HYDROGEOLOGICAL STUDY 6793 HIR AM DRIVE OSGOODE WARD, GREELY CITY OF OTTAWA ONT ARIO

Submitted to:

Mr. Natale Giust
3226 Woodroffe Avenue
Nepean, Ontario K2J 4G5
$2^{\text {nd }}$ REVISION DATE April 29, 2020
$1^{\text {st }}$ REVISION DATE June 28, 2019
DATE
April 22, 2019

DISTRIBUTION

3 copies
City of Ottawa
1 copy
Kollaard Associates Inc.
180938

RE:	HYDROGEOLOGICAL AND TERRAIN STUDY
	EXISTING SUPPLY WELL
	PROPOSED LIGHT INDUSTRIAL BUILDING
	6793 HIRAM DRIVE, GREELY
	CITY OF OTTAWA, ONTARIO

Dear Sir:

This letter presents the results of an evaluation of the water quality and quantity for the well that will supply water for the above noted proposed light industrial development at 6793 Hiram Drive in the City of Ottawa, Ontario (see Key Plan, Figure 1). It is understood that the proposed light industrial development is to consist of an auto mechanics shop with an accessory office use.

The well in question was constructed by Air Rock Drilling Company of Richmond, Ontario on March 19, 2019. A Ministry of the Environment. Conservation and Parks (MECP) Well Record for the subject well (TW1) and the Certificate of Well Compliance, provided by the well driller, are provided as Attachment A.

A pumping test was carried out at the well, TW1, by a member of our engineering staff on April 4, 2019. The testing consisted of a 6 hour duration constant discharge rate pumping test. During the pumping test, water level measurements were made both manually and using a pressure transducer to monitor the drawdown of the water level in the well in response to pumping. Groundwater samples were collected from TW1 at about hour 3 and at hour 6 of the pumping test to characterize groundwater quality. After the pumping period, the pump was shut off and the recovery of the water level in the well was monitored for a period of time until at least 95 percent of the drawdown created during pumping had been recovered or for at least 24 hours, whichever is less.

Groundwater Supply Evaluation

Water Demand

The water demand is calculated using the information from the sewage system daily design flow and the City of Ottawa Water Distribution Guidelines, 2010. The sewage design flows are provided below, based on the sewage design (sewage design provided in Site Servicing Report prepared by Kollaard Associates Inc. as Appendix C of that document). The calculations are as follows:

Daily sewage design flow:

- Office building, per employee per eight hour shift = 75 Litres/employee/day x $8=750$ L/day
- Warehouse, per water closet (1) And per loading bay (3) = 950 L/day +150 L/bay/day $\times 3=$ 1400 L/day
- Total daily design flow $=2150$ litres $/$ day

Since sewage system design is based on the maximum expected daily use, it is equivalent to the Average Daily Demand (ADD). The ADD is based on an eight hour operation schedule (i.e. full day occurs over an eight hour period and not over 24 hours

City of Ottawa calculates the Maximum Hour Demand (MHD) for a commercial or industrial demand to be $1.8 \times$ ADD

$$
\begin{aligned}
\text { ADD } & =2150 \text { litres/day } \times 1 \text { day } / 8 \text { hours } \times 1 \text { hour } / 60 \text { minutes } \\
& =4.5 \text { litres } / \text { minute }
\end{aligned}
$$

```
MHD = 1.8 x ADD
    = 1.8 x 4.5 litres/minute
    = 8.1 litres/minute
```

Alternatively, the City of Ottawa Water Distribution Guideline Section 4.2 .8 indicates the average water demand for light industrial usage is $35,000 \mathrm{~L} / \mathrm{gross}$ ha/day. The gross area of the developable footprint on the site is 0.30 hectares.

```
ADD = 0.3027 ha x 35,000 L/gross ha/day
    = 7.4 L/min
MHD = 7.4 L/min x 1.8 = 13.3 L/min
```

Using the more conservative figure for groundwater usage, the City of Ottawa predicated water usage for ADD and MHD of $7.4 \mathrm{~L} / \mathrm{min}$ and $13.3 \mathrm{~L} / \mathrm{min}$, respectively are used.

The Maximum Hourly Demand for the site based on its proposed use is expected to be about 13.3 litres/minute, compared to the pumping test rate which was 49 litres/minute.

Water Quantity

The well was pumped for six hours at a pumping rate of about 49 litres per minute. Over the course of the pumping test, the water level in the well dropped some 6.55 metres. At the end of the pumping test, about 4 hours and 15 minutes were required for 95 percent recovery of the total drawdown in the static water level created during pumping. Full recovery occurred in less than 8 hours.

The pumping test drawdown and recovery data and plots for TW1 are provided as Attachment B. The drawdown and recovery data provided were measured with reference to the top of the well casing at the test well location.

The pumping test data for the test well was analyzed using the method of Cooper and Jacob (1946). Although the assumptions on which these equations are based are not strictly met, this method provides a reasonable estimate of the aquifer transmissivity.

Transmissivity was calculated using the following relationship:

$$
T=\frac{2.3 Q}{4 \pi d s}
$$

where Q is the pump rate, $\mathrm{m}^{3} /$ day
$d s$ is the change in drawdown over one time log cycle, m
T is the transmissivity, $\mathrm{m}^{2} /$ day

Specific Capacity $=$ Q / TD

$$
\begin{aligned}
& =70.7 \mathrm{~m}^{3} / \mathrm{day} / 6.55 \mathrm{~m} \\
& =10.8 \mathrm{~m}^{3} / \mathrm{day} / \mathrm{m}
\end{aligned}
$$

where $\mathrm{Q}=$ test pumping rate ($\mathrm{m}^{3} /$ day)
TD = total drawdown (m)
Based on the pumping test drawdown data the transmissivity of the aquifer is estimated to be about $8.5 \mathrm{~m}^{2} /$ day. Based on the recovery data the aquifer transmissivity is estimated to be about 5.5 $\mathrm{m}^{2} /$ day. It should be noted that pumping tests should typically be carried out for a period of between 24 hours or greater to establish transmissivity for a confined aquifer in order to assess boundary conditions. However, the test was sufficient to establish that the specific capacity for the well pumping at the test rate is sufficient to supply 10,800 litres of water per day per metre of drawdown. The available drawdown at the well is about 25.6 metres (based on recommended pump depth and static water level at the time of the test). As the expected maximum daily water demand is only 2150 litres per day, expected drawdowns at the well should be well within the available drawdown for the well.

Water Quality

To determine the water quality of the groundwater supply, groundwater samples were obtained from the well during the pumping test and prepared/preserved in the field using appropriate techniques and submitted to Eurofins Environmental Testing in Ottawa, Ontario for the chemical, physical and bacteriological analyses listed in the MECP guideline entitled Procedure D-5-5, Technical Guideline for Private Wells: Water Supply Assessment, August 1996. The temperature, conductivity, pH, total dissolved solids, turbidity and residual chlorine levels of the groundwater were measured and qualitative observations of the odour and colour of the groundwater were made at periodic intervals during the pumping test. The results of the chemical, physical and bacteriological analyses of the water samples obtained from the test well and the field water quality are provided as Attachment C and in Table I, respectively.

The water quality as determined from the results of the analyses is acceptable. The water meets all the Ontario Drinking Water Standards (ODWS) health and aesthetic parameters tested for at the test well except for aesthetic objectives for hardness, total dissolved solids and hydrogen sulphide. Sodium is above the $20 \mathrm{mg} / \mathrm{l}$ medical advisory limit for those on sodium restricted diets.

Hardness

The water is considered to be hard by water treatment standards. Water with hardness above 80 to 100 milligrams per litre as CaCO_{3} is often softened for domestic use. The hardness at the well is 183 milligrams per litre. Since the water supply at the site is not being used for domestic uses, and the water is considered to be moderately hard (i.e. less than $200 \mathrm{mg} / \mathrm{l}$), the owner should consider
whether the water requires treatment to reduce hardness (See Comments below on Total Dissolved Solids and Sulphides for further information regarding corrosivity). Treatment consisting of water softening by conventional sodium ion exchange may introduce relatively high concentrations of sodium into the drinking water, increasing the corrosive potential of the water. Treatment by water softening can also contribute a significant percentage to the daily sodium intake for a consumer on a sodium restricted diet. Where ion exchange water softeners are used, a separate unsoftened water supply could be used for drinking and culinary purposes.

Total Dissolved Solids

The total dissolved solids (TDS) were measured at 495 and 522 milligrams per litre after three and six hours of pumping, respectively, and may be above the ODWS of 500 milligrams per litre. The Ryznar Stability Indices (RSI) and Langelier Saturation Indices (LSI) were calculated for the samples obtained and gave RSI values of 7.32 to 7.45 , and LSI of 0.17 to 0.30 , respectively, indicating that the water is there is little scale potential and that the water may be mildly corrosive. The effect of elevated TDS levels on drinking water depends on the individual components, which are principally chlorides, sulphates, calcium, magnesium and bicarbonates. Depending on which parameters are elevated, TDS exceedances can include hardness, taste, mineral deposition or corrosion. In this case, the water samples had moderate levels of hardness. Chloride is well within its aesthetic objective and is not elevated enough to affect the taste of the water significantly. Sodium is a bit elevated but well within the aesthetic objectives of $200 \mathrm{mg} / \mathrm{l}$ for taste.

