PROPOSED FASTFRATE WAREHOUSE FACILITY RIDEAU ROAD, OTTAWA

TRANSPORTATION IMPACT STUDY

Presented to:

Mr. Leonard Wyss

Consolidated Fastrate (Ottawa) Holdings Inc. Suite 220, 55 Commerce Valley Drive West Thornhill, On.

May 18, 2021

CASTLEGLENN CONSULTANTS LTD.

THIRD PARTY DISCLAIMER

This study has been prepared by Castleglenn Consultants Inc. ("CGI") for the benefit of the Client to whom it is addressed. The information and data contained herein represents CGI's best professional judgment in light of the knowledge and information available to CGI at the time of preparation. Except as required by law, this study and the information and data contained herein are to be treated as confidential and may be used and relied upon only by the Client, its officers and employees. CGI denies any liability whatsoever to other parties who may obtain access to this study for any injury, loss or damage suffered by such parties arising from their use of, or reliance upon, this study or any of its contents without the express written consent of CGI and the Client.

Table of Contents

1.0 EXISTING AND PLANNED CONDITIONS 4
1.1 Proposed Development 4
1.2 Existing Conditions 6
1.3 Planned Conditions. 9
2.0 STUDY AREA AND TIME PERIODS. 12
2.1 Study Area 12
2.2 Time Periods 12
2.3 Horizon Years 12
3.0 EXEMPTION REVIEW 13
4.0 FORECASTING 14
4.1 Development-Generated Travel Demand. 14
4.1.1 Trip Generation 14
4.1.2 Trip Distribution and Assignment 15
4.1.3 Trip Assignment 15
4.1.4 Site Traffic Volumes 15
5.0 BACKGROUND NETWORK TRAFFIC 17
5.1 Historical Background Growth Rate 17
5.2 Surrounding Development Traffic Generation 17
6.0 DEMAND RATIONALIZATION 20
6.1 Review of Existing Network Constraints. 20
6.2 Review of Future Network Constraints - 2022 Background. 20
6.3 Qualitative Review of Development Impact 21
7.0 ANALYSIS 23
7.1 DEVELOPMENT DESIGN 23
7.1.1 Design for Sustainable Modes 23
7.1.2 Circulation and Access 23
7.2 PARKING 24
7.2.1 Motor Vehicle Parking 24
7.2.2 Bicycle Parking 24
7.3 Boundary Street Design 24
7.3.1 Mobility - Segment MMLOS Analysis 24
7.4 Access Intersections Design 26
7.4.1 Location and Design of Site Access 26
7.4.2 Intersection Control 26
7.4.3 Subdivision Access Review 26
8.0 TIA STRATEGY 28
8.1 Study Findings. 28
8.2 Recommended Improvements 28
8.3 Conclusion. 28

APPENDICES

Appendix A: Site Plan A
Appendix B: Certification Form for TiA Study Project Manager B
Appendix C: ScREENING FORM C
Appendix D: Existing Traffic Volumes and Collisions D
Appendix E: Turning Movement Diagrams E
Appendix F: Intersection Capacity Analysis Existing and 2022 Background F
Appendix G: TDM-Supportive Development Design and Infrastructure Checklist (Non-Residential) G
Appendix H: Hawthorne Road/Somme Street Functional Plan and Turning Movements H
LIST OF EXHIbITS
Exhibit 1-1: Site Location Context 4
Exhibit 1-2: Draft Site Plan (March, 2021) 5
Exhibit 1-3: Existing (2021) Morning and Afternoon Peak Hour Traffic Volumes - Morning (Afternoon) - Vehicles-Per-Hour 11
Exhibit 4-1: Proposed Development Build-Out Traffic Volumes - AM (PM) 16
Exhibit 5-1: Combined Adjacent Background Development Traffic from Hawthorne Industrial Park Developments Morning (Afternoon) Peak Hour 19
Exhibit 6-1: Total Background Traffic Forecast - Build-Out (2022) - Morning (Afternoon) Peak Hour 22
Exhibit 7-1: Existing Hawthorne Road/Somme Street Intersection Heavy Vehicle Swept Path 27
Exhibit 7-2: Existing Rideau Road/Somme Street Heavy Vehicle Swept Path. 27
List of TABLES
Table 3-1: ExEmptions as per TIA Guidelines 13
Table 4-1: 310 Somme Street Site Generated Traffic 14
TABLE 4-7: TRAFFIC DISTRIBUTION 15
Table 4-2: Trip Generation Rates adopted for Adjacent Developments 17
Table 4-3: Adjacent Development Forecast Trip Generation 18
Table 6-1: Existing (2021) Intersection Capacity Analysis - Critical Movement Summary 20
Table 6-2: Forecast Background (2022) Analysis - Critical Movement Summary 21
Table 6-1: Parking Requirements for the 301 Somme Street Development 24
Table 6-3: SEGMENT MMLOS ANALYSIS. 25

1.0 Existing and Planned Conditions

1.1 Proposed Development

Exhibit 1-1 illustrates the location of the proposed Fastfrate warehouse development located nearest the corner of the Rideau Road / Somme Street intersection in Ottawa, Ontario. The site is located within Block 5 of the 72-hectare Tomlinson Hawthorne Industrial Subdivision.

Exhibit 1-2 illustrates the proposed site plan (Jan. 2020) including the proposed access arrangement to Somme Street. The proposed development is anticipated to provide for:

- Approximately $90,685 \mathrm{sq}$. ft . $\left(8,425 \mathrm{~m}^{2}\right)$ of warehouse space which is composed of a standard warehouse, a cross-dock facility and an e-commerce area; and
- Approximately $260 \mathrm{~m}^{2}$ of supportive office space attached to the warehouse building.

The proposed developed is located in the Rural Area (Schedule A, Official Plan). A review of the existing zoning by-law indicates a "RH - Rural Heavy Industrial Zone" designation of which a warehouse is a permitted land use. The site is currently greenfield. This Traffic Impact Study is in support of an application for Site Plan Control Approval.

Exhibit 1-1: Site Location Context

Exhibit 1-2: Site Plan (May, 2021)

Exhibit 1-2 illustrates the preliminary draft site plan for the proposed Fastfrate warehouse development. The proposed development would be accessed by way of two locations:

- A full movement access near the east site boundary intended for the access and egress of trucks destined to the facility. The driveway provides for more than 50 m of throat length and 70 m of storage for trucks to queue storage at the gate entrance. Inbound and outbound truck maneuvers would be undertaken to and from east of the site; and
- A full movement access 120 m west of the truck access intended primarily for employee vehicles. The access would also be used on an emergency basis for heavy trucks not admitted to the gate, which is anticipated to occur on very rare occasions.

The Hawthorne Road/Somme Street intersection is envisioned to provide the primary access/egress for the Tomlinson Industrial Park subdivision. The intersection would be required to provide for heavy vehicle maneuvers to and from the north. Appendix "E" provides preliminary swept path exhibits for the Hawthorne Road/Somme Street intersection.

A review of the swept paths indicated unacceptable turning maneuvers for the WB-21 design vehicle due to the degree of overlap between the inbound vehicle and a vehicle stopped along Somme Street. It is anticipated that additional corner radii would be required to accommodate safe access and egress for trucks to and from Somme Street.

1.2 EXISTING CONDITIONS

Study Area Roadways

The City of Ottawa TMP (Map 6) was referenced along with a desktop review of aerial photography to document the existing roadways that would serve the proposed development and surrounding area:

- Rideau Road is an existing 2-lane east-west undivided two-lane arterial roadway (posted speed 80 $\mathrm{km} / \mathrm{hr}$) located north of the proposed development. Fronting the site, Rideau Road is a restricted load corridor east of Hawthorne Road. Rideau Road provides access to light industrial, mineral extraction sites and material storage facilities to the west. No pedestrian or cycling infrastructure is provided within the study area;
- Hawthorne Road is an existing 2-lane undivided arterial roadway posted at $80 \mathrm{~km} / \mathrm{hr}$. The roadway begins south of Rideau Road and serves as a full load truck route connecting to Hunt Club Road and Leitrim Road to the north;
- Somme Street, Sappers Ridge are existing rural local roads that serve the Tomlinson Hawthorne Industrial Park. Both local roads provide for 2-lanes, a 7 m pavement width, lack a marked centerline and are assumed to be posted at $40 \mathrm{~km} / \mathrm{hr}$. No pedestrian or cycling facilities are provided internal to the subdivision.

Area Traffic Management

No Area Traffic Management strategies have been identified for the boundary roads within the study area.

Study Area Intersections

Hawthorne Road/Rideau Road: This intersection is a 4-leg STOP-controlled intersection with single-lane approaches. The eastbound approach is characterized by a steep grade and significant horizontal curvature in advance of the intersection.

Rideau Road / Somme Street: This intersection is a 3-leg intersection with STOP-control on the northbound approach. The intersection offers corner radii that are less than 10 m . The northbound approach is currently closed to traffic.

Somme Street / Sappers Ridge: This 3-leg uncontrolled intersection is located internal to the subdivision. It is likely that the intersection is to operate with STOP-control on Sappers Ridge and free-flow along Somme Street. The position of the intersection offers unobstructed views in either direction along Somme Street from Sappers Ridge.

Hawthorne Road / Somme Street: This 3-leg intersection provides for STOP-control on the minor leg. This intersection is anticipated to serve as the primary access/egress intersection to the subdivision, particularly for heavy vehicle maneuvers.

Existing Multi-Modal Facilities

A review of the City of Ottawa's "Map 1: Cycling Network - Primary Urban" from the Transportation Master Plan indicated no significant cycling facilities within the study area. The study area provides for 2-lane roadways with gravel shoulders with no sidewalk provisions.

A review of the February 2019 traffic count at Rideau Road / Hawthorne Road indicated no cyclists nor pedestrian activity. This would be expected given the rural nature of the area, the lack of active modes infrastructure and the time of year of the traffic count.

Existing Transit Provisions

No transit routes area available along Rideau Road and Hawthorne Road within the study area.

Existing (2020) Traffic Volumes

Exhibit 1-3 illustrates the existing morning and afternoon peak hour traffic volume at the intersection of Rideau Road/Hawthorne Road (February, 2019) and the adjacent Tomlinson Hawthorne Industrial Subdivision accesses. The turning movements at the Hawthorne Road / Somme Street intersection have been estimated. The traffic counts were augmented by 1% on all turning movements to represent a low growth potential between 2019-and-2021 existing conditions.

