

DRAFT

Phase Two Environmental Site Assessment

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue Ottawa, Ontario

1213763 Ontario Inc.

33 Yonge Street, Suite 1000 Toronto, ON M5E 1G4

November 30, 2020

Pinchin File: 230236.006

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

DRAFT

November 30, 2020

Pinchin File: 230236.006

Issued To: 1213763 Ontario Inc.
Issued On: November 30, 2020

Pinchin File: 230236.006 Issuing Office: Kanata, ON

Author: Michael Kosiw, B.Sc. Hons, EP,CESA

Project Manager

613.592.3387 ext. 1816 mkosiw@pinchin.com

Reviewer: Scott Mather, P.Eng., QPESA

Director, Eastern Ontario 613.592.3387 ext. 1802 smather@pinchin.com

Reviewer: Robert MacKenzie, B.Sc., P.Geo., QP_{ESA}
Regional Practice Leader & Senior Consultant

416.648.0631

rmackenzie@pinchin.com

© 2020 Pinchin Ltd. Page i

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY						
2.0	INTRODUCTION						
	2.1 2.2 2.3 2.4	Site Description	7 8				
3.0	BACKGROUND INFORMATION						
	3.1 3.2	Physical Setting	10 10 18				
4.0	SCOPE OF INVESTIGATION						
	4.1 4.2 4.3 4.4 4.5	Overview of Site Investigation Media Investigated Phase One Conceptual Site Model Deviations from Sampling and Analysis Plan Impediments	21 21 2				
5.0	INVESTIGATION METHOD						
6.0	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12	General Drilling and Excavating Soil Sampling Field Screening Measurements Groundwater Monitoring Well Installation Groundwater Field Measurements of Water Quality Parameters Groundwater Sampling Sediment Sampling Analytical Testing Residue Management Procedures Elevation Surveying Quality Assurance and Quality Control Measures 5.12.1 Sample Containers, Preservation, Labelling, Handling and Custody of Samples 5.12.2 Equipment Cleaning Procedures 5.12.3 Field Quality Control Measures 5.12.4 QA/QC Sampling Program Deviations	25 27 28 30 31 31 31				
6.0	REVIEW AND EVALUATION						
	6.1 6.2 6.3 6.4 6.5	Geology Groundwater Elevations and Flow Direction Groundwater Hydraulic Gradients 6.3.1 Groundwater Horizontal Hydraulic Gradients 6.3.2 Groundwater Vertical Hydraulic Gradients Fine-Medium Soil Texture Soil Field Screening	35 37 37 38				

Phase Two Environmental Site Assessment
320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa,
Ontario
1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

	6.6	Soil Quality		39		
		6.6.1	VOCs			
		6.6.2	PHCs F1-F4	39		
		6.6.3	PAHs	40		
		6.6.4	Metals	41		
		6.6.5	General Comments on Soil Quality	42		
	6.7	Ground	dwater Quality	42		
		6.7.1	VOCs	42		
		6.7.2	PHCs F1-F4			
		6.7.3	PAHs			
		6.7.4	Metals			
		6.7.5	General Comments on Groundwater Quality			
	6.8	Sedime	ent Quality	43		
	6.9	Quality	Assurance and Quality Control Results			
		6.9.1	Soil Duplicate Results	45		
		6.9.2	Groundwater Sample Duplicate Results			
		6.9.3	Groundwater Trip Blank Results	47		
		6.9.4	Deviations from Analytical Protocol			
		6.9.5	Laboratory Certificates of Analysis			
		6.9.6	Laboratory Comments Regarding Sample Analysis			
		6.9.7	QA/QC Sample Summary	49		
	6.10	Phase 7	Two Conceptual Site Model	49		
7.0	CONCLUSIONS					
7.0						
	7.1	Signatu	ures	53		
	7.2	Terms a	and Limitations	53		
8.0	REFE	REFERENCES				
9.0	FIGURES AND TABLES5			57		
10.0	APPENDICES5					
10.0	APPENDICES					

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

APPENDICES

Appendix A Legal Survey and Survey Data

Appendix B-1 Previous Analytical Data

Appendix B-2 Sampling and Analysis Plan

Appendix C Borehole Logs

Appendix D Laboratory Certificates of Analysis

FIGURES

Figure 1 Key Map

Figure 2 Phase Two Property
Figure 3 Phase One Study Area

Figure 4 Potentially Contaminating Activities – On-Site
Figure 5 Potentially Contaminating Activities – Off-Site
Figure 6 Areas of Potential Environmental Concern
Figure 7 Borehole and Monitoring Well Location Plan

Figure 8A Cross-Section Lines

Figure 8B Cross-Section Detail A - A'Figure 8C Cross-Section Detail B - B'

Figure 9 Groundwater Elevations and Inferred Groundwater Flow Direction

(October 14, 2020)

TABLES

Table 1 Table of Areas of Potential Environmental Concern

Table 2 Table of Potentially Contaminating Activities

Table 3 Soil Analytical Results

Table 4 Groundwater Monitoring Well Elevations and Construction Details

Table 5 Groundwater Monitoring - Water Levels
Table 6 Monitoring - Non-Aqueous Phase Liquids

Table 7 Groundwater Analytical Results
Table 8 Maximum Concentrations in Soil

Table 9 Maximum Concentrations in Groundwater

© 2020 Pinchin Ltd. Page iv

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

1.0 EXECUTIVE SUMMARY

Pinchin Ltd. (Pinchin) was retained by 1213763 Ontario Inc. (Client) to complete a Phase Two Environmental Site Assessment (Phase Two ESA) of the property located at 320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue in Ottawa, Ontario (hereafter referred to as the Site or Phase Two Property). The Phase Two Property is presently developed with a single-storey commercial/light industrial building complete with a two-storey office portion (Site Building A), as well as two, two-storey residential dwellings (Site Buildings B and C). In addition, it should be noted that a retail fuel outlet (RFO) was formerly located on the northeast portion of the Phase Two Property.

The Phase Two ESA was conducted at the request of the Client in relation to the future redevelopment of the Phase Two Property from mixed commercial/residential land use to residential land use. A Record of Site Condition (RSC) submittal to the Ontario Ministry of Environment, Conservation and Parks (MECP) is a mandatory requirement when a land use changes to a more sensitive land use and as such, to support the RSC submission, the Phase Two ESA was conducted in accordance with the Province of Ontario's Ontario Regulation 153/04: Records of Site Condition – Part XV.1 of the Act, which was last amended by Ontario Regulation 274/20 on July 1, 2020 (O. Reg. 153/04).

The objectives of this Phase Two ESA were to assess the soil and groundwater quality in relation to 18 areas of potential environmental concern (APECs) and related potentially contaminating activities (PCAs) and contaminants of potential concern (COPCs) identified in a Phase One ESA completed by Pinchin in accordance with O. Reg. 153/04. The identified APECs, PCAs and COPCs are summarized in Tables 1 and 2 (all Tables are provided within Section 9.0). The Phase Two ESA was completed by Pinchin between May 19, 2020 and October 14, 2020 and consisted of the following:

- Initial investigation of the APECs; and
- Vertical delineation of groundwater impacts identified during the initial APECs investigation.

The initial APECs investigation included the advancement of 17 boreholes at the Phase Two Property, five of which were completed as groundwater monitoring wells to facilitate the sampling of groundwater and the assessment of groundwater flow. The boreholes were advanced to depths ranging from approximately 0.46 to 15.24 metres below ground surface (mbgs). Select soil samples collected from each of the borehole locations were submitted for laboratory analysis of volatile organic compounds (VOCs), petroleum hydrocarbons (PHCs) fractions 1 through 4 (F1-F4), polycyclic aromatic hydrocarbons (PAHs) and metals. In addition, groundwater samples were collected from each of the newly-installed monitoring wells, with the exception of monitoring well MW114, which was dry during the duration of the investigation, as well as two previously-installed monitoring wells, and submitted for laboratory analysis of

© 2020 Pinchin Ltd. Page 1 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006 DRAFT

November 30, 2020

VOCs, PHCs, PAHs, and metals. One additional groundwater monitoring well was installed to vertically delineate groundwater impacts and samples collected from this well were analyzed for VOCs, PHCs F1-F4, PAHs and mercury.

Based on Site-specific information, the applicable regulatory standards for the Phase Two Property were determined to be the "Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition", provided in the MECP document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011 (Table 7 Standards) for coarse-textured soils and residential/parkland/institutional property use

The laboratory results for the submitted soil samples indicated that all reported concentrations for the parameters analyzed met the corresponding *Table 7 Standards*, except for the following:

- The concentration of xylenes (4.6 micrograms per grams (μg/g) vs. the *Table 7 Standard* of 3.1 μg/g) reported for soil sample BH104 SS1, collected at borehole BH104 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*;
- The concentration of PHCs F1 (110 μg/g vs. the *Table 7 Standard* of 55 μg/g) reported for soil sample BH104 SS1, collected at borehole BH104 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*;
- The concentration of PHCs F3 (730 μg/g vs. the *Table 7 Standard* of 300 μg/g) reported for soil sample BH107 SS4, collected at borehole BH107 from a depth of 1.83 to 2.59 mbgs, exceeded the *Table 7 Standards*;
- The concentration of PHCs F2 (220 μg/g vs. the *Table 7 Standard* of 98 μg/g) and PHCs F3 (4,500 μg/g vs. the *Table 7 Standard* of 300 μg/g) reported for soil sample BH113 SS2, collected at borehole BH113 from a depth of 0.61 to 1.22 mbgs, exceeded the *Table 7 Standards*;
- The concentration of PHCs F3 (430 μg/g vs. the *Table 7 Standard* of 300 μg/g) reported for soil sample MW114 SS1, collected at borehole MW114 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*;
- The concentrations of acenaphthylene (1.1 μg/g vs. the *Table 7 Standard* of 0.15 μg/g), anthracene (7.8 μg/g vs. the *Table 7 Standard* of 0.67 μg/g), benzo(a)anthracene (16 μg/g vs. the *Table 7 Standard* of 0.5 μg/g), benzo(a)pyrene (12 μg/g vs. the *Table 7 Standard* of 0.3 μg/g), benzo(b)fluoranthene (15 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), benzo(k)fluoranthene (5.6 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), chrysene (11 μg/g vs. the *Table 7 Standard* of 0.1 μg/g), fluoranthene (32 μg/g vs. the *Table 7 Standard* of 0.69

© 2020 Pinchin Ltd. Page 2 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

μg/g), indeno(1,2,3-c,d)pyrene (6.5 μg/g vs. the *Table 7 Standard* of 0.38 μg/g), 1- & 2-methylnaphthalene (1.4 μg/g vs. the *Table 7 Standard* of 0.99 μg/g), naphthalene (0.86 μg/g) vs. the *Table 7 Standard* of 0.6 μg/g), and phenanthrene (24 μg/g vs. the *Table 7 Standard* of 6.2 μg/g) reported for soil sample BH107 SS4, collected at borehole BH107 from a depth of 1.83 to 2.59 mbgs, exceeded the *Table 7 Standards*;

- The concentrations of benzo(a)anthracene (0.99 μg/g vs. the *Table 7 Standard* of 0.5 μg/g), benzo(a)pyrene (0.88 μg/g vs. the *Table 7 Standard* of 0.3 μg/g), benzo(b)fluoranthene (1.1 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), dibenzo(a,h)anthracene (0.16 μg/g vs. the *Table 7 Standard* of 0.1 μg/g), fluoranthene (2.2 μg/g vs. the *Table 7 Standard* of 0.69 μg/g) and indeno(1,2,3-c,d)pyrene (0.55 μg/g vs. the *Table 7 Standard* of 0.38 μg/g) reported for soil sample BH109 SS3, collected at borehole BH109 from a depth of 1.22 to 1.83 mbgs, exceeded the *Table 7 Standards*;
- The concentrations of acenaphthylene (13 μg/g vs. the *Table 7 Standard* of 0.15 μg/g), anthracene (22 μg/g vs. the *Table 7 Standard* of 0.67 μg/g), benzo(a)anthracene (67 μg/g vs. the *Table 7 Standard* of 0.5 μg/g), benzo(a)pyrene (57 μg/g vs. the *Table 7 Standard* of 0.3 μg/g), benzo(b)fluoranthene (65 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), benzo(ghi)perylene (27 μg/g vs. the *Table 7 Standard* of 6.6 μg/g), benzo(k)fluoranthene (26 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), chrysene (55 μg/g vs. the *Table 7 Standard* of 0.1 μg/g), fluoranthene (120 μg/g vs. the *Table 7 Standard* of 0.69 μg/g), indeno(1,2,3-c,d)pyrene (29 μg/g vs. the *Table 7 Standard* of 0.38 μg/g), 1- & 2-methylnaphthalene (9.1 μg/g vs. the *Table 7 Standard* of 0.99 μg/g), naphthalene (2.3 μg/g vs. the *Table 7 Standard* of 0.6 μg/g), phenanthrene (75 μg/g vs. the *Table 7 Standard* of 6.2 μg/g) and pyrene (120 μg/g vs. the *Table 7 Standard* of 78 μg/g) reported for soil sample BH113 SS2, collected at borehole BH113 from a depth of 0.61 to 1.22 mbgs, exceeded the *Table 7 Standards*:
- The concentration of benzo(a)pyrene (0.32 μg/g vs. the *Table 7 Standard* of 0.3 μg/g), reported for soil sample MW114 SS1, collected at borehole MW114 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*;
- The concentration of barium (430 μg/g vs. the *Table 7 Standard* of 390 μg/g), reported for soil sample BH106 SS2, collected at borehole BH106 from a depth of 0.61 to 1.22 mbgs, exceeded the *Table 7 Standards*:

© 2020 Pinchin Ltd. Page 3 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006 DRAFT

November 30, 2020

- The concentration of lead (150 μg/g vs. the *Table 7 Standard* of 120 μg/g), reported for soil sample BH107 SS4, collected at borehole BH107 from a depth of 1.83 to 2.59 mbgs, exceeded the *Table 7 Standards*;
- The concentration of boron (hot water soluble) (2.6 μg/g vs. the *Table 7 Standard* of 1.5 μg/g), reported for soil sample BH108 SS1, collected at borehole BH108 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*;
- The concentrations of boron (hot water soluble) (1.6 μg/g vs. the *Table 7 Standard* of 1.5 μg/g), lead (350 μg/g vs. the *Table 7 Standard* of 120 μg/g) and molybdenum (7.9 μg/g vs. the *Table 7 Standard* of 6.9 μg/g) reported for soil sample BH109 SS3, collected at borehole BH109 from a depth of 1.22 to 1.83 mbgs, exceeded the *Table 7 Standards*;
- The concentrations of boron (hot water soluble) (1.6 μg/g vs. the *Table 7 Standard* of 1.5 μg/g), cadmium (1.8 μg/g vs. the *Table 7 Standard* of 1.2 μg/g), lead (720 μg/g vs. the *Table 7 Standard* of 120 μg/g), mercury (10 μg/g vs. the *Table 7 Standard* of 0.27 μg/g), and zinc (1,100 μg/g vs. the *Table 7 Standard* of 340 μg/g) reported for soil sample BH113 SS2, collected at borehole BH113 from a depth of 0.61 to 1.22 mbgs, exceeded the *Table 7 Standards*; and
- The concentrations of cadmium (1.4 μg/g vs. the *Table 7 Standard* of 1.2 μg/g), lead (470 μg/g vs. the *Table 7 Standard* of 120 μg/g), mercury (1.3 μg/g vs. the *Table 7 Standard* of 0.27 μg/g), and zinc (460 μg/g vs. the *Table 7 Standard* of 340 μg/g) reported for soil sample MW114 SS1, collected at borehole MW114 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*.

The laboratory results for the submitted groundwater samples indicated that all reported concentrations for the parameters analyzed met the corresponding *Table 7 Standards*, except for the following:

- The concentrations of benzene (23 micrograms per litre (μg/L) vs. the *Table 7 Standard* of 0.5 μg/L) and ethylbenzene (66 μg/L vs. the *Table 7 Standard* of 54 μg/L) reported for groundwater sample MW-1, collected from monitoring well MW-1 at a depth interval of approximately 4.5 to 7.6 mbgs, exceeded the *Table 7 Standards*;
- The concentrations of benzene (21 µg/L vs. the *Table 7 Standard* of 0.5 µg/L) and ethylbenzene (73 µg/L vs. the *Table 7 Standard* of 54 µg/L) reported for groundwater sample DUP-3 (field duplicate of sample MW-1), collected from monitoring well MW-1 at a depth interval of approximately 4.5 to 7.6 mbgs, exceeded the *Table 7 Standards*; and

© 2020 Pinchin Ltd. Page 4 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

• The concentration of PHCs F3 (540 μg/L vs. the *Table 7 Standard* of 500 μg/L) reported for groundwater sample DUP-3 (field duplicate of sample MW-1), collected from monitoring well MW-1 at a depth interval of approximately 4.5 to 7.6 mbgs, exceeded the *Table 7 Standards*.

With respect to the identified soil and groundwater parameter exceedances summarized above, remediation to meet the *Table 7 Standards* and/or the completion of a Risk Assessment in accordance with O. Reg. 153/04 will be required to develop Property Specific Standards for the parameters exceeding the *Table 7 Standards* before an RSC can be filed by the Qualified Person for the Phase Two Property.

This Executive Summary is subject to the same standard limitations as contained in the report and must be read in conjunction with the entire report.

© 2020 Pinchin Ltd. Page 5 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

2.0 INTRODUCTION

A Phase Two ESA is defined as an "assessment of property conducted in accordance with the regulations by or under the supervision of a QP to determine the location and concentration of one or more contaminants in the land or water on, in or under the property". Under O. Reg. 153/04, the purpose of a Phase Two ESA is as follows:

- To determine the location and concentration of contaminants in the land or water on, in or under the Phase Two Property;
- To obtain information about environmental conditions in the land or water on, in or under the Phase Two Property necessary to undertake a Risk Assessment, in accordance with O. Reg. 153/04, with respect to one or more contaminants of concern; and
- To determine if applicable Site Condition Standards and standards specified in a Risk Assessment for contaminants on, in or under the Phase Two Property were met as of the certification date by developing an understanding of the geological and hydrogeological conditions at the Phase Two Property and conducting one or more rounds of field sampling for all contaminants associated with any APEC identified in the Phase Two ESA sampling and analysis plan (SAP) and for any such contaminants identified during subsequent Phase Two ESA activities and analyses of environmental conditions at the Phase Two Property.

This Phase Two ESA was conducted at the request of the Client in relation to the future redevelopment of the Phase Two Property from mixed commercial/residential land use to a residential land use. An RSC submittal to the MECP is a mandatory requirement when a land use changes to a more sensitive land use and as such, to support the RSC submission, the Phase Two ESA was conducted in accordance with O. Reg. 153/04.

The overall objectives of this Phase Two ESA were to assess the soil and groundwater quality in relation to APECs and related COPCs identified in a Phase One ESA completed by Pinchin, the findings of which were summarized in the report entitled "Phase One Environmental Site Assessment, 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario", completed by Pinchin for the Client and dated April 30, 2020. The property assessed by the Pinchin Phase One ESA is referred to herein as the Phase One Property. The Phase Two ESA was conducted on the whole Phase One Property, and the Phase One Property and Phase Two Property have the same boundaries.

© 2020 Pinchin Ltd. Page 6 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

2.1 Site Description

This Phase Two ESA was completed for the property located at the municipal address of 320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue in Ottawa, Ontario. The Phase Two Property is 1.29 acres (0.52 hectares) in size and is bounded by Scott Street to the north, Tweedsmuir Avenue and residential land uses to the west, McRae Avenue to the east and residential and commercial land uses to the south. A Key Map showing the Phase Two Property location is provided on Figure 1 and a detailed plan of the Phase Two Property and surrounding lands is provided on Figure 2 (all Figures are provided within Section 9.0).

The Phase Two Property is presently developed with a single-storey commercial/light industrial building complete with a two-storey office portion (Site Building A), as well as two, two-storey residential dwellings (Site Buildings B and C). In addition, it should be noted that a retail fuel outlet (RFO) was formerly located on the northeast portion of the Phase Two Property. The south portion of the Site Building A is presently occupied by Gifford Automotive Inc., an automotive repair facility. The remainder of the Site Building A is currently vacant and was most recently occupied by an automotive repair facility and storage lockers.

A summary of the pertinent details of the Phase Two Property is provided in the following table:

Detail	Source/Reference	Information
Legal Description	http://maps.ottawa.ca/geoottawa/ City of Ottawa	Plan 263, Lots 12-19, Lot 23 Tweedsmuir Ave E, Lots 24 and 25, City of Ottawa
Municipal Address	http://maps.ottawa.ca/geoottawa/ City of Ottawa, Client	320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue Ottawa, Ontario K1Z 5R8
Parcel Identification Number (PIN)	http://maps.ottawa.ca/geoottawa/ City of Ottawa	040210013, 040210014, 040210015, 040210021, 040210022, 040210023, 040210024, 040210025, 040210026
Current Owner	Client	1213763 Ontario Inc.
Owner Contact Information	Project Specific Agreement	Mr. Andrew Hanna c/o 1213763 Ontario Inc. 33 Yonge Street, Suite 1000 Toronto, ON M5E 1G4 Phone: 416-507-2809 andrew.hanna@gwlra.com
Current Occupant	Site Representative, observations during Pinchin's Site reconnaissance	Gifford Automotive (automotive repair/servicing facility)

© 2020 Pinchin Ltd. Page 7 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006 DRAFT

Detail	Source/Reference	Information
Client Contact Information	Project Specific Agreement	Mr. Andrew Hanna c/o 1213763 Ontario Inc. 33 Yonge Street, Suite 1000 Toronto, ON M5E 1G4 Phone: 416-507-2809 andrew.hanna@gwlra.com
Site Area	http://maps.ottawa.ca/geoottawa/ City of Ottawa	0.52 hectares (1.29 acres)
Current Zoning	http://maps.ottawa.ca/geoottawa/ City of Ottawa	Various (TM – Traditional Mainstreet, O1 – Parks and Open Space, and GM – General Mixed-Use)

A legal survey showing the Phase Two Property is provided in Appendix A (all Appendices are provided in Section 10.0).

2.2 Property Ownership

The entirety of the Phase Two Property is currently owned by 1213763 Ontario Inc., located at 33 Yonge Street, Suite 1000, Toronto, Ontario. Contact information for the Phase Two Property owner is provided in the preceding section.

Pinchin was retained by Mr. Andrew Hanna c/o 1213763 Ontario Inc. to conduct the Phase Two ESA of the Phase Two Property. Contact information for Mr. Hanna is provided in the preceding section.

2.3 Current and Proposed Future Uses

The Phase Two Property is presently utilized for commercial and residential purposes and it is Pinchin's understanding that the Client intends to redevelop the Phase Two Property for residential land use.

Given that the future land use is changing to a more sensitive land use, there is a mandatory requirement that an RSC be filed as per Section 168.3.1 of the Province of Ontario's *Environmental Protection Act*.

2.4 Applicable Site Condition Standards

The Phase Two Property is currently a mixed commercial/residential property located within the City of Ottawa and the proposed future land use is residential. It is Pinchin's understanding that drinking water for the Phase Two Property and surrounding properties within 250 metres of the Phase Two Property is supplied by the City of Ottawa, and there are no known drinking water supply wells within 250 metres of the Phase Two Property. Source water is obtained by the City of Ottawa from the Ottawa River.

© 2020 Pinchin Ltd. Page 8 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006 DRAFT

November 30, 2020

The results of the borehole drilling program indicated that the overburden was less than two metres thick over more than one-third of the Phase Two Property, classifying the Phase Two Property as a shallow soil property as defined in Section 43.1 of O. Reg. 153/04.

The Phase Two Property does not contain a water body nor is it located within 30 metres of a water body and the use of standards for properties situated within 30 metres of a water body is not required.

Section 41 of O. Reg. 153/04 states that a property is classified as an "environmentally sensitive area" if the pH of the surface soil (less than or equal to 1.5 mbgs) is less than 5 or greater than 9, if the pH of the subsurface soil (greater than 1.5 mbgs) is less than 5 or greater than 11, or if the property is an area of natural significance or is adjacent to or contains land within 30 metres of an area of natural significance. As part of a previous Phase II ESA completed by Pinchin in 2018 (2018 Pinchin Phase II ESA), a total of six representative soil samples collected from the boreholes advanced at the Phase Two Property were submitted for pH analysis. The pH values measured in the submitted soil samples were within the limits for non-sensitive sites. The Phase Two Property is also not an area of natural significance and it is not adjacent to, nor does it contain land within 30 metres of, an area of natural significance. As such, the Phase Two Property is not an environmentally sensitive area.

As discussed further in Section 6.4, based on the results of grain size analysis completed on representative soil samples collected during the 2018 Pinchin Phase II ESA and the observed stratigraphy at the borehole locations at the Phase Two Property, it is the QP's opinion that over two-thirds of the overburden at the Phase Two Property is coarse-textured as defined by O. Reg. 153/04. Therefore, the soil at the Phase Two Property has been considered coarse-textured for the purpose of establishing the applicable MECP Site Condition Standards.

Based on the above, the appropriate Site Condition Standards for the Phase Two Property are the Table 7 Standards for:

- Coarse-textured soils; and
- Residential/parkland/institutional property use.

As such, all analytical results have been compared to these *Table 7 Standards*.

3.0 BACKGROUND INFORMATION

3.1 Physical Setting

The Phase Two Property is located in the north/central portion of the City of Ottawa at an elevation of approximately 64 metres above mean sea level (mamsl). The topography of the Phase Two Property is generally flat with little relief. The properties surrounding the Phase Two Property are at an equivalent

© 2020 Pinchin Ltd. Page 9 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006 DRAFT

November 30, 2020

grade. There are no drainage features (e.g., open ditches or swales) present on-Site. Surface water (e.g., storm runoff) is inferred to run overland and drain into the on-Site municipal storm sewer catch basins.

There are no open water bodies or areas of natural significance located on-Site or within the area assessed by the Pinchin Phase One ESA (the Phase One Study Area). A plan showing the Phase One Study Area is presented on Figure 3. The nearest surface water body to the Phase Two Property is the Ottawa River located approximately 860 metres north of the Phase Two Property at an elevation of approximately 57 mamsl.

A review of the municipal plan for the City of Ottawa indicated that the Phase One Study Area is not located in whole or in part within a well head protection area or other designation identified by the City of Ottawa for the protection of groundwater.

The records review indicated that the Phase One Property and all other properties within the Phase One Study Area are not serviced by a municipal drinking water system.

3.2 Past Investigations

3.2.1 Summary of Previous Environmental Investigations by Pinchin and Others

Reports summarizing the following environmental investigations completed by Pinchin and others pertaining to the Phase Two Property were reviewed as part of the Pinchin Phase One ESA:

- Report entitled "Phase I-II Environmental Site Assessment, 319 & 320 McRae Avenue,
 Ottawa, Ontario" prepared by Paterson Group Inc. (Paterson) for 914168 Ontario Limited,
 and dated November 19, 2008 (the 2008 Paterson Phase I-II ESA Report);
- Report entitled "Phase I Environmental Site Assessment, Commercial and Residential Properties, 320 McRae Avenue, 1976 Scott Street and 311 Tweedsmuir Avenue, Ottawa, Ontario" prepared by Paterson for the Estate of Carson Unsworth c/o FoTenn Planning and Urban Design, and dated November 3, 2014 (the 2014 Paterson Phase I ESA Report);
- Report entitled "Phase I Environmental Site Assessment, Commercial and Residential Properties, 320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario", prepared by Paterson for The Estate of Carson Unsworth, and dated January 28, 2016 (the 2016 Paterson Phase I ESA Report);
- Report entitled "Phase II Environmental Site Assessment, Commercial and Residential Properties, 320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario", prepared by Paterson for The Estate of Carson Unsworth, and dated January 28, 2016 (the 2016 Paterson Phase II ESA Report);

© 2020 Pinchin Ltd. Page 10 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006 DRAFT

November 30, 2020

- Report entitled "Phase II Environmental Site Assessment, Commercial and Residential Properties, 320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario", prepared by Paterson Group Inc. for The Estate of Carson Unsworth, and dated April 21, 2017 (the 2017 Paterson Phase II ESA Report);
- Report entitled "FINAL Phase I Environmental Site Assessment, 320 McRae Avenue, 1976 Scott Street and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario", prepared by Pinchin for the Client, and dated November 14, 2018 (the 2018 Pinchin Phase I ESA Report); and
- Report entitled "FINAL Phase II Environmental Site Assessment, 320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario", prepared by Pinchin for the Client, and dated November 29, 2018 (the 2018 Pinchin Phase II ESA Report).

A summary of the salient information identified in the above-referenced reports prepared by others is provided below.

2008 Paterson Phase I-II ESA Report

The Phase I ESA portion of the 2008 Paterson Phase I-II ESA Report presented the findings of a Phase I ESA completed in general accordance with the Canadian Standards Association (CSA) document entitled "Phase I Environmental Site Assessment" (CSA Document Z768-01), dated November 2001, including a review of readily available historical records and reasonably ascertainable regulatory information, a Site reconnaissance, interviews, a review of previous environmental reports, an evaluation of information and reporting. In addition, the 2008 Paterson Phase I-II ESA Report included a review of a decommissioning report for the former on-Site RFO that was prepared by SEACOR Environmental Inc. (SEACOR) in 2003 (which was not provided for Pinchin's review).

The results of the Phase I ESA portion of the 2008 Paterson Phase I-II ESA Report indicated that the following environmental concerns were present at the Phase One Property:

• Former operations at the Site included a body shop, automotive repair/servicing facilities and an RFO. In addition, an abandoned in-ground hydraulic hoist was observed within one of the automotive repair/servicing facilities within Site Building A (unit not specified).

Based on the above-noted findings, a Phase II ESA was completed by Paterson.

The Phase II ESA portion of the 2008 Paterson Phase I-II ESA Report consisted of the advancement of eight boreholes at the Phase One Property, two of which were instrumented with groundwater monitoring wells, in order to address the above-noted environmental concerns identified within the Phase I ESA

© 2020 Pinchin Ltd. Page 11 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006 DRAFT

portion. The boreholes were completed to depths ranging from 1.0-7.9 mbgs, and petroleum hydrocarbon (PHC) contamination was observed within BH1. A total of 22 soil samples and 24 rock core samples were collected, from which two soil samples were submitted for laboratory analysis of PHCs, benzene, toluene, ethylbenzene and xylenes (BTEX), volatile organic compounds (VOCs) and/or metals. In addition, two groundwater samples were collected and submitted for laboratory analysis of PHCs, BTEX, VOCs and/or metals. The analytical results were compared to the then-applicable Table 1 (full depth background Site condition standards) Standards, as outlined in the document entitled "Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", Ontario Ministry of the Environment (MOE), and dated March 9, 2004 (2004 Table 1 Standards). Exceedances in PHCs were found in both soil samples, and exceedances in various metal parameters were found in soil on the west portion of the Site (BH8). Paterson noted that the exceedances were also present when compared to Table 3 (industrial/commercial/community land use in a non-potable groundwater condition) within these standards (2004 Table 3 Standards). The groundwater sample collected within the former RFO area had a sheen and strong PHC odour and as such, was not submitted for analysis (assumed to exceed the applicable standards). The groundwater sample collected within Site Building A near the in-ground hydraulic hoist exceeded the 2004 Table 1 Standards for PHCs and BTEX.

Based on the above-noted findings, Paterson recommended that supplemental subsurface work be completed at the Phase One Property in order to delineate the extent of the soil and groundwater impacts identified within the 2008 Paterson Phase I-II ESA Report.

2014 and 2016 Paterson Phase I ESA Reports

The 2014 and 2016 Paterson Phase I ESA Reports presented the findings in general accordance with the CSA document entitled "Phase I Environmental Site Assessment" (CSA Document Z768-01), dated November 2001, including a review of readily available historical records and reasonably ascertainable regulatory information, a Site reconnaissance, interviews, a review of previous environmental reports, an evaluation of information and reporting. In addition, the 2014 and 2016 Paterson Phase I ESA Reports reviewed the above-noted reports identified within the 2008 Paterson Phase I-II ESA Report.

The 2014 and 2016 Paterson Phase I ESA Reports maintained the opinion that supplemental subsurface work should be completed at the Phase One Property in order to delineate the extent of the soil and groundwater impacts previously identified at the Site. In addition, Paterson recommended that the automotive-related tenants within Site Building A utilize better management practices in order to prevent the potential for further subsurface impacts at the Phase One Property.

© 2020 Pinchin Ltd. Page 12 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

2016 and 2017 Paterson Phase II ESA Reports

The 2016 and 2017 Paterson Phase II ESA Reports were completed at the Phase One Property in order to further investigate and delineate the soil and groundwater impacts that were previously identified by Paterson at the Phase One Property.

The 2016 and 2017 Paterson Phase II ESA Reports included the advancement of a total of 11 additional boreholes at the Phase One Property, five of which were completed as groundwater monitoring wells. A total of nine soil samples and nine groundwater samples (from existing and new groundwater monitoring wells) were collected and submitted for laboratory analysis of PHCs, BTEX, VOCs, polycyclic aromatic hydrocarbons (PAHs) and/or metals. The 2016 and 2017 Paterson Phase II ESA Reports identified the presence of soil impacted by PHCs, metals and arsenic beneath and in the vicinity of Site Building A. In addition, groundwater impacted with PHCs and BTEX were identified north of Site Building A (in the former RFO area).

Paterson indicated that impacted soil could be removed from the Phase One Property during redevelopment activities, and that if any soil were to remain on-Site during redevelopment activities, a confirmatory soil sampling program would be recommended to confirm that the soil complies with the *Table 7 Standards*. In addition, Paterson recommended multiple remedial options to treat impacted groundwater during Site redevelopment (i.e., removal, pump and treat, etc.).

2018 Pinchin Phase I ESA Report

The 2018 Pinchin Phase I ESA Report presented the findings in general accordance with the CSA document entitled "Phase I Environmental Site Assessment" (CSA Document Z768-01), dated November 2001 (and amended in 2016), including a review of readily available historical records and reasonably ascertainable regulatory information, a Site reconnaissance, interviews, a review of previous environmental reports, an evaluation of information and reporting. In addition, the 2018 Pinchin Phase I ESA Report reviewed the above-noted environmental reports previously prepared for the Phase One Property.

Based on the results of the Phase I ESA completed by Pinchin, the following actual or potential subsurface impacts were identified at the Phase One Property:

An RFO was present on the north portion of the Site from at least 1965 until 2002. The
RFO was reportedly decommissioned by SEACOR Environmental Inc. in 2002/2003;
however, previous subsurface environmental work completed at the Site identified the
presence of PHC-impacted soil and groundwater on the north portion of the Site;

© 2020 Pinchin Ltd. Page 13 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006 DRAFT

• Automotive repair/servicing operations have been present within the on-Site multi-tenant commercial building since at least 1954. Two oil/water separators are inferred to be present within this building and are inferred to have been present for at least 40 years. In addition, an area of depressed concrete, indicative of a potential UST, was evident adjacent to the south elevation of Site Building A. Previous subsurface investigations completed at the Site identified the presence of soil impacted by PHCs, metals and arsenic beneath and in the vicinity of Site Building A. In addition, groundwater impacted with PHCs and benzene, toluene, ethylbenzene and xylenes were identified north of Site Building A;

- Based on Pinchin's review of a 1928 aerial photograph covering the Site and surrounding area, the northeast, east and southeast portions of the Phase One Property was covered with various fill piles and. In addition, previous subsurface investigations completed at the Phase One Property identified the presence of fill material with elevated concentrations of metals, arsenic and PAHs located throughout the Phase One Property;
- Based on Pinchin's review of aerial photographs for the Site and surrounding area, surrounding properties located approximately 15 metres east-northeast of the Phase One Property appeared to have been utilized for an industrial operation (i.e., commercial/light industrial building with exterior storage areas from approximately 1958 until 1976). In addition, one of these surrounding properties was occupied by Gervais Motors Ltd., an automotive repair/servicing operation, from at least 1984 until 1998. Furthermore, an RSC was filed for these properties, which included remedial work within 3 metres of the property boundaries. Based on the above-noted information and close proximity of these properties to the Phase One Property, it was Pinchin's opinion that these properties could result in potential subsurface impacts at the Phase One Property; and
- The 1948 Fire Insurance Plan reviewed by Pinchin indicated that a UST was located approximately 20 metres south of the Phase One Property. Based on the close proximity of this UST to the Site, it was Pinchin's opinion that this UST could result in potential subsurface impacts at the Phase One Property.

Based on the findings noted above, Pinchin recommended completing a Phase II ESA at the Phase One Property.

2018 Pinchin Phase II ESA Report

The Phase II ESA was completed at the Phase One Property by Pinchin between November 1, 2018 and November 14, 2018 and consisted of the advancement of 11 boreholes, five of which were completed as groundwater monitoring wells into the shallow bedrock encountered at the Phase One Property. In

© 2020 Pinchin Ltd. Page 14 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006 DRAFT

November 30, 2020

addition, Pinchin sampled existing groundwater monitoring wells (EXMW-1, EXMW-2, EXMW-3, EXMW-4, and EXMW-5) at the Phase One Property.

Select "worst case" soil samples collected during the borehole drilling program were submitted for laboratory analysis of PHCs (F1-F4), VOCs, PAHs and/or metals. Groundwater samples collected from the newly installed monitoring wells, as well as existing monitoring wells (EXMW-1, EXMW-2, EXMW-3, EXMW-4, and EXMW-5), were submitted for laboratory analysis of PHCs (F1-F4), VOCs, PAHs and/or metals.

Based on Site-specific information, the soil and groundwater quality was assessed based on the *Table 7 Standards*.

Reported concentrations in the soil samples submitted for analysis of PHCs (F1-F4), VOCs, PAHs and metals satisfied the *Table 7 Standards*, with the following exceptions:

- Soil sample SS-1 collected at borehole BH-7, which had concentrations of PHCs (F3) that exceeded the Table 7 Standards;
- Soil sample SS-1 collected at borehole BH-11, which had concentrations of PHCs (F3)
 and (F4) that exceeded the Table 7 Standards;
- Soil sample SS-2 collected at borehole MW-4, which had concentrations of metals
 including antimony, arsenic, barium, boron, cadmium, lead, copper, mercury and zinc that
 exceeded the Table 7 Standards;
- Soil sample SS-1 collected at borehole BH-7, which had concentrations of boron and lead that exceeded the Table 7 Standards;
- Soil sample SS-1 collected at borehole BH-8, which had concentrations of metals
 including boron, cadmium, lead, mercury and zinc that exceeded the *Table 7 Standards*;
 and
- Soil sample SS-1 collected at borehole BH-10, which had a concentration of lead that exceeded the *Table 7 Standards*.

Reported concentrations in groundwater samples submitted for analysis of PHCs (F1-F4), VOCs, PAHs and/or metals satisfied the *Table 7 Standards*, with the exception of groundwater sample MW-1, which exceeded the *Table 7 Standards* for PHCs (F1 and F2), benzene, xylene, and naphthalene, and groundwater sample EXMW-1 which exceeded the *Table 7 Standards* for mercury.

Based on the findings of this Phase II ESA, it was Pinchin's opinion that the soil impacts identified at the Phase One Property are potentially representative of the shallow fill material encountered across the Site. Furthermore, the groundwater impacts identified at MW-1 and EXMW-1, located on the north portion of

© 2020 Pinchin Ltd. Page 15 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

DRAFT

November 30, 2020

Pinchin File: 230236.006

the Phase One Property, are likely the result of the former operation of an RFO on this portion of the Phase One Property. Based on the above-noted findings, it was Pinchin's recommendation that the soil and groundwater impacts identified could be addressed upon redevelopment of the Phase One Property either by excavating the impacted soil or implementing a management plan.

Previous Environmental Report Summary

Based on Pinchin's review of the above-referenced reports prepared by others, the following could result in potential subsurface impacts, or are known subsurface impacts, at the Phase Two Property:

- An RFO was present on the north portion of the Phase Two Property from at least 1965 until 2002. The RFO was reportedly decommissioned by SEACOR Environmental Inc. in 2002/2003; however, previous subsurface environmental work completed at the Site identified the presence of PHC-impacted soil and groundwater in the north portion of the Site:
- An automotive repair/servicing operation was present within the north tenant space in Site Building A from approximately 1952 until early 2020. In addition, previous subsurface investigations completed at the Phase Two Property identified the presence of soil impacted by PHCs, metals and arsenic beneath and in the vicinity of Site Building A. Groundwater impacted with PHCs and benzene, toluene, ethylbenzene and xylenes was also identified north of Site Building A;
- An automotive repair/servicing operation has been present within the south portion of Site Building A since approximately 1968. In addition, previous subsurface investigations completed at the Phase Two Property identified the presence of soil impacted by PHCs, metals and arsenic beneath and in the vicinity of Site Building A. Groundwater impacted with PHCs and benzene, toluene, ethylbenzene and xylenes was also identified north of Site Building A;
- Auto Re-Bex, the automotive repair/servicing operation within the north portion of Site
 Building A, was also registered as an auto wrecking facility;
- Formerly two 1,100-litre (L) single-walled steel aboveground storage tanks (ASTs) containing new oil that were located within the north tenant space in Site Building A in 2018;
- One 1,008-L single-walled steel AST containing new oil located within the south tenant space in Site Building A in 2018;
- One 910-L single-walled steel AST containing waste oil that located within the north tenant space in Site Building A in 2018;

© 2020 Pinchin Ltd. Page 16 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

- One 910-L single-walled steel AST containing waste oil that located within the south tenant space in Site Building A in 2018;
- The north portion of Site Building A was formerly occupied by a commercial auto body shop (i.e., Willy's Body Shop);
- An oil/water separator that has been present within the north tenant space in Site Building A for at least 40 years (i.e., within the former Auto Re-Bex space);
- An oil/water separator that has been present within the south tenant space in Site Building A for at least 40 years (i.e., within Gifford's Automotive);
- An area of depressed concrete, indicative of a potential UST, was evident adjacent to the south elevation of Site Building A in 2018;
- An area of waste liquid chemical storage (i.e., waste antifreeze and other unknown automotive fluids) was observed adjacent to the southwest corner of Site Building A in 2018;
- Fill piles were observed to be present on-Site in a 1928 aerial photograph. In addition, as noted within the 2018 Pinchin Phase II ESA Report, various shallow soil impacts (various metal parameters) are located throughout the Phase Two Property and are likely associated with poor quality fill material;
- Surrounding properties located approximately 15 metres east-northeast of the Phase Two Property appeared to have been utilized by an industrial operation (i.e., commercial/light industrial building with exterior storage areas from approximately 1958 until 1976). In addition, an RSC was filed for these properties (i.e., 319 McRae Avenue and 1960 Scott Street), which included remedial work within 3 metres of the property boundaries and the removal of 4,420 metres³ of impacted soil in August 2018 from 1960 Scott Street;
- A UST was evident approximately 20 metres south of the Phase Two Property in the 1948 FIP. This property is situated hydraulically upgradient in relation to the inferred groundwater flow direction at the Phase Two Property; and
- Otto's Subaru or Otto's Service Centre Ltd., an automotive repair/servicing operation,
 was located approximately 75 metres south-southeast of the Phase Two Property since
 the late 1980s and this property is situated hydraulically upgradient in relation to the
 inferred groundwater flow direction at the Phase Two Property.

© 2020 Pinchin Ltd. Page 17 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

3.2.2 Pinchin Phase One ESA Summary

From January 24, 202 through April 30, 2020, Pinchin conducted a Phase One ESA in support of the future filing of an RSC for the Phase Two Property. The Phase One ESA consisted of a Site visit, interviews with Site personnel, records review, evaluation of information, and preparation of a written report which was completed under the supervision of a QP. A plan showing the Phase One Study Area is attached as Figure 3.

The Phase One ESA was completed recently (i.e., within two months of the start of the Phase Two ESA) and in accordance with the requirements of O. Reg. 153/04. Therefore, the information provided within the Phase One ESA Report is considered adequate such that it can be relied upon for the purpose of this Phase Two ESA and future filing of an RSC.

Based on information obtained during the Phase One ESA, a total of 18 APECs and corresponding potentially contaminating activities (PCAs) and COPCs were identified that could potentially affect the environmental condition of the subsurface media on, in or under the Phase Two Property. The COPCs associated with each APEC were determined based on a review of the PCAs and substances associated with the related activities, and on several sources of information, including but not limited to, Pinchin's experience with environmental contamination and hazardous substances, common industry practices for analysis of such contaminants and point sources, literature reviews of COPCs and associated hazardous substances, and evaluations of contaminant mobility and susceptibility for migration in the subsurface.

Table 1 presents the APECs and their associated PCAs and COPCs. Identified on-Site and off-Site PCAs are summarized in Table 2 and their locations are shown on Figure 4 (on-Site PCAs) and Figure 5 (off-Site PCAs). APECs at the Phase Two Property are illustrated on Figure 6.

3.2.3 Use of Previous Analytical Data

The soil and groundwater data from the 2018 Pinchin Phase II ESA Report are considered to be of adequate quality and can be relied upon in assessing soil and groundwater conditions at the Site. The report including these data was reviewed, and no issues related to data quality were identified. Sampling procedures were acceptable and quality assurance/quality control (QA/QC) samples, consisting of trip blanks and field duplicate samples, were collected and analyzed at the frequency specified in O. Reg. 153/04 and no quality issues related to field sampling or laboratory methods were noted. The soil and groundwater analytical data summary tables from the 2018 Pinchin Phase II ESA Report are provided in Appendix B-1.

© 2020 Pinchin Ltd. Page 18 of 56

November 30, 2020 Pinchin File: 230236.006

DRAFT

4.0 SCOPE OF INVESTIGATION

4.1 Overview of Site Investigation

The scope of work for this Phase Two ESA was prepared to address the APECs identified at the Phase Two Property and consisted of the following:

- Prepared a health and safety plan and arranged for the completion of underground utility locates prior to the commencement of drilling activities;
- Developed a detailed SAP prior to the advancement of the boreholes and the installation of the monitoring wells. The SAP was outlined in the document entitled "Sampling and Analysis Plan for Phase Two Environmental Site Assessment, 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario", dated May 13, 2020, which is provided in Appendix B-2. Based on Pinchin's knowledge of the surrounding properties and known hydrogeological conditions, boreholes were advanced at the Phase Two Property to maximum depths ranging between approximately 0.46 and 15.24 mbgs;
- Retained Strata Drilling Group Inc. (Strata) to advance boreholes and complete monitoring well installations using a Geomachine GM100™, Geoprobe 540™ or Geoprobe 420M™ drill rig. Strata is licensed by the MECP in accordance with Ontario Regulation 903 (as amended) (O. Reg. 903) to undertake borehole drilling/well installation activities. Strata advanced 17 boreholes at the Phase Two Property to investigate the potential for soil contaminants associated with the APECs identified in the Phase One ESA. Four of the advanced boreholes were instrumented with a monitoring well in accordance with O. Reg. 903 for the purpose of monitoring hydrogeological conditions and groundwater quality on-Site. In addition, one monitoring well was completed to vertically delineate groundwater impacts identified at the initial series monitoring wells;
- Collected soil samples at regular intervals within each borehole;
- Field screened soil samples for visual/olfactory evidence of impacts as well as for
 petroleum-derived vapours in soil headspace using a combustible gas indicator (CGI)
 calibrated to hexane and VOC-derived vapours in soil headspace using a photoionization
 detector (PID);
- Submitted a minimum of one "worst case" soil sample from each borehole for chemical analysis of:
 - PHCs F1-F4;

© 2020 Pinchin Ltd. Page 19 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006

November 30, 2020

DRAFT

- VOCs;
- PAHs; and
- Metals.
- Developed each of the newly-installed monitoring wells and redeveloped two previouslyinstalled monitoring wells prior to the collection of groundwater samples;
- Submitted one representative groundwater sample from each of the newly-installed monitoring wells, except for monitoring well MW114 which remained dry for the duration of the Phase Two ESA, and two previously-installed monitoring wells for the chemical analysis of the following parameters:
 - PHCs F1-F4:
 - VOCs;
 - PAHs; and/or
 - Metals.
- Submitted two duplicate soil samples and three duplicate groundwater samples for chemical analysis of the above-noted parameters for quality assurance/quality control (QA/QC) purposes;
- Submitted three trip blanks for the groundwater sampling program for the chemical analysis of VOCs and PHCs F1 for QA/QC purposes;
- As part of the 2018 Pinchin Phase II ESA, Pinchin submitted two representative soil samples for the laboratory analysis of grain size and six representative soil samples for the laboratory analysis of pH in order to confirm the appropriate MECP Site Condition Standards;
- Conducted groundwater monitoring at each of the newly-installed groundwater monitoring
 wells and two previously-installed groundwater monitoring wells by measuring depth to
 groundwater from both top of casing and ground surface reference points, and assessing
 the presence/absence of non-aqueous phase liquid (NAPL), including light NAPL
 (LNAPL) and dense NAPL (DNAPL), using an oil/water interface probe;
- Retained an Ontario Land Surveyor (OLS) to survey the location and geodetic elevations
 of the newly-installed monitoring wells as well as the previously-installed monitoring
 wells:
- Compared the soil and groundwater analytical results to the applicable criteria stipulated in the Table 7 Standards; and

© 2020 Pinchin Ltd. Page 20 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

Prepared a report (this report) documenting the findings of the Phase Two ESA which
meets the reporting requirements listed in Schedule E and Table 1 – Mandatory
Requirements for Phase Two Environmental Site Assessment Reports of O. Reg. 153/04.

4.2 Media Investigated

The scope of work for this Phase Two ESA was prepared to address the APECs and corresponding media at the Phase Two Property as identified through completion of the Phase One ESA.

The media of concern for the Phase Two ESA were soil and groundwater. Pinchin included the assessment of groundwater as part of the Phase Two ESA to investigate groundwater quality in relation to a former on-Site RFO (APEC-1 and APEC-2), current and historical on-Site automotive repair operations (APECs-3, 4, 5, 11, 12 and 13) and potential subsurface contamination migrating from off-Site PCAs (APECs-16, 17and 18). Note that due to the historical industrial land use at the Phase Two Property, the Phase Two Property is an enhanced investigation property requiring mandatory sampling and analysis of groundwater. Pinchin did not conduct sediment sampling as part of this Phase Two ESA as there are no surface water bodies and, therefore no sources of sediment, present on-Site.

For assessing the soil at the Phase Two Property for the presence of COPCs, a total of 15 boreholes were advanced at the Phase Two Property for the purpose of collecting soil samples. Select "worst case" samples collected from each of the boreholes were submitted for laboratory analysis of the COPCs.

For assessing the groundwater at the Phase Two Property for the presence of COPCs, groundwater monitoring wells were installed in five of 15 boreholes completed at the Phase Two Property to permit the collection of groundwater samples, including one monitoring well installed for vertical delineation of groundwater impacts identified during the initial series of wells. Groundwater samples, comprising samples collected from each of the newly installed monitoring wells that contained groundwater (i.e., MW110, MW201, MW202 and MW203) as well as two previously installed monitoring wells, (i.e., MW-1 and MW-3) were submitted to the analytical laboratory for analysis of the COPCs..

4.3 Phase One Conceptual Site Model

A conceptual site model (CSM) has been created to provide a summary of the findings of the Phase One ESA. The Phase One CSM is summarized in Figures 1 through 6 which illustrate the following features within the Phase One Study Area, where present:

- Existing buildings and structures;
- Water bodies located in whole or in part within the Phase One Study Area;
- Areas of natural significance located in whole or in part within the Phase One Study Area;

© 2020 Pinchin Ltd. Page 21 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006

DRAFT

November 30, 2020

- Drinking water wells located at the Phase One Property;
- Land use of adjacent properties;
- Roads within the Phase One Study Area;
- PCAs within the Phase One Study Area, including the locations of tanks; and
- APECs at the Phase One Property.

The following provides a narrative summary of the Phase One CSM:

- The Phase One Property is an irregular-shaped parcel of land approximately 1.29 acres (0.52 hectares) in size, located on the southwest corner of the intersection between McRae Avenue and Scott Street in the City of Ottawa. The Phase One Property is improved with a single-storey multi-tenant light industrial building (Site Building A) that occupies the east and southeast portions of the Phase One Property, as well as two, two-storey residential dwellings located on the northwest portion of the Phase One Property. Site Building A has been utilized for various commercial and light industrial uses since construction (constructed in various phases in the 1950s, 1960s and 1970s), most notably for commercial auto body and automotive repair/servicing in the north portion since 1952 and automotive repair/servicing in the south portion since 1968;
- No water bodies were identified within the Phase One Study Area. The nearest water body is the Ottawa River, which is located approximately 860 metres northwest of the Phase One Property;
- No areas of natural significance were identified within the Phase One Study Area;
- No drinking water wells were located on the Phase One Property;
- The adjacent and surrounding properties consist of vacant, residential, commercial and light industrial land uses. The properties located north of the Phase One Property consist of Scott Street followed by transit roadways, commercial buildings and associated parking areas; the properties located east of the Phase One Property consist of McRae Avenue followed by a multi-tenant commercial building and land under development, residential dwellings, Clifton Road and additional residential dwellings; the properties located south of the Phase One Property consist of a residential dwelling followed by a parking lot, commercial/light industrial building (i.e., Otto's Subaru) and Richmond Road; and the properties located west of the Phase One Property consist of residential dwellings and Tweedsmuir Avenue followed by additional residential dwellings and commercial buildings;

© 2020 Pinchin Ltd. Page 22 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020
Pinchin File: 230236.006
DRAFT

- A total of 34 PCAs were identified within the Phase One Study Area, consisting of 15 PCAs at the Phase One Property and 19 PCAs within the Phase One Study Area, outside of the Phase One Property. As shown on Figure 5, three of the off-Site PCAs are a former industrial storage yard and contaminated property located 15 metres east of the Phase One Property, a former UST located 20 metres south of the Phase One Property (as observed on an FIP), and a current automotive repair/servicing operation located approximately 75 metres south of the Phase One Property (225 Richmond Road). Groundwater flow within the Phase One Study Area is inferred to be to the north towards the Ottawa River and these off-Site PCAs are inferred to be upgradient or transgradient of the Phase One Property. Given the close proximity of these PCAs to the Phase One Property and/or their location relative to the inferred groundwater flow direction, these three off-Site PCAs are considered to result in APECs at the Phase One Property. All other PCAs identified within the Phase One Study Area do not represent APECs at the Phase One Property given their distance from the Phase One Property, the inferred groundwater flow direction, the nature of operations, the results of previous subsurface environmental work completed at the Phase One Property and/or the observations made during Pinchin's Site reconnaissance. Figure 6 provides a detailed summary of the APECs and associated PCAs and COPCs;
- Underground utilities at the Phase One Property provide potable water, natural gas, electrical, telephone, cable and sewer services to the Site Buildings. These services enter the Site Buildings through subsurface conduits, with the exception of pressurized natural gas lines which connect to meters located on the exterior of the Site Buildings. Storm sewer catch basins located in the parking lots of the Phase One Property connect to the municipal storm sewer line. Plans were not available to confirm the depths of these utilities but they are estimated to be located approximately 2 to 3 mbgs;
- The Phase One Property and the surrounding properties located within the Phase One Study Area are located within alluvial deposits consisting of stratified gravel, sand, silt and clay. Bedrock is expected to consist of sedimentary rocks consisting of limestone, dolomite, shale, argillite, sandstone, quartzite, and/or grit. During previous on-Site environmental investigations, the soil stratigraphy was observed to consist of fill material comprised of sand and gravel to depths between 0.1 and 3.2 mbgs. Shallow bedrock was encountered at depths between 0.8 and 3.2 mbgs; and
- The Phase One Property is relatively flat with little relief. Local groundwater flow has been inferred to be towards the north towards the Ottawa River. Regional groundwater flow is also inferred to be to the north towards the Ottawa River.

© 2020 Pinchin Ltd. Page 23 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

There were no deviations from the Phase One ESA requirements specified in O. Reg. 153/04 or absence of information that have resulted in uncertainty that would affect the validity of the Phase One CSM.

4.4 Deviations from Sampling and Analysis Plan

The following deviations from the SAP occurred during the completion of the Phase Two ESA investigation activities:

- An additional groundwater monitoring well (MW201) was installed adjacent to monitoring
 well MW-1 for the purpose of collecting additional groundwater samples for vertical
 delineation purposes. Groundwater samples collected from this well were submitted for
 laboratory analysis of PHCs F1-F4, VOCs, PAHs and mercury;
- An additional groundwater monitoring well (MW202) was installed in the vicinity of former monitoring well EXMW-2 (buried or destroyed) as a replacement for monitoring well MW114, which was dry for the duration of the Phase Two ESA. Groundwater samples collected from this well were submitted for laboratory analysis of VOCs, PHCs, PAHs and metals;
- An additional groundwater monitoring well (MW203) was installed in the vicinity of former BH104 to assess groundwater quality within APEC-6 as a result of the identification of soil at borehole BH104 with concentrations of PHCs F1 and xylenes exceeding the *Table 7 Standards*. Groundwater samples collected from this well was submitted for laboratory analysis of VOCs, PHCs, PAHs and metals;
- Monitoring well MW106 was not installed as the sampling of existing monitoring well EXMW-4 was considered adequate to assess APEC-11 (on-Site oil/water separator) in the north interior portion of Site Building A;
- Monitoring well MW110 replaced proposed MW116 and was moved to the south portion of the Phase Two Property as the sampling of existing monitoring well MW-5 was considered adequate to assess APEC-13 (potential UST) near the southeast corner of Site Building A. Furthermore, monitoring well MW110 was advanced to a depth of 9.14 mbgs as opposed to 7.62 mbgs as stipulated in the SAP; and
- Existing monitoring well EXMW-1 was not sampled as it was buried/destroyed.
 Monitoring well MW201 was sampled in lieu of EXMW-1 for vertical delineation of mercury impacts at EXMW-1.

© 2020 Pinchin Ltd. Page 24 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

DRAFT

November 30, 2020

Pinchin File: 230236.006

No additional scope of work items were added to the Phase Two ESA or other notable constraints and limitations with respect to the SAP were documented during the field activities, and as such Pinchin has conducted the Phase Two ESA in a manner generally consistent with the SAP provided in Appendix B-2.

It is the QP's opinion that the above-noted deviations from the SAP did not affect the investigation of the APECs for COPCs and had no impact on the overall findings and conclusions of the Phase Two ESA.

4.5 Impediments

Pinchin had full access to the Phase Two Property throughout the completion of the Phase Two ESA, with the following exception:

• The north portion of the Site was used a construction storage yard for the duration of the investigation, impeding mobility and access.

It is the QP's opinion that the impediments to full access to the Phase Two Property did not affect the investigation of the APECs for COPCs and had no impact on the overall findings and conclusions of the Phase Two ESA.

5.0 INVESTIGATION METHOD

5.1 General

The Phase Two ESA field work was conducted in accordance with Pinchin's standard operating procedures (SOPs) as provided in the SAP, which have been developed in accordance with the procedures and protocols provided in the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated December 1996, in the Association of Professional Geoscientists of Ontario document entitled "Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended)", dated April 2011, and in O. Reg. 153/04.

In addition, Pinchin's SOP for groundwater sampling using low-flow purging and sampling procedures follows the United States Environmental Protection Agency Region I document entitled "Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells" dated January 19, 2010 (Low Flow Sampling Protocol).

No deviations from Pinchin's SOPs occurred during the Phase Two ESA.

5.2 Drilling and Excavating

Pinchin retained Strata to advance a total of 15 boreholes (BH101 through BH115) at the Phase Two Property between May 14 and 21, 2020 to investigate the potential presence of COPCs associated with the APECs identified in the Phase One ESA. Two of the advanced boreholes (MW110 and MW114) were

© 2020 Pinchin Ltd. Page 25 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

DRAFT

November 30, 2020

Pinchin File: 230236.006

completed as monitoring wells in accordance with O. Reg. 903 for the purpose of monitoring hydrogeological conditions and groundwater quality on-Site. The boreholes were drilled to a maximum depth of 9.14 mbgs using a Geomachine GM100[™], Geoprobe 540[™] or Geoprobe 420M[™] drill rig. Upon completion of the drilling and monitoring well installations, Strata completed and filed a Water Well Record with the MECP for the well cluster in accordance with O. Reg. 903.

Following completion of the initial Phase Two ESA scope of work described above, monitoring wells were completed to further investigate the potential presence of COPCs associated with the APECs identified in the Phase One ESA or to delineate identified groundwater impacts as follows:

- MW201 Completed within APEC-1 and 2 to vertically delineate groundwater at MW-1 with concentrations of benzene and ethylbenzene exceeding the *Table 7 Standards*;
- MW202 Completed to assess groundwater quality within APEC-16 in lieu of monitoring well MW114, which was dry for the duration of the Phase Two ESA; and
- MW203 Completed to assess groundwater quality within APEC-6 as a result of the identification of soil at borehole BH104 with concentrations of PHCs F1 and xylenes exceeding the *Table 7 Standards*.

The additional monitoring well installations were completed by Strata on between August 24 and 28, 2020. The boreholes were drilled to a maximum depth of 15.24 mbgs using a Geomachine GM100[™] or 420M[™] drill rig. Upon completion of the drilling and monitoring well installations, Strata completed and filed a Water Well Record with the MECP for the additional well cluster in accordance with O. Reg. 903.

Measures taken to minimize the potential for cross-contamination during the borehole drilling programs included:

- The use of dedicated, disposable polyvinyl chloride (PVC) soil sample liners for soil sample collection during direct-push drilling;
- The extraction of soil samples from the interior of the sampling device (where possible),
 rather than from areas in contact with the sampler walls;
- The cleaning of all non-dedicated drilling and soil sampling equipment (i.e., spatulas used for sample collection) before initial use and between sample and borehole locations; and
- The use of dedicated and disposable nitrile gloves for all soil sample handling.

Soil samples were collected at continuous intervals during direct-push drilling at a general frequency of one soil sample for every 0.75 metres drilled.

No excavating activities (e.g., test pitting) were completed as part of the Phase Two ESA.

© 2020 Pinchin Ltd. Page 26 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

5.3 Soil Sampling

Soil samples were collected in the boreholes at continuous intervals using either 3.2 or 5.1 centimetre (cm) inner diameter (ID) direct push soil samplers with dedicated single-use sample liners.

Discrete soil samples were collected from the dedicated sample liners by Pinchin personnel using a stainless-steel spatula. Dedicated and disposable nitrile gloves were worn during the collection of each soil sample. A portion of each sample was placed in a resealable plastic bag for field screening and a portion was containerized in laboratory-supplied glass sampling jars. Following sample collection, the sample jars were placed into dedicated coolers with ice for storage pending transport to Bureau Veritas Laboratories (BV Labs) in Mississauga, Ontario. Formal chain of custody records were maintained between Pinchin and the staff at BV Labs.

Subsurface soil conditions were logged on-Site by Pinchin personnel at the time of borehole drilling. Based on the soil samples recovered during the borehole drilling program, the soil stratigraphy at the drilling locations generally consists of fill material comprised of sand and gravel, and trace silt with organic material and occasional coal, brick, and glass debris or sand, to a maximum depth of approximately 2.59 mbgs, where refusal on limestone bedrock was encountered. Moist to wet soil conditions were not observed in any of the boreholes advanced.

No odours or staining were observed in the soil samples collected during the borehole drilling program, with the exception of soil sample SS1 collected at borehole BH104 at a depth of 0.15 to 0.76 mbgs which exhibited PHC-like odours and black staining, and soil sample SS3 collected at borehole BH109 at a depth of 1.22 to 1.83 mbgs which exhibited black staining.

A detailed description of the subsurface stratigraphy encountered during the borehole drilling program is documented in the borehole logs included in Appendix C.

5.4 Field Screening Measurements

Soil samples were collected at each of the sampling intervals during the drilling activities and analyzed in the field for VOC-derived and petroleum-derived vapour concentrations in soil headspace with an RKI Eagle 2TM equipped with a PID and a CGI operated in methane elimination mode. The soil samples collected for field-screening purposes were placed in resealable plastic bags. The plastic bags were stored in a warm environment for a minimum of five minutes and agitated in order to release organic vapours within the soil pore space prior to analysis with the PID and CGI.

Based on a review of the operator's manual, the RKI Eagle 2[™] PID has an accuracy/precision of up to 0.1 parts per million (ppm). The PID was calibrated prior to field use by the equipment supplier Maxim Environmental and Safety (Maxim) according to Maxim's standard operating procedures. In addition, the

© 2020 Pinchin Ltd. Page 27 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

DRAFT

November 30, 2020

Pinchin File: 230236.006

PID calibration was tested at the beginning of each day of drilling activities (beginning on the second day of drilling) against a Maxim-provided isobutylene gas standard with a concentration of 100 ppm. The gas standard was stored in a gas cylinder and delivered to the PID via a regulator valve. An in-field recalibration of the PID was conducted (using the gas standard in accordance with the operator's manual instructions) if the calibration check indicated that the PID's calibration had drifted by more than +/- 10%.

Based on a review of the operator's manual, the RKI Eagle 2[™] has an accuracy/precision of up to +/- 25 ppm, or +/- 5% of the reading (whichever is greater). The CGI was calibrated prior to field use by Maxim according to Maxim's standard operating procedures. In addition, the CGI calibration was tested at the beginning of each day of drilling activities (beginning on the second day of drilling) against a Maxim-provided hexane gas standard with a concentration of 1,650 ppm. The gas standard was stored in a gas cylinder and delivered to the CGI via a regulator valve. An in-field re-calibration of the CGI was conducted (using the gas standard in accordance with the operator's manual instructions) if the calibration check indicated that the CGI's calibration had drifted by more than +/- 10%.

In general, the soil samples with the highest measured vapour concentrations (i.e., "worst case") from a given borehole were submitted for laboratory analysis. Sample depth and visual and olfactory observations of potential contaminants were also used in conjunction with the vapour concentrations in making the final selection of "worst case" soil samples for laboratory analysis.

5.5 Groundwater Monitoring Well Installation

Following soil sampling, Strata installed a groundwater monitoring well in boreholes MW110, MW114, MW201, MW202 and MW203, under the full-time monitoring of a Pinchin field representative.

The monitoring wells were constructed with 51-millimetre (2-inch) or 32-millimetre (1.25-inch) inner diameter (ID) flush-threaded schedule 40 PVC risers followed by a 3.1 metre length of No. 10 slot PVC screen. Each well screen was sealed at the bottom using a threaded cap and each riser was sealed at the top with a lockable J-plug cap. Silica sand was placed around and above the screened interval to form a filter pack around the well screen. A layer of bentonite was placed above the silica sand and was extended to just below the ground surface. A 10.2 cm ID Schedule 40 PVC outer casing, approximately 15.2 cm in length, was installed in each well around the top of the riser and into the top of the bentonite seal. A bentonite seal was then placed between the riser and outer casing. A protective flush-mount cover was installed at the ground surface over each riser pipe and outer casing and cemented in place.

All monitoring wells were installed in accordance with O. Reg. 903. The monitoring well construction details are provided in Table 4 and on the borehole logs in Appendix C. Upon completion of the monitoring well installations, Strata completed and filed a Water Well Record with the MECP for the well clusters for both the initial and delineation wells.

© 2020 Pinchin Ltd. Page 28 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

DRAFT

November 30, 2020

Pinchin File: 230236.006

Existing monitoring wells MW-1 and MW-3 were redeveloped on various dates between May 25, 2020 and June 8, 2020, monitoring well MW110 was developed on July 1, 2020 and monitoring wells MW201, MW202, and MW203 were developed between August 31 and September 1, 2020 in accordance with Pinchin's SOP for well development by purging the wells dry between one and three times using dedicated inertial pumps comprised of Waterra™ polyethylene tubing and a foot valve. The well development activities were completed a minimum of 24 hours prior to the groundwater sampling activities.

Measures taken to minimize the potential for cross-contamination during well installation and well development included the following:

- The use of dedicated and disposable nitrile gloves for handling well materials during well installation and during well development; and
- The use of dedicated inertial pumps for each well.

5.6 Groundwater Field Measurements of Water Quality Parameters

Water quality parameters were measured during the low-flow purging and sampling procedure completed on June 8, July 2 and September 2, 2020 at monitoring wells MW-1, MW-3, MW110, MW201, MW202 and MW203.

Measurements of the water quality parameters oxidation-reduction potential, dissolved oxygen, temperature, specific conductance, pH and turbidity were made during purging using a flow-through cell and a Horiba U-52[™] water quality meter (Horiba Water Quality Meter). The Horiba Water Quality Meter was calibrated prior to use by the equipment supplier (Maxim) in accordance with the manufacturer's specifications and again prior to purging.

Field-measured parameters were recorded from the Horiba Water Quality Meter at regular intervals in order to determine stabilized groundwater geochemical conditions and hence representative groundwater sampling conditions, in general accordance with the criteria stipulated in the Low Flow Sampling Protocol.

It should be noted that representative groundwater sampling conditions were determined by Pinchin personnel utilizing the field parameter stabilization criteria noted within the Low Flow Sampling Protocol as well as additional factors including total purge time and purge volume.

© 2020 Pinchin Ltd. Page 29 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006 DRAFT

November 30, 2020

5.7 Groundwater Sampling

All monitoring wells installed by Pinchin as part of the Phase Two ESA and two existing monitoring wells (i.e., MW-1 and MW-3 installed by Pinchin) were sampled. The monitoring wells were sampled a minimum of 24 hours after the completion of well development activities (see Section 5.5). All monitoring wells were sampled in accordance with the Low Flow Sampling Protocol as described below.

Well purging was completed using a Geotech™ submersible bladder pump and Geotech™ controller powered by a 12-Volt battery. Compressed air was delivered to the bladder pump unit via 47-millimetre (3/16-inch) ID polyethylene tubing. Groundwater was returned to the surface from the bladder pump via dedicated 0.64-cm (1/4-inch) ID polyethylene tubing. A Horiba Water Quality Meter connected to a flow-through cell was used to monitor water quality parameters during groundwater purging to assess whether water quality parameter stabilization was achieved prior to sample collection. The flow rate of the bladder pump was adjusted to minimize drawdown of the water table and the introduction of sediment into the samples.

Once field parameter stabilization was achieved, groundwater samples were collected at each well using the bladder pump and dedicated polyethylene tubing by pumping groundwater directly into new laboratory-supplied sample bottles at a pumping rate of less than 0.5 litres per minute.

Groundwater samples for metals analyses were field-filtered prior to preservation using dedicated 0.45 micron in-line filters. As appropriate, laboratory sample bottles were pre-filled by BV Labs with preservatives intended to preserve the collected groundwater samples prior to analysis.

Following sample collection, the sample bottles were placed into dedicated coolers with ice for storage pending transport to BV Labs. Formal chain of custody records were maintained between Pinchin and the staff at BV Labs.

5.8 Sediment Sampling

Sediment sampling was not completed as part of this Phase Two ESA.

5.9 Analytical Testing

All collected soil and groundwater samples were delivered to BV Labs for analysis. BV Labs is an independent laboratory accredited by the Canadian Association for Laboratory Accreditation. Formal chain of custody records of the sample submissions were maintained between Pinchin and the staff at BV Labs. BV Labs conducted the laboratory analysis in accordance with the MECP document entitled "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" dated March 9, 2004 and revised on July 1, 2011 (Analytical Protocol).

© 2020 Pinchin Ltd. Page 30 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

DRAFT

November 30, 2020

Pinchin File: 230236.006

5.10 Residue Management Procedures

Pinchin notes that at the time of writing, the drums of excess soil cuttings, purge water and equipment cleaning fluids have not been removed from the Phase Two Property. Pinchin will assist the Client in arranging for disposal of these materials by MECP-approved waste haulers at MECP-approved waste management facilities.

5.11 Elevation Surveying

On October 14, 2020, Annis, O'Sullivan, Vollebekk (AOV), an OLS, surveyed the horizontal positioning and the vertical elevation of each of the on-Site monitoring wells locations relative to the elevation of a local geodetic benchmark. The geodetic elevations were derived by AOV from GPS observations and are referred to the CGVD28 geodetic datum. This geodetic reference was used to establish a local survey benchmark, which was the top of a fire hydrant spindle adjacent to the southeast Phase Two Property boundary (referenced at 65.23 mamsl).

A summary of the well elevation survey data is provided in Table 4. A plan of survey of the Phase Two Property showing the locations and elevations of each monitoring well and borehole, as provided by AOV, is attached in Appendix A.

5.12 Quality Assurance and Quality Control Measures

The QA/QC protocols that were followed during borehole drilling and soil and groundwater sampling so that representative samples were obtained are described in the following subsections.

5.12.1 Sample Containers, Preservation, Labelling, Handling and Custody of Samples

Soil and groundwater samples were containerized within laboratory-prepared sample containers in accordance with the *Analytical Protocol*.

The following soil sample containers and preservatives were used:

- VOCs and PHCs F1: 40 millilitre (mL) glass vials with septum-lids, pre-charged with methanol preservative; and
- PHCs F2-F4, PAHs and metals: 120 or 250 mL unpreserved clear glass wide-mouth jars with a TeflonTM—lined lid.

The following groundwater sample containers and preservatives were used:

 VOCs and PHCs F1: 40 mL clear glass vials with septum-lids, pre-charged with sodium bisulphate preservative;

© 2020 Pinchin Ltd. Page 31 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006 DRAFT

November 30, 2020

- PHCs F2-F4: 250 mL amber glass bottles with Teflon[™]—lined lids, pre-charged with sodium bisulphate preservative;
- PAHs: 250 mL unpreserved amber glass bottles with TeflonTM—lined lids;
- Metals (excluding hexavalent chromium and mercury): 125 mL acid-rinsed HDPE bottles,
 pre-charged with nitric acid preservative;
- Hexavalent chromium: 125 mL acid-rinsed HDPE bottles, pre-charged with ammonium sulphate/ammonium hydroxide preservative; and
- Mercury: 125 mL clear glass bottles with Teflon[™]—lined lids, pre-charged with hydrochloric acid preservative.

Groundwater samples submitted for metals analyses (including hexavalent chromium and mercury) were field-filtered using dedicated 0.45 micron filters.

Trip blank water samples for VOC parameter analysis were provided by BV Labs in 40 mL clear glass vials filled with VOC-free water.

Each soil, groundwater and QA/QC sample was labelled with a unique sample identifier along with the company name, sampling date, Pinchin project number and analysis required.

Each sample was placed in a cooler on ice immediately upon collection and prior to submission to BV Labs for analysis. Formal chain of custody records of the sample submissions were maintained between Pinchin and the staff at BV Labs.

5.12.2 Equipment Cleaning Procedures

Dedicated, single-use PVC sample liners were used for each soil sample collected, which precluded the need for drilling equipment cleaning during soil sample collection. Equipment utilized in soil sample collection and handling (i.e., spatulas used to remove soil from the sample liners) was cleaned with a solution of Alconox[™] detergent and potable water followed by a distilled water rinse prior to initial use and between samples.

During groundwater sampling activities, the Geotech™ bladder pump used for purging and sampling was cleaned before initial use and between well locations by flushing with a solution of Alconox™ detergent and potable water followed by flushing with distilled water. New bladders were also installed in the pump before initial use and between well locations. During groundwater monitoring activities, the oil/water interface probe used to measure water levels and the Horiba Water Quality Meter used for groundwater field parameter measurements were cleaned with a solution of Alconox™ detergent and potable water followed by a distilled water rinse prior to initial use and between well locations.

© 2020 Pinchin Ltd. Page 32 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

5.12.3 Field Quality Control Measures

A total of two field duplicate soil samples were collected by Pinchin during the Phase Two ESA for analysis of one or more of the COPCs. The frequency of field duplicate soil sample analysis complied with the requirement that one field duplicate soil sample is analyzed for every ten regular soil samples submitted for analysis of the COPCs. The soil sample field duplicate pairings and corresponding analytical schedules are summarized as follows:

- Soil sample "BH101 SS1" and its corresponding field duplicate "DUP-1" were submitted for laboratory analysis of PHCs, VOCs, PAHs and metals; and
- Soil sample "MW110 SS2" and its corresponding field duplicate "DUP-2" were submitted for laboratory analysis of PHCs, VOCs, PAHs and metals.

A total of three field duplicate groundwater samples were collected by Pinchin during the Phase Two ESA for analysis of the COPCs. The frequency of field duplicate groundwater sample analysis complied with the requirement that one field duplicate groundwater sample is analyzed for every ten regular groundwater samples submitted for analysis of the COPCs. The groundwater sample field duplicate pairing and corresponding analytical schedules are summarized as follows:

- Groundwater sample "MW-1" and its corresponding field duplicate "DUP-3" were submitted for laboratory analysis of PHCs, VOCs and PAHs;
- Groundwater sample "MW201" and its corresponding field duplicate "DUP-201" were submitted for laboratory analysis of PHCs, VOCs and PAHs; and
- Groundwater sample "MW202" and its corresponding field duplicate "DUP-202" were submitted for laboratory analysis of metals.

Three laboratory-prepared trip blanks were analyzed for VOC parameters to comply with the requirement that one trip blank is analyzed for each submission of groundwater samples for VOC parameter analysis.

The calibrations of the RKI Eagle™ 2 used for field screening and the Horiba Water Quality Meter used for water quality parameter measurements were checked by the equipment supplier (Maxim) prior to use in the field by Pinchin.

Maxim completed calibration checks in accordance with the equipment manufacturers' specifications and/or Maxims SOPs.

5.12.4 QA/QC Sampling Program Deviations

There were no deviations from the QA/QC sampling program outlined in the SAP.

© 2020 Pinchin Ltd. Page 33 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

6.0 REVIEW AND EVALUATION

6.1 Geology

Based on the stratigraphic information obtained from the soil samples recovered during the drilling activities completed as part of the Phase Two ESA, the concrete or asphalt-covered ground surface at the Phase Two Property is underlain by granular soil fill materials comprised of sand and gravel, and trace silt with organic material and occasional coal, brick, and glass fragments, to a maximum depth of approximately 2.6 mbgs, where refusal on limestone bedrock was encountered. Moist to wet soil conditions were not observed in any of the boreholes advanced.

The water table is located within the limestone formation at a depth of approximately 4 to 8 mbgs and this uppermost water bearing unit represents an unconfined aquifer. The Phase Two ESA investigation did not extend further than approximately 15.2 mbgs, and therefore the total thickness of this aquifer was not determined. No aquitards or additional aquifers were encountered during the borehole drilling program for the Phase Two ESA.

The following table provides a summary of the primary geologic units observed during borehole drilling at the Phase Two Property:

Geologic Unit	Estimated Thickness (metres)	Top Elevation (mamsl)	Bottom Elevation (mamsl)	Properties
Sand and Gravel (Granular Fill	0-2.6	62.9 – 64.6 (Ground Surface)	62.1 – 63.4	Unsaturated
Unconfined Aquifer (limestone)	2.6 ->15.2	62.1 – 63.4	>48.2	Saturated below 4 to 8 mbgs on October 14, 2020 (water table)

Cross-sections summarizing the subsurface geological conditions have been provided as Figures 8B to 8C, with the cross-section lines shown on Figure 8A.

The APECs investigated by the Phase Two ESA identified surface soil impacted with VOCs, PHCs, PAHs and metals parameters. Impacts on groundwater quality, if any, from these contaminants would be expected in the shallow groundwater zone and, as such, the water table groundwater quality (unconfined aquifer within the limestone formation) was assessed during the Phase Two ESA.

© 2020 Pinchin Ltd. Page 34 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

Groundwater impacts were identified at the water table within the unconfined aquifer at monitoring well MW-1. To vertically delineate these impacts, one additional monitoring well (MW201) was installed deeper within the unconfined aquifer. No groundwater impacts were identified within this deeper well and an assessment of deeper groundwater quality within the unconfined aquifer was not required.

6.2 Groundwater Elevations and Flow Direction

The wells screens in each monitoring well installed by Pinchin were of a consistent length (i.e., 3.05 metres) and the well screens in the monitoring well installed by others was also 3.05 metres in length. All monitoring wells were installed at depth intervals intended to investigate groundwater quality in the shallow groundwater zone within the unconfined aquifer. Given that PHCs were a COPC for groundwater at the Phase Two Property the monitoring wells were installed at the Phase Two Property such that the well screens intersected the water table, with the exception of monitoring well MW201 which was installed for vertical delineation purposes.

The following summarizes the findings of a groundwater monitoring event completed on May 5, 2020:

The depths to groundwater measured within monitoring wells MW-1 and MW-3 installed within the unconfined aquifer ranged from 3.92 mbgs at monitoring well MW-3 to 5.12 mbgs at monitoring well MW-1;

- The calculated groundwater elevations within the groundwater monitoring ranged between 58.15 mamsl at MW-1 and 59.50 mamsl at MW-3; and
- No NAPL thicknesses were measured with the oil/water interface probe in any of the groundwater monitoring wells.

The following summarizes the findings of a groundwater monitoring event completed on August 6, 2020:

The depths to groundwater measured within monitoring wells MW-1 and MW-3 installed within the unconfined aquifer ranged from 3.93 mbgs at monitoring well MW-3 to 5.11 mbgs at monitoring well MW-1;

- The calculated groundwater elevations within the groundwater monitoring ranged between 58.16 mamsl at MW-1 and 59.49 mamsl at MW-3; and
- No NAPL thicknesses were measured with the oil/water interface probe in any of the groundwater monitoring wells.

© 2020 Pinchin Ltd. Page 35 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006 DRAFT

November 30, 2020

The following summarizes the findings of a groundwater monitoring event completed on August 31, 2020:

- The depths to groundwater measured monitoring wells MW201, MW202 and MW203 installed within the unconfined aquifer ranged from 4.62 mbgs at monitoring well MW202 to 8.07 mbgs at monitoring well MW201;
- The calculated groundwater elevations within the groundwater monitoring wells installed within the unconfined aquifer ranged between 55.16 mamsl at MW201 and 58.33 mamsl at MW202; and
- No NAPL thicknesses were measured with the oil/water interface probe in any of the groundwater monitoring wells.

The following summarizes the findings of a groundwater monitoring event completed on September 2, 2020:

- The depths to groundwater measured monitoring wells MW201, MW202 and MW203 installed within the unconfined aquifer ranged from 4.77 mbgs at monitoring well MW202 to 8.08 mbgs at monitoring well MW201;
- The calculated groundwater elevations within the groundwater monitoring wells installed within the unconfined aquifer ranged between 55.15 mamsl at MW201 and 58.18 mamsl at MW202; and
- No NAPL thicknesses were measured with the oil/water interface probe in any of the groundwater monitoring wells.

The following summarizes the findings of a groundwater monitoring event completed on October 14, 2020:

- The depths to groundwater measured in all on-Site monitoring wells installed within the unconfined aquifer ranged from 3.80 mbgs at monitoring well MW-3 to 8.10 mbgs at monitoring well MW201;
- The calculated groundwater elevations within the groundwater monitoring wells installed within the unconfined aquifer ranged between 55.13 mamsl at MW201 and 59.62 mamsl at MW-3; and
- No NAPL thicknesses were measured with the oil/water interface probe in any of the groundwater monitoring wells.

The surveyed ground surface elevations adjacent to each well and measured distance between the ground surface elevations and tops of the well riser pipes were used to calculate the top of casing elevations for each well. The measured depths to groundwater and calculated groundwater elevation

© 2020 Pinchin Ltd. Page 36 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006 DRAFT

November 30, 2020

measurements, and the results of NAPL monitoring for all monitoring events are summarized in Tables 5 and 6, respectively.

The inferred groundwater flow vectors and calculated groundwater elevation contour intervals at the Phase Two Property based on depth to groundwater measurements on October 14, 2020 are shown on Figure 9. The groundwater elevation contours were created by manual interpolation with a 0.5 metre contour spacing.

All depth to groundwater measurements in each of the on-Site groundwater monitoring wells were used to calculate the groundwater elevation contours, with the exception of monitoring well MW201. The groundwater elevation data for monitoring well MW201were omitted as this monitoring well was a deep monitoring well installed for vertical delineation purposes and was not screened to intersect the water table. As shown on Figure 9, the calculated groundwater surface elevation contours indicate that groundwater flow across the Phase Two Property is variable, with flow in the northern portion to the east/southeast, flow in the central portion to the northwest and flow in the southern portion to the west/southwest. The variability is groundwater flow direction may be due to fractures in the bedrock influencing groundwater flow direction.

The groundwater depth data collected over the course of all monitoring events indicate that the temporal fluctuations in the unconfined water table appear to be minimal. Also, based on the measured depths to groundwater, it is unlikely that the groundwater flow regime would be influenced by the buried utilities present at the Phase Two Property.

6.3 Groundwater Hydraulic Gradients

6.3.1 Groundwater Horizontal Hydraulic Gradients

The plotted groundwater surface elevation contours (as shown on Figures 9) were utilized to estimate horizontal hydraulic gradient values for the unconfined aquifer at the Phase Two Property. The horizontal hydraulic gradient can be estimated by dividing the difference between two groundwater contour values by the distance between the two plotted groundwater contours. The distance between select groundwater contours can be determined by drawing a straight line which transects each contour in a perpendicular fashion on the plotted groundwater contour figure.

By utilizing groundwater contours which are closely spaced, the estimated maximum horizontal hydraulic gradient for the unconfined aquifer at the Phase Two Property is approximately 0.054.

By utilizing groundwater contours which are more distantly spaced, the estimated minimum horizontal gradient for the unconfined aquifer at the Phase Two Property is approximately 0.025.

© 2020 Pinchin Ltd. Page 37 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

DRAFT

November 30, 2020

Pinchin File: 230236.006

By utilizing the two most distant (highest and lowest) groundwater elevation contours plotted at the Phase Two Property, a normalized horizontal hydraulic gradient value for the unconfined aquifer at the Phase Two Property using groundwater surface elevations measured on October 14, 2020, was estimated to be approximately 0.040.

6.3.2 Groundwater Vertical Hydraulic Gradients

Water levels obtained from nested monitoring well pair MW-1 and MW201on October 14, 2020 used to calculate vertical hydraulic gradients for the unconfined aquifer at the Phase Two Property. The calculated vertical hydraulic gradient for this well pair was 0.46 in a downwards direction on October 14, 2020.

6.4 Fine-Medium Soil Texture

Two soil samples collected as part of the 2018 Pinchin Phase II ESA from boreholes advanced at the Phase Two Property were submitted for 75 micron single-sieve grain size analysis. The soil samples selected for analysis were considered to be representative of the primary stratigraphic unit observed at the borehole locations, which was sand and gravel. One soil sample was classified as coarse-textured (85% coarse-grained soil) and one sample was classified as medium and fine textured (47% coarse-grained soil).

Based on these grain size analysis results and the observed stratigraphy at the borehole locations at the Phase Two Property, it is the QP's opinion that over two-thirds of the overburden at the Phase Two Property is coarse-textured as defined by O. Reg. 153/04. Therefore, the soil at the Phase Two Property was interpreted to be coarse-textured for the purpose of determining the MECP Site Condition Standards applicable to the Phase Two Property.

6.5 Soil Field Screening

Soil vapour headspace concentrations measured in the soil samples collected as part of this Phase Two ESA are presented in the borehole logs. Soil vapour headspace values measured with the CGI in methane elimination mode ranged from 5 ppm by volume (ppm_v) in several of the collected soil samples to a maximum of 1,500 ppm_v in soil sample BH104 SS1 collected from borehole BH104 at a depth of approximately 0 to 0.76 mbgs. Soil vapour headspace values measured with the PID ranged from 0.0 ppm_v in several of the collected soil samples to a maximum of 973 ppm_v in soil sample BH104 SS1 collected from borehole BH104 at a depth of approximately 0 to 0.76 mbgs

One most apparent "worst case" soil sample, based on vapour concentrations as well as visual and/or olfactory considerations recovered from each borehole was submitted for laboratory analysis of VOCs, PHCs (F1-F4), PAHs and/or metals.

© 2020 Pinchin Ltd. Page 38 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006 DRAFT

November 30, 2020

6.6 Soil Quality

A total of 15 boreholes were advanced at the Phase Two Property at the locations shown on Figure 7 in order to assess for the presence of subsurface impacts resulting from the APECs identified in the Pinchin Phase One ESA. Select soil samples were collected from each of the advanced boreholes and submitted for laboratory analysis of the COPCs. The soil sample locations, depths and laboratory analyses are summarized in Table 3 and in the borehole logs.

The soil sample analytical results were compared to the *Table 7 Standards* and the following subsections provide a discussion of the findings.

6.6.1 VOCs

The soil sample analytical results for VOCs, along with the corresponding *Table 7 Standards*, are presented in Table 3. As indicated in Table 3, all reported concentrations of VOCs in the soil samples submitted for analysis were below the *Table 7 Standards*, except for the following:

• The concentration of xylenes (4.6 micrograms per grams (μg/g) vs. the *Table 7 Standard* of 3.1 μg/g) reported for soil sample BH104 SS1, collected at borehole BH104 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*.

6.6.2 PHCs F1-F4

The soil sample analytical results for PHCs F1-F4, along with the corresponding *Table 7 Standards*, are presented in Table 3. As indicated in Table 3, all reported concentrations of PHCs F1- F4 in the soil samples submitted for analysis were below the *Table 7 Standards*, except for the following:

- The concentration of PHCs F1 (110 μg/g vs. the *Table 7 Standard* of 55 μg/g) reported for soil sample BH104 SS1, collected at borehole BH104 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*:
- The concentration of PHCs F3 (730 μg/g vs. the Table 7 Standard of 300 μg/g) reported for soil sample BH107 SS4, collected at borehole BH107 from a depth of 1.83 to 2.59 mbgs, exceeded the Table 7 Standards;
- The concentration of PHCs F2 (220 μg/g vs. the *Table 7 Standard* of 98 μg/g) and PHCs F3 (4,500 μg/g vs. the *Table 7 Standard* of 300 μg/g) reported for soil sample BH113 SS2, collected at borehole BH113 from a depth of 0.61 to 1.22 mbgs, exceeded the *Table 7 Standards*; and
- The concentration of PHCs F3 (430 μg/g vs. the Table 7 Standard of 300 μg/g) reported for soil sample MW114 SS1, collected at borehole MW114 from a depth of 0 to 0.76 mbgs, exceeded the Table 7 Standards.

© 2020 Pinchin Ltd. Page 39 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

6.6.3 PAHs

The soil sample analytical results for PAHs, along with the corresponding *Table 7 Standards*, are presented in Table 3. As indicated in Table 3, all reported concentrations of PAHs in the soil samples submitted for analysis were below the *Table 7 Standards*, except for the following:

- The concentrations of acenaphthylene (1.1 μg/g vs. the *Table 7 Standard* of 0.15 μg/g), anthracene (7.8 μg/g vs. the *Table 7 Standard* of 0.67 μg/g), benzo(a)anthracene (16 μg/g vs. the *Table 7 Standard* of 0.5 μg/g), benzo(a)pyrene (12 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), benzo(b)fluoranthene (15 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), benzo(k)fluoranthene (5.6 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), chrysene (11 μg/g vs. the *Table 7 Standard* of 7 μg/g), dibenzo(a,h)anthracene (2.0 μg/g vs. the *Table 7 Standard* of 0.69 μg/g), indeno(1,2,3-c,d)pyrene (6.5 μg/g vs. the *Table 7 Standard* of 0.38 μg/g), 1- & 2-methylnaphthalene (1.4 μg/g vs. the *Table 7 Standard* of 0.99 μg/g), naphthalene (0.86 μg/g vs. the *Table 7 Standard* of 0.6 μg/g), and phenanthrene (24 μg/g vs. the *Table 7 Standard* of 6.2 μg/g) reported for soil sample BH107 SS4, collected at borehole BH107 from a depth of 1.83 to 2.59 mbgs, exceeded the *Table 7 Standards*;
- The concentrations of benzo(a)anthracene (0.99 μg/g vs. the *Table 7 Standard* of 0.5 μg/g), benzo(a)pyrene (0.88 μg/g vs. the *Table 7 Standard* of 0.3 μg/g), benzo(b)fluoranthene (1.1 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), dibenzo(a,h)anthracene (0.16 μg/g vs. the *Table 7 Standard* of 0.1 μg/g), fluoranthene (2.2 μg/g vs. the *Table 7 Standard* of 0.69 μg/g) and indeno(1,2,3-c,d)pyrene (0.55 μg/g vs. the *Table 7 Standard* of 0.38 μg/g) reported for soil sample BH109 SS3, collected at borehole BH109 from a depth of 1.22 to 1.83 mbgs, exceeded the *Table 7 Standards*;
- The concentrations of acenaphthylene (13 μg/g vs. the *Table 7 Standard* of 0.15 μg/g), anthracene (22 μg/g vs. the *Table 7 Standard* of 0.67 μg/g), benzo(a)anthracene (67 μg/g vs. the *Table 7 Standard* of 0.5 μg/g), benzo(a)pyrene (57 μg/g vs. the *Table 7 Standard* of 0.3 μg/g), benzo(b)fluoranthene (65 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), benzo(ghi)perylene (27 μg/g vs. the *Table 7 Standard* of 6.6 μg/g), benzo(k)fluoranthene (26 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), chrysene (55 μg/g vs. the *Table 7 Standard* of 0.1 μg/g), fluoranthene (120 μg/g vs. the *Table 7 Standard* of 0.69 μg/g), indeno(1,2,3-c,d)pyrene (29 μg/g vs. the *Table 7 Standard* of 0.38 μg/g), 1- & 2-methylnaphthalene (9.1 μg/g vs. the *Table 7 Standard* of 0.6 μg/g), phenanthrene (75 μg/g vs. the *Table 7 Standard* of 6.2 μg/g) and

© 2020 Pinchin Ltd. Page 40 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006

DRAFT

November 30, 2020

pyrene (120 μ g/g vs. the *Table 7 Standard* of 78 μ g/g) reported for soil sample BH113 SS2, collected at borehole BH113 from a depth of 0.61 to 1.22 mbgs, exceeded the *Table 7 Standards*; and

The concentration of benzo(a)pyrene (0.32 μg/g vs. the *Table 7 Standard* of 0.3 μg/g), reported for soil sample MW114 SS1, collected at borehole MW114 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*.

6.6.4 Metals

The soil sample analytical results for metals parameters, along with the corresponding *Table 7 Standards*, are presented in Table 3. As indicated in Table 3, all reported concentrations of metals in the soil samples submitted for analysis were below the *Table 7 Standards*, except for the following:

- The concentration of barium (430 μg/g vs. the *Table 7 Standard* of 390 μg/g), reported for soil sample BH106 SS2, collected at borehole BH106 from a depth of 0.61 to 1.22 mbgs, exceeded the *Table 7 Standards*:
- The concentration of lead (150 μg/g vs. the *Table 7 Standard* of 120 μg/g), reported for soil sample BH107 SS4, collected at borehole BH107 from a depth of 1.83 to 2.59 mbgs, exceeded the *Table 7 Standards*:
- The concentration of boron (hot water soluble) (2.6 μg/g vs. the *Table 7 Standard* of 1.5 μg/g), reported for soil sample BH108 SS1, collected at borehole BH108 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*;
- The concentrations of boron (hot water soluble) (1.6 μg/g vs. the *Table 7 Standard* of 1.5 μg/g), lead (350 μg/g vs. the *Table 7 Standard* of 120 μg/g) and molybdenum (7.9 μg/g vs. the *Table 7 Standard* of 6.9 μg/g) reported for soil sample BH109 SS3, collected at borehole BH109 from a depth of 1.22 to 1.83 mbgs, exceeded the *Table 7 Standards*;
- The concentrations of boron (hot water soluble) (1.6 μg/g vs. the *Table 7 Standard* of 1.5 μg/g), cadmium (1.8 μg/g vs. the *Table 7 Standard* of 1.2 μg/g), lead (720 μg/g vs. the *Table 7 Standard* of 120 μg/g), mercury (10 μg/g vs. the *Table 7 Standard* of 0.27 μg/g), and zinc (1,100 μg/g vs. the *Table 7 Standard* of 340 μg/g) reported for soil sample BH113 SS2, collected at borehole BH113 from a depth of 0.61 to 1.22 mbgs, exceeded the *Table 7 Standards*; and

© 2020 Pinchin Ltd. Page 41 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

DRAFT

November 30, 2020

Pinchin File: 230236.006

• The concentrations of cadmium (1.4 μg/g vs. the *Table 7 Standard* of 1.2 μg/g), lead (470 μg/g vs. the *Table 7 Standard* of 120 μg/g), mercury (1.3 μg/g vs. the *Table 7 Standard* of 0.27 μg/g), and zinc (460 μg/g vs. the *Table 7 Standard* of 340 μg/g) reported for soil sample MW114 SS1, collected at borehole MW114 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*.

6.6.5 General Comments on Soil Quality

The soil sample results show no evidence of chemical or biological transformations of chemical parameters in the subsurface.

6.7 Groundwater Quality

Groundwater samples were collected from monitoring wells MW-1, MW-3, MW110, MW201, MW202 and MW203, and submitted for analysis of the COPCs to assess for the presence of subsurface impacts within the APECs identified in the Pinchin Phase One ESA and for the delineation of identified impacts. The locations of the monitoring wells are shown on Figure 7. The groundwater sample collection depths and laboratory analysis are summarized in Table 7. All groundwater samples collected for metals analysis were filtered in the field using dedicated, disposable 0.45 micron in-line filters prior to preservation in accordance with the *Analytical Protocol*.

The groundwater sample analytical results were compared to the *Table 7 Standards* and the following subsections provide a discussion of the findings.

6.7.1 VOCs

The groundwater analytical results for VOCs, along with the corresponding *Table 7 Standards*, are presented in Table 7. As indicated in Table 7, all reported concentrations of VOCs in the groundwater samples submitted for analysis were below the *Table 7 Standards*, except for the following:

- The concentrations of benzene (23 micrograms per litre (μg/L) vs. the *Table 7 Standard* of 0.5 μg/L) and ethylbenzene (66 μg/L vs. the *Table 7 Standard* of 54 μg/L) reported for groundwater sample MW-1, collected from monitoring well MW-1 at a depth interval of approximately 4.5 to 7.6 mbgs, exceeded the *Table 7 Standards*; and
- The concentrations of benzene (21 μg/L vs. the *Table 7 Standard* of 0.5 μg/L) and ethylbenzene (73 μg/L vs. the *Table 7 Standard* of 54 μg/L) reported for groundwater sample DUP-3 (field duplicate of sample MW-1), collected from monitoring well MW-1 at a depth interval of approximately 4.5 to 7.6 mbgs, exceeded the *Table 7 Standards*.

© 2020 Pinchin Ltd. Page 42 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006

DRAFT

November 30, 2020

6.7.2 PHCs F1-F4

The groundwater analytical results for PHCs F1-F4, along with the corresponding *Table 7 Standards*, are presented in Table 7. As indicated in Table 7, all reported concentrations of PHCs F1-F4 in the groundwater samples submitted for analysis met the *Table 7 Standards*, except for the following:

• The concentration of PHCs F3 (540 μg/L vs. the *Table 7 Standard* of 500 μg/L) reported for groundwater sample DUP-3 (field duplicate of sample MW-1), collected from monitoring well MW-1 at a depth interval of approximately 4.5 to 7.6 mbgs, exceeded the *Table 7 Standards*.

6.7.3 PAHs

The groundwater analytical results for PAHs, along with the corresponding *Table 7 Standards*, are presented in Table 7. As indicated in Table 7, all reported concentrations of PAHs in the groundwater samples submitted for analysis met the *Table 7 Standards*.

6.7.4 Metals

The groundwater analytical results for metals parameters, along with the corresponding *Table 7 Standards*, are presented in Table 7. As indicated in Table 7, all reported concentrations of metals parameters in the groundwater samples submitted for analysis met the *Table 7 Standards*.

6.7.5 General Comments on Groundwater Quality

The groundwater sample results show no evidence of chemical or biological transformations of chemical parameters in the subsurface.

6.8 Sediment Quality

Sediment sampling was not completed as part of this Phase Two ESA.

6.9 Quality Assurance and Quality Control Results

QA/QC comprises technical activities that are used to measure or assess the effect of errors or variability in sampling and analysis. It may also include specification of acceptance criteria for the data and corrective actions to be taken when they are exceeded. QA/QC also includes checks performed to evaluate laboratory analytical quality, checks designed to assess the combined influence of field sampling and laboratory analysis and checks to specifically evaluate the potential for cross contamination during sampling and sample handling.

© 2020 Pinchin Ltd. Page 43 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

The QA/QC samples collected and submitted for analysis by Pinchin during the Phase Two ESA consisted of the following:

- Field duplicate soil and groundwater samples to assess the suitability of field sampling methods and laboratory performance; and
- Trip blank water samples to assess whether ambient conditions during transport of groundwater sample containers from the analytical laboratory to the Phase Two Property and back to the analytical laboratory may have biased the groundwater sample results with respect to volatile constituents.

In addition to the above, laboratory quality control activities and sample checks employed by BV Labs included:

- Method blanks where a clean sample is processed simultaneously with and under the same conditions (i.e., using the same reagents and solvents) as the samples being analyzed. These are used to confirm whether the instrument, reagents and solvents used are contaminant free;
- Laboratory duplicates where two samples obtained from the sample container are analyzed. These are used to evaluate laboratory precision;
- Surrogate spike samples where a known mass of compound not found in nature (e.g., deuterated compounds such as toluene-d8) but that has similar characteristics to the analyzed compounds is added to a sample at a known concentration. These are used to assess the recovery efficiency;
- Matrix spike samples where a known mass of target analyte is added to a matrix sample
 with known concentrations. These are used to evaluate the influence of the matrix on a
 method's recovery efficiency; and
- Use of standard or certified reference materials a reference material where the content
 or concentration has been established to a very high level of certainty (usually by a
 national regulatory agency). These are used to assess accuracy.

The results of the QA/QC samples are discussed in the following subsections.

© 2020 Pinchin Ltd. Page 44 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

6.9.1 Soil Duplicate Results

During borehole soil sampling activities, a total of two separate soil duplicate sample pairs were submitted for laboratory analysis. The field duplicate samples were collected by vertically splitting the soil cores into two equal halves, with one half collected as the regular sample and the other half collected as the field duplicate sample. The sample pairings and corresponding laboratory analyses are as follows:

- Soil sample "BH101 SS1" and its corresponding field duplicate "DUP-1" were submitted for laboratory analysis of PHCs, VOCs, PAHs and metals; and
- Soil sample "MW110 SS2" and its corresponding field duplicate "DUP-2" were submitted for laboratory analysis of PHCs, VOCs, PAHs and metals.

The quality of the analytical results was evaluated by calculating relative percent differences (RPDs) for the parameters analyzed for the original and field duplicate samples. The RPD for each parameter was calculated using the following equation:

An RPD was not calculated unless the parameter concentration in both the original and duplicate sample had detectable concentrations above the corresponding practical quantitation limit for the parameter, which is equal to five times the lowest laboratory reportable detection limit (RDL).

The calculated RPDs for the original and field duplicate soil samples have been compared to performance standards provided in the *Analytical Protocol*. Pinchin notes that although these performance standards only strictly apply to laboratory duplicate samples, they have been considered suitable for comparison to the field duplicate soil sample results as well.

The calculated RPDs values met the performance standards with the exception of the following:

• The RPD values for soil sample pairing BH101 SS1/DUP-1, collected from borehole BH101 at a depth of 0 to 0.76 mbgs, exceeded the corresponding performance standard of 30% for the analytical results reported for xylenes (RPD of 85%) and lead (RPD of 38%).

The primary cause of the elevated RPD values and discrepancies observed in the analytical results for soil sample pairings BH101 SS1/DUP-1 is inferred to be heterogeneity in the matrix of the fill materials from which the samples were collected. Pinchin notes that fill materials are generally more variable in terms of parameter concentrations in comparison to native, undisturbed soil deposits. As such, the observed variances in RPDs for these sample pairings are not expected to reflect deficiencies in sampling or analytical methods. Furthermore, all parameter concentrations in the soil sample pairing are below the

© 2020 Pinchin Ltd. Page 45 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

DRAFT

November 30, 2020

Pinchin File: 230236.006

corresponding *Table 7 Standards* so the apparent lack of precision is not considered a concern. Based on Pinchin's review of the calculated RPD values for the remainder of the collected soil duplicate sample pairings, the level of observed variance in the reported analytical results is considered acceptable for the purpose of meeting the data quality objectives of this Phase Two ESA.

6.9.2 Groundwater Sample Duplicate Results

During groundwater sampling activities, a total of three separate groundwater duplicate sample pairs were submitted for laboratory analysis. The sample pairings and corresponding laboratory analyses are as follows:

- Groundwater sample "MW-1" and its corresponding field duplicate "DUP-3" were submitted for laboratory analysis of PHCs, VOCs and PAHs;
- Groundwater sample "MW201" and its corresponding field duplicate "DUP-201" were submitted for laboratory analysis of PHCs, VOCs and PAHs; and
- Groundwater sample "MW202" and its corresponding field duplicate "DUP-202" were submitted for laboratory analysis of metals.

The calculated RPDs for the original and field duplicate groundwater samples have been compared to performance standards provided in the *Analytical Protocol*. Pinchin notes that although these performance standards only strictly apply to laboratory duplicate samples, they have been considered suitable for comparison to the field duplicate groundwater sample results as well.

The calculated RPDs values met the performance standards with the exception of the following:

 The RPD values for groundwater sample pairing MW-1/DUP-3, collected from monitoring well MW-1, exceeded the corresponding performance standard of 30% for the analytical results reported for PHCs F3 (92%).

The primary cause of the elevated RPD values and discrepancies observed in the analytical results for groundwater sample pairing MW-1/DUP-3 is inferred to be the result of different levels of sediment in the sample pairing. Although every effort was made during groundwater sampling to minimize the sediment content of the samples, minor amounts of sediment were observed in each of the samples and were included in the analysis as per the *Analytical Protocol*. The inclusion of sediment in the sample analysis has likely resulted in varying levels of positive sediment bias, which has resulted in the apparent lack of precision in the analytical results. Based on Pinchin's review of the calculated RPD values for the remainder of the collected groundwater duplicate sample pairings, the level of observed variance in the reported analytical results is considered acceptable for the purpose of meeting the data quality objectives of this Phase Two ESA.

© 2020 Pinchin Ltd. Page 46 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

6.9.3 Groundwater Trip Blank Results

Trip blank samples, consisting of VOC-free water contained within a set of VOC sample vials, were prepared by BV Labs and accompanied the VOC groundwater sample containers during transportation to the Phase Two Property and were stored in the coolers with the VOC groundwater samples in the field and during transportation back to BV Labs. A total of three trip blank samples (one for each laboratory submission) were submitted to BV Labs for chemical analysis of VOCs during the groundwater sampling activities completed as part of this Phase Two ESA.

As indicated in Table 7, the concentrations of the VOC parameters analyzed in the trip blank samples were below the laboratory RDLs. These findings indicate that ambient conditions during the transportation of the sample containers to and from the Phase Two Property, and during groundwater sampling, did not positively bias the VOCs parameter analytical results for the groundwater samples.

6.9.4 Deviations from Analytical Protocol

There were no deviations from the holding times, preservation methods, storage requirements and container types specified in the *Analytical Protocol* during the completion of the Phase Two ESA.

6.9.5 Laboratory Certificates of Analysis

Pinchin has reviewed the laboratory Certificates of Analysis provided by BV Labs for the samples submitted during the Phase Two ESA and confirms the following:

- All laboratory Certificates of Analysis contain a complete record of the sample submission and analysis and meet the requirements of Section 47(3) of O. Reg. 153/04;
- A laboratory Certificate of Analysis has been received for each sample submitted for analysis during the Phase Two ESA;
- All laboratory Certificates of Analysis have been included in full in Appendix D; and
- All of the analytical data reported in the Certificates of Analysis have been summarized, in full, in Tables 3 and 7.

6.9.6 Laboratory Comments Regarding Sample Analysis

BV Labs routinely conducts internal QA/QC analyses in order to satisfy regulatory QA/QC requirements. The results of the BV Labs QA/QC analyses for the submitted soil samples are summarized in the laboratory Certificates of Analyses provided in Appendix D. Also included in Appendix D are all correspondences between the laboratory and staff at Pinchin.

© 2020 Pinchin Ltd. Page 47 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006 DRAFT

The following summarizes comments noted by BV Labs on the laboratory Certificates of Analysis for the submitted soil samples:

• Laboratory Certificate C0C5456 – The RDLs for PAHs in soil samples BH107 SS4, BH113 SS2 and MW114 SS1 were raised as a result of a required sample dilution due to the sample matrices. Given that detectable concentrations above the RDLs were reported for these samples or the RDLs reported for these soil samples were below the Table 7 Standards, there is no impact on the overall interpretation of the analytical data.

The following summarizes comments noted by BV Labs on the laboratory Certificates of Analysis for the submitted groundwater samples:

- Laboratory Certificates C0E0707 and C0N4811 BV Labs indicated that all groundwater sample vials submitted for laboratory analysis of VOCs and PHCs F1 contained visible sediment. Based on Pinchin's field observations, the volume of sediment in the submitted groundwater sample containers was a trace to minor amount. Given that these parameters are volatile constituents and are not expected to sorb to soil particles, the presence of trace to minor amounts sediment in the sample vials is not anticipated to result in significant sample bias. Furthermore, Pinchin notes that all reported concentrations of PHCs F1 for the submitted groundwater samples were below the corresponding *Table 7 Standard*. As such, the presence of sediment does not alter the conclusion that the concentrations of PHCs F1 in the submitted groundwater samples are below the *Table 7 Standards*; and
- Laboratory Certificates C0E0707 and C0N4811 BV Labs indicated that all groundwater sample containers submitted for laboratory analysis of PHCs F2-F4 and PAHs contained visible sediment that was included in the laboratory extraction. Based on Pinchin's field observations, the volume of sediment in the submitted groundwater sample containers was a trace to minor amount. These parameters have a tendency to sorb to soil particles. As such, the reported concentrations of PHCs F2-F4 and PAHs in the submitted groundwater samples may have been positively biased. However, Pinchin notes that all reported concentrations of PHCs F2-F4 and PAHs for the submitted groundwater samples were below the corresponding *Table 7 Standards*, with the exception of sample DUP-3 (field duplicate of MW-1) which had a concentration of PHCs F3 above the corresponding *Table 7 Standard*. Given that the concentration reported for sample DUP-3 is interpreted to be the result of sediment bias and unlikely to be representative of actual groundwater conditions. However, until resampling is undertaken to confirm the

© 2020 Pinchin Ltd. Page 48 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

sediment, the groundwater at monitoring well MW-1 will be considered to exceed the *Table 7 Standards* for PHCs.

The results of the QA/QC analyses were reviewed by the project staff at BV Labs and observed to be within the laboratory's internal requirements. Pinchin has also reviewed the laboratory Certificates of Analysis and has confirmed that the results of the analyses are acceptable for the purpose of meeting the data quality objectives of this Phase Two ESA.

The following general comments apply to the laboratory Certificates of Analysis received from BV Labs as part of this Phase Two ESA:

- The custody seal was present and intact on all submissions; and
- from approximately 2 to 8 °C, the sample submission for groundwater samples MW-1 and its corresponding duplicate (DUP-3), and MW-3. These samples were collected during June 2020 when high ambient air and ground temperatures were present. The groundwater samples were placed in coolers with ice immediately after sample collection and were delivered to BV Labs within hours of sampling. As such, it is possible that there was insufficient time between sample collection and delivery to the laboratory for the groundwater samples to be cooled to temperatures below 8 °C. Given these factors, it is the QP's opinion that the elevated sample temperatures reported by BV Labs for these samples did not bias the analytical results.

6.9.7 QA/QC Sample Summary

The overall evaluation of the QA/QC sample results indicates no issues with respect to field collection methods and laboratory performance, and no apparent bias due to ambient conditions at the Phase Two Property and during transportation of the sample containers/samples to and from the analytical laboratory.

As such, it is the QP's opinion that the soil and groundwater analytical data obtained during the Phase Two ESA are representative of actual Site conditions and are appropriate for meeting the objective of assessing whether the soil and groundwater at the Phase Two Property meets the applicable MECP Site Condition Standards.

6.10 Phase Two Conceptual Site Model

The Phase Two Conceptual Site Model will be included in a revised version of this report once soil remediation has been completed.

© 2020 Pinchin Ltd. Page 49 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

7.0 CONCLUSIONS

Pinchin completed a Phase Two ESA at the Phase Two Property in accordance with the requirements stipulated in O. Reg. 153/04 for the purpose of filing an RSC. The RSC is required by the Client in relation to the future redevelopment of the Phase Two Property from a mixed commercial/residential to residential land use.

The Phase Two ESA completed by Pinchin included the advancement of 18 boreholes at the Phase Two Property, five of which were completed as groundwater monitoring wells to facilitate the sampling of groundwater, and the resampling of two existing groundwater monitoring well installed by Pinchin in 2018.

Based on Site-specific information, the applicable regulatory standards for the Phase Two Property were determined to be the *Table 7 Standards* for residential land use and coarse-textured soils. Soil samples were collected from each of the borehole locations and submitted for laboratory analysis of VOCs, PHCs, PAHs and metals. In addition, groundwater samples were collected from four newly-installed monitoring wells, as well as two previously-installed monitoring wells, and submitted for laboratory analysis of VOCs, PHCs, PAHs and/or metals.

The laboratory results for the soil samples submitted during the Phase Two ESA indicated that all reported concentrations for the parameters analyzed met the corresponding *Table 7 Standards*, with the exception of the following:

- The concentration of xylenes (4.6 μg/g vs. the *Table 7 Standard* of 3.1 μg/g) reported for soil sample BH104 SS1, collected at borehole BH104 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*;
- The concentration of PHCs F1 (110 μg/g vs. the *Table 7 Standard* of 55 μg/g) reported for soil sample BH104 SS1, collected at borehole BH104 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*;
- The concentration of PHCs F3 (730 μg/g vs. the Table 7 Standard of 300 μg/g) reported for soil sample BH107 SS4, collected at borehole BH107 from a depth of 1.83 to 2.59 mbgs, exceeded the Table 7 Standards;
- The concentration of PHCs F2 (220 μg/g vs. the *Table 7 Standard* of 98 μg/g) and PHCs F3 (4,500 μg/g vs. the *Table 7 Standard* of 300 μg/g) reported for soil sample BH113 SS2, collected at borehole BH113 from a depth of 0.61 to 1.22 mbgs, exceeded the *Table 7 Standards*;
- The concentration of PHCs F3 (430 μg/g vs. the *Table 7 Standard* of 300 μg/g) reported for soil sample MW114 SS1, collected at borehole MW114 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*;

© 2020 Pinchin Ltd. Page 50 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

- The concentrations of acenaphthylene (1.1 μg/g vs. the *Table 7 Standard* of 0.15 μg/g), anthracene (7.8 μg/g vs. the *Table 7 Standard* of 0.67 μg/g), benzo(a)anthracene (16 μg/g vs. the *Table 7 Standard* of 0.5 μg/g), benzo(a)pyrene (12 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), benzo(b)fluoranthene (15 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), benzo(k)fluoranthene (5.6 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), chrysene (11 μg/g vs. the *Table 7 Standard* of 7 μg/g), dibenzo(a,h)anthracene (2.0 μg/g vs. the *Table 7 Standard* of 0.69 μg/g), indeno(1,2,3-c,d)pyrene (6.5 μg/g vs. the *Table 7 Standard* of 0.38 μg/g), 1- & 2-methylnaphthalene (1.4 μg/g vs. the *Table 7 Standard* of 0.99 μg/g), naphthalene (0.86 μg/g vs. the *Table 7 Standard* of 0.6 μg/g), and phenanthrene (24 μg/g vs. the *Table 7 Standard* of 6.2 μg/g) reported for soil sample BH107 SS4, collected at borehole BH107 from a depth of 1.83 to 2.59 mbgs, exceeded the *Table 7 Standards*;
- The concentrations of benzo(a)anthracene (0.99 μg/g vs. the *Table 7 Standard* of 0.5 μg/g), benzo(a)pyrene (0.88 μg/g vs. the *Table 7 Standard* of 0.3 μg/g), benzo(b)fluoranthene (1.1 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), dibenzo(a,h)anthracene (0.16 μg/g vs. the *Table 7 Standard* of 0.1 μg/g), fluoranthene (2.2 μg/g vs. the *Table 7 Standard* of 0.69 μg/g) and indeno(1,2,3-c,d)pyrene (0.55 μg/g vs. the *Table 7 Standard* of 0.38 μg/g) reported for soil sample BH109 SS3, collected at borehole BH109 from a depth of 1.22 to 1.83 mbgs, exceeded the *Table 7 Standards*;
- The concentrations of acenaphthylene (13 μg/g vs. the *Table 7 Standard* of 0.15 μg/g), anthracene (22 μg/g vs. the *Table 7 Standard* of 0.67 μg/g), benzo(a)anthracene (67 μg/g vs. the *Table 7 Standard* of 0.5 μg/g), benzo(a)pyrene (57 μg/g vs. the *Table 7 Standard* of 0.3 μg/g), benzo(b)fluoranthene (65 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), benzo(ghi)perylene (27 μg/g vs. the *Table 7 Standard* of 6.6 μg/g), benzo(k)fluoranthene (26 μg/g vs. the *Table 7 Standard* of 0.78 μg/g), chrysene (55 μg/g vs. the *Table 7 Standard* of 0.1 μg/g), fluoranthene (120 μg/g vs. the *Table 7 Standard* of 0.69 μg/g), indeno(1,2,3-c,d)pyrene (29 μg/g vs. the *Table 7 Standard* of 0.38 μg/g), 1- & 2-methylnaphthalene (9.1 μg/g vs. the *Table 7 Standard* of 0.99 μg/g), naphthalene (2.3 μg/g vs. the *Table 7 Standard* of 0.6 μg/g), phenanthrene (75 μg/g vs. the *Table 7 Standard* of 6.2 μg/g) and pyrene (120 μg/g vs. the *Table 7 Standard* of 78 μg/g) reported for soil sample BH113 SS2, collected at borehole BH113 from a depth of 0.61 to 1.22 mbgs, exceeded the *Table 7 Standards*:

© 2020 Pinchin Ltd. Page 51 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

• The concentration of benzo(a)pyrene (0.32 μg/g vs. the *Table 7 Standard* of 0.3 μg/g), reported for soil sample MW114 SS1, collected at borehole MW114 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*;

- The concentration of barium (430 μg/g vs. the *Table 7 Standard* of 390 μg/g), reported for soil sample BH106 SS2, collected at borehole BH106 from a depth of 0.61 to 1.22 mbgs, exceeded the *Table 7 Standards*;
- The concentration of lead (150 μg/g vs. the *Table 7 Standard* of 120 μg/g), reported for soil sample BH107 SS4, collected at borehole BH107 from a depth of 1.83 to 2.59 mbgs, exceeded the *Table 7 Standards*;
- The concentration of boron (hot water soluble) (2.6 μg/g vs. the *Table 7 Standard* of 1.5 μg/g), reported for soil sample BH108 SS1, collected at borehole BH108 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*;
- The concentrations of boron (hot water soluble) (1.6 μg/g vs. the *Table 7 Standard* of 1.5 μg/g), lead (350 μg/g vs. the *Table 7 Standard* of 120 μg/g) and molybdenum (7.9 μg/g vs. the *Table 7 Standard* of 6.9 μg/g) reported for soil sample BH109 SS3, collected at borehole BH109 from a depth of 1.22 to 1.83 mbgs, exceeded the *Table 7 Standards*;
- The concentrations of boron (hot water soluble) (1.6 μg/g vs. the *Table 7 Standard* of 1.5 μg/g), cadmium (1.8 μg/g vs. the *Table 7 Standard* of 1.2 μg/g), lead (720 μg/g vs. the *Table 7 Standard* of 120 μg/g), mercury (10 μg/g vs. the *Table 7 Standard* of 0.27 μg/g), and zinc (1,100 μg/g vs. the *Table 7 Standard* of 340 μg/g) reported for soil sample BH113 SS2, collected at borehole BH113 from a depth of 0.61 to 1.22 mbgs, exceeded the *Table 7 Standards*; and
- The concentrations of cadmium (1.4 μg/g vs. the *Table 7 Standard* of 1.2 μg/g), lead (470 μg/g vs. the *Table 7 Standard* of 120 μg/g), mercury (1.3 μg/g vs. the *Table 7 Standard* of 0.27 μg/g), and zinc (460 μg/g vs. the *Table 7 Standard* of 340 μg/g) reported for soil sample MW114 SS1, collected at borehole MW114 from a depth of 0 to 0.76 mbgs, exceeded the *Table 7 Standards*.

© 2020 Pinchin Ltd. Page 52 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006 DRAFT

November 30, 2020

The laboratory results for all groundwater samples submitted during the Phase Two ESA indicated that all reported concentrations for the parameters analyzed met the corresponding *Table 7 Standards*, with the exception of the following:

- The concentrations of benzene (23 μg/L vs. the *Table 7 Standard* of 0.5 μg/L) and ethylbenzene (66 μg/L vs. the *Table 7 Standard* of 54 μg/L) reported for groundwater sample MW-1, collected from monitoring well MW-1 at a depth interval of approximately 4.5 to 7.6 mbgs, exceeded the *Table 7 Standards*;
- The concentrations of benzene (21 μg/L vs. the *Table 7 Standard* of 0.5 μg/L) and ethylbenzene (73 μg/L vs. the *Table 7 Standard* of 54 μg/L) reported for groundwater sample DUP-3 (field duplicate of sample MW-1), collected from monitoring well MW-1 at a depth interval of approximately 4.5 to 7.6 mbgs, exceeded the *Table 7 Standards*; and
- The concentration of PHCs F3 (540 μg/L vs. the *Table 7 Standard* of 500 μg/L) reported for groundwater sample DUP-3 (field duplicate of sample MW-1), collected from monitoring well MW-1 at a depth interval of approximately 4.5 to 7.6 mbgs, exceeded the *Table 7 Standards*.

The maximum reported soil and groundwater concentrations for the parameters analyzed are summarized in Tables 8 and 9, respectively.

With respect to the identified soil and groundwater parameter exceedances summarized above, remediation to meet the *Table 7 Standards* and/or the completion of a Risk Assessment in accordance with O. Reg. 153/04 will be required to develop Property Specific Standards for the parameters exceeding the *Table 7 Standards* before an RSC can be filed by the Qualified Person for the Phase Two Property.

7.1 Signatures

This Phase Two ESA was undertaken under the supervision of Robert MacKenzie, B.Sc., P.Geo., QP_{ESA} in accordance with the requirements of O. Reg. 153/04 to support the filing of an RSC for the Phase Two Property.

7.2 Terms and Limitations

This Phase Two ESA was performed for 1213763 Ontario Inc. (Client) in order to investigate potential environmental impacts at 320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue in Ottawa, Ontario (Site). The term recognized environmental condition means the presence or likely presence of any hazardous substance on a property under conditions that indicate an existing release, past release, or a material threat of a release of a hazardous substance into structures on the property or

© 2020 Pinchin Ltd. Page 53 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

into the ground, groundwater, or surface water of the property. This Phase Two ESA does not quantify the extent of the current and/or recognized environmental condition or the cost of any remediation.

Conclusions derived are specific to the immediate area of study and cannot be extrapolated extensively away from sample locations. Samples have been analyzed for a limited number of contaminants that are expected to be present at the Site, and the absence of information relating to a specific contaminant does not indicate that it is not present.

No environmental site assessment can wholly eliminate uncertainty regarding the potential for recognized environmental conditions on a property. Performance of this Phase Two ESA to the standards established by Pinchin is intended to reduce, but not eliminate, uncertainty regarding the potential for recognized environmental conditions on the Site, and recognizes reasonable limits on time and cost.

This Phase Two ESA was performed in general compliance with currently acceptable practices for environmental site investigations, and specific Client requests, as applicable to this Site.

This report was prepared for the exclusive use of the Client, subject to the terms, conditions and limitations contained within the duly authorized proposal for this project. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, is the sole responsibility of such third parties. Pinchin accepts no responsibility for damages suffered by any third party as a result of decisions made or actions conducted.

If additional parties require reliance on this report, written authorization from Pinchin will be required. Pinchin disclaims responsibility of consequential financial effects on transactions or property values, or requirements for follow-up actions and costs. No other warranties are implied or expressed. Furthermore, this report should not be construed as legal advice. Pinchin will not provide results or information to any party unless disclosure by Pinchin is required by law.

Pinchin makes no other representations whatsoever, including those concerning the legal significance of its findings, or as to other legal matters touched on in this report, including, but not limited to, ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and these interpretations may change over time.

8.0 REFERENCES

The following documents provided information used in this report:

Association of Professional Geoscientists of Ontario. "Guidance for Environmental Site
Assessments under Ontario Regulation 153/04 (as amended)". April 2011.

© 2020 Pinchin Ltd. Page 54 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

DRAFT

November 30, 2020

Pinchin File: 230236.006

- Ontario Ministry of the Environment, Conservation and Parks. "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario". December 1996.
- Ontario Ministry of the Environment, Conservation and Parks. "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act". March 9, 2004 amended July 1, 2011.
- Ontario Ministry of the Environment, Conservation and Parks. "Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act". April 15, 2011.
- Paterson Group Inc. "Phase I-II Environmental Site Assessment, 319 & 320 McRae Avenue, Ottawa, Ontario". November 19, 2008.
- Paterson Group Inc. "Phase I Environmental Site Assessment, Commercial and Residential Properties, 320 McRae Avenue, 1976 Scott Street and 311 Tweedsmuir Avenue, Ottawa, Ontario". November 3, 2014.
- Paterson Group Inc. "Phase I Environmental Site Assessment, Commercial and Residential Properties, 320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario". January 28, 2016.
- Paterson Group Inc. "Phase II Environmental Site Assessment, Commercial and Residential Properties, 320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario". January 28, 2016.
- Paterson Group Inc. "Phase II Environmental Site Assessment, Commercial and Residential Properties, 320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario". April 21, 2017.
- Pinchin Ltd. "FINAL Phase I Environmental Site Assessment, 320 McRae Avenue, 1976
 Scott Street and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario". November 14, 2018.
- Pinchin Ltd. "FINAL Phase II Environmental Site Assessment, 320 McRae Avenue, 1976
 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario". November 29, 2018.
- Pinchin Ltd. "Phase One Environmental Site Assessment, 320 McRae Avenue, 1976
 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario". April 30, 2020.
- Province of Ontario. Environmental Protection Act, R.S.O 1990, Chapter E.19.
- Province of Ontario. R.R.O. 1990, Regulation 347, General Waste Management, as amended by Ontario Regulation 234/11.

© 2020 Pinchin Ltd. Page 55 of 56

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

November 30, 2020 Pinchin File: 230236.006

DRAFT

- Province of Ontario. Ontario Regulation 153/04: Records of Site Condition Part XV.1 of the Act. Last amended by Ontario Regulation 274/20 on July 1, 2020.
- U.S. Environmental Protection Agency Region 1. "Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells".
 Revised January 19, 2010.