Sulphides

The sulphides levels of the samples obtained were about 0.48 to 0.53 milligrams per litre after three and six hours of pumping, respectively, compared to the aesthetic objective of 0.05 milligrams per litre, as hydrogen sulphide. Sulphide produces taste, odour and staining of laundry items and can cause deterioration of fixtures (appliances, hot water tanks) reducing their life span. The MECP Technical Guideline for Water Supply Assessment (1992) indicates that the maximum concentration considered reasonably treatable using a proprietary filter media is up to 1.0 milligram/litre. It can also be removed using aeration or manganese greensand filter.

Sodium

The sodium level in the water is about $86 \mathrm{mg} / \mathrm{I}$. The ODWSOG states that "the local Medical Officer of Health should be notified when the sodium concentration exceeds $20 \mathrm{mg} / \mathrm{l}$ so that this information may be communicated to local physicians for their use with patients on sodium restricted diets."

TERRAIN STUDY

The field work for this investigation was carried out on April 2, 2019, at which time two boreholes numbered BH 1 and BH 2 were put down at the site using a track mounted drill rig equipped with a hollow stem auger owned and operated by Marathon Drilling of Greely, Ontario. A description of the subsurface conditions encountered at the boreholes is given in the attached Record of Borehole Sheets. The approximate locations of the boreholes are shown on the attached Site Plan, Figure 2.

In general, the upper overburden materials encountered at the site are indicated to consist of fill overlying topsoil followed by a deposit of silty sand (BH2) or silt (BH1).

The size of the septic envelopes are a function of the percolation time of the native soil in the vicinity of the septic envelope and/or the fill used for construction of a septic bed and the daily effluent loading to the septic bed. The percolation rate for the silty sand encountered at the site is 15 minutes per centimetre.

The sewage design is based on a daily design flow of 2150 Litres per day on the design flow information.

The septic system envelope area (septic envelope) represents the area on a lot set aside for the construction of the leaching bed and is for the leaching bed only and does not include that area required for the septic tank or the isolation/separation distances required by the Ontario Building Code. The deposit or disposal of any materials or the placement of any structure or the operation of any equipment, other than material, structures or equipment required for the construction of the sewage system within or upon the septic envelope is prohibited.

The sewage design for the site consists of a Level 4 treatment unit (Waterloo Biofilter) and a shallow buried trench system which is to be timer dosed to ensure uniform dispersal. The proposed leaching bed will occupy an area of about 104 square metres in the northeast portion of the site. The location of the sewage system is shown on the Site Plan (180938-SP) provided under separate cover as part of a Development Application with the City of Ottawa. An imported sand layer of about 0.45 metres thickness (above the native silty sand layer after topsoil and fill are removed) having a percolation time of between 6 and 8 minutes per centimetre with less than 5 percent passing the \#200 $(0.074 \mathrm{~mm})$ sieve will be used to construct the leaching bed. It is recommended that gradation analyses be carried out on any potential sand fill prior to leaching bed construction in order to verify that the percolation time of the fill material is acceptable.

Adjacent Sewage Systems

- The adjacent property north of the site (6799 Hiram Drive) is vacant and there is no sewage system on that site.
- The adjacent property south of the site (6787 Hiram Drive) is currently under Development Review. The proposed sewage system is located in the northwest portion of that site with their existing drilled well located in the southwest portion of that site. This is based on a review of a drawing entitled Site Plan \& Landscape Plan, prepared by C. Enendu, revision 1, dated June 18, 2018.
- Based on the proposed well and sewage system locations on the subject property and that of the adjacent property to the south, there are no concerns with meeting the Ontario Building Code separation distances between the proposed sewage systems and existing wells.
- Any future well proposed on the adjacent undeveloped property to the north at 6799 Hiram Drive, would need to be constructed to ensure that the required separation distance of at least 16.1 metres (twice the grade raise of the proposed sewage bed plus 15 metres) is maintained between the proposed well on that property and the sewage system on the subject lot. There is currently about 3.2 metres of distance between the proposed sewage system and the property line to the north.

Based on the terrain information provided, there is sufficient space at the site to accommodate a sewage system. The proposed sewage system design consists of a Level Four treatment which provides a high level of sewage effluent treatment prior to disposal.

WELLHEAD PROTECTION / FLOODPLAIN CONSIDERATIONS

The supply well is located within the southeast portion of the site, while the location of the proposed septic system is within the northeast portion of the site, and is greater than 16.2 metres distance from the well location. It is understood that grey water is directed to a holding tank located inside
the building. The well casing was observed to extend about 600 millimetres above grade. The Site Grading Plan (Kollaard Drawing 180938-GR) indicates that the proposed finished grade elevation at the well location is about 100.30 metres geodetic. The top of the well casing shall be at a minimum elevation of at least 100.70 metres to ensure that is at least 400 millimetres above the finished grade at the well location.

Additionally, the ground surface shall be graded such that the well is the highest point on the ground surface within 3 metres radially from the exterior of the well casing and shall ensure that water does not collect or pond near the well head. The well has been properly grouted and cased to a depth of about 17.3 metres below the existing ground surface. The well is physically separated from the adjacent driveway and parking lot by the placement of armour stone. With these measures in place, it is considered that an adequate amount of wellhead protection is going to be in place to protect the water supply for the proposed light industrial use of the property. The well location is also appropriate for access in case of repairs and well maintenance.

Recommendations for wellhead protection include ensuring that potential contaminant sources are at least 15 metres or more from the well. Possible contaminant sources include; chemical storage, garage and related chemicals, such as antifreeze, gasoline, oils, vehicle/boat/equipment storage, sewer lines, septic systems, animal enclosures, manure or compost piles. The stormwater pond is located in the southwest portion of the site and is at least 15 metres away from the well location. Grey water is to be stored in a holding tank inside the building. If liquid chemicals, such as antifreeze, oil and gasoline/diesel, and their waste products, are to be stored at the site, they should be stored in containers approved for that purpose. The container(s) should be labelled with their contents. Secondary containment should be installed around all bulk liquid chemical or waste storage containers, to collect and contain leaks and spills from the tank and all connections. It is understood that all chemical storage at the site is to be located within the building. This is sufficient secondary storage to ensure protection of the well.

Recommendations for well maintenance include; inspect wellhead annually to ensure that the casing is structurally sound, verify well cap is sealed and that surface water is not pooling around wellhead. The well location is adjacent to the parking lot and access driveway. To protect the well from physical damage, the Site Grading Plan (Kollaard Drawing 180938-GR) for the proposed development shows the placement of armour stone. The well is located such that it is easily accessible for maintenance/repairs. A lock on the well cap is useful to prevent vandalism.

Floodplain Considerations

The 1:100 year floodplain elevation at the site is indicated to be 99.89 metres geodetic. Information from the City of Ottawa indicates that the top of the well casing shall be at least 300 millimetres above the floodplain elevation (~ 100.19 metres). The proposed finished grade at the well location is indicated to be at 100.30 metres. The top of the well casing shall be at a minimum elevation of at least 100.70 metres to ensure that it is at least 400 millimetres above the finished grade at the well location.

Therefore, the potential for contamination of the well due to flooding is minimized.
Based on the results of this evaluation it is considered that the well in question should supply water of adequate quantity and quality for the proposed development with suitable treatment and wellhead protection as indicated above.

Mr. Natale Giust
Hydrogeological Study
April 22, 2019 (2 ${ }^{\text {nd }}$ rev. April 29, 2020)
-7-

We trust this letter provides sufficient information for your purposes. If you have any questions concerning this letter, please do not hesitate to contact our office.

Yours truly,
Kollaard Associates Inc.