Appendix " D " provides existing turning movements counts provided by the City of Ottawa.
A review of the traffic volumes indicated:

- During the morning peak hour, the southbound Hawthorne Road traffic represents the peak direction of travel with more than 400 vehicles destined to areas along Rideau Road and west of the study area;
- During the afternoon peak hour, the peak direction reversed to involve vehicles originating from Rideau Road and destined to Hawthorne Road northbound; and
- The SB-RT (AM: 10% / PM: 36%) and EB-LT (AM: $26 \% /$ PM: 9%) heavy vehicle volumes were found to be significant.

Existing Road Safety Information

Five (5) year (January $1^{\text {st }}, 2015$ to December $31^{\text {st }}, 2019$) historical collision information was reviewed for the Hawthorne Road/Rideau Road intersection (Appendix "D"). The collision information provides:

- the date and time of each collision;
- the type of collision (i.e. angle collision, rear-end);
- the level of damage involved;
- vehicle details (truck, passenger vehicle, etc.);
- vehicle path/maneuver characteristics; and
- the number of pedestrians involved (in the collision).

A standard collision rate based on the number of collisions- per-million-entering-vehicles (MEV) was calculated where rate greater than 1.0 collisions/MEV was considered to pose a potential safety concern.

The following provides a summary of the collision information collected and evaluated:

- 6 total collisions were recorded at the intersection, resulting in a collision rate of 0.46 collisions/MEV;
- 4 collisions were classified as rear-ends, 1 collision was classified as a resulting of a turning movement conflict and the remaining collision was reported as an angle collision
- A single collision reported injuries while the remainder were property-damage-only (PDO); and
- Only a single collision involved a truck and trailer vehicle.

A review of the available collision information indicated that there appears to be no discernable pattern given the incidence of collisions over the 5-year period.

1.3 Planned Conditions

Planned Transportation Network Changes

A review of the City of Ottawa's documents ${ }^{1}$ indicated that:

- Bank Street from Leitrim Road to south of Rideau Road is scheduled for widening from 2-to-4 lanes in two separate phases over the next decade;
- The widening and realignment of Earl Armstrong Road from west of Albion Road to Hawthorne Road could occur beyond the 2031 Transportation Master Plan horizon, as this improvement is described within the 2031 Network Concept;

[^0]The widening of Bank Street, and potential improvements at the Bank Street/Rideau Road intersection, could result in minor changes to the traffic patterns within the study area as additional traffic shifts to the Bank Street corridor.

The Earl Armstrong realignment, should it be implemented, could result in a shift in traffic away from Rideau Road. However, the timing of this improvement is largely unknown and is well beyond the scope of this traffic study.

No changes are proposed to the existing traffic volumes to account for the above network improvements.

Other Adjacent Development Initiatives

A review of adjacent developments planned within the immediate study area was undertaken as part of this study:

- 300 Somme Street: Located within Block 6 of the Tomlinson Hawthorne Industrial Park subdivision, the 300 Somme Street development is approximately 17.8 hectares in size. The development proposes a combined $740 \mathrm{~m}^{2}$ office and $454 \mathrm{~m}^{2}$ warehouse with the remaining land serving as temporary outdoor vehicle storage yard with stalls for tractor trailer storage (15.6 m). The site would provide two, one-way accesses along Somme Street located 145 m and 210m east of Sappers Ridge opposite the Fastfrate development;
- 35 Sappers Ridge: The 35 Sappers Ridge development proposals 16 commercial units on three separate pads, totalling 2,300 m^{2} gross floor area of commercial development. A single access is proposed from Sappers Ridge;
- 581 Somme Street (Includes 601 Somme and 5123 Hawthorne): The 581 Somme Street proposes a new Techo-Bloc warehouse, showroom and accessory office building for a landscape business totalling approximately $370 \mathrm{~m}^{2}$;
- 631 Somme Street: The 631 Somme Street development proposes 12 mini-storage warehouse buildings and $83 \mathrm{~m}^{2}$ of office space. The total floor area of the development is proposed to be approximately $3,850 \mathrm{~m}^{2}$.

Exhibit 1-3: Existing (2021) Morning and Afternoon Peak Hour Traffic Volumes - Morning (Afternoon) - Vehicles-Per-Hour

Fastfrate Warehouse Development

Castleglenn Consultants Inc.

2.0 Study Area and Time Periods

2.1 Study Area

A review of the Screening Form indicated that the proposed Fastfrate warehouse development does not meet the trip generation trigger, therefore the traffic study is limited to the "Design Review" component.

The study area is proposed to include Rideau Road and Somme Street fronting the site and the following key intersections:

- Hawthorne Road / Rideau Road (all-way STOP-controlled);
- Rideau Road / Sappers Ridge (minor leg STOP-controlled); and
- Hawthorne Road/Somme Street (minor leg STOP-controlled).

2.2 Time Periods

The study will analyze the morning and afternoon peak hours of travel demand as they were envisioned to represent the "worst-case" scenario in terms of traffic volumes.

2.3 Horizon Years

To meet the expectations of a Design Review TIA, the analysis would consider the build-out/first year of operations horizon year assumed to be 2022 .

3.0 ExEmption Review

Table 3.1 is an extract from the TIA Guidelines (2017) in regard to possible reduction in scope of work of the traffic study.

Castleglenn would request the City of Ottawa to provide exemptions for Elements 4.1.3, 4.2.2 and all elements related to the Network Impact Component (Modules 4.5, 4.6 and 4.8).

Table 3-1: Exemptions as per TIA Guidelines

Module	Element	Exemption Considerations	Include Module in TIA		
	Design Review Component				Yes
4.1 Development Design	4.1.2 Circulation and Access			Required for site plan.	
4.2 Parking	4.1.3 New Street Networks	Only required for plans of subdivision	No		
	4.2.1 Parking Supply	Required for site plan.	Yes		
	4.2.2 Spillover Parking	Parking supply not anticipated to be deficient	No		
4.5 Transportation Demand Management	All elements				
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Network Review components not required.	No		
4.8 Network Concept					

4.0 Forecasting

4.1 Development-Generated Travel Demand

4.1.1 Trip Generation

The Fastfrate warehouse facility is anticipated to operate with a single shift composed of dock workers, office works and truck drivers. Based on previous operating experience, the following number of operations are anticipated:

- 30 employees combined located in both the warehouse and office space; and
- 30 trucks to the receiving docks and 30 trucks to the outbound, some of which are anticipated to be common trips where a driver completes more than one trip per day.

Therefore, daily truck travel could range from 60-to-120 two-way trips depending on the flow of inbound and outbound trailers. It has been assumed that, as a worst case, only 50% of inbound trailers are loaded as outbound trailers, resulting in 90 two-way truck trips during a 10 -hour shift. This would result in 4 -to- 5 trucks in and out during the morning and afternoon peak hours of travel demand.

The site trip generation rate related to employee travel has been determined through first principles and the following assumptions from the "Tomlinson Hawthorne Industrial Subdivision Transportation Brief" (IBI, Feb. 2009):

- 10% employee absenteeism rate;
- 60% of employees travel to work in the AM, 50% of the employees travel from work in the PM;
- A 90 / 10 inbound-outbound split in the AM and a 75 / 25 inbound-outbound split in the PM.

The site location limits the opportunities for active modes and public transportation. For a worst-case scenario, no additional mode share has been applied.

Table 4-1 summarizes the number of peak hour employee vehicles and delivery vehicles accessing the site on a typical day.

Table 4-1: 310 Somme Street Site Generated Traffic

Travel Mode	Morning Peak Hour (person trips/hr)			Afternoon Peak Hour (person trips/hr)		
	In	Out	Total	In	Out	Total
Site Employee Trips Passenger Vehicles	14	2	16	4	11	14
Warehouse Delivery Trips	5	4	9	4	5	9
Total	$\mathbf{1 9}$	$\mathbf{6}$	$\mathbf{2 5}$	$\mathbf{8}$	$\mathbf{1 6}$	$\mathbf{2 1}$

4.1.2 Trip Distribution and Assignment

The traffic distribution has been developed in review of the 2011 TRANS Origin-Destination study for the Southeast Rural Zone and of the report "Tomlinson Hawthorne Industrial Subdivision Transportation Brief for R.W. Tomlinson Ltd." (February, 2009).

Table 4-2 summarizes the traffic distribution adopted for the proposed site and adjacent development traffic.

Table 4-2: Traffic Distribution

To/From	Residential Traffic Distribution
North	60%
East	10%
West	30%
South	N/A

4.1.3 Trip Assignment

Exhibit 4-1 illustrates the traffic assignment to the adjacent study area intersections assuming full buildout of the proposed development. The following assumptions were made to assign traffic to the two subdivision access locations:

- Employee site generated traffic was entirely assigned to/from the Rideau Road/Somme Street intersection. This traffic has been assumed to be primarily employee vehicles and small vehicle deliveries, as large vehicles would be required to use the Hawthorne access; and
- The remaining traffic attributed to delivery truck traffic has been assigned to/from the Hawthorne Road/Somme Street intersection, which would be primarily composed of heavy tractor trailer traffic.

4.1.4 Site Traffic Volumes

Exhibit 4-1 illustrates the full build-out traffic assigned to the adjacent roadway network by the proposed 301 Somme Street warehouse development. The exhibit illustrates the forecast morning and afternoon peak hour of traffic.

Exhibit 4-1: Proposed Development Build-Out Traffic Volumes - AM (PM)

5.0 Background Network Traffic

5.1 Historical Background Growth Rate

The City of Ottawa TRANS Regional Model outputs were reviewed to estimate forecast traffic growth along Hawthorne Road and Rideau Road.

The following 2011 and 2031 AM screenlines were reviewed and tabulated for a projected annual growth rate:

- The SL8 Screenline (River Road, Albion Road, Bank Street and Hawthorne Road) was found to provide a 3.6% annual growth rate in the northbound peak direction; and
- the SL52 Screenline (Leitrim Rd, Louiseize Rd, Rideau Road and Mitch Owens Road) was found to provide a 3.2% growth in the eastbound peak direction.

To avoid double counting future development within the Tomlinson Industrial Park, a general 3\% background annual growth rate has been applied to the north, east and west legs of the Hawthorne Road/Rideau Road intersection.

5.2 Surrounding Development Traffic Generation

Section 1.3 identified 4 developments within the Tomlinson Hawthorne development that are likely to be occupied by the time of buildout for the proposed development. A review of the development information has indicated that traffic impact assessments are not available for these developments.

