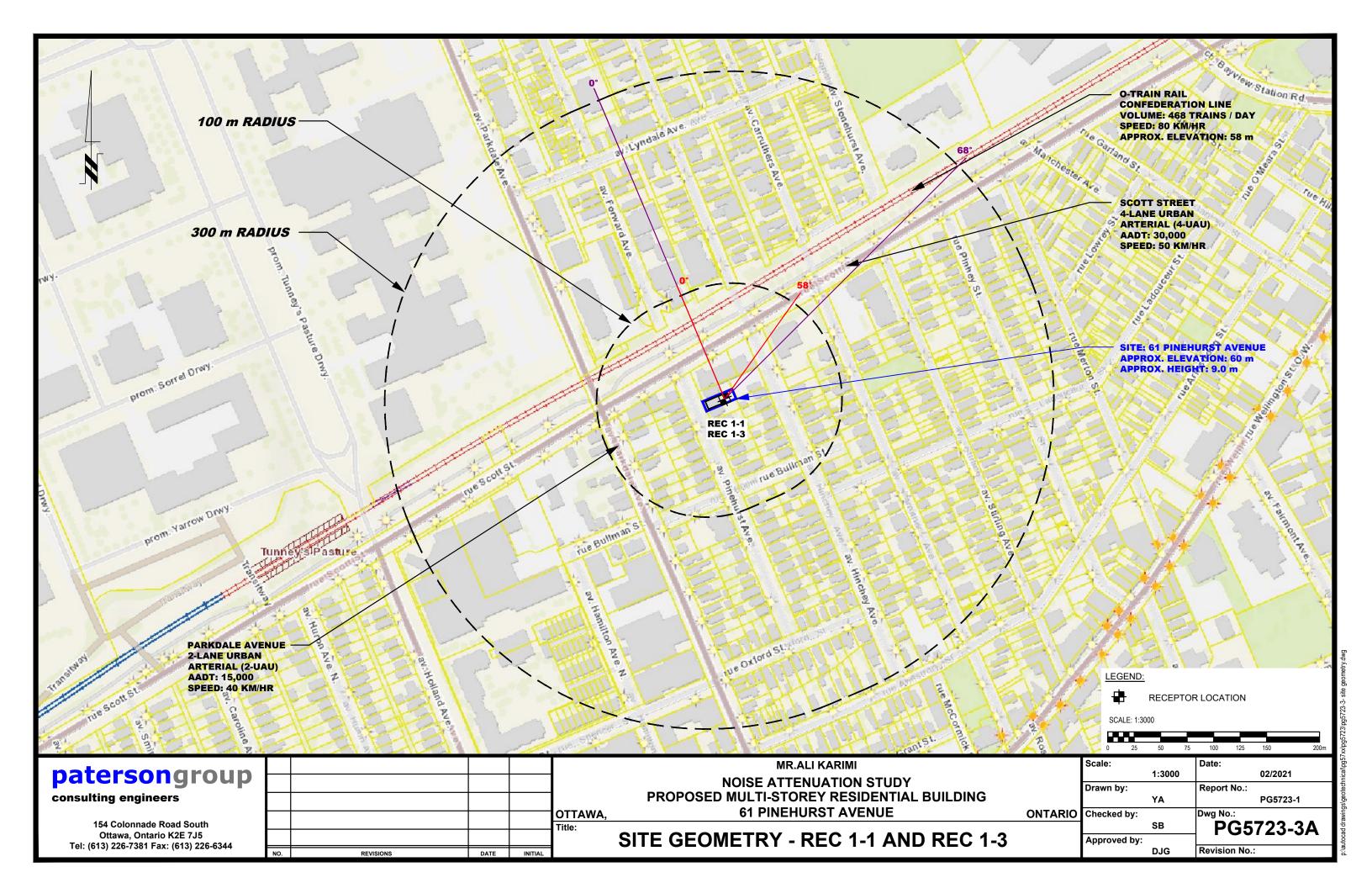
DRAWING PG5723-3C - SITE GEOMETRY (REC 3-1 and REC 3-3)

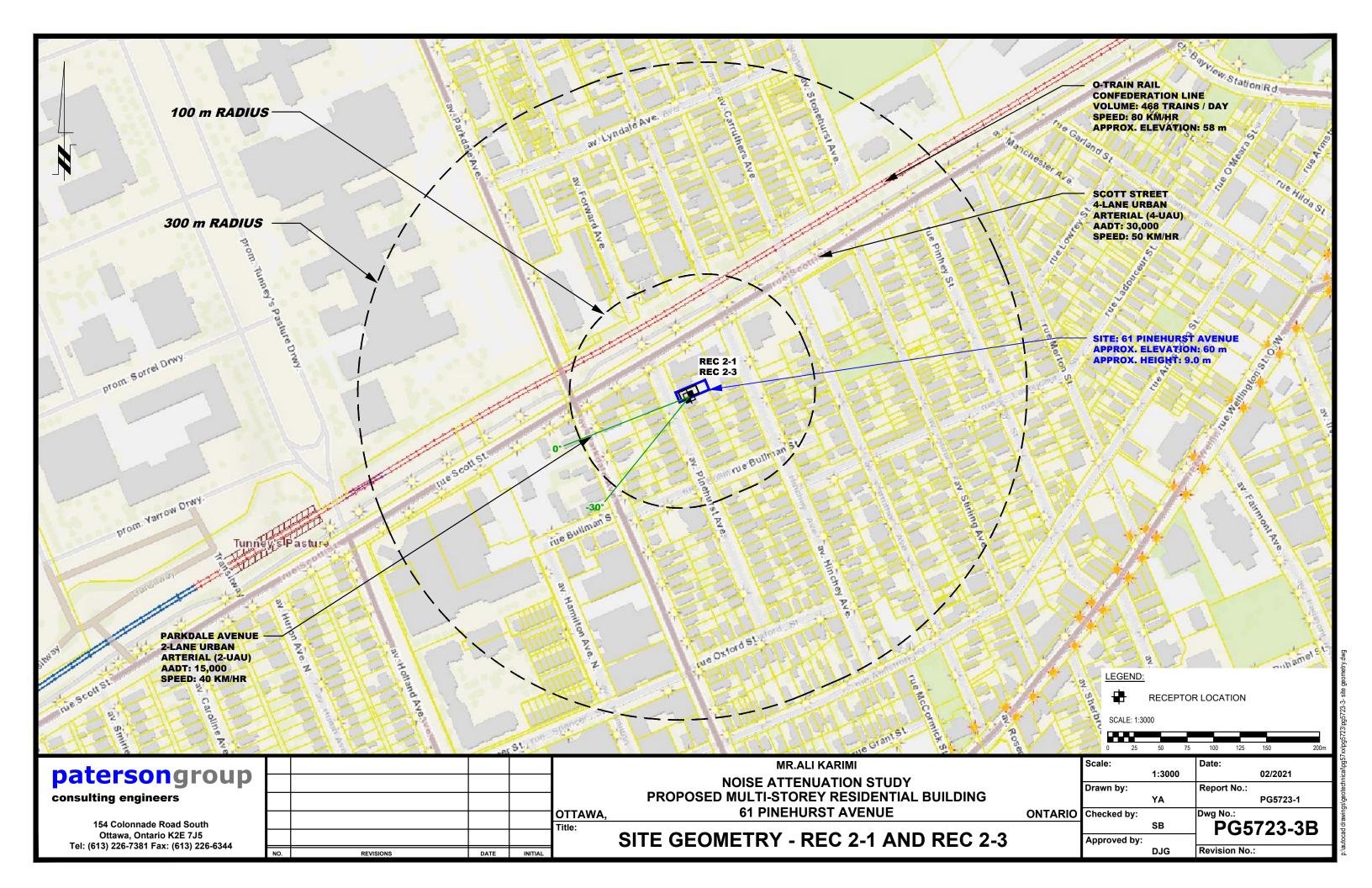
DRAWING PG5723-3D - SITE GEOMETRY (REC 4-1 and REC 4-3)

