Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

patersongroup

Phase II Environmental Site Assessment

383 Slater Street, 388-400 Albert Street and 156-160 Lyon Street Ottawa, Ontario

Prepared For

Main & Main Developments

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca April 15, 2019

Report: PE4581-2

TABLE OF CONTENTS

EXE	CUTIV	'E SUMMARY	iii
1.0	INTR	RODUCTION	1
	1.1	Site Description	1
	1.2	Property Ownership	2
	1.3	Current and Proposed Future Uses	2
	1.4	Applicable Site Condition Standard	2
2.0	BAC	KGROUND INFORMATION	3
	2.1	Physical Setting	3
	2.2	Past Investigations	3
3.0	SCO	PE OF INVESTIGATION	4
	3.1	Overview of Site Investigation	4
	3.2	Media Investigated	4
	3.3	Phase I Conceptual Site Model	4
	3.4	Deviations from Sampling and Analysis Plan	6
	3.5	Impediments	
4.0	INVE	STIGATION METHOD	6
	4.1	Subsurface Investigation	6
	4.2	Soil Sampling	7
	4.3	Field Screening Measurements	7
	4.4	Groundwater Monitoring Well Installation	8
	4.5	Field Measurement of Water Quality Parameters	8
	4.6	Groundwater Sampling	8
	4.7	Analytical Testing	9
	4.8	Residue Management	12
	4.9	Elevation Surveying	12
	4.10	Quality Assurance and Quality Control Measures	12
5.0	REV	IEW AND EVALUATION	13
	5.1	Geology	13
	5.2	Groundwater Elevations, Flow Direction, and Hydraulic Gradient	13
	5.3	Fine-Coarse Soil Texture	13
	5.4	Soil: Field Screening	13
	5.5	Soil Quality	14
	5.6	Groundwater Quality	15
	5.7	Quality Assurance and Quality Control Results	17
	5.8	Phase II Conceptual Site Model	17
6.0	CON	CLUSIONS	23
7.0	STA	TEMENT OF LIMITATIONS	25

List of Figures

Figure 1 - Key Plan

Drawing PE4581-3 – Test Hole Location Plan and Groundwater Contour Plan

Drawing PE4581-4 - Analytical Testing Plan - Soil - Metals

Drawing PE4581-5 - Analytical Testing Plan - Soil - BTEX, PAHs, PHCs, VOCs

Drawing PE4581-6 – Analytical Testing Plan – Groundwater

Drawing PE4581-7– Cross-section A – A' – Soil – Metals

Drawing PE4581-8- Cross-section A - A' - Soil - BTEX, PAHs, PHCs, VOCs

Drawing PE4581-9 – Cross-section A – A' – Groundwater

List of Appendices

Appendix 1 Sampling and Analysis Plan

Soil Profile and Test Data Sheets

Symbols and Terms

Laboratory Certificates of Analysis

Appendix 2 Phase II ESA Report – Golder Associates

Report: PE4581-2

EXECUTIVE SUMMARY

Assessment

A Phase II ESA was conducted for the properties addressed 383 Slater Street, 388-400 Albert Street and 156-160 Lyon Street, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address a potentially contaminating activity (PCA) that was identified during the Phase I ESA and considered to result in an area of potential environmental concern (APEC) on the Phase II Property. The subsurface investigation consisted of nine (9) test pits and drilling three (3) boreholes, all of which were constructed with groundwater monitoring wells.

Soil samples were obtained from the test pits located on the western portion of the subject property and screened using visual observations. Five (5) soil samples were submitted for laboratory analysis of metals. All metal parameter concentrations were in compliance with the MECP Table 3 Standards.

Soil results from the 2012 and 2017 Phase II ESAs conducted by Golder Associates and Paterson, respectively, identified mercury and lead concentrations in excess of the MECP Table 3 Standards. Impacted soil was identified on the eastern portion of Phase II Property. The extent of contamination is considered to be limited to the fill material beneath the asphaltic concrete and/or gravel layer.

Groundwater samples from monitoring wells installed in BH1, BH2 and BH3 were recovered and analyzed for volatile organic compounds (VOCs) to confirm that groundwater beneath the site is free of contaminants. All VOC parameter concentrations were in compliance with the MECT Table 3 Standards, with the exception of chloroform detected in two monitoring wells (BH1 and BH2). Chloroform is considered to be related to the municipal water used to core the bedrock on the subject site and is expected to dissipate in the near future. Therefore, groundwater is considered to be in compliance with the selected MECP standards.

Groundwater results from the 2012 and 2017 Phase II ESAs concluded all analyzed parameters were in compliance with the MECP Table 3 Standards.

Recommendations

Soil

Based on the findings of the Phase II ESA, soil/fill impacted with mercury and lead is present on the eastern portion of the Phase II Property. It is expected that the impacted fill will be removed from the subject site during the redevelopment process. The

Report: PE4581-2

excavation of the fill from the property should be monitored and confirmed by Paterson. Any impacted fill and construction debris being removed from the property is to be disposed of at an approved waste disposal facility.

Groundwater

It is recommended that any monitoring wells that had elevated chloroform concentrations in them be resampled to confirm that the chloroform has dissipated.

Monitoring Wells

If the monitoring wells installed on the subject site are not going to be used in the future, or will be destroyed during site redevelopment, they should be abandoned according to Ontario Regulation 903. The wells will be registered with the MECP under this regulation.

Report: PE4581-2

1.0 INTRODUCTION

At the request of Mr. Rooie Ash of Main & Main Developments, Paterson Group (Paterson) conducted a Phase II Environmental Site Assessment of 383 Slater Street, 388-400 Albert Street, 156-160 Lyon Street, in the City of Ottawa, Ontario. The purpose of this Phase II ESA has been to address areas of potential environmental concern (APECs) identified on the Phase II Property, during the Phase I ESA conducted by Paterson in March 2019 and previous Phase II ESAs conducted by Golder Associates and Paterson in January 2012 and May 2017, respectively.

1.1 Site Description

Address: 383 Slater Street, 388-400 Albert Street, 156-160

Lyon Street, Ottawa, Ontario.

Legal Description: West Part Lot 16; Lots 12, 13, 14, 15, 16, and Part of

Lot 17 (North Slater Street) and Lots 14 and 15 (South Albert Street), Registered Plan 3922, City of

Ottawa, Ontario;

Part of Lot 16 (East Albert Street); Part of Lot 17,

Registered Plan 3922, City of Ottawa, Ontario.

Property Identification

Number(s): 04114-0008; 04114-0011; 04114-0012; 04114-0010

and 04114-0009

Location: The subject site is bound by Bay Street to the West,

Lyon Street to the East, Slater Street to the South, and Albert Street to the North. The subject site is shown on Figure 1 - Key Plan following the body of

this report.

Latitude and Longitude: 45° 23' 04" N, 75° 44' 12" W

Zoning: R5A – Residential 5th Density

Configuration: Irregular

Site Area: 1.05 hectares (approximate)

Report: PE4581-2

1.2 Property Ownership

Paterson was retained to complete this Phase II ESA by Mr. Rooie Ash of Main & Main Developments, the prospective buyer. Main & Main Developments' office is located at 109 Atlantic Avenue, Suite 302B, Toronto, Ontario. Mr. Ash can be reached by telephone at (416) 530-2438.

1.3 Current and Proposed Future Uses

The Phase II Property is currently occupied by a vacant two (2) storey commercial restaurant building. The site is primarily used for vehicular parking. It is our understanding that the Phase II Property will be redeveloped with three (3) residential complexes with retail/commercial space available on the ground level and multiple levels of underground parking.

1.4 Applicable Site Condition Standard

The site condition standards for the property were obtained from Table 3 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ministry of the Environment, Conservation and Parks (MECP), April 2011. The selected MECP Table 3 Standards are based on the following considerations:

Coarse-grained soil conditions
Surface soil and groundwater conditions
Non-potable groundwater conditions
Residential land use

The residential standards were selected based on the future land use of the subject site. Coarse grained soil standards were chosen as a conservative approach. Grain size analysis was not completed.

Report: PE4581-2
April 15, 2019
Page 2

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The Phase II Property is bound by Bay Street to the West, Lyon Street to the East, Slater Street to the South, and Albert Street to the north. The site is in a downtown urban setting. The ground surface at the site is gravel covered along the western portion of the property, while the eastern portion is asphaltic concrete covered. The site is at the grade of Albert Street and Slater Street, sloping down in a north-to-south direction. The regional topography slopes downwards in a northerly direction towards the Ottawa River, approximately 520 m away.

2.2 Past Investigations

Paterson completed a Phase I ESA in March 2019 for the subject site. Based on the findings of the Phase I ESA, one Potentially Contaminating Activity (PCA) was identified, metal impacted fill material on site. This PCA was considered to represent an APEC on the Phase I Property.

PCAs that represented APECs on the Phase I and II Property as well as the Contaminants of Potential Concern (CPCs) are presented in Table 1.

Table 1. Areas of Potential Environmental Concern									
Area of Potential Environmental Concern and location	Potentially Contaminating Activity, as per Table 2 of O.Reg 153/04, as amended by, O.Reg 269/11	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)					
APEC 1: Fill Material located on the site	Item 30, "Importation of Fill Material of Unknown Quality"	On Site – southern portion and northeast quadrant of the site	Metals	Soil					

A Phase II ESA was recommended to address the aforementioned APEC.

Report: PE4581-2
April 15, 2019
Page 3

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The original subsurface investigation was conducted in April 2017, while recent cork was conducted in March 2019 in conjunction with a Geotechnical Investigation. In 2017, four (4) boreholes were drilled at the subject site. Boreholes were drilled through overburden soils and into bedrock to a maximum depth of 8.3 m below ground surface (GBS). Groundwater monitoring wells were installed in three (3) boreholes. Five (5) additional boreholes which had been previously drilled for geotechnical purposes were also reviewed as part of the 2017 Phase II ESA.

The field program in March 2019 consisted of nine (9) test pits to assess the quality of the fill material on the western half of the 383 Slater Street. Three (3) deep boreholes were drilled to depths of 17.9 to 19.4 m BGS and completed as groundwater monitoring wells.

3.2 Media Investigated

During the subsurface investigation, soil samples and groundwater samples were obtained and submitted for laboratory analysis. The rationale for sampling and analyzing these media is based on the Contaminants of Potential Concern identified in the Phase I ESA and confirmation of existing groundwater conditions.

Contaminants of potential environmental concern for soil include metals (chromium VI and mercury). Additional testing of groundwater included volatile organic compounds (VOCs) for confirmatory purposes only.

3.3 Phase I Conceptual Site Model

Geological and Hydrogeological Setting

The Geological Survey of Canada website on the Urban Geology of the National Capital Area was consulted as part of this assessment. Based on this information, bedrock in the area of the site consists of interbedded limestone and dolomite of the Gull River Formation. Overburden is reported to consist of Glacial Till of depths ranging from 0-5m.

Based on the findings of the Geotechnical investigation conducted by Paterson, overburden generally consists of fill material in former building locations over silty

Report: PE4581-2

slay and/or glacial till over bedrock. Bedrock ranges in depth from approximately 3-5 m below grade.

The regional topography slopes down in a northerly direction, however the topography in the immediate vicinity of the Phase I Property slopes down towards the south. The local groundwater flow beneath the Phase I Property is inferred to be in a north-westerly/northerly direction.

Contaminants of Potential Concern

As per Section 7.1 of the Phase I ESA report, metals were identified as contaminants of potential concern (CPCs) in the fill on the subject site.

Existing Buildings and Structures

The Phase I Property is occupied by a vacant two (2) storey building that was constructed pre-1920 with a stone and mortar foundation, finished in red brick and a sloped style shingle roof. The building was used as a restaurant since the mid 1990s. Remnants (foundation walls) of the former building on the northwest corner of the property are present.

Water Bodies

There are no water bodies on the Phase I Property or within the Phase I study area. The closest water body is the Ottawa River, located approximately 500 m to the north.

Areas of Natural Significance

No areas of natural significance were identified on the Phase I Property or in the Phase I Study Area.

Drinking Water Wells

No drinking water wells are located on the Phase I Property or within the Phase I Study Area.

Neighbouring Land Use

Neighbouring land use in the Phase I Study Area is a combination of residential, commercial retail, restaurants and an institution. Land use is shown on Drawing PE4581-2 - Surrounding Land Use Plan in the Phase I ESA report.

Report: PE4581-2

Potentially Contaminating Activities and Areas of Potential Environmental Concern

As per Table 5 in Section 7.1, one Potentially Contaminating Activity (PCA) was identified on the Phase I Property resulting in an Area of Potential Environmental Concern (APEC):

☐ Fill material of unknown quality in select areas of the Phase I Property

Historical PCAs were identified within the Phase I Study Area, however these activities were previously addressed and are no longer considered to represent APECs on the Phase I Property based on their respective separation distances and/or orientations with respect to the Phase I Property.

Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of this Phase I ESA is considered to be sufficient to conclude that there are areas of potential environmental concern on the subject site resulting from current and historical uses of neighbouring properties. The presence of potentially contaminating activities was confirmed by a variety of independent sources. The conclusions of this report are not affected by uncertainty which may be present with respect to the individual sources.

3.4 Deviations from Sampling and Analysis Plan

The Sampling and Analysis Plan for this project is included in Appendix 1 of this report.

3.5 Impediments

No physical impediments were encountered during the Phase II ESA program.

4.0 INVESTIGATION METHOD

4.1 Subsurface Investigation

The subsurface investigation conducted for this Phase II ESA consisted of drilling three (3) boreholes that were completed as groundwater monitoring wells. Boreholes were drilled through overburden soils and into bedrock to a maximum depth of 19.4 m BGS to intercept groundwater. Nine (9) additional test pits were conducted to assess the quality of the fill on site. This subsurface investigation was conducted in conjunction with a Geotechnical Investigation.

Report: PE4581-2

The test pits were placed to address the aforementioned APEC in the southwestern quadrant of the property. The boreholes were advanced using a truck-mounted CME 55 power auger drill rig. The drilling contractor was George Downing Estate Drilling of Hawkesbury, Ontario. Drilling occurred under full-time supervision of Paterson personnel. The borehole locations are indicated on the attached Drawing PE4581-3 - Test Hole Location Plan.

4.2 Soil Sampling

A total of nine (9) soil samples were obtained from the test pits by means of sampling from grab samples.

A total of sixteen (16) soil samples were obtained from the boreholes by means of split spoon sampling and grab sampling from auger flights. Split spoon samples were taken at approximate 0.76 m intervals. The bedrock was cored to facilitate the installation of groundwater monitoring wells. The depths at which grab samples and split spoon samples were obtained from the boreholes are shown as "G" and "SS" on the Soil Profile and Test Data Sheets, appended to this report.

The borehole profiles generally consist of asphaltic concrete or gravel over crushed stone and silty sand with gravel fill material, underlain silty sand and/or till and bedrock. Fill material present beneath the pavement structure extended to depths ranging from 2.39 to 3.28 m. Till was present beneath the fill and extended to depths ranging from 2.84 to 4.29 m below the existing grade.

4.3 Field Screening Measurements

Soil samples recovered at the time of sampling were placed immediately into airtight plastic bags with nominal headspace. All lumps of soil inside the bags were broken by hand, and the soil was allowed to come to room temperature prior to conducting the vapour survey. Allowing the samples to stabilize to room temperature ensures consistency of readings between samples.

To measure the soil vapours, the analyser probe is inserted into the nominal headspace above the soil sample. A photo ionization detector (PID) was used to measure the volatile organic vapour concentrations. The sample is agitated/manipulated gently as the measurement is taken. The peak reading registered within the first 15 seconds is recorded as the vapour measurement.

The PID readings were found to be zero in the soil samples obtained. These results do not indicate the potential for significant contamination from volatile

Report: PE4581-2

contaminants. Vapour readings are noted on the Soil Profile and Test Data Sheets in Appendix 1.

No olfactory indications of potential contamination were identified in the soil samples; however, some demolition debris was identified in a few samples.

4.4 Groundwater Monitoring Well Installation

Three (3) groundwater monitoring wells were installed on the subject site as part of the subsurface investigation. The monitoring wells consisted of 32 mm diameter Schedule 40 threaded PVC risers and screens. Monitoring well construction details are listed below in Table 2 and are also presented on the Soil Profile and Test Data Sheets provided in Appendix 1.

Boreholes were surveyed using a benchmark elevation of the top grate of a manhole located on Bay Street, at the Slater Street at Bay Street intersection as presented in Drawing PE4581-3, with a geodetic elevation of 72.77 m above sea level (m ASL).

TABL	TABLE 2: Monitoring Well Construction Details										
Well ID	Ground Surface Elevation	Total Depth (m BGS)	Screened Interval (m BGS)	Sand Pack (m BGS)	Bentonite Seal (m BGS)	Casing Type					
BH1	73.24	18.01	15.01-18.01	13.70-18.01	0.61-13.70	Flushmount					
BH2	71.99	17.88	14.88-17.88	13.66-17.88	0.61-13.66	Flushmount					
BH3	72.28	19.38	16.38-19.38	13.70-19.38	0.61-13.70	Flushmount					

4.5 Field Measurement of Water Quality Parameters

Groundwater sampling was conducted at BH1, BH2 and BH3 on April 9, 2019. Water levels were measured. No other field parameters were measured.

4.6 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. Groundwater samples were obtained from each monitoring well, using dedicated sampling equipment. Standing water was purged from each well prior to sampling. Samples were stored in coolers to reduce analyte volatilization during transportation. Details of our standard operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan in Appendix 1.

Report: PE4581-2

4.7 Analytical Testing

Based on the guidelines outlined in the Sampling and Analysis Plan appended to this report, the following soil and groundwater samples as well as analyzed parameters are presented in Tables 3 and 4. For reference purposes, previous sample ID(s) and analyzed parameters from the 2012 and 2017 Phase II ESAs conducted by Golder and Paterson, respectively, have been included in the table.

TABLE 3. Soil Samples Submitted and Analyzed Parameters									
			Parar Ana		_				
Sample ID	Sample Depth / Stratigraphic Unit	Metals ¹	BTEX / VOCs	PAHs	PHCs (F1-F4)	Rationale			
March 29, 201	9								
TP1-G1	0.2-0.3 m, Fill	Х				Assess the quality of the fill material on the southwest portion of the subject site.			
TP2-G1	0.1-0.2 m, Fill	Х				Assess the quality of the fill material on the southwest portion of the subject site.			
TP3-G1	0.2-0.3 m, Fill	Х				Assess the quality of the fill material on the southwest portion of the subject site.			
TP4-G1	0.2-0.3 m, Fill	Х				Assess the quality of the fill material on the southwest portion of the subject site.			
TP5-G1	0.2-0.3 m, Fill	Х				Assess the quality of the fill material on the southwest portion of the subject site.			
April 18-27, 20	017 (Paterson, 201	7)							
BH9-SS2	0.76-1.37 m, Fill	Х		Х		Assess fill material of unknown quality			
BH10-SS1B	0.31-0.76 m, Fill	Х				Assess former garage, welding shop and fill quality			
BH10-SS2	0.76-1.37 m, Fill		Х	Χ	Х	Assess former garage, welding shop and fill quality			
BH10-SS4	2.29-2.90 m, silty sand	Х				Vertical delineation of Mercury impacts			
BH11-SS1B	0.25-0.91 m, Fill	Х	Assess fill material of unknown quality						
BH11-SS2A	0.91-1.37 m, Fill	Χ				Vertical delineation of Mercury and			

Report: PE4581-2 April 15, 2019

TABLE 3. Soil Samples Submitted and Analyzed Parameters								
			Parar		-			
Sample ID	Sample Depth / Stratigraphic Unit			PHCs (F1-F4)	Rationale			
						Lead impacts		
BH11-SS3	1.52-2.13 m, Till	Х				Vertical delineation of Mercury impacts		
BH11-SS6	3.81-4.22 m, Till		Х			Assess former cleaners and fill material of unknown quality		
BH12-SS1B	0.31-0.76 m, Fill	Х				Assess fill material of unknown quality		
BH12-SS2	0.76-1.37 m, Fill	Х				Vertical delineation of Mercury impacts		
BH12-SS5	3.04-3.66 m, Till		Х		Х	Assess former cleaners		
May 19, 2011	(Golder, 2012)							
T-72 SA1	0.76-1.37 m, Fill	Х	Х		Х	Assess APECs on northwest corner of the subject site		
T-72 SA4	3.04-3.66 m, Till	X	Х		Х	Assess APECs on northwest corner of the subject site		
T-306 SA1	0.76-1.37 m, Fill	Х	Х		Х	Assess APECs on northwest corner of the subject site		
T-306 SA3	2.29-2.90 m, Till		Х		Х	Assess APECs on northwest corner of the subject site		
T-307 SA1	0.76-1.37 m, Fill	Х	Х		Х	Assess APECs on northwest corner of the subject site		
T-307 SA5	3.80-4.42 m, Till		Х		Х	Assess APECs on northwest corner of the subject site		
T-308 SA3	2.29-2.90 m, silty clay		Х		Х	Assess APECs on northwest corner of the subject site		
T-308 SA6*	3.80-4.27 m, Till		Х		Х	Assess APECs on northwest corner of the subject site		
T-309 SA1	0.91-1.52 m, Fill	Х	Х		Х	Assess APECs on northwest corner of the subject site		
T-309 SA4	3.05-3.66 m, Till		Х		Х	Assess APECs on northwest corner of the subject site		
T-309 SA4A	3.05-3.66 m, Till		Х		Х	Duplicate Sample		
Notes:			_					

Metals including Chromium VI and/or Mercury
 Identified as SA5 on borehole log

TABLE 4. Groundwater Samples Submitted and Analyzed Parameters									
	Screened Depth/	Parameters Analyzed							
Sample ID	Stratigraphic Unit	Metals¹	VOCs	PAHs	PHCs (F1-F4)	Rationale			
April 9, 2019				<u> </u>					
BH1-GW1	15.01-18.01 m, Limestone bedrock		Х			Confirm that there are no VOC impacts beneath the subject site			
BH2-GW1	14.88-17.88 m, Limestone bedrock		Х			Confirm that there are no VOC impacts beneath the subject site			
BH3-GW1	16.38-19.38 m, Limestone bedrock		Χ			Confirm that there are no VOC impacts beneath the subject site			
April 27, 201	7 (Paterson, 2017)								
BH9-GW1	3.81-7.14 m, Limestone bedrock	X		X	Х	Assess potential groundwater impacts due to the presence of the former welding shop and garage			
BH10-GW1	3.73- 8.31 m, Limestone bedrock		X	X	X	Assess potential groundwater impacts due to the presence of the former drycleaners and garage			
BH11-GW1	4.89-6.81 m Limestone bedrock	X	X			Assess potential groundwater impacts due to the presence of the former drycleaners and welding shop			
June 28 – De	ecember 5, 2011 (Gold	der, 2	2012))					
T-72A	33.3-39.3 m, Limestone bedrock		Х		X	Assess potential groundwater impacts due to the presence of the former drycleaner			
T-72B	12.2-15.2 m, Limestone bedrock		Х		Х	Assess potential groundwater impacts due to the presence of the former drycleaner			
T-306A	13.6-15.1 m, Limestone bedrock		Х			Assess potential groundwater impacts due to the presence of the former drycleaner			
T-306B	4.9-6.4 m, Limestone bedrock		Х		Χ	Assess potential groundwater impacts due to the presence of the former drycleaner			
T-307A	13.5-15.0 m, Limestone bedrock		Х			Assess potential groundwater impacts due to the presence of the former drycleaner			
T-308A	13.5-15.0 m, Limestone bedrock		X			Assess potential groundwater impacts due to the presence of the former drycleaner			
T-308B	5.5-7.0 m, Limestone bedrock		Х		Х	Assess potential groundwater impacts due to the presence of the former drycleaner			

Report: PE4581-2

TABLE 4. Groundwater Samples Submitted and Analyzed Parameters									
	Screened Depth/	Parameters Analyzed							
Sample ID	Stratigraphic Unit	Metals¹	VOCs	PAHs	PHCs (F1-F4)	Rationale			
T-309A		Х			Assess potential groundwater impacts due to the presence of the former drycleaner				
T-309B 5.5-7.0 m, Limestone bedrock					Х	Assess potential groundwater impacts due to the presence of the former drycleaner			
Notes: A, B – Indicate									

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA). Paracel is accredited and certified by SCC/CALA for specific tests registered with the association.

4.8 Residue Management

All soil cuttings, purge water and fluids from equipment cleaning were retained on-site.

4.9 Elevation Surveying

An elevation survey of all borehole locations was completed by Paterson at the time of the subsurface investigation. Elevations were surveyed relative to a geodetic benchmark (manhole cover located along east side of Bay Street, just north of Slater Street). The elevation of the benchmark was 72.77 metres above sea level (m ASL). The location of the site benchmark is shown on Drawing PE4581-3 – Test Hole Location Plan.

4.10 Quality Assurance and Quality Control Measures

A summary of quality assurance and quality control (QA/QC) measures, including sampling containers, preservation, labelling, handling, and custody, equipment cleaning procedures, and field quality control measurements is provided in the Sampling and Analysis Plan in Appendix 1.

Report: PE4581-2 April 15, 2019

5.0 REVIEW AND EVALUATION

5.1 Geology

Site soils consist of an asphaltic paved layer or gravel, underlain by fill material (crushed stone and silty sand with some gravel), overlying glacial till (clayey silt with sand and gravel) and subsequent limestone bedrock.

Groundwater was encountered within bedrock at depths ranging from approximately 2.20 to 4.37 m BGS.

Site geology details are provided in the Soil Profile and Test Data Sheets provided in Appendix 1.

5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels were measured during the groundwater sampling event on April 9, 2019 using an electronic water level meter. Groundwater levels are summarized below in Table 5.

TABLE 5: Groundwater Level Measurements										
Borehole Location	Ground Surface	Water Level Depth (m below grade)	Water Level Elevation	Date of Measurement						
	Elevation (m)		(m ASL)							
BH1	73.24	4.37	68.87	April 9, 2019						
BH2	71.99	2.20	69.79	April 9, 2019						
BH3	72.28	3.50	68.78	April 9, 2019						

Based on the groundwater elevations measured during the April 2019 sampling event, groundwater contour mapping was completed. Groundwater contours are shown on Drawing PE4581-3. Based on the contour mapping, groundwater flow at the subject site appears to be in a northwesterly direction. A horizontal hydraulic gradient of approximately 0.04 m/m was calculated.

5.3 Fine-Coarse Soil Texture

No grain size analysis was completed for the subject site. Coarse grained standards were chosen as a conservative approach.

5.4 Soil: Field Screening

Field screening of the soil samples collected during drilling resulted in zerovapour readings. No obvious olfactory indications of potential environmental concerns were identified in the soil samples; however, some demolition debris

Report: PE4581-2
April 15, 2019
Page 13

was present in a few samples. The field screening results of each individual soil sample are provided on the Soil Profile and Test Data Sheets appended to this report.

5.5 Soil Quality

Five (5) soil samples were submitted for metals analysis. The results of the analytical testing are presented below in Table 6. The laboratory certificate of analysis is provided in Appendix 1.

TABLE 6: Analytical Test Results - Soil – Metals									
			MECP						
Parameter	MDL			Samples (_l arch 29, 20			Table 3		
	(µg/g)	TP1-G1	TP2-G1	TP3-G1	TP4-G1	TP5-G1	Residential Standards (µg/g)		
Antimony	1.0	nd	nd	1.1	nd	1.2	7.5		
Arsenic	1.0	1.8	3.3	3.8	2.9	4.2	18		
Barium	1.0	20.0	123	53.0	102	104	390		
Beryllium	0.5	nd	nd	nd	nd	nd	4		
Boron	5.0	nd	26.1	7.5	8.7	8.9	120		
Cadmium	0.5	nd	nd	nd	nd	nd	1.2		
Chromium	5.0	8.8	10.3	11.5	19.8	16.3	160		
Chromium (VI)	0.2	nd	nd	nd	nd	nd	8		
Cobalt	1.0	3.5	4.1	4.4	6.9	5.7	22		
Copper	5.0	6.5	15.3	12.7	17.0	17.6	140		
Lead	1.0	3.9	16.0	10.3	26.3	29.8	120		
Mercury	0.1	nd	nd	nd	nd	nd	0.27		
Molybdenum	1.0	nd	2.5	3.0	1.0	4.2	6.9		
Nickel	5.0	6.1	10.2	9.2	17.2	13.2	100		
Selenium	1.0	nd	nd	nd	nd	nd	2.4		
Silver	0.3	nd	nd	nd	nd	nd	20		
Thallium	1.0	nd	nd	nd	nd	nd	1		
Uranium	1.0	nd	nd	nd	nd	1.4	23		
Vanadium	10.0	18.7	13.6	17.4	34.8	21.9	86		
Zinc Notes:	20.0	nd	51.6	25.3	86.5	48.7	340		

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- Bold and Underlined Value exceeds selected MECP Standards
- NA Parameter not tested

Several metal parameters were detected in the soil samples; however, the concentrations are in compliance with the MECP Table 3 Standards. Analytical results for metals with respect to borehole locations are shown on Drawing PE4581-4 – Analytical Testing Plan – Soils (Metals). It should be noted, that the 2012 and 2017 Phase II ESA results for metals have been included in the above noted drawing.

Report: PE4581-2

Based on the combined analytical results for soil, mercury and/or lead concentrations exceeded the selected MECP standards in boreholes T-306, T-307, BH10, BH11 and BH12. Metal contamination was identified in samples retrieved from the fill layer.

The analytical results for all other parameters (BTEX, PAHs, PHCs, and VOCs) tested in soil from the 2012 and 2017 Phase II ESAs are shown on Drawing PE4581-5 – Analytical Testing Plan – Soils (BTEX, PAHs, PHCs, VOCs). All other parameter concentrations were in compliance with the MECP Table 3 Standards.

The maximum concentrations of analyzed parameters in the soil at the site are summarized below in Table 7.

Parameter	Maximum Concentration (µg/g)	Borehole	Depth Interval (m BGS)	
Antimony	1.2	TP5-G1	0.2-0.3 m, Fill	
Arsenic	4.2	11001		
Barium	123	TP2-G1	0.1-0.2 m, Fill	
Boron	26.1	11 2 01	3 0.2, 1	
Chromium	19.8	TP4-G1	0.2-0.3 m, Fill	
Cobalt	6.9	11 + 01	3.2 0.0 111, 1 111	
Copper	17.6	TP5-G1	0.2-0.3 m, Fill	
Lead	29.8	110.01	0.2 0.0 111, 1 111	
Molybdenum	4.2			
Nickel	17.2	TP4-G1	0.2-0.3 m, Fill	
Vanadium	34.8	11 4301	0.2 0.3 111, 1 111	
Zinc	86.5			

5.6 Groundwater Quality

Groundwater samples from monitoring wells installed in BH1, BH2 and BH3 were submitted for laboratory analysis of VOC parameters. The groundwater samples were obtained from the screened intervals noted on Table 2. The results of the analytical testing are presented in Table 8. The laboratory certificates of analysis are provided in Appendix 1.

Report: PE4581-2

383 Slater Street, 388-400 Albert Street, 156-160 Lyon Street, Ottawa, Ontario

Parameter	TABLE 8. Analytical Test Results – Groundwater (VOCs)								
BH1-GW1	·	MDL		lwater Sample	es (µg/L)	Table 3			
Benzene		(μg/L)	BH1-GW1	BH2-GW1	BH3-GW1	Residential Standards (µg/L)			
Bromodichloromethane 0.5 3.2 3.0 nd 85,000 Bromoform 0.5 nd nd nd 380 Bromomethane 0.5 nd nd nd nd 380 Chorofor Tetrachloride 0.5 nd nd nd nd 0.79 Chloroform 0.5 nd nd nd nd 630 Chloroform 0.5 27.1 25.7 nd 2.4 Dibromochloromethane 0.5 nd nd nd nd 2.4 Dibromochloromethane 0.5 nd nd nd nd 4,400 1,400	Acetone		nd	nd	nd	130,000			
Bromoform 0.5 nd nd nd 380 Bromomethane 0.5 nd nd nd 5.6 Carbon Tetrachloride 0.2 nd nd nd 0.79 Chloroform 0.5 nd nd nd nd 630 Chloroform 0.5 nd nd nd nd 630 Dibromochloromethane 0.5 nd nd nd nd 82,000 Dichlorodifluoromethane 1 nd nd nd nd nd 4,400 1,2-Dichlorobenzene 0.5 nd nd nd nd nd 4,600 1,3-Dichlorobenzene 0.5 nd nd nd nd nd nd 9,600 1,4-Dichlorobenzene 0.5 nd nd </td <td>Benzene</td> <td>0.5</td> <td>nd</td> <td>nd</td> <td>nd</td> <td>44</td>	Benzene	0.5	nd	nd	nd	44			
Bromomethane 0.5 nd nd nd 5.6 Carbon Tetrachloride 0.2 nd nd nd 0.79 Chlorobenzene 0.5 nd nd nd nd 0.79 Chloroform 0.5 nd nd nd nd 2.4 2.4 Dibromochloromethane 0.5 nd nd nd nd 82,000 Dichlorodifluoromethane 1 nd nd nd nd 4,400 1,2-Dichlorobenzene 0.5 nd nd nd nd 4,600 1,3-Dichlorobenzene 0.5 nd nd nd nd nd 3,600 1,4-Dichlorobenzene 0.5 nd nd nd nd nd nd 3,600 1,2-Dichloroethylene 0.5 nd nd nd nd nd 1,6 1,1-Dichloroethylene 0.5 nd nd nd nd nd 1,6	Bromodichloromethane	0.5	3.2	3.0	nd	85,000			
Carbon Tetrachloride 0.2 nd nd nd 0.79 Chlorobenzene 0.5 nd nd nd 630 Chloroform 0.5 27.1 25.7 nd 2.4 Dibromochloromethane 0.5 nd nd nd 82,000 Dichlorodifluoromethane 1 nd nd nd nd 4,400 1,2-Dichlorobenzene 0.5 nd nd nd nd 4,600 1,3-Dichlorobenzene 0.5 nd nd nd nd nd 9,600 1,4-Dichlorobenzene 0.5 nd nd nd nd nd 320 1,2-Dichlorobenzene 0.5 nd nd nd nd nd 1.6	Bromoform	0.5	nd	nd	nd	380			
Chlorobenzene 0.5 nd nd nd 630 Chloroform 0.5 27.1 25.7 nd 2.4 Dibromochloromethane 0.5 nd nd nd 2.4 Dichlorodifluoromethane 0.5 nd nd nd nd 4,600 1,2-Dichlorobenzene 0.5 nd nd nd nd 4,600 1,3-Dichlorobenzene 0.5 nd nd nd nd nd 9,600 1,4-Dichlorobenzene 0.5 nd nd nd nd nd nd 8 1,1-Dichlorobenzene 0.5 nd nd nd nd nd nd 320 1,2-Dichloroethylene 0.5 nd nd nd nd nd nd 1.6 1,3-Dichloroethylene 0.5 nd nd nd nd nd nd 1.6 1,3-Dichloroethylene 0.5 nd nd nd nd </td <td>Bromomethane</td> <td>0.5</td> <td>nd</td> <td>nd</td> <td>nd</td> <td>5.6</td>	Bromomethane	0.5	nd	nd	nd	5.6			
Chloroform 0.5 27.1 25.7 nd 2.4 Dibromochloromethane 0.5 nd nd nd 82,000 Dichlorodifluoromethane 1 nd nd nd 4,400 1,2-Dichlorobenzene 0.5 nd nd nd nd 4,600 1,3-Dichlorobenzene 0.5 nd nd nd nd 9,600 1,4-Dichlorobenzene 0.5 nd nd nd nd nd 8 1,1-Dichlorobenzene 0.5 nd nd nd nd nd nd 8 1,1-Dichlorobenzene 0.5 nd 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.	Carbon Tetrachloride	0.2	nd	nd	nd	0.79			
Dibromochloromethane 0.5 nd nd nd 82,000 Dichlorodifluoromethane 1 nd nd nd 4,400 1,2-Dichlorobenzene 0.5 nd nd nd nd 4,600 1,3-Dichlorobenzene 0.5 nd nd nd nd 9,600 1,4-Dichlorobenzene 0.5 nd nd nd nd nd 320 1,1-Dichlorobenzene 0.5 nd nd<	Chlorobenzene	0.5	nd	nd	nd	630			
Dichlorodifluoromethane 1 nd nd nd 4,400 1,2-Dichlorobenzene 0.5 nd nd nd nd 4,600 1,3-Dichlorobenzene 0.5 nd nd nd nd 9,600 1,4-Dichlorobenzene 0.5 nd nd nd nd 8 1,1-Dichloroethane 0.5 nd nd nd nd 320 1,2-Dichloroethane 0.5 nd nd nd nd 1.6 1,1-Dichloroethylene 0.5 nd nd nd nd 1.6 cis-1,2-Dichloroethylene 0.5 nd nd nd nd 1.6 trans-1,2-Dichloroethylene 0.5 nd nd nd nd 1.6 1,2-Dichloropropane 0.5 nd nd nd nd 1.6 1,2-Dichloropropane 0.5 nd nd nd nd 1.6 1,2-Dichloropropane 0.5 nd	Chloroform	0.5	<u>27.1</u>	<u>25.7</u>	nd	2.4			
1,2-Dichlorobenzene 0.5 nd nd nd 9,600 1,3-Dichlorobenzene 0.5 nd nd nd 9,600 1,4-Dichlorobenzene 0.5 nd nd nd nd 8 1,1-Dichloroethane 0.5 nd nd nd nd 320 1,2-Dichloroethane 0.5 nd nd nd nd 1.6 1,1-Dichloroethylene 0.5 nd nd nd nd 1.6 1,1-Dichloroethylene 0.5 nd nd nd nd 1.6 trans-1,2-Dichloroethylene 0.5 nd nd nd nd 1.6 1,2-Dichloropropane 0.5 nd nd nd nd 1.6 1,3-Dichloropropane, total 0.5 nd nd nd nd 1.6 Ethylbenzene 0.5 nd nd nd nd 1.6 Ethylbenzene 0.5 nd nd nd <td>Dibromochloromethane</td> <td>0.5</td> <td>nd</td> <td>nd</td> <td>nd</td> <td>82,000</td>	Dibromochloromethane	0.5	nd	nd	nd	82,000			
1,3-Dichlorobenzene 0.5 nd nd nd 9,600 1,4-Dichlorobenzene 0.5 nd nd nd nd 8 1,1-Dichloroethane 0.5 nd nd nd nd 320 1,2-Dichloroethane 0.5 nd nd nd nd 1.6 1,1-Dichloroethylene 0.5 nd nd nd nd 1.6 cis-1,2-Dichloroethylene 0.5 nd nd nd nd 1.6 trans-1,2-Dichloroethylene 0.5 nd nd nd nd 1.6 1,2-Dichloropropane 0.5 nd nd nd nd 1.6 1,2-Dichloropropane 0.5 nd nd nd nd 1.6 1,3-Dichloropropane, total 0.5 nd nd nd nd 1.6 Ethylbenzene 0.5 nd nd nd nd 2.300 Ethylbenzene 0.5 nd n	Dichlorodifluoromethane	1	nd	nd	nd	4,400			
1,4-Dichlorobenzene 0.5 nd nd nd 320 1,1-Dichloroethane 0.5 nd nd nd nd 320 1,2-Dichloroethylene 0.5 nd nd nd nd 1.6 1,1-Dichloroethylene 0.5 nd nd nd nd 1.6 cis-1,2-Dichloroethylene 0.5 nd nd nd nd 1.6 trans-1,2-Dichloroethylene 0.5 nd nd nd nd 1.6 1,2-Dichloropropane 0.5 nd nd nd nd 1.6 Ethylene 0.5 nd nd <td>1,2-Dichlorobenzene</td> <td>0.5</td> <td>nd</td> <td>nd</td> <td>nd</td> <td>4,600</td>	1,2-Dichlorobenzene	0.5	nd	nd	nd	4,600			
1,1-Dichloroethane 0.5 nd nd nd 320 1,2-Dichloroethylene 0.5 nd nd nd 1.6 1,1-Dichloroethylene 0.5 nd nd nd nd 1.6 cis-1,2-Dichloroethylene 0.5 nd nd nd nd 1.6 trans-1,2-Dichloroethylene 0.5 nd nd nd nd 1.6 1,2-Dichloropropane 0.5 nd nd nd nd 1.6 1,3-Dichloropropane 0.5 nd nd nd nd 1.6 Ethylbenzeme 0.5 nd nd n	1,3-Dichlorobenzene	0.5	nd	nd	nd	9,600			
1,2-Dichloroethane 0.5 nd nd nd 1.6 1,1-Dichloroethylene 0.5 nd nd nd nd 1.6 cis-1,2-Dichloroethylene 0.5 nd nd nd nd 1.6 trans-1,2-Dichloroethylene 0.5 nd nd nd nd 1.6 1,2-Dichloropropane 0.5 nd nd nd nd 16 1,3-Dichloropropane, total 0.5 nd nd nd nd nd 16 1,3-Dichloropropane, total 0.5 nd nd nd nd nd 16 1.5 1,3-Dichloropropane, total 0.5 nd nd nd nd nd 16 1.6 1.6 1,3-Dichloropropane, total 0.5 nd nd nd nd nd nd nd 1.6 2.300 Ethylbenzer 0.5 nd nd nd nd nd 0.25 1 nd	1,4-Dichlorobenzene	0.5	nd	nd	nd	8			
1,1-Dichloroethylene 0.5 nd nd nd 1.6 cis-1,2-Dichloroethylene 0.5 nd nd nd 1.6 trans-1,2-Dichloroethylene 0.5 nd nd nd nd 1.6 1,2-Dichloropropane 0.5 nd nd nd nd 16 1,3-Dichloropropene, total 0.5 nd nd nd nd 16 1,3-Dichloropropene, total 0.5 nd nd nd nd nd 5.2 Ethylbenzene 0.5 nd nd nd nd nd 2,300 Ethylbenzene 0.5 nd nd nd nd 0.23 0	1,1-Dichloroethane	0.5	nd	nd	nd	320			
cis-1,2-Dichloroethylene 0.5 nd nd nd 1.6 trans-1,2-Dichloroethylene 0.5 nd nd nd 1.6 1,2-Dichloropropane 0.5 nd nd nd nd 16 1,3-Dichloropropene, total 0.5 nd nd nd nd 5.2 Ethylbenzene 0.5 nd nd nd nd 2,300 Ethylene dibromide 0.2 nd nd nd nd 0.25 Hexane 1 nd nd nd nd 0.25 Hexane 1 nd nd nd nd 0.25 Hexane 1 nd nd nd 0.25 nd nd nd 0.25 1 Hexane 1 nd nd nd nd 0.25 nd nd nd 0.25 nd nd nd 1470,000 1470,000 1470,000 1470,000 1470,000	1,2-Dichloroethane	0.5	nd	nd	nd	1.6			
trans-1,2-Dichloroethylene 0.5 nd nd nd 1.6 1,2-Dichloropropane 0.5 nd nd nd nd 16 1,3-Dichloropropene, total 0.5 nd nd nd nd 5.2 Ethylbenzene 0.5 nd nd nd nd 2,300 Ethylene dibromide 0.2 nd nd nd nd 0.25 Hexane 1 nd nd nd nd nd 51 Methyl Ethyl Ketone 5 nd nd nd nd 470,000 Methyl Isobutyl Ketone 5 nd nd nd 140,000 Methyl tert-butyl ether 2 nd nd nd 190 Methylene Chloride 5 nd nd nd 610 Styrene 0.5 nd nd nd nd 1,300 1,1,1,2-Tetrachloroethane 0.5 nd nd nd nd	1,1-Dichloroethylene	0.5	nd	nd	nd	1.6			
trans-1,2-Dichloroethylene 0.5 nd nd nd 1.6 1,2-Dichloropropane 0.5 nd nd nd nd 16 1,3-Dichloropropene, total 0.5 nd nd nd nd 5.2 Ethylbenzene 0.5 nd nd nd nd 2,300 Ethylene dibromide 0.2 nd nd nd nd 0.25 Hexane 1 nd nd nd nd nd 51 Methyl Ethyl Ketone 5 nd nd nd nd 470,000 Methyl Isobutyl Ketone 5 nd nd nd 140,000 Methyl tert-butyl ether 2 nd nd nd 190 Methylene Chloride 5 nd nd nd 610 Styrene 0.5 nd nd nd nd 1,300 1,1,1,2-Tetrachloroethane 0.5 nd nd nd nd	cis-1,2-Dichloroethylene	0.5	nd	nd	nd	1.6			
1,3-Dichloropropene, total 0.5 nd nd nd 5.2 Ethylbenzene 0.5 nd nd nd nd 2,300 Ethylene dibromide 0.2 nd nd nd nd 0.25 Hexane 1 nd nd nd nd 51 Methyl Ethyl Ketone 5 nd nd nd nd 470,000 Methyl Isobutyl Ketone 5 nd nd nd nd 140,000 Methyl tert-butyl ether 2 nd nd nd nd 190 Methylene Chloride 5 nd nd nd nd 190 Methylene Chloride 5 nd nd nd nd 610 Styrene 0.5 nd nd nd nd 1,300 1,1,2-Tetrachloroethane 0.5 nd nd nd nd 3.2 Tetrachloroethane 0.5 nd nd nd <td>trans-1,2-Dichloroethylene</td> <td>0.5</td> <td>nd</td> <td>nd</td> <td>nd</td> <td>1.6</td>	trans-1,2-Dichloroethylene	0.5	nd	nd	nd	1.6			
Ethylbenzene 0.5 nd nd nd 2,300 Ethylene dibromide 0.2 nd nd nd 0.25 Hexane 1 nd nd nd nd 51 Methyl Ethyl Ketone 5 nd nd nd nd 470,000 Methyl Isobutyl Ketone 5 nd nd nd nd 140,000 Methyl tert-butyl ether 2 nd nd nd nd 190 Methyl tert-butyl ether 2 nd nd nd nd 190 Methyl tert-butyl ether 2 nd nd nd nd 190 Methyl tert-butyl ether 2 nd nd nd nd 610 Styrene 0.5 nd nd nd nd 1,300 1,1,2-Tetrachloroethane 0.5 nd nd nd nd 3.2 Tetrachloroethylene 0.5 nd nd nd <td< td=""><td>1,2-Dichloropropane</td><td>0.5</td><td>nd</td><td>nd</td><td>nd</td><td>16</td></td<>	1,2-Dichloropropane	0.5	nd	nd	nd	16			
Ethylbenzene 0.5 nd nd nd 2,300 Ethylene dibromide 0.2 nd nd nd 0.25 Hexane 1 nd nd nd nd 51 Methyl Ethyl Ketone 5 nd nd nd nd 470,000 Methyl Isobutyl Ketone 5 nd nd nd nd 140,000 Methyl tert-butyl ether 2 nd nd nd nd 190 Methyl tert-butyl ether 2 nd nd nd nd 190 Methyl tert-butyl ether 2 nd nd nd nd 190 Methyl tert-butyl ether 2 nd nd nd nd 610 Styrene 0.5 nd nd nd nd 1,300 1,1,2-Tetrachloroethane 0.5 nd nd nd nd 3.2 Tetrachloroethylene 0.5 nd nd nd <td< td=""><td>1,3-Dichloropropene, total</td><td>0.5</td><td>nd</td><td>nd</td><td>nd</td><td>5.2</td></td<>	1,3-Dichloropropene, total	0.5	nd	nd	nd	5.2			
Hexane 1 nd nd nd 51 Methyl Ethyl Ketone 5 nd nd nd 470,000 Methyl Isobutyl Ketone 5 nd nd nd nd 140,000 Methyl tert-butyl ether 2 nd nd nd nd 190 Methylene Chloride 5 nd nd nd nd 610 Styrene 0.5 nd nd nd nd nd 1,300 1,1,2-Tetrachloroethane 0.5 nd nd nd nd 3.3 Tetrachloroethylene 0.5 nd nd nd nd 1.6 Toluene 0.5 nd nd nd nd 18,000 1,1,1-Trichloroethane 0.5 nd nd nd nd 640 1,1,2-Trichloroethane 0.5 nd nd nd nd 1.6		0.5	nd	nd	nd	2,300			
Methyl Ethyl Ketone 5 nd nd nd 470,000 Methyl Isobutyl Ketone 5 nd nd nd 140,000 Methyl tert-butyl ether 2 nd nd nd nd 190 Methylene Chloride 5 nd nd nd nd 610 Styrene 0.5 nd nd nd nd 1,300 1,1,2-Tetrachloroethane 0.5 nd nd nd nd 3.3 Tetrachloroethylene 0.5 nd nd nd nd 1.6 Toluene 0.5 nd nd nd nd 18,000 1,1,1-Trichloroethane 0.5 nd nd nd nd 640 1,1,2-Trichloroethane 0.5 nd nd nd nd 1.6 Trichloroethylene 0.5 nd nd nd nd 1.6	Ethylene dibromide	0.2	nd	nd	nd	0.25			
Methyl Isobutyl Ketone 5 nd nd nd 140,000 Methyl tert-butyl ether 2 nd nd nd 190 Methylene Chloride 5 nd nd nd nd 610 Styrene 0.5 nd nd nd nd 1,300 1,1,2-Tetrachloroethane 0.5 nd nd nd nd 3.3 1,1,2,2-Tetrachloroethane 0.5 nd nd nd nd 1.6 Toluene 0.5 nd nd nd nd 18,000 1,1,1-Trichloroethane 0.5 nd nd nd nd 640 1,1,2-Trichloroethane 0.5 nd nd nd nd nd 1.6 Trichloroethylene 0.5 nd nd nd nd 1.6	Hexane	1	nd	nd	nd	51			
Methyl Isobutyl Ketone 5 nd nd nd 140,000 Methyl tert-butyl ether 2 nd nd nd 190 Methylene Chloride 5 nd nd nd nd 610 Styrene 0.5 nd nd nd nd 1,300 1,1,2-Tetrachloroethane 0.5 nd nd nd nd 3.3 1,1,2,2-Tetrachloroethane 0.5 nd nd nd nd 1.6 Toluene 0.5 nd nd nd nd 18,000 1,1,1-Trichloroethane 0.5 nd nd nd nd 640 1,1,2-Trichloroethane 0.5 nd nd nd nd nd 1.6 Trichloroethylene 0.5 nd nd nd nd 1.6	Methyl Ethyl Ketone	5	nd	nd	nd	470,000			
Methyl tert-butyl ether 2 nd nd nd 190 Methylene Chloride 5 nd nd nd nd 610 Styrene 0.5 nd nd nd nd 1,300 1,1,1,2-Tetrachloroethane 0.5 nd nd nd nd 3.3 1,1,2,2-Tetrachloroethane 0.5 nd nd nd nd 3.2 Tetrachloroethylene 0.5 nd nd nd nd 1.6 Toluene 0.5 nd nd nd nd nd 640 1,1,1-Trichloroethane 0.5 nd nd nd nd 4.7 Trichloroethylene 0.5 nd nd nd nd 1.6		5	nd	nd	nd	140,000			
Styrene 0.5 nd nd nd 1,300 1,1,1,2-Tetrachloroethane 0.5 nd nd nd nd 3.3 1,1,2,2-Tetrachloroethane 0.5 nd nd nd nd 3.2 Tetrachloroethylene 0.5 nd nd nd nd 1.6 Toluene 0.5 nd nd nd nd 18,000 1,1,1-Trichloroethane 0.5 nd nd nd nd 640 1,1,2-Trichloroethane 0.5 nd nd nd nd 1.6 Trichloroethylene 0.5 nd nd nd nd 1.6	Methyl tert-butyl ether	2	nd	nd	nd	190			
1,1,1,2-Tetrachloroethane 0.5 nd nd nd 3.3 1,1,2,2-Tetrachloroethane 0.5 nd nd nd nd 3.2 Tetrachloroethylene 0.5 nd nd nd nd 1.6 Toluene 0.5 nd nd nd nd 18,000 1,1,1-Trichloroethane 0.5 nd nd nd 640 1,1,2-Trichloroethane 0.5 nd nd nd nd 1.6 Trichloroethylene 0.5 nd nd nd nd 1.6		5	nd	nd	nd	610			
1,1,2,2-Tetrachloroethane 0.5 nd nd nd 3.2 Tetrachloroethylene 0.5 nd nd nd nd 1.6 Toluene 0.5 nd nd nd nd 18,000 1,1,1-Trichloroethane 0.5 nd nd nd 640 1,1,2-Trichloroethane 0.5 nd nd nd nd 4.7 Trichloroethylene 0.5 nd nd nd nd 1.6	Styrene	0.5	nd	nd	nd	1,300			
Tetrachloroethylene 0.5 nd nd nd 1.6 Toluene 0.5 nd nd nd 18,000 1,1,1-Trichloroethane 0.5 nd nd nd 640 1,1,2-Trichloroethane 0.5 nd nd nd 4.7 Trichloroethylene 0.5 nd nd nd nd 1.6	1,1,1,2-Tetrachloroethane	0.5	nd	nd	nd	3.3			
Toluene 0.5 nd nd nd 18,000 1,1,1-Trichloroethane 0.5 nd nd nd 640 1,1,2-Trichloroethane 0.5 nd nd nd 4.7 Trichloroethylene 0.5 nd nd nd 1.6	1,1,2,2-Tetrachloroethane	0.5	nd	nd	nd	3.2			
Toluene 0.5 nd nd nd 18,000 1,1,1-Trichloroethane 0.5 nd nd nd 640 1,1,2-Trichloroethane 0.5 nd nd nd 4.7 Trichloroethylene 0.5 nd nd nd 1.6	Tetrachloroethylene	0.5	nd	nd	nd	1.6			
1,1,1-Trichloroethane 0.5 nd nd nd 640 1,1,2-Trichloroethane 0.5 nd nd nd 4.7 Trichloroethylene 0.5 nd nd nd 1.6	-								
1,1,2-Trichloroethane 0.5 nd nd nd 4.7 Trichloroethylene 0.5 nd nd nd 1.6	1,1,1-Trichloroethane		nd	nd	nd				
Trichloroethylene 0.5 nd nd nd 1.6									
-						1.6			
, , , , , , , , , , , , , , , , , , , ,	-								
Vinyl Chloride 0.5 nd nd nd 0.5									
Xylenes, total 0.5 nd nd nd 4,200	,								

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- NA Parameter not tested

Report: PE4581-2 April 15, 2019

VOC parameter concentrations were not detected in the groundwater samples analyzed, with the exception of bromodichloromethane and chloroform. Chloroform concentrations were identified in BH1 and BH2 in excess of the selected MECP standard; however, the chloroform concentrations are considered to be residual from the municipal water used during rock coring and thus, are not considered contaminants. All remaining VOC parameters comply with the MECP Table 3 Standards.

Analytical results of groundwater sampled with respect to borehole locations are shown on Drawing PE4581-6 – Analytical Testing Plan – Groundwater.

The maximum concentrations of analyzed parameters in the groundwater at the site are summarized in Table 9.

Parameter	Maximum Concentration (μg/L)	Borehole	Screened Interval (m BGS)
Bromodichloromethane	3.1	BH1-GW1	15.01-18.01 m
Chloroform	27.1	BH1-GW1	15.01-18.01 m

All other parameter concentrations were below laboratory detection limits.

5.7 Quality Assurance and Quality Control Results

All samples submitted as part of the April 2017 and 2019 sampling events were handled in accordance with the Analytical Protocol with respect to preservation method, storage requirement, and container type. As per Subsection 47(3) of O.Reg. 153/04, as amended, under the Environmental Protection Act, a Certificate of Analysis has been received for each sample submitted for analysis and all Certificates of Analysis are appended to this report.

Overall, the quality of the field data collected during this Phase II ESA is considered to be sufficient to meet the overall objectives of this assessment.

5.8 Phase II Conceptual Site Model

The following section has been prepared in accordance with the requirements of O.Reg. 153/04, as amended by the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

Report: PE4581-2 April 15, 2019

Site Description

Potentially Contaminating Activity and Areas of Potential Environmental Concern

As indicated in the Phase I-ESA report and Section 2.2 of this report, the following PCA, as per Table 2, O.Reg. 153/04, as amended, under the Environmental Protection Act, is considered to result in an APEC on the Phase I and Phase II Property:

Item 30, "Importation of Fill Material of Unknown Quality"

Former onsite PCAs and off-site PCAs in the area are not considered to have resulted in APECs, based on available documentation regarding those concerns (2012 and 2017 Phase II ESAs) and/or their location relative to the subject site.

Contaminants of Potential Concern

The CPCs for the Phase II Property include metals present in the fill material.

Subsurface Structures and Utilities

The subject site is located in a municipally serviced area. The site is currently vacant and based on the underground service locates completed prior to the field program no utilities remain on the subject site.

Physical Setting

Site Stratigraphy

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is provided in the Soil Profile and Test Data Sheets in Appendix 1 and is depicted in Drawings PE4581-6 to PE4581-9 – Cross-Sections A – A' Soil/Groundwater. The stratigraphy of the subject site generally consists of:

Paved asphalt/concrete, approximately 0.05 m below grade;
Fill material (crushed stone and silty sand with gravel and some clay) extending to depths ranging from approximately 2.39 to 3.28 m below grade;
Glacial till (clayey silt with sand and gravel), extending to depths ranging from approximately 2.84 to 4.29 m below grade;
Bedrock (limestone), extending to depths ranging from approximately 17.88 to 19.38 m below grade.

Report: PE4581-2

Hydrogeological Characteristics

Groundwater at the Phase II Property was encountered in the glacial till and limestone bedrock. The bedrock is interpreted to function as a local aquifer at the subject site.

Water levels were measured at the subject site on April 9, 2019, at depths ranging from 2.20 to 4.37 m BGS. Based on the groundwater elevations measured, a groundwater contour map was completed. Groundwater contours are shown on Drawing PE4581-3. Based on the contour mapping, groundwater flow at the subject site appears to be in a northwesterly direction. A horizontal hydraulic gradient of approximately 0.04 m/m was calculated.

Approximate Depth to Bedrock

Bedrock is present at approximately 2.84 to 4.29 m below the existing grade, as determined by rock coring at the subject site.

Approximate Depth to Water Table

Depth to water table at the subject site varies between approximately 2.20 to 4.37 m below the existing grade.

Sections 41 and 43.1 of the Regulation

Section 41 of the Regulation does not apply to the subject site as there are no areas of natural significance or bodies of water located on the subject site or within 30 m of the subject site. The subject site is not considered to be environmentally sensitive.

Section 43.1 of the Regulation does not apply to the subject site as bedrock is located more than 2 m below ground surface and thus, not considered a Shallow Soil Property.

Fill Placement

Fill placement has occurred at the subject site. The fill material consists of fill material of unknown quality in areas of former asphaltic concrete paved areas except within the former building footprints, where traces of demolition debris had been identified. Analytical results for metals indicate that the impacted fill material is present in the eastern portion of the subject site. Soil results for metals are shown in Drawing PE4581- 4 – Analytical Testing Plan – Soil (Metals).

Report: PE4581-2

It is understood that the impacted fill material and any demolition debris will be removed in conjunction with the redevelopment of the Phase II Property.

Existing Buildings and Structures

The Phase II Property is occupied by an uninhabited/vacant two (2) storey building that was constructed pre-1920 with a stone and mortar foundation, finished in red brick and a sloped style shingle roof. The building was used as a restaurant since the mid 1990s. Retaining walls are present on the northwest corner of the property.

Proposed Buildings and Other Structures

It is our understanding that combined commercial/residential high-rise buildings with multiple levels of underground parking are proposed for the site. The footprint of the development will cover the majority of the site.

Areas of Natural Significance and Water Bodies

No areas of natural significance or water bodies are present on or within the vicinity of the Phase II Property. The closest water body is the Ottawa River, located approximately 500 m to the north/northwest.

Environmental Condition

Areas Where Contaminants are Present

The impacted fill material is present on the eastern potion of the subject property. The southwestern and northern limits of contamination have been delineated, based on the analytical results of the 2017 Phase II ESA conducted by Paterson. It appears that the contamination is confined in the fill material, as shown in Drawing PE4581-7-Cross-Section A-A'. It is not expected that the contaminants have penetrated the underlying clayey layer.

Chloroform was present in the groundwater in wells (BH1 and BH2) in excess of the MECP Table 3 Standard, however, it is considered to be residual from the core water utilized during rock coring and is not a contaminant.

Analytical test results for soil and groundwater are shown on Drawings PE4581-4 through PE4581-7 – Analytical Testing Plans.

Types of Contaminants

The confirmed contaminants of concern in the soil/fill include mercury and lead.

Report: PE4581-2

Contaminated Media

Based on the results of the Phase II ESA, the fill material on the eastern portion of the subject site is impacted with mercury and/or lead.

What Is Known About Areas Where Contaminants Are Present

The fill material is impacted on the eastern portion of the Phase II Property. Analytical test results identified mercury and lead exceeding the MECP Table 3 Standards. No other contaminants were identified in soil or groundwater.

Distribution and Migration of Contaminants

As previously noted, impacted soil was identified in the eastern portion of the subject site. The marginal metals impacts identified in the fill are not expected to migrate into the native soil. Based on the vertical delineation samples the native soil/till has not been impacted.