Table 5-1 summarizes the trip generation rates adopted for the adjacent study area developments. A "High Turn Over Restaurant" was considered a worst-case generation for the ground floor of each mixed-use building along Manotick Main Street.

Table 5-1: Trip Generation Rates adopted for Adjacent Developments

Land Use	Source	Independent Variable	Morning Peak Hour			Afternoon Peak Hour		
			Rate/Equation	In	Out	Rate/Equation	In	Out
Business Park	$\begin{gathered} \text { ITE - Land } \\ \text { Use } 770 \\ \hline \end{gathered}$	Gross Floor Area $(1000 \mathrm{ft} 2)$	0.4	61\%	39\%	0.42	46\%	54\%
Building Materials and Lumber Store	$\begin{gathered} \text { ITE - Land } \\ \text { Use } 812 \end{gathered}$	Gross Floor Area (1000 ft2)	1.57	63\%	37\%	2.06	47\%	53\%
Warehouse	$\begin{gathered} \text { ITE - Land } \\ \text { Use } 150 \end{gathered}$	Gross Floor Area (1000 ft2)	$0.12(\mathrm{X})+25.32$	77\%	23\%	$0.12(\mathrm{X})+27.82$	28\%	72\%
Small Office	$\begin{gathered} \text { ITE - Land } \\ \text { Use } 713 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Gross Floor Area } \\ & (1000 \mathrm{ft} 2) \end{aligned}$	1.92	83\%	17\%	2.45	68\%	32\%
Mini Warehouse	$\begin{aligned} & \text { ITE - Land } \\ & \text { Use } 151 \end{aligned}$	Gross Floor Area (1000 ft2)	0.1	60\%	40\%	0.17	47\%	53\%

Table 5-2 indicates the anticipated forecast auto trips generated by the adjacent developments on the surrounding transportation network. This analysis assumes negligible internal capture rates, pass-by rates and alternative mode shares that could further limit the overall impact of each adjacent development on the surrounding network.
illustrates the combined adjacent development traffic forecast from the Tomlinson Hawthorne Industrial Development area. The distribution and assignment of the background traffic was undertaken following the methods described within "Tomlinson Hawthorne Industrial Subdivision - Transportation Brief for R.W. Tomlinson Ltd." (February, 2009).

Table 5-2: Adjacent Development Forecast Trip Generation

300 Somme Street								
Land Use	Source	Size	Morning Peak Hour (veh/hr)			Afternoon Peak Hour (veh/hr)		
			In	Out	Total	In	Out	Total
Warehouse	$\begin{gathered} \hline \hline \text { ITE - Land } \\ \text { Use } 150 \end{gathered}$	$\begin{aligned} & \hline \hline 4,900 \\ & \text { sq. ft. } \end{aligned}$	20	6	26	8	20	28
Small Office	$\begin{gathered} \text { ITE - Land } \\ \text { Use } 713 \end{gathered}$	$\begin{aligned} & 8,000 \\ & \text { sq. ft. } \end{aligned}$	13	3	16	14	6	20
Total			33	9	42	22	26	48
35 Sappers Ridge								
Land Use	Source	Size	Morning Peak Hour (veh/hr)			Afternoon Peak Hour (veh/hr)		
			In	Out	Total	In	Out	Total
Business Park	$\begin{gathered} \hline \hline \text { ITE - Land } \\ \text { Use } 770 \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \hline 24,750 \\ \text { sq. ft. } \\ \hline \hline \end{gathered}$	7	3	10	5	6	11
Total			7	3	10	5	6	11
581 Somme Street								
Land Use	Source	Size	Morning Peak Hour (veh/hr)			Afternoon Peak Hour (veh/hr)		
			In	Out	Total	In	Out	Total
Building Materials and Lumber Store	$\begin{gathered} \hline \text { ITE - Land } \\ \text { Use } 812 \\ \hline \hline \end{gathered}$	$\begin{aligned} & 4,000 \\ & \text { sq. ft. } \\ & \hline \hline \end{aligned}$	4	3	7	4	5	9
Total			4	3	7	4	5	9
631 Somme Street								
Land Use	Source	Size	Morning Peak Hour (veh/hr)			Afternoon Peak Hour (veh/hr)		
			In	Out	Total	In	Out	Total
Mini Warehouse	$\begin{gathered} \hline \text { ITE - Land } \\ \text { Use } 151 \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 41,500 \\ \text { sq. ft. } \\ \hline \hline \end{gathered}$	3	2	5	4	4	8
Total			3	2	5	4	4	8
Total Background Traffic Volumes			47	17	64	35	41	76

Exhibit 5-1: Combined Adjacent Background Development Traffic from Hawthorne Industrial Park Developments
Morning (Afternoon) Peak Hour

6.0 DEMAND RATIONALIZATION

This section rationalizes the assumed future travel demands for the study area to determine if there are any auto capacity limitations of the transportation network. This section includes an intersection capacity analysis of existing conditions and background 2022 conditions to identify future transportation network constraints.

Appendix " F " provides the Synchro ${ }^{\mathrm{TM}}$ printouts for the study area intersections assuming existing (2021) and 2022 forecast background conditions.

6.1 Review of Existing Network Constraints

Table 6-1 summarizes the existing (2021) intersection capacity analysis undertaken with Synchro ${ }^{\mathrm{TM}} 10$ traffic software for the two existing STOP-controlled intersections within the study area. A peak-hourfactor of 0.95 was assumed for both existing and future conditions.

Inspection of the table was found to indicate that no capacity constraints are evident within the existing network. All intersections are anticipated to operate with auto LOS equal to or better than "C".

Table 6-1: Existing (2021) Intersection Capacity Analysis - Critical Movement Summary

Intersection	Weekday AM Peak (PM Peak)			
	Critical Movements/Approaches			
	Approach / Movement	Delay (seconds)	LOS	v / c
Hawthorne Road / Rideau Road	EB Approach (EB Approach)	$13(16)$	$\mathrm{B}(\mathrm{C})$	$0.42(0.63)$
	$12(10)$	$\mathrm{B}(\mathrm{A})$	$0.48(0.24)$	
	WB Approach (WB Approach)	$8(9)$	$\mathrm{A}(\mathrm{A})$	$0.02(0.01)$
Rideau Road / Somme Street	Closed	--	--	

6.2 Review of Future Network Constraints - 2022 Background

Table 6-2 summarizes the forecast background (2022) intersection capacity analysis undertaken with Synchro ${ }^{\text {TM }} 10$ traffic software for the three STOP-control intersections within the study area. A peak-hour-factor of 0.95 was assumed for both existing and future conditions.

Inspection of the table indicates that, without the development in place, the three study area intersections would operate with acceptable traffic operations of LOS "C" or better.

Table 6-2: Forecast Background (2022) Analysis - Critical Movement Summary

Intersection	Weekday AM Peak (PM Peak)			
	Critical Movements/Approaches			
	Hawthorne Road / Rideau Road	Approach / Movement	Delay (seconds)	LOS
	EB Approach (EB Approach)	$14(17)$	$\mathrm{B}(\mathrm{C})$	$0.46(0.67)$
	SB Approach (SB Approach)	$13(10)$	$\mathrm{B}(\mathrm{A})$	$0.54(0.24)$
Hawthorne Road / Somme Street	WB Approach (WB Approach)	$9(9)$	$\mathrm{A}(\mathrm{A})$	$0.03(0.01)$
Rideau Road / Somme Street	NB Approach (NB Approach)	$10(9)$	$\mathrm{A}(\mathrm{A})$	$0.01(0.01)$

6.3 Qualitative Review of Development Impact

A review of the existing and future background intersection capacity analysis indicates that the existing Hawthorne Road/Rideau Road intersection and surrounding minor road intersections operate with acceptable levels of service, delay and v/c ratios. The existing transportation network is capable of accommodating additional growth.

By the 2022 horizon year, the proposed 301 Somme Street development is anticipated to generate up to 10 two-way truck trips and approximately 15 two-way employee trips during the peak hours. This level of demand is anticipated to have a negligible impact on the levels of service and volume-tocapacity of the surrounding roadway network.

Exhibit 6-1: Total Background Traffic Forecast - Build-Out (2022) - Morning (Afternoon) Peak Hour

7.0 Analysis

7.1 Development Design

7.1.1 Design for Sustainable Modes

The proposed 301 Somme Street warehouse development:

- Provides 4 exterior cycling stalls fronting the office area of the development;
- Provides 61 auto parking stalls fronting the office and warehouse area; and
- Provides concrete sidewalks connecting the parking area, bike stalls and the main office.

The surrounding study area does not offer any transit, pedestrian or cyclist amenities. The City of Ottawa's TDM-Supportive Development Design and Infrastructure Checklist has been completed and included with Appendix "G". The transportation network surrounding the site does not provide for transit or pedestrian amenities. However, the site does provide for a designated short-term parking area immediately fronting the office site for pick-up/drop-offs

7.1.2 Circulation and Access

The site proposes two two-way accesses to Somme Street, spaced approximately 80 m apart, with the following anticipated operations:

- The east access would provide for the primary site delivery vehicle access and egress. It is anticipated that large trucks would primarily enter/exit the site from/to the east. The access provides a 70 m length to store two inbound trucks on-site ahead of the gated warehouse facility and without impacting traffic flow on Somme Street. Should a truck be denied access, the vehicle parking lot is accessible and allows for a left-turn to have the truck exit via the west access;
- The west access is intended for primary employee site access/egress, for emergency truck egress, and for e-commerce vehicle egress. The access offers an approximately 30 m throat length for inbound/outbound vehicles.

Site deliveries would be completed within the gated site area accessed from the east access location.
Trucks would be required to check-in prior to admission at the front office and would queue on-site. The site is anticipated to offer satisfactory fire truck and delivery vehicle access, egress and circulation fronting the building.

Appendix "E" provides swept path diagrams for a WB-19 design vehicle circulating the site.

7.2 Parking

7.2.1 Motor Vehicle Parking

Parking is to be accommodated on-site by above-ground vehicle stalls fronting the main office/ecommerce area as well as within the gated area. A total of 69 permanent parking stalls are to be made available, 61 of which are located outside the gated area. The proposed site is located in Area "D - Rural' of Schedule 1A (Zoning By-law No.2008-250). Table 7-1 summarizes the auto parking required and proposed supply for the development.