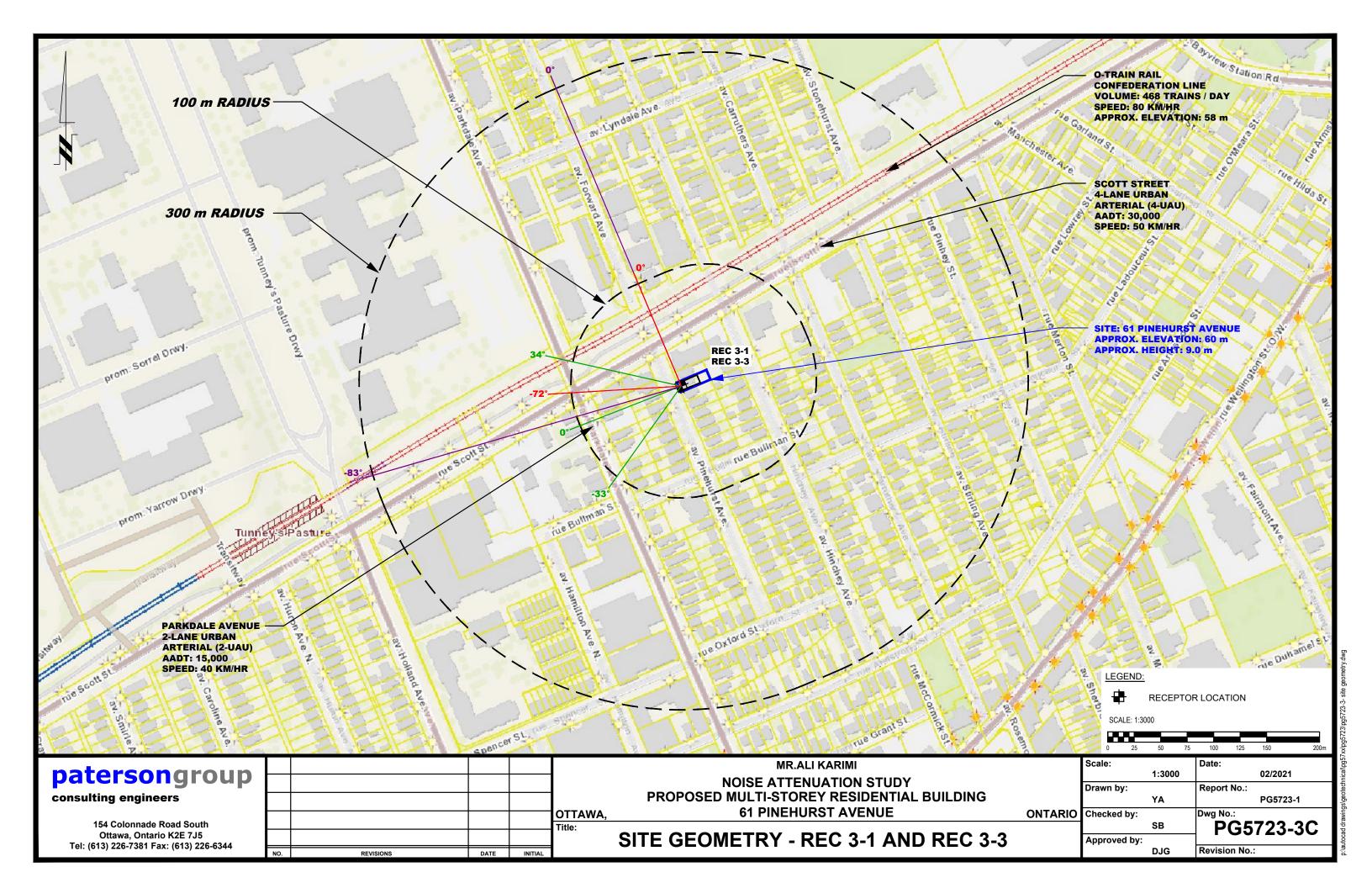

DRAWING PG5723-3E - SITE GEOMETRY (REC 5)

