Appendix A Water Supply Servicing May 20, 2020

Appendix A WATER SUPPLY SERVICING

A.1 DOMESTIC WATER DEMAND ESTIMATE

5731 Hazeldean Road Development - Domestic Water Demand Estimates - Based on Wellings of Stittsville Site Phase 2 (160401511)

Building ID	Area	Population	Daily Rate of	Avg Day	Demand	Max Day	Demand ^{2,3}	Peak Hour	Demand 2,3
	(m ²)		Demand ¹	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)
BLDG A and BLDG C									
Residential	-	354	350	86.1	1.43	215.2	3.59	473.5	7.89
Commercial	1033.67	-	28,000	2.0	0.03	3.0	0.05	5.4	0.09
BLDG B									
Commercial	513	-	28,000	1.0	0.02	1.5	0.02	2.7	0.04
BLDG D									
Residential	-	306	350	74.4	1.24	185.9	3.10	408.9	6.82
Total Site :				163.4	2.72	405.6	6.76	890.5	14.84

1. 28,000 L/gross ha/day is used to calculate water demand for retail, restaurants and office space.

2. The City of Ottawa water demand criteria used to estimate peak demand rates for commercial space are as follows: maximum day demand rate = 1.5 x average day demand rate

maximum hour demand rate = 1.8 x maximum day demand rate 3. The City of Ottaw water demand criteria used to estimate peak demand rates for residential areas are as follows: maximum day demand rate = 2.5 x average day demand rate

maximum hour demand rate = 2.2 x maximum day demand rate

Appendix A Water Supply Servicing May 20, 2020

A.2 FIRE FLOW REQUIREMENTS PER FUS

FUS Fire Flow Calculation Sheet

Stantec Project #: 160401317 Project Name: 20 Cedarow Court Date: 11/7/2019 Fire Flow Calculation #: 1 Description: Building A (Phase 2 and 3)

Notes: 6 storey building with horizontal firewalls between each floor

Step	Task				Notes			Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			Non-C	ombustible C	Construction		0.8	-
2	Determine Ground Floor Area of One Unit				-			4760	-
2	Determine Number of Adjoining Units				-			1	-
3	Determine Height in Storeys		Does not i	nclude floor	s >50% below	grade or op	en attic space	1	-
4	Determine Required Fire Flow		(F	= 220 x C x A	^{1/2}). Round to	o nearest 100	0 L/min	-	12000
5	Determine Occupancy Charge			L	imited Comb	ustible		-15%	10200
				c	onforms to N	FPA 13		-30%	
6	Determine Sprinkler Reduction			Ste	andard Wate	Supply		-10%	-4080
°	Determine spinkler keduction			Not	Fully Supervis	ed or N/A		0%	-4060
				% Cov	erage of Spri	nkler System		100%	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-
		North	10.1 to 20	30	6	> 120	Wood Frame or Non-Combustible	15%	
7	Determine Increase for Exposures (Max. 75%)	East	20.1 to 30	82	2	> 120	Wood Frame or Non-Combustible	10%	3978
		South	> 45	123	1	> 120	Wood Frame or Non-Combustible	0%	3770
		West	10.1 to 20	82	1	61-90	Wood Frame or Non-Combustible	14%	
			То	tal Required	Fire Flow in L	/min, Rounde	ed to Nearest 1000L/min		10000
8	Determine Final Required Fire Flow				Total Requ	vired Fire Flow	/ in L/s		166.7
ð	Determine Final Required Fire flow				Required Du	ation of Fire I	low (hrs)		2.00
					Required Vo	lume of Fire F	low (m ³)		1200

FUS Fire Flow Calculation Sheet

Stantec Project #: 160401317 Project Name: 20 Cedarow Court Date: 11/7/2019 Fire Flow Calculation #: 1 Description: Building B (Phase 4)

Notes: 6 storey building with horizontal firewalls between each floor

Step	Task				Notes			Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			Non-C	ombustible (Construction		0.8	-
2	Determine Ground Floor Area of One Unit				-			3321	-
2	Determine Number of Adjoining Units				-			1	-
3	Determine Height in Storeys		Does not i	nclude floor	s >50% belov	/ grade or op	en attic space	1	-
4	Determine Required Fire Flow		(F	= 220 x C x A	^{1/2}). Round to	o nearest 100	0 L/min	-	10000
5	Determine Occupancy Charge			L	imited Comb	ustible		-15%	8500
				c	onforms to N	FPA 13		-30%	
6	Determine Sprinkler Reduction			Ste	andard Wate	r Supply		-10%	-3400
°	Determine Spirikier Reduction			Not	Fully Supervis	ed or N/A		0%	-3400
				% Cov	erage of Spri	nkler System		100%	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-
		North	> 45	122	1	> 120	Wood Frame or Non-Combustible	0%	
7	Determine Increase for Exposures (Max. 75%)	East	30.1 to 45	54	5	> 120	Wood Frame or Non-Combustible	5%	2125
		South	10.1 to 20	122	5	> 120	Wood Frame or Non-Combustible	15%	2125
		West	30.1 to 45	28	1	0-30	Wood Frame or Non-Combustible	5%	
			Το	tal Required	Fire Flow in L	/min, Rounde	ed to Nearest 1000L/min		7000
8	Determine Final Required Fire Flow				Total Requ	vired Fire Flow	/ in L/s		116.7
ð	Determine Final Required Fire How				Required Du	ration of Fire I	low (hrs)		2.00
					Required Vo	lume of Fire F	low (m ³)		840

Appendix A Water Supply Servicing May 20, 2020

A.3 BOUNDRY CONDITIONS

Boundary Conditions - 20 Cedarow Court

October-19

0 a a a a a i a	Dem	nand
Scenario	L/min	L/s
Average Daily Demand	156	2.60
Maximum Daily Demand	388	6.46
Peak Hour	850	14.17
Fire Flow Demand #1	16,020	267

of connections

Date Provided

2

Location:

Results:

Connection 1 - Cedarow Crescent

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	161.1	80.3
Peak Hour	157.7	75.5
Max Day plus Fire 1	150.2	64.8

¹ Ground Elevation = 104.6m

Connection 2 - Wellings Pvt

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	161.1	80.3
Peak Hour	157.7	75.4
Max Day plus Fire 1	149.6	63.9

¹ Ground Elevation = 104.7m

Notes:

- 1. Pressure reducing valve is required since the maximum pressure exceeds 80 psi.
- 2. Looping of the watermain is required to decrease vulnerability of the water system in case of breaks.
- 3. Confirm the ownership of the watermain on Wellings Private.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Appendix B Wastewater Servicing May 20, 2020

Appendix B WASTEWATER SERVICING

B.1 SANITARY SEWER DESIGN

96		Nautica of Stitts	I Lands (ANITA DESIC		EWEF IEET	२											DESIGN PA	RAMETERS											
				are L.T.C					(City	of Otta	wa)				MAX PEAK F	ACTOR (RES.)=	-	4.0		AVG. DAILY F	LOW / PERS	NC	280	L/p/day		MINIMUM VE	ELOCITY		0.60	m/s					
		DATE:		5/20	/2020										MIN PEAK F	ACTOR (RES.)=		2.0		COMMERCIA	L		28,000	L/ha/day		MAXIMUM VI	ELOCITY		3.00	m/s					
Stantec		REVISION:			1										PEAKING FA	CTOR (INDUST	RIAL):	2.4		INDUSTRIAL	(HEAVY)		55,000	L/ha/day		MANNINGS r	n		0.013						
Bantee		DESIGNED) BY:	Т	R	FILE NUME	BER:	1604-01511							PEAKING FA	CTOR (COMM.,	, INST.):	1.5		INDUSTRIAL	(LIGHT)		35,000	L/ha/day		BEDDING CL	ASS		В						
		CHECKED	BY:	0	т										STUDIO APA	RTMENT		1.4		INSTITUTION	AL		28,000	L/ha/day		MINIMUM CO	OVER		2.50	m					
															1 BEDROOM			1.4		INFILTRATIO	N		0.33	L/s/ha											
															2 BEDROOM			2.1																	
LOCATION						RESIDENTIAL	AREA AND P	OPULATION				COMM	ERCIAL	INDUST	RIAL (L)	INDUSTR	IAL (H)	INSTITU	TIONAL	GREEN /	UNUSED	C+I+I		INFILTRATION		TOTAL				P	PE				
AREA ID	FROM	TO	AREA		Single		POP.	CUMULA	TIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VEL.	
NUMBER	M.H.	M.H.		Studio	1 Bedroom	2 Bedroom		AREA	POP.	FACT.	FLOW		AREA		AREA		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW							(FULL)	PEAK FLOW	(FULL)	
			(ha)		Units			(ha)			(L/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	(ha)	(ha)	(L/s)	(L/s)	(m)	(mm)			(%)	(l/s)	(%)	(m/s)	
/ellings of Stittsville Ph2																																			
ENTIRE SITE	STUB	MAIN	2.14	41	309	81	660	2.14	660	3.91	8.4	0.15	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1	2.29	2.29	0.8	9.2	23.1	300 675	PVC	SDR 35	0.40	60.7	15.14%	0.86	

