

#### **ENGINEERING**



#### **LABORATORY**



# PHASE II ENVIRONMENTAL SITE ASSESSMENT



## 3455 HAWTHORNE ROAD, OTTAWA, ON

400 Esna Park Drive, Unit 15 Markham, ON L3R 3K2

Tel: (905) 475-7755 Fax: (905) 475-7718

www.fisherenvironmental.com

Project No. FE-P 19-9555

July 9, 2019



| Issued to:                            | Dymon Group of Companies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contact:                              | Stephen Creighton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Project Name:                         | Phase II Environmental Site Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Project Address:                      | 3455 Hawthorne Road, Ottawa, Ontario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Project Number:                       | FE-P 19-9555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Issued on:                            | September 19, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Project Manager:<br>(Primary Contact) | And the second s |
|                                       | Yvonne Hoogeveen, P. Eng. Project Manager yvonne@fisherenvironmental.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Reviewer:                             | P. A. FISHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

David Fisher, B.A.Sc., C. Chem., P. Eng. President

dave@fisherenvironmental.com

#### **TABLE OF CONTENTS**

| 1. | E    | XECU   | FIVE SUMMARY                                | 1  |
|----|------|--------|---------------------------------------------|----|
| 2. | IN   | NTROD  | UCTION                                      | 2  |
| 3. | Р    | ROPE   | RTY DESCRIPTION                             | 2  |
| 4. |      |        | IG REPORTS REVIEW                           |    |
| 5. |      |        | OF WORK                                     |    |
| 6. |      |        | PROGRAM                                     |    |
|    |      |        |                                             |    |
|    | 6.1. |        | PREPARATION                                 |    |
|    | 6.2. |        | EHOLES, SOIL AND GROUNDWATER SAMPLING       |    |
|    | 6.3. |        | NITORING WELLS PROGRAM                      |    |
|    | 6.4. |        | GEOLOGY                                     |    |
|    | 6.5. |        | D SPACE COMBUSTIBLE VAPOURS                 |    |
|    | 6.6. | Visi   | JAL OLFACTORY SOIL / GROUNDWATER QUALITY    | 6  |
|    | 6.7. | SEL    | ECTION OF ANALYTICAL SAMPLES AND PARAMETERS | 6  |
| 7. | L    | ABOR   | ATORY PROGRAM                               | 7  |
|    | 7.1. | GEN    | IERAL                                       | 7  |
|    | 7.2. | DAT    | A EVALUATION                                | 7  |
|    | 7.   | .2.1.  | Soil and Groundwater Standards              | 7  |
|    | 7.   | .2.2.  | Soil and Groundwater Quality                | 8  |
|    | 7.   | .2.3.  | Metals                                      | 10 |
|    | 7.   | .2.4.  | Petroleum Hydrocarbons (PHC)                | 10 |
|    | 7.   | .2.5.  | Volatile Organic Compounds (VOC)            | 10 |
|    | 7.   | .2.6.  | Polycyclic Aromatic Hydrocarbons (PAH)      | 10 |
|    | 7.   | .2.7.  | pH                                          |    |
|    | 7.   | .2.8.  | Electrical Conductivity (EC)                |    |
|    | 7.   | .2.9.  | Sodium Adsorption Ratio (SAR)               |    |
|    | 7.3. | QUA    | LITY ASSURANCE/QUALITY CONTROL              |    |
| 8. | s    | UMMA   | RY AND CONCLUSIONS                          | 12 |
| 9. | L    | IMITAT | TONS                                        | 13 |
|    |      |        |                                             |    |



| 10.  | QUALIFICATIONS OF ASSESSOR                                      | 14 |
|------|-----------------------------------------------------------------|----|
| 11.  | REFERENCES                                                      | 15 |
| APPE | ENDIX A – SITE PLAN WITH BOREHOLE AND MONITORING WELL LOCATIONS | A  |
| APPE | ENDIX B – LOG OF BOREHOLES                                      | B  |
| ΔPPF | NDIX C - CERTIFICATES OF ANALYSIS                               | C  |



#### **GLOSSARY OF ACRONYMS**

APEC: Area of Potential Environmental Concern

asl: Above Sea Level

AST: Aboveground Storage Tank
BOD: Biological Oxygen Demand

bgs: Below Ground Surface

BTEX: Benzene, Toluene, Ethylbenzene and Xylenes

COD: Chemical Oxygen Demand

CPC: Contaminants of Potential Concern
CSA: Canadian Standards Association

EC: Electrical Conductivity

ESA: Environmental Site Assessment

FIP: Fire Insurance Plan

MECP: Ministry of the Environment, Conservation and Parks

MOE: Ministry of the Environment

OHSA: Occupational Health and Safety Act

PAH: Polycyclic Aromatic (Polyaromatic) Hydrocarbons

PCA: Potentially Contaminating Activity

PCB: Polychlorinated Biphenyls pH: potential of Hydrogen

PHC (F1-F4): Petroleum Hydrocarbons (Fractions 1 to 4)

ppb: Parts per Billion ppm: Parts per Million

RSC: Record of Site Condition

SAR: Sodium Adsorption Ratio

UST: Underground Storage Tank

VOC: Volatile Organic Compounds



#### 1. EXECUTIVE SUMMARY

Fisher Environmental Ltd. (Fisher) was commissioned by Dymon Group of Companies to carry out a Phase II Environmental Site Assessment (ESA) of the property located at 3455 Hawthorne Road, Ottawa, ON, hereinafter referred to as the "Site". The subsurface soil and groundwater investigation were carried out on June 18, 2019.

The Site is located on the east side of Hawthorne Road approximately 60 m north of the intersection of Hunt Club Road and Hawthorne Road. The Site is bounded by commercial/light industrial buildings to the north, south and east, and Hawthorne Road to the west.

The central western portion of the Site is occupied by a sales office trailer. The remaining portions of the Site are gravel covered and used as storage of landscaping supplies.

In the current investigation, six (6) boreholes were advanced in the investigated property to depths of up to 4.88 m bgs, and in three (3) of them, monitoring wells were installed to facilitate groundwater level monitoring and sampling.

A total of six (6) soil and two (2) groundwater samples were submitted to the laboratory for Metals, PHC(F1-F4), VOC, PAH, EC, SAR and/or pH analysis.

For the purpose of this Phase II ESA, the appropriate standards were identified as: Table 6 (Generic Site Condition Standards for Shallow Soils in a Potable Groundwater Condition – Industrial/ Commercial/Community Property Use for soil samples and All Types of Property Use for groundwater samples, course textured soil) as contained in the MOE Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, hereinafter referred to as the "MOE Standards".

The results of chemical analysis for all submitted soil and groundwater samples were found to be in compliance with the applicable MOE Standards.

Based on the current subsurface investigation, it is concluded that no evidence of soil and groundwater contamination has occurred at the selected sampling locations. No further investigation is recommended at this time. It is expected that the Site could continue to be used for industrial/commercial/community purposes.



#### 2. INTRODUCTION

Fisher Environmental Ltd. (Fisher) was commissioned by Dymon Group of Companies to carry out a Phase II Environmental Site Assessment (ESA) of the property located at 3455 Hawthorne Road, Ottawa, ON, hereinafter referred to as the "Site". The subsurface soil and groundwater investigation were carried out between on June 18, 2019.

#### 3. PROPERTY DESCRIPTION

The Site is located on the east side of Hawthorne Road approximately 60 m north of the intersection of Hunt Club Road and Hawthorne Road. The Site is bounded by commercial/light industrial buildings to the north, south and east, and Hawthorne Road to the west.

The central western portion of the Site is occupied by a sales office trailer. The remaining portions of the Site are gravel covered and used as storage of landscaping supplies.

#### 4. EXISTING REPORTS REVIEW

No existing reports were available for review.

#### 5. SCOPE OF WORK

The current Phase II ESA was conducted in accordance with the CAN/CSA-Z769-00 standards, as published in March 2000 and reaffirmed in 2013, by the CSA Group.

A Phase II ESA involves sampling and testing of materials considered, usually by the outcome of a Phase I ESA or other investigation, to be possible instances of environmental contamination. The project, as carried out, fulfills the scope of a "Reconnaissance" type investigation in which conditions are previously unknown, and the aim is to establish whether any environmental contamination is present. Normal environmental assessment protocol reserves a detailed investigation for a subsequent phase if the reconnaissance survey indicates a requirement for further contaminant delineation.

The scope of this work generally consisted of the following:

• **Field Program** - Clearance of underground utilities and advancement of six (6) boreholes to depths of up to 5 m or resistance, and installation of three (3) groundwater monitoring wells.



- Laboratory Testing Program Recovery and analysis of selected soil and groundwater samples for Metals, PHC (F1-F4), VOC, PAH, EC, SAR and/or pH.
- Data Evaluation Comparison of results of chemical analyses with the applicable MOE (currently MECP) Standards.
- **Reporting** Provision of final engineering report detailing findings of performed works, and any further recommendations.

As conducted, the present investigation may lack information or analytical work that are specific requirements for filing a Record of Site Condition (RSC) under Part XV.1 of the EPA and Amended O. Reg. 153/04, therefore, if a RSC is necessary, the property owner or its agent should undertake complementary investigations required under the RSC filing process.

#### 6. FIELD PROGRAM

The subsurface soil and groundwater investigation (Phase II ESA) were carried out between June 18, 2019. The field work was conducted by Sean Fisher of Fisher Environmental Ltd. who directed drilling and sampling operations, and assured proper chain of custody procedures for the recovered soil and groundwater samples.

Six (6) boreholes were advanced in the investigated property to depths of up to 4.88 m bgs, and in three (3) of them, monitoring wells were installed to facilitate groundwater level monitoring and sampling.

#### 6.1. Site Preparation

Site preparation included the location of public underground services by referring to the respective utilities: Hydro, Natural Gas, Telecommunications, Public Works, water, sewer and light cables to avoid potential disruptions to the utilities during the drilling. Soil drilling was conducted following receipt of clearance from all utilities for the given borehole locations.

#### 6.2. Boreholes, Soil and Groundwater Sampling

The borehole locations were selected by an initial rationale as being the most likely locations of contamination. Refer to the attached Site Plan with Borehole and Monitoring Well Locations (Figure 1 in Appendix A).



Six (6) boreholes were advanced in the investigated property on June 18, 2019. Borehole drilling was carried out using a Diedrich D-50 drilling rig. The boreholes were extended to depths of up to 4.88 m, at which point native material had been reached.

Fisher retained a drilling contractor which maintains licensure for drilling (Water Well Drillers, Environmental Protection Act, Well Contractor License No. 6946) as required by the MOE, and conducted drilling and soil sampling works in accordance with CSA Standard Z769-00 (reaffirmed in 2013) and the Ontario Ministry of Environment and Energy (MOEE, currently MECP) "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", December 1996, and in compliance with Occupational Health and Safety regulations.

The intrusive subsurface investigation was conducted by means of solid auger boreholes advancement through the subsoil, and a 50 mm diameter spoon sampler driven 600 mm into subsoil by a 65 kg hammer, falling 760 mm, collecting soil samples at a maximum of 0.76 m interval and at stratigraphic boundaries.

Soil and groundwater samples were collected and handled in accordance with generally accepted sampling and handling procedures used by the environmental consulting industry. For guidance, these practices rely on the 1996 MOEE publication "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario". To minimize the potential for cross contamination between soil samples, the split spoon sampler used to collect soil samples from the boreholes was brushed clean of soil and then washed in municipal water containing phosphate free detergent, rinsed in municipal water and then rinsed with distilled water. As well, new disposable nitrile gloves and stainless-steel spatula were used during each sampling event to remove the soil cores from the sampler and to transfer the samples into plastic bags and/or glass jars.

Through each soil sample, the lithology and esthetic evidence of impacts (debris, staining and odours) were recorded as part of field quality control (QC) procedures. Additionally, each sample was screened in the field for headspace vapour concentration (combustible soil vapour and total organic vapour) using the 10.6 eV lamp MiniRae 2000 PID calibrated to 100 ppm Isobutylene. The samples were kept out of direct sunlight during field storage and the headspace measurements were made after at least two hours had elapsed since the sample was bagged and the sample had reached a minimum temperature of 15°C. The headspace monitoring was performed on the samples as a preliminary screening for analysis.



Selection of samples to be submitted for laboratory analysis are based on the headspace vapour concentration, physical evidence of odours/ staining, apparent water table and/or proximity to potential contaminant sources. If no odours/staining are noted in the soil samples, the samples with the highest field screening measurement (i.e. highest headspace vapour concentration) are selected for laboratory analysis. Soil samples from the boreholes selected for potential chemical analysis of organic parameters were placed directly into laboratory supplied glass jars at the time of sampling, labeled and packed with minimal headspace. Samples were kept in coolers provided with cold packs during field storage and transportation to Fisher Environmental Laboratories for analysis. Following sampling, monitoring wells were installed in three (3) boreholes, in accordance to O. Reg. 903.

#### 6.3. Monitoring Wells Program

Three (3) monitoring wells were installed on the subject property. The wells were constructed of 52 mm ID diameter PVC pipes, which were pre-cleaned at the factory and delivered to the Site in sealed plastic bags. Further construction details of the monitoring wells are provided on the "Log of Boreholes" attached in Appendix B.

Groundwater sampling in the installed monitoring wells was conducted using bailers, where single-use (disposable) bailers are slowly lowered into the water column, allowed to fill, and removed. Laboratory supplied sample containers were used to collect groundwater samples which were labeled, stored in coolers provided with cold packs during field storage and transportation to Fisher Environmental Laboratories for analysis.

Based on surface topography, and distance to the nearest open water body, the local groundwater flow direction is predicted to be east. The localized shallow groundwater flow direction may be influenced by the presence of underground utilities, building foundation, variations in vertical and horizontal stratigraphy, depth of wells' screened intervals and/or well trauma.

#### 6.4. Site Geology

Fill material was found at the surface of all boreholes. The fill generally consisted of dark brown to brown silty sand to sandy silt with some to trace of topsoil/roots/gravel and occasional cobbles. A thin layer of compact brown silty sand was encountered below the fill of BH3. Native soils of greyish brown silt to sandy silt with shale were found underlying the fill of BH 1, 2, 4 & 5 and brown silty sand of BH3. Relative density of this silt/sandy silt was found to be compact to very dense. Grey shale was found underlying the above greyish brown silt/sandy silt to weathered shale.



A description of the subsurface conditions encountered at the boreholes locations is presented in Appendix B - Log of Boreholes.

#### 6.5. Head Space Combustible Vapours

A 10.6 eV lamp MiniRae 2000 PID calibrated to 100 ppm Isobutylene was used to measure combustible vapours in the soil samples. Vapour concentrations were read during the soil sampling and all soil samples had concentrations of 10 ppm or less.

#### 6.6. Visual Olfactory Soil / Groundwater Quality

During the borehole-drilling program, the following visual/olfactory observations were made:

- Fill materials were encountered in all boreholes at depths of up to 1.5 m bgs.
- No odours were noted in any collected soil or groundwater samples.

#### 6.7. Selection of Analytical Samples and Parameters

Selection of samples for environmental analysis was based on appearance, expectations of Site conditions, and proximity of potential contaminant sources. Six (6) soil samples were submitted to the laboratory for Metals, PHC (F1-F4), VOC, PAH, EC, SAR and/or pH analysis. Two (2) groundwater samples were submitted to the laboratory for PHC (F1-F4) and VOC analysis.

**TABLE 1: RATIONALE FOR ANALYTICAL PARAMETER** 

| Parameter  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metals     | Various metallic elements can cause adverse environmental effects at relatively low concentrations. Such metals are associated with industrial activities and/or the use of fill materials of unknown quality, both historic and current, and it is common practice to include Metals analysis in subsurface soil investigations. Six (6) soil samples collected at the Site were submitted for Metals analysis.                                              |
| PHC(F1-F4) | PHC are components of gasoline, diesel and other petroleum products for which soil quality guidelines have been developed. These compounds are widely utilized and often included in the evaluation of a Site's overall subsurface condition. Six (6) soil and two (2) groundwater samples collected at the Site were submitted for PHC (F1-F4) analysis.                                                                                                     |
| VOC        | VOC are any volatile compound of carbon, excluding methane, carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, ammonium carbonate, and exempt compounds. VOC are included in gasoline, diesel, crude oil, lubricant, waste oil, adhesive, paint, stain, solvents, resin, monomer, and/or any other material containing VOC. Six (6) soil and two (2) groundwater samples collected at the Site were submitted for VOC analysis. |



| Parameter | Description                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PAH       | PAH are associated with coal and furnace ash, and/or the use of fill materials of unknown quality. Three (3) soil samples collected at the Site were submitted for PAH analysis.                                                                                                                                                                                                               |
| рН        | Soil pH is referred to as the "acidity" of the soil. When the soil pH is too "acid" (low pH) or too "alkaline" (high pH), nutrients present in the soil become locked-up or unavailable. One (1) soil sample collected at the Site were submitted for pH analysis.                                                                                                                             |
| EC        | Soil EC is indirectly correlated with various chemical and physical properties of soil and is the ability of any material to conduct an electrical current. Sand has a lower conductivity while clay has a higher conductivity, which is correlated with particle size, soil texture, and water-holding capacity. Three (3) soil samples collected at the Site were submitted for EC analysis. |
| SAR       | Soil SAR is the ratio of the concentration of sodium in relation to calcium and magnesium, which can be used to assess the potential to cause dispersion in soil. Three (3) soil samples collected at the Site were submitted for SAR analysis.                                                                                                                                                |

#### 7. LABORATORY PROGRAM

#### 7.1. General

Recovered soil and groundwater samples were submitted to Fisher Environmental Laboratories for analysis. As a Canadian Association for Laboratory Accreditation (CALA) registered analytical facility, QA/QC procedures were maintained consistent with CALA requirements and standard laboratory practices. The laboratories ensured that analytical sub-samples were, by appearance, representative of the whole sample as collected in the field.