Chloroform in groundwater exceeding the selected MECP Standards is believed to be remnant from the municipal core water used during the bedrock coring process. As a result, chloroform concentrations are not considered an environmental concern. Groundwater beneath the Phase II Property has not been impacted.

Discharge of Contaminants

The metal impacted soil is considered to have been associated with the historical land use and the possible importation of fill material. No activities currently taking place on the subject site are expected to discharge contaminants.

The chloroform is related to the municipal drinking water used as part of the rock coring process.

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two (2) ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally.

Leaching is not an issue since metals do not readily dissolve and contaminants are under asphaltic concrete and above the water table. Therefore, contaminants are not exposed to the groundwater on the Phase II Property.

Report: PE4581-2

Potential for Vapour Intrusion

Based on the soil and groundwater results vapour intrusion is not considered to be a concern at the Phase II-ESA Property.

Report: PE4581-2 April 15, 2019

6.0 CONCLUSIONS

Assessment

A Phase II ESA was conducted for the properties addressed 383 Slater Street, 388-400 Albert Street and 156-160 Lyon Street, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address a potentially contaminating activity (PCA) that was identified during the Phase I ESA and considered to result in an area of potential environmental concern (APEC) on the Phase II Property. The subsurface investigation consisted of nine (9) test pits and drilling three (3) boreholes, all of which were constructed with groundwater monitoring wells.

Soil samples were obtained from the test pits located on the western portion of the subject property and screened using visual observations. Five (5) soil samples were submitted for laboratory analysis of metals. All metal parameter concentrations were in compliance with the MECP Table 3 Standards.

Results of the 2012 and 2017 Phase II ESAs conducted by Golder Associates and Paterson, respectively, identified mercury and lead concentrations in excess of the MECP Table 3 Standards. Impacted soil was identified on the eastern portion of Phase II Property. The extent of contamination is considered to be limited to the fill material beneath the asphaltic concrete and/or gravel layer.

Groundwater samples from monitoring wells installed in BH1, BH2 and BH3 were recovered and analyzed for volatile organic compounds (VOCs) to confirm that groundwater beneath the site is free of contaminants. All VOC parameter concentrations were in compliance with the MECT Table 3 Standards, with the exception of chloroform detected in two monitoring wells (BH1 and BH2). Chloroform is considered to be related to the municipal water used to core the bedrock on the subject site and is expected to dissipate in the near future. Therefore, groundwater is considered to be in compliance with the selected MECP standards.

Groundwater results from the 2012 and 2017 Phase II ESAs concluded all analyzed parameters were in compliance with the MECP Table 3 Standards.

Recommendations

Soil

Based on the findings of the Phase II ESA, soil/fill impacted with mercury and lead is present on the eastern portion of the Phase II Property. It is expected that

Report: PE4581-2

the impacted fill will be removed from the subject site during the redevelopment process. The excavation of the fill from the property should be monitored and confirmed by Paterson. Any impacted fill and construction debris being removed from the property is to be disposed of at an approved waste disposal facility.

Groundwater

It is recommended that any monitoring wells that had elevated chloroform concentrations in them be resampled to confirm that the chloroform has dissipated.

Monitoring Wells

If the monitoring wells installed on the subject site are not going to be used in the future, or will be destroyed during site redevelopment, they should be abandoned according to Ontario Regulation 903. The wells will be registered with the MECP under this regulation.

Report: PE4581-2

7.0 STATEMENT OF LIMITATIONS

This Phase II - Environmental Site Assessment report has been prepared in general accordance with O.Reg. 153/04, as amended, and meets the requirements of CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of Main & Main Developments. Notification from Main & Main and Paterson Group will be required to release this report to any other party.

Paterson Group Inc.

Mandy Witteman, M.A.Sc.

Mark S. D'Arcy, P.Eng.

M. S. D'ARCY 90377839

Report Distribution:

- Main & Main Developments
- Paterson Group

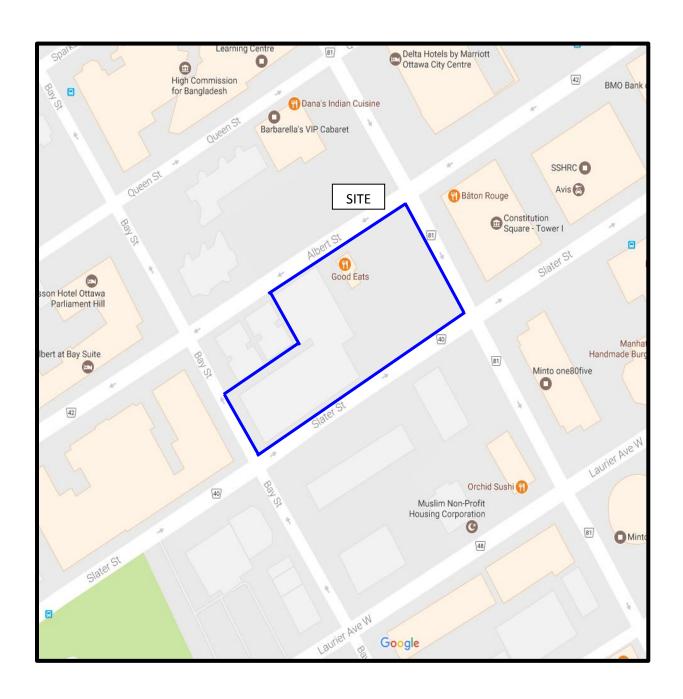
Report: PE4581-2

FIGURES

FIGURE 1 – KEY PLAN

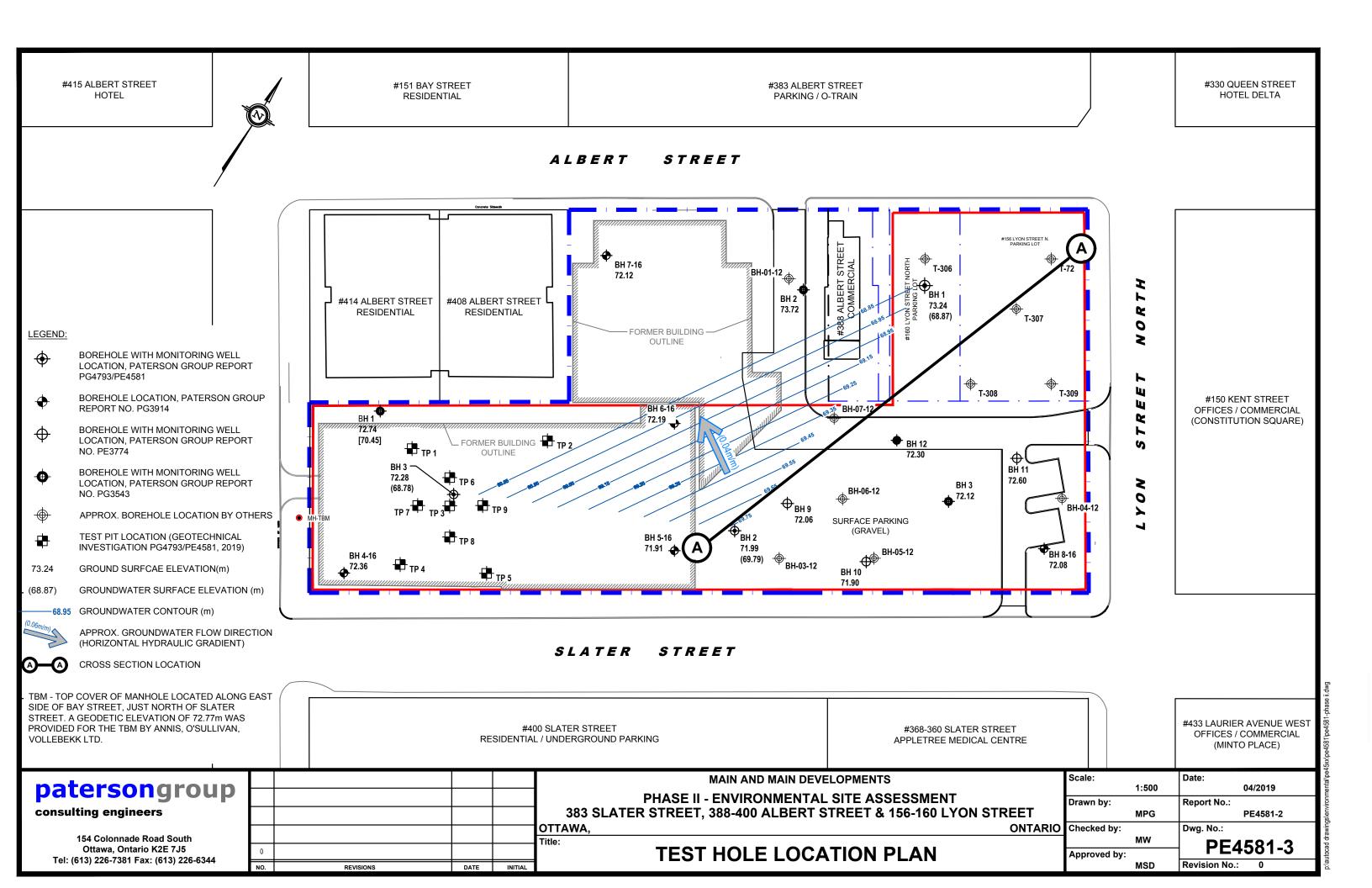
DRAWING PE4581-3 – TEST HOLE LOCATION PLAN

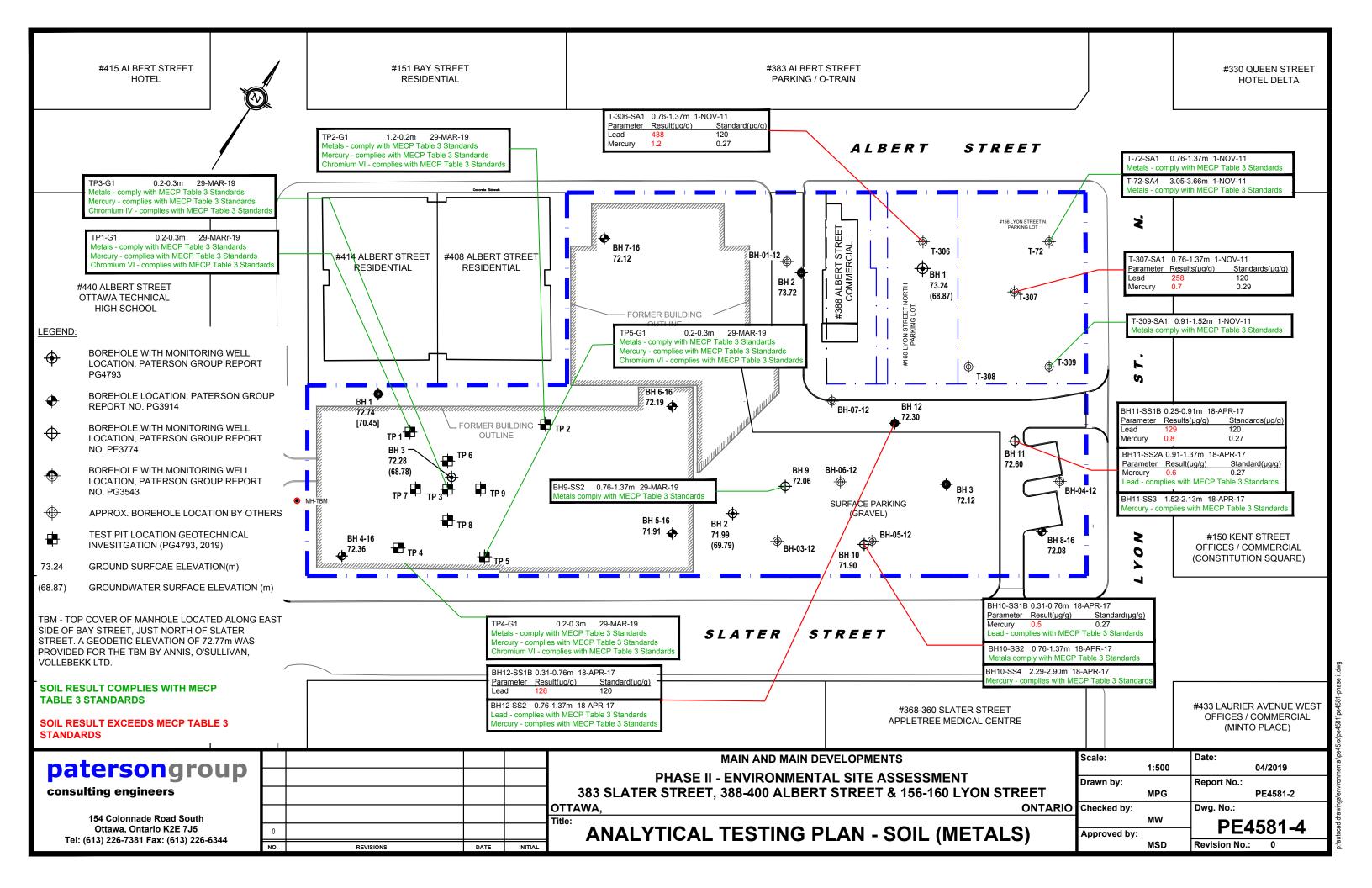
DRAWING PE4581-4 - ANALYTICAL TESTING PLAN - SOIL (METALS)

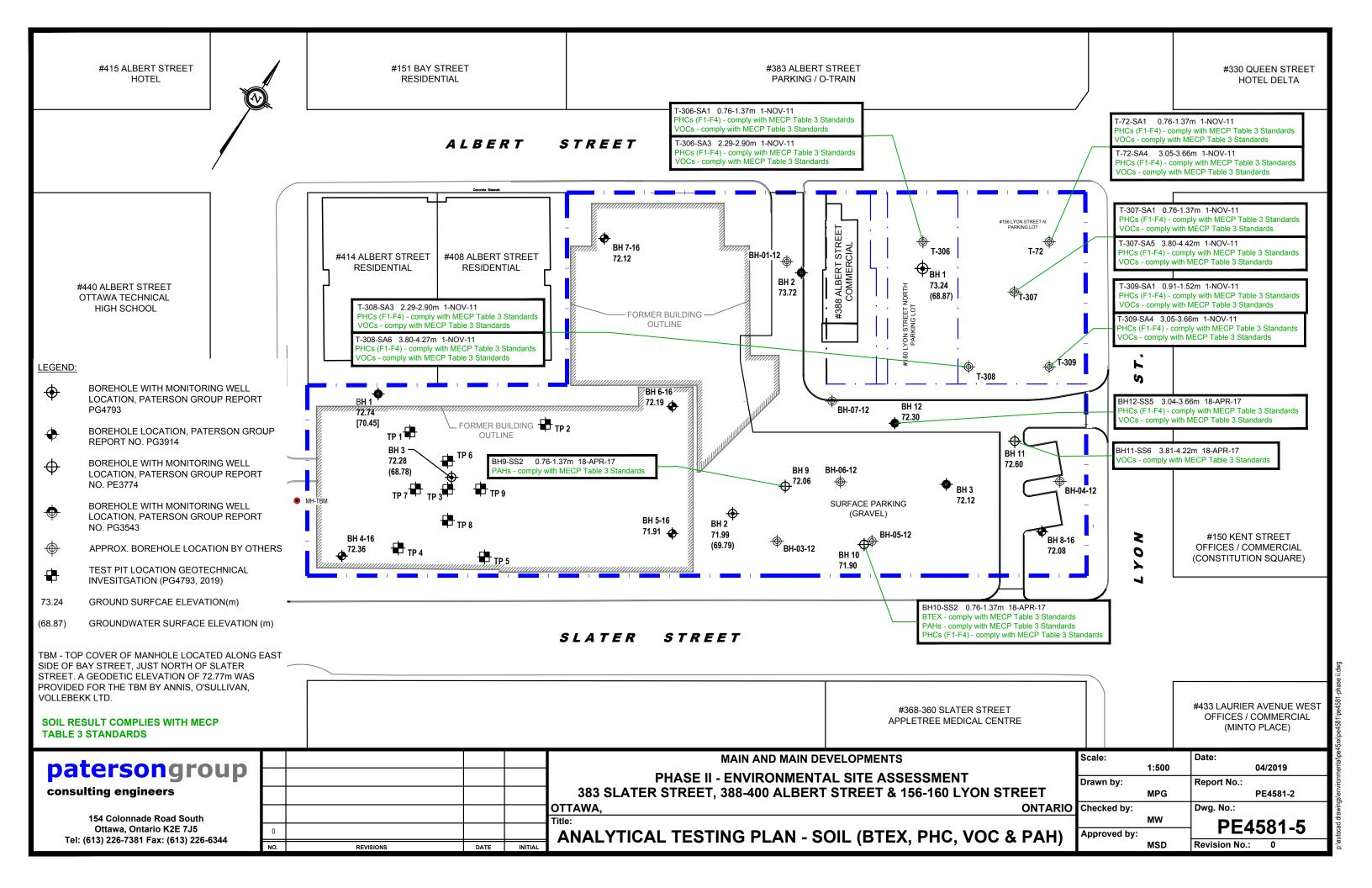

DRAWING PE4581-5- ANALYTICAL TESTING PLAN - SOIL (BTEX, PAHs, PHCs, VOCs)

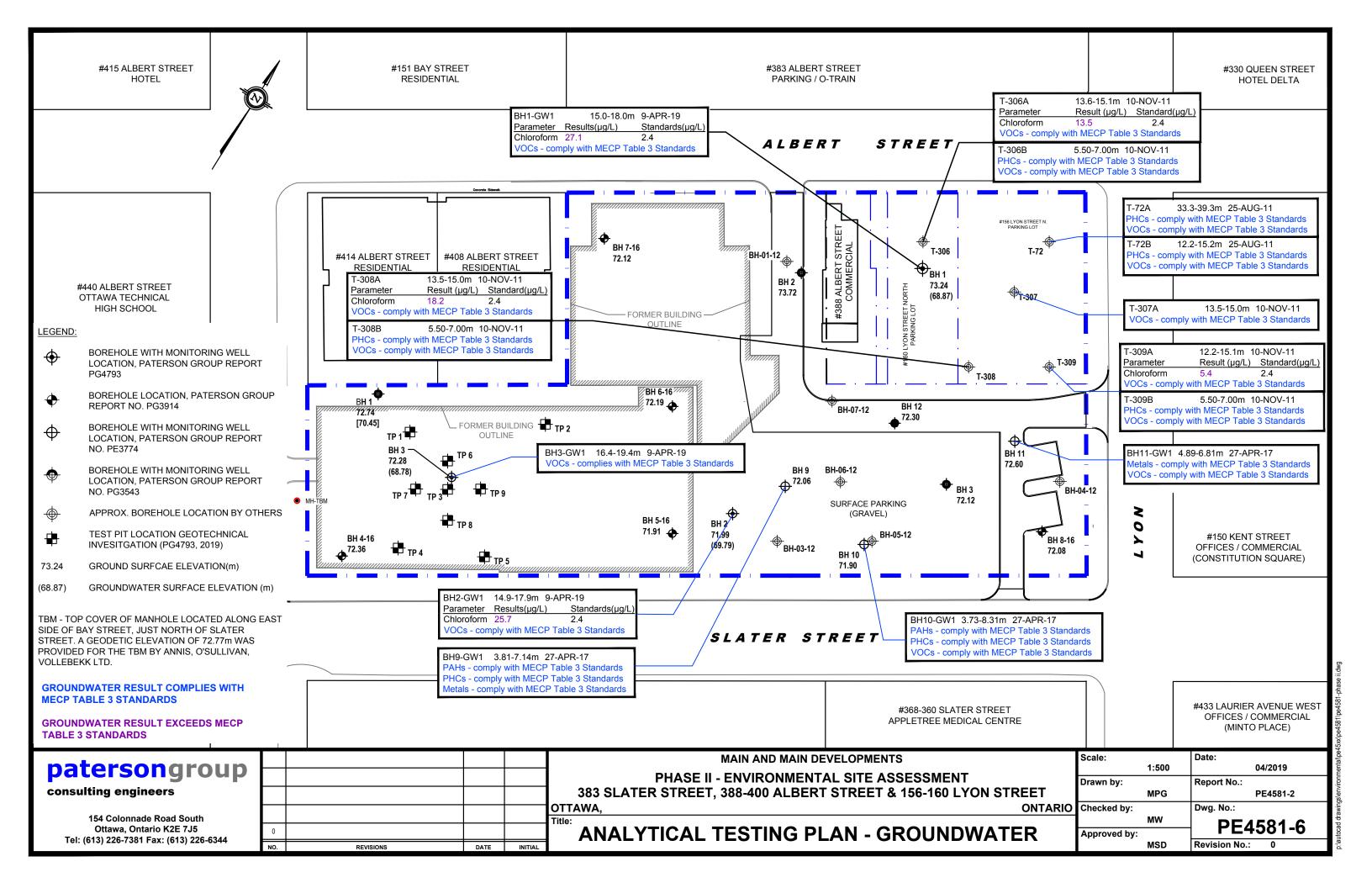
DRAWING PE4581-6 – ANALYTICAL TESTING PLAN – GROUNDWATER

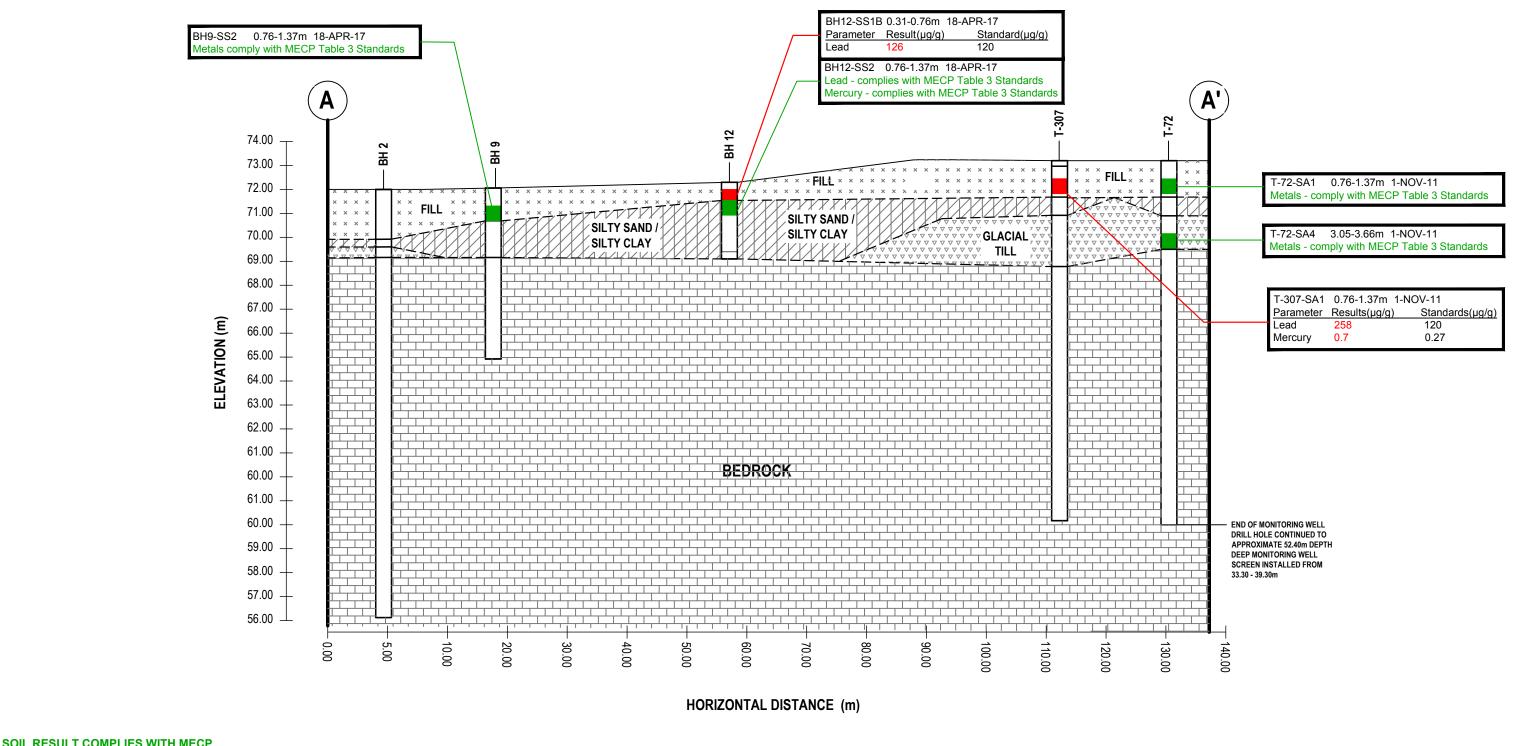
DRAWING PE4581-7 - CROSS-SECTION A - A' - SOIL (METALS)


DRAWING PE4581-8 – CROSS-SECTION A – A' – SOIL (BTEXs, PHCs, PAHs, VOCs)


DRAWING PE4581-9 – CROSS-SECTION A – A' –GROUNDWATER




FIGURE 1 KEY PLAN



SOIL RESULT COMPLIES WITH MECP TABLE 3 STANDARDS

SOIL RESULT EXCEEDS MECP TABLE 3 STANDARDS

patersongroup

consulting engineers

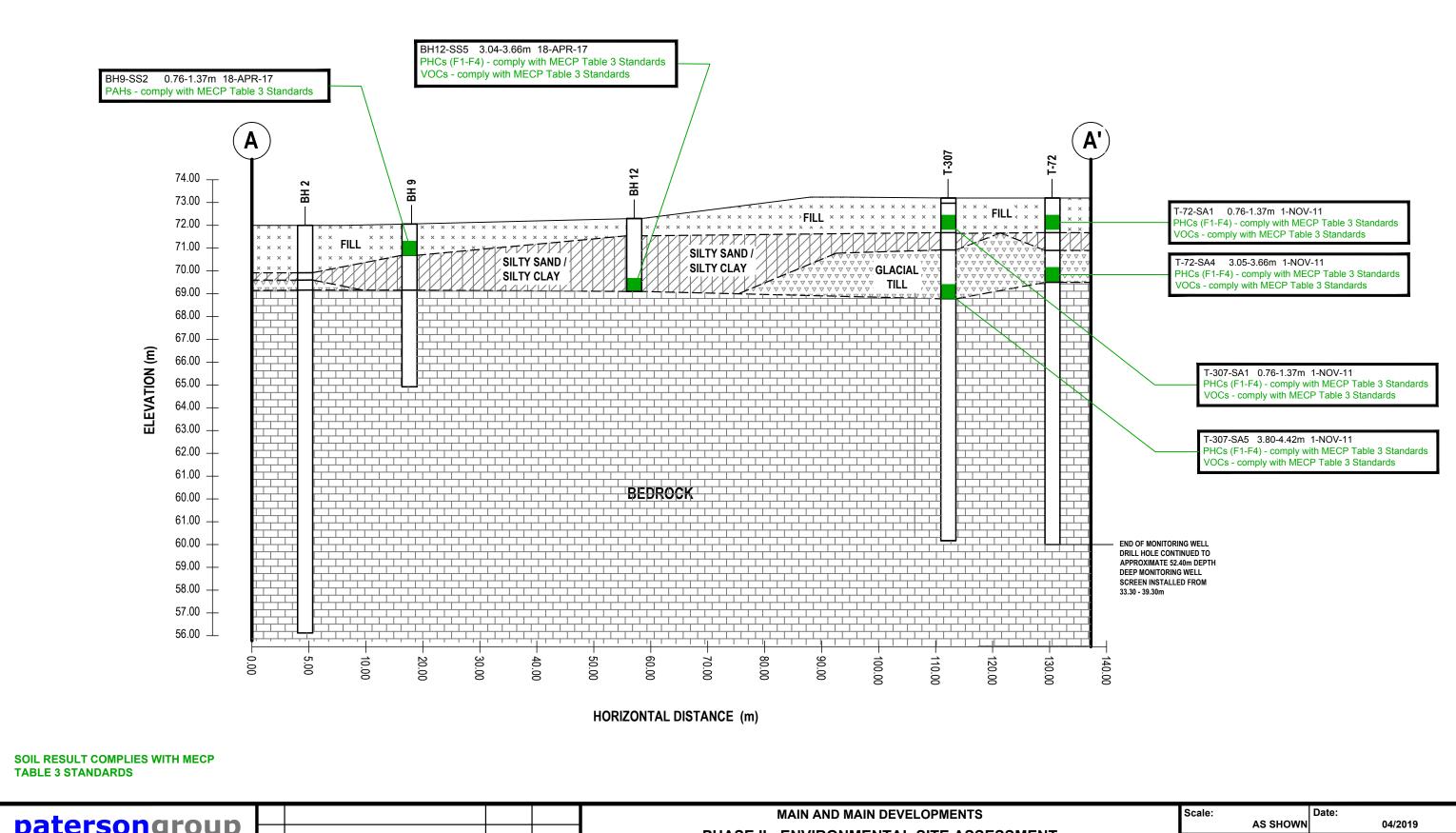
154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

NO.	REVISIONS	DATE	INITIAL	
0				
				OT1

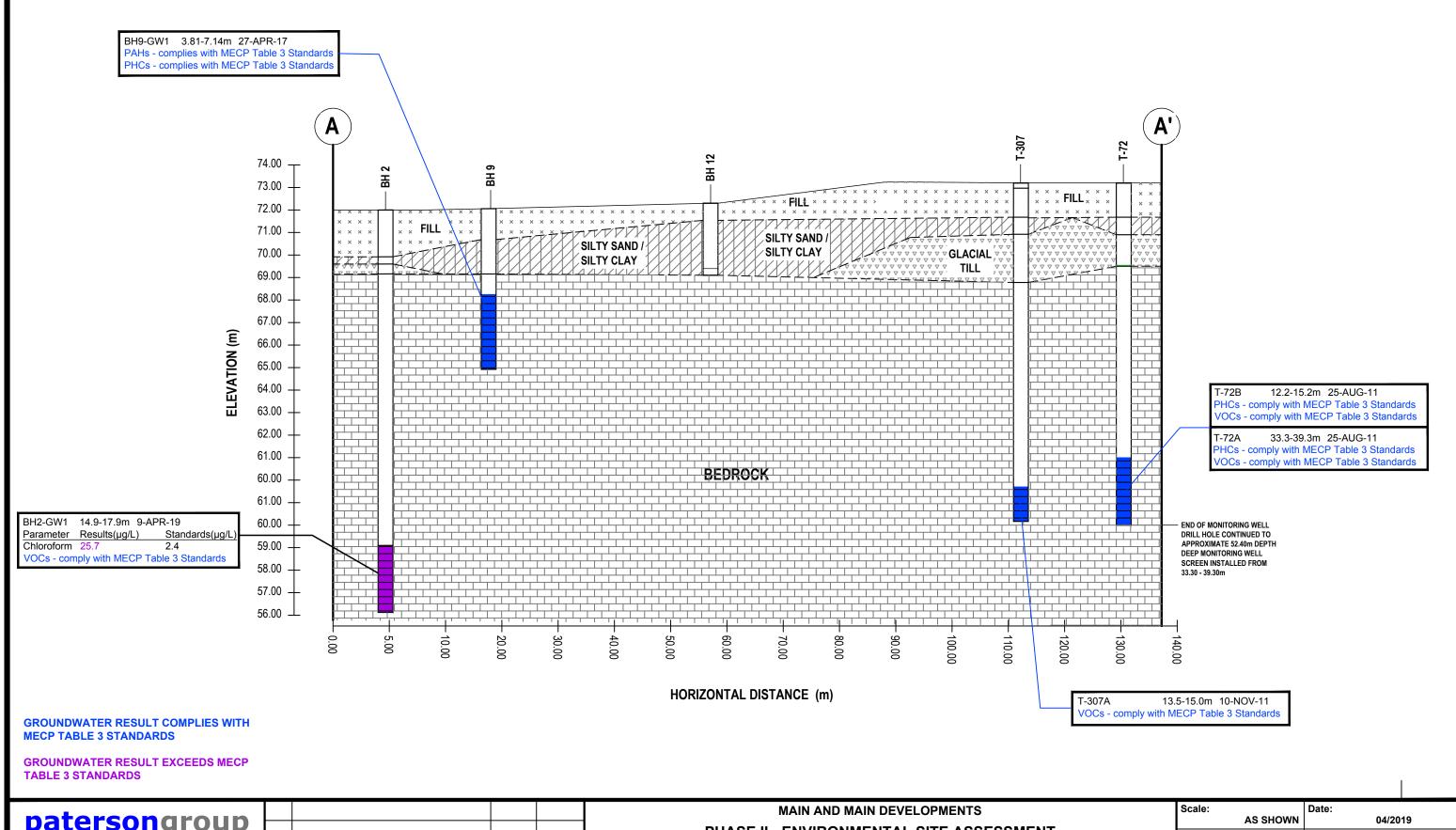
MAIN AND MAIN DEVELOPMENTS

PHASE II - ENVIRONMENTAL SITE ASSESSMENT

383 SLATER STREET, 388-400 ALBERT STREET & 156-160 LYON STREET
TAWA,


ONTARIO

CROSS SECTION A-A' -SOIL (METALS)


cale:		Date:
	AS SHOWN	04/2019
rawn by:		Report No.:
	MPG	PE4581-2
hecked by:		Dwg. No.:
	MW	PE4581-7
pproved by:		F E430 1-7

Revision No.:

MSD

patersongroup PHASE II - ENVIRONMENTAL SITE ASSESSMENT Drawn by: Report No.: 383 SLATER STREET, 388-400 ALBERT STREET & 156-160 LYON STREET consulting engineers PE4581-2 OTTAWA, ONTARIO Checked by: Dwg. No.: 154 Colonnade Road South PE4581-8 Ottawa, Ontario K2E 7J5 CROSS SECTION A-A' - SOIL (BTEX, PHC, VOC & PAH) Approved by: Tel: (613) 226-7381 Fax: (613) 226-6344 Revision No.: 0 MSD DATE

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

NO.	REVIOIONO	DAIL	INTIAL	
NO.	REVISIONS	DATE	INITIAL	1
0				
				OT1

PHASE II - ENVIRONMENTAL SITE ASSESSMENT

383 SLATER STREET, 388-400 ALBERT STREET & 156-160 LYON STREET
TAWA,
ONTARIO

CROSS SECTION A-A' - GROUNDWATER

	Scale:		Date:	
	,	AS SHOWN	04/	2019
	Drawn by:		Report No.:	
		MPG	PE	4581-2
)	Checked by:		Dwg. No.:	
		MW	PE45	04 0
	Approved by:		PE43	01-3
		MSD	Revision No.:	0

lautocad drawings\environmental\pe45x\pe4581\pe4

APPENDIX 1

SAMPLING AND ANALYSIS PLAN
SOIL PROFILE AND TEST DATA SHEETS
SYMBOLS AND TERMS
LABORATORY CERTIFICATES OF ANALYSIS

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

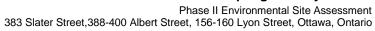
Archaeological Services

patersongroup

Sampling & Analysis Plan

Phase II Environmental Site Assessment 383 Slater Street, 388-400 Albert Street and 156-160 Lyon Street Ottawa, Ontario

Prepared For


Main & Main Developments

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca March 2019

Report: PE4581-SAP

Table of Contents

1.0	SAMPLING PROGRAM	
2.0	ANALYTICAL TESTING PROGRAM	2
3.0	STANDARD OPERATING PROCEDURES	3
	3.1 Environmental Drilling Procedure	
	3.2 Monitoring Well Installation Procedure	
	3.3 Monitoring Well Sampling Procedure	
4.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	
5.0	DATA QUALITY OBJECTIVES	
	PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN	

March 2019

1.0 SAMPLING PROGRAM

Paterson Group Inc. (Paterson) was commissioned by Mr. Rooie Ash of Main & Main Developments to conduct a Phase II Environmental Site Assessment (ESA) for the properties addressed 383 Slater, 388-400 Albert Street and 156-160 Lyon Street, in the City of Ottawa, Ontario

The Phase II ESA was carried out to address the APECs identified in the Paterson Phase I ESA. The following subsurface investigation program was developed to identify and delineate potential concerns. A geotechnical investigation was conducted concurrently with the environmental subsurface investigation.

Borehole	Location & Rationale	Proposed Depth & Rationale
BH1	Confirm groundwater quality beneath the Phase II Property	Boreholes to be advanced to intercept water table to facilitate
BH2	Confirm groundwater quality beneath the Phase II Property	installation of groundwater monitoring
ВН3	Confirm groundwater quality beneath the Phase II Property	wells.
TP1	Assess the quality of the fill material on the southwest portion of the subject site	Intercept the fill material on the southwest portion to obtain soil samples for
TP2	Assess the quality of the fill material on the southwest portion of the subject site	analytical testing.
TP3	Assess the quality of the fill material on the southwest portion of the subject site	
TP4	Assess the quality of the fill material on the southwest portion of the subject site	
TP5	Assess the quality of the fill material on the southwest portion of the subject site	
TP6	Assess the quality of the fill material on the southwest portion of the subject site	
TP7	Assess the quality of the fill material on the southwest portion of the subject site	
TP8	Assess the quality of the fill material on the southwest portion of the subject site	
TP9	Assess the quality of the fill material on the southwest portion of the subject site	

At each borehole, split-spoon samples of overburden soils will be obtained at 0.76 m (2'6") intervals until practical refusal to augering. All soil samples will be retained,

Report: PE4581-SAP

March 2019

and samples will be selected for submission following a preliminary screening analysis.

Following borehole drilling, monitoring wells will be installed in selected boreholes (as above) for the measurement of water levels and the collection of groundwater samples. Borehole locations are shown on the Test Hole Location Plan appended to the main report.

2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the subject site is based on the following general considerations: ☐ At least one sample from each borehole should be submitted, in order to delineate the horizontal extent of contamination across the site. At least one sample from each stratigraphic unit should be submitted, in order to delineate the vertical extent of contamination at the site. In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MOECC site condition standards. In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward. Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase LESA. The analytical testing program for groundwater at the subject site is based on the following general considerations: Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained). Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs.

Report: PE4581-SAP

At least one groundwater monitoring well should be installed in a stratigraphic unit below the suspected contamination, where said stratigraphic unit is water bearing.
Parameters analyzed should be consistent with the Contaminants of Concerr identified in the Phase I ESA and with the contaminants identified in the soi samples.

3.0 STANDARD OPERATING PROCEDURES

3.1 Environmental Drilling Procedure

Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

Equipment

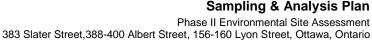
The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

_	
	glass soil sample jars
	two buckets
	cleaning brush (toilet brush works well)
	dish detergent
	methyl hydrate
	water (if not available on site - water jugs available in trailer)
	latex or nitrile gloves (depending on suspected contaminant)
	RKI Eagle organic vapour meter or MiniRae photoionization detector
	(depending on contamination suspected)

Determining Borehole Locations

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, **call the office to discuss**. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Elevations were surveyed relative to a geodetic benchmark (manhole cover


located along east side of Bay Street, just north of Slater Street). The elevation of the benchmark was 72.77 metres above

Drilling Procedure

The actual drilling procedure for environmental boreholes is the same as geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows:

	Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required.
	Make sure samples are well sealed in plastic bags with no holes prior to screening and are kept cool but unfrozen.
	If sampling for VOCs, BTEX, or PHCs F1, a soil core from each soil sample which may be analyzed must be taken and placed in the laboratory-provided methanol vial.
	Note all and any odours or discolouration of samples.
	Split spoon samplers must be washed between samples.
	If obvious contamination is encountered, continue sampling until vertical extent of contamination is delineated.
	As a general rule, environmental boreholes should be deep enough to intercept the groundwater table (unless this is impossible/impractical - call project
	manager to discuss).
	If at all possible, soil samples should be submitted to a preliminary screening procedure on site, either using a RKI Eagle, PID, etc. depending on type of suspected contamination.
Sp	oon Washing Procedure
	sampling equipment (spilt spoons, etc.) must be washed between samples in der to prevent cross contamination of soil samples.
	Obtain two buckets of water (preferably hot if available)
	Add a small amount of dish soap to one bucket
	Scrub spoons with brush in soapy water, inside and out, including tip
	Rinse in clean water
	Apply a small amount of methyl hydrate to the inside of the spoon. (A spray bettle or weter bettle with a small help in the cap works well)
	bottle or water bottle with a small hole in the cap works well)
	Allow to dry (takes seconds)
	Rinse with distilled water, a spray bottle works well.

Report: PE4581-SAP

The methyl hydrate eliminates any soap residue that may be on the spoon, and is especially important when dealing with suspected VOCs.

Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.

Samples should be brought to room temperature; this is specifically important
in colder weather. Soil must not be frozen.
Turn instrument on and allow to come to zero - calibrate if necessary
If using RKI Eagle, ensure instrument is in methane elimination mode unless
otherwise directed.
Ensure measurement units are ppm (parts per million) initially. RKI Eagle will
automatically switch to %LEL (lower explosive limit) if higher concentrations
are encountered.
Break up large lumps of soil in the sample bag, taking care not to puncture bag.
Insert probe into soil bag, creating a seal with your hand around the opening.
Gently manipulate soil in bag while observing instrument readings.
Record the highest value obtained in the first 15 to 25 seconds
Make sure to indicate scale (ppm or LEL); also note which instrument was used
(RKI Eagle 1 or 2, or MiniRae).
Jar samples and refrigerate as per Sampling and Analysis Plan.

Report: PE4581-SAP

3.2 Monitoring Well Installation Procedure

Equipment ☐ 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC slotted well screen (5' x 1 1/4" [1.52 m x 32 mm] if installing in cored hole in bedrock) ☐ 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC riser pipe (5' x 1 1/4" [1.52 m x 32 mm] if installing in cored hole in bedrock) ☐ Threaded end-cap ☐ Slip-cap or J-plug Asphalt cold patch or concrete ☐ Silica Sand ☐ Bentonite chips (Holeplug) Steel flushmount casing **Procedure** Drill borehole to required depth, using drilling and sampling procedures described above. If borehole is deeper than required monitoring well, backfill with bentonite chips to required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination. Only one monitoring well should be installed per borehole. Monitoring wells should not be screened across more than one stratigraphic unit to prevent potential migration of contaminants between units. ☐ Where LNAPLs are the suspected contaminants of concern, monitoring wells should be screened straddling the water table in order to capture any free product floating on top of the water table. ☐ Thread the end cap onto a section of screen. Thread second section of screen if required. Thread risers onto screen. Lower into borehole to required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well. As drillers remove augers, backfill borehole annulus with silica sand until the level of sand is approximately 0.3 m above the top of the screen. ☐ Backfill with holeplug until at least 0.3 m of holeplug is present above the top of the silica sand. Backfill remainder of borehole with holeplug or with auger cuttings (if contamination is not suspected). Install flushmount casing. Seal space between flushmount and borehole annulus with concrete, cold patch, or holeplug to match surrounding ground

Report: PE4581-SAP

surface.

Equipment

3.3 Monitoring Well Sampling Procedure

	Water level metre or interface probe on hydrocarbon/LNAPL sites Spray bottles containing water and methanol to clean water level tape or interface probe
	Peristaltic pump Polyethylene tubing for peristaltic pump Flexible tubing for peristaltic pump Latex or nitrile gloves (depending on suspected contaminant) Allen keys and/or 9/16" socket wrench to remove well caps Graduated bucket with volume measurements pH/Temperature/Conductivity combo pen Laboratory-supplied sample bottles
Sa	mpling Procedure
	Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap.
	Measure water level, with respect to existing ground surface, using water level meter or interface probe. If using interface probe on suspected NAPL site, measure the thickness of free product.
	Measure total depth of well.
	Clean water level tape or interface probe using methanol and water. Change gloves between wells.
	Calculate volume of standing water within well and record. Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes.
	Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).
	Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.
	Replace well cap and flushmount casing cap.

Report: PE4581-SAP

4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The QA/QC program for this Phase II ESA is as follows:
 All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
 All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
 Where groundwater samples are to be analyzed for VOCs, one laboratory-provided trip blank will be submitted for analysis with every laboratory submission.
 Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples
 Where combo pens are used to measure field chemistry, they will be calibrated on an approximately monthly basis, according to frequency of use.

Report: PE4581-SAP

5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where x_1 is the concentration of a given parameter in an original sample and x_2 is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half (0.5 x) the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MOE site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples.

These considerations are discussed in the body of the report.

Report: PE4581-SAP

body of the Phase II ESA report.

6.0 PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN

Pn	ysical impediments to the Sampling and Analysis plan may include:
	The location of underground utilities
	Poor recovery of split-spoon soil samples
	Insufficient groundwater volume for groundwater samples
	Breakage of sampling containers following sampling or while in transit to the laboratory
	Elevated detection limits due to matrix interference (generally related to soil colour or presence of organic material)
	Elevated detection limits due to high concentrations of certain parameters, necessitating dilution of samples in laboratory
	Drill rig breakdowns
	Winter conditions
	Other site-specific impediments
Sit	e-specific impediments to the Sampling and Analysis plan are discussed in the

Report: PE4581-SAP

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 383 Slater St., 400 Albert St. & 156-160 Lyon Street Ottawa, Ontario

DATUM

TBM - Top of manhole cover located along east side of Bay Street, north of Slater Street. Geodetic elevation = 72.77m

REMARKS

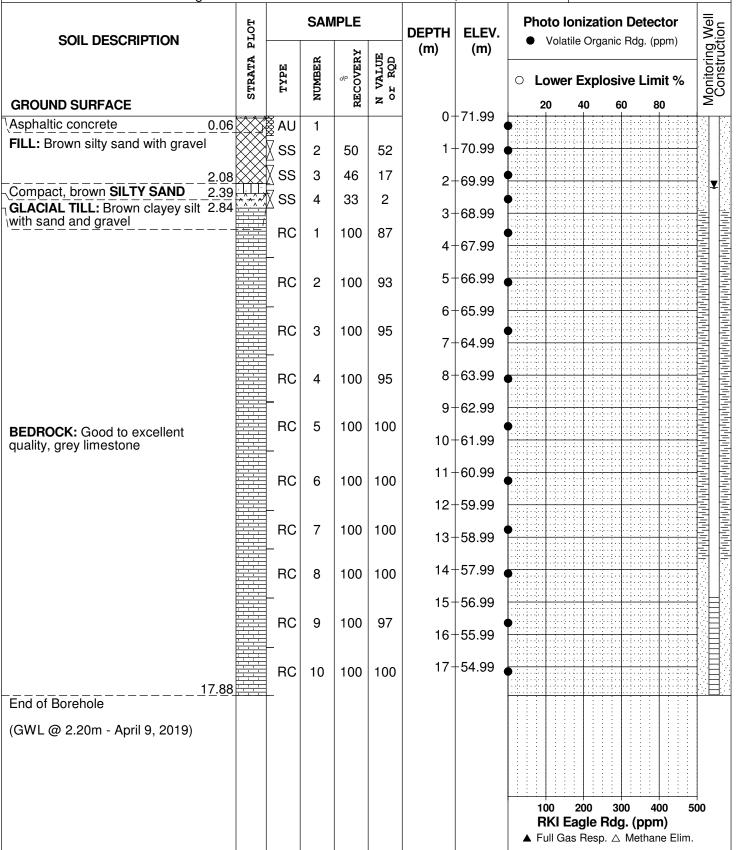
FILE NO.

PE4581

BORINGS BY CME 55 Power Auger				D	ATE I	March 28.	2019		HOLI	E NO.	BH	11	
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)	Photo I Vola			Detect		a Well
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(111)	(111)	○ Lowe	r Exp	losiv	e Limi	t %	Monitoring Well
GROUND SURFACE	0,		4	R	z o	0-	-73.24	20	40	60	80)	≥
25mm Asphaltic concrete over 0.60 FILL: Brown clayey sand with sand 0.86 and gravel		§ AU	1 2	79	12		-72.24 (
Compact, brown SILTY SAND			3										
Very stiff, brown SILTY CLAY , 2.44		∑ ss ∑ ss	3	88	62 10	2-	-71.24					-3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
GLACIAL TILL: Brown clayey silt		∑ ss	5	62	10	3-	-70.24						
vith sand and gravel4.29	1	SS	6 1	47 100	50+ 0	4-	-69.24						
		RC	2	98	96	5-	-68.24		- 2 2			-3 - 6 - 6 - 6 -	
		_				6-	-67.24						
		RC	3	100	84	7-	-66.24					-3 - 3 - 3 -	
		RC	4	100	89	8-	-65.24						
		- 110	7	100		9-	-64.24						
		RC	5	100	100		-63.24						
BEDROCK: Fair to excellent uality, grey limestone		_											
		RC	6	100	97		-62.24						
		RC	7	100	100	12-	-61.24						
		_ 110	,	100	100	13-	-60.24						
		RC	8	100	97	14-	-59.24						
		_				15-	-58.24						
		RC	9	100	100	16-	-57.24					-2 - 2 - 2 - 2 -	
		RC	10	100	100	17-	-56.24						
		-				18-	-55.24						
GWL @ 4.37m - April 9, 2019)													
								100 RKI E ▲ Full Ga			(ppm)	00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA


Phase II - Environmental Site Assessment 383 Slater St., 400 Albert St. & 156-160 Lyon Street Ottawa, Ontario

DATUM

TBM - Top of manhole cover located along east side of Bay Street, north of

FILE NO.

Slater Street. Geodetic elevation = 72.77m PE4581 **REMARKS** HOLE NO. **BH 2** BORINGS BY CME 55 Power Auger **DATE** March 29, 2019

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

FILE NO.

Phase II - Environmental Site Assessment 383 Slater St., 400 Albert St. & 156-160 Lyon Street Ottawa, Ontario

DATUM

TBM - Top of manhole cover located along east side of Bay Street, north of Slater Street. Geodetic elevation = 72.77m

REMARKS

PE4581

HOLE NO. **BH 3** BORINGS BY CME 55 Power Auger **DATE** April 1, 2019 **SAMPLE Photo Ionization Detector** Monitoring Wel Construction PLOT **DEPTH** ELEV. SOIL DESCRIPTION Volatile Organic Rdg. (ppm) (m) (m) RECOVERY VALUE r RQD STRATA NUMBER **Lower Explosive Limit %** N o H 80 **GROUND SURFACE** 0+72.28ΑU 1 1+71.28SS 2 38 66 FILL: Grey silty sand with gravel, some clay SS 3 46 21 2+70.28SS 4 8 11 3+69.28SS 5 44 50 +3.73 Concrete with rebar and ties RC 1 0 17 4+68.28 2 RC 97 83 5+67.28 RC 3 100 61 6+66.28RC 4 100 82 7+65.288+64.28 5 RC 100 93 9+63.28RC 6 100 100 10+62.2811 + 61.28RC 7 100 100 **BEDROCK:** Good to excellent quality, grey limestone 12+60.28RC 8 100 100 13 + 59.2814+58.28 RC 9 100 100 15+57.28RC 10 100 95 16+56.28 17+55.28RC 11 100 100 18 + 54.28RC 12 100 10 19+53.2819.38 End of Borehole (GWL @ 3.50m - April 9, 2019) 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 383 Slater St., 400 Albert St. & 156-160 Lyon Street Ottawa, Ontario

DATUM

REMARKS

TBM - Top of manhole cover located along east side of Bay Street, north of

Slater Street. Geodetic elevation = 72.77m

PE4581

HOLE NO.

FILE NO.

TP 1 **BORINGS BY** Backhoe **DATE** March 29, 2019 **Photo Ionization Detector SAMPLE** STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER Lower Explosive Limit % **GROUND SURFACE** 40 80 60 0 FILL: Crushed Stone 0.15 FILL: Brown sitly sand G 1 End of Test Pit TP terminated on concrete surface @ 0.35m depth 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 383 Slater St., 400 Albert St. & 156-160 Lyon Street Ottawa, Ontario

DATUM

REMARKS

TBM - Top of manhole cover located along east side of Bay Street, north of

Slater Street. Geodetic elevation = 72.77m

HOLE NO.

FILE NO. PE4581

ORINGS BY Backhoe				D	ATE	March 29	, 2019			E NO.	TP 2	
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV.	Photo I			etector g. (ppm)	Monitoring Well
		TYPE TYPE NUMBER % RECOVERY N VALUE OF ROD ()		(m)	Lower Explosive Limit %							
GROUND SURFACE	Ø		Z	꿆	z °	0-	_	20	40	60	80	Σ
FILL: Crushed stone		#ANI	D 1									
0.20	0		,									
P terminated on concrete surface 0.2m depth												
o.e.m dopun												
										300 Rdg. (⊣ 500

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

FILE NO.

HOLE NO.

Phase II - Environmental Site Assessment 383 Slater St., 400 Albert St. & 156-160 Lyon Street Ottawa, Ontario

DATUM

TBM - Top of manhole cover located along east side of Bay Street, north of Slater Street. Geodetic elevation = 72.77m

PE4581

REMARKS

ORINGS BY Backhoe			D	HOLE NO. TP 3								
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)			tion Detection Detection		
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(111)	(111)			osive Lim	it %	
ROUND SURFACE				2	2 0	0-	-	20	40	60 8	0	
ILL: Crushed stone	200											
ILL: Brown silty sand, some wood agments and construction debris 0.3		G	1				•	•				
nd of Test Pit												
P terminated on concrete surface 0.3m depth												
								100	200	300 40	00 500	

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

FILE NO.

Phase II - Environmental Site Assessment 383 Slater St., 400 Albert St. & 156-160 Lyon Street Ottawa, Ontario

DATUM

REMARKS

TBM - Top of manhole cover located along east side of Bay Street, north of Slater Street. Geodetic elevation = 72.77m

PE4581

HOLE NO.

BORINGS BY Backhoe				D	ATE	March 29,	2019		HOLE NO	TP 4	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	1		Detector Rdg. (ppm)	Well
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	O Lowe	r Explos	ive Limit %	Monitoring Well
GROUND SURFACE			-	2	z °	0-	_	20	40 (60 80 ++	
FILL: Crushed stone		-									
FILL: Brown silty sand, some gravel and construction debris		- G	1				•	•			
End of Test Pit	XXX	_									1
TP terminated on concrete surface @ 0.3m depth								100	200 3 ≣agle Rd		6000

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 383 Slater St., 400 Albert St. & 156-160 Lyon Street Ottawa, Ontario

DATUM TBM - Top of manhole co

TBM - Top of manhole cover located along east side of Bay Street, north of

Slater Street. Geodetic elevation = 72.77m

REMARKS

FILE NO. PE4581

HOLE NO.

TP₅ **BORINGS BY** Backhoe **DATE** March 29, 2019 **SAMPLE Photo Ionization Detector** STRATA PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER Lower Explosive Limit % **GROUND SURFACE** 40 80 60 0 FILL: Crushed stone G 1 End of Test Pit TP terminated on concrete surface @ 0.25m depth 200 300 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 383 Slater St., 400 Albert St. & 156-160 Lyon Street Ottawa, Ontario

DATUM

TBM - Top of manhole cover located along east side of Bay Street, north of

Slater Street. Geodetic elevation = 72.77m

FILE NO. HOLE NO.

PE4581

REMARKS

ORINGS BY Backhoe	DATE March 29, 2019								TP 6				
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV.	Photo I			etector g. (ppm)	llaW p	
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(111)	(111)	O Lowe				Monitoring Well	
ROUND SURFACE			-	2	2	0-	-	20	40	60	80		
ILL: Crushed stone													
ILL: Brown silty sand with gravel, ome construction debris 0.30		- G	1				•	•					
nd of Borehole													
P terminated on concrete surface 0.3m depth								100	200	300	400 5	500	

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 383 Slater St., 400 Albert St. & 156-160 Lyon Street Ottawa, Ontario

DATUM

TBM - Top of manhole cover located along east side of Bay Street, north of Slater Street. Geodetic elevation = 72.77m

REMARKS

PE4581

FILE NO.

STRATA PLOT	TYPE	NUMBER	* HALCOVERY	N VALUE Or RQD	DEPTH (m)	ELEV. (m)	• C L	Volati	le Organ	in Detection Rdg. (p	opm)
		NUMBER	RECOVERY	N VALUE OF RQD		(111)					nit %
in		M	REC	N LO	0-		2	20	40	60 8	60
					U						
	-										
X	G	1				•)				
									RKI E	RKI Eagle Ro	100 200 300 44 RKI Eagle Rdg. (ppn ▲ Full Gas Resp. △ Methar

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 383 Slater St., 400 Albert St. & 156-160 Lyon Street Ottawa, Ontario

DATUM

REMARKS

TBM - Top of manhole cover located along east side of Bay Street, north of Slater Street. Geodetic elevation = 72.77m

FILE NO. **PE4581**

BORINGS BY Backhoe				D	ATE İ	March 29	, 2019		IIOLI	E NO.	TP8	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Photo I		tion De) Well
	STRATA 1	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)				Limit %	Monitoring Well
GROUND SURFACE	02		4	滋	z	0-	_	20	40	60	80	Σ
FILL: Crushed stone0.10 FILL: Brown silty sand, some			4									
FILL: Brown silty sand, some gravel and construction debris0.20 End of Test Pit		G	1				•					
FP terminated on concrete surface © 0.2m depth												
•												
								100	200	300	400 5	500

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 383 Slater St., 400 Albert St. & 156-160 Lyon Street Ottawa, Ontario

DATUM

TBM - Top of manhole cover located along east side of Bay Street, north of

Slater Street. Geodetic elevation = 72.77m

FILE NO.

PE4581

REMARKS

BORINGS BY Backhoe			D	ATE I	March 29	, 2019		HOLE NO.	ΓP 9			
SOIL DESCRIPTION	PLOT		SAN	/IPLE	ı	DEPTH	ELEV.		Ionization Detector atile Organic Rdg. (ppm)			
	STRATA 1	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		er Explosive Li	imit %	Monitoring Well	
GROUND SURFACE	ß	F	NC	REC	ZO	0-		20	40 60	80	Š	
FILL: Crushed stone		_										
FILL: Brown silty sand, some gravel and construction debris0.20		G _	1				•					
End of Test Pit												
TP terminated on concrete surface @ 0.2m depth								100	200 300 Eagle Rdg. (pp	400 500	0	

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, S_t , is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD %	ROCK QUALITY
90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))				
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler				
G	-	"Grab" sample from test pit or surface materials				
AU	-	Auger sample or bulk sample				
WS	-	Wash sample				
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.				