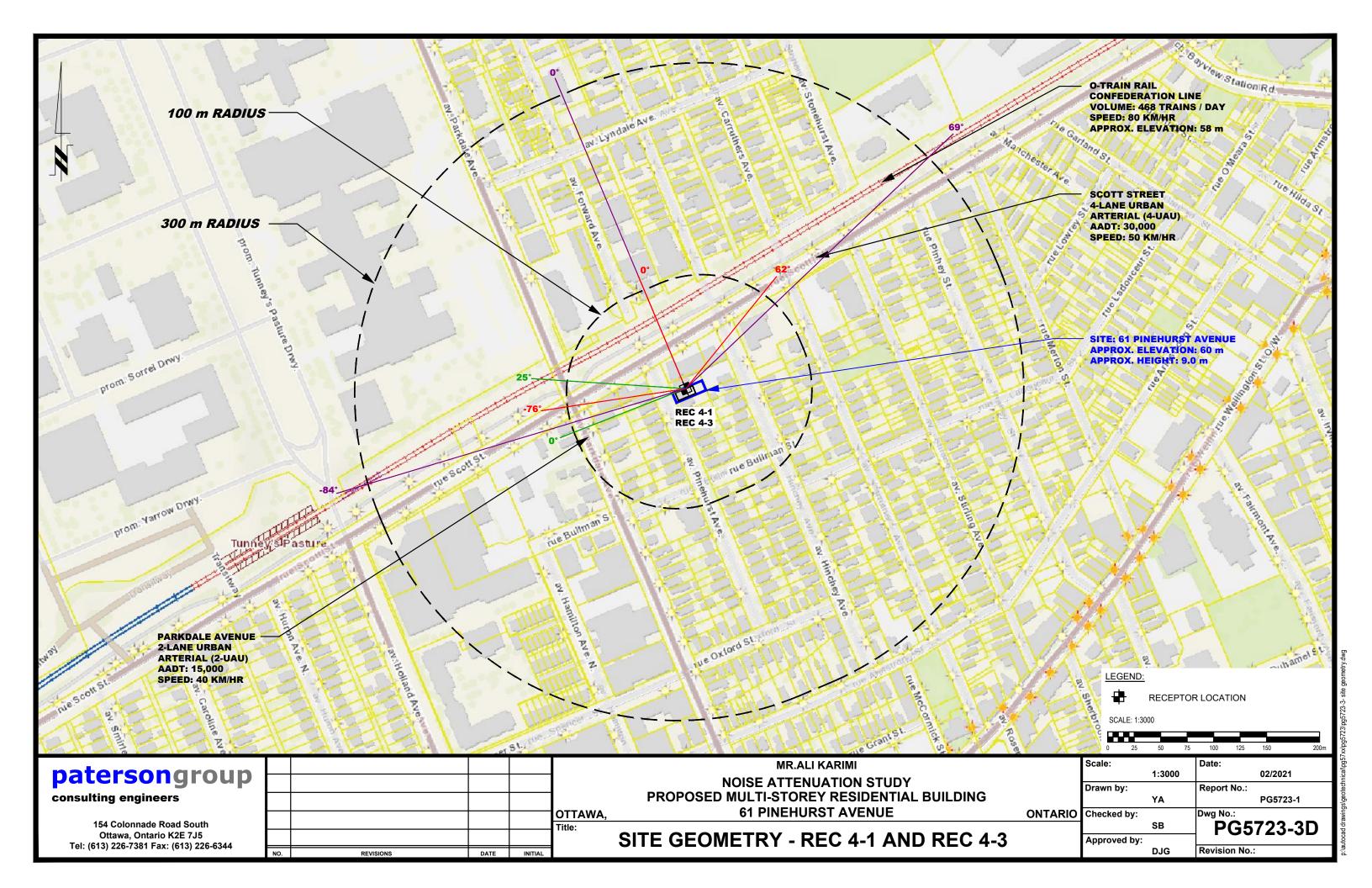

Table 8 - Summary of Reception Points and Geometry
61 Pinehurst Avenue

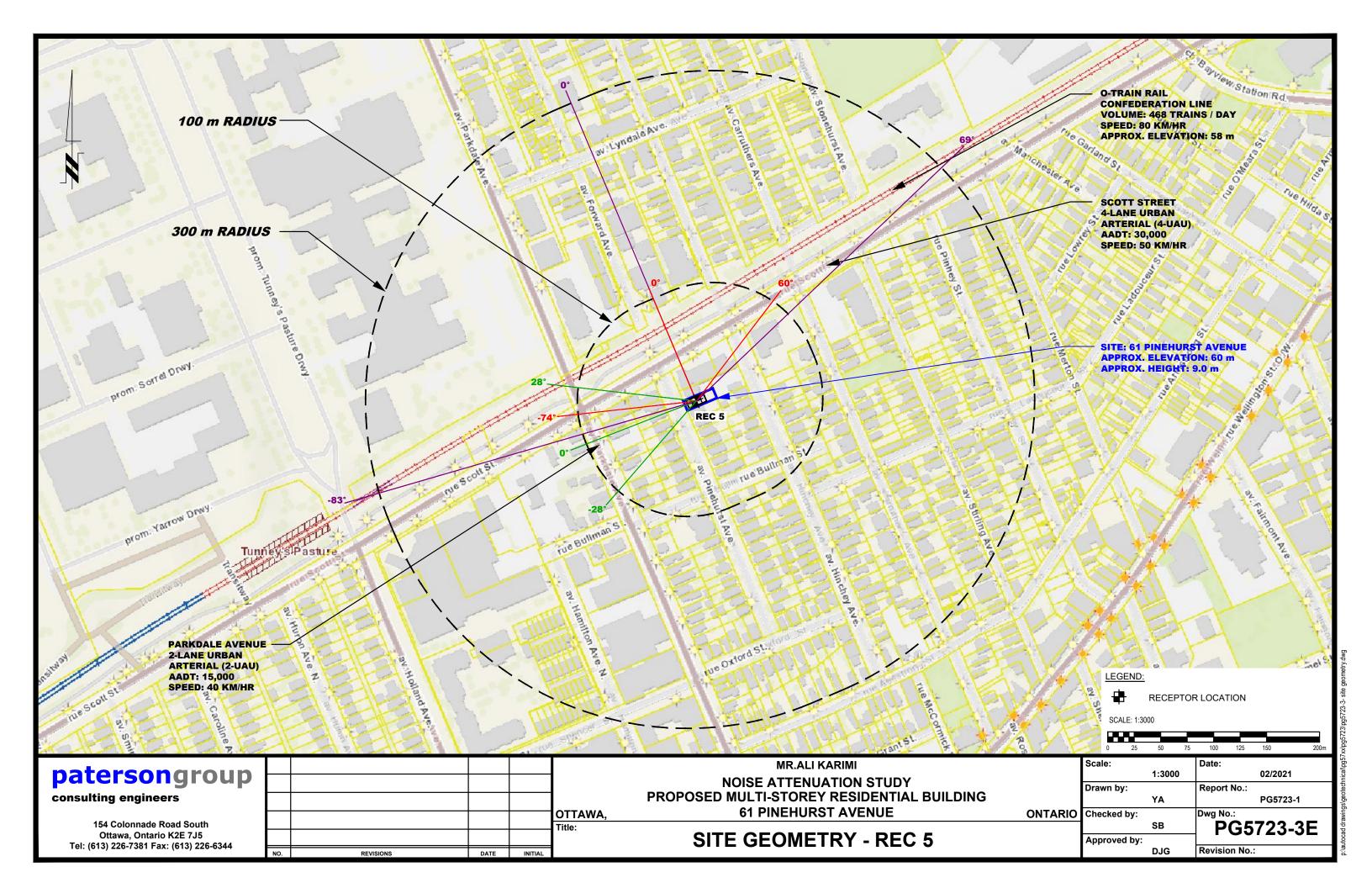

Point of		Log Day	Scott Street						Parkdale Avenue					
Reception	Location	Leq Day (dBA)	Horizontal (m)	Vertical (m)	Total (m)	Local Angle (degree)	Number of Rows of Houses	Density (%)	Horizontal (m)	Vertical (m)	Total (m)	Local Angle (degree)	Number of Rows of Houses	Density (%)
REC 1-1	Eastern Elevation, 1st Floor	54.59	60	1.5	60.02	0, 58	1	40	n/a	n/a	n/a	n/a	n/a	n/a
REC 1-3	Eastern Elevation, 3rd Floor	55.86	60	7.5	60.47	0, 58	1	40	n/a	n/a	n/a	n/a	n/a	n/a
REC 2-1	Southern Elevation, 1st Floor	41.59	n/a	n/a	n/a	n/a	n/a	n/a	100	1.5	100.01	-30, 0	2	40
REC 2-3	Southern Elevation, 3rd Floor	43.11	n/a	n/a	n/a	n/a	n/a	n/a	100	7.5	100.3	-30, 0	2	40
REC 3-1	Western Elevation, 1st Floor	57.71	50	1.5	50.02	-72, 0	1	20	95	1.5	95.01	-33, 34	2	40
REC 3-3	Western Elevation, 3rd Floor	58.93	50	7.5	50.56	-72, 0	1	20	95	7.5	95.3	-33, 34	2	40
REC 4-1	Northern Elevation, 1st Floor	59.98	45	1.5	45.02	-76, 62	1	40	100	1.5	100.01	0, 25	2	40
REC 4-3	Northern Elevation, 3rd Floor	61.10	45	7.5	45.62	-76, 62	1	40	100	7.5	100.3	0, 25	2	40
REC 5	Rooftop Patio	61.68	55	10.5	56.0	-74, 60	1	20	100	10.5	100.55	-28, 28	2	40


Table 8 - Summary of Reception Points and Geometry 61 Pinehurst Avenue


Date of	Location	Location Leq Day (dBA)		Confederation Rail Line											
Point of Reception			Horizontal (m)	Vertical (m)	Total (m)	Local Angle (degree)	Number of Rows of Houses	Density (%)	\searrow	\searrow	\sim			>>	
REC 1-1	Eastern Elevation, 1st Floor	54.59	95	1.5	95.01	0, 68	1	40	>	\times	\times				
REC 1-3	Eastern Elevation, 3rd Floor	55.86	95	7.5	95.3	0, 68	1	40	\times	\times	\times				
REC 2-1	Southern Elevation, 1st Floor	41.59	n/a	n/a	n/a	n/a	n/a	n/a							
REC 2-3	Southern Elevation, 3rd Floor	43.11	n/a	n/a	n/a	n/a	n/a	n/a	\times	\times	\times				
REC 3-1	Western Elevation, 1st Floor	57.71	100	1.5	100.01	-83, 0	1	20	\times						
REC 3-3	Western Elevation, 3rd Floor	58.93	100	7.5	100.3	-83, 0	1	20	\times		\nearrow				
REC 4-1	Northern Elevation, 1st Floor	59.98	90	1.5	90.01	-84, 69	1	40	\times						
REC 4-3	Northern Elevation, 3rd Floor	61.10	90	7.5	90.3	-84, 69	1	40							
REC 5	Rooftop Patio	61.68	95	10.5	95.6	-83, 69	1	20	\nearrow						







APPENDIX 2

STAMSON RESULTS

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec11.te Time Period: Day/Night 16/8 hours Description: Reception Point 1-1 Rail data, segment # 1: O-Train Rail (day/night) -----! Trains ! Speed !# loc !# Cars! Eng !Cont ! !(km/h) !/Train!/Train! type !weld Tvpe -----1. O-Train ! 468.0/1.0 ! 80.0 ! 1.0 ! 1.0 ! Elec! Yes Data for Segment # 1: O-Train Rail (day/night) -----Angle1 Angle2 : 0.00 deg 68.00 deg Wood depth : 0 (No woods No of house rows : 1 / 1 House density : 40 % (No woods.) Surface 1 (Absorptive ground surface) Receiver source distance : 95.00 / 95.00 m Receiver height : 1.50 / 1.50 m 2 (Flat/gentle slope; with barrier) Topography : No Whistle Barrier angle1 : 0.00 deg Angle2 : 68.00 deg
Barrier height : 2.00 m Barrier receiver distance: 93.00 / 93.00 m Source elevation : 58.00 m Receiver elevation : 60.00 m Barrier elevation : 58.00 m Reference angle : 0.00 Results segment # 1: O-Train Rail (day) ______ Barrier height for grazing incidence ______ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----4.00 ! 1.50 ! 3.99 ! 0.50 ! 1.50 ! 0.56 ! 61.99 58.56 LOCOMOTIVE (0.00 + 44.85 + 0.00) = 44.85 dBAAngle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ 68 0.58 64.44 -12.71 -4.89 0.00 -2.00 0.00 44.85 68 0.47 64.44 -11.74 -4.76 0.00 0.00 0.00 47.94* 0

Date: 22-02-2021 11:28:00

STAMSON 5.0 NORMAL REPORT

```
0 68 0.58 64.44 -12.71 -4.89 0.00 0.00 0.00 46.85
* Bright Zone!
WHEEL (0.00 + 33.93 + 0.00) = 33.93 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
   0 68 0.66 64.45 -13.31 -4.97 0.00 -2.00 0.00 44.18
   0 68 0.57 64.45 -12.59 -4.87 0.00 0.00 -13.06 33.93
Segment Leq: 45.19 dBA
Total Leq All Segments: 45.19 dBA
Results segment # 1: O-Train Rail (night)
______
Barrier height for grazing incidence
______
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
------
    4.00 ! 1.50 ! 3.99 ! 61.99
    0.50 !
              1.50 ! 0.56 !
                                 58.56
LOCOMOTIVE (0.00 + 21.15 + 0.00) = 21.15 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
   0 68 0.58 40.75 -12.71 -4.89 0.00 -2.00 0.00 21.15
   0
      68 0.47 40.75 -11.74 -4.76 0.00 0.00 0.00 24.24*
     68 0.58 40.75 -12.71 -4.89 0.00 0.00 0.00 23.15
* Bright Zone!
WHEEL (0.00 + 10.24 + 0.00) = 10.24 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
   0 68 0.66 40.76 -13.31 -4.97 0.00 -2.00 0.00 20.49
      68 0.57 40.76 -12.59 -4.87 0.00 0.00 -13.06 10.24
```

Segment Leq: 21.49 dBA

Total Leq All Segments: 21.49 dBA

```
Road data, segment # 1: Scott Street (day/night)
-----
Car traffic volume : 24288/2112 veh/TimePeriod *
Medium truck volume: 1932/168 veh/TimePeriod *
Heavy truck volume : 1380/120 veh/TimePeriod *
Posted speed limit : 50 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
    24 hr Traffic Volume (AADT or SADT): 30000
   Percentage of Annual Growth : 0.00
   Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
   Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 1: Scott Street (day/night)
-----
Angle1 Angle2 : 0.00 deg 58.00 deg
Wood depth : 0 (No woods.)
No of house rows : 1 / 1
House density : 40 %
Surface : 1 (Absorptive ground surface)
Receiver source distance : 60.00 / 60.00 m
Receiver height : 1.50 / 1.50 m
Topography : 1 (Flat/gentle slope; no barrier)
Reference angle : 0.00
Results segment # 1: Scott Street (day)
______
Source height = 1.50 m
ROAD (0.00 + 54.06 + 0.00) = 54.06 \text{ dBA}
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
-----
    0 58 0.66 71.49 0.00 -9.99 -5.44 0.00 -2.00 0.00 54.06
______
Segment Leq: 54.06 dBA
Total Leq All Segments: 54.06 dBA
Results segment # 1: Scott Street (night)
```

Source height = 1.50 m

ROAD (0.00 + 46.46 + 0.00) = 46.46 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

0 58 0.66 63.89 0.00 -9.99 -5.44 0.00 -2.00 0.00 46.46

Segment Leq: 46.46 dBA

Total Leq All Segments: 46.46 dBA

^

TOTAL Leq FROM ALL SOURCES (DAY): 54.59 (NIGHT): 46.47

1

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec13.te Time Period: Day/Night 16/8 hours Description: Reception Point 1-3 Rail data, segment # 1: O-Train Rail (day/night) -----! Trains ! Speed !# loc !# Cars! Eng !Cont ! (km/h) !/Train!/Train! type !weld Type -----1. O-Train ! 468.0/1.0 ! 80.0 ! 1.0 ! 1.0 ! Elec! Yes Data for Segment # 1: O-Train Rail (day/night) -----Angle1 Angle2 : 0.00 deg 68.00 deg Wood depth : 0 (No woods No of house rows : 1 / 1 House density : 40 % (No woods.) 1 Surface (Absorptive ground surface) Receiver source distance : 95.00 / 95.00 m Receiver height : 7.50 / 7.50 m 2 (Flat/gentle slope; with barrier) Topography : No Whistle Barrier angle1 : 0.00 deg Angle2 : 68.00 deg
Barrier height : 2.00 m Barrier receiver distance: 93.00 / 93.00 m Source elevation : 58.00 m Receiver elevation : 60.00 m Barrier elevation : 58.00 m Reference angle : 0.00 Results segment # 1: O-Train Rail (day) ______ Barrier height for grazing incidence _____ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----4.00 ! 7.50 ! 4.12 ! 0.50 ! 7.50 ! 0.69 ! 62.12 0.50 ! 58.69 LOCOMOTIVE (0.00 + 46.48 + 0.00) = 46.48 dBAAngle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ 68 0.28 64.44 -10.30 -4.56 0.00 0.00 0.00 49.58* 0