Appendix C Stormwater Management May 20, 2020

Appendix C STORMWATER MANAGEMENT

C.1 STORM SEWER DESIGN SHEET AND ROOF STORAGE CALCULATIONS

	Wellings			Cedarow			STORM				DESIGN F																												
Stantec		Co	urt				DESIGN	SHEET			I = a / (t+b	o) ^c		(As per C	ity of Otta	wa Guideli	nes, 2012)																					
June	DATE:		2019-	-11-08			(City of	Ottawa)			[1:2 yr	1:5 yr	1:10 yr	1:100 yr																								
_	REVISION	l:	1	1							a =	732.951	998.071	1174.184	1735.688	MANNING	'S n =	0.013		BEDDING	LASS =	В																	
	DESIGNE	D BY:	т	R	FILE NUM	BER:	16040151	1			b =	6.199	6.053			MINIMUM		2.00	m																				
	CHECKEI	DBY:		-							c =	0.810	0.814			TIME OF E			min																				
LOCATION											•			DR.	AINAGE AF	REA																	PIPE SELE	CTION					
AREA ID	FROM	то	AREA	AREA	AREA	AREA	AREA	С	С	С	С	AxC	ACCUM	AxC	ACCUM.	AxC	ACCUM.	AxC	ACCUM.	T of C	I _{2-YEAR}	I _{5-YEAR}	I _{10-YEAR}	I _{100-YEAR}	QCONTROL	ACCUM.	Q _{ACT}	LENGTH	PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.	VEL.	TIME OF
NUMBER	M.H.	M.H.	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR) (ROOF)	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)	(2-YEAR)	AxC (2YR)	(5-YEAR)	AxC (5YR)	(10-YEAR)	AxC (10YR)	(100-YEAR)	AxC (100YR))						QCONTROL	(CIA/360)	C	R DIAMETEI	HEIGHT	SHAPE				(FULL)		(FULL)	(ACT)	FLOW
			(ha)	(ha)	(ha)	(ha)	(ha)	(-)	(-)	(-)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
			1																																				
ROOF 1, ROOF 2, UGPK 1 TO UGPK - 11	20	27	0.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.718	0.718	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.01	104.19	122.14	178.56	40.9	40.9	104.0	2.0	450	450	CIRCULAR	CONCRETE		1.00	297.4	65.23%	1.81	1.68	0.02
ROOF 1, ROOF 2, UGER 1 10 UGER - 11	20	21	0.00	0.00	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.710	0.710	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	170.00	40.0	40.0	194.0	2.0	450	450	CIRCULAR	CONCRETE	-	1.00	297.4	05.23%	1.01	1.00	0.02
																													100	100									
	26	1000	0.80	0.00	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.718	0.718	0.000	0.000	0.000	0.000	0.000	0.000	10.02	76.73	104.09	122.02	178.38	0.0	0.0	153.1	2.4	450	450	CIRCULAR	CONCRETE		0.20	133.0	115.08%	0.81	0.81	0.05
	1000	STC 300	0.80	0.00	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.718	0.718	0.000	0.000	0.000	0.000	0.000	0.000	10.07	76.54	103.83	121.71	177.93	0.0	0.0	152.7	2.4	450	450	CIRCULAR	CONCRETE		0.20	133.0	114.80%	0.81	0.81	0.05
	STC 300	24	0.80	0.00	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.718	0.718	0.000	0.000	0.000	0.000	0.000	0.000	10.12	76.35	103.57	121.41	177.48	0.0	0.0	152.3	25.6	450	450	CIRCULAR	CONCRETE	-	0.20	133.0	114.52%	0.81	0.81	0.53
																				10.64									675	675									
	1																																						
Note:																																							

ICD and weir are proposed to be constructed in MH 1000 prior to flows discharging to approved outlet, therefore a 450mm diameter pipe is sufficient as flows will be restricted.

 File No:
 160401195

 Project:
 5731 Hazeldean

 Date:
 21-May-20

SWM Approach: Post-development to Pre-development flows

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

		Runoff C	oefficient Table					
Sub-cat Are			Area (ha)		unoff fficient			Overall Runoff
Catchment Type	ID / Description		"A"		"C"	"A :	« C"	Coefficien
Roof	ROOF 1	Hard	0.47		0.9	0.425		
		Soft	0.00		0.2	0.000		
	Su	btotal		0.472			0.425	0.900
Roof	ROOF 2	Hard	0.34		0.9	0.302		
1.001		Soft	0.00		0.2	0.000		
	Su	btotal		0.336			0.302	0.900
Total rall Runoff Coefficient= C:				0.808			0.727	0.90
al Roof Areas al Tributary Surface Areas (al Tributary Area to Outlet	Controlled and Uncontro	lled)	0.808 k 0.000 k 0.808 k	a				
al Tributary Area to Outlet			0.000 1	ia				
tal Uncontrolled Areas (Non-	Tributary)		0.000 ł	a				
al Site			0.808 1					

Stormwater Management Calculations

Project #160401195, 5731 Hazeldean Modified Rational Method Calculatons for Storage