230236.006 RSC Phase Two ESA McRae Scott & Tweedsmuir Ottawa ON GWL

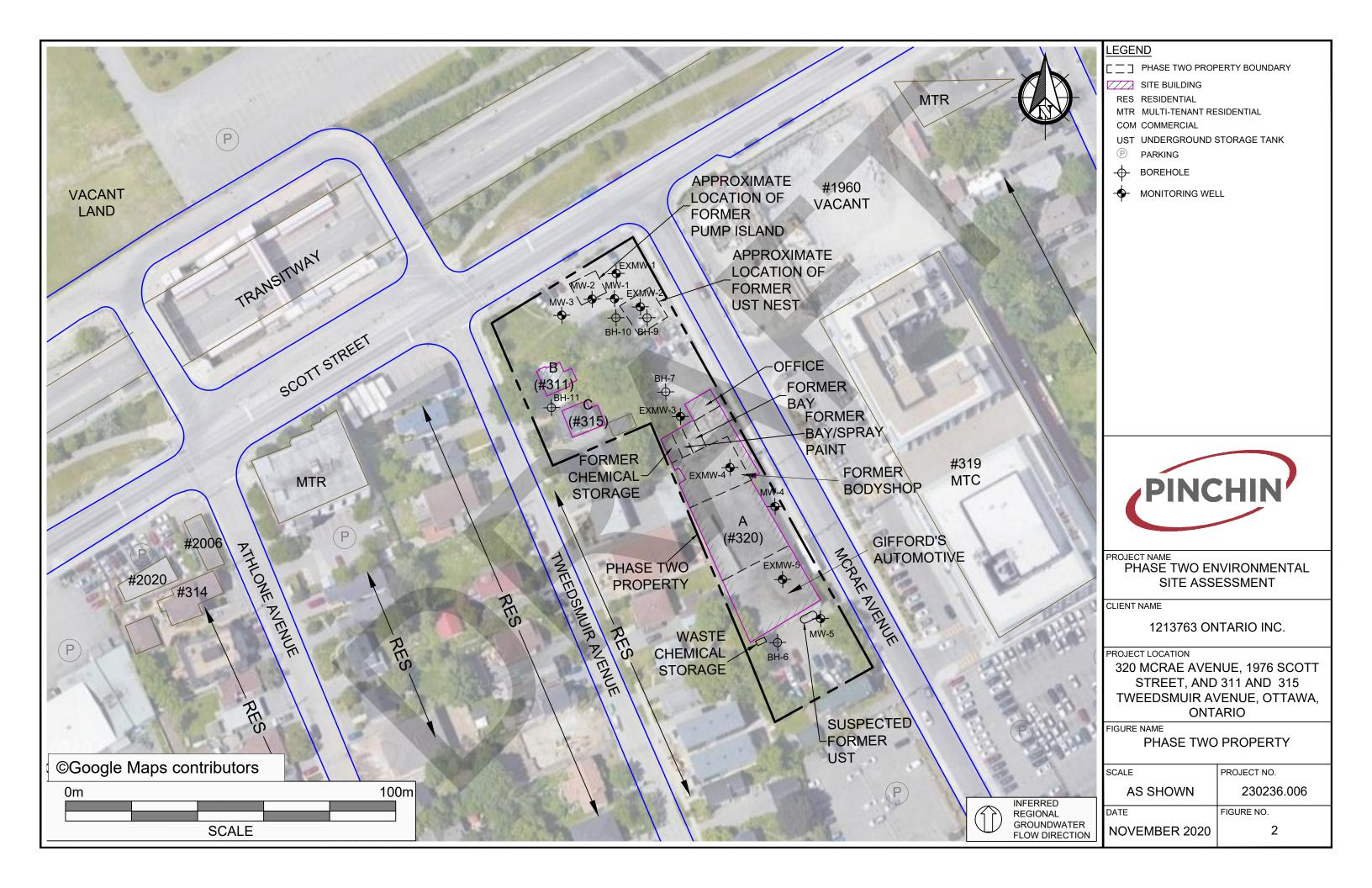
Template: Master Report for RSC Phase Two ESA Report – Impacted Site, EDR, February 24, 2020

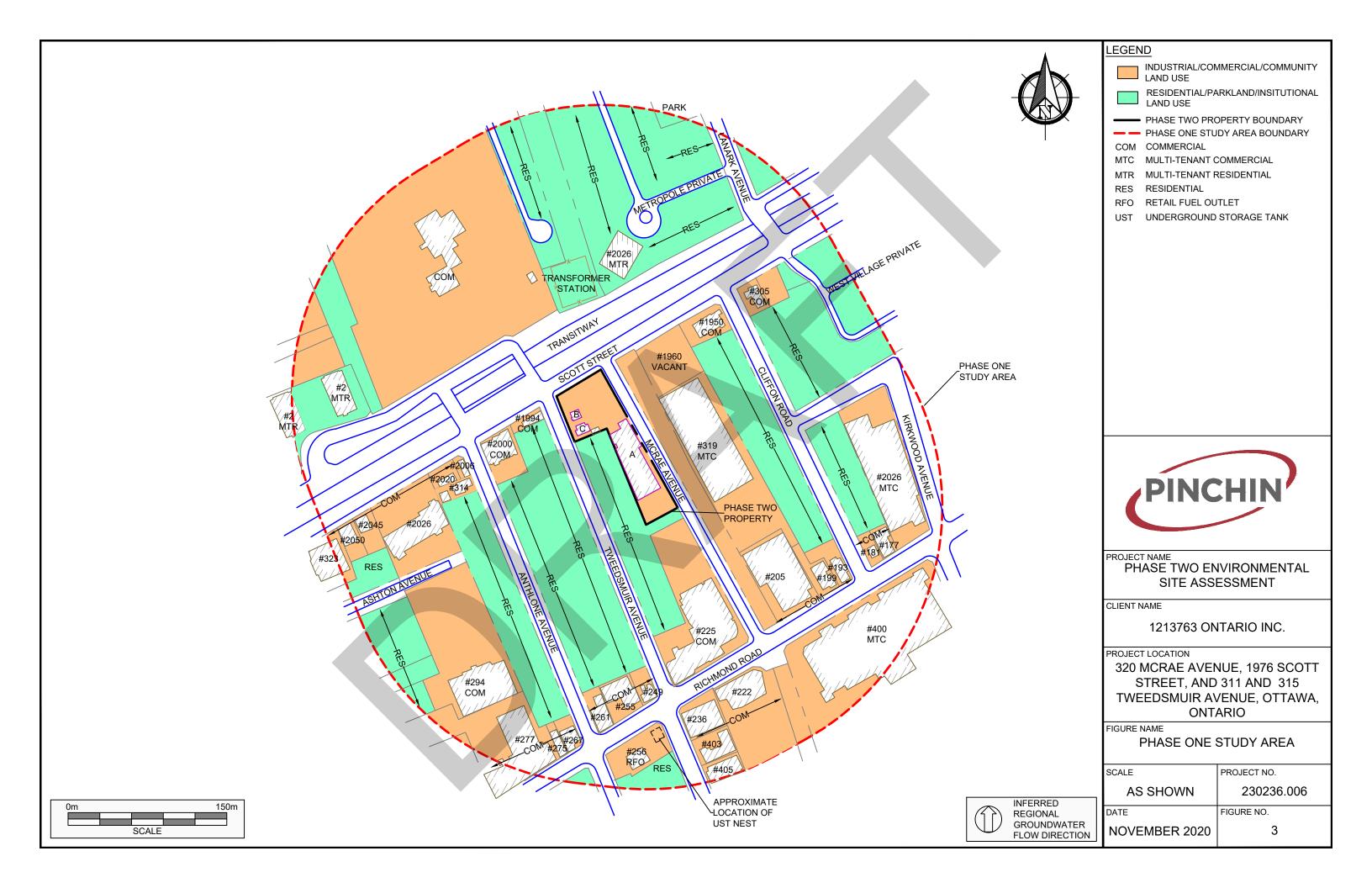
FIGURES AND TABLES

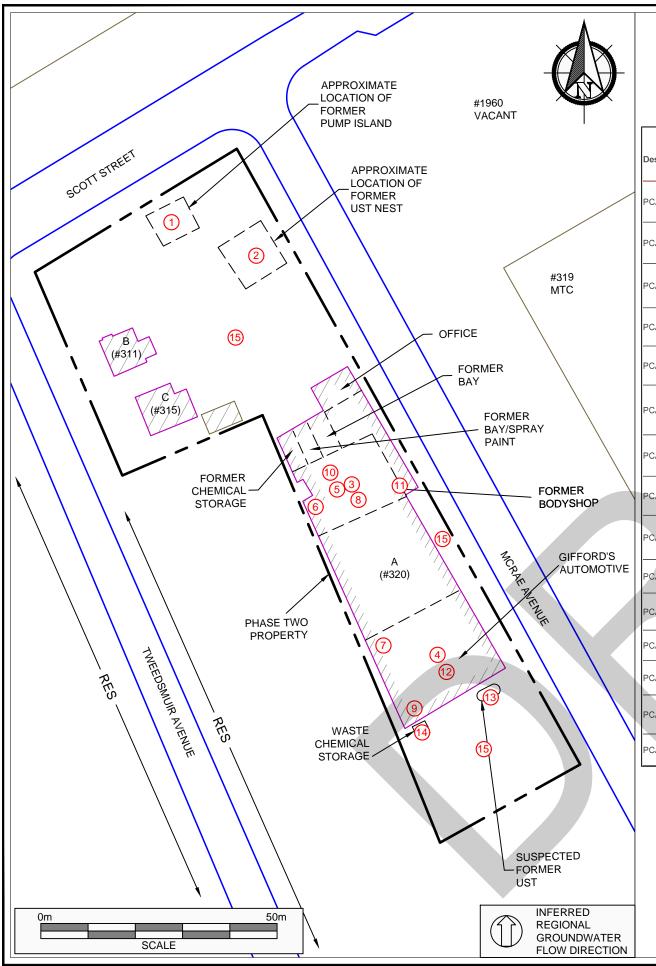
PROJECT NAME PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

CLIENT NAME

AS SHOWN


1213763 ONTARIO INC.


PROJECT LOCATION
320 MCRAE AVENUE, 1976 SCOTT STREET, AND
311 AND 315 TWEEDSMUIR AVENUE, OTTAWA, ONTARIO


FIGURE NAME			FIGURE NO.	
KEY MAP				
SCALE	PROJECT NO.	DATE	1	

230236.006

NOVEMBER 2020

PCA Designation	Location of Potentially Contaminating Activity	Potentially Contaminating Activity	Location of PCA (On-Site or Off-Site)	Contributing to an APEC at the Site (Yes/No)	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
PCA-1	Underground storage tanks associated with a retail fuel outlet located (RFO) in the northeast portion of the Phase One Property.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	Yes	Soil and Groundwater
PCA-2	Pump island associated with a retail fuel outlet located in the northeast portion of the Phase One Property.	Other – Fuel Pump Island	On-Site	Yes	Soil and Groundwater
PCA-3	An automotive repair/servicing operation within the north tenant space in Site Building A.	Item 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	On-Site	Yes	Soil and Groundwater
PCA-4	An automotive repair/servicing operation within the south tenant space in Site Building A.	Item 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	On-Site	Yes	Soil and Groundwater
PCA-5	Automotive wrecking facility associated with automotive repair/servicing operation within the north portion of the Site Building A.	Item 49 - Salvage Yard, including Automobile Wrecking	On-Site	Yes	Soil and Groundwater
PCA-6	Two former 1,100-L single-walled steel aboveground storage tanks (ASTs) containing new oil within the north tenant space in Site Building A.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	Yes	Soil
PCA-7	One 1,008-L single-walled steel AST containing new oil within the south tenant space in Site Building A.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	Yes	Soil
PCA-8	One 910-L single-walled steel AST containing waste oil within the north tenant space in Site Building A.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	Yes	Soil
PCA-9	One 910-L single-walled steel AST containing waste oil within the south tenant space in Site Building A.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	Yes	Soil
PCA-10	Former commercial autobody shop within the north portion of Site Building A.	ltem 10 - Commercial Autobody Shops	On-Site	Yes	Soil and Groundwater
PCA-11	An oil/water separator within the north tenant space in Site Building A.	Other – Oil/Water Separator	On-Site	Yes	Soil and Groundwater
PCA-12	An oil/water separator within the south tenant space in Site Building A.	Other – Oil/Water Separator	On-Site	Yes	Soil and Groundwater
PCA-13	Potential UST adjacent to the south elevation of Site Building A.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	Yes	Soil and Groundwater
PCA-14	Waste liquid storage (i.e., waste antifreeze and other unknown automotive fluids) adjacent to the southwest corner of Site Building A.	Other - Hazardous Waste Generation	On-Site	Yes	Soil
PCA-15	Importation of fill material to Phase One Property.	Item 30 - Importation of Fill Material of Unknown Quality	On-Site	Yes	Soil

LEGEND

PHASE TWO PROPERTY BOUNDARY

RES RESIDENTIAL

APEC AREA OF ENVIRONMENTAL CONCERN

PCA POTENTIALLY CONTAMINATING

ACTIVITY

MTC MULTI-TENANT COMMERCIAL

UST UNDERGROUND STORAGE TANK

PCA CONTRIBUTES TO AN APEC

PCA DOES NOT CONTRIBUTE TO AN

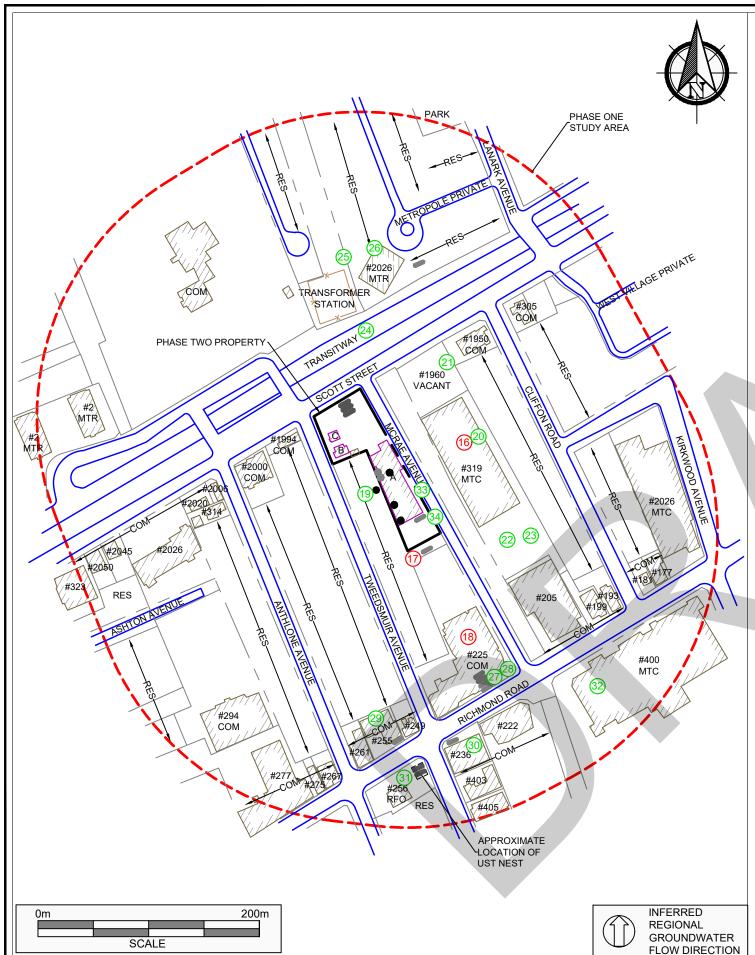
APEC

PROJECT NAME

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

CLIENT NAME

1213763 ONTARIO INC.


PROJECT LOCATION

320 MCRAE AVENUE, 1976 SCOTT STREET, AND 311 AND 315 TWEEDSMUIR AVENUE, OTTAWA, ONTARIO

FIGURE NAME

POTENTIALLY CONTAMINATING ACTIVITIES - ON-SITE

ACTIVITIES - ON-SITE		
SCALE	PROJECT NO.	
AS SHOWN	230236.006	
DATE	FIGURE NO.	
NOVEMBER 2020	4	

PCA Designation	Location of Potentially Contaminating Activity	Potentially Contaminating Activity	Location of PCA (On-Site or Off-Site)	Contributing to an APEC at the Site (Yes/No)	Media Impacted Potentially Impact (Ground Water, S and/or Sediment
PCA-16	Former industrial operation (i.e., commercial/light industrial building and associated exterior storage areas) located at 319 McCrae Avenue, east of the Phase One Property.	Other - Industrial Operations	Off-Site	Yes	Groundwater
PCA-17	Fuel UST south of the Phase One Property.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	Yes	Groundwater
PCA-18	An automotive repair/servicing operation (Otto's Subaru or Otto's Service Centre Ltd.), south of the Phase One Property.	Item 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	Off-Site	Yes	Groundwater
PCA-19	Spill of a small quantity of furnace oil at residence at 325 Tweedsmuir Avenue, west of the Phase One Property.	Other - Spill	Off-Site	No	Groundwater
PCA-20	Spill of hydraulic oil (approximately 375 L) at 319 McRae Ave, east of the Phase One Property.	Other - Spill	Off-Site	No	Groundwater
	Gervais Motors Ltd., an automotive repair/servicing operation, that was located at 1960 Scott Street from 1984 until 1998.	Item 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	Off-Site	No	Groundwater
PCA-22	Fuel storage tank located at 359 McRae Avenue, southeast of the Phase One Property	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	No	Groundwater
	Leak of heating oil from a UST (approximately 50 L) at 359 McRae Avenue, southeast of the Phase One Property.	Other - Spill	Off-Site	No	Groundwater
PCA-24	A railway line formerly located northwest of the Phase One Property.	Item 46 - Rail Yards, Tracks and Spurs	Off-Site	No	Groundwater
PCA-25	A rail yard formerly located north-northeast of the Phase One Property.	Item 46 - Rail Yards, Tracks and Spurs	Off-Site	No	Groundwater
PCA-26	Fuel UST within former rail yard located north-northeast of the Phase One Property.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	No	Groundwater
	A former RFO located at 225 Richmond Road, south of the Phase One Property.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	No	Groundwater
PCA-28	Automotive repair/servicing operation located at 225 Richmond Road, south of the Phase One Property.	Item 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	Off-Site	No	Groundwater
PCA-29	Former RFO located at 255 Richmond Road, southwest of the Phase One Property.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	No	Groundwater
PCA-30	Former RFO located at 236 Richmond Road, southwest of the Phase One Property.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	No	Groundwater
PCA-31	Former RFO located at 256 Richmond Road, southwest of the Phase One Property.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	No	Groundwater
PCA-32	Former large-scale printing operation (Crain Printers) at 190 Richmond Road, southeast of the Phase One Property.	Item 31 - Ink Manufacturing, Processing and Bulk Storage	Off-Site	No	Groundwater
PCA-33	Pole-mounted oil-cooled transformer located adjacent to the east of Gifford's Automotive (south portion of Site Building A).	Item 55 - Transformer Manufacturing, Processing and Use	Off-Site	No	Soil
PCA-34	Pole-mounted oil-cooled transformer located adjacent to the southeast corner of the Phase One Property.	Item 55 - Transformer Manufacturing, Processing and Use	Off-Site	No	Soil

LEGEND

PHASE TWO PROPERTY BOUNDARY

— PHASE ONE STUDY AREA BOUNDARY

COM COMMERCIAL

MTC MULTI-TENANT COMMERCIAL

MTR MULTI-TENANT RESIDENTIAL

RES RESIDENTIAL

RFO RETAIL FUEL OUTLET

UST UNDERGROUND STORAGE TANK

APEC AREA OF ENVIRONMENTAL CONCERN

CA POTENTIALLY CONTAMINATING

ACTIVITY

UNDERGROUND STORAGE TANK

ABOVEGROUND STORAGE TANK

FORMER UNDERGROUND STORAGE

FORMER ABOVEGROUND STORAGE

PCA CONTRIBUTES TO AN APEC

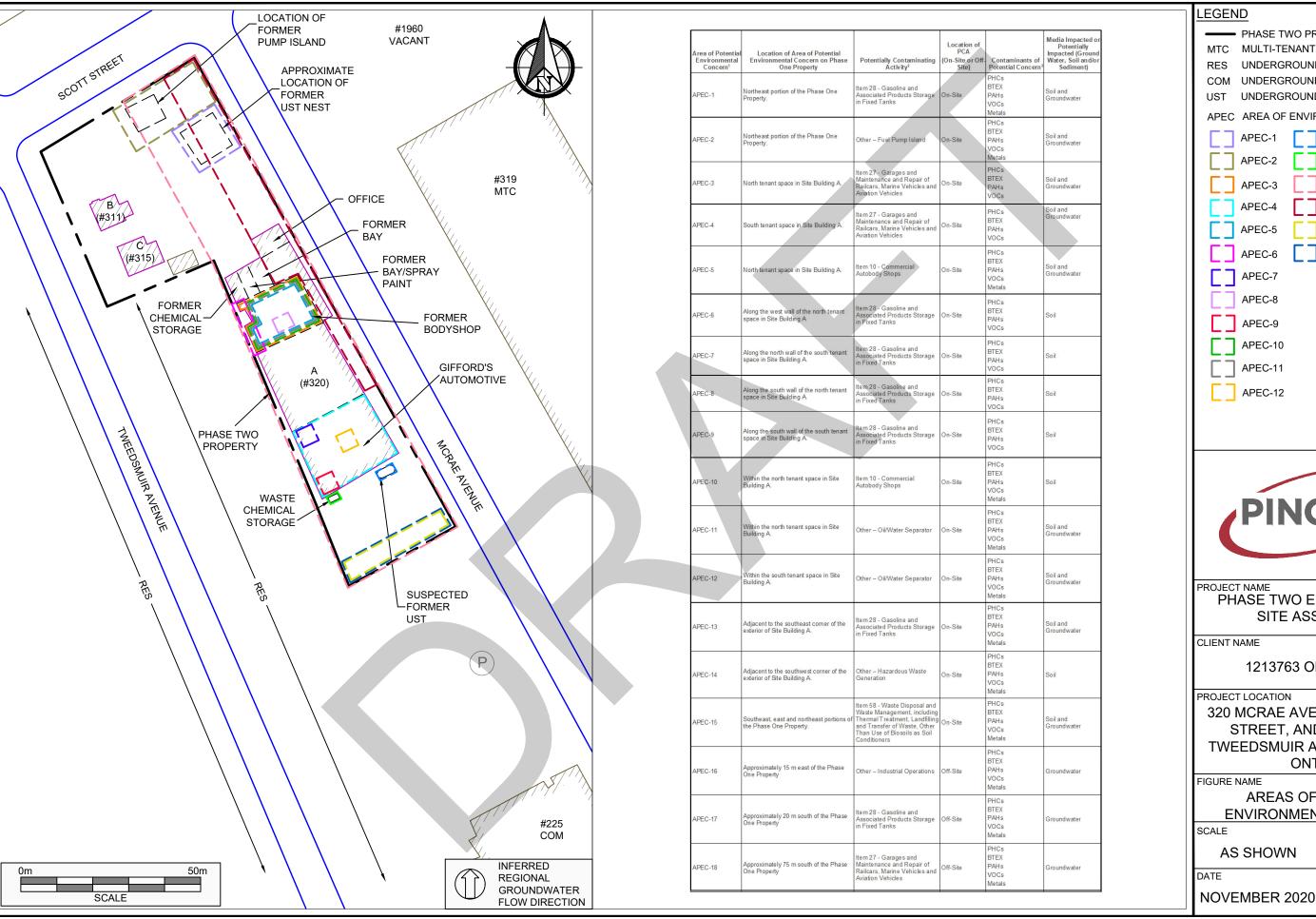
PCA DOES NOT CONTRIBUTE TO AN APEC

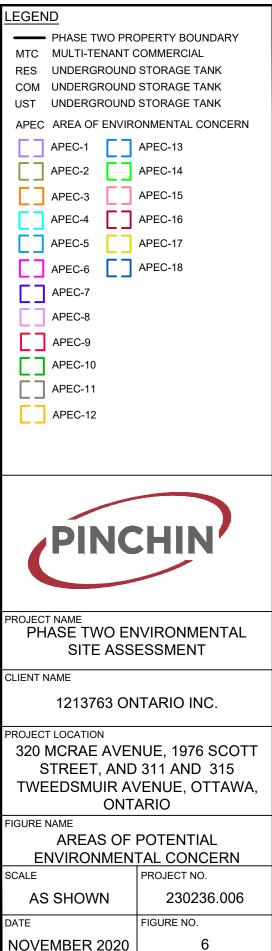
PROJECT NAME

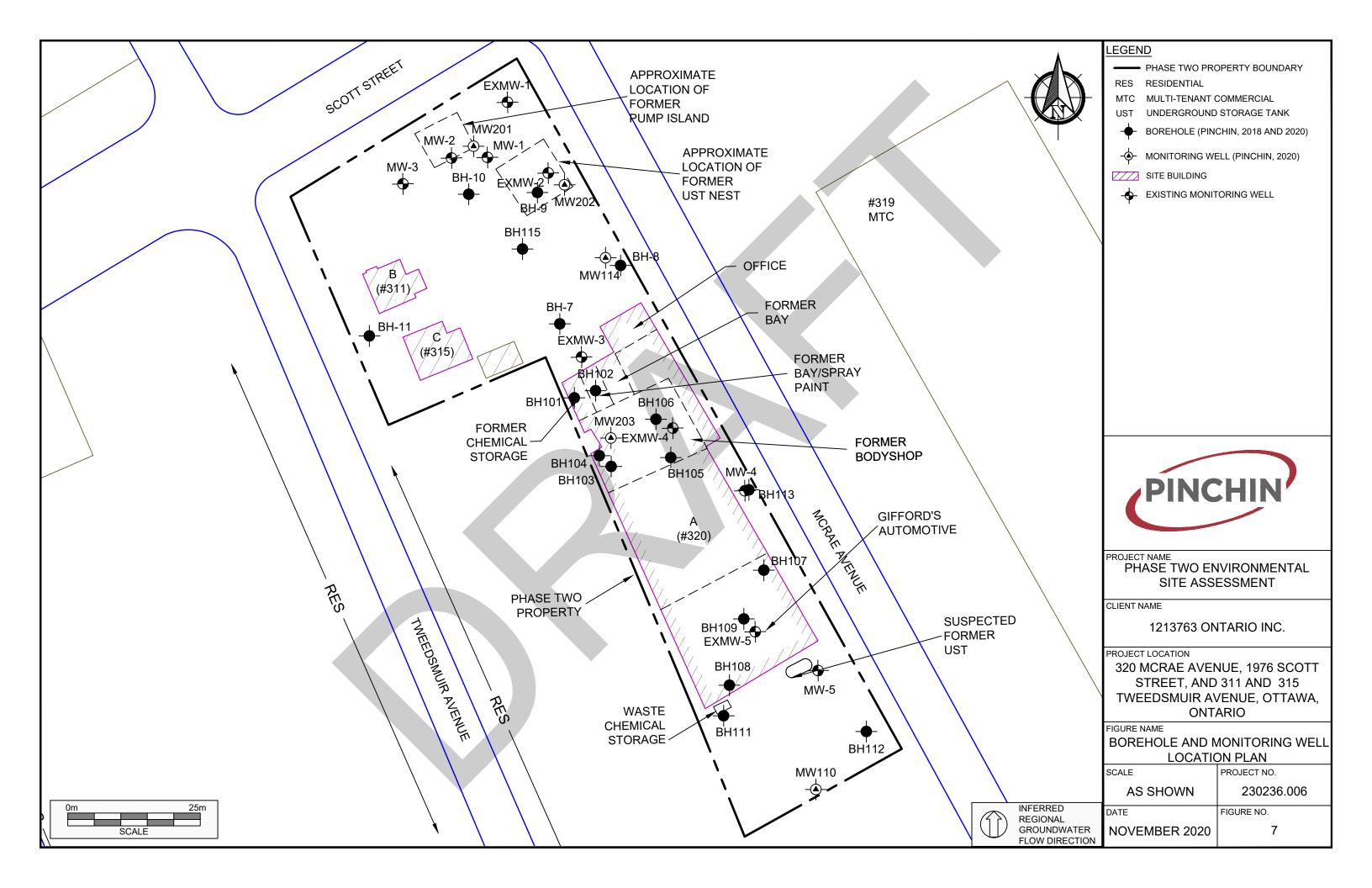
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

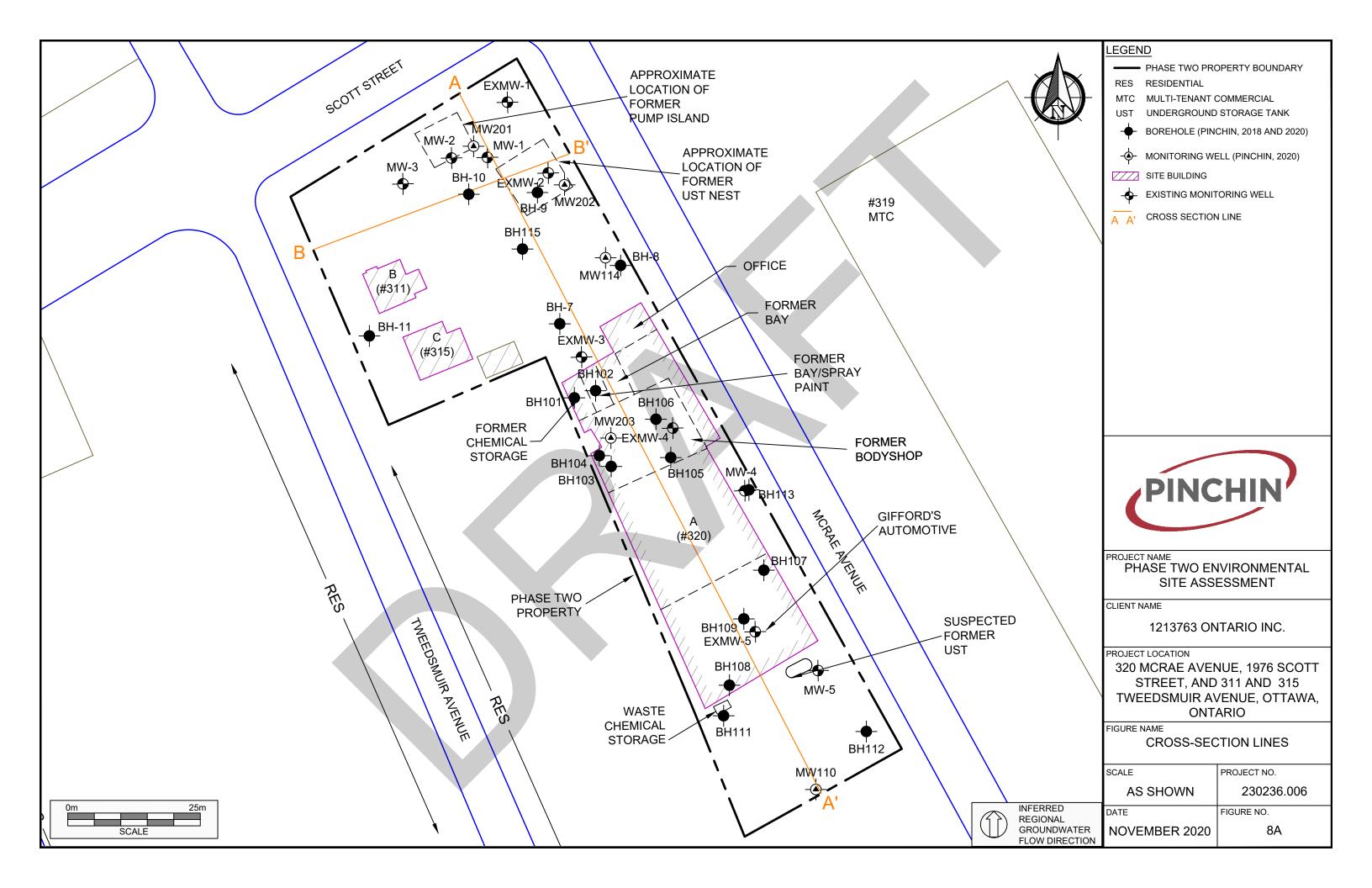
CLIENT NAME

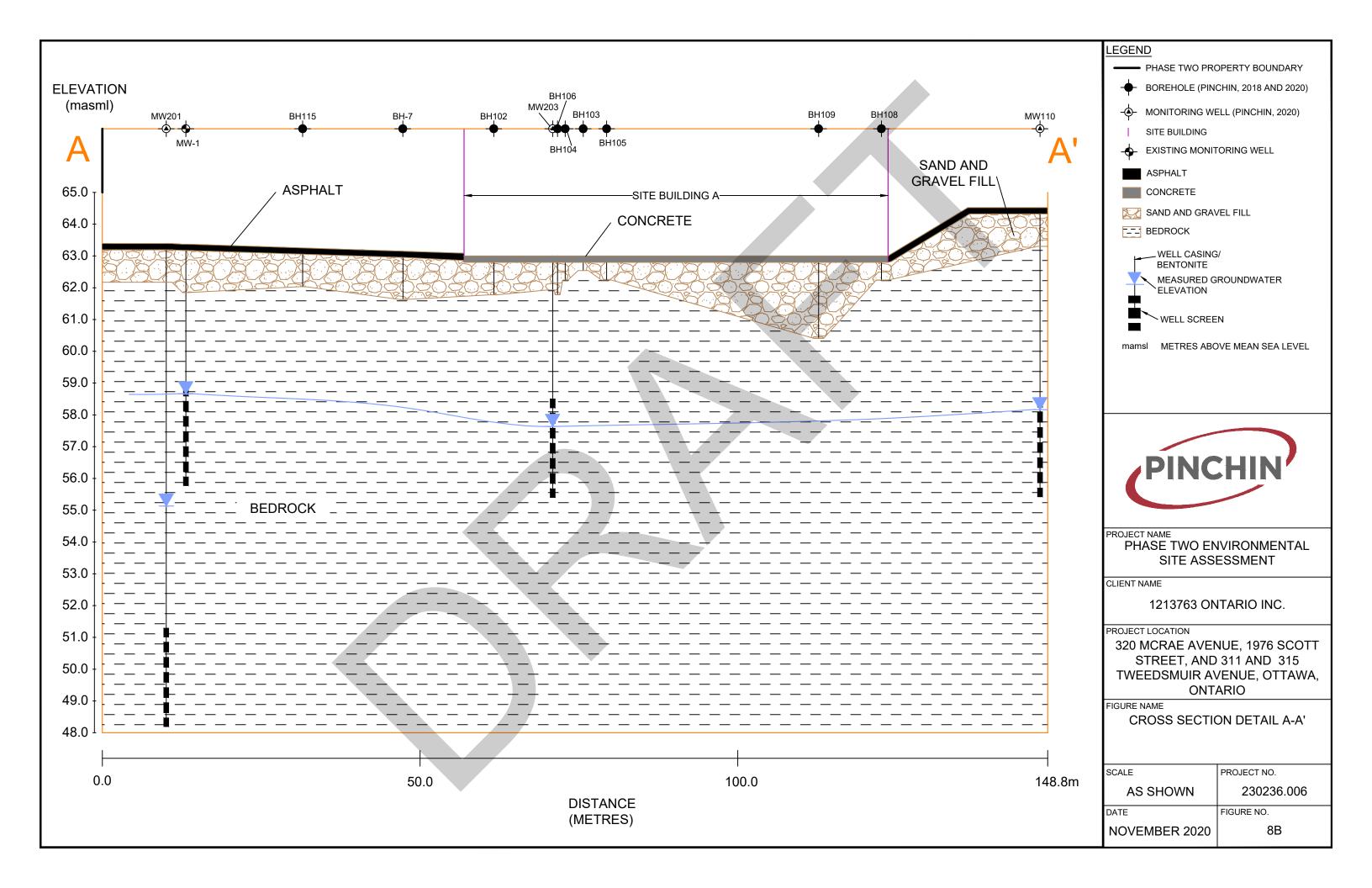
1213763 ONTARIO INC.

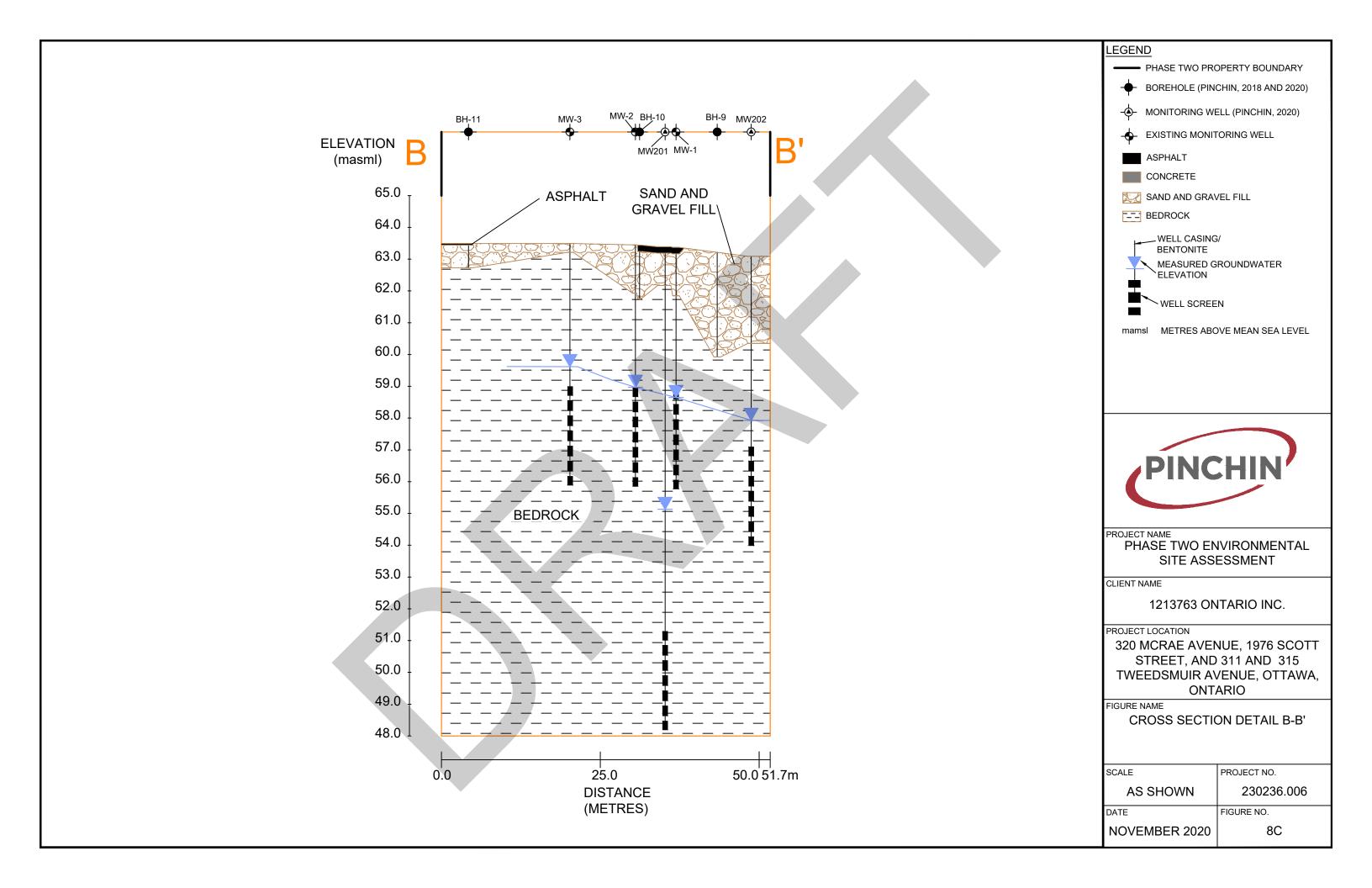

PROJECT LOCATION


320 MCRAE AVENUE, 1976 SCOTT STREET, AND 311 AND 315 TWEEDSMUIR AVENUE, OTTAWA, ONTARIO


FIGURE NAME


POTENTIALLY CONTAMINATING ACTIVITIES - OFF-SITE


SCALE	PROJECT NO.
AS SHOWN	230236.006
DATE	FIGURE NO.
NOVEMBER 2020	5



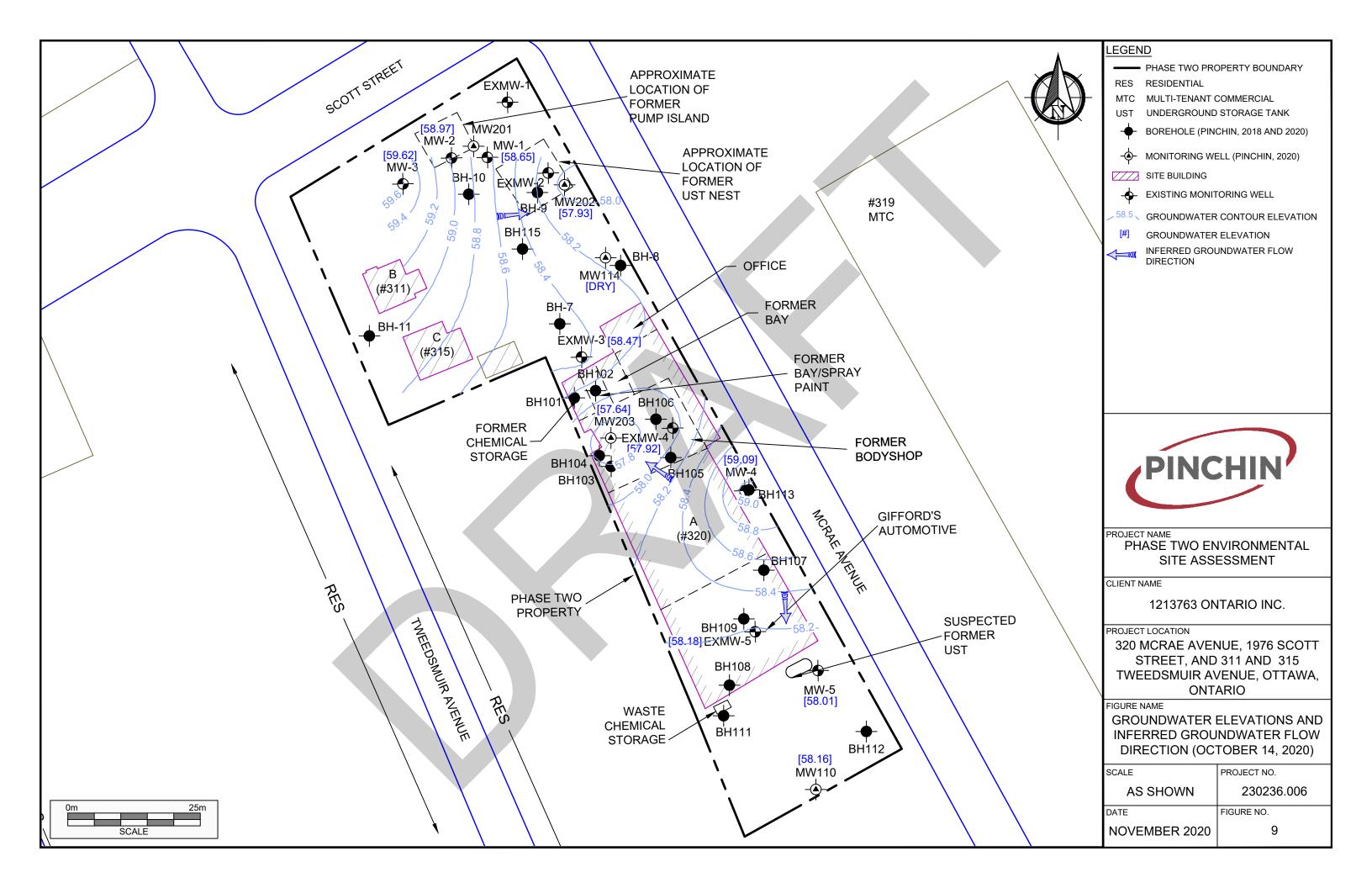


Table 1 - Table of Areas of Potential Environmental Concern

Area of Potential Environmental Concern ¹	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern ³	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC-1	Northeast portion of the Phase One Property.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs BTEX PAHs VOCs Metals	Soil and Groundwater
APEC-2	Northeast portion of the Phase One Property.	Other – Fuel Pump Island	On-Site	PHCs BTEX PAHs VOCs Metals	Soil and Groundwater
APEC-3		Item 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	On-Site	PHCs BTEX PAHs VOCs	Soil and Groundwater
APEC-4	South tenant space in Site Building A.	Item 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	On-Site	PHCs BTEX PAHs VOCs	Soil and Groundwater

Area of Potential Environmental Concern ¹	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern ³	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC-5	North tenant space in Site Building A.	Item 10 - Commercial Autobody Shops	On-Site	PHCs BTEX PAHs VOCs Metals	Soil and Groundwater
APEC-6	Along the west wall of the north tenant space in Site Building A	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs BTEX PAHs VOCs	Soil
APEC-7		Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs BTEX PAHs VOCs	Soil

Area of Potential Environmental Concern ¹	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern ³	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC-8	Along the south wall of the north tenant space in Site Building A.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs BTEX PAHs VOCs	Soil
APEC-9	Along the south wall of the south tenant space in Site Building A.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs BTEX PAHs VOCs	Soil
APEC-10	Within the north tenant space in Site Building A.	Item 10 - Commercial Autobody Shops	On-Site	PHCs BTEX PAHs VOCs Metals	Soil

Area of Potential Environmental Concern ¹	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern ³	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC-11	Within the north tenant space in Site Building A.	Other – Oil/Water Separator	On-Site	PHCs BTEX PAHs VOCs Metals	Soil and Groundwater
APEC-12	Within the south tenant space in Site Building A.	Other – Oil/Water Separator	On-Site	PHCs BTEX PAHs VOCs Metals	Soil and Groundwater
APEC-13	Adjacent to the southeast corner of the exterior of Site Building A.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs BTEX PAHs VOCs Metals	Soil and Groundwater

Area of Potential Environmental Concern ¹	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern ³	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC-14	Adjacent to the southwest corner of the exterior of Site Building A.	Other – Hazardous Waste Generation	On-Site	PHCs BTEX PAHs VOCs Metals	Soil
APEC-15	Southeast, east and northeast portions of the Phase One Property.	Item 58 - Waste Disposal and Waste Management, including Thermal Treatment, Landfilling and Transfer of Waste, Other Than Use of Biosoils as Soil Conditioners	On-Site	PHCs BTEX PAHs VOCs Metals	Soil and Groundwater
APEC-16	Approximately 15 m east of the Phase One Property	Other – Industrial Operations	Off-Site	PHCs BTEX PAHs VOCs Metals	Groundwater

Area of Potential Environmental Concern ¹	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern ³	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC-17	Approximately 20 m south of the Phase One Property	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	PHCs BTEX PAHs VOCs Metals	Groundwater
APEC-18	Approximately 75 m south of the Phase One Property	Item 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	Off-Site	PHCs BTEX PAHs VOCs Metals	Groundwater

Notes:

- 1 Areas of potential environmental concern means the area on, in or under a phase one property where one or more contaminants are potentially present, as determined through the phase one environmental site assessment, including through,
- (a) identification of past or present uses on, in or under the phase one property, and
- (b) identification of potentially contaminating activity.
- 2 Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area
- 3 When completing this column, identify all contaminants of potential concern using the Method Groups as identified in the Protocol for in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004, amended as of July 1, 2011, as specified below:

List of Method Groups:

ABNs	PCBs	Metals	Electrical Conductivity		
CPs	PAHs	As, Sb, Se	Cr (VI)		
1,4-Dioxane	THMs	Na	Hg		
Dioxins/Furans, PCDDs/PCDFs	VOCs	B-HWS	Methyl Mercury		
OCs	BTEX	CI-	Low or high pH,		
PHCs	Ca, Mg	CN-	SAR		

4 - When submitting a record of site condition for filing, a copy of this table must be attached

Table 2 - Table of Potentially Contaminating Activities

PCA Designation	Location of Potentially Contaminating Activity	Potentially Contaminating Activity	Location of PCA (On-Site or Off-Site)	Distance from Phase One Property (metres)	Location Relative to Inferred Groundwater Flow Direction ¹	Contributing to an APEC at the Site (Yes/No)	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
PCA-1	Underground storage tanks associated with a retail fuel outlet located (RFO) in the northeast portion of the Phase One Property.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	NA – On-Site PCA	NA - On-Site PCA	Yes	Soil and Groundwater
PCA-2	Pump island associated with a retail fuel outlet located in the northeast portion of the Phase One Property.	Other – Fuel Pump Island	On-Site	NA – On-Site PCA	NA - On-Site PCA	Yes	Soil and Groundwater
PCA-3	An automotive repair/servicing operation within the north tenant space in Site Building A.	Item 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	On-Site	NA – On-Site PCA	NA - On-Site PCA	Yes	Soil and Groundwater
PCA-4	An automotive repair/servicing operation within the south tenant space in Site Building A.	Item 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	On-Site	NA – On-Site PCA	NA - On-Site PCA	Yes	Soil and Groundwater
PCA-5	Automotive wrecking facility associated with automotive repair/servicing operation within the north portion of the Site Building A.	Item 49 - Salvage Yard, including Automobile Wrecking	On-Site	NA – On-Site PCA	NA - On-Site PCA	Yes	Soil and Groundwater
PCA-6	Two former 1,100-L single-walled steel aboveground storage tanks (ASTs) containing new oil within the north tenant space in Site Building A.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	NA – On-Site PCA	NA - On-Site PCA	Yes	Soil
PCA-7	One 1,008-L single-walled steel AST containing new oil within the south tenant space in Site Building A.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	NA – On-Site PCA	NA - On-Site PCA	Yes	Soil
PCA-8	One 910-L single-walled steel AST containing waste oil within the north tenant space in Site Building A.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	NA – On-Site PCA	NA - On-Site PCA	Yes	Soil
PCA-9		Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	NA – On-Site PCA	NA - On-Site PCA	Yes	Soil
PCA-10	Former commercial autobody shop within the north portion of Site Building A.	Item 10 - Commercial Autobody Shops	On-Site	NA – On-Site PCA	NA - On-Site PCA	Yes	Soil and Groundwater

PCA Designation	Location of Potentially Contaminating Activity	Potentially Contaminating Activity	Location of PCA (On-Site or Off-Site)	Distance from Phase One Property (metres)	Location Relative to Inferred Groundwater Flow Direction ¹	Contributing to an APEC at the Site (Yes/No)	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
PCA-11	An oil/water separator within the north tenant space in Site Building A.	Other – Oil/Water Separator	On-Site	NA – On-Site PCA	NA - On-Site PCA	Yes	Soil and Groundwater
PCA-12	An oil/water separator within the south tenant space in Site Building A.	Other – Oil/Water Separator	On-Site	NA – On-Site PCA	NA - On-Site PCA	Yes	Soil and Groundwater
PCA-13	Potential UST adjacent to the south elevation of Site Building A.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	NA – On-Site PCA	NA - On-Site PCA	Yes	Soil and Groundwater
PCA-14	Waste liquid storage (i.e., waste antifreeze and other unknown automotive fluids) adjacent to the southwest corner of Site Building A.	Other - Hazardous Waste Generation	On-Site	NA – On-Site PCA	NA - On-Site PCA	Yes	Soil
PCA-15	Importation of fill material to Phase One Property.	Item 30 - Importation of Fill Material of Unknown Quality	On-Site	NA – On-Site PCA	NA - On-Site PCA	Yes	Soil
PCA-16	Former industrial operation (i.e., commercial/light industrial building and associated exterior storage areas) located at 319 McCrae Avenue, east of the Phase One Property.	Other - Industrial Operations	Off-Site	15	Transgradient	Yes	Groundwater
PCA-17	Fuel UST south of the Phase One Property.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	20	Upgradient	Yes	Groundwater
PCA-18	An automotive repair/servicing operation (Otto's Subaru or Otto's Service Centre Ltd.), south of the Phase One Property.	Item 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	Off-Site	75	Upgradient	Yes	Groundwater
PCA-19	Spill of a small quantity of furnace oil at residence at 325 Tweedsmuir Avenue, west of the Phase One Property.	Other - Spill	Off-Site	10	Transgradient	No	Groundwater

PCA Designation	Location of Potentially Contaminating Activity	Potentially Contaminating Activity	Location of PCA (On-Site or Off-Site)	Distance from Phase One Property (metres)	Location Relative to Inferred Groundwater Flow Direction ¹	Contributing to an APEC at the Site (Yes/No)	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
PCA-20	Spill of hydraulic oil (approximately 375 L) at 319 McRae Ave, east of the Phase One Property	Other - Spill	Off-Site	15	Transgradient	No	Groundwater
PCA-21	Gervais Motors Ltd., an automotive repair/servicing operation, that was located at 1960 Scott Street from 1984 until 1998.	Item 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	Off-Site	15	Transgradient	No	Groundwater
PCA-22	Fuel storage tank located at 359 McRae Avenue, southeast of the Phase One Property	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	35	Transgradient	No	Groundwater
PCA-23	Leak of heating oil from a UST (approximately 50 L) at 359 McRae Avenue, southeast of the Phase One Property.	Other - Spill	Off-Site	35	Transgradient	No	Groundwater
PCA-24	A railway line formerly located northwest of the Phase One Property.	Item 46 - Rail Yards, Tracks and Spurs	Off-Site	40	Downgradient	No	Groundwater
PCA-25	A rail yard formerly located north-northeast of the Phase One Property.	Item 46 - Rail Yards, Tracks and Spurs	Off-Site	70	Downgradient	No	Groundwater
PCA-26	Fuel UST within former rail yard located north-northeast of the Phase One Property.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	125	Downgradient	No	Groundwater
PCA-27	A former RFO located at 225 Richmond Road, south of the Phase One Property.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	120	Upgradient	No	Groundwater
PCA-28		Item 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	Off-Site	120	Upgradient	No	Groundwater

PCA Designation	Location of Potentially Contaminating Activity	Potentially Contaminating Activity	Location of PCA (On-Site or Off-Site)	Distance from Phase One Property (metres)	Location Relative to Inferred Groundwater Flow Direction ¹	Contributing to an APEC at the Site (Yes/No)	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
PCA-29	Former RFO located at 255 Richmond Road, southwest of the Phase One Property.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	145	Transgradient	No	Groundwater
PCA-30	Former RFO located at 236 Richmond Road, southwest of the Phase One Property.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	170	Transgradient	No	Groundwater
PCA-31	Former RFO located at 256 Richmond Road, southwest of the Phase One Property.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	195	Transgradient	No	Groundwater
PCA-32	Former large-scale printing operation (Crain Printers) at 190 Richmond Road, southeast of the Phase One Property.	Item 31 - Ink Manufacturing, Processing and Bulk Storage	Off-Site	210	Transgradient	No	Groundwater
PCA-33	Pole-mounted oil-cooled transformer located adjacent to the east of Gifford's Automotive (south portion of Site Building A).	Item 55 - Transformer Manufacturing, Processing and Use	Off-Site	2	Transgradient	No	Soil
PCA-34	Pole-mounted oil-cooled transformer located adjacent to the southeast corner of the Phase One Property.	Item 55 - Transformer Manufacturing, Processing and Use	Off-Site	5	Up/transgradient	No	Soil

Notes:

APEC – Area of Potential Environmental Concern

PCA – Potentially Contaminating Activity

1 - Location of PCA relative to the Phase One Property in relation to the inferred groundwater flow direction in the Phase One Study Area

TABLE 3 SOIL BULK ANALYTICAL RESULTS

1213763 Ontario Inc.

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Sample Designation	BH101 SS1	DUP-1	BH102 SS2	BH103 SS1	BH104 SS1	BH105 SS1	BH106 SS2	
Sample Collection Date (dd/mm/yyyy)	19/05/2020	19/05/2020	19/05/2020	19/05/2020	19/05/2020	19/05/2020	19/05/2020	
Sample Depth (mbgs)	0-0.76	0-0.76	0.61-1.22	0-0.46	0-0.76	0-0.76	0.76-1.22	
Sample Location	BH101	BH101	BH102	BH103	BH104	BH105	BH106	MECP Table
Laboratory Certificate of Analysis No.	C0C5456	C0C5456	C0C5456	C0C5456	C0C5456	C0C5456	C0C5456	7 SCS
Laboratory Octanidate of Analysis No.								
Date of Analysis (dd/mm/yyyy)	23/05/2020- 31/05/2020	23/05/2020- 31/05/2020	23/05/2020- 31/05/2020	23/05/2020- 31/05/2020	23/05/2020- 31/05/2020	23/05/2020- 31/05/2020	23/05/2020- 31/05/2020	
Volatile Organic Compounds								
Acetone	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	16
Benzene Drama diahlaramathana	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.21
Bromodichloromethane Bromoform	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	13 0.27
Bromomethane	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.05
Carbon Tetrachloride	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.05
Chlorobenzene	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	2.4
Chloroform	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	0.05
Dibromochloromethane 1,2-Dichlorobenzene	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	9.4 3.4
1,3-Dichlorobenzene	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	4.8
1,4-Dichlorobenzene	<0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	0.083
Dichlorodifluoromethane	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	16
1,1-Dichloroethane	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	3.5
1,2-Dichloroethane	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.05
1,1-Dichloroethylene cis-1,2-Dichloroethylene	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	0.05 3.4
trans-1,2-Dichloroethylene	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.084
1,2-Dichloropropane	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.05
1,3-Dichloropropene (Total)	< 0.050	< 0.050	< 0.050	<0.050	<0.10	<0.050	< 0.050	0.05
Ethylbenzene	<0.020	<0.020	<0.020	1.3	0.060	<0.020	<0.020	2
Ethylene Dibromide Hexane	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	0.05 2.8
Methyl Ethyl Ketone	<0.050	<0.050	<0.050	<0.50	<0.050	<0.050	<0.50	16
Methyl Isobutyl Ketone	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	1.7
Methyl t-Butyl Ether (MTBE)	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.75
Methylene Chloride	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.1
Styrene	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.7
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	0.058 0.05
Tetrachloroethylene	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.03
Toluene	0.047	0.14	<0.020	0.10	0.034	<0.020	<0.020	2.3
1,1,1-Trichloroethane	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.38
1,1,2-Trichloroethane	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.05
Trichloroethylene	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.061
Trichlorofluoromethane Vinyl Chloride	<0.050 <0.020	<0.050 <0.020	<0.050 <0.020	<0.050 <0.020	<0.050 <0.020	<0.050 <0.020	<0.050 <0.020	0.02
				₹0.020	70.020			
Ayienes (Total)	0.077	0.19	< 0.020	1.7	4.6	< 0.020	< 0.020	3.1
Xylenes (Total) Petroleum Hydrocarbons (PHCs)	0.077	0.19	<0.020	1.7	4.6	<0.020	<0.020	3.1
	<10	0.19 <10	<0.020	<10	110	<0.020	<0.020	3.1 55
Petroleum Hydrocarbons (PHCs)								
Petroleum Hydrocarbons (PHCs) PHCs F1 (C_6 - C_{10}) PHCs F2 ($>C_{10}$ - C_{16})	<10	<10	<10	<10	110	<10 <10	<10	55 98
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄)	<10 <10	<10 <10	<10 <10	<10 <10	110 <10	<10	<10 <10	55 98 300
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀)	<10 <10 <50	<10 <10 68	<10 <10 <50	<10 <10 <50	110 <10 <50	<10 <10 <50	<10 <10 <50	55 98
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄)	<10 <10 <50	<10 <10 68 <50	<10 <10 <50	<10 <10 <50	110 <10 <50	<10 <10 <50	<10 <10 <50	55 98 300
Petroleum Hydrocarbons (PHCs) PHCs F1 (C_6 - C_{10}) PHCs F2 (> C_{10} - C_{16}) PHCs F3 (> C_{16} - C_{34}) PHCs F4 (> C_{34} - C_{50}) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene	<10 <10 <50 <50 <0.0050 0.013	<10 <10 68 <50 <0.0050 0.014	<10 <10 <50 <50 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050	110 <10 <50 <50 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050	55 98 300 2800 7.9 0.15
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	<10 <10 <50 <50 <0.0050 0.013 0.0078	<10 <10 68 <50 <0.0050 0.014 0.0085	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050	110 <10 <50 <50 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	<10 <10 <50 <50 <0.0050 0.013 0.0078 0.038	<10 <10 68 <50 <0.0050 0.014 0.0085 0.042	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050	110 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0055	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	<10 <10 <50 <50 <0.0050 0.013 0.0078	<10 <10 68 <50 <0.0050 0.014 0.0085	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	110 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	<10 <10 <50 <50 <0.0050 0.013 0.0078 0.038 0.046	<10 <10 68 <50 <0.0050 0.014 0.0085 0.042 0.049	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050	110 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	<10 <10 <50 <50 <-50 <-0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023	<10 <10 68 <50 <0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0057 <0.0050 <0.0050 <0.0050	110 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	<10 <10 <50 <50 <-50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036	<10 <10 68 <50 <0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0057 <0.0050 <0.0050 <0.0050 <0.0050	110 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	<10 <10 <50 <50 <-50 <-0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088	<10 <10 <8 <50 <0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0057 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	110 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	<10 <10 <50 <50 <-50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036	<10 <10 68 <50 <0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0057 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	110 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051	<10 <10 <50 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	<10 <10 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077	<10 <10 <10 68 <50 <0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0057 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	110 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.012	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene	<10 <10 <50 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 0.0052 <0.0050 <0.0050 0.0050 0.0050 0.0050	110 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.0058 <0.0050 0.0058 <0.0050	<10 <10 <50 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene	<10 <10 <50 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	110 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.0058 <0.0050 0.0058 <0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	<10 <10 <50 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene	<10 <10 <50 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.034	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	110 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.0058 <0.0050 0.0058 <0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	<10 <10 <50 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene	<10 <10 <50 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	110 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.0058 <0.0050 0.0058 <0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	<10 <10 <50 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene	<10 <10 <50 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.034 0.069	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0052 <0.0050 <0.0050 <0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	110 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.0058 <0.0071 <0.0050 0.0050 0.0012	<10 <10 <50 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals	<10 <10 <50 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.040 0.0069	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	110 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.0058 <0.0050 0.012 <0.0050 0.012 <0.0050 1.0050 0.0050 0.011 <0.0050 0.011	<10 <10 <10 <50 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium	<10 <10 <50 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.040 0.0050 0.040 <2.0071 <0.0050 0.034 0.069	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0075 0.0075 0.0052	110 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.0058 <0.0071 <0.0050 0.0011 <0.0050 <0.0050 0.011 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.00	<10 <10 <10 <50 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium	<10 <10 <50 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064 2.8 110 0.47	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.040 10.0050 0.034 0.069 0.61 2.5 110 0.46	<10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0052	110 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.0058 <0.0071 <0.0050 0.0011 <0.0050 <0.0050 0.011	<10 <10 <50 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0051 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total)	<10 <10 <50 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064 2.8 110 0.47 12	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.040 1.0050 0.034 0.069 0.61 2.5 110 0.46 11	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0052 <0.0050 <0.0050 <0.0050 <0.0050 <0.0052 <0.0050 <0.0050 <0.0052 <0.0050 <0.0052 <0.0050 <0.0052 <0.0050 <0.0052 <0.0050 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0	110 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.0058 <0.0071 <0.0050 0.0011 <0.0050 0.011 <0.0050 0.011	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0051 <0.0050 <0.0051 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium	<10 <10 <50 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064 2.8 110 0.47 12 0.89	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.034 0.069 0.61 2.5 110 0.46 11 0.80	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0052 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0052	110 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.0058 <0.0071 <0.0050 0.0011 < < < < < < <> < <	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7 7
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble)	<10 <10 <50 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064 2.8 110 0.47 12	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.040 1.0050 0.034 0.069 0.61 2.5 110 0.46 11	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0052 <0.0050 <0.0050 <0.0050 <0.0050 <0.0052 <0.0050 <0.0050 <0.0052 <0.0050 <0.0052 <0.0050 <0.0052 <0.0050 <0.0052 <0.0050 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0.0052 <0	110 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.0058 <0.0071 <0.0050 0.0011 <0.0050 0.011 <0.0050 0.011	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0051 <0.0050 <0.0051 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent)	<10 <10 <50 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064 2.8 110 0.47 12 0.89 0.29 23 <0.18	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.034 0.069 0.61 2.5 110 0.46 11 0.80 0.23 23 <0.18	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0052 <0.0050 <0.0050 <0.0050 <0.0050 <0.012 <0.0050 <0.0075 0.0075 0.0052 <0.0012 <0.0050 <0.0050 <0.0050 <0.0050 <0.0075 0.0052	110 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.0052 <0.0050 0.0012 <0.0050 0.012 <0.0050 0.012 <0.0050 0.011 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.011 <0.20 1.9 84 0.45 9.6 0.55 <0.10 21 <0.18	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0051 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7 7 10.6 1
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt	<10 <10 <50 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064 2.8 110 0.47 12 0.89 0.29 23 <0.18 7.1	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.034 0.069 0.61 2.5 110 0.46 11 0.80 0.23 23 <0.18 7.4	<10 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.012 <0.0050 <0.0075 0.0075 0.0075 0.0075 0.0075 0.0052	110 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.0050 0.012 <0.0050 0.0058 <0.0071 <0.0050 0.011 <0.0050 <0.0050 0.011 <0.0050 <0.011 <0.0050 <0.011 <0.0050 <0.011 <0.0050 <0.0050 0.011 <0.0050 <0.0050 0.011 <0.0050 <0.0050 0.011 <0.0050 <0.0050 0.011 <0.0050 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7 7 10.6 1
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper	<10 <10 <10 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064 2.8 110 0.47 12 0.89 0.29 23 <0.18 7.1 16	<10 <10 <10 <68 <50 <0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.034 0.069 0.61 2.5 110 0.46 11 0.80 0.23 23 <0.18 7.4 15	<10 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.012 <0.0050 <0.0050 <0.012 <0.0050 <0.012 <0.0050 <0.0075 0.0052	110 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.012 <0.0050 0.012 <0.0050 0.011 <0.0050 <0.0055 <0.0050 0.011 <0.0050 <0.011 <0.0050 <0.011 <0.0050 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.011 <0.0050 0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0010 10 12 <0.18 4.7 8.2	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7 120 1.5 1.2 160 8 22 140
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead	<10 <10 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064 2.8 110 0.47 12 0.89 0.29 23 <0.18 7.1 16 41	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.034 0.069 0.61 2.5 110 0.46 11 0.80 0.23 23 <0.18 7.4 15 28	<10 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.012 <0.0050 <0.0075 0.0075 0.0075 0.0075 0.0075 0.0012 <0.20 <1.0 70 0.24 8.2 0.11 <0.10 40 <0.18 6.6 9.5 6.9	110 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0055 <0.0050 0.0051 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.012 <0.0050 0.012 <0.0050 0.011 <0.0050 <0.0055 <0.0050 0.011 <0.011 <0.20 1.9 84 0.45 9.6 0.55 <0.10 21 <0.18 6.5 9.0 9.9	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.001 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7 7 10.6 1
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper	<10 <10 <10 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064 2.8 110 0.47 12 0.89 0.29 23 <0.18 7.1 16	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.034 0.069 0.61 2.5 110 0.46 11 0.80 0.23 23 <0.18 7.4 15 28 0.060	<10 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.012 <0.0050 <0.0075 0.0052 <0.0050 <0.012 <0.0050 <0.0075 0.0052 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	110 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 30 <0.20 <1.0 30 <0.20 <5.0 0.083 <0.10 11 <0.18 4.5 6.2 7.6 <0.050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0055 <0.0050 0.0051 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.0058 <0.0071 <0.0050 0.011 <0.0050 0.011 <0.055 <0.0050 0.011	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.001 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7 120 1.5 1.2 160 8 22 140
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury	<10 <10 <10 <50 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064 2.8 110 0.47 12 0.89 0.29 23 <0.18 7.1 16 41 0.075	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.034 0.069 0.61 2.5 110 0.46 11 0.80 0.23 23 <0.18 7.4 15 28	<10 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.012 <0.0050 <0.0075 0.0075 0.0075 0.0075 0.0075 0.0012 <0.20 <1.0 70 0.24 8.2 0.11 <0.10 40 <0.18 6.6 9.5 6.9	110 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0055 <0.0050 0.0051 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.012 <0.0050 0.012 <0.0050 0.011 <0.0050 <0.0055 <0.0050 0.011 <0.011 <0.20 1.9 84 0.45 9.6 0.55 <0.10 21 <0.18 6.5 9.0 9.9	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.001 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7 120 1.5 1.2 160 8 22 140 120 0.27
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(shi)perylene Benzo(shi)perylene Benzo(chi)perylene Benzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel Selenium	<10 <10 <10 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064 2.8 110 0.47 12 0.89 0.29 23 <0.18 7.1 16 41 0.075 1.5 16 <0.50	<10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.034 0.069 0.61 2.5 110 0.46 11 0.80 0.23 23 <0.18 7.4 15 28 0.060 1.5 15 <0.50	<10 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.012 <0.0050 <0.0050 <0.0075 0.0075 0.0052 <0.0012 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.00	110 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.0050 0.012 <0.0050 0.011 <0.0050 <0.0050 <0.011 <0.0050 <0.011 <0.0050 0.011 <0.20 1.9 84 0.45 9.6 0.55 <0.10 21 <0.18 6.5 9.0 9.9 0.062 1.2 14 <0.50	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.001 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7.5 18 390 4 120 1.5 1.2 160 8 22 140 120 0.27 6.9 100 2.4
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(shi)perylene Benzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver	<10 <10 <10 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064 2.8 110 0.47 12 0.89 0.29 23 <0.18 7.1 16 41 0.075 1.5 16 <0.50 <0.20	<10 <10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.034 0.069 0.61 2.5 110 0.46 11 0.80 0.23 23 <0.18 7.4 15 28 0.060 1.5 15 <0.50 <0.20	<10 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	<10 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.012 <0.0050 <0.0050 <0.0075 0.0075 0.0052 <0.20 <1.0 70 0.24 8.2 0.11 <0.10 40 <0.18 6.6 9.5 6.9 <0.050 <0.50 8.5 <0.50 <0.20	110 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	<10 <10 <10 <10 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.012 <0.0050 0.012 <0.0050 0.012 <0.0050 0.011 <0.0050 <0.0050 0.011 <0.011 <0.20 1.9 84 0.45 9.6 0.55 <0.10 21 <0.18 6.5 9.0 9.9 0.062 1.2 14 <0.50 <0.20	<10 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.01050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.00	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7 7 120 1.5 1.2 160 8 22 140 120 0.27 6.9 100 2.4 20
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Thallium	<10 <10 <10 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064 2.8 110 0.47 12 0.89 0.29 23 <0.18 7.1 16 41 0.075 1.5 16 <0.50 <0.20 0.21	<10 <10 <10 <10 <68 <50 <0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.034 0.069 0.61 2.5 110 0.46 11 0.80 0.23 23 <0.18 7.4 15 28 0.060 1.5 15 <0.50 <0.20 0.20	<10 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.012 <0.0050 <0.0075 0.0075 0.0075 0.0075 0.0075 0.0052 <0.20 <1.0 70 0.24 8.2 0.11 <0.10 40 <0.18 6.6 9.5 6.9 <0.050 <0.50 8.5 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	110 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	<10 <10 <10 <10 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0055 <0.0050 0.0051 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.0050 0.012 <0.0050 0.011 <0.0050 <0.0050 <0.0050 <0.011 <0.0050 <0.0050 0.011 <0.20 1.9 84 0.45 9.6 0.55 <0.10 21 <0.18 6.5 9.0 9.9 0.062 1.2 14 <0.50 <0.095	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.001 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7 7 120 1.5 1.2 160 8 22 140 120 0.27 6.9 100 2.4 20 1
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Thallium Uranium	<10 <10 <10 <10 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064 2.8 110 0.47 12 0.89 0.29 23 <0.18 7.1 16 41 0.075 1.5 16 <0.50 <0.20 0.21 0.67	<10 <10 <10 <10 68 <50 0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.034 0.069 0.61 2.5 110 0.46 11 0.80 0.23 23 <0.18 7.4 15 28 0.060 1.5 15 <0.50 <0.20 0.63	<10 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	<10 <10 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.012 <0.0050 <0.0050 <0.0075 0.0052 <0.0050 <0.0075 0.0052 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.00	110 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.00000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.0000 <0.00	<10 <10 <10 <10 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0058 <0.0050 0.0051 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.012 <0.0050 0.012 <0.0050 0.011 <0.0050 <0.0051 <0.0050 <0.0050 1.9 84 0.45 9.6 0.55 <0.10 21 <0.18 6.5 9.0 9.9 0.062 1.2 14 <0.50 <0.20 0.095 0.66	<10 <10 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7.5 18 390 4 120 1.5 1.2 160 8 22 140 120 0.27 6.9 100 2.4 20 1
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1 - & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Thallium	<10 <10 <10 <50 <50 <0.0050 0.013 0.0078 0.038 0.046 0.067 0.038 0.023 0.036 0.0088 0.077 <0.0050 0.037 <0.0071 <0.0050 0.032 0.064 2.8 110 0.47 12 0.89 0.29 23 <0.18 7.1 16 41 0.075 1.5 16 <0.50 <0.20 0.21	<10 <10 <10 <10 <68 <50 <0.0050 0.014 0.0085 0.042 0.049 0.071 0.040 0.025 0.040 0.0095 0.083 <0.0050 0.040 <0.0071 <0.0050 0.034 0.069 0.61 2.5 110 0.46 11 0.80 0.23 23 <0.18 7.4 15 28 0.060 1.5 15 <0.50 <0.20 0.20	<10 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.012 <0.0050 <0.0075 0.0075 0.0075 0.0075 0.0075 0.0052 <0.20 <1.0 70 0.24 8.2 0.11 <0.10 40 <0.18 6.6 9.5 6.9 <0.050 <0.50 8.5 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	110 <10 <10 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	<10 <10 <10 <10 <50 <0.0050 <0.0050 <0.0055 0.0069 0.010 0.0055 <0.0050 0.0051 <0.0050 0.0051 <0.0050 0.012 <0.0050 0.0050 0.012 <0.0050 0.011 <0.0050 <0.0050 <0.0050 <0.011 <0.0050 <0.0050 0.011 <0.20 1.9 84 0.45 9.6 0.55 <0.10 21 <0.18 6.5 9.0 9.9 0.062 1.2 14 <0.50 <0.095	<10 <10 <10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.001 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.	55 98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7 7 120 1.5 1.2 160 8 22 140 120 0.27 6.9 100 2.4 20 1

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition, for Residential/Parkland/Institutional Property Use and Coarse-Textured Soils

BOLD
BOLD
Units
mbgs

MECP Table 7 SCS

Exceeds Site Condition Standard
Reportable Detection Limit Exceeds Site Condition Standard
All Units In Micrograms Per Gram, Unless Otherwise Noted
Metres Below Ground Surface

Page 1 of 10 Pinchin File: 230236.006

TABLE 3 SOIL BULK ANALYTICAL RESULTS

1213763 Ontario Inc.

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Sample Designation	BH107 SS4	BH108 SS1	BH109 SS3	MW110 SS2	DUP-2	BH111 SS1	BH112 SS2	
Sample Collection Date (dd/mm/yyyy)	20/05/2020	20/05/2020	20/05/2020	20/05/2020	20/05/2020	14/05/2020	14/05/2020	
Sample Depth (mbgs)	1.83-2.59	0-0.76	1.22-1.83	0.61-1.22	0.61-1.22	0-0.76	0.76-1.52	
Sample Location	BH107	BH108	BH109	MW110	MW110	BH111	BH112	MECP Table
Laboratory Certificate of Analysis No.	C0C5456	C0C5456	C0C5456	C0C5456	C0C5456	C0C5456	C0C5456	7 SCS
Date of Analysis (dd/mm/yyyy)	23/05/2020- 31/05/2020	23/05/2020- 31/05/2020	23/05/2020- 31/05/2020	23/05/2020- 31/05/2020	23/05/2020- 31/05/2020	23/05/2020- 31/05/2020	23/05/2020- 31/05/2020	
Volatile Organic Compounds								
Acetone	< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	16
Benzene Bromodichloromethane	<0.020 <0.050	<0.020 <0.050	<0.020	<0.020 <0.050	<0.020 <0.050	<0.020 <0.050	<0.020 <0.050	0.21
Bromoform	<0.050	<0.050	<0.050 <0.050	<0.050	<0.050	<0.050	<0.050	0.27
Bromomethane	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.05
Carbon Tetrachloride	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.05
Chlorobenzene Chloroform	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	2.4 0.05
Dibromochloromethane	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	9.4
1,2-Dichlorobenzene	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	3.4
1,3-Dichlorobenzene	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	4.8
1,4-Dichlorobenzene Dichlorodifluoromethane	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	0.083 16
1,1-Dichloroethane	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	3.5
1,2-Dichloroethane	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.05
1,1-Dichloroethylene	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.05
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	3.4 0.084
1,2-Dichloropropane	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.05
1,3-Dichloropropene (Total)	< 0.050	<0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	0.05
Ethylbenzene	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	2
Ethylene Dibromide Hexane	<0.050 <0.050	<0.050 0.063	<0.050 0.11	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	0.05 2.8
Methyl Ethyl Ketone	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	16
Methyl Isobutyl Ketone	<0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	1.7
Methyl t-Butyl Ether (MTBE)	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.75
Methylene Chloride Styrene	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	0.1 0.7
1,1,1,2-Tetrachloroethane	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.058
1,1,2,2-Tetrachloroethane	< 0.050	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	0.05
Tetrachloroethylene	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.28
Toluene 1,1,1-Trichloroethane	<0.020 <0.050	<0.020 <0.050	<0.020	<0.020 <0.050	<0.020 <0.050	<0.020 <0.050	<0.020 <0.050	2.3 0.38
1,1,2-Trichloroethane	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.05
Trichloroethylene	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	<0.050	< 0.050	0.061
Trichlorofluoromethane	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	4
Vinyl Chloride Xylenes (Total)	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	<0.020 <0.020	0.02 3.1
Petroleum Hydrocarbons (PHCs)	V0.020	V0.020	Q0.020	V0.020	Q0.020	₹0.020	₹0.020	0.1
PHCs F1 (C ₆ - C ₁₀)	<10	<10	<10	<10	<10	<10	<10	55
	<10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	55 98
PHCs F1 (C ₆ - C ₁₀)								
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆)	21	<10	<10	<10	<10	<10	<10	98
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons	21 730	<10 66	<10 220	<10 <50	<10 <50	<10 <50	<10 <50	98 300
PHCs F1 (C_6 - C_{10}) PHCs F2 (> C_{10} - C_{16}) PHCs F3 (> C_{16} - C_{34}) PHCs F4 (> C_{34} - C_{50}) Polycyclic Aromatic Hydrocarbons Acenaphthene	21 730 200	<10 66 <50	<10 220 90 0.10	<10 <50 <50 <0.0050	<10 <50 <50 <0.0050	<10 <50 <50 <0.0050	<10 <50 <50	98 300 2800 7.9
PHCs F1 (C_6 - C_{10}) PHCs F2 (> C_{10} - C_{16}) PHCs F3 (> C_{16} - C_{34}) PHCs F4 (> C_{34} - C_{50}) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene	21 730 200 1.5 1.1	<10 66 <50 0.0083 0.015	<10 220 90 0.10 0.097	<10 <50 <50 <0.0050 0.016	<10 <50 <50 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050	98 300 2800 7.9 0.15
PHCs F1 (C_6 - C_{10}) PHCs F2 (> C_{10} - C_{16}) PHCs F3 (> C_{16} - C_{34}) PHCs F4 (> C_{34} - C_{50}) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	21 730 200 1.5 1.1 7.8	<10 66 <50 0.0083 0.015 0.027	<10 220 90 0.10 0.097 0.41	<10 <50 <50 <0.0050 0.016 0.012	<10 <50 <50 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050	98 300 2800 7.9
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	21 730 200 1.5 1.1 7.8 16 12	<10 66 <50 0.0083 0.015 0.027 0.089 0.087	<10 220 90 0.10 0.097 0.41 0.99 0.88	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	21 730 200 1.5 1.1 7.8 16 12 15	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	21 730 200 1.5 1.1 7.8 16 12 15 5.7	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	21 730 200 1.5 1.1 7.8 16 12 15	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75	<10 <50 <50 <-50 <-0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2	<10 <50 <50 <-50 <-50 	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095	<10 <50 <50 <-50 <-50 	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0050 0.033	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0071 <0.0050 0.033 0.085	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24 5.9 2.1	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15 1.8 7.1	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5 1.7	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0071 <0.0050 0.033 0.085 <0.20 <1.0	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24 24	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15 1.8 7.1 190	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5 1.7	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0050 0.047 <0.0050 0.033 0.085 <0.20 <1.0 99	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24 5.9 2.1 150 0.32	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15 1.8 7.1 190 0.66	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5 1.7	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0050 0.033 0.085 <0.20 <1.0 99 0.30	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0051 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24 24 5.9 2.1 150 0.32 12	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15 1.8 7.1 190 0.66 16	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5 1.7 3.9 9.8 180 0.41 16	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0050 0.047 <0.0050 0.033 0.085 <0.20 <1.0 99 0.30 9.3	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24 24 5.9 2.1 150 0.32 12 0.85 0.25	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15 1.8 7.1 190 0.66 16 2.6 0.42	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5 1.7 3.9 9.8 180 0.41 16 1.6 0.53	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0071 <0.0050 0.033 0.085 <0.20 <1.0 99 0.30 9.3 0.21 <0.10	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0071 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7 7
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total)	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24 5.9 2.1 150 0.32 12 0.85 0.25 20	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15 1.8 7.1 190 0.66 16 2.6 0.42 27	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5 1.7 3.9 9.8 180 0.41 16 1.6 0.53 33	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0050 0.033 0.085 <0.20 <1.0 99 0.30 9.3 0.21 <0.10 15	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0071 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.20 <1.0 130 0.37 6.7 0.32 <0.10 21	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7 18 390 4 120 1.5 1.2 160
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent)	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24 24 5.9 2.1 150 0.32 12 0.85 0.25 20 <0.18	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15 1.8 7.1 190 0.66 16 2.6 0.42 27 <0.18	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5 1.7 3.9 9.8 180 0.41 16 1.6 0.53 33 <0.18	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0050 0.047 <0.0050 0.033 0.085 <0.20 <1.0 99 0.30 9.3 0.21 <0.10 15 <0.18	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0071 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7.5 18 390 4 120 1.5 1.2 160 8
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24 24 5.9 2.1 150 0.32 12 0.85 0.25 20 <0.18 6.1	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15 1.8 7.1 190 0.66 16 2.6 0.42 27 <0.18 12	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5 1.7 3.9 9.8 180 0.41 16 1.6 0.53 33 <0.18 8.6	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0050 0.047 <0.0050 0.033 0.085 <0.20 <1.0 99 0.30 9.3 0.21 <0.10 15 <0.18 4.9	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0071 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	<10 <50 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7 18 390 4 120 1.5 1.2 160
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24 24 5.9 2.1 150 0.32 12 0.85 0.25 20 <0.18 6.1 59 150	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15 1.8 7.1 190 0.66 16 2.6 0.42 27 <0.18 12 26 100	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5 1.7 3.9 9.8 180 0.41 16 1.6 0.53 33 <0.18 8.6 140 350	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0050 0.033 0.085 <0.20 <1.0 99 0.30 9.3 0.21 <0.10 15 <0.18 4.9 10 3.5	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.001 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.10 82 0.31 9.8 0.21 <0.10 14 <0.18 4.9 12 3.4	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0071 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.00 130 0.37 6.7 0.32 <0.10 21 <0.18 7.0 14 3.3	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.20 <1.0 51 <0.20 <5.0 <0.050 <0.010 16 <0.18 5.0 6.4 2.1	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7.5 18 390 4 120 1.5 1.2 160 8 22 140 120
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24 24 5.9 2.1 150 0.32 12 0.85 0.25 20 <0.18 6.1 59 150 <0.050	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15 1.8 7.1 190 0.66 16 2.6 0.42 27 <0.18 12 26 100 0.19	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5 1.7 3.9 9.8 180 0.41 16 1.6 0.53 33 <0.18 8.6 140 350 0.19	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0050 0.033 0.085 <0.20 <1.0 99 0.30 9.3 0.21 <0.10 15 <0.18 4.9 10 3.5 <0.050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0050 <0.0050 <0.0050 <0.10050 <0.10050 <0.10050 <0.20 <1.0 82 0.31 9.8 0.21 <0.10 14 <0.18 4.9 12 3.4 <0.050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 130 0.37 6.7 0.32 <0.10 21 <0.18 7.0 14 3.3 <0.050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7.5 18 390 4 120 1.5 1.2 160 8 22 140 120 0.27
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24 24 5.9 2.1 150 0.32 12 0.85 0.25 20 <0.18 6.1 59 150 <0.050 2.1	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15 1.8 7.1 190 0.66 16 2.6 0.42 27 <0.18 12 26 100 0.19 2.8	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5 1.7 3.9 9.8 180 0.41 16 1.6 0.53 33 <0.18 8.6 140 350 0.19 7.9	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0071 <0.0050 0.033 0.085 <0.20 <1.0 99 0.30 9.3 0.21 <0.10 15 <0.18 4.9 10 3.5 <0.050 <0.50	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0050 <0.0050 <0.0050 <1.0050 <0.20 <1.0 82 0.31 9.8 0.21 <0.10 14 <0.18 4.9 12 3.4 <0.050 <0.50	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 130 0.37 6.7 0.32 <0.10 21 <0.18 7.0 14 3.3 <0.050 <0.050 <0.050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7.5 18 390 4 120 1.5 1.2 160 8 22 140 120 0.27 6.9
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)ffuoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24 24 5.9 2.1 150 0.32 12 0.85 0.25 20 <0.18 6.1 59 150 <0.050 2.1 11	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15 1.8 7.1 190 0.66 16 2.6 0.42 27 <0.18 12 26 100 0.19 2.8 19	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5 1.7 3.9 9.8 180 0.41 16 1.6 0.53 33 <0.18 8.6 140 350 0.19 7.9 76	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0050 0.033 0.085 <0.20 <1.0 99 0.30 9.3 0.21 <0.10 15 <0.18 4.9 10 3.5 <0.050 <0.50 10	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0050 <0.0050 <0.0050 <1.0050 <0.20 <1.0 82 0.31 9.8 0.21 <0.10 14 <0.18 4.9 12 3.4 <0.050 <0.50 9.4	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 130 0.37 6.7 0.32 <0.10 21 <0.18 7.0 14 3.3 <0.050 <0.50 12	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7.5 18 390 4 120 1.5 1.2 160 8 22 140 120 0.27 6.9 100
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24 24 5.9 2.1 150 0.32 12 0.85 0.25 20 <0.18 6.1 59 150 <0.050 2.1	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15 1.8 7.1 190 0.66 16 2.6 0.42 27 <0.18 12 26 100 0.19 2.8 19 <0.50 0.87	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5 1.7 3.9 9.8 180 0.41 16 1.6 0.53 33 <0.18 8.6 140 350 0.19 7.9 76 <0.50 0.22	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0071 <0.0050 0.033 0.085 <0.20 <1.0 99 0.30 9.3 0.21 <0.10 15 <0.18 4.9 10 3.5 <0.050 <0.50	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0050 <0.0050 <0.0050 <1.0050 <0.20 <1.0 82 0.31 9.8 0.21 <0.10 14 <0.18 4.9 12 3.4 <0.050 <0.50	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 130 0.37 6.7 0.32 <0.10 21 <0.18 7.0 14 3.3 <0.050 <0.050 <0.050	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7.5 18 390 4 120 1.5 1.2 160 8 22 140 120 0.27 6.9
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Thallium	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24 24 5.9 2.1 150 0.32 12 0.85 0.25 20 <0.18 6.1 59 150 <0.050 2.1 11 <0.50 <0.20 0.11	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15 1.8 7.1 190 0.66 16 2.6 0.42 27 <0.18 12 26 100 0.19 2.8 19 <0.50 0.87 0.21	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5 1.7 3.9 9.8 180 0.41 16 1.6 0.53 33 <0.18 8.6 140 350 0.19 7.9 76 <0.50 0.22 0.11	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0050 0.033 0.085 <0.20 <1.0 99 0.30 9.3 0.21 <0.10 15 <0.18 4.9 10 3.5 <0.050 <0.50 <0.50 <0.50 <0.16	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.001 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 130 0.37 6.7 0.32 <0.10 21 <0.18 7.0 14 3.3 <0.050 <0.50 <0.50 <0.50 <0.20 0.13	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7.5 18 390 4 120 1.5 1.2 160 8 22 140 120 0.27 6.9 100 2.4 20 1
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Thallium Uranium	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24 24 5.9 2.1 150 0.32 12 0.85 0.25 20 <0.18 6.1 59 150 <0.050 2.1 11 <0.50 <0.20 0.11 0.60	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15 1.8 7.1 190 0.66 16 2.6 0.42 27 <0.18 12 26 100 0.19 2.8 19 <0.50 0.87 0.21 0.69	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5 1.7 3.9 9.8 180 0.41 16 1.6 0.53 33 <0.18 8.6 140 350 0.19 7.9 76 <0.50 0.22 0.11 0.64	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0071 <0.0050 0.033 0.085 <0.20 <1.0 99 0.30 9.3 0.21 <0.10 15 <0.18 4.9 10 3.5 <0.050 <0.50 10 <0.50 <0.20 0.16 0.46	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.001 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 130 0.37 6.7 0.32 <0.10 21 <0.18 7.0 14 3.3 <0.050 <0.50 12 <0.50 <0.50 <0.50 12 <0.50 <0.20 0.13 0.53	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7.5 18 390 4 120 1.5 1.2 160 8 22 140 120 0.27 6.9 100 2.4 20 1
PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Boron (Hot Water Soluble) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Thallium	21 730 200 1.5 1.1 7.8 16 12 15 5.7 5.6 11 2.0 32 3.3 6.5 1.4 0.86 24 24 24 5.9 2.1 150 0.32 12 0.85 0.25 20 <0.18 6.1 59 150 <0.050 2.1 11 <0.50 <0.20 0.11	<10 66 <50 0.0083 0.015 0.027 0.089 0.087 0.12 0.063 0.042 0.080 0.016 0.17 0.012 0.063 <0.0071 0.012 0.090 0.15 1.8 7.1 190 0.66 16 2.6 0.42 27 <0.18 12 26 100 0.19 2.8 19 <0.50 0.87 0.21	<10 220 90 0.10 0.097 0.41 0.99 0.88 1.1 0.54 0.39 0.75 0.16 2.2 0.18 0.55 0.095 0.062 1.5 1.7 3.9 9.8 180 0.41 16 1.6 0.53 33 <0.18 8.6 140 350 0.19 7.9 76 <0.50 0.22 0.11	<10 <50 <50 <0.0050 0.016 0.012 0.054 0.059 0.085 0.047 0.029 0.049 0.011 0.091 <0.0050 0.047 <0.0050 0.033 0.085 <0.20 <1.0 99 0.30 9.3 0.21 <0.10 15 <0.18 4.9 10 3.5 <0.050 <0.50 <0.50 <0.50 <0.16	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.001 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <1.0 130 0.37 6.7 0.32 <0.10 21 <0.18 7.0 14 3.3 <0.050 <0.50 <0.50 <0.50 <0.20 0.13	<10 <50 <50 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0	98 300 2800 7.9 0.15 0.67 0.5 0.3 0.78 6.6 0.78 7 0.1 0.69 62 0.38 0.99 0.6 6.2 78 7.5 18 390 4 120 1.5 1.2 160 8 22 140 120 0.27 6.9 100 2.4 20 1

MECP Table 7 SCS

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition, for Residential/Parkland/Institutional Property Use and Coarse-Textured Soils

BOLD
BOLD
Units
mbgs

Exceeds Site Condition Standard
Reportable Detection Limit Exceeds Site Condition Standard
All Units In Micrograms Per Gram, Unless Otherwise Noted
Metres Below Ground Surface

Page 2 of 10 Pinchin File: 230236.006

TABLE 3 SOIL BULK ANALYTICAL RESULTS

1213763 Ontario Inc.

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Sample Designation	BH113 SS2	MW114 SS1	BH115 SS2	
Sample Designation Sample Collection Date (dd/mm/yyyy)	14/05/2020	14/05/2020	14/05/2020	1
Sample Depth (mbgs)	0.61-1.22	0-0.76	0.61-1.22	1
Sample Location				MECP Table
Laboratory Certificate of Analysis No.	BH113	MW114	BH115	7 SCS
Laboratory Certificate of Affaiysis No.	C0C5456	C0C5456	C0C5456	-
Date of Analysis (dd/mm/yyyy)	23/05/2020-	23/05/2020-	23/05/2020 -	
Date of Analysis (da/min/yyyy)	31/05/2020	01/06/2020	31/05/2020	
Volatile Organic Compounds				
Acetone	< 0.50	<0.50	<0.50	16
Benzene	<0.020	<0.020	<0.020	0.21
Bromodichloromethane Bromoform	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	13 0.27
Bromomethane	<0.050	<0.050	<0.050	0.05
Carbon Tetrachloride	< 0.050	< 0.050	< 0.050	0.05
Chlorobenzene	< 0.050	< 0.050	< 0.050	2.4
Chloroform	<0.050	<0.050	<0.050	0.05
Dibromochloromethane 1.2-Dichlorobenzene	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	9.4 3.4
1,3-Dichlorobenzene	<0.050	<0.050	<0.050	4.8
1,4-Dichlorobenzene	< 0.050	< 0.050	< 0.050	0.083
Dichlorodifluoromethane	< 0.050	< 0.050	< 0.050	16
1,1-Dichloroethane	<0.050	<0.050	<0.050	3.5
1,2-Dichloroethane 1,1-Dichloroethylene	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	0.05
cis-1,2-Dichloroethylene	<0.050	<0.050	<0.050	3.4
trans-1,2-Dichloroethylene	<0.050	<0.050	<0.050	0.084
1,2-Dichloropropane	< 0.050	< 0.050	< 0.050	0.05
1,3-Dichloropropene (Total)	<0.050	<0.050	< 0.050	0.05
Ethylpenzene Ethylpen Dibromide	<0.020	<0.020	<0.020	0.05
Ethylene Dibromide Hexane	<0.050 0.15	<0.050 0.090	<0.050 <0.050	0.05 2.8
Methyl Ethyl Ketone	<0.50	<0.50	<0.50	16
Methyl Isobutyl Ketone	< 0.50	<0.50	< 0.50	1.7
Methyl t-Butyl Ether (MTBE)	<0.050	<0.050	<0.050	0.75
Methylene Chloride	<0.050	<0.050	<0.050	0.1
Styrene 1,1,1,2-Tetrachloroethane	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	0.7 0.058
1.1.2.2-Tetrachloroethane	<0.050	<0.050	<0.050	0.05
Tetrachloroethylene	<0.050	< 0.050	<0.050	0.28
Toluene	0.038	0.035	0.030	2.3
1,1,1-Trichloroethane	<0.050	< 0.050	< 0.050	0.38
1,1,2-Trichloroethane Trichloroethylene	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	0.05 0.061
Trichlorofluoromethane	<0.050	<0.050	<0.050	4
Vinyl Chloride	<0.020	<0.020	<0.020	0.02
Xylenes (Total)	0.31	0.04	<0.020	3.1
Petroleum Hydrocarbons (PHCs)				
PHCs F1 (C ₆ - C ₁₀)	<10	<10	<10	55
PHCs F2 (>C ₁₀ - C ₁₆)	220	<10	<10	98
PHCs F3 (>C ₁₆ - C ₃₄)	4500	430	<50	300
PHCs F4 (>C ₃₄ - C ₅₀)	990	2500	63	2800
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	5.8	<0.050	<0.0050	7.9
Acenaphthylene Anthracene	13	0.051	<0.0050	0.15 0.67
Benzo(a)anthracene	67	0.064	<0.0050 0.0092	0.67
Benzo(a)pyrene	57	0.32	0.0086	0.3
Benzo(b)fluoranthene	65	0.43	0.013	0.78
Benzo(ghi)perylene	27	0.26	0.0057	6.6
Benzo(k)fluoranthene	26 55	0.15	<0.0050	0.78
Chrysene Dibenzo(a,h)anthracene	55 9.1	0.25 0.059	0.0097 <0.0050	7 0.1
Fluoranthene	120	0.57	0.023	0.69
Fluorene	10	<0.050	<0.0050	62
Indeno(1,2,3-cd)pyrene	29	0.26	0.0058	0.38
1- & 2-Methylnaphthalene	9.1	<0.071	<0.0071	0.99
Naphthalene Phenanthrene	2.3 75	<0.050 0.22	<0.0050 0.015	0.6 6.2
Pyrene	120	0.49	0.015	78
Metals				
Antimony	4.3	6.6	<0.20	7.5
Arsenic	18	9.4	1.2	18
Barium	330	300	90	390
Beryllium Boron (Total)	0.41	0.42 11	0.31 9.1	4 120
Boron (Hot Water Soluble)	1.6	1.4	0.18	1.5
Cadmium	1.8	1.4	<0.10	1.2
Chromium (Total)	45	21	15	160
Chromium (Hexavalent)	<0.18	<0.18	<0.18	8
Cobalt Copper	9.2 65	7.9 46	5.2 9.6	22 140
Lead	720	46 470	9.6 6.8	120
Mercury	10	1.3	<0.050	0.27
Molybdenum	2.2	1.4	0.76	6.9
Nickel	22	21	12	100
Selenium	1.2	0.74	<0.50	2.4
Silver Thallium	0.48	0.38 0.24	<0.20 0.12	20
Uranium	0.18	0.24	0.12	23
Vanadium	32	24	22	86
Zinc	1100	460	24	340
Notes:				

Notes:

MECP Table 7 SCS

Scil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition, for Residential/Parkland/Institutional Property Use and Coarse-Textured Soils

BOLD
Units
mbgs

Exceeds Site Condition Standard
Reportable Detection Limit Exceeds Site Condition Standard
All Units In Micrograms Per Gram, Unless Otherwise Noted
Metres Below Ground Surface

TABLE 4 GROUNDWATER MONITORING WELL ELEVATIONS AND CONSTRUCTION DETAILS

1213763 Ontario Inc.

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

			Well Construction Details								
Monitoring Well	Ground Surface Elevation (mamsl)	Top of Pipe Elevation (mamsl)	Total Well Depth (mbgs)	Stick-Up Height (metres)	Well Diameter (centimetres)	Screen Slot Size	Monitoring Well Screen Interval (mbgs)	Screen Length (metres)	Sealant Thickness (metres)		
MW-1	63.37	63.27	7.62	-0.10	5.1	10	4.5-7.6	3.1	4.3		
MW-2	63.45	63.37	7.62	-0.08	5.1	10	4.5-7.6	3.1	4.3		
MW-3	63.49	63.42	7.62	-0.07	5.1	10	4.5-7.6	3.1	4.3		
MW-4	63.10	62.99	7.62	-0.11	5.1	10	4.5-7.6	3.1	4.3		
MW-5	64.11	64.01	7.62	-0.10	5.1	10	4.5-7.6	3.1	4.3		
MW110	64.52	64.37	9.14	-0.15	5.1	10	6.0-9.1	3.1	5.5		
MW114	62.92	62.76	7.62	-0.16	5.1	10	4.5-7.6	3.1	3.1		
MW201	63.39	63.23	15.24	-0.16	5.1	10	12.1-15.2	3.1	11.0		
MW202	63.09	62.95	9.14	-0.14	5.1	10	6.0-9.1	3.1	4.9		
MW203	63.00	62.89	7.62	-0.11	3.2	10	4.5-7.6	3.1	4.3		
EXMW-1	NA	NA	7.75	NA	NA	NA	4.6-7.7	3.1	4.1		
EXMW-2	NA	NA	NA	NA	NA	NA	NA	3.1	NA		
EXMW-3	63.14	63.07	7.87	-0.07	3.2	10	4.8-7.9	3.1	3.1		
EXMW-4	62.93	62.89	7.01	-0.04	3.2	10	3.9-7.0	3.1	3.3		
EXMW-5	64.60	64.52	7.09	-0.08	3.2	10	4.0-7.1	3.1	3.6		

Notes:

mamsl Metres Above Mean Sea Level
mbgs Metres Below Ground Surface
NA Not Available

Page 4 of 10 Pinchin File: 230236.006

TABLE 5 GROUNDWATER MONITORING - WATER LEVELS

1213763 Ontario Inc.

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Monitoring Well	Ground Surface Elevation (mamsl)	Top of Pipe Elevation (mamsl)	Stick-Up Height (metres)	Date of Monitoring (dd/mm/yyyy)	Calculated Depth to Groundwater from Surface (mbgs)	Measured Depth to Groundwater from Top of Pipe (metres)	Groundwater Elevation (mamsl)	Visual/Olfactory Observations
				25/05/2020	5.02	5.12	58.15	PHC-like odour
MW-1	63.37	63.27	-0.10	06/08/2020	5.01	5.11	58.16	PHC-like odour
				14/10/2020	4.72	4.62	58.65	-
MW-2	63.45	63.37	-0.08	14/10/2020	4.32	4.40	58.97	-
				25/05/2020	3.85	3,92	59.50	No sheen or odours
MW-3	63.49	63.42	-0.07	06/08/2020	3.86	3.93	59.49	No sheen or odours
				14/10/2020	3.73	3.80	59.62	-
MW-4	63.10	62.99	-0.11	14/10/2020	3.79	3.90	59.09	-
MW-5	64.11	64.01	-0.10	14/10/2020	5.90	6.00	58.01	-
MW110	64.52	64.37	-0.15	14/10/2020	6.06	6.21	58.16	No sheen or odours
MW114	62.92	62.76	-0.16	14/10/2020		DRY	-	-
				31/08/2020	7.91	8.07	55.16	No sheen or odours
MW201	63.39	63.23	-0.16	02/09/2020	7.92	8.08	55.15	No sheen or odours
				14/10/2020	7.94	8.10	55.13	-
				31/08/2020	4.48	4.62	58.33	No sheen or odours
MW202	63.09	62.95	-0.14	02/09/2020	4.63	4.77	58.18	No sheen or odours
				14/10/2020	4.88	5.02	57.93	-
				31/08/2020	4.82	4.93	57.96	No sheen or odours
MW203	63.00	62.89	-0.11	02/09/2020	5.04	4.93	57.96	No sheen or odours
				14/10/2020	5.14	5.25	57.64	-
EXMW-3	63.14	63.07	-0.07	14/10/2020	4.53	4.60	58.47	-
EXMW-4	62.93	62.89	-0.04	14/10/2020	4.93	4.97	57.92	-
EXMW-5	64.60	64.52	-0.08	14/10/2020	6.26	6.34	58.18	-

Notes:

mamsl Metres Above Mean Sea Level mbgs Metres Below Ground Surface

Page 5 of 10 Pinchin File: 230236.006

TABLE 6 GROUNDWATER MONITORING - NON-AQUEOUS PHASE LIQUIDS

1213763 Ontario Inc.

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Modelinding Week Week Week Week Week Week Week Wee						LNAPL					DNAPL		
MW-1		Elevation	Monitoring	to Top of LNAPL from Top of Pipe	to Bottom of LNAPL from Top of Pipe	Thickness	Elevation	LNAPL Elevation	to Top of DNAPL from Top of Pipe	to Bottom of DNAPL from Top of Pipe	Thickness	Elevation	DNAPL Elevation
MAY-2			25/05/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-2 63.37 14/10/2020 ND ND	MW-1	63.27	06/08/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-3			14/10/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-3 63.42 060802020 ND ND	MW-2	63.37	14/10/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-4 62.99			25/05/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-4 62.99 14/10/2020 ND ND	MW-3	63.42	06/08/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-5 64.01 14/10/2020 ND			14/10/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW110 64.37 14/10/2020 ND	MW-4	62.99	14/10/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW114 62.76 14/10/2020 ND	MW-5	64.01	14/10/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW201	MW110	64.37	14/10/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW201 63.23 09/02/2020 ND	MW114	62.76	14/10/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW202			31/08/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW202	MW201	63.23	09/02/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW202 62.95 09/02/2020 ND			14/10/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MV203			31/08/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW203 62.89 31/08/2020 ND	MW202	62.95	09/02/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW203 62.89 14/10/2020 ND			14/10/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EXMW-4 62.89 14/10/2020 ND ND	MW203	62.80	31/08/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EXMW-4 62.89 14/10/2020 ND	IVIVVZUS	02.09	14/10/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	EXMW-3	63.07	14/10/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EXMW-5 64.52 14/10/2020 ND	EXMW-4	62.89	14/10/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	EXMW-5	64.52	14/10/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes

DNAPL Dense Non-Aqueous Phase Liquid Light Non-Aqueous Phase Liquid mamsl Metres Above Mean Sea Level mbgs Metres Below Ground Surface ND Not Detected

Page 6 of 10 Pinchin File: 230236.006

TABLE 7 GROUNDWATER ANALYTICAL RESULTS

1213763 Ontario Inc.

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Sample Designation	MW-1	DUP-3	MW-3	MW110	MW201	DUP-201	
	06/08/2020						
Sample Collection Date (dd/mm/yyyy)		06/08/2020	06/08/2020	07/02/2020	09/09/2020	09/09/2020	1
Sample Depth (mbgs)	4.5 - 7.6	4.5 - 7.6	4.5 - 7.6	6.0 - 9.1	12.1 - 15.2	12.1 - 15.2	MECD Toble
Sample Location	MW-1	MW-1	MW-3	MW110	MW201	MW201	MECP Table 7 SCS
Laboratory Certificate of Analysis No.	C0E0707	C0E0707	C0E0707	C0G4922	C0N4811	C0N4811	7 303
	11/06/2020 -	11/06/2020 -	11/06/2020 -	07/07/2020 -	14/09/2020 -	14/09/2020 -	
Date of Analysis (dd/mm/yyyy)	12/06/2020	12/06/2020	12/06/2020	09/07/2020	16/09/2020	16/09/2020	
	72,00,2020	12,00,2020	72,00,2020	00/01/2020	70/00/2020	7 07 0 07 2 0 2 0	
Volatile Organic Compounds	-15	-15	-10	-10	-10	-10	100000
Acetone Benzene	<15 23	<15 21	<10 <0.20	<10 <0.20	<10 <0.20	<10 <0.20	0.5
Bromodichloromethane	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	67000
Bromoform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5
Bromomethane	< 0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	0.89
Carbon Tetrachloride	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.2
Chlorobenzene	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	140
Chloroform Dibromochloromethane	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	0.64 <0.50	0.75 <0.50	2 65000
1,2-Dichlorobenzene	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	150
1,3-Dichlorobenzene	< 0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	7600
1,4-Dichlorobenzene	< 0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	0.5
Dichlorodifluoromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3500
1,1-Dichloroethane	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	11 0.5
1,2-Dichloroethane 1,1-Dichloroethylene	<0.50 <0.20	<0.50 <0.20	<0.50 <0.20	<0.50 <0.20	<0.50 <0.20	<0.50 <0.20	0.5
cis-1,2-Dichloroethylene	<0.20	<0.50	<0.20	<0.50	<0.20	<0.50	1.6
trans-1,2-Dichloroethylene	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	1.6
1,2-Dichloropropane	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.58
1,3-Dichloropropene (Total)	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	0.5
Ethylbenzene	66	73	<0.20	<0.20	<0.20	<0.20	54
Ethylene Dibromide Hexane	<0.20 <1.0	<0.20 <1.0	<0.20 <1.0	<0.20 <1.0	<0.20	<0.20 <1.0	0.2 5
Methyl Ethyl Ketone	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	21000
Methyl Isobutyl Ketone	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5200
Methyl t-Butyl Ether (MTBE)	< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	15
Methylene Chloride	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	26
Styrene	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	43
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	1.1 0.5
Tetrachloroethylene	<0.50	<0.50	<0.50	<0.20	<0.50	<0.50	0.5
Toluene	1.7	2.1	<0.20	<0.20	<0.20	<0.30	320
1,1,1-Trichloroethane	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	23
1,1,2-Trichloroethane	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	0.5
Trichloroethylene	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.5
Trichlorofluoromethane Vinyl Chloride	<0.50 <0.20	<0.50 <0.20	<0.50 <0.20	<0.50 <0.20	<0.50 <0.20	<0.50 <0.20	2000 0.5
Viriyi Chloride							
Xylenes (Total) Petroleum Hydrocarbons (PHCs)	7.5	9.9	<0.20	<0.20	<0.20	<0.20	72
Xylenes (Total)							
Xylenes (Total) Petroleum Hydrocarbons (PHCs)	7.5	9.9	<0.20	<0.20	<0.20	<0.20	72
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀)	7.5	9.9	<0.20	<0.20	<0.20	<0.20 <25	72 420
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆)	7.5 350 120	9.9 350 130	<0.20 <25 <100	<0.20 <25 <100	<0.20 <25 <100	<0.20 <25 <100	72 420 150
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄)	7.5 350 120 <200	9.9 350 130 540	<0.20 <25 <100 <200	<0.20 <25 <100 <200	<0.20 <25 <100 <200	<0.20 <25 <100 <200	72 420 150 500
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C_6 - C_{10}) PHCs F2 ($>C_{10}$ - C_{16}) PHCs F3 ($>C_{16}$ - C_{34}) PHCs F4 ($>C_{34}$ - C_{50}) Polycyclic Aromatic Hydrocarbons Acenaphthene	7.5 350 120 <200 <200 <0.050	9.9 350 130 540 390	<0.20 <25 <100 <200 <200	<0.20 <25 <100 <200 <200	<0.20 <25 <100 <200 <200 <0.050	<0.20 <25 <100 <200 <200 <0.050	72 420 150 500 500
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C_6 - C_{10}) PHCs F2 ($>C_{10}$ - C_{16}) PHCs F3 ($>C_{16}$ - C_{34}) PHCs F4 ($>C_{34}$ - C_{50}) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene	7.5 350 120 <200 <200 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050	72 420 150 500 500
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	7.5 350 120 <200 <200 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	7.5 350 120 <200 <200 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	7.5 350 120 <200 <200 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.0090	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.0090	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.0090	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.0090	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.0090	72 420 150 500 500 17 1 1 1.8 0.81
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <1.050 <0.050 <0.050 <0.030 <0.050 <0.050 <0.030 <0.050 <1.01 <0.050 <0.050 <0.050 <0.030 <0.050 <0.050 <0.030 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.040 <0.050 <0.050 <0.040 <0.050 <0.040	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total)	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.040 130 <0.40	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.040 <0.050 <0.050 <0.040 <0.050 <0.040	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.040 130 <0.40 190 <0.090	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium (Total) Chromium (Total) Chromium (Total) Chromium (Hexavalent) Cobalt	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.030 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.05	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <-0.050 <-0.050 <-0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.0050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.0050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <-0.050 <-0.050 <-0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.050 <0.0050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.071 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.090 <0.090 <0.090 <0.050 <0.090 <0.050 <0.090 <0.050 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1 7300
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.0050 <0.0050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.010	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.0050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.071 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.070 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.090 <0.090 <0.050 <0.090 <0.050 <0.090 <0.050 <0.090 <0.050 <0.079 <0.079 <0.079 <0.079 <0.079 <0.079 <0.079 <0.079 <0.070 <0.079 <0.070 <0.070 <0.079 <0.070 <0.070 <0.079 <0.070 <0.070 <0.079 <0.070 <0.070 <0.079 <0.070 <0.079 <0.070 <0.070 <0.079 <0.070 <0.070 <0.079 <0.070 <0.070 <0.079 <0.070 <0.070 <0.079 <0.070 <0.070 <0.079 <0.070 <0.070 <0.079 <0.070 <0.070 <0.070 <0.079 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.010	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1 7300 390
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(shi)perylene Benzo(shi)perylene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Sodium	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.0050 <0.0050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.071 <0.050 <0.030 <0.050 <0.050 <0.050 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.010	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1 7300 390 50 1.2 1800000
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Sodium Thallium	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.0050 <0.0050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.071 <0.050 <0.030 <0.050 <0.050 <0.050 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.010	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <-0.050 <-0.050 <-0.050	72 420 150 500 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1 7300 390 50 1.2 1800000 400
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Sodium Thallium Uranium	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.0050 <0.0050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.071 <0.050 <0.030 <0.050 <0.050 <0.050 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.070 <0.070 <0.070 <0.070 <0.070 <0.070 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.099	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.010	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	72 420 150 500 500 500 17 1 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1 7300 390 50 1.2 1800000 400 330
Xylenes (Total) Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Sodium Thallium	7.5 350 120 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	9.9 350 130 540 390 <0.050 <0.050 <0.050 <0.0050 <0.0050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.071 <0.050 <0.030 <0.050 <0.050 <0.050 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.071 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0090 <0.0	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.010	<0.20 <25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <-0.050 <-0.050 <-0.050	72 420 150 500 500 500 17 1 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1 7300 390 50 1.2 1800000 400

MECP Table 7 SCS

BOLD BOLD Units

mbgs

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition, for All Types of Property Use and Coarse-Textured Soils Exceeds Site Condition Standard

Reportable Detection Limit Exceeds Site Condition Standard All Units In Micrograms Per Litre, Unless Otherwise Noted Metres Below Ground Surface

Page 7 of 10 Pinchin File: 230236.006

TABLE 7 GROUNDWATER ANALYTICAL RESULTS

1213763 Ontario Inc.

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Sample Designation	MW202	DUP-202	MW203	TRIP BLANK	TRIP BLANK	TRIP BLANK	
Sample Designation							
Sample Collection Date (dd/mm/yyyy)	09/09/2020	09/09/2020	09/09/2020	06/08/2020	07/02/2020	09/09/2020	
Sample Depth (mbgs)	6.0 - 9.1	6.0 - 9.1	4.5 - 7.6	NA	NA	NA	4450D T //
Sample Location	MW202	MW202	MW203	NA	NA	NA	MECP Table
Laboratory Certificate of Analysis No.	C0N4811	C0N4811	C0N4811	C0E0707	C0G4922	C0N4811	7 SCS
	4.4/00/0000	4.4/00/0000	4.4/00/0000	44/00/0000	07/07/0000	4.4/00/0000	
Date of Analysis (dd/mm/yyyy)	14/09/2020 -	14/09/2020 -	14/09/2020 -	11/06/2020 - 12/06/2020	07/07/2020 -	14/09/2020 -	
	16/09/2020	16/09/2020	16/09/2020	12/06/2020	09/07/2020	16/09/2020	
Volatile Organic Compounds							
Acetone	<10	-	<10	<10	<10	<10	100000
Benzene	<0.20	-	<0.20	<0.20	<0.20	<0.20	0.5
Bromodichloromethane	<0.50	-	<0.50	<0.50	<0.50	<0.50	67000
Bromoform Bromomethane	<1.0 <0.50	-	<1.0	<1.0 <0.50	<1.0 <0.50	<1.0 <0.50	5 0.89
Carbon Tetrachloride	<0.50	-	<0.50 <0.20	<0.50	<0.50	<0.50	0.89
Chlorobenzene	<0.20	_	<0.20	<0.20	<0.20	<0.20	140
Chloroform	<0.20	-	0.23	<0.20	<0.20	<0.20	2
Dibromochloromethane	<0.50	-	<0.50	<0.50	<0.50	<0.50	65000
1,2-Dichlorobenzene	< 0.50	-	< 0.50	< 0.50	<0.50	<0.50	150
1,3-Dichlorobenzene	< 0.50	-	< 0.50	< 0.50	< 0.50	<0.50	7600
1,4-Dichlorobenzene	< 0.50	-	< 0.50	< 0.50	< 0.50	< 0.50	0.5
Dichlorodifluoromethane	<1.0	-	<1.0	<1.0	<1.0	<1.0	3500
1,1-Dichloroethane	<0.20	-	<0.20	<0.20	<0.20	<0.20	11
1,2-Dichloroethane	<0.50	-	<0.50	<0.50	<0.50	<0.50	0.5
1,1-Dichloroethylene cis-1,2-Dichloroethylene	<0.20 <0.50	-	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	<0.20 <0.50	0.5 1.6
trans-1,2-Dichloroethylene	<0.50	-	<0.50	<0.50	<0.50	<0.50	1.6
1,2-Dichloropropane	<0.20	-	<0.20	<0.20	<0.20	<0.20	0.58
1,3-Dichloropropene (Total)	<0.50	-	<0.50	<0.50	<0.50	<0.50	0.5
Ethylbenzene	<0.20	-	<0.20	<0.20	<0.20	<0.20	54
Ethylene Dibromide	<0.20	-	<0.20	<0.20	<0.20	<0.20	0.2
Hexane	<1.0	-	<1.0	<1.0	<1.0	<1.0	5
Methyl Ethyl Ketone	<10	-	<10	<10	<10	<10	21000
Methyl Isobutyl Ketone	<5.0	-	<5.0	<5.0	<5.0	<5.0	5200
Methylene Chleride	<0.50 <2.0	-	<0.50 <2.0	<0.50 <2.0	<0.50 <2.0	<0.50 <2.0	15 26
Methylene Chloride Styrene	<2.0 <0.50	-	<2.0	<0.50	<2.0 <0.50	<2.0 <0.50	43
1,1,1,2-Tetrachloroethane	<0.50	-	<0.50	<0.50	<0.50	<0.50	1.1
1,1,2-Tetrachloroethane	<0.50	-	<0.50	<0.50	<0.50	<0.50	0.5
Tetrachloroethylene	<0.20	-	<0.20	<0.20	<0.20	<0.20	0.5
Toluene	<0.20		< 0.40	<0.20	<0.20	<0.20	320
1,1,1-Trichloroethane	<0.20	-	<0.20	<0.20	<0.20	<0.20	23
1,1,2-Trichloroethane	< 0.50	-	< 0.50	< 0.50	< 0.50	< 0.50	0.5
Trichloroethylene	<0.20	-	<0.20	<0.20	<0.20	<0.20	0.5
Trichlorofluoromethane	<0.50	-	<0.50	<0.50	<0.50	<0.50	2000
Vinyl Chloride Xylenes (Total)	<0.20 <0.20	-	<0.20	<0.20	<0.20	<0.20	0.5
				40 DO	40 OO		72
	<0.20	-	0.22	<0.20	<0.20	<0.20	72
Petroleum Hydrocarbons (PHCs)			V				
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀)	<25	-	<25	<25	<0.20	<25	420
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆)	<25 <100	-	<25 <100	<25 -		<25 -	420 150
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄)	<25 <100 <200		<25 <100 <200	<25 - -		<25	420 150 500
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀)	<25 <100	-	<25 <100	<25 -		<25 -	420 150
Petroleum Hydrocarbons (PHCs) PHCs F1 (C_6 - C_{10}) PHCs F2 ($>C_{10}$ - C_{16}) PHCs F3 ($>C_{16}$ - C_{34}) PHCs F4 ($>C_{34}$ - C_{50}) Polycyclic Aromatic Hydrocarbons	<25 <100 <200 <200	-	<25 <100 <200 <200	<25 - - -		<25 - - -	420 150 500 500
Petroleum Hydrocarbons (PHCs) PHCs F1 (C_6 - C_{10}) PHCs F2 ($>C_{10}$ - C_{16}) PHCs F3 ($>C_{16}$ - C_{34}) PHCs F4 ($>C_{34}$ - C_{50}) Polycyclic Aromatic Hydrocarbons Acenaphthene	<25 <100 <200 <200 <0.050	- - -	<25 <100 <200 <200	<25 - - -	<25 - - -	<25 - - -	420 150 500 500
Petroleum Hydrocarbons (PHCs) PHCs F1 ($C_6 - C_{10}$) PHCs F2 ($>C_{10} - C_{16}$) PHCs F3 ($>C_{16} - C_{34}$) PHCs F4 ($>C_{34} - C_{50}$) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene	<25 <100 <200 <200 <0.050 <0.050	- - - -	<25 <100 <200 <200 <0.050 <0.050	<25 - - - -	<25 - - - -	<25 - - - - -	420 150 500 500
Petroleum Hydrocarbons (PHCs) PHCs F1 ($C_6 - C_{10}$) PHCs F2 ($>C_{10} - C_{16}$) PHCs F3 ($>C_{16} - C_{34}$) PHCs F4 ($>C_{34} - C_{50}$) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene	<25 <100 <200 <200 <0.050 <0.050 <0.050	- - -	<25 <100 <200 <200 <0.050 <0.050 <0.050	<25 - - - - -	<25 - - - - -	<25 - - - - -	420 150 500 500 17 1 1
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050	- - - -	<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050	<25 - - - -	<25 - - - -	<25 - - - - -	420 150 500 500
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene	<25 <100 <200 <200 <0.050 <0.050 <0.050	- - - - -	<25 <100 <200 <200 <0.050 <0.050 <0.050	<25 - - - - - -	<25 - - - - - -	<25 - - - - - - -	420 150 500 500 17 1 1 1 1.8
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	- - - - - -	<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.0090 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	- - - - - - - - -	<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	- - - - - - - - - -	<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	- - - - - - - - - - - -	<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	- - - - - - - - - - - - -	<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	- - - - - - - - - - - -	<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.0050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	- - - - - - - - - - - - - - -	<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorane Indeno(1,2,3-cd)pyrene	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	- - - - - - - - - - - - - - - -	<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	- - - - - - - - - - - - - - - - - -	<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1 - & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	- - - - - - - - - - - - - - - - - - -	<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	- - - - - - - - - - - - - - - - - - -	<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.071 <0.050 <0.030 <0.050 <0.071	- - - - - - - - - - - - - - - - - - -	<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.071 <0.050 <0.050 <0.071 <1.0	- - - - - - - - - - - - - - - - - - -	<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.071 <1.0050 <1.0050 <0.030 <0.050 <0.030 <0.050 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.0	- - - - - - - - - - - - - - - - - - -	<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.071 <1.0050 <0.040 <0.050		<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.071 <1.0050 <0.040 690		<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total)	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.071 <1.0050 <0.040 <0.050		<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.071 <1.0050 <0.030 <0.040 690 <0.090		<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 17 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total)	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050		<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 500 17 1 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050		<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <-0.050 <-0.050 <-0.050 <-0.050 <-0.050 <-0.050 <-0.050 <-0.050 <-0.050 <-0.050 <-0.050 <-0.050	<25	<25	<25	420 150 500 500 500 17 1 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050		<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <	<25	<25	<25	420 150 500 500 500 17 1 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050		<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<25	<25	<25	420 150 500 500 500 17 1 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050		<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <-0.050 <0.050 <-0.050 <-0.050 <-0.050 <-0.050	<25	<25	<25	420 150 500 500 500 17 1 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1 7300
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050		<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <-0.050 <0.050 <-0.050 <-0.050 <-0.050 <-0.050	<25	<25	<25	420 150 500 500 500 17 1 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1 7300 390
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel Selenium	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050		<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <-0.050 <0.050 <-0.050 <-0.050 <-0.050 <-0.050	<25	<25	<25	420 150 500 500 500 17 1 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1 7300 390 50
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1 - & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.090 <<0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090		<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <-0.050 <0.050 <-0.050 <-0.050 <-0.050 <-0.050	<25	<25	<25	420 150 500 500 500 17 1 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1 7300 390 50 1.2
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel Selenium	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050		<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <	<25	<25	<25	420 150 500 500 500 17 1 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1 7300 390 50
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(shifluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1 - & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Sodium	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090		<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <	<25	<25	<25	420 150 500 500 500 17 1 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1 7300 390 50 1.2 1800000
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Sodium Thallium	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.071 <0.050 <0.030 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.010 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090		<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.0	<25	<25	<25	420 150 500 500 500 17 1 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1 7300 390 50 1.2 1800000 400 330 200
Petroleum Hydrocarbons (PHCs) PHCs F1 (C ₆ - C ₁₀) PHCs F2 (>C ₁₀ - C ₁₆) PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀) Polycyclic Aromatic Hydrocarbons Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1- & 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Metals Antimony Arsenic Barium Beryllium Boron (Total) Cadmium Chromium (Total) Chromium (Hexavalent) Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Sodium Thallium Uranium	<25 <100 <200 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090 <0.090		<25 <100 <200 <200 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.071 <0.050 <0.030 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.0	<25	<25	<25	420 150 500 500 500 17 1 1 1 1.8 0.81 0.75 0.2 0.4 0.7 0.4 44 290 0.2 1500 7 380 5.7 16000 1500 23000 53 36000 2.1 640 110 52 69 20 0.1 7300 390 50 1.2 1800000 400 330

Notes:

MECP Table 7 SCS

BOLD BOLD Units

mbgs

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition, for All Types of Property Use and Coarse-Textured Soils Exceeds Site Condition Standard

Reportable Detection Limit Exceeds Site Condition Standard All Units In Micrograms Per Litre, Unless Otherwise Noted Metres Below Ground Surface

Page 8 of 10 Pinchin File: 230236.006

TABLE 8 MAXIMUM CONCENTRATIONS IN SOIL

1213763 Ontario Inc.

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

	Maximum	<u> </u>		Sample Depth
Parameter	Concentration	Sample Designation	Sample Location	(mbgs)
Volatile Organic Compounds Acetone	<0.5		All Submitted Samples	
Benzene	<0.02		All Submitted Samples	
Bromodichloromethane	<0.05		All Submitted Samples	
Bromoform	< 0.05		All Submitted Samples	
Bromomethane	<0.05		All Submitted Samples	
Carbon Tetrachloride	<0.05		All Submitted Samples	
Chloroform	<0.05 <0.05		All Submitted Samples All Submitted Samples	
Dibromochloromethane	<0.05		All Submitted Samples	
1,2-Dichlorobenzene	<0.05		All Submitted Samples	
1,3-Dichlorobenzene	< 0.05		All Submitted Samples	
1,4-Dichlorobenzene	< 0.05		All Submitted Samples	
Dichlorodifluoromethane	< 0.05		All Submitted Samples	
1,1-Dichloroethane	<0.05		All Submitted Samples	
1,2-Dichloroethane 1,1-Dichloroethylene	<0.05 <0.05		All Submitted Samples All Submitted Samples	
cis-1,2-Dichloroethylene	<0.05		All Submitted Samples	
trans-1,2-Dichloroethylene	<0.05		All Submitted Samples	
1,2-Dichloropropane	<0.05		All Submitted Samples	
1,3-Dichloropropene (Total)	<0.1		All Submitted Samples	
Ethylbenzene	1.3	BH103 SS1	BH103	0-0.46
Ethylene Dibromide	<0.05		All Submitted Samples	
Hexane	0.15	BH113 SS2	BH113	0.61-1.22
Methyl Leobutyl Ketone	<0.5		All Submitted Samples	
Methyl Isobutyl Ketone Methyl t-Butyl Ether (MTBE)	<0.5 <0.05		All Submitted Samples All Submitted Samples	
Methylene Chloride	<0.05 <0.05		All Submitted Samples	
Styrene	<0.05		All Submitted Samples	·
1,1,1,2-Tetrachloroethane	<0.05		All Submitted Samples	
1,1,2,2-Tetrachloroethane	< 0.05		All Submitted Samples	
Tetrachloroethylene	0.22	MW-5 SS-2	MW-5	0.8-1.5
Toluene	0.14	DUP-1	BH101	0-0.76
1,1,1-Trichloroethane	<0.05		All Submitted Samples	
1,1,2-Trichloroethane	<0.05		All Submitted Samples	
Trichloroethylene Trichlorofluoromethane	<0.05 <0.05		All Submitted Samples All Submitted Samples	
Vinyl Chloride	<0.03		All Submitted Samples	
Xylenes (Total)	4.6	BH104 SS1	BH104	0-0.76
Petroleum Hydrocarbons (PHCs)		3.7.01.00	2	0 0.1.0
PHCs F1 (C ₆ - C ₁₀)	110	BH104 SS1	BH104	0-0.76
PHCs F2 (>C ₁₀ - C ₁₆)	220	BH113 SS2	BH113	0.61-1.22
PHCs F3 (>C ₁₆ - C ₃₄)	4500	BH113 SS2	BH113	0.61-1.22
PHCs F4 (>C ₃₄ - C ₅₀)	3400	BH-11 SS-1	BH-11	0.61-1.22
Polycyclic Aromatic Hydrocarbons	0400	BITTIOOT	DIT II	0.01 1.22
Acenaphthene	5.8	BH113 SS2	BH113	0.61-1.22
Acenaphthylene	13	BH113 SS2	BH113	0.61-1.22
Anthracene	22	BH113 SS2	BH113	0.61-1.22
Benzo(a)anthracene	67	BH113 SS2	BH113	0.61-1.22
Benzo(a)pyrene	57	BH113 SS2	BH113	0.61-1.22
Benzo(b)fluoranthene	65	BH113 SS2	BH113	0.61-1.22
Benzo(ghi)perylene Benzo(k)fluoranthene	27 26	BH113 SS2 BH113 SS2	BH113 BH113	0.61-1.22 0.61-1.22
Chrysene	55	BH113 SS2	BH113	0.61-1.22
Dibenzo(a,h)anthracene	9.1	BH113 SS2	BH113	0.61-1.22
Fluoranthene	120	BH113 SS2	BH113	0.61-1.22
Fluorene	10	BH113 SS2	BH113	0.61-1.22
Indeno(1,2,3-cd)pyrene	29	BH113 SS2	BH113	0.61-1.22
Methylnaphthalene 2-(1-)	9.1	BH113 SS2	BH113	0.61-1.22
Naphthalene Phenanthrene	2.3 75	BH113 SS2 BH113 SS2	BH113 BH113	0.61-1.22 0.61-1.22
Pyrene	120	BH113 SS2 BH113 SS2	BH113 BH113	0.61-1.22
Metals	120	DITI 10 002	DITIIO	0.01-1.22
Antimony	43	MW-4 SS-2	MW-4	0.8-1.1
Arsenic	64	MW-4 SS-2	MVV-4	0.8-1.1
Barium	460	MW-4 SS-2	MW-4	0.8-1.1
Beryllium	0.78	BH-10 SS-1	BH-10	0-0.8
Boron (Total)	20	MW-4 SS-2	MW-4	0.8-1.1
Boron (Hot Water Soluble)	3.9	BH-8 SS-1	BH-8	0-0.8
Cadmium Chromium (Total)	8.7 45	MW-4 SS-2 MW-4 SS-2	MW-4 MW-4	0.8-1.1 0.8-1.1
Chromium (Hexavalent)	<0.2	1V1V V - + 00-Z	All Submitted Samples	0.0-1.1
Cobalt	20	MW-4 SS-2	MW-4	0.8-1.1
Copper	310	MW-4 SS-2	MW-4	0.8-1.1
Lead	15000	MW-4 SS-2	MW-4	0.8-1.1
Mercury	10	BH113 SS2	BH113	0.61-1.22
Molybdenum	7.9	BH109 SS3	BH109	1.22-1.83
Nickel	77	MW-4 SS-2	MW-4	0.8-1.1
Selenium	1.5	BH-10 SS-1	BH-10	0-0.8
Silver Thallium	1.6 0.64	MW-4 SS-2 MW-4 SS-2	MW-4 MW-4	0.8-1.1 0.8-1.1
Uranium	1.7	MW-4 SS-2	MW-4	0.8-1.1
Vanadium	41	BH105 SS1	BH105	0-0.76
Zinc	4200	MW-4 SS-2	MW-4	0.8-1.1
Notes:	. :=			

Notes:

Units All Units In Micrograms Per Gram, Unless Otherwise Noted mbgs Metres Below Ground Surface mS/cm MilliSiemens Per Centimetre

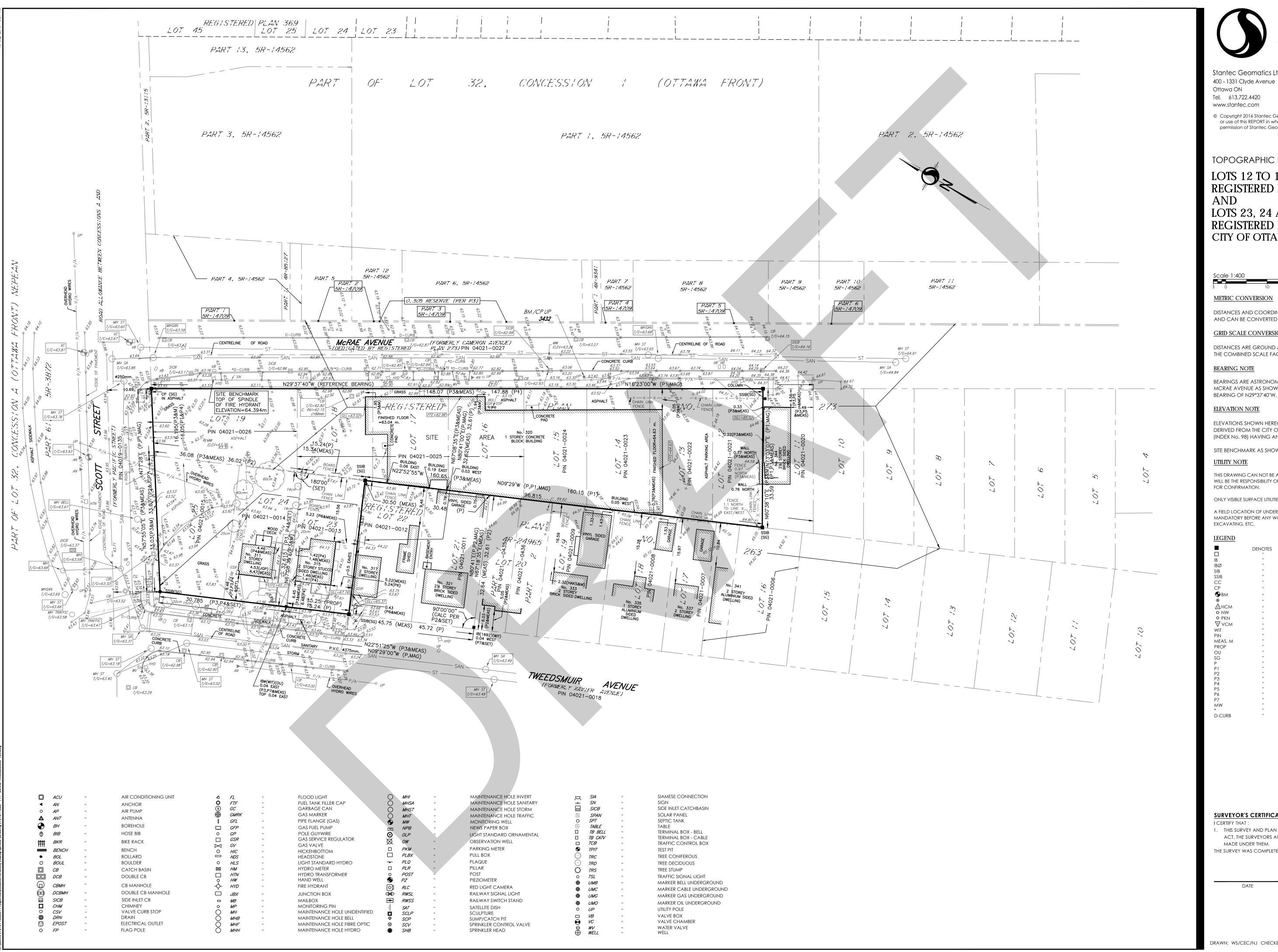
Page 9 of 10 Pinchin File: 230236.006

TABLE 9 MAXIMUM CONCENTRATIONS IN GROUNDWATER

1213763 Ontario Inc.

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Parameter	Maximum	Sample Designation	Sample Location	Sample Depth
Volatile Organic Compounds	Concentration	Sample Designation	•	(mbgs)
Acetone	75	EXMW-3	EXMW-3	4.8-7.9
Benzene	78	MW-1	MW-1	4.5-7.6
Bromodichloromethane Bromoform	<0.5 <1		All Submitted Samples All Submitted Samples	
Bromomethane	<0.5		All Submitted Samples	
Carbon Tetrachloride	<0.2		All Submitted Samples	
Chlorobenzene	<0.2		All Submitted Samples	
Chloroform	0.75	DUP-201	MW201	12.1-15.2
Dibromochloromethane 1,2-Dichlorobenzene	<0.5 <0.5		All Submitted Samples All Submitted Samples	
1,3-Dichlorobenzene	<0.5		All Submitted Samples	
1,4-Dichlorobenzene	<0.5		All Submitted Samples	
Dichlorodifluoromethane	<1		All Submitted Samples	
1,1-Dichloroethane	<0.2		All Submitted Samples	
1,2-Dichloroethane 1,1-Dichloroethylene	<0.5 <0.2		All Submitted Samples All Submitted Samples	
cis-1,2-Dichloroethylene	<0.5		All Submitted Samples	
trans-1,2-Dichloroethylene	<0.5		All Submitted Samples	
1,2-Dichloropropane	<0.2		All Submitted Samples	
1,3-Dichloropropene (Total)	<0.5	5000	All Submitted Samples	
Ethylbenzene Ethylene Dibromide	73 <0.2	DUP-3	MW-1 All Submitted Samples	4.5-7.6
Hexane	<0.2		All Submitted Samples	
Methyl Ethyl Ketone	<10		All Submitted Samples	
Methyl Isobutyl Ketone	<5		All Submitted Samples	
Methyl t-Butyl Ether (MTBE)	1.3	MW-2	MW-2	4.5-7.6
Methylene Chloride Styrene	<2 <0.5		All Submitted Samples All Submitted Samples	
1,1,1,2-Tetrachloroethane	<0.5		All Submitted Samples	
1,1,2,2-Tetrachloroethane	<0.5		All Submitted Samples	
Tetrachloroethylene	<0.2		All Submitted Samples	
Toluene	16	MW-1	MW-1	4.5-7.6
1,1,1-Trichloroethane 1,1,2-Trichloroethane	<0.2 <0.5		All Submitted Samples All Submitted Samples	
Trichloroethylene	<0.2		All Submitted Samples	
Trichlorofluoromethane	<0.5		All Submitted Samples	
Vinyl Chloride	<0.2		All Submitted Samples	
Xylenes (Total)	89	MW-1	MW-1	4.5-7.6
PHCs F1 (C ₆ - C ₁₀)	460	MW-1	MW-1	4.5-7.6
PHCs F2 (>C ₁₀ - C ₁₆)		DUP-2		
	470		MW-1	4.5-7.6
PHCs F3 (>C ₁₆ - C ₃₄) PHCs F4 (>C ₃₄ - C ₅₀)	540	DUP-3	MW-1	4.5-7.6
Polycyclic Aromatic Hydrocarbons	390	DUP-3	MW-1	4.5-7.6
Acenaphthene	0.094	DUP-2	MW-1	4.5-7.6
Acenaphthylene	<0.05	20. 2	All Submitted Samples	1.0 7.0
Anthracene	<0.05		All Submitted Samples	
Benzo(a)anthracene	<0.05		All Submitted Samples	
Benzo(a)pyrene Benzo(b)fluoranthene	<0.01 <0.05		All Submitted Samples All Submitted Samples	
Benzo(ghi)perylene	<0.05		All Submitted Samples	
Benzo(k)fluoranthene	<0.05		All Submitted Samples	
Chrysene	<0.05		All Submitted Samples	
Dibenzo(a,h)anthracene	<0.05		All Submitted Samples	
Fluoranthene Fluorene	<0.05 0.14	DUP-2	All Submitted Samples MW-1	4.5-7.6
Indeno(1,2,3-cd)pyrene	<0.05	DOI -Z	All Submitted Samples	7.0 7.0
Methylnaphthalene 2-(1-)	10	DUP-2	MW-1	4.5-7.6
Naphthalene	15	DUP-2	MW-1	4.5-7.6
Pyrene	0.054 0.053	DUP-2 MW-1	MW-1 MW-1	4.5-7.6 4.5-7.6
Pyrene Metals	0.000	IVI V V - I	IVIVV - I	4.0-7.0
Antimony	2.7	MW-4	MW-4	4.5-7.6
Arsenic	1.2	MW-1/DUP-2	MW-1	4.5-7.6
Barium	260	MW-1/DUP-2	MW-1	4.5-7.6
Beryllium Boron	<0.5 1100	MW-2	All Submitted Samples MW-2	4.5-7.6
Cadmium	0.15	EXMW-5	EXMW-5	4.0-7.1
Chromium (Total)	<5	=7.11414 O	All Submitted Samples	1.0 7.1
Chromium (Hexavalent)	<0.5		All Submitted Samples	
Cobalt	38	EXMW-2	EXMW-2	4.6-7.7
Copper Lead	6.1	MW-4	MW-4 All Submitted Samples	4.5-7.6
Lead Mercury	<0.5 0.2	EXMW-1	EXMW-1	4.6-7.7
Molybdenum	4.7	MW-5	MW202	6.0-9.1
Nickel	16	DUP-202	MW202	6.0-9.1
Selenium	2.0	MW-4	MW-4	4.5-7.6
	<0.1		All Submitted Samples	6.0-9.1
Silver		MANAGO (DI ID CCC		6 () () 7
Silver Sodium	990000	MW202/DUP-202 MW-2	MW202 MW-2	
Silver Sodium Thallium		MW202/DUP-202 MW-2 DUP-202	MW-2 MW202	4.5-7.6
Silver Sodium Thallium Uranium Vanadium Zinc	990000 0.23	MW-2	MW-2	


Units mbgs

All Units In Micrograms Per Litre Metres Below Ground Surface

Page 10 of 10 Pinchin File: 230236.006

APPENDIX A Legal Survey and Survey Data

400 - 1331 Clyde Avenue Ottawa ON Tel. 613.722.4420

© Copyright 2016 Stantec Geomatics Ltd. The reproduction, alteration or use of this REPORT in whole or in part without the express permission of Stantec Geomatics Ltd. is STRICTLY PROHIBITED.