Colleen Vermeersch, P. Eng.
Attachments: Records of Borehole Sheets
Figure 1 - Key Plan
Figure 2 - Site Plan
Table I - Field Water Quality
Attachment A - Well Record and Certificate of Well Compliance
Attachment B - Pumping Test Data
Attachment C - Well Water Laboratory Test Results

RECORD OF BOREHOLE BH1

RECORD OF BOREHOLE BH2

Project No. 180938
Date \quad April 2019

TABLE I							
FIELD WATER QUALITY MEASUREMENTS FOR TEST WELL							
$\begin{gathered} \text { Time } \\ \mathrm{P} \\ \text { Test } \end{gathered}$	Since mping arted (\min)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	pH	Turbidity (NTU)	Total Dissolved Solids (ppm)	Conductivity $(\mu \mathrm{S})$	Free chlorine (ppm)
TW 1	60	10.7	8.2	3.2	350	700	-
	120	8.3	8.5	0.0	346	695	-
	180	8.3	8.0	0.0	344	687	0.0
	240	8.4	8.1	0.0	350	700	-
	300	8.4	8.0	0.0	362	720	-
	360	8.4	8.1	0.0	368	734	0.0

ATTACHMENT A
 MOE WELL RECORD FOR TW1 CERTIFICATE OF WELL COMPLIANCE PROVIDED BY WELL DRILLER

CERTIFICATE OF WELL COMPLIANCE

I (Jeremy Hanna) AIR ROCK DRILLING CO. LTD. - DO HEREBY CERTIFY

that I am licensed to drill water wells in the Province of Ontario, and that I have
supervised the drilling of the water well on the property of:

Ottawa-Carleton / Geographical Township of OSQOODE

Abstract

I CERTIFY FURTHER that, I am aware of the well drilling requirements, the guidelines, recommendations and regulations of the Ministry of the Environment governing well installations in the Province of Ontario, and the standards specified in any subdivision agreement and hydrogeological report applicable to this site and City Standards.

AND DO HEREBY CERTIFY THAT the said well has been drilled, cased, grouted (cement or bentonite) as applicable and constructed in strict conformity with the standards required.

Signed this $19^{\text {TH }}$ Day of MARCH, 2019

Air Rock Drilling Co. Ltd. (\# 1119)

The Engineer on behalf of the Landowner set out above, Certifies that he/she has inspected the well and it was constructed in accordance with the specifications in OReg 903, this report and the Hydregeological Report with regards to casing length and grouting requirements. Twp of Osgoode Requirements, 1998

Signed this \qquad day of
 .2019

[^0]

ATTACHMENT B

PUMPING TEST DATA FOR TW1

Kollaard File $180938 \quad$ Pump Rate $49.1 \quad$ litres/minute

DRAWDOWN DATA TW-1

Time Lapsed (minutes)	Abs Pres (kPa)	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Water Level (m)	Drawdown (m)
0	293.688	8.382	-4.853	0.00
1	280.012	8.382	-6.248	1.40
2	255.561	8.282	-8.741	3.89
3	245.79	8.182	-9.738	4.89
4	249.962	8.082	-9.312	4.46
5	252.069	8.082	-9.097	4.24
6	252.919	7.983	-9.011	4.16
7	253.117	7.882	-8.991	4.14
8	253.028	7.882	-9	4.15
9	252.731	7.882	-9.03	4.18
10	252.424	7.782	-9.061	4.21
11	252.098	7.782	-9.094	4.24
12	251.712	7.782	-9.134	4.28
13	251.237	7.782	-9.182	4.33
14	250.703	7.782	-9.237	4.38
15	250.347	7.782	-9.273	4.42
16	249.833	7.682	-9.325	4.47
17	249.507	7.682	-9.359	4.51
18	249.121	7.682	-9.398	4.55
19	248.825	7.682	-9.428	4.58
20	248.469	7.682	-9.465	4.61
21	248.113	7.682	-9.501	4.65
22	247.787	7.682	-9.534	4.68
23	247.49	7.682	-9.564	4.71
24	247.134	7.682	-9.601	4.75
25	246.778	7.682	-9.637	4.78
26	246.571	7.682	-9.658	4.81
27	246.304	7.682	-9.685	4.83
28	246.007	7.682	-9.716	4.86
29	245.74	7.682	-9.743	4.89
30	245.503	7.682	-9.767	4.91
31	245.266	7.682	-9.791	4.94
32	244.969	7.682	-9.821	4.97
33	244.673	7.682	-9.852	5.00
34	244.495	7.682	-9.87	5.02
35	244.168	7.682	-9.903	5.05
36	243.902	7.682	-9.93	5.08
37	243.635	7.682	-9.957	5.10
38	243.368	7.682	-9.985	5.13
39	243.19	7.682	-10.003	5.15
40	242.982	7.682	-10.024	5.17
41	242.804	7.682	-10.042	5.19
42	242.538	7.682	-10.069	5.22
43	242.241	7.682	-10.1	5.25
44	242.093	7.682	-10.115	5.26
45	241.856	7.682	-10.139	5.29
46	241.707	7.682	-10.154	5.30
47	241.529	7.682	-10.172	5.32
48	241.292	7.682	-10.196	5.34
49	241.025	7.682	-10.224	5.37
50	240.966	7.682	-10.23	5.38
51	240.788	7.682	-10.248	5.40
52	240.64	7.682	-10.263	5.41
53	240.462	7.682	-10.281	5.43
54	240.284	7.682	-10.299	5.45
55	240.047	7.682	-10.323	5.47
56	239.869	7.682	-10.341	5.49
57	239.632	7.682	-10.366	5.51
58	239.395	7.682	-10.39	5.54
59	239.247	7.682	-10.405	5.55
60	239.009	7.682	-10.429	5.58
61	238.921	7.682	-10.438	5.59
62	238.772	7.682	-10.453	5.60
63	238.683	7.682	-10.462	5.61
64	238.506	7.682	-10.48	5.63
65	238.387	7.682	-10.493	5.64
66	238.357	7.682	-10.496	5.64
67	238.239	7.682	-10.508	5.66
68	238.061	7.682	-10.526	5.67
69	237.972	7.682	-10.535	5.68
70	237.883	7.682	-10.544	5.69
71	237.705	7.682	-10.562	5.71
72	237.557	7.682	-10.577	5.72
73	237.379	7.682	-10.595	5.74
74	237.231	7.682	-10.61	5.76
75	237.112	7.682	-10.623	5.77
76	236.994	7.682	-10.635	5.78
77	236.934	7.682	-10.641	5.79
78	236.846	7.682	-10.65	5.80
79	236.727	7.682	-10.662	5.81
80	236.638	7.682	-10.671	5.82
81	236.579	7.682	-10.677	5.82
82	236.46	7.682	-10.689	5.84
83	236.401	7.682	-10.695	5.84
84	236.282	7.682	-10.707	5.85
85	236.253	7.682	-10.71	5.86
86	236.164	7.682	-10.719	5.87
87 88	235.986 235.927	7.682 7.682	-10.737 -10.743	5.88 5.89

230.889	7.682	-11.257	6.40
230.889	7.682	-11.257	6.40
230.859	7.682	-11.26	6.41
230.829	7.682	-11.263	6.41
230.829	7.682	-11.263	6.41
230.829	7.682	-11.263	6.41
230.8	7.682	-11.266	6.41
230.74	7.682	-11.272	6.42
230.681	7.682	-11.278	6.43
230.711	7.682	-11.275	6.42
230.622	7.682	-11.284	6.43
230.563	7.682	-11.29	6.44
230.503	7.682	-11.297	6.44
230.444	7.682	-11.303	6.45
230.414	7.682	-11.306	6.45
230.385	7.682	-11.309	6.46
230.414	7.682	-11.306	6.45
230.385	7.682	-11.309	6.46
230.385	7.682	-11.309	6.46
230.296	7.682	-11.318	6.47
230.326	7.682	-11.315	6.46
230.326	7.682	-11.315	6.46
230.296	7.682	-11.318	6.47
230.326	7.682	-11.315	6.46
230.355	7.682	-11.312	6.46
230.237	7.682	-11.324	6.47
230.237	7.682	-11.324	6.47
230.177	7.682	-11.33	6.48
230.177	7.682	-11.33	6.48
230.177	7.682	-11.33	6.48
230.177	7.682	-11.33	6.48
230.148	7.682	-11.333	6.48
230.148	7.682	-11.333	6.48
230.148	7.682	-11.333	6.48
230.088	7.682	-11.339	6.49
230.088	7.682	-11.339	6.49
229.97	7.682	-11.351	6.50
229.97	7.682	-11.351	6.50
229.911	7.682	-11.357	6.50
229.881	7.682	-11.36	6.51
229.911	7.682	-11.357	6.50
229.881	7.682	-11.36	6.51
229.881	7.682	-11.36	6.51
229.881	7.682	-11.36	6.51
229.792	7.682	-11.369	6.52
229.733	7.682	-11.375	6.52
229.733	7.682	-11.375	6.52
229.674	7.682	-11.381	6.53
229.703	7.682	-11.378	6.53
229.674	7.682	-11.381	6.53
229.703	7.682	-11.378	6.53
229.585	7.682	-11.39	6.54
229.614	7.682	-11.387	6.53
229.644	7.682	-11.384	6.53
229.614	7.682	-11.387	6.53
229.644	7.682	-11.384	6.53
229.614	7.682	-11.387	6.53
229.585	7.682	-11.39	6.54
229.525	7.682	-11.396	6.54
229.555	7.682	-11.393	6.54
229.585	7.682	-11.39	6.54
229.644	7.682	-11.384	6.53
229.555	7.682	-11.393	6.54
230.444	7.682	-11.303	6.45
234.474	7.682	-10.892	6.04
236.638	7.682	-10.671	5.82
237.498	7.682	-10.583	5.73
234.178	7.682	-10.922	6.07
231.096	7.682	-11.236	6.38
229.466	7.682	-11.402	6.55
229.496	7.682	-11.399	6.55
229.348	7.682	-11.414	6.56
229.377	7.682	-11.411	6.56
229.377	7.682	-11.411	6.56
229.229	7.682	-11.426	6.57
229.318	7.682	-11.417	6.56
229.259	7.682	-11.423	6.57
229.288	7.682	-11.42	6.57
229.348	7.682	-11.414	6.56
229.348	7.682	-11.414	6.56
229.288	7.682	-11.42	6.57
229.318	7.682	-11.417	6.56
229.377	7.682	-11.411	6.56
229.437	7.682	-11.405	6.55
229.496	7.682	-11.399	6.55
229.466	7.682	-11.402	6.55
229.496	7.682	-11.399	6.55
229.496	7.682	-11.399	6.55
229.466	7.682	-11.402	6.55
229.555	7.682	-11.393	6.54
229.555	7.682	-11.393	6.54
229.614	7.682	-11.387	6.53
229.555	7.682	-11.393	6.54
$\begin{aligned} & 229.585 \\ & 229.555 \end{aligned}$	7.682 7.682	-11.39 -11.393	6.54