	2 yr Intens	itv	$I = a/(t + b)^{c}$	a =	732.951	t (min)	I (mm/hr)	i
	City of Otta		-(- 0)	a = b =	6.199	10	76.81	1
	City of Olla	awa		C =	0.133	20	52.03	1
				<u> </u>	0.01	30	40.04	1
						40	32.86	1
						50	28.04	1
						60	24.56	1
						70	21.91	1
						80	19.83	1
						90	18.14	1
						100	16.75	1
						110	15.57	1
						120	14.56	1
						120	14.30	
Subdra	2 YEAR M ainage Area: Area (ha):		ational Met	hod for Enti	re Site	rage Depth:	Roof 150	mm
	C:	0.90						
	tc	l (2 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	l
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)	1
	10	76.81	90.70	23.02	67.68	40.61	88.1	0.0
	20	52.03	61.45	23.91	37.53	45.04	91.6	0.0
	30	40.04	47.29	23.47	23.82	42.87	89.9	0.0
	40	32.86	38.81	22.65	16.16	38.79	86.7	0.0
	50	28.04	33.11	21.72	11.39	34.18	83.2	0.0
	60	24.56	29.00	20.79	8.21	29.57	79.6	0.0
	70	21.91	25.88	19.89	5.98	25.13	76.2	0.0
	80	19.83	23.42	18.88	4.54	21.80	72.3	0.0
	90	18.14	21.43	17.87	3.56	19.23	68.4	0.0
	100	16.75	19.78	16.96	2.82	16.92	64.9	0.0
	110	15.57	18.39	16.14	2.25	14.83	61.8	0.0
	120	14.56	17.20	15.40	1.80	12.95	59.0	0.0
Storage:	Roof Storag	ge						
	1	Depth	Head	Discharge	Vreq	Vavail	Discharge	I
		(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check	1
2 100	Water Level		0.09	23.91	45.04	188.80	0.00	l
2=yea								
-	ainage Area:	ROOF 2					Roof	
-	ainage Area: Area (ha): C:	ROOF 2 0.34 0.90		м	laximum Sto	rage Depth:	Roof 150	
-	Area (ha): C: tc	0.34 0.90 I (2 yr)	Qactual	Qrelease	Qstored	Vstored	150 Depth	
-	Area (ha): C: tc (min)	0.34 0.90 I (2 yr) (mm/hr)	(L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	150 Depth (mm)	mm
-	Area (ha): C: tc (min) 10	0.34 0.90 I (2 yr) (mm/hr) 76.81	(L/s) 64.57	Qrelease (L/s) 16.26	Qstored (L/s) 48.31	Vstored (m^3) 28.98	150 Depth (mm) 88.2	mm
-	Area (ha): C: (min) 10 20	0.34 0.90 I (2 yr) (mm/hr) 76.81 52.03	(L/s) 64.57 43.74	Qrelease (L/s) 16.26 16.91	Qstored (L/s) 48.31 26.83	Vstored (m^3) 28.98 32.20	150 Depth (mm) 88.2 91.7	mm
-	Area (ha): C: (min) 10 20 30	0.34 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04	(L/s) 64.57 43.74 33.66	Qrelease (L/s) 16.26 16.91 16.61	Qstored (L/s) 48.31 26.83 17.06	Vstored (m^3) 28.98 32.20 30.70	150 Depth (mm) 88.2 91.7 90.1	mm
-	Area (ha): C: (min) 10 20 30 40	0.34 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86	(L/s) 64.57 43.74 33.66 27.63	Qrelease (L/s) 16.26 16.91 16.61 16.03	Qstored (L/s) 48.31 26.83 17.06 11.60	Vstored (m^3) 28.98 32.20 30.70 27.83	150 Depth (mm) 88.2 91.7 90.1 87.0	mm 0.0 0.0
-	Area (ha): C: (min) 10 20 30 40 50	0.34 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04	(L/s) 64.57 43.74 33.66 27.63 23.57	Qrelease (L/s) 16.26 16.91 16.61 16.03 15.38	Qstored (L/s) 48.31 26.83 17.06 11.60 8.19	Vstored (m^3) 28.98 32.20 30.70 27.83 24.58	150 Depth (mm) 88.2 91.7 90.1 87.0 83.4	mm 0.0 0.0 0.0
-	Area (ha): C: (min) 10 20 30 40	0.34 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86	(L/s) 64.57 43.74 33.66 27.63	Qrelease (L/s) 16.26 16.91 16.61 16.03 15.38 14.73	Qstored (L/s) 48.31 26.83 17.06 11.60	Vstored (m^3) 28.98 32.20 30.70 27.83	150 Depth (mm) 88.2 91.7 90.1 87.0	mm 0.0 0.0 0.0 0.0
-	Area (ha): C: (min) 10 20 30 40 50	0.34 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04	(L/s) 64.57 43.74 33.66 27.63 23.57	Qrelease (L/s) 16.26 16.91 16.61 16.03 15.38	Qstored (L/s) 48.31 26.83 17.06 11.60 8.19	Vstored (m^3) 28.98 32.20 30.70 27.83 24.58	150 Depth (mm) 88.2 91.7 90.1 87.0 83.4	mm 0.0 0.0 0.0 0.0 0.0 0.0
-	Area (ha): C: (min) 10 20 30 40 50 60	0.34 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56	(L/s) 64.57 43.74 33.66 27.63 23.57 20.64	Qrelease (L/s) 16.26 16.91 16.61 16.03 15.38 14.73	Qstored (L/s) 48.31 26.83 17.06 11.60 8.19 5.92	Vstored (m^3) 28.98 32.20 30.70 27.83 24.58 21.31	150 Depth (mm) 88.2 91.7 90.1 87.0 83.4 79.9	mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-	Area (ha): C: (min) 10 20 30 40 50 60 70	0.34 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91	(L/s) 64.57 43.74 33.66 27.63 23.57 20.64 18.42	Qrelease (L/s) 16.26 16.91 16.61 16.03 15.38 14.73 14.10	Qstored (L/s) 48.31 26.83 17.06 11.60 8.19 5.92 4.32	Vstored (m^3) 28.98 32.20 30.70 27.83 24.58 21.31 18.16	150 Depth (mm) 88.2 91.7 90.1 87.0 83.4 79.9 76.5	mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-	Area (ha): C: (min) 10 20 30 40 50 60 70 80	0.34 0.90 (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83	(L/s) 64.57 43.74 33.66 27.63 23.57 20.64 18.42 16.67	Qrelease (L/s) 16.26 16.91 16.61 16.03 15.38 14.73 14.10 13.40	Qstored (L/s) 48.31 26.83 17.06 11.60 8.19 5.92 4.32 3.27	Vstored (m^3) 28.98 32.20 30.70 27.83 24.58 21.31 18.16 15.71	150 Depth (mm) 88.2 91.7 90.1 87.0 83.4 79.9 76.5 72.7	mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
-	Area (ha): C: (min) 10 20 30 40 50 60 70 80 90	0.34 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14	(L/s) 64.57 43.74 33.66 27.63 23.57 20.64 18.42 16.67 15.25	Qrelease (L/s) 16.26 16.91 16.61 16.03 15.38 14.73 14.10 13.40 12.68 12.04	Qstored (L/s) 48.31 26.83 17.06 11.60 8.19 5.92 4.32 3.27 2.57 2.04	Vstored (m^3) 28.98 32.20 30.70 27.83 24.58 21.31 18.16 15.71 13.87	150 Depth (mm) 88.2 91.7 90.1 87.0 83.4 79.9 76.5 72.7 68.8	mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
-	Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100	0.34 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75	(L/s) 64.57 43.74 33.66 27.63 23.57 20.64 18.42 16.67 15.25 14.08	Qrelease (L/s) 16.26 16.91 16.61 16.03 15.38 14.73 14.10 13.40 12.68	Qstored (L/s) 48.31 26.83 17.06 11.60 8.19 5.92 4.32 3.27 2.57	Vstored (m^3) 28.98 32.20 30.70 27.83 24.58 21.31 18.16 15.71 13.87 12.22	150 Depth (mm) 88.2 91.7 90.1 87.0 83.4 79.9 76.5 72.7 68.8 65.3	mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Subdra	Area (ha): C: (min) 10 20 30 40 50 60 60 60 60 70 80 90 100 110	0.34 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56	(L/s) 64.57 43.74 33.66 27.63 23.57 20.64 18.42 16.67 15.25 14.08 13.09	Qrelease (L/s) 16.26 16.91 16.61 16.03 15.38 14.73 14.10 13.40 12.68 12.04 11.46	Qstored (L/s) 48.31 26.83 17.06 11.60 8.19 5.92 4.32 3.27 2.57 2.57 2.04 1.63	Vstored (m^3) 28.98 32.20 30.70 27.83 24.58 21.31 18.16 15.71 13.87 12.22 10.74	150 Depth (mm) 88.2 91.7 90.1 87.0 83.4 79.9 76.5 72.7 68.8 65.3 62.2	mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
	Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120	0.34 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 ge	(L/s) 64.57 43.74 33.66 27.63 23.57 20.64 18.42 16.67 15.25 14.08 13.09 12.24	Qrelease (L/s) 16.26 16.91 16.61 15.38 14.73 14.10 12.68 12.04 11.46 10.94	Qstored (L/s) 48.31 26.83 17.06 11.60 8.19 5.92 4.32 3.27 2.57 2.04 1.63 1.30	Vstored (m^3) 28.98 32.20 27.83 24.58 21.31 18.16 15.71 13.87 12.22 10.74 9.39	150 Depth (mm) 88.2 91.7 90.1 87.0 87.0 87.0 87.0 87.0 87.0 87.0 87.0	mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Subdra	Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120	0.34 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 ge	(L/s) 64.57 43.74 33.66 27.63 23.57 20.64 18.42 16.67 15.25 14.08 13.09 12.24 Head	Qrelease (L/s) 16.26 16.91 16.61 15.38 14.73 14.10 13.40 12.68 12.04 11.46 10.94	Qstored (L/s) 48.31 26.83 17.06 11.60 8.19 5.92 4.32 2.57 2.57 2.04 1.63 1.30	Vstored (m^3) 28.98 32.20 30.70 27.83 24.58 21.31 18.16 15.71 13.87 12.22 10.74 9.39 Vavail	150 Depth (mm) 88.2 91.7 90.7 87.0 83.4 79.9 76.5 72.7 68.8 65.3 62.2 59.3 Discharge	
Subdra Storage:	Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110 120	0.34 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 ge	(L/s) 64.57 43.74 33.66 27.63 23.57 20.64 18.42 16.67 15.25 14.08 13.09 12.24	Qrelease (L/s) 16.26 16.91 16.61 15.38 14.73 14.10 12.68 12.04 11.46 10.94	Qstored (L/s) 48.31 26.83 17.06 11.60 8.19 5.92 4.32 3.27 2.57 2.04 1.63 1.30	Vstored (m^3) 28.98 32.20 27.83 24.58 21.31 18.16 15.71 13.87 12.22 10.74 9.39	150 Depth (mm) 88.2 91.7 90.1 87.0 87.0 87.0 87.0 87.0 87.0 87.0 87.0	mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

Project #160401195, 5731 Hazeldean Modified Rational Method Calculatons for Storage