TOPOGRAPHIC PLAN OF SURVEY

LOTS 12 TO 19 **REGISTERED PLAN 273** LOTS 23, 24 AND 25 **REGISTERED PLAN 263** CITY OF OTTAWA

DISTANCES AND COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048

GRID SCALE CONVERSION

DISTANCES ARE GROUND AND CAN BE CONVERTED TO GRID BY MULTIPLYING BY THE COMBINED SCALE FACTOR OF 0.99994.

BEARINGS ARE ASTRONOMIC AND ARE REFERRED TO THE WESTERLY LIMIT OF MCRAE AVENUE AS SHOWN ON A PLAN BY SG DATED SEPT. 29/08 HAVING A

ELEVATION NOTE

ELEVATIONS SHOWN HEREON ARE GEODETIC (CGVD-1928:1978) AND ARE DERIVED FROM THE CITY OF OTTAWA VERTICAL CONTROL MONUMENT No.N-2 (INDEX No. 98) HAVING AN ELEVATION OF 68.260 m.

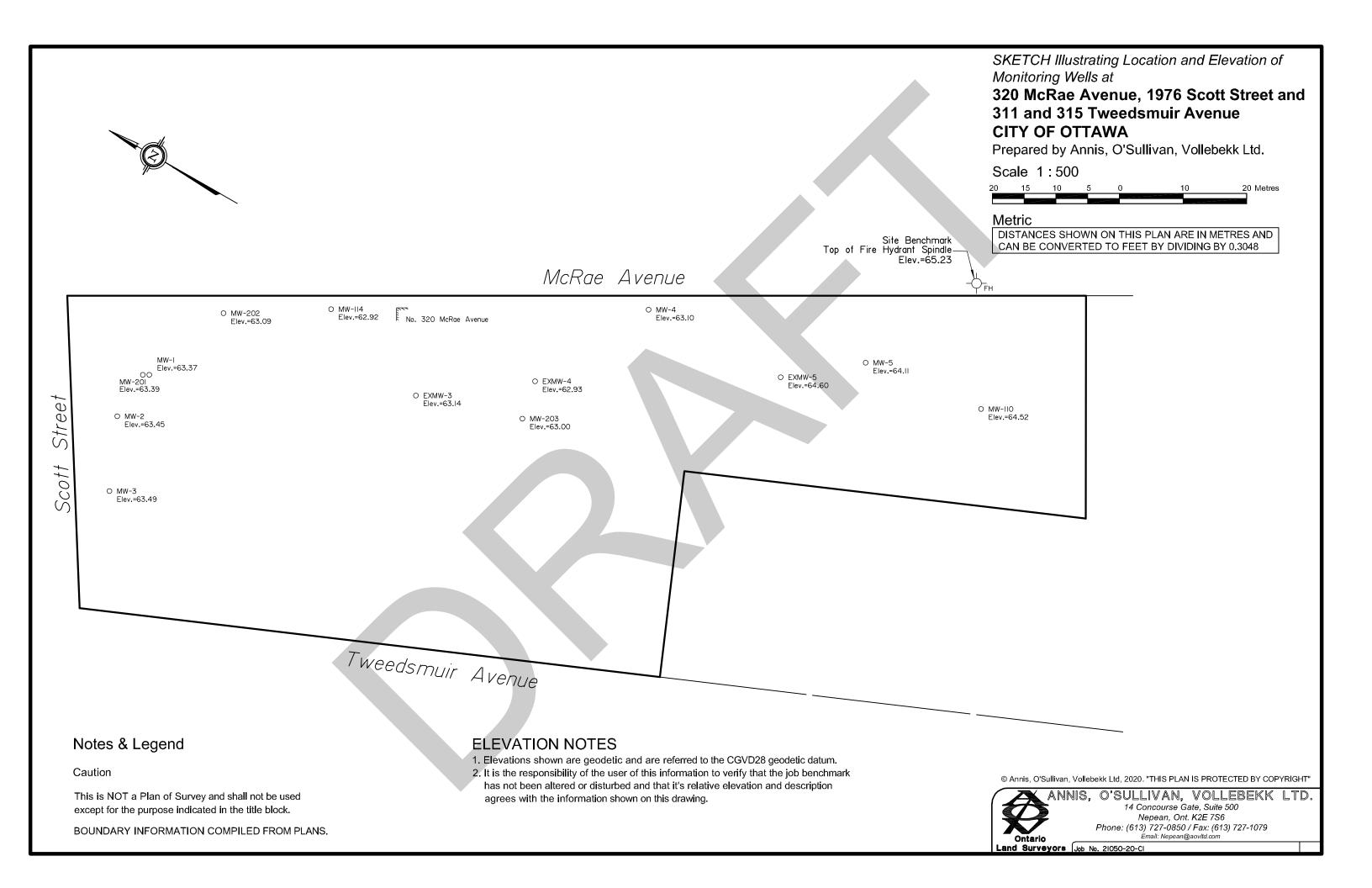
SITE BENCHMARK AS SHOWN ON THE FACE OF THE PLAN.

THIS DRAWING CAN NOT BE ACCEPTED AS ACKNOWLEDGING ALL OF THE UTILITIES AND IT WILL BE THE RESPONSIBILITY OF THE USER TO CONTACT THE RESPECTIVE UTILITY AUTHORITIES

ONLY VISIBLE SURFACE UTILITIES WERE LOCATED.

A FIELD LOCATION OF UNDERGROUND PLANT BY THE PERTINENT UTILITY AUTHORITY IS MANDATORY BEFORE ANY WORK INVOLVING BREAKING GROUND, PROBING,

IB IB IB IB IB SSIB CC CP BM IM ONW OPKN VCM WIT PIN MEAS, M PROP OU SG P P1 P2 P3 P4 P5 P6 P7 MW WW *	DENOTES " " " " " " " " " " " " " " " " " "	FOUND MONUMENTS SET MONUMENTS IRON BAR ROUND IRON BAR STANDARD IRON BAR SHORT STANDARD IRON BAR CUT CROSS CONCRETE PIN BENCHMARK CONCRETE MONUMENT HORIZONTAL CONTROL MONUMENT NAIL AND WASHER PK NAIL VERTICAL CONTROL MONUMENT WITNESS PROPERTY IDENTIFICATION NUMBER MEASURED PROPORTIONED ORIGIN UNKNOWN STANTEC GEOMATICS LTD. REGISTERED PLAN 263 REGISTERED PLAN 263 REGISTERED PLAN 273 PLAN 4R-24965 PLAN BY SG DATED SEPT. 29/08 PLAN BY 990 DATED MAY 27/66 PLAN BY 1236 REFERENCE 00-1105 PLAN BY 1475 DATED JUNE 23/14 MONITORING WELL SITE VEHICULAR ENTRANCE
*		SITE VEHICULAR ENTRANCE
D-CURB	"	DEPRESSED CURB


SURVEYOR'S CERTIFICATE

. THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT, THE SURVEYORS ACT AND THE LAND TITLES ACT AND THE REGULATIONS MADE UNDER THEM.

THE SURVEY WAS COMPLETED ON THE 3rd. DAY OF MAY, 2019.

BRIAN J. WEBSTER ONTARIO LAND SURVEYOR

DRAWN: WS/CEC/NJ CHECKED: KJ PM: KJ FIELD: WO PROJECT No.: 161614033-111

Location of Monitoring Wells at 320 McRae Avenue, Ottawa

Zone 9 MTM NAD83(original) CGVD28 Vertical Datum

	Northing	<u>Easting</u>	<u>Elevation</u>
MW-1	5028779.90	363452.20	63.37
MW-2	5028781.05	363444.02	63.45
MW-3	5028776.31	363433.17	63.49
MW-4	5028716.67	363499.91	63.10
MW-5	5028682.84	363509.56	64.11
MW-110	5028663.47	363512.21	64.52
MW-114	5028760.13	363475.32	62.92
MW-201	5028780.79	363451.67	63.39
MW-202	5028774.52	363466.39	63.09
MW-203	5028725.45	363475.23	63.00
EXMW-3	5028741.84	363470.09	63.14
EXMW-4	5028726.64	363481.30	62.93
EXMW-5	5028693.36	363500.95	64.60

October 15, 2020 Job # 21050-20

APPENDIX B-1 Previous Analytical Data

TABLE 3 pH AND GRAIN SIZE ANALYSIS FOR SOIL

The Great-West Life Assurance Company

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

			Sample Designation Sample Collection Date (dd/mm/yyyy) Sample Depth (mbgs)										
		MECP Site											
Parameter	Units	Condition Standard	MW-1 SS-2	MW-3 SS-1	BH-6 SS-2	BH-7 SS-1	BH-10 SS-1	BH-9 SS-4	MW-5 SS-2				
		Selection Criteria	01/11/2018	01/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018				
			0.8 - 1.5	0.0 - 0.8	0.8 - 1.5	0.0 - 0.8	0.0 - 0.8	2.3 - 3.3	0.8 - 1.5				
			Surface	Surface	Surface	Surface	Surface	Subsurface	Surface				
рН		Surface: 5 < pH < 9 Subsurface: 5 < pH < 11	7.85	7.73	7.91	7.58	7.72	7.92	NA				
Sieve #200 <0.075 mm	%	50%	NA	NA	NA	NA	NA	15	53				
Sieve #200 >0.075 mm	%	50%	NA	NA	NA	NA	NA	85	47				
		Grain Size Classification	NA	NA	NA	NA	NA	COARSE	MEDIUM/FINE				

Notes:

BOLD BOLD NA Environmentally Sensitive Area (Based Upon pH of Surface Soil)
Environmentally Sensitive Area (Based Upon pH of Sub-Surface Soil)
Not Analysed

mbgs Me

Metres Below Ground Surface

TABLE 5 PETROLEUM HYDROCARBON AND BTEX ANALYSIS FOR SOIL

The Great-West Life Assurance Company

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

							Sample D	esignation	$\overline{}$				
						Samp		Date (dd/mm/	yyyy)				
Parameter	MECP Table 7					-	Sample De	pth (mbgs)					
i di dilietei	Standards*	MW-1 SS-2	MW-2 SS-2	MW-3 SS-1	MW-4 SS-2	MW-5 SS-2	BH-6 SS-2	BH-7 SS-1	BH-8 SS-1	BH-9 SS-4	BH-10 SS-1	BH-11 SS-1	DUP-1
		01/11/2018	01/11/2018	01/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018
		0.8 - 1.5	0.8 - 1.5	0.0 - 0.8	0.8 - 1.1	0.8 - 1.5	0.8 - 1.5	0.0 - 0.8	0.0 - 0.8	2.3 - 3.3	0.0 - 0.8	0.0 - 0.8	0.0 - 0.8
Benzene	0.21	-	1	-	-	-	•	-	1	1	-	-	-
Toluene	2.3	-	-	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	2	-	-	-	-	-	-	-	-	-	Ţ.	-	-
Xylenes (Total)	3.1	-	-	-	-	-	-	-		-	-	-	-
Petroleum Hydrocarbons F1 (C ₆ - C ₁₀)	55	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons F2 (>C ₁₀ - C ₁₆)	98	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons F3 (>C ₁₆ - C ₃₄)	300	<50	<50	<50	110	<50	<50	400	200	<50	75	580	470
Petroleum Hydrocarbons F4 (>C ₃₄ - C ₅₀)	2800	<50	<50	68	81	<50	<50	390	190	<50	290	1100	920
Petroleum Hydrocarbons F4 Gravimetric	2800	-	-	-	-	-	-	2500	830	-	2200	3400	2900
Notes:											•		

MECP Table 7 Standards

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 7 Standards, Coarse-Textured Soils, Non-Potable Groundwater Condition, for Residential/Parkland/Institutional Property Use.

BOLD

Exceeds Site Condition Standard
Reportable Detection Limit Exceeds Site Condition Standard

All Units in μg/g mbgs

Metres Below Ground Surface

BTEX Benzene, Toluene, Ethylbenzene and Xylenes

TABLE 6

VOLATILE ORGANIC COMPOUND ANALYSIS FOR SOIL

The Great-West Life Assurance Company

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

		Sample Designation												
1														
1	MEOD T-11 -					Samp		Date (dd/mm/	Yyyy)					
Parameter	MECP Table 7					1		epth (mbgs)						
	Standards*	MW-1 SS-2	MW-2 SS-2	MW-3 SS-1	MW-4 SS-2	MW-5 SS-2	BH-6 SS-2	BH-7 SS-1	BH-8 SS-1	BH-9 SS-4	BH-10 SS-1	BH-11 SS-1	DUP-1	
		01/11/2018	01/11/2018	01/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	
		0.8 - 1.5	0.8 - 1.5	0.0 - 0.8	0.8 - 1.1	0.8 - 1.5	0.8 - 1.5	0.0 - 0.8	0.0 - 0.8	2.3 - 3.3	0.0 - 0.8	0.0 - 0.8	0.0 - 0.8	
Acetone	16	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	
Benzene	0.21	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	<0.020	<0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	
Bromodichloromethane	13	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Bromoform	0.27	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Bromomethane	0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Carbon Tetrachloride	0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Chlorobenzene	2.4	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Chloroform	0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Dibromochloromethane	9.4	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
1,2-Dichlorobenzene	3.4	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
1,3-Dichlorobenzene	4.8	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
1,4-Dichlorobenzene	0.083	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
1,1-Dichloroethane	3.5	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
1,2-Dichloroethane	0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
1,1-Dichloroethylene	0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Cis-1,2-Dichloroethylene	3.4	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Trans-1,2-Dichloroethylene	0.084	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
1,2-Dichloropropane	0.05	< 0.050	< 0.050	< 0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Cis-1,3-Dichloropropylene	NV	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	
Trans-1,3-Dichloropropylene	NV	<0.040	<0.040	< 0.040	<0.040	<0.040	<0.040	< 0.040	<0.040	<0.040	<0.040	<0.040	< 0.040	
Ethylbenzene	2	<0.020	<0.020	0.046	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	< 0.020	<0.020	<0.020	
Ethylene Dibromide	0.05	< 0.050	< 0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	< 0.050	< 0.050	
Methyl Ethyl Ketone	16	<0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
Methylene Chloride	0.1	< 0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	
Methyl Isobutyl Ketone	1.7	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	
Methyl-t-Butyl Ether	0.75	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	
Styrene	0.7	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	
1,1,1,2-Tetrachloroethane	0.058	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	<0.050	<0.050	
1,1,2,2-Tetrachloroethane	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
Toluene	2.3	<0.020	0.050	0.053	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	
Tetrachloroethylene	0.28	<0.050	<0.050	<0.050	<0.050		<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
1,1,1-Trichloroethane	0.38 0.05	<0.050	<0.050	<0.050	<0.050 <0.050	<0.050 <0.050	<0.050	<0.050	<0.050	<0.050 <0.050	<0.050	<0.050	<0.050 <0.050	
1,1,2-Trichloroethane Trichloroethylene	0.05	<0.050 <0.050	<0.050	<0.050	<0.050	<0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	
Vinyl Chloride	0.061	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
,	0.02 NV	<0.020	0.020	0.020	<0.020	<0.020	<0.020	<0.020	<0.020 0.027	<0.020	<0.020	<0.020	<0.020	
m-Xylene & p-Xylene	NV NV		<0.047	0.22		<0.020	<0.020		<0.027	<0.020	<0.020	<0.020	<0.020	
o-Xylene	3.1	<0.020	0.020	0.074	<0.020 <0.020	<0.020	<0.020	<0.020 <0.020	<0.020 0.027	<0.020	<0.020	<0.020	<0.020	
Total Xylenes Dichlorodifluoromethane	3.1	<0.020 <0.050	<0.050	<0.050	<0.020	<0.020	<0.020	<0.020	<0.050	<0.020	<0.020	<0.020	<0.020	
Dioxane. 1.4-	1.8	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
Hexane(n)	2.8	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
Trichlorofluoromethane	4	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
1,3-Dichloropropene (cis + trans)	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
Notes:	0.03	<0.000	<0.050	<0.000	<0.000	<0.000	<0.000	<0.000	<0.000	<0.000	<0.000	<0.000	<0.000	

MECP Table 7 Standards Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 7 Standards, Coarse-Textured Soils, Non-Potable Groundwater Condition, for Residential/Parkland/Institutional Property Use.

Exceeds Site Condition Standard
Reportable Detection Limit Exceeds Site Condition Standard

Units All Units in µg/g
mbgs Metres Below Ground Surface

TABLE 7 POLYCYCLIC AROMATIC HYDROCARBON ANALYSIS FOR SOIL

The Great-West Life Assurance Company

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

							Sample De	esignation					
						Samp	ole Collection	Date (dd/mm/	yyyy)				
Parameter	MECP Table 7					-	Sample De	epth (mbgs)					
Faranielei	Standards*	MW-1 SS-2	MW-2 SS-2	MW-3 SS-1	MW-4 SS-2	MW-5 SS-2	BH-6 SS-2	BH-7 SS-1	BH-8 SS-1	BH-9 SS-4	BH-10 SS-1	BH-11 SS-1	DUP-1
		01/11/2018	01/11/2018	01/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018	02/11/2018
		0.8 - 1.5	0.8 - 1.5	0.0 - 0.8	0.8 - 1.1	0.8 - 1.5	0.8 - 1.5	0.0 - 0.8	0.0 - 0.8	2.3 - 3.3	0.0 - 0.8	0.0 - 0.8	0.0 - 0.8
Acenaphthene	7.9	< 0.0050	< 0.0050	< 0.0050	0.026	0.010	< 0.0050	0.014	0.0082	< 0.0050	0.0076	0.028	0.010
Acenaphthylene	0.15	< 0.0050	< 0.0050	0.0062	0.022	0.018	< 0.0050	0.010	0.020	< 0.0050	0.0075	< 0.0050	< 0.0050
Anthracene	0.67	< 0.0050	< 0.0050	< 0.0050	0.046	0.033	< 0.0050	0.021	0.027	< 0.0050	0.015	0.053	0.019
Benzo(a)anthracene	0.5	0.010	< 0.0050	0.026	0.28	0.093	< 0.0050	0.16	0.29	< 0.0050	0.10	0.20	0.085
Benzo(a)pyrene	0.3	0.015	< 0.0050	0.030	0.28	0.11	< 0.0050	0.15	0.28	< 0.0050	0.093	0.15	0.073
Benzo(b)fluoranthene	0.78	0.024	0.010	0.044	0.33	0.15	< 0.0050	0.18	0.32	< 0.0050	0.12	0.19	0.094
Benzo(ghi)perylene	6.6	0.018	0.0081	0.028	0.25	0.10	< 0.0050	0.12	0.17	< 0.0050	0.074	0.11	0.068
Benzo(k)fluoranthene	0.78	0.0076	< 0.0050	0.016	0.12	0.053	< 0.0050	0.070	0.12	< 0.0050	0.045	0.072	0.036
Chrysene	7	0.016	0.0076	0.035	0.30	0.10	< 0.0050	0.17	0.24	< 0.0050	0.10	0.21	0.099
Dibenzo(a,h)anthracene	0.1	0.0057	< 0.0050	0.0071	0.076	0.028	< 0.0050	0.041	0.065	< 0.0050	0.027	0.031	0.020
Fluoranthene	0.69	0.019	0.0065	0.055	0.52	0.19	< 0.0050	0.45	0.53	< 0.0050	0.22	0.58	0.25
Fluorene	62	< 0.0050	< 0.0050	< 0.0050	0.034	0.016	< 0.0050	0.030	0.029	< 0.0050	0.023	0.041	0.030
Indeno(1,2,3-cd)pyrene	0.38	0.013	< 0.0050	0.025	0.23	0.093	< 0.0050	0.12	0.19	< 0.0050	0.079	0.11	0.063
Methylnaphthalene 2-(1-)	0.99	< 0.014	< 0.014	< 0.014	0.049	< 0.014	< 0.014	0.039	0.035	< 0.014	0.034	0.032	0.033
Naphthalene	0.6	< 0.0050	< 0.0050	< 0.0050	0.013	< 0.0050	< 0.0050	0.012	0.011	< 0.0050	0.0086	0.0065	0.0078
Phenanthrene	6.2	0.015	0.0084	0.020	0.20	0.11	< 0.0050	0.17	0.12	< 0.0050	0.096	0.31	0.14
Pyrene	78	0.018	0.0055	0.048	0.45	0.15	< 0.0050	0.33	0.47	< 0.0050	0.18	0.41	0.18

Notes:

MECP Table 7 Standards

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011. Table 7 Standards, Coarse-Textured Soils, Non-Potable Groundwater Condition, for Residential/Parkland/Institutional Property Use.

Exceeds Site Condition Standard Reportable Detection Limit Exceeds Site Condition Standard All Units in $\mu g/g$

Metres Below Ground Surface

TABLE 8 METALS ANALYSIS FOR SOIL

The Great-West Life Assurance Company

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

							esignation	, ,				
MECD Table 7					Samp		Date (dd/mm/	(YYYY)				
		1	1	1	1					1		1
Standards*												DUP-1
												02/11/2018
		0.8 - 1.5	0.0 - 0.8	0.8 - 1.1	0.8 - 1.5					0.0 - 0.8	0.0 - 0.8	0.0 - 0.8
7.5		<0.20	-	43	0.41		_	6.4	<0.20	2.6	<0.20	<0.20
18			-	64	2.9	<1.0		11	<1.0	9.0	1.7	1.5
390	260	190	-	460	140	86	390	260	36	280	290	280
4	0.32	0.33	-	0.75	0.54	0.24	0.40	0.46	<0.20	0.78	0.36	0.36
1.5	0.55	0.22	-	1.8	0.93	0.19	1.7	3.9	0.071	0.77	0.25	0.23
1.2	< 0.10	< 0.10	-	8.7	0.17	<0.10	0.71	1.7	<0.10	0.58	0.11	< 0.10
160	17	12	-	45	21	13	15	25	9.5	19	13	18
8	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
22	4.5	8.0	-	20	8.7	4.4	6.2	8.4	4.3	8.0	6.0	7.7
140	11	16	-	310	16	8.4	28	60	10	37	9.4	12
120	16	15	-	15000	40	6.8	190	870	4.4	180	17	17
0.27	< 0.050	< 0.050	-	1.0	0.088	<0.050	0.13	0.47	< 0.050	0.097	< 0.050	< 0.050
6.9	1.2	2.6	-	3.9	0.90	<0.50	0.83	1.9	< 0.50	1.3	0.88	0.80
100	10	14	-	77	16	7.9	16	22	7.0	14	12	16
2.4	< 0.50	< 0.50	-	1.1	<0.50	<0.50	< 0.50	1.1	< 0.50	1.5	< 0.50	< 0.50
20	< 0.20	<0.20	-	1.6	0.21	<0.20	<0.20	1.3	<0.20	0.34	<0.20	< 0.20
1	0.11	0.22		0.64	0.20	0.083	0.18	0.21	< 0.050	0.18	0.21	0.23
86	22	16	-	37	31	24	21	27	23	28	18	20
340	25	24	-	4200	51	19	140	590	20	250	23	24
NV	7.85	-	7.73	-	-	7.91	7.58	-	7.92	7.72	-	-
0.7	-	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	-	-
0.051	-	-	-/	-	1	-	-	-	-	-	-	-
NV	-	-	-	-	-	-	-	-	-	-	-	-
120	13	9.5	-	20	11	5.2	13	19	<5.0	10	8.7	9.6
23	0.42	0.58	-	1.7	0.59	0.47	0.49	1.3	0.55	0.62	0.39	0.39
	390 4 1.5 1.2 160 8 22 140 120 0.27 6.9 100 2.4 20 1 86 340 NV 0.7 5 0.051 NV 120	Standards* MW-1 SS-2 01/11/2018 0.8 - 1.5 7.5 <0.20	Standards* MW-1 SS-2 MW-2 SS-2 01/11/2018 01/11/2018 0.8 - 1.5 0.8 - 1.5 0.8 - 1.5 0.8 - 1.5 0.8 - 1.5 0.8 - 1.5 0.8 - 1.5 0.8 - 1.5 0.8 - 1.5 0.8 - 1.5 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.22 0.20 0.22 0.22 0.20 0.10 0.10 1.0 1.6 1.6 1.5 0.02 0.22 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.2 0.2	Standards* MW-1 SS-2 MW-3 SS-1 MW-3 SS-1 O1/11/2018 O1/11/2019 O1/11	Standards* MW-1 SS-2 MW-3 SS-1 MW-4 SS-2 O1/11/2018 O1/11/2018 O1/11/2018 O2/11/2018 O2/11	MECP Table 7 Standards* MW-1 SS-2 01/11/2018 MW-2 SS-2 01/11/2018 MW-3 SS-1 01/11/2018 MW-4 SS-2 01/11/2018 MW-5 SS-2 02/11/2018 7.5 <0.20 0.8 - 1.5 0.8 - 1.5 0.8 - 1.5 0.0 - 0.8 0.8 - 1.1 0.8 - 1.1 0.8 - 1.5 0.8 - 1.1 0.8 - 1.1 0.8 - 1.5 0.8 - 1.1 0.8 - 1.1 0.8 - 1.1 0.8 - 1.1 0.5 0 0.8 - 1.1 0.4 1 0.8 - 1.1 0.4 1 0.8 - 1.1 0.4 1 0.8 - 1.1 0.4 1 0.4 1 0.4 1 0.4 1 0.4 1 0.4 1 0.2 1 0.4 1 0.2 1 0.5 4 0.4 1 0.9 0.1 0.1 1 0.6 1 0.2 1 0.0 0.2 1 0.0 0.2 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	MECP Table 7 Standards* Sample De Sample De Standards* MW-1 SS-2 MW-2 SS-2 MW-3 SS-1 MW-4 SS-2 MW-5 SS-2 BH-6 SS-2 O1/11/2018 O1/11/2018 O1/11/2018 O2/11/2018 O2/1	MECP Table 7 Standards* MW-1 SS-2 MW-2 SS-2 MW-3 SS-1 MW-4 SS-2 MW-5 SS-2 BH-6 SS-2 BH-7 SS-1 01/11/2018 01/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018 02/11/2018	MECP Table 7 Standards* MW-1 SS-2 MW-2 SS-2 MW-3 SS-1 MW-4 SS-2 MW-5 SS-2 BH-6 SS-2 BH-7 SS-1 BH-8 SS-1 01/11/2018 01/11/2018 02/11/201	MECP Table 7 Standards* Standards* MW-1 SS-2 MW-3 SS-1 MW-4 SS-2 MW-5 SS-2 BH-6 SS-2 BH-7 SS-1 BH-8 SS-1 BH-9 SS-4 O1/11/2018 O1/11/2018 O1/11/2018 O2/11/2018 O2/11/201	Mac Standards	Standards

Notes:

MECP Table 7 Standards

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 7 Standards, Coarse-Textured Soils, Non-Potable Groundwater Condition, for Residential/Parkland/Institutional Property Use.

BOLD BOLD Units mbgs

Exceeds Site Condition Standard Reportable Detection Limit Exceeds Site Condition Standard All Units in yelf Metres Below Ground Surface

Not Applicable

TABLE 9 PETROLEUM HYDROCARBON AND BTEX ANALYSIS FOR GROUNDWATER

The Great-West Life Assurance Company
320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

		Sample Designation												
						-								
Parameter	MECP Table 7		Sample Collection Date (dd/mm/yyyy)											
i di dilletei	Standards*	EXMW-1	MW-1	DUP-2	EXMW-2	MW-2	EXMW-3	MW-4	EXMW-4	MW-5	EXMW-5			
		13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018			
Benzene	0.5	-	-		-	-	-	-	-	-	-			
Toluene	320	-	-			-	-	-	-	-	-			
Ethylbenzene	54	-	-		-	-	<u> </u>	-	-	-	-			
Xylenes (Total)	72	-	-		-	-	-	-	-	-	-			
Petroleum Hydrocarbons F1 (C ₆ - C ₁₀)	420	<25	460	390	<25	<25	<25	<25	<25	<25	<25			
Petroleum Hydrocarbons F2 (>C ₁₀ - C ₁₆)	150	<100	380	470	<100	<100	<100	<100	<100	<100	<100			
Petroleum Hydrocarbons F3 (>C ₁₆ - C ₃₄)	500	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200			
Petroleum Hydrocarbons F4 (>C ₃₄ - C ₅₀)	500	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200			

Notes:

MECP Table 7 Standards

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 7 Standards, Coarse-Textured Soils, Non-Potable Groundwater Condition, for All Types of Property Use.

BOLD BOLD Units Exceeds Site Condition Standard
Reportable Detection Limit Exceeds Site Condition Standard

. All Units in μg/L

BTEX

Benzene, Toluene, Ethylbenzene and Xylenes

TABLE 10 VOLATILE ORGANIC COMPOUND ANALYSIS FOR GROUNDWATER

The Great-West Life Assurance Company
320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontário

						Sai	nple Designat	tion				
Parameter	MECP Table 7					Sample Coll	ection Date (c	ld/mm/yyyy)				
Farameter	Standards*	Trip Blank	EXMW-1	MW-1	DUP-2	EXMW-2	MW-2	EXMW-3	MW-4	EXMW-4	MW-5	EXMW-5
		13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018
Acetone	100000	<10	<10	<10	<10	<10	12	75	<10	40	<10	34
Benzene	0.5	<0.20	<0.20	78	68	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	67000	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50
Bromoform	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	0.89	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Carbon Tetrachloride	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chlorobenzene	140	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20	<0.20	< 0.20	< 0.20
Chloroform	2	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.28	<0.20	< 0.20	< 0.20
Dibromochloromethane	65000	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
1,2-Dichlorobenzene	150	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
1.3-Dichlorobenzene	7600	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
1,4-Dichlorobenzene	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
1,1-Dichloroethane	11	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
1,2-Dichloroethane	0.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
1,1-Dichloroethylene	0.5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Cis-1,2-Dichloroethylene	1.6	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50
Trans-1,2-Dichloroethylene	1.6	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
1,2-Dichloropropane	0.58	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Cis-1,3-Dichloropropylene	NV	< 0.30	<0.30	<0.30	< 0.30	<0.30	< 0.30	< 0.30	<0.30	<0.30	< 0.30	< 0.30
Trans-1,3-Dichloropropylene	NV	< 0.40	< 0.40	<0.40	<0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Ethylbenzene	54	< 0.20	< 0.20	37	30	<0.20	<0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Ethylene Dibromide	0.2	< 0.20	< 0.20	<0.20	< 0.20	<0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Methyl Ethyl Ketone	21000	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Methylene Chloride	26	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Methyl Isobutyl Ketone	5200	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	< 5.0
Methyl-t-Butyl Ether	15	< 0.50	< 0.50	1.2	1.2	< 0.50	1.3	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Styrene	43	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
1,1,1,2-Tetrachloroethane	1.1	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
1,1,2,2-Tetrachloroethane	0.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Toluene	320	< 0.20	< 0.20	16	14	< 0.20	< 0.20	< 0.20	< 0.20	0.31	< 0.20	0.30
Tetrachloroethylene	0.5	< 0.20	<0.20	< 0.20	< 0.20	<0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
1,1,1-Trichloroethane	23	< 0.20	<0.20	<0.20	<0.20	<0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
1,1,2-Trichloroethane	0.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Trichloroethylene	0.5	< 0.20	<0.20	< 0.20	<0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20	< 0.20
Vinyl Chloride	0.5	< 0.20	<0.20	< 0.20	<0.20	<0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20	< 0.20
m-Xylene & p-Xylene	NV	<0.20	<0.20	68	58	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	< 0.20
o-Xylene	NV	<0.20	<0.20	20	18	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	< 0.20
Total Xylenes	72	<0.20	<0.20	89	75	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dichlorodifluoromethane	3500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexane(n)	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	2000	< 0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
1,3-Dichloropropene (cis + trans)	0.5	< 0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Notes:								1				

MECP Table 7 Standards Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 7 Standards, Coarse-Textured Soils, Non-Potable Groundwater Condition, for All Types of Property Use.

BOLD BOLD Exceeds Site Condition Standard Reportable Detection Limit Exceeds Site Condition Standard All Units in $\mu g/L$

TABLE 11 POLYCYCLIC AROMATIC HYDROCARBON ANALYSIS FOR GROUNDWATER

The Great-West Life Assurance Company

320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

						Comple D	oolonotion				
	MECP Table 7						esignation				
Parameter					Samp	ole Collection	Date (dd/mm/	уууу)			
	Standards*	EXMW-1	MW-1	DUP-2	EXMW-2	MW-2	EXMW-3	MW-4	EXMW-4	MW-5	EXMW-5
		13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018
Acenaphthene	17	< 0.050	0.076	0.094	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Acenaphthylene	1	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Anthracene	1	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Benzo(a)anthracene	1.8	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Benzo(a)pyrene	0.81	< 0.010	< 0.010	< 0.010	< 0.010	<0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Benzo(b)fluoranthene	0.75	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Benzo(ghi)perylene	0.2	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Benzo(k)fluoranthene	0.4	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Chrysene	0.7	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Dibenzo(a,h)anthracene	0.4	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Fluoranthene	44	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Fluorene	290	< 0.050	0.11	0.14	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Indeno(1,2,3-cd)pyrene	0.2	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Methylnaphthalene 2-(1-)	1500	< 0.071	7.6	10	< 0.071	< 0.071	< 0.071	< 0.071	< 0.071	< 0.071	< 0.071
Naphthalene	7	< 0.050	11	15	<0.050	< 0.050	< 0.050	< 0.050	0.089	< 0.050	< 0.050
Phenanthrene	380	< 0.030	0.043	0.054	<0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030
Pyrene	5.7	< 0.050	0.053	0.051	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Netes.											

Notes:

MECP Table 7 Standards

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 7 Standards, Coarse-Textured Soils, Non-Potable Groundwater Condition, for All Types of Property Use.

BOLD BOLD Exceeds Site Condition Standard Reportable Detection Limit Exceeds Site Condition Standard All Units in $\mu g/L$

TABLE 12 METALS ANALYSIS FOR GROUNDWATER

The Great-West Life Assurance Company
320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

		Sample Designation											
Parameter	MECP Table 7				Samp	le Collection	Date (dd/mm/	yyyy)					
Farameter	Standards*	EXMW-1	MW-1	DUP-2	EXMW-2	MW-2	EXMW-3	MW-4	EXMW-4	MW-5	EXMW-5		
		13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018	13/11/2018		
Antimony	16000	0.82	< 0.50	< 0.50	< 0.50	0.61	<0.50	2.7	<0.50	<0.50	0.51		
Arsenic	1500	<1.0	1.2	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
Barium	23000	120	260	260	130	160	200	74	230	110	160		
Beryllium	53	< 0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
Boron	36000	140	280	290	260	1100	280	210	98	280	230		
Cadmium	2.1	<0.10	< 0.10	< 0.10	< 0.10	<0.10	<0.10	< 0.10	<0.10	< 0.10	0.15		
Chromium	640	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	< 5.0	< 5.0		
Chromium VI	110	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
Cobalt	52	< 0.50	3.9	4.1	38	3.3	< 0.50	1.1	< 0.50	1.9	5.9		
Copper	69	3.7	<1.0	<1.0	5.4	1.9	<1.0	6.1	<1.0	2.4	2.3		
Lead	20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
Mercury	0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
Molybdenum	7300	3.5	1.2	1.2	2.0	4.6	< 0.50	3.5	0.63	4.7	1.4		
Nickel	390	3.6	8.6	8.8	6.2	12	1.2	6.0	<1.0	12	8.2		
Selenium	50	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	<2.0	<2.0	<2.0		
Sodium	1800000	570000	720000	700000	680000	630000	230000	190000	62000	370000	170000		
Silver	1.2	< 0.10	< 0.10	< 0.10	<0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Thallium	400	0.098	< 0.050	< 0.050	< 0.050	0.23	< 0.050	< 0.050	< 0.050	0.068	0.072		
Uranium	330	2.2	0.78	0.81	2.5	3.5	0.51	4	< 0.10	3.6	1.0		
Vanadium	200	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.76	< 0.50	< 0.50	< 0.50		
Zinc	890	31	<5.0	<5.0	16	< 5.0	<5.0	<5.0	<5.0	< 5.0	26		

Notes:

MECP Table 7 Standards

Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, Table 7 Standards, Coarse-Textured Soils, Non-Potable Groundwater Condition, for All Types of Property Use.

BOLD BOLD Exceeds Site Condition Standard Reportable Detection Limit Exceeds Site Condition Standard All Units in $\mu g/L$

Pinchin File: 230236.002

Your Project #: 230236.002 Your C.O.C. #: 102884

Attention: Mike Kosiw

Pinchin Ltd
Ottawa
1 Hines Road
Suite 200
Kanata, ON
CANADA K2K 3C7

Report Date: 2018/11/13

Report #: R5482222 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8T5024 Received: 2018/11/05, 15:30

Sample Matrix: Soil # Samples Received: 12

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum	12	N/A	2018/11/09	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron (1)	1	2018/11/07	2018/11/08	CAM SOP-00408	R153 Ana. Prot. 2011
Hot Water Extractable Boron (1)	10	2018/11/08	2018/11/08	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum	12	N/A	2018/11/08	OTT SOP-00002	EPA 8260C m
Hexavalent Chromium in Soil by IC (1, 2)	11	2018/11/07	2018/11/08	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydrocarbons F2-F4 in Soil (3)	12	2018/11/06	2018/11/09	OTT SOP-00001	CCME CWS
F4G (CCME Hydrocarbons Gravimetric)	5	2018/11/12	2018/11/13	OTT SOP-00001	CCME CWS
Strong Acid Leachable Metals by ICPMS (1)	11	2018/11/09	2018/11/09	CAM SOP-00447	EPA 6020B m
Moisture	12	N/A	2018/11/07	CAM SOP-00445	McKeague 2nd ed 1978
PAH Compounds in Soil by GC/MS (SIM)	6	2018/11/06	2018/11/06	OTT SOP-00011	EPA 8270D m
PAH Compounds in Soil by GC/MS (SIM)	1	2018/11/06	2018/11/07	OTT SOP-00011	EPA 8270D m
PAH Compounds in Soil by GC/MS (SIM)	5	2018/11/06	2018/11/08	OTT SOP-00011	EPA 8270D m
pH CaCl2 EXTRACT (1)	6	2018/11/08	2018/11/08	CAM SOP-00413	EPA 9045 D m
Sieve, 75um (1)	2	N/A	2018/11/09	CAM SOP-00467	Carter 2nd ed m
Volatile Organic Compounds and F1 PHCs	12	N/A	2018/11/07	OTT SOP-00002	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Your Project #: 230236.002 Your C.O.C. #: 102884

Attention: Mike Kosiw

Pinchin Ltd
Ottawa
1 Hines Road
Suite 200
Kanata, ON
CANADA K2K 3C7

Report Date: 2018/11/13

Report #: R5482222 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8T5024 Received: 2018/11/05, 15:30

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Analytics Mississauga
- (2) Soils are reported on a dry weight basis unless otherwise specified.
- (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Alisha Williamson, Project Manager Email: AWilliamson@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Pinchin Ltd

Client Project #: 230236.002 Sampler Initials: MK

O.REG 153 METALS PACKAGE (SOIL)

Maxxam ID		IFH143	IFH144		IFH146		IFH147	IFH148		
Sampling Date		2018/11/01	2018/11/01		2018/11/02		2018/11/02	2018/11/02		
COC Number		102884	102884		102884		102884	102884		
	UNITS	MW-1 SS-2	MW-2 SS-2	RDL	MW-4 SS-2	RDL	MW-5 \$S-2	BH-6 SS-2	RDL	QC Batch
Inorganics										
Chromium (VI)	ug/g	<0.2	<0.2	0.2	<0.2	0.2	<0.2	<0.2	0.2	5825517
Metals				•					•	•
Hot Water Ext. Boron (B)	ug/g	0.55	0.22	0.050	1.8	0.050	0.93	0.19	0.050	5827292
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	0.20	43	0.20	0.41	<0.20	0.20	5829447
Acid Extractable Arsenic (As)	ug/g	1.5	4.3	1.0	64	1.0	2.9	<1.0	1.0	5829447
Acid Extractable Barium (Ba)	ug/g	260	190	0.50	460	0.50	140	86	0.50	5829447
Acid Extractable Beryllium (Be)	ug/g	0.32	0.33	0.20	0.75	0.20	0.54	0.24	0.20	5829447
Acid Extractable Boron (B)	ug/g	13	9.5	5.0	20	5.0	11	5.2	5.0	5829447
Acid Extractable Cadmium (Cd)	ug/g	<0.10	<0.10	0.10	8.7	0.10	0.17	<0.10	0.10	5829447
Acid Extractable Chromium (Cr)	ug/g	17	12	1.0	45	1.0	21	13	1.0	5829447
Acid Extractable Cobalt (Co)	ug/g	4.5	8.0	0.10	20	0.10	8.7	4.4	0.10	5829447
Acid Extractable Copper (Cu)	ug/g	11	16	0.50	310	0.50	16	8.4	0.50	5829447
Acid Extractable Lead (Pb)	ug/g	16	15	1.0	15000	5.0	40	6.8	1.0	5829447
Acid Extractable Molybdenum (Mo)	ug/g	1.2	2.6	0.50	3.9	0.50	0.90	<0.50	0.50	5829447
Acid Extractable Nickel (Ni)	ug/g	10	14	0.50	77	0.50	16	7.9	0.50	5829447
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	0.50	1.1	0.50	<0.50	<0.50	0.50	5829447
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	0.20	1.6	0.20	0.21	<0.20	0.20	5829447
Acid Extractable Thallium (Tl)	ug/g	0.11	0.22	0.050	0.64	0.050	0.20	0.083	0.050	5829447
Acid Extractable Uranium (U)	ug/g	0.42	0.58	0.050	1.7	0.050	0.59	0.47	0.050	5829447
Acid Extractable Vanadium (V)	ug/g	22	16	5.0	37	5.0	31	24	5.0	5829447
Acid Extractable Zinc (Zn)	ug/g	25	24	5.0	4200	25	51	19	5.0	5829447
Acid Extractable Mercury (Hg)	ug/g	<0.050	<0.050	0.050	1.0	0.050	0.088	<0.050	0.050	5829447
RDL = Reportable Detection Limit						•				•

RDL = Reportable Detection Limit

Pinchin Ltd

Client Project #: 230236.002 Sampler Initials: MK

O.REG 153 METALS PACKAGE (SOIL)

Sampling Date			1			IFH150			IFH151		
Jamping Date		2018/11/02	2018/11/02			2018/11/02			2018/11/02		
COC Number		102884	102884			102884			102884		
	UNITS	BH-7 SS-1	BH-8 SS-1	RDL	QC Batch	BH-8 SS-1 Lab-Dup	RDL	QC Batch	BH-9 SS-4	RDL	QC Batch
Inorganics											
Chromium (VI)	ug/g	<0.2	<0.2	0.2	5825517				<0.2	0.2	5825517
Metals											
Hot Water Ext. Boron (B)	ug/g	1.7	3.9	0.050	5827292				0.071	0.050	5827292
Acid Extractable Antimony (Sb)	ug/g	3.1	6.4	0.20	5829447	7.4	0.20	5829447	<0.20	0.20	5829447
Acid Extractable Arsenic (As)	ug/g	4.5	11	1.0	5829447	10	1.0	5829447	<1.0	1.0	5829447
Acid Extractable Barium (Ba)	ug/g	390	260	0.50	5829447	270	0.50	5829447	36	0.50	5829447
Acid Extractable Beryllium (Be)	ug/g	0.40	0.46	0.20	5829447	0.46	0.20	5829447	<0.20	0.20	5829447
Acid Extractable Boron (B)	ug/g	13	19	5.0	5829447	19	5.0	5829447	<5.0	5.0	5829447
Acid Extractable Cadmium (Cd)	ug/g	0.71	1.7	0.10	5829447	1.6	0.10	5829447	<0.10	0.10	5829447
Acid Extractable Chromium (Cr)	ug/g	15	25	1.0	5829447	26	1.0	5829447	9.5	1.0	5829447
Acid Extractable Cobalt (Co)	ug/g	6.2	8.4	0.10	5829447	8.5	0.10	5829447	4.3	0.10	5829447
Acid Extractable Copper (Cu)	ug/g	28	60	0.50	5829447	65	0.50	5829447	10	0.50	5829447
Acid Extractable Lead (Pb)	ug/g	190	870	1.0	5829447	990	1.0	5829447	4.4	1.0	5829447
Acid Extractable Molybdenum (Mo)	ug/g	0.83	1.9	0.50	5829447	1.8	0.50	5829447	<0.50	0.50	5829447
Acid Extractable Nickel (Ni)	ug/g	16	22	0.50	5829447	22	0.50	5829447	7.0	0.50	5829447
Acid Extractable Selenium (Se)	ug/g	<0.50	1.1	0.50	5829447	1.1	0.50	5829447	<0.50	0.50	5829447
Acid Extractable Silver (Ag)	ug/g	<0.20	1.3	0.20	5829447	1.5	0.20	5829447	<0.20	0.20	5829447
Acid Extractable Thallium (TI)	ug/g	0.18	0.21	0.050	5829447	0.20	0.050	5829447	<0.050	0.050	5829447
Acid Extractable Uranium (U)	ug/g	0.49	1.3	0.050	5829447	1.4	0.050	5829447	0.55	0.050	5829447
Acid Extractable Vanadium (V)	ug/g	21	27	5.0	5829447	28	5.0	5829447	23	5.0	5829447
Acid Extractable Zinc (Zn)	ug/g	140	590	5.0	5829447	580	5.0	5829447	20	5.0	5829447
Acid Extractable Mercury (Hg)	ug/g	0.13	0.47	0.050	5829447	0.48	0.050	5829447	<0.050	0.050	5829447

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Pinchin Ltd

Client Project #: 230236.002 Sampler Initials: MK

O.REG 153 METALS PACKAGE (SOIL)

	IFH151			IFH152	IFH153	IFH154		
	2018/11/02			2018/11/02	2018/11/02	2018/11/02		
	102884			102884	102884	102884		
UNITS	BH-9 SS-4 Lab-Dup	RDL	QC Batch	BH-10 SS-1	BH-11 SS-1	DUP-1	RDL	QC Batch
ug/g	<0.2	0.2	5825517	<0.2	<0.2	<0.2	0.2	5825517
ug/g				0.77	0.25	0.23	0.050	5827292
ug/g				2.6	<0.20	<0.20	0.20	5829447
ug/g				9.0	1.7	1.5	1.0	5829447
ug/g				280	290	280	0.50	5829447
ug/g				0.78	0.36	0.36	0.20	5829447
ug/g				10	8.7	9.6	5.0	5829447
ug/g				0.58	0.11	<0.10	0.10	5829447
ug/g				19	13	18	1.0	5829447
ug/g				8.0	6.0	7.7	0.10	5829447
ug/g				37	9.4	12	0.50	5829447
ug/g				180	17	17	1.0	5829447
ug/g				1.3	0.88	0.80	0.50	5829447
ug/g				14	12	16	0.50	5829447
ug/g				1.5	<0.50	<0.50	0.50	5829447
ug/g				0.34	<0.20	<0.20	0.20	5829447
ug/g				0.18	0.21	0.23	0.050	5829447
ug/g				0.62	0.39	0.39	0.050	5829447
ug/g				28	18	20	5.0	5829447
ug/g				250	23	24	5.0	5829447
ug/g				0.097	<0.050	<0.050	0.050	5829447
	ug/g ug/g ug/g ug/g ug/g ug/g ug/g ug/g	2018/11/02 102884 UNITS BH-9 SS-4 Lab-Dup ug/g <0.2 ug/g ug/g	2018/11/02 102884	2018/11/02	2018/11/02 2018/11/02 102884 102884 102884	2018/11/02 2018/11/02 2018/11/02 102884	2018/11/02 2018/11/02 2018/11/02 2018/11/02 102884 10284 102844 1028	2018/11/02 2018/11/02 2018/11/02 2018/11/02 102884 102844 102

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

O.REG 153 PAHS (SOIL)

Maxxam ID		IFH143	IFH144	IFH145	IFH146	IFH147	IFH148		
Sampling Date		2018/11/01	2018/11/01	2018/11/01	2018/11/02	2018/11/02	2018/11/02		
COC Number		102884	102884	102884	102884	102884	102884		
	UNITS	MW-1 SS-2	MW-2 SS-2	MW-3 SS-1	MW-4 SS-2	MW-5 SS-2	BH-6 SS-2	RDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/g	<0.014	<0.014	<0.014	0.049	<0.014	<0.014	0.014	5822328
Polyaromatic Hydrocarbons									
Acenaphthene	ug/g	<0.0050	<0.0050	<0.0050	0.026	0.010	<0.0050	0.0050	5822450
Acenaphthylene	ug/g	<0.0050	<0.0050	0.0062	0.022	0.018	<0.0050	0.0050	5822450
Anthracene	ug/g	<0.0050	<0.0050	<0.0050	0.046	0.033	<0.0050	0.0050	5822450
Benzo(a)anthracene	ug/g	0.010	<0.0050	0.026	0.28	0.093	<0.0050	0.0050	5822450
Benzo(a)pyrene	ug/g	0.015	<0.0050	0.030	0.28	0.11	<0.0050	0.0050	5822450
Benzo(b/j)fluoranthene	ug/g	0.024	0.010	0.044	0.33	0.15	<0.0050	0.0050	5822450
Benzo(g,h,i)perylene	ug/g	0.018	0.0081	0.028	0.25	0.10	<0.0050	0.0050	5822450
Benzo(k)fluoranthene	ug/g	0.0076	<0.0050	0.016	0.12	0.053	<0.0050	0.0050	5822450
Chrysene	ug/g	0.016	0.0076	0.035	0.30	0.10	<0.0050	0.0050	5822450
Dibenz(a,h)anthracene	ug/g	0.0057	<0.0050	0.0071	0.076	0.028	<0.0050	0.0050	5822450
Fluoranthene	ug/g	0.019	0.0065	0.055	0.52	0.19	<0.0050	0.0050	5822450
Fluorene	ug/g	<0.0050	<0.0050	<0.0050	0.034	0.016	<0.0050	0.0050	5822450
Indeno(1,2,3-cd)pyrene	ug/g	0.013	<0.0050	0.025	0.23	0.093	<0.0050	0.0050	5822450
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.016	<0.0050	<0.0050	0.0050	5822450
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.033	<0.0050	<0.0050	0.0050	5822450
Naphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.013	<0.0050	<0.0050	0.0050	5822450
Phenanthrene	ug/g	0.015	0.0084	0.020	0.20	0.11	<0.0050	0.0050	5822450
Pyrene	ug/g	0.018	0.0055	0.048	0.45	0.15	<0.0050	0.0050	5822450
Surrogate Recovery (%)									
D10-Anthracene	%	73	75	71	73	70	80		5822450
D14-Terphenyl (FS)	%	74	65	64	76	71	71		5822450
D8-Acenaphthylene	%	69	73	71	68	74	77		5822450
RDL = Reportable Detection I QC Batch = Quality Control B									

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

O.REG 153 PAHS (SOIL)

Maxxam ID		IFH149	IFH150	IFH151	IFH152	IFH153	IFH154		
Sampling Date		2018/11/02	2018/11/02	2018/11/02	2018/11/02	2018/11/02	2018/11/02		
COC Number		102884	102884	102884	102884	102884	102884		
	UNITS	BH-7 SS-1	BH-8 SS-1	BH-9 SS-4	BH-10 SS-1	BH-11 SS-1	DUP-1	RDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/g	0.039	0.035	<0.014	0.034	0.032	0.033	0.014	5822328
Polyaromatic Hydrocarbons									
Acenaphthene	ug/g	0.014	0.0082	<0.0050	0.0076	0.028	0.010	0.0050	5822450
Acenaphthylene	ug/g	0.010	0.020	<0.0050	0.0075	<0.0050	<0.0050	0.0050	5822450
Anthracene	ug/g	0.021	0.027	<0.0050	0.015	0.053	0.019	0.0050	5822450
Benzo(a)anthracene	ug/g	0.16	0.29	<0.0050	0.10	0.20	0.085	0.0050	5822450
Benzo(a)pyrene	ug/g	0.15	0.28	<0.0050	0.093	0.15	0.073	0.0050	5822450
Benzo(b/j)fluoranthene	ug/g	0.18	0.32	<0.0050	0.12	0.19	0.094	0.0050	5822450
Benzo(g,h,i)perylene	ug/g	0.12	0.17	<0.0050	0.074	0.11	0.068	0.0050	5822450
Benzo(k)fluoranthene	ug/g	0.070	0.12	<0.0050	0.045	0.072	0.036	0.0050	5822450
Chrysene	ug/g	0.17	0.24	<0.0050	0.10	0.21	0.099	0.0050	5822450
Dibenz(a,h)anthracene	ug/g	0.041	0.065	<0.0050	0.027	0.031	0.020	0.0050	5822450
Fluoranthene	ug/g	0.45	0.53	<0.0050	0.22	0.58	0.25	0.0050	5822450
Fluorene	ug/g	0.030	0.029	<0.0050	0.023	0.041	0.030	0.0050	5822450
Indeno(1,2,3-cd)pyrene	ug/g	0.12	0.19	<0.0050	0.079	0.11	0.063	0.0050	5822450
1-Methylnaphthalene	ug/g	0.013	0.011	<0.0050	0.011	0.012	0.012	0.0050	5822450
2-Methylnaphthalene	ug/g	0.026	0.024	<0.0050	0.023	0.021	0.021	0.0050	5822450
Naphthalene	ug/g	0.012	0.011	<0.0050	0.0086	0.0065	0.0078	0.0050	5822450
Phenanthrene	ug/g	0.17	0.12	<0.0050	0.096	0.31	0.14	0.0050	5822450
Pyrene	ug/g	0.33	0.47	<0.0050	0.18	0.41	0.18	0.0050	5822450
Surrogate Recovery (%)									
D10-Anthracene	%	82	77	76	72	69	88		5822450
D14-Terphenyl (FS)	%	78	78	67	76	86	96		5822450
D8-Acenaphthylene	%	72	70	74	69	65	79		5822450
RDL = Reportable Detection L QC Batch = Quality Control B									

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

O.REG 153 PAHS (SOIL)

		1		
Maxxam ID		IFH154		
Sampling Date		2018/11/02		
COC Number		102884		
	UNITS	DUP-1 Lab-Dup	RDL	QC Batch
Polyaromatic Hydrocarbon	s			
Acenaphthene	ug/g	0.015	0.0050	5822450
Acenaphthylene	ug/g	<0.0050	0.0050	5822450
Anthracene	ug/g	0.024	0.0050	5822450
Benzo(a)anthracene	ug/g	0.091	0.0050	5822450
Benzo(a)pyrene	ug/g	0.075	0.0050	5822450
Benzo(b/j)fluoranthene	ug/g	0.096	0.0050	5822450
Benzo(g,h,i)perylene	ug/g	0.069	0.0050	5822450
Benzo(k)fluoranthene	ug/g	0.037	0.0050	5822450
Chrysene	ug/g	0.099	0.0050	5822450
Dibenz(a,h)anthracene	ug/g	0.021	0.0050	5822450
Fluoranthene	ug/g	0.26	0.0050	5822450
Fluorene	ug/g	0.027	0.0050	5822450
Indeno(1,2,3-cd)pyrene	ug/g	0.067	0.0050	5822450
1-Methylnaphthalene	ug/g	0.0080	0.0050	5822450
2-Methylnaphthalene	ug/g	0.012	0.0050	5822450
Naphthalene	ug/g	0.0062	0.0050	5822450
Phenanthrene	ug/g	0.15	0.0050	5822450
Pyrene	ug/g	0.20	0.0050	5822450
Surrogate Recovery (%)				
D10-Anthracene	%	84		5822450
D14-Terphenyl (FS)	%	97		5822450
D8-Acenaphthylene	%	77		5822450
RDL = Reportable Detection QC Batch = Quality Control				

Lab-Dup = Laboratory Initiated Duplicate

Pinchin Ltd

Client Project #: 230236.002 Sampler Initials: MK

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID		IFH143	IFH144	IFH145	IFH146	IFH147	IFH148		
Sampling Date		2018/11/01	2018/11/01	2018/11/01	2018/11/02		2018/11/02		
COC Number		102884	102884	102884	102884	102884	102884		
COC Number	UNITS	MW-1 SS-2	MW-2 SS-2	MW-3 SS-1	MW-4 SS-2	MW-5 SS-2	BH-6 SS-2	RDL	QC Batch
In a grant in	OMITS	14144-1 33-2	14144-2 33-2	10100-3 33-1	10100-4 33-2	10100-3 33-2	DI1-0 33-2	NDL	QC Dateil
Inorganics	T								
Moisture	%	15	3.3	13	20	16	10	0.2	5822472
Calculated Parameters	1 ,								
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5822329
Volatile Organics									
Acetone (2-Propanone)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5825431
Benzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5825431
Bromodichloromethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	
Bromoform	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	
Bromomethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	
Carbon Tetrachloride	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	
Chlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	
Chloroform	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
Dibromochloromethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
1,2-Dichlorobenzene	ug/g	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
1,3-Dichlorobenzene	ug/g	<0.050	< 0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
1,4-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
1,1-Dichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
1,2-Dichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
1,1-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
1,2-Dichloropropane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	0.030	5825431
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	5825431
Ethylbenzene	ug/g	<0.020	<0.020	0.046	<0.020	<0.020	<0.020	0.020	5825431
Ethylene Dibromide	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
Hexane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5825431
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5825431
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	
Styrene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	
Tetrachloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	0.22	<0.050	0.050	
RDL = Reportable Detection Limit	<u> </u>	1		1	1		1	1	

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

	_								
Maxxam ID		IFH143	IFH144	IFH145	IFH146	IFH147	IFH148		
Sampling Date		2018/11/01	2018/11/01	2018/11/01	2018/11/02	2018/11/02	2018/11/02		
COC Number		102884	102884	102884	102884	102884	102884		
	UNITS	MW-1 SS-2	MW-2 SS-2	MW-3 SS-1	MW-4 SS-2	MW-5 SS-2	BH-6 SS-2	RDL	QC Batch
Toluene	ug/g	<0.020	0.050	0.053	<0.020	<0.020	<0.020	0.020	5825431
1,1,1-Trichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
1,1,2-Trichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
Trichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
Vinyl Chloride	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5825431
p+m-Xylene	ug/g	<0.020	0.047	0.22	<0.020	<0.020	<0.020	0.020	5825431
o-Xylene	ug/g	<0.020	<0.020	0.074	<0.020	<0.020	<0.020	0.020	5825431
Total Xylenes	ug/g	<0.020	0.047	0.29	<0.020	<0.020	<0.020	0.020	5825431
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	<10	10	5825431
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	<10	10	5825431
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	<10	<10	<10	10	5822443
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	<50	110	<50	<50	50	5822443
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	68	81	<50	<50	50	5822443
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes	Yes	Yes		5822443
Surrogate Recovery (%)									
o-Terphenyl	%	100	97	102	103	94	101		5822443
4-Bromofluorobenzene	%	88	88	89	88	88	88		5825431
D10-o-Xylene	%	98	115	103	104	99	92		5825431
D4-1,2-Dichloroethane	%	108	102	107	111	104	108		5825431
D8-Toluene	%	103	104	101	102	104	103		5825431
RDL = Reportable Detection Limit					• -	-			-

Pinchin Ltd

Client Project #: 230236.002 Sampler Initials: MK

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

O.REG 155 VOCS BY H5 & F1-F4 (501L)										
Maxxam ID		IFH149	IFH150	IFH151	IFH152	IFH153	IFH154			
Sampling Date		2018/11/02	2018/11/02	2018/11/02	2018/11/02	2018/11/02	2018/11/02			
COC Number		102884	102884	102884	102884	102884	102884			
	UNITS	BH-7 SS-1	BH-8 SS-1	BH-9 SS-4	BH-10 SS-1	BH-11 SS-1	DUP-1	RDL	QC Batch	
Inorganics										
Moisture	%	25	14	6.8	12	3.3	3.3	0.2	5822472	
Calculated Parameters	4							<u> </u>		
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5822329	
Volatile Organics	4	l	l	I						
Acetone (2-Propanone)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5825431	
Benzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5825431	
Bromodichloromethane	ug/g	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	0.050	5825431	
Bromoform	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
Bromomethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
Carbon Tetrachloride	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
Chlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
Chloroform	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
Dibromochloromethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
1,2-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
1,3-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
1,4-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
1,1-Dichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
1,2-Dichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
1,1-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
1,2-Dichloropropane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	0.030	5825431	
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	5825431	
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5825431	
Ethylene Dibromide	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
Hexane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5825431	
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5825431	
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
Styrene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
Tetrachloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431	
RDL = Reportable Detection Limit										

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID		IFH149	IFH150	IFH151	IFH152	IFH153	IFH154		
Sampling Date		2018/11/02	2018/11/02	2018/11/02	2018/11/02	2018/11/02	2018/11/02		
COC Number		102884	102884	102884	102884	102884	102884		
	UNITS	BH-7 SS-1	BH-8 SS-1	BH-9 SS-4	BH-10 SS-1	BH-11 SS-1	DUP-1	RDL	QC Batch
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5825431
1,1,1-Trichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
1,1,2-Trichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
Trichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5825431
Vinyl Chloride	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5825431
p+m-Xylene	ug/g	<0.020	0.027	<0.020	<0.020	<0.020	<0.020	0.020	5825431
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5825431
Total Xylenes	ug/g	<0.020	0.027	<0.020	<0.020	<0.020	<0.020	0.020	5825431
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	<10	10	5825431
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	<10	10	5825431
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	<10	<10	<10	10	5822443
F3 (C16-C34 Hydrocarbons)	ug/g	400	200	<50	75	580	470	50	5822443
F4 (C34-C50 Hydrocarbons)	ug/g	390	190	<50	290	1100	920	50	5822443
Reached Baseline at C50	ug/g	No	No	Yes	No	No	No		5822443
Surrogate Recovery (%)									
o-Terphenyl	%	96	102	101	99	103	98		5822443
4-Bromofluorobenzene	%	88	89	88	87	88	88		5825431
D10-o-Xylene	%	97	93	105	94	93	124		5825431
D4-1,2-Dichloroethane	%	118	108	106	116	106	114		5825431
D8-Toluene	%	100	104	104	99	102	100		5825431
RDL = Reportable Detection Limit								٠	

RDL = Reportable Detection Limit

Pinchin Ltd

Client Project #: 230236.002 Sampler Initials: MK

RESULTS OF ANALYSES OF SOIL

Maxxam ID		IFH143	IFH145		IFH147			IFH148	IFH149	
Sampling Date		2018/11/01	2018/11/01		2018/11/02			2018/11/02	2018/11/02	
COC Number		102884	102884		102884			102884	102884	
	UNITS	MW-1 SS-2	MW-3 SS-1	QC Batch	MW-5 SS-2	RDL	QC Batch	BH-6 SS-2	BH-7 SS-1	QC Batch
Inorganics										
Available (CaCl2) pH	рН	7.85	7.73	5827206				7.91	7.58	5827206
Miscellaneous Parameters	•	•	•							
Grain Size	%				FINE	N/A	5827884			
Sieve - #200 (<0.075mm)	%				53	1	5827884			
Sieve - #200 (>0.075mm)	%				47	1	5827884			
		•	•							

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

10		IELIA EA			1511453				
Maxxam ID		IFH151			IFH152				
Sampling Date		2018/11/02			2018/11/02				
COC Number		102884			102884				
	UNITS	BH-9 SS-4	RDL	QC Batch	BH-10 SS-1	QC Batch			
Inorganics	7								
Available (CaCl2) pH	рН	7.92		5827206	7.72	5827206			
Miscellaneous Parameters									
Grain Size	%	COARSE	N/A	5827884					
Sieve - #200 (<0.075mm)	%	15	1	5827884					
Sieve - #200 (>0.075mm)	%	85	1	5827884					
RDL = Reportable Detection Limit									
QC Batch = Quality Control Ba	atch								
N/A = Not Applicable									

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		IFH149	IFH150	IFH152	IFH153	IFH154		
Sampling Date		2018/11/02	2018/11/02	2018/11/02	2018/11/02	2018/11/02		
COC Number		102884	102884	102884	102884	102884		
	UNITS	BH-7 SS-1	BH-8 SS-1	BH-10 SS-1	BH-11 SS-1	DUP-1	RDL	QC Batch

F2-F4 Hydrocarbons								
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	2500	830	2200	3400	2900	100	5830138

RDL = Reportable Detection Limit

Pinchin Ltd

Client Project #: 230236.002 Sampler Initials: MK

TEST SUMMARY

Maxxam ID: IFH143 Sample ID: MW-1 SS-2

Shipped:

Collected: 2018/11/01

Matrix: Soil

Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5822328	N/A	2018/11/09	Liliana Gaburici
Hot Water Extractable Boron	ICP	5827292	2018/11/08	2018/11/08	Suban Kanapathippllai
1,3-Dichloropropene Sum	CALC	5822329	N/A	2018/11/08	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	5825517	2018/11/07	2018/11/08	Sally Norouz
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5822443	2018/11/06	2018/11/09	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5829447	2018/11/09	2018/11/09	Viviana Canzonieri
Moisture	BAL	5822472	N/A	2018/11/07	Fatemeh Habibagahi
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5822450	2018/11/06	2018/11/06	Liliana Gaburici
pH CaCl2 EXTRACT	AT	5827206	2018/11/08	2018/11/08	Gnana Thomas
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5825431	N/A	2018/11/07	Liliana Gaburici

Maxxam ID: IFH144 MW-2 SS-2 Sample ID: Matrix: Soil

Collected: 2018/11/01

Shipped:

Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5822328	N/A	2018/11/09	Liliana Gaburici
Hot Water Extractable Boron	ICP	5827292	2018/11/08	2018/11/08	Suban Kanapathippllai
1,3-Dichloropropene Sum	CALC	5822329	N/A	2018/11/08	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	5825517	2018/11/07	2018/11/08	Sally Norouz
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5822443	2018/11/06	2018/11/09	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5829447	2018/11/09	2018/11/09	Viviana Canzonieri
Moisture	BAL	5822472	N/A	2018/11/07	Fatemeh Habibagahi
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5822450	2018/11/06	2018/11/06	Liliana Gaburici
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5825431	N/A	2018/11/07	Liliana Gaburici

Maxxam ID: IFH145 Sample ID: MW-3 SS-1 **Collected:** 2018/11/01

Shipped:

Matrix: Soil

Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5822328	N/A	2018/11/09	Liliana Gaburici
1,3-Dichloropropene Sum	CALC	5822329	N/A	2018/11/08	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5822443	2018/11/06	2018/11/09	Mariana Vascan
Moisture	BAL	5822472	N/A	2018/11/07	Fatemeh Habibagahi
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5822450	2018/11/06	2018/11/06	Liliana Gaburici
pH CaCl2 EXTRACT	AT	5827206	2018/11/08	2018/11/08	Gnana Thomas
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5825431	N/A	2018/11/07	Liliana Gaburici

Maxxam ID: IFH146 Sample ID: MW-4 SS-2 Matrix: Soil

Collected: 2018/11/02 Shipped:

Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5822328	N/A	2018/11/09	Liliana Gaburici
Hot Water Extractable Boron	ICP	5827292	2018/11/08	2018/11/08	Suban Kanapathippllai

Pinchin Ltd

Client Project #: 230236.002 Sampler Initials: MK

TEST SUMMARY

Maxxam ID: IFH146 Sample ID: MW-4 SS-2 Collected:

2018/11/02

Matrix: Soil

Shipped:

Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5822329	N/A	2018/11/08	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	5825517	2018/11/07	2018/11/08	Sally Norouz
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5822443	2018/11/06	2018/11/09	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5829447	2018/11/09	2018/11/09	Viviana Canzonieri
Moisture	BAL	5822472	N/A	2018/11/07	Fatemeh Habibagahi
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5822450	2018/11/06	2018/11/07	Liliana Gaburici
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5825431	N/A	2018/11/07	Liliana Gaburici

Maxxam ID: IFH147 Sample ID: MW-5 SS-2 Matrix: Soil

Collected: 2018/11/02

Shipped:

Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5822328	N/A	2018/11/09	Liliana Gaburici
Hot Water Extractable Boron	ICP	5827292	2018/11/08	2018/11/08	Suban Kanapathippllai
1,3-Dichloropropene Sum	CALC	5822329	N/A	2018/11/08	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	5825517	2018/11/07	2018/11/08	Sally Norouz
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5822443	2018/11/06	2018/11/09	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5829447	2018/11/09	2018/11/09	Viviana Canzonieri
Moisture	BAL	5822472	N/A	2018/11/07	Fatemeh Habibagahi
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5822450	2018/11/06	2018/11/06	Liliana Gaburici
Sieve, 75um	SIEV	5827884	N/A	2018/11/09	Min Yang
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5825431	N/A	2018/11/07	Liliana Gaburici

Maxxam ID: IFH148 Sample ID: BH-6 SS-2 Matrix: Soil

Collected: 2018/11/02

Shipped:

Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5822328	N/A	2018/11/09	Liliana Gaburici
Hot Water Extractable Boron	ICP	5827292	2018/11/08	2018/11/08	Suban Kanapathippllai
1,3-Dichloropropene Sum	CALC	5822329	N/A	2018/11/08	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	5825517	2018/11/07	2018/11/08	Sally Norouz
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5822443	2018/11/06	2018/11/09	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5829447	2018/11/09	2018/11/09	Viviana Canzonieri
Moisture	BAL	5822472	N/A	2018/11/07	Fatemeh Habibagahi
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5822450	2018/11/06	2018/11/06	Liliana Gaburici
pH CaCl2 EXTRACT	AT	5827206	2018/11/08	2018/11/08	Gnana Thomas
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5825431	N/A	2018/11/07	Liliana Gaburici

Maxxam ID: IFH149 Sample ID: BH-7 SS-1

Matrix: Soil

Collected: 2018/11/02 Shipped:

Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5822328	N/A	2018/11/09	Liliana Gaburici

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

TEST SUMMARY

Maxxam ID: IFH149

Collected:

2018/11/02

Sample ID: BH-7 SS-1 Matrix: Soil

Shipped: Received:

2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	5827292	2018/11/08	2018/11/08	Suban Kanapathippllai
1,3-Dichloropropene Sum	CALC	5822329	N/A	2018/11/08	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	5825517	2018/11/07	2018/11/08	Sally Norouz
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5822443	2018/11/06	2018/11/09	Mariana Vascan
F4G (CCME Hydrocarbons Gravimetric)	BAL	5830138	2018/11/12	2018/11/13	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5829447	2018/11/09	2018/11/09	Viviana Canzonieri
Moisture	BAL	5822472	N/A	2018/11/07	Fatemeh Habibagahi
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5822450	2018/11/06	2018/11/08	Liliana Gaburici
pH CaCl2 EXTRACT	AT	5827206	2018/11/08	2018/11/08	Gnana Thomas
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5825431	N/A	2018/11/07	Liliana Gaburici

Maxxam ID: IFH150 BH-8 SS-1 Sample ID: . Matrix: Soil

Collected: 2018/11/02

Shipped:

Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5822328	N/A	2018/11/09	Liliana Gaburici
Hot Water Extractable Boron	ICP	5827292	2018/11/08	2018/11/08	Suban Kanapathippllai
1,3-Dichloropropene Sum	CALC	5822329	N/A	2018/11/08	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	5825517	2018/11/07	2018/11/08	Sally Norouz
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5822443	2018/11/06	2018/11/09	Mariana Vascan
F4G (CCME Hydrocarbons Gravimetric)	BAL	5830138	2018/11/12	2018/11/13	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5829447	2018/11/09	2018/11/09	Viviana Canzonieri
Moisture	BAL	5822472	N/A	2018/11/07	Fatemeh Habibagahi
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5822450	2018/11/06	2018/11/08	Liliana Gaburici
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5825431	N/A	2018/11/07	Liliana Gaburici

Maxxam ID: IFH150 Dup Sample ID: BH-8 SS-1

Shipped:

Collected: 2018/11/02

Matrix: Soil

Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Strong Acid Leachable Metals by ICPMS	ICP/MS	5829447	2018/11/09	2018/11/09	Viviana Canzonieri	

Maxxam ID: **IFH151** Sample ID: BH-9 SS-4 . Matrix: Soil

Collected: 2018/11/02

Shipped:

Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5822328	N/A	2018/11/09	Liliana Gaburici
Hot Water Extractable Boron	ICP	5827292	2018/11/08	2018/11/08	Suban Kanapathippllai
1,3-Dichloropropene Sum	CALC	5822329	N/A	2018/11/08	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	5825517	2018/11/07	2018/11/08	Sally Norouz
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5822443	2018/11/06	2018/11/09	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5829447	2018/11/09	2018/11/09	Viviana Canzonieri
Moisture	BAL	5822472	N/A	2018/11/07	Fatemeh Habibagahi

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

TEST SUMMARY

Maxxam ID: IFH151 Sample ID: BH-9 SS-4 Collected:

2018/11/02

Matrix: Soil

Shipped:

Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5822450	2018/11/06	2018/11/06	Liliana Gaburici
pH CaCl2 EXTRACT	AT	5827206	2018/11/08	2018/11/08	Gnana Thomas
Sieve, 75um	SIEV	5827884	N/A	2018/11/09	Min Yang
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5825431	N/A	2018/11/07	Liliana Gaburici

Maxxam ID: IFH151 Dup Sample ID: BH-9 SS-4 Matrix: Soil **Collected:** 2018/11/02

Shipped:

Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	5825517	2018/11/07	2018/11/08	Sally Norouz

Maxxam ID: IFH152 Sample ID: BH-10 SS-1 Matrix: Soil **Collected:** 2018/11/02

Shipped:

Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5822328	N/A	2018/11/09	Liliana Gaburici
Hot Water Extractable Boron	ICP	5827292	2018/11/08	2018/11/08	Suban Kanapathippllai
1,3-Dichloropropene Sum	CALC	5822329	N/A	2018/11/08	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	5825517	2018/11/07	2018/11/08	Sally Norouz
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5822443	2018/11/06	2018/11/09	Mariana Vascan
F4G (CCME Hydrocarbons Gravimetric)	BAL	5830138	2018/11/12	2018/11/13	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5829447	2018/11/09	2018/11/09	Viviana Canzonieri
Moisture	BAL	5822472	N/A	2018/11/07	Fatemeh Habibagahi
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5822450	2018/11/06	2018/11/08	Liliana Gaburici
pH CaCl2 EXTRACT	AT	5827206	2018/11/08	2018/11/08	Gnana Thomas
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5825431	N/A	2018/11/07	Liliana Gaburici

Maxxam ID: IFH153 Sample ID: BH-11 SS-1 Matrix: Soil **Collected:** 2018/11/02

Shipped:

Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5822328	N/A	2018/11/09	Liliana Gaburici
Hot Water Extractable Boron	ICP	5827292	2018/11/08	2018/11/08	Suban Kanapathippllai
1,3-Dichloropropene Sum	CALC	5822329	N/A	2018/11/08	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	5825517	2018/11/07	2018/11/08	Sally Norouz
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5822443	2018/11/06	2018/11/09	Mariana Vascan
F4G (CCME Hydrocarbons Gravimetric)	BAL	5830138	2018/11/12	2018/11/13	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5829447	2018/11/09	2018/11/09	Viviana Canzonieri
Moisture	BAL	5822472	N/A	2018/11/07	Fatemeh Habibagahi
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5822450	2018/11/06	2018/11/08	Liliana Gaburici
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5825431	N/A	2018/11/07	Liliana Gaburici

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

TEST SUMMARY

Maxxam ID: IFH154 **Collected:** 2018/11/02

Sample ID: DUP-1 Shipped: Matrix: Soil

Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5822328	N/A	2018/11/09	Liliana Gaburici
Hot Water Extractable Boron	ICP	5827292	2018/11/07	2018/11/08	Suban Kanapathippllai
1,3-Dichloropropene Sum	CALC	5822329	N/A	2018/11/08	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	5825517	2018/11/07	2018/11/08	Sally Norouz
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5822443	2018/11/06	2018/11/09	Mariana Vascan
F4G (CCME Hydrocarbons Gravimetric)	BAL	5830138	2018/11/12	2018/11/13	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5829447	2018/11/09	2018/11/09	Viviana Canzonieri
Moisture	BAL	5822472	N/A	2018/11/07	Fatemeh Habibagahi
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5822450	2018/11/06	2018/11/08	Liliana Gaburici
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5825431	N/A	2018/11/07	Liliana Gaburici

Collected: Shipped: Maxxam ID: IFH154 Dup 2018/11/02 Sample ID: DUP-1

Matrix: Soil Received: 2018/11/05

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5822450	2018/11/06	2018/11/08	Liliana Gaburici

Pinchin Ltd

Client Project #: 230236.002 Sampler Initials: MK

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 7.7°C

Results relate only to the items tested.

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5822443	MVA	Matrix Spike	o-Terphenyl	2018/11/09		91	%	30 - 130
			F2 (C10-C16 Hydrocarbons)	2018/11/09		78	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2018/11/09		78	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2018/11/09		78	%	50 - 130
5822443	MVA	Spiked Blank	o-Terphenyl	2018/11/09		98	%	30 - 130
			F2 (C10-C16 Hydrocarbons)	2018/11/09		85	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2018/11/09		85	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2018/11/09		85	%	80 - 120
5822443	MVA	Method Blank	o-Terphenyl	2018/11/08		104	%	30 - 130
			F2 (C10-C16 Hydrocarbons)	2018/11/08	<10		ug/g	
			F3 (C16-C34 Hydrocarbons)	2018/11/08	<50		ug/g	
			F4 (C34-C50 Hydrocarbons)	2018/11/08	<50		ug/g	
5822443	MVA	RPD	F2 (C10-C16 Hydrocarbons)	2018/11/08	NC		%	50
			F3 (C16-C34 Hydrocarbons)	2018/11/08	NC		%	50
			F4 (C34-C50 Hydrocarbons)	2018/11/08	NC		%	50
5822450	LGA	Matrix Spike [IFH151-01]	D10-Anthracene	2018/11/06		74	%	50 - 130
			D14-Terphenyl (FS)	2018/11/06		65	%	50 - 130
			D8-Acenaphthylene	2018/11/06		69	%	50 - 130
			Acenaphthene	2018/11/06		71	%	50 - 130
			Acenaphthylene	2018/11/06		67	%	50 - 130
			Anthracene	2018/11/06		62	%	50 - 130
			Benzo(a)anthracene	2018/11/06		65	%	50 - 130
			Benzo(a)pyrene	2018/11/06		70	%	50 - 130
			Benzo(b/j)fluoranthene	2018/11/06		69	%	50 - 130
			Benzo(g,h,i)perylene	2018/11/06		88	%	50 - 130
			Benzo(k)fluoranthene	2018/11/06		62	%	50 - 130
			Chrysene	2018/11/06		77	%	50 - 130
			Dibenz(a,h)anthracene	2018/11/06		112	%	50 - 130
			Fluoranthene	2018/11/06		65	%	50 - 130
			Fluorene	2018/11/06		71	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2018/11/06		70	%	50 - 130
			1-Methylnaphthalene	2018/11/06		72	%	50 - 130
			2-Methylnaphthalene	2018/11/06		77	%	50 - 130
			Naphthalene	2018/11/06		63	%	50 - 130
			Phenanthrene	2018/11/06		62	%	50 - 130
			Pyrene	2018/11/06		65	%	50 - 130
5822450	LGA	Spiked Blank	D10-Anthracene	2018/11/06		79	%	50 - 130
			D14-Terphenyl (FS)	2018/11/06		75	%	50 - 130
			D8-Acenaphthylene	2018/11/06		74	%	50 - 130
			Acenaphthene	2018/11/06		82	%	50 - 130
			Acenaphthylene	2018/11/06		73	%	50 - 130
			Anthracene	2018/11/06		68	%	50 - 130
			Benzo(a)anthracene	2018/11/06		69	%	50 - 130
			Benzo(a)pyrene	2018/11/06		95	%	50 - 130
			Benzo(b/j)fluoranthene	2018/11/06		75	%	50 - 130
			Benzo(g,h,i)perylene	2018/11/06		105	%	50 - 130
			Benzo(k)fluoranthene	2018/11/06		70	%	50 - 130
			Chrysene	2018/11/06		82	%	50 - 130
			Dibenz(a,h)anthracene	2018/11/06		95	%	50 - 130
			Fluoranthene	2018/11/06		70	%	50 - 130
			Fluorene	2018/11/06		75	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2018/11/06		78	%	50 - 130
			1-Methylnaphthalene	2018/11/06		77	%	50 - 130
			2-Methylnaphthalene	2018/11/06		83	%	50 - 130

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		••	Naphthalene	2018/11/06		67	%	50 - 130
			Phenanthrene	2018/11/06		66	%	50 - 130
			Pyrene	2018/11/06		75	%	50 - 130
5822450	LGA	Method Blank	D10-Anthracene	2018/11/06		95	%	50 - 130
			D14-Terphenyl (FS)	2018/11/06		84	%	50 - 130
			D8-Acenaphthylene	2018/11/06		79	%	50 - 130
			Acenaphthene	2018/11/06	<0.0050		ug/g	
			Acenaphthylene	2018/11/06	<0.0050		ug/g	
			Anthracene	2018/11/06	< 0.0050		ug/g	
			Benzo(a)anthracene	2018/11/06	< 0.0050		ug/g	
			Benzo(a)pyrene	2018/11/06	< 0.0050		ug/g	
			Benzo(b/j)fluoranthene	2018/11/06	<0.0050		ug/g	
			Benzo(g,h,i)perylene	2018/11/06	<0.0050		ug/g	
			Benzo(k)fluoranthene	2018/11/06	<0.0050		ug/g	
			Chrysene	2018/11/06	< 0.0050		ug/g	
			Dibenz(a,h)anthracene	2018/11/06	< 0.0050		ug/g	
			Fluoranthene	2018/11/06	< 0.0050		ug/g	
			Fluorene	2018/11/06	< 0.0050		ug/g	
			Indeno(1,2,3-cd)pyrene	2018/11/06	<0.0050		ug/g	
			1-Methylnaphthalene	2018/11/06	<0.0050		ug/g	
			2-Methylnaphthalene	2018/11/06	<0.0050		ug/g	
			Naphthalene	2018/11/06	<0.0050		ug/g	
			Phenanthrene	2018/11/06	<0.0050		ug/g	
			Pyrene	2018/11/06	<0.0050		ug/g	
5822450	LGA	RPD [IFH154-01]	Acenaphthene	2018/11/08	NC		%	40
			Acenaphthylene	2018/11/08	NC		%	40
			Anthracene	2018/11/08	24		%	40
			Benzo(a)anthracene	2018/11/08	7.2		%	40
			Benzo(a)pyrene	2018/11/08	2.7		%	40
			Benzo(b/j)fluoranthene	2018/11/08	2.6		%	40
			Benzo(g,h,i)perylene	2018/11/08	0.67		%	40
			Benzo(k)fluoranthene	2018/11/08	5.1		%	40
			Chrysene	2018/11/08	0.72		%	40
			Dibenz(a,h)anthracene	2018/11/08	2.6		%	40
			Fluoranthene	2018/11/08	3.8		%	40
			Fluorene	2018/11/08	12		%	40
			Indeno(1,2,3-cd)pyrene	2018/11/08	5.0		%	40
			1-Methylnaphthalene	2018/11/08	NC		%	40
			2-Methylnaphthalene	2018/11/08	NC		%	40
			Naphthalene	2018/11/08	23		%	40
			Phenanthrene	2018/11/08	1.1		%	40
			Pyrene	2018/11/08	7.6		%	40
5822472	FHB	RPD	Moisture	2018/11/07	6.3		%	50
5825431	LGA	Spiked Blank	4-Bromofluorobenzene	2018/11/07		94	%	60 - 140
		_	D10-o-Xylene	2018/11/07		123	%	60 - 130
			D4-1,2-Dichloroethane	2018/11/07		102	%	60 - 140
			D8-Toluene	2018/11/07		109	%	60 - 140
			Acetone (2-Propanone)	2018/11/07		82	%	60 - 140
			Benzene	2018/11/07		104	%	60 - 130
			Bromodichloromethane	2018/11/07		99	%	60 - 130
			Bromoform	2018/11/07		82	%	60 - 130
			Bromomethane	2018/11/07		89	%	60 - 140
			Carbon Tetrachloride	2018/11/07		103	%	60 - 130
			Chlorobenzene	2018/11/07		99	%	60 - 130

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QA/QC							
Batch	Init QC Type	Parameter	Date Analyzed \	/alue	Recovery	UNITS	QC Limits
		Chloroform	2018/11/07		94	%	60 - 130
		Dibromochloromethane	2018/11/07		96	%	60 - 130
		1,2-Dichlorobenzene	2018/11/07		101	%	60 - 130
		1,3-Dichlorobenzene	2018/11/07		107	%	60 - 130
		1,4-Dichlorobenzene	2018/11/07		107	%	60 - 130
		Dichlorodifluoromethane (FREON 12)	2018/11/07		104	%	60 - 140
		1,1-Dichloroethane	2018/11/07		100	%	60 - 130
		1,2-Dichloroethane	2018/11/07		93	%	60 - 130
		1,1-Dichloroethylene	2018/11/07		110	%	60 - 130
		cis-1,2-Dichloroethylene	2018/11/07		99	%	60 - 130
		trans-1,2-Dichloroethylene	2018/11/07		99	%	60 - 130
		1,2-Dichloropropane	2018/11/07		92	%	60 - 130
		cis-1,3-Dichloropropene	2018/11/07		85	%	60 - 130
		trans-1,3-Dichloropropene	2018/11/07		83	%	60 - 130
		Ethylbenzene	2018/11/07		108	%	60 - 130
		Ethylene Dibromide	2018/11/07		89	%	60 - 130
		Hexane	2018/11/07		110	%	60 - 130
		Methylene Chloride(Dichloromethane)	2018/11/07		91	%	60 - 130
		Methyl Ethyl Ketone (2-Butanone)	2018/11/07		83	%	60 - 140
		Methyl Isobutyl Ketone	2018/11/07		78	%	60 - 130
		Methyl t-butyl ether (MTBE)	2018/11/07		94	%	60 - 130
		Styrene	2018/11/07		106	%	60 - 130
		1,1,1,2-Tetrachloroethane	2018/11/07		100	%	60 - 130
		1,1,2,2-Tetrachloroethane	2018/11/07		99	%	60 - 130
		Tetrachloroethylene	2018/11/07		102	%	60 - 130
		Toluene	2018/11/07		108	%	60 - 130
		1,1,1-Trichloroethane	2018/11/07		102	%	60 - 130
		1,1,2-Trichloroethane	2018/11/07		100	%	60 - 130
		Trichloroethylene	2018/11/07		96	%	60 - 130
		Trichlorofluoromethane (FREON 11)	2018/11/07		111	%	60 - 130
		Vinyl Chloride	2018/11/07		105	%	60 - 130
		p+m-Xylene	2018/11/07		109	%	60 - 130
		o-Xylene	2018/11/07		108	%	60 - 130
		F1 (C6-C10)	2018/11/07		102	%	80 - 120
5825431	LGA RPD	Acetone (2-Propanone)	2018/11/07	2.6		%	50
		Benzene	2018/11/07	3.4		%	50
·		Bromodichloromethane	2018/11/07	3.0		%	50
		Bromoform	2018/11/07	2.2		%	50
		Bromomethane	2018/11/07	3.1		%	50
		Carbon Tetrachloride	2018/11/07	1.1		%	50
		Chlorobenzene	2018/11/07	2.5		%	50
		Chloroform	2018/11/07	0.14		%	50
		Dibromochloromethane	2018/11/07	5.7		%	50
		1,2-Dichlorobenzene	2018/11/07	1.3		%	50
		1,3-Dichlorobenzene	2018/11/07	2.4		%	50
		1,4-Dichlorobenzene	2018/11/07	2.8		%	50
		Dichlorodifluoromethane (FREON 12)	2018/11/07	2.6		%	50
		1,1-Dichloroethane	2018/11/07	3.9		%	50
		1,2-Dichloroethane	2018/11/07	4.2		%	50
		1,1-Dichloroethylene	2018/11/07	3.7		%	50
		cis-1,2-Dichloroethylene	2018/11/07	2.8		%	50
		trans-1,2-Dichloroethylene	2018/11/07	3.4		%	50
		1,2-Dichloropropane	2018/11/07	4.6		%	50
		cis-1,3-Dichloropropene	2018/11/07	4.3		%	50

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QA/QC						_		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			trans-1,3-Dichloropropene	2018/11/07	2.7		%	50
			Ethylbenzene	2018/11/07	1.1		%	50
			Ethylene Dibromide	2018/11/07	3.9		%	50
			Hexane	2018/11/07	7.1		%	50
			Methylene Chloride(Dichloromethane)	2018/11/07	3.7		%	50
			Methyl Ethyl Ketone (2-Butanone)	2018/11/07	1.5		%	50
			Methyl Isobutyl Ketone	2018/11/07	5.0		%	50
			Methyl t-butyl ether (MTBE)	2018/11/07	3.8		%	50
			Styrene	2018/11/07	3.3		%	50
			1,1,1,2-Tetrachloroethane	2018/11/07	1.1		%	50
			1,1,2,2-Tetrachloroethane	2018/11/07	4.0		%	50
			Tetrachloroethylene	2018/11/07	1.3		%	50
			Toluene	2018/11/07	2.2		%	50
			1,1,1-Trichloroethane	2018/11/07	3.5		%	50
			1,1,2-Trichloroethane	2018/11/07	1.9		%	50
			Trichloroethylene	2018/11/07	4.2		%	50
			Trichlorofluoromethane (FREON 11)	2018/11/07	2.2		%	50
			Vinyl Chloride	2018/11/07	3.3		%	50
			p+m-Xylene	2018/11/07	1.1		%	50
			o-Xylene	2018/11/07	3.2		%	50
			F1 (C6-C10)	2018/11/07	4.7		%	30
25431	LGA	Method Blank	4-Bromofluorobenzene	2018/11/07	7.,	87	%	60 - 14
23431	LOA	Wethod Blank	D10-o-Xylene	2018/11/07		117	%	60 - 13
			D4-1,2-Dichloroethane	2018/11/07		100	% %	60 - 14
			D8-Toluene	2018/11/07		100	% %	
					-0.50	102		60 - 14
			Acetone (2-Propanone)	2018/11/07	<0.50		ug/g	
			Benzene	2018/11/07	<0.020		ug/g	
			Bromodichloromethane	2018/11/07	<0.050		ug/g	
			Bromoform	2018/11/07	<0.050		ug/g	
			Bromomethane	2018/11/07	<0.050		ug/g	
			Carbon Tetrachloride	2018/11/07	<0.050		ug/g	
			Chlorobenzene	2018/11/07	<0.050		ug/g	
			Chloroform	2018/11/07	<0.050		ug/g	
			Dibromochloromethane	2018/11/07	< 0.050		ug/g	
			1,2-Dichlorobenzene	2018/11/07	< 0.050		ug/g	
			1,3-Dichlorobenzene	2018/11/07	<0.050		ug/g	
			1,4-Dichlorobenzene	2018/11/07	< 0.050		ug/g	
			Dichlorodifluoromethane (FREON 12)	2018/11/07	< 0.050		ug/g	
			1,1-Dichloroethane	2018/11/07	< 0.050		ug/g	
			1,2-Dichloroethane	2018/11/07	<0.050		ug/g	
			1,1-Dichloroethylene	2018/11/07	<0.050		ug/g	
			cis-1,2-Dichloroethylene	2018/11/07	<0.050		ug/g	
			trans-1,2-Dichloroethylene	2018/11/07	<0.050		ug/g	
			1,2-Dichloropropane	2018/11/07	<0.050		ug/g ug/g	
			cis-1,3-Dichloropropene	2018/11/07	<0.030			
			• •		<0.030		ug/g	
			trans-1,3-Dichloropropene	2018/11/07			ug/g	
			Ethylbenzene	2018/11/07	<0.020		ug/g	
			Ethylene Dibromide	2018/11/07	<0.050		ug/g	
			Hexane	2018/11/07	<0.050		ug/g	
			Methylene Chloride(Dichloromethane)	2018/11/07	<0.050		ug/g	
			Methyl Ethyl Ketone (2-Butanone)	2018/11/07	<0.50		ug/g	
			Methyl Isobutyl Ketone	2018/11/07	<0.50		ug/g	
			Methyl t-butyl ether (MTBE)	2018/11/07	< 0.050		ug/g	
			Styrene	2018/11/07	< 0.050		ug/g	

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
-			1,1,1,2-Tetrachloroethane	2018/11/07	<0.050	,	ug/g	
			1,1,2,2-Tetrachloroethane	2018/11/07	<0.050		ug/g	
			Tetrachloroethylene	2018/11/07	<0.050		ug/g	
			Toluene	2018/11/07	<0.020		ug/g	
			1,1,1-Trichloroethane	2018/11/07	<0.050		ug/g	
			1,1,2-Trichloroethane	2018/11/07	<0.050		ug/g	
			Trichloroethylene	2018/11/07	<0.050		ug/g	
			Trichlorofluoromethane (FREON 11)	2018/11/07	<0.050		ug/g	
			Vinyl Chloride	2018/11/07	<0.020		ug/g	
			p+m-Xylene	2018/11/07	<0.020		ug/g	
			o-Xylene	2018/11/07	<0.020		ug/g	
			Total Xylenes	2018/11/07	<0.020		ug/g	
			F1 (C6-C10)	2018/11/07	<10		ug/g	
			F1 (C6-C10) - BTEX	2018/11/07	<10		ug/g	
5825517	SAC	Matrix Spike [IFH151-03]	Chromium (VI)	2018/11/07	<10	88	ug/g %	70 - 130
5825517	SAC	Spiked Blank	Chromium (VI)	2018/11/08		98	%	80 - 120
5825517	SAC	Method Blank	Chromium (VI)	2018/11/08	<0.2	36		80 - 120
5825517	SAC	RPD [IFH151-03]	Chromium (VI)	2018/11/08	NC		ug/g %	35
5827206	GTO	•		2018/11/08	NC	100		97 - 103
5827206	GTO	Spiked Blank RPD	Available (CaCl2) pH		2.7	100	%	97 - 103 N/A
5827292			Available (CaCl2) pH	2018/11/08	2.7	100	%	
	SUK	Matrix Spike	Hot Water Ext. Boron (B)	2018/11/08		108	%	75 - 125
5827292	SUK	Spiked Blank	Hot Water Ext. Boron (B)	2018/11/08	.0.050	106	%	75 - 125
5827292	SUK	Method Blank	Hot Water Ext. Boron (B)	2018/11/08	<0.050		ug/g	40
5827292	SUK	RPD	Hot Water Ext. Boron (B)	2018/11/08	14	5.6	%	40
5827884	GYA	QC Standard	Sieve - #200 (<0.075mm)	2018/11/09		56	%	53 - 58
			Sieve - #200 (>0.075mm)	2018/11/09		44	%	42 - 47
5827884	GYA	RPD	Sieve - #200 (<0.075mm)	2018/11/09	0.091		%	20
			Sieve - #200 (>0.075mm)	2018/11/09	7.7		%	20
5829447	VIV	Matrix Spike [IFH150-03]	Acid Extractable Antimony (Sb)	2018/11/09		94	%	75 - 125
			Acid Extractable Arsenic (As)	2018/11/09		104	%	75 - 125
			Acid Extractable Barium (Ba)	2018/11/09		NC	%	75 - 125
			Acid Extractable Beryllium (Be)	2018/11/09		92	%	75 - 125
			Acid Extractable Boron (B)	2018/11/09		92	%	75 - 125
			Acid Extractable Cadmium (Cd)	2018/11/09		92	%	75 - 125
			Acid Extractable Chromium (Cr)	2018/11/09		NC	%	75 - 125
			Acid Extractable Cobalt (Co)	2018/11/09		98	%	75 - 125
			Acid Extractable Copper (Cu)	2018/11/09		NC	%	75 - 125
			Acid Extractable Lead (Pb)	2018/11/09		NC	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2018/11/09		95	%	75 - 125
			Acid Extractable Nickel (Ni)	2018/11/09		100	%	75 - 125
			Acid Extractable Selenium (Se)	2018/11/09		92	%	75 - 125
			Acid Extractable Silver (Ag)	2018/11/09		94	%	75 - 125
			Acid Extractable Thallium (TI)	2018/11/09		91	%	75 - 125
			Acid Extractable Uranium (U)	2018/11/09		93	%	75 - 125
		•	Acid Extractable Vanadium (V)	2018/11/09		NC	%	75 - 125
			Acid Extractable Zinc (Zn)	2018/11/09		NC	%	75 - 125
			Acid Extractable Mercury (Hg)	2018/11/09		86	%	75 - 125
5829447	VIV	Spiked Blank	Acid Extractable Antimony (Sb)	2018/11/09		101	%	80 - 120
			Acid Extractable Arsenic (As)	2018/11/09		103	%	80 - 120
			Acid Extractable Barium (Ba)	2018/11/09		97	%	80 - 120
			Acid Extractable Beryllium (Be)	2018/11/09		97	%	80 - 120
			Acid Extractable Boron (B)	2018/11/09		99	%	80 - 120
			• •					
			Acid Extractable Cadmium (Cd)	2018/11/09		99	%	80 - 120

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Cobalt (Co)	2018/11/09		98	%	80 - 120
			Acid Extractable Copper (Cu)	2018/11/09		98	%	80 - 120
			Acid Extractable Lead (Pb)	2018/11/09		98	%	80 - 120
			Acid Extractable Molybdenum (Mo)	2018/11/09		101	%	80 - 120
			Acid Extractable Nickel (Ni)	2018/11/09		98	%	80 - 120
			Acid Extractable Selenium (Se)	2018/11/09		101	%	80 - 120
			Acid Extractable Silver (Ag)	2018/11/09		97	%	80 - 120
			Acid Extractable Thallium (TI)	2018/11/09		98	%	80 - 120
			Acid Extractable Uranium (U)	2018/11/09		97	%	80 - 120
			Acid Extractable Vanadium (V)	2018/11/09		98	%	80 - 120
			Acid Extractable Zinc (Zn)	2018/11/09		100	%	80 - 120
			Acid Extractable Mercury (Hg)	2018/11/09		105	%	80 - 120
5829447	VIV	Method Blank	Acid Extractable Antimony (Sb)	2018/11/09	<0.20		ug/g	
			Acid Extractable Arsenic (As)	2018/11/09	<1.0		ug/g	
			Acid Extractable Barium (Ba)	2018/11/09	<0.50		ug/g	
			Acid Extractable Beryllium (Be)	2018/11/09	<0.20		ug/g	
			Acid Extractable Boron (B)	2018/11/09	<5.0		ug/g	
			Acid Extractable Cadmium (Cd)	2018/11/09	< 0.10		ug/g	
			Acid Extractable Chromium (Cr)	2018/11/09	<1.0		ug/g	
			Acid Extractable Cobalt (Co)	2018/11/09	<0.10		ug/g	
			Acid Extractable Copper (Cu)	2018/11/09	<0.50		ug/g	
			Acid Extractable Lead (Pb)	2018/11/09	<1.0		ug/g	
			Acid Extractable Molybdenum (Mo)	2018/11/09	<0.50		ug/g	
			Acid Extractable Nickel (Ni)	2018/11/09	<0.50		ug/g	
			Acid Extractable Selenium (Se)	2018/11/09	<0.50		ug/g	
			Acid Extractable Silver (Ag)	2018/11/09	<0.20		ug/g	
			Acid Extractable Thallium (TI)	2018/11/09	<0.050		ug/g	
			Acid Extractable Uranium (U)	2018/11/09	<0.050		ug/g	
			Acid Extractable Vanadium (V)	2018/11/09	<5.0		ug/g	
			Acid Extractable Zinc (Zn)	2018/11/09	<5.0		ug/g	
			Acid Extractable Zinc (Zin) Acid Extractable Mercury (Hg)	2018/11/09	<0.050			
829447	VIV	RPD [IFH150-03]	Acid Extractable Mercury (11g) Acid Extractable Antimony (Sb)	2018/11/09	15		ug/g %	30
1023447	VIV	III D [II II 130-03]	Acid Extractable Aritmony (55) Acid Extractable Arsenic (As)	2018/11/09	3.5		%	30
			Acid Extractable Arsenic (As) Acid Extractable Barium (Ba)	2018/11/09	3.6		%	30
			Acid Extractable Barium (Ba) Acid Extractable Beryllium (Be)		0.86		%	
			, , ,	2018/11/09				30
			Acid Extractable Boron (B) Acid Extractable Cadmium (Cd)	2018/11/09	1.9 5.8		% %	30 30
				2018/11/09 2018/11/09				
			Acid Extractable Chromium (Cr)		3.8		%	30
			Acid Extractable Cobalt (Co)	2018/11/09	1.7		%	30
			Acid Extractable Copper (Cu)	2018/11/09	7.5		%	30
			Acid Extractable Lead (Pb)	2018/11/09	13		%	30
			Acid Extractable Molybdenum (Mo)	2018/11/09	4.2		%	30
			Acid Extractable Nickel (Ni)	2018/11/09	0.044		%	30
			Acid Extractable Selenium (Se)	2018/11/09	0.59		%	30
			Acid Extractable Silver (Ag)	2018/11/09	15		%	30
			Acid Extractable Thallium (TI)	2018/11/09	4.0		%	30
			Acid Extractable Uranium (U)	2018/11/09	3.6		%	30
			Acid Extractable Vanadium (V)	2018/11/09	1.8		%	30
			Acid Extractable Zinc (Zn)	2018/11/09	0.23		%	30
			Acid Extractable Mercury (Hg)	2018/11/09	1.9		%	30
5830138	MVA	Spiked Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2018/11/13		106	%	65 - 135
5830138	MVA	RPD	F4G-sg (Grav. Heavy Hydrocarbons)	2018/11/13	0.95		%	50

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5830138	MVA	Method Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2018/11/13	<100		ug/g	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

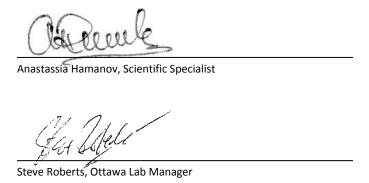
Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).


Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

6740 Campobello Road, Mississauga, Ontario L5N 2L8

CAM FCD-01191/3

Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

CHAIN OF CUSTODY RECORD 102884 Page of (

Invoice Information	Report Information (if differs from invoice)	Project Information (where applicable)	Turnaround Time (TAT) Required
Company Name: Pinchih Ltd	Company Name:	Quotation #:	Regular TAT (5-7 days) Most analyses
Contact Name: Mike Kosah, Maith	Contact Name:	P.O. #/ AFE#:	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS
Contact Name: Mike Kosah Maith Address: Ryan, Scott North	Address:	Project#: 236-002	Rush TAT (Surcharges will be applied)
	Seine	Site Location:	1 Day 2 Days 3-4 Days
Phone: 1 Hilly Read, Review	Phone: Fax:	Site #:	The state of the s
imail:	Email:	Sampled By:	Date Required:
MOE REGULATED DRINKING WATER OR WATER	NTENDED FOR HUMAN CONSUMPTION MUST BE SUBMITTED ON THE MAXXAM DRI	NKING WATER CHAIN OF CUSTODY	Rush Confirmation #:
Regulation 153	Other Regulations	Analysis Requested	LABORATORY USE ONLY
7 (1)	Sanitary Sewer Bylaw Storm Sewer Bylaw Region Specify) 8 (MIN. 3 DAY TAT REQUIRED) WEAR STREET OF THE SERVICE STATE OF THE SERVICE ST	TS TAMA)	CUSTODY SEAL N COOLER TEMPERATURES Present Intact T S S S S S S S S S S S S S S S S S S
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF SAMPLING	TERED (CIRCLE) MEXXXVW OLAMANITATION IC F.1 F.4 METALS & INOT	MAS Metals (\$5)	
SAMPLE IDENTIFICATION DA	MILE PHICE F2 - F4 PHICE F2 PHICE F2 PHICE F2 PHICE F2 PHICE F2 PHICE F2 PHICE F3 PHICE	PAH PAH PAH PAH PAH PAH PAH PAH PAH	COOLING MEDIA PRESENT:
	AM GOLZ XXX	XXX	
2 MW-255-2 21	PM (2 XXX	XX	05-Nov-18 15:30
3 Mw-355-1.	PM 2 XXX	XX	lisha Williamson
4 My - 4 SS -7 No	2 XXX		N 1 1 1 1 1 1 1 1 1
	OPE DXXX	XXX	B8T5024
6 BH-6 SS-2	1 7 XXX	XXX	Y OTT 001
1 BH-7 SS-1	em 2 xxx	XXX	
8 BH-8 CS-1	7 2 8 8		RECEIVED IN CHIAWA
9 BH-9 854	2 / (2)	2622	on ice
10 BH-1055-1 -		× XX	0-100
RELINQUISHED BY: (Signature/Print) DATE: (YYYY		DATE: (YYYY/MM/DD) TIME: (HH:MM)	MAXXAM JOB #

Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Maxxam's standard Terms and Conditions. Signing of this Chain of Custody document is acknowledgment and acceptance of our terms which are available for viewing at www.maxxam.ca/terms. Sample container, preservation, hold time and packages information can be viewed at http://maxxam.ca/wp-content/uploads/Ontario-COC.pdf.

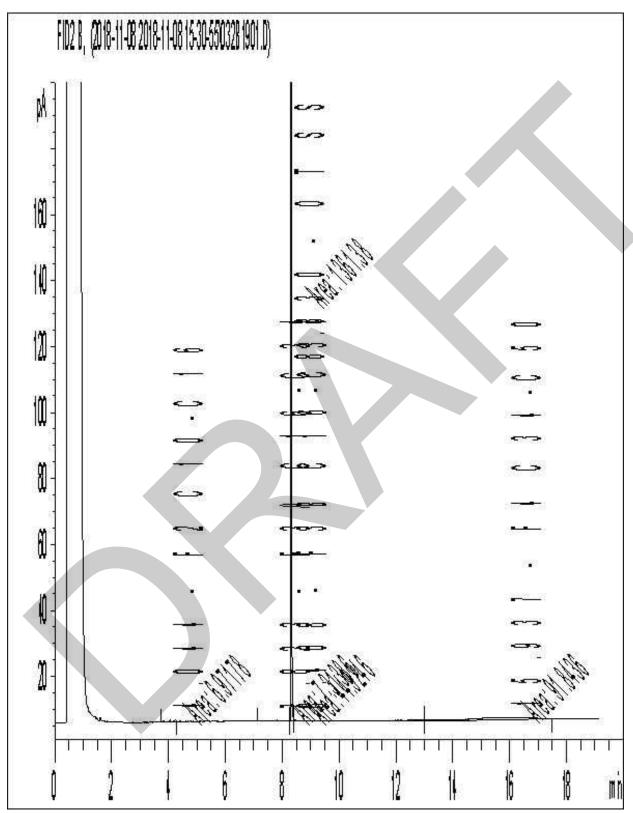
6740 Campobello Road, Mississauga, Ontario L5N 2L8

Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

	1	0	0	0	0	Ľ
CHAIN OF CUSTODY RECORD	_	0	2	0	0	-

1	02	88	35	Page _	1		1	
	-		-	Page _	1	of	1	

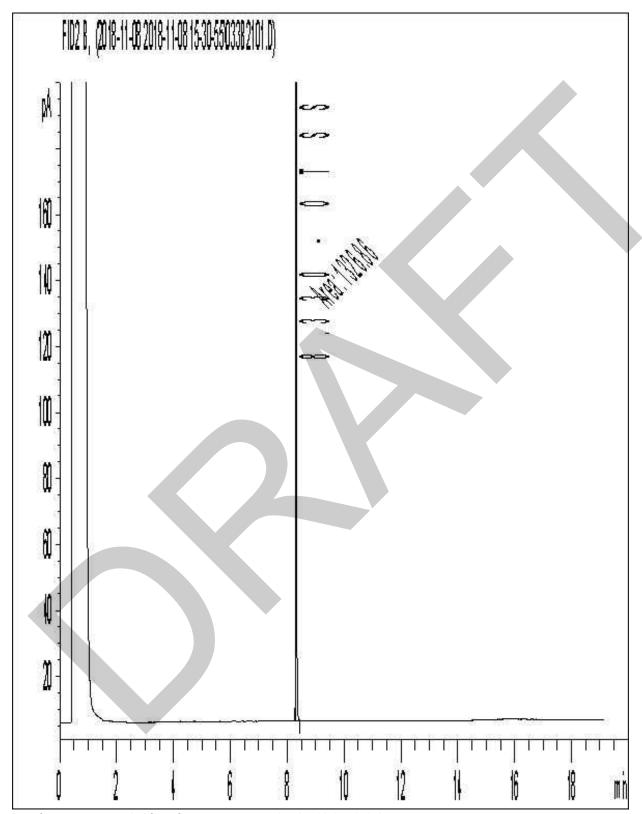
Invoice Information	Report Information (if differs from invoice)	Project Information (where applicable)	Turnaround Time (TAT) Required		
Company Name: Pinchin L+d	Company Name:	Quotation #:	Regular TAT (5-7 days) Most analyses		
Contact Name: Wike Kosil Address: West Ryan	Contact Name:	P.O. #/ AFE#:	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS		
Address: West & Cyan	Address: Same	Project #: 236236 902	Rush TAT (Surcharges will be applied)		
		Site Location:	1 Day 2 Days 3-4 Days		
Phone: (LLEEXS	Phone: Fax:	Site #:			
Email:	Email:	Sampled By:	Date Required:		
	STENDED FOR HUMAN CONSUMPTION MUST BE SUBMITTED ON THE MAXXAM DRIN		Rush Confirmation #:		
Regulation 153	Other Regulations	Analysis Requested	LABORATORY USE ONLY		
Table 1 Res/Park Med/Fine CCME Table 2 Ind/Comm Coarse MISA Table 3 Agri/ Other Table 9 Other (S) FOR RSC (PLEASE CIRCLE) Y / REG 558 Include Criteria on Certificate of Analysis:	(MIN. 3 DAY TAT REQUIRED)	S Metals, HWS - B) S Metals, HWS - B)	CUSTODY SEAL. (Y) N COOLER TEMPERATURES Present Intact 7 8		
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF SAMPLING I	INTIL DELIVERY TO MAYYAM				
	# 60 CONTAINER WAXXWW (WW:HH) BIEX PHC F1 REG 153 METALS RE	HEG TSS META HEG CYV, ICRA HOLD- DO NOT	COOLING MEDIA PRESENT: (V) / N		
1 BH-11 58-1 No		× = = = = = = = = = = = = = = = = = = =			
2 Pup-1 1	- 1 1 2 888	\times \times	05-Nov-18 15:30		
3		Ali	lisha Williamson		
4		11 11 11 11			
5			B8T5024 —		
6		VIV	OTT 001		
7			RECEIVED IN OTTAWA		
8			F.		
9			on ice		
10					
RELINOUISHED BY: (Signature/Print) DATE: (YYYY/M	MM/DD) TIME: (HH:MM) RECEIVED BY: (Signature/Print)	DATE: (YYYY/MM/DD) TIME: (HH:MM)	MAXXAM JOB #		
Mike Kosh Zoix	8, 10:20 47 Serze Leger	0018/11/05 15:30			


Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Maxxam's standard Terms and Conditions. Signing of this Chain of Custody document is acknowledgment and acceptance of our terms which are available for viewing at www.maxxam.ca/terms. Sample container, preservation, hold time and packages information can be viewed at http://maxxam.ca/wp-content/uploads/Ontario-COC.pdf.