279	229.585	7.682	-11.39	6.54
280	229.644	7.682	-11.384	6.53
281	229.733	7.682	-11.375	6.52
282	229.763	7.682	-11.372	6.52
283	229.763	7.682	-11.372	6.52
284	229.792	7.682	-11.369	6.52
285	229.733	7.682	-11.375	6.52
286	229.733	7.682	-11.375	6.52
287	229.763	7.682	-11.372	6.52
288	229.733	7.682	-11.375	6.52
289	229.792	7.682	-11.369	6.52
290	229.792	7.682	-11.369	6.52
291	229.763	7.682	-11.372	6.52
292	229.881	7.682	-11.36	6.51
293	229.822	7.682	-11.366	6.51
294	229.822	7.682	-11.366	6.51
295	229.792	7.682	-11.369	6.52
296	229.822	7.682	-11.366	6.51
297	229.881	7.682	-11.36	6.51
298	229.851	7.682	-11.363	6.51
299	229.792	7.682	-11.369	6.52
300	229.792	7.682	-11.369	6.52
301	229.851	7.682	-11.363	6.51
302	229.851	7.682	-11.363	6.51
303	229.851	7.682	-11.363	6.51
304	229.881	7.682	-11.36	6.51
305	229.97	7.682	-11.351	6.50
306	229.881	7.682	-11.36	6.51
307	229.881	7.682	-11.36	6.51
308	229.881	7.682	-11.36	6.51
309	229.881	7.682	-11.36	6.51
310	229.822	7.682	-11.366	6.51
311	229.763	7.682	-11.372	6.52
312	229.851	7.682	-11.363	6.51
313	229.792	7.682	-11.369	6.52
314	229.822	7.682	-11.366	6.51
315	229.851	7.682	-11.363	6.51
316	229.792	7.682	-11.369	6.52
317	229.851	7.682	-11.363	6.51
318	229.822	7.682	-11.366	6.51
319	229.851	7.682	-11.363	6.51
320	229.851	7.682	-11.363	6.51
321	229.792	7.682	-11.369	6.52
322	229.733	7.682	-11.375	6.52
323	229.733	7.682	-11.375	6.52
324	229.674	7.682	-11.381	6.53
325	229.703	7.682	-11.378	6.53
326	229.792	7.682	-11.369	6.52
327	229.733	7.682	-11.375	6.52
328	229.703	7.682	-11.378	6.53
329	229.733	7.682	-11.375	6.52
330	229.644	7.682	-11.384	6.53
331	229.703	7.682	-11.378	6.53
332	229.733	7.682	-11.375	6.52
333	229.703	7.682	-11.378	6.53
334	229.703	7.682	-11.378	6.53
335	229.733	7.682	-11.375	6.52
336	229.733	7.682	-11.375	6.52
337	229.733	7.682	-11.375	6.52
338	229.703	7.682	-11.378	6.53
339	229.674	7.682	-11.381	6.53
340	229.437	7.682	-11.405	6.55
341	229.555	7.682	-11.393	6.54
342	229.525	7.682	-11.396	6.54
343	229.496	7.682	-11.399	6.55
344	229.466	7.682	-11.402	6.55
345	229.437	7.682	-11.405	6.55
346	229.348	7.682	-11.414	6.56
347	229.348	7.682	-11.414	6.56
348	229.318	7.682	-11.417	6.56
349	229.318	7.682	-11.417	6.56
350	229.348	7.682	-11.414	6.56
351	229.377	7.682	-11.411	6.56
352	229.377	7.682	-11.411	6.56
353	229.318	7.682	-11.417	6.56
354	229.377	7.682	-11.411	6.56
355	229.318	7.682	-11.417	6.56
356	229.348	7.682	-11.414	6.56
357	229.377	7.682	-11.411	6.56
358	229.348	7.682	-11.414	6.56
359	229.377	7.682	-11.411	6.56
360	229.407	7.682	-11.408	6.56
361	229.407	7.682	-11.408	6.56
362	229.437	7.682	-11.405	6.55

TW1- WELL RECOVERY VS. TIME - KOLLAARD FILE 180938

Kollaard File 180938
RECOVERY DATA TW-1

t'	t/t'	Abs Pres (kPa)	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Water Level (m)	Drawdown (m)	Recovery (\%)
1	360	245.295	7.682	-9.788	4.935	25\%
2	181.0	254.253	7.682	-8.875	4.022	39\%
3	121.0	258.675	7.682	-8.424	3.571	45\%
4	91.0	260.99	7.682	-8.188	3.335	49\%
5	73.0	262.444	7.682	-8.039	3.186	51\%
6	61.0	263.513	7.682	-7.93	3.077	53\%
7	52.4	264.403	7.682	-7.84	2.987	54\%
8	46.0	265.175	7.682	-7.761	2.908	56\%
9	41.0	265.858	7.682	-7.691	2.838	57\%
10	37.0	266.482	7.682	-7.628	2.775	58\%
11	33.7	267.046	7.682	-7.57	2.717	59\%
12	31.0	267.61	7.682	-7.513	2.66	59\%
13	28.7	268.085	7.682	-7.464	2.611	60\%
14	26.7	268.56	7.682	-7.416	2.563	61\%
15	25.0	268.976	7.682	-7.373	2.52	62\%
16	23.5	269.421	7.682	-7.328	2.475	62\%
17	22.2	269.837	7.682	-7.286	2.433	63\%
18	21.0	270.223	7.682	-7.246	2.393	63\%
19	19.9	270.579	7.682	-7.21	2.357	64\%
20	19.0	270.876	7.682	-7.18	2.327	64\%
21	18.1	271.233	7.682	-7.143	2.29	65\%
22	17.4	271.203	7.682	-7.146	2.293	65\%
23	16.7	268.798	7.682	-7.392	2.539	61\%
24	16.0	270.312	7.682	-7.237	2.384	64\%
25	15.4	271.589	7.682	-7.107	2.254	66\%
26	14.8	272.094	7.682	-7.055	2.202	66\%
27	14.3	272.48	7.682	-7.016	2.163	67\%
28	13.9	272.807	7.682	-6.983	2.13	67\%
29	13.4	273.133	7.682	-6.95	2.097	68\%
30	13.0	273.46	7.682	-6.916	2.063	69\%
31	12.6	273.698	7.682	-6.892	2.039	69\%
32	12.3	273.995	7.682	-6.862	2.009	69\%
33	11.9	274.203	7.682	-6.84	1.987	70\%
34	11.6	274.47	7.682	-6.813	1.96	70\%
35	11.3	274.678	7.682	-6.792	1.939	70\%
36	11.0	274.915	7.682	-6.768	1.915	71\%
37	10.7	275.153	7.682	-6.744	1.891	71\%
38	10.5	275.361	7.682	-6.722	1.869	71\%
39	10.2	275.539	7.682	-6.704	1.851	72\%
40	10.0	275.717	7.682	-6.686	1.833	72\%
41	9.8	275.925	7.682	-6.665	1.812	72\%
42	9.6	276.133	7.682	-6.644	1.791	73\%
43	9.4	276.312	7.682	-6.625	1.772	73\%
44	9.2	276.519	7.682	-6.604	1.751	73\%