#### 7.2. Data Evaluation

#### 7.2.1. Soil and Groundwater Standards

The MOE presents Soil and Groundwater Standards, under the Publication "Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" April 15, 2011. These standards present soil and groundwater criteria, which have been developed with regard to toxicological data. They are levels at and below which no environmental or safety concerns, or adverse conditions, are anticipated for environments or persons with average sensitivity. Based on where bedrock was encountered, the Site has a shallow soil property.

The subject property has been used for industrial/commercial purposes, and it is our understanding that the property will maintain its current industrial/commercial land use.



With regards to the potability status of the groundwater, it is uncertain whether the surrounding areas rely solely on municipal water as a source of drinking water, therefore a potable groundwater condition has been selected.

As specified by O. Reg. 153/04, "coarse textured soil is defined as material having more than 50 percent (by mass) of particles that are 75  $\mu$ m or larger in mean diameter. Materials having more than 50 percent (by mass) of particles that are smaller than 75  $\mu$ m in mean diameter are medium and fine textured soils." "When at least 1/3 of the soil at the property, measured by volume, consists of coarse textured soil, the standard for coarse textured soil shall apply. In any other case, the standard for medium and fine textured soil may be applied".

A grain size analysis was not completed at the time of the investigation, therefore a more conservative site condition standards for coarse textured soil have been applied.

For the purpose of this Phase II ESA, the appropriate standards were identified as: Table 6 (Generic Site Condition Standards for Shallow Soils in a Potable Groundwater Condition – Industrial/ Commercial/Community Property Use for soil samples and All Types of Property Use for groundwater samples, course textured soil) as contained in the MOE Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011, hereinafter referred to as the "MOE Standards".

The criteria values are presented with the results of analysis in the last column of the Certificates of Analysis (Appendix C).

#### 7.2.2. Soil and Groundwater Quality

Six (6) soil and two (2) groundwater samples were submitted to the laboratory for Metals, PHC (F1-F4), VOC, PAH, EC, SAR and/or pH analysis. A copy of the Laboratory Certificates of Analysis is provided in Appendix C. Results of the chemical analyses are summarized in Table 2.

TABLE 2: EXCEEDANCES OF APPLICABLE SITE CONDITION STANDARDS

| Borehole | Sample<br>Depth | Sample #  | Parameters<br>Analyzed | Exceedances of April 15, 2011 Table 6  MOE Standards,  Shallow Soils, Industrial/Commercial/ Community Property Use Potable Groundwater condition |
|----------|-----------------|-----------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| MW3      | Groundwater     | 19-2728-1 | PHC (F1-F4)<br>VOC     | No Exceedances<br>No Exceedances                                                                                                                  |



| Borehole  | Sample<br>Depth | Sample #  | Parameters<br>Analyzed | Exceedances of April 15, 2011 Table 6 MOE Standards, Shallow Soils, Industrial/Commercial/ Community Property Use Potable Groundwater condition |
|-----------|-----------------|-----------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| MW3       | Groundwater     | 19-2728-2 | PHC (F1-F4)            | No Exceedances                                                                                                                                  |
| Duplicate |                 |           | VOC                    | No Exceedances                                                                                                                                  |
| MW1       | 0.75-1.20 m     | 19-2728-3 | Metals                 | No Exceedances                                                                                                                                  |
|           |                 |           | PHC (F1-F4)            | No Exceedances                                                                                                                                  |
|           |                 |           | VOC                    | No Exceedances                                                                                                                                  |
|           |                 |           | PAH                    | No Exceedances                                                                                                                                  |
|           |                 |           | EC                     | No Exceedances                                                                                                                                  |
|           |                 |           | SAR                    | No Exceedances                                                                                                                                  |
| MW2       | 0.00-0.60 m     | 19-2728-4 | Metals                 | No Exceedances                                                                                                                                  |
|           |                 |           | PHC (F1-F4)            | No Exceedances                                                                                                                                  |
|           |                 |           | VOC                    | No Exceedances                                                                                                                                  |
| MW3       | 0.75-1.20 m     | 19-2728-5 | Metals                 | No Exceedances                                                                                                                                  |
|           |                 |           | PHC (F1-F4)            | No Exceedances                                                                                                                                  |
|           |                 |           | VOC                    | No Exceedances                                                                                                                                  |
|           |                 |           | PAH                    | No Exceedances                                                                                                                                  |
|           |                 |           | EC                     | No Exceedances                                                                                                                                  |
|           |                 |           | SAR                    | No Exceedances                                                                                                                                  |
| BH4       | 0.75-1.20 m     | 19-2728-6 | Metals                 | No Exceedances                                                                                                                                  |
|           |                 |           | PHC (F1-F4)            | No Exceedances                                                                                                                                  |
|           |                 |           | VOC                    | No Exceedances                                                                                                                                  |
| BH5       | 0.75-1.20 m     | 19-2728-7 | Metals                 | No Exceedances                                                                                                                                  |
|           |                 |           | PHC (F1-F4)            | No Exceedances                                                                                                                                  |
|           |                 |           | VOC                    | No Exceedances                                                                                                                                  |
| BH6       | 0.75-1.20 m     | 19-2728-8 | Metals                 | No Exceedances                                                                                                                                  |
|           |                 |           | PHC (F1-F4)            | No Exceedances                                                                                                                                  |
|           |                 |           | VOC                    | No Exceedances                                                                                                                                  |
|           |                 |           | PAH                    | No Exceedances                                                                                                                                  |
|           |                 |           | EC                     | No Exceedances                                                                                                                                  |
|           |                 |           | SAR                    | No Exceedances                                                                                                                                  |

NOTES: PHC (F1-F4)\*: Petroleum Hydrocarbons fractions (F1-F4)

F1 (C6-C10) Gasoline less BTEX

F2 (C10-C16) Diesel F3 (C16-C34) Diesel F4 (C34-C50) Heavy Oil

VOC: Volatile Organic Compounds, PAH: Polycyclic Aromatic Hydrocarbons,

SAR: Sodium Adsorption Ratio, EC: Electrical Conductivity

**Bold**: Exceeds the MOE Standards

\*For a site to meet this standard there must be no evidence of free product, including but not limited to, visible petroleum hydrocarbon film or sheen present on any groundwater samples.



#### 7.2.3. Metals

Six (6) soil samples were submitted for Metals analysis. The results of chemical analysis for Metals parameters in the submitted soil samples were found to be in compliance with the applicable MOE Standards.

#### 7.2.4. Petroleum Hydrocarbons (PHC)

Six (6) soil and two (2) groundwater samples were submitted for PHC (F1-F4) analysis. The results of chemical analysis for PHC (F1-F4) parameters in the submitted soil and groundwater.

#### 7.2.5. Volatile Organic Compounds (VOC)

Six (6) soil and two (2) groundwater samples were submitted for VOC analysis. The results of chemical analysis for VOC parameters in the submitted soil and groundwater.

#### 7.2.6. Polycyclic Aromatic Hydrocarbons (PAH)

Three (3) soil samples were submitted for PAH analysis. The result of chemical analysis for PAH parameters for the submitted soil samples were found to be in compliance with the applicable MOE Standards.

#### 7.2.7. pH

One (1) soil sample was submitted to the laboratory for pH analysis. The result of pH for the submitted soil sample was found to be within the recommended range.

#### 7.2.8. Electrical Conductivity (EC)

Three (3) soil samples were submitted to the laboratory for EC analysis. The results of chemical analysis for EC parameters in the submitted soil samples were found to be in compliance with the applicable MOE Standards.

#### 7.2.9. Sodium Adsorption Ratio (SAR)

Three (3) soil samples were submitted to the laboratory for SAR analysis. The results of chemical analysis for SAR parameters in the submitted soil samples were found to be in compliance with the applicable MOE Standards.



#### 7.3. Quality Assurance/Quality Control

A chain of custody form was filled out for all samples prior to submitting to the laboratory. The chain of custody documented movement from selection of the sample to receipt at the laboratory and provided sample identification, requested analysis, and condition of samples upon arrival at the laboratory.

The laboratory checks randomly selected samples for Quality Assurance. Generally, one sample for every twenty samples submitted is selected for Quality Assurance checks. For each parameter, there is an acceptable upper and lower limit for the measured concentration of the parameter. Measured concentrations of analyzed samples must fall within the upper and lower acceptable limits in order for the sample to be valid. If the result exceeds the upper or lower acceptable limits, the sample must be re-analyzed.

Based on Quality Assurance Reports provided by Fisher Environmental Laboratories, measured concentrations in soil samples were within the acceptable limits for quality control. Copies of the QA/QC Reports for Metals, PHC (F1-F4), PAH, VOC, EC, SAR and/or pH in soil and groundwater are included with the Certificates of Analysis in Appendix C.



#### 8. SUMMARY AND CONCLUSIONS

- Fisher carried out a Phase II Environmental Site Assessment of the property located at 3455 Hawthorne Road, Ottawa, ON. The subsurface soil and groundwater investigation were carried out on June 18, 2019.
- Six (6) boreholes were advanced in the investigated property to depths of up to 4.88m bgs, and in three (3) of them, monitoring wells were installed to facilitate groundwater level monitoring and sampling.
- Six (6) soil and two (2) groundwater samples were submitted to the laboratory for Metals, PHC (F1-F4), VOC, PAH, EC, SAR and/or pH analysis.
- The results of chemical analysis for all submitted soil and groundwater samples were found to be in compliance the applicable MOE standards.

Based on the current subsurface investigation, it is concluded that no evidence of soil and groundwater contamination has occurred at the selected sampling locations. No further investigation is recommended at this time. It is expected that the Site could continue to be used for industrial/commercial/community purposes.



#### 9. LIMITATIONS

This report was prepared for use by Dymon Group of Companies, and is based on the work as described in the Scope of Work. The conclusions presented in this report reflect existing Site conditions within the scope of this assignment.

No investigation method can completely eliminate the possibility of obtaining partially imprecise or incomplete information. It can only reduce the possibility to an acceptable level. Professional judgment was exercised in gathering and analyzing the information obtained and the formulation of the conclusions and recommendations. Like all professional persons rendering advice, we do not act as absolute insurers of the conclusions reached, but commit ourselves to care and competence in reaching those conclusions. Where a Phase II ESA is conducted without the completion or review of a current Phase I ESA, it is noted that the selected test locations are based on information made readily available to Fisher and/or a cursory review of current site operations. In such instances, knowledge of historical and/or neighboring property use data may be significantly limited. No warranty, whether expressed or implied, is included or intended in this report.

The scope of services performed may not be appropriate for the purposes of other users. This report should not be used in contexts other than pertaining to the evaluation of the property at the current time. Written authorization must be obtained from Fisher Environmental Ltd. prior to use by any other parties, or any future use of this document or its findings, conclusions, or recommendations represented herein. Any use which a third party makes of this report, or any reliance on or decisions made on the basis of it, are the responsibility of the third parties. Fisher Environmental Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Fisher Environmental Ltd. notes that the work conducted at the Site may not fully satisfy the MOE (currently MECP) requirements for the purpose of filling a Record of Site Condition (RSC). Should a RSC be required, then additional investigations should be conducted at the Site.



#### 10. QUALIFICATIONS OF ASSESSOR

As a Qualified Person who conducts and supervises Phase II ESAs, Mr. David Fisher, president of Fisher Environmental Ltd., is a senior Managerial and Environmental Engineering Specialist with over 30 years of progressive, innovative experience in the Petrochemical and Environmental Engineering Industry. Mr. Fisher is responsible for the development and management of a progressive environmental consulting engineering company specializing in environmental site assessments and remediation, geotechnical and hydrogeological investigations, tank removals, PCB waste treatment, land reclamation, recycling, hazardous waste disposal, and associated laboratory analytical practices.

Fisher Environmental Ltd. has been established as a team of engineers and consultants since 1989, and continues to develop a strong, wide client base. The company is staffed with personnel holding graduate or postgraduate qualifications at the Markham headquarters, as well as specialist associates offering a broad range of expertise and knowledge in environmental consulting. With a background in the petroleum industry, extensive experience has been gained in the prevention and cleanup of contamination in air, water and soil.



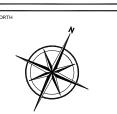
#### 11. REFERENCES

The Phase II ESA was conducted in accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives administrated by the Ontario Ministry of the Environment. Specific reference is made to the following:

- CAN/CSA Standard Z769-00 (reaffirmed in 2013), Phase II Environmental Site Assessment, A National Standard of Canada;
- "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario"
   Ministry of the Environment and Energy, December 1996;
- Environmental Protection Act, RSO 1990, Charter E. 19, as amended, September 2004;
- "Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act", Ministry of the Environment, dated April 15, 2011;
- The Ontario Water Resources Act R.R.O. 1990, Regulation 903 Amended to O. Reg. 128.03, August 2003;
- Google Earth.



## APPENDIX A – SITE PLAN WITH BOREHOLE AND MONITORING WELL LOCATIONS








400 Esna Park Dr., #15 Markham, Ontario L3R 3K2

Tel: 905 475-7755 Fax: 905 475-7718



LEGEND



MONITORING WELL



BOREHOLE



SITE BOUNDARY



BENCHMARK

PROJECT NAME AND ADDRESS

GEOTECHNICAL INVESTIGATION AND PHASE II ESA

3455 HAWTHORNE ROAD, OTTAWA, ONTARIO

FIGURE 1:

SITE PLAN WITH BOREHOLE AND MONITORING WELL LOCATIONS

| ı | PROJECT NO.  | SHEET NO. |
|---|--------------|-----------|
|   | FE-P 19-9555 |           |
|   | DATE         | 1         |
|   | JUNE 2019    | 1         |
|   | SCALE        |           |
|   | AS SHOWN     |           |