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC% - Natural water content or water content of sample, %

Liquid Limit, % (water content above which soil behaves as a liquid)
 PL - Plastic Limit, % (water content above which soil behaves plastically)

PI - Plasticity Index, % (difference between LL and PL)

Dxx - Grain size at which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient = $(D30)^2 / (D10 \times D60)$

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

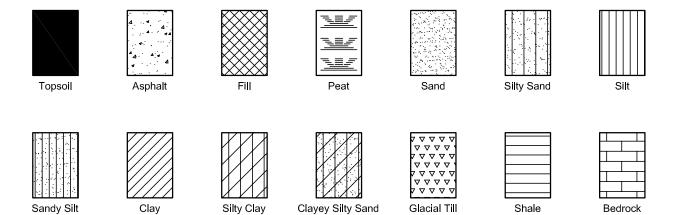
p'o - Present effective overburden pressure at sample depth

p'c - Preconsolidation pressure of (maximum past pressure on) sample

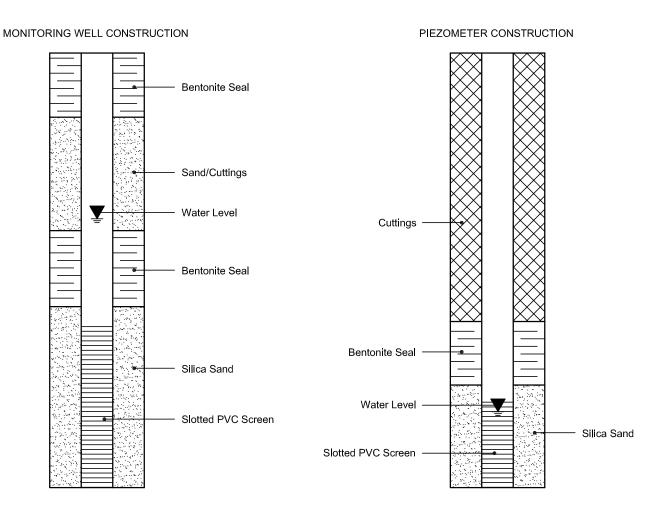
Ccr - Recompression index (in effect at pressures below p'c)
 Cc - Compression index (in effect at pressures above p'c)

OC Ratio Overconsolidaton ratio = p'c / p'o

Void Ratio Initial sample void ratio = volume of voids / volume of solids


Wo - Initial water content (at start of consolidation test)

PERMEABILITY TEST


Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued)

STRATA PLOT

MONITORING WELL AND PIEZOMETER CONSTRUCTION

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mandy Witteman

Client PO:

Project: PE4581 Report Date: 3-Apr-2019 Custody: 121626 Order Date: 2-Apr-2019

Order #: 1914267

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1914267-01	TP3-G1
1914267-02	TP5-G1
1914267-03	TP1-G1
1914267-04	TP2-G1
1914267-05	TP4-G1

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Order #: 1914267

Certificate of AnalysisReport Date: 03-Apr-2019Client: Paterson Group Consulting EngineersOrder Date: 2-Apr-2019Client PO:Project Description: PE4581

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	3-Apr-19	3-Apr-19
Mercury by CVAA	EPA 7471B - CVAA, digestion	3-Apr-19	3-Apr-19
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	3-Apr-19	3-Apr-19
Solids, %	Gravimetric, calculation	3-Apr-19	3-Apr-19

Order #: 1914267

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Order Date: 2-Apr-2019 Client PO: **Project Description: PE4581**

	Client ID:	TP3-G1	TP5-G1	TP1-G1	TP2-G1
	Sample Date:	03/29/2019 09:00	03/29/2019 09:00	03/29/2019 09:00	03/29/2019 09:00
	Sample ID:	1914267-01	1914267-02	1914267-03	1914267-04
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	80.1	76.4	76.4	82.0
Metals	•		-	-	
Antimony	1.0 ug/g dry	1.1	1.2	<1.0	<1.0
Arsenic	1.0 ug/g dry	3.8	4.2	1.8	3.3
Barium	1.0 ug/g dry	53.0	104	20.0	123
Beryllium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Boron	5.0 ug/g dry	7.5	8.9	<5.0	26.1
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	11.5	16.3	8.8	10.3
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	<0.2	<0.2
Cobalt	1.0 ug/g dry	4.4	5.7	3.5	4.1
Copper	5.0 ug/g dry	12.7	17.6	6.5	15.3
Lead	1.0 ug/g dry	10.3	29.8	3.9	16.0
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	<0.1
Molybdenum	1.0 ug/g dry	3.0	4.2	<1.0	2.5
Nickel	5.0 ug/g dry	9.2	13.2	6.1	10.2
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	1.4	<1.0	<1.0
Vanadium	10.0 ug/g dry	17.4	21.9	18.7	13.6
Zinc	20.0 ug/g dry	25.3	48.7	<20.0	51.6

Report Date: 03-Apr-2019

Order #: 1914267

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO:

Report Date: 03-Apr-2019 Order Date: 2-Apr-2019

Project Description: PE4581

	Client ID:	TP4-G1	_		_
	Sample Date:	03/29/2019 09:00	-	-	-
	Sample ID:	1914267-05	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics	•				
% Solids	0.1 % by Wt.	79.6	-	-	-
Metals					
Antimony	1.0 ug/g dry	<1.0	-	-	-
Arsenic	1.0 ug/g dry	2.9	-	-	-
Barium	1.0 ug/g dry	102	-	-	-
Beryllium	0.5 ug/g dry	<0.5	-	-	-
Boron	5.0 ug/g dry	8.7	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	5.0 ug/g dry	19.8	-	-	-
Chromium (VI)	0.2 ug/g dry	<0.2	-	-	-
Cobalt	1.0 ug/g dry	6.9	-	-	-
Copper	5.0 ug/g dry	17.0	-	-	-
Lead	1.0 ug/g dry	26.3	-	-	-
Mercury	0.1 ug/g dry	<0.1	-	-	-
Molybdenum	1.0 ug/g dry	1.0	-	-	-
Nickel	5.0 ug/g dry	17.2	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.3 ug/g dry	<0.3	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	10.0 ug/g dry	34.8	-	-	-
Zinc	20.0 ug/g dry	86.5	-	-	-

Report Date: 03-Apr-2019

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Order Date: 2-Apr-2019 Client PO: **Project Description: PE4581**

Method Quality Control: Blank

modrou quanty control bia									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
			5.5						

Report Date: 03-Apr-2019

Certificate of Analysis

Client: Paterson Group Consulting EngineersOrder Date: 2-Apr-2019Client PO:Project Description: PE4581

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Metals									
Antimony	ND	1.0	ug/g dry	1.1			0.0	30	
Arsenic	3.6	1.0	ug/g dry	3.8			6.8	30	
Barium	60.6	1.0	ug/g dry	53.0			13.4	30	
Beryllium	ND	0.5	ug/g dry	ND			0.0	30	
Boron	7.8	5.0	ug/g dry	7.5			4.2	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium (VI)	ND	0.2	ug/g dry	ND				35	
Chromium	10.5	5.0	ug/g dry	11.5			9.1	30	
Cobalt	4.3	1.0	ug/g dry	4.4			2.8	30	
Copper	12.9	5.0	ug/g dry	12.7			1.3	30	
Lead	9.8	1.0	ug/g dry	10.3			5.6	30	
Mercury	ND	0.1	ug/g dry	ND			0.0	30	
Molybdenum	2.9	1.0	ug/g dry	3.0			4.9	30	
Nickel	8.8	5.0	ug/g dry	9.2			4.3	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.3	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND			0.0	30	
Vanadium	18.2	10.0	ug/g dry	17.4			4.4	30	
Zinc	35.7	20.0	ug/g dry	25.3			34.0	30	
Physical Characteristics									
% Solids	83.2	0.1	% by Wt.	83.1			0.2	25	
			•						

Certificate of Analysis

Order #: 1914267

Report Date: 03-Apr-2019 Order Date: 2-Apr-2019

Client: Paterson Group Consulting EngineersOrder Date: 2-Apr-2019Client PO:Project Description: PE4581

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	42.0		ug/L	ND	83.2	70-130			
Arsenic	47.3		ug/L	1.5	91.6	70-130			
Barium	65.4		ug/L	21.2	88.3	70-130			
Beryllium	48.0		ug/L	ND	95.9	70-130			
Boron	43.8		ug/L	ND	81.7	70-130			
Cadmium	43.3		ug/L	ND	86.4	70-130			
Chromium	53.1		ug/L	ND	97.1	70-130			
Cobalt	48.9		ug/L	1.8	94.2	70-130			
Copper	51.7		ug/L	5.1	93.3	70-130			
Lead	52.9		ug/L	4.1	97.6	70-130			
Mercury	1.68	0.1	ug/g	ND	112	70-130			
Molybdenum	47.2		ug/L	1.2	92.0	70-130			
Nickel	50.1		ug/L	ND	92.7	70-130			
Selenium	45.2		ug/L	ND	90.2	70-130			
Silver	44.2		ug/L	ND	88.2	70-130			
Thallium	45.9		ug/L	ND	91.7	70-130			
Uranium	46.5		ug/L	ND	92.3	70-130			
Vanadium	56.1		ug/L	ND	98.2	70-130			
Zinc	53.5		ug/L	ND	86.7	70-130			

Report Date: 03-Apr-2019 Order Date: 2-Apr-2019

Project Description: PE4581

Certificate of Analysis

Client: Paterson Group Consulting Engineers Client PO:

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

GPARACEL

Paracel ID: 1914267

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

> Date/Time pH Verified [] By:

Chain of Custody (Lab Use Only) Nº 121626

> of . Page ___

LABORATORIES LTD. Project Reference: **Turnaround Time:** Client Name: * Quote# 1 Day □3 Day Contact Name: Address: □ 2 Day □ Regular Email Address: Date Required: Criteria: D O. Reg. 153/04 (As Amended) Table RSC Filing D O. Reg. 558/00 PWQO CCME SUB (Slorm) SUB (Saritary) Municipality: Other: Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer) P (Paint) A (Air) O (Other) Required Analyses Paracel Order Number: of Containers Air Volume Metals by ICP Sample Taken Matrix PAHS Time Date Sample ID/Location Name 9 2 0 3 5 4 5 6 7 8 9 10 Method of Delivery: Comments: Verified By: Received by Driver/Depot:

Temperature:

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mandy Witteman

Client PO: 26322 Project: PE4581 Custody: 121641

Report Date: 11-Apr-2019 Order Date: 9-Apr-2019

Order #: 1915241

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1915241-01	BH1-GW1
1915241-02	BH2-GW1
1915241-03	BH3-GW1

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Report Date: 11-Apr-2019

Certificate of Analysis

Client: Paterson Group Consulting Enginee

Client: Paterson Group Consulting EngineersOrder Date: 9-Apr-2019Client PO: 26322Project Description: PE4581

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	10-Apr-19 10-Apr-19

Report Date: 11-Apr-2019

Order Date: 9-Apr-2019

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Client PO: 26322 **Project Description: PE4581**

г	Client ID: Sample Date: Sample ID:	BH1-GW1 04/09/2019 09:00 1915241-01 Water	BH2-GW1 04/09/2019 09:00 1915241-02 Water	BH3-GW1 04/09/2019 09:00 1915241-03 Water	- - -
Volatiles	MDL/Units	vvalei	vvalei	vvalei	-
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	_
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	_
Bromodichloromethane	0.5 ug/L	3.2	3.0	<0.5	_
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	_
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	_
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	_
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	_
Chloroform	0.5 ug/L	27.1	25.7	<0.5	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	_
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	_
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylene dibromide (dibromoethan	0.2 ug/L	<0.2	<0.2	<0.2	-
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	-
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-

Report Date: 11-Apr-2019

Order Date: 9-Apr-2019

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client: Paterson Group Consulting Engineers

Client PO: 26322 Project Description: PE4581

	Client ID:	BH1-GW1	BH2-GW1	BH3-GW1	-
	Sample Date:	04/09/2019 09:00	04/09/2019 09:00	04/09/2019 09:00	-
	Sample ID:	1915241-01	1915241-02	1915241-03	-
	MDL/Units	Water	Water	Water	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	-
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	-
4-Bromofluorobenzene	Surrogate	102%	101%	102%	-
Dibromofluoromethane	Surrogate	107%	104%	110%	-
Toluene-d8	Surrogate	94.8%	92.6%	96.1%	-

Certificate of Analysis

Order #: 1915241

Report Date: 11-Apr-2019 Order Date: 9-Apr-2019

Client: Paterson Group Consulting EngineersOrder Date: 9-Apr-2019Client PO: 26322Project Description: PE4581

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
·				- Noodit					
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	88.3		ug/L		110	50-140			
	73.6		ug/L		92.1	50-140			
Surrogate: Dibromofluoromethane	7.3.0		UU/I		92.1	30-1411			

Certificate of Analysis

Order #: 1915241

Report Date: 11-Apr-2019 Order Date: 9-Apr-2019

Client: Paterson Group Consulting EngineersOrder Date: 9-Apr-2019Client PO: 26322Project Description: PE4581

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Volatiles									
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30	
Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroform	ND	0.5	ug/L	ND				30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Ethylene dibromide (dibromoethane	ND	0.2	ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	81.8		ug/L		102	50-140			
Surrogate: Dibromofluoromethane	84.8		ug/L		106	50-140			
Surrogate: Toluene-d8	76.3		ug/L		95.4	50-140			

Report Date: 11-Apr-2019

Order Date: 9-Apr-2019
Project Description: PE4581

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 26322 Proje

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Acetone	81.8	5.0	ug/L		81.8	50-140			
Benzene	33.5	0.5	ug/L		83.8	60-130			
Bromodichloromethane	31.5	0.5	ug/L		78.7	60-130			
Bromoform	30.8	0.5	ug/L		76.9	60-130			
Bromomethane	37.9	0.5	ug/L		94.8	50-140			
Carbon Tetrachloride	29.7	0.2	ug/L		74.2	60-130			
Chlorobenzene	38.7	0.5	ug/L		96.8	60-130			
Chloroform	37.2	0.5	ug/L		93.0	60-130			
Dibromochloromethane	32.6	0.5	ug/L		81.4	60-130			
Dichlorodifluoromethane	42.0	1.0	ug/L		105	50-140			
1,2-Dichlorobenzene	31.3	0.5	ug/L		78.2	60-130			
1,3-Dichlorobenzene	30.9	0.5	ug/L		77.2	60-130			
1,4-Dichlorobenzene	28.6	0.5	ug/L		71.5	60-130			
1,1-Dichloroethane	34.4	0.5	ug/L		86.0	60-130			
1,2-Dichloroethane	43.5	0.5	ug/L		109	60-130			
1,1-Dichloroethylene	34.3	0.5	ug/L		85.6	60-130			
cis-1,2-Dichloroethylene	33.3	0.5	ug/L		83.3	60-130			
trans-1,2-Dichloroethylene	34.8	0.5	ug/L		86.9	60-130			
1,2-Dichloropropane	31.8	0.5	ug/L		79.6	60-130			
cis-1,3-Dichloropropylene	35.7	0.5	ug/L		89.3	60-130			
trans-1,3-Dichloropropylene	34.3	0.5	ug/L		85.7	60-130			
Ethylbenzene	30.6	0.5	ug/L		76.5	60-130			
Ethylene dibromide (dibromoethane	35.6	0.2	ug/L		89.0	60-130			
Hexane	26.1	1.0	ug/L		65.3	60-130			
Methyl Ethyl Ketone (2-Butanone)	75.2	5.0	ug/L		75.2	50-140			
Methyl Isobutyl Ketone	60.0	5.0	ug/L		60.0	50-140			
Methyl tert-butyl ether	67.5	2.0	ug/L		67.5	50-140			
Methylene Chloride	35.2	5.0	ug/L		88.1	60-130			
Styrene	32.4	0.5	ug/L		81.0	60-130			
1,1,1,2-Tetrachloroethane	32.9	0.5	ug/L		82.2	60-130			
1,1,2,2-Tetrachloroethane	45.5	0.5	ug/L		114	60-130			
Tetrachloroethylene	33.5	0.5	ug/L		83.8	60-130			
Toluene	38.9	0.5	ug/L		97.2	60-130			
1,1,1-Trichloroethane	29.6	0.5	ug/L		73.9	60-130			
1,1,2-Trichloroethane	32.3	0.5	ug/L		80.7	60-130			
Trichloroethylene	29.7	0.5	ug/L		74.3	60-130			
Trichlorofluoromethane	37.8	1.0	ug/L		94.4	60-130			
Vinyl chloride	39.5	0.5	ug/L		98.8	50-140			
m,p-Xylenes	66.7	0.5	ug/L		83.4	60-130			
o-Xylene	37.0	0.5	ug/L		92.4	60-130			
Surrogate: 4-Bromofluorobenzene	75.6		ug/L		94.5	50-140			

Certificate of Analysis

Order #: 1915241

Report Date: 11-Apr-2019 Order Date: 9-Apr-2019 **Project Description: PE4581**

Client: Paterson Group Consulting Engineers

Client PO: 26322

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

GPARACEL | TRUSTE RESPON

Laurent Blvd. irio K1G 4J8 -1947 baracellabs.com Chain of Custody (Lab Use Only) Nº 121641

113	DI.		01		
. 7 . 7	B.			-	

LABORATORI	ES LID.	
A		Project Refere

Client Na	ume: Parerson Group				Project Reference:	PE45	81								Turn	around	Time:	
Contact 1	Name: Mandy Witteman				Quote #							□ I Day			□ 3 Day			
154 Colonnade Rd. S.				PO# 26322 Email Address: Mwitteman @ paterson group. Ca						/ >	2 Day Date Required:		□ Regular					
Telephor	ne: 6/3-226-7381	na sayana sa sa		***	MWIT	temai	1D /Sto	Pa	ngr.	Sp()	200	Mon	icinality	174	-	Other:		7.5
	a: XQ. Reg. 153/04 (As Amended) Table _ □						1					144 (144	terpunty)			o area		
Matrix T	Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Wa	ifer) SS (Storm/S	mitary S	ewer) P	(Paint) A (Air) O (Mher)	Rec	uire	d A	nalyse	s					_		
Parace	el Order Number: 1915341	Matrix	Air Volume	of Containers	Sample	Taken	PHCs F1-F4+BTEX	KCs.	Hs	Metals by ICP	LA	B (HWS)						
	Sample ID/Location Name	Σ	.Ž	31:	Date	Time	P	VOCs	PAHs	Met	Crys	8	-	+	-	-		
1	BHI-GWI	G.W.		2	Apr9/19	AM	+	X	_	+	+	H		+	-	-		_
2	BH2-GVI			2				X	_		+	H	-	+	_	+-		_
3	BH3-GWI	V		2	V	V	-	Х	_	+	+	H	-	+	+			-
4											1			+				
6							T											
7																		
8																		
9																		
10																		
Comn	ments:											02 10			16	d of Deliv	61	
Relinqu	aished By (Sign):	Receive	d by Dri	ver Depo	TEOUSE 4/19 3	Rece	ived at t	EN P	OK	W.	I)ak	[M] Ve	rified By	02	>		
	inshed By (Print): Note Sullivan	Date/Til	ne: 09	9/0	4/19 3	30 Date	Time: perature:	15	.5	100	19	4	, 25 De	Verified	0 4 /09/ [] By:_	19	6:25	

APPENDIX 2

PHASE II ESA REPORT (GOLDER ASSOCIATES)

FINAL REPORT

Phase II Environmental Site Assessment 156 - 160 Lyon Street Ottawa Light Rail **Transit Project**

Submitted to:

Capital Transit Partners 24th Floor, 160 Elgin Street Ottawa, Ontario K2P 2P7

Report Number: 10-1121-0222

Distribution:

2 copies Capital Transit Partners 1 e-copy Capital Transit Partners 2 copies Golder Associates Ltd.

EXECUTIVE SUMMARY

Golder Associates Ltd. (Golder) was retained by Capital Transit Partners (CTP) to prepare a Phase II Environmental Site Assessment (Phase II ESA) on a property currently used as a parking lot located on the southwest corner of Lyon Street and Albert Street with address 156-160 Lyon Street (Site) within the City of Ottawa (City) as shown in Figure 1. Golder understands that the City is considering expropriation of this property for the purpose of redevelopment and potential use as part of the future underground train access station to Queen Street for the Ottawa Light Rail Transit (OLRT) system.

The Executive Summary highlights key points from the report only; for complete information and findings, as well as the limitations, the reader should examine the complete report.

The current Phase II ESA was completed in general accordance with the protocols and procedures outlined in the Canadian Standards Association (CSA) *Standard Z769-00 Phase II Environmental Site Assessment* and employing the most up to date Ministry of the Environment (MOE) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011) from the Ontario Regulation 153/04 (O. Reg. 153/04), as amended.

The objective of the Phase II ESA was to investigate soil and groundwater quality on the Site in order to address areas of potential environment concern (APECs) identified in the report entitled "Phase I Environmental Site Assessment, 156-160 Lyon Street, Ottawa, Ontario" conducted by Golder, dated October 2011 and hereafter referred to as 'Phase I ESA'.

Based on the information obtained during the Phase I ESA, issues of potential environmental concern related to potential impacts to soil and/or groundwater were identified as follows:

- Aerial photographs indicate that there have been a wide variety of facilities and land uses in the subject area. Many of the buildings in the area appear to have been used for manufacturing/industrial purposes as well as residential and unknown commercial uses;
- The review of the fire insurance plans (FIPs) has indicated that several of the properties surrounding the Site have historically been used as gasoline service stations with underground storage tanks (USTs), auto repair shops, laundry services and manufacturing/industrial operations;
- The HLUI database indicated that there was once a dry cleaner located on the Site. The HLUI report also returned an exhaustive list of historical land uses within 250 m of the Site that could have potential environmental impacts including gasoline service stations, motor vehicle repair shops, laundry and cleaning operations, manufacturing/industrial operations and petroleum product businesses; and,
- The Ecolog ERIS report indicated that there are a number of waste generators on adjacent properties (upgradient and cross-gradient to the Site), as well as spill occurrences on adjacent land up-gradient to the Site and fuel storage tanks in the vicinity of the Site. The presence of these facilities and associated activities is considered an issue of potential environmental concern for the Site.

The Phase II ESA consisted of the collection of fill, soil and groundwater samples across the Site and submission for laboratory analysis of the following contaminants of concern (COC): select metals, petroleum hydrocarbons (PHCs) and volatile organic compounds (VOCs).

377

PHASE II ENVIRONMENTAL SITE ASSESSMENT

The Phase II consisted of drilling four geo-environmental boreholes T-306, T-307, T-308 and T-309 as shown on Figure 2. As part of the OLRT protocol, all boreholes must undergo a geotechnical review. As such, these are combination geotechnical and environmental purpose boreholes and for the purposes of this report 'borehole' refers to geo-environmental borehole. Each borehole had a deep monitoring well (denoted as 'A', ie T-306A) and a shallow monitoring well (denoted as 'B', ie. T-306B) installed. From these boreholes and monitoring wells the following soil and groundwater samples were collected by Golder and analysed by Paracel Laboratories:

- Three soil samples T-306 SA1 (where 'SA' denotes 'sample' and '1' refers to the first sample collected), T-307 SA1 and T-309 SA1 were analysed for selected metal concentrations;
- Nine soil samples T-306 SA1, T-306 SA3, T-307 SA1, T-307 SA5, T-308 SA3, T-308 SA6, T-309 SA1, T-309 SA4 and T-309 SA4A (duplicate sample) were analysed for PHC and VOC concentrations;
- Two groundwater samples T-308B and T-309B were collected on November 10, 2011 and analysed for PHC concentrations. On December 5, 2011 T-309B was re-sampled and T-306B was sampled and analysed for PHC concentrations; and,
- Six groundwater samples T-306A, T-307A, T-308A, T-308B, T-309A and T-309B plus one duplicate sample for T-306A were collected on November 10, 2011 and analysed for VOC concentrations. On December 5, 2011, T-309B was re-sampled and T-306B was sampled and analysed for VOC concentrations.

In addition to the above soil and groundwater samples, borehole T-72, located on the Site as shown on Figure 2, was completed between May 19 and 31, 2011 as part of the original OLRT alignment along Albert Street. One deep monitoring well T-72A (screen interval of ~33.3 - 39.3 meters below ground surface [mbgs]) and one shallow monitoring well T-72B (screen interval of ~12.2 - 15.2 mbgs) were installed in this borehole. Soil and groundwater samples were collected during this installation and were reviewed as part of the Phase I ESA. Groundwater samples were also collected from T-72A and T-72B on August 25, 2011 and analyzed for PHC and VOC concentrations. Groundwater samples were also collected from the shallow monitoring well T-72B on December 5, 2011 and analyzed for PHCs and VOCs.

Based on the findings of the Phase II ESA and the soil and groundwater results from borehole T-72, the following exceedances above the applicable MOE Table 1 and Table 3 Standards and other applicable standards were identified:

- The Site is underlain by fill materials which range in depth from 1.50 to 1.83 mbgs. The metal concentrations of antimony, barium, lead and mercury within these fills at T-306 SA1 and barium, lead, mercury and zinc in T-307 SA1 are in exceedance of MOE Table 1 Standards. Lead concentrations exceeded the MOE Table 3 Standards in the same two fill samples. Elevated metal concentrations in soil, compared to typical background levels identified in this area, are likely associated with fill containing demolition material from the former buildings on the Site. It is anticipated that the fill likely covers most of if not the entire Site;
- A soil sample collected from T-72 SA4 (3.05 to 3.66 mbgs) on May 19, 2011 indicated that Molybdenum and Silver exceeded the MOE Table 1 Standards. Note that this soil sample was taken from the native soil and not from the fill material:

- Groundwater exceedances for MOE Table 3 included chloroform at three well locations (T-306A, T-308A and T-309B). Chloroform was no longer identified above the MOE Table 3 standard at T-309B during the re-sampling event on December 5, 2011 but continued to be present at T-306A. T-308A was not resampled due to access issues. Chloroform concentrations in groundwater, which in absence of a source could potentially be attributed to municipal chlorinated water (potential water line breaks and/or the water used for coring the bedrock);
- Groundwater exceedances for MOE Table 3 included PHC F3 and F4 in three monitoring wells (T-72A, T-308B and T-309B). The results from the groundwater collected during the re-sampling event of T-72 on August 25, 2011 from T-72A and on December 5, 2011 from T-309B indicated that PHC concentrations were no longer present above the detection limits. T-308B could not be re-sampled on December 5, 2011 due to access issues. The F3 and F4 exceedances at this location are likely related to excess sediment in the first set of groundwater samples;
- Groundwater exceedances for the City of Ottawa Storm Sewer Discharge Criteria included chloroform in four well locations (T-306A, T-307A, T-308A and T-309B), and toluene in T-308A. The results from the groundwater collected during the re-sampling event on December 5, 2011 from T-309B indicated that chloroform was not longer present above the laboratory detection limits. Again, chloroform concentrations in groundwater, which in absence of a source could potentially be attributed to municipal chlorinated water (potential water line breaks and/or the water used for coring the bedrock), and the toluene exceedance is likely related to on or off-Site historical activities; and,
- Groundwater exceedances for the City of Ottawa Sanitary and Storm Sewer Discharge Criteria included PHC F3 + F4 (The commonly applied but unpublished City of Ottawa sanitary and storm sewer use limit is 500 ug/L for the total concentration of PHCs F1 to F4) in T-72A, T-308B and T-309B. The results from the groundwater collected during the re-sampling event on August 25, 2011 from T-72A and December 5, 2011 from T-309B indicated that PHC F3 and F4 were no longer present above the laboratory detection limit. T-308B could not be re-sampled on December 5, 2011 due to access issues. Although not confirmed, the F3 and F4 exceedances at this location are likely related to excess sediment in the original groundwater samples.

As indicated above, fill areas on the Site contain soil in excess of the applicable MOE Table 1 and Table 3 Standards. If excavated, these materials should be managed in accordance with the requirements of the Excess Materials Management Plan (EMMP) to be developed by Project Co as part of the OLRT Project. In general, material in excess of either of the Table 1 or Table 3 Standards will be considered a waste if it is removed from the Site. If managed on Site, material in excess of MOE Table 3 may require additional assessment (Site Specific Risk Assessment) and/or risk management to be considered suitable for use on the Site. Classification under Ontario Regulation 347 General – Waste Management as amended would be necessary if soil is to be disposed of at a licensed waste disposal facility.

As indicated above, groundwater concentrations exceeded the MOE Table 3 Standards and the City of Ottawa Storm Sewer and Sanitary Sewer discharge criteria for several parameters. However, following re-sampling the PHC concentrations were no longer detected above the laboratory detection limits. Therefore the exceedances of MOE Table 3 and Sanitary Sewers for PHCs were likely the result of elevated sediment in the original groundwater samples and are not likely present in the groundwater at the Site. Construction groundwater monitoring should be implemented to monitor the actual concentrations of contaminants during dewatering.

Table of Contents

EXE	CUTIVE	SUMMARY	i
1.0	INTRO	DUCTION	1
	1.1	Objectives	1
	1.2	Scope of Work	2
2.0	ВАСКО	GROUND INFORMATION	3
	2.1	Site Description	3
	2.2	Current Property Use	3
	2.3	Summary of Findings from "Phase I Environmental Site Assessment, 156-160 Lyon Street, Ottawa, Ontario"	3
	2.4	Previous Investigations by Others	3
3.0	INVES	TIGATION METHOD	4
	3.1	General	4
	3.2	Drilling	4
	3.3	Borehole and Monitoring Well Layout	4
	3.4	Soil: Sampling and Analysis	4
	3.5	Field Screening Measurements	5
	3.6	Ground Water: Monitoring Well Installation	6
	3.7	Ground Water: Sampling and Analysis	6
4.0	RESUL	TS	8
	4.1	Applicable Site Condition Standard	8
	4.2	Subsurface Conditions	9
	4.3	Hydrogeology	9
	4.3.1	Ground Water Elevations and Flow Direction	9
	4.3.2	General Hydrogeological Conditions	10
	4.4	Soil Headspace Vapour Measurements and Odours	10
	4.5	Soil Analytical Results	10
	4.5.1	MOE Table 1 Standards	10
	4.5.2	MOE Table 3 Standards	11
	4.6	Groundwater Analytical Results	11

12
12
12
14
15
16
17
18

- Table 1: Soil Analytical Results Metals
- Table 2: Soil Analytical Results Petroleum Hydrocarbons
- Table 3: Soil Analytical Results VOCs
- Table 4: Groundwater Analytical Results Petroleum Hydrocarbons
- Table 5: Groundwater Analytical Results VOCs

FIGURES

- Figure 1: Key Plan
- Figure 2: Site Plan, Borehole/Monitoring Well Locations and APECs
- Figure 3: Shallow Groundwater Elevation Contours and Interpreted Shallow Groundwater Flow Direction
- Figure 4: Summary of MOE Table 3 Soil Exceedances
- Figure 5: Summary of MOE Table 3 Groundwater Exceedances

APPENDICES

APPENDIX A

Borehole and Well Instrumentation Logs

APPENDIX B

Soil Sample Vapour Levels and PID Certificate of Calibration

APPENDIX C

Laboratory Certificates of Analysis

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) was retained by Capital Transit Partners (CTP) to prepare a Phase II Environmental Site Assessment (Phase II ESA) on a property currently used as a parking lot located on the southwest corner of Lyon Street and Albert Street with address 156-160 Lyon Street (Site) within the City of Ottawa (City) as shown in Figure 1. Golder understands that the City is considering expropriation of this property for the purpose of redevelopment and potential use as part of the future underground train access station to Queen Street for the Ottawa Light Rail Transit (OLRT) system. For the purpose of this report, the Phase II ESA "Site" is defined as the aggregate of the two properties (156 and 150 Lyon Street) with the Site shown on Figure 2.

The Phase II ESA was completed in general accordance with the protocols and procedures outlined in the Canadian Standards Association (CSA) *Standard Z769-00 Phase II Environmental Site Assessment* and employing the most up to date Ministry of the Environment (MOE) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 15, 2011) from the Ontario Regulation 153/04 (O. Reg. 153/04), as amended.

The Phase II ESA property includes the following municipal addresses and property identification numbers (PINs):

Phase II ESA Property Information

Civic Address	Property Identification Number (PIN)	Approximate Area (ha)		
156 Lyon Street	041140009	0.04		
160 Lyon Street	041140010	0.06		

1.1 Objectives

The objective of the Phase II ESA was to investigate soil and groundwater quality on the Site in order to address areas of potential environment concern (APECs) identified in the report entitled "Phase I Environmental Site Assessment, 156-160 Lyon Street, Ottawa, Ontario" conducted by Golder, dated October 2011 and hereafter referred to as 'Phase I ESA'.

The objectives of the Phase II ESA include:

- 1) Re-sampling the deep groundwater interval at geo-environmental borehole T-72 to verify a reported groundwater sample with concentration of PHC F2-F4 exceeding MOE Table 3 in this deep well in June of 2011. As part of the OLRT protocol, all boreholes must undergo a geotechnical review. As such, these boreholes are combination geotechnical and environmental purpose boreholes and for the purposes of this report 'borehole' refers to geo-environmental borehole;
- 2) Further investigate APECs identified in the Phase I ESA report through a borehole drilling and monitoring well installation program;
- 3) Identify soil concentrations in excess of the applicable Standards, as described in section 4.1, with regard to the potential chemicals of concern (COC) suspected on-Site: metals, petroleum hydrocarbons (PHCs) and volatile organic compounds (VOCs);

- 4) Evaluate groundwater quality within the Site boundaries with regard to the potential COCs suspected on-Site: PHCs and VOCs;
- 5) Determine groundwater elevations and flow direction; and,
- 6) Provide recommendations for additional work, remediation and/or risk management, where applicable.

1.2 Scope of Work

The Phase II ESA scope of work included:

- Re-sampling the groundwater in the deep monitoring well at borehole T-72A;
- Drilling of four geo-environmental boreholes;
- Collection of soil samples from boreholes:
- Laboratory analysis of soil samples for the COC for soil including metals, PHCs and VOCs in soils recovered from boreholes;
- Installation of a deep (denoted by 'A' at the end of the borehole name) and a shallow (denoted by 'B' at the end of the borehole name) monitoring well in each of the four boreholes;
- Groundwater elevation surveying;
- Groundwater sampling of monitoring wells T-306 to T-309, and existing deep monitoring well T-72A;
- Re-sampling of groundwater from monitoring wells T-72A, T-72B, T306B and T-309B;
- Groundwater laboratory analysis of PHC and VOC; and,
- Interpretation of results and preparation of this report.

2.0 BACKGROUND INFORMATION

2.1 Site Description

The Phase II ESA Site is located on the southwest quadrant of the intersection of Lyon Street and Albert Street in the downtown core of Ottawa, Ontario. The Site topography slopes slightly to the south. There are no water bodies present on-Site. The Site is currently used as a public parking lot and has asphalt pavement cover.

2.2 Current Property Use

Currently the main use of the Site is for public parking. The only structure is a small parking booth which is located along the north property line of the Site.

Additional detailed information regarding the Site history is provided in the Phase I ESA for the Site.

2.3 Summary of Findings from "Phase I Environmental Site Assessment, 156-160 Lyon Street, Ottawa, Ontario"

The Phase I ESA entitled "Phase I Environmental Site Assessment, 156-160 Lyon Street, Ottawa, Ontario" was conducted by Golder in June 2011. The following table is a summary of the APEC (see Figure 2) related to the potential impacts on soil and/or groundwater on the Site identified in the Phase I ESA.

Summary of APEC Identified in the Phase I ESA

Site	Ref#	Location of the Area of Potential Environmental Concern (APEC)	Finding & Justification	Information Sources	Contaminants of Concern				
	On-Site (Figure 2)								
380 Albert 1		Former laundries and cleaners	Historical research	City of Ottawa's Historical Land Use Inventory (HLUI)	The use of cleaning solvents (VOCs)				

2.4 Previous Investigations by Others

No previous reports were examined as part of the Phase I ESA. However, as part of the original OLRT alignment along Albert Street, Golder completed borehole T-72 on the Site between May 19 and 31, 2011. This borehole log was reviewed as part of this Phase I ESA. The borehole log indicated the presence of approximately 1.5 metres of fill material that included brick which is likely related to the demolition of the former buildings on the Site. Originally there was an exceedance of petroleum hydrocarbon compounds (PHC F2 to F4) in the deep groundwater well (screen from ~33.3 – 39.3 meters below ground surface [mbgs]) in this borehole. Golder returned to the Site on August 25, 2011 to resample and re-analyze the deep groundwater well; based on the analytical results, there were no exceedances of PHC F2 to F4 found in the deep groundwater well during the repeat sampling (refer to Table 4 - Groundwater Analytical Results – Petroleum Hydrocarbons).

3.0 INVESTIGATION METHOD

3.1 General

The current Phase II ESA field program consisted of the advancement of four boreholes completed through fill material, native subsurface soils and into bedrock. The Phase II ESA also included deep ("A") and shallow ("B") monitoring well installation in all four boreholes along with the collection of soil and groundwater samples for analysis of the COCs - metals, PHCs and VOCs. Borehole and monitoring well placement was designed to address the APECs identified in the Phase I ESA. Depth to groundwater was measured to determine the shallow groundwater flow direction at the Site. Details regarding individual tasks are provided in the following sections.

3.2 Drilling

Prior to commencing the borehole drilling program, Golder retained Underground Service Locates (USL) Inc. of Ottawa, Ontario to identify the locations of all private and public utilities within the work area and to mark the location of these utilities.

Each borehole was drilled using a truck-mounted hollow stem drill rig (CME 55) operated by Downing Estate Drilling of Grenville, Quebec. Borehole logs with details of monitoring well installations were monitored in the field by Golder personnel. All soil cuttings were collected in drums and removed from the Site for eventual disposal as per Ministry of the Environment (MOE) regulation 347 General – Waste Management. Each borehole was advanced to a depth of approximately fifteen meters below ground surface to intercept the groundwater table (~5 to 6 mbgs) and correspond with the potential station access excavation and the depth of existing shallow monitoring well T-72B. Multi-level monitoring wells were installed in all four of the boreholes. The screened interval of the upper well was positioned to straddle the water table (~5 to 6.5 mbgs) and the screened interval of the lower well was placed at the bottom of the borehole in the bedrock (~13.5 to 15.0 mbgs). Borehole logs with monitoring well installations are provided in Appendix A.

The ground surface elevations at the four newly installed boreholes/wells were surveyed by Annis, O'Sullivan, Vollebekk Ltd. of Ottawa, Ontario and are referred to the NAD83 MTM zone 9 reference system.

3.3 Borehole and Monitoring Well Layout

Boreholes were positioned and drilled to provide coverage of the Site as shown in Figure 2.

3.4 Soil: Sampling and Analysis

Soil samples were recovered from each borehole during drilling using a split spoon sampler. Bedrock coring was completed using HQ diamond drill coring equipment. Each soil sample was logged in the field, placed in laboratory supplied glass sample jars and refrigerated until select samples were delivered under chain of custody documentation to Paracel Laboratories Ltd. of Ottawa for analysis. Where possible, soil split samples were collected in sealed plastic bags for subsequent soil headspace organic vapour measurements.

Samples were selected for laboratory analysis based on organic vapour measurements, visual observations and/or stratigraphic position. Two soil samples from each borehole were submitted for laboratory analysis to Paracel Laboratories Ltd. The COCs were selected based on the APEC identified in the Phase I ESA and include one or more of the PHC fractions F1 to F4, VOCs and select metals. The COCs were also considered in the context of the material. The following is a summary of soil samples submitted for analysis of the corresponding COCs.

Collected Soil Samples and Analyzed Parameters

Borehole/Monitoring Well	Sample Depth Interval (mbgs)	Parameter		
T-72	SA1 0.76-1.37	PHCs, VOCs, metals		
1-72	SA4 3.05-3.66	PHCs, VOCs, metals		
T-306	SA1 0.76-1.37	PHC, VOCs, metals		
1-306	SA3 2.29-2.90	PHC, VOCs		
T-307	SA1 0.76-1.37	PHC, VOCs, metals, pH*		
1-307	SA5 3.8-4.42	PHC, VOCs, pH*		
T-308	SA3 2.29-2.9	PHC, VOCs		
1-306	SA6** 3.8-4.27	PHC, VOCs		
	SA1 0.91-1.52	PHC, VOCs, metals		
T-309	SA4 3.05-3.66	PHC, VOCs		
. 300	SA4A 3.05-3.66 (duplicate sample)	PHC, VOCs		

Notes: mbgs: metres below ground surface

Laboratory Certificates of Analysis are provided in Appendix C and soil analytical results are presented in Tables 1 to 3. A summary of the identified soil sample exceedances for the analysed parameters is presented in Section 4.5.

3.5 Field Screening Measurements

Soil sample vapour levels were measured using a Mini-rae PGM 7300 (serial no. 590-001-611) photo ionization detector ("PID") calibrated using an isobutylene gas Standard of 100 parts per million (ppm) on October 31, 2011 prior to the commencement of drilling. Soil samples were collected from regular intervals within 60 cm (2 foot) sections recovered from a split spoon sampler during borehole excavation, bagged and allowed to equilibrate to the ambient temperature prior to vapour level measurements in the field. Soil sample vapour level readings were used to identify "worst case" soil samples to be submitted for laboratory analysis. Soil sample vapour level readings and the PID certificate of calibration are provided in Appendix B.

^{*} pH measured to determine applicable Site Condition Standard as outlined in Section 4.1

^{**} Identified on T-308 borehole log as sample '5'

37

PHASE II ENVIRONMENTAL SITE ASSESSMENT

3.6 Ground Water: Monitoring Well Installation

In order to investigate groundwater quality, multi-level monitoring wells were installed in each borehole and the installation was supervised in the field by Golder personnel. In general, the lower level monitoring wells ("A") were constructed of 32 millimetre diameter PVC pipe equipped with a 1.5 metre screened interval placed at the bottom of the borehole in the bedrock. The upper level monitoring wells ("B") were constructed with 25 millimetre diameter PVC pipe equipped with a 1.5 m screened interval placed approximately between 5 and 6.5 mbgs intercepting the groundwater table. Detailed monitoring well instrumentation logs are provided on the borehole logs in Appendix A.

An attempt was made to install the shallow monitoring well screens at an elevation that would straddle the inferred water table. Silica sand backfill (granular filter) was placed in the annular space of the boreholes around the screened portion of the monitoring well, and bentonite was used to seal the upper portion of the annular space between the well risers and the walls of the borehole up to ground surface. A bentonite seal was placed between the shallow and deep well screens and also to seal the interface between the bedrock and the overburden.

Ground surface elevations at each of the newly installed wells were surveyed by Annis, O'Sullivan, Vollebekk Ltd. of Ottawa, Ontario and are referred to the geodetic datum. Following well development and recovery, the depth to the groundwater surface was documented in all wells and groundwater surface elevations were calculated in order to determine the groundwater flow direction at the Site.

3.7 Ground Water: Sampling and Analysis

The scope of work of the Phase II ESA included groundwater sampling of each interval for the newly installed wells T-306 to T-309 and one existing well T-72 (see Figure 2). T-72A and T-72B were re-sampled on August 25, 2011 and monitoring wells T-306 to T-309 were sampled on November 10, 2011.

T-306 and T-307 were not sampled during the initial sampling program as there was insufficient water in the wells for collection. A re-sampling event took place on December 5, 2011 to obtain the missing samples and to address excess sediment issues that were encountered in T-308B and T-309B as noted by Paracel Laboratories. During the re-sampling event groundwater samples were collected from T-306B, T309B and T-72B. Groundwater was collected from T-306B using a low flow peristaltic pump as the standard footvalve was unable to collect a sample. T-307 continued to be dry and T-308 could not be re-sampled due to access issues.

Prior to sampling, the depth to static groundwater level was recorded in each borehole/monitoring well. As the groundwater was located within the bedrock, the wells were purged once until dry and then sampled after recovery. Well purging and sampling was completed using dedicated polyethylene tubing and a Waterra foot valve. Groundwater samples were placed in laboratory supplied sample bottles, placed in a cooler with ice, and delivered to the laboratory for analysis on the same day of collection. Recorded groundwater levels and elevations are presented in Section 4.3.

Groundwater samples were submitted for laboratory analysis to Paracel Laboratories Ltd. The COCs were selected based on the activities of potential environmental concern identified in the Phase I ESA report. The COCs included PHC fractions F1 to F4 and VOCs. The COCs were also considered in the context of the material. The following is a summary of groundwater samples submitted for analysis of the corresponding COCs.

Groundwater Sampling Locations and Analyzed Parameters

Borehole/Monitoring Well	Parameter	Date
T-72B	PHcs, VOCs	June 28, 2011
T-72A	PHCs, VOCs	June 30, 2011
T-72A	PHCs, VOCs	August 25, 2011
T-72B	PHCs, VOCs	August 25, 2011
T-72B	PHC, VOCs	December 5, 2011
T-306A	VOCs	November 10, 2011
T-306B	VOCs, PHCs	December 5, 2011
T-307A	VOCs	November 10, 2011
T-307B	Insufficient water to sample	N/A
T-308A	VOCs	November 10, 2011
T-308B	PHCs, VOCs	November 10, 2011
T-309A	VOCs	November 10, 2011
T-309B	PHCs	November 10, 2011
T-309B	PHCs, VOCs	December 5, 2011

Note: T-72A is existing monitoring well from a previous OLRT alignment borehole

Laboratory Certificates of Analysis are provided in Appendix C and groundwater analytical results are presented in Tables 4 and 5. A summary of the identified groundwater sample exceedances for the analysed parameters is presented in Section 4.6.

4.0 RESULTS

4.1 Applicable Site Condition Standard

Provincial Standards described in the MOE document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the *Environmental Protection Act*" dated April, 2011 (the Standard Document) are currently used for the assessment of potentially contaminated sites in the context of Ontario Regulation (O. Reg.) 153/04 as amended.

The following rationale was used for the selection of the applicable Site Standards to be used:

- The Site is located in an area which is serviced by a municipal drinking water supply which does not rely on the local groundwater. Thus, existing private and municipal water supplies will not be adversely affected if non-potable groundwater Standards are utilized for this Site;
- The most sensitive land use of the site is commercial:
- The Site is not located within 30 metres of a water body;
- The Site is not located within an area of natural significance, or included or adjacent to such an area;
- The Site is not considered environmentally sensitive by O. Reg. 153/04 Standards given that the pH range of soil samples analyzed from T-307 SA1 and SA5 was within 5 to 11; and,
- Based on observed soil and groundwater conditions in the boreholes, glacial till was assumed to be a possible pathway for the migration of groundwater with concentrations of parameters greater than the applicable Standard and therefore the criteria associated with a coarse textured soil were considered most applicable to this Site (conservative approach).

Based on the above considerations, MOE Table 3 Standards: Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition for Industrial/Commercial/Community Property Use (coarse-grained soil) is applicable. Analytical results for soil and groundwater samples submitted for laboratory analysis were compared against Table 3 Standards. All soil and groundwater samples in exceedance of Table 3 Standards may require further investigation or assessment.

In addition the following Standards and criteria were employed for comparative purposes and may be used to aid in fill and groundwater management strategies for the Site.

Soil

Soil analytical results were also compared to the MOE Table 1 Full Depth Background Site Condition Standards (coarse-grained soil) for Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use, in order to examine the quality of fill on-Site.

Groundwater

Groundwater analytical results were also compared to the City of Ottawa Sewer Use By-Law (No. 2003-514, Schedule "A" Table 1) for discharge to sanitary and combined sewers, and the City of Ottawa Sewer Use By-Law (No. 2003-514, Schedule "A" Table 1) for discharge to storm sewers.

\$37

PHASE II ENVIRONMENTAL SITE ASSESSMENT

4.2 Subsurface Conditions

The subsurface conditions encountered in the boreholes are shown on borehole logs provided in Appendix A. Information obtained from boreholes forms the basis of the following subsurface description.

In general, the subsurface conditions at the Site consist of pavement structure over fill, underlain by silty clay, and subsequently underlain by glacial till and limestone bedrock.

Fill was encountered at all borehole locations from below the asphaltic pavement to a maximum depth of 1.83 mbgs. Native soils were encountered at the shallowest depth of 1.5 mbgs and consisted of silty clay underlain by glacial till composed of cobbles and boulders in a matrix of silty sand/sandy silt, some gravel with a trace of clay. Glacial till generally extended down to depths ranging from approximately 4.37 to 4.62 mbgs and varied in thickness from 1.0 to 2.4 m. Bedrock in the form of fresh to slightly weathered limestone was typically encountered between 4.37 to 4.62 mbgs.

4.3 Hydrogeology

4.3.1 Ground Water Elevations and Flow Direction

Golder visited the Site on November 10, 2011 after the wells were installed to record the depth of static groundwater levels in the eight monitoring wells installed in the four boreholes. A summary of the measured depth to groundwater and groundwater elevations is presented below.

Measured Depth of Groundwater and Calculated Groundwater Elevations in Installed Monitoring Wells

Borehole/monitoring well locations	Approximate Screen Depth Interval (m)	Approximate Ground Surface Elevation ⁽¹⁾ (mASL)	Depth of Groundwater Level Below Ground Surface (m)	Groundwater Level Elevation ⁽¹⁾ (mASL)	Date of Measurement
T-72B	12.2 – 15.2	73.20	5.50	67.70	Aug. 25, 2011
T-72A	33.3 - 39.3	73.20	5.50	67.70	Aug. 25, 2011
T-306B	5.5 - 7.0	73.42	4.49	68.93	Nov. 10, 2011
T-306A	13.6 - 15.1	73.42	5.48	67.94	Nov. 10, 2011
T-307B	4.9 - 6.4	73.20	5.64	67.56	Nov. 10, 2011
T-307A	13.5 – 15.0	73.20	5.63	67.57	Nov. 10, 2011
T-308B	5.5 - 7.0	73.08	5.54	67.54	Nov. 10, 2011
T-308A	13.5 – 15.0	73.08	4.28	68.80	Nov. 10, 2011
T-309B	5.5 - 7.0	72.94	5.40	67.54	Nov. 10, 2011
T-309A	12.2 – 15.1	72.94	5.38	67.56	Nov. 10, 2011

Notes:

The elevations are referred to a Geodetic datum
 Highlighted values are used to indicate shallow groundwater flow direction on Figure 3.

Based on the above calculated water level elevations from the shallow ("B") monitoring wells on November 10, 2011, shallow groundwater at the Site is interpreted to flow towards the southeast as shown on Figure 3. This corresponds with the general topography of the Site and the surrounding properties.

4.3.2 General Hydrogeological Conditions

During the drilling of the boreholes, there was no evidence of the groundwater surface observed within the overburden. Based on observations during drilling and the inferred shallow groundwater flow direction towards the southeast on the Site, it is presumed that the shallow groundwater flow is predominantly within the upper limestone unit and to a lesser extent within the base of the glacial till.

4.4 Soil Headspace Vapour Measurements and Odours

The measured soil headspace vapour concentrations ranged between 0.1 and 1.4 ppm. Field soil vapour measurements are presented in Appendix A.

No hydrocarbon odours were noted during drilling and sampling of each of the four boreholes. Due to a limited quantity of soil recovered within the split spoon sampler, the following samples could not be tested for soil vapour measurements; T-306 SA-3 and T-308, SA1, SA2, SA4 and SA6.

4.5 Soil Analytical Results

A total of nine soil samples were submitted for laboratory analysis (including one soil duplicate) based on soil headspace organic vapour measurements in the field and visual observations/stratigraphic positioning. The laboratory analytical program included the following analysis of the COCs based on APECs identified in the Phase I ESA:

- Metals: antimony, arsenic, barium, beryllium, boron, cadmium, chromium, chromium (VI), cobalt, copper, lead, mercury, molybdenum, nickel, selenium, silver, thallium, uranium, vanadium, and zinc in fill materials;
- VOCs (including benzene, toluene, ethylbenzene and xylenes [BTEX]); and,
- PHC Fractions F1 to F4.

The soil analytical results were compared to applicable site Standards (MOE Table 1 and Table 3). The results are summarized below. Soil analytical results are presented in Tables 1 to 3. The soil concentrations in excess of the MOE Table 3 Standards are shown on Figure 4.

4.5.1 MOE Table 1 Standards

The MOE Table 1 Standards are typically applied to classify soils for off-site disposal. Material which meets the MOE Table 1 Standard is generally considered clean/inert fill, which can be used at any site. The following is a summary of the MOE Table 1 Standard exceedances of soil:

- T-306 SA1:
 - 0.91-1.52 mbgs: antimony, barium, lead and mercury;
- T-307 SA1:
 - 0.76-1.37 mbgs: barium, lead, mercury and zinc.

\$37

PHASE II ENVIRONMENTAL SITE ASSESSMENT

A previous soil test result from T-72 SA4 (3.05 to 3.66 mbgs) on May 19, 2011 indicated that Molybdenum and Silver exceeded the MOE Table 1 Standards. Note that this soil sample was taken from the native soil and not from the fill material.

4.5.2 MOE Table 3 Standards

The MOE Table 3 Standards are used to classify the suitability of materials at sites where groundwater is not used for consumption (i.e. non-potable). The following is a summary of the MOE Table 3 soil exceedances:

- T-306 SA1:
 - 0.91-1.52 mbgs: lead;
- T-307 SA1:
 - 0.76-1.37 mbgs: lead.

4.6 Groundwater Analytical Results

A total of seventeen groundwater samples were submitted for laboratory analyses (includes one duplicate sample at T-306A). T-307B did not have a sufficient amount of water in order to submit groundwater samples to the laboratory. At the time of sampling, light non-aqueous phase liquids (LNAPL) were not observed in any of the monitoring wells. The laboratory analytical program included the following analysis of the COCs based on APECs identified in the Phase I ESA:

- VOCs (including BTEX); and,
- PHC Fractions F1 to F4.

The groundwater analytical results compared to the applicable Standards (MOE Table 3) and to supplementary criteria are summarized below. Groundwater analytical results are presented in Tables 4 and 5. The groundwater concentrations greater than the MOE Table 3 Standards is shown on Figure 5.

4.6.1 City of Ottawa Storm Sewer Discharge Criteria

The City of Ottawa Storm Sewer discharge criteria are used to classify water for discharge to the municipal storm sewers. The commonly applied but unpublished City of Ottawa sanitary and storm sewer use limit is 500 ug/L for the total concentration of PHCs F1 to F4. The following is a summary of the exceedances of the storm sewer discharge criteria:

- T306A: Chloroform;
- Duplicate T-306A: Chloroform;
- T-307A: Chloroform;
- T-308A: Chloroform and Toluene;
- T-309B: Chloroform on November 10, 2011 but not on December 5, 2011;
- T-308B: F3 + F4 (based on the unpublished concentration of 500 ug/L maximum limit for F1 to F4);
- T-309B: F3 + F4 (based on the unpublished concentration of 500 ug/L maximum limit for F1 to F4) on November 10, 2011 but not on December 5, 2011; and,
- T-72A: F2 + F3 + F4 (based on the unpublished concentration of 500 ug/L maximum limit for F1 to F4) on June 30, 2011 but not on August 25, 2011.

W.

PHASE II ENVIRONMENTAL SITE ASSESSMENT

4.6.2 City of Ottawa Sanitary Sewer Discharge Criteria

The City of Ottawa Sanitary Sewer discharge criteria are used to classify water for discharge to the municipal sanitary sewers. The commonly applied but unpublished City of Ottawa sanitary and storm sewer use limit is 500 ug/L for the total concentration of PHCs F1 to F4. The following is a summary of the exceedances of the sanitary sewer discharge criteria:

- T-308B: F3 + F4 (based on the unpublished concentration of 500 ug/L maximum limit for F1 to F4);
- T-309B: F3 + F4 (based on the unpublished concentration of 500 ug/L maximum limit for F1 to F4) on November 10, 2011 but not on December 5, 2011; and,
- T-72A: F2 + F3 + F4 (based on the unpublished concentration of 500 ug/L maximum limit for F1 to F4) on June 30, 2011 but not on August 25, 2011.

4.6.3 MOE Table 3 Standards

The MOE Table 3 Standards are used to classify the suitability of materials at sites where groundwater is not used for consumption (i.e. non-potable). The following is a summary of the MOE Table 3 groundwater exceedances:

- T-306A: Chloroform;
- Duplicate T-306A: Chloroform;
- T-308A: Chloroform;
- T-308B: F3 and F4;
- T-309B: Chloroform, F3 and F4 on November 10, 2011 but not on December 5, 2011; and,
- T-72A: F2 on June 30, 2011 but not on August 25, 2011.

4.7 Quality Assurance and Quality Control Results

As part of the Phase II ESA, Golder implemented the following field quality control measures:

- Use of dedicated or cleaned sampling equipment between sampling events;
- Use of calibrated field monitoring equipment (PID);
- Use of appropriate laboratory supplied sampling jars;
- Analysis within an acceptable holding time;
- Delivery of samples under a Chain of Custody; and,
- Laboratory analysis by CALA accredited laboratory (Paracel Laboratories Ltd).

In addition to the above, Golder implemented the following laboratory analytical quality control measures:

- Collection and submission of one duplicate soil sample:
 - Duplicate soil sample of T-309 SA4 (duplicate identification: T-309 SA4A);
- Collection and submission of one duplicate groundwater sample:
 - Duplicate groundwater sample from monitoring well T-306A (duplicate identification: Dupe).

A review of the laboratory analytical results for the duplicate samples compared to the analytical results for the original samples show acceptable differences in results.

A review of the laboratory internal blanks, spikes and recoveries were all within acceptable ranges.

During the initial sampling program excessive sediment in the groundwater samples was noted by Paracel Laboratories, in samples T-308B and T-309B. As a result, the sediment present in the groundwater samples would have been digested with the groundwater sample during analysis which may have resulted in higher PHC groundwater concentrations than what is actually dissolved in the groundwater. During re-sampling on December 5, 2011 using low flow techniques to reduce the sediment collected with the groundwater, no detectable PHC was identified. Therefore it is considered that the sediment present in the initial samples had resulted in an elevated PHC concentration, potentially due to shale brought into suspension during drilling activities which is known to contain naturally occurring PHCs.

5.0 DISCUSSION OF RESULTS

Based on the findings of the Phase II ESA, the following exceedances above the applicable MOE Table 1 and Table 3 Standards and other applicable standards were identified:

- The Site is underlain by fill materials which range in depth from 1.50 to 1.83 mbgs. The metal concentrations of antimony, barium, lead and mercury within these fills at T-306 SA1 and barium, lead, mercury and zinc in T-307 SA1 are in exceedance of MOE Table 1 Standards. Lead concentrations exceeded the MOE Table 3 Standards in the same two fill samples. Elevated metal concentrations in soil, compared to typical background levels identified in this area, are likely associated with fill containing demolition material from the former buildings on the Site. It is anticipated that the fill likely covers most of if not the entire Site:
- A soil sample collected from T-72 SA4 (3.05 to 3.66 mbgs) on May 19, 2011 indicated that Molybdenum and Silver exceeded the MOE Table 1 Standards. Note that this soil sample was taken from the native soil and not from the fill material;
- Groundwater exceedances for MOE Table 3 included chloroform at three well locations (T-306A, T-308A and T-309B). Chloroform was no longer identified above the MOE Table 3 at T-309B during the re-sampling event on December 5, 2011 but continued to be present at T-306A, T-308A was not re-sampled. Chloroform concentrations in groundwater, which in absence of a source could potentially be attributed to municipal chlorinated water (potential water line breaks and/or the water used for coring the bedrock);
- Groundwater exceedances for MOE Table 3 included PHC F3 and F4 in three monitoring wells (T-72A, T-308B and T-309B). The results from the groundwater collected during the re-sampling event of T-72 on August 25, 2011 from T-72A and on December 5, 2011 from T-309B indicated that PHC concentrations were no longer present above the detection limits. T-308B could not be re-sampled on December 5, 2011 due to access issues. The F3 and F4 exceedances at this location are likely related to excess sediment in the first set of groundwater samples;
- Groundwater exceedances for the City of Ottawa Storm Sewer Discharge Criteria included chloroform in four well locations (T-306A, T-307A, T-308A and T-309B), and toluene in T-308A. The results from the groundwater collected during the re-sampling event on December 5, 2011 from T-309B indicated that chloroform was not longer present above the laboratory detection limits. Again, chloroform concentrations in groundwater, which in absence of a source could potentially be attributed to municipal chlorinated water (potential water line breaks and/or the water used for coring the bedrock), and the toluene exceedance is likely related to on or off-site historical activities; and,
- Groundwater exceedances for the City of Ottawa Sanitary and Storm Sewer Discharge Criteria included PHC F3 + F4 (The commonly applied but unpublished City of Ottawa sanitary and storm sewer use limit is 500 ug/L for the total concentration of PHCs F1 to F4) in T-72A, T-308B and T-309B. The results from the groundwater collected during the re-sampling event on August 25, 2011 from T-72A and December 5, 2011 from T-309B indicated that PHC F3 and F4 were no longer present above the laboratory detection limit. T-308B could not be re-sampled on December 5, 2011 due to access issues. Although not confirmed, the F3 and F4 exceedances at this location are likely related to excess sediment in the original groundwater samples.

6.0 CONCLUSIONS AND RECOMMENDATIONS

As indicated in Section 5.0, fill areas on the Site contain soil in excess of the applicable MOE Table 1 and Table 3 Standards. If excavated, these materials should be managed in accordance with the requirements of the Excess Materials Management Plan (EMMP) to be developed by Project Co as part of the OLRT Project. In general, material in excess of either of the Table 1 or Table 3 Standards will be considered a waste if removed from the Site. If managed on Site, material in excess of MOE Table 3 may require additional assessment (Site Specific Risk Assessment) and/or risk management to be considered suitable for use on the Site. Classification under Ontario Regulation 347 General – Waste Management as amended would be necessary if soil is to be disposed of at a licensed waste disposal facility.

As indicated in Section 5.0, groundwater results had concentrations above the MOE Table 3 Standards and the City of Ottawa Storm Sewer and Sanitary Sewer discharge criteria. However, following re-sampling the PHC concentrations were no longer detected above the laboratory detection limits. Therefore the exceedances of MOE Table 3 and Sanitary Sewers for PHCs were likely the result of elevated sediment in the original groundwater samples and are not likely present in the groundwater at the Site. Construction groundwater monitoring should be implemented to monitor the actual concentrations of contaminants during dewatering.

PHASE II ENVIRONMENTAL SITE ASSESSMENT

7.0 REPORT LIMITATIONS

This report was prepared for the exclusive use of Capital Transit Partners and the City of Ottawa. The report, which specifically includes all text and figures, is based on data and information collected during the document review and Site investigation work conducted by Golder Associates Ltd. and is based solely on the Site conditions at the time of the Site work, supplemented by historical information and data obtained by Golder Associates Ltd. as described in this report.

The assessment of environmental conditions at the Site has been made using the results of chemical analysis of discrete soil and groundwater samples from a limited number of locations. The Site conditions between sampling locations have been inferred based on conditions observed at sampling locations. Additional study, including further subsurface investigation, can reduce the inherent uncertainties associated with this type of study. However, it is never possible, even with exhaustive sampling and testing, to dismiss the possibility that part of a Site may be contaminated and remain undetected.

The services performed, as described in this report, were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Golder Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The content of this report is based on information collected during Golder Associates Ltd. Site work; present understanding of the Site conditions, and professional judgment in light of such information at the time of this report. This report provides a professional opinion and therefore no warranty is either expressed, implied, or made as to the conclusions, advice and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change.

The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered in future work, including excavations, borings, or other studies, Golder Associates Ltd. should be requested to re-evaluate the conclusions of this report, and to provide amendments as required.

PHASE II ENVIRONMENTAL SITE ASSESSMENT

CLOSURE 8.0

We trust that this report meets your current needs. If you have any questions, or if we may be of further assistance, please do not hesitate to contact the undersigned.

GOLDER ASSOCIATES LTD.

B. G. Sullivan, CET

Senior Due Diligence Assessor

Tim Robertson, P. Eng.