45	9.0	276.727	7.682	-6.583	1.73	74\%
46	8.8	276.935	7.682	-6.562	1.709	74\%
47	8.7	277.084	7.682	-6.547	1.694	74\%
48	8.5	277.262	7.682	-6.528	1.675	74\%
49	8.3	277.44	7.682	-6.51	1.657	75\%
50	8.2	277.6	7.782	-6.494	1.641	75\%
51	8.1	277.778	7.782	-6.476	1.623	75\%
52	7.9	277.956	7.782	-6.458	1.605	76\%
53	7.8	278.105	7.782	-6.443	1.59	76\%
54	7.7	278.253	7.782	-6.427	1.574	76\%
55	7.5	278.432	7.782	-6.409	1.556	76\%
56	7.4	278.58	7.782	-6.394	1.541	76\%
57	7.3	278.729	7.782	-6.379	1.526	77\%
58	7.2	278.877	7.782	-6.364	1.511	77\%
59	7.1	279.026	7.782	-6.349	1.496	77\%
60	7.0	279.145	7.782	-6.336	1.483	77\%
61	6.9	279.293	7.782	-6.321	1.468	78\%
62	6.8	279.442	7.782	-6.306	1.453	78\%
63	6.7	279.561	7.782	-6.294	1.441	78\%
64	6.6	279.739	7.782	-6.276	1.423	78\%
65	6.5	279.858	7.782	-6.264	1.411	78\%
66	6.5	280.006	7.782	-6.249	1.396	79\%
67	6.4	280.125	7.782	-6.237	1.384	79\%
68	6.3	280.244	7.782	-6.224	1.371	79\%
69	6.2	280.393	7.782	-6.209	1.356	79\%
70	6.1	280.511	7.782	-6.197	1.344	79\%
71	6.1	280.601	7.782	-6.188	1.335	80\%
72	6.0	280.719	7.782	-6.176	1.323	80\%
73	5.9	280.838	7.782	-6.164	1.311	80\%
74	5.9	280.957	7.782	-6.152	1.299	80\%
75	5.8	281.017	7.782	-6.146	1.293	80\%
76	5.7	281.106	7.782	-6.136	1.283	80\%
77	5.7	281.254	7.782	-6.121	1.268	81\%
78	5.6	281.373	7.782	-6.109	1.256	81\%
79	5.6	281.492	7.782	-6.097	1.244	81\%
80	5.5	281.551	7.782	-6.091	1.238	81\%
81	5.4	281.67	7.782	-6.079	1.226	81\%
82	5.4	281.789	7.782	-6.067	1.214	81\%
83	5.3	281.878	7.782	-6.058	1.205	82\%
84	5.3	281.997	7.782	-6.046	1.193	82\%
85	5.2	282.086	7.782	-6.037	1.184	82\%
86	5.2	282.235	7.782	-6.021	1.168	82\%
87	5.1	282.294	7.782	-6.015	1.162	82\%
88	5.1	282.413	7.782	-6.003	1.15	82\%
89	5.0	282.502	7.782	-5.994	1.141	83\%
90	5.0	282.562	7.782	-5.988	1.135	83\%
91	5.0	282.651	7.782	-5.979	1.126	83\%
92	4.9	282.77	7.782	-5.967	1.114	83\%

93	4.9	282.859	7.782	-5.958	1.105	83\%
94	4.8	282.918	7.782	-5.952	1.099	83\%
95	4.8	283.037	7.782	-5.94	1.087	83\%
96	4.8	283.097	7.782	-5.933	1.08	84\%
97	4.7	283.216	7.782	-5.921	1.068	84\%
98	4.7	283.275	7.782	-5.915	1.062	84\%
99	4.6	283.364	7.782	-5.906	1.053	84\%
100	4.6	283.424	7.782	-5.9	1.047	84\%
101	4.6	283.424	7.782	-5.9	1.047	84\%
102	4.5	283.483	7.782	-5.894	1.041	84\%
103	4.5	283.513	7.782	-5.891	1.038	84\%
104	4.5	283.572	7.782	-5.885	1.032	84\%
105	4.4	283.661	7.782	-5.876	1.023	84\%
106	4.4	283.78	7.782	-5.864	1.011	85\%
107	4.4	283.84	7.782	-5.858	1.005	85\%
108	4.3	283.899	7.782	-5.852	0.999	85\%
109	4.3	283.988	7.782	-5.843	0.99	85\%
110	4.3	284.048	7.782	-5.836	0.983	85\%
111	4.2	284.137	7.782	-5.827	0.974	85\%
112	4.2	284.196	7.782	-5.821	0.968	85\%
113	4.2	284.256	7.782	-5.815	0.962	85\%
114	4.2	284.345	7.782	-5.806	0.953	85\%
115	4.1	284.434	7.782	-5.797	0.944	86\%
116	4.1	284.523	7.782	-5.788	0.935	86\%
117	4.1	284.583	7.782	-5.782	0.929	86\%
118	4.1	284.642	7.782	-5.776	0.923	86\%
119	4.0	284.731	7.782	-5.767	0.914	86\%
120	4.0	284.791	7.782	-5.761	0.908	86\%
121	4.0	284.85	7.782	-5.755	0.902	86\%
122	4.0	284.939	7.782	-5.746	0.893	86\%
123	3.9	284.999	7.782	-5.74	0.887	86\%
124	3.9	285.058	7.782	-5.733	0.88	87\%
125	3.9	285.147	7.782	-5.724	0.871	87\%
126	3.9	285.177	7.782	-5.721	0.868	87\%
127	3.8	285.237	7.782	-5.715	0.862	87\%
128	3.8	285.326	7.782	-5.706	0.853	87\%
129	3.8	285.385	7.782	-5.7	0.847	87\%
130	3.8	285.445	7.782	-5.694	0.841	87\%
131	3.7	285.445	7.782	-5.694	0.841	87\%
132	3.7	285.474	7.782	-5.691	0.838	87\%
133	3.7	285.534	7.782	-5.685	0.832	87\%
134	3.7	285.593	7.782	-5.679	0.826	87\%
135	3.7	285.653	7.782	-5.673	0.82	87\%
136	3.6	285.712	7.782	-5.667	0.814	88\%
137	3.6	285.772	7.782	-5.661	0.808	88\%
138	3.6	285.861	7.782	-5.652	0.799	88\%
139	3.6	285.92	7.782	-5.646	0.793	88\%
140	3.6	285.98	7.782	-5.639	0.786	88\%

141	3.6	286.039	7.782	-5.633	0.78	88\%
142	3.5	286.098	7.782	-5.627	0.774	88\%
143	3.5	286.128	7.782	-5.624	0.771	88\%
144	3.5	286.217	7.782	-5.615	0.762	88\%
145	3.5	286.247	7.782	-5.612	0.759	88\%
146	3.5	286.336	7.782	-5.603	0.75	89\%
147	3.4	286.396	7.782	-5.597	0.744	89\%
148	3.4	286.425	7.782	-5.594	0.741	89\%
149	3.4	286.455	7.782	-5.591	0.738	89\%
150	3.4	286.515	7.782	-5.585	0.732	89\%
151	3.4	286.574	7.782	-5.579	0.726	89\%
152	3.4	286.604	7.782	-5.576	0.723	89\%
153	3.4	286.693	7.782	-5.567	0.714	89\%
154	3.3	286.723	7.782	-5.564	0.711	89\%
155	3.3	286.782	7.782	-5.558	0.705	89\%
156	3.3	286.871	7.782	-5.549	0.696	89\%
157	3.3	286.901	7.782	-5.546	0.693	89\%
158	3.3	286.931	7.782	-5.542	0.689	89\%
159	3.3	286.96	7.782	-5.54	0.687	90\%
160	3.3	287.05	7.782	-5.53	0.677	90\%
161	3.2	287.05	7.782	-5.53	0.677	90\%
162	3.2	287.139	7.782	-5.521	0.668	90\%
163	3.2	287.169	7.782	-5.518	0.665	90\%
164	3.2	287.228	7.782	-5.512	0.659	90\%
165	3.2	287.287	7.782	-5.506	0.653	90\%
166	3.2	287.317	7.782	-5.503	0.65	90\%
167	3.2	287.377	7.782	-5.497	0.644	90\%
168	3.1	287.406	7.782	-5.494	0.641	90\%
169	3.1	287.466	7.782	-5.488	0.635	90\%
170	3.1	287.495	7.782	-5.485	0.632	90\%
171	3.1	287.555	7.782	-5.479	0.626	90\%
172	3.1	287.555	7.782	-5.479	0.626	90\%
173	3.1	287.614	7.782	-5.473	0.62	91\%
174	3.1	287.674	7.782	-5.467	0.614	91\%
175	3.1	287.733	7.782	-5.461	0.608	91\%
176	3.0	287.763	7.782	-5.458	0.605	91\%
177	3.0	287.822	7.782	-5.452	0.599	91\%
178	3.0	287.852	7.782	-5.449	0.596	91\%
179	3.0	287.882	7.782	-5.446	0.593	91\%
180	3.0	287.923	7.882	-5.441	0.588	91\%
181	3.0	287.971	7.782	-5.436	0.583	91\%
182	3.0	287.971	7.782	-5.436	0.583	91\%
183	3.0	287.971	7.782	-5.436	0.583	91\%
184	3.0	288.001	7.782	-5.433	0.58	91\%
185	2.9	288.031	7.782	-5.43	0.577	91\%
186	2.9	288.06	7.782	-5.427	0.574	91\%
187	2.9	288.12	7.782	-5.421	0.568	91\%
188	2.9	288.179	7.782	-5.415	0.562	91\%