#### **APPENDIX B - LOG OF BOREHOLES**



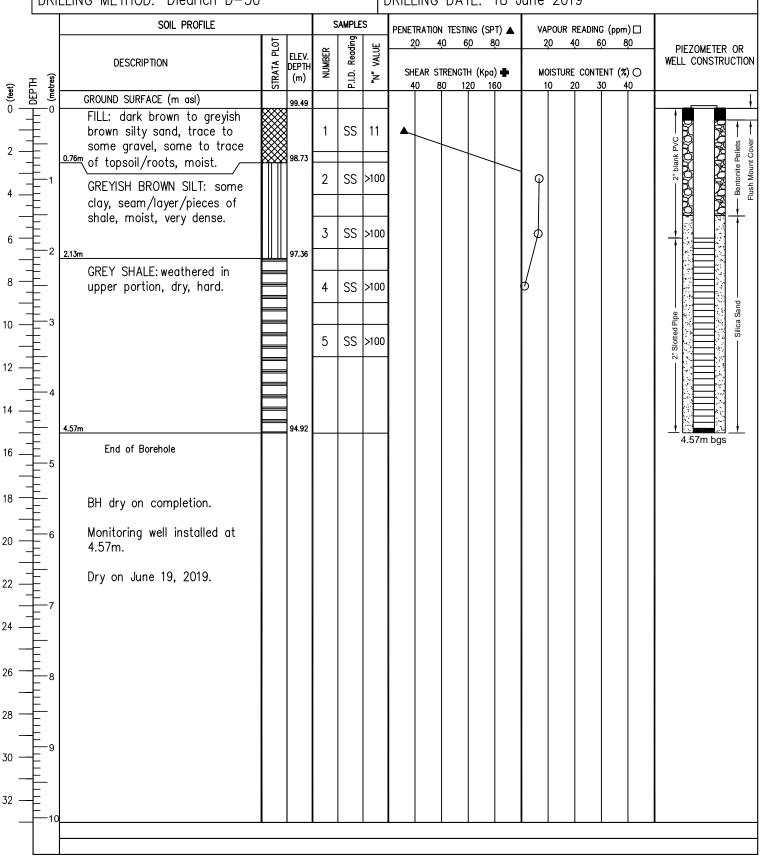


LOG OF BOREHOLE NO. BH1(MW) SHEET. 1 of 1

PROJECT NO.: FE-P 19-9555

LOCATION: 3455 Hawthorne Road, Ottawa, ON

|                  |                                                          |             |                       |        |                | -         | / I \ I L I |         | DA     | ٠                       | 10 0 | unc             | 2019     |                    |                    |                                                                                  |
|------------------|----------------------------------------------------------|-------------|-----------------------|--------|----------------|-----------|-------------|---------|--------|-------------------------|------|-----------------|----------|--------------------|--------------------|----------------------------------------------------------------------------------|
|                  | SOIL PROFILE                                             |             |                       | 5      | SAMPLE         | S         | PENE        | TRATION |        | NG (SP                  | T) 🔺 | VAF             | POUR REA | ADING (p           | pm) 🗆              |                                                                                  |
| DEPTH O (metres) | DESCRIPTION                                              | STRATA PLOT | ELEV.<br>DEPTH<br>(m) | NUMBER | P.I.D. Reading | "N" VALUE | Sł          | IEAR S  | TRENGT | 50 8<br>H (Kpa<br>20 11 | ) 💠  | 2,0<br>MO<br>10 | isture c | 60<br>ONTENT<br>30 | 80<br>(%) ()<br>40 | PIEZOMETER OR<br>WELL CONSTRUCTION                                               |
| DEPTH (metres)   | GROUND SURFACE (m asl)                                   |             | 99.99                 |        |                |           |             |         |        |                         |      |                 |          |                    |                    |                                                                                  |
| 1                | brown silty sand, trace to some gravel, some to trace    |             |                       | 1      | SS             | 9         | •           |         |        |                         |      |                 |          |                    |                    | C                                                                                |
|                  | O.91m of topsoil/roots, moist.  GREYISH BROWN SILT: some |             | 99.08                 | 2      | SS             | >100      |             |         |        |                         |      |                 |          |                    |                    | — 2" blank PVC ——  **COLOLOLOLOLO  **ACHORIOLOLOLOLOLOLOLOLOLOLOLOLOLOLOLOLOLOLO |
| =                | clay, seam/layer/pieces of shale, moist, very dense.     |             |                       | 3      | cc             | >100      |             |         |        |                         |      | 0               |          |                    |                    | 2" blank PVC —— 2" blank PVC —— 3" PVC V C V C V C V C V C V C V C V C V C       |
| 2                | 2.13m                                                    |             | 97.86                 |        | 33             | >100      |             |         |        |                         |      |                 |          |                    |                    |                                                                                  |
|                  | GREY SHALE: weathered in upper portion, dry, hard.       |             |                       | 4      | SS             | >100      |             |         |        |                         |      |                 |          |                    |                    |                                                                                  |
| 3                |                                                          |             |                       | 5      | SS             | >100      |             |         |        |                         |      |                 |          |                    |                    | Pipe ————————————————————————————————————                                        |
| 圭                |                                                          |             |                       |        |                | ,,,,,     |             |         |        |                         |      |                 |          |                    |                    | 2" Slotted F                                                                     |
| 4                |                                                          |             |                       |        |                |           |             |         |        |                         |      |                 |          |                    |                    |                                                                                  |
| 丰                |                                                          |             |                       |        |                |           |             |         |        |                         |      |                 |          |                    |                    |                                                                                  |
| Ŧ                | 4.88m                                                    |             | 95.11                 |        |                |           |             |         |        |                         |      |                 |          |                    |                    |                                                                                  |
| 5                | End of Borehole                                          |             |                       |        |                |           |             |         |        |                         |      |                 |          |                    |                    | 4.88m bgs                                                                        |
| 6                | Refusal to augering at 4.88m,                            |             |                       |        |                |           |             |         |        |                         |      |                 |          |                    |                    |                                                                                  |
| <u>‡</u>         | Monitoring well installed at 4.88m.                      |             |                       |        |                |           |             |         |        |                         |      |                 |          |                    |                    |                                                                                  |
| 7                | Dry on June 19, 2019.                                    |             |                       |        |                |           |             |         |        |                         |      |                 |          |                    |                    |                                                                                  |
|                  |                                                          |             |                       |        |                |           |             |         |        |                         |      |                 |          |                    |                    |                                                                                  |
| 8                |                                                          |             |                       |        |                |           |             |         |        |                         |      |                 |          |                    |                    |                                                                                  |
| #                |                                                          |             |                       |        |                |           |             |         |        |                         |      |                 |          |                    |                    |                                                                                  |
| 9                |                                                          |             |                       |        |                |           |             |         |        |                         |      |                 |          |                    |                    |                                                                                  |
|                  |                                                          |             |                       |        |                |           |             |         |        |                         |      |                 |          |                    |                    |                                                                                  |
| 1(               | 1                                                        | 1           |                       |        |                |           |             | 1       |        |                         |      |                 |          |                    |                    |                                                                                  |




LOG OF BOREHOLE NO. BH2(MW) SHEET. 1 of 1

PROJECT NO.: FE-P 19-9555

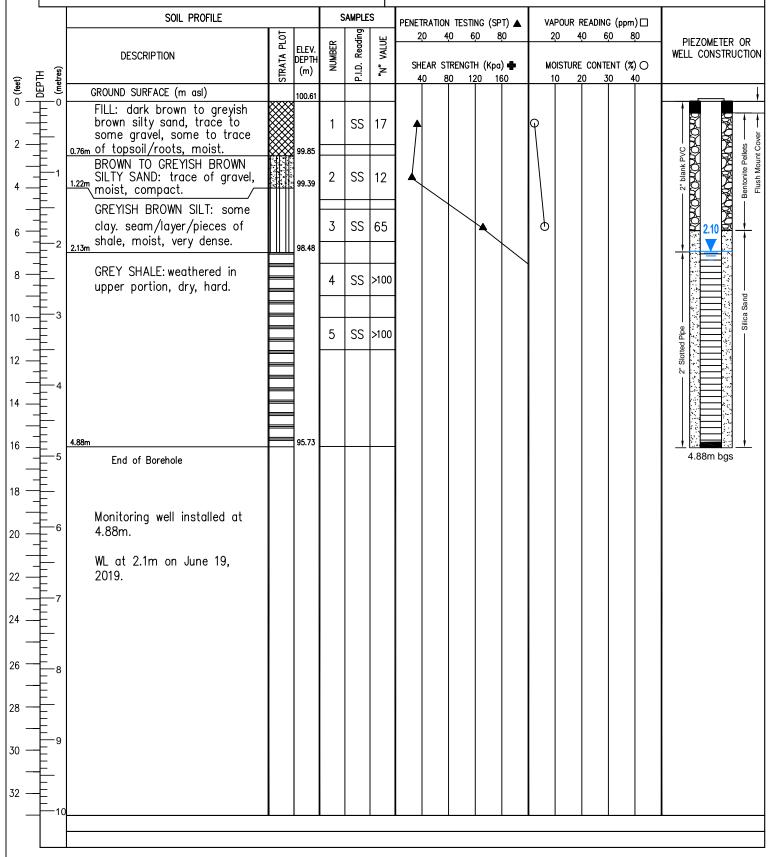
PROJECT NAME: Geotechnical Investigation LOCATION: 3455 Hawthorne Road, Ottawa, ON

DRILLING METHOD: Diedrich D-50 DRILLING DATE: 18 June 2019





LOG OF BOREHOLE NO. BH3(MW)


NO. BH3(MW) SHEET. 1 of 1

PROJECT NO.: FE-P 19-9555

PROJECT NAME: Geotechnical Investigation

LOCATION: 3455 Hawthorne Road, Ottawa, ON

DRILLING METHOD: Diedrich D-50





LOG OF BOREHOLE NO. BH4 SHEET. 1 of 1

PROJECT NO.: FE-P 19-9555

PROJECT NAME: Geotechnical Investigation

3455 Hawthorne Road, Ottawa, ON LOCATION:

DRILLING METHOD: Diedrich D-50

|           |          |            | SOIL PROFILE                                                                                                   |             |                       | 9        | AMPLE          | s<br>S  | DENETRATIO | N TECT | ING (SPT) ▲         | VADOLID | READING (ppm)             | П |                                    |
|-----------|----------|------------|----------------------------------------------------------------------------------------------------------------|-------------|-----------------------|----------|----------------|---------|------------|--------|---------------------|---------|---------------------------|---|------------------------------------|
|           |          |            | DESCRIPTION                                                                                                    | STRATA PLOT | ELEV.<br>DEPTH<br>(m) | NUMBER   | P.I.D. Reading | " VALUE | 20         | 40 (   | 50 80<br>TH (Kpa) 🖶 | 20      | 40 60 80<br>E CONTENT (%) | ) | PIEZOMETER OR<br>WELL CONSTRUCTION |
| eet)      | T DEPTH  | (metres)   |                                                                                                                | STR         | (m)                   |          | P.I.           | ž       |            |        | 20 160              |         | 20 30 40                  |   |                                    |
| (feet)    | <u> </u> | <u>-</u> 0 | GROUND SURFACE (m asl)                                                                                         | ×××         | 100.66                |          |                |         |            |        |                     |         |                           |   |                                    |
| 2 —       |          | _          | FILL: dark brown silty sand,<br>some gravel, occasional<br>cobbles, some to trace of<br>topsoil, roots, moist. |             |                       | 1        | SS             | 26      | <b>f</b>   |        |                     | 9       |                           |   |                                    |
| 4 —       |          | -1         | FILL: greyish brown silt to sandy silt, trace                                                                  |             | 99.90<br>99.14        | 2        | SS             | 16      |            |        |                     |         |                           |   |                                    |
| 6 —       |          | -2         | topsoil/roots, pieces of shale, moist.  GREYISH BROWN TO BROWN GREY SILT TO SANDY SILT:                        |             | 55.14                 | 3        | SS             | 45      |            |        |                     |         |                           |   |                                    |
| 8 —       |          | _          | some clay, pieces of shale,<br>2.59m moist, compact to dense.  GREY SHALE: seam of                             |             | 98.07                 | 4        | SS             | 70      |            |        |                     |         |                           |   |                                    |
| -         | E        | -3         | limestone, weathered in                                                                                        |             |                       | L_       |                |         |            |        | \                   | 1       |                           |   |                                    |
| 10 —      | ŧ        | ٦          | upper portion, dry, hard.                                                                                      |             | 97.31                 | 5        | SS             | >100    |            |        |                     |         |                           |   |                                    |
| _         | 1        | _          | 3.3311                                                                                                         |             | 37.51                 |          |                |         |            |        |                     |         |                           |   |                                    |
| 12 —<br>- | F        |            | End of Borehole                                                                                                |             |                       |          |                |         |            |        |                     |         |                           |   |                                    |
| _         | Ē        | -4         |                                                                                                                |             |                       |          |                |         |            |        |                     |         |                           |   |                                    |
| 4 —       | E        | _          | Refusal to augering at 3.35m.                                                                                  |             |                       |          |                |         |            |        |                     |         |                           |   |                                    |
| 6 —       | E        | -5         | BH dry on completion.                                                                                          |             |                       |          |                |         |            |        |                     |         |                           |   |                                    |
| 8 —       |          | -          |                                                                                                                |             |                       |          |                |         |            |        |                     |         |                           |   |                                    |
| 0         |          | -6         |                                                                                                                |             |                       |          |                |         |            |        |                     |         |                           |   |                                    |
| 22 —<br>- |          | -<br>-7    |                                                                                                                |             |                       |          |                |         |            |        |                     |         |                           |   |                                    |
| .4 —      |          | _          |                                                                                                                |             |                       |          |                |         |            |        |                     |         |                           |   |                                    |
| .6 —      | E        | -8         |                                                                                                                |             |                       |          |                |         |            |        |                     |         |                           |   |                                    |
| 8         |          | _          |                                                                                                                |             |                       |          |                |         |            |        |                     |         |                           |   |                                    |
| 0 —       |          | -9         |                                                                                                                |             |                       |          |                |         |            |        |                     |         |                           |   |                                    |
| <br>32    |          | -          |                                                                                                                |             |                       |          |                |         |            |        |                     |         |                           |   |                                    |
| _         | H        | -10        |                                                                                                                |             |                       | <u> </u> |                |         |            |        |                     |         |                           |   |                                    |
|           |          | ŀ          |                                                                                                                |             |                       |          |                |         |            |        |                     |         |                           |   |                                    |



LOG OF BOREHOLE NO. BH5 SHEET. 1 of 1

PROJECT NO.: FE-P 19-9555

PROJECT NAME: Geotechnical Investigation

3455 Hawthorne Road, Ottawa, ON LOCATION:

DRILLING METHOD: Diedrich D-50

| 20 — 6<br>— 7<br>24 — 6<br>— 8<br>— 8<br>— 8<br>— 9<br>— 9<br>— 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | COIL DECELE                                                                                   |            |                       | _      | AMDIC         |           |     |          |         |           | J      | 201      |       |        |   |                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------|------------|-----------------------|--------|---------------|-----------|-----|----------|---------|-----------|--------|----------|-------|--------|---|------------------------------------|
| Section   Sect |                   | SOIL PROFILE                                                                                  | <u> </u>   |                       |        |               |           |     |          |         |           |        |          |       |        |   |                                    |
| Section   Sect | t)<br>TH<br>tres) | DESCRIPTION                                                                                   | STRATA PLO | ELEV.<br>DEPTH<br>(m) | NUMBER | P.I.D. Readir | "N" VALUE | Sł  | IEAR S   | TRENGTI | H (Kpa) • | •      | MOISTURE | CONTE | NT (%) | 0 | PIEZOMETER OR<br>WELL CONSTRUCTION |
| FILL: greysish prown sold.  Some silt & gravel, moist.  Some silt, trace topsoil / roots, pieces of shale, moist.  Some Sold, spieces of sandy, spieces of shale, moist.  Some Sold, spieces of shale, moist.  Sold Sold Sold Sold Sold Sold Sold Sold Sold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) (feet           | GROUND SURFACE (m asl)                                                                        | - 0,       | 100.31                |        |               |           |     |          |         |           |        | Ĭ        |       |        |   |                                    |
| FILL: greyish brown silt to spondy sit, trace topsoil/roots, pieces of shale, moist.  GREYISH BROWN TO BROWN GREY SILT 10 SANDY SILT: some clay, pieces of shale, moist, compact.  End of Borehole  Refusal to augering at 2.44m.  BH dry on completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | some silt & gravel, moist.                                                                    |            |                       | 1      | SS            | 23        |     | <b>†</b> |         |           | ¢      | ع ا      |       |        |   |                                    |
| 150m GREYISH BROWN TO BROWN GREY SILT TO SANDY SILT: 3 Some clay, pices of shale, some clay, pices of shale, moist, compact.  24m GREY SHALE: dry, hard.  End of Borehole  10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 —               | FILL: greyish brown silt to<br>sandy silt, trace<br>topsoil/roots, pieces of<br>shale, moist. |            |                       | 2      | SS            | 13        | 1 / |          |         |           |        |          |       |        |   |                                    |
| 8 — 24m GREY SHALE: dry, hard. 97.87 4 SS >100  End of Borehole  Refusal to augering at 2.44m.  BH dry on completion.  BH dry on completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                 | 1.52m<br>GREYISH BROWN TO BROWN                                                               |            |                       | 3      | SS            | 16        |     |          |         |           |        |          | 8     |        |   |                                    |
| Refusal to augering at 2.44m.  BH dry on completion.  BH dry on completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | woist, compact.  2.44m GREY SHALE: dry, hard.                                                 | 13184      | ]                     | 4      | SS            | >100      |     |          |         |           | $\neg$ |          |       |        |   |                                    |
| Refusal to augering at 2.44m.  BH dry on completion.  BH dry on completion.  BH dry on completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 -3             | End of Borehole                                                                               |            |                       |        |               |           |     |          |         |           |        |          |       |        |   |                                    |
| BH dry on completion.  BH dry on completion.  BH dry on completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | Refusal to augering at 2.44m.                                                                 |            |                       |        |               |           |     |          |         |           |        |          |       |        |   |                                    |
| 16 — 5 18 — 20 — 6 22 — 7 24 — 7 24 — 8 — 8 — 8 — 9 — 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                 | BH dry on completion.                                                                         |            |                       |        |               |           |     |          |         |           |        |          |       |        |   |                                    |
| 18 ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +                 |                                                                                               |            |                       |        |               |           |     |          |         |           |        |          |       |        |   |                                    |
| 20 — 6<br>— 7<br>24 — 6<br>— 8<br>— 8<br>— 8<br>— 9<br>— 9<br>— 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16 — 5            |                                                                                               |            |                       |        |               |           |     |          |         |           |        |          |       |        |   |                                    |
| 22 ———————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 —              |                                                                                               |            |                       |        |               |           |     |          |         |           |        |          |       |        |   |                                    |
| 24 ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 206               |                                                                                               |            |                       |        |               |           |     |          |         |           |        |          |       |        |   |                                    |
| 26 — 8 — 28 — 6 — 9 — 9 — 6 — 6 — 6 — 6 — 6 — 6 — 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                |                                                                                               |            |                       |        |               |           |     |          |         |           |        |          |       |        |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24 —              |                                                                                               |            |                       |        |               |           |     |          |         |           |        |          |       |        |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26 — 8            |                                                                                               |            |                       |        |               |           |     |          |         |           |        |          |       |        |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28 —              |                                                                                               |            |                       |        |               |           |     |          |         |           |        |          |       |        |   |                                    |
| 32 — 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30 — 9            |                                                                                               |            |                       |        |               |           |     |          |         |           |        |          |       |        |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32 —              |                                                                                               |            |                       |        |               |           |     |          |         |           |        |          |       |        |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                |                                                                                               |            |                       |        |               |           |     |          |         |           |        |          |       |        |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                                                                               |            |                       |        |               |           |     |          |         |           |        |          |       |        |   |                                    |