	100 yr Inte	nsity	$I = a/(t + b)^{6}$	a =	1735.688	t (min)	l (mm/hr)	
	City of Ott	awa		b =	6.014	10	178.56	
	-			c =	0.820	20	119.95	
			-			30	91.87	
						40	75.15	
						50	63.95	
						60	55.89	
						70	49.79	
						80	44.99	
						90	41.11	
						100	37.90	
						110	35.20	
						120	32.89	
	100 YEAF	R Modified	Rational Me	ethod for Er	tire Site			
0		D0054					Deef	
Subdra	inage Area:				avimum Stor		Roof 150	
	Area (ha): C:	0.47 1.00		M	aximum Stor	age Depth:	150	mm
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	i
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	(mm)	L
	10	178.56	234.30	33.56	200.74	120.44	128.5	0
	20	119.95	157.39	35.66	121.73	146.08	136.6	0
	30	91.87	120.55	36.14	84.40	151.93	138.4	C
	40	75.15	98.60	36.00	62.60	150.24	137.9	Ċ
	50	63.95	83.92	35.58	48.34	145.03	136.2	0
	60	55.89	73.34	35.00	38.34	138.03	134.0	C
	70	49.79	65.33	34.35	30.98	130.12	131.6	0
	80	44.99	59.04	33.67	25.37	121.77	128.9	0
	90	41.11	53.94	32.97	20.98	113.27	126.3	C
	100	37.90	49.73	32.17	17.57	105.40	123.2	0
	110	35.20	46.19	31.30	14.89	98.30	119.9	C
	120	32.89	43.16	30.46	12.70	91.46	116.7	C
Storage:	Roof Storag	ge						
		Depth	Head	Discharge	Vreq	Vavail	Discharge	
		(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check	1
						188.80	0.00	
100-year	Water Level	138.41	0.14	36.14	151.93	100.00	0.00	
100-year	Water Level			36.14	151.93	100.00	0.00	
-	iinage Area:	138.41 ROOF 2					Roof	
-		138.41			151.93 aximum Stor			
-	iinage Area: Area (ha): C: tc	138.41 ROOF 2 0.34 1.00	0.14 Qactual	M	aximum Stor Qstored	age Depth: Vstored	Roof 150 Depth	
-	iinage Area: Area (ha): C: tc (min)	138.41 ROOF 2 0.34 1.00 I (100 yr) (mm/hr)	0.14 Qactual (L/s)	M Qrelease (L/s)	aximum Stor Qstored (L/s)	age Depth: Vstored (m^3)	Roof 150 Depth (mm)	mm
-	ninage Area: Area (ha): C: tc (min) 10	138.41 ROOF 2 0.34 1.00 I (100 yr) (mm/hr) 178.56	0.14 Qactual (L/s) 166.79	M Qrelease (L/s) 23.70	Aximum Stor Qstored (L/s) 143.09	age Depth: Vstored (m^3) 85.85	Roof 150 Depth (mm) 128.6	mm [
-	iinage Area: Area (ha): C: tc (min)	138.41 ROOF 2 0.34 1.00 I (100 yr) (mm/hr)	0.14 Qactual (L/s)	M Qrelease (L/s)	aximum Stor Qstored (L/s)	age Depth: Vstored (m^3)	Roof 150 Depth (mm)	mm [
-	ninage Area: Area (ha): C: tc (min) 10	138.41 ROOF 2 0.34 1.00 I (100 yr) (mm/hr) 178.56	0.14 Qactual (L/s) 166.79	M Qrelease (L/s) 23.70	Aximum Stor Qstored (L/s) 143.09	age Depth: Vstored (m^3) 85.85	Roof 150 Depth (mm) 128.6	mm [
	inage Area: Area (ha): C: tc (min) 10 20	138.41 ROOF 2 0.34 1.00 1 (100 yr) (mm/hr) 178.56 119.95	0.14 Qactual (L/s) 166.79 112.04	M Qrelease (L/s) 23.70 25.19	Aximum Stor (L/s) 143.09 86.85	age Depth: Vstored (m^3) 85.85 104.22	Roof 150 Depth (mm) 128.6 136.7	mm (((
	inage Area: Area (ha): C: (min) 10 20 30	138.41 ROOF 2 0.34 1.00 1(100 yr) (mm/hr) 178.56 119.95 91.87	0.14 Qactual (L/s) 166.79 112.04 85.81	M Qrelease (L/s) 23.70 25.19 25.54	25000000000000000000000000000000000000	age Depth: Vstored (m^3) 85.85 104.22 108.49	Roof 150 Depth (mm) 128.6 136.7 138.6	mm 0 0 0
-	tinage Area: Area (ha): C: tc (min) 10 20 30 40 50	138.41 ROOF 2 0.34 1.00 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95	0.14 (L/s) 166.79 112.04 85.81 70.19 59.74	M Qrelease (L/s) 23.70 25.19 25.54 25.54 25.45 25.15	Qstored (L/s) 143.09 86.85 60.27 44.74 34.58	age Depth: Vstored (m^3) 85.85 104.22 108.49 107.38 103.75	Roof 150 Depth (mm) 128.6 136.7 138.6 138.1 136.5	
-	inage Area: Area (ha): C: (min) 10 20 30 40 50 60	138.41 ROOF 2 0.34 1.00 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	0.14 Qactual (L/s) 166.79 112.04 85.81 70.19 59.74 52.21	M Qrelease (L/s) 23.70 25.54 25.54 25.45 25.15 24.75	Qstored (L/s) 143.09 86.85 60.27 44.74 34.58 27.46	age Depth: (m^3) 85.85 104.22 108.49 107.38 103.75 98.84	Roof 150 Depth (mm) 128.6 138.7 138.6 138.1 136.5 134.3	
-	tinage Area: Area (ha): C: (min) 10 20 30 40 50 60 70	138.41 ROOF 2 0.34 1.00 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79	0.14 Qactual (L/s) 166.79 112.04 85.81 70.19 59.74 52.21 46.51	M Crelease (L/s) 23.70 25.19 25.54 25.45 25.45 25.15 24.75 24.30	Qstored (L/s) 143.09 86.85 60.27 44.74 34.58 27.46 22.21	age Depth: Vstored (m^3) 85.85 104.22 108.49 107.38 103.75 98.84 93.27	Roof 150 Depth (mm) 128.6 138.7 138.6 138.1 136.5 134.3 131.8	
	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80	138.41 ROOF 2 0.34 1.00 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99	0.14 Qactual (L/s) 166.79 112.04 85.81 70.19 59.74 52.21 46.51 42.03	M Qrelease (L/s) 23.70 25.19 25.54 25.54 25.45 25.15 24.75 24.75 24.30 23.82	Qstored (L/s) 143.09 86.85 60.27 44.74 34.58 27.46 22.21 18.20	age Depth: Vstored (m^3) 85.85 104.22 108.49 107.38 103.75 98.84 93.27 87.38	Roof 150 Depth (mm) 128.6 136.7 138.6 138.1 136.5 134.3 131.8 129.2	
	tinage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90	138.41 ROOF 2 0.34 1.00 I(100 yr) 178.56 119.95 91.87 75.15 63.95 95.89 49.79 44.99 41.11	0.14 Qactual (L/s) 166.79 112.04 85.81 70.19 59.74 52.21 46.51 42.03 38.40	M Qrelease (L/s) 23.70 25.19 25.54 25.45 25.15 24.75 24.30 23.82 23.33	Qstored (L's) 143.09 86.85 60.27 44.74 34.58 27.46 22.21 18.20 15.07 15.07	age Depth: Vstored (m*3) 85.85 104.22 108.49 107.38 103.75 98.84 93.27 87.38 81.37	Roof 150 Depth (mm) 128.6 138.7 138.6 138.1 136.5 134.3 131.8 129.2 126.6	
-	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100	138.41 ROOF 2 0.34 1.00 1(100 yr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.91 37.90	0.14 Qactual (L/s) 166.79 112.04 85.81 70.19 59.74 52.21 46.51 42.03 38.40 35.40	M Qrelease (L/s) 25.54 25.54 25.15 24.75 24.30 23.82 23.33 22.79	Qstored (L/s) 143.09 86.85 60.27 44.74 34.58 27.46 22.21 18.20 15.07 12.62 12.62 12.62	age Depth: Vstored (m^3) 85.85 104.22 108.48 103.75 98.84 103.75 98.27 87.38 81.37 75.70	Roof 150 Depth (mm) 128.6 138.6 138.1 136.5 134.3 131.8 129.2 126.6 123.6	
	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110	138.41 ROOF 2 0.34 1.00 I(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 44.99 41.11 37.90 35.20	0.14 Qactual (L/s) 166.79 112.04 85.81 70.19 59.74 46.51 42.03 38.40 35.40 32.88	M Qrelease (L/s) 23.70 25.54 25.54 25.45 24.75 24.30 23.82 23.33 22.79 22.18	Qstored (L/s) 143.09 86.85 60.27 44.74 34.58 27.46 22.21 18.20 15.07 12.62 10.71	age Depth: Vstored (m^3) 85.85 104.22 108.49 107.38 103.75 98.84 93.27 87.38 81.37 75.70 70.66	Roof 150 Depth (mm) 128.6 138.7 138.6 138.1 138.5 134.3 131.8 129.2 126.6 123.6 123.6 120.3	
Subdra	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 50 60 50 60 80 90 100 110 120	138.41 ROOF 2 0.34 1.00 I(mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 94.99 41.11 37.90 35.20 32.89	0.14 Qactual (L/s) 166.79 112.04 85.81 70.19 59.74 52.21 46.51 42.03 38.40 35.40	M Qrelease (L/s) 25.54 25.54 25.15 24.75 24.30 23.82 23.33 22.79	Qstored (L/s) 143.09 86.85 60.27 44.74 34.58 27.46 22.21 18.20 15.07 12.62 12.62 12.62	age Depth: Vstored (m^3) 85.85 104.22 108.48 103.75 98.84 103.75 98.27 87.38 81.37 75.70	Roof 150 Depth (mm) 128.6 138.6 138.1 136.5 134.3 131.8 129.2 126.6 123.6	
Subdra	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 110	138.41 ROOF 2 0.34 1.00 (100 yr) 178.66 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 ge	0.14 Qactual (L/s) 166.79 112.04 85.81 70.19 59.74 52.21 46.51 42.03 38.40 35.40 35.40 32.88 30.73	M Qrelease (L/s) 23.70 25.54 25.45 25.45 24.75 24.75 24.75 24.30 23.82 23.33 22.79 22.18 21.59	Qstored (L/s) 143.09 86.85 60.27 44.74 34.58 27.46 22.21 18.20 15.07 12.62 10.71 9.14	age Depth: Vstored (m^3) 85.85 104.22 108.49 107.38 81.37 75.70 70.66 65.81	Roof 150 Depth (mm) 128.6 138.7 138.6 138.1 136.5 134.3 131.8 129.2 126.6 120.3 117.1	
Subdra	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 50 60 50 60 80 90 100 110 120	138.41 ROOF 2 0.34 1.00 1(100 yr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 41.11 35.20 32.89 ge Depth	0.14 Qactual (L/s) 166.79 112.04 85.81 70.19 59.74 46.51 42.03 38.40 35.40 32.88	M Qrelease (L/s) 23.70 25.54 25.54 25.45 24.75 24.30 23.82 23.33 22.79 22.18	Qstored (L/s) 143.09 86.85 60.27 44.74 34.58 27.46 22.21 18.20 15.07 12.62 10.71	age Depth: Vstored (m^3) 85.85 104.22 108.49 107.38 103.75 98.84 93.27 87.38 81.37 75.70 70.66	Roof 150 Depth (mm) 128.6 138.7 138.6 138.6 138.6 138.5 134.3 131.8 129.2 126.6 123.6 120.3 117.1 Discharge	
Subdra Storage:	inage Area: Area (ha): C: (min) 10 20 30 40 50 60 50 60 50 60 80 90 100 110 120	138.41 ROOF 2 0.34 1.00 (100 yr) 178.66 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 ge	0.14 Qactual (L/s) 166.79 112.04 85.81 70.19 59.74 52.21 46.51 42.03 38.40 35.40 35.40 32.88 30.73	M Qrelease (L/s) 23.70 25.54 25.45 25.45 24.75 24.75 24.75 24.30 23.82 23.33 22.79 22.18 21.59	Qstored (L/s) 143.09 86.85 60.27 44.74 34.58 27.46 22.21 18.20 15.07 12.62 10.71 9.14	age Depth: Vstored (m^3) 85.85 104.22 108.49 107.38 81.37 75.70 70.66 65.81	Roof 150 Depth (mm) 128.6 138.7 138.6 138.1 136.5 134.3 131.8 129.2 126.6 120.3 117.1	

