ENGINEERING I INGÉNIERIE

Water Service Calculations

LRL File No. :	170132
Project :	Hindu Heritage Centre
Date :	January 24, 2020
Designed by :	Philippe Paquette

Water Demand

Total fixture units:
120 as per OBC Table 7.6.3.2.A)
Conversion of fixture units to equivalent gpm: $\quad 48$ gpm (as per PS\&D)

Average water demand $=$
$261647.52 \mathrm{~L} /$ day
$=\quad 3.03 \mathrm{~L} / \mathrm{s}$

Maximum daily peak factor:
1.5
$\begin{aligned} \text { Maximum daily demand }= & 392471 \mathrm{~L} / \text { day } \\ = & 4.54 \mathrm{~L} / \mathrm{s}\end{aligned}$

Maximum hour peak factor:
1.8

Maximum hour demand $=\quad 706448$ L/day
$=8.18 \mathrm{~L} / \mathrm{s}$

If applicable, add car wash flow rate:

| Maximum Car Washes per Hour | $=$
 Car Wash Hours of Operation $=$ 0
 Car Washes per day $=$ 0

 (6am to 10pm)
 Amount of Water per Car Wash $=$ 0
 L
 Maximum car wash demand $=$ 0
 $\mathrm{~L} /$ day
 $=$ 0.00
 $\mathrm{~L} / \mathrm{s}$ |
| ---: | :--- | ---: | :--- |

Adjusted total maximum water demand $=$	$706448 \mathrm{~L} /$ day
$=$	$8.18 \mathrm{~L} / \mathrm{s}$

Water Service Pipe Sizing

$$
Q=V A \quad \text { Where: } \begin{aligned}
V & =\text { velocity } \\
A & =\text { area of watermain pipe } \\
Q & =\text { water supply flow rate }
\end{aligned}
$$

By deriving the above formula, we can obtain the diameter of the pipe:

Minimum pipe diameter: \quad| d | $=(4 Q / \pi V)^{1 / 2}$ | | |
| :--- | :--- | :---: | :--- |
| d | $=$ | 0.072 | m |
| d | $=$ | 72 | mm |

Proposed pipe diameter: \quad 75* mm
*for the final design, a 150 mm diameter water service was chosen to account for the Mechanical design elements (sprinklers)