LOG OF BOREHOLE NO. BH6 SHEET. 1 of 1

PROJECT NO.: FE-P 19-9555

PROJECT NAME: Geotechnical Investigation

3455 Hawthorne Road, Ottawa, ON LOCATION:

DRILLING METHOD: Diedrich D-50

| DESCRIPTION   DESCRIPTION | L       |                   | SOIL PROFILE                                                   |                |                       |        | SAMDI E      |           | I       |          |           | 1     |         |       |         |   |                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|----------------------------------------------------------------|----------------|-----------------------|--------|--------------|-----------|---------|----------|-----------|-------|---------|-------|---------|---|------------------------------------|
| SECULUS SURFACE (m os)  FILL: dark brown silty sand, some gravel, occasional cobbles, some to trace of topsoil, rosts, occasional cobbles, moist.  GREYISH BROWN SILT TO WEATHERED SHALE: some clay, moist, hard.  End of Borehole  Refusal to augering at 2.13m.  BH dry on completion.  BH dry on completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                   | SUL PROFILE                                                    | Ι <sub>Ε</sub> |                       |        |              |           |         |          |           |       |         |       |         |   |                                    |
| SECULUS SURFACE (m os)  FILL: dark brown silty sand, some gravel, occasional cobbles, some to trace of topsoil, rosts, occasional cobbles, moist.  GREYISH BROWN SILT TO WEATHERED SHALE: some clay, moist, hard.  End of Borehole  Refusal to augering at 2.13m.  BH dry on completion.  BH dry on completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a F     | ırı<br>tres)      | DESCRIPTION                                                    | STRATA PLO     | ELEV.<br>DEPTH<br>(m) | NUMBER | P.I.D. Readi | "N" VALUE | SHEAR S | TRENGT   | H (Kpa) 🖷 | .   , | oisture | CONTE | ENT (%) | 0 | PIEZOMETER OR<br>WELL CONSTRUCTION |
| Fill.: dark brown sity sand, some gravel, occasional cobbles, some to trace of topsoil, rosts, occasional cobbles, moist.  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) (feet | (me               | GROUND SURFACE (m asl)                                         | Ĭ,             | 100.20                |        |              |           | Ī       | <u> </u> |           |       | Ť .     | Ĭ     |         |   |                                    |
| CREYISH BROWN SILT TO WEATHERED SHALE: some clay, moist, hard.  End of Borehole  Refusal to augering at 2.13m.  BH dry on completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 —     |                   | some gravel, occasional cobbles, some to trace of              |                |                       | 1      | SS           | 18        |         |          |           |       |         |       |         |   |                                    |
| GREYISH BROWN SILT TO Clay, moist, hard.  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4       | _<br>1<br>1       | cobbles, moist.                                                |                |                       | 2      | SS           | 57        |         | _        |           |       |         |       |         |   |                                    |
| End of Borehole  Refusal to augering at 2.13m.  BH dry on completion.  BH dry on completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 —     |                   | GREYISH BROWN SILT TO WEATHERED SHALE: some clay, moist, hard. |                |                       | 3      | SS           | >100      |         |          |           | 0     |         |       |         |   |                                    |
| 2.13m. BH dry on completion.  BH dry on completion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8       |                   |                                                                |                |                       |        |              |           |         |          |           |       |         |       |         |   |                                    |
| 2 — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10      | 3                 | Refusal to augering at 2.13m.                                  |                |                       |        |              |           |         |          |           |       |         |       |         |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12      |                   | BH dry on completion.                                          |                |                       |        |              |           |         |          |           |       |         |       |         |   |                                    |
| 8 — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14      | 4                 |                                                                |                |                       |        |              |           |         |          |           |       |         |       |         |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16      |                   |                                                                |                |                       |        |              |           |         |          |           |       |         |       |         |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18      |                   |                                                                |                |                       |        |              |           |         |          |           |       |         |       |         |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20      |                   |                                                                |                |                       |        |              |           |         |          |           |       |         |       |         |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                   |                                                                |                |                       |        |              |           |         |          |           |       |         |       |         |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                   |                                                                |                |                       |        |              |           |         |          |           |       |         |       |         |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24      |                   |                                                                |                |                       |        |              |           |         |          |           |       |         |       |         |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26      | 8<br>8            |                                                                |                |                       |        |              |           |         |          |           |       |         |       |         |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28 —    |                   |                                                                |                |                       |        |              |           |         |          |           |       |         |       |         |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 —    | —9<br>-<br>-<br>- |                                                                |                |                       |        |              |           |         |          |           |       |         |       |         |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32 —    |                   |                                                                |                |                       |        |              |           |         |          |           |       |         |       |         |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 10                |                                                                |                | •                     |        | •            | •         | -       | •        |           | •     |         | •     |         |   |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                   |                                                                |                |                       |        |              |           |         |          |           |       |         |       |         |   |                                    |

#### **APPENDIX C - CERTIFICATES OF ANALYSIS**





#### FISHER ENVIRONMENTAL LABORATORIES

FULL RANGE ANALYTICALSERVICES • SOIL/WATER/AIRTESTING • ENVIRONMENTAL COMPLIANCE PACKAGES • 24 HOUR EMERGENCY RESPONSE • CALA ACCREDITED

400 ESNA PARK DRIVE #15 MARKHAM, ONT. L3R 3K2 TEL: 905 475-7755 FAX: 905 475-7718

www.fisherenvironmental.com

Client: Dymon

Address: 2-1830 Walkley Rd.

Ottawa, ON.

K1H 8K3

Tel.: E-mail:

Attn: Glen Luckman

**F.E. Job #:** 19-2728

Project Name: Phase II ESA

**Project ID:** FE-P-19-9555

Date Sampled: 18-Jun-2019

Date Received: 19-Jun-2019

Date Reported: 3-Jul-2019

Location: 3455 Hawthorne

Ottawa, ON

#### **Certificate of Analysis**

| Analyses         | Matrix | Quantity | Date<br>Extracted | Date Analyzed | Lab SOP                    | Method<br>Reference |
|------------------|--------|----------|-------------------|---------------|----------------------------|---------------------|
| VOCs             | Water  | 2        | N/A               | 24-Jun-19     | VOCs F-6                   | SM 6200-B           |
| PHCs (F1 & BTEX) | Water  | 2        | N/A               | 24-Jun-19     | PHCs F-7                   | CCME CWS            |
| PHCs (F2 - F4)   | Water  | 2        | 25-Jun-19         | 26-Jun-19     | PHCs F-7                   | CCME CWS            |
| Metals           | Soil   | 6        | 24-Jun-19         | 24-Jun-19     | Metals F-18                | SM 3125-B           |
| VOCs             | Soil   | 6        | 20-Jun-19         | 25-Jun-19     | VOCs F-14                  | SW-846, 8260C       |
| PHCs (F1 & BTEX) | Soil   | 6        | 20-Jun-19         | 25-Jun-19     | PHCs F-7                   | CCME CWS            |
| PHCs (F2 - F4)   | Soil   | 6        | 23-Jun-19         | 24-Jun-19     | PHCs F-7                   | CCME CWS            |
| PAHs             | Soil   | 3        | 25-Jun-19         | 26-Jun-19     | PAHs F-4                   | SM 6410-B           |
| EC               | Soil   | 3        | 21-Jun-19         | 21-Jun-19     | PCBs F-5                   | SM 6630C            |
| SAR              | Soil   | 3        | 21-Jun-19         | 24-Jun-19     | pH-EC-SAR F-16             | EPA 6010C           |
| рН               | Soil   | 1        | 21-Jun-19         | 21-Jun-19     | pH-EC-SAR F-16             | SW-846, 9045D       |
| Moisture Content | Soil   | 6        | N/A               | 21-Jun-19     | Support<br>Procedures F-99 | Carter (1993)       |

Fisher Environmental Laboratories is accredited by CALA (the Canadian Association for Laboratory Accreditation Inc.) for specific parameters as required by Ontario Regulation 153/04. All analytical testing has been performed in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act published by Ontario Ministry of the Environment.

Authorized by:

Roger Lin, Ph. D., C. Chem. Laboratory Manager

Page 1 of 26

Ronggen (Roger) Lin

## **Certificate of Analysis**

| Analysis Requested: | Metals, PHCs, VOCs, PAHs, pH, EC, SAR |
|---------------------|---------------------------------------|
| Sample Description: | 2 Water and 6 Soil Samples            |

|                                   | 19-2728-1 | 19-2728-2 |                        | Ground Wat | ter Standards <sup>1</sup> |
|-----------------------------------|-----------|-----------|------------------------|------------|----------------------------|
|                                   | MW3       | MW3       |                        | Table 6    | Table 7                    |
| Parameter                         |           | Duplicate |                        | All Types  | All Types                  |
|                                   |           |           | Concentration ( µ g/L) |            | <u> </u>                   |
| VOCs in Water                     |           |           |                        |            |                            |
| Acetone                           | <30       | <30       |                        | 2700       | 100000                     |
| Benzene                           | < 0.5     | <0.5      |                        | 0.5        | 0.5                        |
| Bromodichloromethane              | <2        | <2        |                        | 16         | 67000                      |
| Bromoform                         | <5        | <5        |                        | 5          | 5                          |
| Bromomethane                      | < 0.5     | < 0.5     |                        | 0.89       | 0.89                       |
| Carbon Tetrachloride              | < 0.2     | < 0.2     |                        | 0.2        | 0.2                        |
| Chlorobenzene                     | < 0.5     | < 0.5     |                        | 30         | 140                        |
| Chloroform                        | <1        | <1        |                        | 2          | 2                          |
| Dibromochloromethane              | <2        | <2        |                        | 25         | 65000                      |
| 1,2-Dichlorobenzene               | < 0.5     | < 0.5     |                        | 3          | 150                        |
| 1,3-Dichlorobenzene               | < 0.5     | < 0.5     |                        | 59         | 7600                       |
| 1,4-Dichlorobenzene               | < 0.5     | < 0.5     |                        | 0.5        | 0.5                        |
| Dichlorodifluoromethane           | <2        | <2        |                        | 590        | 3500                       |
| 1,1-Dichloroethane                | < 0.5     | < 0.5     |                        | 5          | 11                         |
| 1,2-Dichloroethane                | < 0.5     | < 0.5     |                        | 0.5        | 0.5                        |
| 1,1-Dichloroethylene              | < 0.5     | < 0.5     |                        | 0.5        | 0.5                        |
| c-1,2-Dichloroethylene            | < 0.5     | < 0.5     |                        | 1.6        | 1.6                        |
| t-1,2-Dichloroethylene            | < 0.5     | < 0.5     |                        | 1.6        | 1.6                        |
| 1,2-Dichloropropane               | < 0.5     | < 0.5     |                        | 0.58       | 0.58                       |
| 1,3-Dichloropropene (cis-+trans-) | < 0.5     | < 0.5     |                        | 0.5        | 0.5                        |
| Ethylbenzene                      | < 0.5     | < 0.5     |                        | 2.4        | 54                         |
| Ethylene Dibromide                | < 0.2     | < 0.2     |                        | 0.2        | 0.2                        |
| Hexane (n)                        | <5        | <5        |                        | 5          | 5                          |
| Methyl Ethyl Ketone               | <20       | <20       |                        | 1800       | 21000                      |
| Methyl Isobutyl Ketone            | <20       | <20       |                        | 640        | 5200                       |
| Methyl tert-butyl Ether           | <2        | <2        |                        | 15         | 15                         |
| Methylene Chloride                | <5        | <5        | ļ                      | 26         | 26                         |
| Styrene                           | <0.5      | <0.5      | ļ                      | 5.4        | 43                         |
| 1,1,1,2-Tetrachloroethane         | <0.5      | <0.5      |                        | 1.1        | 1.1                        |
| 1,1,2,2-Tetrachloroethane         | <0.5      | <0.5      | ļ                      | 0.5        | 0.5                        |
| Tetrachloroethylene               | <0.5      | <0.5      |                        | 0.5        | 0.5                        |
| Toluene                           | <0.5      | <0.5      | <b></b>                | 24         | 320                        |
| 1,1,1-Trichloroethane             | <0.5      | <0.5      |                        | 23         | 23                         |
| 1,1,2-Trichloroethane             | <0.5      | <0.5      | <b> </b>               | 0.5        | 0.5                        |
| Trichloroethylene                 | <0.5      | <0.5      | <b> </b>               | 0.5        | 0.5                        |
| Trichlorofluoromethane            | <5        | <5        | <b> </b>               | 150        | 2000                       |
| Vinyl Chloride                    | <0.5      | <0.5      | <b> </b>               | 0.5        | 0.5                        |
| Xylenes                           | < 0.5     | < 0.5     |                        | 72         | 72                         |
| Surrogate Recovery (%)            | 442       | 100       | 7-                     |            | 140                        |
| Bromochloromethane                | 116       | 100       |                        |            | -140                       |
| 1,4-Difluorobenzene               | 105       | 89        | <b></b>                |            | -140                       |
| 1,4-Dichlorobutane                | 120       | 105       |                        | 60-140     |                            |

<sup>&</sup>lt; result obtained was below RL (Reporting Limit).

Bold: Result exceeds limit noted in Ground Water Standards.

<sup>&</sup>lt;sup>1</sup> MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition;

Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition;

 $Industrial/Commercial/Community\ Property\ use\ (I/C/C);$ 

<sup>( )</sup> Standard value in brackets applies to medium and fine textured soils.

## **QA/QC Report**

| Davamatar                         | Blank        | RL        | LCS                    | AR        | MS           | AR               |  |  |
|-----------------------------------|--------------|-----------|------------------------|-----------|--------------|------------------|--|--|
| Parameter                         | (ug/L)       |           | Recovery (%)           |           | Recovery (%) |                  |  |  |
| VOCs in Water                     |              |           |                        |           |              |                  |  |  |
| Acetone                           | <30          | 30        | 71                     | 50-140    | 91           | 50-140           |  |  |
| Benzene                           | < 0.5        | 0.5       | 104                    | 60-130    | 122          | 50-140           |  |  |
| Bromodichloromethane              | <2           | 2         | 106                    | 50-140    | 127          | 50-140           |  |  |
| Bromoform                         | <5           | 5         | 98                     | 60-130    | 105          | 50-140           |  |  |
| Bromomethane                      | < 0.5        | 0.5       | 79                     | 50-140    | 72           | 50-140           |  |  |
| Carbon Tetrachloride              | < 0.2        | 0.2       | 100                    | 60-130    | 77           | 50-140           |  |  |
| Chlorobenzene                     | < 0.5        | 0.5       | 119                    | 60-130    | 96           | 50-140           |  |  |
| Chloroform                        | <1           | 1         | 109                    | 60-130    | 128          | 50-140           |  |  |
| Dibromochloromethane              | <2           | 2         | 100                    | 60-130    | 128          | 50-140           |  |  |
| 1,2-Dichlorobenzene               | < 0.5        | 0.5       | 109                    | 60-130    | 120          | 50-140           |  |  |
| 1,3-Dichlorobenzene               | < 0.5        | 0.5       | 102                    | 60-130    | 109          | 50-140           |  |  |
| 1,4-Dichlorobenzene               | < 0.5        | 0.5       | 106                    | 60-130    | 120          | 50-140           |  |  |
| Dichlorodifluoromethane           | <2           | 2         | 77                     | 50-140    | 61           | 50-140           |  |  |
| 1,1-Dichloroethane                | < 0.5        | 0.5       | 93                     | 60-130    | 95           | 50-140           |  |  |
| 1,2-Dichloroethane                | < 0.5        | 0.5       | 88                     | 60-130    | 101          | 50-140           |  |  |
| 1,1-Dichloroethylene              | < 0.5        | 0.5       | 115                    | 60-130    | 116          | 50-140           |  |  |
| c-1,2-Dichloroethylene            | < 0.5        | 0.5       | 108                    | 60-130    | 84           | 50-140           |  |  |
| t-1,2-Dichloroethylene            | < 0.5        | 0.5       | 114                    | 60-130    | 87           | 50-140           |  |  |
| 1,2-Dichloropropane               | < 0.5        | 0.5       | 106                    | 60-130    | 89           | 50-140           |  |  |
| 1,3-Dichloropropene (cis-+trans-) | < 0.5        | 0.5       | 102                    | 60-130    | 96           | 50-140           |  |  |
| Ethylbenzene                      | < 0.5        | 0.5       | 99                     | 60-130    | 110          | 50-140           |  |  |
| Ethylene Dibromide                | < 0.2        | 0.2       | 96                     | 60-130    | 118          | 50-140           |  |  |
| Hexane (n)                        | <5           | 5         | 91                     | 60-130    | 114          | 50-140           |  |  |
| Methyl Ethyl Ketone               | <20          | 20        | 112                    | 50-140    | 63           | 50-140           |  |  |
| Methyl Isobutyl Ketone            | <20          | 20        | 89                     | 50-140    | 84           | 50-140           |  |  |
| Methyl tert-butyl Ether           | <2           | 2         | 119                    | 60-130    | 89           | 50-140           |  |  |
| Methylene Chloride                | <5           | 5         | 100                    | 60-130    | 100          | 50-140           |  |  |
| Styrene                           | < 0.5        | 0.5       | 104                    | 60-130    | 82           | 50-140           |  |  |
| 1,1,1,2-Tetrachloroethane         | <0.5         | 0.5       | 81                     | 60-130    | 119          | 50-140           |  |  |
| 1,1,2,2-Tetrachloroethane         | <0.5         | 0.5       | 107                    | 60-130    | 108          | 50-140           |  |  |
| Tetrachloroethylene               | <0.5         | 0.5       | 101                    | 60-130    | 121          | 50-140           |  |  |
| Toluene                           | <0.5         | 0.5       | 110                    | 60-130    | 128          | 50-140           |  |  |
| 1,1,1-Trichloroethane             | <0.5         | 0.5       | 108                    | 60-130    | 86           | 50-140           |  |  |
| 1,1,2-Trichloroethane             | <0.5         | 0.5       | 109                    | 60-130    | 96           | 50-140           |  |  |
| Trichloroethylene                 | <0.5         | 0.5       | 108                    | 60-130    | 117          | 50-140           |  |  |
| Trichlorofluoromethane            | <5           | 5         | 124                    | 50-140    | 114          | 50-140           |  |  |
| Vinyl Chloride                    | <0.5         | 0.5       | 107                    | 50-140    | 78           | 50-140           |  |  |
| Xylenes                           | <0.5         | 0.5       | 106                    | 60-130    | 116          | 50-140           |  |  |
| Surrogates                        |              |           |                        |           |              |                  |  |  |
| Parameter  Drama abalaramethana   | Recovery (%) | AR 60 140 | <b>Recovery (%)</b> 72 | AR 60 140 | Recovery (%) | <b>AR</b> 60-140 |  |  |
| Bromocholoromethane               | 109          | 60-140    |                        | 60-140    | 115          |                  |  |  |
| 1,4-Diffuorobenzene               | 104          | 60-140    | 76                     | 60-140    | 109          | 60-140           |  |  |
| 1,4-Dichlorobutane                | 110          | 60-140    | 102                    | 60-140    | 122          | 60-140           |  |  |

#### LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

MS - Matrix Spike

AR - Acceptable Range

## **QA/QC Report**

|                                   | Duplicate    | AR     |          |      |   |
|-----------------------------------|--------------|--------|----------|------|---|
| Parameter                         | RPD          | (%)    |          |      |   |
| VOCs in Water                     |              |        | •        |      |   |
| Acetone                           | 0.0          | 0-30   |          |      |   |
| Benzene                           | 0.0          | 0-30   |          |      |   |
| Bromodichloromethane              | 0.0          | 0-30   |          |      |   |
| Bromoform                         | 0.0          | 0-30   |          |      |   |
| Bromomethane                      | 0.0          | 0-30   |          |      |   |
| Carbon Tetrachloride              | 0.0          | 0-30   |          |      |   |
| Chlorobenzene                     | 0.0          | 0-30   |          |      |   |
| Chloroform                        | 1            | 0-30   |          |      |   |
| Dibromochloromethane              | 0.0          | 0-30   |          |      |   |
| 1,2-Dichlorobenzene               | 0.0          | 0-30   |          |      |   |
| 1,3-Dichlorobenzene               | 0.0          | 0-30   | <b> </b> |      |   |
| 1,4-Dichlorobenzene               | 0.0          | 0-30   |          |      |   |
| Dichlorodifluoromethane           | 0.0          | 0-30   |          |      |   |
| 1,1-Dichloroethane                | 0.0          | 0-30   |          |      |   |
| 1,2-Dichloroethane                | 0.0          | 0-30   |          |      |   |
| 1,1-Dichloroethylene              | 0.0          | 0-30   |          |      |   |
| c-1,2-Dichloroethylene            | 0.0          | 0-30   |          |      |   |
| t-1,2-Dichloroethylene            | 0.0          | 0-30   |          |      |   |
| 1,2-Dichloropropane               | 0.0          | 0-30   |          |      |   |
| 1,3-Dichloropropene (cis-+trans-) | 0.0          | 0-30   |          |      |   |
| Ethylbenzene                      | 0.0          | 0-30   |          |      |   |
| Ethylene Dibromide                | 0.0          | 0-30   |          |      |   |
| Hexane (n)                        | 0.0          | 0-30   |          |      |   |
| Methyl Ethyl Ketone               | 0.0          | 0-30   |          |      |   |
| Methyl Isobutyl Ketone            | 0.0          | 0-30   |          |      |   |
| Methyl tert-butyl Ether           | 0.0          | 0-30   |          |      |   |
| Methylene Chloride                | 0.0          | 0-30   |          |      |   |
| Styrene                           | 0.0          | 0-30   |          |      |   |
| 1,1,1,2-Tetrachloroethane         | 0.0          | 0-30   |          |      |   |
| 1,1,2,2-Tetrachloroethane         | 0.0          | 0-30   |          |      |   |
| Tetrachloroethylene               | 0.0          | 0-30   |          |      |   |
| Toluene                           | 0.0          | 0-30   |          |      |   |
| 1,1,1-Trichloroethane             | 0.0          | 0-30   |          |      |   |
| 1,1,2-Trichloroethane             | 0.0          | 0-30   |          |      |   |
| Trichloroethylene                 | 0.0          | 0-30   |          |      |   |
| Trichlorofluoromethane            | 0.0          | 0-30   |          |      |   |
| Vinyl Chloride                    | 0.0          | 0-30   |          |      |   |
| Xylenes                           | 0.0          | 0-30   |          |      |   |
| Surrogates                        |              |        | ·        |      | - |
| Parameter                         | Recovery (%) | AR     |          |      |   |
| Bromocholoromethane               | 84           | 60-140 |          | <br> |   |
| 1,4-Difluorobenzene               | 77           | 60-140 | <u> </u> |      |   |
| 1,4-Dichlorobutane                | 88           | 60-140 |          |      |   |

#### LEGEND:

AR - Acceptable Range

RPD - Relative Percent Difference

## **Certificate of Analysis**

| Analysis Requested: | Metals, PHCs, VOCs, PAHs, pH, EC, SAR |
|---------------------|---------------------------------------|
| Sample Description: | 2 Water and 6 Soil Samples            |

|                                                      | 19-2728-1 | 19-2728-2 |             |              | Ground Wat | er Standards <sup>1</sup> |
|------------------------------------------------------|-----------|-----------|-------------|--------------|------------|---------------------------|
| Parameter                                            | MW3       | MW3       |             |              | Table 6    | Table 7                   |
|                                                      |           | Duplicate |             |              | All Types  | All Types                 |
|                                                      |           |           | Concentrati | ion ( μ g/L) |            |                           |
| BTEX in Water                                        |           |           |             |              |            |                           |
| Benzene                                              | < 0.5     | < 0.5     |             |              | 0.5        | 0.5                       |
| Toluene                                              | < 0.5     | < 0.5     |             |              | 24         | 320                       |
| Ethylbenzene                                         | < 0.5     | < 0.5     |             |              | 2.4        | 54                        |
| Xylenes                                              | < 0.5     | < 0.5     |             |              | 72         | 72                        |
| PHCs (F1-F4) in Water                                |           |           |             |              |            |                           |
| $F1_{-BTEX}(C_6 - C_{10})$                           | <25       | <25       |             |              | 420        | 420                       |
| F2 (C <sub>10</sub> - C <sub>16</sub> )              | <100      | <100      |             |              | 150        | 150                       |
| F3 (C <sub>16</sub> - C <sub>34</sub> )              | <100      | <100      |             |              | 500        | 500                       |
| F4 (>C <sub>34</sub> )                               | <100      | <100      |             |              | 500        | 500                       |
| Chromatogram descends to baseline by nC50 ? (Yes/No) | Yes       | Yes       |             |              |            |                           |
| Surrogate Recovery (%)                               |           |           |             |              |            |                           |
| Bromochloromethane                                   | 116       | 100       |             |              | 60         | -140                      |
| 1,4-Difluorobenzene                                  | 105       | 89        |             |              | 60         | -140                      |
| 1,4-Dichlorobutane                                   | 120       | 105       |             |              | 60         | -140                      |

 $F_{4G}$  (gravimetric heavy hydrocarbons) cannot be added to the  $C_6$  to  $C_{50}$  hydrocarbons.

Industrial/Commercial/Community Property use (I/C/C);

<sup>&</sup>lt; result obtained was below RL (Reporting Limit).

<sup>&</sup>lt;sup>1</sup> MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition;

Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition;

<sup>( )</sup> Standard value in brackets applies to medium and fine textured soils.

## **QA/QC Report**

| Parameter                               | Blank                | RL     | LCS          | AR           | MS           | AR       |  |
|-----------------------------------------|----------------------|--------|--------------|--------------|--------------|----------|--|
| Parameter                               | (ug/L)               |        | Recove       | Recovery (%) |              | /ery (%) |  |
| BTEX in Water                           |                      |        |              |              |              |          |  |
| Benzene                                 | < 0.02               | 0.02   | 104          | 60-130       | 114          | 50-140   |  |
| Toluene                                 | < 0.2                | 0.2    | 119          | 60-130       | 107          | 50-140   |  |
| Ethylbenzene                            | < 0.05               | 0.05   | 103          | 60-130       | 103          | 50-140   |  |
| Xylenes                                 | < 0.05               | 0.05   | 110          | 60-130       | 101          | 50-140   |  |
| PHC (F1-F4) in Water                    | PHC (F1-F4) in Water |        |              |              |              |          |  |
| $F1_{-BTEX}(C_6 - C_{10})$              | <10                  | 10     | 119          | 80-120       | 107          | 60-140   |  |
| F2 (C <sub>10</sub> - C <sub>16</sub> ) | <10                  | 10     | 99           | 80-120       | 88           | 60-140   |  |
| F3 (C <sub>16</sub> - C <sub>34</sub> ) | < 50                 | 50     | 97           | 80-120       | 92           | 60-140   |  |
| F4 (>C <sub>34</sub> )                  | <50                  | 50     | 106          | 80-120       | 83           | 60-140   |  |
| Surrogates                              |                      |        |              |              |              |          |  |
| Parameter                               | Recovery (%)         | AR     | Recovery (%) | AR           | Recovery (%) | AR       |  |
| Bromochloromethane                      | 64                   | 60-140 | 62           | 60-140       | 85           | 60-140   |  |
| 1,4-Difluorobenzene                     | 75                   | 60-140 | 108          | 60-140       | 76           | 60-140   |  |
| 1,4-Dichlorobutane                      | 77                   | 60-140 | 115          | 60-140       | 94           | 60-140   |  |

#### LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

MS - Matrix Spike

AR - Acceptable Range

# **QA/QC Report**

| Parameter                               | Duplicate    | AR     |   |   |  |
|-----------------------------------------|--------------|--------|---|---|--|
| Parameter                               | RPD (%)      |        |   |   |  |
| BTEX in Water                           |              |        |   |   |  |
| Benzene                                 | 10           | 0-30   |   |   |  |
| Toluene                                 | 11           | 0-30   |   |   |  |
| Ethylbenzene                            | 11           | 0-30   |   |   |  |
| Xylenes                                 | 12           | 0-30   |   |   |  |
| PHC (F1-F4) in Water                    |              |        |   |   |  |
| $F1_{-BTEX}(C_6 - C_{10})$              | 16           | 0-30   |   |   |  |
| F2 (C <sub>10</sub> - C <sub>16</sub> ) | 15           | 0-30   |   |   |  |
| F3 (C <sub>16</sub> - C <sub>34</sub> ) | 12           | 0-30   |   |   |  |
| F4 (>C <sub>34</sub> )                  | 0.0          | 0-30   |   |   |  |
| Surrogates                              |              |        |   |   |  |
| Parameter                               | Recovery (%) | AR     |   |   |  |
| Bromochloromethane                      | 95           | 60-140 |   |   |  |
| 1,4-Difluorobenzene                     | 102          | 60-140 |   |   |  |
| 1,4-Dichlorobutane                      | 102          | 60-140 | _ | _ |  |

#### <u>LEGEND:</u>

AR - Acceptable Range

## **Certificate of Analysis**

| Analysis Requested: | Metals, PHCs, VOCs, PAHs, pH, EC, SAR |
|---------------------|---------------------------------------|
| Sample Description: | 2 Water and 6 Soil Samples            |

|                | 19-2728-3      | 19-2728-4  | 19-2728-5  | 19-2728-6  | Soil Sta  | nndards <sup>1</sup> |  |  |  |
|----------------|----------------|------------|------------|------------|-----------|----------------------|--|--|--|
| Parameter      | BH 1           | BH 2       | BH 3       | BH 4       | Table 6   | Table 7              |  |  |  |
| rarameter      | 0.75-1.20m     | 0.00-0.60m | 0.75-1.20m | 0.75-1.20m | I/C/C     | I/C/C                |  |  |  |
|                |                |            | Concentrat | ion (µg/g) |           |                      |  |  |  |
| Metals in Soil | Metals in Soil |            |            |            |           |                      |  |  |  |
| Antimony       | <1             | <1         | <1         | <1         | (50) 40   | (50) 40              |  |  |  |
| Arsenic        | 3.4            | 6          | 2.7        | 3.7        | 18        | 18                   |  |  |  |
| Barium         | 36             | 27         | 32         | 28         | 670       | 670                  |  |  |  |
| Beryllium      | <2             | <2         | <2         | <2         | (10) 8    | (10) 8               |  |  |  |
| Boron          | <5             | <5         | <5         | <5         | 120       | 120                  |  |  |  |
| Cadmium        | <1             | <1         | <1         | <1         | 1.9       | 1.9                  |  |  |  |
| Chromium       | 22             | 7.4        | 17         | 19         | 160       | 160                  |  |  |  |
| Cobalt         | 16             | 8          | 11         | 15         | (100) 80  | (100) 80             |  |  |  |
| Copper         | 30             | 7.8        | 14         | 21         | (300) 230 | (300) 230            |  |  |  |
| Lead           | <10            | 19         | <10        | <10        | 120       | 120                  |  |  |  |
| Molybdenum     | <2             | <2         | <2         | <2         | 40        | 40                   |  |  |  |
| Nickel         | 28             | 15         | 23         | 25         | (340) 270 | (340) 270            |  |  |  |
| Selenium       | <1             | <1         | <1         | <1         | 5.5       | 5.5                  |  |  |  |
| Silver         | < 0.5          | < 0.5      | < 0.5      | < 0.5      | (50) 40   | (50) 40              |  |  |  |
| Thallium       | <1             | <1         | <1         | <1         | 3.3       | 3.3                  |  |  |  |
| Uranium        | <1             | <1         | <1         | <1         | 33        | 33                   |  |  |  |
| Vanadium       | 22             | 10         | 16         | 19         | 86        | 86                   |  |  |  |
| Zinc           | 52             | <30        | 48         | 52         | 340       | 340                  |  |  |  |

<sup>&</sup>lt; result obtained was below RL (Reporting Limit).

<sup>&</sup>lt;sup>1</sup> MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition;

 $<sup>\</sup>textbf{Table 7}{:} \ Generic \ Site \ Condition \ Standards \ for \ Shallow \ Soils \ in \ a \ Non-Potable \ Ground \ Water \ Condition;$ 

<sup>( )</sup> Standard value in brackets applies to medium and fine textured soils.

## **Certificate of Analysis**

| Analysis Requested: | Metals, PHCs, VOCs, PAHs, pH, EC, SAR |
|---------------------|---------------------------------------|
| Sample Description: | 2 Water and 6 Soil Samples            |

|                | 19-2728-7      | 19-2728-8  |            |            | Soil Sta  | andards <sup>1</sup> |  |  |  |
|----------------|----------------|------------|------------|------------|-----------|----------------------|--|--|--|
| Damamatan      | BH 5           | BH 6       |            |            | Table 6   | Table 7              |  |  |  |
| Parameter      | 0.75-1.20m     | 0.75-1.20m |            |            | I/C/C     | I/C/C                |  |  |  |
|                |                |            | Concentrat | ion (μg/g) |           |                      |  |  |  |
| Metals in Soil | Metals in Soil |            |            |            |           |                      |  |  |  |
| Antimony       | <1             | <1         |            |            | (50) 40   | (50) 40              |  |  |  |
| Arsenic        | 3.4            | 3.1        |            |            | 18        | 18                   |  |  |  |
| Barium         | 42             | 37         |            |            | 670       | 670                  |  |  |  |
| Beryllium      | <2             | <2         |            |            | (10) 8    | (10) 8               |  |  |  |
| Boron          | <5             | <5         |            |            | 120       | 120                  |  |  |  |
| Cadmium        | <1             | <1         |            |            | 1.9       | 1.9                  |  |  |  |
| Chromium       | 18             | 18         |            |            | 160       | 160                  |  |  |  |
| Cobalt         | 12             | 13         |            |            | (100) 80  | (100) 80             |  |  |  |
| Copper         | 25             | 26         |            |            | (300) 230 | (300) 230            |  |  |  |
| Lead           | <10            | <10        |            |            | 120       | 120                  |  |  |  |
| Molybdenum     | <2             | <2         |            |            | 40        | 40                   |  |  |  |
| Nickel         | 25             | 25         |            |            | (340) 270 | (340) 270            |  |  |  |
| Selenium       | <1             | <1         |            |            | 5.5       | 5.5                  |  |  |  |
| Silver         | < 0.5          | < 0.5      |            |            | (50) 40   | (50) 40              |  |  |  |
| Thallium       | <1             | <1         |            |            | 3.3       | 3.3                  |  |  |  |
| Uranium        | <1             | <1         |            |            | 33        | 33                   |  |  |  |
| Vanadium       | 18             | 18         |            |            | 86        | 86                   |  |  |  |
| Zinc           | 48             | 52         |            |            | 340       | 340                  |  |  |  |

<sup>&</sup>lt; result obtained was below RL (Reporting Limit).