Table 7-1: Parking Requirements for the 301 Somme Street Development

Parking Type	Rate	Unit	Parking Requirements	Provided Parking
Office (Table 101)	2.4 stalls $/ 100 \mathrm{~m}^{2}$ of GFA	$\sim 262 \mathrm{~m}^{2}$	7 Stalls	
Warehouse (Table 101)	0.8 stalls $/ 100 \mathrm{~m}^{2}$ of GFA for first $5,000 \mathrm{~m}^{2}$ 0.4 stalls $/ 100 \mathrm{~m}^{2}$ for remaining	$\sim 8,425 \mathrm{~m}^{2}$	54 Stalls	69 Auto Stalls
Total Parking Stalls				

Table 7-1 indicates that the proposed 69 stall parking supply exceeds the minimum site parking requirement for the proposed uses. The site proposes 3 accessible vehicle parking stalls. No spillover parking is forecast to occur.

7.2.2 Bicycle Parking

As regards bicycle parking supply, a review of By-Law Section 111(2)(h) 1 stall bicycle parking stall per $2000 \mathrm{~m}^{2}$ of warehouse and 1 stalls $/ 250 \mathrm{~m}^{2}$ of office space. The bylaw requirements indicate that 8 bicycle spaces would be required for the development.

The proposed site plan provides for 8 horizontal bicycle stalls located outside the office/e-commerce spacing. This remains sufficient as there does not exist significant cycling amenities in the surround transportation network that would support cycling as an active mode share.

7.3 Boundary Street Design

7.3.1 Mobility - Segment MMLOS Analysis

The Multi-Modal Level-of-Service (MMLOS) guidelines were used to evaluate the segment level of service for all modes of transportations along Rideau Road and Somme Street fronting the site. The MMLOS Targets were referenced from Exhibit 22 under "All Other Designations".

Table 7-2 summarizes the segment MMLOS analysis fronting the proposed development assuming existing conditions. For the pedestrian and bike LOS analysis, the analysis has adopted the assumption that the operating speed is $10 \mathrm{~km} / \mathrm{hr}$ greater than the roadway posted speed ${ }^{2}$.

Table 7-2: Segment MMLOS Analysis

Performance Measure	Roadway Segments Adjacent to the Development	
	Eastbound Rideau Road	Northbound Somme Street
Pedestrian LOS (PLOS)		
Sidewalk Width (m)	0m	0m
Boulevard Width (m)	0 m	0m
Operating Speed (km/h) - Posted $+10 \mathrm{~km} / \mathrm{hr}$	$90 \mathrm{~km} / \mathrm{hr}$	$50 \mathrm{~km} / \mathrm{hr}$
Segment PLOS	F	F
Target PLOS	D	D
Bicycle LOS (BLOS)		
Bikeway Type	Mixed Traffic	Mixed Traffic
Number of Lanes per direction	2 (marked centreline)	2 (no marked centreline)
Bike Lane Width (m)	N/A	N/A
$\begin{gathered} \hline \text { Operating Speed }(\mathrm{km} / \mathrm{h}) \\ \text { Posted }+10 \mathrm{~km} / \mathrm{hr} \\ \hline \end{gathered}$	$90 \mathrm{~km} / \mathrm{hr}$	$50 \mathrm{~km} / \mathrm{hr}$
Segment BLOS	F	B
Target BLOS Spine Route	D	C
Truck LOS (TkLOS)		
Number of lanes (in each direction)	1	1
Curb Lane Width (m)	3.6	3.3
Segment TkLOS	C	D
Target TkLOS	D	No Target

Inspection of the analysis found the following sub-target facilities:

- A PLOS of "F" on both facilities due to the presence of a gravel shoulder and operating speeds greater than $30 \mathrm{~km} / \mathrm{hr}$. Given the rural nature of the area, provisions of sidewalks at this time are not considered prudent;
- A BLOS "F" along Rideau Road due to the operating speed of $90 \mathrm{~km} / \mathrm{hr}$. As a rural collector roadway, a lower speed limit is not recommended to improve BLOS;
- No transit analysis was undertaken as there are no transit routes within the study area.

No changes are recommended to improve active mode levels of service within the study area at this time given the rural and industrial nature of the area.

2 Section 2.5, "Addendum to MMLOS Guidelines", City of Ottawa, May 2017.

7.4 Access Intersections Design

7.4.1 Location and Design of Site Access

The site proposes two two-accesses to Somme Street, spaced approximately 80 m apart. In review of each access against Section 25 of the City of Ottawa's Private Approach By-Law indicates:

- Section 25(a) identifies the maximum number of approaches along a given site frontage. Somme Street provides 420 m of frontage which is more than suitable for two two-way accesses;
- The east and west site accesses are approximately 40 m and 29.5 m , respectively. As per Section 25(e), the proposed site provides for transport loading areas, and is therefore exempt from the 9.0 m width at the street line imposed by Section 25(c);
- The two proposes private approaches are separated by 80 m , which is greater than the required 9.0 m as per Section $25(\mathrm{~g})$;
- Section $26(\mathrm{~m})$ does not apply as the property does not abut a major collector nor arterial;
- The west access provides a 12.0 m spacing to the Sapper's Ridge/Somme Street intersection, which is greater than the 6.0 m required by $\operatorname{Section}(\mathrm{o})$; and
- The east access provides a 5.3 m separation to the adjacent property line, which is greater than the minimum of 3.0 m required by Section (p).

A review of the Transportation Association of Canada (TAC) guidelines for clear throat lengths (measured from the property line to the nearest obstruction), it is desirable to achieve an 8 m clear throat length for light industrial uses less than $10,000 \mathrm{~m}^{2}$ to the nearest collector roadway. Both site accesses were found to achieve the desired 8 m clear throat length. The east and west access provide for a 49 m and 24 m clear throat length, respectively.

7.4.2 Intersection Control

Each of the site accesses would provide for STOP-control on the minor leg.

7.4.3 Subdivision Access Review

Exhibit 7-2 and Exhibit 7-1 illustrate a swept path assessment of the existing Hawthorne Road/Somme Street and Rideau Road/Somme Street intersections assuming a heavy vehicle. Inspection of the exhibits indicated that the existing intersection pavement dimensions do not facilitate effective truck turning maneuvers. As this subdivision is zoned as a "Rural Heavy Industrial Use", the intersections should best accommodate heavy truck turning maneuvers. The Hawthorne Road/Somme Street intersection is envisioned to be the primary heavy vehicle access to the subdivision. The proponent for the 310 Somme Street development has been notified that all large delivery vehicles must utilize the Hawthorne Road / Somme Street intersection and thereby access the site from the east.

To best support the future truck maneuvers, Appendix "H" provides a functional plan and turning movement diagram proposed to improve the turning radii in the northeast and southeast quadrants of the
intersection. The recommended road widening and ditch modifications are to be accommodated within the existing right-of-way.

Exhibit 7-2: Existing Hawthorne Road/Somme Street Intersection Heavy Vehicle Swept Path

Exhibit 7-1: Existing Rideau Road/Somme Street Heavy Vehicle Swept Path

8.0 TIA STRATEGY

8.1 Study Findings

A review of the Transportation Impact Assessment for the 301 Somme Street development indicated:

- The Rideau Road/Hawthorne Road would operate with acceptable levels-of-service "C" or better in the existing and 2022 forecast build-out morning and afternoon peak hours;
- The proposed development would generate between 60 -and- 120 truck trips per day, resulting in approximately 10 -two-way truck and 15 two-way employee trips during the peak hours of travel demand. The development is anticipated to have a negligible impact on the surround roadway level of service and roadway capacity;
- The Hawthorne Road/Somme Street and Rideau Road/Somme Street intersections, with their existing configurations, do not offer satisfactory lane widths and curb radii to facilitate the movement of heavy vehicles to and from the Tomlinson Hawthorne Industrial Subdivision; and
- Improvements in the form of corner widening at the Hawthorne Road/Somme Street intersection would be required to improve inbound and outbound truck maneuvers at this intersection.

8.2 Recommended Improvements

It is recommended that the Hawthorne Road/Somme Street intersection be widened and improved to better facilitate heavy truck maneuvers to and from the Tomlinson Hawthorne development as per the functional plan contained within Appendix "H". This improvement effectively provides additional paved turning radii in the form of a truck apron to improve the inbound truck maneuver at the subject intersection. This improvement is recommended to be in place prior to the occupation of the 301 Somme Street development to best benefit truck safety and the rural industrial zoning of the site.

8.3 CONCLUSION

The 301 Somme Street development application proposes to develop a warehouse and e-commerce distribution facility located in the Tomlinson Heavy Industrial Subdivision. The warehouse would provide for approximately $8,425 \mathrm{~m}^{2}$ of warehousing and $260 \mathrm{~m}^{2}$ of office development. The site proposes two new accesses along Somme Street and would afford acceptable parking amenities.

Yours truly,

Mr. Jake Berube, P.Eng
Transportation Engineer
Castleglenn Consultants Inc.

Engineers, Project Managers \& Planners

Appendix A: Site Plan

$=m$ =ms SITE PLAN SCALE:1:200 \square

Appendix B: Certification Form for TiA Study Project Manager

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that $\mathrm{s} /$ he meets the four criteria listed below.

CERTIFICATION

1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
4. I am either a licensed ${ }^{1}$ or registered ${ }^{2}$ professional in good standing, whose field of expertise [check $\sqrt{ }$ appropriate field(s)] is either transportation engineering ${ }^{\text {B }}$ or transportation planning 䒶

1,2 License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

Dated at \qquad this \qquad day of December $20 \xrightarrow{20}$. (City)

Name:

Arthur Gordon

(Please Print)

Principal Engineer

Professional Title:

Office Contact Information (Please Print)

Address: Sutie 200-2460 Lancaster Road

City / Postal Code: Ottawa / K1B 4S5

Telephone / Extension: 613-731-4052

E-Mail Address: agordon@castleglenn.ca

Stamp

Appendix C: Screening Form

City of Ottawa 2017 TIA Guidelines Screening Form

Mr. Mike Giampa

February 08, 2021
Project Manager, City of Ottawa
110 Laurier Avenue West, Ottawa, ON, K1G 6J9

Please find below the completed screening form for the proposed warehouse development at 310 Somme Street near the intersection of Hawthorne Road and Rideau Road, in the lands designated as the Tomlinson Hawthorne Industrial Park.

The development proposes a 83,110 sq. $\mathrm{ft}\left(7,724 \mathrm{~m}^{2}\right)$ warehouse development and $2,900 \mathrm{sq} . \mathrm{ft}\left(270 \mathrm{~m}^{2}\right)$ adjoined office space.