Project #160401195, 5731 Hazeldean Roof Drain Design Sheet, Area ROOF 1 Standard Zurn Model Z-105-5 Control-Flo Single Notch Roof Drain

	Rating	Curve			Volume E	stimation		
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0004	0.0065	1	0.025	105	1	1	0.025
0.050	0.0008	0.0131	7	0.050	420	6	7	0.050
0.075	0.0012	0.0196	24	0.075	944	17	24	0.075
0.100	0.0015	0.0261	56	0.100	1678	32	56	0.100
0.125	0.0019	0.0326	109	0.125	2622	53	109	0.125
0.150	0.0023	0.0392	189	0.150	3776	80	189	0.150

	Drawdowr	n Estimate	
Total	Total		
Volume	Time	Vol	Detention
(cu.m)	(sec)	(cu.m)	Time (hr)
0.0	0.0	0.0	0
6.1	468.6	6.1	0.13018
22.7	848.0	16.6	0.36573
55.1	1238.5	32.3	0.70977
108.4	1633.5	53.3	1.16353
187.9	2030.8	79.5	1.72763

Rooftop Storage Summary

Total Building Area (sq.m)		4720	
Assume Available Roof Area (sq.	80%	3776	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		17	
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).
Max. Allowable Storage (cu.m)		189	
Estimated 100 Year Drawdown Time (h)		1.5	

From Zurn Drain Catalogue Head (m) L/min L/s

ead (m) L/min L/s Notch Rating 0.051 45.5 0.00076 232

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	5yr	100yr	Available
Qresult (cu.m/s)	0.024	0.036	-
Depth (m)	0.092	0.138	0.150
Volume (cu.m)	45.0	151.9	188.8
Draintime (hrs)	0.6	1.5	

Project #160401195, 5731 Hazeldean Roof Drain Design Sheet, Area ROOF 3 Standard Zurn Model Z-105-5 Control-Flo Single Notch Roof Drain

	Rating	Curve						
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0004	0.0046	1	0.025	75	1	1	0.025
0.050	0.0008	0.0092	5	0.050	299	4	5	0.050
0.075	0.0012	0.0138	17	0.075	672	12	17	0.075
0.100	0.0015	0.0184	40	0.100	1195	23	40	0.100
0.125	0.0019	0.0230	78	0.125	1867	38	78	0.125
0.150	0.0023	0.0276	134	0.150	2688	57	134	0.150

	Drawdowr	n Estimate	
Total	Total		
Volume	Time	Vol	Detention
(cu.m)	(sec)	(cu.m)	Time (hr)
0.0	0.0	0.0	0
4.4	472.6	4.4	0.13128
16.2	855.2	11.8	0.36883
39.2	1249.0	23.0	0.71579
77.2	1647.4	38.0	1.17339
133.8	2048.0	56.6	1.74227

Rooftop Storage Summary

Total Building Area (sq.m)		3360	
Assume Available Roof Area (sq.	80%	2688	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		12	
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).
Max. Allowable Storage (cu.m)		134	
Estimated 100 Year Drawdown Time (h)		1.5	

From Zurn Drain Catalogue

Head (m) L/min L/s Notch Rating 0.051 45.5 0.00076 232

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	5yr	100yr	Available
Qresult (cu.m/s)	0.017	0.026	-
Depth (m)	0.092	0.139	0.150
Volume (cu.m)	32.2	108.5	134.4
Draintime (hrs)	0.6	1.5	

Stantec	Wellings of	f Stittsvill Cou		Cedarow				I SEWER			DESIGN I = a / (t·			(As per C	City of Otta	wa Guidel	ines, 2012	2)																					
Julie	DATE:		2019-1	1-11			(City of	f Ottawa)				1:2 yr	1:5 yr	1:10 yr	1:100 yr																								
	REVISION:		1								a =	732.951	998.071	1174.184	1735.688	MANNING	9'S n =	0.013		BEDDING	CLASS =	В																	
	DESIGNED		TF	२	FILE NUN	IBER:	16040151	11			b =	6.199	6.053	6.014	6.014	MINIMUM	COVER:	2.00																					
	CHECKED E	BY:	-								c =	0.810	0.814	0.816	0.820	TIME OF E	ENTRY	10	min																				
LOCATION														DR	AINAGE AR	REA																	PIPE SELE	CTION					
AREA ID	FROM	TO	AREA	AREA	AREA	AREA	AREA	С	С	С	С	AxC	ACCUM	AxC	ACCUM.	AxC	ACCUM.	AxC	ACCUM.	T of C	I _{2-YEAR}	I _{5-YEAR}	I _{10-YEAR}	I _{100-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH	PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.	VEL.	TIME OF
NUMBER	M.H.	M.H.	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR	.) (ROOF)	(2-YEAR)	(5-YEAR)	(10-YEAR) (100-YEAR	(2-YEAR)	AxC (2YR)	(5-YEAR)	AxC (5YR)	(10-YEAR)	AxC (10YR)	(100-YEAR) AxC (100YR	t)						Q _{CONTROL}	(CIA/360)	C	R DIAMETE	HEIGHT	SHAPE				(FULL)		(FULL)	(ACT)	FLOW
			(ha)	(ha)	(ha)	(ha)	(ha)	(-)	(-)	(-)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
UNC-4	CB509	104	0.00	0.11	0.00	0.00	0.00	0.00	0.42	0.00	0.00	0.000	0.000	0.048	0.048	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	13.8	21.3	250	250	CIRCULAR	CONCRETE	-	0.50	42.7	32.42%	0.86	0.64	0.55

Appendix C Stormwater Management May 20, 2020

C.2 SAMPLE PCSWMM MODEL INPUT (12HR 100YR SCS)

2020-05-20-160401511_100scs.inp

[TITLE]