<sup>&</sup>lt;sup>1</sup> MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition;

Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition;

<sup>( )</sup> Standard value in brackets applies to medium and fine textured soils.

# **QA/QC Report**

| Doromotor      | Blank | RL   | LCS   | AR           | MS  | AR       |
|----------------|-------|------|-------|--------------|-----|----------|
| Parameter      | (μς   | g/g) | Recov | Recovery (%) |     | /ery (%) |
| Metals in Soil |       |      |       |              |     |          |
| Antimony       | <1    | 1    | 99    | 80-120       | 97  | 70-130   |
| Arsenic        | <1    | 1    | 101   | 80-120       | 87  | 70-130   |
| Barium         | <5    | 5    | 113   | 80-120       | 91  | 70-130   |
| Beryllium      | <2    | 2    | 100   | 80-120       | 113 | 70-130   |
| Boron          | <5    | 5    | 90    | 80-120       | 97  | 70-130   |
| Cadmium        | <1    | 1    | 99    | 80-120       | 105 | 70-130   |
| Chromium       | <5    | 5    | 106   | 80-120       | 102 | 70-130   |
| Cobalt         | <2    | 2    | 114   | 80-120       | 108 | 70-130   |
| Copper         | <5    | 5    | 110   | 80-120       | 95  | 70-130   |
| Lead           | <10   | 10   | 96    | 80-120       | 114 | 70-130   |
| Molybdenum     | <2    | 2    | 107   | 80-120       | 106 | 70-130   |
| Nickel         | <5    | 5    | 111   | 80-120       | 100 | 70-130   |
| Selenium       | <1    | 1    | 95    | 80-120       | 92  | 70-130   |
| Silver         | < 0.5 | 0.5  | 99    | 80-120       | 93  | 70-130   |
| Thallium       | <1    | 1    | 98    | 80-120       | 123 | 70-130   |
| Uranium        | <1    | 1    | 92    | 80-120       | 120 | 70-130   |
| Vanadium       | <10   | 10   | 84    | 80-120       | 109 | 70-130   |
| Zinc           | <30   | 30   | 88    | 80-120       | 82  | 70-130   |

#### LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

MS - Matrix Spike

# **QA/QC Report**

| Davamatar      | Duplicate | AR   |  |  |
|----------------|-----------|------|--|--|
| Parameter      | RPD (%)   |      |  |  |
| Metals in Soil |           |      |  |  |
| Antimony       | 0.0       | 0-30 |  |  |
| Arsenic        | 23.9      | 0-30 |  |  |
| Barium         | 11.1      | 0-30 |  |  |
| Beryllium      | 7.2       | 0-30 |  |  |
| Boron          | 22.3      | 0-30 |  |  |
| Cadmium        | 0.0       | 0-30 |  |  |
| Chromium       | 2.5       | 0-30 |  |  |
| Cobalt         | 7.4       | 0-30 |  |  |
| Copper         | 8.8       | 0-30 |  |  |
| Lead           | 3.8       | 0-30 |  |  |
| Molybdenum     | 0.0       | 0-30 |  |  |
| Nickel         | 9         | 0-30 |  |  |
| Selenium       | 0.0       | 0-30 |  |  |
| Silver         | 0.0       | 0-30 |  |  |
| Thallium       | 0.0       | 0-30 |  |  |
| Uranium        | 10        | 0-30 |  |  |
| Vanadium       | 7.2       | 0-30 |  |  |
| Zinc           | 4.3       | 0-30 |  |  |

#### LEGEND:

AR - Acceptable Range

## **Certificate of Analysis**

| Analysis Requested: | Metals, PHCs, VOCs, PAHs, pH, EC, SAR |
|---------------------|---------------------------------------|
| Sample Description: | 2 Water and 6 Soil Samples            |

| Parameter                         | 19-2728-3  | 19-2728-4  | 19-2728-5  | 19-2728-6  | Soil Standards <sup>1</sup> |                 |
|-----------------------------------|------------|------------|------------|------------|-----------------------------|-----------------|
|                                   | BH 1       | BH 2       | BH 3       | BH 4       | Table 6                     | Table 7         |
|                                   | 0.75-1.20m | 0.00-0.60m | 0.75-1.20m | 0.75-1.20m | I/C/C                       | I/C/C           |
|                                   |            |            | Concentrat | ion (µg/g) |                             |                 |
| VOCs in Soil                      |            |            |            | 17 0 07    |                             |                 |
| Acetone                           | < 0.5      | < 0.5      | < 0.5      | < 0.5      | (28) 16                     | (28) 16         |
| Benzene                           | < 0.02     | < 0.02     | < 0.02     | < 0.02     | (0.4) 0.32                  | (0.4) 0.32      |
| Bromodichloromethane              | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (1.9) 1.5                   | 18              |
| Bromoform                         | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (1.7) 0.61                  | (1.7) 0.61      |
| Bromomethane                      | < 0.05     | < 0.05     | < 0.05     | < 0.05     | 0.05                        | 0.05            |
| Carbon Tetrachloride              | < 0.05     | < 0.05     | < 0.05     | < 0.05     | $(0.71)\ 0.21$              | (1.5) 0.21      |
| Chlorobenzene                     | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (2.7) 2.4                   | (2.7) 2.4       |
| Chloroform                        | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (0.18) 0.47                 | (0.18) 0.47     |
| Dibromochloromethane              | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (2.9) 2.3                   | 13              |
| 1,2-Dichlorobenzene               | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (1.7) 1.2                   | (8.5) 6.8       |
| 1,3-Dichlorobenzene               | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (12) 9.6                    | (12) 9.6        |
| 1,4-Dichlorobenzene               | < 0.05     | < 0.05     | < 0.05     | < 0.05     | $(0.57) \ 0.2$              | $(0.84)\ 0.2$   |
| Dichlorodifluoromethane           | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (25) 16                     | (25) 16         |
| 1,1-Dichloroethane                | < 0.05     | < 0.05     | < 0.05     | < 0.05     | $(0.6)\ 0.47$               | (21) 17         |
| 1,2-Dichloroethane                | < 0.05     | < 0.05     | < 0.05     | < 0.05     | 0.05                        | 0.05            |
| 1,1-Dichloroethylene              | < 0.05     | < 0.05     | < 0.05     | < 0.05     | $(0.48)\ 0.064$             | $(0.48)\ 0.064$ |
| c-1,2-Dichloroethylene            | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (2.5) 1.9                   | (37) 55         |
| t-1,2-Dichloroethylene            | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (2.5) 1.3                   | (9.3) 1.3       |
| 1,2-Dichloropropane               | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (0.68) 0.16                 | (0.68) 0.16     |
| 1,3-Dichloropropene (cis-+trans-) | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (0.081) 0.059               | (0.21) 0.18     |
| Ethylbenzene                      | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (1.6) 1.1                   | (19) 9.5        |
| Ethylene Dibromide                | < 0.05     | < 0.05     | < 0.05     | < 0.05     | 0.05                        | 0.05            |
| Hexane (n)                        | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (88) 46                     | (88) 46         |
| Methyl Ethyl Ketone               | < 0.5      | < 0.5      | < 0.5      | < 0.5      | (88) 70                     | (88) 70         |
| Methyl Isobutyl Ketone            | < 0.5      | < 0.5      | < 0.5      | < 0.5      | (210) 31                    | (210) 31        |
| Methyl tert-butyl Ether           | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (2.3) 1.6                   | (3.2) 11        |
| Methylene Chloride                | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (2) 1.6                     | (2) 1.6         |
| Styrene                           | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (43) 34                     | (43) 34         |
| 1,1,1,2-Tetrachloroethane         | < 0.05     | < 0.05     | < 0.05     | < 0.05     | $(0.11)\ 0.087$             | $(0.11)\ 0.087$ |
| 1,1,2,2-Tetrachloroethane         | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (0.094) 0.05                | (0.094) 0.05    |
| Tetrachloroethylene               | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (2.5) 1.9                   | (21) 4.5        |
| Toluene                           | < 0.2      | < 0.2      | < 0.2      | < 0.2      | (9) 6.4                     | (78) 68         |
| 1,1,1-Trichloroethane             | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (12) 6.1                    | (12) 6.1        |
| 1,1,2-Trichloroethane             | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (0.11) 0.05                 | (0.11) 0.05     |
| Trichloroethylene                 | < 0.05     | < 0.05     | < 0.05     | < 0.05     | $(0.61)\ 0.55$              | (0.61) 0.91     |
| Trichlorofluoromethane            | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (5.8) 4                     | (5.8) 4         |
| Vinyl Chloride                    | < 0.02     | < 0.02     | < 0.02     | < 0.02     | $(0.25)\ 0.032$             | $(0.25)\ 0.032$ |
| Xylenes                           | < 0.05     | < 0.05     | < 0.05     | < 0.05     | (30) 26                     | (30) 26         |
| Surrogate Recovery (%)            |            |            |            |            |                             |                 |
| 1,2-Dichloroethane-d4             | 119        | 132        | 114        | 119        | 50-140                      |                 |
| Toluene-d8                        | 79         | 138        | 110        | 75         |                             | -140            |
| 4-Bromofluorobenzene              | 136        | 130        | 104        | 132        | 50                          | -140            |

<sup>&</sup>lt; result obtained was below RL (Reporting Limit).

<sup>&</sup>lt;sup>1</sup> MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition;

Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition;

<sup>( )</sup> Standard value in brackets applies to medium and fine textured soils.

### **Certificate of Analysis**

| Analysis Requested: | Metals, PHCs, VOCs, PAHs, pH, EC, SAR |
|---------------------|---------------------------------------|
| Sample Description: | 2 Water and 6 Soil Samples            |

|                                   | 19-2728-7            | 19-2728-8  |        | Soil Sta        | ndards <sup>1</sup> |  |  |  |
|-----------------------------------|----------------------|------------|--------|-----------------|---------------------|--|--|--|
| D                                 | BH 5                 | BH 6       |        | Table 6         | Table 7             |  |  |  |
| Parameter                         | 0.75-1.20m           | 0.75-1.20m |        | I/C/C           | I/C/C               |  |  |  |
|                                   | Concentration (µg/g) |            |        |                 |                     |  |  |  |
| VOCs in Soil                      | <u> </u>             |            | 4 0 07 |                 |                     |  |  |  |
| Acetone                           | < 0.5                | < 0.5      |        | (28) 16         | (28) 16             |  |  |  |
| Benzene                           | < 0.02               | < 0.02     |        | $(0.4)\ 0.32$   | $(0.4)\ 0.32$       |  |  |  |
| Bromodichloromethane              | < 0.05               | < 0.05     |        | (1.9) 1.5       | 18                  |  |  |  |
| Bromoform                         | < 0.05               | < 0.05     |        | $(1.7) \ 0.61$  | $(1.7) \ 0.61$      |  |  |  |
| Bromomethane                      | < 0.05               | < 0.05     |        | 0.05            | 0.05                |  |  |  |
| Carbon Tetrachloride              | < 0.05               | < 0.05     |        | $(0.71)\ 0.21$  | (1.5) 0.21          |  |  |  |
| Chlorobenzene                     | < 0.05               | < 0.05     |        | (2.7) 2.4       | (2.7) 2.4           |  |  |  |
| Chloroform                        | < 0.05               | < 0.05     |        | $(0.18)\ 0.47$  | $(0.18)\ 0.47$      |  |  |  |
| Dibromochloromethane              | < 0.05               | < 0.05     |        | (2.9) 2.3       | 13                  |  |  |  |
| 1,2-Dichlorobenzene               | < 0.05               | < 0.05     |        | (1.7) 1.2       | (8.5) 6.8           |  |  |  |
| 1,3-Dichlorobenzene               | < 0.05               | < 0.05     |        | (12) 9.6        | (12) 9.6            |  |  |  |
| 1,4-Dichlorobenzene               | < 0.05               | < 0.05     |        | $(0.57)\ 0.2$   | $(0.84)\ 0.2$       |  |  |  |
| Dichlorodifluoromethane           | < 0.05               | < 0.05     |        | (25) 16         | (25) 16             |  |  |  |
| 1,1-Dichloroethane                | < 0.05               | < 0.05     |        | (0.6) 0.47      | (21) 17             |  |  |  |
| 1,2-Dichloroethane                | < 0.05               | < 0.05     |        | 0.05            | 0.05                |  |  |  |
| 1,1-Dichloroethylene              | < 0.05               | < 0.05     |        | $(0.48)\ 0.064$ | (0.48) 0.064        |  |  |  |
| c-1,2-Dichloroethylene            | < 0.05               | < 0.05     |        | (2.5) 1.9       | (37) 55             |  |  |  |
| t-1,2-Dichloroethylene            | < 0.05               | < 0.05     |        | (2.5) 1.3       | (9.3) 1.3           |  |  |  |
| 1,2-Dichloropropane               | < 0.05               | < 0.05     |        | (0.68) 0.16     | (0.68) 0.16         |  |  |  |
| 1,3-Dichloropropene (cis-+trans-) | < 0.05               | < 0.05     |        | (0.081) 0.059   | (0.21) 0.18         |  |  |  |
| Ethylbenzene                      | < 0.05               | < 0.05     |        | (1.6) 1.1       | (19) 9.5            |  |  |  |
| Ethylene Dibromide                | < 0.05               | < 0.05     |        | 0.05            | 0.05                |  |  |  |
| Hexane (n)                        | < 0.05               | < 0.05     |        | (88) 46         | (88) 46             |  |  |  |
| Methyl Ethyl Ketone               | < 0.5                | < 0.5      |        | (88) 70         | (88) 70             |  |  |  |
| Methyl Isobutyl Ketone            | < 0.5                | < 0.5      |        | (210) 31        | (210) 31            |  |  |  |
| Methyl tert-butyl Ether           | < 0.05               | < 0.05     |        | (2.3) 1.6       | (3.2) 11            |  |  |  |
| Methylene Chloride                | < 0.05               | < 0.05     |        | (2) 1.6         | (2) 1.6             |  |  |  |
| Styrene                           | < 0.05               | < 0.05     |        | (43) 34         | (43) 34             |  |  |  |
| 1,1,2-Tetrachloroethane           | < 0.05               | < 0.05     |        | (0.11) 0.087    | (0.11) 0.087        |  |  |  |
| 1,1,2,2-Tetrachloroethane         | < 0.05               | < 0.05     |        | (0.094) 0.05    | (0.094) 0.05        |  |  |  |
| Tetrachloroethylene               | < 0.05               | < 0.05     |        | (2.5) 1.9       | (21) 4.5            |  |  |  |
| Toluene                           | < 0.2                | < 0.2      |        | (9) 6.4         | (78) 68             |  |  |  |
| 1,1,1-Trichloroethane             | < 0.05               | < 0.05     |        | (12) 6.1        | (12) 6.1            |  |  |  |
| 1,1,2-Trichloroethane             | < 0.05               | < 0.05     |        | (0.11) 0.05     | (0.11) 0.05         |  |  |  |
| Trichloroethylene                 | < 0.05               | < 0.05     |        | (0.61) 0.55     | (0.61) 0.91         |  |  |  |
| Trichlorofluoromethane            | < 0.05               | < 0.05     |        | (5.8) 4         | (5.8) 4             |  |  |  |
| Vinyl Chloride                    | < 0.02               | < 0.02     |        | (0.25) 0.032    | (0.25) 0.032        |  |  |  |
| Xylenes                           | < 0.05               | < 0.05     |        | (30) 26         | (30) 26             |  |  |  |
| Surrogate Recovery (%)            |                      |            |        |                 |                     |  |  |  |
| 1,2-Dichloroethane-d4             | 133                  | 121        |        | 50-             | -140                |  |  |  |
| Toluene-d8                        | 129                  | 110        |        |                 | -140                |  |  |  |
| 4-Bromofluorobenzene              | 125                  | 113        |        |                 | -140                |  |  |  |

<sup>&</sup>lt; result obtained was below RL (Reporting Limit).

<sup>&</sup>lt;sup>1</sup> MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition;

Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition;

<sup>( )</sup> Standard value in brackets applies to medium and fine textured soils.