In summary, the proposed 310 Somme Street development is anticipated to generate less than 60 person/trips in the peak hour of travel demand. The site was found to meet the safety trigger as Rideau Road is a posted $80 \mathrm{~km} / \mathrm{hr}$ roadway and safety concerns have been identified at the intersection of Rideau Road and Hawthorne Road.

1. Description of Proposed Development

Municipal Address	310 Somme Street, Ottawa
Description of Location	Located east of the intersection of Rideau Road and Hawthorne Road within the Tomlinson Hawthorne Industrial Subdivision
Land Use Classification	Warehouse
Development Size (units)	N/A
Development Size (m²)	$7,724 \mathrm{~m}^{2}$ of Warehouse Development
$270 \mathrm{~m}^{2}$ of office space	

Eumber of Accesses and Locations

Eaccess intended for inbound and outbound trucks

West access intended for passenger vehicles, sprinter van e-

commerce deliveries and emergency truck egress\end{array}\right|\)

Engineers, Project Managers \& Planners
2460 Lancaster Road, Suite 200,
Ottawa, Ontario, K1B 4S5
Tel: 613-731-4052

2. Trip Generation Trigger

The proposed warehouse development size is approximately 83,110 square feet (Approx $7,724 \mathrm{~m}^{2}$). There is an attached office space of 2,900 square feet intended for up to 16 office workers.
Assuming the fitted ITE curve rate for Land Use 150, the warehouse development would generate:

- 35 trip ends (27 inbound, 8 outbound) during the morning peak hour of the warehouse site; and
- 38 vehicle trip ends (9 inbound, 26 outbound) during the afternoon peak hour of the warehouse site;

Land Use 150 indicates a warehouse may also include office and maintenance areas. For the purpose of this study, the office trip generation is provided separately to develop a conservative trip generation estimate.

Assuming the average ITE rate for Land Use 712: Small Office Building, the office would generate:

- 6 trip ends (5 inbound, 1 outbound) during the morning peak hour of the office site; and
- 7 vehicle trip ends (2 inbound, 5 outbound) during the afternoon peak hour of the office site;

Therefore, the site would generate 41 -to- 45 vehicle trips during the peak hours of travel demand. Given the industrial nature of the site and the current lack of transit provisions to the area, it is anticipated that the majority of vehicle trips would be made by passenger vehicle. Assuming even a conservative 10% non-auto mode share and a 1.15 auto-occupancy results in approximately 52 -to- 57 person trips in the peak hour, below the 60 person-trip thresholds denoted within the City of Ottawa's 2017 TIA Guidelines to meet the Trip Generation trigger.

3. Location Triggers

Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?	Yes	No
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone? *	X	

*DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex
6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

The development proposes a new access to Somme Street, which is a local road within the subdivision. The development is not located within a DPA or TOD.

Engineers, Project Managers \& Planners
2460 Lancaster Road, Suite 200,
Ottawa, Ontario, K1B 4S5
Tel: 613-731-4052

4. Safety Triggers

	Yes	No
Are posted speed limits on a boundary street are $80 \mathrm{~km} / \mathrm{hr}$ or greater?	X	
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?		X
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?		X
Is the proposed driveway within auxiliary lanes of an intersection?		X
Does the proposed driveway make use of an existing median break that serves an existing site?		X
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?	X	
Does the development include a drive-thru facility?		

Rideau Road is posted at $80 \mathrm{~km} / \mathrm{hr}$ and forms the north boundary of the propose site.
The previous Tomlinson Hathorne Industrial Parking Transportation Brief (McCormick Rankin Corporation, Feb. 2009) identified deficient sight lines and poor grades at the intersection of Rideau Road and Hawthorne Road.

5. Summary

Does the development satisfy the Trip Generation Trigger?	Yes	No
Does the development satisfy the Location Trigger?		X
Does the development satisfy the Safety Trigger?	X	X

Please review the above screening form information and let us know if you have any comments.

Yours truly,

Mr. Arthur Gordon B.A. P.Eng Principal Engineer
Castleglenn Consultants Inc.

Mr .Jake Berube l. Eng
Transportation Engineer
Castleglenn Consultants Inc.

Appendix D: Existing Traffic Volumes and Collisions

Turning Movement Count - Study Results
HAWTHORNE RD @ RIDEAU RD

Survey Date: Thursday, February 28, 2019
Start Time: 07:00

WO No:
Device: Miovision

Full Study Diagram

Turning Movement Count - Study Results
HAWTHORNE RD @ RIDEAU RD

Survey Date: Thursday, February 28, 2019	WO No:	38440
Start Time: $07: 00$	Device:	Miovision

Full Study Peak Hour Diagram

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

HAWTHORNE RD @ RIDEAU RD

Survey Date: Thursday, February 28, 2019
Start Time: 07:00

WO No: 38440
Device: Miovision

Comments

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

HAWTHORNE RD @ RIDEAU RD

Survey Date: Thursday, February 28, 2019
Start Time: 07:00

WO No: 38440
Device: Miovision

Comments

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

HAWTHORNE RD @ RIDEAU RD

Survey Date: Thursday, February 28, 2019
Start Time: 07:00

WO No: 38440
Device: Miovision

Comments

HAWTHORNE RD @ RIDEAU RD

Survey Date: Thursday, February 28, 2019
Start Time: 07:00

WO No:
Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Thursday, February 28, 2019

Total Observed U-Turns

AADT Factor
Northbound: $0 \quad$ Southbound: 2
.90
Eastbound: 1 Westbound: 0

Note: These values are calculated by multiplying the totals by the appropriate expansion factor. 1.39

| AVG 12Hr | 30 | 65 | 4 | 99 | 202 | 34 | 1967 | 2203 | 2302 | 1870 | 512 | 42 | 2424 | 4 | 443 | 238 | 685 | 3109 | 5411 |
| :--- |

Note: These volumes are calculated by multiplying the Equivalent 12 hr . totals by the AADT factor.
.90

| AVG 24 Hr | 39 | 85 | 5 | 129 | 265 | 45 | 2577 | 2887 | 3016 | 2450 | 671 | 55 | 3176 | 5 | 580 | 312 | 897 | 4073 | 7089 |
| :--- |

Note: These volumes are calculated by multiplying the Average Daily 12 hr . totals by 12 to 24 expansion factor.
Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

((Ottawa
 Transportation Services - Traffic Services
 Turning Movement Count - Study Results HAWTHORNE RD @ RIDEAU RD

Survey Date: Thursday, February 28, 2019 Start Time: 07:00

WO No:
Device:

38440
Miovision

Full Study 15 Minute Increments

HAWTHORNE RD

Time Period		Northbound			Southbound					Eastbound					Westbound			$\begin{gathered} \text { w } \\ \text { TOT } \end{gathered}$	$\begin{aligned} & \text { STR } \\ & \text { TOT } \end{aligned}$	Grand Total
		LT	ST	RT	$\begin{gathered} \mathrm{N} \\ \mathrm{TOT} \\ \hline \end{gathered}$	LT	ST	RT	$\begin{gathered} \mathrm{S} \\ \text { TOT } \\ \hline \end{gathered}$	$\begin{aligned} & \text { STR } \\ & \text { TOT } \end{aligned}$	LT	ST	RT	$\begin{gathered} \text { E } \\ \text { TOT } \\ \hline \end{gathered}$	LT	ST	RT			
07:00	07:15	3	1	0	4	2	0	26	28	32	76	4	0	80	0	17	18	35	115	147
07:15	07:30	0	0	0	0	3	1	25	29	29	107	8	1	116	0	14	17	31	147	176
07:30	07:45	1	0	0	1	0	0	37	37	38	103	9	1	113	0	14	12	26	139	177
07:45	08:00	0	2	0	2	1	0	26	27	29	91	9	0	100	0	18	10	28	128	157
08:00	08:15	0	1	0	1	2	2	25	29	30	80	16	0	96	0	12	14	26	122	152
08:15	08:30	1	1	0	2	5	2	28	35	37	78	9	0	87	0	9	9	18	105	142
08:30	08:45	0	3	0	3	1	2	29	32	35	80	7	2	89	0	14	11	25	114	149
08:45	09:00	0	0	0	0	1	0	32	33	33	62	14	0	76	0	16	5	21	97	130
09:00	09:15	0	1	0	1	0	0	36	36	37	46	3	0	49	1	7	7	15	64	101
09:15	09:30	1	0	0	1	5	0	29	34	35	40	7	2	49	0	7	4	11	60	95
09:30	09:45	1	1	0	2	2	1	25	28	30	32	7	1	40	0	9	7	16	56	86
09:45	10:00	0	1	0	1	1	2	28	31	32	33	4	0	37	0	6	7	13	50	82
11:30	11:45	0	1	0	1	6	1	32	39	40	44	7	0	51	1	8	8	17	68	108
11:45	12:00	0	2	1	3	2	1	33	36	39	25	6	0	31	0	3	3	6	37	76
12:00	12:15	0	2	0	2	5	0	29	34	36	46	8	0	54	0	10	5	15	69	105
12:15	12:30	0	0	0	0	3	0	44	47	47	21	9	0	30	0	4	1	5	35	82
12:30	12:45	1	0	0	1	3	0	35	38	39	31	6	1	38	0	4	3	7	45	84
12:45	13:00	1	2	0	3	5	1	32	38	41	33	2	3	38	0	5	5	10	48	89
13:00	13:15	0	1	0	1	3	2	34	39	40	23	3	1	27	0	2	1	3	30	70
13:15	13:30	0	2	0	2	6	1	35	42	44	29	7	0	36	0	3	4	7	43	87
15:00	15:15	2	2	0	4	10	2	45	57	61	36	6	10	52	0	10	3	13	65	126
15:15	15:30	0	5	0	5	11	1	78	90	95	29	20	4	53	0	10	1	11	64	159
15:30	15:45	4	5	0	9	8	3	97	108	117	37	18	1	56	0	15	0	15	71	188
15:45	16:00	3	3	0	6	4	1	90	95	101	41	18	4	63	0	15	3	18	81	182
16:00	16:15	0	7	1	8	10	0	101	111	119	38	33	0	71	1	15	4	20	91	210
16:15	16:30	4	3	0	7	15	0	82	97	104	43	23	1	67	0	28	4	32	99	203
16:30	16:45	1	3	0	4	8	1	78	87	91	43	36	2	81	0	14	4	18	99	190
16:45	17:00	0	2	0	2	9	1	95	105	107	34	30	0	64	0	24	5	29	93	200
17:00	17:15	0	0	0	0	10	1	76	87	87	35	33	0	68	0	10	6	16	84	171
17:15	17:30	0	1	1	2	4	1	71	76	78	33	23	0	56	0	18	3	21	77	155
17:30	17:45	1	0	0	1	7	0	85	92	93	21	11	0	32	0	8	3	11	43	136
17:45	18:00	0	0	0	0	9	0	55	64	64	25	13	0	38	0	5	3	8	46	110
Total:		24	52	3	79	161	27	1573	1761	1840	1495	409	34	1938	3	354	190	547	1840	4,325

Note: U-Turns are included in Totals.