White: Maxxam ~ Yellow: Client

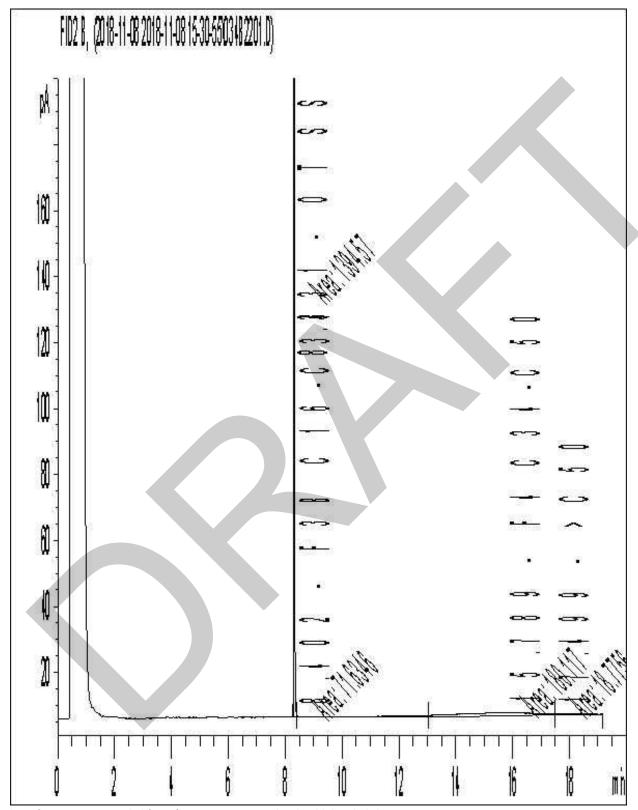
Pinchin Ltd

Client Project #: 230236.002 Client ID: MW-1 SS-2


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

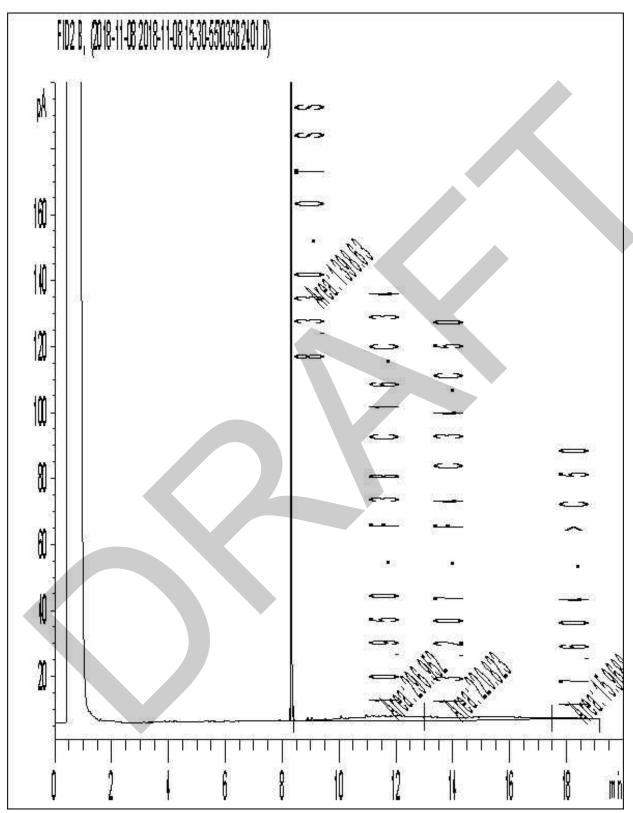
Pinchin Ltd

Client Project #: 230236.002 Client ID: MW-2 SS-2


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

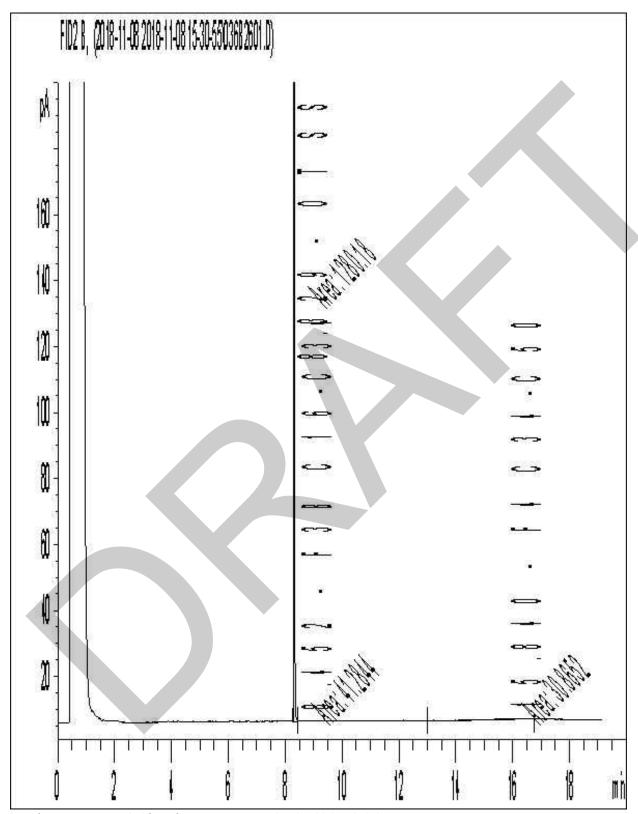
Pinchin Ltd

Client Project #: 230236.002 Client ID: MW-3 SS-1


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

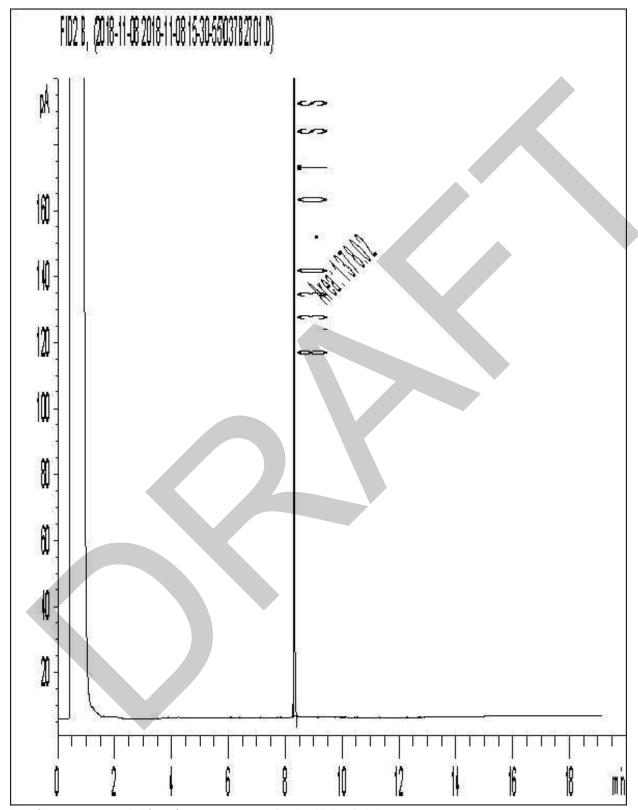
Pinchin Ltd

Client Project #: 230236.002 Client ID: MW-4 SS-2


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

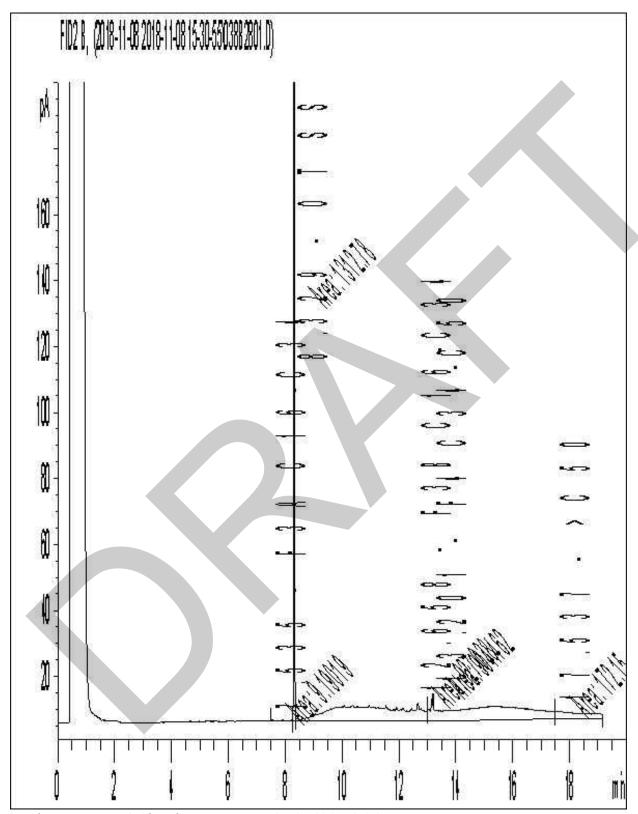
Pinchin Ltd

Client Project #: 230236.002 Client ID: MW-5 SS-2


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

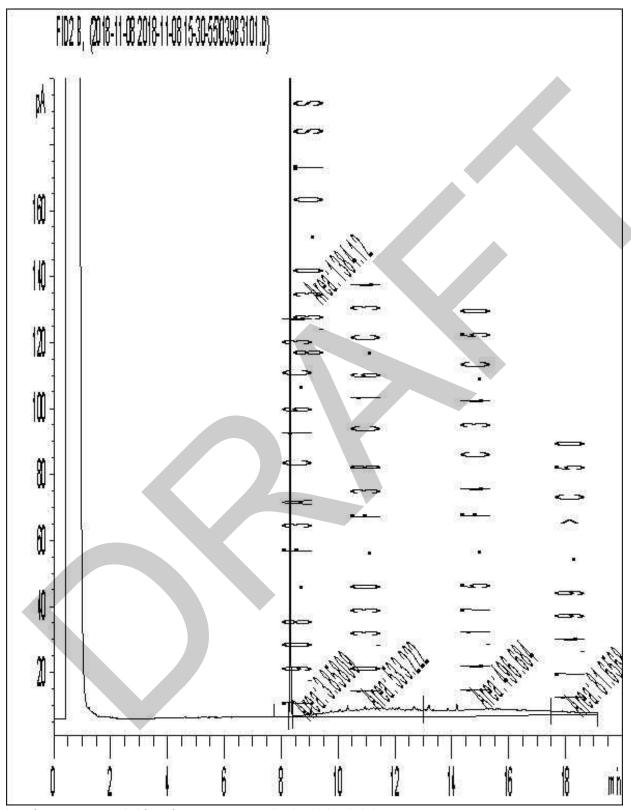
Pinchin Ltd

Client Project #: 230236.002 Client ID: BH-6 SS-2


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

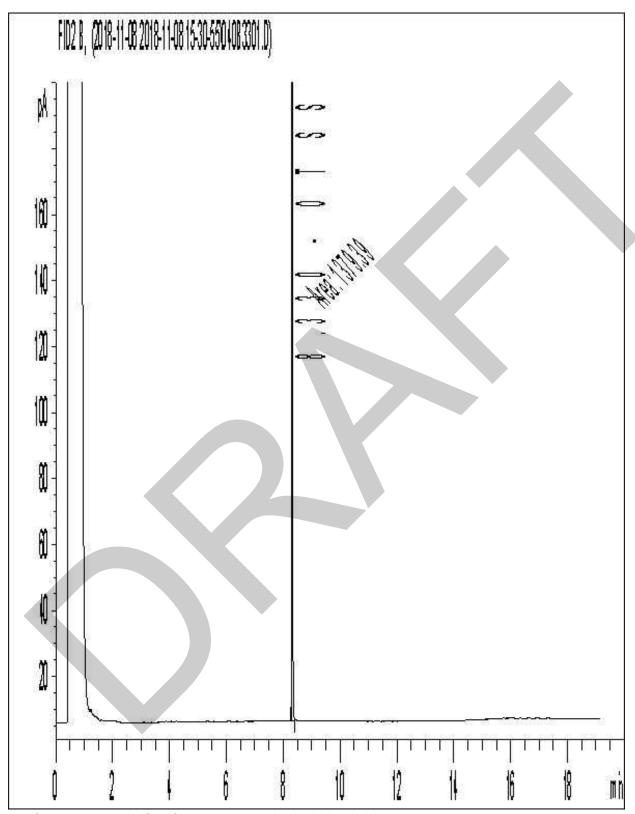
Pinchin Ltd

Client Project #: 230236.002 Client ID: BH-7 SS-1


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

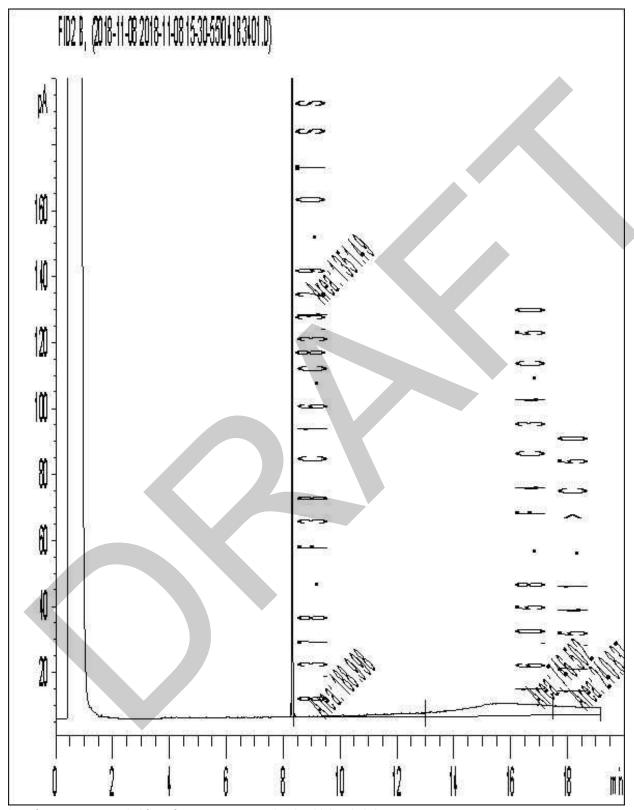
Pinchin Ltd

Client Project #: 230236.002 Client ID: BH-8 SS-1


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

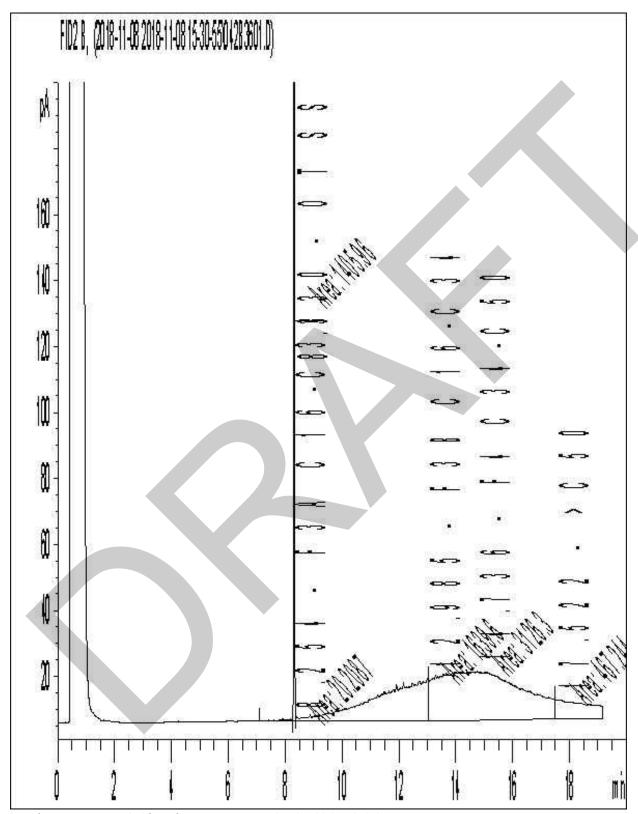
Pinchin Ltd

Client Project #: 230236.002 Client ID: BH-9 SS-4


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Pinchin Ltd

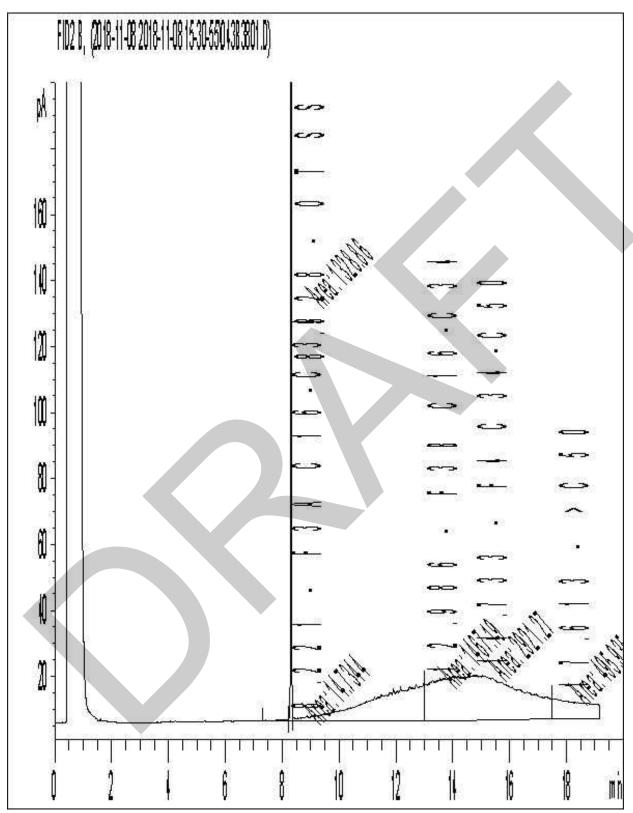
Client Project #: 230236.002 Client ID: BH-10 SS-1


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Pinchin Ltd

Client Project #: 230236.002 Client ID: BH-11 SS-1

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



Pinchin Ltd

Client Project #: 230236.002

Client ID: DUP-1

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Your Project #: 230236.002 Your C.O.C. #: 102893

Attention: Matt Ryan + Mike Kosiw

Pinchin Ltd
Ottawa
1 Hines Road
Suite 200
Kanata, ON
CANADA K2K 3C7

Report Date: 2018/11/19

Report #: R5491208 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8U4943 Received: 2018/11/14, 16:00

Sample Matrix: Water # Samples Received: 11

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum (1)	10	N/A	2018/11/19	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum (1)	11	N/A	2018/11/19		EPA 8260C m
Chromium (VI) in Water (1)	10	N/A	2018/11/19	CAM SOP-00436	EPA 7199 m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	1	2018/11/16	2018/11/18	CAM SOP-00316	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	9	2018/11/16	2018/11/19	CAM SOP-00316	CCME PHC-CWS m
Mercury (1)	10	2018/11/16	2018/11/16	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS (1)	10	N/A	2018/11/16	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM) (1)	10	2018/11/16	2018/11/17	CAM SOP-00318	EPA 8270D m
Volatile Organic Compounds and F1 PHCs (1)	9	N/A	2018/11/16	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds and F1 PHCs (1)	1	N/A	2018/11/19	CAM SOP-00230	EPA 8260C m
Volatile Organic Compounds in Water (1)	1	N/A	2018/11/16	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Your Project #: 230236.002 Your C.O.C. #: 102893

Attention: Matt Ryan + Mike Kosiw

Pinchin Ltd
Ottawa
1 Hines Road
Suite 200
Kanata, ON
CANADA K2K 3C7

Report Date: 2018/11/19

Report #: R5491208 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8U4943 Received: 2018/11/14, 16:00

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Analytics Mississauga
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Alisha Williamson, Project Manager Email: AWilliamson@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

O.REG 153 METALS PACKAGE (WATER)

Maxxam ID		IHM233	IHM234	IHM235	IHM236		IHM237	IHM238		
Sampling Date		2018/11/13	2018/11/13	2018/11/13	2018/11/13		2018/11/13	2018/11/13		
COC Number		102893	102893	102893	102893		102893	102893		
	UNITS	EXMW-1	MW-1	EXMW-2	MW-2	RDL	EXMW-3	MW-4	RDL	QC Batch
Metals										
Chromium (VI)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	<0.50	<0.50	0.50	5832710
Mercury (Hg)	ug/L	0.2	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	0.1	5840721
Dissolved Antimony (Sb)	ug/L	0.82	<0.50	<0.50	0.61	0.50	<0.50	2.7	0.50	5840092
Dissolved Arsenic (As)	ug/L	<1.0	1.2	<1.0	<1.0	1.0	<1.0	<1.0	1.0	5840092
Dissolved Barium (Ba)	ug/L	120	260	130	160	2.0	200	74	2.0	5840092
Dissolved Beryllium (Be)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	<0.50	<0.50	0.50	5840092
Dissolved Boron (B)	ug/L	140	280	260	1100	10	280	210	10	5840092
Dissolved Cadmium (Cd)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	<0.10	<0.10	0.10	5840092
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	<5.0	<5.0	5.0	<5.0	<5.0	5.0	5840092
Dissolved Cobalt (Co)	ug/L	<0.50	3.9	38	3.3	0.50	<0.50	1.1	0.50	5840092
Dissolved Copper (Cu)	ug/L	3.7	<1.0	5.4	1.9	1.0	<1.0	6.1	1.0	5840092
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	<0.50	<0.50	0.50	5840092
Dissolved Molybdenum (Mo)	ug/L	3.5	1.2	2.0	4.6	0.50	<0.50	3.5	0.50	5840092
Dissolved Nickel (Ni)	ug/L	3.6	8.6	6.2	12	1.0	1.2	6.0	1.0	5840092
Dissolved Selenium (Se)	ug/L	<2.0	<2.0	<2.0	<2.0	2.0	<2.0	2.0	2.0	5840092
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	<0.10	<0.10	0.10	5840092
Dissolved Sodium (Na)	ug/L	570000	720000	680000	630000	500	230000	190000	100	5840092
Dissolved Thallium (TI)	ug/L	0.098	<0.050	<0.050	0.23	0.050	<0.050	<0.050	0.050	5840092
Dissolved Uranium (U)	ug/L	2.2	0.78	2.5	3.5	0.10	0.51	4.0	0.10	5840092
Dissolved Vanadium (V)	ug/L	<0.50	<0.50	<0.50	<0.50	0.50	<0.50	0.76	0.50	5840092
Dissolved Zinc (Zn)	ug/L	31	<5.0	16	<5.0	5.0	<5.0	<5.0	5.0	5840092

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

O.REG 153 METALS PACKAGE (WATER)

Maxxam ID		IHM239	IHM240			IHM240			IHM241		
Sampling Date		2018/11/13	2018/11/13			2018/11/13			2018/11/13		
COC Number		102893	102893			102893			102893		
	UNITS	EXMW-4	MW-5	RDL	QC Batch	MW-5 Lab-Dup	RDL	QC Batch	EXMW-5	RDL	QC Batch
Metals											
Chromium (VI)	ug/L	<0.50	<0.50	0.50	5832710	<0.50	0.50	5832710	<0.50	0.50	5832710
Mercury (Hg)	ug/L	<0.1	<0.1	0.1	5840721				<0.1	0.1	5840721
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	0.50	5840092				0.51	0.50	5840092
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	1.0	5840092				<1.0	1.0	5840092
Dissolved Barium (Ba)	ug/L	230	110	2.0	5840092				160	2.0	5840092
Dissolved Beryllium (Be)	ug/L	<0.50	<0.50	0.50	5840092				<0.50	0.50	5840092
Dissolved Boron (B)	ug/L	98	280	10	5840092				230	10	5840092
Dissolved Cadmium (Cd)	ug/L	<0.10	<0.10	0.10	5840092				0.15	0.10	5840092
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	5.0	5840092				<5.0	5.0	5840092
Dissolved Cobalt (Co)	ug/L	<0.50	1.9	0.50	5840092				5.9	0.50	5840092
Dissolved Copper (Cu)	ug/L	<1.0	2.4	1.0	5840092				2.3	1.0	5840092
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	0.50	5840092				<0.50	0.50	5840092
Dissolved Molybdenum (Mo)	ug/L	0.63	4.7	0.50	5840092				1.4	0.50	5840092
Dissolved Nickel (Ni)	ug/L	<1.0	12	1.0	5840092				8.2	1.0	5840092
Dissolved Selenium (Se)	ug/L	<2.0	<2.0	2.0	5840092				<2.0	2.0	5840092
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	0.10	5840092				<0.10	0.10	5840092
Dissolved Sodium (Na)	ug/L	62000	370000	100	5840092				170000	100	5840092
Dissolved Thallium (TI)	ug/L	<0.050	0.068	0.050	5840092				0.072	0.050	5840092
Dissolved Uranium (U)	ug/L	<0.10	3.6	0.10	5840092				1.0	0.10	5840092
Dissolved Vanadium (V)	ug/L	<0.50	<0.50	0.50	5840092				<0.50	0.50	5840092
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	5.0	5840092				26	5.0	5840092

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

O.REG 153 METALS PACKAGE (WATER)

Maxxam ID		IHM242		
Sampling Date		2018/11/13		
COC Number		102893		
	UNITS	DUP-2	RDL	QC Batch
Metals				
Chromium (VI)	ug/L	<0.50	0.50	5832710
Mercury (Hg)	ug/L	<0.1	0.1	5840721
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	5840092
Dissolved Arsenic (As)	ug/L	1.2	1.0	5840092
Dissolved Barium (Ba)	ug/L	260	2.0	5840092
Dissolved Beryllium (Be)	ug/L	<0.50	0.50	5840092
Dissolved Boron (B)	ug/L	290	10	5840092
Dissolved Cadmium (Cd)	ug/L	<0.10	0.10	5840092
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	5840092
Dissolved Cobalt (Co)	ug/L	4.1	0.50	5840092
Dissolved Copper (Cu)	ug/L	<1.0	1.0	5840092
Dissolved Lead (Pb)	ug/L	<0.50	0.50	5840092
Dissolved Molybdenum (Mo)	ug/L	1.2	0.50	5840092
Dissolved Nickel (Ni)	ug/L	8.8	1.0	5840092
Dissolved Selenium (Se)	ug/L	<2.0	2.0	5840092
Dissolved Silver (Ag)	ug/L	<0.10	0.10	5840092
Dissolved Sodium (Na)	ug/L	700000	500	5840092
Dissolved Thallium (TI)	ug/L	<0.050	0.050	5840092
Dissolved Uranium (U)	ug/L	0.81	0.10	5840092
Dissolved Vanadium (V)	ug/L	<0.50	0.50	5840092
Dissolved Zinc (Zn)	ug/L	<5.0	5.0	5840092
RDL = Reportable Detection L	imit			
QC Batch = Quality Control Ba	atch			

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

O.REG 153 PAHS (WATER)

Maxxam ID		IHM233		IHM234	IHM235	IHM236	IHM237	IHM238		
Sampling Date		2018/11/13		2018/11/13	2018/11/13	2018/11/13	2018/11/13	2018/11/13		
COC Number		102893		102893	102893	102893	102893	102893		
	UNITS	EXMW-1	QC Batch	MW-1	EXMW-2	MW-2	EXMW-3	MW-4	RDL	QC Batch
Calculated Parameters										
Methylnaphthalene, 2-(1-)	ug/L	<0.071	5838815	7.6	<0.071	<0.071	<0.071	<0.071	0.071	5838815
Polyaromatic Hydrocarbons	II.			ľ	l.				ı	
Acenaphthene	ug/L	<0.050	5841578	0.076	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Acenaphthylene	ug/L	<0.050	5841578	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Anthracene	ug/L	<0.050	5841578	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Benzo(a)anthracene	ug/L	<0.050	5841578	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Benzo(a)pyrene	ug/L	<0.010	5841578	<0.010	<0.010	<0.010	<0.010	<0.010	0.010	5841618
Benzo(b/j)fluoranthene	ug/L	<0.050	5841578	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Benzo(g,h,i)perylene	ug/L	<0.050	5841578	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Benzo(k)fluoranthene	ug/L	<0.050	5841578	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Chrysene	ug/L	<0.050	5841578	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Dibenz(a,h)anthracene	ug/L	<0.050	5841578	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Fluoranthene	ug/L	<0.050	5841578	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Fluorene	ug/L	<0.050	5841578	0.11	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	5841578	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5841618
1-Methylnaphthalene	ug/L	<0.050	5841578	7.5	<0.050	<0.050	<0.050	<0.050	0.050	5841618
2-Methylnaphthalene	ug/L	<0.050	5841578	0.12	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Naphthalene	ug/L	<0.050	5841578	11	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Phenanthrene	ug/L	<0.030	5841578	0.043	<0.030	<0.030	<0.030	<0.030	0.030	5841618
Pyrene	ug/L	<0.050	5841578	0.053	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Surrogate Recovery (%)					7					
D10-Anthracene	%	21 (1)	5841578	94	98	97	88	98		5841618
D14-Terphenyl (FS)	%	33 (1)	5841578	54	83	82	46 (2)	82		5841618
D8-Acenaphthylene	%	36 (1)	5841578	99	98	97	96	99		5841618

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

⁽¹⁾ Surrogate recovery was below the lower control limit due to matrix interference(high amount of sediment presented in the sample bottle). This may represent a low bias in some results.

⁽²⁾ Surrogate recovery may have been impacted by the amount of sediment that was present in sample.

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

O.REG 153 PAHS (WATER)

		1111 4000	1110.40.40	11.15.40.46	11.15.40.40		
Maxxam ID		IHM239	IHM240	IHM241	IHM242		
Sampling Date		2018/11/13	2018/11/13	2018/11/13	2018/11/13		
COC Number		102893	102893	102893	102893		
	UNITS	EXMW-4	MW-5	EXMW-5	DUP-2	RDL	QC Batch
Calculated Parameters							
Methylnaphthalene, 2-(1-)	ug/L	<0.071	<0.071	<0.071	10	0.071	5838815
Polyaromatic Hydrocarbons							
Acenaphthene	ug/L	<0.050	<0.050	<0.050	0.094	0.050	5841618
Acenaphthylene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Anthracene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Benzo(a)anthracene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Benzo(a)pyrene	ug/L	<0.010	<0.010	<0.010	<0.010	0.010	5841618
Benzo(b/j)fluoranthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Chrysene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Dibenz(a,h)anthracene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Fluoranthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	5841618
Fluorene	ug/L	<0.050	<0.050	<0.050	0.14	0.050	5841618
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	5841618
1-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	9.9	0.050	5841618
2-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	0.17	0.050	5841618
Naphthalene	ug/L	0.089	<0.050	<0.050	15	0.050	5841618
Phenanthrene	ug/L	<0.030	<0.030	<0.030	0.054	0.030	5841618
Pyrene	ug/L	<0.050	<0.050	<0.050	0.051	0.050	5841618
Surrogate Recovery (%)							
D10-Anthracene	%	99	99	99	96		5841618
D14-Terphenyl (FS)	%	82	83	65	60		5841618
D8-Acenaphthylene	%	101	98	100	99		5841618
RDL = Reportable Detection L	imit						

RDL = Reportable Detection Limit
QC Batch = Quality Control Batch

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		IHM233		IHM234	IHM235	IHM236	IHM237		
Sampling Date		2018/11/13		2018/11/13	2018/11/13	2018/11/13	2018/11/13		
COC Number		102893		102893	102893	102893	102893		
	UNITS	EXMW-1	QC Batch	MW-1	EXMW-2	MW-2	EXMW-3	RDL	QC Batch
Calculated Parameters									
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	5838816	<0.50	<0.50	<0.50	<0.50	0.50	5838816
Volatile Organics			<u> </u>						
Acetone (2-Propanone)	ug/L	<10	5839695	<10	<10	12	75	10	5839695
Benzene	ug/L	<0.20	5839695	78	<0.20	<0.20	<0.20	0.20	5839695
Bromodichloromethane	ug/L	<0.50	5839695	<0.50	<0.50	<0.50	<0.50	0.50	5839695
Bromoform	ug/L	<1.0	5839695	<1.0	<1.0	<1.0	<1.0	1.0	5839695
Bromomethane	ug/L	<0.50	5839695	<0.50	<0.50	<0.50	<0.50	0.50	5839695
Carbon Tetrachloride	ug/L	<0.20	5839695	<0.20	<0.20	<0.20	<0.20	0.20	5839695
Chlorobenzene	ug/L	<0.20	5839695	<0.20	<0.20	<0.20	<0.20	0.20	5839695
Chloroform	ug/L	<0.20	5839695	<0.20	<0.20	<0.20	<0.20	0.20	5839695
Dibromochloromethane	ug/L	<0.50	5839695	<0.50	<0.50	<0.50	<0.50	0.50	5839695
1,2-Dichlorobenzene	ug/L	<0.50	5839695	<0.50	<0.50	<0.50	<0.50	0.50	5839695
1,3-Dichlorobenzene	ug/L	<0.50	5839695	<0.50	<0.50	<0.50	<0.50	0.50	5839695
1,4-Dichlorobenzene	ug/L	<0.50	5839695	<0.50	<0.50	<0.50	<0.50	0.50	5839695
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	5839695	<1.0	<1.0	<1.0	<1.0	1.0	5839695
1,1-Dichloroethane	ug/L	<0.20	5839695	<0.20	<0.20	<0.20	<0.20	0.20	5839695
1,2-Dichloroethane	ug/L	<0.50	5839695	<0.50	<0.50	<0.50	<0.50	0.50	5839695
1,1-Dichloroethylene	ug/L	<0.20	5839695	<0.20	<0.20	<0.20	<0.20	0.20	5839695
cis-1,2-Dichloroethylene	ug/L	<0.50	5839695	<0.50	<0.50	<0.50	<0.50	0.50	5839695
trans-1,2-Dichloroethylene	ug/L	<0.50	5839695	<0.50	<0.50	<0.50	<0.50	0.50	5839695
1,2-Dichloropropane	ug/L	<0.20	5839695	<0.20	<0.20	<0.20	<0.20	0.20	5839695
cis-1,3-Dichloropropene	ug/L	<0.30	5839695	<0.30	<0.30	<0.30	<0.30	0.30	5839695
trans-1,3-Dichloropropene	ug/L	<0.40	5839695	<0.40	<0.40	<0.40	<0.40	0.40	5839695
Ethylbenzene	ug/L	<0.20	5839695	37	<0.20	<0.20	<0.20	0.20	5839695
Ethylene Dibromide	ug/L	<0.20	5839695	<0.20	<0.20	<0.20	<0.20	0.20	5839695
Hexane	ug/L	<1.0	5839695	<1.0	<1.0	<1.0	<1.0	1.0	5839695
Methylene Chloride(Dichloromethane)	ug/L	<2.0	5839695	<2.0	<2.0	<2.0	<2.0	2.0	5839695
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	5839695	<10	<10	<10	<10	10	5839695
Methyl Isobutyl Ketone	ug/L	<5.0	5839695	<5.0	<5.0	<5.0	<5.0	5.0	5839695
Methyl t-butyl ether (MTBE)	ug/L	<0.50	5839695	1.2	<0.50	1.3	<0.50	0.50	5839695
Styrene	ug/L	<0.50	5839695	<0.50	<0.50	<0.50	<0.50	0.50	5839695
1,1,1,2-Tetrachloroethane	ug/L	<0.50	5839695	<0.50	<0.50	<0.50	<0.50	0.50	5839695
1,1,2,2-Tetrachloroethane	ug/L	<0.50	5839695	<0.50	<0.50	<0.50	<0.50	0.50	5839695
Tetrachloroethylene	ug/L	<0.20	5839695	<0.20	<0.20	<0.20	<0.20	0.20	5839695
Toluene	ug/L	<0.20	5839695	16	<0.20	<0.20	<0.20	0.20	5839695
1,1,1-Trichloroethane	ug/L	<0.20	5839695	<0.20	<0.20	<0.20	<0.20	0.20	5839695
RDL = Reportable Detection Limit	•	•		•	•	•	•	•	

QC Batch = Quality Control Batch

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		IHM233		IHM234	IHM235	IHM236	IHM237		
Sampling Date		2018/11/13		2018/11/13	2018/11/13	2018/11/13	2018/11/13		
COC Number		102893		102893	102893	102893	102893		
	UNITS	EXMW-1	QC Batch	MW-1	EXMW-2	MW-2	EXMW-3	RDL	QC Batch
1,1,2-Trichloroethane	ug/L	<0.50	5839695	<0.50	<0.50	<0.50	<0.50	0.50	5839695
Trichloroethylene	ug/L	<0.20	5839695	<0.20	<0.20	<0.20	<0.20	0.20	5839695
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	5839695	<0.50	<0.50	<0.50	<0.50	0.50	5839695
Vinyl Chloride	ug/L	<0.20	5839695	<0.20	<0.20	<0.20	<0.20	0.20	5839695
p+m-Xylene	ug/L	<0.20	5839695	68	<0.20	<0.20	<0.20	0.20	5839695
o-Xylene	ug/L	<0.20	5839695	20	<0.20	<0.20	<0.20	0.20	5839695
Total Xylenes	ug/L	<0.20	5839695	89	<0.20	<0.20	<0.20	0.20	5839695
F1 (C6-C10)	ug/L	<25	5839695	680	<25	<25	<25	25	5839695
F1 (C6-C10) - BTEX	ug/L	<25	5839695	460	<25	<25	<25	25	5839695
F2-F4 Hydrocarbons	•								
F2 (C10-C16 Hydrocarbons)	ug/L	<100	5841590	380	<100	<100	<100	100	5841620
F3 (C16-C34 Hydrocarbons)	ug/L	<200	5841590	<200	<200	<200	<200	200	5841620
F4 (C34-C50 Hydrocarbons)	ug/L	<200	5841590	<200	<200	<200	<200	200	5841620
Reached Baseline at C50	ug/L	Yes	5841590	Yes	Yes	Yes	Yes		5841620
Surrogate Recovery (%)	•								
o-Terphenyl	%	117	5841590	94	102	103	98		5841620
4-Bromofluorobenzene	%	83	5839695	93	83	85	85		5839695
D4-1,2-Dichloroethane	%	112	5839695	101	108	108	109		5839695
D8-Toluene	%	93	5839695	97	96	94	95		5839695
RDL = Reportable Detection Limit									

QC Batch = Quality Control Batch

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		IHM238	IHM239	IHM240	IHM241	IHM242		
Sampling Date		2018/11/13	2018/11/13	2018/11/13	2018/11/13	2018/11/13		
COC Number		102893	102893	102893	102893	102893		
	UNITS	MW-4	EXMW-4	MW-5	EXMW-5	DUP-2	RDL	QC Batch
Calculated Parameters		L				7		
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5838816
Volatile Organics	WB/ E	10.50	10.50	10.50	10.50	10.50	0.50	3030010
Acetone (2-Propanone)	ug/L	<10	40	<10	34	<10	10	5839695
Benzene	ug/L	<0.20	<0.20	<0.20	<0.20	68	0.20	5839695
Bromodichloromethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5839695
Bromoform	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5839695
Bromomethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5839695
Carbon Tetrachloride	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5839695
Chlorobenzene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5839695
Chloroform	ug/L	0.28	<0.20	<0.20	<0.20	<0.20	0.20	5839695
Dibromochloromethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5839695
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5839695
1,3-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5839695
1,4-Dichlorobenzene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5839695
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5839695
1,1-Dichloroethane	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5839695
1,2-Dichloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5839695
1,1-Dichloroethylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5839695
cis-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5839695
trans-1,2-Dichloroethylene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5839695
1,2-Dichloropropane	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5839695
cis-1,3-Dichloropropene	ug/L	<0.30	<0.30	<0.30	<0.30	<0.30	0.30	5839695
trans-1,3-Dichloropropene	ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	5839695
Ethylbenzene	ug/L	<0.20	<0.20	<0.20	<0.20	30	0.20	5839695
Ethylene Dibromide	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5839695
Hexane	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5839695
Methylene Chloride(Dichloromethane)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5839695
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	<10	<10	<10	<10	10	5839695
Methyl Isobutyl Ketone	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	5839695
Methyl t-butyl ether (MTBE)	ug/L	<0.50	<0.50	<0.50	<0.50	1.2	0.50	5839695
Styrene	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5839695
1,1,1,2-Tetrachloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5839695
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5839695
Tetrachloroethylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5839695
Toluene	ug/L	<0.20	0.31	<0.20	0.30	14	0.20	5839695
1,1,1-Trichloroethane	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5839695
RDL = Reportable Detection Limit	•	•						
QC Batch = Quality Control Batch								

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		IHM238	IHM239	IHM240	IHM241	IHM242		
Sampling Date		2018/11/13	2018/11/13	2018/11/13	2018/11/13	2018/11/13		
COC Number		102893	102893	102893	102893	102893		
	UNITS	MW-4	EXMW-4	MW-5	EXMW-5	DUP-2	RDL	QC Batch
1,1,2-Trichloroethane	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5839695
Trichloroethylene	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5839695
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5839695
Vinyl Chloride	ug/L	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	5839695
p+m-Xylene	ug/L	<0.20	<0.20	<0.20	<0.20	58	0.20	5839695
o-Xylene	ug/L	<0.20	<0.20	<0.20	<0.20	18	0.20	5839695
Total Xylenes	ug/L	<0.20	<0.20	<0.20	<0.20	75	0.20	5839695
F1 (C6-C10)	ug/L	<25	<25	<25	<25	580	25	5839695
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	<25	390	25	5839695
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	<100	470	100	5841620
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	<200	<200	200	5841620
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	<200	<200	200	5841620
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes	Yes		5841620
Surrogate Recovery (%)								
o-Terphenyl	%	91	101	100	106	101		5841620
4-Bromofluorobenzene	%	83	83	85	81	94		5839695
D4-1,2-Dichloroethane	%	110	111	121	112	104		5839695
D8-Toluene	%	94	94	90	94	98		5839695
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

O.REG 153 VOCS BY HS (WATER)

COC Number		2018/11/13		
COC Number				
		102893		
	UNITS	TRIP BLANK	RDL	QC Batc
Calculated Parameters				
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	583881
/olatile Organics		-	4	
Acetone (2-Propanone)	ug/L	<10	10	583930
Benzene	ug/L	<0.20	0.20	583930
Bromodichloromethane	ug/L	<0.50	0.50	583930
Bromoform	ug/L	<1.0	1.0	583930
Bromomethane	ug/L	<0.50	0.50	583930
Carbon Tetrachloride	ug/L	<0.20	0.20	583930
Chlorobenzene	ug/L	<0.20	0.20	583930
Chloroform	ug/L	<0.20	0.20	583930
Dibromochloromethane	ug/L	<0.50	0.50	583930
1,2-Dichlorobenzene	ug/L	<0.50	0.50	583930
1,3-Dichlorobenzene	ug/L	<0.50	0.50	583930
1,4-Dichlorobenzene	ug/L	<0.50	0.50	583930
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	583930
1,1-Dichloroethane	ug/L	<0.20	0.20	583930
1,2-Dichloroethane	ug/L	<0.50	0.50	583930
1,1-Dichloroethylene	ug/L	<0.20	0.20	583930
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	583930
rans-1,2-Dichloroethylene	ug/L	<0.50	0.50	583930
1,2-Dichloropropane	ug/L	<0.20	0.20	583930
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	583930
rans-1,3-Dichloropropene	ug/L	<0.40	0.40	583930
Ethylbenzene	ug/L	<0.20	0.20	583930
Ethylene Dibromide	ug/L	<0.20	0.20	583930
Hexane	ug/L	<1.0	1.0	583930
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	583930
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	583930
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	583930
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	583930
Styrene	ug/L	<0.50	0.50	583930
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	583930
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	583930
Fetrachloroethylene	ug/L	<0.20	0.20	583930
Toluene	ug/L	<0.20	0.20	583930
1,1,1-Trichloroethane	ug/L	<0.20	0.20	583930

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

O.REG 153 VOCS BY HS (WATER)

Maxxam ID		IHM232		
Sampling Date		2018/11/13		
COC Number		102893		
	UNITS	TRIP BLANK	RDL	QC Batch
1,1,2-Trichloroethane	ug/L	<0.50	0.50	5839308
Trichloroethylene	ug/L	<0.20	0.20	5839308
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	5839308
Vinyl Chloride	ug/L	<0.20	0.20	5839308
p+m-Xylene	ug/L	<0.20	0.20	5839308
o-Xylene	ug/L	<0.20	0.20	5839308
Total Xylenes	ug/L	<0.20	0.20	5839308
Surrogate Recovery (%)				
4-Bromofluorobenzene	%	92		5839308
D4-1,2-Dichloroethane	%	102		5839308
D8-Toluene	%	96		5839308
RDL = Reportable Detection Limit OC Batch = Quality Control Batch				

QC Batch = Quality Control Batch

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

TEST SUMMARY

Maxxam ID: IHM232 Sample ID: TRIP BLANK Collected:

2018/11/13

Sample ID: TRIP BLANK
Matrix: Water

Shipped:

Received: 2018/11/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5838816	N/A	2018/11/19	Automated Statchk
Volatile Organic Compounds in Water	GC/MS	5839308	N/A	2018/11/16	Blair Gannon

Maxxam ID: IHM233

Collected: 2018/11/13

Sample ID: EXMW-1

Shipped:

Matrix: Water

Received: 2018/11/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5838815	N/A	2018/11/19	Automated Statchk
1,3-Dichloropropene Sum	CALC	5838816	N/A	2018/11/19	Automated Statchk
Chromium (VI) in Water	IC	5832710	N/A	2018/11/19	Lang Le
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5841590	2018/11/16	2018/11/18	Margaret Kulczyk-Stanko
Mercury	CV/AA	5840721	2018/11/16	2018/11/16	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	5840092	N/A	2018/11/16	Arefa Dabhad
PAH Compounds in Water by GC/MS (SIM)	GC/MS	5841578	2018/11/16	2018/11/17	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5839695	N/A	2018/11/16	Denis Reid

Maxxam ID: IHM234 Sample ID: MW-1

Water

Matrix:

Collected: 2018/11/13

Shipped:

Received: 2018/11/14

Test Description Instrumentation Batch **Extracted Date Analyzed** Analyst Methylnaphthalene Sum CALC 5838815 N/A 2018/11/19 **Automated Statchk** 1,3-Dichloropropene Sum CALC 5838816 N/A 2018/11/19 Automated Statchk Chromium (VI) in Water 5832710 N/A 2018/11/19 IC Lang Le Petroleum Hydrocarbons F2-F4 in Water GC/FID 5841620 2018/11/16 2018/11/19 Margaret Kulczyk-Stanko CV/AA 5840721 2018/11/16 2018/11/16 Ron Morrison Mercury Dissolved Metals by ICPMS ICP/MS 5840092 N/A 2018/11/16 Arefa Dabhad PAH Compounds in Water by GC/MS (SIM) GC/MS 5841618 2018/11/16 Mitesh Raj 2018/11/17 Volatile Organic Compounds and F1 PHCs GC/MSFD N/A 2018/11/16 Denis Reid 5839695

Maxxam ID: IHM235 Sample ID: EXMW-2

Water

Matrix:

Collected: 2018/11/13

Shipped:

Received: 2018/11/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5838815	N/A	2018/11/19	Automated Statchk
1,3-Dichloropropene Sum	CALC	5838816	N/A	2018/11/19	Automated Statchk
Chromium (VI) in Water	IC	5832710	N/A	2018/11/19	Lang Le
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5841620	2018/11/16	2018/11/19	Margaret Kulczyk-Stanko
Mercury	CV/AA	5840721	2018/11/16	2018/11/16	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	5840092	N/A	2018/11/16	Arefa Dabhad
PAH Compounds in Water by GC/MS (SIM)	GC/MS	5841618	2018/11/16	2018/11/17	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5839695	N/A	2018/11/16	Denis Reid

Pinchin Ltd

Client Project #: 230236.002 Sampler Initials: MK

TEST SUMMARY

Maxxam ID: IHM236

Collected: Shipped:

2018/11/13

Sample ID: MW-2 Matrix: Water

Received: 2018/11/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5838815	N/A	2018/11/19	Automated Statchk
1,3-Dichloropropene Sum	CALC	5838816	N/A	2018/11/19	Automated Statchk
Chromium (VI) in Water	IC	5832710	N/A	2018/11/19	Lang Le
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5841620	2018/11/16	2018/11/19	Margaret Kulczyk-Stanko
Mercury	CV/AA	5840721	2018/11/16	2018/11/16	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	5840092	N/A	2018/11/16	Arefa Dabhad
PAH Compounds in Water by GC/MS (SIM)	GC/MS	5841618	2018/11/16	2018/11/17	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5839695	N/A	2018/11/16	Denis Reid

Maxxam ID: IHM237

Collected: 2018/11/13

Sample ID: EXMW-3 Matrix: Water

Shipped:

Received: 2018/11/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5838815	N/A	2018/11/19	Automated Statchk
1,3-Dichloropropene Sum	CALC	5838816	N/A	2018/11/19	Automated Statchk
Chromium (VI) in Water	IC	5832710	N/A	2018/11/19	Lang Le
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5841620	2018/11/16	2018/11/19	Margaret Kulczyk-Stanko
Mercury	CV/AA	5840721	2018/11/16	2018/11/16	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	5840092	N/A	2018/11/16	Arefa Dabhad
PAH Compounds in Water by GC/MS (SIM)	GC/MS	5841618	2018/11/16	2018/11/17	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5839695	N/A	2018/11/16	Denis Reid

Maxxam ID: IHM238

Collected: 2018/11/13

Sample ID: MW-4 Matrix: Water

Shipped:

Received: 2018/11/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5838815	N/A	2018/11/19	Automated Statchk
1,3-Dichloropropene Sum	CALC	5838816	N/A	2018/11/19	Automated Statchk
Chromium (VI) in Water	IC	5832710	N/A	2018/11/19	Lang Le
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5841620	2018/11/16	2018/11/19	Margaret Kulczyk-Stanko
Mercury	CV/AA	5840721	2018/11/16	2018/11/16	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	5840092	N/A	2018/11/16	Arefa Dabhad
PAH Compounds in Water by GC/MS (SIM)	GC/MS	5841618	2018/11/16	2018/11/17	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5839695	N/A	2018/11/16	Denis Reid

Maxxam ID: IHM239 EXMW-4 Sample ID:

Collected: Shipped:

2018/11/13

Matrix: Water

Received:

2018/11/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5838815	N/A	2018/11/19	Automated Statchk
1,3-Dichloropropene Sum	CALC	5838816	N/A	2018/11/19	Automated Statchk
Chromium (VI) in Water	IC	5832710	N/A	2018/11/19	Lang Le
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5841620	2018/11/16	2018/11/19	Margaret Kulczyk-Stanko

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

TEST SUMMARY

Maxxam ID: IHM239 Sample ID: EXMW-4 Collected: Shipped:

2018/11/13

Matrix: Water

Received: 2018/11/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury	CV/AA	5840721	2018/11/16	2018/11/16	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	5840092	N/A	2018/11/16	Arefa Dabhad
PAH Compounds in Water by GC/MS (SIM)	GC/MS	5841618	2018/11/16	2018/11/17	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5839695	N/A	2018/11/16	Denis Reid

Maxxam ID: IHM240 MW-5 Sample ID:

Water

Matrix:

Collected: 2018/11/13

Shipped:

Received: 2018/11/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5838815	N/A	2018/11/19	Automated Statchk
1,3-Dichloropropene Sum	CALC	5838816	N/A	2018/11/19	Automated Statchk
Chromium (VI) in Water	IC	5832710	N/A	2018/11/19	Lang Le
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5841620	2018/11/16	2018/11/19	Margaret Kulczyk-Stanko
Mercury	CV/AA	5840721	2018/11/16	2018/11/16	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	5840092	N/A	2018/11/16	Arefa Dabhad
PAH Compounds in Water by GC/MS (SIM)	GC/MS	5841618	2018/11/16	2018/11/17	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5839695	N/A	2018/11/19	Denis Reid

Maxxam ID: IHM240 Dup Collected: 2018/11/13

Sample ID: MW-5 Matrix: Water

Shipped:

Received: 2018/11/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chromium (VI) in Water	IC	5832710	N/A	2018/11/19	Lang Le

Maxxam ID: IHM241

Collected: 2018/11/13

Sample ID: EXMW-5 Matrix: Water

Shipped:

Received: 2018/11/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5838815	N/A	2018/11/19	Automated Statchk
1,3-Dichloropropene Sum	CALC	5838816	N/A	2018/11/19	Automated Statchk
Chromium (VI) in Water	IC	5832710	N/A	2018/11/19	Lang Le
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5841620	2018/11/16	2018/11/19	Margaret Kulczyk-Stanko
Mercury	CV/AA	5840721	2018/11/16	2018/11/16	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	5840092	N/A	2018/11/16	Arefa Dabhad
PAH Compounds in Water by GC/MS (SIM)	GC/MS	5841618	2018/11/16	2018/11/17	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5839695	N/A	2018/11/16	Denis Reid

Maxxam ID: IHM242 Sample ID: DUP-2 Matrix: Water

Collected: 2018/11/13 Shipped:

Received: 2018/11/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5838815	N/A	2018/11/19	Automated Statchk

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

TEST SUMMARY

Collected: 2018/11/13 **Shipped: Received:** 2018/11/14 Maxxam ID: IHM242 Sample ID: DUP-2

Matrix: Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5838816	N/A	2018/11/19	Automated Statchk
Chromium (VI) in Water	IC	5832710	N/A	2018/11/19	Lang Le
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5841620	2018/11/16	2018/11/19	Margaret Kulczyk-Stanko
Mercury	CV/AA	5840721	2018/11/16	2018/11/16	Ron Morrison
Dissolved Metals by ICPMS	ICP/MS	5840092	N/A	2018/11/16	Arefa Dabhad
PAH Compounds in Water by GC/MS (SIM)	GC/MS	5841618	2018/11/16	2018/11/17	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5839695	N/A	2018/11/16	Denis Reid

Pinchin Ltd

Client Project #: 230236.002 Sampler Initials: MK

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	8.3°C

Sample IHM233 [EXMW-1]: Mercury analysis: Sample was not field filtered and preserved. Analysis was completed with the client's consent. Hexavalent chromium analysis: Sample was not field filtered and preserved. Analysis was completed with the client's consent.

Results relate only to the items tested.

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5832710	LLE	Matrix Spike [IHM240-03]	Chromium (VI)	2018/11/19		101	%	80 - 120
5832710	LLE	Spiked Blank	Chromium (VI)	2018/11/19		102	%	80 - 120
5832710	LLE	Method Blank	Chromium (VI)	2018/11/19	<0.50		ug/L	
5832710	LLE	RPD [IHM240-03]	Chromium (VI)	2018/11/19	NC		%	20
5839308	BG1	Matrix Spike	4-Bromofluorobenzene	2018/11/16		97	%	70 - 130
			D4-1,2-Dichloroethane	2018/11/16		104	%	70 - 130
			D8-Toluene	2018/11/16		100	%	70 - 130
			Acetone (2-Propanone)	2018/11/16		99	%	60 - 140
			Benzene	2018/11/16		96	%	70 - 130
			Bromodichloromethane	2018/11/16		101	%	70 - 130
			Bromoform	2018/11/16		104	%	70 - 130
			Bromomethane	2018/11/16		94	%	60 - 140
			Carbon Tetrachloride	2018/11/16		96	%	70 - 130
			Chlorobenzene	2018/11/16		96	%	70 - 130
			Chloroform	2018/11/16		99	%	70 - 130
			Dibromochloromethane	2018/11/16		103	%	70 - 130
			1,2-Dichlorobenzene	2018/11/16		97	%	70 - 130
			1,3-Dichlorobenzene	2018/11/16		95	%	70 - 130
			1,4-Dichlorobenzene	2018/11/16		96	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2018/11/16		78	%	60 - 140
			1,1-Dichloroethane	2018/11/16		97	%	70 - 130
			1,2-Dichloroethane	2018/11/16		101	%	70 - 130
			1,1-Dichloroethylene	2018/11/16		92	% %	70 - 130
						92 98	% %	70 - 130 70 - 130
			cis-1,2-Dichloroethylene	2018/11/16				
			trans-1,2-Dichloroethylene	2018/11/16		95	%	70 - 130
			1,2-Dichloropropane	2018/11/16		100	%	70 - 130
			cis-1,3-Dichloropropene	2018/11/16		101	%	70 - 130
			trans-1,3-Dichloropropene	2018/11/16		103	%	70 - 130
			Ethylbenzene	2018/11/16		95	%	70 - 130
			Ethylene Dibromide	2018/11/16		100	%	70 - 130
			Hexane	2018/11/16		92	%	70 - 130
			Methylene Chloride(Dichloromethane)	2018/11/16		102	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2018/11/16		103	%	60 - 140
			Methyl Isobutyl Ketone	2018/11/16		106	%	70 - 130
			Methyl t-butyl ether (MTBE)	2018/11/16		94	%	70 - 130
	43		Styrene	2018/11/16		99	%	70 - 130
			1,1,1,2-Tetrachloroethane	2018/11/16		100	%	70 - 130
			1,1,2,2-Tetrachloroethane	2018/11/16		104	%	70 - 130
			Tetrachloroethylene	2018/11/16		95	%	70 - 130
			Toluene	2018/11/16		92	%	70 - 130
			1,1,1-Trichloroethane	2018/11/16		95	%	70 - 130
			1,1,2-Trichloroethane	2018/11/16		101	%	70 - 130
			Trichloroethylene	2018/11/16		98	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2018/11/16		95	%	70 - 130
			Vinyl Chloride	2018/11/16		95	%	70 - 130
			p+m-Xylene	2018/11/16		94	%	70 - 130
			o-Xylene	2018/11/16		94	%	70 - 130
5839308	BG1	Spiked Blank	4-Bromofluorobenzene	2018/11/16		98	%	70 - 130
	-	•	D4-1,2-Dichloroethane	2018/11/16		101	%	70 - 130
			D8-Toluene	2018/11/16		100	%	70 - 130
			Acetone (2-Propanone)	2018/11/16		100	%	60 - 140
			Benzene	2018/11/16		98	%	70 - 130
			Bromodichloromethane	2018/11/16		102	%	70 - 130
			Bromoform	2018/11/16		104	%	70 - 130
			510molomi	2010/11/10		104	/0	70 - 130

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QA/QC Batch In	nit QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Lim
	.,	Bromomethane	2018/11/16		96	%	60 - 14
		Carbon Tetrachloride	2018/11/16		98	%	70 - 13
		Chlorobenzene	2018/11/16		98	%	70 - 13
		Chloroform	2018/11/16		101	%	70 - 13
		Dibromochloromethane	2018/11/16		104	%	70 - 13
		1,2-Dichlorobenzene	2018/11/16		97	%	70 - 1
		1,3-Dichlorobenzene	2018/11/16		97	%	70 - 1
		1,4-Dichlorobenzene	2018/11/16		97	%	70 - 1
		Dichlorodifluoromethane (FREON 12)	2018/11/16		83	%	60 - 1
		1,1-Dichloroethane	2018/11/16		100	%	70 - 1
		1,2-Dichloroethane	2018/11/16		101	%	70 - 3
		1,1-Dichloroethylene	2018/11/16		95	%	70 - 3
		cis-1,2-Dichloroethylene	2018/11/16		100	%	70 - 3
		trans-1,2-Dichloroethylene	2018/11/16		98	%	70 - :
		1,2-Dichloropropane	2018/11/16		101	%	70 - :
		cis-1,3-Dichloropropene	2018/11/16		100	%	70 -
		trans-1,3-Dichloropropene	2018/11/16		100	%	70 - 1
		Ethylbenzene	2018/11/16		98	%	70 -
		Ethylene Dibromide	2018/11/16		101	%	70 -
		Hexane	2018/11/16		95	%	70 -
		Methylene Chloride(Dichloromethane)	2018/11/16		103	%	70 -
		Methyl Ethyl Ketone (2-Butanone)	2018/11/16		103	%	60 -
		Methyl Isobutyl Ketone	2018/11/16		106	%	70 -
		Methyl t-butyl ether (MTBE)	2018/11/16		96	%	70 -
		Styrene	2018/11/16		102	%	70 -
		1,1,1,2-Tetrachloroethane	2018/11/16		102	%	70 -
		1,1,2,2-Tetrachloroethane	2018/11/16		104	%	70 -
		Tetrachloroethylene	2018/11/16		98	%	70 -
		Toluene	2018/11/16		95	%	70 -
		1,1,1-Trichloroethane	2018/11/16		98	%	70 -
		1,1,2-Trichloroethane	2018/11/16		103	%	70 -
		Trichloroethylene	2018/11/16		100	% %	70 - 70 -
		Trichlorofluoromethane (FREON 11)	2018/11/16		98	%	70 -
		Vinyl Chloride			99	% %	70 - 70 -
			2018/11/16 2018/11/16		99		
		p+m-Xylene				%	70 -
39308 BO	G1 Method Blank	o-Xylene 4-Bromofluorobenzene	2018/11/16		99 95	% %	70 - 70 -
9300 60	of Method Blank		2018/11/16		95 102	% %	
		D4-1,2-Dichloroethane	2018/11/16				70 -
		D8-Toluene	2018/11/16	-10	96	% /!	70 -
		Acetone (2-Propanone)	2018/11/16	<10		ug/L	
		Benzene Brown diables methods	2018/11/16	<0.20		ug/L	
		Bromodichloromethane	2018/11/16	<0.50		ug/L	
		Bromoform	2018/11/16	<1.0		ug/L	
		Bromomethane	2018/11/16	<0.50		ug/L	
		Carbon Tetrachloride	2018/11/16	<0.20		ug/L	
		Chloroforme	2018/11/16	<0.20		ug/L	
		Chloroform	2018/11/16	<0.20		ug/L	
		Dibromochloromethane	2018/11/16	<0.50		ug/L	
		1,2-Dichlorobenzene	2018/11/16	<0.50		ug/L	
		1,3-Dichlorobenzene	2018/11/16	<0.50		ug/L	
		1,4-Dichlorobenzene	2018/11/16	<0.50		ug/L	
		Dichlorodifluoromethane (FREON 12)	2018/11/16	<1.0		ug/L	
		1,1-Dichloroethane	2018/11/16	<0.20		ug/L	
		1,2-Dichloroethane	2018/11/16	<0.50		ug/L	

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QA/QC		_			_		
Batch	Init QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
		1,1-Dichloroethylene	2018/11/16	<0.20		ug/L	
		cis-1,2-Dichloroethylene	2018/11/16	<0.50		ug/L	
		trans-1,2-Dichloroethylene	2018/11/16	<0.50		ug/L	
		1,2-Dichloropropane	2018/11/16	<0.20		ug/L	
		cis-1,3-Dichloropropene	2018/11/16	<0.30		ug/L	
		trans-1,3-Dichloropropene	2018/11/16	<0.40		ug/L	
		Ethylbenzene	2018/11/16	<0.20		ug/L	
		Ethylene Dibromide	2018/11/16	<0.20		ug/L	
		Hexane	2018/11/16	<1.0		ug/L	
		Methylene Chloride(Dichloromethane)	2018/11/16	<2.0		ug/L	
		Methyl Ethyl Ketone (2-Butanone)	2018/11/16	<10		ug/L	
		Methyl Isobutyl Ketone	2018/11/16	<5.0		ug/L	
		Methyl t-butyl ether (MTBE)	2018/11/16	<0.50		ug/L	
		Styrene	2018/11/16	<0.50		ug/L	
		1,1,1,2-Tetrachloroethane	2018/11/16	<0.50		ug/L	
		1,1,2,2-Tetrachloroethane	2018/11/16	<0.50		ug/L	
		Tetrachloroethylene	2018/11/16	<0.20		ug/L	
		Toluene	2018/11/16	<0.20		ug/L	
		1,1,1-Trichloroethane	2018/11/16	<0.20		ug/L	
		1,1,2-Trichloroethane	2018/11/16	<0.50		ug/L	
		Trichloroethylene	2018/11/16	<0.20		ug/L	
		Trichlorofluoromethane (FREON 11)		<0.50		ug/L ug/L	
			2018/11/16				
		Vinyl Chloride	2018/11/16	<0.20		ug/L	
		p+m-Xylene	2018/11/16	<0.20		ug/L	
		o-Xylene	2018/11/16	<0.20		ug/L	
		Total Xylenes	2018/11/16	<0.20		ug/L	
9308	BG1 RPD	Acetone (2-Propanone)	2018/11/16	NC		%	30
		Benzene	2018/11/16	1.9		%	30
		Bromodichloromethane	2018/11/16	NC		%	30
		Bromoform	2018/11/16	NC		%	30
		Bromomethane	2018/11/16	NC		%	30
		Carbon Tetrachloride	2018/11/16	NC		%	30
		Chlorobenzene	2018/11/16	NC		%	30
		Chloroform	2018/11/16	0.60		%	30
		Dibromochloromethane	2018/11/16	NC		%	30
		1,2-Dichlorobenzene	2018/11/16	NC		%	30
		1,3-Dichlorobenzene	2018/11/16	NC		%	30
		1,4-Dichlorobenzene	2018/11/16	NC		%	30
		Dichlorodifluoromethane (FREON 12)	2018/11/16	NC		%	30
		1,1-Dichloroethane	2018/11/16	NC		%	30
		1,2-Dichloroethane	2018/11/16	NC		%	30
		1,1-Dichloroethylene	2018/11/16	NC		% %	30
		cis-1,2-Dichloroethylene	2018/11/16	NC		%	30
		trans-1,2-Dichloroethylene	2018/11/16	NC		%	30
		1,2-Dichloropropane	2018/11/16	NC		%	30
		cis-1,3-Dichloropropene	2018/11/16	NC		%	30
		trans-1,3-Dichloropropene	2018/11/16	NC		%	30
		Ethylbenzene	2018/11/16	NC		%	30
		Ethylene Dibromide	2018/11/16	NC		%	30
		Hexane	2018/11/16	NC		%	30
		Methylene Chloride(Dichloromethane)	2018/11/16	NC		%	30
		Methyl Ethyl Ketone (2-Butanone)	2018/11/16	NC		%	30
		Methyl Isobutyl Ketone	2018/11/16	NC		%	30
		Methyl t-butyl ether (MTBE)	2018/11/16	NC		%	30

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QA/QC				· · · · · ·				
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Styrene	2018/11/16	NC		%	30
			1,1,1,2-Tetrachloroethane	2018/11/16	NC		%	30
			1,1,2,2-Tetrachloroethane	2018/11/16	NC		%	30
			Tetrachloroethylene	2018/11/16	NC		%	30
			Toluene	2018/11/16	1.3		%	30
			1,1,1-Trichloroethane	2018/11/16	NC		%	30
			1,1,2-Trichloroethane	2018/11/16	NC		%	30
			Trichloroethylene	2018/11/16	NC		%	30
			Trichlorofluoromethane (FREON 11)	2018/11/16	NC		%	30
			Vinyl Chloride	2018/11/16	NC		%	30
			p+m-Xylene	2018/11/16	NC		%	30
			o-Xylene	2018/11/16	NC		%	30
			Total Xylenes	2018/11/16	NC		%	30
5839695	DR1	Matrix Spike	4-Bromofluorobenzene	2018/11/16		102	%	70 - 130
		·	D4-1,2-Dichloroethane	2018/11/16		101	%	70 - 130
			D8-Toluene	2018/11/16		105	%	70 - 130
			Acetone (2-Propanone)	2018/11/16		98	%	60 - 140
			Benzene	2018/11/16		90	%	70 - 130
			Bromodichloromethane	2018/11/16		93	%	70 - 130
			Bromoform	2018/11/16		88	%	70 - 130
			Bromomethane	2018/11/16		85	%	60 - 140
			Carbon Tetrachloride	2018/11/16		90	%	70 - 130
			Chlorobenzene	2018/11/16		91	%	70 - 130
			Chloroform	2018/11/16		93	%	70 - 130
			Dibromochloromethane	2018/11/16		115	%	70 - 130
			1,2-Dichlorobenzene	2018/11/16		89	%	70 - 130
			1,3-Dichlorobenzene	2018/11/16		95	%	70 - 130
			1,4-Dichlorobenzene	2018/11/16		91	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2018/11/16		59 (1)	%	60 - 140
			1,1-Dichloroethane	2018/11/16		93	%	70 - 130
			1,2-Dichloroethane	2018/11/16		95	%	70 - 130
			1,1-Dichloroethylene	2018/11/16		91	%	70 - 130
			cis-1,2-Dichloroethylene	2018/11/16		92	%	70 - 130
			trans-1,2-Dichloroethylene	2018/11/16		87	%	70 - 130
			1,2-Dichloropropane	2018/11/16		93	%	70 - 130
			cis-1,3-Dichloropropene	2018/11/16		99	%	70 - 130
	4		trans-1,3-Dichloropropene	2018/11/16		108	%	70 - 130
			Ethylbenzene Ethylene Dibromide	2018/11/16		95 91	% %	70 - 130 70 - 130
				2018/11/16				
			Hexane Methylene Chloride(Dichloromethane)	2018/11/16		92 84	%	70 - 130
				2018/11/16			%	70 - 130
			Methyl Isohutul Ketone (2-Butanone)	2018/11/16		100	%	60 - 140
			Methyl Isobutyl Ketone	2018/11/16		85	%	70 - 130
			Methyl t-butyl ether (MTBE)	2018/11/16		93	%	70 - 130
			Styrene	2018/11/16		96	%	70 - 130
			1,1,1,2-Tetrachloroethane	2018/11/16		90	%	70 - 130
			1,1,2,2-Tetrachloroethane	2018/11/16		91	%	70 - 130
			Tetrachloroethylene	2018/11/16		91	%	70 - 130
			Toluene	2018/11/16		93	%	70 - 130
			1,1,1-Trichloroethane	2018/11/16		92	%	70 - 130
			1,1,2-Trichloroethane	2018/11/16		93	%	70 - 130
			Trichloroethylene	2018/11/16		90	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2018/11/16		89	%	70 - 130
			Vinyl Chloride	2018/11/16		80	%	70 - 130

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QA/QC					·			
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		7112	p+m-Xylene	2018/11/16		95	%	70 - 130
			o-Xylene	2018/11/16		96	%	70 - 130
			F1 (C6-C10)	2018/11/16		99	%	60 - 140
5839695	DR1	Spiked Blank	4-Bromofluorobenzene	2018/11/16		100	%	70 - 130
			D4-1,2-Dichloroethane	2018/11/16		99	%	70 - 130
			D8-Toluene	2018/11/16		105	%	70 - 130
			Acetone (2-Propanone)	2018/11/16		84	%	60 - 140
			Benzene	2018/11/16		88	%	70 - 130
			Bromodichloromethane	2018/11/16		91	%	70 - 130
			Bromoform	2018/11/16		84	%	70 - 130
			Bromomethane	2018/11/16		80	%	60 - 140
			Carbon Tetrachloride	2018/11/16		89	%	70 - 130
			Chlorobenzene	2018/11/16		88	%	70 - 130
			Chloroform	2018/11/16		91	%	70 - 130
			Dibromochloromethane	2018/11/16		87	%	70 - 130
			1,2-Dichlorobenzene	2018/11/16		88	%	70 - 130
			1,3-Dichlorobenzene	2018/11/16		96	%	70 - 130
			1,4-Dichlorobenzene	2018/11/16		91	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2018/11/16		62	% %	60 - 140
			1,1-Dichloroethane	2018/11/16		91	% %	70 - 130
			1,2-Dichloroethane	2018/11/16		91 91	% %	70 - 130 70 - 130
						90	% %	70 - 130 70 - 130
			1,1-Dichloroethylene cis-1,2-Dichloroethylene	2018/11/16				
				2018/11/16		89 85	%	70 - 130 70 - 130
			trans-1,2-Dichloroethylene	2018/11/16			%	
			1,2-Dichloropropane	2018/11/16		90	%	70 - 130
			cis-1,3-Dichloropropene	2018/11/16		92	%	70 - 130
			trans-1,3-Dichloropropene	2018/11/16		96	%	70 - 130
			Ethylbenzene	2018/11/16		94	%	70 - 130
			Ethylene Dibromide	2018/11/16		86	%	70 - 130
			Hexane	2018/11/16		92	%	70 - 130
			Methylene Chloride(Dichloromethane)	2018/11/16		81	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2018/11/16		88	%	60 - 140
			Methyl Isobutyl Ketone	2018/11/16		80	%	70 - 130
			Methyl t-butyl ether (MTBE)	2018/11/16		91	%	70 - 130
			Styrene	2018/11/16		95	%	70 - 130
			1,1,1,2-Tetrachloroethane	2018/11/16		87	%	70 - 130
			1,1,2,2-Tetrachloroethane	2018/11/16		85	%	70 - 130
			Tetrachloroethylene	2018/11/16		88	%	70 - 130
			Toluene	2018/11/16		90	%	70 - 130
			1,1,1-Trichloroethane	2018/11/16		91	%	70 - 130
			1,1,2-Trichloroethane	2018/11/16		89	%	70 - 130
			Trichloroethylene	2018/11/16		89	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2018/11/16		88	%	70 - 130
			Vinyl Chloride	2018/11/16		80	%	70 - 130
		_	p+m-Xylene	2018/11/16		95	%	70 - 130
			o-Xylene	2018/11/16		94	%	70 - 130
			F1 (C6-C10)	2018/11/16		98	%	60 - 140
5839695	DR1	Method Blank	4-Bromofluorobenzene	2018/11/16		89	%	70 - 130
			D4-1,2-Dichloroethane	2018/11/16		100	%	70 - 130
			D8-Toluene	2018/11/16		96	%	70 - 130
			Acetone (2-Propanone)	2018/11/16	<10		ug/L	
			Benzene	2018/11/16	<0.20		ug/L	
			Bromodichloromethane	2018/11/16	<0.50		ug/L	
			Bromoform	2018/11/16	<1.0		ug/L	

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Bromomethane	2018/11/16	<0.50		ug/L	
			Carbon Tetrachloride	2018/11/16	<0.20		ug/L	
			Chlorobenzene	2018/11/16	<0.20		ug/L	
			Chloroform	2018/11/16	<0.20		ug/L	
			Dibromochloromethane	2018/11/16	<0.50		ug/L	
			1,2-Dichlorobenzene	2018/11/16	<0.50		ug/L	
			1,3-Dichlorobenzene	2018/11/16	<0.50		ug/L	
			1,4-Dichlorobenzene	2018/11/16	<0.50		ug/L	
			Dichlorodifluoromethane (FREON 12)	2018/11/16	<1.0		ug/L	
			1,1-Dichloroethane	2018/11/16	<0.20		ug/L	
			1,2-Dichloroethane	2018/11/16	<0.50		ug/L	
			1,1-Dichloroethylene	2018/11/16	<0.20		ug/L	
			cis-1,2-Dichloroethylene	2018/11/16	<0.50	· ·	ug/L	
			trans-1,2-Dichloroethylene	2018/11/16	<0.50		ug/L	
			1,2-Dichloropropane	2018/11/16	<0.20		ug/L	
			cis-1,3-Dichloropropene	2018/11/16	<0.30		ug/L	
			trans-1,3-Dichloropropene	2018/11/16	<0.40		ug/L	
			Ethylbenzene	2018/11/16	<0.40			
			,				ug/L	
			Ethylene Dibromide	2018/11/16	<0.20		ug/L	
			Hexane	2018/11/16	<1.0		ug/L	
			Methylene Chloride(Dichloromethane)	2018/11/16	<2.0		ug/L	
			Methyl Ethyl Ketone (2-Butanone)	2018/11/16	<10		ug/L	
			Methyl Isobutyl Ketone	2018/11/16	<5.0		ug/L	
			Methyl t-butyl ether (MTBE)	2018/11/16	<0.50		ug/L	
			Styrene	2018/11/16	<0.50		ug/L	
			1,1,1,2-Tetrachloroethane	2018/11/16	<0.50		ug/L	
			1,1,2,2-Tetrachloroethane	2018/11/16	<0.50		ug/L	
			Tetrachloroethylene	2018/11/16	<0.20		ug/L	
			Toluene	2018/11/16	<0.20		ug/L	
			1,1,1-Trichloroethane	2018/11/16	<0.20		ug/L	
			1,1,2-Trichloroethane	2018/11/16	< 0.50		ug/L	
			Trichloroethylene	2018/11/16	<0.20		ug/L	
			Trichlorofluoromethane (FREON 11)	2018/11/16	< 0.50		ug/L	
			Vinyl Chloride	2018/11/16	<0.20		ug/L	
			p+m-Xylene	2018/11/16	<0.20		ug/L	
			o-Xylene	2018/11/16	<0.20		ug/L	
			Total Xylenes	2018/11/16	<0.20		ug/L	
			F1 (C6-C10)	2018/11/16	<25		ug/L	
			F1 (C6-C10) - BTEX	2018/11/16	<25		ug/L	
839695	DR1	RPD	Acetone (2-Propanone)	2018/11/16	NC		wg/ L %	30
033033	DKI	RPD	Benzene	2018/11/16	NC		% %	30
			Bromodichloromethane					
				2018/11/16	NC		%	30
			Bromoform	2018/11/16	NC		%	30
			Bromomethane	2018/11/16	NC		%	30
			Carbon Tetrachloride	2018/11/16	NC		%	30
			Chlorobenzene	2018/11/16	NC		%	30
			Chloroform	2018/11/16	NC		%	30
			Dibromochloromethane	2018/11/16	NC		%	30
			1,2-Dichlorobenzene	2018/11/16	NC		%	30
			1,3-Dichlorobenzene	2018/11/16	NC		%	30
			1,4-Dichlorobenzene	2018/11/16	NC		%	30
			Dichlorodifluoromethane (FREON 12)	2018/11/16	NC		%	30
			1,1-Dichloroethane	2018/11/16	NC		%	30
			1,2-Dichloroethane	2018/11/16	NC		%	30

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Lim
			1,1-Dichloroethylene	2018/11/16	NC	,	%	30
			cis-1,2-Dichloroethylene	2018/11/16	NC		%	30
			trans-1,2-Dichloroethylene	2018/11/16	NC		%	30
			1,2-Dichloropropane	2018/11/16	NC		%	30
			cis-1,3-Dichloropropene	2018/11/16	NC		%	30
			trans-1,3-Dichloropropene	2018/11/16	NC		%	30
			Ethylbenzene	2018/11/16	NC		%	30
			Ethylene Dibromide	2018/11/16	NC		%	30
			Hexane	2018/11/16	NC		%	30
			Methylene Chloride(Dichloromethane)	2018/11/16	NC		%	30
			Methyl Ethyl Ketone (2-Butanone)	2018/11/16	NC		%	30
			Methyl Isobutyl Ketone	2018/11/16	NC		%	30
			Methyl t-butyl ether (MTBE)	2018/11/16	NC	_	%	30
			Styrene	2018/11/16	NC		%	30
			1,1,1,2-Tetrachloroethane	2018/11/16	NC		%	30
			1,1,2,2-Tetrachloroethane	2018/11/16	NC		%	30
			Tetrachloroethylene	2018/11/16	NC		%	30
			Toluene	2018/11/16	NC		%	3(
			1,1,1-Trichloroethane	2018/11/16	NC		%	3(
			1,1,2-Trichloroethane	2018/11/16	NC		%	30
			Trichloroethylene	2018/11/16	NC		%	3(
			·					
			Trichlorofluoromethane (FREON 11)	2018/11/16	NC		%	30
			Vinyl Chloride	2018/11/16	NC		%	30
			p+m-Xylene	2018/11/16	NC		%	30
			o-Xylene	2018/11/16	NC		%	30
			Total Xylenes	2018/11/16	NC		%	30
			F1 (C6-C10)	2018/11/16	NC		%	30
			F1 (C6-C10) - BTEX	2018/11/16	NC		%	30
10092	ADA	Matrix Spike	Dissolved Antimony (Sb)	2018/11/16		110	%	80 - 1
			Dissolved Arsenic (As)	2018/11/16		103	%	80 -
			Dissolved Barium (Ba)	2018/11/16		104	%	80 -
			Dissolved Beryllium (Be)	2018/11/16		108	%	80 -
			Dissolved Boron (B)	2018/11/16		103	%	80 -
			Dissolved Cadmium (Cd)	2018/11/16		107	%	80 -
			Dissolved Chromium (Cr)	2018/11/16		101	%	80 -
			Dissolved Cobalt (Co)	2018/11/16		101	%	80 -
			Dissolved Copper (Cu)	2018/11/16		109	%	80 -
			Dissolved Lead (Pb)	2018/11/16		101	%	80 -
			Dissolved Molybdenum (Mo)	2018/11/16		104	%	80 -
			Dissolved Nickel (Ni)	2018/11/16		103	%	80 - 1
			Dissolved Selenium (Se)	2018/11/16		108	%	80 -
			Dissolved Silver (Ag)	2018/11/16		104	%	80 -
			Dissolved Sodium (Na)	2018/11/16		100	%	80 -
			Dissolved Thallium (TI)	2018/11/16		103	%	80 -
			Dissolved Uranium (U)	2018/11/16		101	%	80 -
			Dissolved Vanadium (V)	2018/11/16		102	%	80 -
			Dissolved Zinc (Zn)	2018/11/16		104	%	80 - :
0092	ADA	Spiked Blank	Dissolved Antimony (Sb)	2018/11/16		101	%	80 -
3032	אטה	Spined Didnik	Dissolved Antimotry (35) Dissolved Arsenic (As)	2018/11/16		99	%	80 - 1
			Dissolved Arsenic (As) Dissolved Barium (Ba)	2018/11/16		100	%	80 -
			• •			99		
			Dissolved Beryllium (Be)	2018/11/16			%	80 - 3
			Dissolved Boron (B)	2018/11/16		99	%	80 - 3
			Dissolved Cadmium (Cd)	2018/11/16		101	%	80 - 3
			Dissolved Chromium (Cr)	2018/11/16		97	%	80 -

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Dateii		QC 17PC	Dissolved Cobalt (Co)	2018/11/16	Value	99	%	80 - 120
			Dissolved Copper (Cu)	2018/11/16		100	%	80 - 120
			Dissolved Lead (Pb)	2018/11/16		95	%	80 - 120
			Dissolved Molybdenum (Mo)	2018/11/16		98	%	80 - 120
			Dissolved Nickel (Ni)	2018/11/16		100	%	80 - 120
			Dissolved Selenium (Se)	2018/11/16		103	%	80 - 120
			Dissolved Silver (Ag)	2018/11/16		99	%	80 - 120
			Dissolved Sodium (Na)	2018/11/16		99	%	80 - 120
			Dissolved Thallium (TI)	2018/11/16		99	%	80 - 120
			Dissolved Uranium (U)	2018/11/16		97	%	80 - 120
			Dissolved Vanadium (V)	2018/11/16		98	%	80 - 120
			Dissolved Zinc (Zn)	2018/11/16		100	%	80 - 120
5840092	ADA	Method Blank	Dissolved Antimony (Sb)	2018/11/16	<0.50	*	ug/L	
			Dissolved Arsenic (As)	2018/11/16	<1.0		ug/L	
			Dissolved Barium (Ba)	2018/11/16	<2.0		ug/L	
			Dissolved Beryllium (Be)	2018/11/16	<0.50		ug/L	
			Dissolved Boron (B)	2018/11/16	<10		ug/L	
			Dissolved Cadmium (Cd)	2018/11/16	<0.10		ug/L	
			Dissolved Chromium (Cr)	2018/11/16	<5.0		ug/L	
			Dissolved Cobalt (Co)	2018/11/16	<0.50		ug/L	
			Dissolved Copper (Cu)	2018/11/16	<1.0		ug/L	
			Dissolved Lead (Pb)	2018/11/16	<0.50		ug/L	
			Dissolved Molybdenum (Mo)	2018/11/16	<0.50		ug/L	
			Dissolved Nickel (Ni)	2018/11/16	<1.0		ug/L	
			Dissolved Selenium (Se)	2018/11/16	<2.0		ug/L	
			Dissolved Silver (Ag)	2018/11/16	<0.10		ug/L	
			Dissolved Sodium (Na)	2018/11/16	<100		ug/L	
			Dissolved Thallium (TI)	2018/11/16	< 0.050		ug/L	
			Dissolved Uranium (U)	2018/11/16	<0.10		ug/L	
			Dissolved Vanadium (V)	2018/11/16	<0.50		ug/L	
			Dissolved Zinc (Zn)	2018/11/16	<5.0		ug/L	
5840092	ADA	RPD	Dissolved Antimony (Sb)	2018/11/16	NC		%	20
			Dissolved Arsenic (As)	2018/11/16	NC		%	20
			Dissolved Cadmium (Cd)	2018/11/16	NC		%	20
			Dissolved Cobalt (Co)	2018/11/16	NC		%	20
			Dissolved Copper (Cu)	2018/11/16	17		%	20
	\leftarrow		Dissolved Lead (Pb)	2018/11/16	NC		%	20
			Dissolved Nickel (Ni)	2018/11/16	NC		%	20
			Dissolved Selenium (Se)	2018/11/16	NC		%	20
			Dissolved Silver (Ag)	2018/11/16	NC		%	20
			Dissolved Zinc (Zn)	2018/11/16	NC		%	20
5840721	RON	Matrix Spike	Mercury (Hg)	2018/11/16		92	%	75 - 125
5840721	RON	Spiked Blank	Mercury (Hg)	2018/11/16		99	%	80 - 120
5840721	RON	Method Blank	Mercury (Hg)	2018/11/16	<0.1		ug/L	
5840721	RON	RPD	Mercury (Hg)	2018/11/16	NC		%	20
5841578	RAJ	Matrix Spike	D10-Anthracene	2018/11/16		108	%	50 - 130
			D14-Terphenyl (FS)	2018/11/16		102	%	50 - 130
			D8-Acenaphthylene	2018/11/16		100	%	50 - 130
			Acenaphthene	2018/11/16		97	%	50 - 130
			Acenaphthylene	2018/11/16		102	%	50 - 130
			Anthracene	2018/11/16		107	%	50 - 130
			Benzo(a)anthracene	2018/11/16		114	%	50 - 130
			Benzo(a)pyrene	2018/11/16		112	%	50 - 130
			Benzo(b/j)fluoranthene	2018/11/16		112	%	50 - 130

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Benzo(g,h,i)perylene	2018/11/16		103	%	50 - 130
			Benzo(k)fluoranthene	2018/11/16		99	%	50 - 130
			Chrysene	2018/11/16		115	%	50 - 130
			Dibenz(a,h)anthracene	2018/11/16		100	%	50 - 130
			Fluoranthene	2018/11/16		117	%	50 - 130
			Fluorene	2018/11/16		94	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2018/11/16		107	%	50 - 130
			1-Methylnaphthalene	2018/11/16		133 (2)	%	50 - 130
			2-Methylnaphthalene	2018/11/16		108	%	50 - 130
			Naphthalene	2018/11/16		100	%	50 - 130
			Phenanthrene	2018/11/16		107	%	50 - 130
			Pyrene	2018/11/16		111	%	50 - 130
5841578	RAJ	Spiked Blank	D10-Anthracene	2018/11/16		90	%	50 - 130
			D14-Terphenyl (FS)	2018/11/16		91	%	50 - 130
			D8-Acenaphthylene	2018/11/16		85	%	50 - 130
			Acenaphthene	2018/11/16		91	%	50 - 130
			Acenaphthylene	2018/11/16		84	%	50 - 130
			Anthracene	2018/11/16		87	%	50 - 130
			Benzo(a)anthracene	2018/11/16		87	%	50 - 130
			Benzo(a)pyrene	2018/11/16		103	%	50 - 130
			Benzo(b/j)fluoranthene	2018/11/16		97	%	50 - 130
			Benzo(g,h,i)perylene	2018/11/16		97	%	50 - 130
			Benzo(k)fluoranthene	2018/11/16		98	%	50 - 130
			Chrysene	2018/11/16		99	%	50 - 13
			Dibenz(a,h)anthracene	2018/11/16		91	%	50 - 130
			Fluoranthene	2018/11/16		88	%	50 - 130
			Fluorene	2018/11/16		87	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2018/11/16		100	%	50 - 130
			1-Methylnaphthalene	2018/11/16		113	%	50 - 130
			2-Methylnaphthalene	2018/11/16		97	%	50 - 13
			Naphthalene	2018/11/16		94	%	50 - 13
			Phenanthrene	2018/11/16		93	%	50 - 13
			Pyrene	2018/11/16		90	%	50 - 13
841578	RAJ	Method Blank	D10-Anthracene	2018/11/16		87	%	50 - 13
			D14-Terphenyl (FS)	2018/11/16		93	%	50 - 13
			D8-Acenaphthylene	2018/11/16		83	%	50 - 13
			Acenaphthene	2018/11/16	< 0.050		ug/L	
			Acenaphthylene	2018/11/16	< 0.050		ug/L	
			Anthracene	2018/11/16	< 0.050		ug/L	
			Benzo(a)anthracene	2018/11/16	< 0.050		ug/L	
			Benzo(a)pyrene	2018/11/16	< 0.010		ug/L	
			Benzo(b/j)fluoranthene	2018/11/16	< 0.050		ug/L	
			Benzo(g,h,i)perylene	2018/11/16	< 0.050		ug/L	
			Benzo(k)fluoranthene	2018/11/16	<0.050		ug/L	
			Chrysene	2018/11/16	<0.050		ug/L	
			Dibenz(a,h)anthracene	2018/11/16	<0.050		ug/L	
			Fluoranthene	2018/11/16	<0.050		ug/L	
			Fluorene	2018/11/16	<0.050		ug/L	
			Indeno(1,2,3-cd)pyrene	2018/11/16	<0.050		ug/L ug/L	
			1-Methylnaphthalene	2018/11/16	<0.050		ug/L ug/L	
			2-Methylnaphthalene	2018/11/16	<0.050		ug/L ug/L	
			• •					
			Naphthalene Phenanthrene	2018/11/16	<0.050 <0.030		ug/L	
				2018/11/16			ug/L	
			Pyrene	2018/11/16	<0.050		ug/L	

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5841578	RAJ	RPD	Acenaphthene	2018/11/16	2.1		%	30
			Acenaphthylene	2018/11/16	8.0		%	30
			Anthracene	2018/11/16	0.76		%	30
			Benzo(a)anthracene	2018/11/16	NC		%	30
			Benzo(a)pyrene	2018/11/16	NC		%	30
			Benzo(b/j)fluoranthene	2018/11/16	NC		%	30
			Benzo(g,h,i)perylene	2018/11/16	NC		%	30
			Benzo(k)fluoranthene	2018/11/16	NC		%	30
			Chrysene	2018/11/16	NC		%	30
			Dibenz(a,h)anthracene	2018/11/16	NC		%	30
			Fluoranthene	2018/11/16	8.1		%	30
			Fluorene	2018/11/16	2.9		%	30
			Indeno(1,2,3-cd)pyrene	2018/11/16	NC		%	30
			1-Methylnaphthalene	2018/11/16	6.1		%	30
			2-Methylnaphthalene	2018/11/16	6.1		%	30
			Naphthalene	2018/11/16	4.6		%	30
			Phenanthrene	2018/11/16	6.9		%	30
			Pyrene	2018/11/16	7.5		%	30
5841590	MKS	Matrix Spike	o-Terphenyl	2018/11/18		114	%	60 - 130
		•	F2 (C10-C16 Hydrocarbons)	2018/11/18		NC	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2018/11/18		NC	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2018/11/18		99	%	50 - 130
5841590	MKS	Spiked Blank	o-Terphenyl	2018/11/18		116	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2018/11/18		100	%	60 - 130
			F3 (C16-C34 Hydrocarbons)	2018/11/18		105	%	60 - 130
			F4 (C34-C50 Hydrocarbons)	2018/11/18		96	%	60 - 130
5841590	MKS	Method Blank	o-Terphenyl	2018/11/18		111	%	60 - 130
70 12050		memou biank	F2 (C10-C16 Hydrocarbons)	2018/11/18	<100		ug/L	00 100
			F3 (C16-C34 Hydrocarbons)	2018/11/18	<200		ug/L	
			F4 (C34-C50 Hydrocarbons)	2018/11/18	<200		ug/L	
5841590	MKS	RPD	F2 (C10-C16 Hydrocarbons)	2018/11/18	2.4		%	30
3041330	IVIICS	III D	F3 (C16-C34 Hydrocarbons)	2018/11/18	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2018/11/18	NC		%	30
5841618	RAJ	Matrix Spike	D10-Anthracene	2018/11/16	NC	101	%	50 - 130
3041010	10.0	Wattix Spike	D14-Terphenyl (FS)	2018/11/16		98	%	50 - 130
			D8-Acenaphthylene	2018/11/16		101	%	50 - 130
			Acenaphthene	2018/11/16		103	%	50 - 130
			Acenaphthylene	2018/11/16		106	%	50 - 130
				2018/11/16		101	%	50 - 130
	Ì		Anthracene Benzo(a)anthracene	2018/11/16		101		
							%	50 - 130
			Benzo(a)pyrene	2018/11/16		102	%	50 - 130
			Benzo(b/j)fluoranthene	2018/11/16		105	%	50 - 130
			Benzo(g,h,i)perylene	2018/11/16		103	%	50 - 130
			Benzo(k)fluoranthene	2018/11/16		95	%	50 - 130
			Chrysene	2018/11/16		101	%	50 - 130
			Dibenz(a,h)anthracene	2018/11/16		99	%	50 - 130
			Fluoranthene	2018/11/16		105	%	50 - 130
			Fluorene	2018/11/16		101	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2018/11/16		102	%	50 - 130
			1-Methylnaphthalene	2018/11/16		111	%	50 - 130
			2-Methylnaphthalene	2018/11/16		103	%	50 - 130
			Naphthalene	2018/11/16		101	%	50 - 130
			Phenanthrene	2018/11/16		103	%	50 - 130
			Pyrene	2018/11/16		104	%	50 - 130

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5841618	RAJ	Spiked Blank	D10-Anthracene	2018/11/16		101	%	50 - 130
5841618		•	D14-Terphenyl (FS)	2018/11/16		97	%	50 - 130
			D8-Acenaphthylene	2018/11/16		100	%	50 - 130
			Acenaphthene	2018/11/16		97	%	50 - 130
			Acenaphthylene	2018/11/16		100	%	50 - 130
			Anthracene	2018/11/16		95	%	50 - 130
			Benzo(a)anthracene	2018/11/16		98	%	50 - 130
			Benzo(a)pyrene	2018/11/16		96	%	50 - 130
			Benzo(b/j)fluoranthene	2018/11/16		98	%	50 - 130
			Benzo(g,h,i)perylene	2018/11/16		97	%	50 - 130
			Benzo(k)fluoranthene	2018/11/16		93	%	50 - 130
			Chrysene	2018/11/16		97	%	50 - 130
			Dibenz(a,h)anthracene	2018/11/16		94	%	50 - 130
			Fluoranthene	2018/11/16		99	%	50 - 130
			Fluorene	2018/11/16		95	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2018/11/16		97	%	50 - 130
			1-Methylnaphthalene	2018/11/16		106	%	50 - 130
			2-Methylnaphthalene	2018/11/16		97	%	50 - 130
			Naphthalene	2018/11/16		96	%	50 - 130
			Phenanthrene	2018/11/16		98	%	50 - 130
			Pyrene	2018/11/16		99	%	50 - 13
	RAJ	Method Blank	D10-Anthracene	2018/11/17		101	%	50 - 130
			D14-Terphenyl (FS)	2018/11/17		97	%	50 - 13
			D8-Acenaphthylene	2018/11/17		100	%	50 - 13
			Acenaphthene	2018/11/17	< 0.050		ug/L	
			Acenaphthylene	2018/11/17	< 0.050		ug/L	
			Anthracene	2018/11/17	< 0.050		ug/L	
			Benzo(a)anthracene	2018/11/17	< 0.050		ug/L	
			Benzo(a)pyrene	2018/11/17	< 0.010		ug/L	
			Benzo(b/j)fluoranthene	2018/11/17	< 0.050		ug/L	
			Benzo(g,h,i)perylene	2018/11/17	< 0.050		ug/L	
			Benzo(k)fluoranthene	2018/11/17	< 0.050		ug/L	
			Chrysene	2018/11/17	< 0.050		ug/L	
			Dibenz(a,h)anthracene	2018/11/17	< 0.050		ug/L	
			Fluoranthene	2018/11/17	< 0.050		ug/L	
			Fluorene	2018/11/17	<0.050		ug/L	
			Indeno(1,2,3-cd)pyrene	2018/11/17	<0.050		ug/L	
			1-Methylnaphthalene	2018/11/17	<0.050		ug/L	
			2-Methylnaphthalene	2018/11/17	<0.050		ug/L	
			Naphthalene	2018/11/17	<0.050		ug/L	
			Phenanthrene	2018/11/17	< 0.030		ug/L	
			Pyrene	2018/11/17	<0.050		ug/L	
5841618	RAJ	RPD	Acenaphthene	2018/11/16	NC		%	30
			Acenaphthylene	2018/11/16	NC		%	30
			Anthracene	2018/11/16	NC		%	30
			Benzo(a)anthracene	2018/11/16	NC		%	30
			Benzo(a)pyrene	2018/11/16	NC		%	30
			Benzo(b/j)fluoranthene	2018/11/16	NC		%	30
			Benzo(g,h,i)perylene	2018/11/16	NC		%	30
			Benzo(k)fluoranthene	2018/11/16	NC		%	30
			Chrysene	2018/11/16	NC		%	30
			Dibenz(a,h)anthracene	2018/11/16	NC		%	30
			Fluoranthene	2018/11/16	NC		%	30
			Fluorene	2018/11/16	NC		%	30

Maxxam Job #: B8U4943 Report Date: 2018/11/19

Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Indeno(1,2,3-cd)pyrene	2018/11/16	NC		%	30
			1-Methylnaphthalene	2018/11/16	NC		%	30
			2-Methylnaphthalene	2018/11/16	NC		%	30
			Naphthalene	2018/11/16	NC		%	30
			Phenanthrene	2018/11/16	NC		%	30
			Pyrene	2018/11/16	NC		%	30
5841620	MKS	Matrix Spike	o-Terphenyl	2018/11/19		107	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2018/11/19		106	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2018/11/19		NC	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2018/11/19		101	%	50 - 130
5841620	MKS	Spiked Blank	o-Terphenyl	2018/11/19		104	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2018/11/19		104	%	60 - 130
			F3 (C16-C34 Hydrocarbons)	2018/11/19		104	%	60 - 130
			F4 (C34-C50 Hydrocarbons)	2018/11/19		98	%	60 - 130
5841620	MKS	Method Blank	o-Terphenyl	2018/11/19		105	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2018/11/19	<100		ug/L	
			F3 (C16-C34 Hydrocarbons)	2018/11/19	<200		ug/L	
			F4 (C34-C50 Hydrocarbons)	2018/11/19	<200		ug/L	
5841620	MKS	RPD	F2 (C10-C16 Hydrocarbons)	2018/11/19	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2018/11/19	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2018/11/19	NC		%	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) The recovery was below the lower control limit. This may represent a low bias in some results for this specific analyte.
- (2) The recovery was above the upper control limit. This may represent a high bias in some results for this specific analyte. For results that were not detected (ND), this potential bias has no impact.

Maxxam Job #: B8U4943 Report Date: 2018/11/19 Pinchin Ltd

Client Project #: 230236.002

Sampler Initials: MK

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

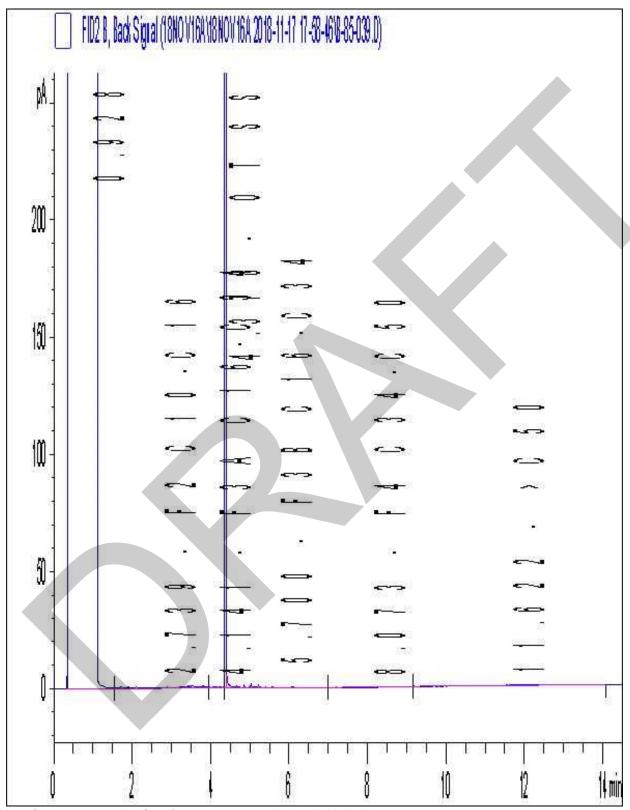
	14-Nov-18 16:00	J.		_																											4						
	Alisha Williamson		ű.								1				/isib											M FCD- Pa		5									
	B8U4943							When	there	is >1c	m of	visible	e part	ticulat	- 05			_	nt w <u>i</u> l	ll be i	ecord	ed in the f	ield b	elow				-									
J	L ,ENV-871			-	Inorgan	lee						-	rgani	cc	В	ottie	Types		i		Hod	rocarbons	4			Vola	tilor		Other								
-			1			ics	, Marate	Describ	Organic	PCB	PCB	Pest/	-	svoc/	SVOC/	PAH	PAH	Dioxin	F1	F1	F1	F1 _{so} F2-F4	P	30	voc	voc	- 1	voc	Other	3							
	Sample ID	Al	CrVI	CN	General	Hg	(Diss.)	1 of 2	2 of 2	1 of 2		Herb 1 of 2	Herb 2 of 2	ABN 1 of 2	ABN 2 of 2							Vial 4 1 of 2	2 of 2	F4G			Vial 3							10			
1	EXMW-1		TS			TS																5	S		5	5.						15					
2	mw-1																					T3	TS		75	TS	5									Ř	
3	EXMW-2																					-T3	TS	×	TS	TS	PC ,		-								
4	MW-2														1							TS	TS		TS	T5											
5	EXMW-3																					T5	TS		TS	TS		160									
6	/010-						75			*												TS	TS		TS	TŚ											
7	EXMW-5 EXMW-5																					TS	TS		TS	TS											
8	MW-5																					TS	TS		TS	TS								- 4	11		
9	EXMW-J				*1																	TS	TS		5	TS											
1) up-2				*	-													1			73	73		TS	TS											
	Comments:							F		7																									•		
																												×									
		Le	gend							_		-		1																							
			_		Particulate	e									R	ecord	led By	: (signa	ture/pri	nt)			7		Tz	1-1-	1 6	7									
		TS	Trac	e Settle	d Sedimer	nt (just	covers t	ottom c	of contain	ner or le	(35)													3	/	/			-						-		
		S	Sed	ment g	reater than	n (>) Tr	ace, but	less tha	n (<) 1 cr	n																											
																			- 1			150					*0		=			F					
																					8									9							

()										9				1.2		A-s	in Signature
VICIA CITE Phone	ampobello Road, Mississau 905-817-5700 Fax: 905-											4	00000	77.	21.0	100	
	CD-01191/3		recention man				CH	IAIN OF	CUSTO	DDY RE	CORD	1	102893 page 1 of 2				
Invoice Information		Report Info	ormation (if diffi	ers from invo	ce)			Project Info	ormation (w	here applic	able)		Turnaround Time (TAT) Required	-			
Company Name: Pinchia Ltd	Compa	ny Name:	207	,			Quotation						Regular TAT (5-7 days) Most analyses				
Contact Name: Mike Kosi	Contac	t Name:					P.O. #/ AFE	H:			11.4		PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS	1 2			
Address: Matt Rya	an Addres	51	SA	ME	7		Project #:	2	302	-36.	002		Rush TAT (Surcharges will be applied)				
1-11-0-0-1	•	_					Site Locatio	n:			1.00	4	1 Day 2 Days 3-4 Days			a	
Phone: MeSix: ILCL	Phone:			Fax:			Site #:							192			
Email: Kanut	Email:						Sampled By	-		4		-	Date Required: Monday NOV				5 N
MOE REGULATED DRINKING WA			PTION MUST BE	SUBMITTED	ON THE MA	XXAM DRII	NKING WATE	R CHAIN OF	CUSTODY				Rush Confirmation #: 19 (Afternoon)		×	
Regulation 153		egulations	_				Analysis I	Requested					LABORATORY USE ONLY			-	- 1
Table 1 Res/Park Med/ Fine Table 2 Ind/Comm Coarse		tary Sewer Bylaw m Sewer Bylaw		5.5									CUSTODY SEAL COOLER TEMPERATURES				~ 30
Table 3 Agri/ Other	PWQO Reg	on		Crys (2									Present Intact				=
FOR RSC (PLEASE CIRCLE) Y /	Other (Specify) REG 558 (MIN. 3 D			aks / Hu		ŭ	S - (B)			.			× X 8,9,8			*	
Include Criteria on Certificate of Analysis: (Y)/ N	LINEG 558 (MIN. 3 D	AY TAT REQUIRED)	MITTE	E) Met		S DHGAN	L. HW					· W	6/846				
SAMPLES MUST BE KEPT COOL (< 10 °C.) FROM TIM	AF OF SAMPLING LINTU DEL	VERY TO MAYYAM	RS 508	CURCE		METAL METAL	N N N Et					ANALY					3
		1 - 1	YTAINE	TERED IC F1	2	METAL	METAL I, ICPM	Ĭ I				TONC	COOLING MEDIA PRESENT: Y / N				
SAMPLE IDENTIFICATION	DATE SAMPLED [YYYY/MM/DD]	- TIME SAMPLED (HH:MM)	MATRIX 8	TEX/ PH	HCs F2	EG 153	EG 153 Hg. Cr.V	B		40		d-dio	COMMENTS				
1 Trip Blank	NOVB	N/A (jh 2	12	X	-			V			-	2				_
2 EXMW-1 MOVIE	20182018	Amy	1 7	X.	XX	X	X	X					* Low colume			74	2
3 MW-1	. 1	PM	7	X.	44	X	X	X					- 3-1				
4 Exmu-2		1,1,	7	X	XX	×	X	\times	4				Preuse report				₂ a
5 Mw 2.			19	X	XX	X	X	X	1.	N			as "Exmlest, not				
6 EXMW-3			7	X	XX	X	X	X	1				"EX-14 For			2	
7 mw-4		91	1	V	XX	X	X	X					911				
8 EXM4)-4			1	X	XX	X	X	X									1 .
9 MW-5			1 7	TXI	CX	X	X						on the world				
10 EXMW-5			1	X	XX	X	X	X					But the forest				
RELINQUISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD)	TIME: (HH:MM)		RECEIVED B	Y: (Signature,	/Print)		DATE: (YY	YY/MM/DD)	TI	ME: (HH:M	M)	14 Nov. 18 16 00			1	
1/100	Nov 14	12:00	54	Jerse	leger			2018/	1/14	16	:00		14-Nov-18 16:00 Alisha Williamson			31	
Mike Kosh	2018	PM	VV	4	mujo	152	1	618	1//5	.0	8(1)	1111	B8U4943	. F			
Unless otherwise agreed to in writing, work submitted	on this Chain of Custo	dy is subject to M	axxam's stan	dard Terms	and Condi	tions. Si	gning of t	his Chain o	f Custody	documen	it is ackno	du.		29			
available for viewing at www.maxxam.ca/terms. Samp COC-1004 (03/17)	ne container, preservat	ion, noid time and	packages info	ormation ca	in be viewe	ed at http	o://maxxa	ım.ca/wp-c	ontent/up	ioads/On	itario+COC			4			
The second secon				1.0									White: Maxxam = renow, Green				

		1	1	
$N \Lambda$	a'x	(\	а	m
A	Bureau V	eritas G	roup C	ompany

6740 Campobello Road, Mississauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266 CAM FCD-01191/3

CHAIN OF CUSTODY RECORD 102894 Page 2 of 2

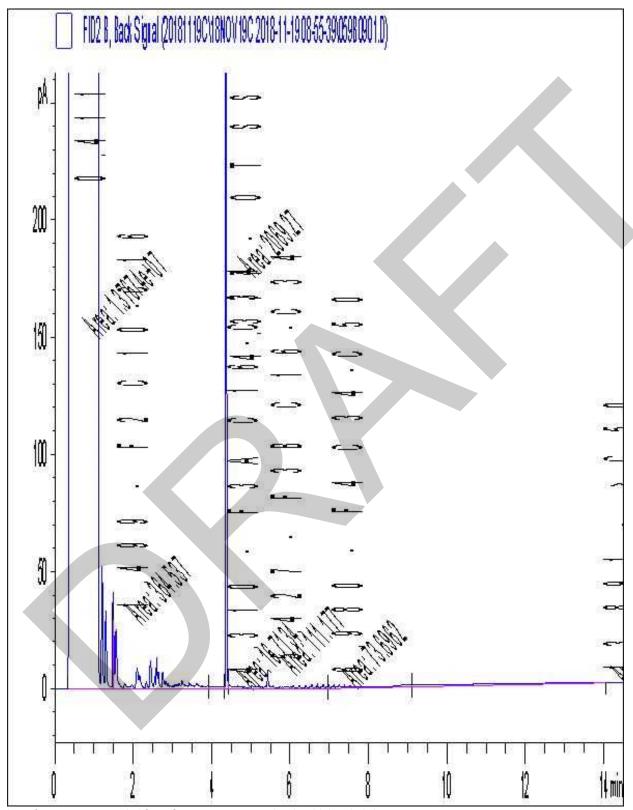

	Invoice Information		Report Info	rmation (if o	iffers from	invoice)					ct Informa				Turnar	round Time (TAT) Required	7	
Company Name:	Pinchar 1 to	2 Comp	any Name:		1	1.14			Quotation	#: *		-		,t	Regular TAT	(5-7 days) Most analyses		40
Contact Name:	Mill Kosil) Conta	ct Name:						P.O. #/ AF	E#:				11	PLEASE PROVIDE	ADVANCE NOTICE FOR RUSH PROJECTS		
Address:	Matt R	Yan Addre	rss:	Gr	-mi	9	8		Project #:		ż	307	236	2000	Rush TAT	(Surcharges will be applied)	4	
	700077	,		*					Site Locati	ion:	·	-			. 1 Day	2 Days 3-4 Days		40
Phone:	[Miletax Do	Phone	82		Fax;				Site #:				17		14			
Email:	1100	Email		4.					Sampled 8	Ву:					Date Required:	Nov 19,	v	
	MOE REGULATED DRINKING WA	Manager and a series of the se	and the second second	PTION MUST	BE SUBMI	TTED ON	THE MAX	XAM DRI	nking wa	TER CHAI	N OF CUS	ODY	K. I		Rush Confirmation #	Hermon	-	
	Regulation 153		Regulations	_	1 1	_		_	Analysis	Request	ed	_		-		ABORATORY USE ONLY		
Table 1 Table 2 Table 3	Med/Fine Med/Fine Mod/Comm Coarse Agri/Other	MISA Str	nitary Sewer Bylaw orm Sewer Bylaw gion		Hg / Crvi										CUSTODY SEAL (Y) N Present Intact	COOLER TEMPERATÜRES		
Table	ASE CIRCLE) Y / N	Other (Specify) REG 558 (MIN. 3	DAY TAT REQUIRED)	-	tals //		NICS		WS B)				-		XX	1,98		*
	Certificate of Analysis: (Y)/ N				LE) Me		VORGA	SII	tals, HA		4			3ZAT	1000	6/818		
SAMPL	ES MUST BE KEPT COOL (< 10 °C) FROM TIM	ME OF SAMPLING UNTIL DE	LIVERY TO MAXXAM		D (CIRC		1581	S MET	MS Me	14				ANA	Released Neigh			
		DATE SAMPLED	- TIME SAMPLED		HLTERE	2-F4	3 MET	3 ICPN	3 MET	#	NH			DO NO	COOLING MEDIA PRESE	NT: (v) / N		
	SAMPLE IDENTIFICATION	(YYYY/MM/DD)		MATRIX 3	HELD F	PHCs F	VOCs REG 15	REG 25	REG 35	2				-дтон		COMMENTS		
1 past	d Dup-2	NovI	3 Pm 6	c 7		CX	XX	X	X	X		4						
2		2 314				6		1	/								1	s
3		#3			1											197		
4		•														147		
5	*							17			1							
6									-		1			16				
7																		
8																i i		
9					1								\top			on the pools		
10						1										ociae poris		
RELIN	QUISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD)	TIME: (HH:MM)		RECEI	VED BY: (5	ignature/	Print)		DAT	E: (YYYY/N	M/DD)	TI	ME: (HH:MM)		MAXXAM JOB #	1	
1	20	NOVIY	12:00	83	35	exe	lega	V		2018	11/1	14	16.	:00			≥,	
M	The Wosik	2018	PM	14	2	Lu	ins	15	w	201	8/11	115	. 0	800		9 180	- F	
	e agreed to in writing, work submitte wing at www.maxxam.ca/terms. Sam															ance of our terms which are		
COC 1004 (03/	223																25 10	

Pinchin Ltd

Client Project #: 230236.002

Client ID: EXMW-1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

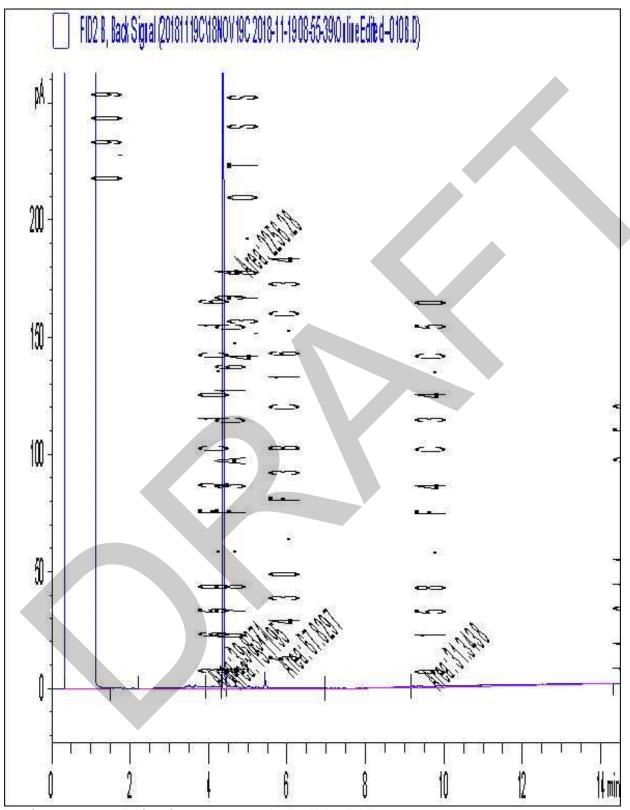


Pinchin Ltd

Client Project #: 230236.002

Client ID: MW-1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

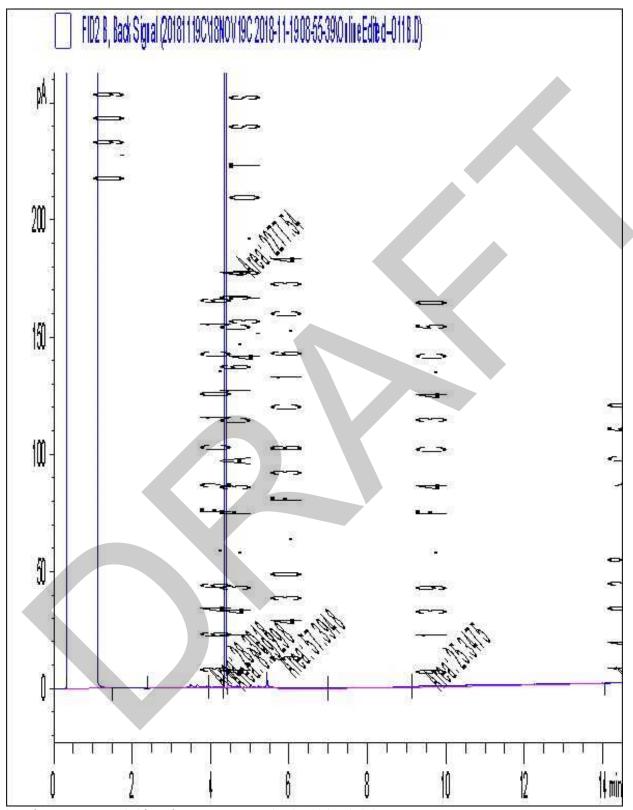


Pinchin Ltd

Client Project #: 230236.002

Client ID: EXMW-2

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

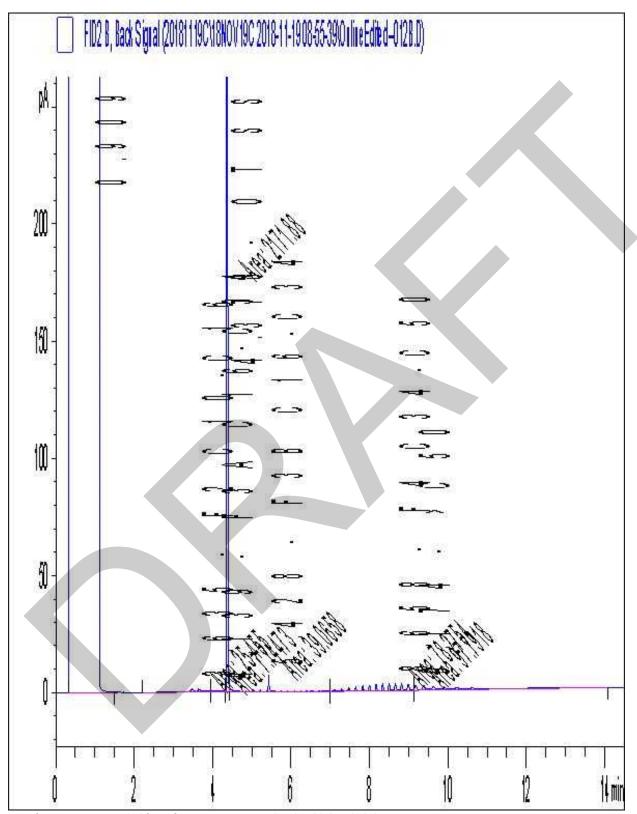


Pinchin Ltd

Client Project #: 230236.002

Client ID: MW-2

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

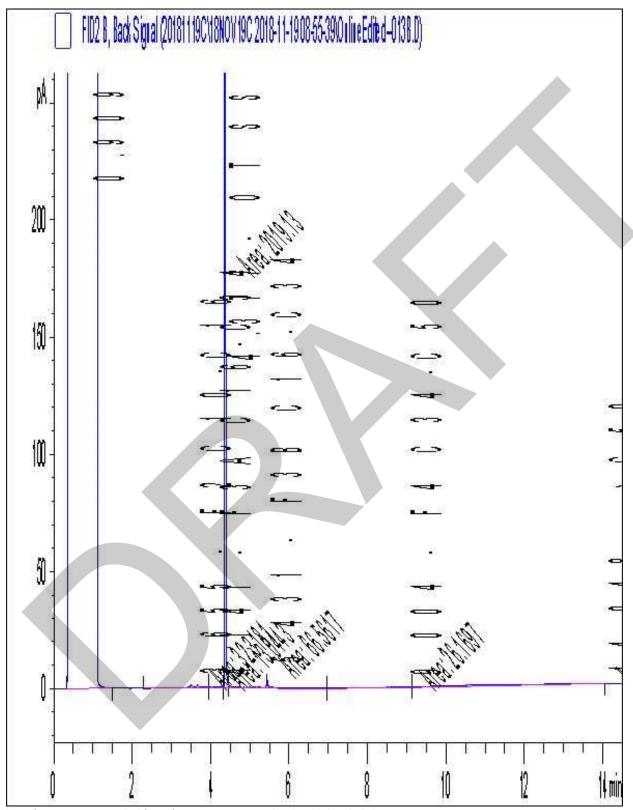


Pinchin Ltd

Client Project #: 230236.002

Client ID: EXMW-3

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

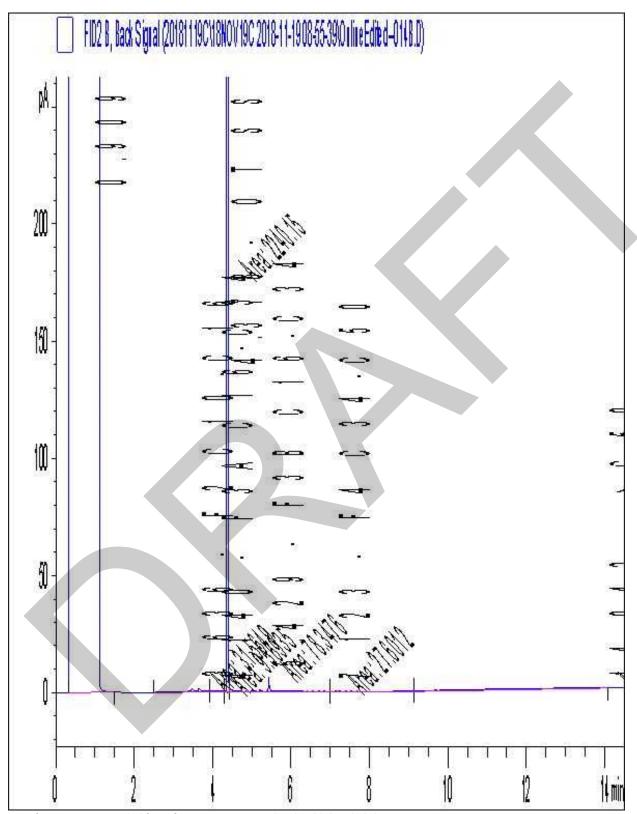


Pinchin Ltd

Client Project #: 230236.002

Client ID: MW-4

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

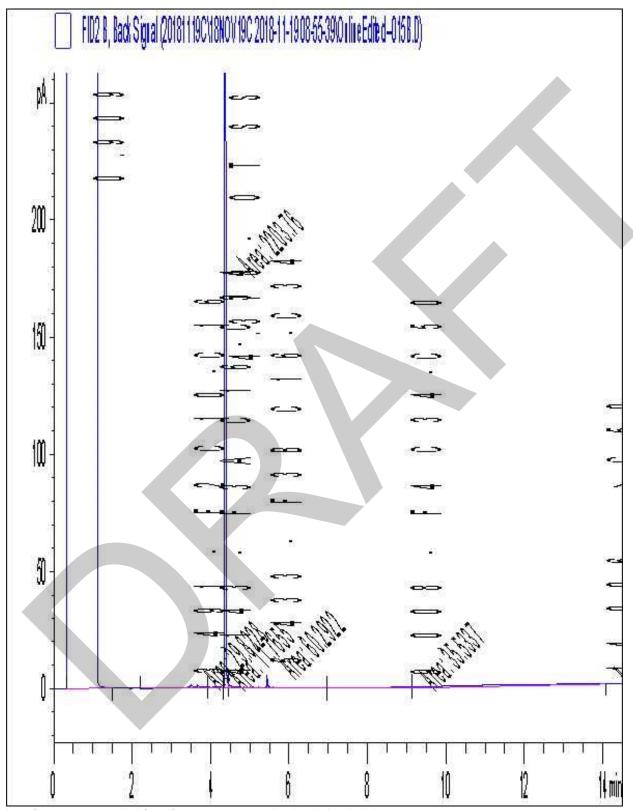


Pinchin Ltd

Client Project #: 230236.002

Client ID: EXMW-4

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

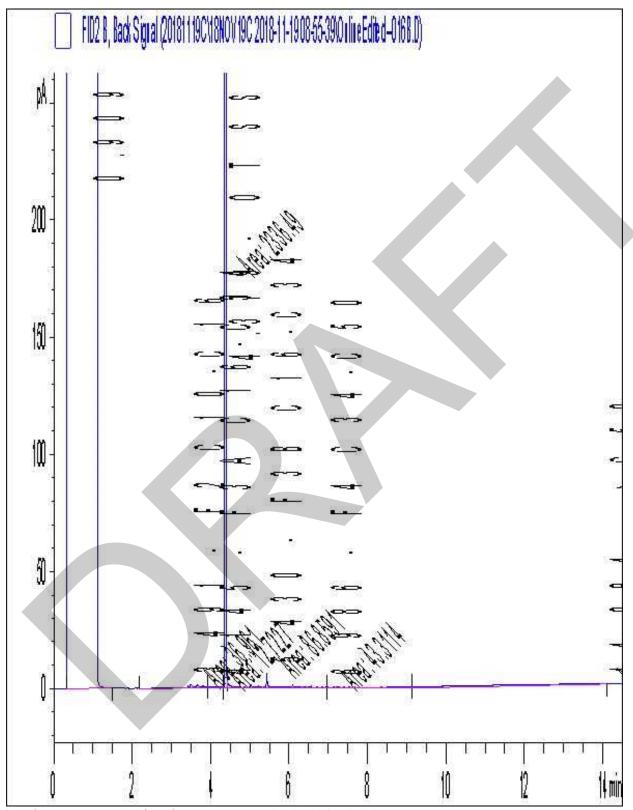


Pinchin Ltd

Client Project #: 230236.002

Client ID: MW-5

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

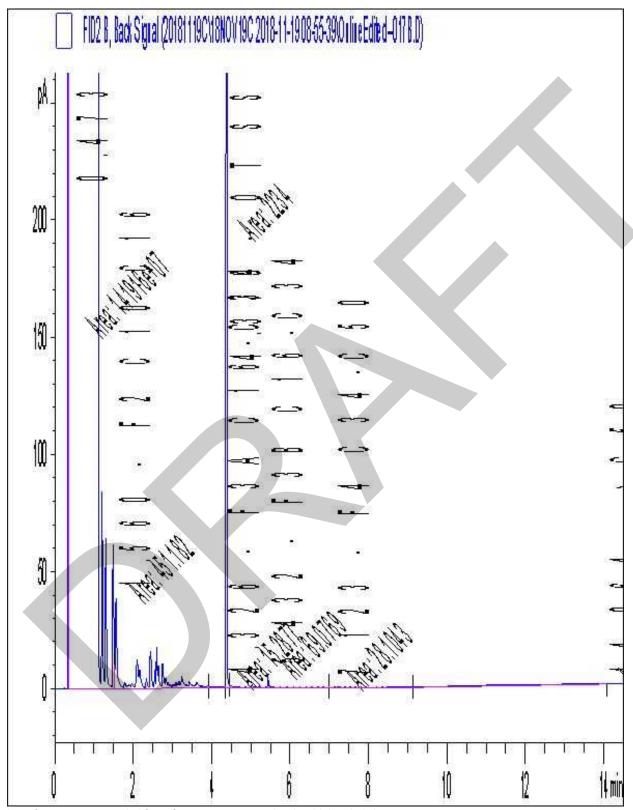


Pinchin Ltd

Client Project #: 230236.002

Client ID: EXMW-5

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



Pinchin Ltd

Client Project #: 230236.002

Client ID: DUP-2

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue Ottawa, Ontario

Prepared for:

1213763 Ontario Inc.

33 Yonge Street, Suite 1000 Toronto, ON M5E 1G4

May 13, 2020

320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006

May 13, 2020

Issued To: 1213763 Ontario Inc.

Issued On:May 13, 2020Pinchin File:230236.006Issuing Office:Kanata, ON

Author: Michael Kosiw, B.Sc. Hons., EP, CESAII

Project Manager

613.592.3387 ext. 1816 mkosiw@pinchin.com

Reviewer: Matthew Ryan, B.A., CET., EP

Operations Manager 613.592.3387 ext. 1810 mryan@pinchin.com

Reviewer: Robert MacKenzie, B.Sc., P.Geo., QPESA

Regional Practice Leader & Senior Consultant

416.648.0631

rmackenzie@pinchin.com

© 2020 Pinchin Ltd. Page i

320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006

May 13, 2020

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	AREAS OF POTENTIAL ENVIRONMENTAL CONCERN	1
3.0	SCOPE OF WORK	2
4.0	DATA QUALITY OBJECTIVES	3
5.0	QUALITY ASSURANCE/QUALITY CONTROL PROGRAM	
	5.1 Non-Dedicated Sampling and Monitoring Equipment Cleaning 5.2 Trip Blanks 5.3 Field Duplicate Samples 5.4 Calibration Checks on Field Instruments 5.4.1 Field Screening Instruments 5.4.2 Water Quality Measurement Instruments	4 4 4
6.0	STANDARD OPERATING PROCEDURES	5
7.0	SAMPLING SYSTEM	5
8.0	PHYSICAL IMPEDIMENTS	6
9.0	TERMS AND LIMITATIONS	6

APPENDICES

APPENDIX I Figures
APPENDIX II Tables

APPENDIX III Pinchin Standard Operating Procedures

FIGURES

Figure 1 - Key Map

Figure 2 - Areas of Potential Environmental Concern

Figure 3 - Proposed Borehole and Monitoring Well Location Plan

TABLES

Table 1 - Table of Areas of Environmental Concern

Table 2 - Phase Two ESA Scope of Work Summary

© 2020 Pinchin Ltd. Page ii

320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006

May 13, 2020

1.0 INTRODUCTION

Pinchin Ltd. (Pinchin) has prepared this Sampling and Analysis Plan (SAP) for the Phase Two Environmental Site Assessment (ESA) to be performed at the property located at 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue in Ottawa, Ontario (hereafter referred to as the Site or Phase Two Property). The Phase Two Property is presently developed with a single-storey commercial/light industrial building complete with a two-storey office portion (Site Building A), as well as two, two-storey residential dwellings (Site Buildings B and C). In addition, it should be noted that a retail fuel outlet (RFO) was formerly located on the northeast portion of the Phase Two Property. A Key Map showing the Phase Two Property location is provided on Figure 1 (all Figures are located in Appendix I).

The Phase Two ESA will be conducted at the request of 1213763 Ontario Inc. (Client) in relation to the future redevelopment of the Phase Two Property from its current mixed commercial/residential land use to residential land use. A Record of Site Condition (RSC) submittal to the Ontario Ministry of the Environment, Conservation and Parks (MECP) is a mandatory requirement when a land use changes to a more sensitive land use and as such, to support the RSC submission, the Phase Two ESA will be conducted in accordance with the Province of Ontario's *Ontario Regulation 153/04: Records of Site Condition – Part XV.1 of the Act*, which was last amended by Ontario Regulation 407/19 on December 4, 2019 (O. Reg. 153/04). The Phase Two ESA will also support the filing of a Site Plan Approval application with the City of Ottawa.

This SAP provides the scope of work and procedures for completing the field investigation for the Phase Two ESA. The Phase Two ESA will be performed in accordance with the scope of work, and terms and conditions described in the proposal entitled "Proposal for Phase Two Environmental Site Assessment and Record of Site Condition Filing, 320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario", prepared for the Client, dated March 4, 2020.

2.0 AREAS OF POTENTIAL ENVIRONMENTAL CONCERN

The objectives of the Phase Two ESA will be to assess soil and groundwater quality at the Phase Two Property in relation to eighteen areas of potential environmental concern (APECs) and related potentially contaminating activities (PCAs) and contaminants of potential concern (COPCs) identified in a Phase One ESA completed by Pinchin in accordance with O. Reg. 153/04, the findings of which are provided in the draft report entitled "Phase One Environmental Site Assessment Report, 320 McRae Avenue, 1976 Scott Street, 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario", prepared for the Client.

The APECs and corresponding PCAs and COPCs are summarized in Table 1 (all Tables are located in Appendix II) and shown on Figure 2.

© 2020 Pinchin Ltd. Page 1 of 7

1213763 Ontario Inc.

Pinchin File: 230236.006

3.0 SCOPE OF WORK

The information obtained from the Phase One ESA, in particular the Phase One Conceptual Site Model, was used to determine the environmental media requiring investigation during the Phase Two ESA (i.e., soil and groundwater), the locations and depths for sample collection, and the parameters to be analyzed for the samples submitted from each APEC. The Phase Two ESA scope of work will include the advancement of 16 boreholes, five of which will be completed as groundwater monitoring wells, and the resampling of three existing groundwater monitoring wells. The proposed borehole and groundwater monitoring well locations, and existing groundwater monitoring wells, are provided on Figure 3.

Table 2 in Appendix II provides a detailed summary of the proposed Phase Two ESA scope of work, including:

- Boreholes and/or groundwater monitoring wells to be completed, or resampled, within each APEC and the COPCs to be analyzed for samples collected in each APEC;
- Media to be sampled at each sampling location, the sampling system (see Section 7.0), the soil sampling depth intervals, monitoring well screen intervals and the sampling frequency; and
- Number of samples per borehole or groundwater monitoring well to be collected and submitted for laboratory analysis.

Note that the soil sampling depth intervals (i.e., borehole depths), monitoring well screen intervals and sampling frequency are based on Pinchin's current knowledge of subsurface conditions, including the estimated depth to groundwater of 4.0 to 6.5 metres below ground surface (mbgs), and may be revised based on the actual subsurface conditions encountered.

Additional scope of work items include the following:

- Submission of up to four surface soil samples (0 to up to 1.5 mbgs) for pH analysis;
- Submission of up to four soil samples for grain size analysis;
- Elevation surveying by an Ontario Licensed Surveyor of the ground surface elevations of all monitoring well locations, and the top of pipe elevations for all groundwater monitoring wells;
- Depth to water measurements of all newly-installed and existing monitoring wells, including assessment for non-aqueous phase liquid. Depth to water measurements will be made during well development and groundwater sampling, and one month following groundwater sampling; and

© 2020 Pinchin Ltd. Page 2 of 7

320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006

May 13, 2020

Completion of groundwater sampling using low-flow purging and sampling methods as per SOP-EDR023 (see Section 6.0), unless well yields are too low to permit this method to be used. For well(s) where low flow sampling cannot be employed, groundwater sampling will be conducted using the well volume method described in SOP-EDR008.

4.0 DATA QUALITY OBJECTIVES

The data quality objectives (DQOs) for the Phase Two ESA will be to obtain unbiased analytical data that are representative of actual soil and groundwater conditions at the Phase Two Property. This will be accomplished by implementing a quality assurance/quality control (QA/QC) program, as described in Section 5.0, and by completing the field work in accordance with Pinchin's standard operating procedures (SOPs), as described in Section 6.0. Pinchin's SOPs are based in part on the MECP's "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated December 1996 and the Association of Professional Geoscientists of Ontario document entitled "Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended)", dated April 2011.

The DQOs are intended to minimize uncertainty in the analytical data set such that the data are considered reliable enough to not affect the conclusions and recommendations of the Phase Two ESA and to meet the overall objective of the Phase Two ESA, which is to assess the environmental quality of the Phase Two Property in relation to the identified APECs.

5.0 QUALITY ASSURANCE/QUALITY CONTROL PROGRAM

5.1 Non-Dedicated Sampling and Monitoring Equipment Cleaning

Based on the proposed scope of work, the following non-dedicated sampling and monitoring equipment will be used during completion of the Phase Two ESA:

- Interface probe;
- Water level tape;
- Spatula for soil sampling;
- 3.2, 3.8 or 5.2 centimetre inner diameter direct push soil samplers with dedicated singleuse sample liners;
- Submersible pump; and
- Flow-through cell for groundwater sampling.

© 2020 Pinchin Ltd. Page 3 of 7

320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

1213763 Ontario Inc.

All of the above-listed equipment will be cleaned prior to initial use and between samples or sampling locations, as appropriate, following the equipment cleaning procedures described in SOP-EDR009. Any non-dedicated sampling or monitoring equipment not listed above that is used during the Phase Two ESA will also be cleaned in accordance with SOP-EDR009.

May 13, 2020

Pinchin File: 230236.006

5.2 **Trip Blanks**

A trip blank is a set of VOC sample vials filled by the analytical laboratory with VOC-free distilled water and shipped with the groundwater sample containers. Trip blanks will be stored with the sample containers provided by the analytical laboratory during travel to the Phase Two Property, while on the Phase Two Property, and during travel from the Phase Two Property back to the analytical laboratory. The sample containers comprising a trip blank will not be opened in the field.

One trip blank will accompany each submission to the laboratory. Each trip blank will be submitted for analysis of VOCs. Based on the scope of work and anticipated field work schedule for the Phase Two ESA, it is estimated that analysis of two to three trip blanks will be required. Additional trip blanks will be submitted if there are additional laboratory submissions.

5.3 Field Duplicate Samples

Field duplicate soil and groundwater samples will be collected for laboratory analysis in accordance with SOP-EDR025 at a frequency of one sample for every ten samples submitted for laboratory analysis, with a minimum of one sample per media sampled per COPC.

Calibration Checks on Field Instruments 5.4

5.4.1 Field Screening Instruments

The photoionization detector (PID) and combustible gas indicator (CGI) used for the field screening of soil samples will be calibrated in accordance with the procedures described in SOP-EDR003. Calibration checks will also be made at the frequency specified in SOP-EDR003.

Records of the calibration and calibration checks of the PID and CGI, including any calibration sheets provided by the equipment supplier, will be retained in Pinchin's project file.

5.4.2 Water Quality Measurement Instruments

Water quality instruments used to measure field parameters during groundwater sampling will be calibrated in accordance with the procedures described in SOP-EDR016. Calibration checks will also be made at the frequency specified in SOP-EDR016.

© 2020 Pinchin I td. Page 4 of 7

320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006

May 13, 2020

Records of the calibration and calibration checks of the probes/instruments used for water quality parameter measurements, including any calibration sheets provided by the equipment supplier, will be retained in Pinchin's project file.

6.0 STANDARD OPERATING PROCEDURES

The proposed field investigation for the Phase Two ESA will require the following SOPs to be followed:

- Borehole drilling (SOP-EDR006);
- Soil sampling (SOP-EDR013 and SOP-EDR019);
- Field screening (SOP-EDR003);
- Monitoring well installation (SOP-EDR007);
- Monitoring well development (SOP-EDR017);
- Field measurement of water quality indicators (SOP-EDR016);
- Groundwater sampling (SOP-EDR008 and/or SOP-EDR023);
- QA/QC sampling (SOP-EDR025); and
- Non-dedicated field equipment decontamination (SOP-EDR009).

The above-referenced SOPs are provided in Appendix III. Each SOP includes a section describing the specific requirements for Phase Two ESAs completed to support the filing of an RSC in accordance with O. Reg. 153/04.

Any deviations from the SOPs will be summarized in the Phase Two ESA report.

7.0 SAMPLING SYSTEM

The borehole and monitoring well locations in all APECs will be selected following a judgemental sampling system. Boreholes and monitoring wells will be placed at locations where the potential for COPCs to be present is considered the highest (i.e., "worst case"), as per the following:

- Boreholes and monitoring wells will be completed in the vicinity of the former on-Site
 automotive repair garage, auto wrecking operation and autobody shop, including a
 chemical storage area and spray booth, in the north portion of Site Building A (APEC-3,
 APEC-5 and APEC-10);
- Boreholes will be completed at the former waste oil and new oil aboveground storage tank locations in the service bay of the former automotive service garage within the north portion of Site Building A (APEC-6 and APEC-8);

© 2020 Pinchin Ltd. Page 5 of 7

320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006

May 13, 2020

- Boreholes and monitoring wells will be completed in the vicinity of the current on-Site automotive repair garage in the south portion of Site Building A (APEC-4);
- Boreholes will be completed at the waste oil and new oil aboveground storage tank locations in the service bay of the current automotive service garage within the south portion of Site Building A (APEC-7 and APEC-9);
- Boreholes and monitoring wells will be completed in the vicinity of the on-Site oil/water separators within the north and south portions of Site Building A (APEC-11 and APEC-12);
- A borehole and monitoring well will be completed in the vicinity of a former suspected on-Site UST located along the southeast elevation of Site Building A (APEC-3);
- A borehole will be completed in the vicinity of a hazardous waste storage area along the southwest elevation of Site Building A (APEC-14);
- Boreholes will be completed on the northeast, east and southeast portions of the Phase Two Property to address historical fill importation at the Site (APEC-15); and
- Monitoring wells intended to assess groundwater impacts from an off-Site industrial operation, off-Site UST and off-Site automotive repair garage will be installed along the property boundary closest to the PCAs (APEC-16, APEC-17 and APEC-18).

In addition, the field screening results for soil samples collected from each borehole will be used to select "worst case" samples for laboratory analysis.

The sampling system that will be used for each APEC is summarized in Table 2.

PHYSICAL IMPEDIMENTS 8.0

Pinchin anticipates that there will be no physical impediments limiting access to the Phase Two Property during completion of the Phase Two ESA, with the following exceptions:

- Vehicle parking in the north, central and south portions of the Phase Two Property; and
- Physical distancing due to COVID-19 within the south portion of Site Building A.

9.0 TERMS AND LIMITATIONS

This Sampling and Analysis Plan (SAP) has been prepared to summarize the general scope of work and field procedures to be followed for the Phase Two ESA that will be performed for 1213763 Ontario Inc. (Client) in order to investigate potential environmental impacts at 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue in Ottawa, Ontario (Site). The term recognized environmental

© 2020 Pinchin Ltd. Page 6 of 7

320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario 1213763 Ontario Inc.