[OPTIONS] ;;Options	Value
FLOW_UNITS FLOW_UNITS INFILTRATION FLOW_ROUTING LINK_OFFSETS MIN_SLOPE ALLOW_PONDING SKIP_STEADY_STATE START_DATE START_DATE END_TATE END_TATE SWEEP_START_TIME END_DATE END_TATE SWEEP_START SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP DRY_STEP ROUTING_STEP ROUTING_STEP RULE_STEP INERTIAL_DAMPING NORMAL_FLOW_LIMITED FORCE_MAIN_EQUATION VARIABLE_STEP INS.STEPAIN NORMAL_FLOW_LIMITED FORCE_MAIN_EQUATION VARIABLE_STEP MIN_SURFAREA MAX_TRIALS HEAD_TOLERANCE SYS_FLOW_TOL MINIMUM_STEP THREADS	LPS HORTON DYNWAVE ELEVATION 0 YES NO 07/23/2009 00:00:00 07/23/2009 00:00:00 07/23/2009 00:00:00 07/24/2009 00:00:00 12/31 0 00:05:00 00:
	neters
;; CONSTANT 0.0 DRY_ONLY NO	
[RAINGAGES] ;;	n Time Snow Data

Page 1

;Name ;	Туре	Intrvl	Catch)20-05-20- Source	_					
G1	INTENSITY	0:15	1.0	TIMESERIE	s 100scs					
[SUBCATCHMENTS] ; ;Name	Raingage		Outlet		Total Area	Pcnt. Imperv	width	Pcnt. Slope	Curb Length	Snow Pack
; XT-1	RG1		св509-	 S	0.0688	38.571	95 95	1.5	0	
R00F_1	RG1		R00F-1	-S	0.4718	100	244	1.5	0	
R00F_2	RG1		ROOF-2	-S	0.3362	100	136	1.5	0	
JGPK_1	RG1		TANKS		0.0189	100	30	10	0	
JGPK_10	RG1		TANKS		0.0178	100	16	2	0	
JGPK_11	RG1		TANKS		0.0972	100	58	2	0	
JGPK_2	RG1		TANKS		0.1089	100	51	2	0	
JGPK_3	RG1		TANKS		0.0969	100	50	2	0	
JGPK_4	RG1		TANKS		0.139068	100	60	2	0	
JGPK_5	RG1		TANKS		0.0427	100	58	2	0	
JGPK_6	RG1		TANKS		0.0726	100	31.4	2	0	
JGPK_7	RG1		TANKS		0.07235	100	37	2	0	
JGPK_8	RG1		TANKS		0.0202	100	23	10	0	
JGPK_9	RG1		TANKS		0.0762	100	41.2	2	0	
JNC-1	RG1		OF1		0.0718	61.429	78	2	0	
JNC-2	RG1		OF2		0.5355	17.143	25	1	0	
JNC-3	RG1		OF3		0.0701	51.429	122	2	0	
JNC-4	RG1		св509-	S	0.045061	21.429	90	2	0	
SUBAREAS] ;Subcatchment	N-Imperv	N-Per	v s	-Imperv	S-Perv	PctZero	Route	To PC1	Routed	

EXT-1 ROOF_1 ROOF_2 UGPK_1 UGPK_10 UGPK_10 UGPK_2 UGPK_4 UGPK_4 UGPK_4 UGPK_5 UGPK_6 UGPK_6 UGPK_7 UGPK_8 UGPK_9 UNC-1 UNC-2 UNC-3 UNC-4	$\begin{array}{c} 0.013\\ 0.$	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.57 1.57	$\begin{array}{r} -160401511_\\ 4.67\end{array}$		PERVIOUS 100 IMPERVIOUS 100 PERVIOUS 100
[INFILTRATION] ;;Subcatchment	MaxRate	MinRate	Decay	DryTime	MaxInfil	
;; EXT-1 ROOF_1 ROOF_2 UGPK_1 UGPK_10 UGPK_2 UGPK_2 UGPK_3 UGPK_4 UGPK_5 UGPK_7 UGPK_7 UGPK_7 UGPK_7 UGPK_7 UGPK_9 UNC-1 UNC-1 UNC-2 UNC-3 UNC-4	76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	13.2 13.2 <t< td=""><td>$\begin{array}{c} 4.14\\$</td><td>7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td></t<>	$\begin{array}{c} 4.14\\$	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
[JUNCTIONS] ;; ;;Name	Invert Elev.	Max. Depth	Init. Depth	Surcharge Depth	Ponded Area	
;; 100	99.4	2.735	0	0	0	
[OUTFALLS]				Page 3		

;; ;;Name ;;	Invert Elev.	Outfa Type	202 11 s	0-05-20-3 Stage/Tab Fime Seri	1604(1e es	01511_10 Тіd Gat	00SCS.inp e e Route To							
HEADWALL OF1 OF2 OF3	98.7 0 0 101.87	FREE FREE FREE FREE		102.17		NO NO NO NO NO								
[STORAGE] ;; ;;Name Infiltration para ;;	ameters	Depth	Depth	Storag Curve		Curve Params					Evap Frac			
1000 CB509-S ROOF-1-S ROOF-2-S TANKS						1.13 0 ROOF1 ROOF2	0 0 0	0 0 222	0 0 0 0		0 0 0 0			
[CONDUITS] ;; Max. ;;Name Flow	Inlet Node		Outlet Node		Len	gth	Manning N	Inlet Offset	c	outlet offset	Ū	Init Flow		
;; c1	св509-5						0.013					0		0
C2	1000		100		25.	6	0.013	99.92	9	9.83		0		0
Pipe_13	100		HEADWALL	-	11.	135	0.013	99.548	9	9.52		0		0
[ORIFICES] ;; ;;Name ;;	Inlet Node		Outlet Node		Ori Typ	fice e	Crest Height	Disch. Coeff.		Flap Gate	Open Time	/clo:	se	
;; CISTERN-O	TANKS		1000		SID	E	99.95	0.61		NO	0			
[WEIRS] ;;	Inlet									•				
;;Name Surcharge Road	Node dWidth R	oadSurf	Node Coeff.	Curve	тур	e	Height	Coeff.		Gate	Con.		Coeff	•
, ,														

W1 YES	TANKS	100	2020-05- 0	-20-	1604015 TRANSV			inp .47	1.6	7	NO	0	0
[OUTLETS] ;;	Inlet	Out	let		Outflo	w	Outle	t		Qcoet	f/		
Flap ;;Name Gate	Node	Nod	e		Height		туре			Q⊤ab⊺	e		Qexpon
;; ROOF1-0 NO	R00F-1-S	 TAN	кs		114		TABUL	AR/HEAD		ROOF-	-1-0		
ROOF2-0 NO	ROOF-2-S	TAN	KS		114		TABUL	AR/HEAD		ROOF	-2-0		
[XSECTIONS] ;;Link	Shape	Geoml		Geo	m2	Geo	m3	Geom4		Barı	rels		
;; C1 C2 Pipe_13 CISTERN-0 W1	CIRCULAR CIRCULAR CIRCULAR CIRCULAR RECT_OPEN	0.25 0.45 0.9 0.075 1		0 0 0 0.5		0 0 0 0 0		0 0 0 0 0 0		1 1 1			
[TRANSECTS]													
NC 0.013 0.013 X1 Overland GR 0.15 0	3 0.013 5 0	0.15 0.15	6.85		85	0.0 0.15	7	0.0	0. 0.1		0.0 7		
;[LE: 0][RE: 7] NC 0.013 0.01; X1 Overland(orig; GR 0.15 0	3 0.013) 4 0	0.15 0.15	6.85 0	0.0		0.0 0.15		0.0	0.	0	0.0		
[LOSSES] ;;Link	Inlet	Outlet	Average		Flap Ga	te	Seepag	eRate					
;; c2	0	0.14	0		NO		0						
[INFLOWS] ;; ;;Node	Parameter	Tim	e Series		Param Type		nits actor	Scale Facto		Baseli Value		aseline attern	
;; 100	FLOW	100	yrHydrogr	aph	FLOW		.0	1		0			
[CURVES] ;;Name	Туре	X-Value	Y-Value		Page S	5							

			2020-05-20-160401
;; BIOSWALE_BA BIOSWALE_BA BIOSWALE_BA		0 0.01 10	0 0.3 0.3
R00F-1-0	Rating	0	0
R00F-1-0		0.025	6.5
R00F-1-0		0.05	13.1
R00F-1-0		0.075	19.6
R00F-1-0		0.1	26.1
R00F-1-0		0.125	32.6
R00F-1-0		0.15	39.2
R00F-2-0	Rating	0	0
R00F-2-0		0.025	4.61
R00F-2-0		0.05	9.22
R00F-2-0		0.075	13.82
R00F-2-0		0.1	18.43
R00F-2-0		0.125	23.04
R00F-2-0		0.15	27.65
ROOF1	Storage	0	0
ROOF1		0.025	105.6
ROOF1		0.05	422.2
ROOF1		0.075	950
ROOF1		0.1	1688.9
ROOF1		0.125	2638.9
ROOF1		0.15	3800
R00F2	Storage	0	0
R00F2		0.025	73.3
R00F2		0.05	293.3
R00F2		0.075	660
R00F2		0.1	1173.3
R00F2		0.125	1833.3
R00F2		0.15	2640
TANK TANK TANK TANK TANK TANK TANK TANK	Storage	0 0.026 0.051 0.077 0.102 0.127 0.153 0.178 0.204 0.229 0.254	560.7 560.7 560.7 559.44 558.18 556.92 555.66 554.4 551.88