Date: 22-02-2021 11:28:58

STAMSON 5.0 NORMAL REPORT

```
0 68 0.41 64.44 -11.26 -4.70 0.00 0.00 0.00 48.48
* Bright Zone!
WHEEL (0.00 + 36.39 + 0.00) = 36.39 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
   0 68 0.51 64.45 -12.10 -4.81 0.00 -2.00 0.00 45.54
   0 68 0.39 64.45 -11.14 -4.68 0.00 0.00 -12.24 36.39
 Segment Leq: 46.89 dBA
Total Leq All Segments: 46.89 dBA
Results segment # 1: O-Train Rail (night)
______
Barrier height for grazing incidence
______
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
-----
    4.00 ! 7.50 ! 4.12 ! 62.12
    0.50 ! 7.50 ! 0.69 !
                                58.69
LOCOMOTIVE (0.00 + 22.79 + 0.00) = 22.79 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
   0 68 0.41 40.75 -11.26 -4.70 0.00 -2.00 0.00 22.79
      68 0.28 40.75 -10.30 -4.56 0.00 0.00 0.00 25.89*
     68 0.41 40.75 -11.26 -4.70 0.00 0.00 0.00 24.79
* Bright Zone!
WHEEL (0.00 + 12.70 + 0.00) = 12.70 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
   0 68 0.51 40.76 -12.10 -4.81 0.00 -2.00 0.00 21.85
      68 0.39 40.76 -11.14 -4.68 0.00 0.00 -12.24 12.70
```

Segment Leq: 23.20 dBA

Total Leq All Segments: 23.20 dBA

```
Road data, segment # 1: Scott Street (day/night)
-----
Car traffic volume : 24288/2112 veh/TimePeriod *
Medium truck volume: 1932/168 veh/TimePeriod *
Heavy truck volume : 1380/120 veh/TimePeriod *
Posted speed limit : 50 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
    24 hr Traffic Volume (AADT or SADT): 30000
   Percentage of Annual Growth : 0.00
   Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
   Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 1: Scott Street (day/night)
-----
Angle1 Angle2 : 0.00 deg 58.00 deg
Wood depth : 0 (No woods.)
No of house rows : 1 / 1
House density : 40 %
Surface : 1 (Absorptive ground surface)
Receiver source distance : 60.00 / 60.00 m
Receiver height : 7.50 / 7.50 m

Topography : 1 (Flat/gentle slope; no barrier)
Reference angle : 0.00
Results segment # 1: Scott Street (day)
______
Source height = 1.50 m
ROAD (0.00 + 55.27 + 0.00) = 55.27 \text{ dBA}
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
-----
    0 58 0.48 71.49 0.00 -8.91 -5.30 0.00 -2.00 0.00 55.27
______
Segment Leq: 55.27 dBA
Total Leq All Segments: 55.27 dBA
Results segment # 1: Scott Street (night)
```

Source height = 1.50 m

ROAD (0.00 + 47.68 + 0.00) = 47.68 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

0 58 0.48 63.89 0.00 -8.91 -5.30 0.00 -2.00 0.00 47.68

Segment Leq : 47.68 dBA

Total Leq All Segments: 47.68 dBA

^

TOTAL Leq FROM ALL SOURCES (DAY): 55.86 (NIGHT): 47.70

个

♠

STAMSON 5.0 NORMAL REPORT Date: 22-02-2021 11:51:08 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec21.te Time Period: Day/Night 16/8 hours

Description: Reception Point 2-1

Road data, segment # 1: Parkdale Ave (day/night) _____ Car traffic volume : 12144/1056 veh/TimePeriod * Medium truck volume : 966/84 veh/TimePeriod * Heavy truck volume : 690/60 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 15000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Parkdale Ave (day/night)

Angle1 Angle2 : -30.00 deg 0.00 deg Wood depth : 0 (No woods.)

No of house rows : 2 / 2
House density : 40 %
Surface : 1

(Absorptive ground surface)

Receiver source distance : 100.00 / 100.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

: 0.00 Reference angle

Results segment # 1: Parkdale Ave (day)

Source height = 1.50 m

ROAD (0.00 + 41.59 + 0.00) = 41.59 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------30 0 0.66 66.69 0.00 -13.68 -7.91 0.00 -3.50 0.00 41.59

Segment Leq: 41.59 dBA

(NIGHT): 34.00

TOTAL Leq FROM ALL SOURCES (DAY): 41.59

STAMSON 5.0 NORMAL REPORT Date: 22-02-2021 11:51:48 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec23.te Time Period: Day/Night 16/8 hours

Description: Reception Point 2-3

Road data, segment # 1: Parkdale Ave (day/night) _____ Car traffic volume : 12144/1056 veh/TimePeriod * Medium truck volume : 966/84 veh/TimePeriod * Heavy truck volume : 690/60 veh/TimePeriod *

Posted speed limit : 40 km/h

Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 15000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Parkdale Ave (day/night)

Angle1 Angle2 : -30.00 deg 0.00 deg Wood depth : 0 (No woods.)

No of house rows : 2 / 2
House density : 40 %
Surface : 1

(Absorptive ground surface)

Receiver source distance : 100.00 / 100.00 m Receiver height : 7.50 / 7.50 m

: 1 (Flat/gentle slope; no barrier) Topography

: 0.00 Reference angle

Results segment # 1: Parkdale Ave (day)

Source height = 1.50 m

ROAD (0.00 + 43.11 + 0.00) = 43.11 dBAAngle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ------30 0 0.48 66.69 0.00 -12.19 -7.88 0.00 -3.50 0.00 43.11

Segment Lea: 43.11 dBA

```
Total Leq All Segments: 43.11 dBA

Results segment # 1: Parkdale Ave (night)

Source height = 1.50 m

ROAD (0.00 + 35.52 + 0.00) = 35.52 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-30 0 0.48 59.09 0.00 -12.19 -7.88 0.00 -3.50 0.00 35.52

Segment Leq : 35.52 dBA

Total Leq All Segments: 35.52 dBA
```

TOTAL Leq FROM ALL SOURCES (DAY): 43.11 (NIGHT): 35.52

↑

lack

STAMSON 5.0 NORMAL REPORT Date: 22-02-2021 11:36:32 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec31.te Time Period: Day/Night 16/8 hours Description: Reception Point 3-1 Rail data, segment # 1: O-Train Rail (day/night) -----Tvpe -----1. O-Train ! 468.0/1.0 ! 80.0 ! 1.0 ! 1.0 ! Elec! Yes Data for Segment # 1: O-Train Rail (day/night) -----Angle1 Angle2 : -83.00 deg 0.00 deg Wood depth : 0 (No woods No of house rows : 1 / 1 House density : 20 % (No woods.) Surface 1 (Absorptive ground surface) Receiver source distance : 100.00 / 100.00 m Receiver height : 1.50 / 1.50 m (Flat/gentle slope; with barrier) Topography : 2 No Whistle Barrier angle1 : -83.00 deg Angle2 : 0.00 deg Barrier height : 2.00 m Barrier receiver distance: 98.00 / 98.00 m Source elevation : 58.00 m Receiver elevation : 60.00 m Barrier elevation : 58.00 m Reference angle : 0.00 Results segment # 1: O-Train Rail (day) _____ Barrier height for grazing incidence ______ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----4.00 ! 1.50 ! 3.99 ! 0.50 ! 1.50 ! 0.56 ! 61.99 58.56 LOCOMOTIVE (0.00 + 46.06 + 0.00) = 46.06 dBAAngle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -83 0 0.58 64.44 -13.06 -4.43 0.00 -0.90 0.00 46.06 -83 0 0.47 64.44 -12.07 -4.23 0.00 0.00 0.00 48.14*

```
-83 0 0.58 64.44 -13.06 -4.43 0.00 0.00 0.00 46.96
* Bright Zone!
WHEEL (0.00 + 35.09 + 0.00) = 35.09 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -83 0 0.66 64.45 -13.68 -4.54 0.00 -0.90 0.00 45.34
  -83 0 0.57 64.45 -12.94 -4.40 0.00 0.00 -12.02 35.09
______
Segment Leq: 46.39 dBA
Total Leq All Segments: 46.39 dBA
Results segment # 1: O-Train Rail (night)
-----
Barrier height for grazing incidence
______
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
------
     4.00 ! 1.50 ! 3.99 ! 61.99
     0.50 !
               1.50 ! 0.56 !
                                   58.56
LOCOMOTIVE (0.00 + 22.37 + 0.00) = 22.37 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -83 0 0.58 40.75 -13.06 -4.43 0.00 -0.90 0.00 22.37
-83 0 0.47 40.75 -12.07 -4.23 0.00 0.00 0.00 24.45<sup>3</sup>
-83 0 0.58 40.75 -13.06 -4.43 0.00 0.00 0.00 23.27
       0 0.47 40.75 -12.07 -4.23 0.00 0.00 0.00 24.45*
* Bright Zone!
WHEEL (0.00 + 11.40 + 0.00) = 11.40 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
```