Pinchin File: 230236.006

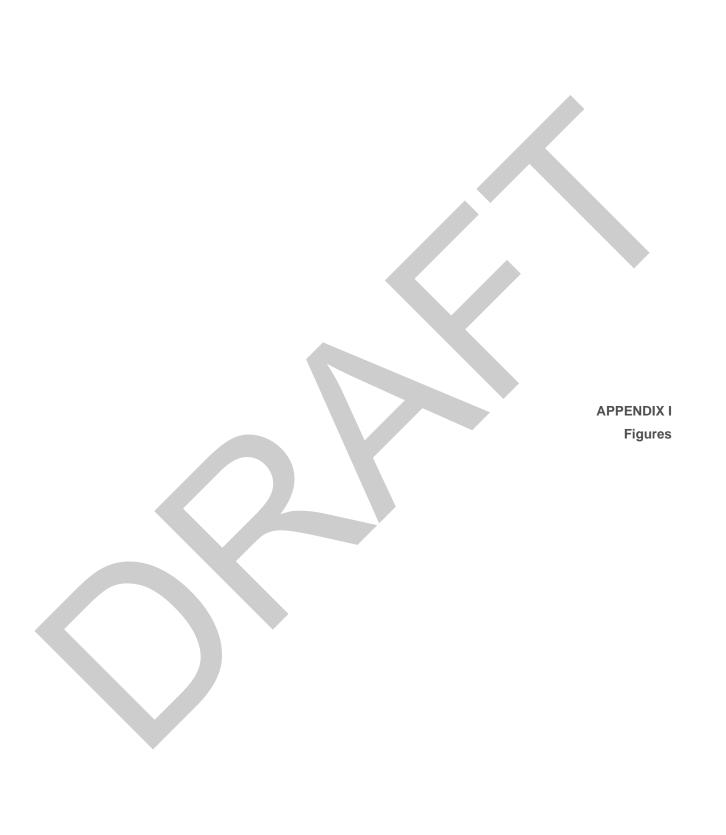
May 13, 2020

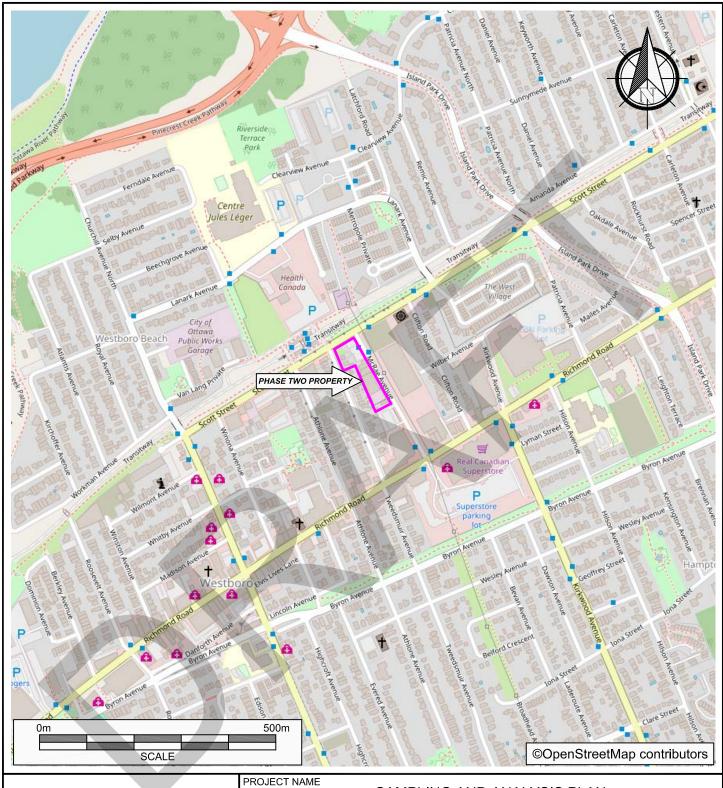
condition means the presence or likely presence of any hazardous substance on a property under conditions that indicate an existing release, past release, or a material threat of a release of a hazardous substance into structures on the property or into the ground, groundwater, or surface water of the property. The Phase Two ESA will not quantify the extent of the current and/or recognized environmental condition or the cost of any remediation.

Conclusions derived from the Phase Two ESA will be specific to the immediate area of study and cannot be extrapolated extensively away from sample locations. Samples will be analyzed for a limited number of contaminants that are expected to be present at the Site, and the absence of information relating to a specific contaminant does not indicate that it is not present.

No environmental site assessment can wholly eliminate uncertainty regarding the potential for recognized environmental conditions on a property. Performance of the Phase Two ESA to the standards established by Pinchin is intended to reduce, but not eliminate, uncertainty regarding the potential for recognized environmental conditions on the Site, and recognizes reasonable limits on time and cost.

The Phase Two ESA will be performed in general compliance with currently acceptable practices for environmental site investigations, and specific Client requests, as applicable to this Site.


This SAP was prepared for the exclusive use of the Client, subject to the terms, conditions and limitations contained within the duly authorized proposal for this project. Any use which a third party makes of this SAP, or any reliance on or decisions to be made based on it, is the sole responsibility of such third parties. Pinchin accepts no responsibility for damages suffered by any third party as a result of decisions made or actions conducted.


If additional parties require reliance on this SAP, written authorization from Pinchin will be required. Pinchin disclaims responsibility of consequential financial effects on transactions or property values, or requirements for follow-up actions and costs. No other warranties are implied or expressed. Furthermore, this SAP should not be construed as legal advice. Pinchin will not provide results or information to any party unless disclosure by Pinchin is required by law.

Pinchin makes no other representations whatsoever, including those concerning the legal significance of its findings, or as to other legal matters touched on in this SAP, including, but not limited to, ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and these interpretations may change over time.

230236.006 RSC Phase Two ESA SAP McRae Scott Tweedsmuir Ottawa ON GWL Template: RSC Sampling and Analysis Plan, EDR, January 17, 2020

© 2020 Pinchin Ltd. Page 7 of 7

AS SHOWN

SAMPLING AND ANALYSIS PLAN

CLIENT NAME

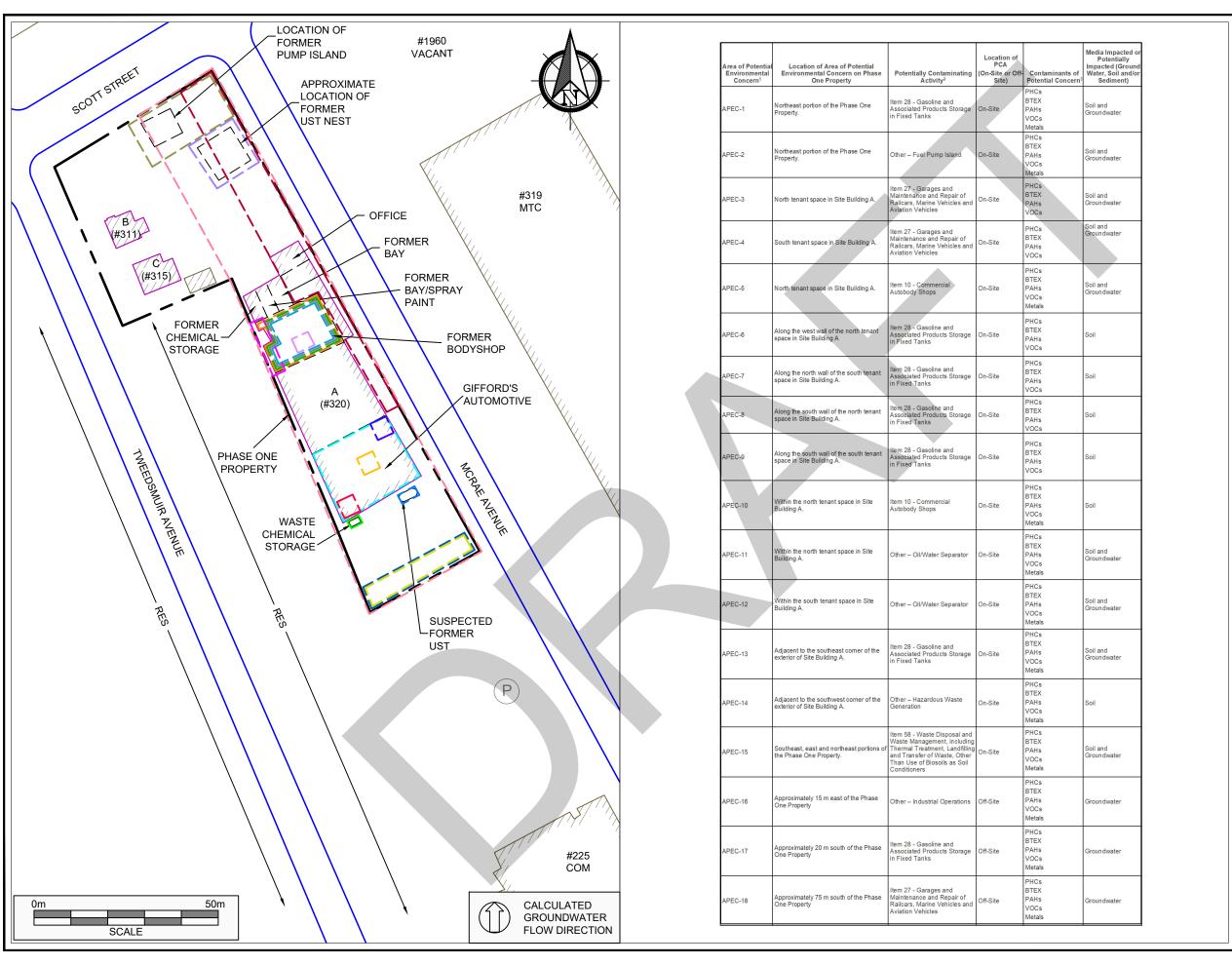
1213763 ONTARIO INC.

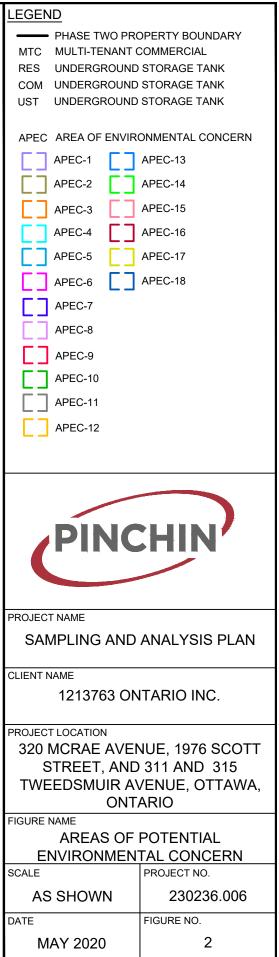
PROJECT LOCATION
320 MCRAE AVENUE, 1976 SCOTT STREET, AND
311 AND 315 TWEEDSMUIR AVENUE, OTTAWA, ONTARIO

FIGURE NAME

KEY MAP

SCALE


PROJECT NO.


DATE

1

MAY 2020

230236.006

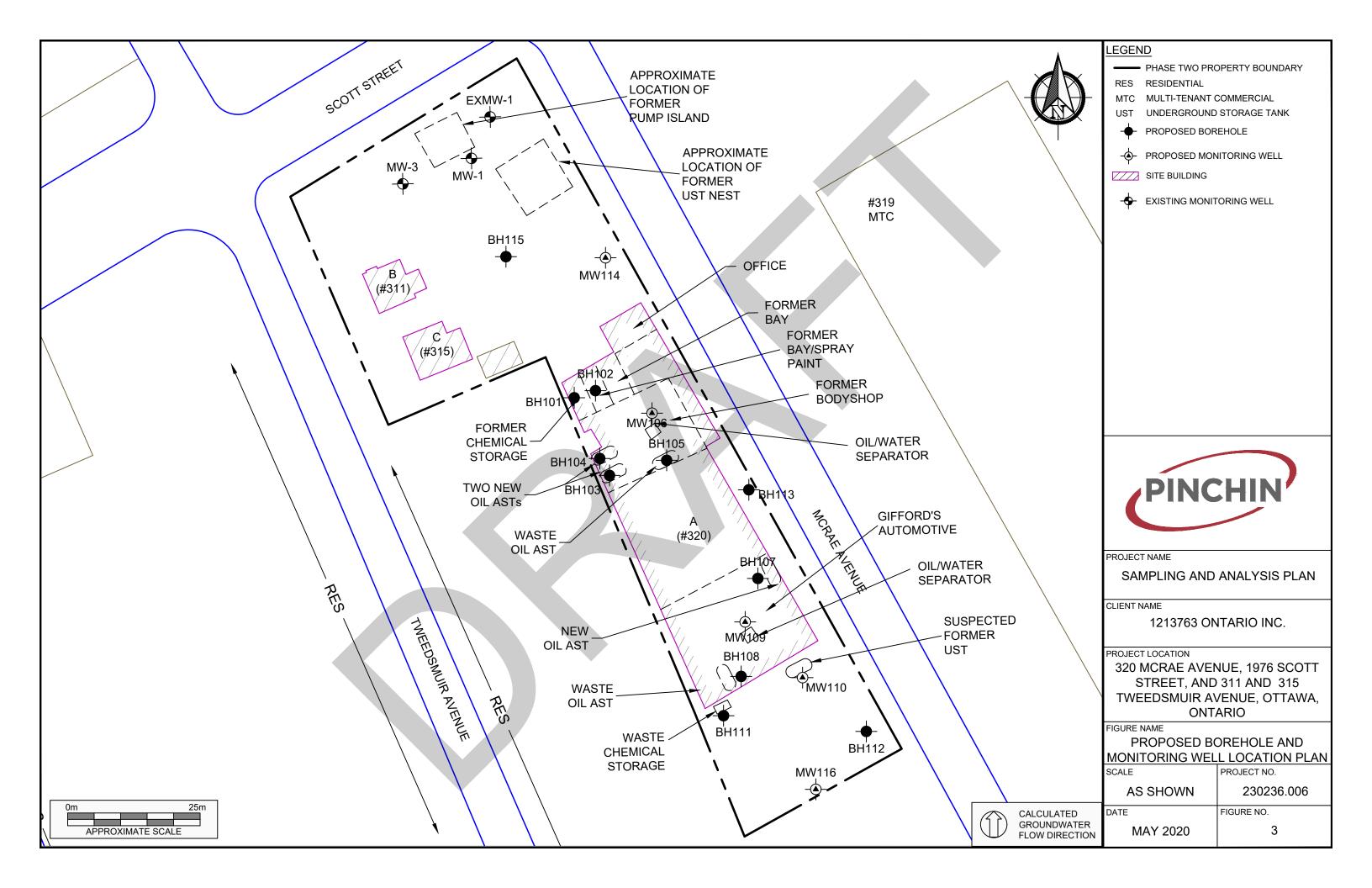


Table 1 - Table of Areas of Potential Environmental Concern

Area of Potential Environmental Concern ¹	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern ³	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC-1	Northeast portion of the Phase One Property.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs BTEX PAHs VOCs Metals	Soil and Groundwater
APEC-2	Northeast portion of the Phase One Property.	Other – Fuel Pump Island	On-Site	PHCs BTEX PAHs VOCs Metals	Soil and Groundwater
APEC-3	Α.	Item 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	On-Site	PHCs BTEX PAHs VOCs	Soil and Groundwater
APEC-4	South tenant space in Site Building A.	Item 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	On-Site	PHCs BTEX PAHs VOCs	Soil and Groundwater

Area of Potential Environmental Concern ¹	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern ³	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC-5	North tenant space in Site Building A.	Item 10 - Commercial Autobody Shops	On-Site	PHCs BTEX PAHs VOCs Metals	Soil and Groundwater
APEC-6	Along the west wall of the north tenant space in Site Building A	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs BTEX PAHs VOCs	Soil
APEC-7		Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs BTEX PAHs VOCs	Soil

Area of Potential Environmental Concern ¹	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern ³	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC-8	Along the south wall of the north tenant space in Site Building A.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs BTEX PAHs VOCs	Soil
APEC-9	Along the south wall of the south tenant space in Site Building A.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs BTEX PAHs VOCs	Soil
APEC-10	Within the north tenant space in Site Building A.	Item 10 - Commercial Autobody Shops	On-Site	PHCs BTEX PAHs VOCs Metals	Soil

Area of Potential Environmental Concern ¹	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern ³	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC-11	Within the north tenant space in Site Building A.	Other – Oil/Water Separator	On-Site	PHCs BTEX PAHs VOCs Metals	Soil and Groundwater
APEC-12		Other – Oil/Water Separator	On-Site	PHCs BTEX PAHs VOCs Metals	Soil and Groundwater
APEC-13	Adjacent to the southeast corner of the exterior of Site Building A.	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	PHCs BTEX PAHs VOCs Metals	Soil and Groundwater

Area of Potential Environmental Concern ¹	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern ³	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC-14	Adjacent to the southwest corner of the exterior of Site Building A.	Other – Hazardous Waste Generation	On-Site	PHCs BTEX PAHs VOCs Metals	Soil
APEC-15	Southeast, east and northeast portions of the Phase One Property.	Item 58 - Waste Disposal and Waste Management, including Thermal Treatment, Landfilling and Transfer of Waste, Other Than Use of Biosoils as Soil Conditioners	On-Site	PHCs BTEX PAHs VOCs Metals	Soil and Groundwater
APEC-16	Approximately 15 m east of the Phase One Property	Other – Industrial Operations	Off-Site	PHCs BTEX PAHs VOCs Metals	Groundwater

Area of Potential Environmental Concern ¹	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern ³	Media Impacted or Potentially Impacted (Ground Water, Soil and/or Sediment)
APEC-17	Approximately 20 m south of the Phase One Property	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	Off-Site	PHCs BTEX PAHs VOCs Metals	Groundwater
APEC-18	Approximately 75 m south of the Phase One Property	Item 27 - Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	Off-Site	PHCs BTEX PAHs VOCs Metals	Groundwater

Notes:

- 1 Areas of potential environmental concern means the area on, in or under a phase one property where one or more contaminants are potentially present, as determined through the phase one environmental site assessment, including through,
- (a) identification of past or present uses on, in or under the phase one property, and
- (b) identification of potentially contaminating activity.
- 2 Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area
- 3 When completing this column, identify all contaminants of potential concern using the Method Groups as identified in the Protocol for in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004, amended as of July 1, 2011, as specified below:

List of Method Groups:

ABNs	PCBs	Metals	Electrical Conductivity
CPs	PAHs	As, Sb, Se	Cr (VI)
1,4-Dioxane	THMs	Na	Hg
Dioxins/Furans, PCDDs/PCDFs	VOCs	B-HWS	Methyl Mercury
OCs	BTEX	CI-	Low or high pH,
PHCs	Ca, Mg	CN-	SAR

4 - When submitting a record of site condition for filing, a copy of this table must be attached

Pinchin File: 230236.006

Table 2 - Phase Two Scope of Work Summary

		COPCs																						
Sampling Location	APEC	Media Sampled	PHCs	втех	VOCs	PAHS	PCBs		Hydrides (As, Sb, Se)	Boron (HWS)	Chromium VI	Mercury Methyl Mercury	ABNs	Dioxins/Furans	OCPs	Chloride	Cyanide	SAR	Number of Samples Submitted for Analysis	Soil Sampling Depth Interval (mbgs)	Screen Interval (mbgs)	Sampling Frequency	Sampling System	Rationale/Notes
EXMW-1 (Existing)	2	Groundwater		1	_							•		1		, ,		0,	1	NA	2.7 - 5.8	NA	Judgemental	Former fuel pump island/Resample to confirm mercury exceedance
MW-3 (Existing)	2	Groundwater	•	•	•	•													1	NA	4.6 - 7.6	NA	Judgemental	Former fuel pump island/Not sampled during previous Phase II ESA
MW-1 (Existing)	1	Groundwater	•	•	•	•													1	NA	4.6 - 7.6	NA	Judgemental	Former UST nest/Resample to confirm BTEX/PHC exceedances
BH101	3 / 10	Soil	•	•	•	•		•	•	•	•	•							1	0 - 1.5	NA	Continous/Soil cores every 1.5 m	Judgemental	Chemical storage associated with automotive repair operation and/or autobody shop
BH102	10	Soil	•	•	•	•		•	•	•	•	•							1	0 - 1.5	NA	Continous/Soil cores every 1.5 m	Judgemental	Spray booth associated with autobody shop
BH103	3/5/6/10	Soil	•	•	•	•		•	•	•	•	•							1	0 - 1.5	NA	Continous/Soil cores every 1.5 m	Judgemental	Automotive repair operation/Automotive wreckers operation/New oil
BH104		Soil	•	•	•	•		•	•	•	•	•							1	0 - 1.5	NA	Continous/Soil cores every 1.5 m	Judgemental	ASTs/Autobody shop
BH105	3/5/8/10	Soil	•	•	•	•		•	•	•	•	•							1	0 - 1.5	NA	Continous/Soil cores every 1.5 m	Judgemental	Automotive repair operation/Automotive wreckers operation/Waste oil AST/Autobody shop
MW106	3/5/10/11	Soil	•	•	•	•		•	•	•	•	•							1	0 - 1.5	NA	Continous/Soil cores every 1.5 m	Judgemental	Automotive repair operation/Automotive wreckers operation/Autobody
		Groundwater	•	•	•	•		•	•	•	•	•							1	NA	4.6 - 7.6	NA	Judgemental	shop/Oil/water separator
BH107	4/7	Soil	•	•	•	•		•	•	•	•	•							1	0 - 1.5	NA	Continous/Soil cores every 1.5 m	Judgemental	Automotive repair operation/New oil AST
BH108	4/9	Soil	•	•	•	•		•	•	•	•	•			4				1	0 - 1.5	NA	Continous/Soil cores every 1.5 m	Judgemental	Automotive repair operation/Waste oil AST
MW109	4 / 12	Soil	•	•	•	•		•	•	•	•	•							1	0 - 1.5	NA	Continous/Soil cores every 1.5 m	Judgemental	Automotive repair operation/Oil/water separator
10100 100	7,12	Groundwater	•	•	•	•		•	•	•	•	•	4				L		1	NA	4.6 - 7.6	NA (O. II)	Judgemental	Automotive repair operation, on water departator
MW110	13	Soil	•	•	•	•		•	•	•	•	•	K						1	0 - 1.5	NA	Continous/Soil cores every 1.5 m	Judgemental	Suspected former UST
		Groundwater	•	•	•	•		•	•	•	•	•							1	NA	4.6 - 7.6	NA	Judgemental	
BH111	14	Soil	•	•	•	•		•	•	•	•	•							1	0 - 1.5	NA	Continous/Soil cores every 1.5 m	Judgemental	Waste chemical storage area
BH112	15	Soil	•	•	•	•		•	•	•	•	•							1	0 - 1.5	NA	Continous/Soil cores every 1.5 m	Judgemental	Fill importation
BH113	10	Soil	•	•	•	•		•	•	•	•	•							1	0 - 1.5	NA	Continous/Soil cores every 1.5 m	Judgemental	
MW114	15 / 16	Soil	•	•	•			•	•	\dashv	+		Ļ		\perp		Į.		1	0 - 1.5	NA	Continous/Soil cores every 1.5 m	Judgemental	Fill importation/Off-Site former industrial operations
		Groundwater	•	•	•	•		•	•	•	• (•			\perp	_			1	NA	4.6 - 7.6	NA Contingua/Sail garage	Judgemental	
BH115	15	Soil	•	•		•		•	•	•	• (•							1	0 - 1.5	NA	Continous/Soil cores every 1.5 m	Judgemental	Fill importation
MW116	17 / 18	Soil	•	•	•			•	•	\dashv	+	•							1	0 - 1.5	NA	Continous/Soil cores every 1.5 m	Judgemental	Off-Site fuel UST/Off-Site auto repair operation
		Groundwater	•	•	•	•		•	•	•	•	•	Ш,						1	NA	4.6 - 7.6	NA	Judgemental	

PHCs Petroleum Hydrocarbons (Fraction 1 to Fraction 4)
BTEX Benzene, Toluene, Ethylbenzene and Xylenes
VOCs Volatile Organic Compounds
PAHs Polycyclic Aromatic Hydrocarbons

PAHs Polycyclic Aromatic Hydrocarbons
PCBs Polychlorinated Biphenyls
As, Sb, Se Arsenic, Antimony, Selenium
Hot Water Soluble Boron
Hexavalent Chromium
ABNs Acid/Base/Neutral Compounds
OCPs Organochlorine Pesticides
EC Electrical Conductivity
SAR Sodium Adsorption Ratio

APEC COPCS Contaminants of Potential Environmental Concern COPCS Contaminants of Potential Concern Metres

mbgs Metres Below Ground Surface

NA Not Applicable

PCA Potentially Contaminating Activity

SOP Standard Operating Procedure

UST Underground Storage Tank

mbfs Metres Below Floor Surface

APPENDIX III
Pinchin Standard Operating Procedures

SOP – EDR003 – REV004 – FIELD SCREENING OF SOIL SAMPLES

Title:	Field Screening of Soil Samples
Practice:	EDR
First Effective Date:	June 16, 2009
Version:	004
Version Date:	January 3, 2018
Author:	Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	Not wo-76 "

TABLE OF CONTENTS

1.0	VERSION HISTORY	2
2.0	SCOPE AND APPLICATION	2
3.0	OVERVIEW	3
4.0	DISTRIBUTION	3
5.0	PROCEDURE	3
5.1	Equipment and Supplies	3
5.2	Soil Headspace Vapour Measurement Procedure	4
5.3	Visual Screening	5
5.4	Olfactory Screening	6
5.5	Additional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance	6
6.0	TRAINING	
7.0	MAINTENANCE OF SOP	7
8.0	REFERENCES	7
9.0	APPENDICES	7

1.0 VERSION HISTORY

Version	Date	Summary of Changes	Author
Original	June 16, 2009	N/A	MEM
001	November 26, 2010	Update approval signature	FG
002	September 25, 2013	Revised SOP to reflect current practices/Added section on O.Reg. 153/04 compliance	RLM
003	April 29, 2016	Updated Section 4.0/Modified time between readings to 1 hour	RLM
004	April 28, 2017	Removed reference to Pinchin West/In Section 5.2, clarified that soil vapour measurements do not need to be made within one hour of sampling during winter conditions	RLM
004	January 3, 2018	Reviewed and confirmed current	RLM

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) presents the quantitative and qualitative methods to be used by Pinchin field personnel for field screening soil samples for potential impacts during field investigations.

The quantitative part of field screening consists of the measurement of vapour concentrations in soil sample headspace in order to assess the potential for volatile constituents to be present in the soil. The soil vapour readings obtained from these measurements are then used to assist in selecting potential "worst case" soil samples for submission to the laboratory for analysis. There are no regulatory standards for comparison with soil headspace vapour readings and we are using the general principle that the sample with the highest soil headspace vapour concentration from a group of samples is often the most likely to be impacted by volatile constituents.

The qualitative part of field screening includes assessing the soil for visual or olfactory indicators of potential contamination and is used in conjunction with the soil headspace vapour readings to select "worst case" soil samples to be submitted for laboratory analysis.

Note that soil vapour measurements have limited value when selecting "worst case" soil samples for laboratory analysis of non-volatile parameters such as metals. Visual observations of the presence of staining and debris (e.g., brick fragments and other building materials, coal ash, etc.), along with sample depth and likely migration pathways are to be factored into selecting the samples. The sample with the highest soil headspace vapour reading is not automatically selected under these circumstances.

Soil samples collected for soil vapour measurement must not be submitted for laboratory analysis except for analysis of non-volatile parameters (i.e., metals and inorganics) or grain size analysis.

This SOP also applies to the field screening of sediment samples but for simplicity, only soil samples are referred to below.

3.0 OVERVIEW

Not applicable.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 Equipment and Supplies

- Resealable plastic bags (e.g., Ziploc®);
 - (Note that small capacity bags (e.g., 500 millilitre capacity) are preferred over larger sized bags. When conducting headspace screening of a set of soil samples, the size of bag used should be consistent throughout in order to maintain the same approximate headspace volume in each bag);
- Combustible gas indicator (CGI) capable of operating in methane-elimination and/or photo-ionization detector (PID);
 - (The Project Manager will be responsible for selecting the appropriate instrument(s) for each project. CGIs (e.g., RKI Eagle or Gastechtor) are acceptable for screening of petroleum hydrocarbons (PHCs) and related compounds, whereas PIDs (e.g., MiniRAE) are acceptable for screening for volatile organic compounds (VOCs), including chlorinated solvents, but can also be used when screening for PHCs. For many projects, it will be appropriate to employ both a CGI and a PID); and
- Calibration equipment (e.g., calibration gas, regulators, tubing, calibration bags, etc. as provided by the equipment supplier).

5.2 Soil Headspace Vapour Measurement Procedure

The procedure for conducting soil headspace vapour measurements for soil sample headspace is as follows:

- Unless pre-calibrated by the equipment supplier, calibrate the CGI/PID as per the
 instrument manufacturer's instructions before commencing soil vapour measurements.
 Record the date and time of calibration, and type and concentration of the calibration gas
 used in the field logbook or field forms;
- 2. Label the plastic bag with the sample number;
- 3. Create a split soil sample by splitting the sample core vertically (i.e., along the longitudinal axis) with one half used for soil headspace vapour measurement and the other half used to fill sample jars for laboratory analysis of volatile parameters (e.g., VOCs and PHCs (F1 fraction)). In other words, the depth interval of the soil subjected to soil headspace vapour measurements should be the same as the depth interval from which samples for volatile parameters are collected. This procedure doesn't apply to grab samples but is to be completed when soil cores are obtained, such as sampling with dual tube samplers, split-spoon samplers and hand augers. For grab samples, soil used for laboratory analysis and soil headspace vapour measurements should be collected from proximal locations;
- 4. Place the soil into the plastic bag until the bag is approximately one-quarter full as soon as possible after the sampling device is retrieved/opened;
- 5. Seal the bag and break apart the soil by manually kneading the soil in the sealed bag;
- 6. Allow the soil sample to equilibrate at ambient temperature for a minimum of 5 minutes but no longer than one hour before taking a soil headspace vapour measurement. The exception to this is that during winter conditions, the soil samples should be placed in a heated environment (e.g., building interior) to warm up for a minimum of 15 minutes before taking soil vapour measurements. In this case, the soil vapour measurements do not need to be completed within one hour of sample collection;
- Do not store the bagged soil samples in direct sunlight prior to taking soil headspace vapour measurements;
- 8. When conducting soil headspace vapour measurements with a CGI, make sure it is switched to methane elimination mode;
- When completing soil headspace vapour measurements of a soil sample using both a PID and CGI, the vapour measurement using the PID should be made first;

- 10. Immediately before taking a soil headspace vapour measurement, gently agitate the bag and then create a small opening in the top of the bag. Insert the tip of the CGI/PID into the headspace of the bag and quickly reseal the bag around the tip to minimize leakage. If there is any water inside the bag, ensure that the tip does not contact the water;
- 11. Record the maximum vapour concentration measured within the first 10 seconds after inserting the tip of the CGI/PID into the bag. Note any anomalies that occur during the taking of the measurement (e.g., if the readings displayed by the instrument progressively increase and do not reach an obvious peak);
- 12. Remove the tip of the CGI/PID from the bag and reseal the bag immediately in case additional soil headspace vapour measurements are needed. If the soil headspace vapour is measured for a sample using a PID and an additional measurement with a CGI is required, wait a minimum of five minutes after the bag is resealed before taking the measurement with the CGI:
- 13. Before completing the next soil headspace vapour measurement, allow the CGI/PID to reach "zero" or "baseline". If the CGI/PID does not return to "zero" or "baseline" it should be recalibrated before further soil headspace vapour measurements are made; and
- 14. At the discretion of the Project Manager, a calibration check of the CGI/PID should be completed at least once per day or at a frequency of once per 100 soil headspace vapour measurements (for projects where numerous soil headspace vapour measurements are made on a daily basis such as a large remediation project). A calibration check is made by measuring the concentration of a sample of the calibration gas with the CGI/PID without making any adjustments to the instrument beforehand and comparing the measured concentration with the known concentration. The comparison of the measured concentration versus the actual concentration of the calibration gas indicates how much the instrument's calibration may have been altered during soil headspace vapour measurements, which is known as "instrument drift". Should the calibration check show instrument drift of more than 10%, the CGI/PID needs to be recalibrated before completing further soil headspace vapour measurements. Record all pertinent information for the calibration check (e.g., date and time, initial measured concentration, calibration gas type and concentration) in the field logbook or field forms.

5.3 Visual Screening

Visual screening consists of examining the soil sample for potential indicators of contamination as per the following:

1. Visually examine the soil sample, including breaking apart a portion of the sample;

- 2. Note any indications of a mottled appearance, dark discolouration or staining, free-phase product or unusual colour;
- 3. Note any indications of non-soil constituents, such as brick, asphalt, wood or concrete fragments, coal fragments, coal ash, etc.; and
- 4. Record the findings of the visual screening in the field logbook or field forms. If there is no visual evidence of impacts this should be noted.

5.4 Olfactory Screening

Record in the field logbook or field forms the presence of any odours noted during sample collection and visual screening. Field staff are not expected to directly smell soil samples to assess the presence/absence of odours.

If it is possible to identify the likely type of odour (e.g., PHC-like, solvent-like, etc.) then this information should be recorded along with a comment on the severity of the odour (e.g., slight, strong, etc.). If the odour cannot be readily identified, it should be described in the field notes as "unidentified odour".

If no odours are observed, this information should also be recorded in the field logbook or field forms.

5.5 Additional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance

When completing a Phase Two Environmental Assessment (ESA) in accordance with Ontario Regulation 153/04, the following additional procedures must be undertaken:

- Calibration of the CGI/PID must be completed at the beginning of each field day and calibration checks must be made either at the end of each field day or after every 100 soil vapour readings (whichever occurs first); and
- Thorough records of the CGI/PID calibration and calibration checks must be kept, including any calibration sheets provided by the equipment supplier. The Quality Assurance/Quality Control section of the Phase Two ESA report requires a discussion of field screening instrument calibration, and equipment calibration records must be appended to the Phase Two ESA report.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>Health & Safety Training</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 REFERENCES

Association of Professional Geoscientists of Ontario, *Guidance for Environmental Site Assessments* under Ontario Regulation 153/04 (as amended), April 2011.

Ontario Ministry of the Environment, *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*, December 1996.

9.0 APPENDICES

None.

I:\2018 SOP Updates\SOP - EDR003 - REV004 - Field Screening of Soil Samples.docx

Template: Master SOP Template - February 2014

SOP - EDR006 - REV003 - BOREHOLE DRILLING

Title:	Borehole Drilling
Practice:	EDR
First Effective Date:	November 25, 2010
Version:	003
Version Date:	January 3, 2018
Author:	Francesco Gagliardi and Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	Not wan 76 mi

TABLE OF CONTENTS

1.	.0	VERSION HISTORY	3
2.	.0	SCOPE AND APPLICATION	
3.	.0	OVERVIEW	
4.	.0	DISTRIBUTION	4
5.	.0	PROCEDURE	
	5.1	General	
	5.2	Prior Planning and Preparation	4
	5.3	Borehole Drilling Procedures	
	5.4	Borehole Nomenclature	
	5.5	Borehole Advancement	
	5.6	Direct-Push Drilling	
	5.7	Auger Drilling (Split-Spoon)	. 6
	5.8	Auger Drilling (Direct Sampling)	7
	5.9	Borehole Advancement In Bedrock	7
	5.10	Borehole Soil Sample Logging and Collection	8
	5.11	Borehole Backfilling	9
	5.12	Borehole Location Documentation	10

5.13	Field Notes	10
5.14	Additional Considerations for O. Reg. 153/04 Phase Two ESA Compliance	10
6.0	TRAINING	10
7.0	MAINTENANCE OF SOP	10
8.0	REFERENCES	11
9.0	APPENDICES	11

1.0 VERSION HISTORY

Version	Date	Summary of Changes	Author
Original	November 25, 2010	N/A	FG
001	November 22, 2013	Streamlined text to reflect most common current practices/Removed sections covered by other SOPs	RM
002	April 29, 2016	Updated Section 4.0	RM
003	April 28, 2017	Removed reference to Pinchin West	RM
003	January 3, 2018	Reviewed and confirmed current	RM

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) presents a description of the methods employed for the completion of boreholes and the collection of subsurface soil samples.

Boreholes are typically completed to determine geologic conditions for hydrogeological evaluation, to allow the installation of monitoring wells, and to allow for the collection of subsurface soil samples for laboratory analysis.

Several methods are available for the collection of shallow subsurface soil samples using hand-held equipment (e.g., hand augers, post-hole augers). However, the use of a drill rig, equipped with direct-push tooling, solid-stem augers and/or hollow-stem augers, is the most common method used by Pinchin to advance boreholes and will be the focus of this SOP.

A detailed discussion of all the various drilling rigs and drilling methods (e.g., direct push, augering, sonic drilling, air/water/mud rotary drilling, etc.) is beyond the scope of this SOP. The Project Manager will be responsible for determining the appropriate drill rig and drilling method for the site investigation.

The majority of the site investigations completed by Pinchin involve relatively straightforward drilling within the overburden within a one aquifer system. In some situations, such as when multiple aquifers are spanned by a borehole, when drilling into bedrock or when there are known impacts in the shallow subsurface, drilling using telescoped casing methods may be appropriate. Telescoped casing and bedrock drilling methods are beyond the scope of this SOP. In these situations, the Project Manager, in consultation with the drilling contractor, will be required to confirm the drilling requirements and procedures.

3.0 OVERVIEW

Not applicable.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 General

The overall borehole drilling program is to be managed in accordance with SOP-EDR005. In particular, utility locates must be completed in accordance with SOP-EDR021 before any drilling activities commence.

All non-dedicated drilling and sample collection equipment must be decontaminated in accordance with SOP-EDR009.

5.2 Prior Planning and Preparation

The planning requirements for borehole drilling programs are covered in detail in SOP-EDR005.

As noted above, the type of drilling rig and drilling method will be determined by the Project Manager when scoping out the site investigation. In some cases, a switch in drilling rig and/or drilling method may be required depending on site conditions. For example, if competent bedrock is encountered in the subsurface at a depth above the water table, bedrock coring would be required to advance the borehole deep enough to install a monitoring well.

5.3 Borehole Drilling Procedures

Once the final location for a proposed boring has been selected and utility clearances are complete, one last visual check of the immediate area should be performed before drilling proceeds. This last visual check should confirm the locations of any adjacent utilities (subsurface or overhead) and verification of adequate clearance.

In some instances, in particular where there is uncertainty regarding the location of buried utilities or the borehole is being completed near a buried utility, the use of a hydro-excavating (hydro-vac) unit will be required to advance the borehole to a depth below the bottom of the utility. The hydro-vac uses a

combination of high-pressure water and high-suction vacuum (in the form of a vacuum truck) to excavate soil. This is also known as "daylighting". The need to use a hydro-vac will be determined by the Project Manager.

If it is necessary to relocate any proposed borehole due to terrain, utilities, access, etc., the Project Manager must be notified and an alternate location will be selected.

5.4 Borehole Nomenclature

If a borehole is advanced strictly for the purpose of soil sampling and no monitoring well is installed, the borehole should be identified as "BHxx". If a monitoring well is installed in a borehole, the borehole should be identified as "MWxx".

To avoid confusion, for site investigations involving both boreholes and monitoring wells, the numerical identifiers are to be sequential (e.g., there should not be a BH01 and MW01 for the same project).

When completing supplemental drilling programs, the borehole number should start at either the next sequential number after the last borehole number used in the first stage, or label them as '100 series', '200 series', etc. as appropriate (e.g., BH101, MW102, etc. for the first series of additional boreholes).

It is also acceptable to add the 2 digit year either before or after the borehole or monitoring well name (e.g., 17-MW101 or MW101-17).

5.5 Borehole Advancement

Each borehole will be advanced incrementally to permit intermittent or continuous sampling as specified by the Project Manager. Typically, the sampling frequency is one sample for every 2.5 or 5 feet (0.75 or 1.5 metres) the borehole is advanced. At the discretion of the Project Manager, soil samples may be collected at a lower frequency in homogeneous soil or at a higher frequency if changes in stratigraphy or other visual observations warrant it.

5.6 Direct-Push Drilling

This method is most commonly used at Pinchin to obtain representative samples of the subsurface soil material at a site. Direct-push drilling is achieved by driving a steel sampler into the subsurface at 1.5 metre intervals until the desired depth is achieved. The samplers are advanced by the drilling rig by means of a hydraulic hammer. For each soil sample run, a dedicated PVC sample liner is placed within the steel sampler which collects the soil as the sampler is advanced. After each sample run, a new sampler is assembled and it is advanced deeper down the open borehole.

There are generally two methods of direct-push drilling which are used:

- Dual-tube sampling; and
- Macro-core sampling.

A dual-tube sampler consists of an 8.25 centimetre (cm) inner diameter steel tooling (outer tube), equipped with a steel cutting-shoe affixed to the advancing end. A smaller diameter steel tooling, consisting of a 5.75 cm inner diameter (inner tube), fits within the outer tube and contains a PVC sample liner within. These two tubes form the completed dual-tube sampler. The completed dual-tube sampler has a length of 1.5 metres.

A macro-core sampler consists of the smaller inner tube (mentioned above) used independently. The macro-core sampler measures approximately 1.5 metres in length.

The difference in drilling methods used is typically determined by soil conditions. Where soil conditions consist of tight or dense soil types (e.g., silts or clays), the macro-core sampling method may be used as this method provides less resistance to advancing the sampler. In soil types that are less resistive (e.g., loose sands), the dual-tube sampler may be used.

5.7 Auger Drilling (Split-Spoon)

The auger drilling method for borehole advancement and sampling involves using an auger drill rig to advance the borehole to the desired sampling depth and sampling with a split-spoon sampler. Borehole advancement with hollow stem augers is the preferred drilling method when sampling with split-spoon samplers as it minimizes the potential for sloughed material to reach the bottom of a borehole and possibly cross-contaminate samples when the split-spoon is driven beyond the bottom of the borehole. Solid stem augers can be used when drilling at sites with cohesive soils (e.g., silty clay), provided that the borehole remains open after the augers are removed from the ground prior to driving the split-spoon sampler.

The split-spoon sampler consists of an 18- or 24-inch (0.45- or 0.60-metre) long, 2-inch (5.1 cm) outside diameter tube, which comes apart lengthwise into two halves.

Once the borehole is advanced to the target depth, the sampler is driven continuously for either 18 or 24 inches (0.45 or 0.60 metres) by a 140-pound (63.5 kilogram) hammer. The hammer may be lifted and dropped by either the cathead and rope method, or by using an automatic or semi-automatic drop system.

The number of blows applied in each 6-inch (0.15 metre) increment is counted until one of the following occurs:

- A total of 50 blows have been applied during any one of the 6-inch (0.15 metre) increments described above;
- A total of 100 blows have been applied;

- There is no advancement of the sampler during the application of ten successive blows of the hammer (i.e., the spoon is "bouncing" on a cobble or bedrock); or
- The sampler has advanced the complete 18 or 24 inches (0.45 or 0.60 metre) without the limiting blow counts occurring as described above.

On the field form, record the number of blows required to drive each 6-inch (0.15 metre) increment of penetration. The first 6 inches is considered to be a seating drive.

The sum of the number of blows required for the second and third 6 inches (0.15 metres) of penetration is termed the "standard penetration resistance" or the "N-value". This information is typically provided on the borehole logs included in our site investigation reports.

The drill rods are then removed from the borehole and the split-spoon sampler unthreaded from the drill rods.

Caution must be used when drilling with augers below the groundwater table, particularly in sandy or silty soils. These soils tend to heave or "blow back" up the borehole due to the difference in hydraulic pressure between the inside of the borehole and the undisturbed formation soil. If blowback occurs, the drilling contractor will introduce water or drilling mud into the borehole or inside of the hollow-stem augers (if used) to equalize the hydraulic pressure and permit drilling deeper to proceed.

Heaving conditions and the use of water or drilling mud must be noted on the field logs, including the approximate volume of water or drilling mud used.

5.8 Auger Drilling (Direct Sampling)

In some jurisdictions (e.g., BC, Manitoba) it may be acceptable to collect soil samples directly from auger flights when using solid stem augers.

When sampling directly from auger flights, care must be exercised not to collect soils that were in direct contact with the auger or that were smeared along the edge of the borehole.

5.9 Borehole Advancement In Bedrock

It is sometimes possible to advance augers through weathered bedrock but borehole advancement through competent bedrock requires alternate drilling procedures. Bedrock drilling can be accomplished by advancing core barrels or tri-cone bits using air rotary or water rotary drilling methods. A description of the various bedrock drilling procedures is beyond the scope of this SOP.

The bedrock drilling method selected will depend in part on the type of bedrock, the borehole depth required, whether bedrock core logging is required, whether telescoped casing is required, etc. The Project Manager, in consultation with the drilling contractor, will determine the best method for advancing boreholes in competent bedrock.

5.10 Borehole Soil Sample Logging and Collection

The following describes the methods for logging and collection of samples from a split-spoon or directpush sampler but can be adapted for sample collection from augers:

- 1. After the driller opens the split-spoon sampler or PVC liner, measure the length of the soil core retained in the sampler in inches or centimetres. Be sure to be consistent in the use of metric or imperial units, and that the units used are clearly noted in the field notes. The percentage of soil retained versus the length of the sampler is known as "sample recovery" and this information is presented on the borehole logs within our Phase II ESA reports;
- 2. Dedicated, disposable nitrile gloves are to be worn during soil logging and sampling;
- 3. When using a dual-tube or macro-core sampler with direct-push drilling, there is usually sufficient sample recovery to permit the collection of two soil samples from each sample run. In this case, if the sample recovery is greater than 2.5 feet (0.75 metres), divide the recovered soil into two depth intervals and log/collect a sample from each interval. Split-spoon samplers typically are not long enough nor provide enough sample to divide a sample run into two. However, if a recovered sample contains distinct stratigraphic units (e.g., fill material and native material, obviously impacted soil and non-impacted soil), the distinct units are to be sampled separately. It is especially important that potentially impacted soil (e.g., fill material, obviously impacted soil) is not mixed with potentially unimpacted soil (e.g., native soil, soil without obvious impacts) to form one sample;
- 4. Discard the top several centimetres in each core as this material is the most likely to have sloughed off the borehole wall and may not be representative of the soil from the intended depth interval;
- To minimize the potential for cross-contamination, scrape the exterior of the soil core with a clean, stainless-steel putty knife, trowel or similar device to remove any smeared soil. Note that is not practical and can be skipped if the soil is non-cohesive (e.g., loose sand);
- 6. Split the soil core longitudinally along the length of the sampler and to the extent practical, collect the soil samples for laboratory analysis from the centre of the core (i.e., soil that has not contacted the sampler walls). When sampling directly from augers, soils in direct contact with the auger or soils retained on the augers that may have been in contact with the edge of the borehole should not be collected.

Collect soil samples for potential volatile parameter analysis and soil vapour measurement (in that order) as soon as possible after the core is opened. The length of time between opening the sampler and sample collection for these parameters should not

- exceed 2 minutes. It is important to follow this as it minimizes the potential for volatile constituents in the soil to be lost. See SOP-EDR003 for additional details regarding the collection of soil samples for soil vapour measurement;
- 7. Drillers are not to open the split-spoon sampler or PVC liner until instructed to do so. If drilling and sample retrieval is occurring at a rate faster than Pinchin staff are able to sample and log the soil cores, the drillers are to be instructed to slow down or stop until further notice. This will prevent a back log of soil cores from accumulating and minimize the exposure of the soil cores to ambient conditions. This is particularly important when sampling for VOCs;
- 8. Collect soil samples for the remaining parameters to be analyzed;
- Soil samples are to be labelled and handled in accordance with SOP-EDR013;
- 10. Record the parameters sampled for, the type(s) and number of sample containers, and the time and date of sample collection in the field notes;
- 11. Determine the soil texture in accordance with SOP-EDR019 and record this information in the field notes;
- 12. Soil samples collected for soil headspace vapour measurement must not be submitted for laboratory analysis except for analysis of non-volatile parameters (i.e., metals and inorganics) or grain size analysis;
- Immediately following collection, place each sample container in a cooler containing ice bags or ice packs; and
- 14. After the maximum borehole drilling depth is reached, measure the borehole depth with a weighted measuring tape and record the total depth in the field notes if the borehole diameter is large enough to permit measurement.

5.11 Borehole Backfilling.

Following completion of each borehole in which a well is not installed, it must be properly backfilled with bentonite and/or bentonite grout by the drilling contractor. The drilling contractor is to be consulted to confirm the proper borehole abandonment procedures required by the local regulations (e.g., Ontario Regulation 903 for Ontario sites).

Drill cuttings are not be used to backfill boreholes.

Record the borehole backfilling method and materials used in the field notes.

5.12 Borehole Location Documentation

For each borehole, complete the following to document its location:

- Photograph the completed borehole location. Close up photographs of the borehole are
 to be taken as well as more distant photographs that show the location of site landmarks
 relative to the borehole so that the photograph can be used to locate the borehole in the
 future; and
- 2. Using a measuring tape or measuring wheel, measure the distance between the borehole and a nearby landmark (e.g., corner of the nearest building) and provide a borehole location sketch in the field notes. Measurements are to be made at right angles relative to the orientation of the landmark or to a fixed axis (e.g., relative to true north). If required by the Project Manager, measure the UTM coordinates of the borehole with a hand-held GPS device.

5.13 Field Notes

The field notes must document all drilling equipment used, sample depths and measurements collected during the borehole drilling activities. The field notes must be legible and concise such that the entire borehole drilling and soil sampling event can be reconstructed later for future reference. The field notes are to be recorded on the field forms or in a field book.

5.14 Additional Considerations for O. Reg. 153/04 Phase Two ESA Compliance

None. Following this SOP will be sufficient to comply with the Ontario Regulation 153/04 requirements for Phase Two Environmental Site Assessments.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>Health & Safety Training</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 REFERENCES

Canadian Standards Association, *Phase II Environmental Site Assessment, CSA Standard Z769-00 (R2008)*, dated 2000 and reaffirmed in 2008.

Association of Professional Geoscientists of Ontario, *Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended)*, April 2011.

9.0 APPENDICES

None.

I:\2018 SOP Updates\SOP - EDR006 - REV003 - Borehole Drilling.docx

Template: Master SOP Template - February 2014

SOP – EDR007 – REV004 – MONITORING WELL DESIGN AND CONSTRUCTION

Title:	Monitoring Well Design and Construction
Practice:	EDR
First Effective Date:	August 03, 2009
Version:	004
Version Date:	January 3, 2018
Author:	Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	Not won Their

TABLE OF CONTENTS

1.0		VERS	ION HISTORY	3
2.0			PE AND APPLICATION	
3.0		OVER	VIEW	3
4.0		DISTE	RIBUTION	4
5.0		PROC	CEDURE	4
5	.1	Gen	eral Considerations	4
	5.1	.1	Borehole and Well Diameters	4
	5.1	.2	Screen Length and Placement	4
	5.1	.3	Well Screen/Casing Materials	5
	5.1	.4	Well Screen Slot Size and Sand Pack	5
	5.1	.5	Bentonite Seal	5
	5.1	.6	Surface Completions	õ
5	.2	Well	Installation Procedures	õ
5	.3	Addi	itional Considerations for O. Reg. 153/04 Phase Two ESA Compliance	9
6.0		TRAIN	VING	9
7.0		MAIN	TENANCE OF SOP	9

8.0	REFERENCES	9
a n	APPENDICES	C

1.0 VERSION HISTORY

Version	Date	Summary of Changes	Author
Original	August 03, 2009	N/A	MEM
001	November 26, 2010	Update approval signatures	FG
002	November 15, 2013	Streamlined to cross reference AAPGO guidance document/Added section on O. Reg. 153/04 compliance	RLM
003	April 29, 2016	Updated Section 4.0/Added procedure for outer casing installation in Ontario	RLM
004	April 28, 2017	Remove reference to Pinchin West/Added note to Section 5.2 about placing a reference mark at the top of the well pipe/Added note to Section 5.3 that O.Reg.153/04 requires well screens to intersect the water table when assessing groundwater for petroleum hydrocarbon impacts during a Phase Two ESA	RLM
004	January 3, 2018	Reviewed and confirmed current	RLM

2.0 SCOPE AND APPLICATION

Monitoring wells are installed in overburden and bedrock to enable the collection of groundwater samples from water bearing formations at project sites. For some projects, monitoring wells are also used to monitor for combustible gases in the subsurface.

A monitoring well consists of two parts: the well screen and the well casing (also known as the well riser). The well screen allows groundwater to enter the well from the formation adjacent to the well so that it can be sampled. The well casing allows access to the well from the ground surface.

In Ontario, the regulatory requirements for monitoring well installation are provided in Ontario Regulation 903. All drilling contractors who install groundwater monitoring wells in Ontario must be licensed with the Ontario Ministry of the Environment and Climate Change (MOECC). In addition, for any well installed at a depth of greater than 3.0 metres below ground surface, a Water Well Record must be prepared by the drilling contractor and submitted to the MOECC and the well owner (typically our client).

The design and construction of soil vapour monitoring wells is beyond the scope of this SOP and is described in SOP-EDR018.

3.0 OVERVIEW

Not applicable.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 General Considerations

5.1.1 Borehole and Well Diameters

The borehole diameter must be sufficient in size to accommodate the well casing, sand pack and seal materials. In Ontario, the borehole diameter and annular space surrounding the monitoring well must meet the requirements of Ontario Regulation 903. Other provinces have similar requirements that must be considered. It is the Project Manager's responsibility to be aware of specific provincial requirements. Wherever possible, 2-inch (5.1. centimetre) interior diameter monitoring wells should be installed as they permit the use of most sampling and monitoring devices, and will generally provide greater water volume for sampling, especially in low permeability soils. Monitoring wells with interior diameters between 1-inch (2.5 centimetres) and 1.5-inches (3.8 centimetres) are also considered acceptable in some jurisdictions but the use of monitoring wells smaller than 1-inch (2.5 centimetres) is not permitted unless approved by the Project Manager.

5.1.2 Screen Length and Placement

Well screens typically range in length from 1.5 to 3.0 metres. Saturated well screen lengths beyond 1.8 metres, including sand pack, should be avoided in British Columbia, as per British Columbia Ministry of Environment Technical Guidance 8.

Wells screens must not straddle more than one hydrostratigraphic unit and should not be placed such that a preferential pathway for contaminant migration is created between two hydrostratigraphic units. In particular, a well screen must not straddle the overburden/bedrock interface, and the well screen, sand pack and seal must be situated entirely within either the overburden or the bedrock. An exception to this if the well is installed for assessing dense non-aqueous phase liquid (DNAPL), the penetration into the bedrock is minimal, and bedrock fractures are isolated from the sand pack. This type of well installation must only be completed under the guidance of staff with the appropriate geological expertise to ensure it is done correctly.

When determining the well screen length and depth of screen placement for a project, the following should be considered by the Project Manager:

- When assessing for the presence of light non-aqueous phase liquid (LNAPL) at the water table, longer well screens are preferred due to seasonal fluctuations in the water table and the well screen should intersect the water table whenever possible;
- When assessing for the presence of DNAPL, the well screen should be positioned at the bottom of the aquifer immediately above the aquitard;
- When assessing geochemical parameters, shorter well screens may be preferable to reduce the potential for mixing of water from distinct vertical geochemical zones;
- The use of long well screens within the saturated zone may result in the mixing of impacted and unimpacted groundwater from different depths within the aquifer, with the resulting dilution effect biasing the groundwater concentrations low; and
- Nested wells can be used to determine contaminant stratification within an aquifer or assess multiple aquifers, as long as the wells and individual aquifers are properly sealed off from each other within the borehole.

5.1.3 Well Screen/Casing Materials

Polyvinyl chloride (PVC) is the standard material used to construct groundwater monitoring wells. However, some organic compounds if present at excessive concentrations can degrade PVC, and stainless-steel or Teflon well materials may be considered for use by the Project Manager at such project sites.

A filter sock must not be placed over a well screen.

5.1.4 Well Screen Slot Size and Sand Pack

The slot size of the well screen will be determined by the size of the filter pack used. Pinchin typically uses No. 10 slot screen and #1 silica sand to form the sand pack around the well screen. When investigating a site with fine-grained soil, it may be appropriate to use a finer sand pack and smaller slot size to act as a "filter" to prevent as much fine-grained soil from entering the well as possible. The Project Manager should consult with the drilling contractor to determine the most appropriate screen slot size and sand pack size.

5.1.5 Bentonite Seal

The annular space above the sand pack in all wells is to be filled with bentonite. The purpose of placing the bentonite is create a seal above the sand pack that prevents a connection between other water bearing zones within the subsurface and/or water infiltration from the surface.

5.1.6 Surface Completions

A protective steel casing and lockable cap are to be installed at each well to protect the well and prevent tampering. Protective casings come in two varieties: aboveground casings (commonly known as monument casings) and flush-mount casings.

Aboveground casings have the advantage of having better visibility and can be located more easily, especially during winter, are less likely to need repair, and have fewer problems related to water intrusion and frost heave of the casing.

Flush-mount casings are usually the only available option for wells installed in areas of high vehicular or pedestrian traffic. Also, some clients prefer flush-mount casings for aesthetic reasons as they are less obtrusive.

When installing a well in a high vehicular traffic area such as a roadway, the flush-mount casing must have sufficient strength to avoid damage when run over by vehicles. Flush-mount casings with brass lids should not be installed in high vehicular traffic areas as they are easily damaged to the point where they can no longer be opened.

5.2 Well Installation Procedures

Note that Pinchin field staff are not trained, nor have the necessary licensing, to install monitoring wells. This task is to be performed by the drilling contractor in accordance with the applicable regulatory requirements (e.g., Ontario Regulation 903 in Ontario). Pinchin field staff will assist the drilling contractor by specifying the general design of the monitoring well but will not perform the actual installation. The primary role of Pinchin field staff during well installation is to document the installation (e.g., measuring and/or recording the well length, screen length, depth to top of sand pack, etc.) as outlined below.

The following presents the general procedure for the completion of overburden and bedrock monitoring well installations after the borehole has been advanced to the appropriate depth:

- 1. Assemble the well by threading sufficient lengths of screen and riser materials together, and placing a threaded cap or slip-on cap at the bottom of the well. Well materials are to be kept in their plastic sleeves until immediately prior to well installation, and are not to be placed on the ground unless the ground surface is covered by clean plastic sheeting. Well materials should not be stored near potentially contaminated materials (e.g., soil cuttings);
- 2. Dedicated, disposable nitrile gloves are to be worn by all personnel handling the well materials and are to be replaced if they become contaminated during well installation. Confirm the length of the well screen, well riser and total length of well. This is especially important if the screen and/or riser are trimmed to fit the borehole depth or desired

- screen interval. Record the length of the well screen, the length of the well casing, the total length of the well (including the bottom cap), the type of bottom cap used, and the interior diameter of the well screen/well casing in the field notes;
- 3. Prior to placing the assembled well into the borehole, measure the depth from ground surface to the bottom of the borehole and record this depth in the field notes;
- 4. When possible, place a minimum of 0.15 metres of filter pack into the bottom of the borehole to provide a firm base for the well. Note that the placement of such a filter pack base may not be appropriate when investigating a site where DNAPLs are suspected as the filter pack base may act as a DNAPL "sump" beneath the well and the DNAPL may go undetected when monitoring the well;
- 5. Place the assembled well into the open borehole or within the interior of the hollow stem augers. If trimming of the well casing is required, measure the length of the trimmed piece and record this information in the field notes. Before installing the sand pack, place a J-plug or slip cap on the top of the well to prevent sand and seal materials from entering the well when backfilling the annular space between the well and the borehole walls;
- Install the sand pack around the exterior of the well screen and extend it to between 0.3 and 0.6 metres above the top of the well screen. The sand pack should be installed slowly, and with a tremie pipe if possible, to minimize the potential for bridging of the sand pack. When installing a sand pack in a borehole that has been drilled with hollow stem augers, the sand pack should be installed in lifts of approximately 0.5 metres. After placement of each lift, the augers are withdrawn from the ground by approximately 0.5 metres and the process repeated until the sand pack is placed to the required depth.

 Measure the depth to the top of the sand pack and record this depth in the field notes;
- Install a bentonite seal comprised of granular and/or powdered bentonite above the sand pack to within approximately 0.6 metres of the ground surface. The bentonite should be installed slowly, and with a tremie pipe if possible, to minimize the potential for bridging of the seal. For the portion of the seal located above the water table, distilled water is to be poured into the borehole for each lift placed above the water table (approximately 0.3 to 0.6 metres per lift) to hydrate the seal. Approximately 1 to 2 litres of distilled water per lift is considered sufficient to hydrate the seal. Measure the depth to the top of the bentonite seal and record this depth in the field notes;
- 8. Record whether the seal was hydrated during installation and over which depth interval.

 Note that in some jurisdictions very long bentonite seals can be broken up with sand intervals. This reduces the potential for ground heaving due to bentonite shrinking and swelling but the sand intervals must not connect hydraulically separated aquifers;

- (Ontario only) If the well is to be installed with a flush-mount protective casing, an outer casing comprised of a short length (10 to 15 cm) of PVC riser, or PVC coupling, that is slightly larger in diameter than the well casing needs to be installed around the well casing into the top of the bentonite seal, with the gap between the two casings sealed with bentonite. The top of the outer casing needs to be flush with or slightly below the top of the well casing. For example, if a 2-inch diameter well is installed, then a 10 to 15 cm length of 3-inch or 4-inch diameter riser or coupling placed around the 2-inch diameter well casing will suffice provided that bentonite is placed between the two casings. The flush-mount protective casing is then installed around the two casings. The outer casing does not need to be capped, and we only need to cap the well casing with a J-plug or slip cap;
- 10. (Ontario only) If the well is to be installed with a stick up protected by a monument casing, the procedure for installing the outer casing is essentially the same, except that the outer casing will extend from 10 to 15 cm below ground to above the ground surface, preferably flush with or slightly below the top of the well casing if the design of the monument casing permits it;
- 11. Place a protective well casing (monument or flush-mount) around the well casing and cement it in place;
- Using a permanent marker, mark a point on the top of the well casing that will serve as a reference point for all future depth to water and elevation survey measurements.
 Measure the depth to groundwater in the well at the time of completion. Note the depth to water and time of measurement in the field notes;
- 13. Place a lockable J-plug on the well casing and ensure that the J-plug is tightened sufficiently to prevent surface water from infiltrating into the well if the well has a flush-mount completion. Place a lock on the J-plug for a flush-mount completion or on the lockable cap for an aboveground completion if required by the Project Manager. A PVC slip cap can also be used, especially for an aboveground completion;
- 14. Photograph the completed well installation. Close up photographs of the well are to be taken as well as more distant photographs that show the location of site landmarks relative to the well so that the photograph can be used to locate the well in the future; and
- 15. Using a measuring tape or measuring wheel, measure the distance between the well and a nearby landmark (e.g., corner of the nearest building) and provide a well location sketch in the field notes. Measurements are to be made at right angles relative to the orientation of the landmark or to a fixed axis (e.g., relative to true north). If required by the Project Manager, measure the UTM coordinates of the well with a hand-held GPS device.

5.3 Additional Considerations for O. Reg. 153/04 Phase Two ESA Compliance

Ontario Regulation 153/04 mandates that well screens <u>must not exceed 3.1 metres</u> in length. In addition, whenever the Phase Two ESA includes the assessment of petroleum hydrocarbon impacts in groundwater, the well screen in each well must intersect the water table.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>Health & Safety Training</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 REFERENCES

Association of Professional Geoscientists of Ontario, *Guidance for Environmental Site Assessments* under Ontario Regulation 153/04 (as amended), April 2011.

British Columbia Ministry of the Environment, *Technical Guidance 8: Groundwater Investigation and Characterization*, July 2010.

9.0 APPENDICES

None.

I:\2018 SOP Updates\SOP - EDR007 - REV004 - Monitoring Well Design and Construction.docx

Template: Master SOP Template - February 2014

SOP - EDR008 - REV005 - MONITORING WELL SAMPLING

Title:	Monitoring Well Sampling
Practice:	EDR
First Effective Date:	November 8, 2013
Version:	005
Version Date:	January 3, 2018
Author:	Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	Not worther

TABLE OF CONTENTS

1.0	VERS	SION HISTORY	3
2.0		PE AND APPLICATION	
3.0	OVER	RVIEW	3
4.0		RIBUTION	
5.0		CEDURE	
5.1		ipment and Supplies	
5.1	.1	Documents and Information Gathering	4
5.1		Well Purging and Sampling Equipment	
5.2		ging Procedures	
5.2		Purging of High Yield Wells	
5.2	2.2	Purging of Low Yield Wells	8
5.3	Wel	l Purging Record	9
5.4	San	nple Collection	9
5.4	l.1	General Considerations	9
5.4	1.2	Sampling of High and Low Yield Wells	10
5.5	Add	itional Considerations for O. Reg. 153/04 Phase Two ESA Compliance	
6.0			
J.U	IKAII	NING	12

7.0	MAINTENANCE OF SOP	12
8.0	REFERENCES	12
9.0	APPENDICES	13

1.0 VERSION HISTORY

Version	Date	Summary of Changes	Author
Original	November 08, 2013	N/A	RM
001	September 25, 2015	Incorporated procedures specific to Pinchin West into SOP	RM
002	February 9, 2016	Revised overall procedure to be consistent with well development SOP/Added reference to revised well development field forms	RM
003	April 29, 2016	Updated Section 4.0	RM
004	April 28, 2017	Removed reference to Pinchin West	RM
005	January 3, 2018	Changed "submersible" to "centrifugal" throughout	RM

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) describes the standard procedures for groundwater monitoring well purging and sampling, and provides a description of the equipment required and field methods.

Note that this SOP pertains to monitoring well sampling using the "well volume" purging procedure. Groundwater monitoring well purging and sampling using low flow procedures is described in SOP-EDR023.

3.0 OVERVIEW

Groundwater sampling involves two main steps: well purging followed by sample collection. All groundwater monitoring wells must be purged prior to groundwater sampling to remove groundwater that may have been chemically altered while residing in the well so that groundwater samples representative of actual groundwater quality within the formation intersected by the well screen can be obtained.

Monitoring well sampling should not be completed until at least 24 hours have elapsed following monitoring well development to allow subsurface conditions to equilibrate. Any deviation from this procedure must be discussed with the Project Manager before proceeding.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 Equipment and Supplies

5.1.1 Documents and Information Gathering

- A copy of the proposal or work plan;
- Monitoring well construction details (borehole logs, well construction summary table from a previous report or well installation field notes);
- A copy of this SOP;
- A site-specific Health and Safety Plan (as per the project requirements); and
- Client or site representative's contact details.

5.1.2 Well Purging and Sampling Equipment

- Inertial pump (e.g., Waterra tubing and foot valve) (Optional depending on jurisdiction);
- Peristaltic pump (Optional depending on the parameters being sampled);
- Centrifugal or bladder pump (Optional depending on jurisdiction and well depth);
- Disposable bailer (Optional);
- Graduated pail (to contain purge water and permit the volume of groundwater purged to be tracked);
- Pails or drums for purge water storage prior to disposal;
- Well keys (if wells are locked);
- Tools to open monitoring well (T-bar, socket set, Allen keys, etc.);
- Interface probe;
- Equipment cleaning supplies (see SOP-EDR009);
- Disposable latex or nitrile gloves; and
- Field forms.

5.2 Purging Procedures

The well purging procedure employed will be determined by the hydraulic conductivity of the formation in which the groundwater monitoring well is installed. For this SOP, a high yield well is defined as a well that cannot be purged to dryness when pumping continuously at a rate of up to 2 litres per minute (L/min) and a low yield well is defined as a well that can be purged to dryness when pumping continuously at a rate of 2 L/min or less. This threshold represents a "normal" pumping rate when hand pumping with an inertial pump.

5.2.1 Purging of High Yield Wells

The procedure for purging a high yield monitoring well is as follows:

- Decontaminate all non-dedicated monitoring and sampling equipment that will be used, including the interface probe and centrifugal or bladder pump (if used), in accordance with the procedures described in SOP-EDR009;
- 2. Review the well construction details provided in the borehole logs, previous field notes or well construction summary table from a previous report. Determine the well depth, well stick up, screen length, depth to top of sand pack and diameter of the borehole annulus. If the well depth is unavailable, measure it with the interface probe;
- 3. Measure the initial water level (i.e., static water level) from the reference point on the well (which should be marked at the top of the well pipe) with an interface probe. If measurable free-phase product is present on the water table, record the depth to the top of the free-phase product and the depth to the free-phase product/water boundary (i.e., water level), and discuss this with the Project Manager before proceeding further;
- 4. Calculate the well volume. Note that for the purpose of this SOP, there are two definitions of well volume depending on the province in which the project is being conducted. For Ontario and Manitoba, the well volume is defined as the volume of water within the wetted length of the well pipe (well pipe volume) plus the volume of water within the wetted length of the sand pack (sand pack volume). For British Columbia, Alberta and Saskatchewan, the well volume is defined as the volume of water within the wetted length of the well pipe (well pipe volume) only.

The volume of water in the well pipe is calculated as follows:

Well Pipe Volume (litres) = $h_w x \pi r_w^2 x 1,000$ litres per cubic metre (L/m³)

Where $\pi = 3.14$

 h_w = the height of the water column in the monitoring well in metres (wetted length)

 r_{w} = the radius of the monitoring well in metres (i.e., half the interior diameter of the well)

The volume of the sand pack in the monitoring well is calculated as follows:

Sand Pack Volume (litres) = $h_W \times [(0.3 \text{ m r}_b^2 \times 1,000 \text{ L/m}^3) - (0.3 \text{ m r}_w^2 \times 1,000 \text{ L/m}^3)]$

Where 0.3 = the assumed porosity of the sand pack

h_w = the height of the water column in the monitoring well in metres (wetted length)

 $\pi = 3.14$

r_b = the radius of the borehole annulus in metres

rw = the radius of the monitoring well in metres

For Ontario and Manitoba projects, the following table provides well volumes in litres/metre for typical well installations:

Borehole Annulus Diameter	Well Interior Diameter	Well Pipe Volume	Well Volume
(Inches/Metres)	(Inches)	(Litres/Metre)*	(Litres/Metre)*
4/0.1	1.25	0.8	2.9
	1.5	1.1	3.2
	2	2.0	3.8
6/0.15	1.25	0.8	5.9
	1,5	1.1	6.1
	2	2.0	6.7
8.25/0.21	1.5	1.1	11.2
	2	2.0	11.8
10.25/0.26	1.5	1.1	16.7
	2	2.0	17.3

^{*} Litres to be removed per metre of standing water in the well (wetted length).

If the borehole annulus and well interior diameters match one of those listed above, to determine the volume of one well volume simply multiply the number in the last column of the table by the wetted length in the well. For example, if a 2-inch diameter well installed in a 8.25-inch diameter borehole has 2.2 metres of standing water, one well volume equals 26.0 litres (2.2 metres x 11.8 litres/metre).

Note that the above well volume calculations apply only to wells where the water level in the well is below the top of the sand pack. If the water level is above the top of the sand pack, then the well volume is the volume of water in the sand pack and well pipe within the sand pack interval, plus the volume of water in the well pipe (i.e., well pipe volume) above the top of the sand pack. For example, assume a 2-inch diameter well has been installed in a 8.25-inch diameter borehole to a depth of 6.0 metres below ground surface (mbgs), with a 3.05 metre long screen. The sand pack extends from 6.0 mbgs to 2.5 mbgs and the water level is at 1.85 mbgs. One well volume equals ([6.0 metres – 2.5 metres] x 11.8 litres/metre) + ([2.5 metres – 1.85 metres] x 2.0 litres/metre) or 42.6 litres.

For British Columbia, Alberta and Saskatchewan projects, the well volume is calculated using the conversion factor listed in the third column of the above table. For example, if there are 2.5 metres of standing water in a 1.5-inch diameter well, one well volume equals 2.75 litres (2.5 metres x 1.1 litres/metre);

- 5. Lower the pump intake into the well until it is approximately 0.3 metres above the bottom of the well. Remove half a well volume while pumping at a rate of approximately 1 to 2 L/min. Record the approximate purge volume, pump intake depth and pertinent visual/olfactory observations (e.g., sheen, odour, free-phase product, sediment content, clarity, colour, etc.);
- 6. Move the pump intake upward to the middle of the water column (or middle of the screened interval if the water level in the well is above the top of the screen). Remove half a well volume (for a cumulative total of 1 well volume) while pumping at a rate of approximately 1 to 2 L/min. Record the approximate purge volume, pump intake depth and any pertinent visual/olfactory observations;
- 7. Move the pump intake upward to near the top of the screened interval (or near the top of the water column if the water level is currently below the top of the screen). Remove half a well volume (for a cumulative total of 1.5 well volumes) while pumping at a rate of approximately 1 to 2 L/min. Record the approximate purge volume, pump intake depth and any pertinent visual/olfactory observations.
 - Note that if the wetted length is short within a well (e.g., 1.5 metres or less), there will not be enough separation between pump intake depths to warrant pumping from three depths (i.e., near the bottom, middle and top of the water column). In this case, pumping from two depths (i.e., near the bottom and top of the water column) is sufficient;
- 8. Repeat steps 5 through 7 until a minimum of 3 well volumes in total have been removed. If the purge water contains high sediment content after the removal of 3 well volumes, well purging should continue by removing additional well volumes until the sediment content visibly decreases. If the purge water continues to have high sediment content after the removal of 2 additional well volumes (i.e., 5 well volumes in total), contact the Project Manager to discuss whether well purging should continue; and

Proceed with groundwater sample collection (see below).

Note that the use of a bailer to purge a high yield well with a wetted interval greater than 2 metres is not recommended given that the depth from which groundwater is removed is difficult to control.

5.2.2 Purging of Low Yield Wells

The procedure for purging a low yield monitoring well is as follows:

- Decontaminate all non-dedicated monitoring and sampling equipment that will be used, including the interface probe and centrifugal or bladder pump (if used), in accordance with the procedures described in SOP-EDR009;
- 2. Review the well construction details provided in the borehole logs, previous field notes or well construction summary table from a previous report. Determine the well depth, well stick up, screen length, depth to top of sand pack and diameter of the borehole annulus. If the well depth is unavailable, measure it with the interface probe;
- 3. Measure the initial water level (i.e., static water level) from the reference point on the well (which should be marked at the top of the well pipe) with an interface probe. If measurable free-phase product is present on the water table, record the depth to the top of the free-phase product and the depth to the free-phase product/water boundary (i.e., water level), and discuss this with the Project Manager before proceeding further;
- 4. Position the pump intake at the bottom of the well. Purge the well to dryness at a rate of between approximately 1 and 2 litres L/min. At the conclusion of purging, drain the pump tubing if possible. Record the approximate purge volume;
- 5. After allowing sufficient time for the well to recover, proceed with sample collection (see below). Note that wherever possible, the well should be allowed to recover to at least 90% recovery before proceeding with sample collection. However, if recovery to this level requires more than one hour to complete, it is better to sample the well as soon as it recovers sufficiently to permit sampling, especially if samples are being collected for volatile parameters such as volatile organic compounds (VOCs) and petroleum hydrocarbons (PHCs) (F1); and
- Record the water levels, time of water level measurements and well status (e.g., well recovery incomplete, 90% recovery target met) on the field form to document the well recovery. Purging of wells at the end of a day and returning to the site the following day to collect samples is not permitted unless the well recovery is so poor that this amount of time is needed for there to be sufficient recovery to permit sample collection.

Note that bailers can be used in lieu of a pump to purge a low yield well provided that the well yield is low enough to permit the draining of all of the groundwater in the well with the bailer.

5.3 Well Purging Record

Well purging prior to sampling is to be documented through the completion in full of the following field forms located in the Pinchin Orchard:

- EDR-GW-Well Sampling-Low Yield Well; or
- EDR-GW-Well Sampling-High Yield Well.

Any deviations from this SOP along with the rationale for these deviations must be recorded on the forms.

5.4 Sample Collection

5.4.1 General Considerations

Inertial pumps are generally suitable for all sample collection for due diligence projects. However, the motion of the inertial pump in the water column of a well, even when pumping at a low rate, can create turbulence in the well that can suspend sediment already in the well or draw it in from the formation. Sediment captured in a sample can often result in positive bias to the analytical results, especially for the parameters PHCs (F3 and F4) and polycyclic aromatic hydrocarbons (PAHs), resulting in "false positives" that are not representative of actual groundwater quality. Sampling for these parameters following low flow purging and sampling procedures (SOP-EDR023) is an acceptable option to minimize potential sediment bias but because it is more expensive and time consuming than "conventional" sampling, it is typically not completed for due diligence projects. In lieu of low flow purging and sampling, a peristaltic pump, centrifugal pump or bladder pump is to be used as a "grab sampler" when sampling for PHCs (F2-F4) and PAHs.

In Ontario and Manitoba, or where otherwise prohibited by provincial guidance documents, peristaltic pumps <u>must not</u> be used to collect samples for analysis of volatile parameters, namely VOCs and PHCs (F1). As such, if the suite of parameters to be sampled at a given well includes VOCs and/or PHCs (F1), a "hybrid" sampling procedure is to be followed, in which samples for VOCs, PHCs (F1), PCBs and/or metals analysis are to be collected using an inertial pump and samples for PHCs (F2-F4) and PAHs analysis are to be collected using a peristaltic pump. Alternatively, the entire suite of parameters can be collected using a centrifugal or bladder pump.

The following table summarizes the pump types, parameters that can be sampled using each pump and how the well volume is determined for each province:

Jurisdiction	Pump Type	Parameters Well Volume		
ВС	Inertial Pump	All Parameters	Well Pipe Volume	
	Peristaltic Pump	All Parameters	Well Pipe Volume	

Jurisdiction	Pump Type	Parameters	Well Volume
Alberta/Saskatchewan	Inertial Pump	All Parameters Except PHCs (F2) and PAHs	Well Pipe Volume
	Peristaltic Pump	PHCs (F2) and PAHs	Well Pipe Volume
Manitoba/Ontario	Inertial Pump	All Parameters Except PHCs (F2-F4) and PAHs	Well Pipe Volume + Casing Volume
	Peristaltic Pump	PHCs (F2-F4) and PAHs	
All Provinces	Centrifugal Pump	All Parameters	As Per Above
All Provinces	Bladder Pump	All Parameters	As Per Above

Bailers should not be used for sample collection unless there is no other option (e.g., when there is minimal groundwater in a well). They can be used as a substitute for an inertial pump but may bias concentrations of volatile parameters low and concentrations of PHCs (F2-F4) and PAHs high. The use of a bailer for groundwater sample collection must be approved by the Project Manager.

There is a common misconception that using a peristaltic pump, centrifugal pump or bladder pump and sampling at a low pumping rate is "low flow sampling". Sampling in this manner is essentially "grab sampling" using a device other than an inertial pump and is not "low flow sampling". Only if groundwater sampling was completed in accordance with SOP-EDR023 can the sampling be referred to as "low flow sampling".

5.4.2 Sampling of High and Low Yield Wells

The procedure for collecting groundwater samples from a high or low yield monitoring well is as follows:

- Label the sample containers with the sample identifier, project number and date and time
 of sample collection. The sample containers for each well are be filled in the following
 order:
 - Volatiles parameters (e.g., VOCs, PHCs (F1));
 - Semi-volatile parameters (e.g., PHCs (F2-F4), PAHs); and
 - Non-volatile parameters (e.g., inorganic parameters, metals).

There is an exception to the above sample collection order when using the "hybrid" sampling method. In this case, the semi-volatile parameters (PHCs (F2-F4) and/or PAHs) are to be sampled first using the peristaltic pump, centrifugal pump or bladder

pump, followed by sampling volatile parameters and then non-volatile parameters using the inertial pump;

- 2. Position the pump intake at the approximate middle of the screened interval (or middle of the water column if the water level is below the top of the screen). At the discretion of the Project Manager, the pump intake may be positioned near the top of the water column if light non-aqueous phase liquids (LNAPLs) are being investigated (e.g., gasoline, fuel oil) and at the bottom of the well when dense non-aqueous phase liquids (DNAPLs) (e.g., chlorinated solvents) are being investigated. For a low yield well when the tubing was (or could) not be drained at the conclusion of purging, or when a high yield well is not sampled immediately after purging, pump sufficient water from the tubing before initiating sample collection at a rate of approximately 0.5 L/min to remove any water that was left over in the tubing following purging;
- 3. When sampling for volatile parameters (i.e., VOCs and PHCs (F1)), pump at a rate of approximately 0.5 L/min. When using an inertial pump, hold the pump vertical while pumping to minimize agitation and possible contaminant volatilization. During volatile parameter sampling, the tubing of the inertial pump must not contain air bubbles. If air bubbles are present, continue pumping until there are no air bubbles in the tubing. Once the tubing is full and free of air bubbles, carefully pour the groundwater from the tubing into the sample vials until they are filled to be headspace-free. When using a peristaltic pump (BC only), centrifugal pump or bladder pump for volatile parameter sampling, the samples can be collected by pumping directly into the sample containers until they are headspace-free. Once filled and capped, check each vial for air bubbles by turning it upside down. If bubbles are present in a vial, reopen it and add additional groundwater until there are no remaining bubbles;
- 4. When sampling for semi-volatile parameters, pump at a rate of between 0.5 and 1 L/min. The samples can be collected by pumping directly into the sample containers;
- 5. When sampling for non-volatile parameters, pump at a rate of between 0.5 and 1 L/min. The samples can be collected by pumping directly into the sample containers;
- 6. Samples collected for dissolved metals analysis are to be filtered in the field using dedicated, disposable 0.45 micron in-line filters or marked to be filtered by the laboratory, except for samples collected in Ontario for methyl mercury analysis which are not to be filtered. Field filtering must occur before samples for metals analysis are preserved. Prior to filling the first sample container using a new filter, the filter is to be "primed" by flushing a volume of water equal to twice the capacity of the filter through the filter. Samples for other parameters are not to be filtered in the field. In situations where field filtering cannot be completed, such as when sampling with a bailer, samples for metals analysis

are to be collected in sample containers without preservatives and the analytical laboratory is to be instructed on the Chain-of-Custody to filter and preserve the samples upon receipt;

- 7. When collecting samples in containers that are pre-charged with preservatives, care must be taken not to overfill the containers as some of the preservative may be lost which will result in the sample not being properly preserved. Also, sample containers for metals analysis typically have a fill line marked on the container and the container must not be filled to above this line as this will cause dilution of the preservative and the sample may not be properly preserved;
- 8. Record the parameters sampled for, the purging and sampling equipment used, whether samples for metals analysis were field filtered, and the time and date of sample collection in the field forms; and
- 9. Immediately following collection, place each sample container in a cooler containing ice bags or ice packs.

5.5 Additional Considerations for O. Reg. 153/04 Phase Two ESA Compliance

Groundwater sampling conducted for a Phase Two ESA completed in accordance Ontario Regulation 153/04 must be completed when well yields permit using the low flow purging and sampling methods provided in SOP-EDR023 unless authorized by the Qualified Person responsible for the Phase Two ESA.

6.0 TRAINING

The Practice Leader is responsible for identifying the initial training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>Health & Safety Training</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 REFERENCES

Association of Professional Geoscientists of Ontario, "Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended)", April 2011.

9.0 APPENDICES

None.

I:\2018 SOP Updates\SOP - EDR008 - REV005 - Monitoring Well Sampling.docx

Template: Master SOP Template – February 2014

SOP – EDR009 – REV004 – FIELD DECONTAMINATION OF NON-DEDICATED MONITORING AND SAMPLING EQUIPMENT

Title:	Field Decontamination of Non-Dedicated Monitoring and Sampling Equipment			
Practice:	EDR			
First Effective Date:	August 03, 2009			
Version:	004			
Version Date:	January 3, 2018			
Author:	Robert MacKenzie			
Authorized by:	Robert MacKenzie			
Signature:	Not w-76"			

TABLE OF CONTENTS

1.0	VERSION HISTORY	3
2.0	SCOPE AND APPLICATION	3
3.0	OVERVIEW	3
4.0	DISTRIBUTION	4
5.0	PROCEDURE	4
5.1	Equipment and Supplies	4
5.2	Procedure	5
5.2	2.1 General Procedures and Considerations	5
5.2	Decontamination of Manually Operated Monitoring/Sampling Equipment	6
5.2	2.3 Decontamination of Groundwater Sampling Pumps	7
5.2	2.4 Decontamination of Downhole Drilling Equipment	8
5.3	Decontamination Records	8
5.4	Additional Considerations for Ontario Regluation 153/04 Phase Two ESA Compliance	8
6.0	TRAINING	9
7.0	MAINTENANCE OF SOP	9

Page 1

© 2018 Pinchin Ltd.

8.0	REFERENCES	9
9.0	APPENDICES	9

1.0 VERSION HISTORY

Version	Date	Summary of Changes	Author
Original	August 02, 2009	N/A	MEM
001	November 26, 2010	Updated Approval Signature/Added reference to Ontario Regulation 511/09	FG
002	September 20, 2013	Revised majority of text to reflect current practices/Focused on equipment cleaning and removed reference to personnel decontamination/Added section on O. Reg. 153/04 requirements/Revised reference list	RLM
003	April 29, 2016	Updated Section 4.0/Removed methanol as optional cleaning reagent	RLM
004	April 28, 2017	Removed reference to Pinchin West/In Section 5.2.2, modified requirements for cleaning water level tapes and interface probes/In Section 5.2.3, modified requirements for cleaning electrical or retrieval cables for pumps	RLM
004	January 3, 2018	Reviewed and confirmed current	RLM

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) presents the general requirements for field decontamination of non-dedicated equipment used for monitoring of environmental media and the collection of environmental samples (i.e., equipment that is re-used between monitoring and sampling locations). Note that the procedures described in this SOP also apply to pumps used for well development.

3.0 **OVERVIEW**

The main purpose of non-dedicated monitoring and sampling equipment decontamination is to minimize the potential for cross-contamination during monitoring/sampling activities completed for site investigations. Cross-contamination can occur when equipment used to monitor/sample contaminated soil, groundwater or sediment is reused at another monitoring/sampling location without cleaning. This can result in the transfer of contaminants from a "dirty" monitoring/sampling location to a "clean" monitoring/sampling location, causing possible positive bias of subsequent samples. Positive sample bias can result in reported analytical results that are not representative of actual site conditions and, if significant cross-contamination occurs, can result in reported exceedances of the applicable regulatory standards for samples that would have met the standards had cross-contamination not occurred.

Site investigations completed by Pinchin typically use the following non-dedicated monitoring/sampling equipment:

- Manually operated equipment (e.g., water level tapes/interface probes using during groundwater monitoring and sampling, knifes/spatulas used for soil sampling, hand augers);
- Pumps for groundwater monitoring well development, purging and/or sampling (e.g., bladder pumps, submersible pumps); and
- Downhole drilling/sampling equipment (e.g., split-spoon samplers, augers).

The above list is not all inclusive and other non-dedicated monitoring/sampling equipment may be employed during a site investigation that requires decontamination. For example, it may be appropriate to decontaminate the bucket of a backhoe used for test pitting between test pit locations. The Project Manager will be responsible for identifying the additional monitoring/sampling equipment that requires decontamination and instructing field staff regarding the procedure to be followed for cleaning this equipment.

When conducting field monitoring and sampling work in the field, it is not always possible to judge whether a monitoring/sampling location is uncontaminated. Because of this, it is important that all non-dedicated monitoring/sampling equipment be properly cleaned before initial use and between uses to minimize the potential for cross-contamination to occur.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 Equipment and Supplies

The following is a list of equipment needed to perform the decontamination of non-dedicated monitoring and sampling equipment in accordance with this SOP:

- Personal Protective Equipment (PPE);
- Potable tap water;
- Distilled water (store bought);

MEMBER OF

THE PINCHIN GROUP

- Volatile organic compound (VOC)-free deionized distilled water (supplied by the analytical laboratory);
- Laboratory grade, phosphate-free soap;
- Wash buckets (minimum of three);
- Scrub brushes;
- Paper towels; and
- Buckets or drums with resealable lids for containing liquids generated by equipment cleaning.

Other equipment required to clean drilling equipment (e.g., steam cleaner, power washer, tub for containing wash water, etc.) is typically provided by the drilling subcontractor. The Project Manager is responsible for ensuring that the drilling subcontractor brings the required cleaning equipment to the project site. Prior to mobilization, the Project Manager should also assess the availability of a potable water supply for drilling equipment cleaning at the project site. When no accessible potable water supply is available at a project site, the drilling subcontractor will need to bring a potable water supply to the site in the drill rig water supply tank or separate support vehicle, or arrange to have a third-party supplier deliver potable water to the site.

5.2 Procedure

5.2.1 General Procedures and Considerations

The following general procedures and considerations apply to all decontamination of non-dedicated monitoring/sampling equipment activities:

- Personnel will dress in suitable PPE to reduce personal exposure during equipment decontamination activities;
- In addition to cleaning between monitoring/sampling locations, all non-dedicated monitoring/sampling equipment must be cleaned before initial use. Field staff should not assume that the equipment was properly cleaned by the last person to use it;
- Prior to starting a drilling program, the downhole drilling equipment (e.g., augers) must be inspected and any "dirty" equipment must not be used in the drilling program or it must be cleaned prior to use; and
- All liquids and solids generated by the cleaning of non-dedicated monitoring/sampling equipment are to be containerized and managed in accordance with the procedures outlined in SOP-EDR020 – Investigation Derived Wastes.

5.2.2 Decontamination of Manually Operated Monitoring/Sampling Equipment

The procedure for decontaminating manually operated monitoring/sampling equipment is as follows:

- Wash the equipment in a bucket filled with a mixture of phosphate-free soap/potable water, while using a brush to remove any obvious contamination and/or adhered soil;
- Rinse the equipment thoroughly in a bucket filled with potable water;
- Rinse the equipment thoroughly using a spray bottle filled with distilled water, capturing the rinsate in a bucket; and
- Allow the equipment to air dry. If there is insufficient time to allow the equipment to air dry before reusing, or the equipment cleaning is occurring during winter conditions, the equipment should be dried after the final rinse with a clean paper towel.

At the discretion of the Project Manager, it may be acceptable to use spray bottles, rather than buckets, for lightly contaminated equipment or if no obvious contaminants are present.

Should soil or obvious contaminants remain on the equipment after cleaning, the above procedure must be repeated until the soil or contaminants have been removed. The equipment should not be reused if repeated cleanings do not remove the soil or contaminants.

The above equipment cleaning procedure applies to, but is not limited to, the following non-dedicated monitoring/sampling equipment:

- Knives/spatulas used for soil sampling;
- Hand augers;
- Water level tapes and interface probes (both the end probe and portion of the tape that entered the well);
- The exterior of submersible pumps and interior/exterior of bladder pumps (including the portion of the electrical or retrieval cables that contact groundwater in a well); and
- Various pieces of drilling equipment, including split-spoon samplers, hollow stem auger centre plugs, continuous sampling tubes, and the reusable portions of dual-tube samplers.

At the discretion of the Project Manager, the distilled water used for the final equipment rinse will be VOC-free deionized distilled water supplied by the analytical laboratory. For example, the use of VOC-free distilled water would be appropriate for a project where trace VOCs are being investigated and it is important to minimize the potential for cross-contamination and positive bias of VOC sample results.

For tapes associated with water level tapes and interface probes, if they were submerged in a monitoring well water free of non-aqueous phase liquids or obvious contamination, the tape can be cleaned at the discretion of the Project Manager by pulling the tape through a towel dampened with phosphate-free soap/potable water as the tape is retrieved. The end probe should then be cleaned as described above.

5.2.3 Decontamination of Groundwater Sampling Pumps

The exterior of each bladder or submersible pump that is used for well development, well purging and/or groundwater sampling, and the portion of any electrical or retrieval cables that entered the well, are to be cleaned following the procedure described above for decontaminating manually operated monitoring/sampling equipment.

Submersible pumps are not designed to be disassembled in the field and cleaning of the interior of this type of pump requires flushing of cleaning solutions through the pump. After cleaning the exterior of the pump, the minimum decontamination requirement for a submersible pump is the flushing of a phosphate-free soap/potable water mixture contained in a bucket through the pump (i.e., pumping the mixture through the pump and capturing the pump outflow in the same bucket or a separate bucket), followed by flushing distilled water contained in a separate bucket through the pump and capturing the pump outflow in the same bucket or separate bucket. Note that store bought distilled water is acceptable for this purpose.

At the discretion of the Project Manager and depending on the requirements of the project, the final step in the process is a final flush with laboratory-supplied VOC-free distilled water.

The following summarizes the flushing sequence for decontaminating the interior of a submersible pump:

- Soap/water mixture*;
- Distilled water (store bought)*; and
- Distilled water (laboratory supplied VOC-free distilled water to be confirmed by the Project Manager).
- * Minimum requirement.

Bladder pumps are designed for disassembly in the field to facilitate the replacement of the bladders. The internal parts of a bladder pump are to be cleaned in accordance with the procedure described above for decontaminating manually operated monitoring/sampling equipment. Whenever possible, bladders are to be disposed of between well locations. However, if it is necessary to reuse a bladder, it must be cleaned in accordance with the procedure for cleaning manually operated monitoring/sampling equipment. It should be noted that bladders are difficult to clean and the decontamination procedure needs to be thorough.

Flushing of a bladder pump with distilled water after cleaning and reassembly is not required unless specified by the Project Manager.

5.2.4 Decontamination of Downhole Drilling Equipment

Hollow stem and solid stem augers used for borehole advancement are to be decontaminated by the drilling contractor using the following procedure:

- Wherever possible, all augers used for borehole drilling should be cleaned before initial
 use and between borehole locations by steam cleaning or power washing with potable
 water. However, the minimum requirements for auger cleaning are as follows:
 - Use a brush or shovel to remove excess soil from <u>all</u> used augers; and
 - Any augers that <u>may come into contact with groundwater</u> are to be decontaminated by steam cleaning or power washing with potable water. An auger must not be used for the balance of the drilling program if obvious contaminants or residual soil remain on the auger following decontamination, unless subsequent cleaning efforts remove these materials.

As noted previously, downhole drilling equipment used for soil sample retrieval (e.g., split-spoon samplers, continuous sampling tubes and the reusable portions of dual-tube samplers used with direct push rigs) and the hollow stem auger centre plug are to be decontaminated following the procedure outlined above for cleaning manually operated monitoring/sampling equipment.

5.3 Decontamination Records

Field personnel will be responsible for documenting the decontamination of non-dedicated monitoring/sampling equipment and drilling equipment in their field log book or field forms. The documentation should include the type of equipment cleaned and the frequency of cleaning, the methods and reagents used for equipment cleaning, and how fluids generated by the equipment cleaning were stored.

5.4 Additional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance

When completing a Phase Two Environmental Assessment (ESA) in accordance with Ontario Regulation 153/04, the following additional procedures must be undertaken:

All augers must have excess soil removed by a brush or shovel and be steam cleaned or
power washed before initial use and between borehole locations regardless of whether
they contact the groundwater or not (i.e., the minimum requirements listed above for
auger cleaning are not sufficient); and

January 3, 2018

• Thorough records of the frequency and cleaning materials used for the decontamination of non-dedicated monitoring/sampling equipment and downhole drilling equipment must be kept. The Quality Assurance/Quality Control section of the Phase Two ESA report requires a summary of what steps were taken to minimize the potential for cross-contamination during the Phase Two ESA. The handling and disposal of fluids generated by equipment decontamination must also be well documented in the field for inclusion in the Phase Two ESA report.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>Health & Safety Training</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 REFERENCES

Association of Professional Geoscientists of Ontario, *Guidance for Environmental Site Assessments* under Ontario Regulation 153/04 (as amended), April 2011.

9.0 APPENDICES

None.

I:\2018 SOP Updates\SOP - EDR009 - REV004 - Field Decontamination.docx

Template: Master SOP Template - February 2014

SOP - EDR013 - REV004 - SAMPLE HANDLING DOCUMENTATION

Title:	Sample Handling Documentation
Practice:	EDR
First Effective Date:	August 03, 2009
Version:	004
Version Date:	January 3, 2018
Author:	Mark McCormack and Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	no worther

TABLE OF CONTENTS

1.0	VERSION HISTORY	. 2
2.0	SCOPE AND APPLICATION	. 2
3.0	OVERVIEW	. 2
4.0	DISTRIBUTION	. 2
5.0	PROCEDURE	. 2
5.1	Equipment Required	. 2
5.2	Procedures	. 3
5.2	2.1 Sample Labelling	. 3
5.2	2.2 Sample Containers, Preservation and Holding Times	. 3
5.2	2.3 Sample Documentation	. 3
5.3	Additional Considerations for Ontario Regulation. 153/04 Phase Two ESA Compliance	. 6
6.0	TRAINING	. 6
7.0	MAINTENANCE OF SOP	. 6
8.0	REFERENCES	. 6
9.0	APPENDICES	6

1.0 VERSION HISTORY

Version	Date	Summary of Changes	Author
Original	August 03, 2009	N/A	MEM
001	November 26, 2010	Updated Approval Signature/Added reference to Ontario Regulation 511/09	FG
002	September 12, 2013	Updated text/Added tables from MOE lab protocol/Streamlined reference section/Added O. Reg. 153/04 compliance section	RLM
003	April 29, 2016	Updated Section 4.0/Aligned document retention with PEP	RLM
004	April 28, 2017	Removed reference to Pinchin West	RLM
004	January 3, 2018	Reviewed and confirmed current	RLM

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) presents the general requirements for sample handling and documentation practices.

3.0 OVERVIEW

Not applicable.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 Equipment Required

- Laboratory-supplied sample containers;
- Field log book or field forms; and
- Laboratory-supplied Chain-of-Custody forms.

MEMBER OF

THE PINCHIN GROUP

5.2 Procedures

5.2.1 Sample Labelling

Sample labels are to be filled out in the field at the time of sampling as completely as possible by field personnel. All sample labels shall be filled out using waterproof ink. At a minimum, each label shall contain the following information:

- Sample identifier, consisting of sample location (borehole number, monitoring well number, surface sample location, etc.) and sample number (if appropriate). For example, the second soil sample collected during borehole advancement at borehole BH3 would be labelled "BH3-2";
- Pinchin project number;
- Date and time of sample collection;
- Company name (i.e., Pinchin); and
- Type of analysis.

5.2.2 Sample Containers, Preservation and Holding Times

The sample containers, sample preservation and holding times for projects in Ontario are to be those specified in Table A (for soil and sediment) and Table B (groundwater) from the Ontario Ministry of the Environment Climate Change (MOECC, formerly the Ontario Ministry of the Environment) document entitled "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", dated March 9, 2004, amended as of July 1, 2011. These tables are attached and form part of this SOP.

With reference to the attached Tables A and B, field personnel must use the sample containers appropriate for the parameters being sampled for, undertake any required field preservation or filtration and observe the sample holding times.

Each province has its own preservation and holding time regulations or guidance, which are generally similar. It is the Project Manager's responsibility to ensure that field staff are aware of, and can meet, the requirements in the province they are working in.

5.2.3 Sample Documentation

The following sections describe documentation required in the field notes and on the Chain-of-Custody forms.

Field Notes

Documentation of observations and data from the field will provide information on sample collection and also provide a permanent record of field activities. The observations and data will be recorded using a pen with permanent ink in the field log book or on field forms.

The information in the field book or field forms will, at a minimum, include the following:

- Site name;
- Name of field personnel;
- Sample location (borehole number, monitoring well number, surface sample location, etc.);
- Sample number;
- Date and time of sample collection;
- Description of sample;
- Matrix sampled;
- Sample depth (if applicable);
- Method of field preservation (if applicable);
- Whether filtration was completed for water samples;
- Analysis requested;
- Field observations;
- Results of any field measurements (e.g., field screening measurements, depth to water, etc.); and
- Volumes purged (if applicable).

In addition to the above, other pertinent information is to be recorded in the field log book or field forms depending on the type of sampling being completed (e.g., field parameter measurements and pumping rates for low flow sampling) as required by the SOP for the particular sampling activity.

Sufficient information should be recorded to allow the sampling event to be reconstructed without relying on the sampler's memory.

All field notes are to be scanned and saved to the project folder on the server immediately upon returning from the field.

Sample Chain-of-Custody

Sample Chain-of-Custody maintains the traceability of the samples from the time they are collected until the analytical data are issued by the laboratory. Initial information concerning collection of the samples will be recorded in the field log book or field forms as described above. Information on the custody, transfer, handling and shipping of samples will be recorded on a Chain-of-Custody for each sample submission.

All signed Chain-of-Custody forms will be photocopied or duplicate copies retained prior to sample shipment. A Chain-of-Custody should be laboratory-specific and will typically be supplied by the laboratory with the sample containers requested for the project. The sampler will be responsible for fully filling out the Chain-of-Custody for each sample submission.

The Chain-of-Custody will be signed by the sampler when the sampler relinquishes the samples to anyone else (i.e., courier or laboratory). Until samples are picked up by the courier or delivered to the laboratory, they must be stored in a secure area. The following information needs to be provided on the Chain-of-Custody at a minimum:

- Company name;
- Name, address, phone number, fax number and e-mail address of the main contact for the submission (typically the Project Manager);
- Project information (project number, site address, quotation number, rush turnaround number, etc.);
- Regulatory standards or criteria applicable to the samples (including whether the samples are for regulated drinking water or whether the samples are for a Record of Site Condition);
- Sample identifiers;
- Date and time of sample collection;
- Matrix (e.g., soil, groundwater, sediment, etc.);
- Field preservation information (e.g., whether groundwater samples for metals analysis were field filtered);
- Analyses required;
- Number of sample containers per sample;
- Analytical turnaround required (i.e., standard or rush turnaround);
- Sampler's name and signature;
- Date and time that custody of the samples was transferred;

 Name and signature of person accepting custody of the samples from Pinchin, and date and time of custody transfer; and

Method of shipment (if applicable).

The person responsible for delivery of the samples to the laboratory or transfer to a courier will sign the Chain-of-Custody, retain a duplicate copy or photocopy of the Chain-of-Custody so it can be scanned and saved to the project file, document the method of shipment, and send the original copy of the Chain-of Custody with the samples.

5.3 Additional Considerations for Ontario Regulation. 153/04 Phase Two ESA Compliance

Custody seals must be placed on <u>all</u> coolers containing samples prior to transfer to a courier or delivery to the laboratory. The laboratory will comment on the presence/absence of custody seals in the Certificate-of-Analysis for each submission and this information must be discussed in the Quality Assurance/Quality Control section of the Phase Two Environmental Site Assessment report.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>Health & Safety Training</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 REFERENCES

Ontario Ministry of the Environment and Climate Change, *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act*, March 9, 2004, as amended as of July 1, 2011.

9.0 APPENDICES

Appendix I Tables A and B From Ontario MOECC Laboratory Protocol

I:\2018 SOP Updates\SOP - EDR013 - REV004 - Sample Handling Documentation.docx

Template: Master SOP Template - February 2014

TABLE A: SOIL AND SEDIMENT Sample Handling and Storage Requirements

SOIL Inorganic Parameters	Container ¹	Field Preservation	Storage Temp. ²	Preserved Holding Time ³	Unpreserved Holding Time ³
Chloride, electrical conductivity	glass, HDPE or PET	none	5 ± 3 °C		30 days as received (without lab drying); indefinite when dried at the lab
Cyanide (CN ⁻)	glass wide-mouth jar, Teflon™ lined lid	protect from light	5 ± 3 °C		14 days
Fraction organic carbon (FOC)	glass jar, Teflon™ lined lid	none	5 ± 3 °C		28 days as received(without lab drying); indefinite storage time when dried
Hexavalent chromium	glass, HDPE	none	5 ± 3 °C		30 days as received
Metals (includes hydride-forming metals, SAR, HWS boron, calcium, magnesium, sodium)	glass, HDPE	none	5 ± 3 °C		180 days as received (without lab drying); indefinite when dried at the lab
Mercury, methyl mercury	glass, HDPE or PET	none	5 ± 3 °C		28 days
рН	glass, HDPE or PET	none	5 ± 3 °C		30 days as received
SOIL Organic Parameters	Container 1,5,6,7,20	Field Preservation	Storage Temp. ²	Preserved Holding Time ³	Unpreserved Holding Time ³
BTEX ⁸ , PHCs (F1) ⁸ , THMs, VOCs ⁷ NB: SEE FOOTNOTE #20	40–60 mL glass vial (charged with methanol preservative, preweighed) AND glass jar (for moisture content) [hermetic samplers are an acceptable alternative 5, 18]	methanol (aqueous NaHSO ₄ is an acceptable alternative for bromomethane) ^{6, 7, 18,20}	5 ± 3 °C	14 days	hermetic samples: stabilize with methanol preservative within 48 hours of sampling ¹⁸
1,4-Dioxane ^{9, 15}	when processed as a VOC sampl when processed as an extractable (consult labora	e: same as per ABNs below;	5 ± 3 °C	14 days	when processed as a VOC sample: same as per VOCs above; when processed as an extractable: same as per ABNs below; (consult laboratory) ¹⁸
PHCs (F2–F4)	glass wide-mouth jar, Teflon™ lined lid	none	5 ± 3 °C		14 days
ABNs, CPs, OCs, PAHs	glass wide-mouth jar, Teflon™ lined lid	none	5 ± 3 °C		60 days
Dioxins and furans, PCBs	glass wide-mouth jar Teflon™ lined lid	none	5 ± 3 °C		indefinite storage time

HDPE = high density polyethylene; PET = polyethylene terephthalate; HWS = hot water soluble boron; THM = trihalomethanes; VOC = volatile organic compounds; BTEX = benzene, toluene, ethylbenzene, xylenes; PHCs = petroleum hydrocarbons; CPs = chlorophenols; PCBs = polychlorinated biphenyls; OCs = organochlorine pesticides

^{1–20}footnotes immediately follow Table B

TABLE B: GROUND WATER Sample Handling and Storage Requirement

GROUND WATER Inorganic Parameters	Container ¹⁰	Field Preservation	Storage Temperature ²	Preserved Holding Time ³	Unpreserved Holding Time ³
Chloride, electrical conductivity, pH	HDPE or glass	HDPE or glass none			28 days
Cyanide (CN ⁻)	HDPE or glass	NaOH to a pH > 12	5 ± 3 °C	14 days	must be field preserved
Hexavalent chromium	HDPE or glass	field filter followed by buffer solution to a pH 9.3–9.7 ¹⁷	5 ± 3 °C	28 days ¹⁷	24 hours ¹⁷
Metals (includes hydride-forming metals, calcium, magnesium, sodium)	HDPE or Teflon™ ¹⁰	field filter followed by HNO_3 to $pH < 2^{11}$	room temperature when preserved	60 days	must be field preserved
Mercury	glass or Teflon ^{TM 10}	field filter followed by HCl to pH < 2 ¹¹	room temperature when preserved	28 days	must be field preserved
Methyl mercury	glass or Teflon™	DO NOT FILTER HCl or H ₂ SO ₄ to pH <2 ¹²	5 ± 3 °C	28 days	DO NOT FILTER must be field preserved ¹²
GROUND WATER Organic Parameters ^{10, 13, 14}	Container ^{10, 13, 14}	Field Preservation	Storage Temperature ²	Preserved Holding Time ³	Unpreserved Holding Time ³
BTEX, PHCs (F1),THMs, VOCs;	40–60 mL glass vials (minimum of 2) ¹⁴ (no headspace)	NaHSO ₄ or HCl to a pH < 2 ¹⁶	5 ± 3 °C	14 days	7 days
1,4-Dioxane ^{9, 15}	when processed as an extract	mple: same as per VOCs above; table: same as per ABNs below; aboratory) ^{9, 15}	5 ± 3 °C	14 days	14 days
PHCs (F2–F4)	1L amber glass bottle, Teflon™ lined lid	NaHSO ₄ or HCl to a pH < 2 ¹⁶	5 ± 3 °C	40 days	7 days
ABNs, CP, OCs, PAHs ¹⁹ , PCBs	1L amber glass bottle, Teflon™ lined lid	none	5 ± 3 °C		14 days
Dioxins and furans	1L amber glass bottle, Teflon™ lined lid	None	5 ± 3 °C		indefinite storage time

HDPE = high density polyethylene; THM = trihalomethanes; VOC = volatile organic compounds; BTEX = benzene, toluene, ethylbenzene, xylenes; PHCs = petroleum hydrocarbons; CPs = chlorophenols; PCBs = polychlorinated biphenyls; OCs = organochlorine pesticides

¹ One soil container is generally sufficient for inorganic analysis and another for extractable organics. A separate container is required for BTEX, THM, VOC and PHC (F1) moisture analysis.

² Storage temperature refers to storage at the laboratory. Samples should be cooled and transported as soon as possible after collection.

Holding time refers to the time delay between time of sample collection and time stabilization/analysis is initiated. For samples stabilized with methanol, the hold time for the recovered methanol extract is up to 40 days.

- ⁴ PET can not be used for samples requiring antimony analysis.
- As an alternative, the USEPA has investigated hermetic sample devices that take and seal a single core sample. The sample is submitted as is to the laboratory where it is extruded into an extracting solvent. Samples must be received at the laboratory within 48 hours of sampling. (Note that replicate samples are necessary for bisulphate and methanol extraction for all samples plus laboratory duplicates and spikes.) Consult the laboratory for the number of samples required.
- The USEPA has approved field preservation. Pre-weighed vials containing known weights of methanol preservative (or aqueous sodium bisulphate if used for bromomethane) are sent to the field. Sample cores (approximately 5 g) are extruded directly into the vial. The vials are sealed, and submitted directly to the laboratory. In practice, this technique requires great care to prevent losses of methanol due to leaking vials or through splashing. Consult the laboratory for the number of containers required.
- Methanol-preserved samples may elevate the detection limit for bromomethane (VOC); a separate bisulphate-preserved sample or hermetically sealed sample may be submitted at the time of sampling if bromomethane is a chemical of concern contact the laboratory to determine if a separate sample should be collected.
- For BTEX and PHC (F1) pre-charging the soil sampling container with methanol preservative is an accepted deviation from the CCME method.
- 1,4-Dioxane may be analyzed with the ABNs or VOCs; sample container requirements used for ABNs or VOCs are both acceptable. If 1,4-dioxane is to be analyzed with ABNs, follow the ABN sample container requirements; similarly if it is to be analyzed with VOCs, follow VOC sample container requirements. Consult the laboratory for the container type and the total number required (see also footnote #15).
- Samples containing visual sediment at the time of analysis should be documented and noted on the Certificate of Analysis or written report as results may be biased high due to the inclusion of sediment in the extraction.
- Field filter with 0.45μm immediately prior to adding preservative or filling pre-charged container.
- 12 Sample directly into a HCl or H₂SO₄ preserved container, or add acid to an unfiltered sample immediately after sample collection in the field.
- 13 Aqueous organic samples should be protected from light. If amber bottles are not available, glass should be wrapped in foil.
- 14 Separate containers are required for each organic water analysis. Consult the laboratory for required volumes. Chloride and electrical conductivity can be taken from the same container.
- For 1,4-dioxane in soil and sediment, no preservative is required if processed as an ABN, however. Methanol is an acceptable alternative if processed as a VOC. For 1,4-dioxane in groundwater, no preservative is required, however, NaHSO₄ or HCl are acceptable alternatives.
- 16 Preserved to reduce biodegradation, however effervescence/degassing may occur in some ground water samples. In this case, rinse preservative out three times with sample and submit to the laboratory as unpreserved.
- To achieve the 28-day holding time, use the ammonium sulfate buffer solution [i.e., (NH₄)₂SO₄/NH₄OH] or (NH₄)₂SO₄/NH₄OH/NaOH + NaOH] as specified in EPA Method 218.6 (revision 3.3, 1994) or Standard Methods 3500-Cr Chromium (2009). Using only NaOH without the ammonium sulfate buffer to adjust the pH would require analysis within 24 hours of sampling.
- Alternatively, to achieve a longer hold time, hermetic samples may be frozen within 48 hours of sampling as per ASTM method D6418 09; however, storage stability must be validated by the laboratory with no more than 10% losses.
- For benzo(a)pyrene in ground water samples filtration prior to analysis on a duplicate sample is permitted.
- For VOC, BTEX, F1 PHCs, 1,4 dioxane soil samples collected before July 1, 2011, the following sampling and handling requirements are also permitted.

SOIL Organic Parameters	Container	Preservative	Storage	Preserved	Unpreserved
			Temperature	Holding Time	Holding Time
VOC, BTEX, F1 PHCs, 1,4-dioxane*	glass jar, Teflon lined lid,	none	$5 \pm 3C$	See notations 1-3	Stabilize by extraction or freezing
	no headspace, separate	field preservation with		below	within 48 hrs of receipt at the
	container required	aqueous sodium			laboratory (7days from sampling).
	Hermetic samplers are an	bisulphate and methanol			Frozen or field preserved samples
	acceptable alternative	is an acceptable			must be extracted within 14 days
		alternative			of sampling.

*Special care must be used when sampling for VOC, BTEX and F1 in soil and sediment. Studies have shown that substantial losses can occur through volatilization and bacterial degradation. There are several allowable options for field collection of samples. Each is discussed below. Consult SW846, Method 5035A for additional detail. The laboratory is required to stabilize the sample on the day of receipt, either by extraction or freezing.

- 1. Collection in soil containers: To minimize volatilization losses, minimize sample handling and mixing during the process of filling the sample container. The bottle should be filled with headspace and voids minimized. Care is required to ensure that no soil remains on the threads of the jar, preventing a tight seal and allowing volatilization losses. To minimize losses through bacterial degradation, commence cooling of the samples immediately and transport the samples to the lab as soon as possible, ideally on the day of sampling. Samples must be received at the laboratory within 48 hours of sampling. Freezing can be used to extend the hold time to 14 days, however the practice is difficult to implement in the field and can cause sample breakage.
- 2. As an alternative, the USEPA has investigated hermetic sample devices that take and seal a single core sample. The sampler is submitted as is to the laboratory where it is extruded into the extracting solvent. Samples must be received at the laboratory within 48 hours of sampling. This technique minimizes volatilization losses and is worth consideration for critical sites. (Note that replicate samplers are necessary for bisulphate and methanol extraction for all samples plus lab duplicates and spikes). Consult the laboratory for the number of samplers required.
- The USEPA has also approved field preservation. Pre-weighed vials containing known weights of methanol and aqueous sodium bisulphate preservative are sent to the field. Sample cores (≈5 g) are extruded directly into the vial. The vials are sealed, and submitted directly to the laboratory. In practice, this technique requires great care to implement successfully. Losses due to leaking vials, through splashing and effervescence (aqueous bisulphate) can easily occur and make the sample unusable. Consult the laboratory for the number of containers required.

SOP – EDR016 – REV003 – FIELD MEASUREMENT OF WATER QUALITY PARAMETERS

Title:	Field Measurement of Water Quality Parameters
Practice:	EDR
First Effective Date:	November 24, 2010
Version:	003
Version Date:	January 3, 2018
Author:	Paresh Patel
Authorized by:	Robert MacKenzie
Signature:	Not worther

TABLE OF CONTENTS

1.0	VERSION HISTORY
2.0	SCOPE AND APPLICATION
3.0	OVERVIEW
4.0	DISTRIBUTION
5.0	PROCEDURE
5.1	Equipment and Reagents Required
5.2	Probe Measurement Accuracy
5.3	Probe Calibration
5.4	Single-Parameter Probes
5.4	.1 Temperature
5.4	.2 pH
5.4	Dissolved Oxygen
5.4	.4 ORP
5.4	Turbidity
5.4	Multi-Parameter Probe Use With A Flow-Through Cell
5.5	Additional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance
6.0	TRAINING

7.0	MAINTENANCE OF SOP	. 8
8.0	REFERENCES	. 8
9.0	APPENDICES	۶

1.0 VERSION HISTORY

Version	Date	Summary of Changes	Author
Original	November 24, 2010	N/A	PDP
001	October 31, 2013	Cross-referenced low flow sampling SOP/Added section on O. Reg. 153/04 compliance	RLM
002	April 29, 2016	Updated Section 4.0	RLM
003	April 28, 2017	Removed reference to Pinchin West	RLM
003	January 3, 2018	Reviewed and confirmed current	RLM

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) describes the standard procedures for measuring water quality parameters during water sampling, and covers the calibration and use of multi-parameter and single-parameter probes for monitoring in situ water quality parameters in streams, down hole in monitoring wells and in flow-through cells. Water quality parameters may include temperature, pH, dissolved oxygen (DO), oxidation reduction potential (ORP), conductivity and turbidity.

Measurements of water quality parameters are typically made for two main purposes: to provide information on water geochemistry to assist in designing in situ remediation programs and to assess whether representative formation groundwater is being sampled during low flow purging and sampling. They can also be used to assess whether well development is complete in certain situations (see SOP-EDR018).

3.0 **OVERVIEW**

Not applicable.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 Equipment and Reagents Required

- Single or multi-parameter probes for monitoring water quality parameters;
- Calibration solutions for calibrating the probes to the standard values;
- Field book or field forms;
- Distilled water;
- Beaker or bucket;
- Stirrer for DO measurement (optional); and
- Flow-through cell (optional).

5.2 Probe Measurement Accuracy

The probes utilized for measuring water quality parameters shall be capable of producing measurement accuracy greater or equal to the following specifications:

Temperature: ± 0.5 degrees Celsius (°C)

Conductivity: ± 1 microSiemens per centimetre (μ S/cm)

pH: ± 0.1 pH unit

Dissolved Oxygen: ±0.2 milligrams per litre (mg/L) up to20 mg/L

± 0.6 mg/L greater than 20 mg/L

Turbidity: ±1% up to 100 Nephelometric Turbidity Units (NTU)

±3% up to 100-400 NTU

±5% up to 400-3,000 NTU

ORP: ± 20 millivolts (mV)

5.3 Probe Calibration

Calibrate the water quality probes used for field parameter measurement in accordance with the manufacturer's specifications. Wherever possible, arrange for the equipment rental company to calibrate the water quality probes and provide a calibration sheet that contains information such as calibration date and calibration measurements for each parameter. If the water quality probes are used for more than one day, a calibration check must be performed using standard calibration solutions at the start of each day at a minimum. If the calibration check shows deviations from the standard values that exceed the ranges provided below, the probe(s) that exceed the ranges must be calibrated prior to further use:

pH ±0.1 pH units

Specific Conductance ±3%
Temperature ±3%

DO $\pm 10\%$ ORP $\pm 10 \text{ mV}$ Turbidity $\pm 10\%$

A calibration check should also be performed if the parameter measurements suggest that calibration drift has occurred. Document all calibration activities in the field notes, including date and time of calibration/calibration check, calibration solutions used, probe readings, and make, model and serial number of the instrument(s). Note that if the water quality probe manufacturer recommends more frequent calibration/calibration checks than specified above, the manufacturer's recommendations are to be followed.

Extra care must be taken to calibrate a multi-parameter probe to prevent cross-contamination. Specifically, following immersion of the probes into each calibration standard, all probes should be thoroughly rinsed in distilled water and the excess water shaken off or blotted dry with a lint-free wipe. Conductivity standards are much more sensitive to cross contamination/dilution than other standards, and prior to immersion in a conductivity standard, all probes should be thoroughly rinsed and completely dried with lint-free wipes. Besides being easily diluted, conductivity also affects other parameters (specifically DO), and the conductivity probe should always be the first probe calibrated. The following order for calibration of a multi-parameter probe is to be followed:

- Specific Conductance;
- 2. pH;
- DO: and
- 4. Turbidity.

There is no recommended order for calibration of other parameters.

5.4 Single-Parameter Probes

Prior to conducting field measurements, probe sensors must be allowed to equilibrate to the temperature of the water being monitored. Probe sensors have equilibrated adequately when the temperature reading has stabilized. Deployment of single-parameter probes will follow the following procedures:

5.4.1 Temperature

Whenever possible the temperature shall be measured in situ (i.e., within a stream, direct deployment in a monitoring well). When temperature cannot be measured in situ, it can be measured in a beaker or bucket. The following conditions must be met when measuring temperature within a beaker or bucket:

 The beaker or bucket shall be large enough to allow full immersion of the temperature probe. The beaker or bucket is to be rinsed with water from the well or stream being measured prior to obtaining the measurement;

- The probe must be placed in the beaker or bucket immediately before the temperature changes due to ambient conditions;
- The beaker or bucket must be shaded from direct sunlight and strong breezes before and during temperature measurement; and
- The probe must be allowed to equilibrate for at least 1 minute before temperature is recorded.

5.4.2 pH

Preferably, pH is measured in situ at the centroid of flow and at the mid-depth of a stream, or the mid-point of the well screen in a well. The pH probe must be allowed to equilibrate according to the manufacturer's recommendations before the pH value is recorded without removing the probe from the water.

If the pH cannot be measured in situ, it should be measured in a bucket or beaker using the procedures outlined above for measuring temperature.

5.4.3 Dissolved Oxygen

As for pH, it is preferable to measure DO in situ at the centroid of flow and at the mid-depth of a stream, or the mid-point of the well screen in a well. The DO probe must be allowed to equilibrate according to manufacturer's recommendations before the DO value is recorded without removing the probe from the water.

If DO cannot be measured in situ, it should be measured in a bucket or beaker using the procedures outlined above for measuring temperature.

Some types of DO probes require a sufficient flow of fresh water across the membrane to maintain the accuracy and precision of the DO measurement. When taking DO measurements in a bucket or beaker, either employ a stirrer, or physically move the probe in a gentle motion. Moving the probe in a gentle motion should also be completed when measuring DO in situ down hole in a monitoring well.

5.4.4 ORP

ORP shall be measured using the procedures outlined above for measuring pH. Note that changes in temperature directly affect ORP values and ORP should be measured as soon as possible after the probe has stabilized.

5.4.5 Turbidity

In situ turbidity shall be measured using the procedures outlined above for measuring pH.

If turbidity cannot be measured in situ, it can be measured with a probe in a bucket or beaker using the procedures outlined above for measuring temperature. Note that some turbidity measuring instruments do not use a probe, and a sample of the water is collected in a small vial that is inserted into the instrument which then measures the turbidity of the water.

5.4.6 Multi-Parameter Probe Use With A Flow-Through Cell

A multi-parameter probe and a flow-through cell are typically employed when undertaking low flow purging and sampling of groundwater. SOP-EDR023 describes the procedures to be followed when using a multi-parameter probe and a flow-through cell.

5.5 Additional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance

When completing a Phase Two Environmental Assessment (ESA) in accordance with Ontario Regulation 153/04, the following additional procedures must be undertaken:

- Thorough records of the calibration and calibration checks of the probes/instruments used for water quality parameter measurement must be kept, including any calibration sheets provided by the equipment supplier. The Quality Assurance/Quality Control section of the Phase Two ESA report requires a discussion of field equipment calibration, and equipment calibration records must be appended to the Phase Two ESA report; and
- If groundwater samples collected for a Phase Two ESA are not collected using low flow purging and sampling, which mandates the measurement of water quality parameters, water quality parameters must be measured (pH, temperature and specific conductance at a minimum) and the measurements included in the Phase Two ESA report. Ontario Regulation 153/04 does not provide specifics as to when or how these water quality parameter measurements are to be made but one set of measurements made at the conclusion of purging prior to sampling is the minimum requirement. These measurements can be made by filling a clean bucket or beaker with purge water and immersing the probes in the purge water.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>Health & Safety Training</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 REFERENCES

New Jersey Department of Environmental Protection, Field Sampling Procedures Manual, August 2005.

Commonwealth of Kentucky – Department of Environmental Protection, *Standard Operating Procedure – In Situ Water Quality Measurements and Meter Calibration*, January 1, 2009.

U.S Environmental Protection Agency – Science and Ecosystem Support Division, Athens, Georgia, *In Situ Water Quality Monitoring*, December 7, 2009.

U.S. Geological Survey, *National Field Manual for the Collection of Water-Quality Data: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 9, Chapters A1-A9,* Various dates.

9.0 APPENDICES

None.

I:\2018 SOP Updates\SOP - EDR016 - REV003 - Field Measurement of Water Quality Parameters.docx

Template: Master SOP Template - February 2014

SOP - EDR017 - REV006 - MONITORING WELL DEVELOPMENT

Title:	Monitoring Well Development
Practice:	EDR
First Effective Date:	November 23, 2010
Version:	006
Version Date:	January 3, 2018
Author:	Paresh Patel and Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	Not 200-76m

TABLE OF CONTENTS

1.0	VERSION HISTORY	3
2.0	SCOPE AND APPLICATION	3
3.0	OVERVIEW	∠
4.0	DISTRIBUTION	∠
5.0	PROCEDURE	5
5.1	Equipment and Supplies	5
5.2	Procedures	5
5.2	2.1 Well Development for Low and High Yield Wells - Stage 1	6
5.2	2.2 Well Development for High Yield Wells - Stage 2	8
5.2	2.3 Well Development for Low Yield Wells - Stage 2	10
5.2	2.4 Removal of Water Lost During Well Installation	11
5.2	2.5 Development of Monitoring Wells Installed Using Air Rotary Drilling Methods	12
5.2	2.6 Assessing Field Parameter Stabilization	12
5.3	Well Development Record	13
5.4	Additional Considerations for O. Reg. 153/04 Phase Two ESA Compliance	13
6.0	TRAINING	13
7.0	MAINTENANCE OF SOP	13

8.0	REFERENCES	13
0.0	ADDENDICES	10

1.0 VERSION HISTORY

Version	Date	Summary of Changes	Author
Original	November 23,	N/A	PDP
	2010		
001	June 15, 2013	Streamlined background section/Focused	RLM
		procedure on tasks that can be completed by	
		Pinchin personnel/Provided step-by-step	
		summary of field procedure	
002	January 22, 2015	Incorporated procedures specific to Pinchin	RLM
		West into SOP	
003	February 9, 2016	Revised overall procedure to include initial	RLM
		determination of well yield/Added reference to	
		revised well development field forms/Provided	
		guidance on assessing field parameter	
		stabilization when developing wells where	
		water or air were used during drilling	
004	April 29, 2016	Updated Section 4.0	RLM
005	April 28, 2017	Removed references to Pinchin West	RLM
006	January 3, 2018	Modified Section 3.0 to allow well development	RLM
		to occur immediately after well installation	
		under certain circumstances.	

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) describes the standard procedures for groundwater monitoring well development and provides a description of the equipment required and field methods.

All groundwater monitoring wells are to be developed following installation prior to groundwater sampling or the completion of hydraulic conductivity testing. In addition, previously installed groundwater monitoring wells that have not been purged in over one year should be redeveloped prior to additional sampling or hydraulic conductivity testing if there is evidence of sediment impacting the monitoring well (e.g., the depth to bottom of well measurement indicates sediment accumulation) or at the discretion of the Project Manager.

This SOP pertains to monitoring well development that can be undertaken by Pinchin personnel. Monitoring well development completed by drilling rigs is beyond the scope of this SOP.

3.0 OVERVIEW

The main objective of groundwater monitoring well development is to ensure that groundwater sampled from a well is representative of the groundwater in the formation adjacent to the well and that hydraulic conductivity testing provides data representative of the hydraulic characteristics of the adjacent formation.

The specific goals of well development include the following:

- Rectifying the clogging or smearing of formation materials that may have occurred during drilling of the borehole;
- Retrieving lost drilling fluids;
- Improving well efficiency (i.e., the hydraulic connection between the sand pack and the formation);
- Restoring groundwater properties that may have been altered during the drilling process
 (e.g., volatilization of volatile parameters due to frictional heating during auger
 advancement or use of air rotary drilling methods); and
- Grading the filter pack to effectively trap fine particles that may otherwise interfere with water quality analysis.

Monitoring well development should not be completed until at least 24 hours have elapsed following monitoring well installation to permit enough time for the well seal to set up, unless both of the following conditions are met:

- The well seal is entirely above the water table; and
- Surface runoff (e.g., from heavy rainfall or snow melt) is not occurring at the well location at the time of development.

Any deviation from this procedure must be approved by the Project Manager before proceeding.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 Equipment and Supplies

- Inertial pump (e.g., Waterra tubing and foot valve);
- Surge block for use with an inertial pump (Optional);
- Submersible pump (including pump controller and power supply) (Optional);
- Disposable bailer (Optional);
- Graduated pail (to contain purge water and permit the volume of groundwater purged to be tracked);
- Pails or drums for purge water storage prior to disposal;
- Well keys (if wells are locked);
- Tools to open monitoring well (T-bar, socket set, Allen keys, etc.);
- Interface probe;
- Equipment cleaning supplies (see SOP-EDR009);
- Field parameter measurement equipment (see SOP-EDR016) (Optional);
- Disposable nitrile gloves; and
- Field forms.

Pinchin typically employs inertial pumps or bailers for well development because they can be dedicated to each well. However, the use of submersible pumps is a viable alternative for developing deep wells with high well volumes at the discretion of the Project Manager.

5.2 Procedures

The well development procedures employed will be determined by the hydraulic conductivity of the formation in which the groundwater monitoring well is installed. For this SOP, a high yield well is defined as a well that cannot be purged to dryness when pumping continuously at a rate of up to 2 litres per minute (L/min) and a low yield well is defined as a well that can be purged to dryness when pumping continuously at a rate of up to 2 L/min or less. This threshold represents a "normal" pumping rate when hand pumping with an inertial pump.

The initial stage of well development (Stage 1) will apply to all wells and will involve the removal of up to one well volume, followed by an evaluation of the well yield. The procedures followed for Stage 2 of well development will be contingent on whether the well is determined to be a low yield or high yield well.

5.2.1 Well Development for Low and High Yield Wells - Stage 1

The initial procedure for developing a low yield or high yield monitoring well is as follows:

- Decontaminate all non-dedicated monitoring and pumping equipment that will be used, including the interface probe and submersible pump (if used), in accordance with the procedures described in SOP-EDR009;
- 2. Review the well construction details provided in the borehole log, previous field notes or well construction summary table from a previous report. Determine the well depth, well stick up, screen length, depth to the top of the sand pack and diameter of the borehole annulus. If the well depth is unavailable, measure it with the interface probe;
- 3. Measure the initial water level (i.e., static water level) from the reference point on the well (which should be marked at the top of the well pipe) with an interface probe. If measurable free-phase product is present on the water table, record the depth to the top of the free-phase product and the depth to the free-phase product/water boundary (i.e., water level), and discuss this with the Project Manager before proceeding further;
- 4. Calculate the well volume. Note that for the purpose of this SOP, there are two definitions of well volume depending on the province in which the project is being conducted. For Ontario and Manitoba, the well volume is defined as the volume of water within the wetted length of the well pipe (well pipe volume) plus the volume of water within the wetted length of the sand pack (sand pack volume). For British Columbia, Alberta and Saskatchewan, the well volume is defined as the volume of water within the wetted length of the well pipe (well pipe volume) only.

The volume of water in the well pipe is calculated as follows:

Well Pipe Volume (litres) = $h_w \times \pi r_w^2 \times 1,000$ litres per cubic metre (L/m³)

Where $\pi = 3.14$

 h_w = the height of the water column in the monitoring well in metres (wetted length)

 r_{w} = the radius of the monitoring well in metres (i.e., half the interior diameter of the well)

The volume of the sand pack in the monitoring well is calculated as follows:

Sand Pack Volume (litres) = $h_w \times [(0.3 \text{ m r}_b^2 \times 1,000 \text{ L/m}^3) - (0.3 \text{ m r}_w^2 \times 1,000 \text{ L/m}^3)]$

Where 0.3 = the assumed porosity of the sand pack

PG

 h_w = the height of the water column in the monitoring well in metres (wetted length)

 $\pi = 3.14$

rb = the radius of the borehole annulus in metres

r_w = the radius of the monitoring well in metres

For Ontario and Manitoba projects, the following table provides well volumes in litres/metre for typical well installations:

Borehole Annulus Diameter	Well Interior Diameter	Well Pipe Volume	Well Volume
(Inches/Metres)	(Inches)	(Litres/Metre)*	(Litres/Metre)*
4/0.1	1.25	0.8	2.9
	1.5	1.1	3.2
	2	2.0	3.8
6/0.15	1.25	0.8	5.9
	1.5	1.1	6.1
	2	2.0	6.7
8.25/0.21	1,5	1.1	11.2
	2	2.0	11.8
10.25/0.26	1.5	1.1	16.7
	2	2.0	17.3

^{*} Litres to be removed per metre of standing water in the well (wetted length).