# **QA/QC Report**

|                                   | Blank        | RL     | LCS          | AR     | MS           | AR     |  |
|-----------------------------------|--------------|--------|--------------|--------|--------------|--------|--|
| Parameter                         | (μg/g)       |        | Recovery (%) |        | Recovery (%) |        |  |
| VOCs in Soil                      |              | 0,     |              | , ,    |              | , ,    |  |
| Acetone                           | < 0.5        | 0.5    | 134          | 50-140 | 76           | 50-140 |  |
| Benzene                           | < 0.02       | 0.02   | 104          | 60-130 | 114          | 50-140 |  |
| Bromodichloromethane              | < 0.05       | 0.05   | 109          | 50-140 | 107          | 50-140 |  |
| Bromoform                         | < 0.05       | 0.05   | 117          | 60-130 | 84           | 50-140 |  |
| Bromomethane                      | < 0.05       | 0.05   | 119          | 50-140 | 79           | 50-140 |  |
| Carbon Tetrachloride              | < 0.05       | 0.05   | 103          | 60-130 | 110          | 50-140 |  |
| Chlorobenzene                     | < 0.05       | 0.05   | 95           | 60-130 | 95           | 50-140 |  |
| Chloroform                        | < 0.05       | 0.05   | 106          | 60-130 | 126          | 50-140 |  |
| Dibromochloromethane              | < 0.05       | 0.05   | 114          | 60-130 | 94           | 50-140 |  |
| 1,2-Dichlorobenzene               | < 0.05       | 0.05   | 119          | 60-130 | 127          | 50-140 |  |
| 1,3-Dichlorobenzene               | < 0.05       | 0.05   | 123          | 60-130 | 103          | 50-140 |  |
| 1,4-Dichlorobenzene               | < 0.05       | 0.05   | 108          | 60-130 | 130          | 50-140 |  |
| Dichlorodifluoromethane           | < 0.05       | 0.05   | 119          | 50-140 | 127          | 50-140 |  |
| 1,1-Dichloroethane                | < 0.05       | 0.05   | 109          | 60-130 | 124          | 50-140 |  |
| 1,2-Dichloroethane                | < 0.05       | 0.05   | 109          | 60-130 | 111          | 50-140 |  |
| 1,1-Dichloroethylene              | < 0.05       | 0.05   | 99           | 60-130 | 105          | 50-140 |  |
| c-1,2-Dichloroethylene            | < 0.05       | 0.05   | 104          | 60-130 | 125          | 50-140 |  |
| t-1,2-Dichloroethylene            | < 0.05       | 0.05   | 107          | 60-130 | 128          | 50-140 |  |
| 1,2-Dichloropropane               | < 0.05       | 0.05   | 108          | 60-130 | 104          | 50-140 |  |
| 1,3-Dichloropropene (cis-+trans-) | < 0.05       | 0.05   | 105          | 60-130 | 116          | 50-140 |  |
| Ethylbenzene                      | < 0.05       | 0.05   | 103          | 60-130 | 103          | 50-140 |  |
| Ethylene Dibromide                | < 0.05       | 0.05   | 121          | 60-130 | 94           | 50-140 |  |
| Hexane (n)                        | < 0.05       | 0.05   | 126          | 60-130 | 69           | 50-140 |  |
| Methyl Ethyl Ketone               | < 0.5        | 0.5    | 115          | 50-140 | 71           | 50-140 |  |
| Methyl Isobutyl Ketone            | < 0.5        | 0.5    | 76           | 50-140 | 108          | 50-140 |  |
| Methyl tert-butyl Ether           | < 0.05       | 0.05   | 74           | 60-130 | 81           | 50-140 |  |
| Methylene Chloride                | < 0.05       | 0.05   | 103          | 60-130 | 108          | 50-140 |  |
| Styrene                           | < 0.05       | 0.05   | 109          | 60-130 | 94           | 50-140 |  |
| 1,1,1,2-Tetrachloroethane         | < 0.05       | 0.05   | 104          | 60-130 | 104          | 50-140 |  |
| 1,1,2,2-Tetrachloroethane         | < 0.05       | 0.05   | 111          | 60-130 | 112          | 50-140 |  |
| Tetrachloroethylene               | < 0.05       | 0.05   | 105          | 60-130 | 97           | 50-140 |  |
| Toluene                           | < 0.2        | 0.2    | 119          | 60-130 | 107          | 50-140 |  |
| 1,1,1-Trichloroethane             | < 0.05       | 0.05   | 106          | 60-130 | 115          | 50-140 |  |
| 1,1,2-Trichloroethane             | < 0.05       | 0.05   | 105          | 60-130 | 96           | 50-140 |  |
| Trichloroethylene                 | < 0.05       | 0.05   | 111          | 60-130 | 108          | 50-140 |  |
| Trichlorofluoromethane            | < 0.05       | 0.05   | 108          | 50-140 | 86           | 50-140 |  |
| Vinyl Chloride                    | < 0.02       | 0.02   | 103          | 50-140 | 117          | 50-140 |  |
| Xylenes                           | < 0.05       | 0.05   | 110          | 60-130 | 101          | 50-140 |  |
| Surrogates                        |              |        |              |        |              |        |  |
| Parameter                         | Recovery (%) | AR     | Recovery (%) | AR     | Recovery (%) | AR     |  |
| 1,2-Dichloroethane-d4             | 64           | 60-140 | 62           | 60-140 | 85           | 60-140 |  |
| Toluene-d8                        | 75           | 60-140 | 108          | 60-140 | 76           | 60-140 |  |
| 4-Bromofluorobenzene              | 77           | 60-140 | 115          | 60-140 | 94           | 60-140 |  |

#### LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

MS - Matrix Spike

# **QA/QC Report**

| Daramatar                               | Dunlingto    | AD           |   |  |  |
|-----------------------------------------|--------------|--------------|---|--|--|
| Parameter                               | Duplicate    | AR           |   |  |  |
|                                         | RPD (%)      |              |   |  |  |
| VOCs in Soil                            |              |              | 1 |  |  |
| Acetone                                 | 0.0          | 0-50         |   |  |  |
| Benzene                                 | 10           | 0-50         |   |  |  |
| Bromodichloromethane                    | 0.0          | 0-50         |   |  |  |
| Bromoform                               | 0.0          | 0-50         |   |  |  |
| Bromomethane Carbon Tetrachloride       | 0.0          | 0-50<br>0-50 |   |  |  |
| Chlorobenzene                           | 0.0          | 0-50         |   |  |  |
| Chloroform                              | 0.0          | 0-50         |   |  |  |
| Dibromochloromethane                    | 0.0          | 0-50         |   |  |  |
| 1,2-Dichlorobenzene                     | 0.0          | 0-50         |   |  |  |
| 1,3-Dichlorobenzene                     | 0.0          | 0-50         |   |  |  |
| 1,4-Dichlorobenzene                     | 0.0          | 0-50         |   |  |  |
| Dichlorodifluoromethane                 | 0.0          | 0-50         |   |  |  |
| 1.1-Dichloroethane                      | 0.0          | 0-50         |   |  |  |
| 1,2-Dichloroethane                      | 0.0          | 0-50         |   |  |  |
| 1,1-Dichloroethylene                    | 0.0          | 0-50         |   |  |  |
| c-1,2-Dichloroethylene                  | 0.0          | 0-50         |   |  |  |
| t-1,2-Dichloroethylene                  | 0.0          | 0-50         |   |  |  |
| 1,2-Dichloropropane                     | 0.0          | 0-50         |   |  |  |
| 1,3-Dichloropropene (cis-+trans-)       | 11           | 0-50         |   |  |  |
| Ethylbenzene                            | 0.0          | 0-50         |   |  |  |
| Ethylene Dibromide                      | 0.0          | 0-50         |   |  |  |
| Hexane (n)                              | 0.0          | 0-50         |   |  |  |
| Methyl Ethyl Ketone                     | 0.0          | 0-50         |   |  |  |
| Methyl Isobutyl Ketone                  | 0.0          | 0-50         |   |  |  |
| Methyl tert-butyl Ether                 | 0.0          | 0-50         |   |  |  |
| Methylene Chloride                      | 0.0          | 0-50         |   |  |  |
| Styrene                                 | 0.0          | 0-50         |   |  |  |
| 1,1,1,2-Tetrachloroethane               | 0.0          | 0-50         |   |  |  |
| 1,1,2,2-Tetrachloroethane               | 0.0          | 0-50         |   |  |  |
| Tetrachloroethylene                     | 0.0          | 0-50         |   |  |  |
| Toluene 1,1,1-Trichloroethane           | 11           | 0-50         |   |  |  |
|                                         | 0.0          | 0-50         |   |  |  |
| 1,1,2-Trichloroethane Trichloroethylene | 0.0          | 0-50<br>0-50 |   |  |  |
| Trichlorofluoromethane                  | 0.0          | 0-50         |   |  |  |
| Vinyl Chloride                          | 0.0          | 0-50         |   |  |  |
| Xylenes                                 | 12           | 0-50         |   |  |  |
| Surrogates                              | 12           | 0.50         |   |  |  |
| Parameter                               | Recovery (%) | AR           |   |  |  |
| 1,2-Dichloroethane-d4                   | 95           | 60-140       |   |  |  |
| Toluene-d8                              | 102          | 60-140       |   |  |  |
| 4-Bromofluorobenzene                    | 102          | 60-140       |   |  |  |

#### LEGEND:

AR - Acceptable Range

## **Certificate of Analysis**

| Analysis Requested: | Metals, PHCs, VOCs, PAHs, pH, EC, SAR |
|---------------------|---------------------------------------|
| Sample Description: | 2 Water and 6 Soil Samples            |

| Parameter                                            | 19-2728-3                                      | 19-2728-4  | 19-2728-5  | 19-2728-6  | Soil Sta      | indards <sup>1</sup> |  |
|------------------------------------------------------|------------------------------------------------|------------|------------|------------|---------------|----------------------|--|
|                                                      | BH 1                                           | BH 2       | BH 3       | BH 4       | Table 6       | Table 7              |  |
|                                                      | 0.75-1.20m                                     | 0.00-0.60m | 0.75-1.20m | 0.75-1.20m | I/C/C         | I/C/C                |  |
|                                                      |                                                |            | Concentrat | ion (µg/g) | •             |                      |  |
| BTEX in Soil                                         |                                                |            |            |            |               |                      |  |
| Benzene                                              | < 0.02                                         | < 0.02     | < 0.02     | < 0.02     | (0.4) 0.32    | (0.4) 0.32           |  |
| Toluene                                              | < 0.2                                          | < 0.2      | < 0.2      | < 0.2      | (9) 6.4       | (78) 68              |  |
| Ethylbenzene                                         | < 0.05                                         | < 0.05     | < 0.05     | < 0.05     | (1.6) 1.1     | (19) 9.5             |  |
| Xylenes                                              | < 0.05                                         | < 0.05     | < 0.05     | < 0.05     | (30) 26       | (30) 26              |  |
| PHCs (F <sub>1</sub> -F <sub>4</sub> ) in Soil       | PHCs (F <sub>1</sub> -F <sub>4</sub> ) in Soil |            |            |            |               |                      |  |
| $F1_{-BTEX}(C_6 - C_{10})$                           | <10                                            | <10        | <10        | <10        | (65) 55       | (65) 55              |  |
| F2 (C <sub>10</sub> - C <sub>16</sub> )              | 35                                             | 57         | 29         | 24         | (250) 230     | (250) 230            |  |
| F3 (C <sub>16</sub> - C <sub>34</sub> )              | 74                                             | < 50       | < 50       | 180        | (2,500) 1,700 | (2,500) 1,700        |  |
| F4 (C <sub>34</sub> -C <sub>50</sub> )               | < 50                                           | < 50       | < 50       | < 50       | (6,600) 3,300 | (6,600) 3,300        |  |
| Chromatogram descends to baseline by nC50 ? (Yes/No) | Yes                                            | Yes        | Yes        | Yes        |               |                      |  |
| Surrogate Recovery (%)                               |                                                |            |            |            |               |                      |  |
| 1,2-Dichloroethane-d4                                | 119                                            | 132        | 114        | 119        | 60-140        |                      |  |
| Toluene-d8                                           | 79                                             | 138        | 110        | 75         | 60-140        |                      |  |
| 4-Bromofluorobenzene                                 | 136                                            | 130        | 104        | 132        | 60            | -140                 |  |

 $F_{4G}$  (gravimetric heavy hydrocarbons) cannot be added to the  $C_6$  to  $C_{50}$  hydrocarbons.

<sup>&</sup>lt; result obtained was below RL (Reporting Limit).

<sup>&</sup>lt;sup>1</sup> MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition;

Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition;

<sup>( )</sup> Standard value in brackets applies to medium and fine textured soils.

### **Certificate of Analysis**

| Analysis Requested: | Metals, PHCs, VOCs, PAHs, pH, EC, SAR |
|---------------------|---------------------------------------|
| Sample Description: | 2 Water and 6 Soil Samples            |

| Parameter                                            | 19-2728-7  | 19-2728-8  |            |            | Soil Sta      | ndards <sup>1</sup> |  |
|------------------------------------------------------|------------|------------|------------|------------|---------------|---------------------|--|
|                                                      | BH 5       | BH 6       |            |            | Table 6       | Table 7             |  |
|                                                      | 0.75-1.20m | 0.75-1.20m |            |            | I/C/C         | I/C/C               |  |
|                                                      |            |            | Concentrat | ion (μg/g) |               |                     |  |
| BTEX in Soil                                         |            |            |            |            |               |                     |  |
| Benzene                                              | < 0.02     | < 0.02     |            |            | (0.4) 0.32    | (0.4) 0.32          |  |
| Toluene                                              | < 0.2      | < 0.2      |            |            | (9) 6.4       | (78) 68             |  |
| Ethylbenzene                                         | < 0.05     | < 0.05     |            |            | (1.6) 1.1     | (19) 9.5            |  |
| Xylenes                                              | < 0.05     | < 0.05     |            |            | (30) 26       | (30) 26             |  |
| PHCs (F <sub>1</sub> -F <sub>4</sub> ) in Soil       |            |            |            |            |               |                     |  |
| $F1_{-BTEX}(C_6 - C_{10})$                           | <10        | <10        |            |            | (65) 55       | (65) 55             |  |
| F2 (C <sub>10</sub> - C <sub>16</sub> )              | 30         | 45         |            |            | (250) 230     | (250) 230           |  |
| F3 (C <sub>16</sub> - C <sub>34</sub> )              | < 50       | < 50       |            |            | (2,500) 1,700 | (2,500) 1,700       |  |
| F4 (C <sub>34</sub> -C <sub>50</sub> )               | < 50       | < 50       |            |            | (6,600) 3,300 | (6,600) 3,300       |  |
| Chromatogram descends to baseline by nC50 ? (Yes/No) | Yes        | Yes        |            |            |               |                     |  |
| Surrogate Recovery (%)                               |            |            |            |            |               |                     |  |
| 1,2-Dichloroethane-d4                                | 133        | 121        |            |            | 60-140        |                     |  |
| Toluene-d8                                           | 129        | 110        |            |            | 60-140        |                     |  |
| 4-Bromofluorobenzene                                 | 125        | 113        |            |            | 60-140        |                     |  |

 $F_{4G}$  (gravimetric heavy hydrocarbons) cannot be added to the  $C_6$  to  $C_{50}$  hydrocarbons.

<sup>&</sup>lt; result obtained was below RL (Reporting Limit).

<sup>&</sup>lt;sup>1</sup> MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition;

 $<sup>\</sup>textbf{Table 7}{:} \ Generic \ Site \ Condition \ Standards \ for \ Shallow \ Soils \ in \ a \ Non-Potable \ Ground \ Water \ Condition;$ 

<sup>( )</sup> Standard value in brackets applies to medium and fine textured soils.

## **QA/QC Report**

| Parameter                                      | Blank        | RL     | LCS          | AR     | MS           | AR     |
|------------------------------------------------|--------------|--------|--------------|--------|--------------|--------|
|                                                | (μg/g)       |        | Recovery (%) |        | Recovery (%) |        |
| BTEX in Soil                                   |              |        |              |        |              |        |
| Benzene                                        | < 0.02       | 0.02   | 104          | 60-130 | 114          | 50-140 |
| Toluene                                        | < 0.2        | 0.2    | 119          | 60-130 | 107          | 50-140 |
| Ethylbenzene                                   | < 0.05       | 0.05   | 103          | 60-130 | 103          | 50-140 |
| Xylenes                                        | < 0.05       | 0.05   | 110          | 60-130 | 101          | 50-140 |
| PHCs (F <sub>1</sub> -F <sub>4</sub> ) in Soil |              |        |              |        |              |        |
| $F1_{-BTEX}(C_6 - C_{10})$                     | <10          | 10     | 119          | 80-120 | 107          | 60-140 |
| F2 (C <sub>10</sub> - C <sub>16</sub> )        | <10          | 10     | 99           | 80-120 | 88           | 60-140 |
| F3 (C <sub>16</sub> - C <sub>34</sub> )        | < 50         | 50     | 97           | 80-120 | 92           | 60-140 |
| F4 (C <sub>34</sub> -C <sub>50</sub> )         | < 50         | 50     | 106          | 80-120 | 83           | 60-140 |
| Surrogates                                     |              |        |              |        |              |        |
| Parameter                                      | Recovery (%) | AR     | Recovery (%) | AR     | Recovery (%) | AR     |
| 1,2-Dichloroethane-d4                          | 64           | 60-140 | 62           | 60-140 | 85           | 60-140 |
| Toluene-d8                                     | 75           | 60-140 | 108          | 60-140 | 76           | 60-140 |
| 4-Bromofluorobenzene                           | 77           | 60-140 | 115          | 60-140 | 94           | 60-140 |

#### LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

AR - Acceptable Range

BTEX should be subtracted from  $F_1$ , Naphthalene from  $F_2$  and selected PAHs from  $F_3$  if BTEX/PAHs are analyzed, then report  $F_{1\text{-BTEX}}$ ,  $F_{2\text{-Naph.}}$  and  $F_{3\text{-PAH}}$ .  $nC_{50}$  response factor was within 70% of  $nC_{10}+nC_{16}+nC_{34}$  average.