-83 0 0.66 40.76 -13.68 -4.54 0.00 -0.90 0.00 21.64 -83 0 0.57 40.76 -12.94 -4.40 0.00 0.00 -12.02 11.40

Segment Leq: 22.70 dBA

Total Leq All Segments: 22.70 dBA

```
-----
Car traffic volume : 24288/2112 veh/TimePeriod *
Medium truck volume: 1932/168 veh/TimePeriod *
Heavy truck volume : 1380/120 veh/TimePeriod *
Posted speed limit : 50 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
    24 hr Traffic Volume (AADT or SADT): 30000
    Percentage of Annual Growth : 0.00
    Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
    Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 1: Scott Street (day/night)
-----
Angle1 Angle2 : -72.00 deg 0.00 deg
Wood depth : 0 (No woods.)
No of house rows : 1 / 1
House density : 20 %
Surface : 1 (Absorptive ground surface)
Receiver source distance : 50.00 / 50.00 m
Receiver height : 1.50 / 1.50 m
Topography : 1 (Flat/gentle slope; no barrier)
Reference angle : 0.00
Road data, segment # 2: Parkdale Ave (day/night)
-----
Car traffic volume : 12144/1056 veh/TimePeriod *
Medium truck volume : 966/84 veh/TimePeriod *
Heavy truck volume : 690/60 veh/TimePeriod *
Posted speed limit : 40 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
    24 hr Traffic Volume (AADT or SADT): 15000
    Percentage of Annual Growth : 0.00
    Number of Years of Growth
                                       : 0.00
    Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 2: Parkdale Ave (day/night)
```

Road data, segment # 1: Scott Street (day/night)

```
Angle1 Angle2 : -33.00 deg 34.00 deg
No of house rows : 2 / 2
House density : 40 %
Surface
                              (No woods.)
                               (Absorptive ground surface)
Receiver source distance : 95.00 / 95.00 m
Receiver height : 1.50 / 1.50 Topography : 1 (
                      1 (Flat/gentle slope; no barrier)
              : 0.00
Reference angle
Results segment # 1: Scott Street (day)
_____
Source height = 1.50 m
ROAD (0.00 + 57.09 + 0.00) = 57.09 \text{ dBA}
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -72 0 0.66 71.49 0.00 -8.68 -4.82 0.00 -0.90 0.00 57.09
______
Segment Leq: 57.09 dBA
Results segment # 2: Parkdale Ave (day)
_____
Source height = 1.50 m
ROAD (0.00 + 45.42 + 0.00) = 45.42 \text{ dBA}
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
        -33 34 0.66 66.69 0.00 -13.31 -4.46 0.00 -3.50 0.00 45.42
Segment Leq: 45.42 dBA
Total Leq All Segments: 57.38 dBA
Results segment # 1: Scott Street (night)
-----
Source height = 1.50 m
ROAD (0.00 + 49.49 + 0.00) = 49.49 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
```

Source height = 1.50 m

ROAD (0.00 + 37.82 + 0.00) = 37.82 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-33 34 0.66 59.09 0.00 -13.31 -4.46 0.00 -3.50 0.00 37.82

Segment Leq: 37.82 dBA

Total Leq All Segments: 49.78 dBA

♠

TOTAL Leq FROM ALL SOURCES (DAY): 57.71 (NIGHT): 49.78

1

1

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec33.te Time Period: Day/Night 16/8 hours Description: Reception Point 3-3 Rail data, segment # 1: O-Train Rail (day/night) -----! Trains ! Speed !# loc !# Cars! Eng !Cont ! !(km/h) !/Train!/Train! type !weld Tvpe -----1. O-Train ! 468.0/1.0 ! 80.0 ! 1.0 ! 1.0 ! Elec! Yes Data for Segment # 1: O-Train Rail (day/night) -----Angle1 Angle2 : -83.00 deg 0.00 deg Wood depth : 0
No of house rows : 1 / 1
House density : 20 % (No woods.) 1 / 1 Surface 1 (Absorptive ground surface) Receiver source distance : 100.00 / 100.00 m Receiver height : 7.50 / 7.50 m (Flat/gentle slope; with barrier) Topography : 2 No Whistle Barrier angle1 : -83.00 deg Angle2 : 0.00 deg Barrier height : 2.00 m Barrier receiver distance: 98.00 / 98.00 m Source elevation : 58.00 m Receiver elevation : 60.00 m Barrier elevation : 58.00 m Reference angle : 0.00 Results segment # 1: O-Train Rail (day) _____ Barrier height for grazing incidence ______ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----4.00 ! 7.50 ! 4.11 ! 0.50 ! 7.50 ! 0.68 ! 62.11 58.68 LOCOMOTIVE (0.00 + 47.83 + 0.00) = 47.83 dBAAngle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -83 0 0.41 64.44 -11.58 -4.13 0.00 -0.90 0.00 47.83 -83 0 0.28 64.44 -10.59 -3.92 0.00 0.00 0.00 49.93*

Date: 22-02-2021 11:38:16

STAMSON 5.0 NORMAL REPORT

```
-83 0 0.41 64.44 -11.58 -4.13 0.00 0.00 0.00 48.73
* Bright Zone!
WHEEL (0.00 + 37.56 + 0.00) = 37.56 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -83 0 0.51 64.45 -12.44 -4.31 0.00 -0.90 0.00 46.80
  -83 0 0.39 64.45 -11.45 -4.11 0.00 0.00 -11.33 37.56
______
Segment Leq: 48.22 dBA
Total Leq All Segments: 48.22 dBA
Results segment # 1: O-Train Rail (night)
-----
Barrier height for grazing incidence
______
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
------
     4.00 ! 7.50 ! 4.11 !
                                   62.11
     0.50 ! 7.50 ! 0.68 !
                                   58.68
LOCOMOTIVE (0.00 + 24.14 + 0.00) = 24.14 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -83 0 0.41 40.75 -11.58 -4.13 0.00 -0.90 0.00 24.14
-83 0 0.28 40.75 -10.59 -3.92 0.00 0.00 0.00 26.24<sup>3</sup>
-83 0 0.41 40.75 -11.58 -4.13 0.00 0.00 0.00 25.04
       0 0.28 40.75 -10.59 -3.92 0.00 0.00 0.00 26.24*
* Bright Zone!
WHEEL (0.00 + 13.87 + 0.00) = 13.87 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
```

-83 0 0.51 40.76 -12.44 -4.31 0.00 -0.90 0.00 23.11 -83 0 0.39 40.76 -11.45 -4.11 0.00 0.00 -11.33 13.87

Segment Leq: 24.53 dBA

Total Leq All Segments: 24.53 dBA

```
-----
Car traffic volume : 24288/2112 veh/TimePeriod *
Medium truck volume: 1932/168 veh/TimePeriod *
Heavy truck volume : 1380/120 veh/TimePeriod *
Posted speed limit : 50 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
    24 hr Traffic Volume (AADT or SADT): 30000
    Percentage of Annual Growth : 0.00
    Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
    Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 1: Scott Street (day/night)
-----
Angle1 Angle2 : -72.00 deg 0.00 deg
Wood depth : 0 (No woods.)
No of house rows : 1 / 1
House density : 20 %
Surface : 1 (Absorptive ground surface)
Receiver source distance : 50.00 / 50.00 m
Receiver height : 7.50 / 7.50 m

Topography : 1 (Flat/gentle slope; no barrier)
Topography : 1
Reference angle : 0.00
Road data, segment # 2: Parkdale Ave (day/night)
-----
Car traffic volume : 12144/1056 veh/TimePeriod *
Medium truck volume : 966/84 veh/TimePeriod *
Heavy truck volume : 690/60 veh/TimePeriod *
Posted speed limit : 40 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
    24 hr Traffic Volume (AADT or SADT): 15000
    Percentage of Annual Growth : 0.00
    Number of Years of Growth
                                       : 0.00
    Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 2: Parkdale Ave (day/night)
```

Road data, segment # 1: Scott Street (day/night)

```
Angle1 Angle2 : -33.00 deg 34.00 deg
No of house rows : 2 / 2
House density : 40 %
Surface
                              (No woods.)
                               (Absorptive ground surface)
Receiver source distance : 95.00 / 95.00 m
Receiver height : 7.50 / 7.50 Topography : 1 (
                              (Flat/gentle slope; no barrier)
              : 0.00
Reference angle
Results segment # 1: Scott Street (day)
_____
Source height = 1.50 m
ROAD (0.00 + 58.24 + 0.00) = 58.24 \text{ dBA}
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -72 0 0.48 71.49 0.00 -7.74 -4.61 0.00 -0.90 0.00 58.24
______
Segment Leq: 58.24 dBA
Results segment # 2: Parkdale Ave (day)
_____
Source height = 1.50 m
ROAD (0.00 + 46.91 + 0.00) = 46.91 \text{ dBA}
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
        -33 34 0.48 66.69 0.00 -11.87 -4.41 0.00 -3.50 0.00 46.91
Segment Leq: 46.91 dBA
Total Leq All Segments: 58.55 dBA
Results segment # 1: Scott Street (night)
-----
Source height = 1.50 m
ROAD (0.00 + 50.65 + 0.00) = 50.65 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
```

-72 0 0.48 63.89 0.00 -7.74 -4.61 0.00 -0.90 0.00 50.65

Segment Leq: 50.65 dBA

1

Results segment # 2: Parkdale Ave (night)

Source height = 1.50 m

ROAD (0.00 + 39.31 + 0.00) = 39.31 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-33 34 0.48 59.09 0.00 -11.87 -4.41 0.00 -3.50 0.00 39.31