Associate

BGS/TDR/BCJM/kg/hw \\Ott1-s-filesrv1\data\Active\2010\1121 - Geotechnical\10-1121-0222 CTP OLRT Ottawa\Environmental\Phase I ESA\Phase II ESA 156-160 Lyon Street\ORP_GAL_BGS_Final Phase II ESA Lyon_FINAL_20120112.docx

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

PHASE II ENVIRONMENTAL SITE ASSESSMENT

9.0 REFERENCES

- City of Ottawa, Sewer Use BY-LAW NO. 2003-514, SCHEDULE "A" TABLES, Table 1. Limits for Sanitary and Combined Sewers Discharge
- City of Ottawa, Sewer Use BY-LAW NO. 2003-514, SCHEDULE "A" TABLES, Table 1. Limits for Storm Sewer Discharge
- Golder Associates Ltd. Phase I Environmental Site Assessment, 156-160 Lyon Street, Ottawa, Ontario. September, 2011.
- Ministry of the Environment (MOE). 2011. Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act, dated April 15, 2011

Parameter	MOE Table 1 1	MOE Table 3 ²	T-72 SA1	T-72 SA4	T-306 SA1	T-307 SA1	T-309 SA1
Sample Date	Table I	Table 3	19-May-11	19-May-11	3-Nov-11	2-Nov-11	1-Nov-11
pH (pH Units)						7.8	
Metals							
Antimony	1.3	40	<1	<1	<u>4</u>	<1	<1
Arsenic	18	18	3	2	<1	5	<1
Barium	220	670	213	41	<u>413</u>	<u>255</u>	40
Beryllium	2.5	8	<0.5	<0.5	<0.5	<0.5	<0.5
Boron			7.6	<5.0	<5.0	<5.0	<5.0
Cadmium	1.2	1.9	<0.5	<0.5	<0.5	0.8	<0.5
Chromium	70	160	17	15	7	18	<5
Chromium VI	0.66	8	<1.0	<0.4	<0.4	<0.4	<0.4
Cobalt	21	80	4	4	2	5	2
Copper	92	230	22	16	7	27	5
Lead	120	120	53	4	<u>438</u>	258	25
Mercury	0.27	3.9	0.2	<0.1	1.2	0.7	<0.1
Molybdenum	2	40	2	4	<1	<1	<1
Nickel	82	270	15	10	6	13	7
Selenium	1.5	5.5	<1	<1	<1	<1	<1
Silver	0.5	40	<0.3	2.2	<0.3	<0.3	<0.3
Thallium	1	3.3	<1	<1	<1	<1	<1
Uranium	2.5	33	<1	<1	<1	<1	<1
Vanadium	86	86	19	19	<10	24	<10
Zinc	290	340	39	<20	266	312	42

All units expressed in ug/g.

Created by: KF Checked by: BGS/BCJM

Bold Underlined Exceeds MOE Table 1 Standards
Shaded Exceeds MOE Table 3 Standards

¹⁻ Ontario Soil, Groundwater & Sediment Standards (O. Reg 153/04 as amended) - Table 1 - Background for Res./Parkland/Institutional/Ind./Com./Community Property Use (all soil textures)

²⁻ Ontario Soil, Groundwater & Sediment Standards (O. Reg. 154/04 as amended) - Table 3 - for a Non-Potable Groundwater Situation in an Industrial/Commercial/Community property use (coarse textured soil)

Parameter	MOE Table 1 ¹	MOE Table 3 ²	T-72 SA1	T-72 SA4	T-306 SA1	T-306 SA3	T-307 SA1	T-307 SA5	T-308 SA3	T-308 SA6	T-309 SA1	T-309 SA4	T-309 SA4A (duplicate sample)
	Table 1		19-May-11	19-May-11	3-Nov-11	3-Nov-11	2-Nov-11	2-Nov-11	1-Nov-11	1-Nov-11	1-Nov-11	1-Nov-11	1-Nov-11
Hydrocarbons													
F1 PHCs (C6-C10)	25	55	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
F2 PHCs (C10-C16)	10	230	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
F3 PHCs (C16-C34)	240	1700	<10	<10	40	<10	82	<10	<10	<10	28	<10	<10
F4 PHCs (C34-C50)	120	3300	<10	<10	101	<10	40	<10	<10	<10	29	<10	<10

All units expressed in ug/g.

Created by: KF Checked by: BGS/BCJM

Bold Underlined	Exceeds MOE Table 1 Standards
Shaded	Exceeds MOE Table 3 Standards

¹⁻ Ontario Soil, Groundwater & Sediment Standards (O. Reg 153/04 as amended) - Table 1 - Background for Res./Parkland/Institutional/Ind./Com./Community Property Use (all soil textures)

²⁻ Ontario Soil, Groundwater & Sediment Standards (O. Reg. 154/04 as amended) - Table 3 - for a Non-Potable Groundwater Situation in an Industrial/Commercial/Community property use (coarse textured soil)

Parameter	MOE Table 1 ¹	MOE Table 3 ²	T-72 SA1	T-72 SA4	T-306 SA1	T-306 SA3	T-307 SA1	T-307 SA5
Sample Date			19-May-11	19-May-11	3-Nov-11	3-Nov-11	2-Nov-11	2-Nov-11
Volatile Organic Compounds								
Acetone	0.5	16	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzene	0.2	0.32	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Bromodichloromethane	0.05	18	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Bromoform	0.05	0.61	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bromomethane	0.05	0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Carbon Tetrachloride	0.05	0.21	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Chlorobenzene	0.05	2.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chloroethane			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chloroform	0.05	0.47	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chloromethane	0.2		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dibromochloromethane	0.05	13	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorodifluoromethane	0.05	16	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	0.05	6.8	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	0.05	9.6	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	0.05	0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1-Dichloroethane	0.05	17	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
1,2-Dichloroethane	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1-Dichloroethylene	0.05	0.064	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
cis-1,2-Dichloroethylene	0.05	55	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
trans-1,2-Dichloroethylene	0.05	1.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
1,2-Dichloropropane	0.05	0.16	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
cis-1,3-Dichloropropylene	0.05		<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
trans, 1,3-Dichloropropylene	0.05		<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
1,3-dichloropropene, total	0.05	0.18	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Ethylbenzene	0.05	9.5	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Hexane	0.05	46	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.5	70	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methyl Ethyl Ketone (2-Hexanone)	2		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Methyl Isobutyl Ketone	0.5	31	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methyl-t-Butyl Ether	0.05	11	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Methylene Chloride	0.05	1.6	< 0.05	< 0.05	< 0.05	< 0.05	<0.5	<0.05
Styrene	0.05	34	<0.05	< 0.05	< 0.05	< 0.05	<0.5	<0.05
1,1,1,2-Tetrachloroethane	0.05	0.087	<0.05	< 0.05	< 0.05	< 0.05	<0.5	<0.05
1,1,2,2-Tetrachloroethane	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.5	< 0.05
Tetrachloroethylene	0.05	4.5	<0.05	< 0.05	< 0.05	< 0.05	<0.5	<0.05
Toluene	0.2	68	< 0.05	< 0.05	< 0.05	< 0.05	<0.5	< 0.05
1,1,1-Trichloroethane		6.1	< 0.05	< 0.05	< 0.05	< 0.05	<0.5	<0.05
1,1,2-Trichloroethane	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.5	<0.05
Trichloroethylene	0.05	0.91	< 0.05	< 0.05	< 0.05	<0.05	<0.5	< 0.05
Trichlorofluoromethane	0.25	4	< 0.05	< 0.05	< 0.05	< 0.05	<0.5	<0.05
1,3,5-Trimethylbenzene	0.05		< 0.05	< 0.05	< 0.05	< 0.05	<0.5	<0.05
Vinyl Chloride	0.2	0.032	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
m/p-Xylene	0.5		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
o-Xylene	0.5		< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05
Xylenes, total	0.5	26	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05

All units expressed in ug/L.

-- no criteria available

 Bold Underlined
 Exceeds MOE Table 1 Standards

 Shaded
 Exceeds MOE Table 3 Standards

10-1121-0222 (1300)-1340

¹⁻ Ontario Soil, Groundwater & Sediment Standards (O. Reg 153/04 as amended July 2009 - Table 1 - Background for Res./Parkland/Institutional/Ind./Com./Community Property Use (all soil textures)

²⁻ Ontario Soil, Groundwater & Sediment Standards (O. Reg 154/04 as amended July 2009 - Table 3 - for a Non-Potable Groundwater Situation in an Industrial/Commercial/Community property use (coarse textured soil)

Parameter	MOE Table 11	MOE Table 3 ²	T-308 SA3	T-308 SA6	T-309 SA1	T-309 SA4	T-309 SA4A (duplicate sample)
Sample Date			1-Nov-11	1-Nov-11	1-Nov-11	1-Nov-11	1-Nov-11
Volatile Organic Compounds							
Acetone	0.5	16	<0.5	<0.5	<0.5	<0.5	<0.5
Benzene	0.2	0.32	< 0.02	< 0.02	<0.02	<0.02	<0.02
Bromodichloromethane	0.05	18	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Bromoform	0.05	0.61	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bromomethane	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Carbon Tetrachloride	0.05	0.21	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Chlorobenzene	0.05	2.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chloroethane			< 0.05	< 0.05	<0.05	< 0.05	< 0.05
Chloroform	0.05	0.47	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chloromethane	0.2		<0.2	<0.2	<0.2	<0.2	<0.2
Dibromochloromethane	0.05	13	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
Dichlorodifluoromethane	0.05	16	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	0.05	6.8	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	0.05	9.6	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	0.05	0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1-Dichloroethane	0.05	17	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
1,2-Dichloroethane	0.05	0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1-Dichloroethylene	0.05	0.064	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
cis-1,2-Dichloroethylene	0.05	55	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
trans-1,2-Dichloroethylene	0.05	1.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichloropropane	0.05	0.16	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
cis-1,3-Dichloropropylene	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
trans, 1,3-Dichloropropylene	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,3-dichloropropene, total	0.05	0.18	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ethylbenzene	0.05	9.5	<0.05	<0.05	< 0.05	< 0.05	< 0.05
Hexane	0.05	46	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methyl Ethyl Ketone (2-Butanone)	0.5	70	<0.5	<0.5	<0.5	<0.5	<0.5
Methyl Ethyl Ketone (2-Hexanone)	2		<2.0	<2.0	<2.0	<2.0	<2.0
Methyl Isobutyl Ketone	0.5	31	<0.5	<0.5	<0.5	<0.5	<0.5
Methyl-t-Butyl Ether	0.05	11	<0.05	<0.05	< 0.05	< 0.05	< 0.05
Methylene Chloride	0.05	1.6	< 0.05	< 0.05	<0.5	<0.5	<0.5
Styrene	0.05	34	< 0.05	< 0.05	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.05	0.087	< 0.05	< 0.05	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.05	0.05	< 0.05	< 0.05	<0.5	<0.5	<0.5
Tetrachloroethylene	0.05	4.5	<0.05	<0.05	<0.5	<0.5	<0.5
Toluene	0.2	68	<0.05	<0.05	<0.5	<0.5	<0.5
1,1,1-Trichloroethane		6.1	<0.05	<0.05	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	0.05	0.05	<0.05	<0.05	<0.5	<0.5	<0.5
Trichloroethylene	0.05	0.91	<0.05	<0.05	<0.5	<0.5	<0.5
Trichlorofluoromethane	0.25	4	<0.05	<0.05	<0.5	<0.5	<0.5
1,3,5-Trimethylbenzene	0.05		<0.05	<0.05	<0.5	<0.5	<0.5
Vinyl Chloride	0.2	0.032	<0.02	<0.02	<0.02	<0.02	<0.02
m/p-Xylene	0.5		<0.05	<0.05	< 0.05	<0.05	<0.05
o-Xylene	0.5		<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes, total	0.5	26	<0.05	< 0.05	< 0.05	< 0.05	<0.05

Created by: KF

Checked by: BGS/NM

Parameter	City of Ottawa Storm Sewer	City of Ottawa Sanitary Sewer	MOE Table 3 ³	T-72A	T-72B	T-72A	T-72B	T-72B	T-306B	T-308B	T309B	T309B
Sample Date	Limit ¹	Limit ²		30-Jun-11	28-Jun-11	25-Aug-11	25-Aug-11	5-Dec-11	5-Dec-11	10-Nov-11	10-Nov-11	5-Dec-11
Hydrocarbons												
F1 (C6-C10)			750	<25	<25	<25	<25	<25	<25	<25	<25	<25
F2 (C10-C16)	500 ug/L	500 ug/L	150	<u>180</u>	<100	<100	<100	<100	<100	<100	<100	<100
F3 (C16-C34)		500 ug/L	500	<u>246</u>	<100	<100	<100	<100	<100	<u>1680</u>	<u>3080</u>	<100
F4 (C34-C50)			500	<u>429</u>	<100	<100	<100	<100	<100	<u>856</u>	<u>1060</u>	<100

All units expressed in ug/L.

Bold Underlined Exceeds Sewer Use Discharge (unpublished) Criteria⁴

Shaded Exceeds MOE Table 3

1- City of Ottawa Sewer Use Discharge Criteria for Storm Sewers

2- City of Ottawa Sewer Use Dishcarge Criteria for Sanitary or Combined Sewers

3- Ontario Soil, Groundwater and Sediment Standards (O. Reg. 153/04 as amended) -Table 3 - Non-Potable Ground Water in an Industrial/Commercial/Community/Property Use (Coarse Textured Soil)

4- The City of Ottawa unpublished sewer use limit is 500 ug/L for the total concentration of F1 to F4

Parameter	City of Ottawa Storm Sewer Limit ¹	City of Ottawa Sanitary Sewer Limit ²	MOE Table 3 ³	T-72A	T-72B	T-72A	T-72B	T-72B	T-306A	DUPE (for T-306A)
Sample Date		Limit		30-Jun-11	28-Jun-11	23-Aug-11	23-Aug-11	5-Dec-11	10-Nov-11	10-Nov-11
Volatile Organic Compounds										
Acetone			130000	<5.0	<5.0	<5.0	<5.0	<5.0	41.9	45.7
Benzene	2	10	44	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane		350	85000	<0.5	<0.5	<0.5	<0.5	<0.5	1.9	1.6
Bromoform		630	380	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromomethane		110	5.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride		57	0.79	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorobenzene		57	630	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroethane				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	2	80	2.4	<0.5	<0.5	<0.5	<0.5	<0.5	<u>13.5</u>	<u>13.9</u>
Chloromethane				<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Dibromochloromethane		57	82000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane			4400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromoethane			0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,2-Dichlorobenzene	5.6	88	4600	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene		36	9600	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	6.8	17	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane		200	320	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-dichloroethane		210	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-dichloroethylene	5.6	200	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropane, total				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethylene, total		40	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0	850	16	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene		70		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene		70		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	2	57	2300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexane			51	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)			470000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl Ethyl Ketone (2-Hexanone)			470000	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Methyl Isobutyl Ketone			140000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Methyl-t-Butyl Ether			190	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.2	210	610	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Styrene		40	1300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane			3.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	17	40	3.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	4.4	50	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Toluene	2	80	18000	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
1,1,1-Trichloroethane		54	640	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane		80	4.7	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Trichloroethylene	7.6	54	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Trichlorofluoromethane			2500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Vinyl Chloride		400	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
m/p-Xylene				<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
o-Xylene				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylenes, total	4.4	320	4200	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

All units expressed in ug/L.

-- no criteria available

Bold Underlined Exceeds Storm Sewer Discharge Criteria

Italics Exceeds Sanitary or Combined Sewer Discharge Criteria

Shaded Exceeds MOE Table 3 Standards

¹⁻ City of Ottawa Sewer Use Discharge Criteria for Storm Sewers

²⁻ City of Ottawa Sewer Use Dishcarge Criteira for Sanitary or Combined Sewers

³⁻ Ontario Soil, Groundwater and Sediment Standards (O. Reg. 153/04 as amended -Table 3 - Non-Potable Ground Water in an

Industrial/Commercial/Community/Property Use (Coarse Textured Soil)

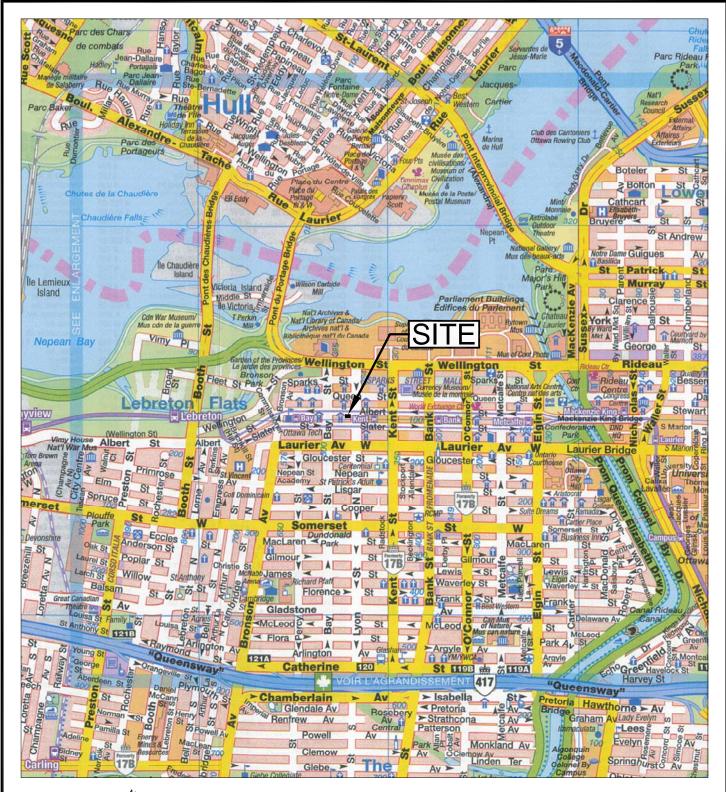
Parameter Sample Date	City of Ottawa Storm Sewer Limit ¹	City of Ottawa Sanitary Sewer Limit ²	MOE Table 3 ³	T-306B 5-Dec-11	T-307A 10-Nov-11	T-308A 10-Nov-11	T-308B 10-Nov-11	T-309A 10-Nov-11	T-309B 10-Nov-11	T-309B 5-Dec-11
·				3-200-11	10-1107-11	10-1107-11	10-1101-11	10-1107-11	10-1407-11	3-DCC-11
Volatile Organic Compounds										
Acetone			130000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Benzene	2	10	44	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane		350	85000	<0.5	<0.5 <0.5	3.4 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5
Bromoform		630	380	<0.5			<0.5		<0.5 <0.5	<0.5
Bromomethane		110 57	5.6	<0.5	<0.5 <0.2	<0.5 <0.2	<0.5 <0.2	<0.5 <0.2	<0.5 <0.2	<0.5
Carbon Tetrachloride			0.79	<0.2		-				<0.2
Chlorobenzene		57	630	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroethane				<1.0	<1.0 2.1	<1.0 18.6	<1.0	<1.0 1.9	<1.0 5.4	<1.0
Chloroform	2	80	2.4	<0.5			2.0			<0.5
Chloromethane	+			<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Dibromochloromethane		57	82000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane			4400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromoethane			0.25	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2 <0.5	<0.2
1,2-Dichlorobenzene	5.6	88	4600	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5
1,3-Dichlorobenzene		36	9600	<0.5	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5	<0.5
1,4-Dichlorobenzene	6.8	17	8	<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5
1,1-Dichloroethane		200	320	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5
1,2-dichloroethane		210	1.6	<0.5	<0.5				<0.5	<0.5
trans-1,2-dichloroethylene	5.6	200	1.6	<0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5
1,3-Dichloropropane, total 1,2-Dichloroethylene, total		 40	1.6	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5 <0.5
	0		1.6		<0.5 <0.5		<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	
1,2-Dichloropropane		850	16	<0.5	<0.5 <0.5	<0.5		<0.5 <0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	+	70		<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5
trans-1,3-Dichloropropylene	2	70		<0.5						<0.5
Ethylbenzene		57	2300	<0.5	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<0.5 <1.0	<0.5
Hexane Methyl Ethyl Ketone (2-Butanone)			51 470000	<1.0 <5.0	<1.0 <5.0	<1.0 <5.0	<1.0 <5.0	<1.0 <5.0	<1.0 <5.0	<1.0 <5.0
Methyl Ethyl Ketone (2-Hexanone)			470000	<5.0 <10.0	<10.0	<10.0	<5.0 <10.0	<10.0	<10.0	<5.0 <10.0
Methyl Isobutyl Ketone			140000	<5.0	<10.0 <5.0	<10.0 <5.0	< 10.0 < 5.0	< 10.0 < 5.0	<10.0 <5.0	< 10.0 < 5.0
Methyl-t-Butyl Ether			190	<5.0 <2.0	<5.0	<5.0	< 2.0	< 5.0	<2.0	<5.0 <2.0
	5.2	210	610	<5.0	<2.0 <5.0	<2.0 <5.0	<2.0 <5.0	<5.0	<5.0	<5.0
Methylene Chloride	5.2	40	1300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Styrene 1.1.1.2-Tetrachloroethane		4 0	3.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	17	40	3.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	4.4	50	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	2	80	18000	<0.5	<0.5	8.2	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane		54	640	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane		80	4.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	7.6	80 54	1.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0.5
Trichlorofluoromethane	7.0		2500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene			2500	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Vinyl Chloride		400	0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
m/p-Xylene		400	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0.5
				<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
o-Xylene Xylenes, total	4.4	320	4200	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <0.5
All units expressed in ug/l	4.4	320	4200	<0.5	\0. 0	\0. 0	\0.0	\0. 0	\U. U.U	<0.5

All units expressed in ug/L.
-- no criteria available

 Bold Underlined
 Exceeds Storm Sewer Discharge Criteria

 Italics
 Exceeds Sanitary or Combined Sewer Discharge Criteria

Shaded Exceeds MOE Table 3 Standards


1- City of Ottawa Sewer Use Discharge Criteria for Storm Sewers

2- City of Ottawa Sewer Use Dishcarge Criteira for Sanitary or Combined Sewers

3- Ontario Soil, Groundwater and Sediment Standards (O. Reg. 153/04 as amended -Table 3 - Non-Potable Ground Water in an

Industrial/Commercial/Community/Property Use (Coarse Textured Soil)

Created by: KF Checked by: BGS/NM

NOTE

THIS FIGURE IS TO BE READ IN CONJUNCTION WITH THE ACCOMPANYING GOLDER ASSOCIATES LTD. REPORT No. 10-1122-0222/1300-1340

		-	SCALE DATE	1:20,000 25 Nov. 2011	TITLE	
	Golder Associat	es	DESIGN	B.G.S.	KEY PLAN	
	Ottawa, Ontario, Ca	nada	CAD	P.G.		
FILE No. 101122	ILE No. 1011220222-1300-1340-01.dwg		CHECK	B.G.S.	OTTAWA LIGHT RAIL TRANSIT	FIGURE
PROJECT No.	10-1121-0222 F	REV.	REVIEW	T.D.R.	PHASE II ESA, 156-160 LYON ST. OTTAWA, ON	1

APPROXIMATE BOREHOLE LOCATION IN PLAN

SITE BOUNDARY

- APEC 1 - APPROXIMATE LOCATION OF 380 ALBERT STREET, FORMER DRY CLEANER

APPROXIMATE LOCATION OF PROPERTY LINES

REFERENCE
BASE PLAN PROVIDED IN ELECTRONIC FORMAT BY
THE CITY OF OTTAWA.

PROJECTION: TRANSVERSE MERCATOR DATUM: NAD 83 COORDINATE SYSTEM MTM9

THIS FIGURE IS TO BE READ IN CONJUNCTION WITH THE ACCOMPANYING GOLDER ASSOCIATES LTD.REPORT No. 10-1121-0222/1300-1340

OTTAWA LIGHT RAIL TRANSIT PHASE II ESA, 156-160 LYON ST. OTTAWA, ON

SITE PLAN, BOREHOLE/MONITORING WELL **LOCATIONS & APECS**

PROJECT	No.	10-1121-0222	FILE No. 1	011220222-130	0-1340-02.dwg
DESIGN	B.G.S.	25 Nov. 2011	SCALE	1:300	REV.
CAD	P.G.	5 Jan. 2012	FIGURE		
CHECK	B.G.S.	Jan. 2012		2	
REVIEW	T.D.R.	Jan. 2012			
				2	

GROUNDWATER FLOW

Golder Associates Ottawa, Ontario, Canada

THIS FIGURE IS TO BE READ IN CONJUNCTION

ASSOCIATES LTD.REPORT No. 10-1121-0222/1300-1340

WITH THE ACCOMPANYING GOLDER

DESIGN B.G.S. 25 Nov. 2011 SCALE

CAD P.G. 5 Jan. 2012 FIGURE

CHECK B.G.S. Jan. 2012

EVIEW T.D.R. Jan. 2012

PROJECT No. 10-1121-0222 FILE No. 1011220222-1300-1341-03.dw

3

PLOT DATE: January 10, 2012 FILENAME: N:\Active\GISClients\CityofOttawa\OLRT\

APPROXIMATE SHALLOW GROUNDWATER FLOW DIRECTION

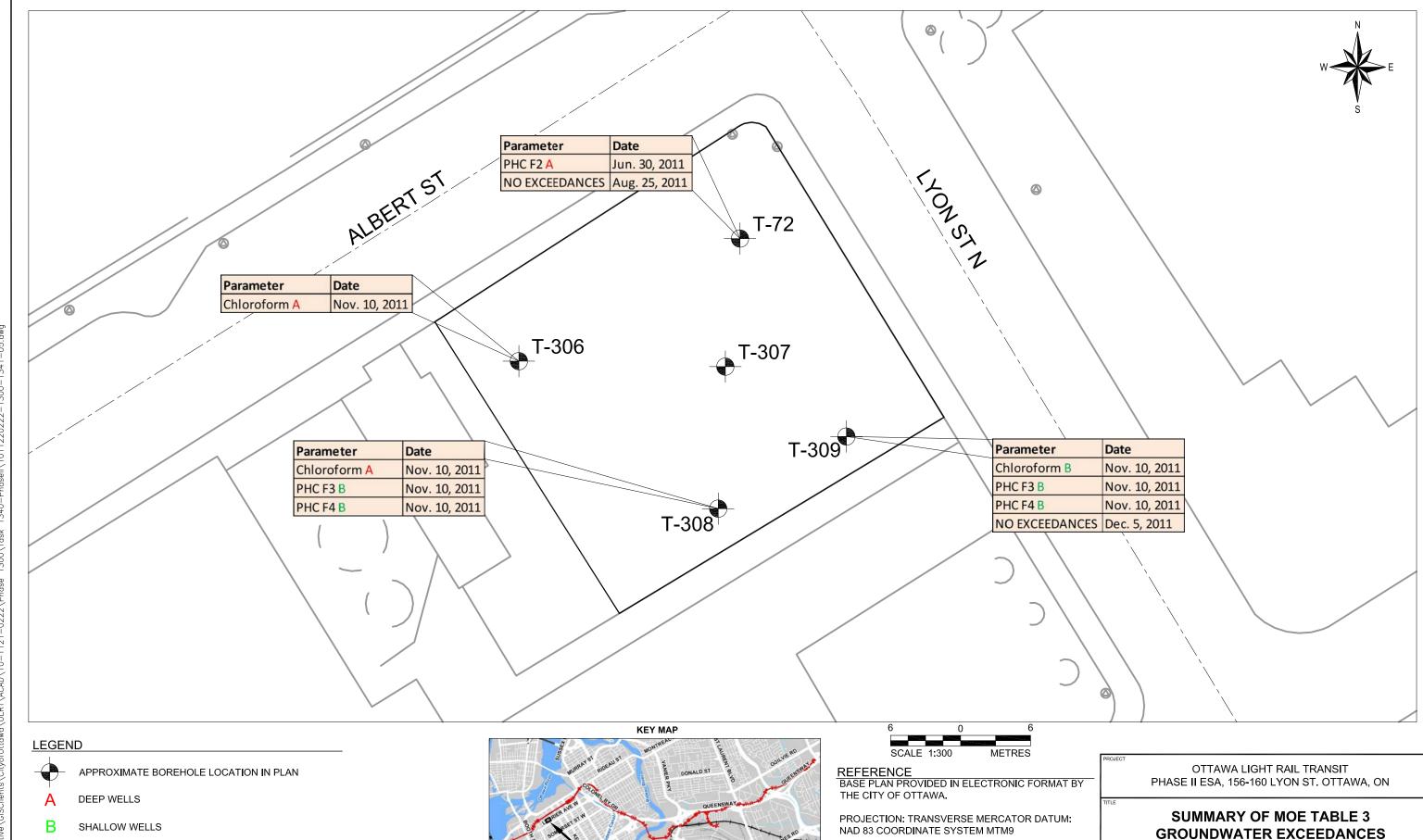
APPROXIMATE BOREHOLE LOCATION IN PLAN

INTERPRETED METAL EXCEEDANCES IN THE FILL MATERIAL ACROSS THE SITE

SA1-LEAD LEAD EXCEEDANCE IN SAMPLE 1

REFERENCE
BASE PLAN PROVIDED IN ELECTRONIC FORMAT BY
THE CITY OF OTTAWA.

PROJECTION: TRANSVERSE MERCATOR DATUM: NAD 83 COORDINATE SYSTEM MTM9


THIS FIGURE IS TO BE READ IN CONJUNCTION WITH THE ACCOMPANYING GOLDER ASSOCIATES LTD.REPORT No. 10-1121-0222/1300-1340

OTTAWA LIGHT RAIL TRANSIT PHASE II ESA, 156-160 LYON ST. OTTAWA, ON

SUMMARY OF MOE TABLE 3 SOIL EXCEEDANCES

PROJECT	No.	10-1121-0222	FILE No.	1011220222-130	0-1341-04.dwg
DESIGN	B.G.S.	25 Nov. 2011	SCALE	1:300	REV.
CAD	P.G.	5 Jan. 2012	FIGURE		
CHECK	B.G.S.	Jan. 2012		A	
REVIEW	T.D.R.	Jan. 2012		4	

THIS FIGURE IS TO BE READ IN CONJUNCTION

ASSOCIATES LTD.REPORT No. 10-1121-0222/1300-1340

WITH THE ACCOMPANYING GOLDER

DESIGN B.G.S. 25 Nov. 2011

CAD P.G. 5 Jan. 2012

CHECK B.G.S. Jan. 2012

REVIEW T.D.R. Jan. 2012

Golder Associates Ottawa, Ontario, Canada SCALE

1:300 REV

JLOI DAIE: January 12, 2012 :!!FNAME: N:\Astive\GISClients\CitvofOttawa\OIRT\ACA

APPENDIX A

Borehole and Well Instrumentation Logs

LIST OF ABBREVIATIONS

The abbreviations commonly employed on Records of Boreholes, on figures and in the text of the report are as follows:

I.	SAMPLE TYPE	III.	SOIL DESCRIPTION	
AS	Auger sample		(a)	Cohesionless Soils
BS	Block sample		,	
CS	Chunk sample	Density In	dex	N
DO	Drive open	(Relative I	Density)	Blows/300 mm
DS	Denison type sample			Or Blows/ft.
FS	Foil sample	Very loose		0 to 4
RC	Rock core	Loose		4 to 10
SC	Soil core	Compact		10 to 30
ST	Slotted tube	Dense		30 to 50
TO	Thin-walled, open	Very dense	;	over 50
TP	Thin-walled, piston			
WS	Wash sample		(b)	Cohesive Soils
DT	Dual Tube sample	Consistence	e y	C_u or S_u
II.	PENETRATION RESISTANCE		<u>Kpa</u>	<u>Psf</u>
		Very soft	0 to 12	0 to 250
Standar	d Penetration Resistance (SPT), N:	Soft	12 to 25	250 to 500
	The number of blows by a 63.5 kg. (140 lb.)	Firm	25 to 50	500 to 1,000
	hammer dropped 760 mm (30 in.) required	Stiff	50 to 100	1,000 to 2,000
	to drive a 50 mm (2 in.) drive open	Very stiff	100 to 200	2,000 to 4,000
	Sampler for a distance of 300 mm (12 in.)	Hard	Over 200	Over 4,000
	DD- Diamond Drilling			
Dynami	c Penetration Resistance; N _d :	IV.	SOIL TESTS	
	The number of blows by a 63.5 kg (140 lb.)			
	hammer dropped 760 mm (30 in.) to drive	W	water content	
	Uncased a 50 mm (2 in.) diameter, 60° cone	W_p	plastic limited	
	attached to "A" size drill rods for a distance	\mathbf{w}_1	liquid limit	
	of 300 mm (12 in.).	C	consolidaiton (oedometer)	
		CHEM	chemical analysis (refer to	
PH:	Sampler advanced by hydraulic pressure	CID	consolidated isotropically	
PM:	Sampler advanced by manual pressure	CIU	consolidated isotropically	
WH:	Sampler advanced by static weight of hammer	ъ	with porewater pressure m	
WR:	Sampler advanced by weight of sampler and	D_R	relative density (specific g	ravity, G _s)
	rod	DS	direct shear test	
D	D (CDT)	M	sieve analysis for particle s	
Peizo-Co	one Penetration Test (CPT):	MH	combined sieve and hydro	
	An electronic cone penetrometer with	MPC	modified Proctor compacti	
	a 60° conical tip and a projected end area	SPC	standard Proctor compaction	on test
	of 10 cm ² pushed through ground	OC	organic content test	able autobases
	at a penetration rate of 2 cm/s. Measurements	SO_4	concentration of water-sol	
	of tip resistance (Q_t) , porewater pressure	UC	unconfined compression te	
	(PWP) and friction along a sleeve are recorded	UU	unconsolidated undrained	
	Electronically at 25 mm penetration intervals.	V	field vane test (LV-laborat	ory vane test)
		γ	unit weight	

Note:

^{1.} Tests which are anisotropically consolidated prior shear are shown as CAD, CAU.