Transportation Services - Traffic Services

Turning Movement Count - Study Results
 HAWTHORNE RD @ RIDEAU RD

Survey Date: Thursday, February 28, 2019	WO No:	38440
Start Time: $07: 00$	Device:	Miovision

Time Period		Full Study Cyclist Volume						Grand Total
		HAWTHORNE RD			RIDEAU RD			
		Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	
07:00	07:15	0	0	0	0	0	0	0
07:15	07:30	0	0	0	0	0	0	0
07:30	07:45	0	0	0	0	0	0	0
07:45	08:00	0	0	0	0	0	0	0
08:00	08:15	0	0	0	0	0	0	0
08:15	08:30	0	0	0	0	0	0	0
08:30	08:45	0	0	0	0	0	0	0
08:45	09:00	0	0	0	0	0	0	0
09:00	09:15	0	0	0	0	0	0	0
09:15	09:30	0	0	0	0	0	0	0
09:30	09:45	0	0	0	0	0	0	0
09:45	10:00	0	0	0	0	0	0	0
11:30	11:45	0	0	0	0	0	0	0
11:45	12:00	0	0	0	0	0	0	0
12:00	12:15	0	0	0	0	0	0	0
12:15	12:30	0	0	0	0	0	0	0
12:30	12:45	0	0	0	0	0	0	0
12:45	13:00	0	0	0	0	0	0	0
13:00	13:15	0	0	0	0	0	0	0
13:15	13:30	0	0	0	0	0	0	0
15:00	15:15	0	0	0	0	0	0	0
15:15	15:30	0	0	0	0	0	0	0
15:30	15:45	0	0	0	0	0	0	0
15:45	16:00	0	0	0	0	0	0	0
16:00	16:15	0	0	0	0	0	0	0
16:15	16:30	0	0	0	0	0	0	0
16:30	16:45	0	0	0	0	0	0	0
16:45	17:00	0	0	0	0	0	0	0
17:00	17:15	0	0	0	0	0	0	0
17:15	17:30	0	0	0	0	0	0	0
17:30	17:45	0	0	0	0	0	0	0
17:45	18:00	0	0	0	0	0	0	0
Total		0	0	0	0	0	0	0

((Ottawa Transportation Services - Traffic Services

 Turning Movement Count - Study Results

 Turning Movement Count - Study Results HAWTHORNE RD @ RIDEAU RD

 HAWTHORNE RD @ RIDEAU RD}

Survey Date: Thursday, February 28, 2019	Wo No:	38440
Start Time: $07: 00$	Device:	Miovision

Full Study Pedestrian Volume
 HAWTHORNE RD
 RIDEAU RD

Time Period							
	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total

07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	0	0	0	0	0	0	0
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	0	0	0	0	0	0	0
08:30 08:45	0	0	0	0	0	0	0
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	0	0	0	0
16:15 16:30	0	0	0	0	0	0	0
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0	0	0	0	0	0	0
17:00 17:15	0	0	0	0	0	0	0
17:15 17:30	0	0	0	0	0	0	0
17:30 17:45	0	0	0	0	0	0	0
17:45 18:00	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0

((Ottawa
 Transportation Services - Traffic Services
 Turning Movement Count - Study Results HAWTHORNE RD @ RIDEAU RD

Survey Date: Thursday, February 28, 2019 Start Time: 07:00
$\begin{array}{lc}\text { WO No: } & 38440 \\ \text { Device: } & \text { Miovision }\end{array}$

Full Study Heavy Vehicles

HAWTHORNE RD RIDEAU RD
Northbound
Southbound
Eastbound
Westbound

Time	Period	LT	ST	RT	$\begin{gathered} \mathrm{N} \\ \text { TOT } \end{gathered}$	LT	ST	RT	$\begin{gathered} \mathrm{S} \\ \text { TOT } \end{gathered}$	$\begin{aligned} & \text { STR } \\ & \text { TOT } \end{aligned}$	LT	ST	RT	$\begin{gathered} \text { E } \\ \text { TOT } \end{gathered}$	LT	ST	RT	$\begin{gathered} \text { w } \\ \text { TOT } \end{gathered}$	$\begin{aligned} & \text { STR } \\ & \text { TOT } \end{aligned}$	Grand Total
07:00	07:15	2	1	0	3	0	0	7	7	10	8	0	0	8	0	1	5	6	14	24
07:15	07:30	0	0	0	0	0	1	8	9	9	9	0	1	10	0	2	1	3	13	22
07:30	07:45	1	0	0	1	0	0	12	12	13	10	0	1	11	0	1	1	2	13	26
07:45	08:00	0	2	0	2	0	0	9	9	11	12	0	0	12	0	0	1	1	13	24
08:00	08:15	0	0	0	0	0	1	12	13	13	4	0	0	4	0	0	1	1	5	18
08:15	08:30	0	1	0	1	1	1	6	8	9	13	1	0	14	0	0	0	0	14	23
08:30	08:45	0	2	0	2	0	1	11	12	14	14	0	1	15	0	0	1	1	16	30
08:45	09:00	0	0	0	0	0	0	13	13	13	7	2	0	9	0	1	0	1	10	23
09:00	09:15	0	1	0	1	0	0	17	17	18	8	1	0	9	0	0	1	1	10	28
09:15	09:30	0	0	0	0	3	0	8	11	11	9	0	1	10	0	1	0	1	11	22
09:30	09:45	0	1	0	1	1	0	9	10	11	9	1	1	11	0	1	0	1	12	23
09:45	10:00	0	1	0	1	0	2	11	13	14	9	0	0	9	0	1	0	1	10	24
11:30	11:45	0	1	0	1	0	1	8	9	10	12	1	0	13	0	1	0	1	14	24
11:45	12:00	0	2	0	2	0	1	7	8	10	10	1	0	11	0	0	0	0	11	21
12:00	12:15	0	1	0	1	2	0	12	14	15	16	1	0	17	0	0	0	0	17	32
12:15	12:30	0	0	0	0	0	0	8	8	8	9	0	0	9	0	2	0	2	11	19
12:30	12:45	1	0	0	1	0	0	8	8	9	6	0	0	6	0	0	0	0	6	15
12:45	13:00	1	0	0	1	0	1	7	8	9	10	0	2	12	0	1	0	1	13	22
13:00	13:15	0	1	0	1	0	2	8	10	11	4	1	1	6	0	1	0	1	7	18
13:15	13:30	0	1	0	1	1	1	8	10	11	7	1	0	8	0	1	0	1	9	20
15:00	15:15	2	2	0	4	0	2	5	7	11	10	0	9	19	0	1	0	1	20	31
15:15	15:30	0	5	0	5	3	1	10	14	19	7	0	3	10	0	0	0	0	10	29
15:30	15:45	3	5	0	8	0	3	13	16	24	14	0	1	15	0	2	0	2	17	41
15:45	16:00	1	3	0	4	0	1	9	10	14	10	2	4	16	0	2	1	3	19	33
16:00	16:15	0	6	1	7	1	0	11	12	19	8	0	0	8	1	1	0	2	10	29
16:15	16:30	1	3	0	4	0	0	9	9	13	9	0	0	9	0	3	0	3	12	25
16:30	16:45	0	2	0	2	1	1	7	9	11	9	1	2	12	0	1	0	1	13	24
16:45	17:00	0	1	0	1	0	0	8	8	9	7	0	0	7	0	1	2	3	10	19
17:00	17:15	0	0	0	0	0	0	12	12	12	3	0	0	3	0	1	1	2	5	17
17:15	17:30	0	0	0	0	0	0	8	8	8	2	1	0	3	0	0	0	0	3	11
17:30	17:45	0	0	0	0	0	0	4	4	4	2	1	0	3	0	0	0	0	3	7
17:45	18:00	0	0	0	0	0	0	6	6	6	6	1	0	7	0	0	0	0	7	13
Total:	None	12	42	1	55	13	20	291	324	379	273	16	27	316	1	26	15	42	358	737

Transportation Services - Traffic Services

Turning Movement Count - Study Results HAWTHORNE RD @ RIDEAU RD

Survey Date: Thursday, February 28, 2019
Start Time: 07:00

WO No: 38440
Device: Miovision
Full Study 15 Minute U-Turn Total
hawthorne rd

Time Period		Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total 1
07:00	07:15	0	0	1	0	
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	1	0	0	1
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	1	0	0	1
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
Total		0	2	1	0	3

Transportation Services - Traffic Services
Collision Details Report - Public Version
From: January 1, 2015 To: December 31, 2019

Location: HAWTHORNE RD @ RIDEAU RD Traffic Control: Stop sign					Total Collisions: 6				
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
2015-Feb-02, Mon, 14:30	Snow	Rear end	P.D. only	Loose snow	South South	Slowing or stopping Stopped	Automobile, station wagon Automobile, station wagon	Other motor vehicle Other motor vehicle	0
2017-Jan-26, Thu,10:08	Clear	Rear end	Non-fatal injury	Wet	South South South	Going ahead Stopped Stopped	Automobile, station wagon Passenger van Truck - dump	Other motor vehicle Other motor vehicle Other motor vehicle	0
2018-Nov-15, Thu,08:07	Clear	Turning movement	P.D. only	Dry	West East	Going ahead Turning left	Automobile, station wagon Automobile, station wagon	Other motor vehicle Other motor vehicle	0
2019-Jan-07, Mon,22:00	Snow	Rear end	P.D. only	Loose snow	East East	Slowing or stopping Stopped	Automobile, station wagon Automobile, station wagon	Other motor vehicle Other motor vehicle	0
2019-Sep-11, Wed,21:00	Clear	Rear end	P.D. only	Dry	East East	Unknown Going ahead	Unknown Automobile, station wagon	Other motor vehicle Other motor vehicle	0
2019-Nov-15, Fri,13:53	Clear	Angle	P.D. only	Wet	South West	Turning right Going ahead	Truck and trailer Pick-up truck	Other motor vehicle Other motor vehicle	0