Segment Leq: 39.31 dBA

Total Leq All Segments: 50.96 dBA

♠

TOTAL Leq FROM ALL SOURCES (DAY): 58.93 (NIGHT): 50.97

1

1

STAMSON 5.0 NORMAL REPORT Date: 22-02-2021 11:17:44 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec41.te Time Period: Day/Night 16/8 hours Description: Reception Point 4-1 Rail data, segment # 1: O-Train Rail (day/night) -----! Trains ! Speed !# loc !# Cars! Eng !Cont ! !(km/h) !/Train!/Train! type !weld Type -----1. O-Train ! 468.0/1.0 ! 80.0 ! 1.0 ! 1.0 ! Elec! Yes Data for Segment # 1: O-Train Rail (day/night) -----Angle1 Angle2 : -84.00 deg 69.00 deg Wood depth : 0

No of house rows : 1 / 1

House density : 40 %

Surface (No woods.) 1 / 1 40 % Surface 1 (Absorptive ground surface) Receiver source distance : 90.00 / 90.00 m Receiver height : 1.50 / 1.50 m (Flat/gentle slope; with barrier) Topography : 2 No Whistle Barrier angle1 : -84.00 deg Angle2 : 69.00 deg Barrier height : 2.00 m Barrier receiver distance: 88.00 / 88.00 m Source elevation : 58.00 m Receiver elevation : 60.00 m Barrier elevation : 58.00 m Reference angle : 0.00 Results segment # 1: O-Train Rail (day) ______ Barrier height for grazing incidence ______ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----4.00 ! 1.50 ! 3.99 ! 0.50 ! 1.50 ! 0.57 ! 61.99 58.57 LOCOMOTIVE (0.00 + 48.50 + 0.00) = 48.50 dBAAngle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -84 69 0.58 64.44 -12.33 -1.61 0.00 -2.00 0.00 48.50 69 0.47 64.44 -11.40 -1.45 0.00 0.00 0.00 51.60* -84

```
-84 69 0.58 64.44 -12.33 -1.61 0.00 0.00 0.00 50.50
 * Bright Zone!
WHEEL (0.00 + 38.29 + 0.00) = 38.29 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -84 69 0.66 64.45 -12.92 -1.71 0.00 -2.00 0.00 47.82
  -84 69 0.57 64.45 -12.22 -1.59 0.00 0.00 -12.36 38.29
Segment Leq: 48.90 dBA
Total Leq All Segments: 48.90 dBA
Results segment # 1: O-Train Rail (night)
______
Barrier height for grazing incidence
______
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
------
      4.00 ! 1.50 ! 3.99 ! 61.99
      0.50 !
                   1.50 ! 0.57 !
                                            58.57
LOCOMOTIVE (0.00 + 24.80 + 0.00) = 24.80 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______

      -84
      69
      0.58
      40.75
      -12.33
      -1.61
      0.00
      -2.00
      0.00
      24.80

      -84
      69
      0.47
      40.75
      -11.40
      -1.45
      0.00
      0.00
      0.00
      27.90*

      -84
      69
      0.58
      40.75
      -12.33
      -1.61
      0.00
      0.00
      0.00
      26.80

 * Bright Zone!
WHEEL (0.00 + 14.59 + 0.00) = 14.59 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -84 69 0.66 40.76 -12.92 -1.71 0.00 -2.00 0.00 24.13
  -84 69 0.57 40.76 -12.22 -1.59 0.00 0.00 -12.36 14.59
```

Segment Leq: 25.20 dBA

Total Leq All Segments: 25.20 dBA

```
-----
Car traffic volume : 24288/2112 veh/TimePeriod *
Medium truck volume: 1932/168 veh/TimePeriod *
Heavy truck volume : 1380/120 veh/TimePeriod *
Posted speed limit : 50 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
    24 hr Traffic Volume (AADT or SADT): 30000
    Percentage of Annual Growth : 0.00
    Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
    Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 1: Scott Street (day/night)
-----
Angle1 Angle2 : -76.00 deg 62.00 deg
Wood depth : 0 (No woods.)
No of house rows : 1 / 1
House density : 40 %
Surface : 1 (Absorptive ground surface)
Receiver source distance : 45.00 / 45.00 m
Receiver height : 1.50 / 1.50 m
Topography : 1 (Flat/gentle slope; no barrier)
Topography : 1
Reference angle : 0.00
Road data, segment # 2: Parkdale Ave (day/night)
-----
Car traffic volume : 12144/1056 veh/TimePeriod *
Medium truck volume : 966/84 veh/TimePeriod *
Heavy truck volume : 690/60 veh/TimePeriod *
Posted speed limit : 40 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
    24 hr Traffic Volume (AADT or SADT): 15000
    Percentage of Annual Growth : 0.00
    Number of Years of Growth
                                       : 0.00
    Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 2: Parkdale Ave (day/night)
```

Road data, segment # 1: Scott Street (day/night)

```
Angle1 Angle2 : 0.00 deg 25.00 deg
No of house rows : 2 / 2
House density : 40 %
Surface
                              (No woods.)
                               (Absorptive ground surface)
Receiver source distance : 100.00 / 100.00 m
Receiver height : 1.50 / 1.50
Topography
                      1 (Flat/gentle slope; no barrier)
              : 0.00
Reference angle
Results segment # 1: Scott Street (day)
_____
Source height = 1.50 m
ROAD (0.00 + 59.57 + 0.00) = 59.57 \text{ dBA}
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
-----
  -76 62 0.66 71.49 0.00 -7.92 -1.95 0.00 -2.05 0.00 59.57
------
Segment Leq: 59.57 dBA
Results segment # 2: Parkdale Ave (day)
_____
Source height = 1.50 m
ROAD (0.00 + 40.84 + 0.00) = 40.84 \text{ dBA}
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
        -----
   0 25 0.66 66.69 0.00 -13.68 -8.67 0.00 -3.50 0.00 40.84
Segment Leq: 40.84 dBA
Total Leq All Segments: 59.63 dBA
Results segment # 1: Scott Street (night)
-----
Source height = 1.50 m
ROAD (0.00 + 51.98 + 0.00) = 51.98 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
```

-76 62 0.66 63.89 0.00 -7.92 -1.95 0.00 -2.05 0.00 51.98

Segment Leq : 51.98 dBA

Results segment # 2: Parkdale Ave (night)

Source height = 1.50 m

ROAD (0.00 + 33.25 + 0.00) = 33.25 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

0 25 0.66 59.09 0.00 -13.68 -8.67 0.00 -3.50 0.00 33.25

Segment Leq: 33.25 dBA

Total Leq All Segments: 52.04 dBA

♠

TOTAL Leq FROM ALL SOURCES (DAY): 59.98 (NIGHT): 52.05

1

1

STAMSON 5.0 NORMAL REPORT Date: 22-02-2021 11:20:19 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec43.te Time Period: Day/Night 16/8 hours Description: Reception Point 4-3 Rail data, segment # 1: O-Train Rail (day/night) -----Type -----1. O-Train ! 468.0/1.0 ! 80.0 ! 1.0 ! 1.0 ! Elec! Yes Data for Segment # 1: O-Train Rail (day/night) -----Angle1 Angle2 : -84.00 deg 69.00 deg Wood depth : 0
No of house rows : 1 / 1
House density : 40 % (No woods.) 1 / 1 40 % Surface 1 (Absorptive ground surface) Receiver source distance : 90.00 / 90.00 m Receiver height : 7.50 / 7.50 m (Flat/gentle slope; with barrier) Topography : 2 No Whistle Barrier angle1 : -84.00 deg Angle2 : 69.00 deg Barrier height : 2.00 m Barrier receiver distance: 88.00 / 88.00 m Source elevation : 58.00 m Receiver elevation : 60.00 m Barrier elevation : 58.00 m Reference angle : 0.00 Results segment # 1: O-Train Rail (day) ______ Barrier height for grazing incidence ______ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----4.00 ! 7.50 ! 4.12 ! 0.50 ! 7.50 ! 0.70 ! 62.12 58.70 LOCOMOTIVE (0.00 + 50.15 + 0.00) = 50.15 dBAAngle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -84 69 0.41 64.44 -10.93 -1.36 0.00 -2.00 0.00 50.15 69 0.28 64.44 -10.00 -1.18 0.00 0.00 0.00 53.26* -84

```
-84 69 0.41 64.44 -10.93 -1.36 0.00 0.00 0.00 52.15
 * Bright Zone!
WHEEL (0.00 + 40.74 + 0.00) = 40.74 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -84 69 0.51 64.45 -11.75 -1.51 0.00 -2.00 0.00 49.19
  -84 69 0.39 64.45 -10.82 -1.34 0.00 0.00 -11.55 40.74
______
Segment Leq: 50.62 dBA
Total Leq All Segments: 50.62 dBA
Results segment # 1: O-Train Rail (night)
______
Barrier height for grazing incidence
______
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
------
      4.00 ! 7.50 ! 4.12 ! 62.12
      0.50 ! 7.50 ! 0.70 !
                                          58.70
LOCOMOTIVE (0.00 + 26.46 + 0.00) = 26.46 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______

      -84
      69
      0.41
      40.75
      -10.93
      -1.36
      0.00
      -2.00
      0.00
      26.46

      -84
      69
      0.28
      40.75
      -10.00
      -1.18
      0.00
      0.00
      0.00
      29.57*

      -84
      69
      0.41
      40.75
      -10.93
      -1.36
      0.00
      0.00
      0.00
      28.46

 * Bright Zone!
WHEEL (0.00 + 17.05 + 0.00) = 17.05 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -84 69 0.51 40.76 -11.75 -1.51 0.00 -2.00 0.00 25.50
  -84 69 0.39 40.76 -10.82 -1.34 0.00 0.00 -11.55 17.05
```