If the borehole annulus and well interior diameters match one of those listed above, to determine the volume of one well volume simply multiply the number in the last column of the table by the wetted length in the well. For example, if a 2-inch diameter well installed in a 8.25-inch diameter borehole has 2.2 metres of standing water, one well volume equals 26.0 litres (2.2 metres x 11.8 litres/metre).

Note that the above well volume calculations apply only to wells where the water level in the well is below the top of the sand pack. If the water level is above the top of the sand pack, then the well volume is the volume of water in the sand pack and well pipe within the sand pack interval, plus the volume of water in the well pipe (i.e., well pipe volume) above the top of the sand pack.

For example, assume a 2-inch diameter well has been installed in a 8.25-inch diameter borehole to a depth of 6.0 metres below ground surface (mbgs), with a 3.05 metre long screen. The sand pack extends from 6.0 mbgs to 2.5 mbgs and the water level is at 1.85 mbgs. One well volume equals ([6.0 metres – 2.5 metres] x 11.8 litres/metre) + ([2.5 metres – 1.85 metres] x 2.0 litres/metre) or 42.6 litres.

For British Columbia, Alberta and Saskatchewan projects, the well volume is calculated using the conversion factor listed in the third column of the above table. For example, if there are 2.5 metres of standing water in a 1.5-inch diameter well, one well volume equals 2.75 litres (2.5 metres x 1.1 litres/metre);

- 5. Lower the pump into the well until the pump intake is approximately 0.3 metres above the bottom of the well. Remove half a well volume while pumping at a rate of approximately 1 to 2 L/min. Measure the depth to water after the half a well volume is removed. Record the approximate purge volume, pump intake depth and any pertinent visual/olfactory observations (e.g., sheen, odour, free-phase product, sediment content, clarity, colour, etc.); and
- 6. Move the pump intake upward to the middle of the water column (or middle of the screened interval if the static water level in the well is above the top of the screen). Remove half a well volume (for a cumulative total of 1 well volume) or purge until dry while pumping at a rate of approximately 1 to 2 L/min, whichever occurs first. Measure the depth to water after the half a well volume is removed unless dry. Record the approximate purge volume, pump intake depth and any pertinent visual/olfactory observations. Note that if suction is broken (indicating that drawdown to the pump intake depth has occurred), move the pump intake to the bottom of the well and continue purging.

After completing Step 6, review the water level data to assess whether the well is a low yield or high yield well. If the well is purged dry or close to dryness, or significant drawdown has occurred, then the well is a low yield well. If little or no drawdown has occurred then the well is a high yield well. Some judgement will be required by field personnel when classifying the well yield if moderate drawdown has occurred during removal of the first well volume.

5.2.2 Well Development for High Yield Wells - Stage 2

The procedure for the second stage of developing a high yield monitoring well is as follows:

Move the pump intake upward to near the top of the screened interval (or near the top of the water column if the water level is currently below the top of the screen). Remove half a well volume (for a cumulative total of 1.5 well volumes) while pumping at the maximum practical rate that is greater than 2 L/min. Record the approximate purge volume, pump

MEMBER OF

THE PINCHIN GROUP

- intake depth and any pertinent visual/olfactory observations (e.g., sheen, odour, free-phase product, sediment content, clarity, colour, etc.);
- 2. Note that if the wetted length is short within a well (e.g., 1.5 metres or less), there will not be enough separation between pump intake depths to warrant pumping from three depths (i.e., near the bottom, middle and top of the water column). In this case, pumping from two depths (i.e., near the bottom and top of the water column) is sufficient;
- 3. Lower the pump intake until it is approximately 0.3 metres above the bottom of the well.

 Remove half a well volume (for a cumulative total of 2 well volumes) while pumping at the maximum practical rate that is greater than 2 L/min. Record the approximate purge volume, pump intake depth and any pertinent visual/olfactory observations;
- 4. Move the pump intake upward to the middle of the water column (or middle of the screened interval if the water level in the well is above the top of the screen). Remove half a well volume (for a cumulative total of 2.5 well volumes) while pumping at the maximum practical rate that is greater than 2 L/min. Record the approximate purge volume, pump intake depth and any pertinent visual/olfactory observations;
- 5. Move the pump intake upward to near the top of the screened interval (or near the top of the water column if the water level is currently below the top of the screen). Remove half a well volume (for a cumulative total of 3 well volumes) while pumping at the maximum practical rate that is greater than 2 L/min. Record the approximate purge volume, pump intake depth and any pertinent visual/olfactory observations;
- 6. If the purge water contains high sediment content after the removal of 3 well volumes, well development should continue by removing additional well volumes following the same procedure as above until the sediment content visibly decreases. If the purge water continues to have high sediment content after the removal of 2 additional well volumes (i.e., 5 well volumes in total), contact the Project Manager to discuss whether well development should continue. A cap of 10 well volumes removed is considered sufficient for high yield well development regardless of sediment content; and
- 7. Record the water level at the conclusion of well development.

Note that at the discretion of the Project Manager, when developing a monitoring well using an inertial pump, a surge block can be attached to the foot valve before completing Step 1 (i.e., the first time groundwater is pumped from near the top of the screened interval or water column) and then leaving it on the foot valve for the remainder of well development. A surge block is used to increase the turbulence created by pumping and enhance the removal of fine-grained material from the sand pack.

Note that the use of a bailer to develop a high yield well with a wetted interval greater than 2 metres is not recommended given that the depth from which groundwater is removed is difficult to control. However, a bailer can be used as a substitute for a surge block by raising and lowering it through the screened interval for approximately 5 to 10 minutes before the start of Step 1.

5.2.3 Well Development for Low Yield Wells - Stage 2

The procedure for the second stage of developing a low yield monitoring well is as follows:

- 1. Position the pump intake at the bottom of the well and purge the well to dryness if it was not purged to dryness during completion of Stage 1 at the maximum practical rate that is greater than 2 L/min. Allow sufficient time for the well to recover to at least 90% of the initial static water level or allow the well to recover for a period of time designated by the Project Manager; and
- 2. Repeat Step 1 until the well has been purged to dryness a minimum of 3 times. An exception to this is that if recovery is slow, and especially if sediment content is low, repeat purging (i.e., purging the well to dryness more than once) may not be necessary and the need for additional purging is to be discussed with the Project Manager. If the purge water contains high sediment content after purging to dryness 3 times, well development should continue by purging the well to dryness until the sediment content visibly decreases. If the purge water continues to have high sediment content after purging the well to dryness 2 additional times (i.e., purging the well to dryness 5 times in total), contact the Project Manager to discuss whether well development should continue. A cap of purging a well to dryness 10 times is considered sufficient for low yield well development regardless of sediment content.

As per the procedure for high yield well development, a surge block can be attached to the foot valve to increase the effectiveness of the pumping action. If a surge block is used, pumping should commence at the top of the water column in the well (instead of near the bottom of the well as described above) with the pump intake progressively lowered as the water level in the well decreases.

Note that bailers can be used in lieu of an inertial pump for the development of a low yield well. The turbulence created in a well by the act of dropping a bailer into it and then removing it full of groundwater can be effective in removing fine-grained material from the sand pack. If a bailer is left in a well, it should be "hung" above the water table to facilitate future water level monitoring.

5.2.4 Removal of Water Lost During Well Installation

When water has been used during well installation (e.g., for bedrock coring, to control heaving sands), the total volume of water required to be purged from a well during development will be equal to 3 times the estimated volume of water lost during drilling plus the volume of water that would normally be removed during well development.

For example, for a high yield well where 25 litres of water were lost during drilling and the well volume is 10 litres, the minimum amount of water to be purged during development is 105 litres (i.e., 3 times the volume of water lost during drilling [75 litres] plus a minimum of 3 well volumes [30 litres]).

For a low yield well, the well will need to be purged to dryness enough times to remove a volume equivalent to 3 times the volume of water lost during drilling plus the volume of water that would normally be removed during well development.

As an alternative to removing 3 times the volume of water lost during drilling, field parameter stabilization during well development can be used to assess whether sufficient water has been removed. For example, the conductivity of drill water (which is usually tap water) is typically much lower than groundwater, and conductivity measurements can act as a guide during development as to whether the water being removed is formation groundwater or drill water.

For assessing field parameter stability when developing a high yield well, field parameter measurements of pH, conductivity, temperature and oxidation-reduction potential are to be made after every half well volume is removed and stability is considered achieved if the field parameters are all within ±10% over 3 consecutive readings. Note that a minimum of 3 well volumes must be removed even if field parameter stabilization is achieved prior to the removal of 3 well volumes to comply with the minimum well purging requirements of this SOP (i.e., removal of a minimum of 3 well volumes from a high yield well).

For assessing field parameter stability when developing a low yield well, field parameter measurements of pH, conductivity, temperature and oxidation-reduction potential are to be made once each time a well is purged to dryness, approximately halfway through purging. For example, if based on the current water level it is estimated that 10 litres will be removed before a well is purged to dryness, the field parameters are to be measured after 5 litres have been removed. Stability is considered achieved if the field parameters are all within ±10% over 3 consecutive readings. After stabilization is achieved, continue to purge the well to dryness a final time at which point development is complete.

A second alternative would be to allow sufficient time for the drill water to dissipate into the formation. The appropriate amount of time will depend on the amount of water lost to the formation and the formation characteristics, but will be a minimum of one week. A Senior Project

Manager or Senior Technical Reviewer will be responsible for determining the suitability of this approach and the required length of time. At the discretion of the Senior Project Manager or Senior Technical Reviewer, field parameter measurements may be made during pre-sampling purging to assess whether the drill water has dissipated by the time of sampling.

Note that it can be difficult to estimate the amount of water lost during drilling. If the driller's water tank is accessible, measure the water levels in the water tank before and after drilling the well and then estimate the volume of water used during drilling using the water tank dimensions and subtract this volume from the volume of water recovered at the end of drilling from this volume to estimate the volume of water lost. If this is not possible, ask the driller to estimate the approximate volume of water lost during drilling.

For some well installations, determining even an approximate volume of water lost during drilling is not possible. In this situation, field parameter stabilization should be used as a guide in deciding how much water to remove during well development.

5.2.5 Development of Monitoring Wells Installed Using Air Rotary Drilling Methods

When developing a monitoring well installed using an air rotary drilling procedure, field parameter stabilization <u>must</u> be used to assess whether sufficient water has been removed and the field parameters measured must include dissolved oxygen. This is particularly important when the contaminants of concern at a site include volatile organic compounds (VOCs) as the use of compressed air during the drilling process can result in sparging of VOCs from the groundwater, resulting in groundwater samples that are biased low with respect to VOC concentrations.

The well development procedure is the same as described in Section 5.2.4, except that the field parameters measured are to include pH, conductivity, temperature, oxidation-reduction potential and dissolved oxygen. The criterion for determining field parameter stabilization for dissolved oxygen is ±10% over 3 consecutive readings or 3 consecutive readings with concentrations less than 0.5 milligrams per litre.

5.2.6 Assessing Field Parameter Stabilization

When determining whether field parameter stabilization has occurred over 3 consecutive readings (except for dissolved oxygen when using the less than 0.5 milligrams per litre over 3 consecutive readings criterion), the following procedure is to be followed:

- 1. For each parameter, use the first of the 3 readings and calculate 10% of this reading; and
- 2. The range that the next 2 readings must be within is \pm 10% of the first reading.

For example, if the temperature of the first of 3 consecutive readings is 10° C, the next 2 readings must fall between 9 and 11 ° C for temperature to be considered stable.

5.3 Well Development Record

Well development is to be documented through the completion in full of the following field forms located in the Pinchin Orchard:

- EDR-GW-Well Development-S1-Low/High Yield Well (completed for Stage 1 for both low and high yield wells);
- EDR-GW-Well Development-S2-Low Yield Well (completed for Stage 2 for low yield wells); and/or
- EDR-GW-Well Development-S2-High Yield Well (completed for Stage 2 for high yield wells).

Any deviations from this SOP along with the rationale for these deviations must be recorded on the EDR-GW-Well Development-S1-Low/High Yield Well form.

5.4 Additional Considerations for O. Reg. 153/04 Phase Two ESA Compliance

When developing a low yield well, the well must be purged to dryness a minimum of 3 times regardless of the recovery time unless reduced purging is authorized by the Qualified Person responsible for the Phase Two ESA.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>Health & Safety Training</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 REFERENCES

Association of Professional Geoscientists of Ontario, "Guidance for Environmental Site Assessments under Ontario Regulation 153/04 (as amended)", April 2011.

9.0 APPENDICES

None.

I:\2018 SOP Updates\SOP - EDR017 - REV006 - Well Development.docx Template: Master SOP Template - February 2014

SOP - EDR019 - REV004 - SOIL SAMPLE LOGGING

Title:	Soil Sample Logging
Practice:	EDR
First Effective Date:	August 03, 2013
Version:	004
Version Date:	January 3, 2018
Author:	Francesco Gagliardi and Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	Not wo-76 in

TABLE OF CONTENTS

1.0	VERS	SION HISTORY	3
2.0	SCOF	PE AND APPLICATION	3
3.0	OVER	RVIEW	3
4.0	DISTE	RIBUTION	3
5.0		CEDURE	
5.1	Gen	ieral Procedures	4
5.1	1.1	Primary Soil Texture	4
5.1		Colour	
5.1		Minor Constituents	
5.1	1.4	Noticeable Odours	5
5.1	1.5	Noticeable Staining	5
5.1	1.6	Noticeable Free-Phase Product/Sheen	5
5.1	1.7	Moisture Content	6
5.1	1.8	Recording Soil Sample Descriptions in Field Notes	6
5.2	Gen	eral Considerations	6
5.3	Add	itional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance	7
5.0	TRAIN	VING	7

7.0	MAINTENANCE OF SOP	7
8.0	REFERENCES	7
9.0	APPENDICES	7

1.0 VERSION HISTORY

Version	Date	Summary of Changes	Author
Original	November 26, 2010	N/A	FG
001	October 31, 2013	Streamlined SOP to focus only on soil sample logging/Added O. Reg. 153/04 compliance section	RLM
002	April 29, 2016	Updated Section 4.0	RLM
003	April 28, 2017	Removed reference to Pinchin West	RLM
004	January 3, 2018	Modified percentages of minor constituents in Section 5.1.3/Clarified when geotechnical terms can be used for soil logging in Section 5.2	RLM

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) presents the methods used to describe the physical characteristics of soil samples collected during site investigations.

The methods and equipment used for retrieving soil samples are provided in other SOPs (e.g., SOP-EDR007 – Borehole Drilling) and will not be repeated herein.

3.0 OVERVIEW

Not applicable.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 General Procedures

For each soil sample collected during a site investigation, the following information is to be recorded in the field log book or field forms in the order presented below:

- Depth;
- Primary soil texture;
- Colour;
- Minor constituents*;
- Noticeable odours;
- Noticeable staining;
- Noticeable free-phase product/sheen*; and
- Moisture content.

5.1.1 Primary Soil Texture

The primary soil texture should be determined using the attached flow chart as a guide to help classify the soil.

5.1.2 Colour

Describe the primary colour of the soil sample (e.g., brown, grey, black, green, white, yellow, red). The relative lightness or darkness of the primary colour can be described using the adjectives "light" or "dark" as appropriate. Soil that exhibits different shades or tints is to be described by using two colours (e.g., brown-grey). If the soil sample contains spots of a different colour, this is to be described as "mottling" (e.g., grey with green mottling).

5.1.3 Minor Constituents

Note the presence of minor constituents in the soil that are "natural" materials (e.g., gravel, cobbles, sand, oxidation, etc.) or "man-made" materials (e.g., asphalt, brick, concrete, coal or glass fragments, coal ash, etc.). Gravel comprises particles between 5 millimetres (mm) and 75 mm in diameter. Cobbles comprise particles greater than 75 mm in diameter (approximately the size of a man's fist) and boulders are particles greater than 150 mm in diameter (approximately the size of man's head).

When the percentage of the minor constituents in the soil is between approximately 1 and 10%, the adjective used to describe the relative amount of the minor constituent is "trace" (e.g., silty sand with trace brick fragments).

^{*}These constituents only need to be noted if they are actually present in the sample.

When the percentage of minor constituents of soil is between approximately 10 and 20%, the adjective used to describe the relative amount of the minor constituent is "some" (e.g., silty sand with some concrete fragments).

When the percentage of the "natural" minor soil constituents is between approximately 20 and 35%, the minor soil type is described by adding a 'y' or 'ey' to the soil type (e.g., silty, sandy, clayey).

When the percentage of the "natural" minor soil constituents is also greater than 35%, the minor soil type is described by using "and" the soil type (e.g., sand and gravel, sand and silt).

When the percentage of the "man-made" minor soil constituents is between approximately 30 and 50%, describe the soil as per the normal procedure and add "with" the minor constituent type(s) (e.g., silty sand with coal ash and brick fragments).

5.1.4 Noticeable Odours

Field staff are not expected to directly smell soil samples to assess the presence/absence of odours.

If it is possible to identify the likely type of odour then this information should be recorded along with a comment on the severity of the odour (e.g., slight, strong, etc.). Identification of specific chemical compounds, such as petroleum hydrocarbons (PHCs) or solvents is acceptable; however, this identification should be referenced as "xxxx-like" (e.g., PHC-like, solvent-like, etc.). This principle also applies when describing staining and free-phase product.

If the odour cannot be readily identified, it should be described in the field notes as "unidentified odour". If no noticeable odours are observed, this needs to be recorded in the field notes as "no odour".

5.1.5 Noticeable Staining

Describe the colour and possible source of the staining (e.g., black PHC-like staining).

If no noticeable staining is observed, this needs to be recorded in the field notes as "no staining".

5.1.6 Noticeable Free-Phase Product/Sheen

Describe the colour, odour, possible composition and relative viscosity (if sufficient product is present to assess) of the product (e.g., dark brown, viscous, motor oil-like product). Identification of the composition of the product is acceptable but needs to be described as PHC-like, motor oil-like. Alternatively, the product can be described as "resembling" a substance (e.g., "resembling motor oil").

The presence of any observed iridescent sheen is to be recorded in the field notes. Note that the presence of an iridescent sheen by itself in the soil does not constitute the presence of free-phase product but may be an indicator that free-phase product is present within the vicinity of the borehole.

5.1.7 Moisture Content

Describe the moisture content of the soil sample using one of the following three terms:

- Dry no visible evidence of water and the soil is dry to the touch;
- Moist visible evidence of water but the soil is relatively dry to the touch. Do not use the term "damp" to describe this type of soil; and
- Wet visible evidence of water and the soil is wet to the touch. Free water is evident
 when sandy soil is squeezed. Do not use the term "saturated" to describe this type of
 soil.

5.1.8 Recording Soil Sample Descriptions in Field Notes

Recording the information in the field notes consistently in the above order will make it easier to prepare the borehole logs for the site investigation report.

Example soil sample descriptions are as follows:

- Sand, grey, trace gravel, PHC-like odours, free-phase PHC-like product, wet;
- Silty sand, brownish-grey, some gravel, trace asphalt and brick fragments, no odours or staining, moist; and
- Silty clay, brown, trace gravel, no odours or staining, moist to wet at 2.4 mbgs.

5.2 General Considerations

Where any physical properties change within a soil sample, the depth at which this transition takes place needs to be recorded. For example, for a soil sample collected from 1.8 to 2.4 metres below ground surface (mbgs), if the upper 0.3 metres has no odours but PHC-like odours are present below this depth then the field notes need to state "no odours from 1.8 to 2.1 mbgs, PHC-like odours from 2.1 to 2.4 mbgs".

Some soil samples will contain a thin seam of a different soil type, such as a sand seam within a silty clay. The depth interval of any such seam is to be recorded in the field notes, and the material comprising the seam should be described separately using the logging procedure outlined above.

Unless soil sampling is being completed as part of a combined environmental/geotechnical investigation and EDR staff logging the soil samples have the appropriate geotechnical training, avoid the use of geotechnical terms (e.g., stiff, dense, high plasticity, etc.) when logging soil samples. If any geotechnical terms are inadvertently included in the field notes by staff who have not had geotechnical training, they must not be included in the borehole logs provided in our report.

5.3 Additional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance

None. Following this SOP will be sufficient to comply with the Ontario Regulation 153/04 requirements for Phase Two ESAs with respect to field logging. Risk assessments completed in accordance with Ontario Regulation 153/04 will typically require soil samples to be submitted to a laboratory for full soil texture analysis, but this is beyond the scope of field logging.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>Health & Safety Training</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

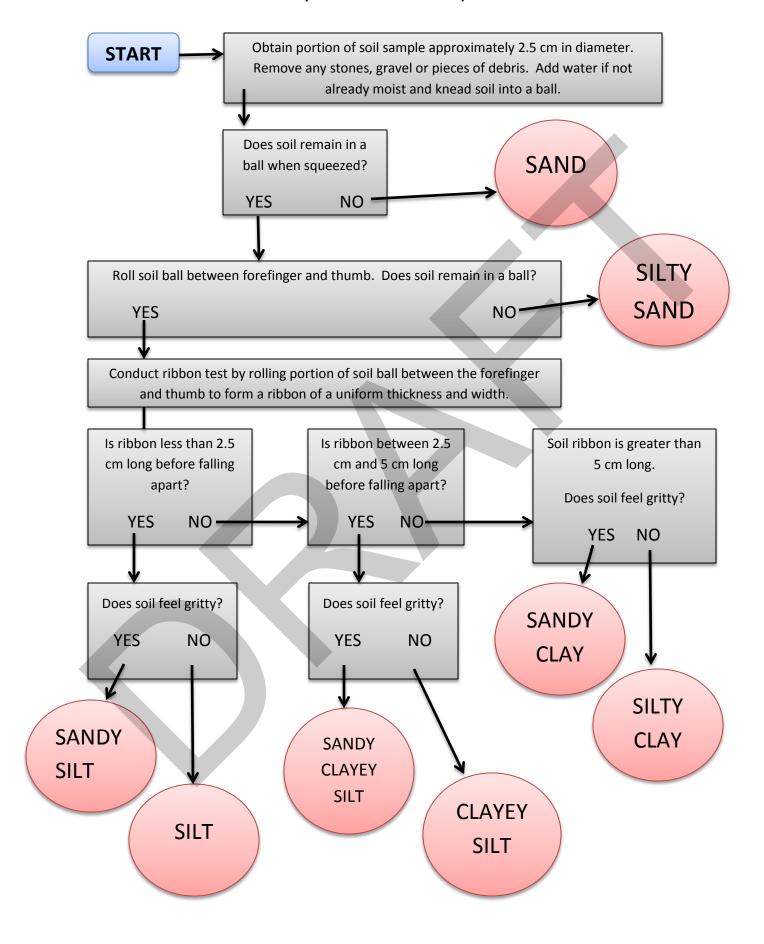
8.0 REFERENCES

American Society for Testing and Materials, ASTM D2487-11 - Standard Practice for Classification of Soils for Engineering Purposes (United Soil Classification System), 2011.

Association of Professional Geoscientists of Ontario, *Guidance for Environmental Site Assessments* under Ontario Regulation 153/04 (as amended), April 2011.

9.0 APPENDICES

Appendix 1 Soil Texture by Feel Chart


I:\2018 SOP Updates\SOP - EDR019 - REV004 - Soil Sampling Logging.docx

Template: Master SOP Template - February 2014

Key to Soil Texture by Feel

SOP - EDR023 - REV006 - LOW FLOW GROUNDWATER SAMPLING

Title:	Low Flow Groundwater Sampling
Practice:	EDR
First Effective Date:	July 08, 2011
Version:	006
Version Date:	January 3, 2018
Author:	Paresh Patel and Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	Not w-76u'

TABLE OF CONTENTS

1.0	VERSION HISTORY	3
2.0	SCOPE AND APPLICATION	
3.0	OVERVIEW	4
4.0	DISTRIBUTION	6
5.0	PROCEDURE	6
5.1	Equipment and Supplies	6
5.	1.1 Documents and Information Gathering	6
5.	1.2 Extraction Devices and Tubing	6
5.	1.3 Extraction Devices	6
5.	1.4 Tubing	7
5.	1.5 Groundwater Monitoring, Purging and Sampling	7
5.2	Low Flow Groundwater Sampling Procedures	8
5.3	Fieldwork Records	15
5.4	Additional Considerations for O. Reg. 153/04 Phase Two ESA Compliance	15
6.0	TRAINING	16
7.0	MAINTENANCE OF SOP	16

8.0	REFERENCES	. 16
9.0	APPENDICES	17

1.0 VERSION HISTORY

Version	Date	Summary of Changes	Author
Original	July 08, 2011	N/A	PDP
001	April 15, 2013	Streamlined background section/Provided step-by-step summary of field procedure/Added O. Reg. 153/04 compliance items	RLM
002	September 11, 2013	Added centrifugal submersible pump to list of pumps suitable for low flow sampling	RLM
003	January 26, 2015	Adjusted well development, sampling and field parameter measurement procedures to reflect Pinchin West practices.	RLM
004	April 29, 2016	Updated Section 4.0/Updated Section 5.3 to reflect current field documentation requirements and new document retention policy	RLM
005	April 28, 2017	Removed reference to Pinchin West/In Section 5.2, removed the requirement to complete a post-sampling water level and total purge volume, and added requirement to record pump intake depth at the time of sampling	RLM
006	January 3, 2018	Minor wording changes throughout	RLM

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) describes the standard procedures for collecting groundwater samples from monitoring wells using low flow (low stress) sampling techniques and provides a description of the equipment required and field procedures.

Low flow sampling provides an alternative to the conventional groundwater purge and sampling technique using inertial pumps, submersible pumps and/or bailers, and emphasizes the need to minimize hydraulic stress at the well-aquifer interface by maintaining low water level drawdown, and by using low pumping rates during purging and sampling. Rather than removing a specified number of well volumes or purging a well to dryness a specified number of times prior to sampling, purging is completed at a low pumping rate until first, a stable water level is achieved, and second, field parameters such as pH, temperature, dissolved oxygen (DO), oxidation-reduction potential (ORP), specific conductance and turbidity, which are monitored during purging, have stabilized indicating that representative formation groundwater is being

purged. It is important that water level and field parameter stabilization are achieved prior to groundwater sampling as this indicates that fresh formation water is being purged and not stagnant groundwater from within the well itself.

Low flow groundwater sampling methods work best for moderate to high yield wells (i.e., wells installed in permeable soils such as sand, silty sand and some silts). For low yield wells (e.g., wells installed in silty clay), low flow groundwater sampling may not be suitable and alternate purging and sampling procedures will be required (see SOP-EDR008 for low yield well sampling procedures).

Conventional sampling can result in sediment entrainment in samples which can result in "positive bias" (i.e., reported concentrations greater than actual groundwater concentrations). This is particularly an issue with petroleum hydrocarbons (PHCs) in the F3 and F4 fraction ranges and polycyclic aromatic hydrocarbons (PAHs) and low flow sampling as per this SOP is strongly recommended when sampling for these parameters unless the hybrid sampling method described in SOP-EDR008 is employed.

This SOP is based primarily on the procedures described in the United States Environmental Protection Agency Region 1 document "Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells", revised January 19, 2010.

3.0 OVERVIEW

The low flow sampling technique can be implemented for any size of monitoring well that can accommodate a positive lift pump or tubing assembly. Note that low flow sampling can be conducted for bedrock monitoring wells without well screens (i.e., with an open interval below the well casing) but for simplicity the screen interval or open interval will be referred to collectively in this SOP as the "screen interval".

Advantages of the low flow sampling technique over conventional groundwater sampling techniques include:

- Minimal disturbance at the sampling point, reducing the potential for sediment to be entrained during the purging process which can result in positive bias (elevated and unrepresentative concentrations) of parameters such as heavy fraction range PHCs and PAHs;
- Reduced operator variability resulting in greater operator control;
- Reduced purge water volumes resulting in reduced investigation derived waste disposal costs; and
- Improved sample consistency resulting in more representative (unbiased) and reproducible sample results.

Disadvantages of the low flow sampling technique over conventional groundwater sampling techniques include:

- Purging and sampling typically requires more time than conventional sampling methods;
- Use of non-dedicated equipment (e.g., submersible pumps) that requires cleaning before initial use and between monitoring well locations; and
- Overall project costs for low flow groundwater sampling programs are typically higher than groundwater sampling programs completed using conventional sampling methods.

It is imperative that the monitoring wells to be sampled are properly developed prior to conducting low flow groundwater sampling. This often includes redevelopment of previously installed wells that have not been sampled for a prolonged period of time (i.e., more than one year). During well development or redevelopment, the hydraulic characteristics of each well should be assessed to provide guidance on the suitability of using the low flow groundwater sampling procedure. Well development procedures are provided in SOP-EDR017.

When groundwater conditions are known, sample the background monitoring wells (i.e., outside of the impacted groundwater area) and wells with low concentrations of contaminants of concern first prior to sampling wells with known impacts. Leave impacted wells to the last to minimize the potential for cross contamination.

In Ontario and Manitoba, or where otherwise specified by provincial guidance documents, a peristaltic pump is not to be used for the collection of groundwater samples for analysis of volatile parameters (i.e., volatile organic compounds (VOCs) and PHCs F1 Fraction). When sampling for volatile parameters using low flow groundwater sampling methods, a bladder pump or centrifugal pump (collectively referred to herein as "submersible pumps") must be used. A "hybrid" groundwater purging and sampling procedure using a peristaltic pump to undertake low flow groundwater sampling for non-volatile parameters as described in this SOP followed by conventional purging and sampling methods for volatile parameters is an acceptable alternative to using a bladder pump or centrifugal pump.

Peristaltic pumps cannot be used where the suction lift (i.e., vertical distance between the pump and ground level) is more than 8.5 metres (28 feet).

It is very important to maintain consistency in applying low flow groundwater sampling procedures to purging and sampling for each monitoring well and for each sampling event. Any deviation from the field procedures described in this SOP can induce variability in the analytical results.

Our primary objective is to obtain unbiased groundwater samples whose analytical results are representative of actual groundwater quality at the property being investigated.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

5.0 PROCEDURE

5.1 Equipment and Supplies

5.1.1 Documents and Information Gathering

The following documents and information are required to complete low flow groundwater sampling:

- A copy of the proposal or work plan;
- Monitoring well construction details;
- A copy of this SOP;
- Field data from the last sampling event (if available);
- Operation, maintenance and calibration manuals for the multi-parameter water quality meter;
- A site-specific Health and Safety Plan (as per the project requirements); and
- Client or site representative's contact details.

5.1.2 Extraction Devices and Tubing

This SOP will not discuss in detail the various pumps and tubing options that are available for completing low flow groundwater sampling. The following section provides some general guidelines for the use of this equipment and it is recommended that the equipment supplier be consulted when selecting the appropriate pump and tubing, taking into account site-specific parameters (e.g., well depth, well diameter, site accessibility) and the parameters that will be sampled.

5.1.3 Extraction Devices

For purging and sampling using the low flow sampling procedure, submersible pumps (e.g., centrifugal, bladder) and peristaltic pumps are the most commonly used extraction devices. Regardless of the type of extraction device used, the low flow sampling procedure requires precise control over the flow rate during

purging and sample collection. A battery-operated pump controller is required to operate submersible pumps and to control the extraction flow rate. Peristaltic pumps have built-in flow rate adjusters.

Submersible pumps with internal parts constructed of stainless-steel or Teflon are preferred. If the internal parts are constructed of other materials, adequate information must be provided by the equipment supplier to show that the substituted materials do not leach contaminants nor cause interference to the analytical procedures to be used. The use of any such substituted materials must be approved by the Project Manager prior to the field program.

If a bladder pump is selected for the collection of samples for volatile parameters analysis, it should be capable of delivering a water volume sufficient to fill a VOC sample vial in one pulse.

5.1.4 Tubing

Teflon, Teflon-lined polyethylene or polyethylene 1/4-inch interior diameter (ID) or 3/8-inch ID tubing is to be used to connect to the pump and the flow-through cell. In the winter time, the use of 3/8-inch ID tubing is recommended to avoid groundwater freezing in the tubing during severe cold weather conditions.

If the tubing is constructed of other materials (other than mentioned above), adequate information must be provided to show that the substitute materials do not leach contaminants nor cause interference with the analytical procedures. The use of any such substituted materials must be approved by the Project Manager prior to the field program.

Direct sunlight and hot ambient air temperatures may cause groundwater in the tubing to heat up and degas resulting in loss of volatile parameters. When sampling under these conditions, the length of the tubing between the top of the monitoring well and the flow-through cell should be kept as short as possible to minimize exposure to sunlight or ambient air and heating of the groundwater.

5.1.5 Groundwater Monitoring, Purging and Sampling

The following equipment is required to complete the low flow purging and sampling procedure described in this SOP:

- Well keys;
- Interface probe;
- Assorted tools (e.g., knife, screwdriver, etc.);
- Equipment cleaning reagents required as per SOP-EDR009 (e.g., distilled water, phosphate-free detergent, etc.);
- Multi-parameter water quality meter (including calibration solutions);
- Graduated cylinder, graduated measuring cup or graduated bucket;
- Stopwatch;

- Flow-through cell;
- Peristaltic pump, centrifugal pump or bladder pump;
- Tubing;
- Pails or drums for storing purge water;
- Paper towels or wipes;
- Calculator;
- Field forms (see Section 5.3) and/or field notebook (hereafter the "field notes");
- Waterproof and permanent markers;
- Disposable gloves and appropriate personal protective equipment based on site-specific conditions;
- Cooler and ice packs;
- Sample bottles and labels. Several extra sample bottles of each type should be available
 in case of breakage or other problems; and
- Laboratory Chain of Custody forms.

The following equipment may be used during well sampling, in addition to the above:

• Disposable field filtration units/filters (if appropriate).

5.2 Low Flow Groundwater Sampling Procedures

The following is the summary of the procedures to be followed for low flow groundwater sampling:

- 1. Develop the monitoring wells to be sampled (if required) prior to sampling by removing between three and five well volumes or by purging them to dryness between one and three times. Further details regarding well development are provided in SOP-EDR017. Well development is to be completed for all newly installed wells prior to low flow sampling and may be required for previously installed monitoring wells that have not been sampled in more than one year. Ideally, well development should occur at least one day prior to low flow sampling. At the discretion of the Project Manager, low flow sampling can occur on the same day as the well is developed but the well must be allowed to fully recover to its original static level prior to the start of purging;
- Decontaminate all non-dedicated monitoring and sampling equipment that will be used, including the interface probe, submersible pump (if used), water quality meter probes and flow-through cell in accordance with the procedures described in SOP-EDR009;

3. Calibrate the water quality meter used for field parameter measurement in accordance with the manufacturer's specifications. Wherever possible, arrange for the equipment rental company to calibrate the water quality meter and provide a calibration sheet that contains information such as calibration date and calibration measurements for each parameter. If the water quality meter is to be used for more than a one day, a calibration check shall be performed using standard calibration solutions at the start of each day at a minimum. If the calibration check shows deviations from the standard values that exceed the ranges provided in bullet 10 below, the instrument shall be calibrated prior to further use. A calibration check should also be performed during the course of purging and sampling if the parameter measurements suggest that calibration drift has occurred. Document all calibration activities in the field notes, including date and time of calibration/calibration check, calibration solutions used, probe readings and make, model and serial number of the water quality meter. Note that if the water quality meter manufacturer recommends more frequent calibration/calibration checks than specified above, the manufacturer's recommendations are to be followed. See SOP-EDR016 for additional procedures regarding water quality meter calibration.

Extra care must be taken when calibrating the multi-parameter probe to prevent cross-contamination. Specifically, following immersion of the probes into each calibration standard, all probes should be thoroughly rinsed in distilled or de-ionized water and the excess water shaken off or blotted dry with a lint-free wipe. Conductivity standards are much more sensitive to cross contamination/dilution than other standards. Besides being easily diluted, conductivity standards also affect other parameters (specifically DO), and the conductivity probe should always be the first probe calibrated. The following order for calibration of a multi-parameter probe is to be followed:

- Specific Conductance;
- pH;
- DO;
- Turbidity; and
- All other parameters (there is no recommended order for these parameters).
- 4. Review the well construction details provided in the well development forms, borehole logs or well construction summary table from a previous report. Determine the well depth, well stick up, length of the screen interval, and depth to the top of the screen interval. If the well depth is unavailable, measure it with the interface probe;

Measure the initial water level (i.e., static water level) from the reference point on the well (which should be marked at the top of the well casing) with an interface probe. If measurable free-phase product is present in the well, discuss this with the Project Manager before proceeding further. Using the known well depth, confirm that at least 0.6 metres of water is present within the well. If less than 0.6 metres of water is present, low flow sampling may not be appropriate and the Project Manager is to be contacted before proceeding further;

5. Following decontamination, slowly install the pump or tubing (for peristaltic pumps) to the appropriate depth within the well. Do not connect the pump discharge tubing to the flow-through cell at this time. If the water level in the well is above the top of the screen interval, the pump or tubing intake depth will be the mid-point of the screen interval. If the water level is below the top of the screen interval, the pump or tubing intake will be set at the mid-point of the wetted interval (i.e., the distance between the static water level and the bottom of the well) or 0.6 metres from the bottom of the well, whichever is a greater distance from the bottom of the well. Pumping from within 0.6 metres of the bottom of the well has a higher potential to entrain sediment from the bottom of the well and is not to be completed unless authorized by the Project Manager.

The pump intake depth may vary from that described above at the discretion of the Project Manager depending on the specific purpose of the groundwater sampling program. For example, if chlorinated solvents that are denser than water are being assessed, it may be desirable to position the pump intake as close to the bottom of the well as possible, or if PHC-related parameters which are lighter than water are being assessed, it may be preferable to position the pump intake as close to the water table as possible. Pump intake depth should be confirmed with the Project Manager prior to the field program;

6. Turn on the pump and discharge groundwater into a purge bucket. Purge initially at a flow rate of approximately 250 millilitres/minute (mL/min). Increase or decrease the flow rate until the water level in the well reaches a steady state condition (i.e., a stabilized water level). The goal is to purge at as high a pumping rate as the well will sustain and still maintain a stabilized water level; however, purging rates should not exceed 500 mL/min during purging and sampling. Also, it is important that during the early phase of purging, emphasis should be put on minimizing pumping stress (i.e., rapid fluctuations in pumping rates).

Whenever possible, purge at a pumping rate low enough to keep the total drawdown in the well to less than 10 centimetres although this may not be achievable for low to moderate yield wells. Once a steady state condition is achieved, the purge rate must be maintained constant and should not be changed. Determine the flow rate using a graduated bucket, graduated measuring cup or graduated cylinder and a stop watch. If the well is purged dry even after reducing the flow rate to the minimum practical purging rate of approximately 50 mL/min to 100 mL/min, then low flow sampling procedures will not work for the well and the sampling procedure described in SOP-EDR008 for sampling low yield wells is to be followed. During purging and sampling, it is important to keep the pump intake below the water level in the well at all times to avoid aeration of the groundwater;

- 7. If the visual appearance of the groundwater is highly turbid once a stabilized water level is achieved, continue to discharge purged water directly into the purge bucket until the groundwater clears, as highly turbid groundwater may foul the flow-through cell. Once the turbidity clears up, connect the flow-through cell to the pump discharge tubing. If the groundwater remains highly turbid after approximately 15 minutes of purging, contact the Project Manager to discuss whether sampling should occur. Further well development may be required to remove excess sediment from the monitoring well before sampling can proceed;
- 8. Confirm the volume of the flow-through cell excluding the volume of the water quality meter probes. If this information is not readily available, fill the cell with water with the water quality probes inserted and empty its contents into a graduated cylinder or measuring cup to determine the volume. After connecting the discharge tubing to the flow-through cell, continue purging until the flow-through cell is full and turn on the multiparameter meter. Record the initial field parameter readings in the field notes. At a minimum, the field parameters that are to be monitored are pH, specific conductance, temperature, DO and ORP. The monitoring of turbidity is also a minimum requirement in Ontario and Manitoba. Field parameter readings are to be obtained at a frequency of no less than once every 5 minutes. Obtaining field parameter readings at a spacing of greater than 5 minutes apart may be required if the volume of the flow-through cell is large or pumping occurs at a low rate (e.g., 50 or 100 mL/min). For example, if the flowthrough cell has a volume of 300 mL and the pumping rate is 50 mL/min, it will take 6 minutes for the volume of water equivalent to the flow-through cell volume to pass through the cell and field parameter readings should be taken 6 minutes apart. If the pumping rate for the same flow-through cell is 100 mL/min, although it will take only 3

minutes for the volume of water equivalent to the flow-through cell volume to pass through the cell, field parameter readings are to be taken at 5 minute intervals.

Figure 1 shows a typical low flow groundwater sampling set up using a submersible pump. The set up when using a peristaltic pump is similar except that the only part of the extraction system in the well is tubing that is connected to the peristaltic pump at the ground surface (i.e., there is no pump mechanism within the well), and a second section of tubing connects the discharge of the peristaltic pump to the flow-through cell.

LOW-FLOW SAMPLING SETUP DIAGRAM

WATER QUALITY METER & FLOW-THROUGH-CELL

TUBING

PUMP WATER LEVEL METER

SCREEN INTERVAL

PUMP INTAKE

PUMP INTAKE

Figure 1: Low Flow Sampling Set Up Diagram

Reference: USEPA Region I EQASOP-GW 001, July 30, 1996, Revised January 19, 2010.

Air bubbles in the flow-through cell can result in inaccurate field parameter measurements, in particular for DO. If air bubbles appear in the flow-through cell, check that the discharge tubing is properly connected to the flow-through cell and check that the pump intake is located below the water table by confirming the pump intake depth and checking the water level in the well. If air bubbles persist in the flow-through cell, position the flow-through cell at a 45-degree angle with the ports facing upwards. This configuration should keep any gas bubbles entering the cell away from the multimeter probes and allow the air bubbles to exit the cell easily;

9. Regardless of the frequency of field parameter readings, purging is to be completed until field parameter stabilization is achieved, which occurs when the field parameter measurements for <u>all</u> of the parameters are within the following ranges for <u>three</u> consecutive sets of readings:

pH	±0.1 pH units
Specific Conductance	±3%
Temperature	±3%
DO	±10% for values greater than 0.5 milligrams per litres (mg/L), or three consecutive values less than 0.5 mg/L
ORP	±10 millivolts
Turbidity	±10% for values greater than 5 Nephelometric Turbidity Units (NTUs), or three consecutive values less than 5 NTU

- 10. Check the water level in the well during purging a minimum of once every 10 minutes to confirm that steady state conditions are being maintained. Although not mandatory, more frequent water level measurements can be made (e.g., at the time of each set of water quality parameters). Reduce the pumping rate if the water level measurements indicate that drawdown is occurring. Confirm the new pumping rate as per Step 7 and record it in the field notes;
- 11. Record the time of all water level and field parameter measurements in the field notes;
- Should field parameter stabilization not occur within one hour of the start of purging, contact the Project Manager to discuss whether to continue purging to attempt to achieve field parameter stabilization or whether to proceed with groundwater sample collection. The Project Manager will consider the total volume of water purged to this point and may

deem it suitable to collect the groundwater sample if, for example, three or more well volumes in total have been purged despite the lack of field parameter stability. Note that achieving stabilization of some parameters is more important with respect to certain contaminant types. For example, the stabilization of DO readings is important for volatile parameter sampling because fluctuations in DO concentrations may indicate that the groundwater is being aerated during the purging process which could result in volatile loss from the groundwater samples;

- 13. Following field parameter stabilization, disconnect the tubing from the flow-through cell and collect the groundwater samples by filling the appropriate laboratory-supplied sample containers directly from the discharge tubing. Note that it is important not to sample groundwater that has passed through the flow-through cell. If pumping at a moderate to high pumping (i.e., > 200 mL/min), the pumping rate should be reduced to prevent overfilling or the splashing of preservatives out of the sample containers. The order of sample collection should be most volatile parameters to least volatile parameters as follows:
 - VOCs and PHCs F1 Fraction;
 - PHCs F2-F4 Fraction;
 - PAHs and Base/Neutral/Acid Extractables;
 - Metals and Inorganics; and
 - Polychlorinated Biphenyls and Organochlorine Pesticides.

Special Notes for Volatile Parameter Sampling

When collecting samples for volatile parameter analysis (i.e., VOCs and PHCs F1 Fraction), the tubing must be filled completely and must not contain air bubbles prior to sample collection. If this is observed, increase the pumping rate slightly prior to sample collection until the tubing is filled and/or there are no longer any air bubbles, and then collect the sample. When collecting the groundwater samples for volatile parameter analysis, the sample vials should be tilted to avoid agitation and bubbling to minimize the potential for volatilization.

Special Notes for Metals Sampling

Groundwater samples collected for metals analysis will require filtering prior to preservation if dissolved metals concentrations are sought. Depending on the type and diameter of the discharge tubing used, in-line filters can be used for field filtering. Disposable filtration kits (e.g., Nalgene 0.45 micron filters) can also be used for field filtering. When collecting samples in containers that are pre-charged with preservatives,

care must be taken not to overfill the containers as some of the preservative may be lost which will result in the sample not being properly preserved. Also, sample containers for metals analysis typically have a fill line marked on the container and the container must not be filled to above this line as this will cause dilution of the preservative and the sample may not be properly preserved.

If field filtering cannot be completed, then the groundwater samples are to be collected in sample containers that do not contain preservatives, and the analytical laboratory is to be instructed to filter and preserve the samples immediately upon receipt. The procedure and necessary equipment required to filter and preserve metals samples using the low flow methods should be discussed with the Project Manager prior to mobilization to the field; and

14. Record the pump intake depth at the time of sample collection. Remove the pump and/or tubing from the well and decontaminate the sampling equipment.

5.3 Fieldwork Records

The purging and sampling of a monitoring well using the low flow groundwater sampling procedure described in this SOP are to be documented through the completion in full of the following field forms located in the Pinchin Orchard:

- EDR-GW-Low Flow Sampling; and
- EDR-GW-Water Quality Parameters.

Any deviations from this SOP along with the rationale for these deviations must be recorded on the forms.

Upon completion of the sampling event, the field notes must be submitted to the Project Manager for review. The field notes must also be scanned and a copy of the scan placed in the project folder on the server.

5.4 Additional Considerations for O. Reg. 153/04 Phase Two ESA Compliance

When completing a Phase Two Environmental Assessment (ESA) in accordance with Ontario Regulation 153/04, the following must be undertaken:

 Calibration checks <u>must</u> be made for the water quality meter used for field parameter measurements at the frequency specified in Step 3 of Section 5.2. Records of the calibration checks must be kept and appended to the Phase Two ESA report;

- At least one field duplicate groundwater sample must be collected for every ten samples submitted for analysis. The frequency is one for one to 10 samples, two for 11 to 20 samples, etc. for <u>all</u> parameters analyzed. For example, even if only one groundwater sample is collected for PAHs analysis, a duplicate of this sample must be collected; and
- When sampling for VOCs, one trip blank sample must be submitted to the laboratory for VOCs analysis for <u>each submission</u> to the laboratory. In other words, if a groundwater sampling program lasts three days and samples are submitted to the laboratory at the end of each day, there must be a total of three trip blanks submitted with the samples (i.e., one per day of sampling). Note that analysis of trip blank samples for other volatile parameters (e.g., PHCs (F1 Fraction)) is not mandatory but can be completed at the discretion of the Qualified Person.

In addition, low flow groundwater sampling using a bladder pump or centrifugal pump should be completed whenever well yields are high enough to permit it for all Phase Two ESAs undertaken to support the filing of a Record of Site Condition. This will minimize potential issues the Ministry of the Environment and Climate Change may have regarding the representativeness of the groundwater analytical data.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>Health & Safety Training</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

8.0 REFERENCES

U.S. Environmental Protection Agency Region I, Low Stress ('low flow') Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, EQASOP-GW 001, July 30, 1996, Revised January 19, 2010.

9.0 APPENDICES

None.

I:\2018 SOP Updates\SOP - EDR023 - REV006 - Low Flow Groundwater Sampling.docx

Template: Master SOP Template – February 2014

SOP - EDR025 - REV004 - QA/QC SAMPLING

Title:	QA/QC Sampling
Practice:	EDR
First Effective Date:	January 17, 2014
Version:	004
Version Date:	January 3, 2018
Author:	Robert MacKenzie
Authorized by:	Robert MacKenzie
Signature:	Not won-76in

TABLE OF CONTENTS

1.0	VERS	SION HISTORY	3
2.0		PE AND APPLICATION	
3.0	OVER	RVIEW	_
1.0		RIBUTION	
5.0		CEDURE	
5.1		ipment and Supplies	
5,2	QA/	QC Sampling Procedures	5
5	5.2.1	General Procedures for QA/QC Blank Sampling	
5	5.2.2	Trip Blanks	5
5	5.2.3	Field Blanks	6
5	5.2.4	Equipment Blanks	6
5	5.2.5	Evaluation of Blank Sample Results	7
5	5.2.6	General Procedures for QA/QC Duplicate Sampling	8
5	5.2.7	Field Duplicate Samples – Soil/Sediment	8
5	5.2.8	Field Duplicate Samples – Surface Water/Potable Water/Groundwater	S
5	5.2.9	Duplicate Sample Labelling	Ć
5	5.2.10	Evaluation of Duplicate Sample Results	ç

5.3	Fieldwork Records	10
5.4	Additional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance	11
6.0	TRAINING	11
7.0	MAINTENANCE OF SOP	11
8.0	REFERENCES	11
9.0	APPENDICES	12

Page 2

1.0 VERSION HISTORY

Version	Date	Summary of Changes	Author
Original	January 17, 2014	N/A	RLM
001	June 26, 2014	Amended blind duplicate sampling requirements	RLM
002	April 29, 2016	Updated Section 4.0/Amended O.Reg. 153/04 trip blank requirements	RLM
003	April 28, 2017	Removed reference to Pinchin West	RLM
004	January 3, 2018	In Section 5.2.6, clarified order of regular investigative sample and duplicate sample collection	RLM

2.0 SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) describes the standard procedures for collecting soil, water and sediment samples for quality assurance/quality control (QA/QC) purposes.

A QA/QC program is essentially a management system that ensures that quality standards are met within a stated level of confidence. The QC component of the program comprises daily activities in the field and laboratory that are used to control the quality of both the samples collected and the sample analytical data. The QA component of the program is made up of measures used to determine whether the QC activities are effective.

When completing a site investigation, one of our primary goals is to obtain analytical data that are representative of actual soil, water and/or sediment conditions at the site. The completion of a QA/QC program, consisting of the collection and analysis of various QA/QC samples, provides information for use in evaluating the accuracy of the analytical data used to assess the environmental quality of the site.

The type and number of samples comprising the QA/QC program will be determined by the Project Manager on a site-by-site basis, but will typically include at a minimum a trip blank when collecting water samples for volatile parameter analysis and duplicate soil, water or sediment samples. Other types of QA/QC samples may be collected (e.g., equipment or field blanks) to meet project-specific requirements at the discretion of the Project Manager or to meet regulatory requirements.

The QA/QC sampling requirements and procedures for indoor air, soil vapour and sorbent tube samples are described in SOP-EDR012, SOP-EDR018 and SOP-EDR027, respectively.

3.0 OVERVIEW

The types of samples collected for the QA/QC program during site investigations may include the following:

- Trip blanks;
- Field blanks;
- Equipment blanks; and
- Field duplicates.

Trip blanks are used to assess whether ambient air conditions may have resulted in positive bias of water samples collected for volatile parameter analysis during transportation of the sample containers to and from a project site. Note that the term "positive bias" means that reported sample concentrations are greater than actual in situ sample concentrations due to some form of "cross-contamination".

Field blanks are collected to assess whether ambient air conditions may have resulted in positive bias of samples collected at a project site for volatile parameter analysis at the time of sampling.

Equipment blanks are collected to assess the efficiency of non-dedicated monitoring/sampling equipment cleaning procedures.

Duplicate samples are collected to assess whether field sampling and laboratory analytical methods are suitable and reproducible.

The analytical results of the QA/QC samples are reviewed by the Project Manager to assess whether any data quality issues are evident which may affect the interpretation of the soil, water and/or sediment sample analytical data.

4.0 DISTRIBUTION

This is an on-line document. Paper copies are valid only on the day they are printed. Refer to the author if you are in any doubt about the accuracy of this document.

This SOP will be distributed to all Pinchin staff and others as follows:

- Posted to the SOP section of the Environmental Due Diligence and Remediation (EDR)
 Practice Line on the Pinchin Orchard; and
- Distributed to senior staff at Le Groupe Gesfor Poirier and Pinchin LeBlanc for distribution as appropriate.

MEMBER OF

5.0 PROCEDURE

5.1 Equipment and Supplies

The equipment/supplies required for QA/QC sample collection are the same as that used for regular investigative sampling, except for the following:

- Volatile organic compound (VOC)-free distilled water supplied by the analytical laboratory for use in the collection of field blanks and/or equipment blanks;
- Additional sample jars supplied by the analytical laboratory for the collection of field blanks, equipment blanks and field duplicates; and
- Trip blanks supplied by the analytical laboratory.

5.2 QA/QC Sampling Procedures

5.2.1 General Procedures for QA/QC Blank Sampling

The analytical laboratory that will be completing the analysis of the regular investigative samples and QA/QC samples for a project must supply the water used to collect field blanks and equipment blanks. Water provided by another analytical laboratory or store-bought distilled water must not be used.

5.2.2 Trip Blanks

A trip blank is a set of VOC sample vials filled by the analytical laboratory with VOC-free distilled water and shipped with the sample containers. A trip blank is to be stored with the sample containers provided by the analytical laboratory during travel to the project site, while on the project site, and during travel from the project site back to the analytical laboratory. The sample containers comprising a trip blank are not to be opened in the field.

For some projects, submissions of volatile parameter samples to the analytical laboratory over several days will be required. In this case, a trip blank sample should accompany each submission to the laboratory. If this situation is anticipated, the Project Manager must request that the analytical laboratory provide sufficient trip blanks so that a trip blank can accompany the submission of each set of samples to the laboratory.

Trip blanks are to be analyzed for the same volatile parameters (i.e., VOCs and/or petroleum hydrocarbons (PHCs) (F1 fraction)) as the regular investigative samples. For example, if the groundwater sampling program includes analysis of VOCs and PHCs (F1-F4 fractions), then the trip blank(s) require analysis of VOCs and PHCs (F1 fraction). If the groundwater sampling program only includes VOC analysis, then the trip blank(s) require analysis of VOCs only.

Unless specified by the Project Manager, trip blanks are not required for soil and sediment sampling, or for water sampling involving only non-volatile parameters. At the discretion of the Project Manager and to meet project-specific requirements, trip blanks for non-volatile parameters can be prepared and analyzed using the same principles as for volatile parameter trip blanks.

5.2.3 Field Blanks

A field blank is a set of VOC sample vials filled during a sampling event at a project site with VOC-free distilled water supplied by the analytical laboratory and submitted for analysis of volatile parameters (i.e., VOCs and/or PHCs (F1 fraction)).

Field blanks are to be collected at a sample location considered "worst case" with respect to ambient air conditions (e.g., adjacent to and downwind of the pump island of an active retail fuel outlet, inside an active on-the-premises dry cleaner, etc.). At project sites where there is no obvious "worst case" ambient air location, the field blank can be collected at a sampling location picked randomly. The field blank collection location and rationale for selecting it must be documented in the field notes.

If a groundwater sampling event at a project site occurs over more than one day, a field blank is to be collected for each day of sampling.

Some project sites may have an isolated area where the ambient air conditions are significantly poorer than the remainder of the site and a field blank collected from this area may not be representative of conditions elsewhere on the site. In this case, at the discretion of the Project Manager, the collection of two field blanks may be appropriate, with one field blank collected from the poor ambient air area and one field blank collected from a location outside of this area.

Unless specified by the Project Manager, field blanks are not required for soil and sediment sampling, or for water sampling involving only non-volatile parameters. At the discretion of the Project Manager and to meet project-specific requirements, field blanks for non-volatile parameters can be collected and analyzed using the same principles as for volatile parameter field blanks.

5.2.4 Equipment Blanks

An equipment blank is collected by pouring VOC-free distilled water supplied by the analytical laboratory either over or through non-dedicated sampling/monitoring equipment that has been cleaned following sampling/monitoring using the procedures outlined in SOP-EDR009. The resulting rinsate is then captured in sample containers appropriate for the intended analysis. Note that the surface over which the distilled water is poured must be the surface from which samples are collected from or that is in contact with the medium being monitored. For example, if an equipment blank is being collected from a split-spoon sampler, the distilled water must be poured through the interior of the sampler, and not the exterior of the sampler.

The Project Manager will be responsible for determining the sampling/monitoring equipment from which equipment blanks will be obtained, the number of equipment blanks and the parameters to be analyzed. Regarding the latter, the parameters analyzed for equipment blanks are typically the parameters of concern for a given project site.

5.2.5 Evaluation of Blank Sample Results

The Project Manager will evaluate the results of the blank sample analysis to assess whether these results show that bias may have been introduced to investigative samples collected during the field sampling activities. Judgement by the Project Manager will be required to assess whether the blank sample results have any effect on the interpretation of the investigative sample results. This is assessed on a case-by-case basis, but the following general principles can be applied:

- If all soil, groundwater and/or sediment samples collected for a site investigation meet the applicable environmental standards/criteria, the presence of detectable or elevated parameter concentrations in the blanks has no effect on the interpretation of the investigative sample results;
- of these parameters are present in the regular investigative samples at concentrations exceeding the applicable environmental standards/criteria, the blank sample results have no effect on the interpretation of the investigative sample results;
- If parameters have detectable or elevated parameter concentrations in the blank samples and one or more of these parameters are present in the regular investigative samples at concentrations exceeding the applicable environmental standards/criteria, then positive bias of the regular investigative samples may have occurred. The Project Manager will need to assess a number of variables, including the relative parameter concentrations in the blank and regular investigative samples, to determine whether the regular investigative sample data are considered representative and usable for assessing the environmental quality of the site. If the regular investigative sample data are questionable, then resampling may be required; and
- If the regular investigative samples have exceedances of the applicable environmental standards/criteria and the blank samples have non-detectable parameter concentrations, the blank sample results have no effect on the interpretation of the investigative sample results.

5.2.6 General Procedures for QA/QC Duplicate Sampling

Whenever possible, duplicate samples are to be collected from "worst case" sample locations. The reason for this is that Relative Percent Differences (RPDs) are calculated using the analytical results of the duplicate and regular investigative samples to evaluate the suitability and reproducibility of field sampling and laboratory analytical methods. However, RPDs for a given parameter can only be calculated if there are detectable concentrations in both samples, and "worst case" sample locations are the most likely to have detectable levels of parameters of concern. The calculation and evaluation of RPDs is discussed at the end of this section.

When filling sample containers, the order of collection is to fill the sample container for a particular parameter or parameters for the regular investigative sample first and then fill the sample container for the same parameter or parameters for the duplicate sample second. For example, if groundwater was being sampled for PAHs and metals and a duplicate sample was required, the order of filling the sample containers would regular investigative sample for PAHs, duplicate sample for PAHs, regular investigative sample for metals and duplicate sample for metals.

5.2.7 Field Duplicate Samples – Soil/Sediment

Soils/sediments are frequently heterogeneous because they are typically deposited in horizontal layers over time, causing both small scale and large scale grain size variations that can often result in significant variations in contaminant concentrations between layers. Because of this, it is important that duplicate soil/sediment samples be collected from the same vertical depths as the regular investigative samples in sample cores or at discrete sampling locations (e.g., grab samples).

When collecting a duplicate soil/sediment sample from a sampling device that provides a soil core (e.g., dual-tube sampler, split-spoon sampler), the soil core is to be split in half vertically (i.e., longitudinally). A portion of one half of the core is used for the regular investigative sample and a portion of the other half of the core is used for the duplicate sample. The portion of each core placed in sample jars for analysis must be obtained from the same depth interval within the cores.

When collecting a duplicate soil/sediment sample from a grab sample (e.g., excavation floor or sidewall), the field duplicate sample must be collected as close as possible to the regular investigative sample location at the sample depth and within the same soil layer.

There are no special procedures for collecting field duplicates of composite soil/sediment samples given that the soil/sediment is homogenized during the composite sample collection procedure.

A field duplicate soil/sediment sample must be collected at the same time as the regular investigative sample. Retroactively splitting a soil/sediment sample to obtain a field duplicate sample is not permitted.

5.2.8 Field Duplicate Samples – Surface Water/Potable Water/Groundwater

There are no special procedures for collecting surface water/potable water/groundwater field duplicate samples with the following exceptions:

- When collecting a duplicate water sample for metals analysis and field filtering is required, a new filter is to be used to collect the duplicate sample unless the groundwater has a low sediment content; and
- When collecting a duplicate surface water sample, the sample containers for the same parameter(s) should be immersed in the surface water body at the same location and at the same time whenever possible.

5.2.9 Duplicate Sample Labelling

The duplicate sample should have the term "DUP" in the sample identifier to distinguish it as a duplicate sample.

5.2.10 Evaluation of Duplicate Sample Results

Duplicate sample results are evaluated by calculating RPDs using the following equation:

RPD = <u>Absolute Value (Original Concentration – Duplicate Concentration)</u> X 100% (Original Concentration + Duplicate Concentration)/2

RPDs are not calculated unless the parameter concentrations in both the regular investigative sample and duplicate sample are detectable concentrations above the corresponding practical quantitation limit (PQL) for the parameter, which is equal to five times the lowest laboratory reportable detection limit (RDL).

For example, if the RDL for a parameter is 0.1 parts per million (ppm), and the concentration in the regular investigative sample is 0.4 ppm and the concentration in the duplicate sample is 0.6 ppm, the RPD cannot be calculated because the concentration in the regular investigative sample (0.4 ppm) is less than the PQL of 0.5 ppm (5 times the RDL of 0.1 ppm).

Also, if the regular investigative sample concentration is 2 ppm and the duplicate sample concentration is <1 ppm, then the RPD cannot be calculated regardless of the PQL since detectable concentrations were not reported for both samples.

Calculated RPDs for the regular investigative and field duplicate samples are compared to established performance standards to evaluate the suitability and reproducibility of field sampling and laboratory analytical methods. In Ontario, the Ontario Ministry of the Environment and Climate Change (formerly the Ontario Ministry of the Environment) provides duplicate sample performance standards in the document *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the*

Environmental Protection Act, dated March 9, 2004, amended as of July 1, 2011. Although these performance standards only strictly apply to laboratory duplicate samples, they are considered suitable for comparison to field duplicate samples. Other provinces provide their own similar guidance.

When calculated RPDs exceed the performance standards, the Project Manager will evaluate whether these results have any effect on the interpretation of the investigative sample results. This is judged on a case-by-case basis, but in many situations RPD values above the performance standards can be attributed to small scale heterogeneity inherent in soil samples or variations in the quantity of sediment in groundwater or surface water samples, and are not indicative of poor field sampling or laboratory procedures. The results of internal laboratory QA/QC sampling may provide additional information as to the precision of the data. Furthermore, if all soil, water and/or sediment samples collected for a site investigation meet the applicable environmental standards/criteria, the apparent lack of precision shown by elevated RPD values should not affect the interpretation of the investigative sample results.

Sometimes a regular investigative sample will meet the applicable environmental standards/criteria and its corresponding duplicate sample will fail the applicable environmental standards/criteria (or vice versa). In Ontario, it is permitted to average the parameter concentrations of two samples provided they are collected at the same time and from the same sample location and depth. The resulting average parameter concentrations are then compared with the applicable standards to determine whether the sample meets or fails the standards. This approach is not acceptable in all jurisdictions. In situations where averaging is not acceptable to the regulatory agency, the "worst case" sample result is to be used in assessing the environmental condition of the project site.

5.3 Fieldwork Records

The field notes must include the following information with respect to QA/QC samples:

- The date and time of sampling for all blank/duplicate samples;
- The sample location for field blanks and the rationale for selecting the field blank locations:
- The type of equipment from which a rinsate was collected for equipment blanks and the parameters to be analyzed; and
- The corresponding regular investigative sample location/sample interval for duplicate samples and the parameters to be analyzed.

5.4 Additional Considerations for Ontario Regulation 153/04 Phase Two ESA Compliance

When completing a Phase Two ESA in accordance with Ontario Regulation 153/04, the QA/QC sampling program must consist of the following as a minimum:

At least one field duplicate soil, sediment or groundwater sample must be collected for
every ten samples submitted for analysis. The frequency is one duplicate sample for one
to 10 regular investigative samples, two duplicate samples for 11 to 20 samples, etc. for
all parameters analyzed. For example, even if only one groundwater sample is collected
for PAHs analysis, a duplicate of this sample must be collected.

When sampling for VOCs, one trip blank sample must be submitted to the laboratory for VOCs analysis for <u>each submission</u> to the laboratory. In other words, if a groundwater sampling program lasts three days and samples are submitted to the laboratory at the end of each day, there must be a total of three trip blanks submitted with the samples (i.e., one per day of sampling). Note that analysis of trip blank samples for other volatile parameters (e.g., PHCs (F1 Fraction)) is not mandatory but can be completed at the discretion of the Qualified Person.

6.0 TRAINING

The Practice Leader is responsible for identifying the training needs of EDR staff and ensuring that staff are trained and competent before undertaking work assignments.

<u>All trained personnel</u> are responsible for identifying coaching or re-training needs (if they are uncomfortable with work assignments that have been assigned).

The careful application of <u>Health & Safety Training</u> by each employee is an integral part of all activities and is assumed as part of this SOP.

7.0 MAINTENANCE OF SOP

1 Year.

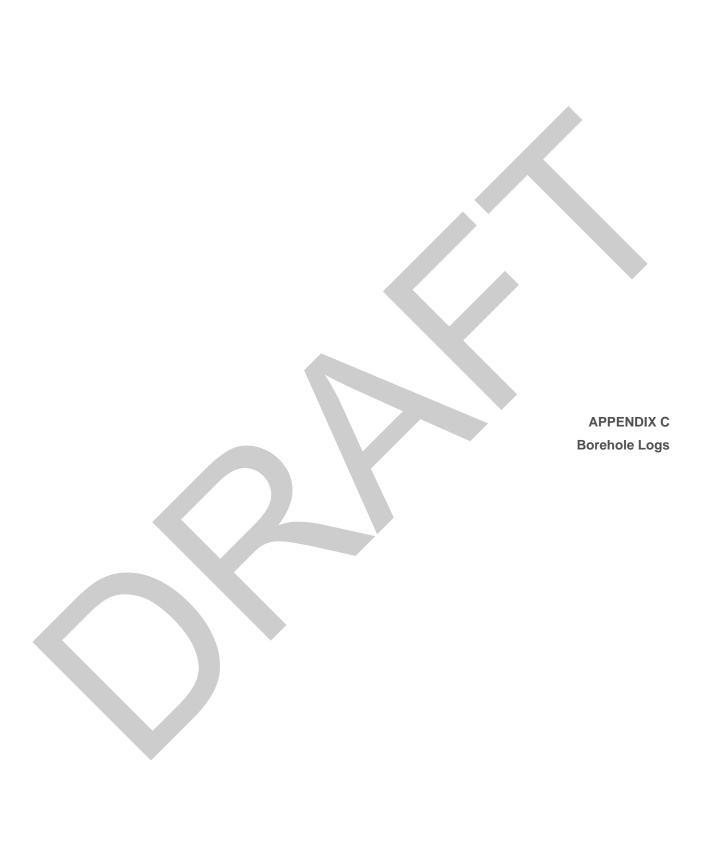
8.0 REFERENCES

Association of Professional Geoscientists of Ontario, *Guidance for Environmental Site Assessments* under Ontario Regulation 153/04 (as amended), April 2011.

Ontario Ministry of the Environment and Climate Change, *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act*, March 9, 2004, as amended as of July 1, 2011.

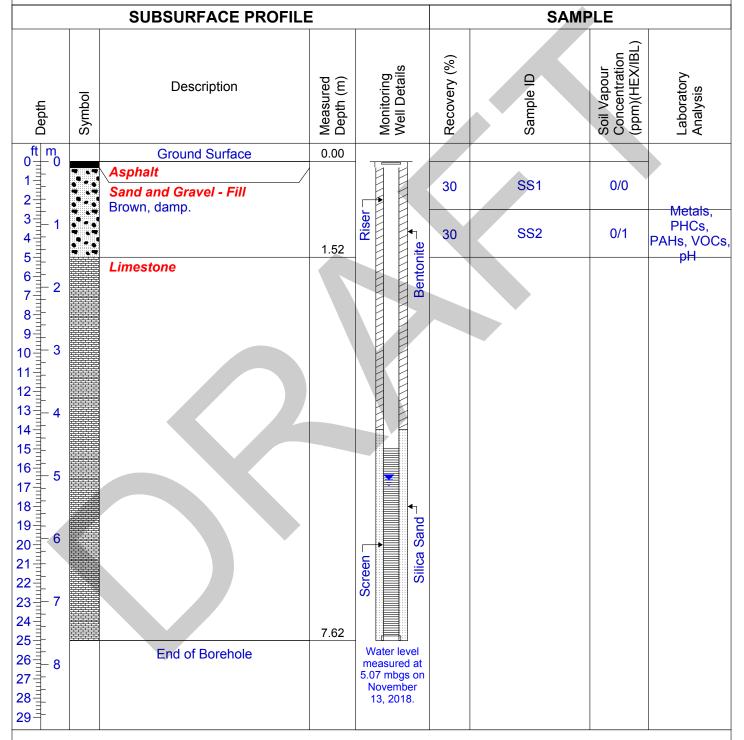
Water, Air and Climate Change Branch, Ministry of Water, Land and Air Protection, Province of British Columbia, *British Columbia Field Sampling Manual*, 2003.

9.0 APPENDICES


None.

I:\2018 SOP Updates\SOP - EDR025 - REV004 - QA QC Sampling.docx

Template: Master SOP Template – February 2014



Project #: 230236.002 Logged By: MK

Project: Phase II Environmental Site Assessment Client: The Great-West Life Assurance Company

Location: 320 McRae Avenue, 1976 Scott Street, 311 and 316 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: November 1, 2018

Contractor: Strata Drilling Group

Drilling Method: Direct Push / Air Rotary

Well Casing Size: 5.08 cm

Note: Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: 100.29

Top of Casing Elevation: 100.19

Project #: 230236.002 Logged By: MK

Project: Phase II Environmental Site Assessment Client: The Great-West Life Assurance Company

Location: 320 McRae Avenue, 1976 Scott Street, 311 and 316 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: November 1, 2018

		SUBSURFACE PROFILE				SAMF	LE	
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm)(HEX/IBL)	Laboratory Analysis
_ft m		Ground Surface	0.00					
ft m 0 0 0 1 1 1 2 2 1		Sand and Gravel Grey/brown, damp.			30	SS1	0/1	
3 1 4 5 5 4			1.52	Riser	30	SS2	0/1	Metals, PHCs, PAHs, VOCs
6 6 7 7 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11		End of Borehole	7.62	Screen Nater level measured at 6.13 mbgs on November 13, 2018.				

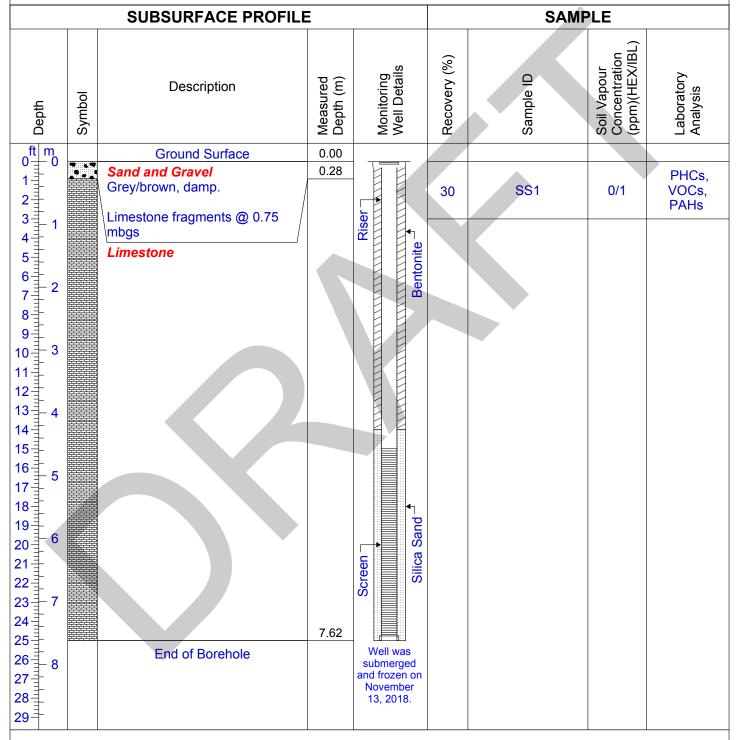
Contractor: Strata Drilling Group

Drilling Method: Direct Push / Air Rotary

Well Casing Size: 5.08 cm

Note: Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI). Grade Elevation: 100.17

Top of Casing Elevation: 100.28



Project #: 230236.002 Logged By: MK

Project: Phase II Environmental Site Assessment Client: The Great-West Life Assurance Company

Location: 320 McRae Avenue, 1976 Scott Street, 311 and 316 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: November 1, 2018

Contractor: Strata Drilling Group

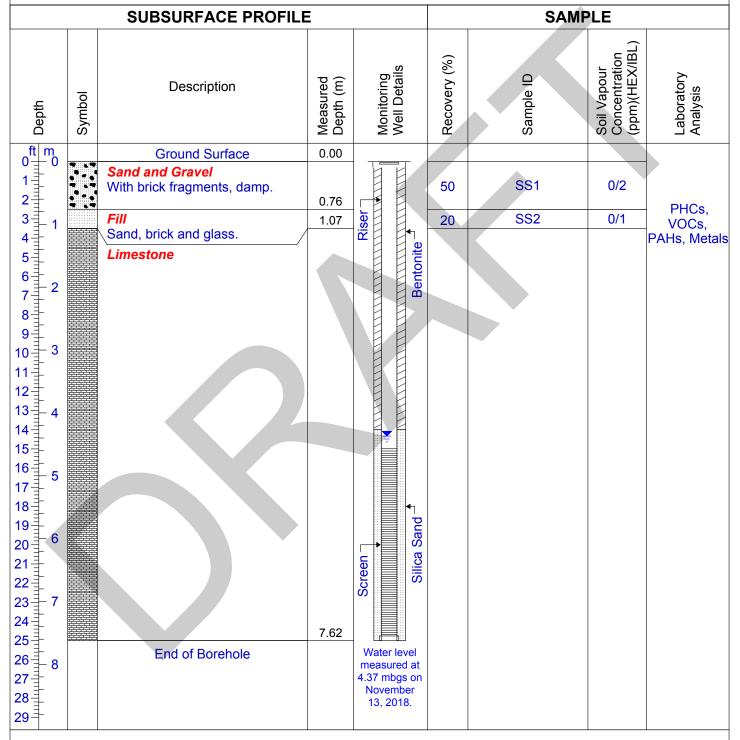
Drilling Method: Direct Push / Air Rotary

Well Casing Size: 5.08 cm

Note: Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: NM

Top of Casing Elevation: NM



Project #: 230236.002 Logged By: MK

Project: Phase II Environmental Site Assessment Client: The Great-West Life Assurance Company

Location: 320 McRae Avenue, 1976 Scott Street, 311 and 316 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: November 2, 2018

Contractor: Strata Drilling Group

Drilling Method: Direct Push / Split Spoon

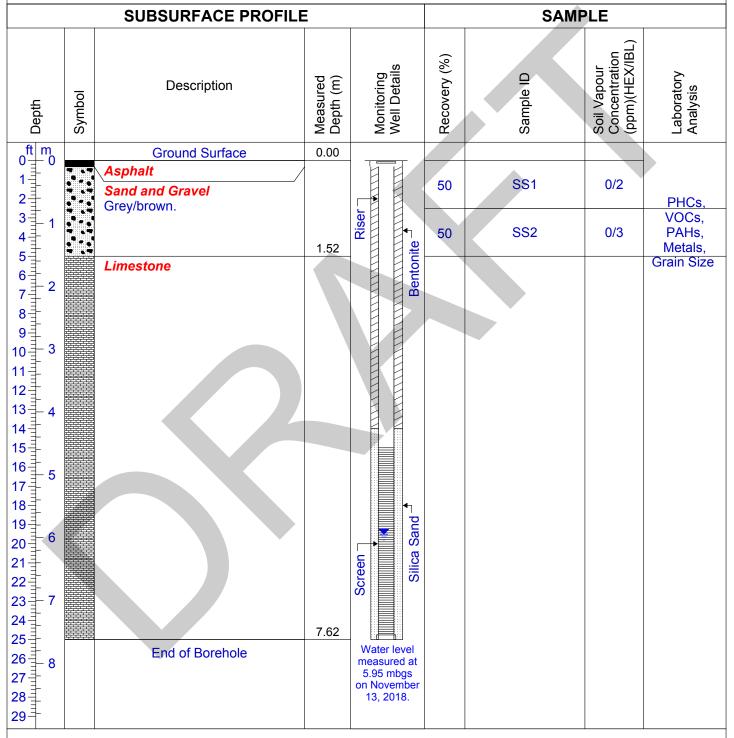
/ Air Rotary

Well Casing Size: 5.08 cm

Note: Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: 100.81

Top of Casing Elevation: 100.70



Project #: 230236.002 Logged By: MK

Project: Phase II Environmental Site Assessment Client: The Great-West Life Assurance Company

Location: 320 McRae Avenue, 1976 Scott Street, 311 and 316 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: November 2, 2018

Contractor: Strata Drilling Group

Drilling Method: Direct Push / Split Spoon

/ Air Rotary

Well Casing Size: 5.08 cm

Note: Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: 100.46

Top of Casing Elevation: 100.56

Project #: 230236.002 Logged By: MK

Project: Phase II Environmental Site Assessment **Client:** The Great-West Life Assurance Company

Location: 320 McRae Avenue, 1976 Scott Street, 311 and 316 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: November 2, 2018

		SUBSURFACE PROFILE	.			SAMF	LE	
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm)(HEX/IBL)	Laboratory Analysis
oft m		Ground Surface	0.00					
		Asphalt	0.15					
1-		Sand and Gravel Grey/brown, damp.	0.10	No Monitoring Well Installed —	50	SS1	0/1	
3-1 -1 -1			1.52	No Monitoring	80	SS2	0/3	PHCs, VOCs, PAHs, Metals, pH
-		End of Borehole Due to refusal on Bedrock.						
6- 2 7- 8- 9- 10-								

Contractor: Strata Drilling Group

Drilling Method: Direct Push / Split Spoon

Well Casing Size: 5.08 cm

Note: Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI). **Grade Elevation: NM**

Top of Casing Elevation: NM

Project #: 230236.002 Logged By: MK

Project: Phase II Environmental Site Assessment Client: The Great-West Life Assurance Company

Location: 320 McRae Avenue, 1976 Scott Street, 311 and 316 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: November 2, 2018

		SUBSURFACE PROFILE				SAMF	LE	
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm)(HEX/IBL)	Laboratory Analysis
ft m 0 0		Ground Surface	0.00	_				
		Asphalt	0.10					
1-		Sand and Gravel With wood fragments, damp, black staining, no odours.	0.76	No Monitoring Well Installed	50	SS1	0/3	PHCs, VOCs, PAHs, Metals, pH
3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		Sand and Gravel Brown/grey, with silt, damp.	1.52	No Monitoring	50	SS2	0/1	
5-		End of Borehole Due to refusal on Bedrock.		_				
6 - 2		Suc to Totalai Off Boulous.						
7-								
8-								
9-								
10-3								

Contractor: Strata Drilling Group

Drilling Method: Direct Push / Split Spoon

Well Casing Size: 5.08 cm

Note: Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI). **Grade Elevation: NM**

Top of Casing Elevation: NM

Project #: 230236.002 Logged By: MK

Project: Phase II Environmental Site Assessment Client: The Great-West Life Assurance Company

Location: 320 McRae Avenue, 1976 Scott Street, 311 and 316 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: November 2, 2018

		SUBSURFACE PROFILE	.			SAME	PLE	
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm)(HEX/IBL)	Laboratory Analysis
oft m		Ground Surface	0.00					
0-0 - - 1- - 2- - -		Asphalt Sand and Gravel Brown, with some silt and organics, damp.	0.10	No Monitoring Well Installed ——	50	SS1	0/1	PHCs, VOCs, PAHs, Metals
3- 1 		End of Borehole Due to refusal on Bedrock.	0.84	•				

Contractor: Strata Drilling Group

Drilling Method: Direct Push / Split Spoon

Well Casing Size: 5.08 cm

Note: Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI). Grade Elevation: NA

Top of Casing Elevation: NA

Project #: 230236.002 Logged By: MK

Project: Phase II Environmental Site Assessment Client: The Great-West Life Assurance Company

Location: 320 McRae Avenue, 1976 Scott Street, 311 and 316 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: November 2, 2018

		SUBSURFACE PROFILE			SAMPLE			
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm)(HEX/IBL)	Laboratory Analysis
_ft m		Ground Surface	0.00					
ft m 0 = 0 1 = 2		Sand and Gravel Brown, damp.		talled 🕨	50	SS1	0/2	
3 1 4 1 5 1				Well Ins	50	SS2	0/1	
6 2				No Monitoring Well Installed	50	SS3	0/2	PHCs,
8 9 10 3			3.29	NO NO	50	SS4	0/2	VOCs, PAHs, Metals, pH, Grain Size
11 12 13 4 14 14 15 16 17 18 19 11 19 11 16 16 16 16 16 16 16 16 16 16 16 16		End of Borehole Due to refusal on Bedrock.						Size
20 = 21 = 22 = 23 = 7								

Contractor: Strata Drilling Group

Drilling Method: Direct Push / Split Spoon

Well Casing Size: 5.08 cm

Note: Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI). **Grade Elevation: NM**

Top of Casing Elevation: NM

Project #: 230236.002 Logged By: MK

Project: Phase II Environmental Site Assessment Client: The Great-West Life Assurance Company

Location: 320 McRae Avenue, 1976 Scott Street, 311 and 316 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: November 2, 2018

		SUBSURFACE PROFILE	.		SAMPLE			
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm)(HEX/IBL)	Laboratory Analysis
oft m	ր 📗	Ground Surface	0.00					
	U L	Asphalt	0.10					
1-			0.76	/ell Installed	45	SS1	0/2	PHCs, VOCs, PAHs, Metals, pH
3-	1	Sand and Gravel Brown/black, with limestone fragments thoughout, damp.		No Monitoring Well Installed	85	SS2	0/1	
5-			1.68	•				
6-		End of Borehole Due to refusal on Bedrock.						
7-	2							
8-								
9-	3	V						

Contractor: Strata Drilling Group

Drilling Method: Direct Push / Split Spoon

Well Casing Size: 5.08 cm

Note: Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI). **Grade Elevation: NM**

Top of Casing Elevation: NM

Project #: 230236.002 Logged By: MK

Project: Phase II Environmental Site Assessment Client: The Great-West Life Assurance Company

Location: 320 McRae Avenue, 1976 Scott Street, 311 and 316 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: November 2, 2018

		SUBSURFACE PROFILE	=			SAME	PLE	
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration (ppm)(HEX/IBL)	Laboratory Analysis
ft m 0 — 0		Ground Surface	0.00					
		Asphalt	0.05	T				
1-		Sand and Gravel Brown, with large stones, damp.	0.76	No Monitoring Well Installed	75	\$\$1	0/2	PHCs, VOCs, PAHs, Metals
3-		End of Borehole Due to refusal on Bedrock.						
4-								

Contractor: Strata Drilling Group

Drilling Method: Direct Push / Split Spoon

Well Casing Size: 5.08 cm

Note: Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI). **Grade Elevation: NM**

Top of Casing Elevation: NM

Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: May 19, 2020

	SUBSURFACE PROFILE						SAMPI	E	
1	E Ceb	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
ft	m - 0		Ground Surface	0.00	_				
1-			Concrete Sand and Gravel Brown, damp, no odours.	0.76		80	BH101 SS1	30/1.0	PHCs, VOCs, PAHs, Metals
3- 4- 5-	- 1 -		End of Borehole Refusal at 0.76 mbgs on Inferred Bedrock.		No Monitoring Well Intalled				
6- 7- 8-	- 2				No Monit				
9- 10- 11-	- - 3				<u>*</u>				
12-	-								
13-	- 4								
15	-								

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push

Well Casing Size: NA

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: NM

Top of Casing Elevation: NA

Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: May 19, 2020

			SUBSURFACE PROFILE			SAMPLE				
dag	בולם ביים	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis	
ft	m - 0		Ground Surface	0.00						
0-	- 0		Concrete	0.15	1					
1-2-	- -		Sand and Gravel Brown, trace silt, damp, no odours.			50	BH102 SS1	20/1.0		
3-	- - 1			1.22	Intalled		BH102 SS2	30/1.0	PHCs, VOCs, PAHs, Metals	
			End of Borehole		Wel					
5	- - 2		Refusal at 1.22 mbgs on Inferred Bedrock.		No Monitoring Well Intalled					
9-110-	- 3									
11-	-									
12-	_									
13-	- 4									
14-	_									
15-	_									
16-										

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push

Well Casing Size: NA

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: NM

Top of Casing Elevation: NA

Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: May 19, 2020

		SUBSURFACE PROFILE				SAMPI	E	
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
ft m 0 0 0		Ground Surface	0.00					
		Concrete	0.15	Ī				DUC- VOC-
1-1			0.46		50	BH103 \$S1	5/6.0	PHCs, VOCs, PAHs, Metals
2-1 3-1 4-1 5-1 6-1 2 7-1 8-1 9-1 10-3 11-1 12-1 13-4 14-1 15-1 16-1		Refusal at 0.46 mbgs on Inferred Bedrock.		→ No Monitoring Well Intalled				

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push

Well Casing Size: NA

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: NM

Top of Casing Elevation: NA

Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: May 19, 2020

SUBSURFACE PROFILE SAMPLE								
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
ft m		Ground Surface	0.00	_				
		Concrete	0.15		47			
2-		Sand and Gravel Damp, black staining, PHC-like odour.	0.76		40	BH104 SS1	1500/973	PHCs, VOCs, PAHs, Metals
3 - 1		End of Borehole		Well Intalled				
5-1 6-1 2 7-1		Refusal at 0.76 mbgs on Inferred Bedrock.		No Monitoring Well Intalled				
8 - 9 - 10 - 3								
11-								
12-13-4								
14-								
15 - 16 -								

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push

Well Casing Size: NA

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: NM

Top of Casing Elevation: NA

Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: May 19, 2020

		SUBSURFACE PROFILE				SAMPI	E	
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
ft m 0 — 0		Ground Surface	0.00					
		Concrete	0.15	1 1				
2-		Sand and Gravel Brown, moist, no odours.	0.76		80	BH105 SS1	20/2.0	PHCs, VOCs, PAHs, Metals
3 - 1		End of Borehole	1	No Monitoring Well Intalled				
62		Refusal at 0.76 mbgs on Inferred Bedrock.		No Monitoring				
9-110-3				<u> </u>				
11-1								
13 - 4								
16			Note:					

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push

Well Casing Size: NA

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: NM

Top of Casing Elevation: NA

Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: May 19, 2020

			SUBSURFACE PROFILE			SAMPLE				
4		Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis	
ft	m - 0		Ground Surface	0.00						
0=	- 0		Concrete	0.15	1					
1-2-	-		Sand and Gravel Brown, moist, no odours.			75	BH106 SS1	40/1.6		
3-	- - 1			1.22	l Intalled		BH106 SS2	50/1.0	PHCs, VOCs, PAHs, Metals	
	_		End of Borehole		Wel		Y Y			
5	- - - 2		Refusal at 1.22 mbgs on inferred Bedrock.		No Monitoring Well Intalled					
9-	- 3				•					
11-										
12-	<u> </u>									
13-	- 4									
14-	_									
15	_									
16-	_									

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push

Well Casing Size: NA

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: NM

Top of Casing Elevation: NA

Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: May 20, 2020

		SUBSURFACE PROFILE			SAMPLE			
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
ft m 0-0		Ground Surface	0.00	-				
		Concrete	0.15	Î	47			
2-		Sand Brown, trace gravel, damp, no odours.			80	BH107 SS1	5/0.0	
3 - 1		Some brick fragments and large		II Intalled		BH107 SS2	30/0.0	
5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		gravel at 1.22 mbgs.		No Monitoring Well Intalled		BH107 SS3	60/0.0	
7-1 8-1			2.59	No Mor	40	BH107 SS4	75/0.0	PHCs, VOCs, PAHs, Metals
9-		End of Borehole	2.00					
10 - 3				▼				
11=		Refusal at 2.59 mbgs on Inferred Bedrock.						
12=								
13 - 4								
14-								
15 -								
16								

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push

Well Casing Size: NA

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: NM

Top of Casing Elevation: NA

Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: May 20, 2020

SUBSURFACE PROFILE SAMPLE								
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
ft m		Ground Surface	0.00	_				
		Concrete	0.15	1				
1-		Sand and Gravel Fill Brown, damp, no odours.	0.76		75	BH108 SS1	25/1.0	PHCs, VOCs, PAHs, Metals
3 - 1 4 - 1 5 - 1 6 - 2 7 - 1 8 - 1 9 - 1 10 - 3		End of Borehole Refusal at 0.76 mbgs on Inferred Bedrock.	0.76	→ No Monitoring Well Intalled				
11 - 12 - 13 - 4 14 - 15 - 16 - 16 - 16 - 16 - 16 - 16 - 16								

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push

Well Casing Size: NA

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: NM

Top of Casing Elevation: NA

Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: May 20, 2020

SUBSURFACE PROFILE					SAMPLE			
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
ft m 0 0		Floor Surface	0.00		47			
1-		Concrete Sand and Gravel Fill Brown, damp, brick fragments throughout, no odours.	0.15		80	BH109 SS1	20/0.0	
3 - 1		Black colouration at 1.52		II Intalled		BH109 SS2	40/0.0	
5-1		mbgs.		No Monitoring Well Intalled		BH109 SS3	50/0.0	PHCs, VOCs, PAHs, Metals
7-2			2.59	No Mo	50	BH109 SS4	50/0.0	
9=		End of Borehole						
10=3				<u> </u>				
11-		Refusal at 2.59 mbgs on Inferred Bedrock.						
12-								
13 - 4								
14								
15-								
16			Note:					

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push

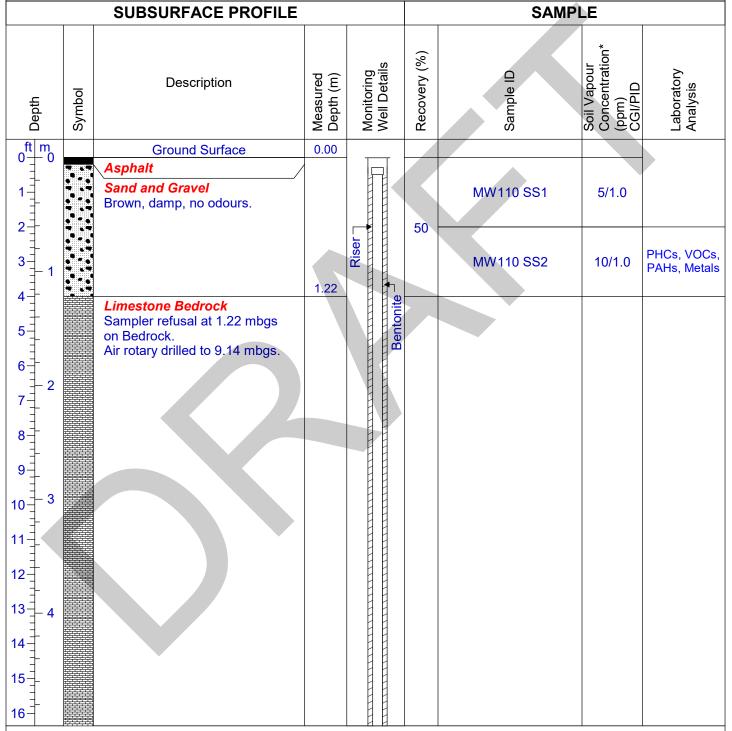
Well Casing Size: NA

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a combustible gas indicator (CGI) and a photoionization detector (PID).

Grade Elevation: NM

Top of Casing Elevation: NA

Project #: 230236.006 Logged By: MK


Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315

Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: May 21, 2020

Contractor: Strata Drilling Group Inc.

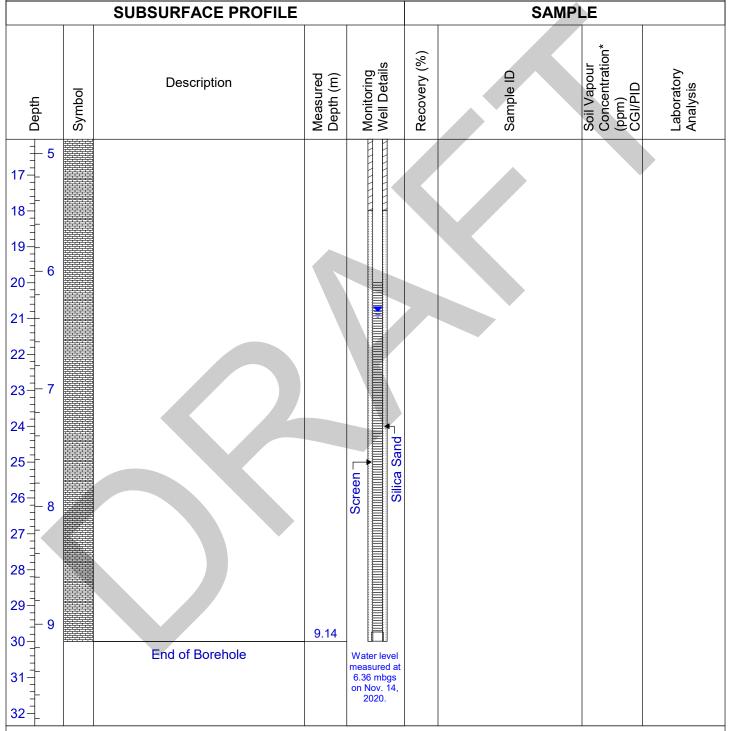
Drilling Method: Direct Push/Air Rotary

Well Casing Size: 5.1 cm

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI). Grade Elevation: 64.52 mamsl

Top of Casing Elevation: 64.37 mamsl


Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315

Drill Date: May 21, 2020

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push/Air Rotary

Well Casing Size: 5.1 cm

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI). Grade Elevation: 64.52 mamsl

Top of Casing Elevation: 64.37 mamsl

Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: May 14, 2020

		SUBSURFACE PROFILE				SAMPI	E	
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
ft m		Ground Surface	0.00	_				
1-1		Asphalt Sand and Gravel Brown, damp, no odours.	0.76		75	BH111 SS1	25/1.0	PHCs, VOCs, PAHs, Metals
3-1 4-1 5-1 6-1 2 7-1 8-1 9-1		End of Borehole		No Monitoring Well Intalled				
10 - 3 11 - 1 12 - 1 13 - 4 14 - 1 15 - 1 16 - 1				•				

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push

Well Casing Size: NA

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: NM

Top of Casing Elevation: NA

Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: May 14, 2020

			SUBSURFACE PROFILE				SAMPI	E	
4400	בוקט	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
ft	m - 0		Ground Surface	0.00					
1-	— U		Asphalt Sand and Gravel Brown, damp, no odours.			55	BH112 SS1	50/1.0	
3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	- 1			1.52	No Monitoring Well Intalled		BH112 SS2	95/1.0	PHCs, VOCs, PAHs, Metals
6-	- - 2		End of Borehole Refusal at 1.52 mbgs on Inferred Bedrock.		No Monitorin				
9-	- - 3				<u></u>				
11-									
13-	- - 4								
15-	 - - -								
\vdash								L	

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push

Well Casing Size: NA

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: NM

Top of Casing Elevation: NA

Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: May 14, 2020

			SUBSURFACE PROFILE				SAMPI	E	
dand		Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
ft	m 0		Ground Surface	0.00					
1-	- U - -		Asphalt Sand and Gravel Fill Brown grey, with glass and brick fragments, damp, no odours.		Ť	50	BH113 SS1	20/1.0	
3-	- - 1 -			1.22	Intalled		BH113 SS2	180/1.0	PHCs, VOCs, PAHs, Metals
5	- - - - 2		End of Borehole Refusal at 1.22 mbgs on Inferred Bedrock.		No Monitoring Well Intalled				
8 - 9 - 10 -	- - - - 3				Z				
11-	- -								
13	- - 4								
14-	- -								
16-	-								

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push

Well Casing Size: NA

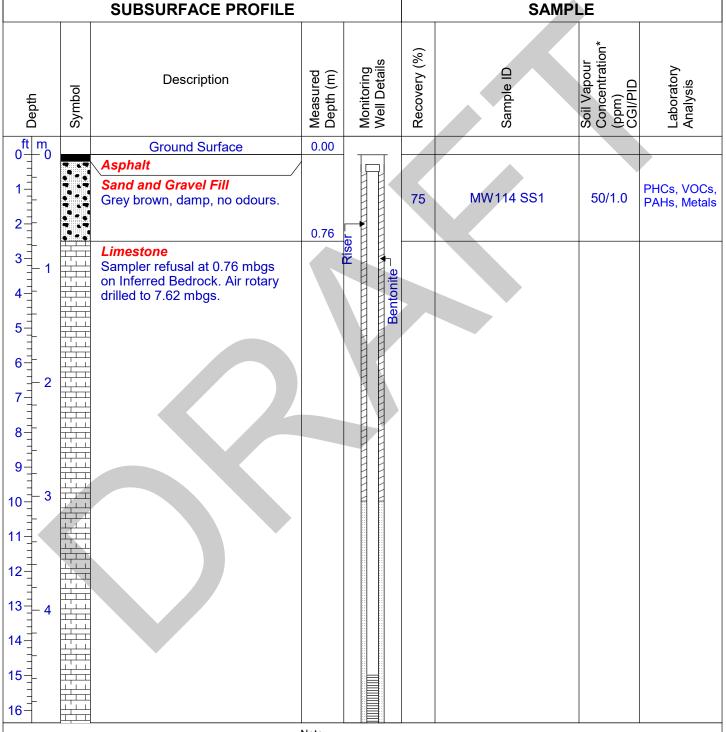
Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: NM

Top of Casing Elevation: NA

Project #: 230236.006 Logged By: MK


Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315

Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: May 14, 2020

Contractor: Strata Drilling Group Inc.

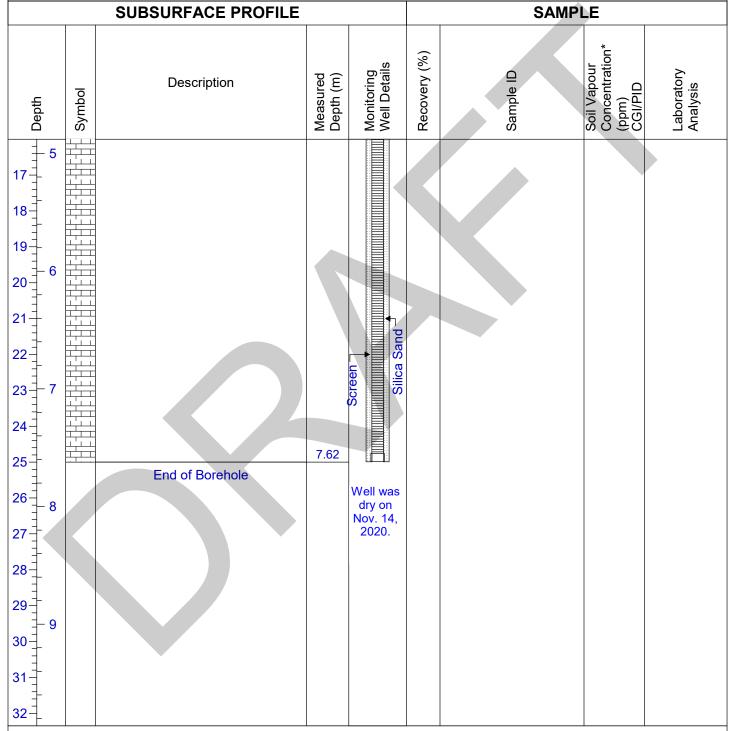
Drilling Method: Direct Push/Air Rotary

Well Casing Size: 5.1 cm

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI). Grade Elevation: 62.92 mamsl

Top of Casing Elevation: 62.76 mamsl


Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: May 14, 2020

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push/Air Rotary

Well Casing Size: 5.1 cm

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: 62.92 mamsl

Top of Casing Elevation: 62.76 mamsl

Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street, and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: May 14, 2020

		SUBSURFACE PROFILE				SAMPI	E	
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
ft m 0 — 0		Ground Surface	0.00					
1-1-2		Asphalt Sand and Gravel Fill Brown, some organics, damp, no odours.			50	BH115 SS1	10/1.0	
3 - 1			1.22	Intalled		BH115 SS2	10/2.0	PHCs, VOCs, PAHs, Metals
4		Refusal at 1.22 mbgs on Inferred Bedrock.		No Monitoring Well Intalled				

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push

Well Casing Size: NA

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a photoionization detector (PID) and a combustible gas indicator (CGI).

Grade Elevation: NM

Top of Casing Elevation: NA

Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: August 25-26, 2020

		SUBSURFACE PROFIL	.E				SAMPLE	
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis
ft m		Ground Surface	0.00					
ft 0 1 2 3 4 5 6 7 8 9 10 10 1 10		Overburden (unsampled) Limestone Sampler refusal at 1.22 mbgs on Bedrock.	1.22	Riser				
7 1 2 8 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1		Air Rotary drilled to 15.24 mbgs.		Ben				
13 4 14 14 15 16 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18								
19								
25 - 8 26 - 8 27 - 1 28 - 1 29 - 1 30 - 1 31 - 1				V				
31 32 33 10								

Contractor: Strata Drilling Group Inc.

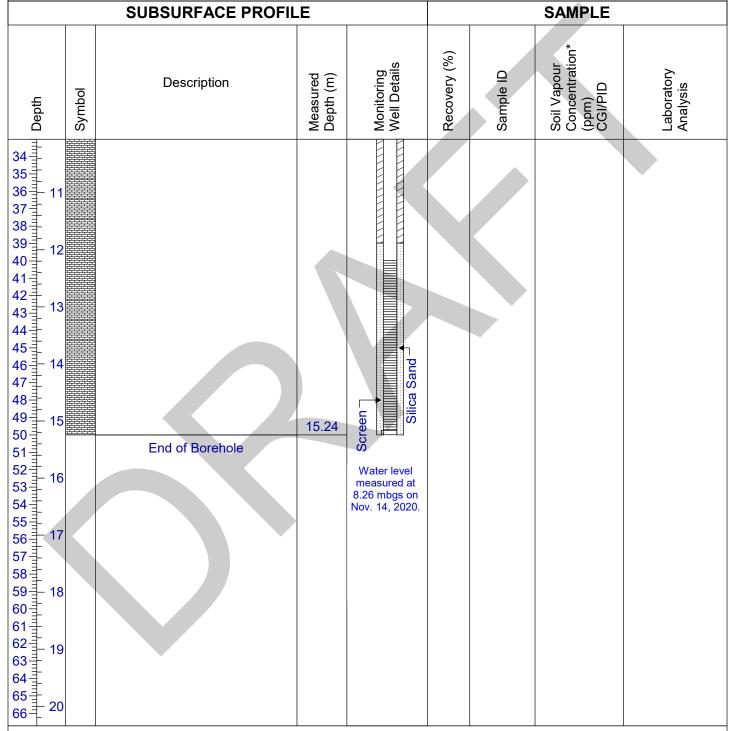
Drilling Method: Direct Push/Air Rotary

Well Casing Size: 5.1 cm

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a combustible gas indicator (CGI) and a photoionization detector (PID).

Grade Elevation: 63.39 mamsl

Top of Casing Elevation: 63.23 mamsl


Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: August 25-26, 2020

Contractor: Strata Drilling Group Inc.

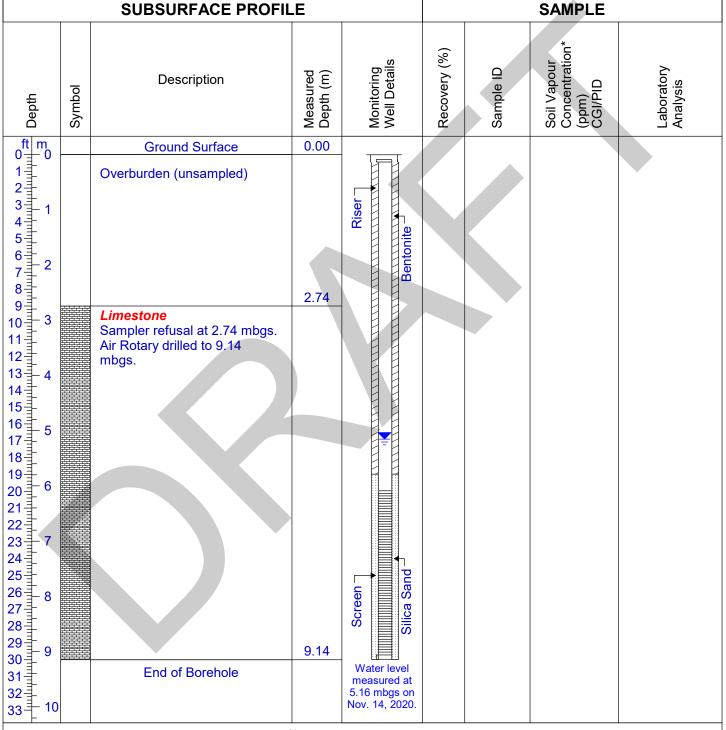
Drilling Method: Direct Push/Air Rotary

Well Casing Size: 5.1 cm

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a combustible gas indicator (CGI) and a photoionization detector (PID).

Grade Elevation: 63.39 mamsl

Top of Casing Elevation: 63.23 mamsl


Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: August 24-25, 2020

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push/Air Rotary

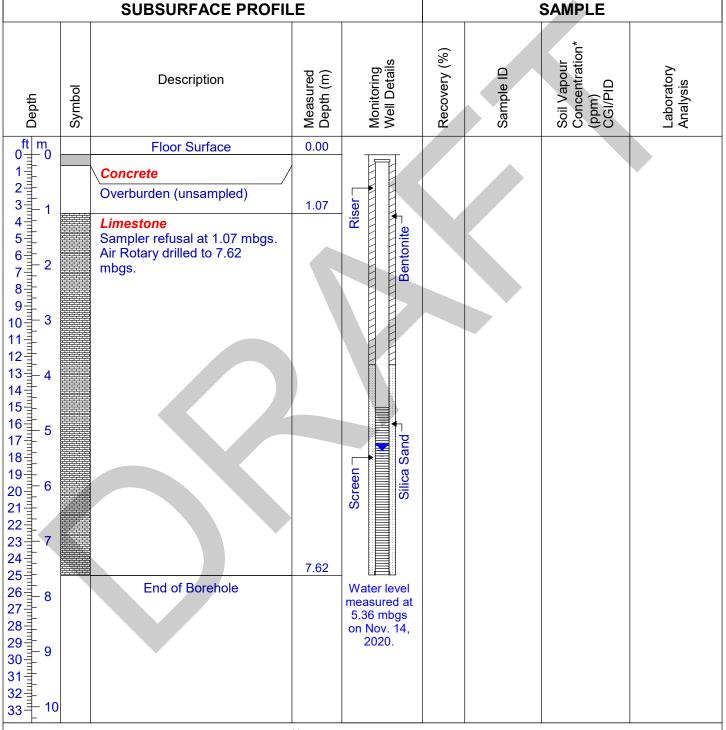
Well Casing Size: 5.1 cm

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a combustible gas indicator (CGI) and a photoionization detector (PID).

Grade Elevation: 63.09 mamsl

Top of Casing Elevation: 62.95 mamsl


Project #: 230236.006 Logged By: MK

Project: Phase Two Environmental Site Assessment

Client: 1213763 Ontario Inc.

Location: 320 McRae Avenue, 1976 Scott Street and 311 and 315 Tweedsmuir Avenue, Ottawa, Ontario

Drill Date: August 25-28, 2020

Contractor: Strata Drilling Group Inc.

Drilling Method: Direct Push/Air Rotary

Well Casing Size: 3.2 cm

Note:

* Soil vapour concentrations measured using a RKI Eagle 2 equipped with a combustible gas indicator (CGI) and a photoionization detector (PID).

Grade Elevation: 63.00 mamsl

Top of Casing Elevation: 62.89 mamsl

APPENDIX D **Laboratory Certificates of Analysis**

Your Project #: 230236.006 Your C.O.C. #: 102950, 102951

Attention: Matt, Ryan, Mike

Pinchin Ltd
Ottawa
1 Hines Road
Suite 200
Kanata, ON
CANADA K2K 3C7

Report Date: 2020/06/01 Report #: R6193966

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0C5456 Received: 2020/05/22, 14:27

Sample Matrix: Soil # Samples Received: 17

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum (1)	17	N/A	2020/05/31	CAM SOP-00301	EPA 8270D m
Hot Water Extractable Boron (1)	17	2020/05/25	2020/05/29	CAM SOP-00408	R153 Ana. Prot. 2011
1,3-Dichloropropene Sum (1)	17	N/A	2020/05/26		EPA 8260C m
Hexavalent Chromium in Soil by IC (1, 2)	17	2020/05/27	2020/05/28	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	17	2020/05/28	2020/05/29	CAM SOP-00316	CCME CWS m
F4G (CCME Hydrocarbons Gravimetric) (1)	1	2020/06/01	2020/06/01	CAM SOP-00316	CCME PHC-CWS m
Strong Acid Leachable Metals by ICPMS (1)	15	2020/05/25	2020/05/28	CAM SOP-00447	EPA 6020B m
Strong Acid Leachable Metals by ICPMS (1)	2	2020/05/27	2020/05/27	CAM SOP-00447	EPA 6020B m
Moisture (1)	17	N/A	2020/05/23	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM) (1)	17	2020/05/29	2020/05/30	CAM SOP-00318	EPA 8270D m
Volatile Organic Compounds and F1 PHCs (1)	17	N/A	2020/05/25	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: 230236.006 Your C.O.C. #: 102950, 102951

Attention: Matt, Ryan, Mike

Pinchin Ltd
Ottawa
1 Hines Road
Suite 200
Kanata, ON
CANADA K2K 3C7

Report Date: 2020/06/01

Report #: R6193966 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0C5456 Received: 2020/05/22, 14:27

- (1) This test was performed by Bureau Veritas Laboratories Mississauga
- (2) Soils are reported on a dry weight basis unless otherwise specified.

(3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.
Antonella Brasil, Senior Project Manager
Email: Antonella.Brasil@bvlabs.com
Phone# (905)817-5817

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: 230236.006 Sampler Initials: M.K

O.REG 153 METALS PACKAGE (SOIL)

BV Labs ID		MRR527	MRR528	MRR529	MRR530	MRR531	MRR532		
Sampling Date		2020/05/19	2020/05/19	2020/05/19	2020/05/19	2020/05/19	2020/05/19		
COC Number		102950	102950	102950	102950	102950	102950		
	UNITS	BH101 SS1	DUP-1	BH102 SS2	BH103 SS1	BH104 SS1	BH105 SS1	RDL	QC Batch
Inorganics									
Chromium (VI)	ug/g	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	0.18	6752391
Metals			•	•					
Hot Water Ext. Boron (B)	ug/g	0.89	0.80	0.34	0.11	0.083	0.55	0.050	6745825
Acid Extractable Antimony (Sb)	ug/g	0.63	0.61	<0.20	<0.20	<0.20	<0.20	0.20	6746070
Acid Extractable Arsenic (As)	ug/g	2.8	2.5	1.4	<1.0	<1.0	1.9	1.0	6746070
Acid Extractable Barium (Ba)	ug/g	110	110	160	70	30	84	0.50	6746070
Acid Extractable Beryllium (Be)	ug/g	0.47	0.46	0.45	0.24	<0.20	0.45	0.20	6746070
Acid Extractable Boron (B)	ug/g	12	11	16	8.2	<5.0	9.6	5.0	6746070
Acid Extractable Cadmium (Cd)	ug/g	0.29	0.23	<0.10	<0.10	<0.10	<0.10	0.10	6746070
Acid Extractable Chromium (Cr)	ug/g	23	23	19	40	11	21	1.0	6746070
Acid Extractable Cobalt (Co)	ug/g	7.1	7.4	8.6	6.6	4.5	6.5	0.10	6746070
Acid Extractable Copper (Cu)	ug/g	16	15	12	9.5	6.2	9.0	0.50	6746070
Acid Extractable Lead (Pb)	ug/g	41	28	13	6.9	7.6	9.9	1.0	6746070
Acid Extractable Molybdenum (Mo)	ug/g	1.5	1.5	<0.50	<0.50	<0.50	1.2	0.50	6746070
Acid Extractable Nickel (Ni)	ug/g	16	15	17	8.5	5.6	14	0.50	6746070
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6746070
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6746070
Acid Extractable Thallium (Tl)	ug/g	0.21	0.20	0.24	0.085	0.084	0.095	0.050	6746070
Acid Extractable Uranium (U)	ug/g	0.67	0.63	0.55	0.45	0.44	0.66	0.050	6746070
Acid Extractable Vanadium (V)	ug/g	35	35	22	20	18	41	5.0	6746070
Acid Extractable Zinc (Zn)	ug/g	72	59	19	32	14	33	5.0	6746070
Acid Extractable Mercury (Hg)	ug/g	0.075	0.060	<0.050	<0.050	<0.050	0.062	0.050	6746070

RDL = Reportable Detection Limit

Report Date: 2020/06/01 Clie

Pinchin Ltd

Client Project #: 230236.006 Sampler Initials: M.K

O.REG 153 METALS PACKAGE (SOIL)

BV Labs ID		MRR532			MRR533	MRR534	MRR535	MRR536		
Sampling Date		2020/05/19			2020/05/19	2020/05/20	2020/05/20	2020/05/20		
COC Number		102950			102950	102950	102950	102950		
	UNITS	BH105 SS1 Lab-Dup	RDL	QC Batch	BH106 SS2	BH107 SS4	BH108 SS1	BH109 SS3	RDL	QC Batch
Inorganics										
Chromium (VI)	ug/g				<0.18	<0.18	<0.18	<0.18	0.18	6752391
Metals										
Hot Water Ext. Boron (B)	ug/g	0.55	0.050	6745825	0.19	0.85	2.6	1.6	0.050	6745825
Acid Extractable Antimony (Sb)	ug/g				<0.20	5.9	1.8	3.9	0.20	6746070
Acid Extractable Arsenic (As)	ug/g				<1.0	2.1	7.1	9.8	1.0	6746070
Acid Extractable Barium (Ba)	ug/g				430	150	190	180	0.50	6746070
Acid Extractable Beryllium (Be)	ug/g				0.21	0.32	0.66	0.41	0.20	6746070
Acid Extractable Boron (B)	ug/g				7.9	12	16	16	5.0	6746070
Acid Extractable Cadmium (Cd)	ug/g				<0.10	0.25	0.42	0.53	0.10	6746070
Acid Extractable Chromium (Cr)	ug/g				12	20	27	33	1.0	6746070
Acid Extractable Cobalt (Co)	ug/g				4.7	6.1	12	8.6	0.10	6746070
Acid Extractable Copper (Cu)	ug/g				8.2	59	26	140	0.50	6746070
Acid Extractable Lead (Pb)	ug/g				4.7	150	100	350	1.0	6746070
Acid Extractable Molybdenum (Mo)	ug/g				<0.50	2.1	2.8	7.9	0.50	6746070
Acid Extractable Nickel (Ni)	ug/g				9.0	11	19	76	0.50	6746070
Acid Extractable Selenium (Se)	ug/g			Y	<0.50	<0.50	<0.50	<0.50	0.50	6746070
Acid Extractable Silver (Ag)	ug/g				<0.20	<0.20	0.87	0.22	0.20	6746070
Acid Extractable Thallium (TI)	ug/g				0.23	0.11	0.21	0.11	0.050	6746070
Acid Extractable Uranium (U)	ug/g				0.29	0.60	0.69	0.64	0.050	6746070
Acid Extractable Vanadium (V)	ug/g				16	21	38	31	5.0	6746070
Acid Extractable Zinc (Zn)	ug/g				14	120	220	310	5.0	6746070
Acid Extractable Mercury (Hg)	ug/g				<0.050	<0.050	0.19	0.19	0.050	6746070

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 230236.006 Sampler Initials: M.K

O.REG 153 METALS PACKAGE (SOIL)

	_									
BV Labs ID		MRR537	MRR538	MRR539	MRR540			MRR541		
Sampling Date		2020/05/20	2020/05/20	2020/05/14	2020/05/14			2020/05/14		
COC Number		102951	102951	102951	102951			102951		
	UNITS	MW110 SS2	DUP-2	BH111 SS1	BH112 SS2	RDL	QC Batch	BH113 SS2	RDL	QC Batch
Inorganics										
Chromium (VI)	ug/g	<0.18	<0.18	<0.18	<0.18	0.18	6752391	<0.18	0.18	6752391
Metals										
Hot Water Ext. Boron (B)	ug/g	0.21	0.21	0.32	<0.050	0.050	6745825	1.6	0.050	6745825
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	<0.20	<0.20	0.20	6746070	4.3	0.20	6752874
Acid Extractable Arsenic (As)	ug/g	<1.0	<1.0	<1.0	<1.0	1.0	6746070	18	1.0	6752874
Acid Extractable Barium (Ba)	ug/g	99	82	130	51	0.50	6746070	330	0.50	6752874
Acid Extractable Beryllium (Be)	ug/g	0.30	0.31	0.37	<0.20	0.20	6746070	0.41	0.20	6752874
Acid Extractable Boron (B)	ug/g	9.3	9.8	6.7	<5.0	5.0	6746070	14	5.0	6752874
Acid Extractable Cadmium (Cd)	ug/g	<0.10	<0.10	<0.10	<0.10	0.10	6746070	1.8	0.10	6752874
Acid Extractable Chromium (Cr)	ug/g	15	14	21	16	1.0	6746070	45	1.0	6752874
Acid Extractable Cobalt (Co)	ug/g	4.9	4.9	7.0	5.0	0.10	6746070	9.2	0.10	6752874
Acid Extractable Copper (Cu)	ug/g	10	12	14	6.4	0.50	6746070	65	0.50	6752874
Acid Extractable Lead (Pb)	ug/g	3.5	3.4	3.3	2.1	1.0	6746070	720	1.0	6752874
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	<0.50	<0.50	<0.50	0.50	6746070	2.2	0.50	6752874
Acid Extractable Nickel (Ni)	ug/g	10	9.4	12	7.0	0.50	6746070	22	0.50	6752874
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	<0.50	<0.50	0.50	6746070	1.2	0.50	6752874
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	<0.20	<0.20	0.20	6746070	0.48	0.20	6752874
Acid Extractable Thallium (Tl)	ug/g	0.16	0.16	0.13	0.068	0.050	6746070	0.18	0.050	6752874
Acid Extractable Uranium (U)	ug/g	0.46	0.48	0.53	0.43	0.050	6746070	0.87	0.050	6752874
Acid Extractable Vanadium (V)	ug/g	23	22	37	23	5.0	6746070	32	5.0	6752874
Acid Extractable Zinc (Zn)	ug/g	28	18	34	20	5.0	6746070	1100	5.0	6752874
Acid Extractable Mercury (Hg)	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	6746070	10	0.25	6752874

RDL = Reportable Detection Limit

Client Project #: 230236.006 Sampler Initials: M.K

O.REG 153 METALS PACKAGE (SOIL)

BV Labs ID		MRR541			MRR542		MRR543		
Sampling Date		2020/05/14			2020/05/14		2020/05/14		
COC Number		102951			102951		102951		
	UNITS	BH113 SS2 Lab-Dup	RDL	QC Batch	MW114 SS1	QC Batch	BH115 SS2	RDL	QC Batch
Inorganics									
Chromium (VI)	ug/g	<0.18	0.18	6752391	<0.18	6752391	<0.18	0.18	6752391
Metals	3'		3						
Hot Water Ext. Boron (B)	ug/g				1.4	6745825	0.18	0.050	6745825
Acid Extractable Antimony (Sb)	ug/g				6.6	6752874	<0.20	0.20	6746070
Acid Extractable Arsenic (As)	ug/g				9.4	6752874	1.2	1.0	6746070
Acid Extractable Barium (Ba)	ug/g				300	6752874	90	0.50	6746070
Acid Extractable Beryllium (Be)	ug/g				0.42	6752874	0.31	0.20	6746070
Acid Extractable Boron (B)	ug/g				11	6752874	9.1	5.0	6746070
Acid Extractable Cadmium (Cd)	ug/g				1.4	6752874	<0.10	0.10	6746070
Acid Extractable Chromium (Cr)	ug/g				21	6752874	15	1.0	6746070
Acid Extractable Cobalt (Co)	ug/g				7.9	6752874	5.2	0.10	6746070
Acid Extractable Copper (Cu)	ug/g				46	6752874	9.6	0.50	6746070
Acid Extractable Lead (Pb)	ug/g				470	6752874	6.8	1.0	6746070
Acid Extractable Molybdenum (Mo)	ug/g				1.4	6752874	0.76	0.50	6746070
Acid Extractable Nickel (Ni)	ug/g				21	6752874	12	0.50	6746070
Acid Extractable Selenium (Se)	ug/g				0.74	6752874	<0.50	0.50	6746070
Acid Extractable Silver (Ag)	ug/g				0.38	6752874	<0.20	0.20	6746070
Acid Extractable Thallium (Tl)	ug/g				0.24	6752874	0.12	0.050	6746070
Acid Extractable Uranium (U)	ug/g				0.74	6752874	0.49	0.050	6746070
Acid Extractable Vanadium (V)	ug/g				24	6752874	22	5.0	6746070
Acid Extractable Zinc (Zn)	ug/g				460	6752874	24	5.0	6746070
Acid Extractable Mercury (Hg)	ug/g			7	1.3	6752874	<0.050	0.050	6746070

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 230236.006 Sampler Initials: M.K

Sumpler iiii

O.REG 153 PAHS (SOIL)

BV Labs ID		MRR527	MRR528	MRR529	MRR530	MRR531	MRR532		
Sampling Date		2020/05/19	2020/05/19	2020/05/19	2020/05/19	2020/05/19	2020/05/19		
COC Number		102950	102950	102950	102950	102950	102950		
	UNITS	BH101 SS1	DUP-1	BH102 SS2	BH103 SS1	BH104 SS1	BH105 SS1	RDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	<0.0071	<0.0071	0.012	<0.0071	<0.0071	0.0071	6740896
Polyaromatic Hydrocarbons					•				
Acenaphthene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6761358
Acenaphthylene	ug/g	0.013	0.014	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6761358
Anthracene	ug/g	0.0078	0.0085	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6761358
Benzo(a)anthracene	ug/g	0.038	0.042	<0.0050	<0.0050	<0.0050	0.0055	0.0050	6761358
Benzo(a)pyrene	ug/g	0.046	0.049	<0.0050	<0.0050	<0.0050	0.0069	0.0050	6761358
Benzo(b/j)fluoranthene	ug/g	0.067	0.071	<0.0050	0.0057	<0.0050	0.010	0.0050	6761358
Benzo(g,h,i)perylene	ug/g	0.038	0.040	<0.0050	<0.0050	<0.0050	0.0058	0.0050	6761358
Benzo(k)fluoranthene	ug/g	0.023	0.025	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6761358
Chrysene	ug/g	0.036	0.040	<0.0050	<0.0050	<0.0050	0.0051	0.0050	6761358
Dibenzo(a,h)anthracene	ug/g	0.0088	0.0095	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6761358
Fluoranthene	ug/g	0.077	0.083	<0.0050	0.0052	<0.0050	0.012	0.0050	6761358
Fluorene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6761358
Indeno(1,2,3-cd)pyrene	ug/g	0.037	0.040	<0.0050	<0.0050	<0.0050	0.0058	0.0050	6761358
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.0058	<0.0050	<0.0050	0.0050	6761358
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.0060	<0.0050	<0.0050	0.0050	6761358
Naphthalene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6761358
Phenanthrene	ug/g	0.032	0.034	<0.0050	0.0075	<0.0050	<0.0050	0.0050	6761358
Pyrene	ug/g	0.064	0.069	<0.0050	0.0052	<0.0050	0.011	0.0050	6761358
Surrogate Recovery (%)							•	•	•
D10-Anthracene	%	96	101	100	100	104	99		6761358
D14-Terphenyl (FS)	%	96	102	93	96	98	94		6761358
D8-Acenaphthylene	%	92	97	93	94	98	92		6761358
RDL = Reportable Detection L	imit		_						
OC Batch = Quality Control Ba	atch								

Client Project #: 230236.006 Sampler Initials: M.K

O.REG 153 PAHS (SOIL)

BV Labs ID		MRR533		MRR534		MRR535	MRR536	MRR537		
Sampling Date		2020/05/19		2020/05/20		2020/05/20	2020/05/20	2020/05/20		
COC Number		102950		102950		102950	102950	102951		
	UNITS	BH106 SS2	RDL	BH107 SS4	RDL	BH108 SS1	BH109 SS3	MW110 SS2	RDL	QC Batch
Calculated Parameters										
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	0.0071	1.4	0.071	<0.0071	0.095	<0.0071	0.0071	6740896
Polyaromatic Hydrocarbons			•	•						
Acenaphthene	ug/g	<0.0050	0.0050	1.5	0.050	0.0083	0.10	<0.0050	0.0050	6761358
Acenaphthylene	ug/g	<0.0050	0.0050	1.1	0.050	0.015	0.097	0.016	0.0050	6761358
Anthracene	ug/g	<0.0050	0.0050	7.8	0.050	0.027	0.41	0.012	0.0050	6761358
Benzo(a)anthracene	ug/g	<0.0050	0.0050	16	0.050	0.089	0.99	0.054	0.0050	6761358
Benzo(a)pyrene	ug/g	<0.0050	0.0050	12	0.050	0.087	0.88	0.059	0.0050	6761358
Benzo(b/j)fluoranthene	ug/g	<0.0050	0.0050	15	0.050	0.12	1.1	0.085	0.0050	6761358
Benzo(g,h,i)perylene	ug/g	<0.0050	0.0050	5.7	0.050	0.063	0.54	0.047	0.0050	6761358
Benzo(k)fluoranthene	ug/g	<0.0050	0.0050	5.6	0.050	0.042	0.39	0.029	0.0050	6761358
Chrysene	ug/g	<0.0050	0.0050	11	0.050	0.080	0.75	0.049	0.0050	6761358
Dibenzo(a,h)anthracene	ug/g	<0.0050	0.0050	2.0	0.050	0.016	0.16	0.011	0.0050	6761358
Fluoranthene	ug/g	<0.0050	0.0050	32	0.050	0.17	2.2	0.091	0.0050	6761358
Fluorene	ug/g	<0.0050	0.0050	3.3	0.050	0.012	0.18	<0.0050	0.0050	6761358
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	0.0050	6.5	0.050	0.063	0.55	0.047	0.0050	6761358
1-Methylnaphthalene	ug/g	<0.0050	0.0050	0.74	0.050	<0.0050	0.050	<0.0050	0.0050	6761358
2-Methylnaphthalene	ug/g	<0.0050	0.0050	0.67	0.050	<0.0050	0.044	<0.0050	0.0050	6761358
Naphthalene	ug/g	<0.0050	0.0050	0.86	0.050	0.012	0.062	<0.0050	0.0050	6761358
Phenanthrene	ug/g	<0.0050	0.0050	24	0.050	0.090	1.5	0.033	0.0050	6761358
Pyrene	ug/g	<0.0050	0.0050	24	0.050	0.15	1.7	0.085	0.0050	6761358
Surrogate Recovery (%)							•		•	
D10-Anthracene	%	104		115		103	99	99		6761358
D14-Terphenyl (FS)	%	98		113		106	102	102		6761358
D8-Acenaphthylene	%	95		102		97	94	96		6761358
RDL = Reportable Detection L					_					
OC Batch = Quality Control Ba	atch									

Client Project #: 230236.006 Sampler Initials: M.K

O.REG 153 PAHS (SOIL)

BV Labs ID		MRR538	MRR539	MRR540			MRR540		
Sampling Date		2020/05/20	2020/05/14	2020/05/14			2020/05/14		
COC Number		102951	102951	102951			102951		
	UNITS	DUP-2	BH111 SS1	BH112 SS2	RDL	QC Batch	BH112 SS2 Lab-Dup	RDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	< 0.0071	< 0.0071	0.0071	6740896			
Polyaromatic Hydrocarbons									
Acenaphthene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
Acenaphthylene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
Anthracene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
Benzo(a)anthracene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
Benzo(a)pyrene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
Benzo(b/j)fluoranthene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
Benzo(g,h,i)perylene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
Benzo(k)fluoranthene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
Chrysene	ug/g	<0.0050	< 0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
Dibenzo(a,h)anthracene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
Fluoranthene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
Fluorene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
Naphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
Phenanthrene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
Pyrene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	6761358	<0.0050	0.0050	6761358
Surrogate Recovery (%)									
D10-Anthracene	%	100	107	100		6761358	102		6761358
D14-Terphenyl (FS)	%	95	101	94		6761358	96		6761358
D8-Acenaphthylene	%	96	100	93		6761358	93		6761358

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 230236.006 Sampler Initials: M.K

O.REG 153 PAHS (SOIL)

BV Labs ID		MRR541	MRR542		MRR543		
Sampling Date		2020/05/14	2020/05/14		2020/05/14		
COC Number		102951	102951		102951		
	UNITS	BH113 SS2	MW114 SS1	RDL	BH115 SS2	RDL	QC Batch
Calculated Parameters							
Methylnaphthalene, 2-(1-)	ug/g	9.1	<0.071	0.071	<0.0071	0.0071	6740896
Polyaromatic Hydrocarbons	•	•	•	•			
Acenaphthene	ug/g	5.8	<0.050	0.050	<0.0050	0.0050	6761358
Acenaphthylene	ug/g	13	0.051	0.050	<0.0050	0.0050	6761358
Anthracene	ug/g	22	0.064	0.050	<0.0050	0.0050	6761358
Benzo(a)anthracene	ug/g	67	0.30	0.050	0.0092	0.0050	6761358
Benzo(a)pyrene	ug/g	57	0.32	0.050	0.0086	0.0050	6761358
Benzo(b/j)fluoranthene	ug/g	65	0.43	0.050	0.013	0.0050	6761358
Benzo(g,h,i)perylene	ug/g	27	0.26	0.050	0.0057	0.0050	6761358
Benzo(k)fluoranthene	ug/g	26	0.15	0.050	<0.0050	0.0050	6761358
Chrysene	ug/g	55	0.25	0.050	0.0097	0.0050	6761358
Dibenzo(a,h)anthracene	ug/g	9.1	0.059	0.050	<0.0050	0.0050	6761358
Fluoranthene	ug/g	120	0.57	0.050	0.023	0.0050	6761358
Fluorene	ug/g	10	<0.050	0.050	<0.0050	0.0050	6761358
Indeno(1,2,3-cd)pyrene	ug/g	29	0.26	0.050	0.0058	0.0050	6761358
1-Methylnaphthalene	ug/g	4.9	<0.050	0.050	<0.0050	0.0050	6761358
2-Methylnaphthalene	ug/g	4.2	<0.050	0.050	<0.0050	0.0050	6761358
Naphthalene	ug/g	2.3	<0.050	0.050	<0.0050	0.0050	6761358
Phenanthrene	ug/g	75	0.22	0.050	0.015	0.0050	6761358
Pyrene	ug/g	120	0.49	0.050	0.019	0.0050	6761358
Surrogate Recovery (%)							
D10-Anthracene	%	114	118		101		6761358
D14-Terphenyl (FS)	%	113	104		98		6761358
D8-Acenaphthylene	%	102	104		96		6761358
RDL = Reportable Detection L QC Batch = Quality Control Ba							

Client Project #: 230236.006 Sampler Initials: M.K

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

BV Labs ID		MRR527	MRR528			MRR528		
Sampling Date		2020/05/19	2020/05/19			2020/05/19		
COC Number		102950	102950			102950	•	
	UNITS	BH101 SS1	DUP-1	RDL	QC Batch	DUP-1 Lab-Dup	RDL	QC Batch
Inorganics								
Moisture	%	15	14	1.0	6741312			
Calculated Parameters								
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	0.050	6740897			
Volatile Organics								
Acetone (2-Propanone)	ug/g	<0.50	<0.50	0.50	6743456	<0.50	0.50	6743456
Benzene	ug/g	<0.020	<0.020	0.020	6743456	<0.020	0.020	6743456
Bromodichloromethane	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
Bromoform	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
Bromomethane	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
Carbon Tetrachloride	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
Chlorobenzene	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
Chloroform	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
Dibromochloromethane	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
1,2-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
1,3-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
1,4-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
1,1-Dichloroethane	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
1,2-Dichloroethane	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
1,1-Dichloroethylene	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
1,2-Dichloropropane	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	0.030	6743456	<0.030	0.030	6743456
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	0.040	6743456	<0.040	0.040	6743456
Ethylbenzene	ug/g	<0.020	<0.020	0.020	6743456	<0.020	0.020	6743456
Ethylene Dibromide	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
Hexane	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	0.50	6743456	<0.50	0.50	6743456
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	0.50	6743456	<0.50	0.50	6743456
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
Styrene	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 230236.006 Sampler Initials: M.K

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

				_	<u>.</u>	_		
BV Labs ID		MRR527	MRR528			MRR528		
Sampling Date		2020/05/19	2020/05/19			2020/05/19		
COC Number		102950	102950			102950	•	
	UNITS	BH101 SS1	DUP-1	RDL	QC Batch	DUP-1 Lab-Dup	RDL	QC Batch
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
Tetrachloroethylene	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
Toluene	ug/g	0.047	0.14	0.020	6743456	0.14	0.020	6743456
1,1,1-Trichloroethane	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
1,1,2-Trichloroethane	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
Trichloroethylene	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	<0.050	0.050	6743456	<0.050	0.050	6743456
Vinyl Chloride	ug/g	<0.020	<0.020	0.020	6743456	<0.020	0.020	6743456
p+m-Xylene	ug/g	0.050	0.12	0.020	6743456	0.13	0.020	6743456
o-Xylene	ug/g	0.026	0.065	0.020	6743456	0.066	0.020	6743456
Total Xylenes	ug/g	0.077	0.19	0.020	6743456	0.19	0.020	6743456
F1 (C6-C10)	ug/g	<10	<10	10	6743456	<10	10	6743456
F1 (C6-C10) - BTEX	ug/g	<10	<10	10	6743456	<10	10	6743456
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	10	6756415			
F3 (C16-C34 Hydrocarbons)	ug/g	<50	68	50	6756415			
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	50	6756415			
Reached Baseline at C50	ug/g	Yes	Yes		6756415			
Surrogate Recovery (%)							-	
o-Terphenyl	%	79	82		6756415			
4-Bromofluorobenzene	%	96	96		6743456	96		6743456
D10-o-Xylene	%	110	111		6743456	113		6743456
D4-1,2-Dichloroethane	%	100	102		6743456	101		6743456
D8-Toluene	%	95	95		6743456	95		6743456

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 230236.006 Sampler Initials: M.K

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

		·	·		•			•		
BV Labs ID		MRR529	MRR530		MRR531		MRR532	MRR533		
Sampling Date		2020/05/19	2020/05/19		2020/05/19		2020/05/19	2020/05/19		
COC Number		102950	102950		102950		102950	102950		
	UNITS	BH102 SS2	BH103 SS1	RDL	BH104 SS1	RDL	BH105 SS1	BH106 SS2	RDL	QC Batch
Inorganics	-	•	•	•				•		
Moisture	%	8.8	11	1.0	12	1.0	16	8.4	1.0	6741312
Calculated Parameters										
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	0.050	<0.10	0.10	<0.050	<0.050	0.050	6740897
Volatile Organics										
Acetone (2-Propanone)	ug/g	<0.50	<0.50	0.50	<0.50	0.50	<0.50	<0.50	0.50	6743456
Benzene	ug/g	<0.020	<0.020	0.020	<0.020	0.020	<0.020	<0.020	0.020	6743456
Bromodichloromethane	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
Bromoform	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
Bromomethane	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
Carbon Tetrachloride	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
Chlorobenzene	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
Chloroform	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
Dibromochloromethane	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
1,2-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
1,3-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
1,4-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
1,1-Dichloroethane	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
1,2-Dichloroethane	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
1,1-Dichloroethylene	ug/g	< 0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
1,2-Dichloropropane	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	0.030	<0.030	0.030	<0.030	<0.030	0.030	6743456
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	0.040	<0.10 (1)	0.10	<0.040	<0.040	0.040	6743456
Ethylbenzene	ug/g	<0.020	1.3	0.020	0.060	0.020	<0.020	<0.020	0.020	6743456
Ethylene Dibromide	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
Hexane	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	0.50	<0.50	0.50	<0.50	<0.50	0.50	6743456
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	0.50	<0.50	0.50	<0.50	<0.50	0.50	6743456
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
Styrene	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) The detection limit was raised due to matrix interference.