189	2.9	288.19	7.882	-5.414	0.561	91\%
190	2.9	288.22	7.882	-5.411	0.558	91\%
191	2.9	288.28	7.882	-5.405	0.552	92\%
192	2.9	288.328	7.782	-5.4	0.547	92\%
193	2.9	288.369	7.882	-5.396	0.543	92\%
194	2.9	288.398	7.882	-5.393	0.54	92\%
195	2.8	288.428	7.882	-5.39	0.537	92\%
196	2.8	288.488	7.882	-5.384	0.531	92\%
197	2.8	288.517	7.882	-5.381	0.528	92\%
198	2.8	288.577	7.882	-5.375	0.522	92\%
199	2.8	288.607	7.882	-5.372	0.519	92\%
200	2.8	288.636	7.882	-5.369	0.516	92\%
201	2.8	288.666	7.882	-5.366	0.513	92\%
202	2.8	288.696	7.882	-5.363	0.51	92\%
203	2.8	288.696	7.882	-5.363	0.51	92\%
204	2.8	288.725	7.882	-5.36	0.507	92\%
205	2.8	288.755	7.882	-5.357	0.504	92\%
206	2.7	288.844	7.882	-5.347	0.494	92\%
207	2.7	288.844	7.882	-5.347	0.494	92\%
208	2.7	288.874	7.882	-5.344	0.491	93\%
209	2.7	288.904	7.882	-5.341	0.488	93\%
210	2.7	288.934	7.882	-5.338	0.485	93\%
211	2.7	288.993	7.882	-5.332	0.479	93\%
212	2.7	289.023	7.882	-5.329	0.476	93\%
213	2.7	289.052	7.882	-5.326	0.473	93\%
214	2.7	289.082	7.882	-5.323	0.47	93\%
215	2.7	289.112	7.882	-5.32	0.467	93\%
216	2.7	289.112	7.882	-5.32	0.467	93\%
217	2.7	289.112	7.882	-5.32	0.467	93\%
218	2.7	289.142	7.882	-5.317	0.464	93\%
219	2.6	289.171	7.882	-5.314	0.461	93\%
220	2.6	289.201	7.882	-5.311	0.458	93\%
221	2.6	289.231	7.882	-5.308	0.455	93\%
222	2.6	289.29	7.882	-5.302	0.449	93\%
223	2.6	289.32	7.882	-5.299	0.446	93\%
224	2.6	289.35	7.882	-5.296	0.443	93\%
225	2.6	289.379	7.882	-5.293	0.44	93\%
226	2.6	289.379	7.882	-5.293	0.44	93\%
227	2.6	289.439	7.882	-5.287	0.434	93\%
228	2.6	289.439	7.882	-5.287	0.434	93\%
229	2.6	289.498	7.882	-5.281	0.428	93\%
230	2.6	289.498	7.882	-5.281	0.428	93\%
231	2.6	289.558	7.882	-5.275	0.422	94\%
232	2.6	289.588	7.882	-5.272	0.419	94\%
233	2.5	289.588	7.882	-5.272	0.419	94\%
234	2.5	289.647	7.882	-5.266	0.413	94\%
235	2.5	289.706	7.882	-5.26	0.407	94\%
236	2.5	289.677	7.882	-5.262	0.409	94\%

237	2.5	289.736	7.882	-5.256	0.403	94\%
238	2.5	289.766	7.882	-5.253	0.4	94\%
239	2.5	289.796	7.882	-5.25	0.397	94\%
240	2.5	289.825	7.882	-5.247	0.394	94\%
241	2.5	289.855	7.882	-5.244	0.391	94\%
242	2.5	289.855	7.882	-5.244	0.391	94\%
243	2.5	289.885	7.882	-5.241	0.388	94\%
244	2.5	289.944	7.882	-5.235	0.382	94\%
245	2.5	289.944	7.882	-5.235	0.382	94\%
246	2.5	290.004	7.882	-5.229	0.376	94\%
247	2.5	289.974	7.882	-5.232	0.379	94\%
248	2.5	290.034	7.882	-5.226	0.373	94\%
249	2.4	290.063	7.882	-5.223	0.37	94\%
250	2.4	290.093	7.882	-5.22	0.367	94\%
251	2.4	290.093	7.882	-5.22	0.367	94\%
252	2.4	290.152	7.882	-5.214	0.361	94\%
253	2.4	290.182	7.882	-5.211	0.358	95\%
254	2.4	290.182	7.882	-5.211	0.358	95\%
255	2.4	290.242	7.882	-5.205	0.352	95\%
256	2.4	290.242	7.882	-5.205	0.352	95\%
257	2.4	290.242	7.882	-5.205	0.352	95\%
258	2.4	290.212	7.882	-5.208	0.355	95\%
259	2.4	290.212	7.882	-5.208	0.355	95\%
260	2.4	290.242	7.882	-5.205	0.352	95\%
261	2.4	290.271	7.882	-5.202	0.349	95\%
262	2.4	290.301	7.882	-5.199	0.346	95\%
263	2.4	290.331	7.882	-5.196	0.343	95\%
264	2.4	290.331	7.882	-5.196	0.343	95\%
265	2.4	290.361	7.882	-5.193	0.34	95\%
266	2.4	290.42	7.882	-5.187	0.334	95\%
267	2.3	290.45	7.882	-5.184	0.331	95\%
268	2.3	290.45	7.882	-5.184	0.331	95\%
269	2.3	290.479	7.882	-5.181	0.328	95\%
270	2.3	290.509	7.882	-5.178	0.325	95\%
271	2.3	290.569	7.882	-5.172	0.319	95\%
272	2.3	290.569	7.882	-5.172	0.319	95\%
273	2.3	290.539	7.882	-5.175	0.322	95\%
274	2.3	290.598	7.882	-5.169	0.316	95\%
275	2.3	290.658	7.882	-5.162	0.309	95\%
276	2.3	290.628	7.882	-5.166	0.313	95\%
277	2.3	290.688	7.882	-5.159	0.306	95\%
278	2.3	290.688	7.882	-5.159	0.306	95\%
279	2.3	290.717	7.882	-5.156	0.303	95\%
280	2.3	290.747	7.882	-5.153	0.3	95\%
281	2.3	290.747	7.882	-5.153	0.3	95\%
282	2.3	290.777	7.882	-5.15	0.297	95\%
283	2.3	290.777	7.882	-5.15	0.297	95\%
284	2.3	290.807	7.882	-5.147	0.294	96\%

285	2.3	290.836	7.882	-5.144	0.291	96\%
286	2.3	290.866	7.882	-5.141	0.288	96\%
287	2.3	290.896	7.882	-5.138	0.285	96\%
288	2.3	290.925	7.882	-5.135	0.282	96\%
289	2.2	290.955	7.882	-5.132	0.279	96\%
290	2.2	290.955	7.882	-5.132	0.279	96\%
291	2.2	290.985	7.882	-5.129	0.276	96\%
292	2.2	291.015	7.882	-5.126	0.273	96\%
293	2.2	291.044	7.882	-5.123	0.27	96\%
294	2.2	291.044	7.882	-5.123	0.27	96\%
295	2.2	291.074	7.882	-5.12	0.267	96\%
296	2.2	291.074	7.882	-5.12	0.267	96\%
297	2.2	291.104	7.882	-5.117	0.264	96\%
298	2.2	291.134	7.882	-5.114	0.261	96\%
299	2.2	291.134	7.882	-5.114	0.261	96\%
300	2.2	291.134	7.882	-5.114	0.261	96\%
301	2.2	291.193	7.882	-5.108	0.255	96\%
302	2.2	291.223	7.882	-5.105	0.252	96\%
303	2.2	291.223	7.882	-5.105	0.252	96\%
304	2.2	291.252	7.882	-5.102	0.249	96\%
305	2.2	291.252	7.882	-5.102	0.249	96\%
306	2.2	291.312	7.882	-5.096	0.243	96\%
307	2.2	291.312	7.882	-5.096	0.243	96\%
308	2.2	291.342	7.882	-5.093	0.24	96\%
309	2.2	291.342	7.882	-5.093	0.24	96\%
310	2.2	291.371	7.882	-5.09	0.237	96\%
311	2.2	291.401	7.882	-5.087	0.234	96\%
312	2.2	291.431	7.882	-5.084	0.231	96\%
313	2.2	291.461	7.882	-5.081	0.228	97\%
314	2.1	291.461	7.882	-5.081	0.228	97\%
315	2.1	291.461	7.882	-5.081	0.228	97\%
316	2.1	291.431	7.882	-5.084	0.231	96\%
317	2.1	291.371	7.882	-5.09	0.237	96\%
318	2.1	291.401	7.882	-5.087	0.234	96\%
319	2.1	291.431	7.882	-5.084	0.231	96\%
320	2.1	291.49	7.882	-5.078	0.225	97\%
321	2.1	291.49	7.882	-5.078	0.225	97\%
322	2.1	291.49	7.882	-5.078	0.225	97\%
323	2.1	291.55	7.882	-5.071	0.218	97\%
324	2.1	291.55	7.882	-5.071	0.218	97\%
325	2.1	291.58	7.882	-5.068	0.215	97\%
326	2.1	291.609	7.882	-5.065	0.212	97\%
327	2.1	291.609	7.882	-5.065	0.212	97\%
328	2.1	291.669	7.882	-5.059	0.206	97\%
329	2.1	291.669	7.882	-5.059	0.206	97\%
330	2.1	291.669	7.882	-5.059	0.206	97\%
331	2.1	291.728	7.882	-5.053	0.2	97\%
332	2.1	291.758	7.882	-5.05	0.197	97\%