Segment Leq: 26.93 dBA

Total Leq All Segments: 26.93 dBA

```
-----
Car traffic volume : 24288/2112 veh/TimePeriod *
Medium truck volume: 1932/168 veh/TimePeriod *
Heavy truck volume : 1380/120 veh/TimePeriod *
Posted speed limit : 50 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
    24 hr Traffic Volume (AADT or SADT): 30000
    Percentage of Annual Growth : 0.00
    Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
    Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 1: Scott Street (day/night)
-----
Angle1 Angle2 : -76.00 deg 62.00 deg
Wood depth : 0 (No woods.)
No of house rows : 1 / 1
House density : 40 %
Surface : 1 (Absorptive ground surface)
Receiver source distance : 45.00 / 45.00 m
Receiver height : 7.50 / 7.50 m

Topography : 1 (Flat/gentle slope; no barrier)
Topography : 1
Reference angle : 0.00
Road data, segment # 2: Parkdale Ave (day/night)
-----
Car traffic volume : 12144/1056 veh/TimePeriod *
Medium truck volume : 966/84 veh/TimePeriod *
Heavy truck volume : 690/60 veh/TimePeriod *
Posted speed limit : 40 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
    24 hr Traffic Volume (AADT or SADT): 15000
    Percentage of Annual Growth : 0.00
    Number of Years of Growth
                                       : 0.00
    Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 2: Parkdale Ave (day/night)
```

Road data, segment # 1: Scott Street (day/night)

```
Angle1 Angle2 : 0.00 deg 25.00 deg
No of house rows : 2 / 2
House density : 40 %
Surface
                              (No woods.)
                               (Absorptive ground surface)
Receiver source distance : 100.00 / 100.00 m
Receiver height : 7.50 / 7.50
Topography
                  :
                      1 (Flat/gentle slope; no barrier)
              : 0.00
Reference angle
Results segment # 1: Scott Street (day)
_____
Source height = 1.50 m
ROAD (0.00 + 60.63 + 0.00) = 60.63 \text{ dBA}
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -76 62 0.48 71.49 0.00 -7.06 -1.75 0.00 -2.05 0.00 60.63
------
Segment Leq: 60.63 dBA
Results segment # 2: Parkdale Ave (day)
_____
Source height = 1.50 m
ROAD (0.00 + 42.35 + 0.00) = 42.35 \text{ dBA}
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
        0 25 0.48 66.69 0.00 -12.19 -8.64 0.00 -3.50 0.00 42.35
Segment Leq: 42.35 dBA
Total Leq All Segments: 60.69 dBA
Results segment # 1: Scott Street (night)
-----
Source height = 1.50 m
ROAD (0.00 + 53.03 + 0.00) = 53.03 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
```

```
-76 62 0.48 63.89 0.00 -7.06 -1.75 0.00 -2.05 0.00 53.03

Segment Leq: 53.03 dBA

Results segment # 2: Parkdale Ave (night)

Source height = 1.50 m

ROAD (0.00 + 34.75 + 0.00) = 34.75 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

0 25 0.48 59.09 0.00 -12.19 -8.64 0.00 -3.50 0.00 34.75

Segment Leq: 34.75 dBA

Total Leq All Segments: 53.09 dBA
```

(NIGHT): 53.10

TOTAL Leg FROM ALL SOURCES (DAY): 61.10

STAMSON 5.0 NORMAL REPORT Date: 22-02-2021 11:56:40 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT Filename: rec5.te Time Period: Day/Night 16/8 hours Description: Reception Point 5 Rail data, segment # 1: O-Train Rail (day/night) -----! Trains ! Speed !# loc !# Cars! Eng !Cont ! !(km/h) !/Train!/Train! type !weld Type -----1. O-Train ! 468.0/1.0 ! 80.0 ! 1.0 ! 1.0 ! Elec! Yes Data for Segment # 1: O-Train Rail (day/night) -----Angle1 Angle2 : -83.00 deg 69.00 deg Wood depth : 0 (No woods No of house rows : 1 / 1 House density : 20 % (No woods.) Surface 1 (Absorptive ground surface) Receiver source distance : 95.00 / 95.00 m Receiver height : 10.50 / 10.50 m (Flat/gentle slope; with barrier) Topography : 2 No Whistle Barrier angle1 : -83.00 deg Angle2 : 69.00 deg Barrier height : 2.00 m Barrier receiver distance: 93.00 / 93.00 m Source elevation : 58.00 m Receiver elevation : 60.00 m Barrier elevation : 58.00 m Reference angle : 0.00 Results segment # 1: O-Train Rail (day) ______ Barrier height for grazing incidence ______ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----4.00 ! 10.50 ! 4.18 ! 0.50 ! 10.50 ! 0.75 ! 62.18 58.75 LOCOMOTIVE (0.00 + 51.76 + 0.00) = 51.76 dBAAngle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -83 69 0.31 64.44 -10.54 -1.24 0.00 -0.90 0.00 51.76 -83 69 0.19 64.44 -9.58 -1.06 0.00 0.00 0.00 53.80*

```
-83 69 0.31 64.44 -10.54 -1.24 0.00 0.00 0.00 52.66
* Bright Zone!
WHEEL (0.00 + 41.54 + 0.00) = 41.54 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -83 69 0.42 64.45 -11.38 -1.39 0.00 -0.90 0.00 50.77
  -83 69 0.30 64.45 -10.42 -1.22 0.00 0.00 -11.27 41.54
______
Segment Leq: 52.15 dBA
Total Leq All Segments: 52.15 dBA
Results segment # 1: O-Train Rail (night)
-----
Barrier height for grazing incidence
______
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
------
     4.00 ! 10.50 ! 4.18 ! 62.18
     0.50 ! 10.50 ! 0.75 !
                                   58.75
LOCOMOTIVE (0.00 + 28.07 + 0.00) = 28.07 \text{ dBA}
Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -83 69 0.31 40.75 -10.54 -1.24 0.00 -0.90 0.00 28.07
-83 69 0.19 40.75 -9.58 -1.06 0.00 0.00 0.00 30.11*
-83 69 0.31 40.75 -10.54 -1.24 0.00 0.00 0.00 28.97
```

* Bright Zone!

Segment Leq: 28.46 dBA

Total Leq All Segments: 28.46 dBA

```
-----
Car traffic volume : 24288/2112 veh/TimePeriod *
Medium truck volume: 1932/168 veh/TimePeriod *
Heavy truck volume : 1380/120 veh/TimePeriod *
Posted speed limit : 50 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
     24 hr Traffic Volume (AADT or SADT): 30000
    Percentage of Annual Growth : 0.00
    Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
    Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 1: Scott Street (day/night)
-----
Angle1 Angle2 : -74.00 deg 60.00 deg
Wood depth : 0 (No woods.)
No of house rows : 1 / 1
House density : 20 %
Surface : 1 (Absorptive ground surface)
Receiver source distance : 55.00 / 55.00 m

Receiver height : 10.50 / 10.50 m

Topography : 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00
Road data, segment # 2: Parkdale Ave (day/night)
-----
Car traffic volume : 12144/1056 veh/TimePeriod *
Medium truck volume: 966/84 veh/TimePeriod *
Heavy truck volume : 690/60 veh/TimePeriod *
Posted speed limit : 40 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
     24 hr Traffic Volume (AADT or SADT): 15000
    Percentage of Annual Growth : 0.00
    Number of Years of Growth
                                          : 0.00
    Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 2: Parkdale Ave (day/night)
```

Road data, segment # 1: Scott Street (day/night)

```
Angle1 Angle2 : -28.00 deg 28.00 deg
No of house rows : 2 / 2
House density : 40 %
Surface
                              (No woods.)
                                (Absorptive ground surface)
Receiver source distance : 100.00 / 100.00 m
Receiver height : 10.50 / 10.50 m
Topography : 1 (Flat/gentle slope; no barrier)
               : 0.00
Reference angle
Results segment # 1: Scott Street (day)
_____
Source height = 1.50 m
ROAD (0.00 + 61.01 + 0.00) = 61.01 \text{ dBA}
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -74 60 0.39 71.49 0.00 -7.84 -1.74 0.00 -0.90 0.00 61.01
------
Segment Leq: 61.01 dBA
Results segment # 2: Parkdale Ave (day)
_____
Source height = 1.50 m
ROAD (0.00 + 46.59 + 0.00) = 46.59 \text{ dBA}
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -28 28 0.39 66.69 0.00 -11.45 -5.14 0.00 -3.50 0.00 46.59
Segment Leq: 46.59 dBA
Total Leq All Segments: 61.16 dBA
Results segment # 1: Scott Street (night)
-----
Source height = 1.50 m
ROAD (0.00 + 53.41 + 0.00) = 53.41 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
```

```
-74 60 0.39 63.89 0.00 -7.84 -1.74 0.00 -0.90 0.00 53.41

Segment Leq: 53.41 dBA

Results segment # 2: Parkdale Ave (night)

Source height = 1.50 m

ROAD (0.00 + 39.00 + 0.00) = 39.00 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-28 28 0.39 59.09 0.00 -11.45 -5.14 0.00 -3.50 0.00 39.00

Segment Leq: 39.00 dBA

Total Leq All Segments: 53.56 dBA
```

(NIGHT): 53.58

TOTAL Leq FROM ALL SOURCES (DAY): 61.68

STAMSON 5.0 NORMAL REPORT Date: 22-02-2021 12:09:00 MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: rec5tr.te Time Period: Day/Night 16/8 hours

Description: Reception Point 5tr

```
Rail data, segment # 1: O-Train Rail (day/night)
-----
```

! Trains ! Speed !# loc !# Cars! Eng !Cont ! (km/h) !/Train!/Train! type !weld Tvpe -----1. O-Train ! 468.0/1.0 ! 80.0 ! 1.0 ! 1.0 ! Elec! Yes

Data for Segment # 1: O-Train Rail (day/night)

Angle1 Angle2 : -83.00 deg 69.00 deg Wood depth : 0 (No woods No of house rows : 1 / 1 House density : 20 % (Absorptive contracts) (No woods.)