## **QA/QC** Report

| Parameter                               | Duplicate                                      | AR     |  |   |  |  |
|-----------------------------------------|------------------------------------------------|--------|--|---|--|--|
|                                         | RPD (%)                                        |        |  | • |  |  |
| BTEX in Soil                            |                                                |        |  |   |  |  |
| Benzene                                 | 10                                             | 0-50   |  |   |  |  |
| Toluene                                 | 11                                             | 0-50   |  |   |  |  |
| Ethylbenzene                            | 11                                             | 0-50   |  |   |  |  |
| Xylenes                                 | 12                                             | 0-50   |  |   |  |  |
| PHCs $(F_1-F_4)$ in Soil                | PHCs (F <sub>1</sub> -F <sub>4</sub> ) in Soil |        |  |   |  |  |
| $F1_{-BTEX}(C_6 - C_{10})$              | 16                                             | 0-30   |  |   |  |  |
| F2 (C <sub>10</sub> - C <sub>16</sub> ) | 15                                             | 0-30   |  |   |  |  |
| F3 (C <sub>16</sub> - C <sub>34</sub> ) | 12                                             | 0-30   |  |   |  |  |
| F4 (C <sub>34</sub> -C <sub>50</sub> )  | 0.0                                            | 0-30   |  |   |  |  |
| Surrogates                              |                                                |        |  |   |  |  |
| Parameter                               | Recovery (%)                                   | AR     |  |   |  |  |
| 1,2-Dichloroethane-d4                   | 95                                             | 60-140 |  |   |  |  |
| Toluene-d8                              | 102                                            | 60-140 |  |   |  |  |
| 4-Bromofluorobenzene                    | 102                                            | 60-140 |  |   |  |  |

#### **LEGEND:**

RPD - Relative Percent Difference

## **Certificate of Analysis**

| Analysis Requested: | Metals, PHCs, VOCs, PAHs, pH, EC, SAR |
|---------------------|---------------------------------------|
| Sample Description: | 2 Water and 6 Soil Samples            |

| Parameter                | 19-2728-3  | 19-2728-5  | 19-2728-8  |            | Soil Standards <sup>1</sup> |             |  |
|--------------------------|------------|------------|------------|------------|-----------------------------|-------------|--|
|                          | BH 1       | BH 3       | BH 6       |            | Table 6                     | Table 7     |  |
|                          | 0.75-1.20m | 0.75-1.20m | 0.75-1.20m |            | I/C/C                       | I/C/C       |  |
|                          |            |            | Concentrat | ion (μg/g) |                             |             |  |
| PAHs in Soil             |            |            |            |            |                             |             |  |
| Naphthalene              | < 0.05     | < 0.05     | < 0.05     |            | (28) 9.6                    | (28) 9.6    |  |
| 2-Methylnaphthalene      | < 0.05     | < 0.05     | < 0.05     |            | (42) 30                     | (85) 76     |  |
| 1-Methylnaphthalene      | < 0.05     | < 0.05     | < 0.05     |            | (42) 30                     | (63) 70     |  |
| Acenaphthylene           | < 0.05     | < 0.05     | < 0.05     |            | (0.17) 0.15                 | (0.17) 0.15 |  |
| Acenaphthene             | < 0.05     | < 0.05     | < 0.05     |            | (29) 21                     | 96          |  |
| Fluorene                 | < 0.05     | < 0.05     | < 0.05     |            | (69) 62                     | (69) 62     |  |
| Phenanthrene             | < 0.05     | < 0.05     | < 0.05     |            | (16) 12                     | (16) 12     |  |
| Anthracene               | < 0.05     | < 0.05     | < 0.05     |            | $(0.74)\ 0.67$              | (0.74) 0.67 |  |
| Fluoranthene             | < 0.05     | < 0.05     | < 0.05     |            | 9.6                         | 9.6         |  |
| Pyrene                   | < 0.05     | < 0.05     | < 0.05     |            | 96                          | 96          |  |
| Benzo [a] anthracene     | < 0.05     | < 0.05     | < 0.05     |            | 0.96                        | 0.96        |  |
| Chrysene                 | < 0.05     | < 0.05     | < 0.05     |            | 9.6                         | 9.6         |  |
| Benzo [b] fluoranthene   | < 0.05     | < 0.05     | < 0.05     |            | 0.96                        | 0.96        |  |
| Benzo [k] fluoranthene   | < 0.05     | < 0.05     | < 0.05     |            | 0.96                        | 0.96        |  |
| Benzo [a] pyrene         | < 0.05     | < 0.05     | < 0.05     |            | 0.3                         | 0.3         |  |
| Indeno [1,2,3-cd] pyrene | < 0.1      | < 0.1      | < 0.1      |            | (0.95) 0.76                 | (0.95) 0.76 |  |
| Dibenzo [a,h] anthracene | < 0.1      | < 0.1      | < 0.1      |            | 0.1                         | 0.1         |  |
| Benzo [g,h,i] perylene   | < 0.1      | < 0.1      | < 0.1      |            | 9.6                         | 9.6         |  |
| Surrogate Recovery (%)   |            |            |            |            |                             |             |  |
| Naphthalene-d8           | 83         | 125        | 108        |            | 50-140                      |             |  |
| Phenanthrene-d10         | 93         | 81         | 82         |            | 50-140                      |             |  |
| Chrysene-d12             | 81         | 87         | 76         |            | 50-140                      |             |  |

<sup>&</sup>lt; result obtained was below RL (Reporting Limit).

<sup>&</sup>lt;sup>1</sup> MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition;

 $<sup>\</sup>textbf{Table 7}{:} \textbf{ Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition;}$ 

<sup>( )</sup> Standard value in brackets applies to medium and fine textured soils.

# **QA/QC Report**

| Parameter                | Blank        | RL     | LCS          | AR     | MS           | AR     |
|--------------------------|--------------|--------|--------------|--------|--------------|--------|
|                          | (μg/g)       |        | Recovery (%) |        | Recovery (%) |        |
| PAHs in Soil             |              |        |              |        |              |        |
| Naphthalene              | < 0.05       | 0.05   | 116          | 50-140 | 105          | 50-140 |
| 2-Methylnaphthalene      | < 0.05       | 0.05   | 102          | 50-140 | 83           | 50-140 |
| 1-Methylnaphthalene      | < 0.05       | 0.05   | 93           | 50-140 | 103          | 50-140 |
| Acenaphthylene           | < 0.05       | 0.05   | 104          | 50-140 | 83           | 50-140 |
| Acenaphthene             | < 0.05       | 0.05   | 108          | 50-140 | 85           | 50-140 |
| Fluorene                 | < 0.05       | 0.05   | 95           | 50-140 | 113          | 50-140 |
| Phenanthrene             | < 0.05       | 0.05   | 107          | 50-140 | 102          | 50-140 |
| Anthracene               | < 0.05       | 0.05   | 100          | 50-140 | 91           | 50-140 |
| Fluoranthene             | < 0.05       | 0.05   | 95           | 50-140 | 95           | 50-140 |
| Pyrene                   | < 0.05       | 0.05   | 93           | 50-140 | 91           | 50-140 |
| Benzo [a] anthracene     | < 0.05       | 0.05   | 109          | 50-140 | 109          | 50-140 |
| Chrysene                 | < 0.05       | 0.05   | 98           | 50-140 | 99           | 50-140 |
| Benzo [b] fluoranthene   | < 0.05       | 0.05   | 103          | 50-140 | 87           | 50-140 |
| Benzo [k] fluoranthene   | < 0.05       | 0.05   | 102          | 50-140 | 93           | 50-140 |
| Benzo [a] pyrene         | < 0.05       | 0.05   | 112          | 50-140 | 97           | 50-140 |
| Indeno [1,2,3-cd] pyrene | < 0.1        | 0.1    | 119          | 50-140 | 109          | 50-140 |
| Dibenzo [a,h] anthracene | < 0.1        | 0.1    | 114          | 50-140 | 102          | 50-140 |
| Benzo [g,h,i] perylene   | < 0.1        | 0.1    | 111          | 50-140 | 105          | 50-140 |
| Surrogates               |              |        |              |        |              |        |
| Parameter                | Recovery (%) | AR     | Recovery (%) | AR     | Recovery (%) | AR     |
| Naphthalene-d8           | 107          | 50-140 | 133          | 50-140 | 103          | 50-140 |
| Phenanthrene-d10         | 82           | 50-140 | 70           | 50-140 | 68           | 50-140 |
| Chrysene-d12             | 115          | 50-140 | 87           | 50-140 | 83           | 50-140 |

#### LEGEND:

RL - Reporting Limit

MS - Matrix Spike

AR - Acceptable Range

LCS - Laboratory Control Sample

# **QA/QC Report**

| Parameter                | Duplicate    | AR     |   |    |   |  |
|--------------------------|--------------|--------|---|----|---|--|
|                          | RPD (%)      |        |   | -1 |   |  |
| PAHs in Soil             |              |        | 1 |    | 1 |  |
| Naphthalene              | 0.0          | 0-40   |   |    |   |  |
| 2-Methylnaphthalene      | 0.0          | 0-40   |   |    |   |  |
| 1-Methylnaphthalene      | 0.0          | 0-40   |   |    |   |  |
| Acenaphthylene           | 0.0          | 0-40   |   |    |   |  |
| Acenaphthene             | 0.0          | 0-40   |   |    |   |  |
| Fluorene                 | 0.0          | 0-40   |   |    |   |  |
| Phenanthrene             | 0.0          | 0-40   |   |    |   |  |
| Anthracene               | 0.0          | 0-40   |   |    |   |  |
| Fluoranthene             | 0.0          | 0-40   |   |    |   |  |
| Pyrene                   | 0.0          | 0-40   |   |    |   |  |
| Benzo [a] anthracene     | 0.0          | 0-40   |   |    |   |  |
| Chrysene                 | 0.0          | 0-40   |   |    |   |  |
| Benzo [b] fluoranthene   | 0.0          | 0-40   |   |    |   |  |
| Benzo [k] fluoranthene   | 0.0          | 0-40   |   |    |   |  |
| Benzo [a] pyrene         | 0.0          | 0-40   |   |    |   |  |
| Indeno [1,2,3-cd] pyrene | 0.0          | 0-40   |   |    |   |  |
| Dibenzo [a,h] anthracene | 0.0          | 0-40   |   |    |   |  |
| Benzo [g,h,i] perylene   | 0.0          | 0-40   |   |    |   |  |
| Surrogates               |              |        |   |    |   |  |
| Parameter                | Recovery (%) | AR     |   |    |   |  |
| Naphthalene-d8           | 104          | 50-140 |   |    |   |  |
| Phenanthrene-d10         | 87           | 50-140 |   |    |   |  |
| Chrysene-d12             | 96           | 50-140 |   |    |   |  |

#### LEGEND:

AR - Acceptable Range

## **Certificate of Analysis**

| Analysis Requested: | Metals, PHCs, VOCs, PAHs, pH, EC, SAR |
|---------------------|---------------------------------------|
| Sample Description: | 2 Water and 6 Soil Samples            |

| Parameter           | 19-2728-3  |  |  | Soil Standards * |
|---------------------|------------|--|--|------------------|
|                     | BH 1       |  |  |                  |
|                     | 0.75-1.20m |  |  |                  |
| <b>pH</b> (pH unit) | 7.12       |  |  | (5-11) 5-9       |

<sup>\*</sup> Surface soil pH value from 5 - 9, Sub-surface soil pH value from 5-11.

## QA/QC Report

| Parameter           | LCS  | AR        | Duplicate | AR    |  |
|---------------------|------|-----------|-----------|-------|--|
|                     |      | Absolu    |           |       |  |
| <b>pH</b> (pH unit) | 7.00 | 6.90-7.20 | 0.05      | < 0.3 |  |

#### LEGEND:

LCS - Laboratory Control Sample

### **Certificate of Analysis**

| Analysis Requested: | Metals, PHCs, VOCs, PAHs, pH, EC, SAR |
|---------------------|---------------------------------------|
| Sample Description: | 2 Water and 6 Soil Samples            |

|               | 19-2728-3  | 19-2728-5  | 19-2728-8  |  | Soil Standards <sup>1</sup> |
|---------------|------------|------------|------------|--|-----------------------------|
| Parameter     | BH 1       | BH 3       | BH 6       |  |                             |
|               | 0.75-1.20m | 0.75-1.20m | 0.75-1.20m |  |                             |
| SAR (no unit) | 0.36       | 0.05       | 0.20       |  | 12                          |

<sup>&</sup>lt;sup>1</sup> MOE - Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

Industrial/Commercial/Community Property use (I/C/C);

### **QA/QC** Report

| Parameter     | LCS  |           | Duplicate | AR   |   |  |
|---------------|------|-----------|-----------|------|---|--|
| r ai ailletei |      |           | RPD (%)   |      | · |  |
| SAR (no unit) | 0.39 | 0.30-0.50 | 1.2       | 0-30 |   |  |

#### LEGEND:

LCS - Laboratory Control Sample

AR - Acceptable Range

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition;

 $<sup>\</sup>textbf{Table 7}{:} \ Generic \ Site \ Condition \ Standards \ for \ Shallow \ Soils \ in \ a \ Non-Potable \ Ground \ Water \ Condition;$ 

<sup>( )</sup> Standard value in brackets applies to medium and fine textured soils.

## **Certificate of Analysis**

| Analysis Requested: | Metals, PHCs, VOCs, PAHs, pH, EC, SAR |
|---------------------|---------------------------------------|
| Sample Description: | 2 Water and 6 Soil Samples            |

|            | 19-2728-3  | 19-2728-5  | 19-2728-8  |  | Soil Standards 1 |
|------------|------------|------------|------------|--|------------------|
| Parameter  | BH 1       | BH 3       | BH 6       |  |                  |
|            | 0.75-1.20m | 0.75-1.20m | 0.75-1.20m |  |                  |
| EC (mS/cm) | 0.26       | 0.15       | 0.13       |  | 1.4              |

 $<sup>^{1}\,</sup>MOE\,-\,Soil, Ground\,Water\,and\,Sediment\,Standards\,for\,Use\,Under\,Part\,XV.1\,of\,the\,Environmental\,Protection\,Act,\,April\,15,\,2011.$ 

### **QA/QC Report**

| Parameter  | Blank  |      | LCS          | AR     | Duplicate | AR   |
|------------|--------|------|--------------|--------|-----------|------|
| Farameter  |        |      | Recovery (%) |        | RPD (%)   |      |
| EC (mS/cm) | < 0.01 | 0.01 | 104          | 90-110 | 2.3       | 0-10 |

#### LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

AR - Acceptable Range

Table 6: Generic Site Condition Standards for Shallow Soils in a Potable Ground Water Condition;

**Table 7**: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition; Industrial/Commercial/Community Property use (I/C/C);

<sup>( )</sup> Standard value in brackets applies to medium and fine textured soils.

## **Certificate of Analysis**

| Analysis Requested: | Metals, PHCs, VOCs, PAHs, pH, EC, SAR |
|---------------------|---------------------------------------|
| Sample Description: | 2 Water and 6 Soil Samples            |

| Parameter            | 19-2728-3  | 19-2728-4  | 19-2728-5  | 19-2728-6  | 19-2728-7  | 19-2728-8  |
|----------------------|------------|------------|------------|------------|------------|------------|
|                      | BH 1       | BH 2       | BH 3       | BH 4       | BH 5       | BH 6       |
|                      | 0.75-1.20m | 0.00-0.60m | 0.75-1.20m | 0.75-1.20m | 0.75-1.20m | 0.75-1.20m |
| Moisture Content (%) | 10         | 12         | 12         | 11         | 13         | 14         |

# **QA/QC Report**

| Parameter            | Blank | RL  | LCS          | AR     | Duplicate | AR   |
|----------------------|-------|-----|--------------|--------|-----------|------|
|                      |       |     | Recovery (%) |        | RPD (%)   |      |
| Moisture Content (%) | < 0.1 | 0.1 | 99           | 70-130 | 1.0       | 0-20 |

#### LEGEND:

RL - Reporting Limit

LCS - Laboratory Control Sample

AR - Acceptable Range