LIST OF SYMBOLS

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL		(a) Index Properties (cont'd.)
π	= 3.1416	w	water content
ln x, natural lo	garithm of x	\mathbf{w}_1	liquid limit
	logarithm of x to base 10	W_p	plastic limit
g	Acceleration due to gravity	I_p	plasticity Index=(w ₁ -w _p)
t	time	$\mathbf{w}_{\mathbf{s}}$	shrinkage limit
F	factor of safety	${ m I_L}$	liquidity index= $(w-w_p)/I_p$
V	volume	I_c	consistency index= $(w_1-w)/I_p$
W	weight	e_{max}	void ratio in loosest state
		e_{min}	void ratio in densest state
II.	STRESS AND STRAIN	I_D	density index- $(e_{max}-e)/(e_{max}-e_{min})$ (formerly relative density)
γ	shear strain		
$\Delta _{arepsilon}$	change in, e.g. in stress: $\Delta \sigma'$ linear strain		(b) Hydraulic Properties
$\varepsilon_{ m v}$	volumetric strain	h	hydraulic head or potential
η	coefficient of viscosity	q	rate of flow
ν	Poisson's ratio	v	velocity of flow
σ	total stress	i	hydraulic gradient
σ'	effective stress ($\sigma' = \sigma''$ -u)	k	hydraulic conductivity (coefficient of permeability)
σ'_{vo}	initial effective overburden stress	j	seepage force per unit volume
$\sigma_1\sigma_2\sigma_3$	principal stresses (major, intermediate,		
	minor)		(c) Consolidation (one-dimensional)
$\sigma_{ m oct}$	mean stress or octahedral stress		
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	C_{c}	compression index (normally consolidated range)
τ	shear stress	C_{r}	recompression index (overconsolidated range)
u	porewater pressure	$C_{\rm s}$	swelling index
E	modulus of deformation	C_a	coefficient of secondary consolidation
G	shear modulus of deformation	$m_{\rm v}$	coefficient of volume change
K	bulk modulus of compressibility	c_{v}	coefficient of consolidation
	~~~	$T_{v}$	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
		$\sigma'_p$	pre-consolidation pressure
	(a) Index Properties	OCR	Overconsolidation ratio= $\sigma'_p/\sigma'_{vo}$
ρ(γ)	bulk density (bulk unit weight*)		(d) Shear Strength
$\rho_{\rm d}(\gamma_{\rm d})$	dry density (dry unit weight)		
$\rho_{\mathrm{w}}(\gamma_{\mathrm{w}})$	density (unit weight) of water	$\tau_p \tau_r$	peak and residual shear strength
$\rho_s(\gamma_s)$	density (unit weight) of solid particles	φ'	effective angle of internal friction
γ'	unit weight of submerged soil $(\gamma'=\gamma-\gamma_w)$	δ	angle of interface friction
$D_R$	relative density (specific gravity) of	μ	coefficient of friction= $\tan \delta$
	solid particles ( $D_R = p_s/p_w$ ) formerly ( $G_s$ )	c'	effective cohesion
e	void ratio	$c_{u,s_u}$	undrained shear strength (φ=0 analysis)
n	porosity	p	mean total stress $(\sigma_1 + \sigma_3)/2$
S	degree of saturation	p'	mean effective stress $(\sigma'_1 + \sigma'_3)/2$
		q	$(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma_3)/2$
*	Density symbol is p. Unit weight	$q_{\rm u}$	compressive strength $(\sigma_1$ - $\sigma_3)$
	symbol is $\gamma$ where $\gamma$ =pg(i.e. mass	$S_{t}$	sensitivity
	density x acceleration due to gravity)		
			Notes: 1. $\tau = c'\sigma' \tan \beta'$
			2. Shear strength=(Compressive strength)/2

# RECORD OF BOREHOLE: T-72

SHEET 1 OF 1

Т	-		R HAMMER, 64kg; DROP, 760mm SOIL PROFILE			SA	MPLI	es l	DYNAMIC PENET	RATION	`	HYDRAULIC CONDUCTIV			64kg; DROP, 760mm
	ETHO	ŀ	002110112	Б	<u> </u>	Н		-	RESISTANCE, BL 20 40		, , ,	k, cm/s 10° 10° 10°	10°²	NAPL STING	
	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENG Cu, kPa	H natV. + rem V. ⊕	Q- <b>0</b>	WATER CONTENT P	1 WI	ADDITIONAL LAB. TESTING	
+	***	-	GROUND SURFACE	100	73.20	$\vdash$	Н	-	20 40	60 (	30	20 40 60	80		'B' 'A
°Ì	T	卞	ASPHALTIC CONCRETE Compact brown sandy gravel, trace	<b>***</b>	8:88		П								Flush mount } } casing set in Bentonite
	Power Auger	ollow Stem)	COBBLES and BOULDERS  Compact to dense grey brown SILTY SAND, some gravel, trace clay, with cobbles and boulders (GLACIAL TILL)		71.68 1.52 70.91 2.29	2	50 £20 500	25 DD.				0		MH	
3					:	4	50 DO	46							W.L. in Screen 'A' at Elev. 67.5m on Aug. 2, 2011
4						5	50 DO	>50							Aug. 2, 2011  W.L. in Screen 'B' at Elev. 67.5m on
5		1	Borehole continued on RECORD OF DRILLHOLE T-72		68.50										Aug. 2, 2011  Bentonite Seal
6															
9															
DE	PTI	1	CALE			<u>L</u>				Gold				<u> </u>	OGGED: DAC

INCLINATION: -90°

LOCATION: N 5031198.61 ;E 367059.95

AZIMUTH: --

### **RECORD OF DRILLHOLE: T-72**

DRILLING DATE: May 19-31, 2011

DRILL RIG: CME 75

DRILLING CONTRACTOR: Downing

SHEET 1 OF 5

DATUM: Geodetic

A STATE OF THE PARTY OF THE PAR

PO- Polished K - Slickensided SM- Smooth RO- Rough MB- Mechanical B BR - Broken Rock - Joint - Fault - Shear - Vein - Conjug NOTE: For additional references DEPTH SCALE METRES RUN No. FLUSH RETURN ELEV. NOTES DESCRIPTION DEPTH RECOVERY DISCONTINUITY DATA TOTAL TYPE AND SURFACE DESCRIPTION 2000 'B' 'A' BEDROCK SURFACE Fresh to slightly weathered, dark brownish grey, fine grained with widely disseminated medium grained calcite crystals, non porous, medium bedded, medium strong, argillaceous to shaley, micritic NODULAR LIMESTONE, 5 to BD,PL,Ro Fe ox 15 cm nodules in dark grey to black shaley matrix with fossil. Shale and shaley limestone comprises approximately 12.5 % to 17.5 % of BD,UN,SM CI BD,UN,Ro CI BD,UN,SM CI secuence. LINDSAY FORMATION UNIT 2 BD.PL.Ro Fe ox BD,UN,Ro Br Fresh, medium brownish grey, fine to medium grained crystalline, non porous, medium to thickly bedded, medium strong, argillaceous, calcarentitic NODULAR LIMESTONE with 5 to 10 cm nodules and individual beds of calcarentie. Shale and shaley limestone comprise approximately 5 % to 7.5 % of sequence. Bentonite Seal sequence. BD,PL,Ro No recovery/broken core from 8.87m to 9.40m, cobble sized fragments of limestone, fresh BD,PL,SM Br HVN. Ca 1mm BD,UN,Ro BD,PL,SM Br BD,PL,SM Br - Shale bed from 10,90m to 10,98m 11 Shale bed from 11.23m to 11.27m JN,PL,Ro Br Silica Sand JN,PL,Ro Cl 2mm BD,PL,Ro Br BD.ST.Ro Br 13 Fresh, medium brownish grey, fine to medium grained crystalline, non porous, medium to thickly bedded, medium strong, calcarenitic, weakly fossiliferous, argillaceous NODULAR LIMESTONE GDT HVN,, CI 1mm 32mm Diam. PVC #10 Slot Screen 'B' with 2 to 8 cm nodules. Shale and shaley limestone comprise <2.5 % of sequence. LINDSAY FORMATION UNIT 1 BD,UN,Ro Ca 1mi CONTINUED NEXT PAGE LOGGED: DAC DEPTH SCALE Golder Associates CHECKED: MRR 1:50

INCLINATION: -90°

LOCATION: N 5031198.61 ;E 367059.95

AZIMUTH: -

#### **RECORD OF DRILLHOLE: T-72**

DRILLING DATE: May 19-31, 2011

DRILL RIG: CME 75

DRILLING CONTRACTOR: Downing

SHEET 2 OF 5

DATUM: Geodetic

BR - Broken Rock SYMBOLIC LOG DEPTH SCALE METRES MOTE: For additional RUN No. FLUSH RETURN ELEV. NOTES DESCRIPTION DEPTH DISCONTINUITY DATA TYPE AND SURFACE DESCRIPTION 5555 'B' 'A' -- CONTINUED FROM PREVIOUS PAGE BD,UN,Ro 32mm Diam. PVC #10 Slot Screen 'B' 15 BD,UN,Ro LINDSAY FORMATION UNIT 1 Silica Sand BD,UN,Ro BD.IR.Ro HVN,PL,Ro Ca 2r BD,IR,Ro JN,PL,Ro BD,ST,Ro BD,PL,Ro BD,ST,Ro HVN,, BD,UN,Ro BD,UN,Ro BD.UN.Ro Bentonite Seal JN,PL,Ro 21 HVN,UN, BD.PL.Ro BD,UN,Ro JN,IR,Ro JN/VN,PL,SM Ca BD.UN.Ro BD,UN,Ro CONTINUED NEXT PAGE DEPTH SCALE LOGGED: DAC Golder Associates 1:50 CHECKED: MRR

INCLINATION: -90°

# RECORD OF DRILLHOLE: T-72

SHEET 3 OF 5

LOCATION: N 5031198.61 ;E 367059.95

AZIMUTH: --

DRILLING DATE: May 19-31, 2011

DRILL RIG: CME 75

DRILLING CONTRACTOR: Downing

DEPTH SCALE METRES	DECORE DECOR	ING KECURD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH	RUN No.	FLUSHRETURN		FL' SH CJ CJ	7 - I	ER	t ar juga	R.C	2.D.	FRA IND	Folia Cont Onthe Clea CT.	ition act ogona	CL UH S1 IR DISC	Planar J- Curved I- Undulati - Stepped - Irregular CONTINUI	ng	K - SM- RO- MB-	Smoo	nside ith h anical	Break YDRAU	abbre of abi symb	٧	edication s refer ons & VEATI	nai to list			NOTE	s	
8				8	(m)		FLUS		OTAL PRE 1		SOLI SORE		88		0.2	5m	CORI AXIS	RE T	YPE AND SL DESCRIPT	IRFACE TION	ŀ	con Jr		K. cm/se	x i	W1 W2	MDE) § §						
- 25			CONTINUED FROM PREVIOUS PAGE Fresh, medium brownish grey, fine to medium grained crystalline, non porous, thinly to medium bedded, medium strong, SHALEY CALCARENFIC LIMESTONE, subordinate nodular limestone, minor thin lithoclastic calcarenite beds and interbeds of dark grey, bedding laminations and very thin	* * * * * * * * * * * * * * * * * * *		14	0											<b>.</b> B	D,PL,Ro D,PL,SM			16 1.5 16 1	1									E	B' 'A'
- 26			to thinly bedded, calcareous, stake susceptible shale at semi regular intervals of 0.25 to 2.5 m. Contains traces of fossil fragments. Top contact of formation is partly obscured by veining. Shale and shaley limestone comprise 7.5 % to 10 % of sequence.			15	25											8	D,UN,SM D,UN,SM D,UN,SM	а		29 2 16 2 16 2	1 2 2										
- - 27			VERULAM FORMATION UNIT 2 - Shale bed from 26.11m to 26.13m		1													B	D,UN,SM			20 2	' 888										
•			- Shale bed from 27.20m to 27.24m																D,PL,SM D,UN,SM	,		12 1 20 2	2			***************************************							
- - - 28 -			Intermittent thin beds of broken shale and limestone from 27.79m to 28.00m			16	x												D,UN,Ro D,UN,SM D,UN,Ro D,UN,Ro D,UN,SM D,CU,SM D,UN,Ro	CI CI 144	cm	20 3 16 1 20 3 29 3 29 2 29 2 20 2	1 2 3 3 3 1 1 2							Sentonita	e Seal		
			- Shale bed from 28.49m to 28.50m																D,UN,Ro D,UN,SM D,UN,Ro			20 3 20 2 20 3	2										
- 29 - - - - - - - -	Rotary Drill	HQ Core		14 44 44 44 44 44 44 44 44 44 44 44 44 4		17	52												D,UN,Ro D,UN,Ro D,UN,SM D,UN,SM D,UN,SM D,UN,Ro D,UN,Ro			29 3 20 2 2 29 3 3 20 2 2 2 2	22 21 1 221										
-			- Shale bed from 30.12m to 30.16m	崖		$\vdash$	-	H	$\parallel$	H	H	Н	L	$\dagger \dagger$					D,UN,SM D,PL,SM D,UN,SM			16 1 29 2 28 2	:					Ш					
			- Shale bed from 30.34m to 30.38m																ID,UN,SM ID,PL,SM ID,UN,SM ID,UN,SM ID,UN,SM			16 1 29 2 16 2 29 2	1 7 7 7										
- 31 -			- Shale bed from 30.89m to 30.91m	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		18	8												ID,UN,SM ID,UN,SM ID,UN,SM ID,UN,SM ID,PL,SM ID,PL,SM ID,UN,SM ID,UN,SM ID,UN,SM ID,UN,Ro			29 2 29 2 20 2 20 2 20 2 16 1 16 1 20 2 20 2 20 2											
32			- Shale bed from 32.13m to 32.14m - Shale bed from 32.22m to 32.28m	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		19	25												ID,PL,SM ID,UN,SM ID,UN,SM ID,PL,Ro ID,UN,Ro ID,UN,SM ID,UN,Ro	CI		16 1 20 2 20 1.5 22 3 20 2 2	2 2 22 22 2						5	Silica Sa	ınd	6,500,500,500,	
33			- Shale bed from 32.64m to 32.67m - Shale bed from 32.77m to 32.80m	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4												***************************************			ID,UN,SM ID,UN,SM ID, ID,CU,SM	-		20 2 20 2 20 2 20 2	1						,			N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
34			- Shale bed from 34.13m to 34.19m			20	25				The state of the s							• E	BD,UN,RO BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM BD,PL,SM			20 2 22 3 16 1 16 1 12 1 12 1	1 1 2 2		+					32mm D #10 Slot	iam. P' Screen	/C	
	L		CONTINUED NEXT PAGE			L	<u> </u>	Ш	Ш		Ц		Ш	Ш	Щ	Ш	Ш	Щ_					Ц	Ш		Ш	Ш	Ш					
DE 1:			SCALE										(	į			Gol	lder sciate	es									(		GGED: CKED:			100000000000000000000000000000000000000

INCLINATION: -90°

## **RECORD OF DRILLHOLE: T-72**

SHEET 4 OF 5 DATUM: Geodetic

LOCATION: N 5031198.61 ;E 367059.95

AZIMUTH: --

DRILLING DATE: May 19-31, 2011

EUCATION: N 3031190.01,E 3070

DRILL RIG: CME 75

DRILLING CONTRACTOR: Downing

PO- Polished K - Slickensk SM- Smooth RO- Rough M8- Mechanic BR - Broken Rock - Join - Fault - Shear - Vein - Conjugate DRILLING RECORT SYMBOLIC LOG DEPTH SCALE METRES FLUSH RETURN ELEV. NOTES DESCRIPTION DEPTH RECOVERY DISCONTINUITY DATA (m) TOTAL CORE % TYPE AND SURFACE DESCRIPTION ತ್ತತ್ತತ್ತೆ .B. .V. -- CONTINUED FROM PREVIOUS PAGE --- CONTINUED FROM PREVIOUS PAGE -Fresh, medium brownish grey, fine to
medium grained crystalline, non porous,
thinly to medium bedded, medium
strong, SHALEY CALCARENITIC
LIMESTONE, subordinate nodular
limestone, minor thin lithoclastic
calcarenite beds and interbeds of dark
grey, bedding laminations and very thin
to thinly bedded, calcareous, slake
susceptible shale at semi regular
intervals of 0.25 to 2.5 m. Contains
traces of fossil fragments. Top contact of BD,UN,Ro 35 BD,UN,Ro BD,UN,Ro BD,PL,Ro 8D,PL,Ro Ca BD,CU,Ro 36 traces of 0.25 to 2.5 m. contains traces of fossil fragments. Top contact of formation is partly obscured by veining. Shale and shaley limestone comprise 7.5 % to 10 % of sequence. BD UN Ro BD,UN,Ro **VERULAM FORMATION UNIT 2** 37 BD.UN.Ro 32mm Diam. PVC #10 Slot Screen 'A' BD,UN,Ro BD.PL.Ro BD.UN.Ro Br 2mm BD,UN,Ro BD,UN,Ro BD,UN,Ro BD,CU,Ro BD,PL,Ro BD,UN,Ro BD,UN,Ro BD,UN,Ro BD,UN,Ro BD,CU,Ro BD,CU,Ro BD,CU,Ro 39 BD,CU,Ro Br <1mr BD,UN,Ro BD,UN,Ro CI BD,UN,Ro Ca BD,UN,Ro Ca BD,UN,Ro CI BD,PL,Ro Br Silica Sand BD.UN.Ro BD,UN,Ro BD.UN.Ro BD,UN,Ro BD,PL,Ro BD,PL,Ro BD,PL,Ro BD,PL,Ro CI < 1mi BD,UN,Ro BD,UN,Ro BD,PL,Ro CI BD,UN,SM CI<1m BD,CU,Ro BD,PL,Ro Cl CONTINUED NEXT PAGE LOGGED: DAC DEPTH SCALE Golder Associates CHECKED: MRR 1:50

INCLINATION: -90°

### **RECORD OF DRILLHOLE: T-72**

SHEET 5 OF 5

LOCATION: N 5031198.61 ;E 367059.95

AZIMUTH: ---

DRILLING DATE: May 19-31, 2011

DRILL RIG: CME 75

DRILLING CONTRACTOR: Downing

DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH	RUN No.	FLUSH RETURN	-	SH VN CJ	- ( - (		uga	te R.Q.	Ċ	O- OR- CL-	Bedd Folial Conta Ortho Clear CT	act ogon	nail	PL - Plan CU- Curv UN- Und ST - Step IR - Irreg	ed Jating ped ular	K SN RC ME	- Polis - Slick - Smo - Rou - Meci	ensk oth ph nanic		MC ab of ak sy		or addi ions re riations	itional efer to	list	NOTES	
	DRILL		SYN	(m)	-	FLUS	CO	OTAL RE %	40	SOLI ORE	%	888		PE 0.2 ∞ ≘	EX R Sm	COL		TYPE AN	D SURFAI RIPTION	Œ	Jcon Jr	l I	0 0 K, cr	n/sec	1	INE Si Si	DEX	- 1		
	_	CONTINUED FROM PREVIOUS PAGE					Щ	Ш	Ш	$\prod$	$\prod$	$\prod$	Щ	$\prod$	Щ	$\prod$	$\prod$				Д	$\prod$		П		$\prod$	$\prod$	$\prod$		'B' 'A
- 45		Fresh, medium brownish grey, fine to medium grained crystalline, non porous, thinly to medium bedded, medium strong, SHALEY CALCARENITIC LIMESTONE, subordinate nodular			27	•												BD,UN,i	‱ CI		29 3	2								
- 46		limestone, minor thin lithoclastic calcarenite beds and interbeds of dark grey, bedding laminations and very thin to thinly bedded, calcareous, slake susceptible shale at semi regular intervals of 0.25 to 2.5 m. Contains traces of fossil fragments. Top contact of formation is partly obscured by veining. Shale and shaley limestone comprise			28	- c												8D,CU,I 8D,PL,F 8D,CU,I 8D,PL,F BD,UN,I	to RoCI		22 3 29 12 22 3 16 12 22 3 22 3	1 , 2								
		7.5 % to 10 % of sequence.  VERULAM FORMATION UNIT 2															4	BD,UN,I	₹0 €0		22 3 22 3	,								
- 47					29	C												BD,UN,I BD,PL,F BD,UN,I BD,PL,F BD,PL,F BD,CU,I BD,PL,F	65 05 06 06 06 06 06		22 3 20 13 20 13 22 3 20 13 22 3 22 3 20 11	,				W				
- 49 	Rotary Drill MQ Core	- Weathered clay filled fracture occurs			30		<b>X</b>										1111	BD,PL,F BD,PL,F BD,CU,F BD,UN,F BD,UN,F BD,UN,F BD,UN,F BD,UN,F BD,UN,F BD,UN,F BD,UN,F BD,UN,F BD,UN,F	Ro Br Ro Br Ro Cl Ro Cl Ro Cl Ro Cl	<1mm <1mm <1mm <1mm 30mm	12 3	22 23 23 23 3							Bentonite Seal	
- 50 - 50 51		between 49.65m and 49.82m with 1 to 2cm wide calcite vein from 49.82m to 50.00m  - Clay gouge from 49.70m to 49.77m, small angular pieces, likely swelling clay, calcite crystals (1-2cm) filling open vertical joint			31	0										<u> </u>	///////	BD,UN,	Ro CI Ro CI Ro CI Ro CI Ro CI Ro CI Ro CI Ro CI Ro CI		22 3 20 2 20 3 20 3 20 3 22 3 22 3 22 3	1 2 2 2 2 1 1 1 1 2 2 2 2 1								
- 52					32		<b>&gt;</b>									•	/	JN,UN,I BD,PL,I JN,UN,I BD,PL,I BD,UN,	Ro Ro Ro		22 3 29 1, 22 3 29 1, 22 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
54			14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4										Ш				•	BD,PL,			16 3.	5 1							W.L. in Screen 'A' at Elev. 67.5m on Aug. 2, 2011	
- - - 54				18.88	33											***************************************	-	BD,PL,i	Ra		12 1	1							W.L. in Screen 'B' at Elev. 67.5m on Aug. 2, 2011	
-	<b>.</b>	End of Drillhole		54.32																										The second second
DE:		SCALE	•	•	4			11		L	لك	(				Ga	olde	r tes			- L	1	<b>1</b>		1	:			LOGGED: DAC HECKED: MRR	

# **RECORD OF BOREHOLE: T-306**

SHEET 1 OF 1

LOCATION: N 5031188.05 ;E 367040.95

BORING DATE: November 3, 2011

T	9		SOIL PROFILE			SA	MPL	ES	DYNAMIC PENETR	ATION ME/0.2	`	HYDRAULIC CONDUCTIVITY,		
WE INC	METHO			盲	ELEV.	8		0.3m	RESISTANCE, BLO	60 80		k, cm/s 10 ⁻⁶ 10 ⁻⁶ 10 ⁻⁴ 10 ⁻¹	1≥∷	
	<b>BORING METHOD</b>		DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	E	BLOWS/0.3m	SHEAR STRENGTH Cu, kPa	rem V. 🤀		Mb =		
+	_	1	GROUND SURFACE	+‴	73.42		<del> </del>		20 40	60 80	)	20 40 60 80		18'
٥	-		ASPHALTIC CONCRETE Brown crushed stone (FILL) Brown sity sand, some gravel, with cobbles (FILL)		8:88 73.14 0.28									Flush Mount H Protective Casing Set in Asphalt
1			Loose brown sandy silf, trace to some gravel, with cobbles, ash, paper, shingles, mortar, wood and organic matter (FiLL)		72.76 0.66		50 DO	5						
2	ower Auger	am, (Hollow Stem)	Very stiff grey brown SILTY CLAY (Weathered Crust)		71.92 1.50	_	50 DO	17						
211	<b>a</b>	200mm D	Loose to compact brown SILTY SAND to SANDY SILT, some gravel, trace clay, with cobbles and boulders (GLACIAL TILL)		71,29 2.13		50 DO	8						Bentonite Seat
3						4	50 DO	18						
4	Rotary Drill	ejec Code												
	Roft	웊	Borehole continued on RECORD OF DRILLHOLE T-306		68.90									
5														
6										·				
7														
8													,	
9								-						
10														
DEF						<u>L</u>		L		Golder Associa				<u> </u>

INCLINATION: -90°

1:50

LOCATION: N 5031188.05 ;E 367040.95

AZIMUTH: --

#### **RECORD OF DRILLHOLE: T-306**

DRILLING DATE: November 3, 2011

DRILL RIG: CME 75

DRILLING CONTRACTOR: Downing

SHEET 1 OF 2

CHECKED: MRR

DATUM: Geodetic

BR - Broken Rock FLT CU- Curved UN- Undulati ST - Stepped IR - Irregular DEPTH SCALE METRES FLUSH RETURN RUN No. ELEV. NOTES DESCRIPTION DEPTH RECOVERY DISCONTINUITY DATA (m) TYPE AND SURFACE DESCRIPTION ್ತಿಕ್ಕೆಕ್ಕೆ 2 2 2 2 2 2 8888 BEDROCK SURFACE 'B' 'A' Fresh, medium bedded, dark brownish grey, fine grained, crystalline, non-porous, medium strong, argillaceous, micritic NODULAR LIMESTONE BEDROCK, with medium to thick interbedding of dark grey to black, fossiliferous shale BD,UN,SM LINDSAY FORMATION UNIT 2 25mm Diam. PVC #10 Slot Screen 'B' BD,PL,SM BD.PL.Ro Silica Sand BD,UN,SM BD,PL,SM BD.CU.SM 10 BD,PL,Ro 11 1011210222-1300.GPJ GAL-MISS.GDT 11/21/11 JEMIJM 12 Fresh, medium bedded, medium brownish grey, fine to medium grained, crystalline, non-porous, medium strong, calcarenitic, wealdy fossiliferous, argillaceous NODULAR LIMESTONE BEDROCK, with thin interbedded dark grey to black shale laminates LINDSAY FORMATION UNIT 1 Silica Sand 32mm Diam. PVC #10 Slot Screen 'A' CONTINUED NEXT PAGE DEPTH SCALE Golder Associates LOGGED: RI

INCLINATION: -90°

# **RECORD OF DRILLHOLE: T-306**

SHEET 2 OF 2

LOCATION: N 5031188.05 ;E 367040.95

AZIMUTH: -

DRILLING DATE: November 3, 2011

DRILL RIG: CME 75

DRILLING CONTRACTOR: Downing

ŒS	RECORD		1C LOG	ELEV.	ġ	TURN N		JN FLT SH VN CJ	- F	oint aut ihea ein on	t t ar	ale		BD FO CO OR CL	- Se - Foi - Co - Ori - Cle	ddin iatio ntac hoge	g n t onal	PL CL UI ST IR	J- CI N- Ur I - St	lanar urvec nduk teppe regul	i iting ed ar	P( SI R(	- SI - SI - SI - RI - RI - B- M	dish icker noot ough echa	ed nside th	ed NBre	ak	BR NOTI abbre of abi symb	- Br E: Fo vistic brevis ofs.	r addi ons re etions			N	OTES
METRES	DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	DEPTH (m)	RUN No.	FLUSH RETURN	FO COF	TAL RE %	å		D %	١ '	).D. %	EZ CO	ACT DEX PER .25m	100	W.r.L ORE VAIS RSS	DIS	CON	TINL	NTY D SURFA	ATA	lco	٠,٠	-cċ	MDI. K, ar	AUL JCTN m/se	IC VITY C		WE/ ERI NC SM				
		CONTINUED FROM PREVIOUS PAGE			I		Ш	Щ	$\prod$	Щ		Ш	Ц	$\prod$	Щ	$\prod$	Щ						L	Ц	$\perp$	Ш	1	Ц	Ц	Ц	Ц	1		'B' '/
15	HO Core		18 18 18 8	58.31	7	9																											32mm Dian #10 Slot Sc	. PVC een 'A'
16		End of Drillhole		15.11	The state of the s																													
18																																		
19	And the second s																													The state of the s				
21					***************************************																													
23												And the second s			Market Market Control of the Control												The state of the s							
24										***************************************																								
DE	ртн 8	SCALE										4	4	/ å	7	۱,	-1	der ciat															LOGGED:	રા

LOCATION: N 5031187.57 ;E 367058.63

# **RECORD OF BOREHOLE: T-307**

BORING DATE: November 2, 2011

SHEET 1 OF 1

SAM	<b>AP</b> L	LER	HAMMER, 64kg; DROP, 760mm										PENETRATION	TEST HAMM	ER, 6	lkg; DROP, 760mm
T	8	1	SOIL PROFILE			SA	MPL	ES	DYNAMIC PE RESISTANCE	NETRATI	ON /0.3m	1	HYDRAULIC CONDUCTIVITY	^{′,}	J	
METRES	BORING METHOD	ı		ō		Ī.,		Ę	20			10	10° 10° 10°	10° 8	LAB. TESTING	
	NGZ		DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRE	NGTH	nat V. + rem V. 6	Q- 💌	WATER CONTENT PER	CENT	. TE	
-	8			1	DEPTH (m)	Ž	-	ğ	Cu, kPa				WP ( O		3	
+	_	-	GROUND SURFACE	l s		$\vdash$	$\vdash$	F	20	40	8 O	80 	20 40 60	80	+	'B' '/
۰	Т	+	ASPHALTIC CONCRETE		73.20 72.97	$\vdash$	┢	-		+				$\dashv$	F	ush Mount 1
1			Grey crushed stone (FILL) Compact red brown sand, some gravel, trace silt and brick fragments (FILL)		7237 0.23		50 DO	14							S	ica Sand
2	Power Auger	(Hollow Stam)	Stiff brown SILTY CLAY (Weathered Crust)		71.68 1.52 70.92	2	50 DO	7								
3	Powe	200mm Diam.	Loose to compact brown SANDY SILT to SILTY SAND, some gravel, trace clay, with cobbles and boulders (GLACIAL TILL)		2.28		50 DO	8				1555-1555-1555-1555-1555-1555-1555-155			8	entonite Seat
3						4	50 DO	>50				ANTHER TRANSPORTED TO THE TRANSP				
4			Borehole continued on RECORD OF		68.78	ı	50 DO	10				Various results described				
5			DRILLHOLE T-307													
7												were larve mit da date werde de several en de market and este and este de several de services de several de se				
8																
9								And the second s								
10																:
DEF 1:5		H S	CALE						G		Golde	r afec				GED: DWM

INCLINATION: -90°

1:50

LOCATION: N 5031187.57 ;E 367058.63

AZIMUTH: --

## **RECORD OF DRILLHOLE: T-307**

DRILLING DATE: November 2, 2011

DRILL RIG: CME 55

DRILLING CONTRACTOR: Downing

SHEET 1 OF 2

CHECKED: MRR

DATUM: Geodetic

PO- Polished K - Slickensk SM- Smooth RO- Rough MB- Mechanic BR - Broken Rock - Fault - Shear - Vein - Conjuga FO - Foliation CO - Contact OR - Orthogo CL - Clean DRILLING RECORD DEPTH SCALE METRES ELEV. NOTES DESCRIPTION S DEPTH RECOVERY DISCONTINUITY DATA (m) 2000 2 X X X X X .B. .V. BEDROCK SURFACE 68.78 Fresh to slightly weathered, medium bedded, dark brownish grey, fine grained, crystalline, non-porous, medium strong to strong, argillaceous, mictritic NODULAR LIMESTONE BEDROCK, Rentonite Seal with thin interbeds of grey to black, fossiliferous shale BD,CU,SM Shale 8mm LINDSAY FORMATION UNIT 2 - Possible mechanically broken core from 4.42m to 4.90m 25mm Diam. PVC #10 Slot Screen 'B' BD,CU,SM BD,ST,SM BD,PL,SM JN,UN,SM Silica Sand BD,PL,SM BD,CU,SM BD,PL,SM BD,CU,SM BD,CU,SM BD,PL,SM BD,PL,SM JEM/JM 60.70 12.50 JN,ST,SM Fresh, medium bedded, medium brownish grey, fine to medium grained, crystalline, non-porous, medium strong to strong, calcarentitic, weakly fossiliferous, argiliaceous NODULAR LIMESTONE BEDROCK, with interbeds of dark grey to black shale laminates GAL-MISS.GDT LINDSAY FORMATION UNIT 1 1011210222-1300.GPJ 32mm Diam, PVC #10 Slot Screen 'A' CONTINUED NEXT PAGE LOGGED: DWM DEPTH SCALE Golder Associates

# **RECORD OF DRILLHOLE: T-307**

SHEET 2 OF 2

LOCATION: N 5031187.57 ;E 367058.63

DRILLING DATE: November 2, 2011

DATUM: Geodetic

INCLINATION: -90° AZIMUTH: ---

DRILL RIG: CME 55

. INC	LINA	TION: -90° AZIMUTH:								DR	RL.	LIN	G	COI	NTF	RAC	то	R: Downing														
DEPTH SCALE METRES	DRILLING RECORD		SYMBOLIC LOG	ELEV.	No.	URN		SH VN	- Jo - Fa - Si - Vo	hear ein	r	le	č	OK-	Beck Folia Cont Orth Clea	ogon n	lat	PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular	PO- K - SM- RO- M8-	Poli Slic Sm Rou Me	isher kens ooth igh	d sided	i Brea		m	. En	~~		ock ai to iist		NOTES	
PTHS	LING	DESCRIPTION	MBOL	DEPTH (m)	RUN No.	SHRET	R	ECC	OVE	RY	1	R.Q.	D.	FRA	CT. EX ER 5m	DIP v	v.r.t.	DISCONTINUITY DAT	TA	7	— T	É	DRA DUC	UU TV	î.		WE ER N	ATI	+	1		
8	DRIL		ł.	(111)		J.		\$8 \$8	80	RE 1		% 888	R	0.2	58 58	AX AX	RE IS 88	TYPE AND SURFACE DESCRIPTION	_	icos	Ja	ě	0.0	5 5	2				≨ ≨			
		CONTINUED FROM PREVIOUS PAGE					$\prod$	$\prod$	$\prod$	$\prod$	$\prod$	П	Щ	$\prod$	Ш	$\prod$	Щ		$\Box$	_	$\downarrow$	П	1				Ц	1	$\coprod$		'B' 'A I ≅.4 I	4
15	Rotary Drill HQ Core			58.17	7	0	в										•	BD,CU,SM		20	2 2		-							32mm Di #10 Slot S	am, PVC Screen 'A'	
		End of Drillhole		15.03																				- The state of the								
- 16																																
17						ALLES AND THE PARTY OF THE PART																										
18															***************************************																	_
- - - - -																																•
- - 20 -																																•
21																																
- 22																																
24 Di																																•
- 24																	A CONTRACTOR OF THE PARTY OF TH															
Di 1	EPTH: 50	SCALE		4				-				(	Ž		A	Go	ok	ler iates				•								LOGGED:		

# **RECORD OF BOREHOLE: T-308**

SHEET 1 OF 1

LOCATION: N 5031175.40 ;E 367058.02

BORING DATE: November 1, 2011

SAMP	LEF	R HAMMER, 64kg; DROP, 760mm									PENETRATION TE	ST HAMMER,	64kg; DROP, 760mm
1 8	3	SOIL PROFILE			SA	MPL	ES	DYNAMIC PENETR RESISTANCE, BLC	RATION \ DWS/0.3m		HYDRAULIC CONDUCTIVITY, k, cm/s	ي _	
METRES BODING METHOD			Ę		~		æ.			•	10° 10° 10° 10	ADDITIONAL LAB. TESTING	
	2	DESCRIPTION	ΑĀ	ELEV. DEPTH	NUMBER	TYPE	NS/0	SHEAR STRENGTI Cu, kPa	H nat V. + Q- rem V. 69 U-	9	WATER CONTENT PERCEN	17 E #	
1 0	5		STRATA PLOT	(m)	Į₹		BLOWS/0.3m	00 An			Wp - U		
+	-	GROUND SURFACE	<del> </del> "	73.08	Н	Н	Н	20 40	60 80		20 40 60 8		'8' 'A
٩Ħ	П	ASPHALTIC CONCRETE		888	Г	Г							Flush Mount Protective Casing
		Grey crushed stone (FiLL) Loose brown to dark brown sandy silt, some gravel, trace clay, with brick and ash fragments, shale gravel and organic matter (FiLL)		0.15									Flush Mount Protective Casing set in Asphalt Silica Send
1				2	1	50 DO	6						
n Power Auger	200mm Diam. (Hollow Stam)	Very stiff brown SILTY CLAY (Weathered Crust)		71.25 1.83	2	50 DO	10		1				
Powr	200mm Diam				3	50 DO	19						Bentonite Seal
3		Loose to compact grey brown SILTY SAND to SANDY SILT, some gravel.		69.73 3.35	4	50 DO	6						
4		Loose to compact grey brown SILTY SAND to SANDY SILT, some gravel, trace clay, with cobbles and boulders (GLACIAL TILL)			5	50 DO	>50						
$\vdash$	Н	Borehole continued on RECORD OF DRILLHOLE T-308	26/	68.71									
5 6 8													
10													
DEP1		SCALE	<u> </u>	<u> </u>	<u>.L</u>	<u>.L</u>	<u></u>	(4)	Golder Associate				L

# **RECORD OF DRILLHOLE: T-308**

SHEET 1 OF 2

LOCATION: N 5031175.40 ;E 367058.02 INCLINATION: -90° AZIMUTH: --

DRILLING DATE: November 1, 2011

DRILL RIG: CME 55

DRILLING CONTRACTOR: Downing

RES	RECORD		DESCRIPTION	SYMBOLIC LOG	ELEV.	No.	TURN Name	i	JN - FLT - SH - VN - CJ -	Fault Shea	i Hr	he	FO CC OF CL	- Bed - Foli - Cor - Orti - Cle	ation Nact nogor		PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular	κ -	Polici Slici Smo Rou Med	tensi xoth gh hani	ided cal (	3reak	AUDT abbr of at symi	E. E.		Roc lional fer to it	ı	NOTES
METRES	DRILLING RECORD		DESCRIPTION	SYMBOI	DEPTH (m)	RUN No.	FLUSH RETURN	# # # # # # # # # # # # # # # # # # #		SOLI CORE	· '	R.Q.C	0	RACT IDEX PER .25m.	DIP V	RE 18	DISCONTINUITY DATE	П	lcon J	I.I	K,	DRAU DUCT cm/s	ec .	1	WE/ ERI END EM	NG	W6	
1		1	BEDROCK SURFACE		68.71			Ĩ	777	ĬĬÌ	-	TTT	777	Ш	Щ	Ш			1	$\prod$	I	П	I		П	П	Ц	'B' '
5			Slightly weathered, medium bedded, dark brownish grey, fine grained, crystalline, non-porous, weak to medium strong, argillaceous, micritic NODULAR LIMESTONE BEDROCK, with thin interbeds of dark grey to black, fossiliferous shale	18 18 18 18 18 18 18 18 18 18 18 18 18 1	4.37	1	900	100								•	VFR,PL,SM JN,PL,Ro VFR,PL,SM JN,CU,Ro CI <11 JN,CU,SM CI 3m	nm W	12 12 12 12 12 6 0	1214	A Community of the Comm							Bentonite Seal
			LINDSAY FORMATION UNIT 2	8 8 8 8 8													BD,UN,Ro Sa 5n	nm.	0 12	5								Silica Sand
	1		- Broken core from 5.69m to 5.75m										П	Ш	$\  \ $	Ш	VFR,PL,SM					Ш				П		#
6			- Broken core from 5.96m to 6.04m	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		2		8									JN,UN,Ro CI <1: VFR,PL,Ro Ca <		6 16	2								25mm Diam. PVC #10 Slot Screen 'B'
7			- Broken core from 6.97m to 7.08m	10 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 1											•	•	BD,PL,SM VFR,PL,SM BD,UN,SM		12 12 16	2 2 2								
8		And the second s				3	***	190									BD,CU,SM		18	2								Silica Sand
9	Rotary Drill	HO Core				4	**************************************	100									BD,PL,SM		.12	1 2							And the second s	Bentonite Seal
11						5		100									BD,PL,SM BD,PL,SM		12	1 2								
13			Fresh, medium bedded, medium brownish grey, fine to medium grained, crystalline, non-porous, medium strong, calcarenitic, weakly fossiliferous, argitlaceous NODULAR LIMESTONE	84 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	60.37 12.71	6		100																				Silica Sand
14			BEDROCK, with thin interbeds of dark grey to black shale laminates  LINDSAY FORMATION UNIT 1	KER 88 88 88 88 88 88 88 88 88 88 88 88 88		7		100						***************************************														32mm Diam. PVC #10 Slot Screen 'A'
			CONTINUED NEXT PAGE							$\coprod$	Ш	Ш							Ш	Ш	Ц	$\prod$		Ш	Ш	Ш		
DE 1:		нs	CALE												Go	old	er iates											LOGGED: RI HECKED: MRR

# **RECORD OF DRILLHOLE: T-308**

SHEET 2 OF 2

LOCATION: N 5031175.40 ;E 367058.02

DRILLING DATE: November 1, 2011 DRILL RIG: CME 55 DATUM: Geodetic

INCLINATION: -90°

AZIMUTH: —

DRILLING CONTRACTOR: Downing

· **	JL8941	ION: -90° AZIMUTH: —										LIN						OR: Downing															
DEPTH SCALE METRES	DRILLING RECORD		SYMBOLIC LOG	ELEV.	ō.	NS.		JN FLT SH VN	- Jo - Fa - Si - Vo	oint ault hea ein	r	<u> </u>		50- 50- 50- 50-	Bed Foli Con Orth Clea	ding ation tact togo	nel	PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular	5	. × 0.	Pol Slic Sm Rot	ishe ken cott ugh	idi side	ed	nnb	NO abt of	TE:	Bro For ation	ker addi s re ions	n Ro itiona iter k	ock al o list		NOTES
FE	5	DESCRIPTION	ğ	DEPTH	RUN No.	FLUSH RETURN			- C	_	Т	R.Q.	<u>, j</u>	FR	ACT.	l		DISCONTINUITY D	AT/	1	WIE	CILE	Ţ	(YD	RAL	LIC IVII ec	Ĩ	٧	VE/	ATH ING DEX	-	1	NOTES
P ≥			N.S	(m)	DE.	3	ÇĞF	TAL E %	S	OLIC RE	7	%		0.2	ER 25m	OIP CC A	888	TYPE AND SURFAC DESCRIPTION	Œ	,	con	Jr Jr	١,	K, c	s/m/s	ec %						١	
<u> </u>	ă		<b>↓</b> "↓			"		28 TT		888 TT		889	8	,,2 	23 11	-8	88	DESCRIPTION		+	4	+	Ľ	2 \$	2 2	É	+	<u>≨</u>	1	¥	} 	+	'B' 'A'
L		CONTINUED FROM PREVIOUS PAGE	-			Н	Щ	#	₩	₩	Н	₩	Н	Н	Н	Н	#			+	4	+	╀	Н	Н	+	+	Н	+	╀	Н	+	हिंदुर्ग -
	Rotary Drift HQ Core		10,187,817	58.05	7	100																											32mm Diam. PVC #10 Slot Screen 'A'
F 15		End of Drillhole		15.03			Ш	$\dagger \dagger$	$\parallel$	Ħ	Ħ	Ħ		П	T	Ħ	Ħ			1		T	T		П	1	T		T	T	П	T	
16																																	-
17																														***************************************			-
18																																	-
19 - 19																																	-
- x																																	-
21																																	-
SIGDL THENT TO SERVE																																	-
OLK-ROCK 10112/02/22/23/00/649-06/4-Miss.com																						-											
200																																	
1 CLRT-ROCK	EPTH : 50	SCALE							**			(			A	G	ol	der ciates			_		_			_							.ogged: Ri Hecked: Mrr

# **RECORD OF BOREHOLE: T-309**

SHEET 1 OF 1

LOCATION: N 5031181.59 ;E 367069.01

BORING DATE: November 1, 2011

DATUM: Geodetic

SAMPLER HAMMER, 64kg: DROP, 760r

<b>y</b> _	ğ	SOIL PROFILE			S٨	MPL		DYNAMIC PENETRATION RESISTANCE, BLOWS	/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ایرا	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENGTH I	60 80 hat V. + Q - ● em V. ⊕ U - ○	10° 10° 10° 10°	ADDITIONAL LAB, TESTING	
- 0		GROUND SURFACE		72.94		Γ		ŤŤ	ĨĨ	1 1 1	<del>                                     </del>	<b>'</b> B
		ASPHALTIC CONCRETE Grey crushed stone (FILL) Dense red brown to brown sand, some gravel, trace silt and brick fragments (FILL)		8.87 0.26							Flush Protec set in Silica	Mount Casing Sand Sand
- 1		Very stiff brown SILTY CLAY (Weathered Crust)		71.42 1.52		58 DO	34	4				
- 2	Power Auger	John Louis Committee Seems				58 DO 58 DO	13					
- 3		Compact grey brown SILTY SAND to SANDY SILT, some gravel, trace day, with cobbles and boulders (GLACIAL TILL)		69.89 3.05	4	50 DO	14				Bentor	nite Seal
- 4					5	50 DO	25					
- 5		Borehole continued on RECORD OF DRILLHOLE T-309	400	68.32								•
- 6.												į
- 7												ŧ
. 8												
9												
10												: · · · · · · · · · · · · · · · · · · ·
DEP	тн	SCALE						GASS				

# **RECORD OF DRILLHOLE: T-309**

SHEET 1 OF 2

LOCATION: N 5031181.59 ;E 367669.01

DRILLING DATE: November 1, 2011 DRILL RIG: CME 55

DATUM: Geodetic

INCLINATION: -90° AZIMUTH: —

DRILLING CONTRACTOR: Downing

DRILLING CONTRACTOR: Downing    JN - Joint BD- Bedding PL - Planar PO- Polished BR - Broken Rock																											
D CONTRACTOR		SO J OF	ELEV.	So.	TURN	S	SH ·	- Shear - Vein		er		CO OR	- Cor - Orti	Contact Orthogonal Clean		CU- Curved # UN- Undulating S ST - Stepped F	- S M- S RO- R	licke moo ouat	nside th o onica	al Bre	a o ak s	MOTE abbrer of abb symbo	E: For a	For additional stions refer to it visitions &			NOTES
	DESCRIPTION	DESCRIPTION DEPT (m)		S.	LUSH RE	RECOVERY TOTAL SOLID CORE % CORE %		R.Q.D.		PER 0.25m		DIP w.r.t. CORE AXIS			J.	إبرا	K, cm/sec			, 1		WEATH- ERING INDEX					
5	BEDDOCK STIDENCE	<u> </u> "		H	-	285 TT	38 	88 11	<b>98</b> ∏	la:	888 			os Ti	38 11	DESCRIPTION	╁	H	╀	9 <u>9</u>	1	H	₹₹	\{\bar{\}\}	<u>₹₹</u>	§ 	'B' 'A'
П	Fresh to slightly weathered, medium bedded, dark brownish grey, fine	18 18 18	4.62									I			•	BD,CU,SM FR,,	16	2	2								Bentonite Seal
	. With thin interdeds of dark grey to diack,	8 18 8 8 8		1	100					ı						FR,ST,SM BD,CU,Ro	20	3	2								Silica Sand
	LINDSAY FORMATION UNIT 2	18.88.88														BD.IR.Ro	ļ,	2	2								
		18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8																									25mm Diam. PVC #10 Slot Screen 'B'
		1989 1 18 18 18 18 18 18 18 18 18 18 18 18 1		2	100											BD,CU,SM Shele 10mm BD,PL,SM BD,CU,SM BD,UN,SM BD,CU,SM	10	2	2 2 2 2 2								Silica Sand
				3	100											BD,CU,SM BD,CU,SM BD,UN,SM	1	2	2 3								
HO Core				4	100		Name of the last o									BD,CU,SM	***************************************	6 2	2								Bentonite Seal
	- Healed fracture from 10.54m to 10.82m, calcite infilled	\$20 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		5	100										4	BD.PL.SM  FR., BD.PL.SM  BD.PL.SM	2	2 1 5 4 8 2	2 2								
		8888		4												BD,CU,SM		6 2	2								Silica Sand
	Fresh, medium bedded, medium grained, brownish grey, fine to medium grained, cnystalline, non-porous, medium strong to strong, calcarentitic, wealthy fossiliferous, argillaceous NODULAR LIMESTONE BEDROCK, with thin dark grey to black shale interbeds	25 1 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12.5	6	100	3									•		5mm	20 2	2								32mm Diam. PVC #10 Stot Screen 'A'
	MADON I CHWATTON UNIT I	000 00 00 00 00 00 00 00 00 00 00 00 00		7	100	001										FR., BD,UN,SM BD,UN,SM		75 16 2 16 2	2 2					***************************************			
	CONTINUED NEXT PAGE	7	T -	T.	[	$\prod$		$\ $	$\  [$	I	$\ \ $	Iſ		Ш	$\prod$	<b></b> .		T	I	ſ		ſ	$\prod$			$\prod$	
	SCALE	1	1		<u> </u>		للب	الب						G	ok	ler istes	E					-					LOGGED: DWM
		BEDROCK SURFACE  Fresh to slightly weathered, medium bedded, dark brownish grey, fine grained, crystalline, non-porous, medium strong to strong, argillaceous, micritic NODULAR LIMESTONE BEDROCK, with thin interbeds of dark grey to black, fossiliferous shale  LINDSAY FORMATION UNIT 2  - Healed fracture from 10.54m to 10.82m, calcile infilled  Fresh, medium bedded, medium brownish grey, fine to medium grained, crystall, non-porolic, weakly fossiliferous, argillaceous, NoDultaR LIMESTONS, argillaceous, NoDultaR LIMESTONS, argillaceous, NoDultaR LIMESTONS, argillaceous, NoDultaR LIMESTONS, argillaceous, under LIMESTONS Black Shale interbeds  LINDSAY FORMATION UNIT 1	BEDROCK SURFACE  Fresh to slightly weathered, medium bedded, dark brownish grey, fine grained, crystalline, non-porous, medium strong to strong, argillaceous, micritic NODULAR LIMESTONE BEDROCK, with thin interbeds of dark grey to black, fossiliferous shale  LINDSAY FORMATION UNIT 2  - Healed fracture from 10.54m to 10.82m, calcite infilled  Fresh, medium bedded, medium grained, crystalline, non-porous, medium strong to strong, calcite infilled  Fresh black shale interbeds  LINDSAY FORMATION UNIT 1	BEDROCK SURFACE  Fresh to slightly weathered, medium bedded, dark brownish grey, fine grained, crystalline, non-porous, medium strong to strong, argillaceous, micritic NODULAR LIMESTONE BEDROCK, with thin interbeds of dark grey to black, fossiliferous shale  LINDSAY FORMATION UNIT 2  - Healed fracture from 10.54m to 10.82m, calcite infilled  Fresh, medium bedded, medium promish grey, fine to medium grained, crystalline, non-porous, medium strong to strong, calcarerite, wealthy fossiliferous, argillaceous NODULAR LIMESTONE BEDROCK, with thin dark grey to black shale interbeds  LINDSAY FORMATION UNIT 1	BEDROCK SURFACE  Fresh to slightly weathered, medium bedded, dark brownish grey, fine grained, crystalline, non-porous, medium strong to strong, argillaceous, micritic NOOULAR LIMESTONE BEDROCK, with thin interbeds of dark grey to black, fossillerous shale  LINDSAY FORMATION UNIT 2  - Healed fracture from 10.54m to 10.82m, calcile infilled  - Healed fracture from 10.54m to 10.82m, calcile infilled  Fresh, medium bedded, medium promotion, crystalline, non-porous, medium strong to strong, calcile infilled  Fresh, strong calcile, weakly fossillerous, argillaceous NODULAR LIMESTONE BEDROCK, with thin dark grey to black shale interbeds  LINDSAY FORMATION UNIT 1  CONTINUED NEXT PAGE	BEDROCK SURFACE  Fresh to slightly weathered, medium bedded, dark brownish grey, fine grained, crystalline, non-porous, medium strong to strong, argifaceous, micritic NODULAR LIMESTONE BEDROCK, with thin interbeds of dark grey to black, fossilierous shale  LINDSAY FORMATION UNIT 2  - Healed fracture from 10.54m to 10.82m, calcite infilled  - The strong caucarenitic, wealthy to strong, caucarenitic, wealthy fossilierous, argifaceous MODULAR LIMESTONE BEDROCK, with thin dark grey to black shale interbeds  LINDSAY FORMATION UNIT 1	DESCRIPTION  DESCRIPTION  DESCRIPTION  DESCRIPTION  DEPTH   2   1   2   2   3   3   3   3   3   3   3   3	DESCRIPTION  BEDROCK SURFACE  BEDROCK SURFACE  Fresh to slightly weathered, medium bedded, dirth brownish grey, fine grained, crystalline, non-porous, medium strong to storing, angliaceous, micritic NODILAR LIMESTONE BEDROCK, with thin interbeds of dark grey to black, fossälferous shale  LINDSAY FORMATION UNIT 2  Fresh, medium bedded, medium brownish grey, fine to medium grained, crystalline, non-porous, medium strong to storing, calcarenic, weathy fossälferous shale  LINDSAY FORMATION UNIT 2  Fresh, medium bedded, medium brownish grey, fine to medium grained, crystalline, non-porous, medium strong to storing, calcarenic, weathy fossälferous shale  LINDSAY FORMATION UNIT 1  Fresh, medium bedded, medium brownish grey, fine to medium grained, crystalline, non-porous, medium strong to strong, calcarenic, weathy fossälferons grained, crystalline, non-porous, medium strong to strong, calcarenic, weathy fossälferons grained, crystalline, son-porous, medium strong to strong, calcarenic, weathy fossälferons grained, crystalline, son-porous, medium strong to strong, calcarenic, weathy fossälferons grained, crystalline, son-porous, medium strong to strong, calcarenic, weathy fossälferons grained, crystalline, son-porous, medium strong to strong, calcarenic, weathy fossälferons grained, crystalline, son-porous, medium strong to strong, calcarenic, weathy fossälferons grained, crystalline, son-porous, medium strong to strong, calcarenic, weathy fossälferons grained, crystalline, son-porous, medium strong to strong, calcarenic, weathy fossälferons grained, crystalline, son-porous, medium strong to strong, calcarent promoters grained, crystalline, son-porous, medium strong to strong, calcarent promoters grained, crystalline, son-porous, medium strong to strong, calcarent promoters grained, crystalline, son-porous, medium strong to strong, calcarent promoters grained, crystalline, son-porous, medium strong to strong, calcarent promoters grained, crystalline, son-porous, medium strong to strong, calcarent promoters grained, cr	DESCRIPTION  DESCRIPTION  DESCRIPTION  BEDROCK SURFACE  BEDROCK SURFACE  BEDROCK SURFACE  Fresh to stightly weathered, medium bedded, dark brownish grey, fine grained, crystalline, non-porous, medium strong to storog, argillaceous, microlic NODULAR LIMESTONE BEDROCK, with thin interests of dark grey to black, fossillerous shale  LINDSAY FORMATION UNIT 2  Fresh, medium bedded, medium promises and the state of the state	DESCRIPTION  DESCR	DESCRIPTION  RECOVERY  RECO	DESCRIPTION  DESCRIPTION  DESCRIPTION  DEPTH 20	DESCRIPTION  DESCR	DESCRIPTION  DESCR	DESCRIPTION  DESCR	DESCRIPTION  RECOVERY  R	DESCRIPTION  DESCR	BEDROCK SURFACE  BEDROC	DESCRIPTION	DESCRIPTION  DESCR	DESCRIPTION  BEDROCK SURFACE  BEDROCK SU	DESCRIPTION    Compared   Compare	DESCRIPTION  DESCR	DESCREPTION    Compared   Compare	DESCRIPTION  DESCR	DESCRIPTION    Section   S	DESCRIPTION    Comparison   Com

INCLINATION: -90°

# **RECORD OF DRILLHOLE: T-309**

SHEET 2 OF 2

LOCATION: N 5031181.59 ;E 367069.01

AZIMUTH: —

DRILLING DATE: November 1, 2011

DRILL RIG: CME 55

DRILLING CONTRACTOR: Downing

SCALE	DRILLING RECORD	DESCRIPTION .	DO1 01	ELEV.	No.	TURN					int ault near sin onjugate			BD- Bedding FO- Foliation CO- Contact OR- Orthogonal CL - Clean			PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular	P K S R	PO- Polished K - Slickensided SM- Smooth RO- Rough MB- Mechanical Bre			3reak	BR - Broken Rock NOTE: For additional abbreviations refer to list of abbreviations & eak symbols.			n Ro Itiona ofer la s &	ock i oltst	NOTES
DEPTH SCALE METRES	RILLING	DESCRIPTION	SYMBOLIC LOG	DEPTH (m)	RUN No.	FLUSH RETURN	TO COF	TAL NE %		NLIO RE %		Q.D. %	FRIED OF	ACT. DEX ER 25m	DIP W.	r.L E	DISCONTINUITY D	ATA		Jr Ji	CON	DRAL DUCT CIT/S	JLIC TIVIT		ER IN	ATH ING DEX	•	
1	屵	CONTINUED FROM PREVIOUS PAGE	$t^-$		Н	-	fii	ΪĨ	Ιñ	Ť	Ħ۳	388	Ιñ	ΪΪ	Î				t	H	ΙŤ	Τ̈́	Ť	ΙŤ	ΪÎ	Ť	Ť	'B' 'A'
15	Rotary Dra		Walled.	57.82	7	901										I	BD,PL,SM		12	1 2								32mm Diam. PVC #10 Slot Screen 'A'
16		End of Drithole		15.12																								
- 18																												
- 19																												
21						The state of the s																						-
0LRT-ROCK 1011210222-1300,GPJ GAL-MISS.GDT 11/21/11 JEMJIM																												
OLRT-ROCK 1011210222-130		SCALE													Go		er ates					THE CONTRACT OF THE CONTRACT O						Logged: DWM CHECKED: MRR





# **APPENDIX B**

**Soil Sample Vapour Levels and PID Certificate of Calibration** 



# Certificate of Calibration

Model	Part Number	Serial Number
P6M7300	NZA	590-001611
	alibrated using calibration gas st and calibration data is on fil	ses and procedures which are e with the manufacturer.
· Calibration Date		Calibrated By
31 oct 2011		R. Ireland

Golder Associates Inc.





TECHNICIAN	R 10-1121-0222 I L Toland T Monkachk TO Sobutylen	ENGINEER TYPE OF VA		PAC	TE YND 2011  GE 1 OF !  OMBUSTIBLE
BH.#_T-SOO SAMPLE	P DEPTH (m)	VAPOUR LEVEL (ppm/%LEL)	BH.# SAMPLE	DEPTH (m)	VAPOUR LEVEL (ppm/%LEL)
P.	0.91 TO 1.52	0.3 April		то	
a	(.52 TO 8.13	0.2 ppm		то	
3	2.29 TO 2.90	0.3 pp.n 0.2 pp.n No BAG.		TO	
34	8.29 TO 2.90	Dish 3		то	
3.A 43	3.05 TO 3.58	Dip Rr 3		TO	
	ТО			то	
	то	*		TO	
	ТО			TO	
BH.# SAMPLE	DEPTH (m)	VAPOUR LEVEL (ppm/%LEL)	BH.# SAMPLE	DEPTH (m)	VAPOUR LEVEL (ppm/%LEL)
	то	27:		то	
•	ТО			TO	
	то			TO	
	TO			то	
	TO			TO :	, i
	то			" ТО́	
	TO			то	
	то			то	
NOTES:	ÿ				



TECHNICIAN	R 10-1121-0222 R. Ireland T. MiniRae Lit D. TO. 1525 tyles	SHORT TITI  ENGINEER  TYPE OF VA			TE 2 Nov 2011  SE 1 OF 1 OF MBUSTIBLE
BH.# T-307 SAMPLE	DEPTH (m)	VAPOUR LEVEL (ppm/%LEL)	BH.# SAMPLE	DEPTH (m)	VAPOUR LEVEL (ppm/%LEL)
H/	0.76 TO 1.37	0.4 pom		ТО	
2	1.52 TO 2.13	0.3 pan		ТО	
35	229 TO 2.90	0.4 ppm		ТО	
5	3.81 TO 4.40	0.4 pen 0.60 pom		ТО	
	ТО			ТО	
	то			ТО	
	TO	Ψ,		то	
	то			TO	
BH.# SAMPLE	DEPTH (m)	VAPOUR LEVEL (ppm/%LEL)	BH.# SAMPLE	DEPTH (m)	VAPOUR LEVEL (ppm/%LEL)
	то	<i>स्</i> र.		TO	
	TO			TO	
	TO		)€:	TO	
	то			TO	
	ТО			TO [:]	
	то			<b>TO</b> ′	
	то			TO	
	ТО			ТО	
NOTES:					



INSTRUMENT	R. 10-1121-0222 R. 1/eland T. MiniRae Lit TO Sobutyle	TYPE OF VA	DOTTO: ODGAN	TLOT. DA' PAG VIC X CC 31 Oct 2011	MRIISTIRI E
BH.# <u>T-30</u> 8 SAMPLE	(m)	VAPOUR LEVEL (ppm/%LEL)	BH.# SAMPLE	DEPTH (m)	VAPOUR LEVEL (ppm/%LEL)
12	0.76 TO 1.37	No Bag  No Bag  No Bag  Field lup 44  No Bag.		TO	
3	1.52 TO 2.13	No Bag		ТО	
3	2.24 TO 2.90	0.2 ppm		ТО	
4	3.05 70 366	No Bag		ТО	
5	3-5 TO 366	Field Dup &4		TO	
6	3.31 TO 424	No Bag.		то	
	ТО	0		TO	
	ТО	*		то	
BH.# SAMPLE	DEPTH (m)	VAPOUR LEVEL (ppm/%LEL)	BH.# SAMPLE	DEPTH (m)	VAPOUR LEVEL (ppm/%LEL)
	ТО	26		то	
	то			TO	
	ТО			то	
	ТО			TO	
	то		, i	TO ^r	41
	ТО			ТО	
	то			ТО	
3	ТО			TO	
NOTES:		•			
A					



TECHNICIAN INSTRUMEN	R 10-1121-0222 1 Dwn T. M.S. Rae Lik TO ISO BUTY	ENGINEER	SS  POUR: ORGAN  ALIBRATION		MBUSTIBLE D
BH.#T-309 SAMPLE	DEPTH (m)	VAPOUR LEVEL (ppm/%LEL)	BH.# SAMPLE	DEPTH (m)	VAPOUR LEVEL (ppm/%LEL)
1	0.76 TO 1.37	1.4		ТО	
٦	1.52 TO 2.13	0.4		TO	
3	2.28 TO 2.89	0.4		ТО	
4	3.05 70 3.66	0.60		TO	
5	3.81 TO 4.37	0.6		ТО	
	ТО			ТО	
	ТО	<u>4.</u>		то	
	ТО			TO	
BH.# SAMPLE	DEPTH (m)	VAPOUR LEVEL (ppm/%LEL)	BH.# SAMPLE	DEPTH (m)	VAPOUR LEVEL (ppm/%LEL)
	то	<del>1</del> 8:		ТО	
	ТО			ТО	
	TO			ТО	
	то			TO	
	TO			TO [;]	
	ТО			то	
	то			TO	
	то			TO	
notes: 🚁 I	Deplecto SAnd	Takan Fhom	SA 4.	***************************************	



### PHASE II ENVIRONMENTAL SITE ASSESSMENT

# **APPENDIX C**

**Laboratory Certificates of Analysis** 





TRUSTED. RESPONSIVE. RELIABLE.

300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

### OTTAWA NIAGARA FALLS MISSISSAUGA

# Certificate of Analysis

**Golder Associates Ltd. (Ottawa)** 

32 Steacie Dr. Phone: (613) 592-9600 Kanata, ON K2K 2A9 Fax: (613) 592-9601

Attn: Keith Holmes

Client PO: Report Date: 6-Jun-2011 Project: 10-1121-0222 Order Date: 30-May-2011

Order #: 1123066 Custody: 29086

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID

1123066-01 T72-SA1 T72-SA4 1123066-02

Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc **Laboratory Director** 



### Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 10-1121-0222

Report Date: 06-Jun-2011 Order Date: 30-May-2011

### **Analysis Summary Table**

CME PHC F2 - F4 CWS Tier 1 - GC-FID, extraction MOE E3056 - Extraction, colourimetric		Extraction Date Analysis	Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	30-May-11 3-	Jun-11
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	31-May-11 2-	Jun-11
Chromium, hexavalent	MOE E3056 - Extraction, colourimetric	3-Jun-11 3-	Jun-11
Mercury	EPA 7471A - CVAA, digestion	1-Jun-11 1-	Jun-11
Metals	EPA 6020 - Digestion - ICP-MS	1-Jun-11 1-	Jun-11
PAHs by GC-MS, standard scan	EPA 8270 - GC-MS, extraction	2-Jun-11 2-J	Jun-11
Solids, %	Gravimetric, calculation	3-Jun-11 3-	Jun-11
VOCs	EPA 8260 - P&T GC-MS	30-May-11 3-	Jun-11

OTTAWA

300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8



### Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 10-1121-0222

Report Date: 06-Jun-2011 Order Date: 30-May-2011

Client i O.			11. 10-1121-0222		
	Client ID: Sample Date: Sample ID:	T72-SA1 19-May-11 1123066-01	T72-SA4 19-May-11 1123066-02	- - -	- -
	MDL/Units	Soil	Soil	-	-
Physical Characteristics					1
% Solids	0.1 % by Wt.	92.5	95.2	-	-
Metals	<u> </u>		T . T		Γ
Antimony	1 ug/g dry	<1	<1	-	-
Arsenic	1 ug/g dry	3	2	-	-
Barium	1 ug/g dry	213	41	-	-
Beryllium	0.5 ug/g dry	<0.5	<0.5	-	-
Boron	5.0 ug/g dry	7.6	<5.0	-	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	-	-
Chromium	5 ug/g dry	17	15	-	-
Chromium (VI)	0.4 ug/g dry	<1.0 [1]	<0.4	-	-
Cobalt	1 ug/g dry	4	4	-	-
Copper	5 ug/g dry	22	16	-	-
Lead	1 ug/g dry	53	4	-	-
Mercury	0.1 ug/g dry	0.2	<0.1	-	-
Molybdenum	1 ug/g dry	2	4	-	-
Nickel	5 ug/g dry	15	10	-	-
Selenium	1 ug/g dry	<1	<1	-	-
Silver	0.3 ug/g dry	<0.3	2.2	-	-
Thallium	1 ug/g dry	<1	<1	-	-
Uranium	1 ug/g dry	<1	<1	-	-
Vanadium	10 ug/g dry	19	19	-	-
Zinc	20 ug/g dry	39	<20	-	-
Volatiles					
Acetone	0.5 ug/g dry	<0.5	<0.5	-	-
Benzene	0.02 ug/g dry	<0.02	<0.02	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Bromoform	0.05 ug/g dry	<0.05	<0.05	-	-
Bromomethane	0.05 ug/g dry	<0.05	<0.05	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Chloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
Chloroform	0.05 ug/g dry	<0.05	<0.05	-	-
Chloromethane	0.2 ug/g dry	<0.2	<0.2	-	-

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3



### Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 10-1121-0222

Report Date: 06-Jun-2011 Order Date: 30-May-2011

Client 1 O.			1011. 10-1121-0222		
	Client ID: Sample Date: Sample ID:	T72-SA1 19-May-11 1123066-01	T72-SA4 19-May-11 1123066-02	- - -	- -
	MDL/Units	Soil	Soil	-	-
Volatiles (continued)	I.				
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,2-Dibromoethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
1,2-Dichloroethylene, total	0.05 ug/g dry	<0.05	<0.05	-	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Hexane	0.05 ug/g dry	<0.05	<0.05	-	-
Methyl Ethyl Ketone (2-Butanone)	0.5 ug/g dry	<0.5	<0.5	-	-
Methyl Butyl Ketone (2-Hexanone)	2.0 ug/g dry	<2.0	<2.0	-	-
Methyl Isobutyl Ketone	0.5 ug/g dry	<0.5	<0.5	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	-	-
Styrene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene	0.05 ug/g dry	<0.05	<0.05	-	-
1,2,4-Trichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	-	-

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3



### Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 10-1121-0222

Report Date: 06-Jun-2011 Order Date: 30-May-2011

Client PO.		, ,	1011. 10-1121-0222		,
	Client ID: Sample Date:	T72-SA1 19-May-11	T72-SA4 19-May-11	-	-
	Sample Date: Sample ID:	19-May-11 1123066-01	19-May-11 1123066-02	-	-
	MDL/Units	Soil	Soil	-	-
Volatiles (continued)			1		ı
1,3,5-Trimethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g dry	< 0.05	<0.05	-	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	-	-
4-Bromofluorobenzene	Surrogate	101%	99.8%	-	-
Dibromofluoromethane	Surrogate	72.7%	67.2%	-	-
Toluene-d8	Surrogate	93.6%	96.1%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	10 ug/g dry	<10 [2]	<10 [2]	-	-
F2 PHCs (C10-C16)	10 ug/g dry	<10	<10	-	-
F3 PHCs (C16-C34)	10 ug/g dry	<10	<10	-	-
F4 PHCs (C34-C50)	10 ug/g dry	<10	<10	-	-
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	<0.02	<0.02	-	-
Acenaphthylene	0.02 ug/g dry	<0.02	<0.02	-	-
Anthracene	0.02 ug/g dry	<0.02	<0.02	-	-
Benzo [a] anthracene	0.02 ug/g dry	0.02	<0.02	-	-
Benzo [a] pyrene	0.02 ug/g dry	0.02	<0.02	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	0.02	<0.02	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	<0.02	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	<0.02	-	-
Biphenyl	0.02 ug/g dry	<0.02	<0.02	-	-
Chrysene	0.02 ug/g dry	0.02	<0.02	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	<0.02	-	-
Fluoranthene	0.02 ug/g dry	0.04	<0.02	-	-
Fluorene	0.02 ug/g dry	<0.02	<0.02	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	<0.02	-	-
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	-	-
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	<0.04	-	-
Naphthalene	0.02 ug/g dry	<0.02	<0.02	-	-
Phenanthrene	0.02 ug/g dry	0.02	<0.02	-	-
Pyrene	0.02 ug/g dry	0.03	<0.02	-	-
		I OTTAWA	N.T.A.G.A.R.A		

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3



### Certificate of Analysis

Report Date: 06-Jun-2011 Order Date: 30-May-2011

Client: Golder Associates Ltd. (Ottawa)

Client PO:		Project Description	on: 10-1121-0222		
	Client ID:	T72-SA1	T72-SA4	-	-
	Sample Date:	19-May-11	19-May-11	-	-
	Sample ID:	1123066-01	1123066-02	-	-
	MDL/Units	Soil	Soil	-	-
Semi-Volatiles (continued)					
2-Fluorobiphenyl	Surrogate	46.8%	93.1%	-	-
Terphenyl-d14	Surrogate	77.5%	108%	-	-



### Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 10-1121-0222

### Report Date: 06-Jun-2011 Order Date: 30-May-2011

### Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
, many to	resuit	LIIIII	Units	Result	70KEC	LIIIII	KFD	LIIIII	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	10	ug/g						
F2 PHCs (C10-C16)	ND	10	ug/g						
F3 PHCs (C16-C34)	ND	10	ug/g						
F4 PHCs (C34-C50)	ND	10	ug/g						
Metals									
Antimony	ND	1	ug/g						
Arsenic	ND	1	ug/g						
Barium	ND	1	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.4	ug/g						
Chromium	ND	5	ug/g						
Cobalt	ND	1	ug/g						
Copper	ND	5	ug/g						
Lead	ND	1	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1	ug/g						
Nickel	ND	5	ug/g						
Selenium	ND	1	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1	ug/g						
Uranium	ND	1	ug/g						
Vanadium	ND	10	ug/g ug/g						
Zinc	ND	20	ug/g ug/g						
	112	20	49/9						
Semi-Volatiles	ND	0.00	/						
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Biphenyl	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.02	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Fluorobiphenyl	1.31	0.01	ug/g		98.1	32-156			
Surrogate: Terphenyl-d14	1.11	0.01	ug/g		82.9	39-146			

OTTAWA



### Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 10-1121-0222

### Report Date: 06-Jun-2011 Order Date:30-May-2011

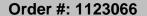
Method Quality Control: Blank  Reporting Source %REC RPD									
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Volatiles									
Acetone	ND	0.5	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroethane	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
Chloromethane	ND	0.2	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
,2-Dibromoethane	ND	0.05	ug/g						
I,2-Dichlorobenzene	ND	0.05	ug/g						
,3-Dichlorobenzene	ND	0.05	ug/g						
,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
sis-1,2-Dichloroethylene	ND	0.05	ug/g						
rans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloroethylene, total	ND	0.05	ug/g ug/g						
,2-Dichloropropane	ND	0.05	ug/g ug/g						
is-1,3-Dichloropropylene	ND ND	0.05	ug/g ug/g						
rans-1,3-Dichloropropylene	ND	0.05							