Surface 1 (Absorptive ground surface)

Receiver source distance : 95.00 / 95.00 m Receiver height : 10.50 / 10.50 m

Topography : 4 (Elevated; with barrier)

No Whistle

Barrier angle1 : -83.00 deg Angle2 : 69.00 deg
Barrier height : 10.00 m Elevation : 2.00 m

Barrier receiver distance : 5.00 / 5.00

Source elevation : 58.00 m
Receiver elevation : 60.00 m
Barrier elevation : 60.00 m
Reference angle : 0.00

Results segment # 1: O-Train Rail (day)

Barrier height for grazing incidence

Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----4.00 ! 10.50 ! 10.05 ! 70.05 0.50 ! 10.50 ! 9.87 ! 69.87

LOCOMOTIVE (0.00 + 52.33 + 0.00) = 52.33 dBA

Angle1 Angle2 Alpha RefLeq D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______

-83 69 0.25 64.44 -10.06 -1.15 0.00 -0.90 0.00 52.33

				-8.02 -10.06					50.70* 53.23
* Bri	ght Zone	e !							
	•		•	= 50.63 D.Adj		W.Adj	H.Adj	B.Adj	SubLeq
				-10.90 -8.02					
Segment Leq : 54.57 dBA									
Total Leq All Segments: 54.57 dBA									
↑ Results segment # 1: O-Train Rail (night)									
Barrier height for grazing incidence									
Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Barrier Top (m)									
Height	(m) !	Height	(m) !	Height	(m) !	Barrier		m)	
Height	(m) ! + 4.00 !	Height 1 1	(m) ! + .0.50 !	Height	(m) ! +- 0.05 !	Barrier	Top (70.05	m)	
Height	(m) ! + 4.00 ! 0.50 !	Height 1 1 1	(m) ! + .0.50 ! .0.50 !	Height 1	(m) ! +- 0.05 ! 9.87 ! 28.64 d	Barrier	Top (70.05 69.87		SubLeq
Height LOCOMO Angle1	(m) ! 4.00 ! 0.50 ! TIVE (0 Angle2	Height 1 1 .00 + 28 Alpha .0.25 0.00	(m) ! .0.50 ! .0.50 ! .6.54 + 6 RefLeq 	Height1 0.00) = D.Adj	(m) ! 	Barrier BA W.Adj 0.00 0.00	Top (70.05 69.87 H.Adj0.90 0.00	B.Adj 	28.64 27.01*
LOCOMO Angle1 -83 -83 -83	(m) ! 4.00 ! 0.50 ! TIVE (0 Angle2	Height 1 .00 + 28 Alpha .0.25 0.00 0.25	(m) ! .0.50 ! .0.50 ! .6.54 + 6 RefLeq 	Height 1 0.00) = D.Adj10.06 -8.02	(m) ! 	Barrier BA W.Adj 0.00 0.00	Top (70.05 69.87 H.Adj0.90 0.00	B.Adj 0.00 -4.99	28.64 27.01*
Height LOCOMO Angle183 -83 -83 -83 -WHEEL	(m) ! 4.00 ! 0.50 ! TIVE (0 Angle2 69 69 69 completed the	Height 1 .00 + 28 Alpha 0.25 0.00 0.25	(m) ! .0.50 ! .0.50 ! .6.50 ! .7.50 !	Height 1 0.00) = D.Adj10.06 -8.02	(m) ! 0.05 ! 9.87 ! 28.64 d F.Adj1.15 -0.73 -1.15	Barrier BA W.Adj 0.00 0.00 0.00	H.Adj -0.90 0.00 0.00	B.Adj 0.00 -4.99 0.00	28.64 27.01* 29.54
LOCOMO Angle1 -83 -83 -83 * Bri WHEEL Angle1 	(m) ! 4.00 ! 0.50 ! TIVE (0 Angle2 69 69 69 ght Zone (0.00 + Angle2	Height 1 .00 + 28 Alpha 0.25 0.00 0.25 e ! 26.94 + Alpha 0.36	(m) ! .0.50 ! .0.50 ! .0.50 ! .0.75 .0.75 .0.75 .0.75 .0.75 .0.75 .0.75 .0.75	Height 1 0.00) = D.Adj10.06 -8.02 -10.06	(m) ! 0.05 ! 9.87 ! 28.64 d F.Adj1.15 -0.73 -1.15	Barrier BA W.Adj 0.00 0.00 	Top (70.05 69.87 H.Adj0.90 0.00	B.Adj 0.00 -4.99 0.00 B.Adj	28.64 27.01* 29.54 SubLeq 27.65

Segment Leq : 30.88 dBA

Total Leq All Segments: 30.88 dBA

```
Road data, segment # 1: Scott Street (day/night)
-----
Car traffic volume : 24288/2112 veh/TimePeriod *
Medium truck volume: 1932/168 veh/TimePeriod *
Heavy truck volume : 1380/120
                               veh/TimePeriod *
Posted speed limit : 50 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
    24 hr Traffic Volume (AADT or SADT): 30000
   Percentage of Annual Growth :
                                       0.00
   Number of Years of Growth
                                   : 0.00
   Medium Truck % of Total Volume : 7.00
   Heavy Truck % of Total Volume
                                  : 5.00
   Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 1: Scott Street (day/night)
-----
Angle1 Angle2 : -74.00 deg 60.00 deg Wood depth : 0 (No woods
                                    (No woods.)
Wood depth

No of house rows
: 1 / 1
House density
: 20 %
: 1
                                      (Absorptive ground surface)
Surface
                      :
                             1
Receiver source distance : 55.00 / 55.00 m
Receiver height : 10.50 / 10.50 m
                                      (Flat/gentle slope; with barrier)
Topography
                              2
Topography

Barrier angle1 : -74.00 deg Angle2 : 60.00 deg

Barrier height : 10.00 m
Barrier receiver distance : 5.00 / 5.00 m
Source elevation : 60.00 m
Receiver elevation : 60.00 m
Barrier elevation : 60.00 m
                    : 0.00
Reference angle
Road data, segment # 2: Parkdale Ave (day/night)
-----
Car traffic volume : 12144/1056 veh/TimePeriod *
Medium truck volume: 966/84 veh/TimePeriod *
Heavy truck volume : 690/60 veh/TimePeriod *
Posted speed limit : 40 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
```

24 hr Traffic Volume (AADT or SADT): 15000

```
Percentage of Annual Growth : 0.00
Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 2: Parkdale Ave (day/night)
-----
Angle1 Angle2 : -28.00 deg 28.00 deg Wood depth : 0 (No woods
                                       (No woods.)
No of house rows :
                              2 / 2
House density
                              40 %
Surface
                        :
                                1
                                         (Absorptive ground surface)
Receiver source distance : 100.00 / 100.00 m
Receiver height : 10.50 / 10.50 \text{ m}
                 : 2 (Flat/gentle slope;
: -28.00 deg Angle2 : 28.00 deg
: 10.00 m
Topography
                                       (Flat/gentle slope; with barrier)
Barrier angle1
Barrier height
Barrier receiver distance: 10.00 / 10.00 m
Source elevation : 60.00 m
Receiver elevation : 60.00 m
Barrier elevation : 60.00 m
Reference angle : 0.00
Results segment # 1: Scott Street (day)
_____
Source height = 1.50 m
Barrier height for grazing incidence
-----
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
-----
      1.50 ! 10.50 ! 9.68 !
                                               69.68
ROAD (0.00 + 59.14 + 0.00) = 59.14 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -74 60 0.39 71.49 0.00 -7.84 -1.74 0.00 -0.90 0.00 61.01
-74 60 0.00 71.49 0.00 -5.64 -1.28 0.00 0.00 -5.43 59.14
Segment Leq: 59.14 dBA
Results segment # 2: Parkdale Ave (day)
```

```
Source height = 1.50 m
Barrier height for grazing incidence
-----
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Barrier Top (m)
------
    1.50 ! 10.50 ! 9.60 !
                                69.60
ROAD (0.00 + 46.59 + 0.00) = 46.59 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -28 28 0.39 66.69 0.00 -11.45 -5.14 0.00 -3.50 0.00 46.59
  -28 28 0.00 66.69 0.00 -8.24 -5.07 0.00 0.00 -5.43 47.94
Segment Leq: 46.59 dBA
Total Leq All Segments: 59.37 dBA
Results segment # 1: Scott Street (night)
_____
Source height = 1.50 m
Barrier height for grazing incidence
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Barrier Top (m)
------
    1.50 ! 10.50 ! 9.68 !
ROAD (0.00 + 51.54 + 0.00) = 51.54 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
 -74 60 0.39 63.89 0.00 -7.84 -1.74 0.00 -0.90 0.00 53.41
  -74 60 0.00 63.89 0.00 -5.64 -1.28 0.00 0.00 -5.43 51.54
Segment Leq: 51.54 dBA
Results segment # 2: Parkdale Ave (night)
```

Source height = 1.50 m

Barrier height for grazing incidence

Segment Leq: 39.00 dBA

Total Leq All Segments: 51.78 dBA

♠

TOTAL Leq FROM ALL SOURCES (DAY): 60.62 (NIGHT): 51.81

^

T