Appendix E: Preliminary Turning Movement Diagrams

\qquad

A100

Appendix F: Intersection Capacity Analysis Existing and 2022 BACKgRound

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 11.5 |
| Intersection LOS | B |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			*			\$			\&	
Traffic Vol, veh/h	128	125	4	0	83	18	6	16	2	7	3	364
Future Vol, veh/h	128	125	4	0	83	18	6	16	2	7	3	364
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, \%	26	1	67	0	7	12	20	80	100	0	50	10
Mvmt Flow	135	132	4	0	87	19	6	17	2	7	3	383
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Right	NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	12.6				9.4		9.1			11.5		
HCM LOS	B				A		A			B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	25%	50%	0%	2%
Vol Thru, \%	67%	49%	82%	1%
Vol Right, \%	8%	2%	18%	97%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	24	257	101	374
LT Vol	6	128	0	7
Through Vol	16	125	83	3
RT Vol	2	4	18	364
Lane Flow Rate	25	271	106	394
Geometry Grp	1	1	1	1
Degree of Util (X)	0.041	0.421	0.158	0.478
Departure Headway (Hd)	5.862	5.607	5.36	4.373
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	612	647	672	815
Service Time	3.884	3.612	3.37	2.45
HCM Lane V/C Ratio	0.041	0.419	0.158	0.483
HCM Control Delay	9.1	12.6	9.4	11.5
HCM Lane LOS	A	B	A	B
HCM 95th-tile Q	0.1	2.1	0.6	2.6

Intersection						
Int Delay, s/veh	6.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	0	20	4	0	6	2
Future Vol, veh/h	0	20	4	0	6	2
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, $\%$	5	5	5	5	5	5
Mvmt Flow	0	21	4	0	6	2

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	18	4	0	0	4	0
Stage 1	4	-	-	-	-	-
Stage 2	14	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	-	-	2.245	-
Pot Cap-1 Maneuver	992	1071	-	-	1598	-
Stage 1	1011	-	-	-	-	-
Stage 2	1001	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	988	1071	-	-	1598	-
Mov Cap-2 Maneuver	988	-	-	-	-	-
Stage 1	1011	-	-	-	-	-
Stage 2	997	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.4		0		5.4	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	1071	1598	-
HCM Lane V/C Ratio		-	-	0.02	0.004	-
HCM Control Delay (s)		-	-	8.4	7.3	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.1	0	-

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 13.1 |
| Intersection LOS | B |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			*			*			*	
Traffic Vol, veh/h	389	53	3	2	60	55	2	4	0	43	4	116
Future Vol, veh/h	389	53	3	2	60	55	2	4	0	43	4	116
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, \%	9	0	80	0	5	8	0	33	0	0	67	36
Mumt Flow	409	56	3	2	63	58	2	4	0	45	4	122
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	15.6			8.6			8.8			9.5		
HCM LOS	C			A			A			A		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	33%	87%	2%	26%
Vol Thru, \%	67%	12%	51%	2%
Vol Right, \%	0%	1%	47%	71%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	6	445	117	163
LT Vol	2	389	2	43
Through Vol	4	53	60	4
RT Vol	0	3	55	116
Lane Flow Rate	6	468	123	172
Geometry Grp	1	1	1	1
Degree of Util (X)	0.01	0.625	0.158	0.235
Departure Headway (Hd)	5.645	4.802	4.621	4.941
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	628	749	770	722
Service Time	3.733	2.853	2.686	3
HCM Lane V/C Ratio	0.01	0.625	0.16	0.238
HCM Control Delay	8.8	15.6	8.6	9.5
HCM Lane LOS	A	C	A	A
HCM 95th-tile Q	0	4.4	0.6	0.9

Intersection						
Int Delay, s/veh	5.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	0	4	2	0	6	2
Future Vol, veh/h	0	4	2	0	6	2
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, $\%$	5	50	100	5	50	100
Mvmt Flow	0	4	2	0	6	2

Major/Minor	Minor1		ajor1		Major2	
Conflicting Flow All	16	2	0	0	2	0
Stage 1	2	-	-	-	-	-
Stage 2	14	-	-	-	-	-
Critical Hdwy	6.45	6.7	-	-	4.6	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.75	-	-	2.65	-
Pot Cap-1 Maneuver	995	957	-	-	1356	-
Stage 1	1013	-	-	-	-	-
Stage 2	1001	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	991	957	-	-	1356	-
Mov Cap-2 Maneuver	991	-	-	-	-	-
Stage 1	1013	-	-	-	-	-
Stage 2	997	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.8		0		5.8	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	957	1356	-
HCM Lane V/C Ratio		-	-	0.004	0.005	-
HCM Control Delay (s)		-	-	8.8	7.7	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0	0	-

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 12.6 |
| Intersection LOS | B |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			*			*			*	
Traffic Vol, veh/h	132	132	11	0	87	22	9	24	2	7	20	375
Future Vol, veh/h	132	132	11	0	87	22	9	24	2	7	20	375
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, \%	26	1	67	0	7	12	20	80	100	0	50	10
Mumt Flow	139	139	12	0	92	23	9	25	2	7	21	395
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Right	NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	13.6				9.8		9.5			12.9		
HCM LOS	B				A		A			B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	26%	48%	0%	2%
Vol Thru, \%	69%	48%	80%	5%
Vol Right, \%	6%	4%	20%	93%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	35	275	109	402
LT Vol	9	132	0	7
Through Vol	24	132	87	20
RT Vol	2	11	22	375
Lane Flow Rate	37	289	115	423
Geometry Grp	1	1	1	1
Degree of Util (X)	0.062	0.462	0.177	0.542
Departure Headway (Hd)	6.057	5.747	5.539	4.607
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	590	628	647	787
Service Time	4.104	3.781	3.58	2.607
HCM Lane V/C Ratio	0.063	0.46	0.178	0.537
HCM Control Delay	9.5	13.6	9.8	12.9
HCM Lane LOS	A	B	A	B
HCM 95th-tile Q	0.2	2.4	0.6	3.3

Intersection						
Int Delay, s/veh	0.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow	MF	
Traffic Vol, veh/h	138	12	12	104	4	4
Future Vol, veh/h	138	12	12	104	4	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	5	5	5	5	5	5
Mvmt Flow	145	13	13	109	4	4

Intersection						
Int Delay, s/veh	7.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	0	30	4	0	30	2
Future Vol, veh/h	0	30	4	0	30	2
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	5	5	5	5	5	5
Mvmt Flow	0	32	4	0	32	2

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	70	4	0	0	4	0
Stage 1	4	-	-	-	-	-
Stage 2	66	-	-	-	-	-
Critical Hdwy	6.45	6.25	-	-	4.15	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.345	-	-	2.245	-
Pot Cap-1 Maneuver	927	1071	-	-	1598	-
Stage 1	1011	-	-	-	-	-
Stage 2	949	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	908	1071	-	-	1598	-
Mov Cap-2 Maneuver	908	-	-	-	-	-
Stage 1	1011	-	-	-	-	-
Stage 2	930	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.5		0		6.8	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	1071	1598	-
HCM Lane V/C Ratio		-	-	0.029	0.02	-
HCM Control Delay (s)		-	-	8.5	7.3	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.1	0.1	-

Intersection	
Intersection Delay, s/veh	14.1
Intersection LOS	B

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			*			\$			\&	
Traffic Vol, veh/h	401	47	8	2	65	68	8	19	0	53	17	119
Future Vol, veh/h	401	47	8	2	65	68	8	19	0	53	17	119
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles, \%	9	0	80	0	5	8	0	33	0	0	67	36
Mvmt Flow	422	49	8	2	68	72	8	20	0	56	18	125
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	17.4			9.1			9.2			10.3		
HCM LOS	C			A			A			B		

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	30%	88%	1%	28%
Vol Thru, \%	70%	10%	48%	9%
Vol Right, \%	0%	2%	50%	63%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	27	456	135	189
LT Vol	8	401	2	53
Through Vol	19	47	65	17
RT Vol	0	8	68	119
Lane Flow Rate	28	480	142	199
Geometry Grp	1	1	1	1
Degree of Util (X)	0.047	0.662	0.193	0.283
Departure Headway (Hd)	5.917	4.966	4.89	5.127
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	608	720	739	692
Service Time	3.924	3.049	2.89	3.223
HCM Lane V/C Ratio	0.046	0.667	0.192	0.288
HCM Control Delay	9.2	17.4	9.1	10.3
HCM Lane LOS	A	C	A	B
HCM 95th-tile Q	0.1	5	0.7	1.2

Intersection						
Int Delay, s/veh	0.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			A	Mr	
Traffic Vol, veh/h	89	12	5	121	15	5
Future Vol, veh/h	89	12	5	121	15	5
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	5	5	5	5	5	5
Mvmt Flow	94	13	5	127	16	5

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	107	0	238	101
Stage 1	-	-	-	-	101	-
Stage 2	-	-	-	-	137	-
Critical Hdwy	-	-	4.15		6.45	6.25
Critical Hdwy Stg 1	-	-	-	-	5.45	-
Critical Hdwy Stg 2	-	-	-	-	5.45	-
Follow-up Hdwy	-	-	2.245	-	3.545	3.345
Pot Cap-1 Maneuver	-	-	1465	-	744	946
Stage 1	-	-	-	-	916	-
Stage 2	-	-	-	-	882	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1465	-	741	946
Mov Cap-2 Maneuver	-	-	-	-	741	-
Stage 1	-	-	-	-	916	-
Stage 2	-	-	-	-	878	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.3		9.7	
HCM LOS					A	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL WBT	
Capacity (veh/h)		783	-	-	1465	-
HCM Lane V/C Ratio		0.027	-	-	0.004	-
HCM Control Delay (s)		9.7	-	-	7.5	0
HCM Lane LOS		A	-	-	A	A
HCM 95th \%tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	7.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	0	25	2	0	24	2
Future Vol, veh/h	0	25	2	0	24	2
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	5	60	100	5	60	100
Mvmt Flow	0	26	2	0	25	2

Major/Minor	Minor1		ajor1		Major2	
Conflicting Flow All	54	2	0	0	2	0
Stage 1	2	-	-	-	-	-
Stage 2	52	-	-	-	-	-
Critical Hdwy	6.45	6.8	-	-	4.7	-
Critical Hdwy Stg 1	5.45	-	-	-	-	-
Critical Hdwy Stg 2	5.45	-	-	-	-	-
Follow-up Hdwy	3.545	3.84	-	-	2.74	-
Pot Cap-1 Maneuver	947	935	-	-	1311	-
Stage 1	1013	-	-	-	-	-
Stage 2	963	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	929	935	-	-	1311	-
Mov Cap-2 Maneuver	929	-	-	-	-	-
Stage 1	1013	-	-	-	-	-
Stage 2	945	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9		0		7.2	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	
Capacity (veh/h)		-	-	935	1311	-
HCM Lane V/C Ratio		-	-	0.028	0.019	-
HCM Control Delay (s)		-	-	9	7.8	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0.1	0.1	-

Appendix G:TDM-Supportive Development Design and
 InfRASTRUCTURE CHECKLIST (NON-RESIDENTIAL)

Introduction

The City of Ottawa's Transportation Impact Assessment (TIA) Guidelines (specifically Module 4.1-Development Design) requires proponents of qualifying developments to use the City's TDM-Supportive Development Design and Infrastructure Checklist to assess the opportunity to implement design elements that are supportive of sustainable modes. The goal of this assessment is to ensure that the development provides safe and efficient access for all users, while creating an environment that encourages walking, cycling and transit use.