,3-Dichloropropene, total	ND ND	0.05	ug/g						
	ND ND	0.05	ug/g						
Ethylbenzene Hexane	ND ND	0.05	ug/g						
			ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.5	ug/g						
Methyl Butyl Ketone (2-Hexanone)	ND	2.0	ug/g						
Methyl Isobutyl Ketone	ND	0.5	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
,2,4-Trichlorobenzene	ND	0.05	ug/g						
,1,1-Trichloroethane	ND	0.05	ug/g						
,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
richlorofluoromethane	ND	0.05	ug/g						
,3,5-Trimethylbenzene	ND	0.05	ug/g						
inyl chloride	ND	0.02	ug/g						
n,p-Xylenes	ND	0.05	ug/g						
-Xylene	ND	0.05	ug/g						
(ylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	3.23		ug/g		101	50-140			

OTTAWA



### Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)


Client PO: Project Description: 10-1121-0222

Report Date: 06-Jun-2011 Order Date: 30-May-2011

### Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: Dibromofluoromethane	3.34		ug/g		104	50-140			
Surrogate: Toluene-d8	3.12		ug/g		97.4	50-140			

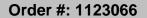
NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3





Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 10-1121-0222


Report Date: 06-Jun-2011

Order Date:30-May-2011

	Method Quality Control: Do	uplicate								
Fi   PHCs (CR-C10)	Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Fi   PHCs (C6-C10)	Hydrocarbons									
F3 PHCs (C16-C34)		ND	10	ug/g dry	ND				40	
Metals   M	F2 PHCs (C10-C16)	ND	10	ug/g dry	ND				50	
Metals         Antimony         ND         1         ug/g dry         ND         1.11.7         36           Arsenic         3.4         1         ug/g dry         3.1         11.7         35           Barlum         94.6         1         ug/g dry         98.2         3.7         34           Beryllum         ND         0.5         ug/g dry         ND         25           Boron         7.7         5.0         ug/g dry         5.9         26.8         33           Cadmium         ND         0.5         ug/g dry         ND         35         GEN02           Chromium (VI)         ND         3.0         ug/g dry         ND         3.2         32           Chromium (VI)         ND         3.0         ug/g dry         ND         3.2         32           Chromium (VI)         ND         3.0         ug/g dry         ND         3.2         32           Chromium (VI)         ND         3.0         ug/g dry         ND         4.1         3.2         32           Chromium (VI)         1.1         1.2         1.2         1.4         4.7         2.5         32         1.2         1.4         4.7         1.2 <td>F3 PHCs (C16-C34)</td> <td>50</td> <td>10</td> <td></td> <td>54</td> <td></td> <td></td> <td>8.2</td> <td>50</td> <td></td>	F3 PHCs (C16-C34)	50	10		54			8.2	50	
Antimony ND 1 Ug/g dry ND 26 Arrenic 3.4 1 Ug/g dry 98.2 3.1 11.7 25 Baríum 94.6 1 Ug/g dry 98.2 3.7 34 Arrenic 3.4 1 Ug/g dry 98.2 3.7 34 Baríum 94.6 1 Ug/g dry 98.2 3.7 34 Baríum 94.6 1 Ug/g dry 98.2 3.7 34 Baríum 94.6 1 Ug/g dry ND 26.8 33 Cadmium ND 0.5 Ug/g dry ND 26.8 33 Cadmium ND 0.5 Ug/g dry ND 3.5 Cadmium (VI) ND 0.5 Ug/g dry ND 3.5 CENO2 Chromium (VI) ND 0.5 Ug/g dry ND 3.5 CENO2 Chromium (VI) ND 0.5 Ug/g dry ND 3.5 CENO2 Chromium (VI) ND 0.5 Ug/g dry ND 3.5 CENO2 Chromium (VI) ND 0.5 Ug/g dry ND 3.5 CENO2 Chromium (VI) ND 0.5 Ug/g dry ND 3.5 CENO2 Chromium (VI) ND 0.11 Ug/g dry 6.8 4.5 32 CENO2 Choat 6.5 1 Ug/g dry 17.7 2.5 32 CENO2 Choat 6.5 1 Ug/g dry 17.7 2.5 32 CENO2 Choat 6.5 1 Ug/g dry 17.7 2.5 32 CENO2 Choat 1 Ug/g dry ND 2.2 CENO2 CENO2 ND 11.2 CENO2 ND 11.2 Ug/g dry ND 2.2 CENO2 ND 11.2 CENO2 ND 11.2 Ug/g dry ND 2.2 CENO2 ND 11.2 CENO2 N	F4 PHCs (C34-C50)	61	10	ug/g dry	68			11.1	50	
Arsenic 3.4 1 ug/g dry 3.1 1.7 35 Barium 94.6 1 ug/g dry 98.2 3.7 34 Barium 94.6 1 ug/g dry 98.2 3.7 34 Septillum ND 0.5 ug/g dry ND 25 Boron 7.7 5.0 ug/g dry ND 25 Boron 7.7 5.0 ug/g dry ND 3.3 38 Chromium ND 0.5 ug/g dry ND 3.3 38 Chromium (VI) ND 0.5 ug/g dry ND 3.3 38 Chromium (VI) ND 0.5 ug/g dry ND 3.5 GEN02 Chromium (VI) ND 3.0 ug/g dry ND 3.5 GEN02 Chromium (VI) ND 3.0 ug/g dry ND 3.5 GEN02 Chromium (VI) ND 3.0 ug/g dry ND 3.5 GEN02 Chromium (VI) ND 3.0 ug/g dry ND 3.5 GEN02 Chromium (VI) ND 3.0 ug/g dry ND 3.5 GEN02 Coper 17.3 5 ug/g dry 17.7 2.5 32 Coper 17.3 5 ug/g dry 17.7 2.5 32 Coper 17.3 5 ug/g dry ND 29 ND 28 ND	Metals									
Barium         94.6         1         ug/g dry         98.2         3.7         34           Beryllium         ND         0.5         ug/g dry         ND         25           Boron         7.7         5.0         ug/g dry         ND         33           Cadmium         ND         0.5         ug/g dry         ND         33           Chromium (VI)         ND         3.0         ug/g dry         25.1         3.2         35           Chromium         24.3         5         ug/g dry         25.1         3.2         32           Cobalt         6.5         1         ug/g dry         17.7         2.5         32           Cobalt         6.5         1         ug/g dry         17.7         2.5         32           Lead         31.2         1         ug/g dry         0.12         7.1         35           Mercury         0.113         0.1         ug/g dry         0.121         7.1         35           Selenium         1.8         1         ug/g dry         ND         4.7         29           Silver         ND         0.3         ug/g dry         ND         27           Vanadium	Antimony	ND	1	ug/g dry	ND				26	
Beryllium	Arsenic	3.4	1	ug/g dry	3.1			11.7	35	
Boron   7,7   5,0   ug/g dry   5,9   26,8   33   Cadmium   ND   0,5   ug/g dry   ND   33   33   Chromium   (VI)   ND   3,0   ug/g dry   ND   35   GEN02   Chromium   (VI)   ND   3,0   ug/g dry   ND   35   GEN02   Chromium   24,3   5   ug/g dry   25,1   3,2   32   Cobalt   6,5   1   ug/g dry   6,8   4,5   32   Copper   17,3   5   ug/g dry   17,7   2,5   32   Lead   31,2   1   ug/g dry   0,121   7,1   35   Molybdenum   1,9   1   ug/g dry   0,121   7,1   35   Molybdenum   1,9   1   ug/g dry   ND   29   Mickel   16,1   5   ug/g dry   ND   28   Selenium   1,8   1   ug/g dry   ND   28   Selenium   1,8   1   ug/g dry   ND   28   Selenium   ND   1   ug/g dry   ND   27   Vanadium   ND   1   ug/g dry   ND   27   Vanadium   32,1   10   ug/g dry   ND   27   Vanadium   32,1   10   ug/g dry   ND   27   Vanadium   32,1   10   ug/g dry   33,2   3,6   27   Vanadium   32,1   10   ug/g dry   33,2   3,6   27   Vanadium   32,1   10   ug/g dry   33,2   3,6   27   Vanadium   32,1   10   ug/g dry   ND   50   Vanadium   50   V	Barium	94.6	1	ug/g dry	98.2			3.7	34	
Cadmium         ND         0.5         ug/g dry         ND         33         GEND2           Chromium (VI)         ND         3.0         ug/g dry         ND         35         GEND2           Chromium         24.3         5         ug/g dry         25.1         3.2         32           Cobalt         6.5         1         ug/g dry         6.8         4.5         32           Copper         17.3         5         ug/g dry         16.8         4.5         32           Lead         31.2         1         ug/g dry         16.6         1.2         44           Mercury         0.113         0.1         ug/g dry         0.121         7.1         35           Molybdenum         1.9         1         ug/g dry         ND         29           Nickel         16.1         5         ug/g dry         ND         28           Selenium         1.8         1         ug/g dry         ND         28           Silver         ND         0.3         ug/g dry         ND         27           Uranium         ND         1         ug/g dry         ND         27           Vanadium         32.1	Beryllium	ND	0.5	ug/g dry	ND				25	
Chromium (VI)	Boron	7.7	5.0	ug/g dry	5.9			26.8	33	
Chromium         24.3         5         ug'g dry         25.1         3.2         32           Cobalt         6.5         1         ug'g dry         6.8         4.5         32           Copper         17.3         5         ug'g dry         17.7         2.5         32           Lead         31.2         1         ug'g dry         31.6         1.2         44           Mercury         0.113         0.1         ug'g dry         0.121         7.1         35           Molybdenum         1.9         1         ug'g dry         0.12         7.1         35           Molybdenum         1.9         1         ug'g dry         ND         29           Nickel         16.1         5         ug'g dry         ND         28           Selenium         1.8         1         ug'g dry         ND         28           Silver         ND         0.3         ug'g dry         ND         28           Thallium         ND         1         ug'g dry         ND         27           Vanadium         32.1         10         ug'g dry         ND         27           Zinc         37.7         20         ug'g dry	Cadmium	ND	0.5	ug/g dry					33	
Cobalt         6.5         1         ug/g dry         6.8         4.5         32           Copper         17.3         5         ug/g dry         17.7         2.5         32           Lead         31.2         1         ug/g dry         17.1         2.5         32           Mercury         0.113         0.1         ug/g dry         0.121         7.1         35           Molybdenum         1.9         1         ug/g dry         ND         29           Nickel         16.1         5         ug/g dry         ND         28           Sleenium         1.8         1         ug/g dry         ND         28           Sliver         ND         0.3         ug/g dry         ND         28           Thallium         ND         1         ug/g dry         ND         27           Varadium         32.1         10         ug/g dry         33.2         3.6         27           Vanadium         32.1         10         ug/g dry         33.2         3.6         27           Vanadium         32.1         10         ug/g dry         33.2         3.6         27           Solids         94.0         0.										GEN02
Copper         17.3         5         ug/g dry         17.7         2.5         32           Lead         31.2         1         ug/g dry         31.6         1.2         44           Mercury         0.113         0.1         ug/g dry         0.121         7.1         35           Molybdenum         1.9         1         ug/g dry         ND         29           Nickel         16.1         5         ug/g dry         ND         28           Selenium         1.8         1         ug/g dry         ND         28           Silver         ND         0.3         ug/g dry         ND         28           Thallium         ND         1         ug/g dry         ND         28           Thallium         ND         1         ug/g dry         ND         27           Vanadium         32.1         10         ug/g dry         ND         27           Vanadium         32.1         10         ug/g dry         ND         25           Physical Characteristics         2         2         2         2           % Solids         94.0         0.1         % by Wt.         93.9         0.2         25 <td>Chromium</td> <td></td> <td>5</td> <td>ug/g dry</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Chromium		5	ug/g dry						
Lead         31.2         1         ug/g dry         31.6         1.2         44           Mercury         0.113         0.1         ug/g dry         0.121         7.1         35           Molybdenum         1.9         1         ug/g dry         ND         29           Nickel         16.1         5         ug/g dry         ND         28           Selenium         1.8         1         ug/g dry         ND         28           Silver         ND         0.3         ug/g dry         ND         28           Thallium         ND         1         ug/g dry         ND         27           Uranium         ND         1         ug/g dry         ND         27           Vanadium         32.1         10         ug/g dry         ND         27           Vanadium         32.1         10         ug/g dry         ND         27           Physical Characteristics           % Solids         94.0         0.1         % by Wt.         93.9         0.2         25           Semi-Volatiles           Acenaphthene         ND         0.02         ug/g dry         ND         50	Cobalt									
Mercury         0.113         0.1         ug/g dry         0.121         7.1         35           Molybdenum         1.9         1         ug/g dry         ND         29           Nickel         16.1         5         ug/g dry         ND         28           Selenium         1.8         1         ug/g dry         ND         28           Silver         ND         0.3         ug/g dry         ND         28           Thallium         ND         1         ug/g dry         ND         27           Uranium         ND         1         ug/g dry         ND         27           Vanadium         32.1         10         ug/g dry         ND         27           Vanadium         32.1         10         ug/g dry         ND         27           Physical Characteristics         37.7         20         ug/g dry         42.0         10.8         27           Physical Characteristics         8         94.0         0.1         % by Wt.         93.9         0.2         25           Semi-Volatiles         4         0         0.1         % by Wt.         93.9         0.2         25           Semi-Volatiles										
Molybdenum         1.9         1         ug/g dry         ND         29           Nickel         16.1         5         ug/g dry         16.9         4.7         29           Selenium         1.8         1         ug/g dry         ND         28           Silver         ND         0.3         ug/g dry         ND         28           Thallium         ND         1         ug/g dry         ND         27           Uranium         ND         1         ug/g dry         ND         27           Vanadium         32.1         10         ug/g dry         33.2         3.6         27           Zinc         37.7         20         ug/g dry         42.0         10.8         27           Physical Characteristics           % Solids         94.0         0.1         % by Wt.         93.9         0.2         25           Semi-Volatiles           Acenaphthene         ND         0.02         ug/g dry         ND         50           Acenaphthylalene         ND         0.02         ug/g dry         ND         50           Acenaphthylalene         ND         0.02         ug/g dry         ND										
Nickel 16.1 5 ug/g dry 16.9 4.7 29 Selenium 1.8 1 ug/g dry ND 28 Silver ND 0.3 ug/g dry ND 28 Thallium ND 1 ug/g dry ND 27 Uranium 32.1 10 ug/g dry 33.2 3.6 27 Zinc 37.7 20 ug/g dry 42.0 10.8 27  Physical Characteristics % Solids 94.0 0.1 % by Wt. 93.9 0.2 25  Semi-Volatiles Acenaphthene ND 0.02 ug/g dry ND 50 Acenaphthylene ND 0.02 ug/g dry ND 50 Anthracene ND 0.02 ug/g dry ND 50 Benzo [a] anthracene ND 0.02 ug/g dry ND 50 Benzo [a] anthracene ND 0.02 ug/g dry ND 50 Benzo [a] pyrene ND 0.02 ug/g dry ND 50 Benzo [b] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [a] pyrene ND 0.02 ug/g dry ND 50 Benzo [b] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02 ug/g dry ND 50 Benzo [k] fluoranthene ND 0.02	•							7.1		
Selenium         1.8         1         ug/g dry         ND         28           Silver         ND         0.3         ug/g dry         ND         28           Thallium         ND         1         ug/g dry         ND         27           Uranium         ND         1         ug/g dry         ND         27           Vanadium         32.1         10         ug/g dry         33.2         3.6         27           Zinc         37.7         20         ug/g dry         42.0         10.8         27           Physical Characteristics           % Solids         94.0         0.1         % by Wt.         93.9         0.2         25           Semi-Volatiles           Acenaphthene         ND         0.02         ug/g dry         ND         50           Benzo [a] anthracene         ND         0.02         ug/g dry         ND         50										
Silver         ND         0.3         ug/g dry         ND         28           Thallium         ND         1         ug/g dry         ND         27           Uranium         ND         1         ug/g dry         ND         27           Vanadium         32.1         10         ug/g dry         42.0         10.8         27           Zinc         37.7         20         ug/g dry         42.0         10.8         27           Physical Characteristics           % Solids         94.0         0.1         % by Wt.         93.9         0.2         25           Semi-Volatiles           Acenaphthene         ND         0.02         ug/g dry         ND         50           Acenaphthylene         ND         0.02         ug/g dry         ND         50           Acenaphthylene         ND         0.02         ug/g dry         ND         50           Acenaphthylene         ND         0.02         ug/g dry         ND         50           Benzo [a] anthracene         ND         0.02         ug/g dry         ND         50           Benzo [a] pyrene         ND         0.02         ug/g dry         ND								4.7		
Thallium         ND         1         ug/g dry         ND         27           Uranium         ND         1         ug/g dry         ND         27           Vanadium         32.1         10         ug/g dry         33.2         3.6         27           Zinc         37.7         20         ug/g dry         42.0         10.8         27           Physical Characteristics           % Solids         94.0         0.1         % by Wt.         93.9         0.2         25           Semi-Volatiles           Acenaphthene         ND         0.02         ug/g dry         ND         50           Acenaphthylene         ND         0.02         ug/g dry         ND         50           Acenaphthylene         ND         0.02         ug/g dry         ND         50           Anthracene         ND         0.02         ug/g dry         ND         50           Benzo [a] anthracene         ND         0.02         ug/g dry         ND         50           Benzo [b] fluoranthene         ND         0.02         ug/g dry         ND         50           Benzo [k] fluoranthene         ND         0.02         ug/g dry										
Uranium         ND         1         ug/g dry         ND         27           Vanadium         32.1         10         ug/g dry         33.2         3.6         27           Zinc         37.7         20         ug/g dry         42.0         10.8         27           Physical Characteristics           % Solids         94.0         0.1         % by Wt.         93.9         0.2         25           Semi-Volatiles           Acenaphthene         ND         0.02         ug/g dry         ND         50           Acenaphthylene         ND         0.02         ug/g dry         ND         50           Acenaphthylene         ND         0.02         ug/g dry         ND         50           Anthracene         ND         0.02         ug/g dry         ND         50           Benzo [a] anthracene         ND         0.02         ug/g dry         ND         50           Benzo [a] pyrene         ND         0.02         ug/g dry         ND         50           Benzo [a] pyrene         ND         0.02         ug/g dry         ND         50           Benzo [a], hij perylene         0.033         0.02         ug/g dry<										
Vanadium         32.1         10         ug/g dry         33.2         3.6         27           Physical Characteristics           % Solids         94.0         0.1         % by Wt.         93.9         0.2         25           Semi-Volatiles           Acenaphthene         ND         0.02         ug/g dry         ND         50           Acenaphthylene         ND         0.02         ug/g dry         ND         50           Acnaphthylene         ND         0.02         ug/g dry         ND         50           Anthracene         ND         0.02         ug/g dry         ND         50           Benzo [a] anthracene         ND         0.02         ug/g dry         ND         50           Benzo [a] pyrene         ND         0.02         ug/g dry         ND         50           Benzo [a] pyrene         ND         0.02         ug/g dry         ND         50           Benzo [a] pyrene         ND         0.02         ug/g dry         ND         50           Benzo [a] pyrene         ND         0.02         ug/g dry         ND         50           Benzo [a] hil duoranthene         ND         0.02         ug/g dry <td></td>										
Zinc   37.7   20   ug/g dry   42.0   10.8   27										
Physical Characteristics   94.0   0.1   % by Wt.   93.9   0.2   25										
% Solids         94.0         0.1         % by Wt.         93.9         0.2         25           Semi-Volatiles           Acenaphthene         ND         0.02         ug/g dry         ND         50           Acenaphthylene         ND         0.02         ug/g dry         ND         50           Anthracene         ND         0.02         ug/g dry         ND         50           Benzo [a] anthracene         ND         0.02         ug/g dry         ND         50           Benzo [a] pyrene         ND         0.02         ug/g dry         ND         50           Benzo [b] fluoranthene         ND         0.02         ug/g dry         ND         50           Benzo [k] fluoranthene         ND         0.02         ug/g dry         ND         50           Benzo [k] fluoranthene         ND         0.02         ug/g dry         ND         50           Benzo [k] fluoranthene         ND         0.02         ug/g dry         ND         50           Benzo [a, h] anthracene         ND         0.02         ug/g dry         ND         50           Dibenzo [a, h] anthracene         ND         0.02         ug/g dry         ND         50		37.7	20	ug/g dry	42.0			10.8	27	
Semi-Volatiles           Acenaphthene         ND         0.02         ug/g dry         ND         50           Acenaphthylene         ND         0.02         ug/g dry         ND         50           Anthracene         ND         0.02         ug/g dry         ND         50           Benzo [a] anthracene         ND         0.02         ug/g dry         ND         50           Benzo [a] pyrene         ND         0.02         ug/g dry         ND         50           Benzo [b] fluoranthene         ND         0.02         ug/g dry         ND         50           Benzo [b, i] perylene         ND         0.02         ug/g dry         ND         50           Benzo [k] fluoranthene         ND         0.02         ug/g dry         ND         50           Benzo [k] fluoranthene         ND         0.02         ug/g dry         ND         50           Benzo [k] fluoranthene         ND         0.02         ug/g dry         ND         50           Benzo [k] fluoranthene         ND         0.02         ug/g dry         ND         50           Chrysene         ND         0.02         ug/g dry         ND         50           Dibenzo [a,h] anthrac										
Acenaphthene       ND       0.02       ug/g dry       ND       50         Acenaphthylene       ND       0.02       ug/g dry       ND       50         Anthracene       ND       0.02       ug/g dry       ND       50         Benzo [a] anthracene       ND       0.02       ug/g dry       ND       50         Benzo [a] pyrene       ND       0.02       ug/g dry       ND       50         Benzo [b] fluoranthene       ND       0.02       ug/g dry       ND       50         Benzo [g,h,i] perylene       0.033       0.02       ug/g dry       ND       50         Benzo [k] fluoranthene       ND       0.02       ug/g dry       ND       50         Benzo [k] fluoranthene       ND       0.02       ug/g dry       ND       50         Benzo [k] fluoranthene       ND       0.02       ug/g dry       ND       50         Biphenyl       ND       0.02       ug/g dry       ND       50         Chrysene       ND       0.02       ug/g dry       ND       50         Dibenzo [a,h] anthracene       ND       0.02       ug/g dry       ND       50         Fluorene       ND       0.02 <td< td=""><td></td><td>94.0</td><td>0.1</td><td>% by Wt.</td><td>93.9</td><td></td><td></td><td>0.2</td><td>25</td><td></td></td<>		94.0	0.1	% by Wt.	93.9			0.2	25	
Acenaphthylene         ND         0.02         ug/g dry         ND         50           Anthracene         ND         0.02         ug/g dry         ND         50           Benzo [a] anthracene         ND         0.02         ug/g dry         ND         50           Benzo [a] pyrene         ND         0.02         ug/g dry         ND         50           Benzo [b] fluoranthene         ND         0.02         ug/g dry         ND         50           Benzo [g,h,i] perylene         0.033         0.02         ug/g dry         ND         50           Benzo [k] fluoranthene         ND         0.02         ug/g dry         ND         50           Benzo [k] fluoranthene         ND         0.02         ug/g dry         ND         50           Benzo [k] fluoranthene         ND         0.02         ug/g dry         ND         50           Biphenyl         ND         0.02         ug/g dry         ND         50           Chrysene         ND         0.02         ug/g dry         ND         50           Dibenzo [a,h] anthracene         ND         0.02         ug/g dry         ND         50           Fluorene         ND         0.02         ug										
Anthracene         ND         0.02         ug/g dry         ND         50           Benzo [a] anthracene         ND         0.02         ug/g dry         ND         50           Benzo [a] pyrene         ND         0.02         ug/g dry         ND         50           Benzo [b] fluoranthene         ND         0.02         ug/g dry         ND         50           Benzo [g,h,i] perylene         0.033         0.02         ug/g dry         ND         50           Benzo [k] fluoranthene         ND         0.02         ug/g dry         ND         50           Benzo [k] fluoranthene         ND         0.02         ug/g dry         ND         50           Biphenyl         ND         0.02         ug/g dry         ND         50           Chrysene         ND         0.02         ug/g dry         ND         50           Dibenzo [a,h] anthracene         ND         0.02         ug/g dry         ND         50           Fluoranthene         0.036         0.02         ug/g dry         ND         50           Fluorene         ND         0.02         ug/g dry         ND         50           Indeno [1,2,3-cd] pyrene         ND         0.02 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
Benzo [a] anthracene         ND         0.02         ug/g dry         ND         50           Benzo [a] pyrene         ND         0.02         ug/g dry         ND         50           Benzo [b] fluoranthene         ND         0.02         ug/g dry         ND         50           Benzo [g,h,i] perylene         0.033         0.02         ug/g dry         ND         50           Benzo [k] fluoranthene         ND         0.02         ug/g dry         ND         50           Biphenyl         ND         0.02         ug/g dry         ND         50           Chrysene         ND         0.02         ug/g dry         ND         50           Dibenzo [a,h] anthracene         ND         0.02         ug/g dry         ND         50           Fluoranthene         0.036         0.02         ug/g dry         ND         50           Fluorene         ND         0.02         ug/g dry         ND         50           Indeno [1,2,3-cd] pyrene         ND         0.02         ug/g dry         ND         50           1-Methylnaphthalene         ND         0.02         ug/g dry         ND         50										
Benzo [a] pyrene         ND         0.02         ug/g dry         ND         50           Benzo [b] fluoranthene         ND         0.02         ug/g dry         ND         50           Benzo [g,h,i] perylene         0.033         0.02         ug/g dry         0.024         31.4         50           Benzo [k] fluoranthene         ND         0.02         ug/g dry         ND         50           Biphenyl         ND         0.02         ug/g dry         ND         50           Chrysene         ND         0.02         ug/g dry         ND         50           Dibenzo [a,h] anthracene         ND         0.02         ug/g dry         ND         50           Fluoranthene         0.036         0.02         ug/g dry         ND         50           Fluorene         ND         0.02         ug/g dry         ND         50           Indeno [1,2,3-cd] pyrene         ND         0.02         ug/g dry         ND         50           1-Methylnaphthalene         ND         0.02         ug/g dry         ND         50										
Benzo [b] fluoranthene       ND       0.02       ug/g dry       ND       50         Benzo [g,h,i] perylene       0.033       0.02       ug/g dry       0.024       31.4       50         Benzo [k] fluoranthene       ND       0.02       ug/g dry       ND       50         Biphenyl       ND       0.02       ug/g dry       ND       50         Chrysene       ND       0.02       ug/g dry       ND       50         Dibenzo [a,h] anthracene       ND       0.02       ug/g dry       ND       50         Fluoranthene       0.036       0.02       ug/g dry       ND       50         Fluorene       ND       0.02       ug/g dry       ND       50         Indeno [1,2,3-cd] pyrene       ND       0.02       ug/g dry       ND       50         1-Methylnaphthalene       ND       0.02       ug/g dry       ND       50										
Benzo [g,h,i] perylene         0.033         0.02         ug/g dry         0.024         31.4         50           Benzo [k] fluoranthene         ND         0.02         ug/g dry         ND         50           Biphenyl         ND         0.02         ug/g dry         ND         50           Chrysene         ND         0.02         ug/g dry         ND         50           Dibenzo [a,h] anthracene         ND         0.02         ug/g dry         ND         50           Fluoranthene         0.036         0.02         ug/g dry         ND         50           Fluorene         ND         0.02         ug/g dry         ND         50           Indeno [1,2,3-cd] pyrene         ND         0.02         ug/g dry         ND         50           1-Methylnaphthalene         ND         0.02         ug/g dry         ND         50										
Benzo [k] fluoranthene         ND         0.02         ug/g dry         ND         50           Biphenyl         ND         0.02         ug/g dry         ND         50           Chrysene         ND         0.02         ug/g dry         ND         50           Dibenzo [a,h] anthracene         ND         0.02         ug/g dry         ND         50           Fluoranthene         0.036         0.02         ug/g dry         ND         50           Fluorene         ND         0.02         ug/g dry         ND         50           Indeno [1,2,3-cd] pyrene         ND         0.02         ug/g dry         ND         50           1-Methylnaphthalene         ND         0.02         ug/g dry         ND         50										
Biphenyl         ND         0.02         ug/g dry         ND         50           Chrysene         ND         0.02         ug/g dry         ND         50           Dibenzo [a,h] anthracene         ND         0.02         ug/g dry         ND         50           Fluoranthene         0.036         0.02         ug/g dry         ND         50           Fluorene         ND         0.02         ug/g dry         ND         50           Indeno [1,2,3-cd] pyrene         ND         0.02         ug/g dry         ND         50           1-Methylnaphthalene         ND         0.02         ug/g dry         ND         50								31.4		
Chrysene         ND         0.02         ug/g dry         ND         50           Dibenzo [a,h] anthracene         ND         0.02         ug/g dry         ND         50           Fluoranthene         0.036         0.02         ug/g dry         ND         50           Fluorene         ND         0.02         ug/g dry         ND         50           Indeno [1,2,3-cd] pyrene         ND         0.02         ug/g dry         ND         50           1-Methylnaphthalene         ND         0.02         ug/g dry         ND         50										
Dibenzo [a,h] anthracene         ND         0.02         ug/g dry         ND         50           Fluoranthene         0.036         0.02         ug/g dry         ND         50           Fluorene         ND         0.02         ug/g dry         ND         50           Indeno [1,2,3-cd] pyrene         ND         0.02         ug/g dry         ND         50           1-Methylnaphthalene         ND         0.02         ug/g dry         ND         50										
Fluoranthene         0.036         0.02         ug/g dry         ND         50           Fluorene         ND         0.02         ug/g dry         ND         50           Indeno [1,2,3-cd] pyrene         ND         0.02         ug/g dry         ND         50           1-Methylnaphthalene         ND         0.02         ug/g dry         ND         50	-									
Fluorene         ND         0.02         ug/g dry         ND         50           Indeno [1,2,3-cd] pyrene         ND         0.02         ug/g dry         ND         50           1-Methylnaphthalene         ND         0.02         ug/g dry         ND         50										
Indeno [1,2,3-cd] pyrene         ND         0.02         ug/g dry         ND         50           1-Methylnaphthalene         ND         0.02         ug/g dry         ND         50										
1-Methylnaphthalene ND 0.02 ug/g dry ND 50										
z-ivietnyinadntnaiene ND U.UZ U@/@ drv ND 50										
Naphthalene ND 0.02 ug/g dry ND 50										

300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA





Client: Golder Associates Ltd. (Ottawa)

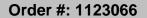
Client PO: Project Description: 10-1121-0222 Report Date: 06-Jun-2011

Order Date:30-May-2011

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Phenanthrene	ND	0.02	ug/g dry	ND				50	
Pyrene	0.023	0.02	ug/g dry	ND				50	
Surrogate: 2-Fluorobiphenyl	1.40	0.01	ug/g dry	ND	98.1	32-156			
Surrogate: Terphenyl-d14	0.903	0.01	ug/g dry	ND	63.1	39-146			
Volatiles									
Acetone	ND	0.5	ug/g dry	ND				50	
Benzene	ND	0.02	ug/g dry	ND				50	
Bromodichloromethane	ND	0.05	ug/g dry	ND				50	
Bromoform	ND	0.05	ug/g dry	ND				50	
Bromomethane	ND	0.05	ug/g dry	ND				50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND				50	
Chlorobenzene	ND	0.05	ug/g dry	ND				50	
Chloroethane	ND	0.05	ug/g dry	ND				50	
Chloroform	ND	0.05	ug/g dry	ND				50	
Chloromethane	ND	0.2	ug/g dry	ND				50	
Dibromochloromethane	ND	0.05	ug/g dry	ND				50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND				50	
,2-Dibromoethane	ND	0.05	ug/g dry	ND				50	
,2-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
,3-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
,4-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
,1-Dichloroethane	ND	0.05	ug/g dry	ND				50	
,2-Dichloroethane	ND	0.05	ug/g dry	ND				50	
,1-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
sis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
rans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
,2-Dichloropropane	ND	0.05	ug/g dry	ND				50	
sis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
rans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Hexane	ND	0.05	ug/g dry	ND				50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.5	ug/g dry	ND				50	
Methyl Butyl Ketone (2-Hexanone)	ND	2.0	ug/g dry	ND				50	
Nethyl Isobutyl Ketone	ND	0.5	ug/g dry	ND				50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND				50	
Methylene Chloride	ND	0.05	ug/g dry	ND				50	
Styrene	ND	0.05	ug/g dry	ND				50	
,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
etrachloroethylene	ND	0.05	ug/g dry	ND				50	
oluene	ND	0.05	ug/g dry	ND				50	
,2,4-Trichlorobenzene	ND	0.05	ug/g dry	ND				50	
,1,1-Trichloroethane	ND	0.05	ug/g dry	ND				50	
,1,2-Trichloroethane	ND	0.05	ug/g dry	ND				50	
richloroethylene	ND	0.05	ug/g dry	ND				50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND				50	
,3,5-Trimethylbenzene	ND	0.05	ug/g dry	ND				50	



### Certificate of Analysis


Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 10-1121-0222 Report Date: 06-Jun-2011

Order Date:30-May-2011

Method Quality Control: Duplicate										
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes	
Vinyl chloride	ND	0.02	ug/g dry	ND				50		
m,p-Xylenes	ND	0.05	ug/g dry	ND				50		
o-Xylene	ND	0.05	ug/g dry	ND				50		
Surrogate: 4-Bromofluorobenzene	4.40		ug/g dry	ND	104	50-140				
Surrogate: Dibromofluoromethane	3.70		ug/g dry	ND	87.1	50-140				
Surrogate: Toluene-d8	3.99		ug/g dry	ND	93.9	50-140				

OTTAWA



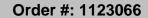


Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 10-1121-0222 Report Date: 06-Jun-2011

Order Date:30-May-2011

Method Quality Control: Spike	)								
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	210	10	ug/g	ND	105	80-120			
F2 PHCs (C10-C16)	50	10	ug/g	ND	62.5	61-129			
F3 PHCs (C16-C34)	154	10	ug/g	ND	77.0	61-129			
F4 PHCs (C34-C50)	120	10	ug/g	ND	100	61-129			
Metals									
Antimony	47.0		ug/L	ND	93.9	80-120			
Arsenic	44.1		ug/L	ND	88.1	80-120			
Barium	42.8		ug/L	ND	85.7	80-120			
Beryllium	42.2		ug/L	ND	84.5	80-120			
Boron	41.1		ug/L	ND	82.3	80-120			
Cadmium	43.4		ug/L	ND	86.8	80-120			
Chromium (VI)	4.9	0.4	ug/g	ND	98.0	89-123			
Chromium	46.3		ug/L	ND	92.6	80-120			
Cobalt	46.7		ug/L	ND	93.4	80-120			
Copper	46.2		ug/L	ND	92.4	80-120			
Lead	46.0		ug/L	ND	92.1	80-120			
Mercury	1.67	0.1	ug/g	ND	111	72-128			
Molybdenum	45.5		ug/L	ND	91.1	80-120			
Nickel	46.5		ug/L	ND	93.0	80-120			
Selenium	40.6		ug/L	ND	81.3	80-120			
Silver	42.8		ug/L	ND	85.5	80-120			
Thallium	48.0		ug/L	ND	96.0	80-120			
Uranium	44.5		ug/L	ND	89.0	80-120			
Vanadium	45.0		ug/L	ND	90.1	80-120			
Zinc	41.2		ug/L	ND	82.3	80-120			
Semi-Volatiles									
Acenaphthene	0.115	0.02	ug/g	ND	69.0	31-121			
Acenaphthylene	0.122	0.02	ug/g	ND	73.3	26-124			
Anthracene	0.121	0.02	ug/g	ND	72.9	29-128			
Benzo [a] anthracene	0.106	0.02	ug/g	ND	63.8	29-129			
Benzo [a] pyrene	0.121	0.02	ug/g	ND	72.3	29-111			
Benzo [b] fluoranthene	0.095	0.02	ug/g	ND	56.8	26-111			
Benzo [g,h,i] perylene	0.095	0.02	ug/g	ND	56.7	23-128			
Benzo [k] fluoranthene	0.119	0.02	ug/g	ND	71.2	23-135			
Biphenyl	0.117	0.02	ug/g	ND	70.1	31-107			
Chrysene	0.124	0.02	ug/g	ND	74.3	28-136			
Dibenzo [a,h] anthracene	0.110	0.02	ug/g	ND	65.9	20-131			
Fluoranthene	0.097	0.02	ug/g	ND	58.1	24-131			
Fluorene	0.105	0.02	ug/g	ND	63.0	28-123			
Indeno [1,2,3-cd] pyrene	0.120	0.02	ug/g	ND	72.1	20-128			
1-Methylnaphthalene	0.137	0.02	ug/g	ND	82.2	24-127			
2-Methylnaphthalene	0.123	0.02	ug/g	ND	73.6	21-127			
Naphthalene	0.125	0.02	ug/g	ND	75.3	29-118			
Phenanthrene	0.100	0.02	ug/g	ND	60.0	34-108			
Pyrene	0.082	0.02	ug/g	ND	49.3	29-131			
Surrogate: 2-Fluorobiphenyl	1.23	0.01	ug/g		92.0	32-156			


P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3





Client: Golder Associates Ltd. (Ottawa)

Project Description: 10-1121-0222

Report Date: 06-Jun-2011

Order Date:30-May-2011

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: Terphenyl-d14	1.23	0.01	ug/g		92.3	39-146			
Volatiles									
Acetone	7.8	0.5	ug/g	ND	78.0	50-140			
Benzene	4.1	0.02	ug/g	ND	103	60-130			
Bromodichloromethane	3.5	0.05	ug/g	ND	88.5	60-130			
Bromoform	ND	0.05	ug/g	ND		60-130			
Bromomethane	3.4	0.05	ug/g	ND	84.0	50-140			
Carbon Tetrachloride	3.8	0.05	ug/g	ND	96.0	60-130			
Chlorobenzene	3.5	0.05	ug/g	ND	87.9	60-130			
Chloroethane	4.5	0.05	ug/g	ND	113	50-140			
Chloroform	4.2	0.05	ug/g	ND	104	60-130			
Chloromethane	4.1	0.2	ug/g	ND	101	50-140			
Dibromochloromethane	3.5	0.05	ug/g	ND	88.0	60-130			
Dichlorodifluoromethane	4.2	0.05	ug/g	ND	105	50-140			
1,2-Dibromoethane	3.9	0.05	ug/g	ND	98.3	60-130			
1,2-Dichlorobenzene	3.7	0.05	ug/g	ND	92.8	60-130			
1,3-Dichlorobenzene	3.9	0.05	ug/g	ND	97.3	60-130			
1,4-Dichlorobenzene	3.9	0.05	ug/g	ND	96.5	60-130			
1,1-Dichloroethane	4.7	0.05	ug/g	ND	117	60-130			
1,2-Dichloroethane	4.3	0.05	ug/g	ND	106	60-130			
1,1-Dichloroethylene	3.7	0.05	ug/g	ND	92.3	60-130			
cis-1,2-Dichloroethylene	4.0	0.05	ug/g	ND	99.9	60-130			
trans-1,2-Dichloroethylene	4.6	0.05	ug/g	ND	116	60-130			
1,2-Dichloropropane	4.0	0.05	ug/g	ND	98.8	60-130			
cis-1,3-Dichloropropylene	3.4	0.05	ug/g	ND	85.4	60-130			
trans-1,3-Dichloropropylene	2.8	0.05	ug/g	ND	70.7	60-130			
Ethylbenzene	3.4	0.05	ug/g	ND	86.0	60-130			
Hexane	3.6	0.05	ug/g	ND	89.0	60-130			
Methyl Ethyl Ketone (2-Butanone)	8.3	0.5	ug/g	ND	82.7	50-140			
Methyl Butyl Ketone (2-Hexanone)	8.5	2.0	ug/g	ND	84.8	50-140			
Methyl Isobutyl Ketone	7.2	0.5	ug/g	ND	72.2	50-140			
Methyl tert-butyl ether	10.5	0.05	ug/g	ND	105	50-140			
Methylene Chloride	3.3	0.05	ug/g	ND	82.4	60-130			
Styrene	3.3	0.05	ug/g	ND	82.6	60-130			
1,1,1,2-Tetrachloroethane	4.4	0.05	ug/g	ND	109	60-130			
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g	ND		60-130			
Tetrachloroethylene	3.4	0.05	ug/g	ND	84.2	60-130			
Toluene	4.0	0.05	ug/g	ND	98.9	60-130			
1,2,4-Trichlorobenzene	3.7	0.05	ug/g	ND	91.6	60-130			
1,1,1-Trichloroethane	4.5	0.05	ug/g	ND	112	60-130			
1,1,2-Trichloroethane	3.9	0.05	ug/g	ND	96.8	60-130			
Trichloroethylene	4.1	0.05	ug/g	ND	102	60-130			
Trichlorofluoromethane	4.3	0.05	ug/g	ND	108	50-140			
1,3,5-Trimethylbenzene	4.5	0.05	ug/g	ND	112	60-130			
Vinyl chloride	3.8	0.02	ug/g ug/g	ND	96.0	50-130			
m,p-Xylenes	7.2	0.02	ug/g ug/g	ND	89.5	60-130			
o-Xylene	3.7	0.05	ug/g	ND	91.4	60-130			



### Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 10-1121-0222

Report Date: 06-Jun-2011 Order Date: 30-May-2011

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: 4-Bromofluorobenzene	3.22		ug/g		101	50-140			
Surrogate: Dibromofluoromethane	3.35		ug/g		105	50-140			
Surrogate: Toluene-d8	2.80		ug/g		87.5	50-140			

OTTAWA



Report Date: 06-Jun-2011

Order Date:30-May-2011

### Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO: Project Description: 10-1121-0222

### Sample and QC Qualifiers Notes

1 - GEN02 : Elevated Reporting Limit due to matrix interference.

### **Sample Data Revisions**

None

### Work Order Revisions/Comments:

None

### **Other Report Notes:**

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

NIAGARA FALLS

5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

# Laboratories Ltd. Environmental & Indoor Air Quality

300-2319 St. Laurent Blvd., Ottawa, ON KIG 4J8 Tel: (613) 731-9577 Fax: (613) 731-9064

Toll Free: (800) 749-1947 email: paracel@paracellabs.com

Chain of Custody Record

Nº 29086

Pg.__of_

Contact: Keith Holmus r Maria Stanes Company: Golder Associates Ltd.	Project Ref:	1	0-1121	-00	228	2		[] Hard C	REP	ORTING RI	QUIREM	ENTS	
Company: Golder Associates Ltd.	PO #:						9	[]FAX	10.550	Vemai	- spreads	neet	
Address: 32 Steave Dr.	Quote #: Email:   Preservative	10.	305	-		Not Q	uoted		[ ] ]	TURN ARO	UND TIM		\
Ranafa, ON	Email: MS	far	reig a go	lder	-Con	4 K	lw/m	R a) Bec	Widel	RY/GUIDE	day [ ]	UIREME	) NTS
Tel: 6/3 592 9600 Fax:	Preservative	to be	added by Pa	araçel	? 🗆 Y	les .	DN0	7.	سع (	71/0	2	726	1.1
Matrix Types: S-Soil/Sed GW-Gro	und Water Cl	V C.	Company Company		/0					11/01	/	/ 7 3	/~ /
Sample Information	und water 51	v–Suri	race water S	5-501	m/San	itary Se	wer A-A	Air O-Oth Analysis		ired			
Paracel Order #				A	9			7411417515	requi	ireu			$\neg \neg$
1123066	Matrix	# Bottles	Date Sampled d/m/y	SHC	respons	DAY DC	7 /						
Sample Identification				-	2	LL C	7						
1 T72-SAI	5	2	Max 19	V	V	VI	1	250	) +	120 n			$\top$
2 T72-8A4	S	2	May 19	V	1	レレ			j	10-0 11			
3									V				+
4													+
5												+	
6													$\dashv$
7													
8													_
9						+							
10													
Comments:										+	2:5	27.	
										<u>len</u>	p.2	2.7.	
										7			
Relinquished by: M. Haver C. Received by	by: /	5×00	15 <u>E</u>			V	erified by	: M(	n	./			
	M/ 20			26	1	D	ate: A /	3	1,,	Time:	-	51	
	M(C:	1	May	32/1	1 4	100.6	10(0	4 20	/ [ ]	i illic.	J.	76	



TRUSTED. RESPONSIVE. RELIABLE.

300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947 el paracel@paracellabs.com

www.paracellabs.com

OTTAWA 📵 NIAGARA FALLS 🍥 MISSISSAUGA

# Certificate of Analysis

Golder Associates Ltd. (Ottawa)

32 Steacie Dr.

Kanata, ON K2K 2A9

Attn: Maria Staneva

Client PO:

Project: 10-1121-0222

Custody: 87192

Phone: (613) 592-9600

Fax: (613) 592-9601

Report Date: 6-Jul-2011 Order Date: 28-Jun-2011

Order #: 1127152

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID

Client ID

1127152-01

T-72B

1127152-02

W-10

Approved By:

Mark Froto

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director



Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO:

Project Description: 10-1121-0222

Report Date: 06-Jul-2011 Order Date: 28-Jun-2011

### **Analysis Summary Table**

Analysis	Method Reference/Description	Extraction Date Analysis D	ate
CCME PHC F1	CWS Tier 1 - P&T GC-FID	30-Jun-11 1-Ju	ıl-11
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	4-Jul-11 5-Ju	ıl-11
Chromium, hexavalent	MOE E3056 - colourimetric	28-Jun-11 29-Jur	n-11
Mercury	EPA 245.1 - Cold Vapour AA	30-Jun-11 30-Jur	n-11
Metals, low level	EPA 200.8 - ICP-MS	5-Jul-11 5-Ju	ıl-11
PAHs by GC-MS, standard scan	EPA 625 - GC-MS, extraction	4-Jul-11 4-Ju	ıl-11
PCBs, total	EPA 608 - GC-ECD	5-Jul-11 5-Ju	ıl-11
VOCs	EPA 624 - P&T GC-MS	30-Jun-11 1-Ju	ıl-11



Client: Golder Associates Ltd. (Ottawa)
Client PO:

Project Description: 10-1121-0222

Order #: 1127152

Report Date: 06-Jul-2011 Order Date: 28-Jun-2011

	Client ID: Sample Date: Sample ID: MDL/Units	T-72B 28-Jun-11 1127152-01 Water	W-10 28-Jun-11 1127152-02 Water		
Metals	MIDEIGING				
Mercury	0.1 ug/L	<0.1	<0.1		-
Antimony	0.5 ug/L	<0.5	<0.5	-	-
Arsenic	1 ug/L	<1	<1		
Barium	1 ug/L	92	4730		-
Beryllium	0.5 ug/L	<0.5	<0.5		-
Boron	10 ug/L	56	116		417
Cadmium	0.1 ug/L	<0.1	<0.1		
Chromium	1 ug/L	12	79	*	
Chromium (VI)	10 ug/L	<10	<10		
Cobalt	0.5 ug/L	1.9	2.6	-	
Copper	0.5 ug/L	4.1	4.2		
Lead	0.1 ug/L	<0.1	<0.1		
Molybdenum	0.5 ug/L	28.8	0.8		
Nickel	1 ug/L	19	15		-
Selenium	1 ug/L	6	<1		
Silver	0.1 ug/L	0.1	<0.1	-	
Sodium	200 ug/L	846000	5670000		- 1
Thallium	0.1 ug/L	0.2	<0.1		
Uranium	0.1 ug/L	8.3	<0.1	<del> </del>	
Vanadium	0.5 ug/L	3.1	18.8		
Zinc	10 ug/L	17	<10		
Volatiles					
Acetone	5.0 ug/L	<5.0	<5.0	-	
Benzene	0.5 ug/L	<0.5	9.1		
Bromodichloromethane	0.5 ug/L	<0.5	<0.5		
Bromoform	0.5 ug/L	<0.5	<0.5	· - ,   -	
Bromomethane	0.5 ug/L	<0.5	<0.5	I	
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2		
Chlorobenzene	0.5 ug/L	<0.5	10.3	are to the	
Chloroethane	1.0 ug/L	<1.0	<1.0		-
Chloroform	0.5 ug/L	<0.5	<0.5		
Chloromethane	3.0 ug/L	<3.0	<3.0		
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	111111111111111111111111111111111111111	

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4JB

MISSISSAU&A 6645 Kitimat Rd Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt Niagara Falls, ON L2J 0A3



Client: Golder Associates Ltd. (Ottawa)

Order #: 1127152

Report Date: 06-Jul-2011 Order Date: 28-Jun-2011

### Client PO: Project Description: 10-1121-0222

	Client ID: Sample Date: Sample ID: MDL/Units	T-72B 28-Jun-11 1127152-01 Water	W-10 28-Jun-11 1127152-02 Water	-	
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0		Light
1,2-Dibromoethane	0.2 ug/L	<0.2	<0.2	- 1	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5		- 10
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	1112	
1,4-Dichlorobenzene	0.5 ug/L	<0.5	2.4		<u> </u>
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	(44)
1,2-Dichloroethane	0,5 ug/L	<0.5	<0.5		<b>2</b> 0
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	1	92
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	(2)
trans-1,2-Dichloroethylene	0,5 ug/L	<0.5	<0.5		
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	<0.5		-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	-	
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	2	
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	2	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	-	- 1
Ethylbenzene	0.5 ug/L	<0.5	1.7		
Hexane	1.0 ug/L	<1.0	<1.0		-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0		-
Methyl Butyl Ketone (2-Hexanone	10.0 ug/L	<10.0	<10.0		I I I
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0		
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0		
Methylene Chloride	5.0 ug/L	<5.0	<5.0		
Styrene	0.5 ug/L	<0.5	<0.5		-11
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1,2,2-Tetrachloroethane	0,5 ug/L	<0.5	<0.5		
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5		-
Toluene	0.5 ug/L	<0.5	0.5	( <del>=</del> );	
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	<0.5	( <del>+</del> 2)	
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	(#X)	- 1
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	
Trichloroethylene	0.5 ug/L	<0.5	<0.5		
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	-	
1,2,4-Trimethylbenzene	0.5 ug/L	<0.5	<0.5	-	
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	4.8	(#3)	1





Client: Golder Associates Ltd. (Ottawa)

Report Date: 06-Jul-2011 Order Date:28-Jun-2011

Client PO: Project Description: 10-1121-0222

lient PO:			on: 10-1121-0222		
	Client ID: Sample Date:	T-72B 28-Jun-11 1127152-01	W-10 28-Jun-11 1127152-02	+	-
	Sample ID:	Water	Water		n <u>a</u>
Vinyl chloride	0.5 ug/L	<0.5	<0.5	-20	
m,p-Xylenes	0.5 ug/L				
	0.5 ug/L	<0.5	2.2	-	
o-Xylene		<0.5	<0.5	•	
Xylenes, total 4-Bromofluorobenzene	0.5 ug/L	<0.5	2.2	*	
Dibromofluoromethane	Surrogate Surrogate	112% 109%	89.5%		
Toluene-d8	Surrogate	110%	124% 108%		-
Hydrocarbons	- January - Janu	11070	10070		
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	
F2 PHCs (C10-C16)	100 ug/L	<100	<100	_	
F3 PHCs (C16-C34)	100 ug/L	<100	<100		
F4 PHCs (C34-C50)	100 ug/L	<100	<100	-	
F1 + F2 PHCs	125 ug/L	<125	<125		
F3 + F4 PHCs	200 ug/L	<200	<200		
Semi-Volatiles		<b>-200</b>	\200		
Acenaphthene	0.05 ug/L	<0.05	1.52	-	-
Acenaphthylene	0.05 ug/L	<0.05	0.77		
Anthracene	0.01 ug/L	<0.01	2.87		_
Benzo [a] anthracene	0.01 ug/L	<0.01	6.91		
Benzo [a] pyrene	0.01 ug/L	<0.01	4.71		
Benzo [b] fluoranthene	0.05 ug/L	<0.05	4.47		20.1 · L
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	2.71		
Benzo [k] fluoranthene	0.05 ug/L	<0.05	2.07		-
Biphenyl	0.05 ug/L	<0.05			_
Chrysene	0.05 ug/L		0.34	-	
	0.05 ug/L	<0.05	6.99	*	
Dibenzo [a,h] anthracene	0.01 ug/L	<0.05	0.89	*	-
Fluoranthene		<0.01	9.89	-	-
Fluorene	0.05 ug/L	<0.05	1.88	•	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	2.94		
1-Methylnaphthalene	0.05 ug/L	<0.05	0.97	-	-
2-Methylnaphthalene	0.05 ug/L	<0.05	0.85	-	48
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	1.82		
Naphthalene	0.05 ug/L	<0.05	2.55		120
Phenanthrene	0.05 ug/L	<0.05	8.50		8221
Pyrene	0.01 ug/L	<0.01	7.03		28

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississaugs, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3



Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Report Date: 06-Jul-2011

Order Date: 28-Jun-2011

Client PO:		Project Descript	ion: 10-1121-0222			
	Client ID:	T-72B	W-10	-	-	
	Sample Date:	28-Jun-11	28-Jun-11		_	
	Sample ID:	1127152-01	1127152-02		P 1 4	
	MDL/Units	Water	Water	•	-	
2-Fluorobiphenyl	Surrogate	96.9%	51.6%			
Terphenyl-d14	Surrogate	98.9%	69.8%	-	-	
PCBs					1	
PCBs, total	0.05 ug/L		<0.05			
Decachlorobiphenyl	Surrogate		97.5%			



**Certificate of Analysis** 

Client: Golder Associates Ltd. (Ottawa)
Client PO:

Project Description: 10-1121-0222

Report Date: 06-Jul-2011 Order Date: 28-Jun-2011

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons				- 14					H
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Metals			ug/ L						
	·								
Mercury	ND	0.1	ug/L						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium (VI)	ND	10	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
ead	ND	0.1	ug/L						
<b>l</b> olybdenum	ND	0.5	ug/L						
lickel	ND	-1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L			1			
Sodium	ND	200	ug/L						
hallium	ND	0.1	ug/L						
Iranium	ND	0.1	ug/L						
/anadium	ND	0.5	ug/L						
linc	ND	10	ug/L						
PCBs			-9/-						
PCBs, total	ND	0.05	ug/L						
Surrogate: Decachlorobiphenyl	0.443		ug/L		88.6	26-147			
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05							
anthracene	ND ND	0.05	ug/L					(16)	
Benzo [a] anthracene	ND		ug/L						
		0.01	ug/L						
enzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Senzo [g,h,i] perylene	ND	0.05	ug/L						
enzo [k] fluoranthene	ND	0.05	ug/L						
iphenyl	ND	0.05	ug/L						
hrysene	ND	0.05	ug/L						
ibenzo [a,h] anthracene	ND	0.05	ug/L						
luoranthene	ND	0.01	ug/L						
luorene	ND	0.05	ug/L						
ideno [1,2,3-cd] pyrene	ND	0.05	ug/L						
-Methylnaphthalene	ND	0.05	ug/L						
-Methylnaphthalene	ND	0.05	ug/L						
lethylnaphthalene (1&2)	ND	0.10	ug/L						
laphthalene	ND	0.05	ug/L						
henanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	18.2		ug/L		91.1	31-154			
Surrogate: Terphenyl-d14	19.7		ug/L		98.6	37-156			
			-5/ <u>-</u>		00.0	0, 100			
/olatiles									
cetone Senzene	ND	5.0	ug/L						
	ND	0.5	ug/L						



Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)
Client PO:

Project Description: 10-1121-0222

Report Date: 06-Jul-2011 Order Date: 28-Jun-2011

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
hlorobenzene	ND	0.5	ug/L						
Chloroethane	ND	1.0	ug/L						
hloroform	ND	0.5	ug/L						
hloromethane	ND	3.0	ug/L						
ibromochloromethane	ND	0.5	ug/L						
ichlorodifluoromethane	ND	1.0	ug/L						
,2-Dibromoethane	ND	0.2							
.2-Dichlorobenzene	ND	0.2	ug/L						
,3-Dichlorobenzene	ND		ug/L						
,4-Dichlorobenzene		0.5	ug/L						
	ND	0.5	ug/L						
1-Dichloroethane	ND	0.5	ug/L						
2-Dichloroethane	ND	0.5	ug/L						
,1-Dichloroethylene	ND	0.5	ug/L						
s-1,2-Dichloroethylene	ND	0.5	ug/L						
ans-1,2-Dichloroethylene	ND	0.5	ug/L						
2-Dichloroethylene, total	ND	0.5	ug/L						
2-Dichloropropane	ND	0.5	ug/L						
s-1,3-Dichloropropylene	ND	0.5	ug/L						
ans-1,3-Dichloropropylene	ND	0.5	ug/L						
3-Dichloropropene, total	ND	0.5	ug/L						
thylbenzene	ND	0.5	ug/L						
exane	ND	1.0	ug/L						
lethyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
lethyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L						
lethyl Isobutyl Ketone	ND	5.0	ug/L						
lethyl tert-butyl ether	ND	2.0	ug/L						
lethylene Chloride	ND	5.0	ug/L						
tyrene	ND	0.5	ug/L						
1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,2,2-Tetrachloroethane	ND	0.5							
etrachloroethylene	ND	0.5	ug/L						
oluene			ug/L						
	ND	0.5	ug/L						
,2,4-Trichlorobenzene	ND	0.5	ug/L						
,1,1-Trichloroethane	ND	0.5	ug/L						