333	2.1	291.728	7.882	-5.053	0.2	97\%
334	2.1	291.758	7.882	-5.05	0.197	97\%
335	2.1	291.788	7.882	-5.047	0.194	97\%
336	2.1	291.788	7.882	-5.047	0.194	97\%
337	2.1	291.817	7.882	-5.044	0.191	97\%
338	2.1	291.817	7.882	-5.044	0.191	97\%
339	2.1	291.877	7.882	-5.038	0.185	97\%
340	2.1	291.847	7.882	-5.041	0.188	97\%
341	2.1	291.877	7.882	-5.038	0.185	97\%
342	2.1	291.907	7.882	-5.035	0.182	97\%
343	2.0	291.907	7.882	-5.035	0.182	97\%
344	2.0	291.907	7.882	-5.035	0.182	97\%
345	2.0	291.936	7.882	-5.032	0.179	97\%
346	2.0	291.936	7.882	-5.032	0.179	97\%
347	2.0	291.966	7.882	-5.029	0.176	97\%
348	2.0	291.996	7.882	-5.026	0.173	97\%
349	2.0	291.996	7.882	-5.026	0.173	97\%
350	2.0	292.026	7.882	-5.023	0.17	97\%
351	2.0	292.055	7.882	-5.02	0.167	97\%
352	2.0	292.085	7.882	-5.017	0.164	97\%
353	2.0	292.085	7.882	-5.017	0.164	97\%
354	2.0	292.115	7.882	-5.014	0.161	98\%
355	2.0	292.115	7.882	-5.014	0.161	98\%
356	2.0	292.144	7.882	-5.011	0.158	98\%
357	2.0	292.144	7.882	-5.011	0.158	98\%
358	2.0	292.144	7.882	-5.011	0.158	98\%
359	2.0	292.174	7.882	-5.008	0.155	98\%
360	2.0	292.174	7.882	-5.008	0.155	98\%
361	2.0	292.204	7.882	-5.005	0.152	98\%
362	2.0	292.204	7.882	-5.005	0.152	98\%
363	2.0	292.204	7.882	-5.005	0.152	98\%
364	2.0	292.234	7.882	-5.002	0.149	98\%
365	2.0	292.234	7.882	-5.002	0.149	98\%
366	2.0	292.263	7.882	-4.999	0.146	98\%
367	2.0	292.293	7.882	-4.996	0.143	98\%
368	2.0	292.293	7.882	-4.996	0.143	98\%
369	2.0	292.293	7.882	-4.996	0.143	98\%
370	2.0	292.323	7.882	-4.993	0.14	98\%
371	2.0	292.323	7.882	-4.993	0.14	98\%
372	2.0	292.323	7.882	-4.993	0.14	98\%
373	2.0	292.353	7.882	-4.99	0.137	98\%
374	2.0	292.353	7.882	-4.99	0.137	98\%
375	2.0	292.353	7.882	-4.99	0.137	98\%
376	2.0	292.382	7.882	-4.987	0.134	98\%
377	2.0	292.412	7.882	-4.984	0.131	98\%
378	2.0	292.412	7.882	-4.984	0.131	98\%
379	1.9	292.412	7.882	-4.984	0.131	98\%
380	1.9	292.442	7.882	-4.981	0.128	98\%

429	1.8	293.007	7.882	-4.923	0.07	99\%
430	1.8	293.036	7.882	-4.92	0.067	99\%
431	1.8	293.036	7.882	-4.92	0.067	99\%
432	1.8	293.036	7.882	-4.92	0.067	99\%
433	1.8	293.066	7.882	-4.917	0.064	99\%
434	1.8	293.036	7.882	-4.92	0.067	99\%
435	1.8	293.036	7.882	-4.92	0.067	99\%
436	1.8	293.096	7.882	-4.914	0.061	99\%
437	1.8	293.066	7.882	-4.917	0.064	99\%
438	1.8	293.096	7.882	-4.914	0.061	99\%
439	1.8	293.096	7.882	-4.914	0.061	99\%
440	1.8	293.096	7.882	-4.914	0.061	99\%
441	1.8	293.096	7.882	-4.914	0.061	99\%
442	1.8	293.126	7.882	-4.911	0.058	99\%
443	1.8	293.155	7.882	-4.908	0.055	99\%
444	1.8	293.185	7.882	-4.905	0.052	99\%
445	1.8	293.185	7.882	-4.905	0.052	99\%
446	1.8	293.185	7.882	-4.905	0.052	99\%
447	1.8	293.215	7.882	-4.902	0.049	99\%
448	1.8	293.215	7.882	-4.902	0.049	99\%
449	1.8	293.245	7.882	-4.899	0.046	99\%
450	1.8	293.245	7.882	-4.899	0.046	99\%
451	1.8	293.245	7.882	-4.899	0.046	99\%
452	1.8	293.245	7.882	-4.899	0.046	99\%
453	1.8	293.274	7.882	-4.896	0.043	99\%
454	1.8	293.304	7.882	-4.893	0.04	99\%
455	1.8	293.274	7.882	-4.896	0.043	99\%
456	1.8	293.304	7.882	-4.893	0.04	99\%
457	1.8	293.304	7.882	-4.893	0.04	99\%
458	1.8	293.304	7.882	-4.893	0.04	99\%
459	1.8	293.304	7.882	-4.893	0.04	99\%
460	1.8	293.304	7.882	-4.893	0.04	99\%
461	1.8	293.334	7.882	-4.89	0.037	99\%
462	1.8	293.334	7.882	-4.89	0.037	99\%
463	1.8	293.364	7.882	-4.887	0.034	99\%
464	1.8	293.364	7.882	-4.887	0.034	99\%
465	1.8	293.364	7.882	-4.887	0.034	99\%
466	1.8	293.364	7.882	-4.887	0.034	99\%
467	1.8	293.393	7.882	-4.884	0.031	100\%

ATTACHMENT C

RESULTS OF LABORATORY TESTING OF WELL WATER SAMPLES

Certificate of Analysis

Environment Testing

Client:	Kollaard Associates Inc.	Report Number:
	210 Prescott St., Box 189	Date Submitted:
	Kemptville, ON	Date Reported:
	K0G 190	Project:
		COC \#:

PO\#:
Invoice to: Kollaard Associates Inc.

Report Number: 1904982
Date Reported:
Project:
199654

Dear Colleen Vermeersch:
Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

APPROVAL

Addrine Thomas, Inorganics Supervisor

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.
 accreditation. The scope is available at: http://www.cala.ca/scopes/2602.pdf
 \#2318). A copy of the license is available upon request

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.
Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless othervise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Certificate of Analysis

Environment Testing

Client:	Kollaard Associates Inc.	Report Number:
	210 Prescott St., Box 189	Date Submitted:
	Kemptville, ON	2019-04-05
	K0G 1JO	Date Reported:
Project:		
Attention:	Ms. Colleen Vermeersch	COC \#:
PO\#:	180938	
Invoice to:	Kollaard Associates Inc.	

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	$\begin{gathered} 1419136 \\ \text { Water } \\ \text { 2019-04-05 } \\ \text { TW1 3hr } \end{gathered}$	$\begin{gathered} \text { 1419137 } \\ \text { Water } \\ \text { 2019-04-05 } \\ \text { TW1 6hr } \end{gathered}$
Anions	Cl	1	mg/L	AO 250	16	82
	F	0.10	mg/L	MAC 1.5	0.59	0.64
	N-NO2	0.10	mg/L	MAC 1.0	<0.10	<0.10
	N-NO3	0.10	mg/L	MAC 10.0	6.26	<0.10
	SO4	1	mg/L	AO 500	39	43
General Chemistry	Alkalinity as CaCO 3	5	mg/L	OG 500	249	257
	Colour	2	TCU	AO 5	<2	<2
	Conductivity	5	uS/cm		761	803
	pH	1.00		6.5-8.5	7.80	7.91
	S2-	0.01	mg/L	AO 0.05	0.48*	0.53*
	TDS (COND - CALC)	1	mg/L	AO 500	495	522*
	Turbidity	0.1	NTU	AO 5.0	3.8	1.1
Hardness	Hardness as CaCO3	1	mg/L	OG 100	183*	183*
Indices/Calc	Ion Balance	0.01			1.10	0.91
Metals	Ca	1	mg/L		37	37
	Fe	0.03	mg/L	AO 0.3	0.10	0.05
	K	1	mg / L		8	8
	Mg	1	mg/L		22	22
	Mn	0.01	mg/L	AO 0.05	0.01	0.01
	Na	2	mg/L	AO 200	81	86
Subcontract-Inorg	DOC	0.5	mg/L	AO 5	1.3	1.8
	N-NH3	0.01	mg/L		0.31	0.31
	Phenols	0.001	mg/L		<0.001	<0.001
	Tannin \& Lignin	0.1	mg/L		<0.1	<0.1
	Total Kjeldahl Nitrogen	0.1	mg/L		0.5	0.3

Guideline = ODWSOG

* Guideline Exceedenc

Results relate only to the parameters tested on the samples submitted
Methods references and/or additional QA/QC information available on request.