The remaining sections of this document are:

- Using the Checklist
- Glossary
- TDM-Supportive Development Design and Infrastructure Checklist: Non-Residential Developments
- TDM-Supportive Development Design and Infrastructure

Checklist: Residential Developments

Readers are encouraged to contact the City of Ottawa's TDM Officer for any guidance and assistance they require to complete this checklist.

Using the Checklist

This TDM-Supportive Development Design and Infrastructure Checklist document includes two actual checklists, one for non-residential developments (office, institutional, retail or industrial) and one for residential developments (multi-family or condominium only; subdivisions are exempt). Readers may download the applicable checklist in electronic format and complete it electronically, or print it out and complete it by hand. As an alternative, they may create a freestanding document that lists the design and infrastructure measures being proposed and provides additional detail on them.

Each measure in the checklist is numbered for easy reference. Each measure is also flagged as:

- REquired -The Official Plan or Zoning By-law provides related guidance that must be followed.
- BASIC - The measure is generally feasible and effective, and in most cases would benefit the development and its users.
- better - The measure could maximize support for users of sustainable modes, and optimize development performance.

Glossary

This glossary defines and describes the following measures that are identified in the TDM-Supportive Development Design and Infrastructure Checklist:

Walking \& cycling: Routes

- Building location \& access points
- Facilities for walking \& cycling
- Amenities for walking \& cycling

Walking \& cycling: End-of-trip facilities

- Bicycle parking
- Secure bicycle parking
- Shower \& change facilities
- Bicycle repair station

Transit

- Walking routes to transit
- Customer amenities

Ridesharing

- Pick-up \& drop-off facilities
- Carpool parking

Carsharing \& bikesharing

- Carshare parking spaces
- Bikeshare station location

Parking

- Number of parking spaces
- Separate long-term \& short-term parking areas

Other

- On-site amenities to minimize off-site trips

In addition to specific references made in this glossary, readers should consult the City of Ottawa's design and planning guidelines for a variety of different land uses and contexts, available on the City's website at www.ottawa.ca. Readers may also find the following resources to be helpful:

- Promoting Sustainable Transportation through Site Design, Institute of Transportation Engineers, 2004 (www.cite7.org/wpdm-package/iterp-promoting-sustainable-transportation)
- Bicycle End-of-Trip Facilities: A Guide for Canadian Municipalities and Employers, Transport Canada, 2010 (www.fcm.ca/Documents/tools/GMF/Transport_Canada/BikeEndofTrip_EN.pdf)

- Walking \& cycling: Routes

Building location \& access points. Correctly positioning buildings and their entrances can help make walking convenient, comfortable and safe. Minimizing travel distances and maximizing visibility are key.

Facilities for walking \& cycling. The Official Plan gives clear direction on the provision and design of walking and cycling facilities for both access and circulation. On larger, busier sites (e.g. multi-building campuses) the inclusion of sidewalks, pathways, marked crossings, stop signs and traffic calming features can create a safer and more supportive environment for active transportation.

Amenities for walking \& cycling. Lighting, landscaping, benches and wayfinding can make walking and cycling safer and more secure, comfortable and accessible.

- Walking \& cycling: End-of-trip facilities

Bicycle parking. The Official Plan and Zoning By-law both address the need for adequate bicycle parking at developments. Weather protection and theft prevention are major concerns for commuters who spend hundreds or thousands of dollars on a quality bicycle. Bicycle racks should have a design that enables secure locking while preventing damage to wheels. They should be located within sight of busy areas such as main building entrances or staffed parking kiosks.

Secure bicycle parking. Ottawa's Zoning By-law requires a secure area for bicycles at office or residential developments having more than 50 bicycle parking spaces. Lockable outdoor bike cages or indoor storage rooms that limit access to registered users are ideal.

Shower \& change facilities. Longer-distance cyclists, joggers and even pedestrians can need a place to shower and change at work; the lack of such facilities is a major barrier to active commuting. Lockers and drying racks provide a place to store gear away from workspaces, and showers and grooming stations allow commuters to make themselves presentable for the office.

Bicycle repair station. Cycling commuters can experience maintenance issues that make the homeward trip difficult or impossible. A small supply of tools (e.g. air pump, Allen keys, wrenches) and supplies (e.g. inner tube patches, chain lubricant) in the workplace can help.

- Transit

Customer amenities. Larger developments that feature an on-site transit stop can make transit use more attractive by providing shelters, lighting and benches. Even better, they could integrate the passenger waiting area into a building entrance.

- Ridesharing

Pick-up \& drop-off facilities. Having a safe place to load or unload passengers (for carpools as well as taxis and ride-hailing services) without obstructing pedestrians, cyclists or other vehicles can help make carpooling work.

Carpool parking. At destinations with large parking lots (or lots that regularly fill to capacity), signed priority carpool parking spaces can be an effective ridesharing incentive. Priority spaces are frequently abused by non-carpoolers, so a system to provide registered users with vehicle identification tags is recommended.

- Carsharing \& bikesharing

Carshare parking spaces. For developments where carsharing could be an attractive option for employees, visitors or residents, ensuring an attractive location for future carshare parking spaces can avoid challenges associated with future retrofits.

Bikeshare station location. For developments where bikesharing could be an attractive option for employees, visitor or residents, ensuring an attractive location for a future bikeshare station can avoid challenges associated with future retrofits.

- Parking

Number of parking spaces. Parking capacity is an important variable in development design, as it can either support or subvert the mode share targets set during the transportation impact analysis (TIA). While the Zoning By-law establishes any minimum and/or maximum requirements for parking capacity, it also allows a reduction in any minimum to reflect the existence of on-site shower, change and locker rooms provided for cyclists.

Separate long-term \& short-term parking areas. Because access to unused parking spaces can be a powerful incentive to drive, developments can better manage their parking supply and travel behaviours by separating long-term from short-term parking through the use of landscaping, gated controls or signs. Doing so makes it difficult for long-term parkers (e.g. commuters) to park in short-term areas (e.g. for visitors) as long as enforcement occurs; it also protects long-term parking capacity for its intended users.

- Other

On-site amenities to minimize off-site trips. Developments that offer facilities to limit employees' need for a car during their commute (e.g. to drop off children at daycare) or during their workday (e.g. to hit the gym) can free employees to make the commuting decision that otherwise works best for them.

TDM-Supportive Development Design and Infrastructure Checklist:
 Non-Residential Developments (office, institutional, retail or industrial)

REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance

TDM-supportive design \& infrastructure measures: Non-residential developments			Check if completed \& add descriptions, explanations or plan/drawing references
		WALKING \& CYCLING: ROUTES	
		Building location \& access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	\square
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	\boxtimes Building entrance fronts parking lot
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	\square
	1.2	Facilities for walking \& cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	\square N/A
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	$\square \mathrm{N} / \mathrm{A}$

	TDM-supportive design \& infrastructure measures: Non-residential developments		Check if completed \& add descriptions, explanations or plan/drawing references
REQUIRED	$1.2 .3$	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	\square
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	\square
REQUIRED	$1.2 .5$	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	\square
basic	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	\square
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	\square
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than $30 \mathrm{~km} / \mathrm{h}$, or provide a separated cycling facility	\square
	1.3	Amenities for walking \& cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	\square
basic	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	\square

	TDM-supportive design \& infrastructure measures: Non-residential developments		Check if completed \& add descriptions, explanations or plan/drawing references
	2.	WALKING \& CYCLING: END-OF-TRIP FACILITIES	
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	B Bicycle parking available fronting the office area
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or wellused areas (see Zoning By-law Section 111)	Bicycle parking meets By Law requirements
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	\boxtimes Bicycle parking located in an open space
basic	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	\square
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season	\square
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25\% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	\square
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	\square
	2.3	Shower \& change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	\square
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	\square
	2.4	Bicycle repair station	
better	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	\square

TDM-supportive design \& infrastructure measures: Non-residential developments			Check if completed \& add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	\square
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	\square
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	\square
	4.	RIDESHARING	
	4.1	Pick-up \& drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	\boxtimes Short-term parking provided fronting the site
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	\square
better	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	\square
	5.	CARSHARING \& BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted nonresidential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	\square
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	\square

$\left.\begin{array}{|lll|l|}\hline & \text { TDM-supportive design \& infrastructure measures: } \\ \text { Non-residential developments }\end{array} \quad \begin{array}{c}\text { Check if completed \& } \\ \text { add descriptions, explanations } \\ \text { or plan/drawing references }\end{array}\right\}$

Appendix H: Hawthorne Road/Somme Street
Functional Plan and Turning Movements

NOTES

CITY OF OTTAWA
HAWTHORNE ROAD AND SOMME STREET
PROPOSED INTERSECTION MODIFICATION
FUNCTIONAL PLAN

2
 Consultants

PROJECT REF NUMBER: 7257

ω^{*}	Descripton	By	date
1	as per city commens	${ }^{8 \times}$	xxsxx

NOTES

[^0]: 1. City of Ottawa Transportation Master Plan (Nov. 2013) Map 11 (Road Network Affordable Transportation Network), Map 5 (Rapid Transit and Transit Priority Network - 2031 Affordable Network), Appendix "E" of the 2019 DC Background Study and other planning documents