1,2-Trichloroethane	ND	0.5	ug/L						
richloroethylene	ND	0.5	ug/L						
richlorofluoromethane	ND	1.0	ug/L						
2,4-Trimethylbenzene	ND	0.5	ug/L						
3,5-Trimethylbenzene	ND	0.5	ug/L						
inyl chloride	ND	0.5	ug/L						
n,p-Xylenes	ND	0.5	ug/L						
-Xylene	ND	0.5	ug/L						
ylenes, total	ND	0.5	ug/L						
urrogate: 4-Bromofluorobenzene	87.2		ug/L		109	50-140			
urrogate: Dibromofluoromethane	78.7		ug/L		98.4	50-140			
urrogate: Toluene-d8	81.7		ug/L		102	50-140			
an ogato. Totalono-do	01.1		uy/L		102	30-140			



Client PO:

Order #: 1127152

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Report Date: 06-Jul-2011 Order Date: 28-Jun-2011

Project Description: 10-1121-0222

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
	ND	20	ug/L	140				50	
Metals									
Mercury	ND	0.1	ug/L	ND				20	
Antimony	ND	0.5	ug/L	ND				26	
Arsenic	1.1	1	ug/L	ND				29	
3arium 💮 💮	25.8	1	ug/L	24.8			3.8	34	
3eryllium	ND	0.5	ug/L	ND				25	
Boron	23	10	ug/L	19			20.4	33	
Cadmium	ND	0.1	ug/L	ND				33	
Chromium (VI)	ND	10	ug/L	ND				13	
Chromium	ND	1	ug/L	4.9				32	
Cobalt	ND	0.5	ug/L	ND				32	
Copper	ND	0.5	ug/L	0.58			0.0	32	
_ead	ND	0.1	ug/L	ND				32	
Molybdenum	0.94	0.5	ug/L	ND				29	
Nickel	1.6	1	ug/L	1.5			8.9	29	
Selenium	ND	1	ug/L	1.2				28	
Silver	0.13	0.1	ug/L	ND				28	
Sodium	15000	200	ug/L	14300			4.2	27	
Thallium Thallium	0.26	0.1	ug/L	ND				27	
Jranium	ND	0.1	ug/L	ND				27	
/anadium	2.63	0.5	ug/L	1.51			53.9	27	QR-01
Zinc	ND	10	ug/L	ND				27	
Volatiles			_						
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND	7			30	
Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.3	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroethane	ND	1.0		ND				30	
Chloroform	ND	0.5	ug/L						
Chloromethane	ND ND	3.0	ug/L	ND ND				30	
Dibromochloromethane		0.5	ug/L					30	
Dichlorodifluoromethane	ND		ug/L	ND				30	
I.2-Dibromoethane	ND ND	1.0	ug/L	ND				30	
		0.2	ug/L	ND				30	
,2-Dichlorobenzene ,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
	ND	0.5	ug/L	ND				30	
I,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
I,1-Dichloroethane	ND	0.5	ug/L	ND				30	
,2-Dichloroethane	ND	0.5	ug/L	ND				30	
,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
rans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
,2-Dichloropropane	ND	0.5	ug/L	ND				30	
sis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
rans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
thylbenzene	ND	0.5	ug/L	ND				30	
lexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

AWATTO 300-2319 St Laurent Bivd. Ottawa, ON K1G 4JB

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

NIAGARA FALLS 5415 Morning Glory Crt. Niegers Fells, ON L2J CA3



Surrogate: Toluene-d8

Order #: 1127152

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO:

Project Description: 10-1121-0222

Report Date: 06-Jul-2011 Order Date: 28-Jun-2011

Method Quality Control: Duplicate Reporting Source %REC **RPD** Analyte Result Limit RPD Units %REC Limit Notes Result Limit Styrene ND 0.5 ug/L ND 30 1,1,1,2-Tetrachloroethane ND 0.5 ug/L ND 30 1,1,2,2-Tetrachloroethane ND 0.5 ug/L ND 30 Tetrachloroethylene 11.3 0.5 ug/L 5.6 30 10.7 Toluene ND 0.5 ug/L ND 30 1,2,4-Trichlorobenzene ND 0.5 ug/L ND 30 1,1,1-Trichloroethane ND 0.5 ug/L ND 30 1,1,2-Trichloroethane ND 0.5 ug/L ND 30 Trichloroethylene ND 0.5 ug/L 0.71 30 Trichlorofluoromethane ug/L ND 1.0 ND 30 1,2,4-Trimethylbenzene ND 0.5 ug/L ND 30 1,3,5-Trimethylbenzene ND ug/L 0.5 ND 30 Vinyl chloride ND 0.5 ug/L ND 30 m,p-Xylenes ND 0.5 ug/L ND 30 o-Xylene ND 0.5 ug/L ND 30 Surrogate: 4-Bromofluorobenzene 91.6 ug/L ND 50-140 115 Surrogate: Dibromofluoromethane 67.9 ug/L ND 50-140 84.9

ug/L

ND

98.6

50-140

78.9



**Certificate of Analysis** 

Client: Golder Associates Ltd. (Ottawa)

Client PO:

**Volatiles** 

Project Description: 10-1121-0222

Report Date: 06-Jul-2011 Order Date:28-Jun-2011

Method Quality Control: Spike Reporting %REC RPD Source Analyte Result Limit Units %REC **RPD** Result Limit Limit Notes Hydrocarbons F1 PHCs (C6-C10) 1460 25 ND ug/L 73.2 68-117 F2 PHCs (C10-C16) 1970 100 ND ug/L 123 61-129 F3 PHCs (C16-C34) 3880 100 ug/L ND 97.0 61-129 F4 PHCs (C34-C50) 2560 100 ND ug/L 107 61-129 Metals Mercury 3.22 0.1 ug/L ND 107 78-137 Antimony 56.0 ug/L ND 112 78-126 Arsenic 54.5 ND ug/L 109 83-119 Barium 56.4 ug/L ND 113 83-116 Beryllium 51.2 ug/L ND 102 72-132 Boron 52 ug/L ND 104 71-128 Cadmium 55.1 ug/L ND 110 78-119 Chromium (VI) 205 10 ug/L ND 102 75-120 Chromium 59.5 ug/L ND 119 80-124 Cobalt 60.0 ug/L ND 120 78-125 Copper 61.7 ug/L ND 123 75-123 Lead 54.3 ug/L ND 109 77-126 Molybdenum 54.0 ug/L ND 108 82-119 Nickel 61.5 ug/L ND 123 78-119 Selenium 55.5 ND ug/L 111 81-125 Silver 55.5 ug/L ND 111 70-128 Sodium 831 ug/L ND 83.1 67-132 Thallium 57.5 ND ug/L 115 82-127 Uranium 59.7 ug/L ND 119 70-131 Vanadium 58.5 ug/L ND 117 82-123 Zinc 51 ug/L ND 78-130 101 **PCBs** PCBs, total 0.961 0.05 ND ug/L 96.1 54-137 Surrogate: Decachlorobiphenyl 0.504 ug/L 101 26-147 Semi-Volatiles Acenaphthene 0.05 ug/L 3.46 ND 69.1 32-116 Acenaphthylene 3.93 0.05 ug/L ND 78.7 26-120 Anthracene 3.78 0.01 ug/L ND 75.7 29-126 Benzo [a] anthracene 5.93 ug/L 0.01 ND 119 29-126 Benzo [a] pyrene 4.80 0.01 ug/L ND 96.0 29-111 Benzo [b] fluoranthene 4.17 0.05 ug/L ND 83.3 26-111 Benzo [g,h,i] perylene 4.10 0.05 ug/L ND 82.1 23-128 Benzo [k] fluoranthene ug/L 3.73 0.05 ND 74.6 23-135 Biphenyl 3.21 0.05 ug/L ND 64.1 31-107 Chrysene 5.61 0.05 ug/L ND 112 29-137 Dibenzo [a,h] anthracene 4.26 0.05 ug/L ND 85.3 20-131 Fluoranthene 4.21 0.01 ug/L ND 84.3 24-131 Fluorene 4.26 0.05 ug/L ND 85.2 28-123 Indeno [1,2,3-cd] pyrene 4.28 0.05 ND ug/L 85.5 20-128 1-Methylnaphthalene 3.90 0.05 ug/L ND 78.0 25-127 2-Methylnaphthalene 3.93 0.05 ug/L ND 78.5 21-119 Naphthalene 3.93 0.05 ug/L ND 78.6 29-118 Phenanthrene 3.79 0.05 ug/L ND 75.7 34-108 Pyrene 3.78 0.01 ND ug/L 75.7 29-131 Surrogate: 2-Fluorobiphenyl 20.7 ug/L 103 31-154 Surrogate: Terphenyl-d14 20.9 ug/L 105 37-156

> P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt Niegars Falls, ON L2J 0A3

1.1.1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Trichloroethylene

Vinyl chloride

m,p-Xylenes

o-Xylene

Order #: 1127152

Report Date: 06-Jul-2011

Certificate of Analysis Client: Golder Associates Ltd. (Ottawa)

Client PO:

Project Description: 10-1121-0222 Method Quality Control: Spike

Order Date: 28-Jun-2011

Reporting Source %REC **RPD** Analyte Result Units %REC **RPD** Limit Limit Notes Result Limit Acetone 108 5.0 ug/L ND 108 50-140 Benzene 49.3 0.5 ug/L ND 123 60-130 ug/L Bromodichloromethane 46.4 0.5 ND 60-130 116 Bromoform 31.4 0.5 ND ug/L 78.4 60-130 Bromomethane 43.3 0.5 ND ug/L 108 50-140 ug/L Carbon Tetrachloride 34.3 0.2 ND 85.6 60-130 Chlorobenzene 29.8 0.5 ug/L ND 74.4 60-130 Chloroethane 41.6 1.0 ug/L ND 104 50-140 Chloroform 38.9 0.5 ND 97.2 ug/L 60-130 Chloromethane 41.7 3.0 ug/L ND 104 50-140 Dibromochloromethane 31.3 0.5 ug/L ND 78.4 60-130 Dichlorodifluoromethane 25.8 ND 1.0 ug/L 50-140 64.6 1,2-Dibromoethane 30.9 0.2 ug/L ND 77.4 60-130 1,2-Dichlorobenzene 33.7 0.5 ug/L ND 84.2 60-130 1.3-Dichlorobenzene 33.1 0.5ND ug/L 82.7 60-130 1,4-Dichlorobenzene 33.2 0.5 ug/L ND 83.0 60-130 1,1-Dichloroethane 42.0 0.5 ND ug/L 105 60-130 1.2-Dichloroethane 37.6 0.5 ND ug/L 93.9 60-130 1,1-Dichloroethylene 38.9 0.5 ug/L ND 97.2 60-130 cis-1,2-Dichloroethylene 38.4 0.5 ug/L ND 96.1 60-130 trans-1,2-Dichloroethylene 39.7 0.5 ug/L ND 99.3 60-130 1,2-Dichloropropane 35.5 0.5 ND ug/L 88.7 60-130 cis-1,3-Dichloropropylene 44.4 0.5 ug/L ND 111 60-130 trans-1,3-Dichloropropylene 50.8 0.5 ug/L ND 127 60-130 Ethylbenzene 29.5 ND 0.5 ug/L 73.7 60-130 Hexane ug/L 24.3 1.0 ND 60.7 60-130 Methyl Ethyl Ketone (2-Butanone) 92.0 5.0 ND 92.0 ug/L 50-140 Methyl Butyl Ketone (2-Hexanone) 115 10.0 ND ug/L 115 50-140 Methyl Isobutyl Ketone 112 5.0 ug/L ND 112 50-140 Methyl tert-butyl ether 76.0 2.0 ND ug/L 76.0 50-140 Methylene Chloride 41.9 5.0 ug/L ND 105 60-130 Styrene 30.6 0.5 ND ug/L 76.6 60-130 1,1,1,2-Tetrachloroethane 28.6 0.5 ug/L ND 71.6 60-130 1,1,2,2-Tetrachloroethane 33.7 0.5 ug/L ND 84.2 60-130 Tetrachloroethylene 25.2 0.5 ND ug/L 62.9 60-130 Toluene 40.7 0.5 ug/L ND 102 60-130 1,2,4-Trichlorobenzene 29.7 0.5 ND 74.4 60-130

33.9

47.2

44.4

40.6

ND

38.2

47.6

60.1

31.6

79.6

81.5

77.6

0.5

0.5

0.5

1.0

0.5

0.5

0.5

0.5

0.5

ug/L

ND

ND

ND

ND

ND

ND

ND

ND

ND

84.7

118

111

102

95.6

119

75.1

79.0

99.4

102

97.0

60-130

60-130

60-130

60-130

50-140

60-130

50-140

60-130

60-130

50-140

50-140

50-140



Client: Golder Associates Ltd. (Ottawa)

Client PO:

Project Description: 10-1121-0222

Report Date: 06-Jul-2011

Order #: 1127152

Order Date: 28-Jun-2011

## Sample and QC Qualifiers Notes

1 QR-01:

Duplicate RPD is high, however, the sample result is less than 10x the MDL.

### Sample Data Revisions

None

### **Work Order Revisions/Comments:**

None

### Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL		RUST					Head Of 300-231	9 St. Lai		1			of Custody Use Only)	
		ESPC					Ottawa, p. 1-800			8		No	87192	
LABORATORIES LTD.	R	ELIAI	BLE.				e: parac			com		111	OITOR	
OTTAWA ® KINGSTON ® NIAGARA ® MIS	SISSAU	GA ®	SAR	INIA			www.pai	racellabs	s.com			Page	1 of 1	
Client Name Golder Associates	Lto	1.	Project I	Reference: 10	1/21	02	22				TAT:	Regu	lar	
Contact Name: March Stant W			Quote #	10-3	05							2 Day	,	
Address 32 STEDICIE Dr.			PO#	10 0	PA - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000	managed and the						! Day	j.	
John Stedere Pla			Email A	ddress.								Same	: Day	
Telephone 613		-	ms	taneva	(a) 90 lde	31 - C	On				Data D	Required.		
Samples Submitted Under:   10. Reg. 153/04 Tal	da A	his Das			W			Storm)	1   Sewo	er Use (S				
			-			1			14 55					
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	SS (Storm/S	anitary So	ewer) Pt	Paint) A (Air) O (	Other)					Kequi	red An	ialyses		
Paracel Order Number:		2	ers			3			#					
1100:50	T. X	Air Volume	Containers	Sample	Taken	11-14	1.5	S	Herculy	Krom. VI	Stanford Stanford	100		
119712	Matrix	Ž	Co			1	0	To lot	242	OF	X	U		
Sample ID/Location Name		\delta \	# of	Date	Time	10	3	Metals	Z	3	1	10		
ITSOR	(3)	1	3	6/28/11	AM	X	X	X	X	X	X			
2 W-10	SW	1	8	6/28/11	DM	1	X	X	X	×	×	X		
3	In		0	0100/11	11	1							+	
	+-					+								
4	-					-			-		-		++	_
5	-					-		-		_	-	-	+	-
6	-										-	-	-	-
7														_
8														
9														

Received by Driver/Depot:

J. ....

Date/Time

Temperature: __

Received at Lab:
Karen Wegges

Date/Time: 06/28/11
Temperature: 10.00°C

Method of Delivery:

Date/Time ( 29,11 10,2)

Verified By

pH Verified [ | By:

255

Walkin

10

Comments:

Date/Time:



TRUSTED. RESPONSIVE. RELIABLE.

300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🌘 NIAGARA FALLS 🜘 MISSISSAUGA

# Certificate of Analysis

Golder Associates Ltd. (Ottawa)

32 Steacie Dr.

Kanata, ON K2K 2A9

Attn: Maria Staneva

Client PO:

Project: 10-1121-0222

Custody: 81530

Phone: (613) 592-9600

Fax: (613) 592-9601

Report Date: 8-Jul-2011

Order Date: 30-Jun-2011

Order #: 1128002

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID

Client ID

1128002-01

T-72A

1128002-02

W-014

1128002-03

W-009

Approved By:

Mark Fister

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director



Client: Golder Associates Ltd. (Ottawa)

Client PO:

Project Description: 10-1121-0222

Order #: 1128002

Report Date: 08-Jul-2011 Order Date: 30-Jun-2011

## **Analysis Summary Table**

Analysis	Method Reference/Description	Extraction Date A	Analysis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	5-Jul-11	7-Jul-11
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	5-Jul-11	6-Jul-11
Chromium, hexavalent	MOE E3056 - colourimetric	4-Jul-11	5-Jul-11
Mercury	EPA 245.1 - Cold Vapour AA	7-Jul-11	7-Jul-11
Metals, low level	EPA 200.8 - ICP-MS	5-Jul-11	5-Jul-11
PAHs by GC-MS, standard scan	EPA 625 - GC-MS, extraction	7-Jul-11	7-Jul-11
VOCs	EPA 624 - P&T GC-MS	5-Jul-11	7-Jul-11



Client: Golder Associates Ltd. (Ottawa)

Client PO:

Report Date: 08-Jul-2011 Order Date: 30-Jun-2011

Order #: 1128002

Project Description: 10-1121-0222

	Client ID: Sample Date: Sample ID: MDL/Units	T-72A 30-Jun-11 1128002-01 Water	W-014 30-Jun-11 1128002-02 Water	W-009 30-Jun-11 1128002-03 Water	<u> </u>
Metals					
Mercury	0.1 ug/L	<0.1	<0.1	_	-
Antimony	0.5 ug/L	<0.5	<0.5	-	
Arsenic	1 ug/L	2	2		
Barium	1 ug/L	198	220	-	-
Beryllium	0.5 ug/L	<0.5	<0.5		1
Boron	10 ug/L	270	123		-
Cadmium	0.1 ug/L	<0.1	<0.1		
Chromium	1 ug/L	10	<1		
Chromium (VI)	10 ug/L	<10 [3]	<10 [3]		
Cobalt	0.5 ug/L	0.6	3.4		-
Copper	0.5 ug/L	1.7	<0.5	-	
Lead	0.1 ug/L	<0.1	<0.1		
Molybdenum	0.5 ug/L	22.3	1.0	-	-
Nickel	1 ug/L	7	8	1 1	L. J. II- D.
Selenium	1 ug/L	2	1		
Silver	0.1 ug/L	<0.1	<0.1		101 - 111
Sodium	200 ug/L	700000	36800	1	
Thallium	0.1 ug/L	<0.1	<0.1		
Uranium	0.1 ug/L	20.5	0.2	51 e	
Vanadium	0.5 ug/L	3.0	3.0	1	
Zinc	10 ug/L	<10	<10		
/olatiles					
Acetone	5.0 ug/L	<5.0	<5.0	1 <del>3</del> 6	-1-
Benzene	0.5 ug/L	<0.5	<0.5		
Bromodichloromethane	0.5 ug/L	<0.5	<0.5		
Bromoform	0.5 ug/L	<0.5	<0.5		
Bromomethane	0.5 ug/L	<0.5	<0.5		
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2		-
Chlorobenzene	0.5 ug/L	<0.5	<0.5		
Chloroethane	1.0 ug/L	<1.0	<1.0		
Chloroform	0.5 ug/L	<0.5	<0.5		
Chloromethane	3.0 ug/L	<3.0	<3.0		
Dibromochloromethane	0.5 ug/L	<0.5	<0.5		

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crz. Niegara Fatts, ON L2J 0A3

SARNIA 123 Christina St. N. Sernie, ON N7T 5T7

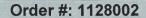


Client: Golder Associates Ltd. (Ottawa)
Client PO:

Report Date: 08-Jul-2011 Order Date: 30-Jun-2011

Project Description: 10-1121-0222

	Client ID: Sample Date: Sample ID: MDL/Units	T-72A 30-Jun-11 1128002-01 Water	W-014 30-Jun-11 1128002-02 Water	W-009 30-Jun-11 1128002-03 Water	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	1 1111	
1,2-Dibromoethane	0.2 ug/L	<0.2	<0.2	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5		-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5		1
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5		
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5		
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5		
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-4276	
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	<0.5	_	_
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	_	<u>.</u>
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5		
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5		149
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5		4
Ethylbenzene	0.5 ug/L	<0.5	<0.5		
Hexane	1.0 ug/L	<1.0	<1.0		148
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0		
Methyl Butyl Ketone (2-Hexanone	10.0 ug/L	<10.0	<10.0		
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	- 1	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	-	
Methylene Chloride	5.0 ug/L	<5.0	<5.0		
Styrene	0.5 ug/L	<0.5	<0.5		
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5		2.11
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5		
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5		
Toluene	0.5 ug/L	<0.5	<0.5		
1,2,4-Trichlorobenzene	0,5 ug/L	<0.5	<0.5		
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5		
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5		
Trichloroethylene	0.5 ug/L	<0.5	<0.5	2	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	-	-
1,2,4-Trimethylbenzene	0.5 ug/L	<0.5	<0.5		_
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	<0.5	-	-


P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Bivd Ottawa, ON K1G 4J8

MISSISSAUGA 6845 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niegara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnie, ON N7T 5T7





Client: Golder Associates Ltd. (Ottawa)

Report Date: 08-Jul-2011 Order Date:30-Jun-2011

Client PO: Project Description: 10-1121-0222 Client ID: T-72A W-014 W-009 Sample Date: 30-Jun-11 30-Jun-11 30-Jun-11 1128002-01 1128002-02 1128002-03 Sample ID: Water Water MDL/Units Water 0.5 ug/L Vinyl chloride < 0.5 < 0.5 0.5 ug/L m,p-Xylenes < 0.5 < 0.5 0.5 ug/L o-Xylene < 0.5 < 0.5 0.5 ua/L Xylenes, total < 0.5 < 0.5 4-Bromofluorobenzene Surrogate 113% 111% Dibromofluoromethane Surrogate 103% 99.2% -_ Toluene-d8 Surrogate 106% 105% **Hydrocarbons** 25 ug/L F1 PHCs (C6-C10) <25 <25 100 ug/L F2 PHCs (C10-C16) 180 226 100 ug/L F3 PHCs (C16-C34) 246 376 100 ug/L F4 PHCs (C34-C50) 429 424 125 ug/L F1 + F2 PHCs 180 226 200 ug/L F3 + F4 PHCs 675 800 Semi-Volatiles 0.05 ug/L Acenaphthene < 0.05 < 0.05 0.14 0.05 ug/L Acenaphthylene < 0.05 < 0.05 0.19 . 0.01 ug/L 0.09 Anthracene <0.01 0.28 0.01 ug/L Benzo [a] anthracene < 0.01 0.21 0.82 0.01 ug/L 0.70 Benzo [a] pyrene < 0.01 0.11 0.05 ug/L Benzo [b] fluoranthene < 0.05 0.13 0.99 0.05 ug/L Benzo [g,h,i] perylene 0.28 < 0.05 0.05 0.05 ug/L Benzo [k] fluoranthene 0.49 < 0.05 0.07 0.05 ug/L Biphenyl 0.14 < 0.05 0.07 0.05 ug/L Chrysene < 0.05 0.24 0.99 0.05 ug/L Dibenzo [a,h] anthracene < 0.05 < 0.05 < 0.05 0.01 ug/L Fluoranthene < 0.01 0.32 0.87 0.05 ug/L Fluorene < 0.05 0.09 0.22 0.05 ug/L Indeno [1,2,3-cd] pyrene 0.27 < 0.05 0.05 1-Methylnaphthalene 0.05 ug/L < 0.05 0.05 0.36 0.05 ug/L 2-Methylnaphthalene 0.40 < 0.05 0.07 0.10 ug/L Methylnaphthalene (1&2) < 0.10 0.75 0.13 _ 0.05 ug/L 1.29 Naphthalene < 0.05 0.20 0.05 ug/L Phenanthrene 0.76 < 0.05 0.37 -0.01 ug/L Pyrene < 0.01 0.23 0.85

> 1-800-749-1947 PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300-2319 Sr. Laurent Blvd Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississaugs, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crit Niegara Falls, ON L2J 0A3

SARNIA 123 Christina St. N Sernia, ON N7T 5T7



Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)
Client PO:

Report Date: 08-Jul-2011 Order Date: 30-Jun-2011

Project Description: 10-1121-0222

	Client ID:	T-72A	W-014	W-009	-
	Sample Date:	30-Jun-11	30-Jun-11	30-Jun-11	
	Sample ID:	1128002-01	1128002-02	1128002-03	-
	MDL/Units	Water	Water	Water	-
2-Fluorobiphenyl	Surrogate	48.1%	69.4%	58.1%	
Terphenyl-d14	Surrogate	61.2%	88.6%	78.4%	



Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO:

Project Description: 10-1121-0222

Report Date: 08-Jul-2011

Order Date: 30-Jun-2011

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	NID	0.5							
F2 PHCs (C10-C16)	ND	25	ug/L						
	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Vietals									
Mercury	ND	0.1	ug/L						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	<u> </u>	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10							
Cadmium	ND	0.1	ug/L						
Chromium (VI)	ND	10	ug/L						
Chromium	ND		ug/L						
Cobalt		1	ug/L						
	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
ead	ND	0.1	ug/L						
Molybdenum	ND	0.5	ug/L						
lickel	ND	_ 1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Sodium	ND	200	ug/L						
hallium	ND	0.1	ug/L						
Jranium	ND	0.1	ug/L						
/anadium	ND	0.5	ug/L						
Zinc	ND	10	ug/L						
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05							
Anthracene			ug/L						
Benzo [a] anthracene	ND ND	0.01	ug/L						
		0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Senzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Siphenyl	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
luoranthene	ND	0.01	ug/L						
luorene	ND	0.05	ug/L						
ndeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
-Methylnaphthalene	ND	0.05	ug/L				*		
-Methylnaphthalene	ND	0.05	ug/L						
lethylnaphthalene (1&2)	ND	0.10	ug/L						
laphthalene	ND	0.05	ug/L						
henanthrene	ND	0.05	ug/L						
yrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	18.2		ug/L		91.1	31-154			
Surrogate: Terphenyl-d14	19.7		ug/L		98.6	37-156			
/olatiles									
cetone	ND	5.0	ua/I						
Benzene	ND		ug/L						
Bromodichloromethane		0.5	ug/L						
	ND	0.5	ug/L						
romoform	ND	0.5	ug/L						
romomethane	ND	0.5	ug/L						

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd Ottawa, ON K1G 4JB

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niegara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7



Surrogate: Toluene-d8

Order #: 1128002

Report Date: 08-Jul-2011

Order Date:30-Jun-2011

### **Certificate of Analysis** Client: Golder Associates Ltd. (Ottawa)

Client PO:

Project Description: 10-1121-0222

Resu	Reporting Ilt Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
ND	0.5	ua/L						
ND								
ND								
		_						
		ug/L						
		ug/L						
		ug/L						
ND		ug/L						
ND	0.5	ug/L						
ND	0.5	ug/L						
ND	0.5	ug/L						
ND	0.5							
ND	0.5							
ND	0.5	ug/L						
ND	0.5							
ND								
	0.5							
				100	50 140			
78.7		ug/L		98.4	50-140			
	ND N	ND	ND	ND	ND   0.5   ug/L   ND   1.0   ug/L   ND   1.0   ug/L   ND   0.5   ug/L   ND   0.5	ND	ND	New

81.7

ug/L

102

50-140



Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO:

Methylene Chloride

Project Description: 10-1121-0222

Report Date: 08-Jul-2011 Order Date: 30-Jun-2011

Method Quality Control: Duplicate Reporting %REC RPD Source Analyte Result Limit Units %REC **RPD** Result Limit Limit Notes Hydrocarbons F1 PHCs (C6-C10) ND 25 ND ug/L 30 **Metals** Mercury ND 0.1 ug/L ND 20 Antimony ND 0.5 ug/L ND 26 Arsenic ug/L 1.1 1 ND 29 Barium 25.8 1 ug/L 24.8 3.8 34 Beryllium ND ug/L 0.5 ND 25 Boron 23 10 ug/L 19 20.4 33 Cadmium ND ug/L 0.1 ND 33 Chromium (VI) ND 10 ug/L ND 13 Chromium ug/L ND 4.9 1 32 Cobalt ND 0.5 ug/L ND 32 Copper ug/L ND 0.5 0.58 0.0 32 Lead ND 0.1 ug/L ND 32 Molybdenum 0.94 0.5 ug/L ND 29 Nickel 1.6 ug/L 1.5 29 8.9 Selenium ug/L ND 1.2 1 28 Silver 0.13 0.1 ug/L ND 28 Sodium 15000 200 ug/L 14300 4.2 27 Thallium 0.26 0.1 ug/L ND 27 Uranium ND 0.1 ug/L ND 27 Vanadium 2.63 0.5 ug/L 1.51 53.9 27 QR-01 Zinc ND 10 ug/L ND 27 **Volatiles** Acetone ND 5.0 ug/L ND 30 Benzene ND 0.5 ug/L ND 30 Bromodichloromethane ND 0.5 ug/L ND 30 Bromoform ND 0.5 ug/L ND 30 Bromomethane ug/L ND 0.5 ND 30 Carbon Tetrachloride ND 0.2 ug/L ND 30 Chlorobenzene ug/L ND 0.5 ND 30 Chloroethane ND 1.0 ug/L ND 30 Chloroform ug/L ND 0.5 ND 30 Chloromethane ND 3.0 ug/L ND 30 Dibromochloromethane ug/L ND 0.5 ND 30 Dichlorodifluoromethane ND 1.0 ug/L ND 30 1,2-Dibromoethane ND 0.2 ug/L ND 30 1.2-Dichlorobenzene ND 0.5 ug/L ND 30 1,3-Dichlorobenzene ND 0.5 ug/L ND 30 1.4-Dichlorobenzene ND 0.5 ug/L ND 30 1,1-Dichloroethane ND 0.5 ug/L ND 30 1,2-Dichloroethane ND 0.5 ug/L ND 30 1,1-Dichloroethylene ND 0.5 ug/L ND 30 cis-1,2-Dichloroethylene ND 0.5 ug/L ND 30 trans-1,2-Dichloroethylene ug/L ND 0.5 ND 30 1.2-Dichloropropane ug/L ND 0.5 ND 30 cis-1,3-Dichloropropylene ND 0.5 ug/L ND 30 trans-1,3-Dichloropropylene ug/L ND 0.5 ND 30 Ethylbenzene ND 0.5 ug/L ND 30 Hexane ND 1.0 ug/L ND 30 Methyl Ethyl Ketone (2-Butanone) 5.0 ND ug/L ND 30 Methyl Butyl Ketone (2-Hexanone) ND 10.0 ND ug/L 30 Methyl Isobutyl Ketone ND 5.0 ug/L ND 30 Methyl tert-butyl ether ND 2.0 ug/L ND 30

> : 1-800-749-1947 : PARACEL@PARACELLABS.COM

ND

5.0

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd Ottawa, ON K1G 4J8

ND

ug/L

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnie, ON N7T 5T7 30



Client: Golder Associates Ltd. (Ottawa)

Client PO:

Project Description: 10-1121-0222

Order #: 1128002 Report Date: 08-Jul-2011

Order Date: 30-Jun-2011

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	11.3	0.5	ug/L	10.7			5.6	30	
Toluene	ND	0.5	ug/L	ND				30	
1,2,4-Trichlorobenzene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	0.71				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
1,2,4-Trimethylbenzene	ND	0.5	ug/L	ND				30	
1,3,5-Trimethylbenzene	ND	0.5	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	91.6		ug/L	ND	115	50-140			
Surrogate: Dibromofluoromethane	67.9		ug/L	ND	84.9	50-140			
Surrogate: Toluene-d8	78.9		ug/L	ND	98.6	50-140			



Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO:

Project Description: 10-1121-0222

Report Date: 08-Jul-2011 Order Date: 30-Jun-2011

Method Quality Control: Spike Reporting %REC **RPD** Source Analyte Result Limit Units %REC **RPD** Result Limit Limit Notes **Hvdrocarbons** F1 PHCs (C6-C10) 1460 25 ND ug/L 73.2 68-117 F2 PHCs (C10-C16) 1970 100 ND ug/L 123 61-129 F3 PHCs (C16-C34) 3880 100 ug/L ND 97.0 61-129 F4 PHCs (C34-C50) 2560 100 ug/L ND 107 61-129 Metals Mercury 3.67 0.1 ND ug/L 122 78-137 Antimony ug/L 56.0 ND 112 78-126 Arsenic 54.5 ND ug/L 109 83-119 Barium 56.4 ug/L ND 113 83-116 Beryllium 51.2 ug/L ND 102 72-132 Boron 52 ug/L ND 104 71-128 Cadmium 55.1 ug/L ND 110 78-119 Chromium (VI) 199 10 ND ug/L 99.5 75-120 Chromium 59.5 ug/L ND 119 80-124 Cobalt 60.0 ug/L ND 120 78-125 Copper 61.7 ug/L ND 123 75-123 Lead 54.3 ug/L ND 109 77-126 Molybdenum 54.0 ug/L ND 108 82-119 Nickel 61.5 ug/L ND 123 78-119 Selenium 55.5 ug/L ND 81-125 111 Silver 55.5 ug/L ND 111 70-128 Sodium 831 ug/L ND 83.1 67-132 Thallium 57.5 ug/L ND 115 82-127 Uranium 59.7 ug/L ND 119 70-131 Vanadium 58.5 ug/L ND 82-123 117 51 ug/L ND 101 78-130 Semi-Volatiles Acenaphthene 3.46 0.05 ND ug/L 69.1 32-116 Acenaphthylene 3.93 0.05 ug/L ND 78.7 26-120 Anthracene 3.78 0.01 ug/L ND 75.7 29-126 Benzo [a] anthracene 5.93 0.01 ug/L ND 119 29-126 Benzo [a] pyrene 4.80 0.01 ug/L ND 96.0 29-111 Benzo [b] fluoranthene 4.17 0.05 ug/L ND 83.3 26-111 Benzo [g,h,i] perylene 4.10 0.05 ug/L ND 82.1 23-128 Benzo [k] fluoranthene 3.73 0.05 ND ug/L 74.6 23-135 Biphenyl 3.21 0.05 ug/L ND 64.1 31-107 Chrysene 5.61 0.05 ug/L ND 112 29-137 Dibenzo [a,h] anthracene 4.26 0.05 ND ug/L 85.3 20-131 Fluoranthene 4.21 0.01 ug/L ND 84.3 24-131 Fluorene 4.26 0.05 ND ug/L 85.2 28-123 Indeno [1,2,3-cd] pyrene 4.28 0.05 ug/L ND 85.5 20-128 1-Methylnaphthalene 3.90 0.05 ug/L ND 78.0 25-127 2-Methylnaphthalene 3.93 0.05 ug/L ND 78.5 21-119 Naphthalene 3.93 0.05 ug/L ND 78.6 29-118 Phenanthrene 3.79 0.05 ND ug/L 75.7 34-108 Pyrene ug/L 3.78 0.01 ND 75.7 29-131 Surrogate: 2-Fluorobiphenyl 20.7 ug/L 103 31-154 Surrogate: Terphenyl-d14 20.9 ug/L 105 37-156 Volatiles Acetone 108 5.0 ug/L ND 108 50-140 Benzene 49.3 0.5 ND ug/L 123 60-130 Bromodichloromethane 46.4 0.5 ug/L ND 116 60-130

1-800-749-1947
PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Bivd Ottawa. ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd Unit #27 Mississauga, ON LSN 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niegers Fells, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7



Report Date: 08-Jul-2011 Order Date: 30-Jun-2011

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO:

Project Description: 10-1121-0222

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Bromoform	31.4	0.5	ug/L	ND	78.4	60-130			
Bromomethane	43.3	0.5	ug/L	ND	108	50-140			
Carbon Tetrachloride	34.3	0.2	ug/L	ND	85.6	60-130			
Chlorobenzene	29.8	0.5	ug/L	ND	74.4	60-130			
Chloroethane	41.6	1.0	ug/L	ND	104	50-140			
Chloroform	38.9	0.5	ug/L	ND	97.2	60-130			
Chloromethane	41.7	3.0	ug/L	ND	104	50-140			
Dibromochloromethane	31.3	0.5	ug/L	ND	78.4	60-130			
Dichlorodifluoromethane	25.8	1.0	ug/L	ND	64.6	50-140			
1,2-Dibromoethane	30.9	0.2	ug/L	ND	77.4	60-130			
1,2-Dichlorobenzene	33.7	0.5	ug/L	ND	84.2	60-130			
1,3-Dichlorobenzene	33.1	0.5	ug/L	ND	82.7	60-130			
1,4-Dichlorobenzene	33.2	0.5	ug/L	ND	83.0	60-130			
1,1-Dichloroethane	42.0	0.5	ug/L	ND	105	60-130			
1,2-Dichloroethane	37.6	0.5	ug/L	ND	93.9	60-130			
1,1-Dichloroethylene	38.9	0.5	ug/L	ND	97.2	60-130			
cis-1,2-Dichloroethylene	38.4	0.5	ug/L	ND	96.1	60-130			
rans-1,2-Dichloroethylene	39.7	0.5	ug/L ug/L	ND	99.3	60-130			
I,2-Dichloropropane	35.5	0.5	ug/L ug/L	ND					
cis-1,3-Dichloropropylene	44.4	0.5	ug/L ug/L	ND	88.7	60-130			
rans-1,3-Dichloropropylene	50.8	0.5	•		111	60-130			
Ethylbenzene	29.5		ug/L	ND	127	60-130			
Hexane		0.5	ug/L	ND	73.7	60-130			
Methyl Ethyl Ketone (2-Butanone)	24.3	1.0	ug/L	ND	60.7	60-130			
	92.0	5.0	ug/L	ND	92.0	50-140			
Methyl Butyl Ketone (2-Hexanone)	115	10.0	ug/L	ND	115	50-140			
Methyl Isobutyl Ketone	112	5.0	ug/L	ND	112	50-140			
Methyl tert-butyl ether	76.0	2.0	ug/L	ND	76.0	50-140			
Methylene Chloride	41.9	5.0	ug/L	ND	105	60-130			
Styrene	30.6	0.5	ug/L	ND	76.6	60-130			
,1,1,2-Tetrachloroethane	28.6	0.5	ug/L	ND	71.6	60-130			
,1,2,2-Tetrachloroethane	33.7	0.5	ug/L	ND	84.2	60-130			
Tetrachloroethylene	25.2	0.5	ug/L	ND	62.9	60-130			
Toluene	40.7	0.5	ug/L	ND	102	60-130			
,2,4-Trichlorobenzene	29.7	0.5	ug/L	ND	74.4	60-130			
,1,1-Trichloroethane	33.9	0.5	ug/L	ND	84.7	60-130			
1,1,2-Trichloroethane	47.2	0.5	ug/L	ND	118	60-130			
Trichloroethylene	44.4	0.5	ug/L	ND	111	60-130			
Frichlorofluoromethane	40.6	1.0	ug/L	ND	102	60-130			
,2,4-Trimethylbenzene	ND	0.5	ug/L	ND		50-140			
,3,5-Trimethylbenzene	38.2	0.5	ug/L	ND	95.6	60-130			
/inyl chloride	47.6	0.5	ug/L	ND	119	50-140			
n,p-Xylenes	60.1	0.5	ug/L	ND	75.1	60-130			
-Xylene	31.6	0.5	ug/L	ND	79.0	60-130			
Surrogate: 4-Bromofluorobenzene	79.6		ug/L		99.4	50-140			
Surrogate: Dibromofluoromethane	81.5		ug/L		102	50-140			
Surrogate: Toluene-d8	77.6		ug/L		97.0	50-140			



Client: Golder Associates Ltd. (Ottawa)

Client PO:

Project Description: 10-1121-0222

Report Date: 08-Jul-2011 Order Date: 30-Jun-2011

Order #: 1128002

Sample and QC Qualifiers Notes

1- QR-01:

Duplicate RPD is high, however, the sample result is less than 10x the MDL.

3- Z-01:

Sample was preserved, holding time not exceeded

### **Sample Data Revisions**

None

### **Work Order Revisions/Comments:**

None

### Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.



TRUSTED .
RESPONSIVE .
RELIABLE .

300-2319 St. Laurent Blvd Ottawa, ON KIG 438 t: 613-731-9577 800-749-1947 f: 613-731-9064 Chain of Custody
(lab use only)

Nº 81530

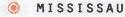
OTTAWA . NIAGARA FALLS . MISSISSAUGA . SARNIA

Reg. Drinking Water

| No. | Reg. Drinking Water | Page |

Client Man	ne	T m		28.			well retriving as									
CIRCII NAT	Golder Associates Ltd.	Project	Ref:	0 11	21	022	Waterworks Name		MI	1	,			Page	e L of	f L
Contact No	Maria Staneva	Quote	10	-24	)[		Waterworks Numb	er	1	/		7.0			ole Taker	
Address:	32 Stencie Dr.	PO#	10	20	)		Address:		/				Print N	- 1	1 1 10000	Dul
	10 /	E-mail	Address:		arts .		After hours Conta	et:					Signat	HOW /	Mon	Dicashar
Telephone	Konata, ON	Fax:	5 tay	Peral	algod	=f-CON	Public Health Uni	/	7 16			J.	Digital	AN	SKO	disaw
M. A.I.	m 0.0 m/a 1 mm 0				0		/						TA	T:   -d	lay     2-	day   Reg!
Samples s	Types: S-Soil/Sed. GW-Ground Water SW submitted under: (Indicate ONLY one)	-Surface	Water						W-Reg	ulated	Drinki	ng Wa	ter P-	Paint A	A-Air (	O Other
O. Reg	153 (511) Table O. Reg 170/03 O. Reg 318/0	8 🗍 Privat	te well	Type of Location	DW Sampl Types: S	e: R = Raw = Surface V	T = Treated; D = I Vater: G = Ground	Distribution Water				Requ	ired An	alyses		
Paracel (	Order Number			9	1 22	T			13				1.5	E C		
and control to the co	28002	Matrix	Air Volume	Type of Sample	of Containers	Sa	mple Taken	Free / Combined Chlorine Residual	(CE,-)	OCS	1	tals	COL	rom 2		
	Sample ID / Location Name	1	×	Typ	**	Date	Time	T T	T	>	N	2	50	( )		
1 7	T-72A	GW	1	断	15	6/30	1 1 1 1	1	X	X	X	X	V	X		
2	1-014	1	1	1	15	10/30	BM	1	X		1/	V	X			
3	W-009	V	1	1	1	1	Bu	1	1	X	X	~	7	X		
4	.00)	-	1			- V	PA	-			X	_				
5	a to the control of t			-		-	-	-								
6		-	-	-		-				-						
7				-		-										
8		-														
9	(4) restrictions	-														
10		-						-						_	/	
	Dense Constrain		a V		15 .	- m	oun proce	45					1			
Commen		Ikmf	) QL	- 10	COGNA	9 00	son proce	. s.l (s.	Pres	ervaiio ified by	y Venfi	ication:	pH_I	11 T	emperat	tire
Relinquish	ed By (Print & Sign): Brod's Low/A. Braddhaw							Jah Dee On	lyi							7
Har Oil	DICES NOW A Bradhaw	Receive		Your	1		Received at Lab:	KA,	The same		EV-	erified		11	1	
Date/Time		Date/T	-	10/30/	THE PERSON NAMED IN	24	Date/Time:	THE ST	12	114	100	ly: Jaio Tir	ne:		11	1/1
CL-Wood			1	7 7	1k-,,				7:0	100	2		V		V	
ChainOtCus	stody Rev 2.0. January 2010			Wu	15- 11	1			1.0	1					1	1.332




TRUSTED. RESPONSIVE. RELIABLE.

300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🌘 NIAGARA FALLS 🍥 MISSISSAUGA





# Certificate of Analysis

Golder Associates Ltd. (Ottawa)

32 Steacie Dr.

Kanata, ON K2K 2A9

Attn: Maria Staneva

Client PO:

Project: 10-1121-0222

Custody: 87848

Phone: (613) 592-9600

Fax: (613) 592-9601

Report Date: 31-Aug-2011

Order Date: 25-Aug-2011

Order #: 1135236

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1135236-01 T-72A 1135236-02 T-72B 1135236-03 E-112 1135236-04 E-006

Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc **Laboratory Director** 



Certificate of Analysis
Client: Golder Associates Ltd. (Ottawa)

Client PO:

Project Description: 10-1121-0222

Report Date: 31-Aug-2011 Order Date:25-Aug-2011

## **Analysis Summary Table**

Method Reference/Description	Extraction Date	Analysis Date
EPA 624 - P&T GC-MS	29-Aug-11	30-Aug-11
CWS Tier 1 - P&T GC-FID	29-Aug-11	30-Aug-11
CWS Tier 1 - GC-FID, extraction	26-Aug-11	26-Aug-11
MOE E3056 - colourimetric	26-Aug-11	30-Aug-11
EPA 245.1 - Cold Vapour AA	30-Aug-11	30-Aug-11
EPA 200.8 - ICP-MS	29-Aug-11	29-Aug-11
EPA 625 - GC-MS, extraction	29-Aug-11	29-Aug-11
EPA 624 - P&T GC-MS	29-Aug-11	30-Aug-11
	EPA 624 - P&T GC-MS CWS Tier 1 - P&T GC-FID CWS Tier 1 - GC-FID, extraction MOE E3056 - colourimetric EPA 245.1 - Cold Vapour AA EPA 200.8 - ICP-MS EPA 625 - GC-MS, extraction	EPA 624 - P&T GC-MS       29-Aug-11         CWS Tier 1 - P&T GC-FID       29-Aug-11         CWS Tier 1 - GC-FID, extraction       26-Aug-11         MOE E3056 - colourimetric       26-Aug-11         EPA 245.1 - Cold Vapour AA       30-Aug-11         EPA 200.8 - ICP-MS       29-Aug-11         EPA 625 - GC-MS, extraction       29-Aug-11

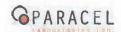


Certificate of Analysis
Client: Golder Associates Ltd. (Ottawa)
Client PO:

Report Date: 31-Aug-2011 Order Date: 25-Aug-2011

Project Description: 10-1121-0222

	Client ID: Sample Date:	T-72A 23-Aug-11	T-72B 23-Aug-11	E-112 23-Aug-11	E-006 23-Aug-11
	Sample ID:	1135236-01 Water	1135236-02 Water	1135236-03 Water	1135236-04 Water
Vietals	MDL/Units	vvalei	vvalei	vvatei	vvalei
	0.1 ug/L		Part III	<0.1	<0.1
Mercury	0.5 ug/L	_		0.7	<0.5
Antimony	1 ug/L			1	1
Arsenic	1 ug/L			168	79
Barium	0.5 ug/L		-	<0.5	<0.5
Beryllium	10 ug/L				
Boron	0.1 ug/L			210	87
Cadmium				<0.1	<0.1
Chromium	1 ug/L			22	27
Chromium (VI)	10 ug/L		-	<10	<10
Cobalt	0.5 ug/L		-	2.1	3.1
Copper	0.5 ug/L		-	2.9	3.6
Lead	0.1 ug/L	-	-	<0.1	<0.1
Molybdenum	0.5 ug/L			31.2	4.5
Nickel	1 ug/L		-	12	22
Selenium	1 ug/L		-	<1	<1
Silver	0.1 ug/L			<0.1	<0.1
Sodium	200 ug/L	41,	-	875000	2750000
Thallium	0.1 ug/L			<0.1	<0.1
Uranium	0.1 ug/L			2.2	0.5
Vanadium	0.5 ug/L		-	7.5	5.9
Zinc	10 ug/L			40	21
/olatiles					
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Chloroethane	1.0 ug/L	<1.0	<1.0	<1.0	-
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	-
Chloromethane	3.0 ug/L	<3.0	<3.0	<3.0	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	




**Certificate of Analysis** Client: Golder Associates Ltd. (Ottawa) Client PO:

Report Date: 31-Aug-2011 Order Date:25-Aug-2011

Project Description: 10-1121-0222

Ment 1 O.	Client ID: Sample Date: Sample ID:	T-72A 23-Aug-11 1135236-01	7-72B 23-Aug-11 1135236-02	E-112 23-Aug-11 1135236-03	E-006 23-Aug-11 1135236-04
	MDL/Units	Water	Water	Water	Water
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-
1,2-Dibromoethane	0.2 ug/L	<0.2	<0.2	<0.2	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	*
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	14
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	<0.5	<0.5	
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	4
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	To the second
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	
Methyl Butyl Ketone (2-Hexanone	10.0 ug/L	<10.0	<10.0	<10.0	/47
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	4
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	H-C-C-C
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	V <del>a</del>
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	12
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	74
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	



Report Date: 31-Aug-2011 Order Date:25-Aug-2011

# Certificate of Analysis Client: Golder Associates Ltd. (Ottawa)

Client PO:		Project Descript	ion: 10-1121-0222		
	Client ID: Sample Date: Sample ID: MDL/Units	T-72A 23-Aug-11 1135236-01 Water	T-72B 23-Aug-11 1135236-02 Water	E-112 23-Aug-11 1135236-03 Water	E-006 23-Aug-11 1135236-04 Water
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	Water
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	
4-Bromofluorobenzene	Surrogate	132%	138%	132%	
Dibromofluoromethane	Surrogate	85.9%	86.5%	88.5%	
Toluene-d8	Surrogate	110%	110%	108%	-
Benzene	0.5 ug/L			-	<0.5
Ethylbenzene	0.5 ug/L		-		<0.5
Toluene	0.5 ug/L	1111-11		-	<0.5
m,p-Xylenes	0.5 ug/L			-	<0.5
o-Xylene	0.5 ug/L	-	. <del></del>	-	<0.5
Xylenes, total	0.5 ug/L		-		<0.5
Toluene-d8	Surrogate		-		109%
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	229
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	220
F1 + F2 PHCs	125 ug/L	<125	<125	<125	
F1 + F2 PHCs	125 ug/L		-		<125
F3 + F4 PHCs	200 ug/L	<200	<200	<200	
F3 + F4 PHCs	200 ug/L	•			449
Semi-Volatiles			<del></del>		
Acenaphthene	0.05 ug/L		3/ 12 - 2-2-	1.28	< 0.05
Acenaphthylene	0.05 ug/L	÷	-	10.7	<0.05
Anthracene	0.01 ug/L	-	-	3.90	0.02
Benzo [a] anthracene	0.01 ug/L	-	<u>-</u>	2.94	0.13
Benzo [a] pyrene	0.01 ug/L			2.05	0.04
Benzo [b] fluoranthene	0.05 ug/L			2.63	0.12
Benzo [g,h,i] perylene	0.05 ug/L			1.06	0.07
Benzo [k] fluoranthene	0.05 ug/L	-		1.49	0.07
Biphenyl	0.05 ug/L		-	1.98	0.06
Chrysene	0.05 ug/L			3.68	0.19
Dibenzo [a,h] anthracene	0.05 ug/L	-		0.32	<0.05
Fluoranthene	0.01 ug/L			4.01	0.09



Report Date: 31-Aug-2011 Order Date:25-Aug-2011

Certificate of Analysis
Client: Golder Associates Ltd. (Ottawa)

Client PO:

Project Description: 10-1121-0222

	Client ID: Sample Date: Sample ID: MDL/Units	T-72A 23-Aug-11 1135236-01 Water	T-72B 23-Aug-11 1135236-02 Water	E-112 23-Aug-11 1135236-03 Water	E-006 23-Aug-11 1135236-04 Water
Fluorene	0.05 ug/L			5.97	<0.05
Indeno [1,2,3-cd] pyrene	0.05 ug/L		-	0.83	0.05
1-Methylnaphthalene	0.05 ug/L	W	-	14.3	<0.05
2-Methylnaphthalene	0.05 ug/L			18.0	<0.05
Methylnaphthalene (1&2)	0.10 ug/L		- III	32.3	<0.10
Naphthalene	0.05 ug/L			43.6	<0.05
Phenanthrene	0.05 ug/L	-	-	10.9	0.16
Pyrene	0.01 ug/L	7.		5.47	0.09
2-Fluorobiphenyl	Surrogate		-	50.2%	51.4%
Terphenyl-d14	Surrogate			56.4%	67.0%



Bromodichloromethane

Carbon Tetrachloride

Bromoform

Bromomethane

Order #: 1135236

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Report Date: 31-Aug-2011 Order Date:25-Aug-2011

Client PO: Project Description: 10-1121-0222 Method Quality Control: Blank Reporting Source %REC **RPD** Analyte Result RPD Notes Units %REC Limit Limit Limit Result **Hydrocarbons** F1 PHCs (C6-C10) ND 25 ug/L F2 PHCs (C10-C16) ND 100 ug/L F3 PHCs (C16-C34) F4 PHCs (C34-C50) ND 100 ug/L ug/L ND 100 Metals ND Mercury 0.1 ug/L Antimony ND 0.5 ug/L ND ug/L Arsenic 1 ug/L ND Barium ug/L Beryllium ND 0.5 Boron ND 10 ug/L Cadmium ND 0.1 ug/L ND Chromium (VI) 10 ug/L ug/L Chromium ND 1 ND 0.5 ug/L Cobalt Copper ND 0.5 ug/L ND 0.1 ug/L Lead Molybdenum ND 0.5 ug/L ND ug/L Nickel ND Selenium 1 ug/L 0.1 Silver ND ug/L Sodium ND 200 ug/L ug/L Thallium ND 0.1 ND Uranium 0.1 ug/L Vanadium ND 0.5 ug/L Zinc ND 10 ug/L Semi-Volatiles Acenaphthene ND 0.05 ug/L ug/L Acenaphthylene ND 0.05 ND 0.01 Anthracene ug/L Benzo [a] anthracene ND 0.01 ug/L Benzo [a] pyrene ND 0.01 ug/L Benzo [b] fluoranthene ND 0.05 ug/L ND 0.05 Benzo [g,h,i] perylene ug/L ND 0.05 Benzo [k] fluoranthene ug/L Biphenyl ND 0.05 ug/L ND 0.05 ug/L Chrysene ug/L Dibenzo [a,h] anthracene ND 0.05 ND 0.01 Fluoranthene ug/L Fluorene ND 0.05 ug/L Indeno [1,2,3-cd] pyrene ND 0.05 ug/L ug/L 1-Methylnaphthalene 0.05 ND 2-Methylnaphthalene ND 0.05 ug/L Methylnaphthalene (1&2) ND 0.10 ug/L Naphthalene ND 0.05 ug/L Phenanthrene ND 0.05 ug/L ug/L Pyrene ND 0.01 Surrogate: 2-Fluorobiphenyl 13.6 68.1 31-154 ug/L Surrogate: Terphenyl-d14 17.3 ug/L 86.5 37-156 **Volatiles** ug/L Acetone ND 5.0 Benzene ND 0.5 ug/L

> 1-800-749-1947 PARACEL@PARACELLABS.COM

ND

ND

ND

ND

0.5

0.5

0.5

0.2

WWW.PARACELLABS.COM

OTTANA 300-2319 St. Laurent Blvd. Ottewa, ON K1G 4J8

ug/L

ug/L ug/L

ug/L

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt Niegera Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7



Certificate of Analysis
Client: Golder Associates Ltd. (Ottawa)

Client PO:

Project Description: 10-1121-0222

Report Date: 31-Aug-2011

Order Date:25-Aug-2011

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Chlorobenzene	ND	0.5	ug/L						
Chloroethane	ND	1.0	ug/L		2				
Chloroform	ND	0.5	ug/L						
Chloromethane	ND	3.0	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dibromoethane	ND	0.2	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1.1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
rans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloroethylene, total	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
rans-1,3-Dichloropropylene	ND	0.5	ug/L						
I,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
I.1.1.2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachioroethane	ND	0.5	ug/L						
	ND	0.5							
Tetrachloroethylene			ug/L						
Toluene	ND	0.5	ug/L						
1,2,4-Trichlorobenzene	ND	0.5	ug/L						
I,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Frichlorofluoromethane	ND	1.0	ug/L						
1,3,5-Trimethylbenzene	ND	0.5	ug/L						
/inyl chloride	ND	0.5	ug/L						
n,p-Xylenes	ND	0.5	ug/L						
p-Xylene	ND	0.5	ug/L						
(ylenes, total	ND	0.5	ug/L		400	E0 445			
Surrogate: 4-Bromofluorobenzene	34.9		ug/L		109	50-140			
Surrogate: Dibromofluoromethane	33.0		ug/L		103	50-140			
Surrogate: Toluene-d8	35.3		ug/L		110	50-140			
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
-Xylene	ND	0.5	ug/L						
Kylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	35.3	0.0	ug/L		110	50-140			



Certificate of Analysis

Methyl Ethyl Ketone (2-Butanone)

Methyl Butyl Ketone (2-Hexanone)

Methyl Isobutyl Ketone

Methyl tert-butyl ether

Methylene Chloride

Client: Golder Associates Ltd. (Ottawa)

Client PO:

Project Description: 10-1121-0222

Report Date: 31-Aug-2011 Order Date: 25-Aug-2011

Method Quality Control: Duplicate Reporting %REC RPD Source Analyte Limit Result RPD Units Result %REC Limit Limit Notes **Hydrocarbons** F1 PHCs (C6-C10) ND 25 ND 30 uq/L Metals ND ND Mercury 0.1 20 ug/L Antimony ND 0.5 ug/L ND 20 Arsenic 1.2 6.5 20 1.2 1 ug/L 23.5 ug/L 23.5 0.1 20 Barium 1 Beryllium ND 0.5 ug/L ND 20 Boron 22 ug/L 31 33.1 20 **QR-01** 10 20 Cadmium ND 0.1 ug/L ND Chromium (VI) ND ND 10 ug/L 13 Chromium 8.2 1 ug/L 7.5 8.8 20 0.5 ND 20 Cobalt ND ug/L 1.64 20 Copper 0.5 ug/L 1.56 4.7 20 Lead 0.10 0.1 ug/L ND Molybdenum 1.08 0.5 1.22 11.6 20 ug/L ug/L 20 Nickel 27 27 1 27 5.8 Selenium 2.0 20 1.9 1 ug/L Silver ND 0.1 ug/L ND 20 ug/L 20 Sodium 12000 200 14000 15.7 ug/L ND 20 Thallium ND 0.1 Uranium ND 0.1 ug/L ND 20 2.08 Vanadium 2.29 0.5 ug/L 9.5 20 ug/L 20 Zinc ND 10 ND **Volatiles** Acetone ND 5.0 ug/L ND 30 0.5 ND 30 Benzene ND ug/L 30 Bromodichloromethane ND 0.5 ND ug/L Bromoform ND 0.5 ug/L ND 30 ug/L Bromomethane ND 0.5 ND 30 Carbon Tetrachloride ND 0.2 ug/L ND 30 Chlorobenzene ND 0.5 ug/L ND 30 Chloroethane ND 1.0 ND 30 ug/L Chloroform ND 0.5 ug/L ND 30 30 Chloromethane ND 3.0 ND ug/L Dibromochloromethane ND 0.5 ug/L ND 30 Dichlorodifluoromethane 30 ND 1.0 ug/L ND 1,2-Dibromoethane ND 0.2 ND 30 ug/L 1,2-Dichlorobenzene ND 0.5 ug/L ND 30 1,3-Dichlorobenzene ND 0.5 ND 30 ug/L 1.4-Dichlorobenzene 0.5 30 ND ug/L ND 1,1-Dichloroethane ND 0.5 ug/L ND 30 1,2-Dichloroethane ND 0.5 ND 30 ug/L ug/L 1,1-Dichloroethylene ND 0.5 ND 30 cis-1,2-Dichloroethylene ND 30 0.5 ug/L ND trans-1,2-Dichloroethylene ND 0.5 ND 30 ug/L 1.2-Dichloropropane ug/L 30 ND 0.5 ND cis-1,3-Dichloropropylene ND ND 30 0.5 ug/L trans-1,3-Dichloropropylene ND 0.5 ug/L ND 30 Ethylbenzene 0.5 30 ND ug/L ND Hexane ND ND 30 1.0 ug/L

> 1-800-749-1947 PARACEL@PARACELLABS.COM

ND

ND

ND

ND

ND

5.0

10.0

5.0

2.0

5.0

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd Ottews, ON K1G 4J8

ND

ND

ND

ND

ND

ug/L

ug/L

ug/L

ug/L

ug/L

MISSISSAUGA 6645 Kitimat Pd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 8416 Morning Glory Crt. Nagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7 30

30

30

30

30



Report Date: 31-Aug-2011 Order Date: 25-Aug-2011

Certificate of Analysis
Client: Golder Associates Ltd. (Ottawa)

Client: Golder Associates Ltd. (Ottawa)
Client PO:

Method Quality Control: Dunlicate

Project Description: 10-1121-0222

Analyte		Reporting Limit	11-2-	Source	0/DEO	%REC	DDD	RPD	Notes
Analyte	Result	LITTEL	Units	Result	%REC	Limit	RPD	Limit	Notes
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1,2,4-Trichlorobenzene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Frichloroethylene	ND	0.5	ug/L	ND				30	
Frichlorofluoromethane	ND	1.0	ug/L	ND				30	
1,3,5-Trimethylbenzene	ND	0.5	ug/L	ND				30	
/inyl chloride	ND	0.5	ug/L	ND				30	
n,p-Xylenes	ND	0.5	ug/L	ND				30	
-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	35.9		ug/L	ND	112	50-140			
Surrogate: Dibromofluoromethane	29.5		ug/L	ND	92.3	50-140			
Surrogate: Toluene-d8	34.7		ug/L	ND	108	50-140			
Benzene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
n,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	34.7	5.5	ug/L	ND	108	50-140			



Certificate of Analysis
Client: Golder Associates Ltd. (Ottawa)

Report Date: 31-Aug-2011 Order Date:25-Aug-2011

Client PO: Project Description: 10-1121-0222 Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons	7		e e e						
F1 PHCs (C6-C10)	1660	25	ug/L	ND	83.2	68-117			
F2 PHCs (C10-C16)	1140	100	ug/L	ND	71.4	60-140			
F3 PHCs (C16-C34)	2990	100	ug/L	ND	74.7	60-140			
F4 PHCs (C34-C50)	2080	100	ug/L	ND	86.6	60-140			
Metals									
Mercury	3.89	0.1	ug/L	ND	130	78-137			
Antimony	49.7		ug/L	ND	99.4	80-120			
Arsenic	45.1	×.	ug/L	ND	90.2	80-120			
Barium	50.2		ug/L	ND	100	80-120			
Beryllium	36.6		ug/L	ND	73.2	80-120		C	S-02
Boron	41		ug/L	ND	82.0	80-120			
Cadmium	47.8		ug/L	ND	95.5	80-120			
Chromium (VI)	207	10	ug/L	ND	104	75-120			
Chromium	49.0		ug/L	ND	98.1	80-120			
Cobalt	52.1		ug/L	ND	104	80-120			
Copper	50.4		ug/L	ND	101	80-120			
_ead	48.2		ug/L	ND	96.4	80-120			
Molybdenum	47.1		ug/L	ND	94.2	80-120			
Nickel	50.9		ug/L	ND	102	80-120			
Selenium	47.2		ug/L	ND	94.4	80-120			
Silver	50.7		ug/L	ND	101	80-120			
Sodium	658		ug/L ug/L	ND	65.8	80-120			S-02
hallium	50.4		ug/L ug/L	ND	101	80-120			(3-02
	47.4		-			80-120			
Jranium (a.a. divers			ug/L	ND	94.9 97.9	80-120			
/anadium	49.0		ug/L	ND					
Zinc	44		ug/L	ND	88.6	80-120			
Semi-Volatiles		0.05		ND	07.0	50.440			
Acenaphthene	4.88	0.05	ug/L	ND	97.6	50-140			
Acenaphthylene	5.34	0.05	ug/L	ND	107	50-140			
Anthracene	5.09	0.01	ug/L	ND	102	50-140			
Benzo [a] anthracene	5.27	0.01	ug/L	ND	105	50-140			
Benzo [a] pyrene	4.18	0.01	ug/L	ND	83.5	50-140			
Benzo [b] fluoranthene	6.03	0.05	ug/L	ND	121	50-140			
Benzo [g,h,i] perylene	4.19	0.05	ug/L	ND	83.7	50-140			
Benzo [k] fluoranthene	5.43	0.05	ug/L	ND	109	50-140			
3iphenyl	4.39	0.05	ug/L	ND	87.8	50-140			
Chrysene	6.32	0.05	ug/L	ND	126	50-140			
Dibenzo [a,h] anthracene	3.00	0.05	ug/L	ND	60.0	50-140			
Fluoranthene	4.91	0.01	ug/L	ND	98.2	50-140			
Fluorene	4.89	0.05	ug/L	ND	97.7	50-140			
ndeno [1,2,3-cd] pyrene	3.30	0.05	ug/L	ND	66.0	50-140			
1-Methylnaphthalene	3.98	0.05	ug/L	ND	79.7	50-140			
2-Methylnaphthalene	3.90	0.05	ug/L	ND	77.9	50-140			
Naphthalene	4.79	0.05	ug/L	ND	95.9	50-140			
Phenanthrene	5.02	0.05	ug/L	ND	100	50-140			
Pyrene	4.61	0.01	ug/L	ND	92.2	50-140			
Surrogate: 2-Fluorobiphenyl	14.1		ug/L		70.7	31-154			
Volatiles									90
Acetone	87.0	5.0	ug/L	ND	87.0	50-140			

P: 1-800-749-1947
E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd, Unit #27 Mississauga, ON L5N 6J3

NIAGARA FALLS 5416 Morning Glery Cr. Nisgara Fails, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7



Report Date: 31-Aug-2011 Order Date:25-Aug-2011

Certificate of Analysis Client: Golder Associates Ltd. (Ottawa) Client PO:

Project Description: 10-1121-0222

Method Quality Control: Spike Reporting %REC Source

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit Notes
Benzene	33.5	0.5	ug/L	ND	83.6	60-130		
Bromodichloromethane	34.3	0.5	ug/L	ND	85.8	60-130		
Bromoform	26.2	0.5	ug/L	ND	65.4	60-130		
Bromomethane	8.97	0.5	ug/L	ND	22.4	50-140		Q\$-02
Carbon Tetrachloride	36.2	0.2	ug/L	ND	90.4	60-130		
Chlorobenzene	31,1	0.5	ug/L	ND	77.6	60-130		
Chloroethane	26.3	1.0	ug/L	ND	65.8	50-140		
Chloroform	36.5	0.5	ug/L	ND	91.3	60-130		
Chloromethane	22.5	3.0	ug/L	ND	56.2	50-140		
Dibromochloromethane	29.2	0.5	ug/L	ND	73.0	60-130		
Dichlorodifluoromethane	27.6	1.0	ug/L	ND	69.0	50-140		
1,2-Dibromoethane	26.2	0.2	ug/L	ND	65.4	60-130		
1,2-Dichlorobenzene	35.1	0.5	ug/L	ND	87.8	60-130		
1,3-Dichlorobenzene	32.2	0.5	ug/L	ND	80.6	60-130		
1,4-Dichlorobenzene	39.4	0.5	ug/L	ND	98.6	60-130		
1.1-Dichloroethane	31.3	0.5	ug/L	ND	78.2	60-130		
1,2-Dichloroethane	37.0	0.5	ug/L	ND	92.6	60-130		
1,1-Dichloroethylene	34.9	0.5	ug/L	ND	87.2	60-130		
cis-1,2-Dichloroethylene	33.4	0.5	ug/L	ND	83.5	60-130		
trans-1,2-Dichloroethylene	35.7	0.5	ug/L	ND	89.2	60-130		
1,2-Dichloropropane	31.2	0.5	ug/L	ND	78.0	60-130		
cis-1,3-Dichloropropylene	31.4	0.5	ug/L	ND	78.4	60-130		
trans-1,3-Dichloropropylene	26.1	0.5	ug/L	ND	65.3	60-130		
Ethylbenzene	28.7	0.5	ug/L	ND	71.7	60-130		
Hexane	25.5	1.0	ug/L	ND	63.8	60-130		
Methyl Ethyl Ketone (2-Butanone)	70.2	5.0	ug/L	ND	70.2	50-140		
Methyl Butyl Ketone (2-Butanone)	67.3	10.0	ug/L	ND	67.3	50-140		
Methyl Isobutyl Ketone	72.6	5.0	ug/L	ND	72.6	50-140		
Methyl tert-butyl ether	58.2	2.0	ug/L ug/L	ND	58.2	50-140		
	33.9	5.0	ug/L ug/L	ND	84.8	60-130		
Methylene Chloride	28.5	0.5	-	ND	71.3	60-130		
Styrene			ug/L		74.8			
1,1,1,2-Tetrachloroethane	29.9	0.5	ug/L	ND	60.0	60-130 60-130		
1,1,2,2-Tetrachloroethane	24.0	0.5	ug/L	ND				
Tetrachloroethylene	30.3	0.5	ug/L	ND	75.7	60-130		
Toluene	33.9	0.5	ug/L	ND	84.6	60-130		
1,2,4-Trichlorobenzene	25.5	0.5	ug/L	ND	63.8	60-130		
1,1,1-Trichloroethane	33.4	0.5	ug/L	ND	83.4	60-130		
1,1,2-Trichloroethane	32.5	0.5	ug/L	ND	81.3	60-130		
Trichloroethylene	31.9	0.5	ug/L	ND	79.7	60-130		
Trichlorofluoromethane	31.9	1.0	ug/L	ND	79.7	60-130		
1,3,5-Trimethylbenzene	34.4	0.5	ug/L	ND	86.1	60-130		
Vinyl chloride	29.3	0.5	ug/L	ND	73.2	50-140		
m,p-Xylenes	61.6	0.5	ug/L	ND	76.9	60-130		
o-Xylene	30.8	0.5	ug/L	ND	76.9	60-130		
Benzene	33.5	0.5	ug/L	ND	83.6	60-130		
Ethylbenzene	28.7	0.5	ug/L	ND	71.7	60-130		
Toluene	33.9	0.5	ug/L	ND	84.6	60-130		
m,p-Xylenes	61.6	0.5	ug/L	ND	76.9	60-130		
o-Xylene	30.8	0.5	ug/L	ND	76.9	60-130		



Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO:

Project Description: 10-1121-0222

Report Date: 31-Aug-2011 Order Date: 25-Aug-2011

### Sample and QC Qualifiers Notes

1- LG-SMP007 : Sample - Filtered and preserved by Paracel upon receipt at the laboratory

4- QR-01:

Duplicate RPD is high, however, the sample result is less than 10x the MDL.

5- QS-02:

Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

#### **Sample Data Revisions**

None

### Work Order Revisions/Comments:

None

### **Other Report Notes:**

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

0	D	٨	D	٨	_		1	
()	LA	BOR	KAT	4 8	IES	L	T D	) .
OTTAWA	•	KINGS	STON	0	NIAG	ARA	•	M
Client Name.	G	AL		C1			_	

TRUSTED. RESPONSIVE . RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontaño K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

(Lab Use ()nly) 87848

**Chain of Custody** 

MISSISSAUGA @ SARNIA

www.paracellabs.com Page 1 of 1

Client No	Client Name.				Project Reference: 10 1/21 0222							TAT: WRegular ASV						
Contact 1	TIME OF STATES			Quote #	10-30	75							[]	2 Day				
Address:	32 Steacle Dr.			PO#					n.				[]	I Day	Mor	10	77)	
Telephor	Kanala ON			Email A	taneva	(a)gol	der	.00	)M)			Date I	Required:	Addition to the Control of the Contr	ay (16	29	-	
Ask 1	Man Samples Submitted Under:     O. Reg. 153/04 Ta	ble [	10. Res	511/09	Table   PW	QO   ICCM	E []Se	wer Use	(Storm)	[ ] Sew	er Use (S	ianitary)	Oth	er,			THE STATE OF THE S	
	ype: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)												nalyses					
Parace	1 Order Number:	Matrix	Air Volume	of Containers	Sample	Taken	PHCE-FW	000	Metals	Cara	Chrom XE	XX	TEX					
	Sample ID/Location Name		4	# 0	Date	Time	ā	7	2	Te	5	0	2					
1	T-72A	GW	1	3	25/8/11	PM	X	X									1	
2	T-728	GW	1	3		1	X	X									1	
3	F-11)	5W	1	7			X	X	X	x	X	X					/	
4	E-006	SW	1	7	V	V	X		州	X	X	X	X				1	
5																		
6																		
7																		
8																		
9																		
10					2 11	á												
Comm	Full bottle extraction for isshed By (Print & Sign):	IN.	All	me- Mai	tals fie	ld fill bsamp	ereo	for	ev (	Mar	· a	- M	16	1657	of Delive			
Releigu	rished By (Print & Sign):	M	wit w	chi	ot:	()	ALL A	IN				IV			1	1 11	2.0	
Date/Fin	ON MANUS NOW HER MANUAL MANUEL MANUS NOW HERE	Date fi	_	706	°C	Date/T	ime: All erature: _	4 10	t	12	70	_	inie: A		26/1 M/C		- 20	



TRUSTED. RESPONSIVE. RELIABLE.

300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947 e paracel@paracellabs.com

www.paracellabs.com



OTTAWA 🖲 NIAGARA FALLS 🍥 MISSISSAUGA 🎅 SARNIA





# Certificate of Analysis

Golder Associates Ltd. (Ottawa)

32 Steacie Dr.

Kanata, ON K2K 2A9

Attn: Basil Sullivan

Client PO:

Project: 10-1121-0222 (1300) (1340)

Custody: 29328

Phone: (613) 592-9600 Fax: (613) 592-9601

Report Date: 11-Nov-2011

Order Date: 7-Nov-2011

Order #: 1146028

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1146028-01	T-309 SA1
1146028-02	T-309 SA4
1146028-03	T-309 SA4A
1146028-04	T-307 SA1
1146028-05	T-307 SA5
1146028-06	T-306 SA1
1146028-07	T-306 SA3
1146028-08	T-308 SA3
1146028-09	T-308 SA6

Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc

**Laboratory Director** 



Certificate of Analysis
Client Golder Associates Ltd. (Ottawa)

Report Date: 11-Nov-2011 Order Date:7-Nov-2011

Client PO:

Project Description: 10-1121-0222 (1300) (1340)

<b>Analysis Summary Tal</b>	ble		
Analysis	Method Reference/Description	Extraction Date	Analysis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	8-Nov-11	9-Nov-11
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	10-Nov-11	10-Nov-11
Chromium, hexavalent	MOE E3056 - Extraction, colourimetric	8-Nov-11	8-Nov-11
Mercury	EPA 7471A - CVAA, digestion	9-Nov-11	9-Nov-11
Metals	EPA 6020 - Digestion - ICP-MS	8-Nov-11	8-Nov-11
Solids, %	Gravimetric, calculation	9-Nov-11	9-Nov-11
VOCs	EPA 8260 - P&T GC-MS	8-Nov-11	10-Nov-11



Chlorobenzene

Chloromethane

Dibromochloromethane

Chloroethane

Chloroform

Order #: 1146028