2020-05-20-160401511_100scs.inp

TANK TANK <t< th=""><th>0.28 0.305 0.331 0.458 0.432 0.458 0.508 0.534 0.534 0.635 0.661 0.686 0.712 0.796 0.796 0.839 0.889 0.945</th><th>2020-05-20-160401511_100SCS.inp 549.36 546.84 543.06 539.28 534.24 527.94 521.64 514.08 505.26 495.18 483.84 478.8 464.94 478.8 464.94 479.58 403.2 383.04 360.36 347.76 335.16 320.04 304.92 289.8 272.16</th></t<>	0.28 0.305 0.331 0.458 0.432 0.458 0.508 0.534 0.534 0.635 0.661 0.686 0.712 0.796 0.796 0.839 0.889 0.945	2020-05-20-160401511_100SCS.inp 549.36 546.84 543.06 539.28 534.24 527.94 521.64 514.08 505.26 495.18 483.84 478.8 464.94 478.8 464.94 479.58 403.2 383.04 360.36 347.76 335.16 320.04 304.92 289.8 272.16
TANK TANK <t< td=""><td>0.991 1.016 1.041 1.067 1.092 1.118 1.143 1.168 1.194 1.219 1.245 1.27 1.321 1.346 1.372 1.377 1.397 1.422 1.448 1.473</td><td>221.76 211.68 201.6 192.78 185.22 180.18 176.4 172.62 170.1 167.58 165.06 163.8 162.54 162.54 162.54 161.28 161.28 161.28 161.28 161.28</td></t<>	0.991 1.016 1.041 1.067 1.092 1.118 1.143 1.168 1.194 1.219 1.245 1.27 1.321 1.346 1.372 1.377 1.397 1.422 1.448 1.473	221.76 211.68 201.6 192.78 185.22 180.18 176.4 172.62 170.1 167.58 165.06 163.8 162.54 162.54 162.54 161.28 161.28 161.28 161.28 161.28
TANK TANK TANK TANK TANK TANK TANK TANK	1.499 1.524 1.549 1.575 1.6 1.651 1.676 1.702 1.727 1.753 1.778 1.778 1.803 1.829 1.829 1.83 5	2020-05-20-160401511_100SCS.inp 161.28 161.2
<pre>image pate image pate image</pre>	Time tervals 0:00 0:15 0:30 0:45 1:00 1:15 2:30 1:45 2:00 2:15 2:30 2:45 3:30 3:45 4:00 4:15 4:30 5:45 5:30 5:45 6:00 6:15 6:30	Value

002SCS 005SCS 005SCS	6:45 7:00 7:15 7:30 7:45 8:00 8:15 8:30 9:45 10:00 9:45 10:00 10:15 10:30 10:45 11:00 11:45 11:30 11:45 11:30 0:015:00 0:30:00 0:45:00 1:00:00 1:5:00 1:30:00 1:45:00 1:30:00 2:45:00 3:30:00 2:45:00 3:35:00 4:45:00 3:45:00 5:35:00 5:45:00 6:00:00 5:45:00 6:00:00	2020-05-20-160401511_100scs.inp 4450 2532 253
005SCS 010SCS 01	6:15:00 6:30:00 6:45:00 7:00:00 7:15:00 7:30:00 7:45:00 8:00:00 8:15:00 8:45:00 9:00:00 9:15:00 10:15:00 10:45:00 11:15:00 11:30:00 11:45:00 11:30:00 11:45:00 11:30:00 11:5:0	2020-05-20-160401511_1005cs.inp 10.368 4.608 4.608 4.456 3.016 2.016 2.016 2.016 2.016 2.016 2.016 2.016 3.016 3.015 3.0

Appendix C Stormwater Management May 20, 2020

C.3 SAMPLE PCSWMM MODEL OUTPUT (12HR 100YR SCS)

A STORM WATER MA				1511_100	•			
	ANAGEMENT MODEL			5.1.013)			
lement Count ************************************	hments 18 11 7							

aingage Summary			r	ata	Record	ina		
ame			T 	уре	Interv	a] 		
G1 ************************************	ary		I	NTENSITY	15 mi	n.		
**************************************	*** Area	Width 9	%Imperv	%slope	Rain Ga	ge	Outlet	
EXT-1 ROOF_1 ROOF_2 GGPK_1 JGPK_10 JGPK_2 JGPK_2 JGPK_2 JGPK_3 JGPK_4 JGPK_5 JGPK_5 JGPK_6 JGPK_7 JGPK_7 JGPK_8 JGPK_9 JNC-1 JNC-2 JNC-3	$\begin{array}{c} 0.07\\ 0.47\\ 0.34\\ 0.02\\ 0.02\\ 0.10\\ 0.11\\ 0.14\\ 0.04\\ 0.07\\ 0.07\\ 0.02\\ 0.08\\ 0.07\\ 0.54\\ 0.07\\ \end{array}$	95.00 244.00 136.00 30.00 16.00 51.00 50.00 60.00 58.00 31.40 37.00 23.00 41.20 78.00 25.00 122.00	38.57 100.00 100000000	1.5000 1.5000 1.5000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 1.0000 2.0000 1.0000 2.0000 1.0000 2.0000 1.0000 2.0000 1.0000 2.0000 1.0000 2.0000 1.0000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.000000 2.0000000 2.0000000000	RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1 RG1		CB509-S ROOF-1-S ROOF-2-S TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS OF1 OF2 OF3	
	0.05	2020-05- 90.00	-20-16040 21.43				CB509-S	
Node Summary	0.05	90.00	21.43	2.0000	RG1	Evtor		
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Туре	90.00 Inve Ele	21.43 ert ev. D	2.0000 Max. pepth	RG1 Ponded Area	Exter Inflo	nal	
UNC-4 ************ Node Summary ************* Name 		90.00 Inve Ele 	21.43 ert ev. C .40 .00 .00 .87 .92 .56 .00	2.0000 Max.	RG1 Ponded		nal	
**************************************	Type JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE	90.00 Inve E10 99 98 0 0 0 101 99 102 114 114 99 To Node	21.43 ert ev. E .40 .00 .00 .00 .87 .56 .00 .92 .56 .00 .95	2.0000 Max. bepth 2.73 1.72 0.00 0.00 0.00 0.83 4.22 2.23 0.15	RG1 Area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Inflo	nal	
**************************************	Type JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE STORAGE STORAGE	90.00 Inva Ela 99 98 0 0 0 101 102 114 99	21.43 ert ev. C .40 .70 .00 .00 .00 .87 .92 .56 .00 .00 .95 .95 	2.0000 Max. epth 2.73 1.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	RG1 Ponded Area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Inflc Yes	nal W	
************************************	Type JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE	90.00 Inve E10 99 98 0 0 0 101 99 102 114 114 99 102 114 114 99 102 114 114 99 102 114 114 99 102 114 114 99 102 114 114 99 102 114 114 99 102 114 114 99 102 114 114 99 102 114 114 114 99 102 114 114 114 99 102 114 114 114 114 99 102 114 114 114 114 99 102 114 114 114 114 114 99 102 114 114 114 114 114 114 114 11	21.43 ert ev. C .40 .70 .00 .00 .00 .87 .92 .56 .00 .00 .95 .95 	2.0000 Max. hepth 2.73 1.72 0.00 0.00 0.00 0.00 0.00 0.03 4.22 2.23 0.15 0.15 0.15 4.19 ////////////////////////////////////	RG1 Ponded Area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Inflc Yes ngth 21.3 25.6	%Slope Roughness 0.5164 0.0130	
Vame Vame 100 HEADWALL DF1 DF2 DF3 DF4 L000 BS509-S ROOF-1-S ROOF-2-S TANKS AMME Link Summary *********** Vame C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	Type JUNCTION OUTFALL OUTFALL OUTFALL OUTFALL OUTFALL STORAGE	90.00 Inve E10 99 98 0 0 0 101 99 102 114 114 99 102 114 114 99 102 114 114 99 102 114 114 99 102 114 114 99 102 114 114 99 102 114 114 99 102 114 114 99 102 114 114 99 102 114 114 114 99 102 114 114 114 99 102 114 114 114 114 99 102 114 114 114 114 99 102 114 114 114 114 114 99 102 114 114 114 114 114 114 114 11	21.43 ert ev. C .40 .70 .00 .00 .00 .87 .92 .56 .00 .00 .95 .95 	2.0000 Max. hepth 2.73 1.72 0.00 0.00 0.00 0.00 0.00 0.03 4.22 2.23 0.15 0.15 0.15 4.19 ////////////////////////////////////	RG1 Ponded Area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Inflo Yes 21.3 25.6 11.1	<pre>%Slope Roughness %Slope Roughness 0.5164 0.0130 0.3516 0.0130 0.2515 0.0130 0.2515 0.0130</pre>	