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Rang

Certificate of Analysis

Environment Testing

Client:	Kollaard Associates Inc.
	210 Prescott St., Box 189
	Kemptville, ON
	K0G 1JO
Attention:	Ms. Colleen Vermeersch
PO\#:	180938
Invoice to:	Kollaard Associates Inc.

Report Number:	
Date Submitted:	
1904982	
Date Reported:	
2019-04-05	
Project:	
COC \#:	180938

QC Summary

Analyte	Blank	QC \% Rec	QC Limits
Analysis/Extraction Date 2019-04-05		Analyst	
Turbidity	<0.1 NTU	100	70-130
Analysis/Extraction Date 2019-04-10		Analyst AA	
Chloride	$<1 \mathrm{mg} / \mathrm{L}$	100	90-110
N-NO3	<0.10 mg/L	102	90-110
SO4	<1 mg/L	100	90-110
Analysis/Extraction Date 2019-04-11		Analyst K J	
Colour	<2 TCU	101	90-110
Analysis/Extraction Date 2019-04-10 CT P-INORG		Analyst AET	
DOC	$<0.5 \mathrm{mg} / \mathrm{L}$	117	
N-NH3	$<0.01 \mathrm{mg} / \mathrm{L}$	100	
Phenols	$<0.001 \mathrm{mg} / \mathrm{L}$	92	69-132
Tannin \& Lignin	$<0.1 \mathrm{mg} / \mathrm{L}$	90	
Total Kjeldahl Nitrogen	<0.1 mg/L	94	81-126

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted
Methods references and/or additional QA/QC information available on request

MRL $=$ Method Reporting Limit, $A O=$ Aesthetic Objective, $O G=$ Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

Certificate of Analysis

Environment Testing

Client:	Kollaard Associates Inc. Kemptville, ON
	K0G 1JO

Report Number:	
Date Submitted:	
1904982	
Date Reported:	
2019-04-05	
Project:	
COC \#:	180938

QC Summary

Analyte	Blank	$\begin{gathered} \text { QC } \\ \text { \% Rec } \end{gathered}$	$\begin{gathered} \text { QC } \\ \text { Limits } \end{gathered}$
Run No $363615 \quad$ Analysis/Extraction Date Method SM2320,2510,4500H/F		Analyst Z S	
Alkalinity (CaCO3)	$<5 \mathrm{mg} / \mathrm{L}$	111	90-110
Conductivity	<5 uS/cm	100	90-110
F	$<0.10 \mathrm{mg} / \mathrm{L}$	99	90-110
pH		97	90-110
Run No $363653 \quad$ Analysis/Extraction Date Method C SM4500-NO3-F		Z S	
$\mathrm{N}-\mathrm{NO} 2$	<0.10 mg/L	100	80-120
N-NO3	$<0.10 \mathrm{mg} / \mathrm{L}$	92	80-120
Analysis/Extraction Date 2019-04-12		Analyst AA	
Chloride	$<1 \mathrm{mg} / \mathrm{L}$	100	90-110
SO4	$<1 \mathrm{mg} / \mathrm{L}$	110	90-110
Analysis/Extraction Date 2019-04-12 500C		Analyst H_D	
Calcium	<1 mg/L	101	90-110
Potassium	$<1 \mathrm{mg} / \mathrm{L}$	101	87-113
Magnesium	<1 mg/L	96	76-124

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

MRL = Method Reporting Limit, $A O=$ Aesthetic Objective, $\mathrm{OG}=$ Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

Report Number
Date Submitted
Date Reported:
Project:
COC \#:

1904982
2019-04-05 2019-04-12
180938
199654

Environment Testing

Client: Kollaard Associate 210 Prescott St., Box 189
Kemptville, ON

Attenti
PO\#:
Invoice to: Kollaard Associates Inc.
Ms. Colleen Vermeersch

Certificate of Analysis

 K0G 1J0QC Summary

Analyte	Blank	QC \% Rec	QC Limits
Sodium	<2 mg/L	100	82-118
Run No 363668 Analysis/Extraction Date Method EPA 200.8	Analysis/Extraction Date 2019-04-11	Analyst H_D	
Iron	$<0.03 \mathrm{mg} / \mathrm{L}$	95	91-109
Manganese	$<0.01 \mathrm{mg} / \mathrm{L}$	100	92.9-107
Analysis/Extraction Date 2019-04-12		AET	
Hardness as CaCO 3			
Ion Balance			
TDS (COND - CALC)			
		AET	
S2-	$<0.01 \mathrm{mg} / \mathrm{L}$	101	80-120

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted
Methods references and/or additional QA/QC information available on request

MRL = Method Reporting Limit, AO = Aesthetic Objective, $\mathrm{OG}=$ Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

eurofins

Certificate of Analysis

Environment Testing

Client:	Kollaard Associates Inc.	
	210 Prescott St., Box 189	Report Number:
	Kemptville, ON	Date Submitted:
	K0G 1JO	Date Reported:
	$2019-049-05$	
Attention:	Ms. Colleen Vermeersch	Project:
PO\#:	180938	COC \#:

PO\#:	180938
Invoice to:	Kollaard Associates Inc.

Dear Colleen Vermeersch:
Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

APPROVAL:

Dragana Dzeletovic, Team Leader

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.
Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at: http://www.cala.ca/scopes/2602.pdf.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license \#2318). A copy of the license is available upon request.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.
Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

eurofins

Environment Testing

Client:	Kollaard Associates Inc.	Report Number:
	210 Prescott St., Box 189	Date Submitted:
	Kemptville, ON	2019-049-05
	KOG 1JO	Pate Reported:
Project:		
Attention:	Ms. Colleen Vermeersch	COC \#:
PO\#:	180938	
Invoice to:	Kollaard Associates Inc.	

Results relate only to the parameters tested on the samples submitted
additional QA/QC information available on request.

Ryznar Stability Index

RSI $=\mathbf{2}\left(\mathrm{pH}_{\mathrm{s}}\right)-\mathrm{pH}$
RSI $\ll 6 \rightarrow$ the scale tendency increases as the index decreases
RSI >> $7 \rightarrow$ the calcium carbonate formation probably does not lead to a protective corrosion inhibitor film
RSI >> 8 \rightarrow mild steel corrosion becomes an increasing problem

Langelier Saturation Index

LSI $=\mathbf{p H}-\mathrm{pH}_{\mathrm{s}}$

If LSI is negative \rightarrow no potential to scale, the water will dissolve CaCO_{3}
If LSI is positive \rightarrow scale can form and CaCO_{3} precipitation may occur
If LSI is close to zero \rightarrow borderline scale potential, water quality or temperature change or evaporation could change the index
where pH measured from sample
$\mathrm{pH}_{\mathrm{s}}=\mathrm{pH}$ at saturation in calcite or calcium carbonate

$$
\begin{gathered}
\left\lvert\, \begin{array}{l}
p H_{s}=(9.3+A+B)-(C+D) \\
\hline A=\frac{\log _{10}[T D S]-1}{10} \\
B=-13.12 \times \log _{10}\left({ }^{\circ} \mathrm{C}+273\right)+34.55 \\
C=\log _{10}\left[\mathrm{Ca}^{2+} a s C a C O_{3}\right]-0.4
\end{array}\right.
\end{gathered}
$$

$$
D=\log _{10}[\text { alkalinityasCaCO } 3]
$$

	TW1-3hr	
TW1-6hr		
pH	7.8	7.91
hardness $\left[\mathrm{mg} / \mathrm{l}\right.$ as $\left.\mathrm{CaCo}_{3}\right]$	183	183
Alkalinity $\left[\mathrm{mg} / \mathrm{l}\right.$ as $\left.\mathrm{CaCo}_{3}\right]$	249	257
total dissolved solids $[\mathrm{mg} / \mathrm{l}]$	495	522
temperature $\left({ }^{\circ} \mathrm{C}\right)$	8.4	8.4
\rightarrow RSI	7.45	7.32
$\rightarrow \rightarrow$ LSI	0.17	0.30

[^0]: (Engineer)