Client Project #: 230236.006 Sampler Initials: M.K

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

BV Labs ID		MRR529	MRR530		MRR531		MRR532	MRR533		
Sampling Date		2020/05/19	2020/05/19		2020/05/19		2020/05/19	2020/05/19		
COC Number		102950	102950		102950		102950	102950		
	UNITS	BH102 SS2	BH103 SS1	RDL	BH104 SS1	RDL	BH105 SS1	BH106 SS2	RDL	QC Batch
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
Tetrachloroethylene	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
Toluene	ug/g	<0.020	0.10	0.020	0.034	0.020	<0.020	<0.020	0.020	6743456
1,1,1-Trichloroethane	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
1,1,2-Trichloroethane	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
Trichloroethylene	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	<0.050	0.050	<0.050	0.050	<0.050	<0.050	0.050	6743456
Vinyl Chloride	ug/g	<0.020	<0.020	0.020	<0.020	0.020	<0.020	<0.020	0.020	6743456
p+m-Xylene	ug/g	<0.020	1.6	0.020	4.6	0.020	<0.020	<0.020	0.020	6743456
o-Xylene	ug/g	<0.020	0.074	0.020	<0.020	0.020	<0.020	<0.020	0.020	6743456
Total Xylenes	ug/g	<0.020	1.7	0.020	4.6	0.020	<0.020	<0.020	0.020	6743456
F1 (C6-C10)	ug/g	<10	13	10	120	10	<10	<10	10	6743456
F1 (C6-C10) - BTEX	ug/g	<10	<10	10	110	10	<10	<10	10	6743456
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	10	<10	10	<10	<10	10	6756415
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	50	<50	50	<50	<50	50	6756415
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	50	<50	50	<50	<50	50	6756415
Reached Baseline at C50	ug/g	Yes	Yes		Yes		Yes	Yes		6756415
Surrogate Recovery (%)										
o-Terphenyl	%	83	87		81		81	81		6756415
4-Bromofluorobenzene	%	96	98		104		96	96		6743456
D10-o-Xylene	%	105	112		125		111	113		6743456
D4-1,2-Dichloroethane	%	102	102		106		99	100		6743456
D8-Toluene	%	95	96		98		95	95		6743456
RDL = Reportable Detection Limit										

RDL = Reportable Detection Limit

Client Project #: 230236.006 Sampler Initials: M.K

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

BV Labs ID		MRR534	MRR535	MRR536	MRR537	MRR538	MRR539		
Sampling Date		2020/05/20	2020/05/20	2020/05/20	2020/05/20	2020/05/20	2020/05/14		
COC Number		102950	102950	102950	102951	102951	102951		
	UNITS	BH107 SS4	BH108 SS1	BH109 SS3	MW110 SS2	DUP-2	BH111 SS1	RDL	QC Batch
Inorganics							•		
Moisture	%	8.1	20	12	6.8	8.2	9.0	1.0	6741312
Calculated Parameters									
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6740897
Volatile Organics									
Acetone (2-Propanone)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6743456
Benzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	6743456
Bromodichloromethane	ug/g	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	0.050	6743456
Bromoform	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
Bromomethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
Carbon Tetrachloride	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
Chlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
Chloroform	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
Dibromochloromethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
1,2-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	
1,3-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
1,4-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
1,1-Dichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
1,2-Dichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
1,1-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
1,2-Dichloropropane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	0.030	
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	6743456
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	6743456
Ethylene Dibromide	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
Hexane	ug/g	<0.050	0.063	0.11	<0.050	<0.050	<0.050	0.050	6743456
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050		6743456
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6743456
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6743456
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	
Styrene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050		6743456
RDL = Reportable Detection Limit		1	1	ı	1	1	ı		1
OC Potch - Quality Control Potch									

Client Project #: 230236.006 Sampler Initials: M.K

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

BV Labs ID		MRR534	MRR535	MRR536	MRR537	MRR538	MRR539		
Sampling Date		2020/05/20	2020/05/20	2020/05/20	2020/05/20	2020/05/20	2020/05/14		
COC Number		102950	102950	102950	102951	102951	102951		
	UNITS	BH107 SS4	BH108 SS1	BH109 SS3	MW110 SS2	DUP-2	BH111 SS1	RDL	QC Batch
Tetrachloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	6743456
1,1,1-Trichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
1,1,2-Trichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
Trichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	6743456
Vinyl Chloride	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	6743456
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	6743456
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	6743456
Total Xylenes	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	6743456
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	<10	10	6743456
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	<10	10	6743456
F2-F4 Hydrocarbons	•								
F2 (C10-C16 Hydrocarbons)	ug/g	21	<10	<10	<10	<10	<10	10	6756415
F3 (C16-C34 Hydrocarbons)	ug/g	730	66	220	<50	<50	<50	50	6756415
F4 (C34-C50 Hydrocarbons)	ug/g	200	<50	90	<50	<50	<50	50	6756415
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes	Yes	Yes		6756415
Surrogate Recovery (%)									
o-Terphenyl	%	77	91	89	89	91	89		6756415
4-Bromofluorobenzene	%	96	96	96	96	95	96		6743456
D10-o-Xylene	%	105	103	111	105	109	107		6743456
D4-1,2-Dichloroethane	%	100	101	100	101	101	102		6743456
D8-Toluene	%	96	95	95	95	95	95		6743456
RDL = Reportable Detection Limit							_		

Client Project #: 230236.006 Sampler Initials: M.K

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

BV Labs ID		MRR540			MRR540			MRR541	MRR542	1	
Sampling Date		2020/05/14			2020/05/14			2020/05/14	2020/05/14		
COC Number		102951			102951			102951	102951		
COC Number	UNITS	BH112 SS2	RDL	QC Batch	BH112 SS2 Lab-Dup	RDL	QC Batch	BH113 SS2	MW114 SS1	RDL	QC Batch
Inorganics											
Moisture	%	10	1.0	6741312				23	15	1.0	6741312
Calculated Parameters											
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	0.050	6740897		Â		<0.050	<0.050	0.050	6740897
Volatile Organics	•									•	
Acetone (2-Propanone)	ug/g	<0.50	0.50	6743456				<0.50	<0.50	0.50	6743456
Benzene	ug/g	<0.020	0.020	6743456				<0.020	<0.020	0.020	6743456
Bromodichloromethane	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
Bromoform	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
Bromomethane	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
Carbon Tetrachloride	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
Chlorobenzene	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
Chloroform	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
Dibromochloromethane	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
1,2-Dichlorobenzene	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
1,3-Dichlorobenzene	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
1,4-Dichlorobenzene	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
1,1-Dichloroethane	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
1,2-Dichloroethane	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
1,1-Dichloroethylene	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
cis-1,2-Dichloroethylene	ug/g	<0.050	0.050	6743456	*			<0.050	<0.050	0.050	6743456
trans-1,2-Dichloroethylene	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
1,2-Dichloropropane	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	6743456				<0.030	<0.030	0.030	6743456
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	6743456				<0.040	<0.040	0.040	6743456
Ethylbenzene	ug/g	<0.020	0.020	6743456				<0.020	<0.020	0.020	6743456
Ethylene Dibromide	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
Hexane	ug/g	<0.050	0.050	6743456				0.15	0.090	0.050	6743456
Methylene Chloride(Dichloromethane)	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	0.50	6743456				<0.50	<0.50	0.50	6743456
Methyl Isobutyl Ketone	ug/g	<0.50	0.50	6743456				<0.50	<0.50	0.50	6743456
Methyl t-butyl ether (MTBE)	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
Styrene	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
1,1,1,2-Tetrachloroethane	ug/g	<0.050	0.050	6743456	_			<0.050	<0.050	0.050	6743456
			. —							• —	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 230236.006 Sampler Initials: M.K

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

		MRR540			MRR540			MRR541	MRR542		
Sampling Date		2020/05/14			2020/05/14			2020/05/14	2020/05/14		
COC Number		102951			102951			102951	102951		
	UNITS	BH112 SS2	RDL	QC Batch	BH112 SS2 Lab-Dup	RDL	QC Batch	BH113 SS2	MW114 SS1	RDL	QC Batch
1,1,2,2-Tetrachloroethane	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
Tetrachloroethylene	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
Toluene	ug/g	<0.020	0.020	6743456		,		0.038	0.035	0.020	6743456
1,1,1-Trichloroethane	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
1,1,2-Trichloroethane	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
Trichloroethylene	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	0.050	6743456				<0.050	<0.050	0.050	6743456
Vinyl Chloride	ug/g	<0.020	0.020	6743456				<0.020	<0.020	0.020	6743456
p+m-Xylene	ug/g	<0.020	0.020	6743456				0.23	0.040	0.020	6743456
o-Xylene	ug/g	<0.020	0.020	6743456				0.077	<0.020	0.020	6743456
Total Xylenes	ug/g	<0.020	0.020	6743456				0.31	0.040	0.020	6743456
F1 (C6-C10)	ug/g	<10	10	6743456				<10	<10	10	6743456
F1 (C6-C10) - BTEX	ug/g	<10	10	6743456				<10	<10	10	6743456
F2-F4 Hydrocarbons											
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	6756415	<10	10	6756415	220	<10	10	6756415
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	6756415	60	50	6756415	4500	430	50	6756415
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	6756415	<50	50	6756415	990	630	50	6756415
Reached Baseline at C50	ug/g	Yes		6756415	Yes		6756415	Yes	No		6756415
Surrogate Recovery (%)											
o-Terphenyl	%	92		6756415	89		6756415	104	89		6756415
4-Bromofluorobenzene	%	95		6743456				95	95		6743456
D10-o-Xylene	%	104		6743456	,			118	106		6743456
D4-1,2-Dichloroethane	%	101		6743456				102	103		6743456
D8-Toluene	%	95		6743456				95	94		6743456

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 230236.006

Sampler Initials: M.K

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

BV Labs ID		MRR543		
Sampling Date		2020/05/14		
COC Number		102951		
	UNITS	BH115 SS2	RDL	QC Batch
Inorganics				
Moisture	%	9.2	1.0	6741312
Calculated Parameters				
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	0.050	6740897
Volatile Organics				
Acetone (2-Propanone)	ug/g	<0.50	0.50	6743456
Benzene	ug/g	<0.020	0.020	6743456
Bromodichloromethane	ug/g	<0.050	0.050	6743456
Bromoform	ug/g	<0.050	0.050	6743456
Bromomethane	ug/g	<0.050	0.050	6743456
Carbon Tetrachloride	ug/g	<0.050	0.050	6743456
Chlorobenzene	ug/g	<0.050	0.050	6743456
Chloroform	ug/g	<0.050	0.050	6743456
Dibromochloromethane	ug/g	<0.050	0.050	6743456
1,2-Dichlorobenzene	ug/g	<0.050	0.050	6743456
1,3-Dichlorobenzene	ug/g	<0.050	0.050	6743456
1,4-Dichlorobenzene	ug/g	<0.050	0.050	6743456
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	0.050	6743456
1,1-Dichloroethane	ug/g	<0.050	0.050	6743456
1,2-Dichloroethane	ug/g	<0.050	0.050	6743456
1,1-Dichloroethylene	ug/g	<0.050	0.050	6743456
cis-1,2-Dichloroethylene	ug/g	<0.050	0.050	6743456
trans-1,2-Dichloroethylene	ug/g	<0.050	0.050	6743456
1,2-Dichloropropane	ug/g	<0.050	0.050	6743456
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	6743456
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	6743456
Ethylbenzene	ug/g	<0.020	0.020	6743456
Ethylene Dibromide	ug/g	<0.050	0.050	6743456
Hexane	ug/g	<0.050	0.050	6743456
Methylene Chloride(Dichloromethane)	ug/g	<0.050	0.050	6743456
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	0.50	6743456
Methyl Isobutyl Ketone	ug/g	<0.50	0.50	6743456
Methyl t-butyl ether (MTBE)	ug/g	<0.050	0.050	6743456
Styrene	ug/g	<0.050	0.050	6743456
1,1,1,2-Tetrachloroethane	ug/g	<0.050	0.050	6743456
1,1,2,2-Tetrachloroethane	ug/g	<0.050	0.050	6743456
RDL = Reportable Detection Limit	3,0			
QC Batch = Quality Control Batch				

Client Project #: 230236.006

Sampler Initials: M.K

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

BV Labs ID		MRR543		
Sampling Date		2020/05/14		
COC Number		102951		
	UNITS	BH115 SS2	RDL	QC Batch
Tetrachloroethylene	ug/g	<0.050	0.050	6743456
Toluene	ug/g	0.030	0.020	6743456
1,1,1-Trichloroethane	ug/g	<0.050	0.050	6743456
1,1,2-Trichloroethane	ug/g	<0.050	0.050	6743456
Trichloroethylene	ug/g	<0.050	0.050	6743456
Trichlorofluoromethane (FREON 11)	ug/g	< 0.050	0.050	6743456
Vinyl Chloride	ug/g	<0.020	0.020	6743456
p+m-Xylene	ug/g	<0.020	0.020	6743456
o-Xylene	ug/g	<0.020	0.020	6743456
Total Xylenes	ug/g	<0.020	0.020	6743456
F1 (C6-C10)	ug/g	<10	10	6743456
F1 (C6-C10) - BTEX	ug/g	<10	10	6743456
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	6756415
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	6756415
F4 (C34-C50 Hydrocarbons)	ug/g	63	50	6756415
Reached Baseline at C50	ug/g	Yes		6756415
Surrogate Recovery (%)				
o-Terphenyl	%	95		6756415
4-Bromofluorobenzene	%	95		6743456
D10-o-Xylene	%	97		6743456
D4-1,2-Dichloroethane	%	103		6743456
D8-Toluene	%	95		6743456
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

Client Project #: 230236.006

Sampler Initials: M.K

PETROLEUM HYDROCARBONS (CCME)

BV Labs ID		MRR542			
Sampling Date		2020/05/14			
COC Number		102951			
	UNITS	MW114 SS1	RDL	QC Batch	
F2-F4 Hydrocarbons					
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	2500	100	6762955	
RDL = Reportable Detection Limit	•				
QC Batch = Quality Control Batch					

Client Project #: 230236.006 Sampler Initials: M.K

TEST SUMMARY

BV Labs ID: MRR527 Sample ID: BH101 SS1

Matrix: Soil

Collected: Shipped:

2020/05/19

Received:

2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6740896	N/A	2020/05/31	Automated Statchk
Hot Water Extractable Boron	ICP	6745825	2020/05/25	2020/05/29	Archana Patel
1,3-Dichloropropene Sum	CALC	6740897	N/A	2020/05/26	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	6752391	2020/05/27	2020/05/28	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6756415	2020/05/28	2020/05/29	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6746070	2020/05/25	2020/05/28	Viviana Canzonieri
Moisture	BAL	6741312	N/A	2020/05/23	Gurpreet Kaur (ONT)
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6761358	2020/05/29	2020/05/30	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6743456	N/A	2020/05/25	Denis Reid

BV Labs ID: MRR528 Sample ID: DUP-1

Matrix: Soil

Collected: Shipped: 2020/05/19

Received: 2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6740896	N/A	2020/05/31	Automated Statchk
Hot Water Extractable Boron	ICP	6745825	2020/05/25	2020/05/29	Archana Patel
1,3-Dichloropropene Sum	CALC	6740897	N/A	2020/05/26	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	6752391	2020/05/27	2020/05/28	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6756415	2020/05/28	2020/05/29	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6746070	2020/05/25	2020/05/28	Viviana Canzonieri
Moisture	BAL	6741312	N/A	2020/05/23	Gurpreet Kaur (ONT)
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6761358	2020/05/29	2020/05/30	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6743456	N/A	2020/05/25	Denis Reid

BV Labs ID: MRR528 Dup

DUP-1 Sample ID:

Matrix: Soil

Collected: 2020/05/19

Shipped:

Received: 2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6743456	N/A	2020/05/25	Denis Reid

BV Labs ID: MRR529 Sample ID: BH102 SS2

Matrix: Soil

Collected: 2020/05/19

Shipped:

Received: 2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6740896	N/A	2020/05/31	Automated Statchk
Hot Water Extractable Boron	ICP	6745825	2020/05/25	2020/05/29	Archana Patel
1,3-Dichloropropene Sum	CALC	6740897	N/A	2020/05/26	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	6752391	2020/05/27	2020/05/28	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6756415	2020/05/28	2020/05/29	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6746070	2020/05/25	2020/05/28	Viviana Canzonieri
Moisture	BAL	6741312	N/A	2020/05/23	Gurpreet Kaur (ONT)
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6761358	2020/05/29	2020/05/30	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6743456	N/A	2020/05/25	Denis Reid

Client Project #: 230236.006 Sampler Initials: M.K

TEST SUMMARY

BV Labs ID: MRR530 Sample ID: BH103 SS1 Collected: Shipped:

2020/05/19

Matrix: Soil

Received: 2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6740896	N/A	2020/05/31	Automated Statchk
Hot Water Extractable Boron	ICP	6745825	2020/05/25	2020/05/29	Archana Patel
1,3-Dichloropropene Sum	CALC	6740897	N/A	2020/05/26	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	6752391	2020/05/27	2020/05/28	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6756415	2020/05/28	2020/05/29	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6746070	2020/05/25	2020/05/28	Viviana Canzonieri
Moisture	BAL	6741312	N/A	2020/05/23	Gurpreet Kaur (ONT)
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6761358	2020/05/29	2020/05/30	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6743456	N/A	2020/05/25	Denis Reid

BV Labs ID: MRR531 Sample ID: BH104 SS1

Matrix: Soil

Collected: 2020/05/19

Shipped:

2020/05/22 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6740896	N/A	2020/05/31	Automated Statchk
Hot Water Extractable Boron	ICP	6745825	2020/05/25	2020/05/29	Archana Patel
1,3-Dichloropropene Sum	CALC	6740897	N/A	2020/05/26	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	6752391	2020/05/27	2020/05/28	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6756415	2020/05/28	2020/05/29	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6746070	2020/05/25	2020/05/28	Viviana Canzonieri
Moisture	BAL	6741312	N/A	2020/05/23	Gurpreet Kaur (ONT)
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6761358	2020/05/29	2020/05/30	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6743456	N/A	2020/05/25	Denis Reid

BV Labs ID: MRR532 Collected:

2020/05/19

Sample ID: BH105 SS1 Matrix: Soil

Shipped:

Received: 2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6740896	N/A	2020/05/31	Automated Statchk
Hot Water Extractable Boron	ICP	6745825	2020/05/25	2020/05/29	Archana Patel
1,3-Dichloropropene Sum	CALC	6740897	N/A	2020/05/26	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	6752391	2020/05/27	2020/05/28	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6756415	2020/05/28	2020/05/29	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6746070	2020/05/25	2020/05/28	Viviana Canzonieri
Moisture	BAL	6741312	N/A	2020/05/23	Gurpreet Kaur (ONT)
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6761358	2020/05/29	2020/05/30	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6743456	N/A	2020/05/25	Denis Reid

BV Labs ID: MRR532 Dup Sample ID: BH105 SS1

Soil

Matrix:

2020/05/19 Collected:

Shipped:

2020/05/22 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	6745825	2020/05/25	2020/05/29	Archana Patel

Client Project #: 230236.006 Sampler Initials: M.K

TEST SUMMARY

BV Labs ID: MRR533 Sample ID: BH106 SS2 Collected:

2020/05/19

Sample ID: BH106 SS2 Matrix: Soil Shipped:

Received: 2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6740896	N/A	2020/05/31	Automated Statchk
Hot Water Extractable Boron	ICP	6745825	2020/05/25	2020/05/29	Archana Patel
1,3-Dichloropropene Sum	CALC	6740897	N/A	2020/05/26	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	6752391	2020/05/27	2020/05/28	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6756415	2020/05/28	2020/05/29	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6746070	2020/05/25	2020/05/28	Viviana Canzonieri
Moisture	BAL	6741312	N/A	2020/05/23	Gurpreet Kaur (ONT)
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6761358	2020/05/29	2020/05/30	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6743456	N/A	2020/05/25	Denis Reid

BV Labs ID: MRR534 Sample ID: BH107 SS4

Soil

. Matrix: **Collected:** 2020/05/20

Shipped:

Received: 2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6740896	N/A	2020/05/31	Automated Statchk
Hot Water Extractable Boron	ICP	6745825	2020/05/25	2020/05/29	Archana Patel
1,3-Dichloropropene Sum	CALC	6740897	N/A	2020/05/26	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	6752391	2020/05/27	2020/05/28	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6756415	2020/05/28	2020/05/29	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6746070	2020/05/25	2020/05/28	Viviana Canzonieri
Moisture	BAL	6741312	N/A	2020/05/23	Gurpreet Kaur (ONT)
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6761358	2020/05/29	2020/05/30	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6743456	N/A	2020/05/25	Denis Reid

BV Labs ID: MRR535

Collected: 20

2020/05/20

Sample ID: BH108 SS1
Matrix: Soil

Shipped:

Received: 2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6740896	N/A	2020/05/31	Automated Statchk
Hot Water Extractable Boron	ICP	6745825	2020/05/25	2020/05/29	Archana Patel
1,3-Dichloropropene Sum	CALC	6740897	N/A	2020/05/26	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	6752391	2020/05/27	2020/05/28	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6756415	2020/05/28	2020/05/29	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6746070	2020/05/25	2020/05/28	Viviana Canzonieri
Moisture	BAL	6741312	N/A	2020/05/23	Gurpreet Kaur (ONT)
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6761358	2020/05/29	2020/05/30	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6743456	N/A	2020/05/25	Denis Reid

BV Labs ID: MRR536 Sample ID: BH109 SS3

Soil

Matrix:

Collected: 2020/05/20

Shipped:

Received: 2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6740896	N/A	2020/05/31	Automated Statchk

Report Date: 2020/06/01

Pinchin Ltd

Client Project #: 230236.006 Sampler Initials: M.K

TEST SUMMARY

BV Labs ID: MRR536 Sample ID: BH109 SS3

Soil

Matrix:

Matrix:

Soil

Collected:

Shipped: Received:

2020/05/20 2020/05/22

Date Analyzed Test Description Instrumentation Batch Extracted Analyst Hot Water Extractable Boron ICP 6745825 2020/05/25 2020/05/29 Archana Patel CALC 6740897 2020/05/26 **Automated Statchk** 1,3-Dichloropropene Sum N/A Hexavalent Chromium in Soil by IC IC/SPEC 6752391 2020/05/27 2020/05/28 Violeta Porcila Petroleum Hydrocarbons F2-F4 in Soil GC/FID 6756415 2020/05/28 2020/05/29 Prabhjot Gulati Strong Acid Leachable Metals by ICPMS ICP/MS 6746070 2020/05/25 2020/05/28 Viviana Canzonieri Moisture BAL 6741312 N/A 2020/05/23 Gurpreet Kaur (ONT) 2020/05/29 2020/05/30 PAH Compounds in Soil by GC/MS (SIM) GC/MS 6761358 Jett Wu Volatile Organic Compounds and F1 PHCs GC/MSFD 6743456 N/A 2020/05/25 Denis Reid

MRR537 BV Labs ID: Collected: 2020/05/20 Sample ID: MW110 SS2

Shipped:

Received: 2020/05/22

Test Description Instrumentation Batch Extracted Date Analyzed Analyst 2020/05/31 CALC 6740896 Methylnaphthalene Sum Automated Statchk N/A 6745825 2020/05/25 2020/05/29 Hot Water Extractable Boron ICP Archana Patel CALC 6740897 2020/05/26 1,3-Dichloropropene Sum N/A Automated Statchk Hexavalent Chromium in Soil by IC IC/SPEC 6752391 2020/05/27 2020/05/28 Violeta Porcila Petroleum Hydrocarbons F2-F4 in Soil GC/FID 6756415 2020/05/28 2020/05/29 Prabhjot Gulati Strong Acid Leachable Metals by ICPMS ICP/MS 6746070 2020/05/25 Viviana Canzonieri 2020/05/28 Moisture BAL 6741312 N/A 2020/05/23 Gurpreet Kaur (ONT) GC/MS PAH Compounds in Soil by GC/MS (SIM) 6761358 2020/05/29 2020/05/30 Jett Wu Volatile Organic Compounds and F1 PHCs GC/MSFD 6743456 N/A 2020/05/25 Denis Reid

BV Labs ID: MRR538 Collected: 2020/05/20

Sample ID: DUP-2 Shipped:

Matrix: Soil Received: 2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6740896	N/A	2020/05/31	Automated Statchk
Hot Water Extractable Boron	ICP	6745825	2020/05/25	2020/05/29	Archana Patel
1,3-Dichloropropene Sum	CALC	6740897	N/A	2020/05/26	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	6752391	2020/05/27	2020/05/28	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6756415	2020/05/28	2020/05/29	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6746070	2020/05/25	2020/05/28	Viviana Canzonieri
Moisture	BAL	6741312	N/A	2020/05/23	Gurpreet Kaur (ONT)
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6761358	2020/05/29	2020/05/30	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6743456	N/A	2020/05/25	Denis Reid

BV Labs ID: **MRR539** Collected: 2020/05/14

Sample ID: BH111 SS1 Shipped: Matrix:

Soil Received: 2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6740896	N/A	2020/05/31	Automated Statchk
Hot Water Extractable Boron	ICP	6745825	2020/05/25	2020/05/29	Archana Patel

Client Project #: 230236.006 Sampler Initials: M.K

TEST SUMMARY

BV Labs ID: MRR539 Sample ID: BH111 SS1

Matrix: Soil

Collected:

2020/05/14

Shipped: Received:

2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6740897	N/A	2020/05/26	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	6752391	2020/05/27	2020/05/28	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6756415	2020/05/28	2020/05/29	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6746070	2020/05/25	2020/05/28	Viviana Canzonieri
Moisture	BAL	6741312	N/A	2020/05/23	Gurpreet Kaur (ONT)
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6761358	2020/05/29	2020/05/30	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6743456	N/A	2020/05/25	Denis Reid

BV Labs ID: MRR540 Sample ID: BH112 SS2 Matrix: Soil

Collected: 2020/05/14

Shipped:

Received: 2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6740896	N/A	2020/05/31	Automated Statchk
Hot Water Extractable Boron	ICP	6745825	2020/05/25	2020/05/29	Archana Patel
1,3-Dichloropropene Sum	CALC	6740897	N/A	2020/05/26	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	6752391	2020/05/27	2020/05/28	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6756415	2020/05/28	2020/05/29	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6746070	2020/05/25	2020/05/28	Viviana Canzonieri
Moisture	BAL	6741312	N/A	2020/05/23	Gurpreet Kaur (ONT)
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6761358	2020/05/29	2020/05/30	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6743456	N/A	2020/05/25	Denis Reid

MRR540 Dup BV Labs ID: Sample ID: BH112 SS2

> Matrix: Soil

Collected: 2020/05/14 Shipped:

Received: 2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6756415	2020/05/28	2020/05/29	Prabhjot Gulati
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6761358	2020/05/29	2020/05/30	Jett Wu

BV Labs ID: MRR541 Sample ID: BH113 SS2 Matrix: Soil

Collected: 2020/05/14 Shipped:

Received: 2020/05/22

Test Description Instrumentation Batch **Extracted Date Analyzed** Analyst CALC 2020/05/31 Methylnaphthalene Sum 6740896 N/A **Automated Statchk** Hot Water Extractable Boron ICP 6745825 2020/05/25 2020/05/29 Archana Patel 1,3-Dichloropropene Sum CALC 6740897 N/A 2020/05/26 **Automated Statchk** Hexavalent Chromium in Soil by IC IC/SPEC 6752391 2020/05/27 2020/05/28 Violeta Porcila Petroleum Hydrocarbons F2-F4 in Soil GC/FID 6756415 2020/05/28 2020/05/29 Prabhjot Gulati ICP/MS 2020/05/27 Strong Acid Leachable Metals by ICPMS 6752874 2020/05/27 Viviana Canzonieri Gurpreet Kaur (ONT) Moisture BAL 6741312 N/A 2020/05/23 PAH Compounds in Soil by GC/MS (SIM) GC/MS 6761358 2020/05/29 2020/05/30 Jett Wu Volatile Organic Compounds and F1 PHCs GC/MSFD 6743456 N/A 2020/05/25 Denis Reid

Client Project #: 230236.006 Sampler Initials: M.K

TEST SUMMARY

BV Labs ID: MRR541 Dup Sample ID: BH113 SS2

Collected:

2020/05/14

Matrix: Soil

Shipped:

Received: 2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hexavalent Chromium in Soil by IC	IC/SPEC	6752391	2020/05/27	2020/05/28	Violeta Porcila

BV Labs ID: MRR542 Collected: 2020/05/14 Sample ID: MW114 SS1

Shipped:

Matrix: Soil

Received: 2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6740896	N/A	2020/05/31	Automated Statchk
Hot Water Extractable Boron	ICP	6745825	2020/05/25	2020/05/29	Archana Patel
1,3-Dichloropropene Sum	CALC	6740897	N/A	2020/05/26	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	6752391	2020/05/27	2020/05/28	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6756415	2020/05/28	2020/05/29	Prabhjot Gulati
F4G (CCME Hydrocarbons Gravimetric)	BAL	6762955	2020/06/01	2020/06/01	Rashmi Dubey
Strong Acid Leachable Metals by ICPMS	ICP/MS	6752874	2020/05/27	2020/05/27	Viviana Canzonieri
Moisture	BAL	6741312	N/A	2020/05/23	Gurpreet Kaur (ONT)
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6761358	2020/05/29	2020/05/30	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6743456	N/A	2020/05/25	Denis Reid

BV Labs ID: MRR543 Sample ID: BH115 SS2

Matrix: Soil

Collected:

2020/05/14

Shipped: Received:

2020/05/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6740896	N/A	2020/05/31	Automated Statchk
Hot Water Extractable Boron	ICP	6745825	2020/05/25	2020/05/29	Archana Patel
1,3-Dichloropropene Sum	CALC	6740897	N/A	2020/05/26	Automated Statchk
Hexavalent Chromium in Soil by IC	IC/SPEC	6752391	2020/05/27	2020/05/28	Violeta Porcila
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6756415	2020/05/28	2020/05/29	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6746070	2020/05/25	2020/05/28	Viviana Canzonieri
Moisture	BAL	6741312	N/A	2020/05/23	Gurpreet Kaur (ONT)
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6761358	2020/05/29	2020/05/30	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6743456	N/A	2020/05/25	Denis Reid

Client Project #: 230236.006 Sampler Initials: M.K

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 6.3°C	
-----------------	--

Cooler custody seal was present and intact .

Sample MRR534 [BH107 SS4]: PAH analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample MRR541 [BH113 SS2]: PAH analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample MRR542 [MW114 SS1]: PAH analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.

Report Date: 2020/06/01 Client

Pinchin Ltd

Client Project #: 230236.006

Sampler Initials: M.K

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6741312	KJP	RPD	Moisture	2020/05/23	2.9		%	20
6743456	DR1	Matrix Spike [MRR528-02]	4-Bromofluorobenzene	2020/05/25		101	%	60 - 140
		[D10-o-Xylene	2020/05/25		119	%	60 - 130
			D4-1,2-Dichloroethane	2020/05/25		100	%	60 - 140
			D8-Toluene	2020/05/25		100	%	60 - 140
			Acetone (2-Propanone)	2020/05/25		98	%	60 - 140
			Benzene	2020/05/25		94	%	60 - 140
			Bromodichloromethane	2020/05/25		90	%	60 - 140
			Bromoform	2020/05/25		91	%	60 - 140
			Bromomethane	2020/05/25		93	%	60 - 140
			Carbon Tetrachloride	2020/05/25		94	%	60 - 140
			Chlorobenzene	2020/05/25		89	%	60 - 140
			Chloroform	2020/05/25		90	%	60 - 140
			Dibromochloromethane	2020/05/25		93	%	60 - 140
			1,2-Dichlorobenzene	2020/05/25		84	%	60 - 140
			1,3-Dichlorobenzene	2020/05/25		90	%	60 - 140
			1,4-Dichlorobenzene	2020/05/25		95	%	60 - 140
			Dichlorodifluoromethane (FREON 12)	2020/05/25		96	%	60 - 140
			1,1-Dichloroethane	2020/05/25		94	%	60 - 140
			1,2-Dichloroethane	2020/05/25		95	%	60 - 140
			1,1-Dichloroethylene	2020/05/25		104	%	60 - 140
			cis-1,2-Dichloroethylene	2020/05/25		89	%	60 - 140
			trans-1,2-Dichloroethylene	2020/05/25		97	%	60 - 140
			1,2-Dichloropropane	2020/05/25		91	%	60 - 140
			cis-1,3-Dichloropropene	2020/05/25		95	%	60 - 140
			trans-1,3-Dichloropropene	2020/05/25		96	%	60 - 140
			Ethylbenzene	2020/05/25		91	%	60 - 140
			Ethylene Dibromide	2020/05/25		93	%	60 - 140
			Hexane	2020/05/25		104	%	60 - 140
			Methylene Chloride(Dichloromethane)	2020/05/25		100	%	60 - 140
			Methyl Ethyl Ketone (2-Butanone)	2020/05/25		90	%	60 - 140
			Methyl Isobutyl Ketone	2020/05/25		101	%	60 - 140
			Methyl t-butyl ether (MTBE)	2020/05/25		86	%	60 - 140
			Styrene	2020/05/25		95	%	60 - 140
			1,1,1,2-Tetrachloroethane	2020/05/25		97	%	60 - 140
(1,1,2,2-Tetrachloroethane	2020/05/25		93	%	60 - 140
			Tetrachloroethylene	2020/05/25		86	%	60 - 140
			Toluene	2020/05/25		88	%	60 - 140
			1,1,1-Trichloroethane	2020/05/25		95	%	60 - 140
			1,1,2-Trichloroethane	2020/05/25		88	%	60 - 140
			Trichloroethylene	2020/05/25		96	%	60 - 140
			Trichlorofluoromethane (FREON 11)	2020/05/25		101	%	60 - 140
			Vinyl Chloride	2020/05/25		97	%	60 - 140
		Y	p+m-Xylene	2020/05/25		97	%	60 - 140
			o-Xylene	2020/05/25		93	%	60 - 140
			F1 (C6-C10)	2020/05/25		98	%	60 - 140
6743456	DR1	Spiked Blank	4-Bromofluorobenzene	2020/05/25		101	%	60 - 140
			D10-o-Xylene	2020/05/25		106	%	60 - 130
			D4-1,2-Dichloroethane	2020/05/25		104	%	60 - 140
			D8-Toluene	2020/05/25		100	%	60 - 140
			Acetone (2-Propanone)	2020/05/25		103	%	60 - 140
			Benzene	2020/05/25		96	%	60 - 130
			Bromodichloromethane	2020/05/25		93	%	60 - 130

Client Project #: 230236.006

Sampler Initials: M.K

QA/QC							
Batch	Init QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		Bromoform	2020/05/25		98	%	60 - 130
		Bromomethane	2020/05/25		92	%	60 - 140
		Carbon Tetrachloride	2020/05/25		94	%	60 - 130
		Chlorobenzene	2020/05/25		89	%	60 - 130
		Chloroform	2020/05/25		91	%	60 - 130
		Dibromochloromethane	2020/05/25		97	%	60 - 130
		1,2-Dichlorobenzene	2020/05/25		86	%	60 - 130
		1,3-Dichlorobenzene	2020/05/25		90	%	60 - 130
		1,4-Dichlorobenzene	2020/05/25		94	%	60 - 130
		Dichlorodifluoromethane (FREON 12)	2020/05/25		94	%	60 - 140
		1,1-Dichloroethane	2020/05/25		95	%	60 - 130
		1,2-Dichloroethane	2020/05/25		100	%	60 - 130
		1,1-Dichloroethylene	2020/05/25		102	%	60 - 130
		cis-1,2-Dichloroethylene	2020/05/25		91	%	60 - 130
		trans-1,2-Dichloroethylene	2020/05/25		97	%	60 - 130
		1,2-Dichloropropane	2020/05/25		93	%	60 - 130
		cis-1,3-Dichloropropene	2020/05/25		97	%	60 - 130
			2020/05/25		97 97	% %	60 - 130
		trans-1,3-Dichloropropene					
		Ethylbenzene	2020/05/25		88	%	60 - 130
		Ethylene Dibromide	2020/05/25		97	%	60 - 130
		Hexane	2020/05/25		102	%	60 - 130
		Methylene Chloride(Dichloromethane)	2020/05/25		102	%	60 - 130
		Methyl Ethyl Ketone (2-Butanone)	2020/05/25		99	%	60 - 140
		Methyl Isobutyl Ketone	2020/05/25		113	%	60 - 130
		Methyl t-butyl ether (MTBE)	2020/05/25		88	%	60 - 130
		Styrene	2020/05/25		94	%	60 - 130
		1,1,1,2-Tetrachloroethane	2020/05/25		98	%	60 - 130
		1,1,2,2-Tetrachloroethane	2020/05/25		100	%	60 - 130
		Tetrachloroethylene	2020/05/25		84	%	60 - 130
		Toluene	2020/05/25		87	%	60 - 130
		1,1,1-Trichloroethane	2020/05/25		95	%	60 - 130
		1,1,2-Trichloroethane	2020/05/25		93	%	60 - 130
		Trichloroethylene	2020/05/25		96	%	60 - 130
		Trichlorofluoromethane (FREON 11)	2020/05/25		99	%	60 - 130
		Vinyl Chloride	2020/05/25		96	%	60 - 130
		p+m-Xylene	2020/05/25		94	%	60 - 130
		o-Xylene	2020/05/25		91	%	60 - 130
		F1 (C6-C10)	2020/05/25		94	%	80 - 120
6743456	DR1 Method Blank	4-Bromofluorobenzene	2020/05/25		97	%	60 - 140
0743430	DIT WELLOW DIGITA	D10-o-Xylene	2020/05/25		111	%	60 - 130
		D4-1,2-Dichloroethane	2020/05/25		99	%	60 - 140
		D8-Toluene	2020/05/25	.0.50	95	%	60 - 140
		Acetone (2-Propanone)	2020/05/25	<0.50		ug/g	
		Benzene	2020/05/25	<0.020		ug/g	
		Bromodichloromethane	2020/05/25	<0.050		ug/g	
		Bromoform	2020/05/25	<0.050		ug/g	
		Bromomethane	2020/05/25	<0.050		ug/g	
		Carbon Tetrachloride	2020/05/25	<0.050		ug/g	
		Chlorobenzene	2020/05/25	<0.050		ug/g	
		Chloroform	2020/05/25	<0.050		ug/g	
		Dibromochloromethane	2020/05/25	<0.050		ug/g	
		1,2-Dichlorobenzene	2020/05/25	<0.050		ug/g	
		1,3-Dichlorobenzene	2020/05/25	<0.050		ug/g	
		1,4-Dichlorobenzene	2020/05/25	< 0.050		ug/g	

Client Project #: 230236.006

Sampler Initials: M.K

QA/QC						
Batch	Init QC Type	Parameter	Date Analyzed	Value	Recovery UNITS	QC Limits
		Dichlorodifluoromethane (FREON 12)	2020/05/25	<0.050	ug/g	
		1,1-Dichloroethane	2020/05/25	<0.050	ug/g	
		1,2-Dichloroethane	2020/05/25	<0.050	ug/g	
		1,1-Dichloroethylene	2020/05/25	< 0.050	ug/g	
		cis-1,2-Dichloroethylene	2020/05/25	<0.050	ug/g	
		trans-1,2-Dichloroethylene	2020/05/25	<0.050	ug/g	
		1,2-Dichloropropane	2020/05/25	<0.050	ug/g	
		cis-1,3-Dichloropropene	2020/05/25	<0.030	ug/g	
		trans-1,3-Dichloropropene	2020/05/25	< 0.040	ug/g	
		Ethylbenzene	2020/05/25	<0.020	ug/g	
		Ethylene Dibromide	2020/05/25	< 0.050	ug/g	
		Hexane	2020/05/25	<0.050	ug/g	
		Methylene Chloride(Dichloromethane)	2020/05/25	<0.050	ug/g	
		Methyl Ethyl Ketone (2-Butanone)	2020/05/25	<0.50	ug/g	
		Methyl Isobutyl Ketone	2020/05/25	<0.50	ug/g ug/g	
		Methyl t-butyl ether (MTBE)		<0.050		
		, , , , ,	2020/05/25		ug/g	
		Styrene	2020/05/25	<0.050	ug/g	
		1,1,1,2-Tetrachloroethane	2020/05/25	<0.050	ug/g	
		1,1,2,2-Tetrachloroethane	2020/05/25	<0.050	ug/g	
		Tetrachloroethylene	2020/05/25	<0.050	ug/g	
		Toluene	2020/05/25	<0.020	ug/g	
		1,1,1-Trichloroethane	2020/05/25	<0.050	ug/g	
		1,1,2-Trichloroethane	2020/05/25	<0.050	ug/g	
		Trichloroethylene	2020/05/25	<0.050	ug/g	
		Trichlorofluoromethane (FREON 11)	2020/05/25	< 0.050	ug/g	
		Vinyl Chloride	2020/05/25	<0.020	ug/g	
		p+m-Xylene	2020/05/25	<0.020	ug/g	
		o-Xylene	2020/05/25	< 0.020	ug/g	
		Total Xylenes	2020/05/25	<0.020	ug/g	
		F1 (C6-C10)	2020/05/25	<10	ug/g	
		F1 (C6-C10) - BTEX	2020/05/25	<10	ug/g	
743456	DR1 RPD [MRR528-02]	Acetone (2-Propanone)	2020/05/25	NC	%	50
, .0 .50	22 2 [Benzene	2020/05/25	NC	%	50
		Bromodichloromethane	2020/05/25	NC	%	50
		Bromoform	2020/05/25	NC	%	50
			2020/05/25	NC	%	50
		Bromomethane				
		Carbon Tetrachloride	2020/05/25	NC	%	50
		Chlorobenzene	2020/05/25	NC	%	50
		Chloroform	2020/05/25	NC	%	50
		Dibromochloromethane	2020/05/25	NC	%	50
		1,2-Dichlorobenzene	2020/05/25	NC	%	50
		1,3-Dichlorobenzene	2020/05/25	NC	%	50
		1,4-Dichlorobenzene	2020/05/25	NC	%	50
		Dichlorodifluoromethane (FREON 12)	2020/05/25	NC	%	50
		1,1-Dichloroethane	2020/05/25	NC	%	50
		1,2-Dichloroethane	2020/05/25	NC	%	50
		1,1-Dichloroethylene	2020/05/25	NC	%	50
		cis-1,2-Dichloroethylene	2020/05/25	NC	%	50
		trans-1,2-Dichloroethylene	2020/05/25	NC	%	50
		1,2-Dichloropropane	2020/05/25	NC	%	50
		cis-1,3-Dichloropropene	2020/05/25	NC	%	50
		trans-1,3-Dichloropropene	2020/05/25	NC	%	50
						JU
		Ethylbenzene	2020/05/25	NC	%	50

Client Project #: 230236.006

Sampler Initials: M.K

QA/QC			· · · · · · · · · · · · · · · · · · ·	•				
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Hexane	2020/05/25	NC		%	50
			Methylene Chloride(Dichloromethane)	2020/05/25	NC		%	50
			Methyl Ethyl Ketone (2-Butanone)	2020/05/25	NC		%	50
			Methyl Isobutyl Ketone	2020/05/25	NC		%	50
			Methyl t-butyl ether (MTBE)	2020/05/25	NC		%	50
			Styrene	2020/05/25	NC		%	50
			1,1,1,2-Tetrachloroethane	2020/05/25	NC		%	50
			1,1,2,2-Tetrachloroethane	2020/05/25	NC		%	50
			Tetrachloroethylene	2020/05/25	NC		%	50
			Toluene	2020/05/25	1.3		%	50
			1,1,1-Trichloroethane	2020/05/25	NC		%	50
			1,1,2-Trichloroethane	2020/05/25	NC		%	50
			Trichloroethylene	2020/05/25	NC		%	50
			Trichlorofluoromethane (FREON 11)	2020/05/25	NC		%	50
			Vinyl Chloride	2020/05/25	NC		%	50
			p+m-Xylene	2020/05/25	1.4		%	50
			o-Xylene	2020/05/25	2.0		%	50
			Total Xylenes	2020/05/25	1.6		%	50
			F1 (C6-C10)	2020/05/25	NC		%	30
			F1 (C6-C10) - BTEX	2020/05/25	NC		%	30
6745825	APT	Matrix Spike [MRR532-01]	Hot Water Ext. Boron (B)	2020/05/29		101	%	75 - 125
6745825	APT	Spiked Blank	Hot Water Ext. Boron (B)	2020/05/29		103	%	75 - 125
6745825	APT	Method Blank	Hot Water Ext. Boron (B)	2020/05/29	<0.050		ug/g	
6745825	APT	RPD [MRR532-01]	Hot Water Ext. Boron (B)	2020/05/29	0.72		%	40
6746070	VIV	Matrix Spike	Acid Extractable Antimony (Sb)	2020/05/28		101	%	75 - 125
			Acid Extractable Arsenic (As)	2020/05/28		104	%	75 - 125
			Acid Extractable Barium (Ba)	2020/05/28		NC	%	75 - 125
			Acid Extractable Beryllium (Be)	2020/05/28		103	%	75 - 125
			Acid Extractable Boron (B)	2020/05/28		105	%	75 - 125
			Acid Extractable Cadmium (Cd)	2020/05/28		105	%	75 - 125
			Acid Extractable Chromium (Cr)	2020/05/28		104	%	75 - 125
			Acid Extractable Cobalt (Co)	2020/05/28		102	%	75 - 125
			Acid Extractable Copper (Cu)	2020/05/28		100	%	75 - 125
			Acid Extractable Lead (Pb)	2020/05/28		97	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2020/05/28		105	%	75 - 125
4			Acid Extractable Nickel (Ni)	2020/05/28		101	%	75 - 125
			Acid Extractable Selenium (Se)	2020/05/28		106	%	75 - 125
			Acid Extractable Silver (Ag)	2020/05/28		105	%	75 - 125
			Acid Extractable Thallium (TI)	2020/05/28		102	%	75 - 125
			Acid Extractable Uranium (U)	2020/05/28		105	%	75 - 125
			Acid Extractable Vanadium (V)	2020/05/28		105	%	75 - 125
			Acid Extractable Zinc (Zn)	2020/05/28		NC	%	75 - 125
			Acid Extractable Mercury (Hg)	2020/05/28		95	%	75 - 125
6746070	VIV	Spiked Blank	Acid Extractable Antimony (Sb)	2020/05/28		112	%	80 - 120
			Acid Extractable Arsenic (As)	2020/05/28		105	%	80 - 120
			Acid Extractable Barium (Ba)	2020/05/28		105	%	80 - 120
			Acid Extractable Beryllium (Be)	2020/05/28		104	%	80 - 120
			Acid Extractable Boron (B)	2020/05/28		111	%	80 - 120
			Acid Extractable Cadmium (Cd)	2020/05/28		107	%	80 - 120
			Acid Extractable Chromium (Cr)	2020/05/28		105	%	80 - 120
			Acid Extractable Cobalt (Co)	2020/05/28		105	%	80 - 120
			Acid Extractable Copper (Cu)	2020/05/28		108	%	80 - 120
			Acid Extractable Lead (Pb)	2020/05/28		105	%	80 - 120

 BV Labs Job #: C0C5456
 Pinch

 Report Date: 2020/06/01
 Clien

Pinchin Ltd

Client Project #: 230236.006

Sampler Initials: M.K

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Molybdenum (Mo)	2020/05/28		106	%	80 - 120
			Acid Extractable Nickel (Ni)	2020/05/28		105	%	80 - 120
			Acid Extractable Selenium (Se)	2020/05/28		108	%	80 - 120
			Acid Extractable Silver (Ag)	2020/05/28		111	%	80 - 120
			Acid Extractable Thallium (TI)	2020/05/28	4	106	%	80 - 120
			Acid Extractable Uranium (U)	2020/05/28		106	%	80 - 120
			Acid Extractable Vanadium (V)	2020/05/28		106	%	80 - 120
			Acid Extractable Zinc (Zn)	2020/05/28		109	%	80 - 120
			Acid Extractable Mercury (Hg)	2020/05/28		97	%	80 - 120
746070	VIV	Method Blank	Acid Extractable Antimony (Sb)	2020/05/28	<0.20		ug/g	
			Acid Extractable Arsenic (As)	2020/05/28	<1.0		ug/g	
			Acid Extractable Barium (Ba)	2020/05/28	<0.50		ug/g	
			Acid Extractable Beryllium (Be)	2020/05/28	<0.20	•	ug/g	
			Acid Extractable Boron (B)	2020/05/28	<5.0		ug/g	
			Acid Extractable Cadmium (Cd)	2020/05/28	<0.10		ug/g	
			Acid Extractable Chromium (Cr)	2020/05/28	<1.0		ug/g	
			Acid Extractable Cobalt (Co)	2020/05/28	<0.10		ug/g ug/g	
			Acid Extractable Cobart (Co) Acid Extractable Copper (Cu)	2020/05/28	<0.10			
					<1.0		ug/g	
			Acid Extractable Lead (Pb)	2020/05/28			ug/g	
			Acid Extractable Molybdenum (Mo)	2020/05/28	<0.50		ug/g	
			Acid Extractable Nickel (Ni)	2020/05/28	<0.50		ug/g	
			Acid Extractable Selenium (Se)	2020/05/28	<0.50		ug/g	
			Acid Extractable Silver (Ag)	2020/05/28	<0.20		ug/g	
			Acid Extractable Thallium (Tl)	2020/05/28	<0.050		ug/g	
			Acid Extractable Uranium (U)	2020/05/28	<0.050		ug/g	
			Acid Extractable Vanadium (V)	2020/05/28	<5.0		ug/g	
			Acid Extractable Zinc (Zn)	2020/05/28	<5.0		ug/g	
			Acid Extractable Mercury (Hg)	2020/05/28	<0.050		ug/g	
746070	VIV	RPD	Acid Extractable Antimony (Sb)	2020/05/28	NC		%	30
			Acid Extractable Arsenic (As)	2020/05/28	7.5		%	30
			Acid Extractable Barium (Ba)	2020/05/28	5.4		%	30
			Acid Extractable Beryllium (Be)	2020/05/28	4.5		%	30
			Acid Extractable Boron (B)	2020/05/28	1.5		%	30
			Acid Extractable Cadmium (Cd)	2020/05/28	NC		%	30
			Acid Extractable Chromium (Cr)	2020/05/28	2.2		%	30
			Acid Extractable Cobalt (Co)	2020/05/28	2.7		%	30
			Acid Extractable Copper (Cu)	2020/05/28	4.6		%	30
			Acid Extractable Lead (Pb)	2020/05/28	18		%	30
			Acid Extractable Molybdenum (Mo)	2020/05/28	NC		%	30
			Acid Extractable Nickel (Ni)	2020/05/28	1.2		%	30
			Acid Extractable Selenium (Se)	2020/05/28	NC		%	30
			Acid Extractable Silver (Ag)	2020/05/28	NC		%	30
			Acid Extractable Thallium (TI)	2020/05/28	1.2		%	30
			Acid Extractable Uranium (U)	2020/05/28	5.7		%	30
			Acid Extractable Vanadium (V)	2020/05/28	2.4		%	30
			Acid Extractable Zinc (Zn)	2020/05/28	17		%	30
			Acid Extractable Mercury (Hg)	2020/05/28	NC		%	30
752391	VP2	Matrix Spike [MRR541-01]	Chromium (VI)	2020/05/28		0 (1)	%	70 - 130
752391	VP2	Spiked Blank	Chromium (VI)	2020/05/28		89	%	80 - 12
752391	VP2	Method Blank	Chromium (VI)	2020/05/28	<0.18		ug/g	
752391	VP2	RPD [MRR541-01]	Chromium (VI)	2020/05/28	NC		%	35
5752874	VIV	Matrix Spike	Acid Extractable Antimony (Sb)	2020/05/27		99	%	75 - 125
		•	Acid Extractable Arsenic (As)	2020/05/27		103	%	75 - 125

Client Project #: 230236.006

Sampler Initials: M.K

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Barium (Ba)	2020/05/27		97	%	75 - 125
			Acid Extractable Beryllium (Be)	2020/05/27		104	%	75 - 125
			Acid Extractable Boron (B)	2020/05/27		103	%	75 - 125
			Acid Extractable Cadmium (Cd)	2020/05/27		101	%	75 - 125
			Acid Extractable Chromium (Cr)	2020/05/27		104	%	75 - 125
			Acid Extractable Cobalt (Co)	2020/05/27		102	%	75 - 125
			Acid Extractable Copper (Cu)	2020/05/27		101	%	75 - 125
			Acid Extractable Lead (Pb)	2020/05/27		101	%	75 - 125
			Acid Extractable Molybdenum (Mo)	2020/05/27		102	%	75 - 125
			Acid Extractable Nickel (Ni)	2020/05/27		102	%	75 - 125
			Acid Extractable Selenium (Se)	2020/05/27		103	%	75 - 125
			Acid Extractable Silver (Ag)	2020/05/27		102	%	75 - 125
			Acid Extractable Thallium (TI)	2020/05/27		102	%	75 - 125
			Acid Extractable Uranium (U)	2020/05/27		106	%	75 - 125
			Acid Extractable Vanadium (V)	2020/05/27		105	%	75 - 125
			Acid Extractable Zinc (Zn)	2020/05/27		102	%	75 - 125
			Acid Extractable Mercury (Hg)	2020/05/27		96	%	75 - 125
5752874	VIV	Spiked Blank	Acid Extractable Antimony (Sb)	2020/05/27		104	%	80 - 120
			Acid Extractable Arsenic (As)	2020/05/27		102	%	80 - 120
			Acid Extractable Barium (Ba)	2020/05/27		106	%	80 - 120
			Acid Extractable Beryllium (Be)	2020/05/27		98	%	80 - 120
			Acid Extractable Boron (B)	2020/05/27		93	%	80 - 120
			Acid Extractable Cadmium (Cd)	2020/05/27		100	%	80 - 120
			Acid Extractable Chromium (Cr)	2020/05/27		104	%	80 - 12
			Acid Extractable Cobalt (Co)	2020/05/27		103	%	80 - 120
			Acid Extractable Copper (Cu)	2020/05/27		105	%	80 - 120
			Acid Extractable Lead (Pb)	2020/05/27		105	%	80 - 120
			Acid Extractable Molybdenum (Mo)	2020/05/27		100	%	80 - 120
			Acid Extractable Nickel (Ni)	2020/05/27		103	%	80 - 120
			Acid Extractable Selenium (Se)	2020/05/27		104	%	80 - 120
			Acid Extractable Silver (Ag)	2020/05/27		103	%	80 - 120
			Acid Extractable Thallium (TI)	2020/05/27		102	%	80 - 12
			Acid Extractable Uranium (U)	2020/05/27		105	%	80 - 12
			Acid Extractable Vanadium (V)	2020/05/27		105	%	80 - 12
			Acid Extractable Zinc (Zn)	2020/05/27		105	%	80 - 12
			Acid Extractable Mercury (Hg)	2020/05/27		97	%	80 - 12
752874	VIV	Method Blank	Acid Extractable Antimony (Sb)	2020/05/27	<0.20		ug/g	
			Acid Extractable Arsenic (As)	2020/05/27	<1.0		ug/g	
			Acid Extractable Barium (Ba)	2020/05/27	<0.50		ug/g	
			Acid Extractable Beryllium (Be)	2020/05/27	<0.20		ug/g	
			Acid Extractable Boron (B)	2020/05/27	<5.0		ug/g	
			Acid Extractable Cadmium (Cd)	2020/05/27	<0.10		ug/g	
			Acid Extractable Chromium (Cr)	2020/05/27	<1.0		ug/g	
			Acid Extractable Cobalt (Co)	2020/05/27	<0.10		ug/g	
			Acid Extractable Copper (Cu)	2020/05/27	<0.50		ug/g	
			Acid Extractable Lead (Pb)	2020/05/27	<1.0		ug/g	
			Acid Extractable Molybdenum (Mo)	2020/05/27	<0.50		ug/g	
			Acid Extractable Nickel (Ni)	2020/05/27	<0.50		ug/g	
			Acid Extractable Selenium (Se)	2020/05/27	<0.50		ug/g	
			Acid Extractable Silver (Ag)	2020/05/27	<0.20		ug/g	
			Acid Extractable Thallium (TI)	2020/05/27	<0.050		ug/g	
			Acid Extractable Uranium (U)	2020/05/27	<0.050		ug/g	
			Acid Extractable Vanadium (V)	2020/05/27	<5.0		ug/g	
			Acid Extractable Zinc (Zn)	2020/05/27	<5.0		ug/g	

Client Project #: 230236.006

Sampler Initials: M.K

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		-55- 71	Acid Extractable Mercury (Hg)	2020/05/27	<0.050		ug/g	
6752874	VIV	RPD	Acid Extractable Antimony (Sb)	2020/05/27	NC		%	30
			Acid Extractable Arsenic (As)	2020/05/27	NC		%	30
			Acid Extractable Barium (Ba)	2020/05/27	5.2		%	30
			Acid Extractable Beryllium (Be)	2020/05/27	NC		%	30
			Acid Extractable Boron (B)	2020/05/27	NC		%	30
			Acid Extractable Cadmium (Cd)	2020/05/27	NC		%	30
			Acid Extractable Chromium (Cr)	2020/05/27	11		%	30
			Acid Extractable Cobalt (Co)	2020/05/27	1.2		%	30
			Acid Extractable Copper (Cu)	2020/05/27	1.2		%	30
			Acid Extractable Lead (Pb)	2020/05/27	1.1		%	30
			Acid Extractable Molybdenum (Mo)	2020/05/27	NC		%	30
			Acid Extractable Nickel (Ni)	2020/05/27	0.72		%	30
			Acid Extractable Selenium (Se)	2020/05/27	NC		%	30
			Acid Extractable Silver (Ag)	2020/05/27	NC		%	30
			Acid Extractable Thallium (TI)	2020/05/27	NC		%	30
			Acid Extractable Uranium (U)	2020/05/27	8.5		%	30
			Acid Extractable Vanadium (V)	2020/05/27	8.4		%	30
			Acid Extractable Zinc (Zn)	2020/05/27	3.2		%	30
			Acid Extractable Mercury (Hg)	2020/05/27	NC		%	30
6756415	GUL	Matrix Spike [MRR540-01]	o-Terphenyl	2020/05/29		77	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2020/05/29		77	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2020/05/29		89	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2020/05/29		89	%	50 - 130
6756415	5756415 GUL S	Spiked Blank	o-Terphenyl	2020/05/29		100	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2020/05/29		106	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2020/05/29		111	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2020/05/29		111	%	80 - 120
6756415	GUL	Method Blank	o-Terphenyl	2020/05/29		77	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2020/05/29	<10		ug/g	
			F3 (C16-C34 Hydrocarbons)	2020/05/29	<50		ug/g	
			F4 (C34-C50 Hydrocarbons)	2020/05/29	<50		ug/g	
6756415	GUL	RPD [MRR540-01]	F2 (C10-C16 Hydrocarbons)	2020/05/29	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2020/05/29	18		%	30
			F4 (C34-C50 Hydrocarbons)	2020/05/29	NC		%	30
6761358	JET	Matrix Spike [MRR540-01]	D10-Anthracene	2020/05/30		102	%	50 - 130
			D14-Terphenyl (FS)	2020/05/30		101	%	50 - 130
			D8-Acenaphthylene	2020/05/30		96	%	50 - 130
			Acenaphthene	2020/05/30		90	%	50 - 130
			Acenaphthylene	2020/05/30		85	%	50 - 130
			Anthracene	2020/05/30		92	%	50 - 130
			Benzo(a)anthracene	2020/05/30		96	%	50 - 130
			Benzo(a)pyrene	2020/05/30		93	%	50 - 130
			Benzo(b/j)fluoranthene	2020/05/30		95	%	50 - 130
			Benzo(g,h,i)perylene	2020/05/30		91	%	50 - 130
			Benzo(k)fluoranthene	2020/05/30		92	%	50 - 130
			Chrysene	2020/05/30		97	%	50 - 130
			Dibenzo(a,h)anthracene	2020/05/30		91	%	50 - 130
			Fluoranthene	2020/05/30		101	%	50 - 130
			Fluorene	2020/05/30		92	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2020/05/30		89	%	50 - 130
			1-Methylnaphthalene	2020/05/30		97	%	50 - 130

Client Project #: 230236.006

Sampler Initials: M.K

QA/QC			QUALITI ASSURANC	· · · · · ·				
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Daten	11110	QC Type	2-Methylnaphthalene	2020/05/30	Value	95	%	50 - 130
			Naphthalene	2020/05/30		84	%	50 - 130
			Phenanthrene	2020/05/30		93	%	50 - 130
			Pyrene	2020/05/30		99	%	50 - 130
6761358	JET	Spiked Blank	D10-Anthracene	2020/05/30		103	%	50 - 130
0701330	,_,	Spinea Blank	D14-Terphenyl (FS)	2020/05/30		95	%	50 - 130
			D8-Acenaphthylene	2020/05/30		98	%	50 - 130
			Acenaphthene	2020/05/30		93	%	50 - 130
			Acenaphthylene	2020/05/30		88	%	50 - 130
			Anthracene	2020/05/30		96	%	50 - 130
			Benzo(a)anthracene	2020/05/30		94	%	50 - 130
			Benzo(a)pyrene	2020/05/30		94	% %	50 - 130
			Benzo(b/j)fluoranthene	2020/05/30		98	%	50 - 130
				2020/05/30		96 94	% %	50 - 130
			Benzo(g,h,i)perylene			94 94	% %	50 - 130
			Benzo(k)fluoranthene	2020/05/30				
			Chrysene	2020/05/30		100	%	50 - 130
			Dibenzo(a,h)anthracene	2020/05/30		92	%	50 - 130
			Fluoranthene	2020/05/30		100	%	50 - 130
			Fluorene	2020/05/30		96	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2020/05/30		92	%	50 - 130
			1-Methylnaphthalene	2020/05/30		101	%	50 - 130
			2-Methylnaphthalene	2020/05/30		99	%	50 - 130
			Naphthalene	2020/05/30		89	%	50 - 130
			Phenanthrene	2020/05/30		95	%	50 - 130
			Pyrene	2020/05/30		98	%	50 - 130
6761358	JET	Method Blank	D10-Anthracene	2020/05/30		104	%	50 - 130
			D14-Terphenyl (FS)	2020/05/30		94	%	50 - 130
			D8-Acenaphthylene	2020/05/30		99	%	50 - 130
			Acenaphthene	2020/05/30	<0.0050		ug/g	
			Acenaphthylene	2020/05/30	<0.0050		ug/g	
			Anthracene	2020/05/30	<0.0050		ug/g	
			Benzo(a)anthracene	2020/05/30	<0.0050		ug/g	
			Benzo(a)pyrene	2020/05/30	<0.0050		ug/g	
			Benzo(b/j)fluoranthene	2020/05/30	<0.0050		ug/g	
			Benzo(g,h,i)perylene	2020/05/30	<0.0050		ug/g	
			Benzo(k)fluoranthene	2020/05/30	<0.0050		ug/g	
•			Chrysene	2020/05/30	<0.0050		ug/g	
			Dibenzo(a,h)anthracene	2020/05/30	<0.0050		ug/g	
			Fluoranthene	2020/05/30	<0.0050		ug/g	
			Fluorene	2020/05/30	<0.0050		ug/g	
			Indeno(1,2,3-cd)pyrene	2020/05/30	<0.0050		ug/g	
			1-Methylnaphthalene	2020/05/30	<0.0050		ug/g	
			2-Methylnaphthalene	2020/05/30	<0.0050		ug/g	
			Naphthalene	2020/05/30	<0.0050		ug/g	
		_	Phenanthrene	2020/05/30	<0.0050		ug/g	
			Pyrene	2020/05/30	< 0.0050		ug/g	
6761358	JET	RPD [MRR540-01]	Acenaphthene	2020/05/30	NC		%	40
			Acenaphthylene	2020/05/30	NC		%	40
			Anthracene	2020/05/30	NC		%	40
			Benzo(a)anthracene	2020/05/30	NC		%	40
			Benzo(a)pyrene	2020/05/30	NC		%	40
			Benzo(b/j)fluoranthene	2020/05/30	NC		%	40
			Benzo(g,h,i)perylene	2020/05/30	NC		%	40

Report Date: 2020/06/01

Pinchin Ltd

Client Project #: 230236.006

Sampler Initials: M.K

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Chrysene	2020/05/30	NC		%	40
			Dibenzo(a,h)anthracene	2020/05/30	NC		%	40
			Fluoranthene	2020/05/30	NC		%	40
			Fluorene	2020/05/30	NC		%	40
			Indeno(1,2,3-cd)pyrene	2020/05/30	NC		%	40
			1-Methylnaphthalene	2020/05/30	NC		%	40
			2-Methylnaphthalene	2020/05/30	NC		%	40
			Naphthalene	2020/05/30	NC		%	40
			Phenanthrene	2020/05/30	NC		%	40
			Pyrene	2020/05/30	NC		%	40
6762955	RDU	Matrix Spike	F4G-sg (Grav. Heavy Hydrocarbons)	2020/06/01		73	%	65 - 135
		[MRR542-01]						
6762955	RDU	Spiked Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2020/06/01		103	%	65 - 135
6762955	RDU	Method Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2020/06/01	<100		ug/g	
6762955	RDU	RPD	F4G-sg (Grav. Heavy Hydrocarbons)	2020/06/01	0		%	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The matrix spike was reanalyzed to confirm result.

Client Project #: 230236.006 Sampler Initials: M.K

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

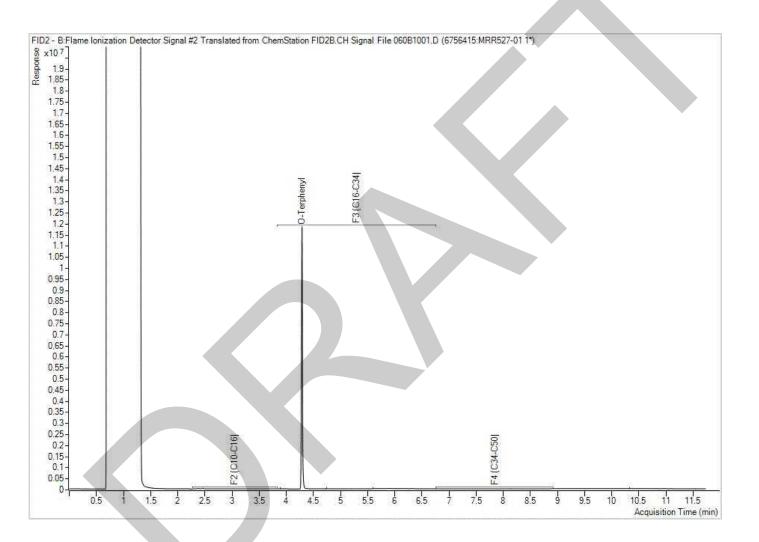
Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	npobello Road, Mississaug 05-817-5700 Fax: 905-8 -01191/3		800-563-6266	* <u>#</u>			C	CHAIN	OF CU	STODY	/ RECO	RD	102950	Page of 2		ю 23	* 4	¥ - 2		-
Invoice Information		Report Info	rmation (if diffe	ers from inv	roice)			Project	Informati	on (where	applicable)		Turnaro	und Time (TAT) Required						
Company Name: Phohin Ltd	Compan	y/Name:					Quotatio	n#:					Regular TAT (5	-7 days) Most analyses						
Contact Name: \\ \^ \\ \/ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Contact	Name:		Tan.			P.O. #/ Al	FE#:	100					OVANCE NOTICE FOR RUSH PROJECTS						
Address:	Address	_	SAN	n E	1		Project #	_	7 26	236	.000		Rush TAT	Surcharges will be applied)	9					
M. Wan	1		3010	16			Site Loca	100					1 Day	2 Days 3-4 Days			9			
Phone: Fax: Par la	Phone:			Fax:			Site #:			T				To the						
Email: [Miles 120] By	Email:				100		Sampled	By: 6	44E	161 L			Date Required:	A PHILLIPPING						
MOE REGULATED DRINKING WATE	ER OR WATER INTENDED FO	DR HUMAN CONSUM	PTION MUST BI	ESUBMITTE	D ON THE	MAXXAM [RINKING WA	ATER CHAIN	OF CUSTO	ODY		The last	Rush Confirmation #:						*	
Regulation 153		gulations					Analys	is Requeste	d				LAB	ORATORY USE ONLY	4					
Table 1 Res/Park Med/ Fine Table 2 Ind/Comm Soarse		ary Sewer Bylaw n Sewer Bylaw		48	Ш	П							CUSTODY SEAL	COOLER TEMPERATURES						
Table 3 Agri/ Other	PWQ0 Regio	on		8 / Crv]				Present Intact		i.					
Table 7 FOR RSC (PLEASE CIRCLE) Ø / N	Other (Specify) REG 558 (MIN. 3 DA	U TAT BEALINES!		H/sle		S	S B)						YY	4/11/4						
Include Criteria on Certificate of Analysis: Y / 🕟		IT IAI REQUIRED)	SMITTE	E) Met		DRGAN	ak, HW					32		3/14/11						
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME	OF SAMPLING UNTIL DELI	VERY TO MAXXAM	ERS SUI	CURCI		IS & IN	LS AS Met		М		41	ANAD					-			
	DATE SAMPLED	TIME CAMPUED	ONTAIN	HC F1	2	3 META	3 META VI, ICPI	E E	N		Ш	ON OC	COOLING MEDIA PRESEN	r (Y) N						
SAMPLE IDENTIFICATION	(YYYY/MM/DD)	(HH:MM)	MATRIX 5	HELD F	7HC3 F2 7/0/C5	REG 15	REG 15 HR. Cr	2	\mathbf{I}			40LD-		COMMENTS						
1 BHUDISSI	May 19	AM S	6163	X	XY		X	X	\Box	Y					7.5		-			
2 Dup-1	. 2020	1110	1	1	1		1	11	14											
3 BH102552	1		1 1		1			+												
4 DH103551					+			+												
5 BH104 SSI			11		Ш				+											
6 BH105551		Pm													-					
1 BH106 SS2		1						1			-				-					
	100 70	Am		+		++	+	+	+	-	\rightarrow								4)	
	May 20 2020	HIII			+		+	+++	+++	-					+					
9 BH108 SS1							++	++					22-	May-20 14:27						
RELINQUISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD)	TIME: (HH:MM)	1 L	RECEIVE	BY: (Signa	ture/Print)	1-1-	DATE	: (YYYY/MI	M/DD)	TIME: (I	HH:MM)	Antonell							-
112	1	(OBVA	1.7			,	0	_												
	May 22	(aconi	Asher	11. 1	10 10 111	101	nol			5722	14-			5456						
Mike Kosh	2020		rosuce	ra ra	STHE.	MeSu	neun	202	0/05	123	071	44	MAF	ENV-760						

Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Maxxam's standard Terms and Conditions. Signing of this Chain of Custody document is acknowledgment and acceptance of our terms which are available for viewing at www.maxxam.ca/terms. Sample container, preservation, hold time and packages information can be viewed at http://maxxam.ca/wp-content/uploads/Ontario-COC.pdf.

COC+1004 (03/17)

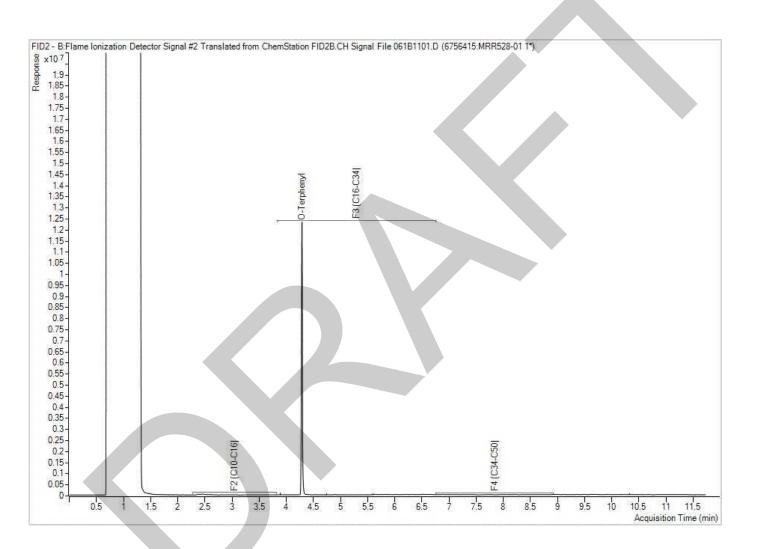

White Maxxam ~ Yellow, Client

A Bureau Veritas Group Company CAM FCD-01191/9 Invoice Information		(if differs from invoice)	CHAIN OF CUSTODY RECORD Project Information (where applicable)	102951 Page 2 of 2 Turnaround Time (TAT) Required]	t . E
y Name: Phyship Ltd	Company Name:		Quotation #:	Regular TAT (5-7 days) Most analyses		140
Name:	Contact Name:		P.O. #/ AFE#:	PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS		
M. Kosin	Address:	GAME	Project #: 2 36 236 - 006	Rush TAT (Surcharges will be applied)		
M Kyan			Site Location:	1 Day 2 Days 3-4 Days	7 g	
- I d los & Pel	Phone:	Fax:	Site #:			
- (P(into Pet	Email:		Sampled By: M. Rosils	Date Required:		
MOE REGULATED DRINKING WATER OR W.	ATER INTENDED FOR HUMAN CONSUMPTION I	MUST BE SUBMITTED ON THE MAXXAM D		Rush Confirmation #:		**
Regulation 153	Other Regulations CME Sanitary Sewer Bylaw		Analysis Requested	LABORATORY USE ONLY CUSTODY SEAL	-	
	AISA Storm Sewer Bylaw	5		Y / N COOLER TEMPERATURES		
	WQO Region	H8 / CO		Present Intact		
6	eg 558 (MIN. 3 DAY TAT REQUIRED)	etals / 1	MS SW		4	
Iteria on Certificate of Analysis; Y / N		CLE) M	LIVZE		-	
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME OF SAM	PLING UNTIL DELIVERY TO MAXXAM	NERS S ED (CIR TALS &	PINS M		-	
SAMPLE IDENTIFICATION	DATE SAMPLED TIME SAMPLED MATRIX	FILTER FILTER FPLC F F2 - F4 F3 ME	SS WE CONTROL	COOLING MEDIA PRESENT: Y ./ N	4	
SHALL SELATIFICATION	(YYYY/MM/DD) (HH:MM)	PHCS VOCS	HOLL	COMMENTS		
MW110 SSZ	May to Am Soll	3 AXX	X			
Dyp-2.	2020 AM					
BHILL SSI	May14 PM					
BH112 552	2028					
BH 113 552	1 + 1					
mw114 551	AM					
BH115 552	I PM I	1 11	11			
0 , 0						*
	(YYYY/MM/DD) TIME: (HH:MM)	RECEIVED BY: (Signature/Print)	DATE: (YYYY/MM/DD) TIME: (HH:MM)	MAXXAM JOB#		
Mrs Ma	y 22 10:00 MK	atil Szorda Kaita S	morda 2020105100 14:27] cocs456,00		
30 2 4	2020	see Page	17	T "		

Pinchin Ltd

Client Project #: 230236.006 Client ID: BH101 SS1

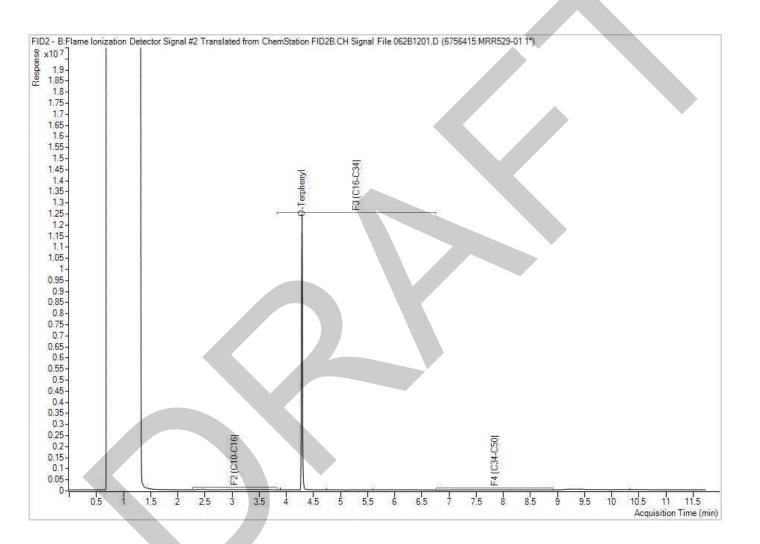
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



Pinchin Ltd

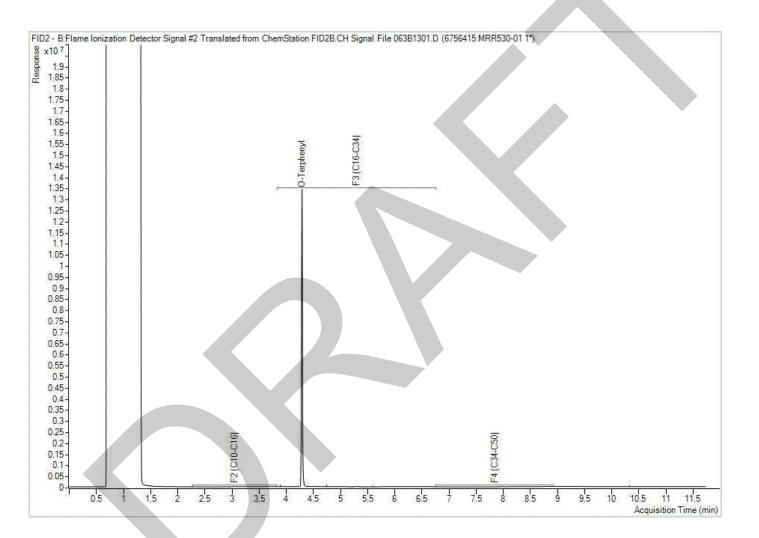
Client Project #: 230236.006

Client ID: DUP-1


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

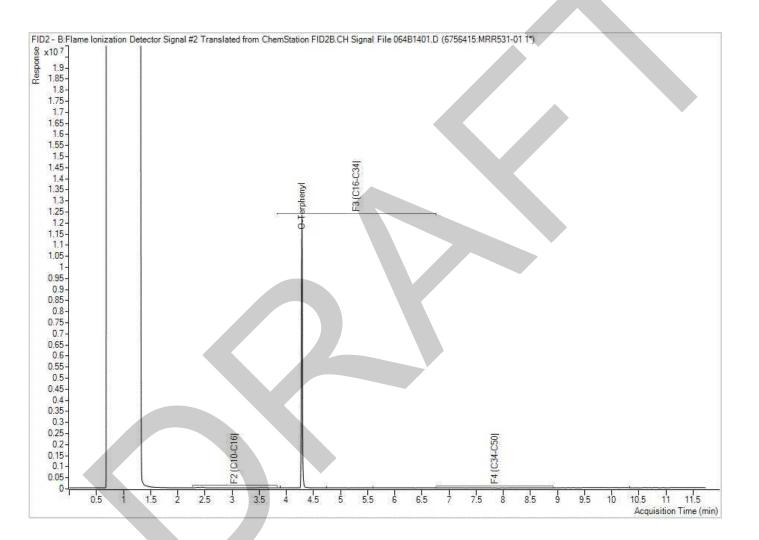
Pinchin Ltd

Client Project #: 230236.006 Client ID: BH102 SS2


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

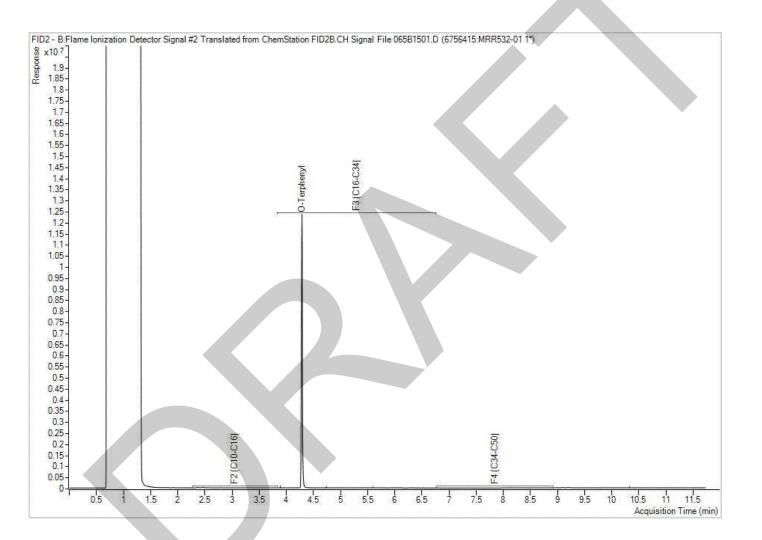
Pinchin Ltd

Client Project #: 230236.006 Client ID: BH103 SS1


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

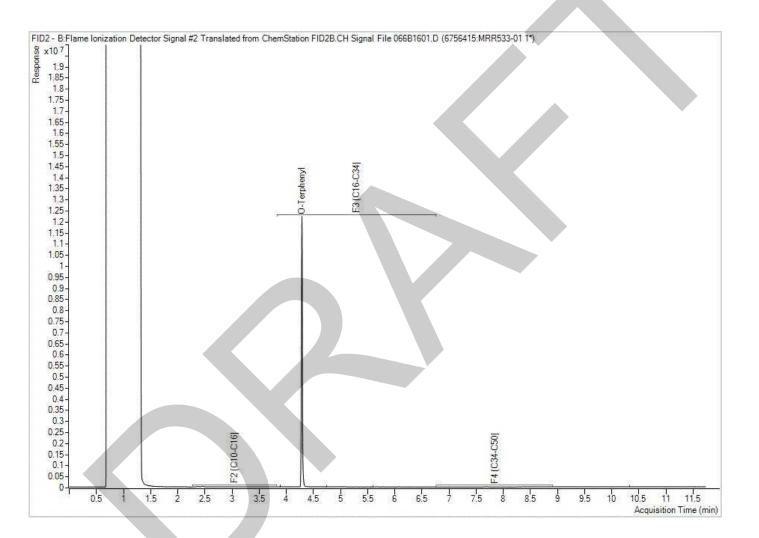
Pinchin Ltd

Client Project #: 230236.006 Client ID: BH104 SS1


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

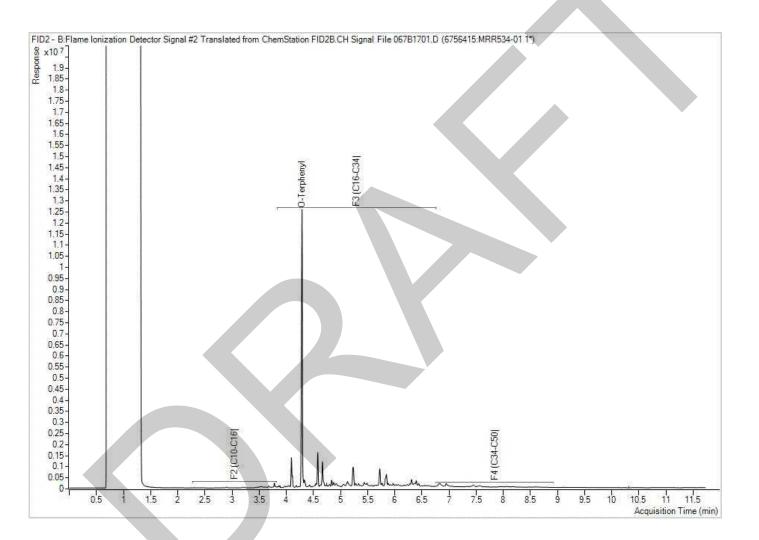
Pinchin Ltd

Client Project #: 230236.006 Client ID: BH105 SS1


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

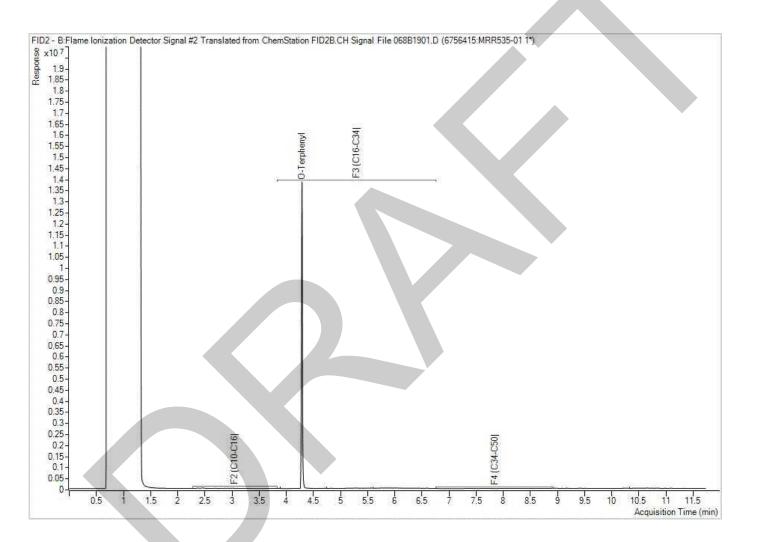
Pinchin Ltd

Client Project #: 230236.006 Client ID: BH106 SS2


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

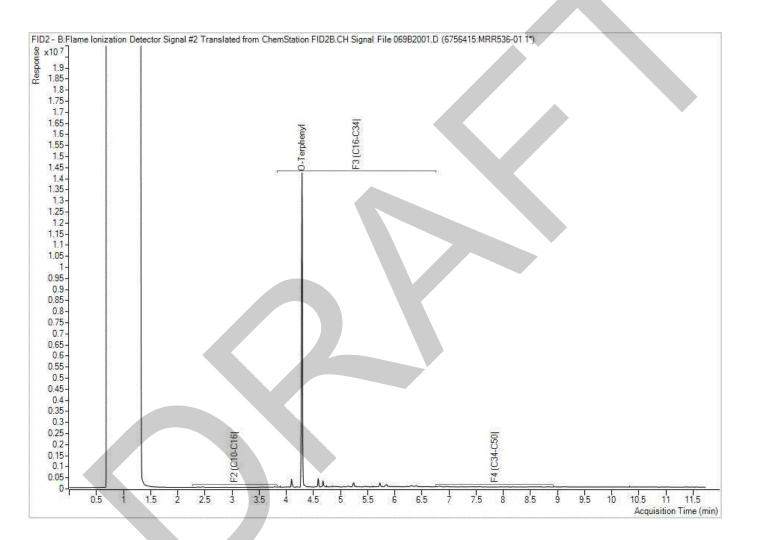
Pinchin Ltd

Client Project #: 230236.006 Client ID: BH107 SS4


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

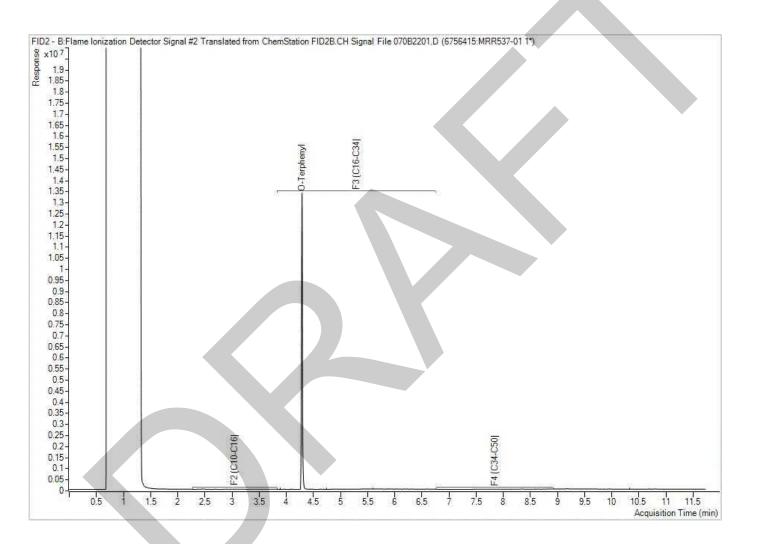
Pinchin Ltd

Client Project #: 230236.006 Client ID: BH108 SS1


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Pinchin Ltd

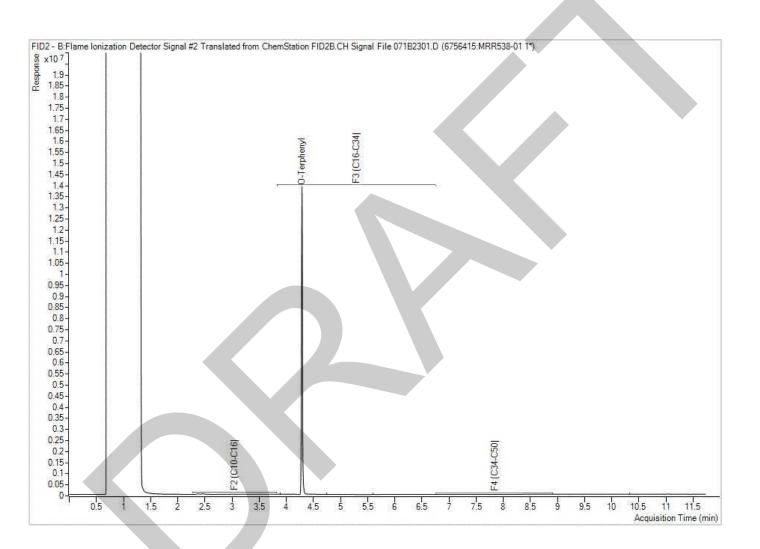
Client Project #: 230236.006 Client ID: BH109 SS3


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Pinchin Ltd

Client Project #: 230236.006 Client ID: MW110 SS2

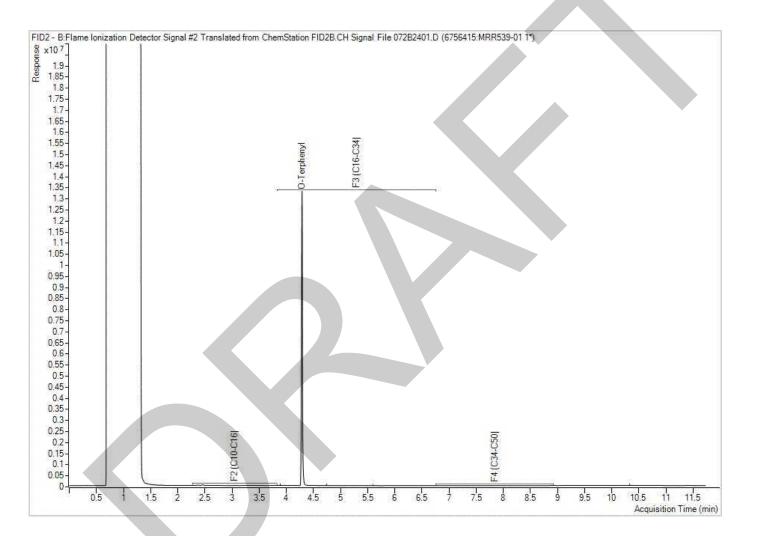
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



Pinchin Ltd

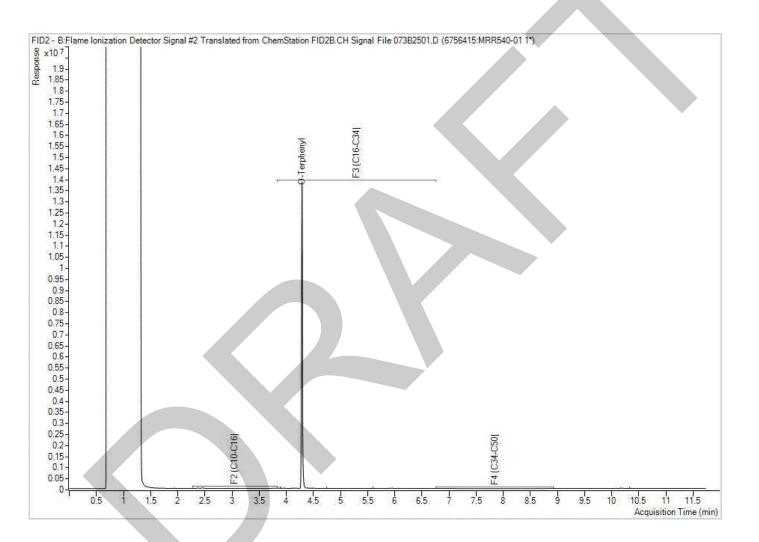
Client Project #: 230236.006

Client ID: DUP-2


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

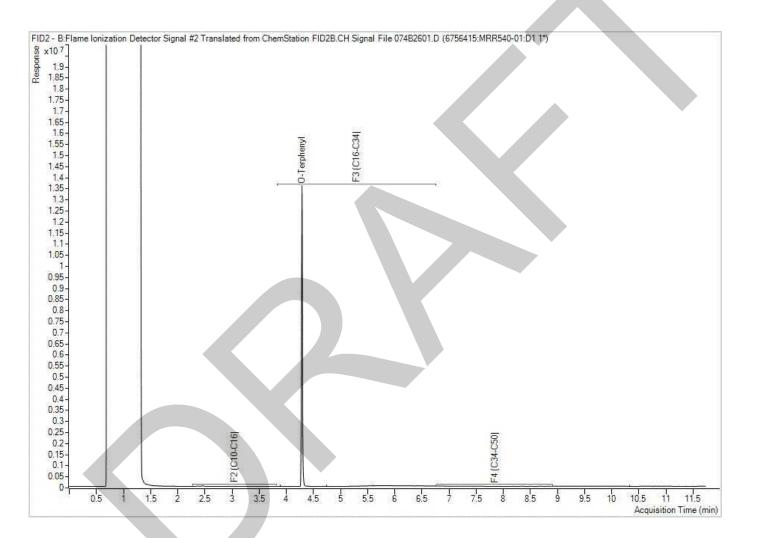
Pinchin Ltd

Client Project #: 230236.006 Client ID: BH111 SS1


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

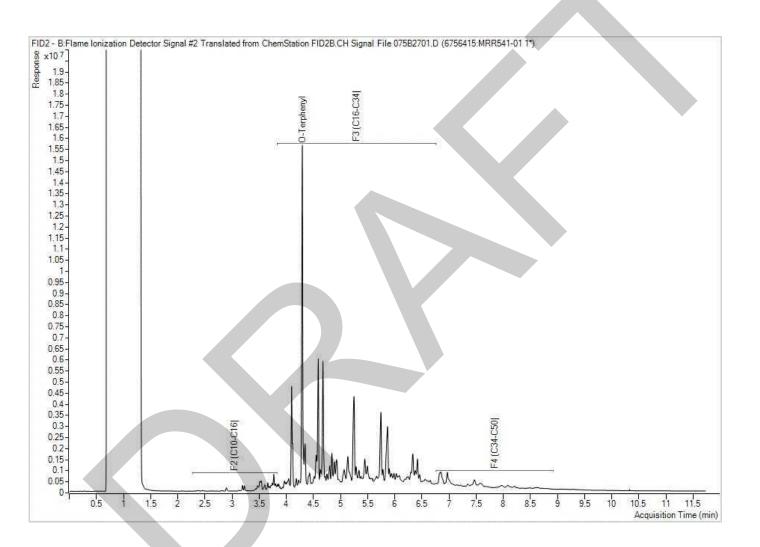
Pinchin Ltd

Client Project #: 230236.006 Client ID: BH112 SS2

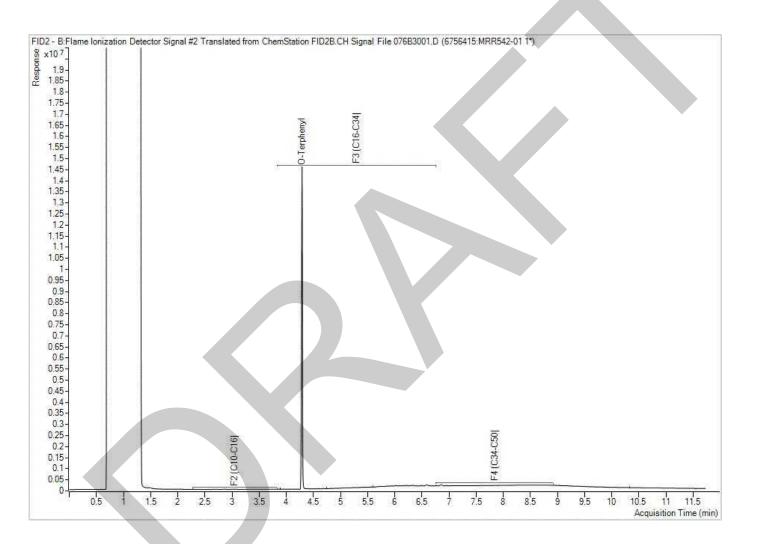

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Pinchin Ltd

Client Project #: 230236.006 Client ID: BH112 SS2

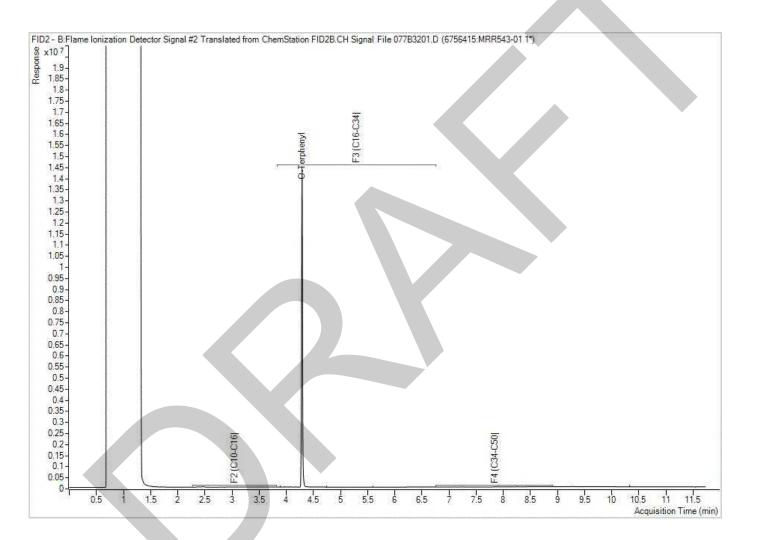

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Pinchin Ltd


Client Project #: 230236.006 Client ID: BH113 SS2

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Client Project #: 230236.006 Client ID: MW114 SS1


Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Pinchin Ltd

Client Project #: 230236.006 Client ID: BH115 SS2

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Your Project #: 230236.006 Your C.O.C. #: 102953

Attention: Matt, Ryan, Mike

Pinchin Ltd
Ottawa
1 Hines Road
Suite 200
Kanata, ON
CANADA K2K 3C7

Report Date: 2020/06/12

Report #: R6208082 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0E0707 Received: 2020/06/08, 15:40

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum (1)	3	N/A	2020/06/12	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum (1)	4	N/A	2020/06/12		EPA 8260C m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	3	2020/06/11	2020/06/12	CAM SOP-00316	CCME PHC-CWS m
PAH Compounds in Water by GC/MS (SIM) (1)	2	2020/06/11	2020/06/11	CAM SOP-00318	EPA 8270D m
PAH Compounds in Water by GC/MS (SIM) (1)	1	2020/06/11	2020/06/12	CAM SOP-00318	EPA 8270D m
Volatile Organic Compounds and F1 PHCs (1)	4	N/A	2020/06/11	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Laboratories Mississauga
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: 230236.006 Your C.O.C. #: 102953

Attention: Matt, Ryan, Mike

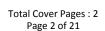
Pinchin Ltd
Ottawa
1 Hines Road
Suite 200
Kanata, ON
CANADA K2K 3C7

Report Date: 2020/06/12

Report #: R6208082 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0E0707 Received: 2020/06/08, 15:40


Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Antonella Brasil, Senior Project Manager Email: Antonella.Brasil@bvlabs.com Phone# (905)817-5817

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: 230236.006

Sampler Initials: MK

VOLATILE ORGANICS BY GC/MS (WATER)

BV Labs ID		MVA166		
Sampling Date		2020/06/08		
COC Number		102953		
	UNITS	TRIP BLANK	RDL	QC Batch
Calculated Parameters				
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	6777036
Volatile Organics		l .		
Acetone (2-Propanone)	ug/L	<10	10	6779064
Benzene	ug/L	<0.20	0.20	6779064
Bromodichloromethane	ug/L	<0.50	0.50	6779064
Bromoform	ug/L	<1.0	1.0	6779064
Bromomethane	ug/L	<0.50	0.50	6779064
Carbon Tetrachloride	ug/L	<0.20	0.20	6779064
Chlorobenzene	ug/L	<0.20	0.20	6779064
Chloroform	ug/L	<0.20	0.20	6779064
Dibromochloromethane	ug/L	<0.50	0.50	6779064
1,2-Dichlorobenzene	ug/L	<0.50	0.50	6779064
1,3-Dichlorobenzene	ug/L	<0.50	0.50	6779064
1,4-Dichlorobenzene	ug/L	<0.50	0.50	6779064
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	6779064
1,1-Dichloroethane	ug/L	<0.20	0.20	6779064
1,2-Dichloroethane	ug/L	<0.50	0.50	6779064
1,1-Dichloroethylene	ug/L	<0.20	0.20	6779064
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	6779064
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	6779064
1,2-Dichloropropane	ug/L	<0.20	0.20	6779064
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	6779064
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	6779064
Ethylbenzene	ug/L	<0.20	0.20	6779064
Ethylene Dibromide	ug/L	<0.20	0.20	6779064
Hexane	ug/L	<1.0	1.0	6779064
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	6779064
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	6779064
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	6779064
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	6779064
Styrene	ug/L	<0.50	0.50	6779064
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	6779064
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	6779064
Tetrachloroethylene	ug/L	<0.20	0.20	6779064
Toluene	ug/L	<0.20	0.20	6779064
1,1,1-Trichloroethane	ug/L	<0.20	0.20	6779064
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

Report Date: 2020/06/12

Pinchin Ltd

Client Project #: 230236.006

Sampler Initials: MK

VOLATILE ORGANICS BY GC/MS (WATER)

BV Labs ID		MVA166		
Sampling Date		2020/06/08		
COC Number		102953		
	UNITS	TRIP BLANK	RDL	QC Batch
1,1,2-Trichloroethane	ug/L	<0.50	0.50	6779064
Trichloroethylene	ug/L	<0.20	0.20	6779064
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	6779064
Vinyl Chloride	ug/L	<0.20	0.20	6779064
p+m-Xylene	ug/L	<0.20	0.20	6779064
o-Xylene	ug/L	<0.20	0.20	6779064
Total Xylenes	ug/L	<0.20	0.20	6779064
F1 (C6-C10)	ug/L	<25	25	6779064
F1 (C6-C10) - BTEX	ug/L	<25	25	6779064
Surrogate Recovery (%)				
4-Bromofluorobenzene	%	88		6779064
D4-1,2-Dichloroethane	%	101		6779064
D8-Toluene	%	94		6779064
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

Client Project #: 230236.006

Sampler Initials: MK

O.REG 153 PAHS (WATER)

BV Labs ID		MVA163	MVA164	MVA165		
Sampling Date		2020/06/08	2020/06/08	2020/06/08		
COC Number		102953	102953	102953		
	UNITS	MW-1	MW-3	DUP-3	RDL	QC Batch
Calculated Parameters						
Methylnaphthalene, 2-(1-)	ug/L	2.1	<0.071	2.0	0.071	6777035
Polyaromatic Hydrocarbons						
Acenaphthene	ug/L	<0.050	<0.050	<0.050	0.050	6782239
Acenaphthylene	ug/L	<0.050	<0.050	<0.050	0.050	6782239
Anthracene	ug/L	<0.050	<0.050	<0.050	0.050	6782239
Benzo(a)anthracene	ug/L	<0.050	<0.050	<0.050	0.050	6782239
Benzo(a)pyrene	ug/L	<0.0090	<0.0090	<0.0090	0.0090	6782239
Benzo(b/j)fluoranthene	ug/L	<0.050	<0.050	<0.050	0.050	6782239
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	<0.050	0.050	6782239
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	<0.050	0.050	6782239
Chrysene	ug/L	<0.050	<0.050	<0.050	0.050	6782239
Dibenzo(a,h)anthracene	ug/L	<0.050	<0.050	<0.050	0.050	6782239
Fluoranthene	ug/L	<0.050	<0.050	<0.050	0.050	6782239
Fluorene	ug/L	<0.050	<0.050	<0.050	0.050	6782239
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	<0.050	0.050	6782239
1-Methylnaphthalene	ug/L	2.1	<0.050	2.0	0.050	6782239
2-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	0.050	6782239
Naphthalene	ug/L	2.5	<0.050	2.3	0.050	6782239
Phenanthrene	ug/L	<0.030	<0.030	<0.030	0.030	6782239
Pyrene	ug/L	<0.050	<0.050	<0.050	0.050	6782239
Surrogate Recovery (%)						
D10-Anthracene	%	113	112	108		6782239
D14-Terphenyl (FS)	%	95	93	89		6782239
D8-Acenaphthylene	%	100	94	95		6782239
RDL = Reportable Detection L	imit					

QC Batch = Quality Control Batch

r Labs Job #: CDEU707 Pin

sport Date: 2020/06/12 Clie

Pinchin Ltd

Client Project #: 230236.006

Sampler Initials: MK

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Sampling Date 2020/06/08 2020/06/08 2020/06/08 COC Number 102953 102953 102953	BV Labs ID		MVA163		MVA164		MVA165		
Color Number	Sampling Date		2020/06/08						
Calculated Parameters L3-Dichloropropene (cis+trans) ug/L <0.50 0.50 <0.50 <0.50 <0.50 <0.50 <0.50 6777036									
1,3-Dichloropropene (cis+trans) ug/L <0.50 0.50 <0.50 <0.50 <0.50 <0.50 6777036		UNITS		RDL		RDL		RDL	QC Batch
Volatile Organics	Calculated Parameters					ı			
Volatile Organics	1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	6777036
Benzene ug/L 23 0.20 <0.20 <0.20 21 0.20 6779064 Bromodichloromethane ug/L <0.50	Volatile Organics								
Benzene ug/L 23 0.20 <0.20 <0.20 21 0.20 6779064 Bromodichloromethane ug/L <0.50	Acetone (2-Propanone)	ug/L	<15 (1)	15	<10	10	<15 (1)	15	6779064
Bromodichloromethane ug/L <0.50 0.50 <0.50 <0.50 <0.50 6779064 Bromoform ug/L <1.0	Benzene		23	0.20	<0.20	0.20	21	0.20	6779064
Bromomethane	Bromodichloromethane		<0.50	0.50	<0.50	0.50	<0.50	0.50	6779064
Carbon Tetrachloride ug/L <0.20 0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <td>Bromoform</td> <td>ug/L</td> <td><1.0</td> <td>1.0</td> <td><1.0</td> <td>1.0</td> <td><1.0</td> <td>1.0</td> <td>6779064</td>	Bromoform	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	6779064
Chlorobenzene ug/L <0.20 0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	Bromomethane	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	6779064
Chloroform	Carbon Tetrachloride	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	6779064
Dibromochloromethane	Chlorobenzene	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	6779064
1,2-Dichlorobenzene ug/L <0.50	Chloroform	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	6779064
1,3-Dichlorobenzene ug/L <0.50	Dibromochloromethane	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	6779064
1,4-Dichlorobenzene ug/L <0.50	1,2-Dichlorobenzene	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	6779064
Dichlorodifluoromethane (FREON 12) ug/L <1.0 1.0 <1.0 1.0 <1.0 1.0 6779064 1,1-Dichloroethane ug/L <0.20 0.20 <0.20 <0.20 <0.20 <0.20 0.20	1,3-Dichlorobenzene	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	6779064
1,1-Dichloroethane ug/L <0.20 0.20 <0.20 <0.20 0.20 6.779064 1,2-Dichloroethane ug/L <0.50	1,4-Dichlorobenzene	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	6779064
1,2-Dichloroethane ug/L <0.50 0.50 <0.50 0.50 <0.50 0.50 6779064 1,1-Dichloroethylene ug/L <0.20	Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	6779064
1,1-Dichloroethylene ug/L <0.20 0.20 <0.20 <0.20 0.20 6779064 cis-1,2-Dichloroethylene ug/L <0.50	1,1-Dichloroethane	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	6779064
cis-1,2-Dichloroethylene ug/L <0.50 0.50 <0.50 0.50 <0.50 0.50 6779064 trans-1,2-Dichloroethylene ug/L <0.50	1,2-Dichloroethane	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	6779064
trans-1,2-Dichloroethylene	1,1-Dichloroethylene	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	6779064
1,2-Dichloropropane ug/L <0.20 0.20 <0.20 <0.20 0.20 6779064 cis-1,3-Dichloropropene ug/L <0.30	cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	6779064
cis-1,3-Dichloropropene ug/L <0.30 0.30 <0.30 0.30 <0.30 0.30 6779064 trans-1,3-Dichloropropene ug/L <0.40	trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	6779064
trans-1,3-Dichloropropene ug/L <0.40 0.40 <0.40 0.40 <0.40 0.40 6779064 Ethylbenzene ug/L 66 0.20 <0.20	1,2-Dichloropropane	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	6779064
Ethylbenzene ug/L 66 0.20 <0.20 0.20 73 0.20 6779064 Ethylene Dibromide ug/L <0.20	cis-1,3-Dichloropropene	ug/L	<0.30	0.30	<0.30	0.30	<0.30	0.30	6779064
Ethylene Dibromide ug/L <0.20 0.20 <0.20 0.20 <0.20 0.20 6779064 Hexane ug/L <1.0	trans-1,3-Dichloropropene	ug/L	<0.40	0.40	<0.40	0.40	<0.40	0.40	6779064
Hexane ug/L <1.0 1.0 <1.0 1.0 <1.0 1.0 6779064 Methylene Chloride(Dichloromethane) ug/L <2.0	Ethylbenzene	ug/L	66	0.20	<0.20	0.20	73	0.20	6779064
Methylene Chloride(Dichloromethane) ug/L <2.0 2.0 <2.0 2.0 <2.0 2.0 6779064 Methyl Ethyl Ketone (2-Butanone) ug/L <10	Ethylene Dibromide	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	6779064
Methyl Ethyl Ketone (2-Butanone) ug/L <10 10 <10 10 6779064 Methyl Isobutyl Ketone ug/L <5.0	Hexane	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	6779064
Methyl Isobutyl Ketone ug/L <5.0 5.0 <5.0 5.0 <5.0 5.0 6779064 Methyl t-butyl ether (MTBE) ug/L <0.50	Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	2.0	6779064
Methyl t-butyl ether (MTBE) ug/L <0.50 0.50 <0.50 0.50 <0.50 0.50 6779064 Styrene ug/L <0.50	Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	<10	10	<10	10	6779064
Styrene ug/L <0.50 0.50 <0.50 0.50 <0.50 0.50 6779064 1,1,1,2-Tetrachloroethane ug/L <0.50	Methyl Isobutyl Ketone	ug/L	<5.0	5.0	<5.0	5.0	<5.0	5.0	6779064
1,1,1,2-Tetrachloroethane ug/L <0.50 0.50 <0.50 0.50 <0.50 0.50 6779064 1,1,2,2-Tetrachloroethane ug/L <0.50	Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	6779064
1,1,2,2-Tetrachloroethane ug/L <0.50	Styrene	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	6779064
Tetrachloroethylene ug/L <0.20 0.20 <0.20 0.20 <0.20 0.20 6779064	1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	6779064
	1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	6779064
Toluene ug/L 1.7 0.20 <0.20 0.20 2.1 0.20 6779064	Tetrachloroethylene	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	6779064
	Toluene	ug/L	1.7	0.20	<0.20	0.20	2.1	0.20	6779064

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) The detection limit was raised due to matrix interference.

Client Project #: 230236.006 Sampler Initials: MK

O.REG 153 VOCS BY HS & F1-F4 (WATER)

BV Labs ID		MVA163		MVA164		MVA165		
Sampling Date		2020/06/08		2020/06/08		2020/06/08		
COC Number		102953		102953		102953		
	UNITS	MW-1	RDL	MW-3	RDL	DUP-3	RDL	QC Batch
1,1,1-Trichloroethane	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	6779064
1,1,2-Trichloroethane	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	6779064
Trichloroethylene	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	6779064
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	6779064
Vinyl Chloride	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	6779064
p+m-Xylene	ug/L	4.4	0.20	<0.20	0.20	5.8	0.20	6779064
o-Xylene	ug/L	3.2	0.20	<0.20	0.20	4.1	0.20	6779064
Total Xylenes	ug/L	7.5	0.20	<0.20	0.20	9.9	0.20	6779064
F1 (C6-C10)	ug/L	440	25	<25	25	460	25	6779064
F1 (C6-C10) - BTEX	ug/L	350	25	<25	25	350	25	6779064
F2-F4 Hydrocarbons	•	•	•				•	
F2 (C10-C16 Hydrocarbons)	ug/L	120	100	<100	100	130	100	6782240
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	<200	200	540	200	6782240
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	<200	200	390	200	6782240
Reached Baseline at C50	ug/L	Yes		Yes		Yes		6782240
Surrogate Recovery (%)	•							
o-Terphenyl	%	84		86		84		6782240
4-Bromofluorobenzene	%	98		86		98		6779064
D4-1,2-Dichloroethane	%	100		102		98		6779064
D8-Toluene	%	95		94		96		6779064
RDL = Reportable Detection Limit	7							
QC Batch = Quality Control Batch								

Client Project #: 230236.006

Sampler Initials: MK

TEST SUMMARY

BV Labs ID: MVA163 **Sample ID:** MW-1

Collected: 2

2020/06/08

Matrix: Water

Shipped: Received: 2

2020/06/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6777035	N/A	2020/06/12	Automated Statchk
1,3-Dichloropropene Sum	CALC	6777036	N/A	2020/06/12	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6782240	2020/06/11	2020/06/12	Prabhjot Gulati
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6782239	2020/06/11	2020/06/11	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6779064	N/A	2020/06/11	Manpreet Sarao

BV Labs ID: MVA164 Sample ID: MW-3 Matrix: Water Collected:

2020/06/08

Shipped:

Received: 2020/06/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6777035	N/A	2020/06/12	Automated Statchk
1,3-Dichloropropene Sum	CALC	6777036	N/A	2020/06/12	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6782240	2020/06/11	2020/06/12	Prabhjot Gulati
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6782239	2020/06/11	2020/06/11	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6779064	N/A	2020/06/11	Manpreet Sarao

BV Labs ID: MVA165 **Sample ID:** DUP-3

Water

. Matrix: **Collected:** 2020/06/08

Shipped:

Received: 2020/06/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6777035	N/A	2020/06/12	Automated Statchk
1,3-Dichloropropene Sum	CALC	6777036	N/A	2020/06/12	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6782240	2020/06/11	2020/06/12	Prabhjot Gulati
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6782239	2020/06/11	2020/06/12	Jett Wu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6779064	N/A	2020/06/11	Manpreet Sarao

BV Labs ID: MVA166

Sample ID: TRIP BLANK

Matrix: Water

Collected: 2020/06/08

Shipped:

Received: 2020/06/08

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6777036	N/A	2020/06/12	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6779064	N/A	2020/06/11	Manpreet Sarao

Client Project #: 230236.006

Sampler Initials: MK

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	12.3°C
-----------	--------

Cooler custody seal was present and intact .

All 40 ml vials for VOC and F1 analyses contained visible sediment, except for the Trip Blamk.

All 100 ml amber glass bottles for F2-F4 and PAH analyses contained visible sediment, which was included in the extraction .

Results relate only to the items tested.