Certificate of Analysis Client Golder Associates Ltd. (Ottawa) Report Date: 11-Nov-2011 Order Date:7-Nov-2011

Client PO:		Project Description	ion: 10-1121-0222 (1300) (1340)					
	Client ID: Sample Date: Sample ID:	T-309 SA1 01-Nov-11 1146028-01	T-309 SA4 01-Nov-11 1146028-02	T-309 SA4A 01-Nov-11 1146028-03	T-307 SA1 02-Nov-11 1146028-04			
DI. 1 101 1 11	MDL/Units	Soil	Soil	Soil	Soil			
Physical Characteristics		05.5	200	04.0				
% Solids Metals	0.1 % by Wt.	95.5	82.8	84.6	88.8			
Antimony	1 ug/g dry	<1			<1			
Arsenic	1 ug/g dry	<1			5			
Barium	1 ug/g dry	40			255			
Beryllium	0.5 ug/g dry	<0.5	-	_	<0.5			
Boron	5.0 ug/g dry	<5.0			<5.0			
Cadmium	0.5 ug/g dry	<0.5			0.8			
Chromium	5 ug/g dry	<5		-	18			
Chromium (VI)	0.4 ug/g dry	<0.4			<0.4			
Cobalt	1 ug/g dry	2			5			
Copper	5 ug/g dry	5			27			
Lead	1 ug/g dry	25			258			
Mercury	0.1 ug/g dry	<0.1		-	0.7			
Molybdenum	1 ug/g dry	<1	1.2	-	<1			
Nickel	5 ug/g dry	7		-	13			
Selenium	1 ug/g dry	<1			<1			
Silver	0.3 ug/g dry	<0.3			<0.3			
Thallium	1 ug/g dry	<1		-	<1			
Uranium	1 ug/g dry	<1		-	<1			
Vanadium	10 ug/g dry	<10		-	24			
Zinc	20 ug/g dry	42	-		312			
/olatiles			the same of the sa		21111111111111111111111111111111111111			
Acetone	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5			
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02			
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	. <0.05			
Bromoform	0.05 ug/g dry	<0.05	<0.05	<0.05	< 0.05			
Bromomethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
True Control of the C			*					

0.05 ug/g dry

0.05 ug/g dry

0.05 ug/g dry

0.2 ug/g dry

0.05 ug/g dry

< 0.05

< 0.05

< 0.05

< 0.2

< 0.05

< 0.05

< 0.05

< 0.05

< 0.2

< 0.05

< 0.05

< 0.05

< 0.05

< 0.2

< 0.05

< 0.05

< 0.05

< 0.05

< 0.2

< 0.05



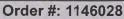
Vinyl chloride

# Certificate of Analysis Client Golder Associates Ltd. (Ottawa)

Report Date: 11-Nov-2011 Order Date: 7-Nov-2011

Client PO: Project Description: 10-1121-0222 (1300) (1340) Client ID: T-309 SA1 -309 SA4 T-309 SA4A T-307 SA1 Sample Date: 01-Nov-11 01-Nov-11 01-Nov-11 02-Nov-11 Sample ID: 1146028-01 1146028-02 1146028-04 1146028-03 Soil MDL/Units Soil Soil Soil Volatiles (continued) Dichlorodifluoromethane 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 1,2-Dibromoethane 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 1,2-Dichlorobenzene 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 1,3-Dichlorobenzene < 0.05 < 0.05 0.05 ug/g dry < 0.05 < 0.05 1,4-Dichlorobenzene 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 1,1-Dichloroethane 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 1,2-Dichloroethane 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 1,1-Dichloroethylene 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 cis-1,2-Dichloroethylene 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 trans-1,2-Dichloroethylene 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 1,2-Dichloroethylene, total 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 1,2-Dichloropropane 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 cis-1,3-Dichloropropylene 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 trans-1,3-Dichloropropylene 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 1,3-Dichloropropene, total 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 Ethylbenzene 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 Hexane 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 Methyl Ethyl Ketone (2-Butanone) 0.5 ug/g dry < 0.5 < 0.5 < 0.5 < 0.5 Methyl Butyl Ketone (2-Hexanone) <2.0 <2.0 2.0 ug/g dry <2.0 <2.0 Methyl Isobutyl Ketone 0.5 ug/g dry < 0.5 < 0.5 < 0.5 < 0.5 Methyl tert-butyl ether < 0.05 0.05 ug/g dry < 0.05 < 0.05 < 0.05 Methylene Chloride 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 Styrene 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 1,1,1,2-Tetrachloroethane 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 1.1.2.2-Tetrachloroethane < 0.05 0.05 ug/g dry < 0.05 < 0.05 < 0.05 Tetrachloroethylene 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 Toluene 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 1,2,4-Trichlorobenzene 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 1,1,1-Trichloroethane 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 1,1,2-Trichloroethane 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 Trichloroethylene 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 Trichlorofluoromethane 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05 1,3,5-Trimethylbenzene 0.05 ug/g dry < 0.05 < 0.05 < 0.05 < 0.05

0.02 ug/g dry


< 0.02

< 0.02

< 0.02

< 0.02







# Certificate of Analysis Client Golder Associates Ltd. (Ottawa)

Report Date: 11-Nov-2011 Order Date: 7-Nov-2011

Client PO:	Project Description: 10-1121-0222 (1300) (1340)						
	Client ID: Sample Date: Sample ID: MDL/Units	T-309 SA1 01-Nov-11 1146028-01 Soil	T-309 SA4 01-Nov-11 1146028-02 Soil	T-309 SA4A 01-Nov-11 1146028-03 Soil	T-307 SA1 02-Nov-11 1146028-04 Soil		
Volatiles (continued)							
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05		
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05		
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05		
4-Bromofluorobenzene	Surrogate	109%	109%	109%	106%		
Dibromofluoromethane	Surrogate	104%	103%	105%	106%		
Toluene-d8	Surrogate	108%	109%	110%	107%		
Hydrocarbons				Lannin Santalia			
F1 PHCs (C6-C10)	10 ug/g dry	<10	<10	<10	<10		
F2 PHCs (C10-C16)	10 ug/g dry	<10	<10	<10	<10		
F3 PHCs (C16-C34)	10 ug/g dry	28	<10	<10	82		
F4 PHCs (C34-C50)	10 ug/g dry	29	<10	<10	40		



# Certificate of Analysis Client Golder Associates Ltd. (Ottawa)

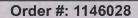
Report Date: 11-Nov-2011 Order Date:7-Nov-2011

Client PO:	Project Description: 10-1121-0222 (1300) (1340)					
	Client ID: Sample Date: Sample ID: MDL/Units	T-307 SA5 02-Nov-11 1146028-05 Soil	T-306 SA1 03-Nov-11 1146028-06 Soil	T-306 SA3 03-Nov-11 1146028-07 Soil	T-308 SA3 01-Nov-11 1146028-08 Soil	
Physical Characteristics	MDE/OIIES	0011	COII	3011	3011	
% Solids	0.1 % by Wt.	90.6	81.8	80.4	68.7	
Metals						
Antimony	1 ug/g dry	-	4	-		
Arsenic	1 ug/g dry		<1	-	-	
Barium	1 ug/g dry	15(1	413			
Beryllium	0.5 ug/g dry		<0.5		152	
Boron	5.0 ug/g dry	(4)	<5.0		-	
Cadmium	0.5 ug/g dry		<0.5		-	
Chromium	5 ug/g dry	-	7	- 1	-	
Chromium (VI)	0.4 ug/g dry		<0.4	_	-	
Cobalt	1 ug/g dry		2	_	-	
Copper	5 ug/g dry	-	7			
Lead	1 ug/g dry		438	-		
Mercury	0.1 ug/g dry		1.2	-	-	
Molybdenum	1 ug/g dry	-	<1	-		
Nickel	5 ug/g dry		6			
Selenium	1 ug/g dry		<1		-	
Silver	0.3 ug/g dry		<0.3	-		
Thallium	1 ug/g dry		<1	-	-	
Uranium	1 ug/g dry		<1	-12-5	_	
Vanadium	10 ug/g dry		<10		-	
Zinc	20 ug/g dry	-	266			
/olatiles						
Acetone	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5	
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02	
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05	
Bromoform	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05	
Bromomethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05	
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05	
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05	
Chloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05	
Chloroform	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05	
Chloromethane	0.2 ug/g dry	<0.2	<0.2	<0.2	<0.2	
Dibromochloromethane	0.05 ug/g dry	<0.05	< 0.05	<0.05	<0.05	



### Certificate of Analysis Client Golder Associates Ltd. (Ottawa)

Report Date: 11-Nov-2011 Order Date:7-Nov-2011

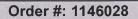

Client PO:	Project Description: 10-1121-0222 (1300) (1340)							
	Client ID: Sample Date: Sample ID: MDL/Units	T-307 SA5 02-Nov-11 1146028-05 Soil	T-306 SA1 03-Nov-11 1146028-06 Soil	T-306 SA3 03-Nov-11 1146028-07 Soil	T-308 SA3 01-Nov-11 1146028-08 Soil			
Volatiles (continued)	WIDE/OTHES	0011	0011	3011	0011			
Dichlorodifluoromethane	0.05 ug/g dry	< 0.05	<0.05	<0.05	<0.05			
1,2-Dibromoethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	< 0.05			
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
1,2-Dichloroethylene, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	< 0.05			
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	< 0.05			
Hexane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
Methyl Ethyl Ketone (2-Butanone)	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5			
Methyl Butyl Ketone (2-Hexanone	2.0 ug/g dry	<2.0	<2.0	<2.0	<2.0			
Methyl Isobutyl Ketone	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5			
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
Styrene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
1,2,4-Trichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
1,3,5-Trimethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05			
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02			



Certificate of Analysis
Client Golder Associates Ltd. (Ottawa)

Report Date: 11-Nov-2011 Order Date:7-Nov-2011

Client PO:		Project Description: 10-1121-0222 (1300) (1340)								
	Client ID: Sample Date: Sample ID:	T-307 SA5 02-Nov-11 1146028-05	T-306 SA1 03-Nov-11 1146028-06	T-306 SA3 03-Nov-11 1146028-07	T-308 SA3 01-Nov-11 1146028-08					
	MDL/Units	Soil	Soil	Soil	Soil					
Volatiles (continued)										
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05					
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05					
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05					
4-Bromofluorobenzene	Surrogate	109%	108%	108%	110%					
Dibromofluoromethane	Surrogate	107%	104%	106%	109%					
Toluene-d8	Surrogate	109%	108%	106%	106%					
Hydrocarbons										
F1 PHCs (C6-C10)	10 ug/g dry	<10	<10	<10	<10					
F2 PHCs (C10-C16)	10 ug/g dry	<10	<10	<10	<10					
F3 PHCs (C16-C34)	10 ug/g dry	<10	40	<10	<10					
F4 PHCs (C34-C50)	10 ug/g dry	<10	101	<10	<10					






Report Date: 11-Nov-2011 Order Date:7-Nov-2011

Client PO:	Project Description: 10-1121-0222 (1300) (1340)							
	Client ID: Sample Date: Sample ID: MDL/Units	T-308 SA6 01-Nov-11 1146028-09 Soil						
Physical Characteristics								
% Solids	0.1 % by Wt.	88.5	U					
Volatiles								
Acetone	0.5 ug/g dry	<0.5	-	-				
Benzene	0.02 ug/g dry	<0.02	-	-				
Bromodichloromethane	0.05 ug/g dry	<0.05	-	-				
Bromoform	0.05 ug/g dry	<0.05						
Bromomethane	0.05 ug/g dry	<0.05						
Carbon Tetrachloride	0.05 ug/g dry	<0.05						
Chlorobenzene	0.05 ug/g dry	<0.05			-			
Chloroethane	0.05 ug/g dry	<0.05	-	-				
Chloroform	0.05 ug/g dry	<0.05	-					
Chloromethane	0.2 ug/g dry	<0.2	-					
Dibromochloromethane	0.05 ug/g dry	<0.05	-					
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	-	*			
1,2-Dibromoethane	0.05 ug/g dry	<0.05	-					
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05						
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05						
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	-					
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	-	4			
1,2-Dichloroethane	0.05 ug/g dry	<0.05	-					
1,1-Dichloroethylene	0.05 ug/g dry	<0.05			-			
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-		-			
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05						
1,2-Dichloroethylene, total	0.05 ug/g dry	<0.05	-	-				
1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	-	-			
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-			
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05		-	-			
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05		Y				
Ethylbenzene	0.05 ug/g dry	<0.05	-					
Hexane	0.05 ug/g dry	<0.05		-				
Methyl Ethyl Ketone (2-Butanone)	0.5 ug/g dry	<0.5	-		-			
Methyl Butyl Ketone (2-Hexanone)	2.0 ug/g dry	<2.0		7 CONT. 10 TO 10 T				
Methyl Isobutyl Ketone	0.5 ug/g dry	<0.5	-	C CONTRACTOR				
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-					

OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8





Report Date: 11-Nov-2011 Order Date: 7-Nov-2011

Client PO:		Project Description: 10-1121-0222 (1300) (1340)							
	Client ID: Sample Date: Sample ID:	T-308 SA6 01-Nov-11 1146028-09							
	MDL/Units	Soil	-		-				
Volatiles (continued)									
Methylene Chloride	0.05 ug/g dry	<0.05		-	-				
Styrene	0.05 ug/g dry	<0.05		-					
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<u>-</u>		-				
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05		-	-				
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	-	-				
Toluene	0.05 ug/g dry	<0.05		-	-				
1,2,4-Trichlorobenzene	0.05 ug/g dry	<0.05	<u></u>	-	-				
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05			-				
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-				
Trichloroethylene	0.05 ug/g dry	<0.05	-	-	-				
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<u>-</u>	-	-				
1,3,5-Trimethylbenzene	0.05 ug/g dry	<0.05	-	-	-				
Vinyl chloride	0.02 ug/g dry	<0.02	-	-	-				
m,p-Xylenes	0.05 ug/g dry	<0.05	-		-				
o-Xylene	0.05 ug/g dry	<0.05		-					
Xylenes, total	0.05 ug/g dry	<0.05			-				
4-Bromofluorobenzene	Surrogate	109%		-					
Dibromofluoromethane	Surrogate	107%	-	-	-				
Toluene-d8	Surrogate	106%		-					
Hydrocarbons									
F1 PHCs (C6-C10)	10 ug/g dry	<10							
F2 PHCs (C10-C16)	10 ug/g dry	<10							
F3 PHCs (C16-C34)	10 ug/g dry	<10		-					
F4 PHCs (C34-C50)	10 ug/g dry	<10							



Certificate of Analysis
Client Golder Associates Ltd. (Ottawa)

Report Date: 11-Nov-2011 Order Date:7-Nov-2011

Client PO:

Project Description: 10-1121-0222 (1300) (1340)

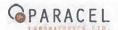
## Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	10	ug/g						
F2 PHCs (C10-C16)	ND	10	ug/g						
F3 PHCs (C16-C34)	ND	10	ug/g						
F4 PHCs (C34-C50)	ND	10	ug/g						
Metals									
	ND	1	uala						
Antimony	ND	1	ug/g						
Arsenic	ND	1	ug/g						
Barium	ND	0.5	ug/g						
Beryllium	ND	5.0	ug/g						
Boron	ND ND		ug/g						
Cadmium		0.5	ug/g						
Chromium (VI)	ND	0.4	ug/g						
Chromium	ND	5	ug/g						
Cobalt	ND	1	ug/g						
Copper	ND	5	ug/g						
Lead	ND	1	ug/g						
Mercury	ND	0.1	ug/g						
Molybdenum	ND	1	ug/g						
Nickel	ND	5	ug/g						
Selenium	ND	1	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1	ug/g						
Jranium	ND	1	ug/g						
Vanadium	ND	10	ug/g						
Zinc	ND	20	ug/g						
Volatiles									
Acetone	ND	0.5	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroethane	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
Chloromethane	ND	0.2	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1,2-Dibromoethane	ND	0.05	ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND	0.05	ug/g ug/g						
· ·	ND	0.05	ug/g ug/g						
1,1-Dichloroethane	ND ND	0.05							
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND ND		ug/g						
cis-1,2-Dichloroethylene		0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloroethylene, total	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						

WWW.PARACELLABS.COM



Certificate of Analysis
Client Golder Associates Ltd. (Ottawa)


Report Date: 11-Nov-2011 Order Date:7-Nov-2011

Client PO:

Project Description: 10-1121-0222 (1300) (1340)

# Method Quality Control: Blank

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.5	ug/g						
Methyl Butyl Ketone (2-Hexanone)	ND	2.0	ug/g						
Methyl Isobutyl Ketone	ND	0.5	ug/g					- 13	
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,2,4-Trichlorobenzene	ND	0.05	ug/g						
I,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Frichloroethylene	ND	0.05	ug/g						
Frichlorofluoromethane	ND	0.05	ug/g						
1,3,5-Trimethylbenzene	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Kylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	8.64		ug/g		108	50-140			
Surrogate: Dibromofluoromethane	8.77		ug/g		110	50-140			
Surrogate: Toluene-d8	8.30		ug/g		104	50-140			



Certificate of Analysis
Client Golder Associates Ltd. (Ottawa)

Report Date: 11-Nov-2011 Order Date:7-Nov-2011

Client PO:

Project Description: 10-1121-0222 (1300) (1340)

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
	, toodit	LITTIC	Office	Result	701 KLO	Little			
Hydrocarbons									
F1 PHCs (C6-C10)	ND	10	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	10	ug/g dry	ND				30	
F3 PHCs (C16-C34)	ND	10	ug/g dry	ND				30	
F4 PHCs (C34-C50)	ND	10	ug/g dry	ND				30	
Metals									
Antimony	ND	1	ug/g dry	ND				30	
Arsenic	ND	1	ug/g dry	ND				30	
Barium	36.1	1	ug/g dry	33.5			7.3	30	
Beryllium	ND	0.5	ug/g dry	ND				30	
Boron	ND	5.0	ug/g dry	ND				30	
Cadmium	ND	0.5	ug/g dry	ND				30	
Chromium (VI)	ND	0.4	ug/g dry	ND				35	
Chromium	ND	5	ug/g dry	ND				30	
Cobalt	3.5	1	ug/g dry	3.3			5.0	30	
Copper	7.5	5	ug/g dry	7.1			5.5	30	
ead	7.1	1	ug/g dry	7.0			2.1	30	
Mercury	ND	0.1	ug/g dry	ND				35	
Molybdenum	ND	1	ug/g dry	ND				30	
lickel	5.9	5	ug/g dry	5.6			4.0	30	
Selenium	ND	1	ug/g dry	ND				30	
Silver	ND	0.3	ug/g dry	ND				30	
Thallium	ND	1	ug/g dry	ND				30	
Jranium	ND	1	ug/g dry	ND				30	
/anadium	15.4	10	ug/g dry	15.2			0.9	30	
Zinc	ND	20	ug/g dry	ND				30	
			-9.9 7						
Physical Characteristics	74.4	0.4	0/ h. \ \A/4	73.5			1.3	25	
% Solids	74.4	0.1	% by Wt.	13.3			1.3	23	
<b>Volatiles</b>									
Acetone	ND	0.5	ug/g dry	ND				50	
Benzene	ND	0.02	ug/g dry	ND				50	
Bromodichloromethane	ND	0.05	ug/g dry	ND				50	
Bromoform	ND	0.05	ug/g dry	ND				50	
Bromomethane	ND	0.05	ug/g dry	ND				50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND				50	
Chlorobenzene	ND	0.05	ug/g dry	ND				50	
Chloroethane	ND	0.05	ug/g dry	ND				50	
Chloroform	ND	0.05	ug/g dry	ND				50	
Chloromethane	ND	0.2	ug/g dry	ND				50	
Dibromochloromethane	ND	0.05	ug/g dry	ND				50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND				50	
1,2-Dībromoethane	ND	0.05	ug/g dry	ND				50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND				50	



Certificate of Analysis
Client Golder Associates Ltd. (Ottawa)

Report Date: 11-Nov-2011 Order Date:7-Nov-2011

Client PO:

Project Description: 10-1121-0222 (1300) (1340)

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND				50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Hexane	ND	0.05	ug/g dry	ND				50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.5	ug/g dry	ND				50	
Methyl Butyl Ketone (2-Hexanone)	ND	2.0	ug/g dry	ND				50	
Methyl Isobutyl Ketone	ND	0.5	ug/g dry	ND				50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND				50	
Methylene Chloride	ND	0.05	ug/g dry	ND				50	
Styrene	ND	0.05	ug/g dry	ND				50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
Tetrachloroethylene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
1,2,4-Trichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,1,1-Trichloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2-Trichloroethane	ND	0.05	ug/g dry	ND				50	
Trichloroethylene	ND	0.05	ug/g dry	ND				50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND				50	
1,3,5-Trimethylbenzene	ND	0.05	ug/g dry	ND				50	
Vinyl chloride	ND	0.02	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: 4-Bromofluorobenzene	9.44		ug/g dry	ND	106	50-140			
Surrogate: Dibromofluoromethane	10.1		ug/g dry	ND	114	50-140			
Surrogate: Toluene-d8	9.09		ug/g dry	ND	102	50-140			




Certificate of Analysis
Client Golder Associates Ltd. (Ottawa)

Report Date: 11-Nov-2011 Order Date:7-Nov-2011

Client PO:

Project Description: 10-1121-0222 (1300) (1340)

Client PO:		Project Des	scription:	10-1121-0	222 (130	0) (1340)			
<b>Method Quality Cont</b>	rol: Spike								
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
lydrocarbons									
71 PHCs (C6-C10)	173	10	ug/g	ND	86.6	80-120			
2 PHCs (C10-C16)	70	10	ug/g	ND	75.2	60-140			
F3 PHCs (C16-C34)	199	10	ug/g	ND	85.4	60-140			
F4 PHCs (C34-C50)	144	10	ug/g	ND	103	60-140			
			~3/3						
Metals	40.0			0.007	04.0	70-130			
ntimony	40.6		ug/L	0.007	81.2	70-130			
rsenic	38.7		ug/L	0.3	76.7				
arium	57.9		ug/L	13.4	89.0	70-130			
eryllium	40.9		ug/L	0.10	81.7	70-130			
oron	40.6		ug/L	1,1	79.1	70-130			
admium	38.7	0.4	ug/L	0.02	77.4	70-130			
hromium (VI)	5.4	0.4	ug/g	ND	107	89-123			
Chromium	45.8		ug/L	1.4	88.9	70-130			
obalt	43.8		ug/L	1.3	84.9	70-130			
copper	44.4		ug/L	2.8	83.1	70-130			
ead	46.4		ug/L	2.8	87.2	70-130			
lercury	1.37	0.1	ug/g	ND	91.6	72-128			
lolybdenum	39.3		ug/L	0.3	77.9	70-130			
ickel	44.3		ug/L	2.3	84.1	70-130			
elenium	39.4		ug/L	0.2	78,2	70-130			
ilver	30.8		ug/L	0.08	61.5	70-130			QS-02
hallium	46.4		ug/L	0.05	92.7	70-130			
ranium	40.8		ug/L	0.2	81.3	70-130			
⁄anadium	48.2		ug/L	6.1	84.2	70-130			
linc	42.1		ug/L	6.1	71.9	70-130			
/olatiles									
cetone	10.0	0.5	ug/g	ND	99.8	50-140			
enzene	4.4	0.02	ug/g	ND	111	60-130			
romodichloromethane	4.6	0.05	ug/g	ND	114	60-130			
romoform	3.6	0.05	ug/g	ND	89.2	60-130			
romomethane	3.9	0.05	ug/g	ND	96.5	50-140			
arbon Tetrachloride	4.5	0.05	ug/g	ND	112	60-130			
hlorobenzene	4.0	0.05	ug/g	ND	101	60-130			
hloroethane	4.3	0.05	ug/g	ND	108	50-140			
hloroform	4.3	0.05	ug/g	ND	107	60-130			
hloromethane	2.6	0.2	ug/g	ND	65.0	50-140			
ibromochloromethane	3.2	0.05	ug/g	ND	79.2	60-130			
ichlorodifluoromethane	4.1	0.05	ug/g	ND	102	50-140			
,2-Dibromoethane	3.1	0.05	ug/g	ND	78.0	60-130			
,2-Dichlorobenzene	2.8	0.05	ug/g	ND	70.1	60-130			
,3-Dichlorobenzene	3.1	0.05	ug/g	ND	77.7	60-130			
,4-Dichlorobenzene	2.9	0.05	ug/g	ND	72.2	60-130			
,1-Dichloroethane	4.2	0.05	ug/g	ND	105	60-130			
,2-Dichloroethane	4.5	0.05	ug/g	ND	113	60-130			
,1-Dichloroethylene	3.6	0.05	ug/g	ND	91.1	60-130			
cis-1,2-Dichloroethylene	3.5	0.05	ug/g	ND	87.6	60-130			
trans-1,2-Dichloroethylene	3.4	0.05	ug/g	ND	86.2	60-130			



Certificate of Analysis Client Golder Associates Ltd. (Ottawa) Report Date: 11-Nov-2011 Order Date:7-Nov-2011

Client PO:

Project Description: 10-1121-0222 (1300) (1340)

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,2-Dichloropropane	4.4	0.05	ug/g	ND	111	60-130			
cis-1,3-Dichloropropylene	4.6	0.05	ug/g	ND	114	60-130			
trans-1,3-Dichloropropylene	3.8	0.05	ug/g	ND	95.6	60-130			
Ethylbenzene	4.1	0.05	ug/g	ND	103	60-130			
Hexane	3.9	0.05	ug/g	ND	98.4	60-130			
Methyl Ethyl Ketone (2-Butanone)	6.2	0.5	ug/g	ND	61.6	50-140			
Methyl Butyl Ketone (2-Hexanone)	7.6	2.0	ug/g	ND	75.7	50-140			
Methyl Isobutyl Ketone	8.5	0.5	ug/g	ND	85,0	50-140			
Methyl tert-butyl ether	5.8	0.05	ug/g	ND	58.3	50-140			
Methylene Chloride	4.6	0.05	ug/g	ND	115	60-130			
Styrene	3.5	0.05	ug/g	ND	88,6	60-130			
1,1,1,2-Tetrachloroethane	4.1	0.05	ug/g	ND	102	60-130			
1,1,2,2-Tetrachloroethane	4.4	0.05	ug/g	ND	111	60-130			
Tetrachloroethylene	3.0	0.05	ug/g	ND	74.3	60-130			
Toluene	4.9	0.05	ug/g	ND	123	60-130			
1,2,4-Trichlorobenzene	5.1	0.05	ug/g	ND	127	60-130			
1,1,1-Trichloroethane	4.0	0.05	ug/g	ND	99.4	60-130			
1,1,2-Trichloroethane	3.5	0.05	ug/g	ND	87.4	60-130			
Trichloroethylene	3.9	0.05	ug/g	ND	98.4	60-130			
Trichlorofluoromethane	3.7	0.05	ug/g	ND	93.3	50-140			
1,3,5-Trimethylbenzene	2.6	0.05	ug/g	ND	65.2	60-130			
Vinyl chloride	4.2	0.02	ug/g	ND	105	50-140			
m,p-Xylenes	9.3	0.05	ug/g	ND	116	60-130			
o-Xylene	5.2	0.05	ug/g	ND	129	60-130			
Surrogate: 4-Bromofluorobenzene	7.22		ug/g		90.2	50-140			



Certificate of Analysis

Client Golder Associates Ltd. (Ottawa)

Report Date: 11-Nov-2011 Order Date:7-Nov-2011

Client PO:

Project Description: 10-1121-0222 (1300) (1340)

#### Sample and QC Qualifiers Notes

1 - QS-02:

Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

#### Sample Data Revisions

None

#### **Work Order Revisions/Comments:**

None

#### **Other Report Notes:**

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

#### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

Laboratories Ltd.
Environmental &
Indoor Air Quality

300-2319 St. Laurent Blvd., Ottawa, ON K1G 418 Tel: (613) 731-9577 Fax: (613) 731-9064

Toll Free: (800) 749-1947 email: paracel@paracellabs.com

Chain of Custody Record

Nº 29328

Pg._of_

Contact: B. G. Sullivan Company: GOLDER ASSOCIATES	Project Ref: _/\(\( \)	1-1121-0	222 (1300) (134	FE I I FRAUL CODY P	ING REQUIREMENTS Femall - PDF Femall - spreadsheer	
Address: 32 STEACIE DRIVE	Quote #: 10			ed TUR	N AROUND TIME  [ ] 2-day [ ] Regular	
OTTAWA ON Tel:6/3592-9600 Fax:			golden com aracel? Dyes Ex	REGULATORY	SUIDELINE REQUIREMEN	NTS
Matrix Types: S-Soil/Sed GW-G Sample Information	round Water SW-S	Surface Water S	S-Storm/Sanitary Sewer	A-Air O-Other  Analysis Required		
Paracel Order #			72			1
1146028	# Bonles Matrix		Medals PHC FI-1			
Sample Identification			5 % >			
1 7-309 SA1	5 3	1/11/11	111/			1
2 T-309 SA4	5 3	3/1/11/11	4//	1 1	m to	1
3 T-309 SA4A	5 3	3 Milu	#51	Nate	101003	1/
4 T-307 SAI	5 3	3 2/11/11	111	only	ON SH	1
5 T-307 SAS	5 3	3 2/11/11	1	Sor	1PKS	/
6 T-306 SAI	5 3	3/11/11	VVV			1
7 T-306 SA3	5 3	3/11/1	311			/
8 7-308 SA3	5 3	1/16/19	#1			1
9 T-308 SAL	5 3	3/1/11/1	911			1
10		t c				
	als-Su	h Sux	face. St			
Relinquished by: S. G. William Received  Date: Nov. 7/// Time: /2 · 25 Date: //	, , ,,,,,	Time: 2.		NOV FLUT	ime: 12:36	00



TRUSTED. RESPONSIVE. RELIABLE.

300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 

NIAGARA FALLS 

MISSISSAUGA

# Certificate of Analysis

## **Golder Associates Ltd. (Ottawa)**

32 Steacie Dr. Phone: (613) 592-9600 Kanata, ON K2K 2A9 Fax: (613) 592-9601

Attn: Basil Sullivan

Report Date: 16-Nov-2011 Client PO: Project: 10-1121-0222 Order Date: 10-Nov-2011

Custody: 90310 Order #: 1146160

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1146160-01	T-306A
1146160-02	T-307A
1146160-03	T-308A
1146160-04	T-308B
1146160-05	T-309A
1146160-06	T-309B
1146160-07	DUPE

Approved By:

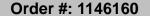
Mark Foto, M.Sc. For Dale Robertson, BSc

Laboratory Director



Certificate of Analysis

Client Golder Associates Ltd. (Ottawa) Client PO:

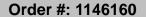

Report Date: 16-Nov-2011 Order Date:10-Nov-2011

Project Description: 10-1121-0222

### **Analysis Summary Table**

Analysis	Method Reference/Description	Extraction Date Analysis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	11-Nov-11 12-Nov-11
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	14-Nov-11 15-Nov-11
VOCs	EPA 624 - P&T GC-MS	11-Nov-11 12-Nov-11

OTTAWA






Report Date: 16-Nov-2011 Order Date:10-Nov-2011

Client PO: Project Description: 10-1121-0222 Client ID: T-306A T-308A T-308B Sample Date: 10-Nov-11 10-Nov-11 10-Nov-11 10-Nov-11 Sample ID: 1146160-02 1146160-04 1146160-01 1146160-03 Water Water Water MDL/Units Water Volatiles Acetone 5.0 ug/L 41.9 <5.0 < 5.0 < 5.0 Benzene 0.5 ug/L < 0.5 < 0.5 < 0.5 < 0.5 Bromodichloromethane 0.5 ug/L 1.9 < 0.5 3.4 < 0.5 **Bromoform** 0.5 ug/L < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Bromomethane 0.5 ug/L < 0.5 < 0.5 < 0.5 <0.2 Carbon Tetrachloride < 0.2 < 0.2 0.2 ug/L < 0.2 0.5 ug/L < 0.5 Chlorobenzene < 0.5 < 0.5 < 0.5 Chloroethane 1.0 ug/L <1.0 <1.0 <1.0 <1.0 Chloroform 0.5 ug/L 13.5 2.1 18.6 2.0 Chloromethane 3.0 ug/L <3.0 <3.0 <3.0 <3.0 < 0.5 Dibromochloromethane 0.5 ug/L < 0.5 < 0.5 < 0.5 <1.0 <1.0 Dichlorodifluoromethane 1.0 ug/L <1.0 <1.0 0.2 ug/L <0.2 1,2-Dibromoethane <0.2 <0.2 < 0.2 1,2-Dichlorobenzene 0.5 ug/L < 0.5 <0.5 < 0.5 < 0.5 1,3-Dichlorobenzene 0.5 ug/L < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L 1.4-Dichlorobenzene < 0.5 < 0.5 < 0.5 < 0.5 1.1-Dichloroethane 0.5 ug/L < 0.5 < 0.5 < 0.5 < 0.5 1,2-Dichloroethane 0.5 ug/L < 0.5 < 0.5 < 0.5 < 0.5 1,1-Dichloroethylene < 0.5 <0.5 < 0.5 0.5 ug/L < 0.5 0.5 ug/L < 0.5 < 0.5 < 0.5 < 0.5 cis-1,2-Dichloroethylene 0.5 ug/L < 0.5 trans-1,2-Dichloroethylene < 0.5 < 0.5 < 0.5 0.5 ua/L 1,2-Dichloroethylene, total < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L < 0.5 < 0.5 < 0.5 < 0.5 1,2-Dichloropropane cis-1,3-Dichloropropylene 0.5 ug/L < 0.5 < 0.5 < 0.5 < 0.5 <0.5 < 0.5 < 0.5 trans-1,3-Dichloropropylene 0.5 ug/L < 0.5 1,3-Dichloropropene, total 0.5 ug/L < 0.5 < 0.5 < 0.5 < 0.5 Ethylbenzene 0.5 ug/L < 0.5 < 0.5 < 0.5 < 0.5 Hexane 1.0 ug/L <1.0 <1.0 <1.0 <1.0 Methyl Ethyl Ketone (2-Butanone) <5.0 5.0 ug/L < 5.0 < 5.0 < 5.0 Methyl Butyl Ketone (2-Hexanone 10.0 ug/L <10.0 <10.0 <10.0 <10.0 Methyl Isobutyl Ketone 5.0 ug/L < 5.0 <5.0 < 5.0 < 5.0 Methyl tert-butyl ether 2.0 ug/L <2.0 < 2.0 < 2.0 < 2.0 < 5.0 Methylene Chloride 5.0 ug/L < 5.0 < 5.0 < 5.0 <0.5 0.5 ug/L < 0.5 Styrene < 0.5 < 0.5

OTTAWA

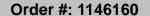




F3 + F4 PHCs

# Certificate of Analysis Client Golder Associates Ltd. (Ottawa)

Report Date: 16-Nov-2011 Order Date:10-Nov-2011


Client PO:		Project Description			
	Client ID: Sample Date: Sample ID: MDL/Units	T-306A 10-Nov-11 1146160-01 Water	T-307A 10-Nov-11 1146160-02 Water	T-308A 10-Nov-11 1146160-03 Water	T-308B 10-Nov-11 1146160-04 Water
Volatiles (continued)	•		•		•
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	8.2	<0.5
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
4-Bromofluorobenzene	Surrogate	109%	112%	105%	109%
Dibromofluoromethane	Surrogate	124%	124%	122%	127%
Toluene-d8	Surrogate	99.4%	101%	102%	101%
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	-	-	-	<25
F2 PHCs (C10-C16)	100 ug/L	-	-	-	<100 [1]
F3 PHCs (C16-C34)	100 ug/L	-	-	-	1680 [1]
F4 PHCs (C34-C50)	100 ug/L	-	-	-	856 [1]
F1 + F2 PHCs	125 ug/L	-	-	-	<125

WWW.PARACELLABS.COM

200 ug/L

OTTAWA

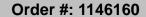
2530






Report Date: 16-Nov-2011 Order Date:10-Nov-2011

Client PO:	Client ID:	Project Description T-309A	T-309B	DUPE	
	Sample Date:	1-309A 10-Nov-11	10-Nov-11	10-Nov-11	-
	Sample ID:	1146160-05	1146160-06	1146160-07	-
Г	MDL/Units	Water	Water	Water	-
Volatiles					
Acetone	5.0 ug/L	<5.0	<5.0	45.7	-
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	1.6	-
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	-
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Chloroethane	1.0 ug/L	<1.0	<1.0	<1.0	-
Chloroform	0.5 ug/L	1.9	5.4	13.9	-
Chloromethane	3.0 ug/L	<3.0	<3.0	<3.0	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-
1,2-Dibromoethane	0.2 ug/L	<0.2	<0.2	<0.2	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	<0.5	<0.5	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	-
Methyl Butyl Ketone (2-Hexanone)	10.0 ug/L	<10.0	<10.0	<10.0	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	-
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	-


OTTAWA





Report Date: 16-Nov-2011 Order Date:10-Nov-2011

Client PO:		Project Description			
	Client ID: Sample Date: Sample ID: MDL/Units	T-309A 10-Nov-11 1146160-05 Water	T-309B 10-Nov-11 1146160-06 Water	DUPE 10-Nov-11 1146160-07 Water	- - -
Volatiles (continued)			<u> </u>		
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	-
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	-
4-Bromofluorobenzene	Surrogate	110%	115%	118%	-
Dibromofluoromethane	Surrogate	124%	126%	127%	-
Toluene-d8	Surrogate	101%	102%	101%	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	-	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	-	<100 [1]	-	-
F3 PHCs (C16-C34)	100 ug/L	-	3080 [1]	-	-
F4 PHCs (C34-C50)	100 ug/L	-	1060 [1]	-	-
F1 + F2 PHCs	125 ug/L	-	<125	-	-
F3 + F4 PHCs	200 ug/L	-	4140	-	-





Client PO:

Certificate of Analysis
Client Golder Associates Ltd. (Ottawa)

Report Date: 16-Nov-2011 Order Date:10-Nov-2011

Project Description: 10-1121-0222

### Method Quality Control: Blank

Analyte	Popult	Reporting	1149-	Source	0/ DEO	%REC	DDD	RPD Limit	NIc+
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroethane	ND	1.0	ug/L						
Chloroform	ND	0.5	ug/L						
Chloromethane	ND	3.0	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dibromoethane	ND	0.2	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
rans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloroethylene, total	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
rans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,2,4-Trichlorobenzene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
1,3,5-Trimethylbenzene	ND	0.5	ug/L						
Vinyl chloride	ND	0.5	ug/L						

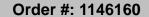




Client PO:

Order #: 1146160

Certificate of Analysis


Client Golder Associates Ltd. (Ottawa)

Report Date: 16-Nov-2011 Order Date: 10-Nov-2011

Project Description: 10-1121-0222

## Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	37.6		ug/L		118	50-140			
Surrogate: Dibromofluoromethane	35.4		ug/L		111	50-140			
Surrogate: Toluene-d8	32.1		ug/L		100	50-140			





Report Date: 16-Nov-2011 Order Date:10-Nov-2011

Client PO: Project Description: 10-1121-0222

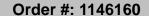
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
•		Liiiik	Office	result	701120	Liiiit	111111	Liiiit	110100
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles									
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30	
Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroethane	ND	1.0	ug/L	ND				30	
Chloroform	ND	0.5	ug/L	ND				30	
Chloromethane	ND	3.0	ug/L	ND				30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dibromoethane	ND	0.2	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
,1-Dichloroethane	ND	0.5	ug/L	ND				30	
,2-Dichloroethane	ND	0.5	ug/L	ND				30	
,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
sis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
rans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
rans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
- Foluene	ND	0.5	ug/L	ND				30	
1,2,4-Trichlorobenzene	ND	0.5	ug/L	ND				30	
,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Frichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
,3,5-Trimethylbenzene	ND	0.5	ug/L	ND				30	
/inyl chloride	ND	0.5	ug/L	ND				30	
n,p-Xylenes	ND ND	0.5	ug/L ug/L	ND				30	
p-Xylene	ND	0.5	ug/L	ND				30	

OTTAWA

300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8



Certificate of Analysis


Client Golder Associates Ltd. (Ottawa)

Report Date: 16-Nov-2011 Order Date:10-Nov-2011

Client PO: Project Description: 10-1121-0222

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: 4-Bromofluorobenzene	35.7		ug/L	ND	112	50-140			
Surrogate: Dibromofluoromethane	37.3		ug/L	ND	116	50-140			
Surrogate: Toluene-d8	32.8		ug/L	ND	102	50-140			





Report Date: 16-Nov-2011 Order Date:10-Nov-2011

Client PO: Project Description: 10-1121-0222

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1660	25	ug/L	ND	83.0	68-117			
F2 PHCs (C10-C16)	1510	100	ug/L	ND	94.6	60-140			
F3 PHCs (C16-C34)	3820	100	ug/L	ND	95.4	60-140			
F4 PHCs (C34-C50)	2400	100	ug/L	ND	100	60-140			
Volatiles									
Acetone	76.4	5.0	ug/L	ND	76.4	50-140			
Benzene	27.3	0.5	ug/L	ND	68.3	50-140			
Bromodichloromethane	28.2	0.5	ug/L	ND	70.6	50-140			
Bromoform	31.6	0.5	ug/L	ND	79.0	50-140			
Bromomethane	43.3	0.5	ug/L	ND	108	50-140			
Carbon Tetrachloride	34.3	0.2	ug/L	ND	85.8	50-140			
Chlorobenzene	31.6	0.5	ug/L	ND	78.9	50-140			
Chloroethane	32.3	1.0	ug/L	ND	80.8	50-140			
Chloroform	33.7	0.5	ug/L	ND	84.3	50-140			
Chloromethane	39.5	3.0	ug/L	ND	98.7	50-140			
Dibromochloromethane	28.2	0.5	ug/L	ND	70.5	50-140			
Dichlorodifluoromethane	35.9	1.0	ug/L	ND	89.8	50-140			
,2-Dibromoethane	32.9	0.2	ug/L	ND	82.2	50-140			
,2-Dichlorobenzene	28.5	0.5	ug/L	ND	71.2	50-140			
,3-Dichlorobenzene	26.9	0.5	ug/L	ND	67.2	50-140			
,4-Dichlorobenzene	32.4	0.5	ug/L	ND	81.0	50-140			
,1-Dichloroethane	35.6	0.5	ug/L	ND	89.0	50-140			
,2-Dichloroethane	30.8	0.5	ug/L	ND	77.0	50-140			
,1-Dichloroethylene	37.1	0.5	ug/L	ND	92.8	50-140			
sis-1,2-Dichloroethylene	34.7	0.5	ug/L	ND	86.8	50-140			
rans-1,2-Dichloroethylene	37.1	0.5	ug/L	ND	92.8	50-140			
1,2-Dichloropropane	33.0	0.5	ug/L	ND	82.4	50-140			
sis-1,3-Dichloropropylene	38.2	0.5	ug/L	ND	95.4	50-140			
rans-1,3-Dichloropropylene	60.6	0.5	ug/L	ND	152	50-140			
Ethylbenzene	26.5	0.5	ug/L	ND	66.2	50-140			
Hexane	34.2	1.0	ug/L	ND	85.4	50-140			
Methyl Ethyl Ketone (2-Butanone)	77.7	5.0	ug/L	ND	77.7	50-140			
Methyl Butyl Ketone (2-Hexanone)	69.6	10.0	ug/L	ND	69.6	50-140			
Methyl Isobutyl Ketone	67.4	5.0	ug/L	ND	67.4	50-140			
Methyl tert-butyl ether	72.4	2.0	ug/L	ND	72.4	50-140			
Methylene Chloride	34.3	5.0	ug/L	ND	85.7	50-140			
Styrene	26.0	0.5	ug/L	ND	64.9	50-140			
,1,1,2-Tetrachloroethane	27.8	0.5	ug/L	ND	69.6	50-140			
,1,2,2-Tetrachloroethane	29.6	0.5	ug/L	ND	74.1	50-140			
etrachloroethylene	28.3	0.5	ug/L	ND	70.6	50-140			
oluene	27.2	0.5	ug/L	ND	67.9	50-140			
,2,4-Trichlorobenzene	28.1	0.5	ug/L	ND	70.3	50-140			
,1,1-Trichloroethane	38.2	0.5	ug/L	ND	95.4	50-140			
,1,2-Trichloroethane	30.8	0.5	ug/L	ND	77.1	50-140			
Trichloroethylene	29.0	0.5	ug/L	ND	72.6	50-140			
Trichlorofluoromethane	28.9	1.0	ug/L	ND	72.2	50-140			
1,3,5-Trimethylbenzene	37.8	0.5	ug/L	ND	94.5	50-140			

OTTAWA

300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8



Client PO:

Order #: 1146160

Certificate of Analysis
Client Golder Associates Ltd. (Ottawa)

Report Date: 16-Nov-2011 Order Date:10-Nov-2011

Project Description: 10-1121-0222

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Vinyl chloride	41.1	0.5	ug/L	ND	103	50-140			
m,p-Xylenes	53.9	0.5	ug/L	ND	67.4	50-140			
o-Xylene	30.3	0.5	ug/L	ND	75.7	50-140			
Surrogate: 4-Bromofluorobenzene	29.3		ug/L		91.5	50-140			



Certificate of Analysis

Client Golder Associates Ltd. (Ottawa)

Report Date: 16-Nov-2011

Order Date: 10-Nov-2011

Client PO: Project Description: 10-1121-0222

#### Sample and QC Qualifiers Notes

1 - SED >5:

Water sample included significant sediment amount that was included in extraction process. This is expected to result in reduced accuracy of the reported result.

#### **Sample Data Revisions**

None

#### Work Order Revisions/Comments:

None

#### **Other Report Notes:**

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

OTTAWA



TRUSTED. RESPONSIVE.

RELIABLE.

Head Office Chain of Custody 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

OTTAWA @ KINGSTON @ NIAGARA @ MI		● SAI	AINF				www.p	aracellabs.c	om		Pa	age _	of _	
Client Name: GOLDEN ASSOC. LT	7).		Project	Reference: 16	-1121-0	555				TAT	: 1)	Regular		. /
Contact Name: SULLY SULCIUAN			Quote #	10	-305						11	2 Day		
Address:			PO#								11	1 Day		
32 STEACIE DA. KANATA Telephone: 613-592-9600	ОМ		Email A	Address:						Date Required:				
Telephone: 613-592-9600	613.592-9600 ssullivanagolder.com								0.0022					
Criteria:     O. Reg. 153/04 Table     O Reg 179/	/11 Table _ [ ]	RSC Fili	ng     (	). Reg. 558/00	PWQO    C	CME []	SUB (Sto	rm)     SUB	(Sanitary)	Municipa	lity:		[ ] Other: _	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface	Water) SS (Storm/S	Sanitary S	ewer) P	(Paint) A (Air) O (	Other)				Req	uired A	nalyses	(*)		- 5
Paracel Order Number:		6)	S			1								1
1146160	Matrix	Air Volume	of Containers	Sample	Taken	5,0	7							
Sample ID/Location Name		4	lo #	Date	Time	2	PH							
1 T-306 A	GN		2	11/10/11		/				00,	No	to	lecon	14/
2 7-307A			2	1		V						·Ro	- On	1
3 T-308A			2			/				,		1		
4 T-308B			3			V	/							
5 7-309 A			2			/								+
6 T-309B			3			/	/							-
7 DUPL			2			/								
8										+				
9									C.,					
10	V			1						+				
Comments:					4 -	2 0				2			f Delivery:	in
Relinquished By (Print & Sign):			ver/Depo			ved at Lab:		- Turte	7 7 11	Verifie	l By:			-11
MIVIE AM - ACI	Ke	rien	We	ggn ) 12:		NEED				1	MC			-
MIKE ARMIT AGE Date/Time: 11/01/1	Date/Tir	ne: 1/	10/1	1 12	15 Date/	l'ime: NO			1.05	7 14 1 1 2				
Date/Title. /// //	Tempera	iture:	7.0		Temp	erature: _\frac{8}{2}	0 0	2		pH Ver	ified 🕅 E	By: N//	7 '	



300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA 🌒 NIAGARA FALLS 🍥 MISSISSAUGA





# Certificate of Analysis

Golder Associates Ltd. (Ottawa)

32 Steacie Dr.

Kanata, ON K2K 2A9

Attn: Basil Sullivan

Client PO:

Project: 10-1121-0222 (1300) (1340)

Custody: 29328

Phone: (613) 592-9600

Fax: (613) 592-9601

Report Date: 22-Nov-2011

Order Date: 21-Nov-2011

Order #: 1148045

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID

Client ID

1148045-01

T-307 SA1

1148045-02

T-307 SA5

Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc **Laboratory Director** 



Certificate of Analysis
Client: Golder Associates Ltd. (Ottawa)

Report Date: 22-Nov-2011 Order Date: 21-Nov-2011

Project Description: 10-1121-0222 (1300) (1340)

Client PO:
Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
pH	EPA 150.1 - pH probe, CaCl buffered extraction	22-Nov-11	22-Nov-11
Solids, %	Gravimetric, calculation	22-Nov-11	22-Nov-11



Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

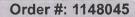
Report Date: 22-Nov-2011 Order Date: 21-Nov-2011

Client PO:	ates Eta. (Ottawa)	Project Descript	tion: 10-1121-0222 (13		Date.21-110V-201
	Client ID:	T-307 SA1	T-307 SA5	-	_
	Sample Date:	02-Nov-11	02-Nov-11	64 C	-
	Sample ID:	1148045-01	1148045-02	-	-
	MDL/Units	Soil	Soil		
<b>Physical Characteristi</b>	cs				
% Solids	0.1 % by Wt.	88.8	90.6	(H.	-
General Inorganics	Wev.				
рН	0.1 pH Units	7.8	7.8	S(#)	-



Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)
Client PO:


Report Date: 22-Nov-2011

Order Date:21-Nov-2011

Project Description: 10-1121-0222 (1300) (1340)

**Method Quality Control: Duplicate** 

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics	7.6	0.4	n I I I Inita	7.6			0.4	40	
Physical Characteristics	7.6	0.1	pH Units	7.6			0.1	10	
% Solids	79.0	0.1	% by Wt.	79.3			0.4	25	





Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

Client PO:

Report Date: 22-Nov-2011 Order Date: 21-Nov-2011

Project Description: 10-1121-0222 (1300) (1340)

#### Sample and QC Qualifiers Notes

None

#### Sample Data Revisions

None

#### Work Order Revisions/Comments:

None

### **Other Report Notes:**

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

Matrix Typer: S-SciVSci GW-Ground Water SW-Surface Water SS-Sterms strituty Sewer A-Air O-Other Sample Information   Analysis Resulted   Analysi	ontact: B. G. Scillivar tompany: GOLDER ASSOCIATES address: 32 STEACIE DRIVE OTTAWA ON el:613582-9600 Fax:	PO #:_ Quote # Email:_	-14 6≤L	27	1121-0 305 von@ added by P	yole	ter	Not (	(134) Quoted	{ Itler	Copy	TURN ARCA by [ ] 2-3 RYANDARE	PINI MODINIE F	plaz	
### Pate Sample Identification  1 7-369 SA 1  2 7-309 SA 4  3 7-369 SA 4  4 7-367 SA 5  5 7-365 SA 1  5 3 2/11/11  5 7-366 SA 3  8 7-368 SA 3  8 7-368 SA 3		round Was	er SW	-Sur	lice Water	S-Sto	m/San	itury 9	ewer A			wart			
1 7-309 SA1 2 7-309 SA4 3 7-309 SA4 4 5 3 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1 1/11/16 3 1	1146 028 11480	14	7	# Bottles	Sampied	tetals	WC F1-F4	/acs	HQ						
2 7-309 SA4 3 7-309 SA4A 5 3 1/11/11 V V V V V V V V V V V V V V V V			(	2	Shilly	-	2	1						+	
3 7-309 SA4A  4 T-307 SA1  5 3 2/11/11 V V V V V V V V V V V V V V V V V				-	11/10	X	1	7					-		F.
4 T-307 SAI S 3 2/11/11 S 3 2/11/11 S 3 2/11/11 S 3 2/11/11 S 3 3/11/11 S 3/				3	tulsi	100		X	+	K	0/4	17	-for	7	
5 T-3.07 SAS 6 T-3.06 SAI - 5 3 3/11/11 / / / / / / / / / / / / / / /				=	2 101/10	COPE /	1	1	1	0	sni	75	5	4	
6 T-206 SAI 5 3 3/11/11 V 7 7 7-306 SA3 5 3 3/11/11 V 7 8 7 -308 SA3 5 3 3/11/11 V 7 7 8 7 8 7 8 7 8 8 7 8 8 8 8 8 8 8 8				2	2/11/11	-0	1	7	1		5	imp	15		t
7 7-306 SA3 S 3 1/1/1 S 3 3/11/1 S 3 3/11/11 S	. 1 201 2HJ	-		-	3/11/11	1	1		1		-	-			1
* 7-368 SA3 S 3 1/11/11	The second secon				3/11/11	-	· A	1							
	1 306 12/13			-	A / 15 / 10	100	Ľ	1							
			_		1 / 55 / 54	4	Y C	1							ť
10	1 345 345				1.00			Ť						No.	1



TRUSTED. RESPONSIVE. RELIABLE.

300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

# OTTAWA NIAGARA FALLS MISSISSAUGA

# Certificate of Analysis

**Golder Associates Ltd. (Ottawa)** 

32 Steacie Dr. Phone: (613) 592-9600 Kanata, ON K2K 2A9 Fax: (613) 592-9601

Attn: Keith Holmes

Report Date: 7-Dec-2011 Client PO: Project: 10-1121-0222 Order Date: 5-Dec-2011

Custody: 90751 Order #: 1150050

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

#### Paracel ID Client ID

1150050-01 T-306B T-72B 1150050-02 T-309B 1150050-03 T-AB 1150050-04

Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director



Client PO:

Order #: 1150050

Certificate of Analysis

Client Golder Associates Ltd. (Ottawa)

Report Date: 07-Dec-2011 Order Date:5-Dec-2011

Project Description: 10-1121-0222

### **Analysis Summary Table**

Analysis	Method Reference/Description	Extraction Date Analysis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	6-Dec-11 6-Dec-11
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	5-Dec-11 6-Dec-11
VOCs	EPA 624 - P&T GC-MS	6-Dec-11 6-Dec-11

OTTAWA



# Certificate of Analysis Client Golder Associates Ltd. (Ottawa)

Report Date: 07-Dec-2011 Order Date:5-Dec-2011

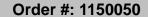
Client PO: Project Description: 10-1121-0222

Ciletit F.O.		F TOJECT Description			
	Client ID:	T-306B	T-72B	T-309B	T-AB
	Sample Date: Sample ID:	05-Dec-11 1150050-01	05-Dec-11 1150050-02	05-Dec-11 1150050-03	05-Dec-11 1150050-04
F	MDL/Units	Water	Water	Water	Water
Volatiles I	MDL/OIIItS				
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Chloroethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	5.6
Chloromethane	3.0 ug/L	<3.0	<3.0	<3.0	<3.0
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,2-Dibromoethane	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Butyl Ketone (2-Hexanone)	10.0 ug/L	<10.0	<10.0	<10.0	<10.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5

OTTAWA

300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8





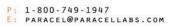

#### Certificate of Analysis Client Golder Associates Ltd. (Ottawa)

Report Date: 07-Dec-2011 Order Date:5-Dec-2011

Client PO:		Project Description	n: 10-1121-0222		
	Client ID: Sample Date: Sample ID: MDL/Units	T-306B 05-Dec-11 1150050-01 Water	T-72B 05-Dec-11 1150050-02 Water	T-309B 05-Dec-11 1150050-03 Water	T-AB 05-Dec-11 1150050-04 Water
Volatiles (continued)	iii 2 Z O iii to		ı		1
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
4-Bromofluorobenzene	Surrogate	111%	127%	126%	127%
Dibromofluoromethane	Surrogate	99.2%	95.5%	96.5%	94.3%
Toluene-d8	Surrogate	99.9%	99.1%	101%	101%
Hydrocarbons			,		_
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	<100
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	<100
F1 + F2 PHCs	125 ug/L	<125	<125	<125	<125
F3 + F4 PHCs	200 ug/L	<200	<200	<200	<200

OTTAWA






Report Date: 07-Dec-2011 Order Date:5-Dec-2011

Client PO: Project Description: 10-1121-0222

### Method Quality Control: Blank

Analyte	Doorit	Reporting	1.124	Source	0/050	%REC	DDD	RPD	<b>K</b> 1-1-
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles			Ü						
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroethane	ND	1.0	ug/L						
Chloroform	ND	0.5	ug/L						
Chloromethane	ND	3.0	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dibromoethane	ND	0.2	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloroethylene, total	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND ND	0.5	ug/L						
1,3-Dichloropropene, total	ND ND	0.5	ug/L						
Ethylbenzene	ND ND	0.5	ug/L						
Hexane	ND ND	1.0	ug/L ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND ND	5.0	-						
Methyl Butyl Ketone (2-Hexanone)	ND ND	10.0	ug/L						
Methyl Isobutyl Ketone	ND ND	5.0	ug/L						
Methyl tert-butyl ether	ND ND	5.0 2.0	ug/L						
Methylene Chloride	ND ND	5.0	ug/L						
•	ND ND	5.0 0.5	ug/L ug/L						
Styrene 1,1,1,2-Tetrachloroethane	ND ND	0.5 0.5	ug/L ug/L						
1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	ND ND	0.5 0.5	ug/L ug/L						
Tetrachloroethylene	ND ND	0.5 0.5	ug/L ug/L						
Tetrachioroethylene Toluene	ND ND	0.5 0.5							
1,2,4-Trichlorobenzene	ND ND	0.5 0.5	ug/L						
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane	ND ND	0.5 0.5	ug/L						
1,1,2-Trichloroethane	ND ND		ug/L						
1,1,2-Trichioroethane Trichloroethylene	ND ND	0.5	ug/L						
		0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
1,3,5-Trimethylbenzene	ND	0.5	ug/L						
Vinyl chloride	ND	0.5	ug/L						

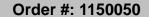




Client PO:

Order #: 1150050

Certificate of Analysis


Client Golder Associates Ltd. (Ottawa)

Report Date: 07-Dec-2011 Order Date:5-Dec-2011

Project Description: 10-1121-0222

# Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	35.9		ug/L		112	50-140			
Surrogate: Dibromofluoromethane	25.6		ug/L		79.9	50-140			
Surrogate: Toluene-d8	34.4		ug/L		107	50-140			





Report Date: 07-Dec-2011 Order Date:5-Dec-2011

Client PO: Project Description: 10-1121-0222

### Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
,			-9-						
Volatiles	ND	F 0	/1	ND				20	
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND ND	0.5	ug/L	ND				30	
Bromodichloromethane Bromoform		0.5	ug/L	ND				30	
	ND	0.5	ug/L	ND				30 30	
Bromomethane	ND	0.5	ug/L	ND					
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroethane	ND	1.0	ug/L	ND				30	
Chloroform	ND	0.5	ug/L	ND				30	
Chloromethane	ND	3.0	ug/L	ND				30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dibromoethane	ND	0.2	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	1.96	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1,2,4-Trichlorobenzene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
1,3,5-Trimethylbenzene	ND	0.5	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	

300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

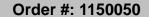
OTTAWA



Client PO:

Order #: 1150050

Certificate of Analysis


Client Golder Associates Ltd. (Ottawa)

Report Date: 07-Dec-2011 Order Date:5-Dec-2011

Project Description: 10-1121-0222

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: 4-Bromofluorobenzene	36.3		ug/L	ND	113	50-140			
Surrogate: Dibromofluoromethane	31.7		ug/L	ND	99.2	50-140			
Surrogate: Toluene-d8	32.4		ug/L	ND	101	50-140			





Report Date: 07-Dec-2011 Order Date:5-Dec-2011

Client PO: Project Description: 10-1121-0222

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1650	25	ug/L	ND	82.5	68-117			
F2 PHCs (C10-C16)	1540	100	ug/L	ND	96.2	60-140			
F3 PHCs (C16-C34)	4100	100	ug/L	ND	103	60-140			
F4 PHCs (C34-C50)	3040	100	ug/L	ND	127	60-140			
Volatiles	00.0		~g/ <b>_</b>			00 1 10			
Acetone	78.8	5.0	ua/l	ND	78.8	50-140			
Benzene	76.6 31.7	0.5	ug/L ug/L	ND	76.6 79.2	60-130			
Bromodichloromethane	35.0	0.5	ug/L ug/L	ND	87.6	60-130			
Bromoform	50.2	0.5	ug/L ug/L	ND	126	60-130			
Bromomethane	48.9	0.5	ug/L ug/L	ND	122	50-130			
Carbon Tetrachloride	38.7	0.3	ug/L ug/L	ND	96.7	60-130			
Chlorobenzene	33.1	0.5	ug/L ug/L	ND	82.8	60-130			
Chloroethane	43.8	1.0	ug/L ug/L	ND	109	50-130			
Chloroform	32.0	0.5	ug/L ug/L	ND	80.1	60-130			
Chloromethane	25.1	3.0	ug/L	ND	62.7	50-140			
Dibromochloromethane	44.3	0.5	ug/L	ND	111	60-130			
Dichlorodifluoromethane	27.2	1.0	ug/L ug/L	ND	67.9	50-130			
,2-Dibromoethane	42.6	0.2	ug/L	ND	107	60-130			
,2-Dichlorobenzene	35.1	0.5	ug/L	ND	87.8	60-130			
,3-Dichlorobenzene	34.2	0.5	ug/L ug/L	ND	85.5	60-130			
,4-Dichlorobenzene	41.0	0.5	ug/L	ND	103	60-130			
,1-Dichloroethane	31.9	0.5	ug/L ug/L	ND	79.8	60-130			
,2-Dichloroethane	28.5	0.5	ug/L	ND	71.2	60-130			
,1-Dichloroethylene	31.8	0.5	ug/L	ND	79.4	60-130			
sis-1,2-Dichloroethylene	33.3	0.5	ug/L	ND	83.3	60-130			
rans-1,2-Dichloroethylene	30.4	0.5	ug/L	ND	76.1	60-130			
,2-Dichloropropane	29.0	0.5	ug/L	ND	72.6	60-130			
sis-1,3-Dichloropropylene	38.1	0.5	ug/L	ND	95.2	60-130			
rans-1,3-Dichloropropylene	31.2	0.5	ug/L	ND	77.9	60-130			
Ethylbenzene	34.9	0.5	ug/L	ND	87.3	60-130			
Hexane	28.8	1.0	ug/L	ND	72.1	60-130			
Methyl Ethyl Ketone (2-Butanone)	88.4	5.0	ug/L	ND	88.4	50-140			
Methyl Butyl Ketone (2-Hexanone)	75.1	10.0	ug/L	ND	75.1	50-140			
Methyl Isobutyl Ketone	82.4	5.0	ug/L	ND	82.4	50-140			
Methyl tert-butyl ether	131	2.0	ug/L	ND	131	50-140			
Methylene Chloride	27.1	5.0	ug/L	ND	67.7	60-130			
Styrene	39.7	0.5	ug/L	ND	99.2	60-130			
1,1,1,2-Tetrachloroethane	32.7	0.5	ug/L	ND	81.8	60-130			
,1,2,2-Tetrachloroethane	34.5	0.5	ug/L	ND	86.3	60-130			
etrachloroethylene	35.3	0.5	ug/L	ND	88.3	60-130			
oluene	31.2	0.5	ug/L	ND	78.0	60-130			
,2,4-Trichlorobenzene	29.7	0.5	ug/L	ND	74.2	60-130			
I,1,1-Trichloroethane	28.9	0.5	ug/L	ND	72.2	60-130			
,1,2-Trichloroethane	29.3	0.5	ug/L	ND	73.2	60-130			
richloroethylene	31.6	0.5	ug/L	ND	79.0	60-130			
richlorofluoromethane	20.5	1.0	ug/L	ND	51.3	60-130		G	QS-02
1,3,5-Trimethylbenzene	42.4	0.5	ug/L	ND	106	60-130			





Client PO:

Order #: 1150050

Certificate of Analysis

Client Golder Associates Ltd. (Ottawa)

Report Date: 07-Dec-2011 Order Date:5-Dec-2011

Project Description: 10-1121-0222

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Vinyl chloride	29.8	0.5	ug/L	ND	74.4	50-140			
m,p-Xylenes	72.5	0.5	ug/L	ND	90.6	60-130			
o-Xylene	32.3	0.5	ug/L	ND	80.7	60-130			
Surrogate: 4-Bromofluorobenzene	30.8		ug/L		96.2	50-140			



Certificate of Analysis

Client Golder Associates Ltd. (Ottawa)

Report Date: 07-Dec-2011 Order Date:5-Dec-2011

Client PO: Project Description: 10-1121-0222

#### Sample and QC Qualifiers Notes

1 - QS-02 : Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

#### **Sample Data Revisions**

None

#### **Work Order Revisions/Comments:**

None

#### **Other Report Notes:**

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

OTTAWA



TRUSTED. RESPONSIVE. RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com Chain of Custody (Lab Use Only)

90751

OTTAWA ® KINGSTON ® NIAGARA ® MISSISSAUGA ® SARNIA							www.paracellabs.com				Page of				
Client Name: Golder Associates Ltd.				Reference:	21	210722				TAT:     Regular					
Contact Name: Kieth Holmes			Quote# hight Rail Project							2 Day					
Address: 32 Steacie Dr., Kanata, ON			РО#												
No. 160				Email Address:						Date Required:					
elephone: 613-592-9600															
Criteria: M.O. Reg. 153/04 Table [ ]O. Reg 179/11 Ta	ble _ [ ]	RSC Fili	ng   ]	O. Reg. 558/00	PWQO [ ] CC	ME     S	SUB (Storm)	SUB (San	itary) Muni	cipality:		Other:			
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary S				(Paint) A (Air) O (	Other)	Required Analyses									
Paracel Order Number:		0	ers			. 3	,U								
1150050	Matrix	Air Volume	of Containers	Sample Taken		fCF,-Fy	CC								
Sample ID/Location Name		<	lo #	Date	Time	PHK	>								
1 T-306B	GW		3	5/12/11	/	×	X								
2 T=72B	GW		3		/	X	X								
3 T-309B	SW		3		/	X	×								
4 T-AG	GW		3	V	/	X	X								
5 Two empty sets	/		6	/	/	/	/								
6															
7															
8															
9															
10															
Comments:										Method of Delivery:					
				E							M	lalk-1	n		
elinquished By (Print & Sign);		er/Depot: Received at Lab: Verified By:													
bron biodshower by all that	Date/Tir		70c	5/11 4:	3) Date/T	ime: Te	e:5/11	2:5	Sam Da	te/Time;	Dec 8	5//14	4:5		
Date/Time: E/19 /11	Temper	nture.	2.9	'C			,5 °C			Verified I		NIA			

Chain of Custody (Env) , Rev 0.1 September 2011

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 356 21 42 30 20
North America + 1 800 275 3281
South America + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Ltd. 32 Steacie Drive Kanata, Ontario, K2K 2A9 Canada

T: +1 (613) 592 9600