Report Date: 2020/06/12

Pinchin Ltd

Client Project #: 230236.006

Sampler Initials: MK

QUALITY ASSURANCE REPORT

04/00								
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6779064	MS4	Matrix Spike	4-Bromofluorobenzene	2020/06/11	70.00	102	%	70 - 130
			D4-1,2-Dichloroethane	2020/06/11		102	%	70 - 130
			D8-Toluene	2020/06/11		98	%	70 - 130
			Acetone (2-Propanone)	2020/06/11		101	%	60 - 140
			Benzene	2020/06/11		100	%	70 - 130
			Bromodichloromethane	2020/06/11		94	%	70 - 130
			Bromoform	2020/06/11		104	%	70 - 130
			Bromomethane	2020/06/11		95	%	60 - 140
			Carbon Tetrachloride	2020/06/11		92	%	70 - 130
			Chlorobenzene	2020/06/11		92	%	70 - 130
			Chloroform	2020/06/11		95	%	70 - 130
			Dibromochloromethane	2020/06/11		104	%	70 - 130
			1,2-Dichlorobenzene	2020/06/11		95	%	70 - 130
			1,3-Dichlorobenzene	2020/06/11		92	%	70 - 130
			1,4-Dichlorobenzene	2020/06/11		102	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2020/06/11		85	%	60 - 140
			1,1-Dichloroethane	2020/06/11		93	%	70 - 130
			1,2-Dichloroethane	2020/06/11		94	%	70 - 130
			1,1-Dichloroethylene	2020/06/11		97	%	70 - 130
			cis-1,2-Dichloroethylene	2020/06/11		97	%	70 - 130
			trans-1,2-Dichloroethylene	2020/06/11		98	%	70 - 130
			1,2-Dichloropropane	2020/06/11		94	%	70 - 130
			cis-1,3-Dichloropropene	2020/06/11		88	%	70 - 130
			trans-1,3-Dichloropropene	2020/06/11		91	%	70 - 130
			Ethylbenzene	2020/06/11		81	%	70 - 130
			Ethylene Dibromide	2020/06/11		104	%	70 - 130
			Hexane	2020/06/11		90	%	70 - 130
			Methylene Chloride(Dichloromethane)	2020/06/11		102	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2020/06/11		105	%	60 - 140
			Methyl Isobutyl Ketone	2020/06/11		92	%	70 - 130
			Methyl t-butyl ether (MTBE)	2020/06/11		77	%	70 - 130
			Styrene	2020/06/11		86	%	70 - 130
			1,1,1,2-Tetrachloroethane	2020/06/11		101	%	70 - 130
			1,1,2,2-Tetrachloroethane	2020/06/11		108	%	70 - 130
			Tetrachloroethylene	2020/06/11		95	%	70 - 130
	47		Toluene	2020/06/11		87	%	70 - 130
			1,1,1-Trichloroethane	2020/06/11		93	%	70 - 130
			1,1,2-Trichloroethane Trichloroethylene	2020/06/11 2020/06/11		100 101	%	70 - 130 70 - 130
			Trichlorofluoromethane (FREON 11)				%	70 - 130 70 - 130
			Vinyl Chloride	2020/06/11		98 96	% %	
			p+m-Xylene	2020/06/11 2020/06/11		83	% %	70 - 130 70 - 130
			o-Xylene	2020/06/11		85	% %	70 - 130
			F1 (C6-C10)	2020/06/11		109	% %	60 - 140
6779064	MSA	Spiked Blank	4-Bromofluorobenzene	2020/06/11		109	%	70 - 130
0775004	14124	Spired Didlik	D4-1,2-Dichloroethane	2020/06/11		94	% %	70 - 130 70 - 130
			D8-Toluene	2020/06/11		101	% %	70 - 130 70 - 130
			Acetone (2-Propanone)	2020/06/11		85	%	60 - 140
			Benzene	2020/06/11		100	%	70 - 130
			Bromodichloromethane	2020/06/11		90	%	70 - 130
			Bromoform	2020/06/11		94	%	70 - 130
			Bromomethane	2020/06/11		96	%	60 - 140
			Carbon Tetrachloride	2020/06/11		96	%	70 - 130
			Chlorobenzene	2020/06/11		91	%	70 - 130

Report Date: 2020/06/12 Client

Pinchin Ltd

Client Project #: 230236.006

Sampler Initials: MK

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Chloroform	2020/06/11		93	%	70 - 13
			Dibromochloromethane	2020/06/11		97	%	70 - 13
			1,2-Dichlorobenzene	2020/06/11		95	%	70 - 13
			1,3-Dichlorobenzene	2020/06/11		96	%	70 - 13
			1,4-Dichlorobenzene	2020/06/11		106	%	70 - 13
			Dichlorodifluoromethane (FREON 12)	2020/06/11		92	%	60 - 14
			1,1-Dichloroethane	2020/06/11		97	%	70 - 13
			1,2-Dichloroethane	2020/06/11		86	%	70 - 13
			1,1-Dichloroethylene	2020/06/11		97	%	70 - 13
			cis-1,2-Dichloroethylene	2020/06/11		94	%	70 - 13
			trans-1,2-Dichloroethylene	2020/06/11		104	%	70 - 13
			1,2-Dichloropropane	2020/06/11		89	%	70 - 13
			cis-1,3-Dichloropropene	2020/06/11		81	%	70 - 13
			trans-1,3-Dichloropropene	2020/06/11		81	%	70 - 13
			Ethylbenzene	2020/06/11		83	%	70 - 13
			Ethylene Dibromide	2020/06/11		93	%	70 - 13
			Hexane	2020/06/11		101	%	70 - 1
			Methylene Chloride(Dichloromethane)	2020/06/11		95	%	70 - 1
			Methyl Ethyl Ketone (2-Butanone)	2020/06/11		89	%	60 - 1
			Methyl Isobutyl Ketone	2020/06/11		79	%	70 - 1
			Methyl t-butyl ether (MTBE)	2020/06/11		79	%	70 - 1
			Styrene	2020/06/11		86	%	70 - 1
			1,1,1,2-Tetrachloroethane	2020/06/11		99	%	70 - 1
			1,1,2,2-Tetrachloroethane	2020/06/11		97	%	70 - 1
			Tetrachloroethylene	2020/06/11		99	%	70 - 1
			Toluene	2020/06/11		88	%	70 - 1
			1,1,1-Trichloroethane	2020/06/11		96	%	70 - 1
			1,1,2-Trichloroethane	2020/06/11		91	%	70 - 1
			Trichloroethylene	2020/06/11		103	%	70 - 1
			Trichlorofluoromethane (FREON 11)	2020/06/11		99	%	70 - 1
			Vinyl Chloride	2020/06/11		99	%	70 - 1
			p+m-Xylene	2020/06/11		87	%	70 - 1
			o-Xylene	2020/06/11		88	%	70 - 1
			F1 (C6-C10)	2020/06/11		99	%	60 - 1
79064	MS4	Method Blank	4-Bromofluorobenzene	2020/06/11		88	%	70 - 1
9004	10134	Wethou Blank				99	%	70 - 1
			D4-1,2-Dichloroethane	2020/06/11 2020/06/11		99 95	%	
			D8-Toluene		-10	95		70 - 1
			Acetone (2-Propanone)	2020/06/11	<10		ug/L	
			Benzene Brann diahlan mathana	2020/06/11	<0.20		ug/L	
			Bromodichloromethane	2020/06/11	<0.50		ug/L	
			Bromoform	2020/06/11	<1.0		ug/L	
			Bromomethane	2020/06/11	<0.50		ug/L	
			Carbon Tetrachloride	2020/06/11	<0.20		ug/L	
			Chlorobenzene	2020/06/11	<0.20		ug/L	
			Chloroform	2020/06/11	<0.20		ug/L	
			Dibromochloromethane	2020/06/11	<0.50		ug/L	
			1,2-Dichlorobenzene	2020/06/11	<0.50		ug/L	
			1,3-Dichlorobenzene	2020/06/11	<0.50		ug/L	
			1,4-Dichlorobenzene	2020/06/11	<0.50		ug/L	
			Dichlorodifluoromethane (FREON 12)	2020/06/11	<1.0		ug/L	
			1,1-Dichloroethane	2020/06/11	<0.20		ug/L	
			1,2-Dichloroethane	2020/06/11	<0.50		ug/L	
			1,1-Dichloroethylene	2020/06/11	<0.20		ug/L	
			cis-1,2-Dichloroethylene	2020/06/11	<0.50		ug/L	

Report Date: 2020/06/12

Pinchin Ltd

Client Project #: 230236.006

Sampler Initials: MK

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			trans-1,2-Dichloroethylene	2020/06/11	<0.50		ug/L	
			1,2-Dichloropropane	2020/06/11	<0.20		ug/L	
			cis-1,3-Dichloropropene	2020/06/11	<0.30		ug/L	
			trans-1,3-Dichloropropene	2020/06/11	< 0.40		ug/L	
			Ethylbenzene	2020/06/11	<0.20		ug/L	
			Ethylene Dibromide	2020/06/11	<0.20		ug/L	
			Hexane	2020/06/11	<1.0		ug/L	
			Methylene Chloride(Dichloromethane)	2020/06/11	<2.0		ug/L	
			Methyl Ethyl Ketone (2-Butanone)	2020/06/11	<10		ug/L	
			Methyl Isobutyl Ketone	2020/06/11	<5.0		ug/L	
			Methyl t-butyl ether (MTBE)	2020/06/11	<0.50		ug/L	
			Styrene	2020/06/11	<0.50		ug/L	
			1,1,1,2-Tetrachloroethane	2020/06/11	<0.50		ug/L	
			1,1,2,2-Tetrachloroethane	2020/06/11	<0.50		ug/L	
			Tetrachloroethylene	2020/06/11	<0.20		ug/L	
			Toluene	2020/06/11	<0.20		ug/L	
			1,1,1-Trichloroethane	2020/06/11	<0.20		ug/L	
			1,1,2-Trichloroethane	2020/06/11	<0.50		ug/L	
			Trichloroethylene	2020/06/11	<0.20		ug/L	
			Trichlorofluoromethane (FREON 11)	2020/06/11	<0.50		ug/L	
			Vinyl Chloride	2020/06/11	<0.20		ug/L	
			p+m-Xylene	2020/06/11	<0.20		ug/L	
			o-Xylene	2020/06/11	<0.20		ug/L	
			Total Xylenes	2020/06/11	<0.20		ug/L	
			F1 (C6-C10)	2020/06/11	<25		ug/L	
			F1 (C6-C10) - BTEX	2020/06/11	<25		ug/L	
779064	MS4	RPD	Acetone (2-Propanone)	2020/06/11	NC		%	30
			Benzene	2020/06/11	NC		%	30
			Bromodichloromethane	2020/06/11	NC		%	30
			Bromoform	2020/06/11	NC		%	30
			Bromomethane	2020/06/11	NC		%	30
			Carbon Tetrachloride	2020/06/11	NC		%	30
			Chlorobenzene	2020/06/11			%	30
				• •	NC			
			Chloroform	2020/06/11	NC		%	30
			Dibromochloromethane	2020/06/11	NC		%	30
			1,2-Dichlorobenzene	2020/06/11	NC		%	30
			1,3-Dichlorobenzene	2020/06/11	NC		%	30
			1,4-Dichlorobenzene	2020/06/11	NC		%	30
			Dichlorodifluoromethane (FREON 12)	2020/06/11	NC		%	30
			1,1-Dichloroethane	2020/06/11	NC		%	30
			1,2-Dichloroethane	2020/06/11	NC		%	30
			1,1-Dichloroethylene	2020/06/11	NC		%	30
			cis-1,2-Dichloroethylene	2020/06/11	0.35		%	30
			trans-1,2-Dichloroethylene	2020/06/11	NC		%	30
			1,2-Dichloropropane	2020/06/11	NC		%	30
			cis-1,3-Dichloropropene	2020/06/11	NC		%	30
			trans-1,3-Dichloropropene	2020/06/11	NC		%	30
			Ethylbenzene	2020/06/11	NC		%	30
			Ethylene Dibromide	2020/06/11	NC		%	30
			Hexane Mathylana Chlorida (Dishlaramathana)	2020/06/11	NC		%	30
			Methylene Chloride(Dichloromethane)	2020/06/11	NC		%	30
			Methyl Ethyl Ketone (2-Butanone)	2020/06/11	NC		%	30
			Methyl Isobutyl Ketone	2020/06/11	NC		%	30
			Methyl t-butyl ether (MTBE)	2020/06/11	NC		%	30

Report Date: 2020/06/12

Pinchin Ltd

Client Project #: 230236.006

Sampler Initials: MK

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		••	Styrene	2020/06/11	NC	,	%	30
			1,1,1,2-Tetrachloroethane	2020/06/11	NC		%	30
			1,1,2,2-Tetrachloroethane	2020/06/11	NC		%	30
			Tetrachloroethylene	2020/06/11	5.9		%	30
			Toluene	2020/06/11	NC		%	30
			1,1,1-Trichloroethane	2020/06/11	NC		%	30
			1,1,2-Trichloroethane	2020/06/11	NC		%	30
			Trichloroethylene	2020/06/11	3.0		%	30
			Trichlorofluoromethane (FREON 11)	2020/06/11	NC		%	30
			Vinyl Chloride	2020/06/11	3.7		%	30
			p+m-Xylene	2020/06/11	NC		%	30
			o-Xylene	2020/06/11	NC		%	30
			Total Xylenes	2020/06/11	NC		%	30
			F1 (C6-C10)	2020/06/11	NC		%	30
			F1 (C6-C10) F1 (C6-C10) - BTEX	2020/06/11	NC		%	30
C702220	ICT	Matuin Cailea		2020/06/11	INC	100		
6782239	JET	Matrix Spike	D10-Anthracene			106 91	%	50 - 130
			D14-Terphenyl (FS)	2020/06/11			%	50 - 130
			D8-Acenaphthylene	2020/06/11		93	%	50 - 130
			Acenaphthene	2020/06/11		102	%	50 - 130
			Acenaphthylene	2020/06/11		98	%	50 - 130
			Anthracene	2020/06/11		107	%	50 - 130
			Benzo(a)anthracene	2020/06/11		102	%	50 - 130
			Benzo(a)pyrene	2020/06/11		100	%	50 - 130
			Benzo(b/j)fluoranthene	2020/06/11		112	%	50 - 130
			Benzo(g,h,i)perylene	2020/06/11		107	%	50 - 130
			Benzo(k)fluoranthene	2020/06/11		99	%	50 - 130
			Chrysene	2020/06/11		106	%	50 - 130
			Dibenzo(a,h)anthracene	2020/06/11		112	%	50 - 130
			Fluoranthene	2020/06/11		112	%	50 - 130
			Fluorene	2020/06/11		100	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2020/06/11		108	%	50 - 130
			1-Methylnaphthalene	2020/06/11		109	%	50 - 130
			2-Methylnaphthalene	2020/06/11		106	%	50 - 130
			Naphthalene	2020/06/11		98	%	50 - 130
			Phenanthrene	2020/06/11		107	%	50 - 130
			Pyrene	2020/06/11		112	%	50 - 130
6782239	JET	Spiked Blank	D10-Anthracene	2020/06/11		113	%	50 - 130
5,02255	721	Spined Bluffix	D14-Terphenyl (FS)	2020/06/11		96	%	50 - 130
			D8-Acenaphthylene	2020/06/11		101	%	50 - 130
			Acenaphthene	2020/06/11		101	%	50 - 130 50 - 130
			Acenaphthene Acenaphthylene	2020/06/11				
						100	%	50 - 130
			Anthracene	2020/06/11		107	%	50 - 130
			Benzo(a)anthracene	2020/06/11		101	%	50 - 130
			Benzo(a)pyrene	2020/06/11		100	%	50 - 130
			Benzo(b/j)fluoranthene	2020/06/11		112	%	50 - 130
			Benzo(g,h,i)perylene	2020/06/11		109	%	50 - 130
			Benzo(k)fluoranthene	2020/06/11		97	%	50 - 130
			Chrysene	2020/06/11		106	%	50 - 130
			Dibenzo(a,h)anthracene	2020/06/11		91	%	50 - 130
			Fluoranthene	2020/06/11		112	%	50 - 130
			Fluorene	2020/06/11		102	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2020/06/11		109	%	50 - 130
			1-Methylnaphthalene	2020/06/11		111	%	50 - 130
			2-Methylnaphthalene	2020/06/11		109	%	50 - 130

Report Date: 2020/06/12 Clie

Pinchin Ltd

Client Project #: 230236.006

Sampler Initials: MK

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Naphthalene	2020/06/11		99	%	50 - 130
			Phenanthrene	2020/06/11		108	%	50 - 130
			Pyrene	2020/06/11		112	%	50 - 130
6782239	JET	Method Blank	D10-Anthracene	2020/06/11		120	%	50 - 130
			D14-Terphenyl (FS)	2020/06/11		103	%	50 - 130
			D8-Acenaphthylene	2020/06/11		95	%	50 - 130
			Acenaphthene	2020/06/11	<0.050		ug/L	
			Acenaphthylene	2020/06/11	<0.050		ug/L	
			Anthracene	2020/06/11	< 0.050		ug/L	
			Benzo(a)anthracene	2020/06/11	< 0.050		ug/L	
			Benzo(a)pyrene	2020/06/11	< 0.0090		ug/L	
			Benzo(b/j)fluoranthene	2020/06/11	<0.050		ug/L	
			Benzo(g,h,i)perylene	2020/06/11	<0.050	_	ug/L	
			Benzo(k)fluoranthene	2020/06/11	<0.050		ug/L	
			Chrysene	2020/06/11	<0.050		ug/L	
			Dibenzo(a,h)anthracene	2020/06/11	<0.050			
			Fluoranthene	2020/06/11	<0.050		ug/L ug/L	
			Fluorene	2020/06/11	<0.050		ug/L ug/L	
			Indeno(1,2,3-cd)pyrene		<0.050			
				2020/06/11			ug/L	
			1-Methylnaphthalene	2020/06/11	<0.050		ug/L	
			2-Methylnaphthalene	2020/06/11	<0.050		ug/L	
			Naphthalene	2020/06/11	<0.050		ug/L	
			Phenanthrene	2020/06/11	<0.030		ug/L	
			Pyrene	2020/06/11	<0.050		ug/L	
782239	JET	RPD	Acenaphthene	2020/06/11	NC		%	30
			Acenaphthylene	2020/06/11	NC		%	30
			Anthracene	2020/06/11	NC		%	30
			Benzo(a)anthracene	2020/06/11	NC		%	30
			Benzo(a)pyrene	2020/06/11	NC		%	30
			Benzo(b/j)fluoranthene	2020/06/11	NC		%	30
			Benzo(g,h,i)perylene	2020/06/11	NC		%	30
			Benzo(k)fluoranthene	2020/06/11	NC		%	30
			Chrysene	2020/06/11	NC		%	30
			Dibenzo(a,h)anthracene	2020/06/11	NC		%	30
			Fluoranthene	2020/06/11	NC		%	30
			Fluorene	2020/06/11	NC		%	30
	4		Indeno(1,2,3-cd)pyrene	2020/06/11	NC		%	30
			1-Methylnaphthalene	2020/06/11	NC		%	30
			2-Methylnaphthalene	2020/06/11	NC		%	30
			Naphthalene	2020/06/11	NC		%	30
			Phenanthrene	2020/06/11	NC		%	30
			Pyrene	2020/06/11	NC		%	30
782240	GUL	Matrix Spike	o-Terphenyl	2020/06/11	INC	88	%	60 - 130
782240	GUL	Matrix Spike						
			F2 (C10-C16 Hydrocarbons)	2020/06/12		96	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2020/06/12		98	%	50 - 130
		0 11 101 1	F4 (C34-C50 Hydrocarbons)	2020/06/12		90	%	50 - 130
782240	GUL	Spiked Blank	o-Terphenyl	2020/06/12		88	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2020/06/12		94	%	60 - 130
			F3 (C16-C34 Hydrocarbons)	2020/06/12		97	%	60 - 130
			F4 (C34-C50 Hydrocarbons)	2020/06/12		88	%	60 - 130
782240	GUL	Method Blank	o-Terphenyl	2020/06/12		87	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2020/06/12	<100		ug/L	
			F3 (C16-C34 Hydrocarbons)	2020/06/12	<200		ug/L	
			F4 (C34-C50 Hydrocarbons)	2020/06/12	<200		ug/L	

Report Date: 2020/06/12

Pinchin Ltd

Client Project #: 230236.006

Sampler Initials: MK

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6782240	GUL	RPD	F2 (C10-C16 Hydrocarbons)	2020/06/12	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2020/06/12	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2020/06/12	NC		%	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Report Date: 2020/06/12

Pinchin Ltd

Client Project #: 230236.006

Sampler Initials: MK

VALIDATION SIGNATURE PAGE

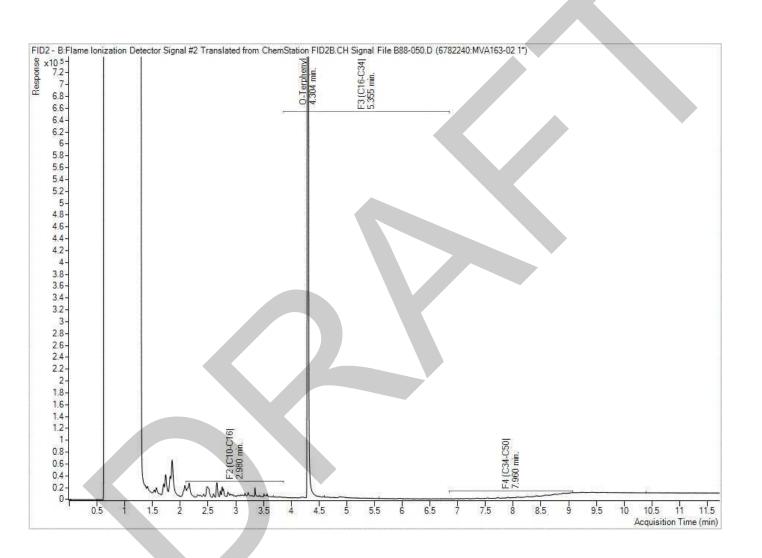
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

				,																													2					3
An	08-Jun-20 15:40 atonella Brasil							14/6	16.				ence												2627		M FCD		3/5					* 0		11 (0g 1) 148 3		
	C0E0707					- 1		When	tnere	15 >10	m oj	VISIDIE	e parti	cuiati	5677		r, tne Types		nt wii	ii be r	ecora	ea in	tne J	іеіа в	elow	-			_		-							
MAF	ENV-939			-	norga	nics		T				0	rganio	cs			7,655				Hyd	rocar	bons				Vola	itiles		Other								
	Sample ID	All	CrVI	CN	Gener	al Hg	Metal (Diss.	s Organi	Organic 2 of 2	PCB 1 of 2	PCB 2 of 2	Herb	Pest/ Herb 2 of 2	ABN	ABN	PAH 1 of 2	PAH 2 of 2	Dioxin /Furan	F1 Vial 1	F1 Vial 2	F1 Vial 3	F1 Vial 4	F2-F4 1 of 2	F2-F4 2 of 2	F4G	VOC Vial 1	VOC Vial 2	VOC Vial 3	VOC Vial 4					* ,	-			
1	MW-1	3								3		2.012	2012	20.2	20,2																							
2	Mir-3	T																																		4		
3	Dup -}	75																																				
4																																						
5																																						
6																																						
7																																						
8																																					•	
9																																						
10																		5.48																				
	Comments:																	7,50												1								
											_																										(8)	
		_	gend:		Particula	W.									P		ad D	er praeries				2			m		160	7		1							4	
		-	-	_			covers	bottom	of contai	ner or le	ess)				Re	cora	еа ву	: (signal	ture/pri	nt)	K			-		-				J.							•	
		S	Sedir	nent gr	eater th	nan (>) T	race, bu	it less tha	ın (<) 1 c	m.																												
					Q																									*		÷						

Max A Bureau Ver	Phone: 905 CAM FCD-0		5-817-5779 Toll Free:		2 n		CHA	IN OF	CUSTOD	DY REC	CORD -		age of 1		* 9	÷γ	
	Invoice Information		Report Infor	rmation (if differs fro	m invoice)		P	roject Inforn	mation (when	re applicat	ble)	1	Time (TAT) Required	10,			
Company Name:	Thehir ttd.	Comp	pany Name:	S /			Quotation #:					Regular TAT (5-7 d	ays) Most analyses		•		
Contact Name:	rike Kosile	Conta	act Name:				P.O. #/ AFE#:		119			PLEASE PROVIDE ADVA	ICE NOTICE FOR RUSH PROJECTS				
Address:	M, Ryan	Addres	255:	-SAN	18		Project #:	2	362	36.	006	Rush TAT (Surc	harges will be applied)				
+	11/10 1/11	1			75 I		Site Location:					1 Day 2	Days 3-4 Days				
Phone:	Hines Fax Pel 14	anay Phone	81	Fax:			Site#:										
Email: 0	N	Email:					Sampled By:	M	1.ko	316		Date Required:					
	MOE REGULATED DRINKING WATER	R OR WATER INTENDED	FOR HUMAN CONSUME	TION MUST BE SUB	MITTED ON THE	MAXXAM DRI	NKING WATER	CHAIN OF CL	USTODY		JAN.	Rush Confirmation #:		1		4	
	Regulation 153		r Regulations			-	Analysis Req	uested				LABORA	TORY USE ONLY				
	Res/Park Med/ Fine Ind/Comm Coarse		orm Sewer Bylaw									CUSTODY SEAL	COOLER TEMPERATURES]			
Table 3	Agri/ Other		egion	/ Cevi								Present Intact	COOLER IUMPERATURES				
Dible /		Other (Specify)		ils/Hg		8	(9)					YY	13,9,15				
FOR RSC (PLEASE CIR		REG 558 (MIN. 3 D	DAY TAT REQUIRED)	AITTED Meta		RGANII	S, HWS				141			1			
nclude Criteria on Certific				S SUBA		& INOI	Metail				ANALYZE		589				
SAMPLES MUS	UST BE KEPT COOL (< 10 °C) FROM TIME O	F SAMPLING UNTIL DEL	LIVERY TO MAXXAM	AINER.	2 9	ETALS PMS-N	ETALS ICPMS	4			1 Pa	COOLING MEDIA PRESENT:	DIN HAI	1	786		
	AMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD)) (HH:MM) M	# OF CONT	BTEX/ PHC PHCs F2 - F VOCs	REG 153 M	REG 153 M (Hg, Cr.VI,)	-			ногр- ро		IMMENTS				
1 / N	1W-1	Jane		66	XXX	1	X	3] 4	***		
2 N	1W-3	8,202	0 1	16	XXX		X	5									4
3), b 3	,	4	1.6	XXX		X										39
4 7	Cip Blank	1	116	6/2	S X	1		+						1			
5	11 vari	7	7		AF	3			1.1					+			
-						14			2	1				-			
ь														1			
7					14					\perp							
8													ET IN OUTAWA				2
9												75	4 76	1		,	
10														1			
RELINQUISHE	HED BY: (Signature/Print)	DATE: (YYYY/MM/DD)	TIME: (HH:MM)	REC	EIVED BY: (Signa	sture/Print)		DATE: (YYYY)	//MM/DD)	TIM	ME: (HH:MM)						-
m	7) 5	hre 8)	1:45	47	SUTO /	-av	3	020/26/	1.2	15	-:40		n-20-15:40				
1001	The Van I	2020	1 PM	6/12	Je je	- goi	4	100/00/	00	10	Carlo Service	Antonella I	Brasil				
11176	Ke rush		1	1	MESHG	, ,	Are 2	000	06/09		3:00	C0E07					
Unless otherwise agre available for viewing a COC-1004 (03/17)	eed to in writing, work submitted or at www.maxxam.ca/terms. Sample	n this Chain of Custo container, preserva	ody is subject to Ma ition, hold time and ;	xxam's standard backages informa	Terms and Co tion can be vi	onditions. S liewed at ht	ligning of this tp://maxxam.	: Chain of i .ca/wp-coi	Custody do ntent/uplo	ocument pads/Ont	t is acknowled tario-COC.pdf.	MAF E	V-939 White: Maxxam - Yellow: Client				


BV Labs Job #: C0E0707 Report Date: 2020/06/12 BV Labs Sample: MVA163

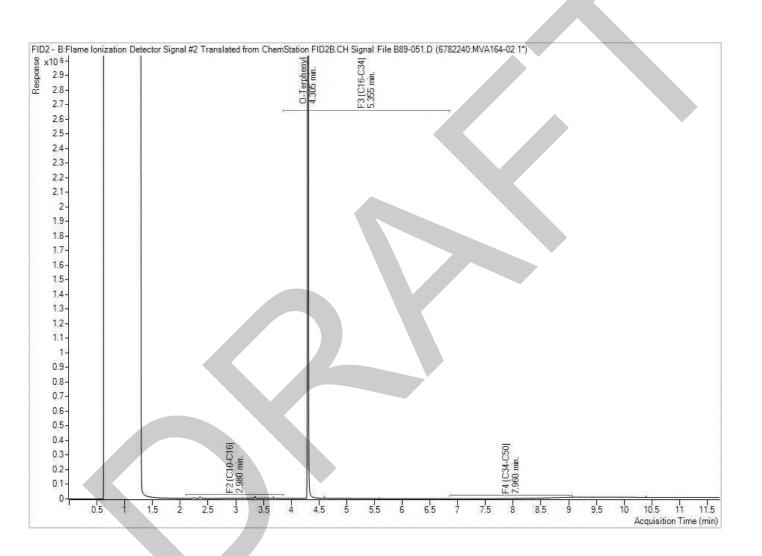
Pinchin Ltd

Client Project #: 230236.006

Client ID: MW-1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


BV Labs Job #: C0E0707 Report Date: 2020/06/12 BV Labs Sample: MVA164

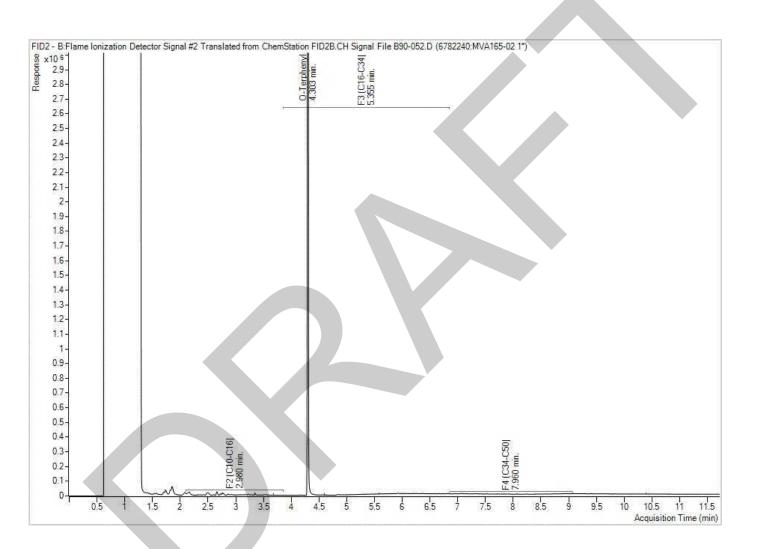
Pinchin Ltd

Client Project #: 230236.006

Client ID: MW-3

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


BV Labs Job #: C0E0707 Report Date: 2020/06/12 BV Labs Sample: MVA165

Pinchin Ltd

Client Project #: 230236.006

Client ID: DUP-3

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: 230236.006 Site Location: MCRAE Your C.O.C. #: 770951-02-01

Attention: Matt, Ryan, Mike

Pinchin Ltd
Ottawa
1 Hines Road
Suite 200
Kanata, ON
CANADA K2K 3C7

Report Date: 2020/07/10 Report #: R6240901

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0G4922 Received: 2020/07/02, 14:27

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum (1)	1	N/A	2020/07/09	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum (1)	2	N/A	2020/07/08		EPA 8260C m
Chromium (VI) in Water (1)	1	N/A	2020/07/07	CAM SOP-00436	EPA 7199 m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	1	2020/07/07	2020/07/09	CAM SOP-00316	CCME PHC-CWS m
Mercury (1)	1	2020/07/07	2020/07/07	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS (1)	1	N/A	2020/07/06	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM) (1)	1	2020/07/07	2020/07/08	CAM SOP-00318	EPA 8270D m
Volatile Organic Compounds and F1 PHCs (1)	2	N/A	2020/07/07	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Laboratories Mississauga
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta

Your Project #: 230236.006 Site Location: MCRAE Your C.O.C. #: 770951-02-01

Attention: Matt, Ryan, Mike

Pinchin Ltd
Ottawa
1 Hines Road
Suite 200
Kanata, ON
CANADA K2K 3C7

Report Date: 2020/07/10

Report #: R6240901 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0G4922 Received: 2020/07/02, 14:27

Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.
Antonella Brasil, Senior Project Manager
Email: Antonella.Brasil@bvlabs.com
Phone# (905)817-5817

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

VOLATILE ORGANICS BY GC/MS (WATER)

BV Labs ID		NAF023		
Sampling Date		2020/07/02		
COC Number		770951-02-01		
	UNITS	TRIP BLANK	RDL	QC Batch
Calculated Parameters	•			
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	6817347
Volatile Organics			$\overline{}$	
Acetone (2-Propanone)	ug/L	<10	10	6819523
Benzene	ug/L	<0.20	0.20	6819523
Bromodichloromethane	ug/L	<0.50	0.50	6819523
Bromoform	ug/L	<1.0	1.0	6819523
Bromomethane	ug/L	<0.50	0.50	6819523
Carbon Tetrachloride	ug/L	<0.20	0.20	6819523
Chlorobenzene	ug/L	<0.20	0.20	6819523
Chloroform	ug/L	<0.20	0.20	6819523
Dibromochloromethane	ug/L	<0.50	0.50	6819523
1,2-Dichlorobenzene	ug/L	<0.50	0.50	6819523
1,3-Dichlorobenzene	ug/L	<0.50	0.50	6819523
1,4-Dichlorobenzene	ug/L	<0.50	0.50	6819523
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	6819523
1,1-Dichloroethane	ug/L	<0.20	0.20	6819523
1,2-Dichloroethane	ug/L	<0.50	0.50	6819523
1,1-Dichloroethylene	ug/L	<0.20	0.20	6819523
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	6819523
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	6819523
1,2-Dichloropropane	ug/L	<0.20	0.20	6819523
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	6819523
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	6819523
Ethylbenzene	ug/L	<0.20	0.20	6819523
Ethylene Dibromide	ug/L	<0.20	0.20	6819523
Hexane	ug/L	<1.0	1.0	6819523
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	6819523
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	6819523
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	6819523
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	6819523
Styrene	ug/L	<0.50	0.50	6819523
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	6819523
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	6819523
Tetrachloroethylene	ug/L	<0.20	0.20	6819523
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

VOLATILE ORGANICS BY GC/MS (WATER)

BV Labs ID		NAF023		
Sampling Date		2020/07/02		
COC Number		770951-02-01		
	UNITS	TRIP BLANK	RDL	QC Batch
Toluene	ug/L	<0.20	0.20	6819523
1,1,1-Trichloroethane	ug/L	<0.20	0.20	6819523
1,1,2-Trichloroethane	ug/L	<0.50	0.50	6819523
Trichloroethylene	ug/L	<0.20	0.20	6819523
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	6819523
Vinyl Chloride	ug/L	<0.20	0.20	6819523
p+m-Xylene	ug/L	<0.20	0.20	6819523
o-Xylene	ug/L	<0.20	0.20	6819523
Total Xylenes	ug/L	<0.20	0.20	6819523
F1 (C6-C10)	ug/L	<25	25	6819523
F1 (C6-C10) - BTEX	ug/L	<25	25	6819523
Surrogate Recovery (%)				
4-Bromofluorobenzene	%	82		6819523
D4-1,2-Dichloroethane	%	110		6819523
D8-Toluene	%	92		6819523
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

O.REG 153 METALS PACKAGE (WATER)

BV Labs ID		NAF022			NAF022		
Sampling Date		2020/07/02			2020/07/02		
COC Number		770951-02-01			770951-02-01		
	UNITS	MW110	RDL	QC Batch	MW110 Lab-Dup	RDL	QC Batch
Metals							
Chromium (VI)	ug/L	<0.50	0.50	6821181			
Mercury (Hg)	ug/L	<0.10	0.10	6821829			
Dissolved Antimony (Sb)	ug/L	<0.50	0.50	6819419	<0.50	0.50	6819419
Dissolved Arsenic (As)	ug/L	<1.0	1.0	6819419	<1.0	1.0	6819419
Dissolved Barium (Ba)	ug/L	130	2.0	6819419	130	2.0	6819419
Dissolved Beryllium (Be)	ug/L	<0.40	0.40	6819419	<0.40	0.40	6819419
Dissolved Boron (B)	ug/L	190	10	6819419	200	10	6819419
Dissolved Cadmium (Cd)	ug/L	<0.090	0.090	6819419	<0.090	0.090	6819419
Dissolved Chromium (Cr)	ug/L	<5.0	5.0	6819419	<5.0	5.0	6819419
Dissolved Cobalt (Co)	ug/L	0.81	0.50	6819419	0.85	0.50	6819419
Dissolved Copper (Cu)	ug/L	<0.90	0.90	6819419	<0.90	0.90	6819419
Dissolved Lead (Pb)	ug/L	<0.50	0.50	6819419	<0.50	0.50	6819419
Dissolved Molybdenum (Mo)	ug/L	0.79	0.50	6819419	0.89	0.50	6819419
Dissolved Nickel (Ni)	ug/L	4.8	1.0	6819419	5.0	1.0	6819419
Dissolved Selenium (Se)	ug/L	<2.0	2.0	6819419	<2.0	2.0	6819419
Dissolved Silver (Ag)	ug/L	<0.090	0.090	6819419	<0.090	0.090	6819419
Dissolved Sodium (Na)	ug/L	92000	100	6819419	95000	100	6819419
Dissolved Thallium (TI)	ug/L	0.064	0.050	6819419	0.071	0.050	6819419
Dissolved Uranium (U)	ug/L	0.99	0.10	6819419	1.0	0.10	6819419
Dissolved Vanadium (V)	ug/L	<0.50	0.50	6819419	<0.50	0.50	6819419
Dissolved Zinc (Zn)	ug/L	5.3	5.0	6819419	5.5	5.0	6819419

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

O.REG 153 PAHS (WATER)

BV Labs ID		NAF022		
Sampling Date		2020/07/02		
COC Number		770951-02-01		
	UNITS	MW110	RDL	QC Batch
Calculated Parameters		<u> </u>	<u> </u>	
Methylnaphthalene, 2-(1-)	ug/L	<0.071	0.071	6817637
Polyaromatic Hydrocarbons				
Acenaphthene	ug/L	<0.050	0.050	6822930
Acenaphthylene	ug/L	<0.050	0.050	6822930
Anthracene	ug/L	<0.050	0.050	6822930
Benzo(a)anthracene	ug/L	<0.050	0.050	6822930
Benzo(a)pyrene	ug/L	<0.0090	0.0090	6822930
Benzo(b/j)fluoranthene	ug/L	<0.050	0.050	6822930
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	6822930
Benzo(k)fluoranthene	ug/L	<0.050	0.050	6822930
Chrysene	ug/L	<0.050	0.050	6822930
Dibenzo(a,h)anthracene	ug/L	<0.050	0.050	6822930
Fluoranthene	ug/L	<0.050	0.050	6822930
Fluorene	ug/L	<0.050	0.050	6822930
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	6822930
1-Methylnaphthalene	ug/L	<0.050	0.050	6822930
2-Methylnaphthalene	ug/L	<0.050	0.050	6822930
Naphthalene	ug/L	<0.050	0.050	6822930
Phenanthrene	ug/L	<0.030	0.030	6822930
Pyrene	ug/L	<0.050	0.050	6822930
Surrogate Recovery (%)				
D10-Anthracene	%	114		6822930
D14-Terphenyl (FS)	%	119		6822930
D8-Acenaphthylene	%	101		6822930
RDL = Reportable Detection				
QC Batch = Quality Control B	atch			

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

O.REG 153 VOCS BY HS & F1-F4 (WATER)

BV Labs ID		NAF022			NAF022		
Sampling Date		2020/07/02			2020/07/02		
COC Number		770951-02-01			770951-02-01		
	UNITS	MW110	RDL	QC Batch	MW110 Lab-Dup	RDL	QC Batch
Calculated Parameters							
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	6817347			
Volatile Organics	!		!		-		
Acetone (2-Propanone)	ug/L	<10	10	6819523	<10	10	6819523
Benzene	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
Bromodichloromethane	ug/L	<0.50	0.50	6819523	<0.50	0.50	6819523
Bromoform	ug/L	<1.0	1.0	6819523	<1.0	1.0	6819523
Bromomethane	ug/L	<0.50	0.50	6819523	<0.50	0.50	6819523
Carbon Tetrachloride	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
Chlorobenzene	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
Chloroform	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
Dibromochloromethane	ug/L	<0.50	0.50	6819523	<0.50	0.50	6819523
1,2-Dichlorobenzene	ug/L	<0.50	0.50	6819523	<0.50	0.50	6819523
1,3-Dichlorobenzene	ug/L	<0.50	0.50	6819523	<0.50	0.50	6819523
1,4-Dichlorobenzene	ug/L	<0.50	0.50	6819523	<0.50	0.50	6819523
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	6819523	<1.0	1.0	6819523
1,1-Dichloroethane	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
1,2-Dichloroethane	ug/L	<0.50	0.50	6819523	<0.50	0.50	6819523
1,1-Dichloroethylene	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	6819523	<0.50	0.50	6819523
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	6819523	<0.50	0.50	6819523
1,2-Dichloropropane	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	6819523	<0.30	0.30	6819523
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	6819523	<0.40	0.40	6819523
Ethylbenzene	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
Ethylene Dibromide	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
Hexane	ug/L	<1.0	1.0	6819523	<1.0	1.0	6819523
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	6819523	<2.0	2.0	6819523
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	6819523	<10	10	6819523
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	6819523	<5.0	5.0	6819523
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	6819523	<0.50	0.50	6819523
Styrene	ug/L	<0.50	0.50	6819523	<0.50	0.50	6819523
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	6819523	<0.50	0.50	6819523
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	6819523	<0.50	0.50	6819523
Tetrachloroethylene	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
DDI - Deportable Detection Limit		•	•	•		•	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

O.REG 153 VOCS BY HS & F1-F4 (WATER)

BV Labs ID		NAF022			NAF022		
Sampling Date		2020/07/02			2020/07/02		
COC Number		770951-02-01			770951-02-01		
	UNITS	MW110	RDL	QC Batch	MW110 Lab-Dup	RDL	QC Batch
Toluene	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
1,1,1-Trichloroethane	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
1,1,2-Trichloroethane	ug/L	<0.50	0.50	6819523	<0.50	0.50	6819523
Trichloroethylene	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	6819523	<0.50	0.50	6819523
Vinyl Chloride	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
p+m-Xylene	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
o-Xylene	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
Total Xylenes	ug/L	<0.20	0.20	6819523	<0.20	0.20	6819523
F1 (C6-C10)	ug/L	<25	25	6819523	<25	25	6819523
F1 (C6-C10) - BTEX	ug/L	<25	25	6819523	<25	25	6819523
F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	6822941			
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	6822941			
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	6822941			
Reached Baseline at C50	ug/L	Yes		6822941			
Surrogate Recovery (%)							
o-Terphenyl	%	108		6822941			
4-Bromofluorobenzene	%	84		6819523	82		6819523
D4-1,2-Dichloroethane	%	111		6819523	112		6819523
D8-Toluene	%	91		6819523	92		6819523

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

TEST SUMMARY

BV Labs ID: NAF022 Sample ID: MW110 Matrix: Water

Collected: 2020/07/02

Shipped:

Received: 2020/07/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6817637	N/A	2020/07/09	Automated Statchk
1,3-Dichloropropene Sum	CALC	6817347	N/A	2020/07/08	Automated Statchk
Chromium (VI) in Water	IC	6821181	N/A	2020/07/07	Lang Le
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6822941	2020/07/07	2020/07/09	Prabhjot Gulati
Mercury	CV/AA	6821829	2020/07/07	2020/07/07	Meghaben Patel
Dissolved Metals by ICPMS	ICP/MS	6819419	N/A	2020/07/06	Daniel Teclu
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6822930	2020/07/07	2020/07/08	Bibin Alias Paul
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6819523	N/A	2020/07/07	John Wu

BV Labs ID: NAF022 Dup Sample ID: MW110 Matrix: Water

Collected: Shipped: 2020/07/02

Received: 2020/07/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Dissolved Metals by ICPMS	ICP/MS	6819419	N/A	2020/07/06	Daniel Teclu
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6819523	N/A	2020/07/07	John Wu

BV Labs ID: NAF023 Sample ID: TRIP BLANK Matrix: Water

2020/07/02 Collected:

Shipped:

Received: 2020/07/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6817347	N/A	2020/07/08	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6819523	N/A	2020/07/07	John Wu

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 4.0°C

Cooler custody seal was present and intact .

Results relate only to the items tested.

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6819419	DT1	Matrix Spike [NAF022-05]	Dissolved Antimony (Sb)	2020/07/06		97	%	80 - 120
			Dissolved Arsenic (As)	2020/07/06		94	%	80 - 120
			Dissolved Barium (Ba)	2020/07/06		92	%	80 - 120
			Dissolved Beryllium (Be)	2020/07/06		90	%	80 - 120
			Dissolved Boron (B)	2020/07/06		92	%	80 - 120
			Dissolved Cadmium (Cd)	2020/07/06		93	%	80 - 120
			Dissolved Chromium (Cr)	2020/07/06		92	%	80 - 120
			Dissolved Cobalt (Co)	2020/07/06		92	%	80 - 120
			Dissolved Copper (Cu)	2020/07/06		92	%	80 - 120
			Dissolved Lead (Pb)	2020/07/06		91	%	80 - 120
			Dissolved Molybdenum (Mo)	2020/07/06		95	%	80 - 120
			Dissolved Nickel (Ni)	2020/07/06		91	%	80 - 120
			Dissolved Selenium (Se)	2020/07/06		89	%	80 - 120
			Dissolved Silver (Ag)	2020/07/06		92	%	80 - 120
			Dissolved Sodium (Na)	2020/07/06		NC	%	80 - 120
			Dissolved Thallium (TI)	2020/07/06		88	%	80 - 120
			Dissolved Uranium (U)	2020/07/06		94	%	80 - 120
			Dissolved Vanadium (V)	2020/07/06		95	%	80 - 120
			Dissolved Zinc (Zn)	2020/07/06		91	%	80 - 120
6819419	DT1	Spiked Blank	Dissolved Antimony (Sb)	2020/07/06		104	%	80 - 120
			Dissolved Arsenic (As)	2020/07/06		101	%	80 - 120
			Dissolved Barium (Ba)	2020/07/06		101	%	80 - 120
			Dissolved Beryllium (Be)	2020/07/06		95	%	80 - 120
			Dissolved Boron (B)	2020/07/06		93	%	80 - 120
			Dissolved Cadmium (Cd)	2020/07/06		101	%	80 - 120
			Dissolved Chromium (Cr)	2020/07/06		99	%	80 - 120
			Dissolved Cobalt (Co)	2020/07/06		101	%	80 - 120
			Dissolved Copper (Cu)	2020/07/06		101	%	80 - 120
			Dissolved Lead (Pb)	2020/07/06		99	%	80 - 120
			Dissolved Molybdenum (Mo)	2020/07/06		102	%	80 - 120
			Dissolved Nickel (Ni)	2020/07/06		100	%	80 - 120
			Dissolved Selenium (Se)	2020/07/06		99	%	80 - 120
			Dissolved Silver (Ag)	2020/07/06		101	%	80 - 120
			Dissolved Sodium (Na)	2020/07/06		107	%	80 - 120
			Dissolved Thallium (TI)	2020/07/06		99	%	80 - 120
			Dissolved Uranium (U)	2020/07/06		100	%	80 - 120
			Dissolved Vanadium (V)	2020/07/06		103	%	80 - 120
			Dissolved Zinc (Zn)	2020/07/06		101	%	80 - 120
6819419	DT1	Method Blank	Dissolved Antimony (Sb)	2020/07/06	<0.50	101	ug/L	00 120
0013 113	511	Wethou Blank	Dissolved Arsenic (As)	2020/07/06	<1.0		ug/L	
			Dissolved Barium (Ba)	2020/07/06	<2.0		ug/L	
			Dissolved Beryllium (Be)	2020/07/06	<0.40		ug/L	
			Dissolved Boron (B)	2020/07/06	<10		ug/L	
			Dissolved Cadmium (Cd)	2020/07/06	<0.090		ug/L	
			Dissolved Chromium (Cr)	2020/07/06	<5.0		ug/L	
			Dissolved Cobalt (Co)	2020/07/06	<0.50		ug/L ug/L	
			Dissolved Copper (Cu)	2020/07/06	<0.90		ug/L ug/L	
			Dissolved Lead (Pb)	2020/07/06	<0.50		ug/L ug/L	
			Dissolved Molybdenum (Mo)	2020/07/06	<0.50			
			Dissolved Nickel (Ni)	2020/07/06	<1.0		ug/L ug/L	
			Dissolved Nicker (NI) Dissolved Selenium (Se)	2020/07/06	<2.0		ug/L ug/L	
			Dissolved Silver (Ag)	2020/07/06	<0.090			
			PISSOIVER SIIVEI (MB)	2020/07/00	\0.030		ug/L	

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

0.1./0.0			`	<u> </u>				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Daten		QC 17PC	Dissolved Thallium (TI)	2020/07/06	<0.050	necovery	ug/L	QC LITTIES
			Dissolved Uranium (U)	2020/07/06	<0.10		ug/L	
			Dissolved Vanadium (V)	2020/07/06	<0.50		ug/L	
			Dissolved Zinc (Zn)	2020/07/06	<5.0		ug/L	
6819419	DT1	RPD [NAF022-05]	Dissolved Antimony (Sb)	2020/07/06	NC		%	20
0015 115	511	111 5 [11111 022 03]	Dissolved Arsenic (As)	2020/07/06	NC		%	20
			Dissolved Barium (Ba)	2020/07/06	0.49		%	20
			Dissolved Beryllium (Be)	2020/07/06	NC		%	20
			Dissolved Boron (B)	2020/07/06	3.3		%	20
			Dissolved Cadmium (Cd)	2020/07/06	NC		%	20
			Dissolved Chromium (Cr)	2020/07/06	NC		%	20
			Dissolved Cobalt (Co)	2020/07/06	5.4	_	%	20
			Dissolved Copper (Cu)	2020/07/06	NC		%	20
			Dissolved Lead (Pb)	2020/07/06	NC		%	20
			Dissolved Molybdenum (Mo)	2020/07/06	12		%	20
			Dissolved Nickel (Ni)	2020/07/06	4.7		%	20
			Dissolved Selenium (Se)	2020/07/06	NC		%	20
			Dissolved Silver (Ag)	2020/07/06	NC		%	20
			Dissolved Sodium (Na)	2020/07/06	2.7		%	20
			Dissolved Thallium (TI)	2020/07/06	10		%	20
			Dissolved Uranium (U)	2020/07/06	3.0		%	20
			Dissolved Vanadium (V)	2020/07/06	NC		%	20
			Dissolved Zinc (Zn)	2020/07/06	3.9		%	20
6819523	J W	Matrix Spike [NAF022-06]	4-Bromofluorobenzene	2020/07/07	3.3	91	%	70 - 130
0013323	3_**	Width Spike [WAI 022 00]	D4-1,2-Dichloroethane	2020/07/07		96	%	70 - 130
			D8-Toluene	2020/07/07		112	%	70 - 130
			Acetone (2-Propanone)	2020/07/07		79	%	60 - 140
			Benzene	2020/07/07		99	%	70 - 130
			Bromodichloromethane	2020/07/07		91	%	70 - 130
			Bromoform	2020/07/07		87	%	70 - 130
			Bromomethane	2020/07/07		94	%	60 - 140
			Carbon Tetrachloride	2020/07/07		107	%	70 - 130
			Chlorobenzene	2020/07/07		93	%	70 - 130
			Chloroform	2020/07/07		95	%	70 - 130
			Dibromochloromethane	2020/07/07		93	%	70 - 130
			1,2-Dichlorobenzene	2020/07/07		94	%	70 - 130
			1,3-Dichlorobenzene	2020/07/07		99	%	70 - 130
			1,4-Dichlorobenzene	2020/07/07		103	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2020/07/07		108	%	60 - 140
			1,1-Dichloroethane	2020/07/07		100	%	70 - 130
			1,2-Dichloroethane	2020/07/07		87	%	70 - 130
			1,1-Dichloroethylene	2020/07/07		114	%	70 - 130
			cis-1,2-Dichloroethylene	2020/07/07		89	%	70 - 130
			trans-1,2-Dichloroethylene	2020/07/07		105	%	70 - 130
			1,2-Dichloropropane	2020/07/07		90	%	70 - 130
			cis-1,3-Dichloropropene	2020/07/07		80	%	70 - 130
			trans-1,3-Dichloropropene	2020/07/07		87	%	70 - 130
			Ethylbenzene	2020/07/07		88	%	70 - 130
			Ethylene Dibromide	2020/07/07		87	%	70 - 130
			Hexane	2020/07/07		114	%	70 - 130
			Methylene Chloride(Dichloromethane)	2020/07/07		87	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2020/07/07		67	%	60 - 140
			Methyl Isobutyl Ketone	2020/07/07		70 (1)	% %	70 - 130
			wietryi isobutyi ketolie	2020/07/07		70 (1)	/0	70 - 130

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Daten		QC Турс	Methyl t-butyl ether (MTBE)	2020/07/07	Value	78	%	70 - 130
			Styrene	2020/07/07		68 (1)	%	70 - 130
			1,1,1,2-Tetrachloroethane	2020/07/07		107	%	70 - 130
			1,1,2,2-Tetrachloroethane	2020/07/07		82	%	70 - 130
			Tetrachloroethylene	2020/07/07		103	%	70 - 130
			Toluene	2020/07/07		96	%	70 - 130
			1,1,1-Trichloroethane	2020/07/07		107	%	70 - 130
			1,1,2-Trichloroethane	2020/07/07		96	%	70 - 130
			Trichloroethylene	2020/07/07		104	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2020/07/07		113	%	70 - 130
			Vinyl Chloride	2020/07/07		105	%	70 - 130
			p+m-Xylene	2020/07/07		93	%	70 - 130
			o-Xylene	2020/07/07		88	%	70 - 130
			F1 (C6-C10)	2020/07/07		97	%	60 - 140
6819523	J_W	Spiked Blank	4-Bromofluorobenzene	2020/07/07		91	%	70 - 130
			D4-1,2-Dichloroethane	2020/07/07		97	%	70 - 130
			D8-Toluene	2020/07/07		112	%	70 - 130
			Acetone (2-Propanone)	2020/07/07		81	%	60 - 140
			Benzene	2020/07/07		97	%	70 - 130
			Bromodichloromethane	2020/07/07		89	%	70 - 130
			Bromoform	2020/07/07		87	%	70 - 130
			Bromomethane	2020/07/07		96	%	60 - 140
			Carbon Tetrachloride	2020/07/07		106	%	70 - 130
			Chlorobenzene	2020/07/07		91	%	70 - 130
			Chloroform	2020/07/07		94	%	70 - 130
			Dibromochloromethane	2020/07/07		93	%	70 - 130
			1,2-Dichlorobenzene	2020/07/07		92	%	70 - 130
			1,3-Dichlorobenzene	2020/07/07		97	%	70 - 130
			1,4-Dichlorobenzene	2020/07/07		101	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2020/07/07		106	%	60 - 140
			1,1-Dichloroethane	2020/07/07		99	%	70 - 130
			1,2-Dichloroethane	2020/07/07		86	%	70 - 130
			1,1-Dichloroethylene	2020/07/07		112	%	70 - 130
			cis-1,2-Dichloroethylene	2020/07/07		88	%	70 - 130
			trans-1,2-Dichloroethylene	2020/07/07		103	%	70 - 130
			1,2-Dichloropropane	2020/07/07		88	%	70 - 130
			cis-1,3-Dichloropropene	2020/07/07		79	%	70 - 130
			trans-1,3-Dichloropropene	2020/07/07		87	%	70 - 130
			Ethylbenzene	2020/07/07		87	%	70 - 130
			Ethylene Dibromide	2020/07/07		86	%	70 - 130
			Hexane	2020/07/07		115	%	70 - 130
			Methylene Chloride(Dichloromethane)	2020/07/07		87	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2020/07/07		67	%	60 - 140
			Methyl Isobutyl Ketone	2020/07/07		67 (1)	%	70 - 130
			Methyl t-butyl ether (MTBE)	2020/07/07		76	%	70 - 130
			Styrene	2020/07/07		66 (1)	%	70 - 130
			1,1,1,2-Tetrachloroethane	2020/07/07		106	%	70 - 130
			1,1,2,2-Tetrachloroethane	2020/07/07		81	%	70 - 130
			Tetrachloroethylene	2020/07/07		102	%	70 - 130
			Toluene	2020/07/07		95	%	70 - 130
			1,1,1-Trichloroethane	2020/07/07		105	%	70 - 130
			1,1,2-Trichloroethane	2020/07/07		95	%	70 - 130
			I,I,Z IIIGIIGIGGG	2020/01/01		J.J	/0	, o - 130

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

QA/QC			QUALITY ASSURANCE REP	· , ,				
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		Δο 1/μο	Trichlorofluoromethane (FREON 11)	2020/07/07	- 10.00	112	%	70 - 130
			Vinyl Chloride	2020/07/07		103	%	70 - 130
			p+m-Xylene	2020/07/07		92	%	70 - 130
			o-Xylene	2020/07/07		86	%	70 - 130
			F1 (C6-C10)	2020/07/07		99	%	60 - 140
6819523	J_W	Method Blank	4-Bromofluorobenzene	2020/07/07		81	%	70 - 130
			D4-1,2-Dichloroethane	2020/07/07		103	%	70 - 130
		D8-Toluene	2020/07/07		95	%	70 - 130	
			Acetone (2-Propanone)	2020/07/07	<10	33	ug/L	70 100
			Benzene	2020/07/07	<0.20		ug/L	
			Bromodichloromethane	2020/07/07	<0.50		ug/L	
			Bromoform	2020/07/07	<1.0	•	ug/L	
			Bromomethane	2020/07/07	<0.50		ug/L	
			Carbon Tetrachloride	2020/07/07	<0.20		ug/L	
			Chlorobenzene	2020/07/07	<0.20		ug/L	
			Chloroform	2020/07/07	<0.20		ug/L	
			Dibromochloromethane	2020/07/07	<0.50		ug/L	
			1,2-Dichlorobenzene	2020/07/07	<0.50		ug/L	
			1,3-Dichlorobenzene	2020/07/07	<0.50		ug/L	
			1,4-Dichlorobenzene	2020/07/07	<0.50		ug/L	
			Dichlorodifluoromethane (FREON 12)	2020/07/07	<1.0		ug/L	
			1,1-Dichloroethane	2020/07/07	<0.20		ug/L	
			1,2-Dichloroethane	2020/07/07	<0.50		ug/L	
			1,1-Dichloroethylene	2020/07/07	<0.20		ug/L	
			cis-1,2-Dichloroethylene	2020/07/07	<0.50		ug/L	
			trans-1,2-Dichloroethylene	2020/07/07	<0.50		ug/L	
			1,2-Dichloropropane	2020/07/07	<0.20		ug/L	
			cis-1,3-Dichloropropene	2020/07/07	<0.30		ug/L	
			trans-1,3-Dichloropropene	2020/07/07	<0.40		ug/L	
			Ethylbenzene	2020/07/07	<0.20		ug/L	
			Ethylene Dibromide	2020/07/07	<0.20		ug/L	
			Hexane	2020/07/07	<1.0		ug/L	
			Methylene Chloride(Dichloromethane)	2020/07/07	<2.0			
			Methyl Ethyl Ketone (2-Butanone)	2020/07/07	<10		ug/L ug/L	
				2020/07/07	<5.0			
	4		Methyl thut dether (MTRF)	2020/07/07	<0.50		ug/L	
			Methyl t-butyl ether (MTBE)	2020/07/07	<0.50		ug/L	
			Styrene 1,1,1,2-Tetrachloroethane	2020/07/07	<0.50		ug/L	
			1,1,2,2-Tetrachloroethane		<0.50		ug/L	
				2020/07/07			ug/L	
			Tetrachloroethylene	2020/07/07	<0.20		ug/L	
			Toluene	2020/07/07	<0.20		ug/L	
			1,1,1-Trichloroethane	2020/07/07	<0.20		ug/L	
			1,1,2-Trichloroethane	2020/07/07	<0.50		ug/L	
			Trichloroethylene	2020/07/07	<0.20		ug/L	
			Trichlorofluoromethane (FREON 11)	2020/07/07	<0.50		ug/L	
			Vinyl Chloride	2020/07/07	<0.20		ug/L	
			p+m-Xylene	2020/07/07	<0.20		ug/L	
			o-Xylene	2020/07/07	<0.20		ug/L	
			Total Xylenes	2020/07/07	<0.20		ug/L	
			F1 (C6-C10)	2020/07/07	<25		ug/L	
			F1 (C6-C10) - BTEX	2020/07/07	<25		ug/L	
6819523	J_W	RPD [NAF022-06]	Acetone (2-Propanone)	2020/07/07	NC		%	30
			Benzene	2020/07/07	NC		%	30

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

QA/QC	Le-24	OC Tura	Davamatar	Data Arrabinasi	Malice A	Decree	LINUTC	061::
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Bromodichloromethane	2020/07/07	NC		%	30
			Bromoform	2020/07/07	NC		%	30
			Bromomethane	2020/07/07	NC		%	30
			Carbon Tetrachloride	2020/07/07	NC		%	30
			Chlorobenzene	2020/07/07	NC		%	30
			Chloroform	2020/07/07	NC		%	30
			Dibromochloromethane	2020/07/07	NC		%	30
			1,2-Dichlorobenzene	2020/07/07	NC		%	30
			1,3-Dichlorobenzene	2020/07/07	NC		%	30
			1,4-Dichlorobenzene	2020/07/07	NC		%	30
			Dichlorodifluoromethane (FREON 12)	2020/07/07	NC		%	30
			1,1-Dichloroethane	2020/07/07	NC		%	30
			1,2-Dichloroethane	2020/07/07	NC		%	30
			1,1-Dichloroethylene	2020/07/07	NC		%	30
			cis-1,2-Dichloroethylene	2020/07/07	NC		%	30
			trans-1,2-Dichloroethylene	2020/07/07	NC		%	30
			1,2-Dichloropropane	2020/07/07	NC		%	30
			cis-1,3-Dichloropropene	2020/07/07	NC		%	30
			trans-1,3-Dichloropropene	2020/07/07	NC		%	30
			Ethylbenzene	2020/07/07	NC		%	30
			Ethylene Dibromide	2020/07/07	NC		%	30
			Hexane	2020/07/07	NC		%	30
			Methylene Chloride(Dichloromethane)	2020/07/07	NC		%	30
			Methyl Ethyl Ketone (2-Butanone)	2020/07/07	NC		%	30
			Methyl Isobutyl Ketone	2020/07/07	NC		%	30
			Methyl t-butyl ether (MTBE)	2020/07/07	NC		%	30
			Styrene	2020/07/07	NC		%	30
			1,1,1,2-Tetrachloroethane	2020/07/07	NC		%	30
			1,1,2,2-Tetrachloroethane	2020/07/07	NC		%	30
			Tetrachloroethylene	2020/07/07	NC		%	30
			Toluene	2020/07/07	NC		%	30
			1,1,1-Trichloroethane	2020/07/07	NC		%	30
			1,1,2-Trichloroethane	2020/07/07	NC		%	30
			Trichloroethylene	2020/07/07	NC		%	30
			Trichlorofluoromethane (FREON 11)	2020/07/07	NC		%	30
			Vinyl Chloride	2020/07/07	NC		%	30
			p+m-Xylene	2020/07/07	NC		%	30
			o-Xylene	2020/07/07	NC		%	30
			Total Xylenes	2020/07/07	NC		%	30
			F1 (C6-C10)	2020/07/07	NC		%	30
			F1 (C6-C10) - BTEX	2020/07/07	NC		%	30
821181	LLE	Matrix Spike	Chromium (VI)	2020/07/07		97	%	80 - 120
821181	LLE	Spiked Blank	Chromium (VI)	2020/07/07		99	%	80 - 120
821181	LLE	Method Blank	Chromium (VI)	2020/07/07	<0.50		ug/L	
821181	LLE	RPD	Chromium (VI)	2020/07/07	NC		%	20
821829	MPD	Matrix Spike	Mercury (Hg)	2020/07/07		94	%	75 - 125
821829	MPD	Spiked Blank	Mercury (Hg)	2020/07/07		93	%	80 - 120
821829	MPD	Method Blank	Mercury (Hg)	2020/07/07	<0.10		ug/L	
821829	MPD	RPD	Mercury (Hg)	2020/07/07	NC		%	20
822930	PP4	Matrix Spike	D10-Anthracene	2020/07/08		118	%	50 - 130
			D14-Terphenyl (FS)	2020/07/08		129	%	50 - 130
			D8-Acenaphthylene	2020/07/08		105	%	50 - 130
			Acenaphthene	2020/07/08		113	%	50 - 130

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

				· · · · · · · · · · · · · · · · · · ·				
QA/QC Batch	Init	OC Typo	Parameter	Date Analyzed	Value	Pocovory	UNITS	QC Limits
Dattii	Init	QC Type	Acenaphthylene	2020/07/08	value	Recovery 108	%	50 - 130
			Anthracene	2020/07/08		116	%	50 - 130
			Benzo(a)anthracene	2020/07/08		120	%	50 - 130
			Benzo(a)pyrene	2020/07/08		113	%	50 - 130
			Benzo(b/j)fluoranthene	2020/07/08		120	%	50 - 130
			Benzo(g,h,i)perylene	2020/07/08		115	%	50 - 130
			Benzo(k)fluoranthene	2020/07/08		112	%	50 - 130
			Chrysene	2020/07/08		120	%	50 - 130
			Dibenzo(a,h)anthracene	2020/07/08		118	%	50 - 130
			Fluoranthene	2020/07/08		147 (2)	%	50 - 130
			Fluorene	2020/07/08		109	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2020/07/08		114	%	50 - 130
			1-Methylnaphthalene	2020/07/08		97	%	50 - 130
			2-Methylnaphthalene	2020/07/08		96	%	50 - 130
			Naphthalene	2020/07/08		106	%	50 - 130
			Phenanthrene	2020/07/08		118	%	50 - 130
			Pyrene	2020/07/08		143 (2)	%	50 - 130
6822930	PP4	Spiked Blank	D10-Anthracene	2020/07/07		106	%	50 - 130
		•	D14-Terphenyl (FS)	2020/07/07		104	%	50 - 130
			D8-Acenaphthylene	2020/07/07		93	%	50 - 130
			Acenaphthene	2020/07/07		106	%	50 - 130
			Acenaphthylene	2020/07/07		100	%	50 - 130
			Anthracene	2020/07/07		108	%	50 - 130
			Benzo(a)anthracene	2020/07/07		105	%	50 - 130
			Benzo(a)pyrene	2020/07/07		100	%	50 - 130
			Benzo(b/j)fluoranthene	2020/07/07		105	%	50 - 130
			Benzo(g,h,i)perylene	2020/07/07		98	%	50 - 130
		•	Benzo(k)fluoranthene	2020/07/07		101	%	50 - 130
			Chrysene	2020/07/07		105	%	50 - 130
			Dibenzo(a,h)anthracene	2020/07/07		101	%	50 - 130
			Fluoranthene	2020/07/07		126	%	50 - 130
			Fluorene	2020/07/07		107	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2020/07/07		102	%	50 - 130
			1-Methylnaphthalene	2020/07/07		92	%	50 - 130
			2-Methylnaphthalene	2020/07/07		92	%	50 - 130
			Naphthalene	2020/07/07		99	%	50 - 130
			Phenanthrene	2020/07/07		112	%	50 - 130
			Pyrene	2020/07/07		122	%	50 - 130
6822930	PP4	Method Blank	D10-Anthracene	2020/07/07		111	%	50 - 130
			D14-Terphenyl (FS)	2020/07/07		119	%	50 - 130
			D8-Acenaphthylene	2020/07/07		87	%	50 - 130
			Acenaphthene	2020/07/07	< 0.050		ug/L	
			Acenaphthylene	2020/07/07	<0.050		ug/L	
		_	Anthracene	2020/07/07	<0.050		ug/L	
			Benzo(a)anthracene	2020/07/07	<0.050		ug/L	
			Benzo(a)pyrene	2020/07/07	<0.0090		ug/L	
			Benzo(b/j)fluoranthene	2020/07/07	<0.050		ug/L	
			Benzo(g,h,i)perylene	2020/07/07	<0.050		ug/L	
			Benzo(k)fluoranthene	2020/07/07	<0.050		ug/L	
			Chrysene	2020/07/07	<0.050		ug/L	
			Dibenzo(a,h)anthracene	2020/07/07	<0.050		ug/L	
			Fluoranthene	2020/07/07	<0.050		ug/L	
			Fluorene	2020/07/07	<0.050		ug/L	

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Indeno(1,2,3-cd)pyrene	2020/07/07	<0.050		ug/L	
			1-Methylnaphthalene	2020/07/07	<0.050		ug/L	
			2-Methylnaphthalene	2020/07/07	<0.050		ug/L	
			Naphthalene	2020/07/07	<0.050		ug/L	
			Phenanthrene	2020/07/07	<0.030		ug/L	
			Pyrene	2020/07/07	<0.050		ug/L	
6822930	PP4	RPD	Acenaphthene	2020/07/08	NC		%	30
			Acenaphthylene	2020/07/08	NC		%	30
			Anthracene	2020/07/08	NC		%	30
			Benzo(a)anthracene	2020/07/08	NC		%	30
			Benzo(a)pyrene	2020/07/08	NC		%	30
			Benzo(b/j)fluoranthene	2020/07/08	NC		%	30
			Benzo(g,h,i)perylene	2020/07/08	NC		%	30
			Benzo(k)fluoranthene	2020/07/08	NC		%	30
			Chrysene	2020/07/08	NC		%	30
			Dibenzo(a,h)anthracene	2020/07/08	NC		%	30
			Fluoranthene	2020/07/08	NC		%	30
			Fluorene	2020/07/08	NC		%	30
			Indeno(1,2,3-cd)pyrene	2020/07/08	NC		%	30
			1-Methylnaphthalene	2020/07/08	NC		%	30
			2-Methylnaphthalene	2020/07/08	NC		%	30
			Naphthalene	2020/07/08	NC		%	30
			Phenanthrene	2020/07/08	NC		%	30
			Pyrene	2020/07/08	NC		%	30
5822941	GUL	Matrix Spike	o-Terphenyl	2020/07/09		111	%	60 - 13
		,	F2 (C10-C16 Hydrocarbons)	2020/07/09		101	%	50 - 13
			F3 (C16-C34 Hydrocarbons)	2020/07/09		105	%	50 - 13
			F4 (C34-C50 Hydrocarbons)	2020/07/09		104	%	50 - 13
6822941	GUL	Spiked Blank	o-Terphenyl	2020/07/09		115	%	60 - 13
		·	F2 (C10-C16 Hydrocarbons)	2020/07/09		103	%	60 - 13
			F3 (C16-C34 Hydrocarbons)	2020/07/09		109	%	60 - 13
			F4 (C34-C50 Hydrocarbons)	2020/07/09		106	%	60 - 13
5822941	GUL	Method Blank	o-Terphenyl	2020/07/09		110	%	60 - 13
			F2 (C10-C16 Hydrocarbons)	2020/07/09	<100		ug/L	-5 1
			F3 (C16-C34 Hydrocarbons)	2020/07/09	<200		ug/L	
	Œ		F4 (C34-C50 Hydrocarbons)	2020/07/09	<200		ug/L	
6822941	GUL	RPD	F2 (C10-C16 Hydrocarbons)	2020/07/09	NC		%	30
0022341	JUL	5	F3 (C16-C34 Hydrocarbons)	2020/07/09	NC		%	30

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
	•		F4 (C34-C50 Hydrocarbons)	2020/07/09	NC		%	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) The recovery was below the lower control limit. This may represent a low bias in some results for this specific analyte.
- (2) The recovery was above the upper control limit. This may represent a high bias in some results for this specific analyte. For results that were not detected (ND), this potential bias has no impact.

Client Project #: 230236.006 Site Location: MCRAE Sampler Initials: DL

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Service Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	16	Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, (Intario Canada L5N 2	L8 Tel:(905) 817-	5700 Toll-free:800	0-563-6266 Fax	(905) 817-	5777 www.	bvlabs.con	1						CHAII	N OF CUS	TODY RECORD	Page of
		VOICE TO:			REP	DRT TO:						PROJE	ECT INFOR	MATION:				Laboratory Use	Only
Company Na			Company	Name:						Quotatio	0#	A70	927	10/				BV Labs Job#:	Bottle Order #:
Attention:	Accounts Payabl 1 Hines Road Su		Attention	Matt,	Ryan, Mike		HIL	18	V 101	P.O. #:			-						
Address:	Kanata ON K2K		Address:						mol-8	Project:		23	0236	.000	,				770951
Tel:	(613) 592-3387	Fax: (613) 592-589	7							Project I	lame:	1	chae					COC #:	Project Manager:
Email:	ap@pinchin.com		Tel:	mkosi	w@Pinchin.co	Fax:	Mninchi	n com: n	nnun@	Site #:		-				A III			Antonella Brasil
MOEF	EGULATED DRINKING	G WATER OR WATER INTENDED		ONSLIMPTION	MUST DE	^	Pincin	ii.com, n		Sampled	By: EQUESTED	D	DE ODEO	TIO)				C#770951-02-01	311195555599999999
	SUBMITTED	ON THE BV LABS DRINKING WA	TER CHAIN OF	USTODY	WOST BE	d Filtered (please circle):		R	T	INC I SIS N	LUCESTEL	PLEASE	BE SPEC	IFIC)				Turnaround Time (TAT) Please provide advance notice	
Regu	lation 153 (2011)	Other Regulation	ons	Special	nstructions	arcle):	010	4 (Soil)		4.0	9						Regular (S	Standard) TAT:	tor rush projects
Table 1	Res/Park Medium		ver Bylaw	prite T		0 >		7		(Soll)	acka						THE SECTION AND PERSONS	ed if Rush TAT is not specified):	X
Table 2	ind/Comm Coarse		Bylaw			C eas	78	eg co	_	ges (es P					0	Commence of the second	T = 5-7 Working days for most tests	
Table	Agn/OtherFor RS	MISA Municipality PWQO				- G B	ACT.	by	(Soil	Pestici	olatil	4.	5			13	days - contac	Standard TAT for certain tests such as it your Project Manager for details.	BOD and Dioxins/Furans are > 5
el no		Other				Ilter alls	X X	ő	AHS	OC P	Semiv	N.	5	N	1 2			c Rush TAT (if applies to entire sub	mission)
	Include Criteria	a on Certificate of Analysis (Y/N)?				Field Filtered (please	GaCI2 EXTRACT	Reg 153 VOCs by HS & F1-F4	153 PAHs (Soil)	153 00	153	5um	7	=	12	3	Date Require	nation Number:	ime Required:
Sa	mple Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	- ig	T Ca		O.Reg	Reg	O.Reg 153 ((Soil)	ave.	DIE	PARS	15	艺			call lab for #)
.				200		2000	ā	0	0	0	0.0	Š				4	# of Bottles	Comm	nents
		MWIIO Trip Blank	07/02/20	bw	6W	X							X	X	1	* 1	9	1	
2		(DI V	1		1								1	100	/-		,		
		Trip Blank	4	ل ا	7	e la la	- 1								X	X	2	100	
3		15													10	8	V	4	
_			-													, AV			
4																			
.			-																
5						The same of													
5																			
-																			
7																-			
_										- /	. ,			. 14.0	-				
3	18					Day In								14:2	/				
-					4						An	tonell	a Bras	il					
9	91												1111111						
												C0G	4922					2	20, n
0											TITE	r =	ENV-	947					()
	* RELINQUISHED BY: (SI			ne	RECEIVED	BY: (Signature/F	rint)		Date: (YY/	MM/DD)	THP	me		used and	_			DECEN	ED IN ATTAMA
Oax	re Caselle	The 20/01			12 Ser	51 154	26	3		1/02	145		not s	used and ubmitted	Time S	ensitive	T	ory Use Only	4
				KX	7	mo	the	- 1	11012	210	-21.		-				Temperatu	re (°C) on Recei Custody S. Present	No.
UNLESS OTH	ERWISE AGREED TO IN WR	ITING, WORK SUBMITTED ON THIS CHAIR OF OUR TERMS WHICH ARE AVAILABLE F	OF CUSTODY IS SUE	BULLARS COMPA	S' STANDARD TER	RMS AND CONDIT	TIONS. SIC	SNING OF 1	THIS CHAIN	OF CUSTO	DY DOCUM	MENT IS					101		BV Labs Yellow: Clin
T IS THE RE	SPONSIBILITY OF THE RELI	NQUISHER TO ENSURE THE ACCURACY	OF THE CHAIN OF CU	STODY RECORD	AN INCOMPLETE	CHAIN OF CUSTO	NOV MAY F	ECH TIL	ANAL VTIO	V TAT		71 6		SAMPLES	MUST BE	KEPT COC	1 (< 10°C) E	ROM TIME OF SAMPLING	BV Labs Yellow: Cli
CAMPI F OO	NTAINED DESCRIPTION	HOLD TIME AND PACKAGE INFORMATIO					- MINIT	LOULI IN	ANTALT HE	- INT DE	LATS.	11 0/)	1	OR SOL	UNTIL DEL	VERY TO BY	LABS	

Bureau Veritas Canada (2019) In

BV Labs Job #: C0G4922 Report Date: 2020/07/10 BV Labs Sample: NAF022

Pinchin Ltd

Client Project #: 230236.006 Project name: MCRAE Client ID: MW110

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Your Project #: 230236.006 Site Location: 320 MCRAE Your C.O.C. #: 126417

Attention: Matt, Ryan, Mike

Pinchin Ltd
Ottawa
1 Hines Road
Suite 200
Kanata, ON
CANADA K2K 3C7

Report Date: 2020/09/17 Report #: R6334154

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0N4811 Received: 2020/09/10, 15:47

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum (1)	4	N/A	2020/09/16	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum (1)	5	N/A	2020/09/14		EPA 8260C m
Chromium (VI) in Water (1)	2	N/A	2020/09/16	CAM SOP-00436	EPA 7199 m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	4	2020/09/15	2020/09/16	CAM SOP-00316	CCME PHC-CWS m
Mercury (1)	3	2020/09/16	2020/09/16	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS (1)	2	N/A	2020/09/15	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM) (1)	4	2020/09/15	2020/09/16	CAM SOP-00318	EPA 8270D m
Volatile Organic Compounds and F1 PHCs (1)	5	N/A	2020/09/14	CAM SOP-00230	EPA 8260C m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Laboratories Mississauga
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta

Your Project #: 230236.006 Site Location: 320 MCRAE Your C.O.C. #: 126417

Attention: Matt, Ryan, Mike

Pinchin Ltd
Ottawa
1 Hines Road
Suite 200
Kanata, ON
CANADA
K2K 3C7

Report Date: 2020/09/17

Report #: R6334154 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C0N4811 Received: 2020/09/10, 15:47

Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: 230236.006 Site Location: 320 MCRAE

Sampler Initials: MK

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		NPE734					
Sampling Date		2020/09/09					
COC Number		126417					
	UNITS	MW201	RDL	QC Batch			
Metals							
Mercury (Hg)	ug/L	<0.10	0.10	6946362			
RDL = Reportable Detection L	imit						
QC Batch = Quality Control Batch							

Client Project #: 230236.006 Site Location: 320 MCRAE Sampler Initials: MK

VOLATILE ORGANICS BY GC/MS (WATER)

BV Labs ID		NPE733		
Sampling Date		2020/09/09		
COC Number		126417		
	UNITS	TRIP BLANK	RDL	QC Batch
Calculated Parameters		•		
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	6938423
Volatile Organics	_ <i>U</i> ,			
Acetone (2-Propanone)	ug/L	<10	10	6938101
Benzene	ug/L	<0.20	0.20	6938101
Bromodichloromethane	ug/L	<0.50	0.50	6938101
Bromoform	ug/L	<1.0	1.0	6938101
Bromomethane	ug/L	<0.50	0.50	6938101
Carbon Tetrachloride	ug/L	<0.20	0.20	6938101
Chlorobenzene	ug/L	<0.20	0.20	6938101
Chloroform	ug/L	<0.20	0.20	6938101
Dibromochloromethane	ug/L	<0.50	0.50	6938101
1,2-Dichlorobenzene	ug/L	<0.50	0.50	6938101
1,3-Dichlorobenzene	ug/L	<0.50	0.50	6938101
1,4-Dichlorobenzene	ug/L	<0.50	0.50	6938101
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	6938101
1,1-Dichloroethane	ug/L	<0.20	0.20	6938101
1,2-Dichloroethane	ug/L	<0.50	0.50	6938101
1,1-Dichloroethylene	ug/L	<0.20	0.20	6938101
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	6938101
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	6938101
1,2-Dichloropropane	ug/L	<0.20	0.20	6938101
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	6938101
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	6938101
Ethylbenzene	ug/L	<0.20	0.20	6938101
Ethylene Dibromide	ug/L	<0.20	0.20	6938101
Hexane	ug/L	<1.0	1.0	6938101
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	6938101
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	6938101
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	6938101
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	6938101
Styrene	ug/L	<0.50	0.50	6938101
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	6938101
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	6938101
Tetrachloroethylene	ug/L	<0.20	0.20	6938101
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

Client Project #: 230236.006 Site Location: 320 MCRAE Sampler Initials: MK

VOLATILE ORGANICS BY GC/MS (WATER)

BV Labs ID		NPE733		
Sampling Date		2020/09/09		
COC Number		126417		
	UNITS	TRIP BLANK	RDL	QC Batch
Toluene	ug/L	<0.20	0.20	6938101
1,1,1-Trichloroethane	ug/L	<0.20	0.20	6938101
1,1,2-Trichloroethane	ug/L	<0.50	0.50	6938101
Trichloroethylene	ug/L	<0.20	0.20	6938101
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	6938101
Vinyl Chloride	ug/L	<0.20	0.20	6938101
p+m-Xylene	ug/L	<0.20	0.20	6938101
o-Xylene	ug/L	<0.20	0.20	6938101
Total Xylenes	ug/L	<0.20	0.20	6938101
F1 (C6-C10)	ug/L	<25	25	6938101
F1 (C6-C10) - BTEX	ug/L	<25	25	6938101
Surrogate Recovery (%)				
4-Bromofluorobenzene	%	89		6938101
D4-1,2-Dichloroethane	%	96		6938101
D8-Toluene	%	99		6938101
RDL = Reportable Detection Limit	///			
QC Batch = Quality Control Batch				

BV Labs Job #: C0N4811 Pinch
Report Date: 2020/09/17 Client

Pinchin Ltd

Client Project #: 230236.006 Site Location: 320 MCRAE Sampler Initials: MK

O.REG 153 METALS PACKAGE (WATER)

BV Labs ID		NPE736	NPE737		
Sampling Date		2020/09/09	2020/09/09		
COC Number		126417	126417		
	UNITS	MW202	DUP-202	RDL	QC Batch
Metals					
Chromium (VI)	ug/L	<0.50	<0.50	0.50	6939491
Mercury (Hg)	ug/L	<0.10	<0.10	0.10	6946362
Dissolved Antimony (Sb)	ug/L	0.71	0.64	0.50	6940590
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	1.0	6940590
Dissolved Barium (Ba)	ug/L	130	130	2.0	6940590
Dissolved Beryllium (Be)	ug/L	<0.40	<0.40	0.40	6940590
Dissolved Boron (B)	ug/L	690	660	10	6940590
Dissolved Cadmium (Cd)	ug/L	<0.090	<0.090	0.090	6940590
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	5.0	6940590
Dissolved Cobalt (Co)	ug/L	5.1	5.2	0.50	6940590
Dissolved Copper (Cu)	ug/L	2.2	2.7	0.90	6940590
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	0.50	6940590
Dissolved Molybdenum (Mo)	ug/L	3.3	3.4	0.50	6940590
Dissolved Nickel (Ni)	ug/L	15	16	1.0	6940590
Dissolved Selenium (Se)	ug/L	<2.0	<2.0	2.0	6940590
Dissolved Silver (Ag)	ug/L	<0.090	<0.090	0.090	6940590
Dissolved Sodium (Na)	ug/L	990000	990000	500	6940590
Dissolved Thallium (TI)	ug/L	0.21	0.21	0.050	6940590
Dissolved Uranium (U)	ug/L	5.0	5.1	0.10	6940590
Dissolved Vanadium (V)	ug/L	1.1	1.1	0.50	6940590
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	5.0	6940590
RDL = Reportable Detection Lin	nit				

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Client Project #: 230236.006 Site Location: 320 MCRAE

Sampler Initials: MK

O.REG 153 PAHS (WATER)

BV Labs ID		NPE734	NPE735	NPE736	NPE738		
Sampling Date		2020/09/09	2020/09/09	2020/09/09	2020/09/09		
COC Number		126417	126417	126417	126417		
	UNITS	MW201	DUP-201	MW202	MW203	RDL	QC Batch
Calculated Parameters							
Methylnaphthalene, 2-(1-)	ug/L	<0.071	<0.071	<0.071	<0.071	0.071	6938737
Polyaromatic Hydrocarbons							
Acenaphthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6945027
Acenaphthylene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6945027
Anthracene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6945027
Benzo(a)anthracene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6945027
Benzo(a)pyrene	ug/L	<0.0090	<0.0090	<0.0090	<0.0090	0.0090	6945027
Benzo(b/j)fluoranthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6945027
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6945027
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6945027
Chrysene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6945027
Dibenzo(a,h)anthracene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6945027
Fluoranthene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6945027
Fluorene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6945027
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6945027
1-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6945027
2-Methylnaphthalene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6945027
Naphthalene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6945027
Phenanthrene	ug/L	<0.030	<0.030	<0.030	<0.030	0.030	6945027
Pyrene	ug/L	<0.050	<0.050	<0.050	<0.050	0.050	6945027
Surrogate Recovery (%)							
D10-Anthracene	%	105	102	116	103		6945027
D14-Terphenyl (FS)	%	93	88	107	78		6945027
D8-Acenaphthylene	%	94	91	106	94		6945027
RDL = Reportable Detection L	imit						

QC Batch = Quality Control Batch

Client Project #: 230236.006 Site Location: 320 MCRAE

Sampler Initials: MK

O.REG 153 VOCS BY HS & F1-F4 (WATER)

BV Labs ID		NPE734		NPE735		NPE736		NPE738		
Sampling Date		2020/09/09		2020/09/09		2020/09/09		2020/09/09		
COC Number		126417		126417		126417		126417		
	UNITS	MW201	RDL	DUP-201	RDL	MW202	RDL	MW203	RDL	QC Batch
Calculated Parameters										
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	6938423
Volatile Organics										
Acetone (2-Propanone)	ug/L	<10	10	<10	10	<10	10	<10	10	6938101
Benzene	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	6938101
Bromodichloromethane	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	6938101
Bromoform	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	6938101
Bromomethane	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	6938101
Carbon Tetrachloride	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	6938101
Chlorobenzene	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	6938101
Chloroform	ug/L	0.64	0.20	0.75	0.20	<0.20	0.20	0.23	0.20	6938101
Dibromochloromethane	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	6938101
1,2-Dichlorobenzene	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	6938101
1,3-Dichlorobenzene	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	6938101
1,4-Dichlorobenzene	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	6938101
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	6938101
1,1-Dichloroethane	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	6938101
1,2-Dichloroethane	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	6938101
1,1-Dichloroethylene	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	6938101
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	6938101
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	6938101
1,2-Dichloropropane	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	6938101
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	<0.30	0.30	<0.30	0.30	<0.30	0.30	6938101
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	<0.40	0.40	<0.40	0.40	<0.40	0.40	6938101
Ethylbenzene	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	6938101
Ethylene Dibromide	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	6938101
Hexane	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	6938101
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	6938101
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	<10	10	<10	10	<10	10	6938101
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	6938101
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	6938101
Styrene	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	6938101
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	6938101
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	6938101
Tetrachloroethylene	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	6938101
RDL = Reportable Detection Limit			•				•			

QC Batch = Quality Control Batch

Labs Job #: C0N4811 Pinch

Pinchin Ltd

Client Project #: 230236.006 Site Location: 320 MCRAE

Sampler Initials: MK

O.REG 153 VOCS BY HS & F1-F4 (WATER)

BV Labs ID		NPE734		NPE735		NPE736		NPE738		
Sampling Date		2020/09/09		2020/09/09		2020/09/09		2020/09/09		
COC Number		126417		126417		126417		126417		
	UNITS	MW201	RDL	DUP-201	RDL	MW202	RDL	MW203	RDL	QC Batch
Toluene	ug/L	<0.20	0.20	<0.30 (1)	0.30	<0.20	0.20	<0.40 (1)	0.40	6938101
1,1,1-Trichloroethane	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	6938101
1,1,2-Trichloroethane	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	6938101
Trichloroethylene	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	6938101
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	<0.50	0.50	<0.50	0.50	<0.50	0.50	6938101
Vinyl Chloride	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	6938101
p+m-Xylene	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	0.22	0.20	6938101
o-Xylene	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	6938101
Total Xylenes	ug/L	<0.20	0.20	<0.20	0.20	<0.20	0.20	0.22	0.20	6938101
F1 (C6-C10)	ug/L	<25	25	<25	25	<25	25	<25	25	6938101
F1 (C6-C10) - BTEX	ug/L	<25	25	<25	25	<25	25	<25	25	6938101
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	<100	100	<100	100	<100	100	6945037
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	<200	200	<200	200	<200	200	6945037
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	<200	200	<200	200	<200	200	6945037
Reached Baseline at C50	ug/L	Yes		Yes		Yes		Yes		6945037
Surrogate Recovery (%)										
o-Terphenyl	%	104		104		102		103		6945037
4-Bromofluorobenzene	%	89		103		89		90		6938101
D4-1,2-Dichloroethane	%	91		95		98		94		6938101
D8-Toluene	%	100		97		99		99		6938101

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) The detection limit was raised due to laboratory background interference.

Report Date: 2020/09/17

Pinchin Ltd

Client Project #: 230236.006 Site Location: 320 MCRAE

Sampler Initials: MK

TEST SUMMARY

BV Labs ID: NPE733 Sample ID: TRIP BLANK Collected: Shipped:

2020/09/09

Matrix: Water

Received:

2020/09/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	6938423	N/A	2020/09/14	Automated Statchk
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6938101	N/A	2020/09/14	Xueming Jiang

BV Labs ID: NPE734

Collected: 2020/09/09

Sample ID: MW201 Matrix: Water

Shipped:

2020/09/10 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6938737	N/A	2020/09/16	Automated Statchk
1,3-Dichloropropene Sum	CALC	6938423	N/A	2020/09/14	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6945037	2020/09/15	2020/09/16	Margaret Kulczyk-Stanko
Mercury	CV/AA	6946362	2020/09/16	2020/09/16	Medhat Nasr
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6945027	2020/09/15	2020/09/16	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6938101	N/A	2020/09/14	Xueming Jiang

BV Labs ID: NPE735 Sample ID: DUP-201 Matrix: Water

Collected: Shipped:

2020/09/09

Received: 2020/09/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6938737	N/A	2020/09/16	Automated Statchk
1,3-Dichloropropene Sum	CALC	6938423	N/A	2020/09/14	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6945037	2020/09/15	2020/09/16	Margaret Kulczyk-Stanko
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6945027	2020/09/15	2020/09/16	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6938101	N/A	2020/09/14	Xueming Jiang

BV Labs ID: NPE736 Sample ID: MW202 Matrix: Water

Collected:

2020/09/09

Shipped:

Received: 2020/09/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6938737	N/A	2020/09/16	Automated Statchk
1,3-Dichloropropene Sum	CALC	6938423	N/A	2020/09/14	Automated Statchk
Chromium (VI) in Water	IC	6939491	N/A	2020/09/16	Lang Le
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6945037	2020/09/15	2020/09/16	Margaret Kulczyk-Stanko
Mercury	CV/AA	6946362	2020/09/16	2020/09/16	Medhat Nasr
Dissolved Metals by ICPMS	ICP/MS	6940590	N/A	2020/09/15	Arefa Dabhad
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6945027	2020/09/15	2020/09/16	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	6938101	N/A	2020/09/14	Xueming Jiang

BV Labs ID: NPE737 Sample ID: DUP-202 Matrix: Water

Collected:

2020/09/09

Shipped:

Received: 2020/09/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chromium (VI) in Water	IC	6939491	N/A	2020/09/16	Lang Le

Matrix: Water

Pinchin Ltd Report Date: 2020/09/17

Client Project #: 230236.006 Site Location: 320 MCRAE

Sampler Initials: MK

TEST SUMMARY

BV Labs ID: NPE737 Sample ID: DUP-202 Collected: 2020/09/09

Shipped:

Received: 2020/09/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Mercury	CV/AA	6946362	2020/09/16	2020/09/16	Medhat Nasr
Dissolved Metals by ICPMS	ICP/MS	6940590	N/A	2020/09/15	Arefa Dabhad

BV Labs ID: NPE738 Collected: 2020/09/09

Sample ID: MW203 Shipped: Matrix: Water

2020/09/10 Received:

Test Description Extracted Date Analyzed Instrumentation Batch Analyst 2020/09/16 Methylnaphthalene Sum CALC 6938737 N/A **Automated Statchk** 6938423 N/A 2020/09/14 1,3-Dichloropropene Sum CALC **Automated Statchk** Petroleum Hydrocarbons F2-F4 in Water GC/FID 6945037 2020/09/15 2020/09/16 Margaret Kulczyk-Stanko 2020/09/15 PAH Compounds in Water by GC/MS (SIM) GC/MS 6945027 2020/09/16 Mitesh Raj 6938101 2020/09/14 Volatile Organic Compounds and F1 PHCs GC/MSFD N/A **Xueming Jiang**

Client Project #: 230236.006 Site Location: 320 MCRAE

Sampler Initials: MK

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.7°C

Cooler custody seal was present and intact.

The following sediment comments apply to sample MW203.

All 40 ml vials for F1BTEX and VOC analyses contained visible sediment.

All 100 ml amber glass bottles for F2-F4 and PAH analyses contained visible sediment, which was included in the extraction .

Results relate only to the items tested.

Client Project #: 230236.006 Site Location: 320 MCRAE

Sampler Initials: MK

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
5938101	XJI	Matrix Spike	4-Bromofluorobenzene	2020/09/14		104	%	70 - 130
			D4-1,2-Dichloroethane	2020/09/14		97	%	70 - 130
			D8-Toluene	2020/09/14		103	%	70 - 130
			Acetone (2-Propanone)	2020/09/14		81	%	60 - 140
			Benzene	2020/09/14		97	%	70 - 130
			Bromodichloromethane	2020/09/14		91	%	70 - 13
			Bromoform	2020/09/14		99	%	70 - 13
			Bromomethane	2020/09/14		80	%	60 - 14
			Carbon Tetrachloride	2020/09/14		90	%	70 - 13
			Chlorobenzene	2020/09/14		96	%	70 - 13
			Chloroform	2020/09/14		87	%	70 - 13
			Dibromochloromethane	2020/09/14		99	%	70 - 13
			1,2-Dichlorobenzene	2020/09/14		96	%	70 - 13
			1,3-Dichlorobenzene	2020/09/14		101	%	70 - 13
			1,4-Dichlorobenzene	2020/09/14		113	%	70 - 13
			Dichlorodifluoromethane (FREON 12)	2020/09/14		97	%	60 - 14
			1,1-Dichloroethane	2020/09/14		92	%	70 - 13
			1,2-Dichloroethane	2020/09/14		96	%	70 - 13
			1,1-Dichloroethylene	2020/09/14		82	%	70 - 13
			cis-1,2-Dichloroethylene	2020/09/14		92	%	70 - 13
			trans-1,2-Dichloroethylene	2020/09/14		92	%	70 - 1
			1,2-Dichloropropane	2020/09/14		89	%	70 - 13
			cis-1,3-Dichloropropene	2020/09/14		95	% %	70 - 1
				2020/09/14		95 98	% %	
			trans-1,3-Dichloropropene	2020/09/14		98	% %	70 - 1 70 - 1
			Ethylbenzene	· ·				
			Ethylene Dibromide	2020/09/14		101	%	70 - 13
			Hexane	2020/09/14		103	%	70 - 13
			Methylene Chloride(Dichloromethane)	2020/09/14		78	%	70 - 1
			Methyl Ethyl Ketone (2-Butanone)	2020/09/14		107	%	60 - 1
			Methyl Isobutyl Ketone	2020/09/14		103	%	70 - 1
			Methyl t-butyl ether (MTBE)	2020/09/14		92	%	70 - 1
			Styrene	2020/09/14		101	%	70 - 1
			1,1,1,2-Tetrachloroethane	2020/09/14		98	%	70 - 1
			1,1,2,2-Tetrachloroethane	2020/09/14		98	%	70 - 1
			Tetrachloroethylene	2020/09/14		90	%	70 - 1
			Toluene	2020/09/14		96	%	70 - 1
			1,1,1-Trichloroethane	2020/09/14		92	%	70 - 1
			1,1,2-Trichloroethane	2020/09/14		98	%	70 - 1
			Trichloroethylene	2020/09/14		95	%	70 - 1
			Trichlorofluoromethane (FREON 11)	2020/09/14		77	%	70 - 1
			Vinyl Chloride	2020/09/14		85	%	70 - 1
			p+m-Xylene	2020/09/14		107	%	70 - 1
			o-Xylene	2020/09/14		103	%	70 - 1
		•	F1 (C6-C10)	2020/09/14		101	%	60 - 1
938101	XJI	Spiked Blank	4-Bromofluorobenzene	2020/09/13		103	%	70 - 1
			D4-1,2-Dichloroethane	2020/09/13		97	%	70 - 1
			D8-Toluene	2020/09/13		104	%	70 - 13
			Acetone (2-Propanone)	2020/09/13		82	%	60 - 1
			Benzene	2020/09/13		99	%	70 - 1
			Bromodichloromethane	2020/09/13		93	%	70 - 1
			Bromoform	2020/09/13		103	%	70 - 1
			Bromomethane	2020/09/13		79	%	60 - 1
				2020/09/13		93	%	70 - 1

Client Project #: 230236.006 Site Location: 320 MCRAE

Sampler Initials: MK

04/00			OKI(CONT D)				
QA/QC Batch	Init QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
	. //	Chlorobenzene	2020/09/13		98	%	70 - 130
		Chloroform	2020/09/13		90	%	70 - 130
		Dibromochloromethane	2020/09/13		103	%	70 - 130
		1,2-Dichlorobenzene	2020/09/13		99	%	70 - 130
		1,3-Dichlorobenzene	2020/09/13		102	%	70 - 130
		1,4-Dichlorobenzene	2020/09/13		114	%	70 - 130
		Dichlorodifluoromethane (FREON 12)	2020/09/13		102	%	60 - 140
		1,1-Dichloroethane	2020/09/13		95	%	70 - 130
		1,2-Dichloroethane	2020/09/13		98	%	70 - 130
		1,1-Dichloroethylene	2020/09/13		83	%	70 - 13
		cis-1,2-Dichloroethylene	2020/09/13		93	%	70 - 13
		trans-1,2-Dichloroethylene	2020/09/13		92	%	70 - 13
		1,2-Dichloropropane	2020/09/13		92	%	70 - 13
		cis-1,3-Dichloropropene	2020/09/13		88	%	70 - 13
		trans-1,3-Dichloropropene	2020/09/13		89	%	70 - 13
		Ethylbenzene	2020/09/13		101	%	70 - 13
		Ethylene Dibromide	2020/09/13		104	%	70 - 13
		Hexane	2020/09/13		106	%	70 - 13
		Methylene Chloride(Dichloromethane)	2020/09/13		78	%	70 - 13
		Methyl Ethyl Ketone (2-Butanone)	2020/09/13		110	%	60 - 14
		Methyl Isobutyl Ketone	2020/09/13		105	%	70 - 13
		Methyl t-butyl ether (MTBE)	2020/09/13		94	%	70 - 13
		Styrene	2020/09/13		105	%	70 - 13
		1,1,1,2-Tetrachloroethane	2020/09/13		102	%	70 - 13
		1,1,2,2-Tetrachloroethane	2020/09/13		101	%	70 - 13
		Tetrachloroethylene	2020/09/13		91	%	70 - 13
		Toluene	2020/09/13		98	%	70 - 13
		1,1,1-Trichloroethane	2020/09/13		95	%	70 - 13
		1,1,2-Trichloroethane	2020/09/13		100	%	70 - 13
		Trichloroethylene	2020/09/13		97	%	70 - 13
		Trichlorofluoromethane (FREON 11)	2020/09/13		78	%	70 - 13
		Vinyl Chloride	2020/09/13		92	%	70 - 13
		p+m-Xylene	2020/09/13		111	%	70 - 13
		o-Xylene	2020/09/13		106	%	70 - 13
		F1 (C6-C10)	2020/09/13		99	%	60 - 14
938101	XJI Method Blank	4-Bromofluorobenzene	2020/09/13		89	%	70 - 13
330101	Asi Wictilog Blank	D4-1,2-Dichloroethane	2020/09/13		93	%	70 - 13
		D8-Toluene	2020/09/13		102	%	70 - 13
		Acetone (2-Propanone)	2020/09/13	<10	102	ug/L	70 13
		Benzene	2020/09/13	<0.20		ug/L	
		Bromodichloromethane	2020/09/13	<0.50		ug/L	
		Bromoform	2020/09/13	<1.0		ug/L	
		Bromomethane	2020/09/13	<0.50		ug/L	
		Carbon Tetrachloride	2020/09/13	<0.20		ug/L	
		Chlorobenzene	2020/09/13	<0.20		ug/L ug/L	
		Chloroform	2020/09/13	<0.20			
		Dibromochloromethane	2020/09/13	<0.50		ug/L ug/L	
		1,2-Dichlorobenzene	2020/09/13	<0.50			
		·				ug/L	
		1,3-Dichlorobenzene	2020/09/13	<0.50		ug/L	
		1,4-Dichlorobenzene	2020/09/13	<0.50		ug/L	
		Dichlorodifluoromethane (FREON 12)	2020/09/13	<1.0		ug/L	
		1,1-Dichloroethane	2020/09/13	<0.20		ug/L	
		1,2-Dichloroethane	2020/09/13	<0.50		ug/L	

Client Project #: 230236.006 Site Location: 320 MCRAE

Sampler Initials: MK

100			<u>`</u>	PORT(CONT'D)				
A/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
		-3- /	1,1-Dichloroethylene	2020/09/13	<0.20		ug/L	
			cis-1,2-Dichloroethylene	2020/09/13	<0.50		ug/L	
			trans-1,2-Dichloroethylene	2020/09/13	<0.50		ug/L	
			1,2-Dichloropropane	2020/09/13	<0.20		ug/L	
			cis-1,3-Dichloropropene	2020/09/13	<0.30		ug/L	
			trans-1,3-Dichloropropene	2020/09/13	<0.40		ug/L	
			Ethylbenzene	2020/09/13	<0.20		ug/L	
			Ethylene Dibromide	2020/09/13	<0.20		ug/L	
			Hexane	2020/09/13	<1.0		ug/L	
			Methylene Chloride(Dichloromethane)	2020/09/13	<2.0		ug/L	
			Methyl Ethyl Ketone (2-Butanone)	2020/09/13	<10		ug/L	
			Methyl Isobutyl Ketone	2020/09/13	<5.0	Ť	ug/L	
			Methyl t-butyl ether (MTBE)	2020/09/13	<0.50		ug/L	
			Styrene	2020/09/13	<0.50		ug/L	
			1,1,1,2-Tetrachloroethane	2020/09/13	<0.50		ug/L	
			1,1,2,2-Tetrachloroethane	2020/09/13	<0.50		ug/L	
			Tetrachloroethylene	2020/09/13	<0.20		ug/L	
			Toluene	2020/09/13	<0.40 (1)		ug/L	
			1,1,1-Trichloroethane	2020/09/13	<0.20		ug/L	
			1,1,2-Trichloroethane	2020/09/13	<0.50		ug/L	
			Trichloroethylene	2020/09/13	<0.20		ug/L	
			Trichlorofluoromethane (FREON 11)	2020/09/13	<0.50		ug/L	
			Vinyl Chloride	2020/09/13	<0.20		ug/L	
			p+m-Xylene	2020/09/13	<0.20		ug/L	
			o-Xylene	2020/09/13	<0.20		ug/L	
			Total Xylenes	2020/09/13	<0.20		ug/L	
			F1 (C6-C10)	2020/09/13	<25		ug/L	
			F1 (C6-C10) - BTEX	2020/09/13	<25		ug/L	
8101	XJI	RPD	Acetone (2-Propanone)	2020/09/14	NC		%	30
			Benzene	2020/09/14	NC		%	30
			Bromodichloromethane	2020/09/14	NC		%	30
			Bromoform	2020/09/14	NC		%	30
			Bromomethane	2020/09/14	NC		%	30
			Carbon Tetrachloride	2020/09/14	NC		%	30
			Chlorobenzene	2020/09/14	NC		%	30
			Chloroform	2020/09/14	NC		%	30
			Dibromochloromethane	2020/09/14	NC		%	30
			1,2-Dichlorobenzene	2020/09/14	NC		%	30
			1,3-Dichlorobenzene	2020/09/14	NC		%	30
			1,4-Dichlorobenzene	2020/09/14	NC		%	30
			Dichlorodifluoromethane (FREON 12)	2020/09/14	NC		%	30
			1,1-Dichloroethane	2020/09/14	NC		%	30
			1,2-Dichloroethane	2020/09/14	NC		%	30
			1,1-Dichloroethylene	2020/09/14	NC		%	30
			cis-1,2-Dichloroethylene	2020/09/14	NC		%	30
			trans-1,2-Dichloroethylene	2020/09/14	NC		%	30
			1,2-Dichloropropane	2020/09/14	NC		%	30
			cis-1,3-Dichloropropene	2020/09/14	NC		%	30
			trans-1,3-Dichloropropene	2020/09/14	NC		%	30
			Ethylbenzene	2020/09/14	NC		%	30
			Ethylene Dibromide	2020/09/14	NC		%	30
			Hexane	2020/09/14	NC		%	30
			пехапе					

Report Date: 2020/09/17

Pinchin Ltd

Client Project #: 230236.006 Site Location: 320 MCRAE

Sampler Initials: MK

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		7,5	Methyl Ethyl Ketone (2-Butanone)	2020/09/14	NC		%	30
			Methyl Isobutyl Ketone	2020/09/14	NC		%	30
			Methyl t-butyl ether (MTBE)	2020/09/14	NC		%	30
			Styrene	2020/09/14	NC		%	30
			1,1,1,2-Tetrachloroethane	2020/09/14	NC		%	30
			1,1,2,2-Tetrachloroethane	2020/09/14	NC		%	30
			Tetrachloroethylene	2020/09/14	NC		%	30
			Toluene	2020/09/14	NC		%	30
			1,1,1-Trichloroethane	2020/09/14	NC		%	30
			1,1,2-Trichloroethane	2020/09/14	NC		%	30
			Trichloroethylene	2020/09/14	NC		%	30
			Trichlorofluoromethane (FREON 11)	2020/09/14	NC		%	30
			Vinyl Chloride	2020/09/14	NC		%	30
			p+m-Xylene	2020/09/14	NC		%	30
			o-Xylene	2020/09/14	NC		%	30
			Total Xylenes	2020/09/14	NC		%	30
			F1 (C6-C10)	2020/09/14	NC		%	30
			F1 (C6-C10) - BTEX	2020/09/14	NC		%	30
6939491	LLE	Matrix Spike	Chromium (VI)	2020/09/16		102	%	80 - 120
6939491	LLE	Spiked Blank	Chromium (VI)	2020/09/16		101	%	80 - 120
6939491	LLE	Method Blank	Chromium (VI)	2020/09/16	<0.50		ug/L	
6939491	LLE	RPD	Chromium (VI)	2020/09/16	NC		%	20
6940590	ADA	Matrix Spike	Dissolved Antimony (Sb)	2020/09/14		104	%	80 - 120
			Dissolved Arsenic (As)	2020/09/14		98	%	80 - 120
			Dissolved Barium (Ba)	2020/09/14		96	%	80 - 120
			Dissolved Beryllium (Be)	2020/09/14		98	%	80 - 120
			Dissolved Boron (B)	2020/09/14		101	%	80 - 120
			Dissolved Cadmium (Cd)	2020/09/14		100	%	80 - 120
			Dissolved Chromium (Cr)	2020/09/14		92	%	80 - 120
			Dissolved Cobalt (Co)	2020/09/14		95	%	80 - 120
			Dissolved Copper (Cu)	2020/09/14		95	%	80 - 120
			Dissolved Lead (Pb)	2020/09/14		97	%	80 - 120
			Dissolved Molybdenum (Mo)	2020/09/14		97	%	80 - 120
			Dissolved Nickel (Ni)	2020/09/14		93	%	80 - 120
	43		Dissolved Selenium (Se)	2020/09/14		96	%	80 - 120
•			Dissolved Silver (Ag)	2020/09/14		77 (2)	%	80 - 120
			Dissolved Sodium (Na)	2020/09/14		NC	%	80 - 120
			Dissolved Thallium (TI)	2020/09/14		96	%	80 - 120
			Dissolved Uranium (U)	2020/09/14		98	%	80 - 120
			Dissolved Vanadium (V)	2020/09/14		93	%	80 - 120
			Dissolved Zinc (Zn)	2020/09/14		96	%	80 - 120
6940590	ADA	Spiked Blank	Dissolved Antimony (Sb)	2020/09/14		104	%	80 - 120
			Dissolved Arsenic (As)	2020/09/14		99	%	80 - 120
			Dissolved Barium (Ba)	2020/09/14		99	%	80 - 120
			Dissolved Beryllium (Be)	2020/09/14		100	%	80 - 120
			Dissolved Boron (B)	2020/09/14		107	%	80 - 120
			Dissolved Cadmium (Cd)	2020/09/14		101	%	80 - 120
			Dissolved Chromium (Cr)	2020/09/14		95	%	80 - 120
			Dissolved Cobalt (Co)	2020/09/14		100	%	80 - 120
			Dissolved Copper (Cu)	2020/09/14		97	%	80 - 120
			Dissolved Lead (Pb)	2020/09/14		99	%	80 - 120
			Dissolved Molybdenum (Mo)	2020/09/14		97	%	80 - 120
			Dissolved Nickel (Ni)	2020/09/14		97	%	80 - 120

Client Project #: 230236.006 Site Location: 320 MCRAE

Sampler Initials: MK

QA/QC				· ·				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Batteri		QC 1 ypc	Dissolved Selenium (Se)	2020/09/14	Value	96	%	80 - 120
			Dissolved Silver (Ag)	2020/09/14		97	%	80 - 120
			Dissolved Sodium (Na)	2020/09/14		92	%	80 - 120
			Dissolved Thallium (TI)	2020/09/14		99	%	80 - 120
			Dissolved Uranium (U)	2020/09/14		97	%	80 - 120
			Dissolved Vanadium (V)	2020/09/14		95	%	80 - 120
			Dissolved Zinc (Zn)	2020/09/14		98	%	80 - 120
6940590	ADA	Method Blank	Dissolved Antimony (Sb)	2020/09/14	<0.50	30	ug/L	00 120
03 10330	,,,,,,,	Wiethou Blank	Dissolved Arsenic (As)	2020/09/14	<1.0		ug/L	
			Dissolved Barium (Ba)	2020/09/14	<2.0		ug/L	
			Dissolved Beryllium (Be)	2020/09/14	<0.40		ug/L	
			Dissolved Boron (B)	2020/09/14	<10	~	ug/L	
			Dissolved Cadmium (Cd)	2020/09/14	<0.090		ug/L	
			Dissolved Chromium (Cr)	2020/09/14	<5.0		ug/L	
			Dissolved Cobalt (Co)	2020/09/14	<0.50		ug/L	
			Dissolved Copper (Cu)	2020/09/14	<0.90		ug/L	
			Dissolved Lead (Pb)	2020/09/14	<0.50		ug/L	
			Dissolved Molybdenum (Mo)	2020/09/14	<0.50		ug/L	
			Dissolved Nickel (Ni)	2020/09/14	<1.0		ug/L	
			Dissolved Selenium (Se)	2020/09/14	<2.0		ug/L	
			Dissolved Silver (Ag)	2020/09/14	<0.090		ug/L	
			Dissolved Sodium (Na)	2020/09/14	<100		ug/L	
			Dissolved Thallium (TI)	2020/09/14	<0.050		ug/L	
			Dissolved Uranium (U)	2020/09/14	<0.10		ug/L	
			Dissolved Vanadium (V)	2020/09/14	<0.50		ug/L	
			Dissolved Zinc (Zn)	2020/09/14	<5.0		ug/L	
5940590	ADA	RPD	Dissolved Antimony (Sb)	2020/09/14	NC		иg/ L %	20
JJ40JJ0	ADA	III D	Dissolved Arsenic (As)	2020/09/14	7.7		%	20
			Dissolved Barium (Ba)	2020/09/14	1.3		%	20
			Dissolved Beryllium (Be)	2020/09/14	NC		%	20
			Dissolved Boron (B)	2020/09/14	0.58		%	20
			Dissolved Cadmium (Cd)	2020/09/14	NC		%	20
			Dissolved Chromium (Cr)	2020/09/14	NC		%	20
			Dissolved Color (Co)	2020/09/14	NC		% %	20
			Dissolved Copper (Cu)	2020/09/14	NC		%	20
			Dissolved Copper (Cu) Dissolved Lead (Pb)	2020/09/14	NC		%	20
			Dissolved Molybdenum (Mo)	2020/09/14	3.4		% %	20
			Dissolved Nickel (Ni)	2020/09/14			% %	
			Dissolved Nickel (Ni) Dissolved Selenium (Se)	2020/09/14	NC NC		% %	20
			Dissolved Silver (Ag)		NC		% %	20
			(3)	2020/09/14				
			Dissolved Sodium (Na) Dissolved Thallium (Tl)	2020/09/14 2020/09/14	0.36		%	20
			Dissolved Tranium (TI) Dissolved Uranium (U)	2020/09/14	NC 0		%	20 20
			. ,	• •			%	
			Dissolved Vanadium (V)	2020/09/14	1.5		%	20
SOMEOUS	DAI	Matrix Spile	Dissolved Zinc (Zn) D10-Anthracene	2020/09/14 2020/09/16	NC	10F	% %	20 50 - 130
5945027	RAJ	Matrix Spike				105	%	
			D14-Terphenyl (FS)	2020/09/16		91	%	50 - 130
			D8-Acenaphthylene	2020/09/16		97 103	%	50 - 130
			Acenaphthene	2020/09/16		103	%	50 - 130
			Acenaphthylene	2020/09/16		98	%	50 - 130
			Anthracene	2020/09/16		95 60	%	50 - 130
			Benzo(a)anthracene	2020/09/16		69	%	50 - 130
			Benzo(a)pyrene	2020/09/16		56	%	50 - 130

Client Project #: 230236.006 Site Location: 320 MCRAE

Sampler Initials: MK

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		••	Benzo(b/j)fluoranthene	2020/09/16		66	%	50 - 130
			Benzo(g,h,i)perylene	2020/09/16		65	%	50 - 130
			Benzo(k)fluoranthene	2020/09/16		65	%	50 - 130
			Chrysene	2020/09/16		68	%	50 - 130
			Dibenzo(a,h)anthracene	2020/09/16		65	%	50 - 130
			Fluoranthene	2020/09/16		96	%	50 - 130
			Fluorene	2020/09/16		100	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2020/09/16		67	%	50 - 130
			1-Methylnaphthalene	2020/09/16		108	%	50 - 130
			2-Methylnaphthalene	2020/09/16		107	%	50 - 130
			Naphthalene	2020/09/16		99	%	50 - 130
			Phenanthrene	2020/09/16		102	%	50 - 130
			Pyrene	2020/09/16		92	%	50 - 130
6945027	RAJ	Spiked Blank	D10-Anthracene	2020/09/16		115	%	50 - 130
			D14-Terphenyl (FS)	2020/09/16		110	%	50 - 130
			D8-Acenaphthylene	2020/09/16		104	%	50 - 130
			Acenaphthene	2020/09/16		103	%	50 - 130
			Acenaphthylene	2020/09/16		98	%	50 - 130
			Anthracene	2020/09/16		110	%	50 - 130
			Benzo(a)anthracene	2020/09/16		106	%	50 - 130
			Benzo(a)pyrene	2020/09/16		95	%	50 - 130
			Benzo(b/j)fluoranthene	2020/09/16		109	%	50 - 130
			Benzo(g,h,i)perylene	2020/09/16		114	%	50 - 130
			Benzo(k)fluoranthene	2020/09/16		110	%	50 - 130
			Chrysene	2020/09/16		111	%	50 - 130
			Dibenzo(a,h)anthracene	2020/09/16		113	%	50 - 130
			Fluoranthene	2020/09/16		114	%	50 - 130
			Fluorene	2020/09/16		104	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2020/09/16		118	%	50 - 130
			1-Methylnaphthalene	2020/09/16		106	%	50 - 130
			2-Methylnaphthalene	2020/09/16		106	%	50 - 130
			Naphthalene	2020/09/16		95	%	50 - 130
			Phenanthrene	2020/09/16		109	%	50 - 130
			Pyrene	2020/09/16		113	%	50 - 13
5945027	RAJ	Method Blank	D10-Anthracene	2020/09/16		116	%	50 - 13
0943027	KAJ	WELLIOU BIATIK	D14-Terphenyl (FS)	2020/09/16		106	% %	50 - 13
			D8-Acenaphthylene	2020/09/16		93	% %	50 - 13
			Acenaphthene	2020/09/16	<0.0E0	95	∕∘ ug/L	30 - 13
			Acenaphthylene		<0.050			
				2020/09/16	<0.050		ug/L	
			Anthracene	2020/09/16 2020/09/16	<0.050		ug/L	
			Benzo(a)anthracene	• •	<0.050		ug/L	
			Benzo(a)pyrene	2020/09/16	<0.0090		ug/L	
			Benzo(b/j)fluoranthene	2020/09/16	<0.050		ug/L	
			Benzo(g,h,i)perylene	2020/09/16	<0.050		ug/L	
			Benzo(k)fluoranthene	2020/09/16	<0.050		ug/L	
			Chrysene	2020/09/16	<0.050		ug/L	
			Dibenzo(a,h)anthracene	2020/09/16	<0.050		ug/L	
			Fluoranthene	2020/09/16	<0.050		ug/L	
			Fluorene	2020/09/16	<0.050		ug/L	
			Indeno(1,2,3-cd)pyrene	2020/09/16	<0.050		ug/L	
			1-Methylnaphthalene	2020/09/16	<0.050		ug/L	
			2-Methylnaphthalene	2020/09/16	<0.050		ug/L	
			Naphthalene	2020/09/16	<0.050		ug/L	

Client Project #: 230236.006 Site Location: 320 MCRAE

Sampler Initials: MK

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Daten	IIIIC	Qс турс	Phenanthrene	2020/09/16	<0.030	Recovery	ug/L	QC LITTIG
			Pyrene	2020/09/16	<0.050		ug/L	
6945027	RAJ	RPD	Acenaphthene	2020/09/16	2.1		%	30
0343027	IVAJ	NI D	Acenaphthylene	2020/09/16	NC NC		%	30
			Anthracene	2020/09/16	3.9		%	30
			Benzo(a)anthracene	2020/09/16	NC		%	30
			Benzo(a)pyrene	2020/09/16	NC		%	30
			Benzo(b/j)fluoranthene	2020/09/10	NC		%	30
			Benzo(g,h,i)perylene	2020/09/16	NC NC		% %	30
			Benzo(k)fluoranthene	2020/09/16	NC		%	30
			Chrysene	2020/09/16	NC NC		% %	30
			Dibenzo(a,h)anthracene	2020/09/16	NC NC		%	30
			Fluoranthene	2020/09/16	2.0		% %	30 30
			Fluorene	2020/09/16	4.9		%	30
			Indeno(1,2,3-cd)pyrene	2020/09/16	NC		%	30
			1-Methylnaphthalene	2020/09/16 2020/09/16	4.9 2.7		% %	30 30
			2-Methylnaphthalene				%	30
			Naphthalene Phenanthrene	2020/09/16	1.2 0.21		% %	30
				2020/09/16			%	30
6945037	MKS	Matrix Caika	Pyrene a Tornhanyl	2020/09/16	NC	105	% %	60 - 130
6945037	IVIKS	Matrix Spike	o-Terphenyl	2020/09/16				
			F2 (C10-C16 Hydrocarbons)	2020/09/16		94	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2020/09/16		102	%	50 - 130
6945037	NAIZC	Cailead Dlamle	F4 (C34-C50 Hydrocarbons)	2020/09/16		97 105	% %	50 - 130
6945037	MKS	Spiked Blank	o-Terphenyl	2020/09/16				60 - 130
			F2 (C10-C16 Hydrocarbons)	2020/09/16		104	%	60 - 130
			F3 (C16-C34 Hydrocarbons)	2020/09/16		114	%	60 - 130
6945037	NAIZC	Method Blank	F4 (C34-C50 Hydrocarbons)	2020/09/16		110	% %	60 - 130
6945037	MKS	Method Blank	o-Terphenyl	2020/09/16	-100	103		60 - 130
			F2 (C10-C16 Hydrocarbons)	2020/09/16	<100		ug/L	
			F3 (C16-C34 Hydrocarbons)	2020/09/16	<200		ug/L	
		4	F4 (C34-C50 Hydrocarbons)	2020/09/16	<200		ug/L	
6945037	MKS	RPD	F2 (C10-C16 Hydrocarbons)	2020/09/16	1.4		%	30
			F3 (C16-C34 Hydrocarbons)	2020/09/16	NC		%	30
	4		F4 (C34-C50 Hydrocarbons)	2020/09/16	NC		%	30
6946362		Matrix Spike	Mercury (Hg)	2020/09/16		91	%	75 - 125
6946362	MEN	Spiked Blank	Mercury (Hg)	2020/09/16		94	%	80 - 120
6946362	MEN	Method Blank	Mercury (Hg)	2020/09/16	<0.10		ug/L	
6946362	MEN	RPD	Mercury (Hg)	2020/09/16	NC		%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) The detection limit was raised due to laboratory background interference.
- (2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Report Date: 2020/09/17

Pinchin Ltd

Client Project #: 230236.006 Site Location: 320 MCRAE

Sampler Initials: MK

VALIDATION SIGNATURE PAGE

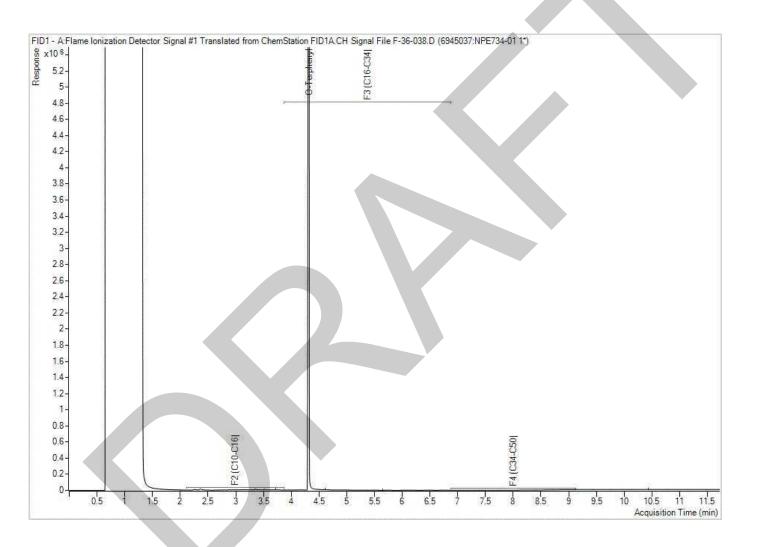
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Service Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

															9.1							٠															7		
Ant	10-Sep-20 15:47 tonella Brasil			-								F	res	ence	of \	/isib	le Pa	rtic	ulate	e/Se	dim	ent		,		4		M FCD	01013	15]					- 1		
11111							190		When	there	is >10	m of	visible	e part	iculat	e/sed	imen	t, the	amou	nt wii	l be r	ecord	ed in	the fi	eld b	elow	,	Pa	ige 1 of	f1				*	, 1	-		*	
		0						,								Во	ttle 1	ypes																					à
-1.3.1/253		Inorganics			cs		3								Hydrocarbons			Volatiles Other			Other																		
	Sample ID	AI	CrV	cı	N G	ieneral	Hg	Metal (Diss.)	Organi 1 of 2	Organi 2 of 2	c PCB 1 of 2	PCB 2 of 2	Herb	Herb	ABN	ABN	PAH 1 of 2	PAH 2 of 2	Dioxin /Furan	F1 Vial 1	F1 Vial 2	F1 Vial 3	F1 Vial 4	F2-F4 1 of 2	F2-F4 2 of 2	F4G	VOC Vial 1	VOC Vial 2	VOC Vial 3	VOC Vial 4			12			9			
	MW203	T	>																		4 To 10	K															4		
																								7															
1																																							
1						::																																	+
5	25																									1				## F	ā				*				
5																																							
,																									Y										1				
3				1														-																				· .	٠.
,					e.										•				100		8														*				
0																			4																				
Co	mments:	_	_								-								13																				
	÷																																		3				
		_	_			4				₹												. /	2																_
	- ē		-													R	ecord	ed By	/: (signa	ture/pr	nt)		all	W.	AHI-	L COL	ns c	IRE	WAL										
			-		-						_	ess)											1														. *		
		S	Sed	iment	great	ter than	1 (>) Tra	ace, bu	t less th	an (<) 1	:m]								10																
									7						9																-		7						
	(CD)	Antonella Brasil CON4811 CON4811 Sample ID MW203	Sample ID AII MW203 Comments:	Antonella Brasil CON4811 When there is >1cm of visible	Antonella Brasil CON4811 CON4811 Sample ID All CIVI CN General Hg Metals Organic Organic PCB	Antonella Brasil When there is >1cm of visible particulat CON4811 CON481	Antonella Brasil CON4811 Sample ID All CVI Ct General No 1000 1000 1000 1000 1000 1000 1000 1	Antionella Brasil When there is >1cm of visible particulate/sediment, the amount will be record Bottle Types Inorganics Inorganics Sample ID All CVI ON General Net (Dosa) 1 of 2 of 2 1 of 2 2 of 2 of	Antionella Brasil When there is >1cm of visible particulate/sediment, the amount will be recorded in Bottle Types Inorganics Sample ID All CVI CN General Ng (Disas) 1 of 2 of	Antonella Brasil When there is >1cm of visible particulate/sediment, the amount will be recorded in the fi Sample ID All GVI CN General 10g Metah Organic Organic Post Post Story 1 and 2 and	Antonella Brasil When there is >1cm of visible particulate/sediment, the amount will be recorded in the field by Sample ID All Ovi Cu General 18 Metals Organic Organic PCB	Antonella Brasil When there is > 1cm of visible particulate/sediment, the amount will be recorded in the field below Bottle Types Sample ID All CVI CI General No. Metals Organic Organic PCB PCB	Antonella Brasil When there is > 1cm of visible particulate/Sediment, the amount will be recorded in the field below Bottle Types Sample ID All CVI CI General No. (1981) 1 1972 2012 1012 20	Antonella Brasij When there is > 1cm of visible particulate/sediment, the amount will be recorded in the field below Bottle Types Sample ID All Ovi Ox General Ing Metabo Organic Organic Organic Organic Organic Organic Organic Organic India House State Organic India House In	Antonella Brasil When there is > 1cm of visible particulate/sediment, the amount will be recorded in the field below Bottle Types Sample ID All Ovi On General No Messo Organic Organic Post Post No Messo Organic No New York No Messo Organic No New York No	Antonella Brasil When there is > 1cm of visible particulate/sediment When there is > 1cm of visible particulate/sediment, the amount will be recorded in the field below Bottle Types Sample ID All OVI ON General No. Notes (1988) 1972 2973 1971 2973 1972 2972 2	Antonella Brasil When there is > Icom of visible particulate/sediment When there is > Icom of visible particulate/sediment, the amount will be recorded in the field below Page 191 When there is > Icom of visible particulate/sediment, the amount will be recorded in the field below Note: Sample ID All Ovi On General Ind Goods Organic Organic	Antonella Brasil CON-1811 When there is > 1cm of visible particulate/sediment, the amount will be recorded in the field below Bottle Types Inorganics Organics Note of the second	Antonella Brasil When there is >1cm of visible particulate/sediment, the amount will be recorded in the field below Bottle Types Sample ID All Ovi Ox General No. General	Antonolla Brasil CON-4811 When there is > 1cm of visible particulate/sediment will be recorded in the field below Bottle Types Inorganics Organics Sample ID All CVX CX General W Mena (Cognet Cognet PCA) 12/12/2 2	Antonola Brasil When there is > Lor of visible particulate/sediment When there is > Lor of visible particulate/sediment, the amount will be recorded in the field below Bottle Types Bottle Types Inorganics Organics Organ	Antonella Brassi CON-4811 When there is >1cm of visible particulate/sediment, the amount will be recorded in the field below Bottle Types Inorganics Organics Sample ID All Covi Cos General No. (Seas) 1512 2512 1012 2512	Antonella Brasil CON-4811 When there is > 1cm of visible particulate/vediment, the amount will be recorded in the field bellow Page 7871 Sample ID Al Con Co. General Re Mean Organic Organic Control of the Contro	Antonella Brasil CON-1811 When there is > Lord of visible particulate/sediment, the amount will be recorded in the field below Bottle Types Sample ID All Ow Ox General Ing Mechan Organic Pox First First															

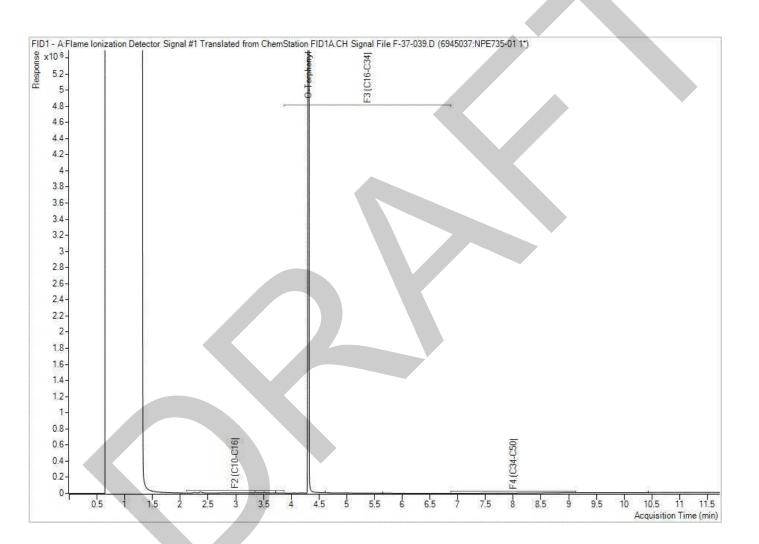
A Bureau Veritas Group Company Phone	Campobello Road, Mississauga, Ontario LSN 21.8 : 905-817-5700 Fax: 905-817-5779 Toll Free: 800-1 CD-01191/4	563-6266	CHAIN OF CUSTODY RE	cord 1	26417 Page (or)		
Invoice Information	Report Information	on (if differs from invoice)	Project Information (where applica		Turnaround Time (TAT) Required	1 .	
Company Name: Pinchin Ltd.	Company Name:		Quotation #:		Regular TAT (5-7 days) Most analyses		
Contact Name: Mike Kosiw	Contact Name:		P.O. #/ AFE#:		PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS		
Address: Matthyan	Address:	SAME.	Project #: 236236	DAC	Rush TAT (Surcharges will be applied)		
0.0		,	Site Location: 32 o M.C		1 Day 2 Days 3-4 Days	2 4	
Phone: Aches Hax, Kana	atd, ON Phone:	Fax:	Site#:	-115		12	
Email:	Email:		Site Location Province:		Date Required:		
MOE REGULATED DRINKING WATER OR WATER INTENDED I	OR HUMAN CONSUMPTION MUST BE SUBMITTED ON THE MAXXAM D	RINKING WATER CHAIN OF CUSTODY	Sampled By: MK		Rush Confirmation #:		40
Regulation 153	Other Regulations		Analysis Requested		LABORATORY USE ONLY		
Table 1 Res/Park Med/ Fine Table 2 Ind/Comm Coarse Table 3 Agri/ Other Table 7	CCME Sanitary Sewer Bylaw MISA Storm Sewer Bylaw PWOO Region Other (Specify)	Hg / Crvi	(%)		CYSTOPY SEAL COOLER TEMPERATURES Present Intact		* *
FOR RSC (PLEASE CIRCLE) (Y) N	REG 558 (MIN, 3 DAY TAT REQUIRED)	Aetals /	- San X		7 4 1 1 2,1		-
Include Criteria on Certificate of Analysis: Y / (N)		NORG.	H. Halls	32.6	X X 5,9,7		
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIM	ME OF SAMPLING UNTIL DELIVERY TO MAXXAM	NERS S ALS & ALS & AS MET	ALS MASJAR	I ANA!		*	
SAMPLE IDENTIFICATION	DATE SAMPLED TIME SAMPLED (YYYY/MM/DD) (HH:MM) MATRIX	R OF CONTAI FIELD FILTER BTEX/ PHC FI PHICS F2 - F4 VOCS REG 153 MET	PAH	ON OG -CIOH	COMMENTS		
1 Trip Blank	Sext PM 6h	2 X X				70.0	
2 Mis 201.	9,2020	7xXXX	XX				
3 Dup-201		6 XXX		10-	-Sep-20 15:47		
4 MWZ02		axxxx	VX III	Autonall	a Brasil	*	
5 Dyp-202		2 1		111 11 11 11 11 11	111111111111111		
6 MW203		COVXX	X	CON	0 —		
1				TICD	ENITI 663		
8					RECEIVED IN OTTAWA	,	
9					0		2
10				- 4	ouice,		<u>.</u>
RELINQUISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD) TIME: (HH:MM)	PECENTED BY (Signature 10-1-1)	DATE DODGE ALL POR				-
120 /		RECEIVED BY: (Signature/Print)	2= 2 / /	ME: (HH:MM)	MAXXAM JOB #		
michigan	10130	1/ Sugles	Y 200/09/10 19:	47		•	
"Tipelosia	2020 Am	CONTA SATTRABA		35	7,		
Unless otherwise agreed to in writing, work submitted on this C Sample container, preservation, hold time and packages inform	hain of Custody is subject to Maxxam's standard Terms of ation can be viewed at http://maxxam.co/wp-cantent/up	nd Conditions. Signing of this Chain of Custo loads/Ontario-COC pdf.	dy document is acknowledgment and acceptance	of our terms which	h are available for viewing at www.maxxam.ca/terms	*	


COC-1004 (01/19)

Pinchin Ltd

Client Project #: 230236.006 Project name: 320 MCRAE

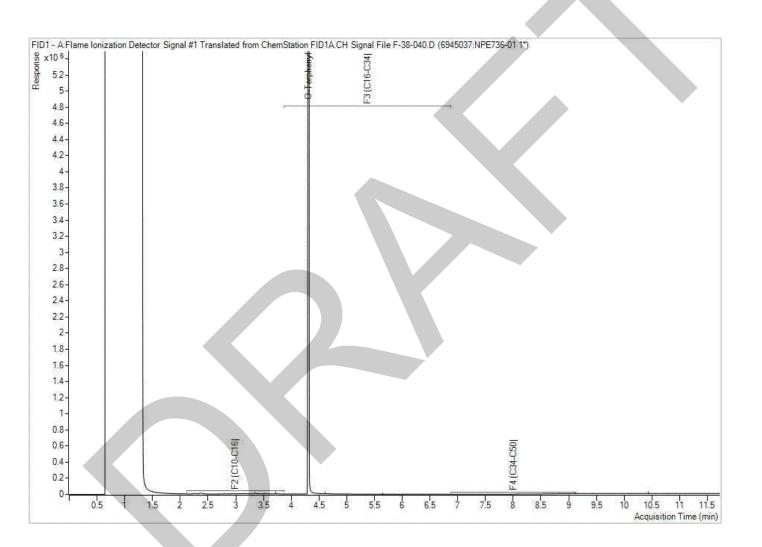
Client ID: MW201


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Pinchin Ltd

Client Project #: 230236.006 Project name: 320 MCRAE Client ID: DUP-201

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

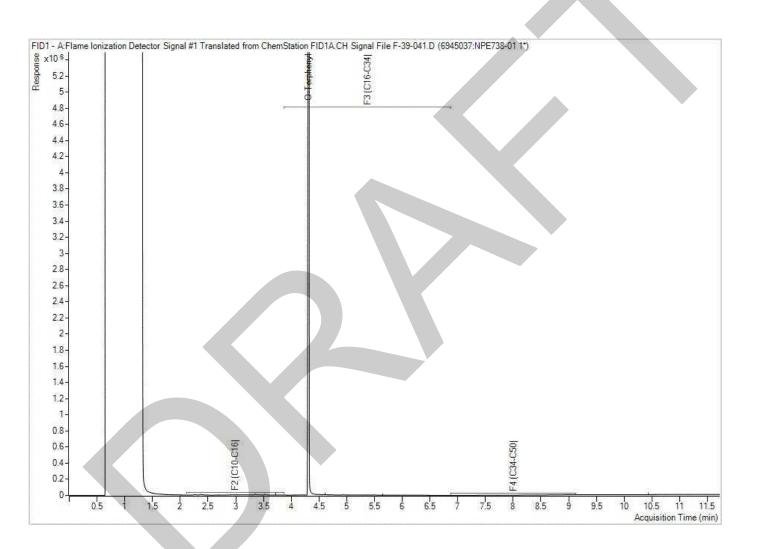


Pinchin Ltd

Client Project #: 230236.006 Project name: 320 MCRAE

Client ID: MW202

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



Pinchin Ltd

Client Project #: 230236.006 Project name: 320 MCRAE

Client ID: MW203

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