Transect O	verland				
Area: Hrad:	0.0196 0.1177 0.2162 0.3152 0.4147 0.5145 0.6148 0.7156 0.8168 0.9184	0.0392 0.1374 0.2360 0.3351 0.4346 0.5346 0.6350 0.7358 0.8371 0.9388	0.0588 0.1571 0.2558 0.3550 0.4546 0.6551 0.7560 0.8574 0.9592	0.0784 0.1768 0.2756 0.3748 0.4745 0.5747 0.6752 0.7762 0.8777 0.9796	$\begin{array}{c} 0.0980\\ 0.1965\\ 0.2954\\ 0.3947\\ 0.4945\\ 0.5947\\ 0.6954\\ 0.7965\\ 0.8980\\ 1.0000 \end{array}$
	0.0208 0.1242 0.2268 0.3285 0.4295 0.5297 0.6291 0.7277 0.8256 0.9228	0.0415 0.1448 0.2472 0.3488 0.4496 0.5496 0.6489 0.7474 0.8451 0.9421	0.0622 0.1653 0.2676 0.3690 0.4697 0.5695 0.6686 0.7670 0.8646 0.9614	0.0829 0.1858 0.2879 0.3892 0.4897 0.5894 0.6884 0.7865 0.8840 0.9807	$\begin{array}{c} 0.1036\\ 0.2063\\ 0.3083\\ 0.4094\\ 0.5097\\ 0.6093\\ 0.7081\\ 0.8061\\ 0.9034\\ 1.0000 \end{array}$
width:	0.9580 0.9623 0.9666 0.9709 0.9751 0.9754 0.9837 0.9880 0.9923 0.9966	0.9589 0.9631 0.9674 0.9717 0.9760 0.9803 0.9846 0.9889 0.9931 0.9974	0.9597 0.9640 0.9683 0.9726 0.9769 0.9851 0.9854 0.9897 0.9940 0.9983	0.9606 0.9649 0.9691 0.9734 0.9777 0.9820 0.9863 0.9906 0.9949 0.9991	0.9614 0.9657 0.9700 0.9743 0.9786 0.9829 0.9871 0.9914 0.9957 1.0000
Transect O Area:	verland(ori	g)			
	0.0196 0.1177 0.2162 0.3152 0.4147 0.5145 0.6148	0.0392 0.1374 0.2360 0.3351 0.4346 0.5346 0.6350	0.0588 0.1571 0.2558 0.3550 0.4546 0.5546 0.6551	0.0784 0.1768 0.2756 0.3748 0.4745 0.5747 0.6752 Page	0.0980 0.1965 0.2954 0.3947 0.4945 0.5947 0.6954 3

Hrad:	0.7156 0.8168 0.9184	0.7358 0.8371 0.9388	2020-0 0.7560 0.8574 0.9592	5-20-160401 0.7762 0.8777 0.9796	511_100scs.rpt 0.7965 0.8980 1.0000
in ad.	0.0208	0.0415	0.0622	0.0829	0.1036
	0.1242	0.1448	0.1653	0.1858	0.2063
	0.2268	0.2472	0.2676	0.2879	0.3083
	0.3285	0.3488	0.3690	0.3892	0.4094
	0.4295	0.4496	0.4697	0.4897	0.5097
	0.5297	0.5496	0.5695	0.5894	0.6093
	0.6291	0.6489	0.6686	0.6884	0.7081
width:	0.7277	0.7474	0.7670	0.7865	0.8061
	0.8256	0.8451	0.8646	0.8840	0.9034
	0.9228	0.9421	0.9614	0.9807	1.0000
	0.9580	0.9589	0.9597	0.9606	0.9614
	0.9623	0.9631	0.9640	0.9649	0.9657
	0.9666	0.9674	0.9683	0.9691	0.9700
	0.9709	0.9717	0.9726	0.9734	0.9743
	0.9751	0.9760	0.9769	0.9777	0.9786
	0.9794	0.9803	0.9811	0.9820	0.9829
	0.9837	0.9846	0.9854	0.9863	0.9871
	0.9880	0.9889	0.9854	0.9906	0.9914
	0.9923	0.9931	0.9940	0.9949	0.9957
	0.9966	0.9974	0.9983	0.9991	1.0000

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Report Time Step	07/23/2009 00:00 77/24/2009 00:00 0.0 00:05:00 00:05:00 1.00 sec NO 8 1	5-20-160401511_10 :00 :00	0SCS.rpt
Runoff Quantity Continuity Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	Volume hectare-m 0.226 0.000 0.050 0.174 0.003 -0.258	Depth mm 95.520 0.000 21.018 73.566 1.183	
Flow Routing Continuity Flow Routing Continuity Dry Weather Inflow Groundwater Inflow RDII Inflow External Inflow External Outflow Flooding Loss Evaporation Loss Exfiltration Loss Initial Stored Volume Continuity Error (%)	Volume hectare-m 0.000 0.174 0.000 0.183 0.353 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.005	Volume 10/6 ltr 0.000 1.738 0.000 0.000 1.828 3.533 0.000 0.000 0.000 0.000 0.000 0.032	
Highest Flow Instability In Highest Flow Instability In All links are stable.		Page 5	

2020-05-20-160401511_100scs.rpt

Routing Time Step Summary	2020-0
Minimum Time Step Average Time Step Maximum Time Step Percent in Steady State Average Iterations per Step Percent Not Converging	1.00 sec 1.00 sec 1.00 sec 0.00 2.00 0.00

subcatchment Runoff Summary

Total Peak	Runoff	Total	Total	Total	Total	Imperv	Perv	Total	
		Precip	Runon	E∨ap	Infil	Runoff	Runoff	Runoff	
Runoff Runoff Subcatchment ltr LPS	f Coeff	mm	mm	mm	mm	mm	mm	mm	10^6
	·								
EXT-1	0 440	95.52	0.00	0.00	52.83	36.25	42.60	42.60	
0.03 22.65 ROOF_1	0.446	95.52	0.00	0.00	0.00	94.20	0.00	94.20	
0.44 166.07 ROOF 2	0.986	95.52	0.00	0.00	0.00	94.26	0.00	94.26	
0.32 118.33	0.987								
UGPK_1 0.02 6.65	0.984	95.52	0.00	0.00	0.00	93.97	0.00	93.97	
UGPK_10		95.52	0.00	0.00	0.00	94.06	0.00	94.06	
0.02 6.27 UGPK 11	0.985	95.52	0.00	0.00	0.00	94.13	0.00	94.13	
0.09 34.21	0.985								
UGPK_2 0.10 38.33	0.986	95.52	0.00	0.00	0.00	94.19	0.00	94.19	
UGPK_3		95.52	0.00	0.00	0.00	94.17	0.00	94.17	
0.09 34.11 UGPK_4	0.986	95.52	0.00	0.00	0.00	94.21	0.00	94.21	
0.13 48.95	0.986								
UGPK_5 0.04 15.03	0.984	95.52	0.00	0.00	0.00	94.01	0.00	94.01	
UGPK_6		95.52	0.00	0.00	0.00	94.21	0.00	94.21	
0.07 25.55	0.986								

			2020-05-2	0-16040151	1_100SCS.rp	t		
UGPK_7		95.52	0.00	0.00	0.00	94.17	0.00	94.17
0.07 25.47	0.986							
UGPK_8	0 004	95.52	0.00	0.00	0.00	93.98	0.00	93.98
0.02 7.11 UGPK 9	0.984	95.52	0.00	0.00	0.00	94.16	0.00	94.16
0.07 26.82	0.986	93.32	0.00	0.00	0.00	94.10	0.00	94.10
UNC-1	0.500	95.52	0.00	0.00	43.11	57.73	51.75	51.75
0.04 24.25	0.542							
UNC-2		95.52	0.00	0.00	68.97	16.18	26.45	26.45
0.14 45.38	0.277							
UNC-3 0.03 23.42	0 401	95.52	0.00	0.00	48.05	48.33	46.94	46.94
0.03 23.42 UNC-4	0.491	95.52	0.00	0.00	58.02	20.15	37.93	37.93
0.02 14.55	0.397	33.32	0.00	0.00	50.02	20.13	57.95	57.95

_____ _____ -----____ _____ _ _ _ _ Average Maximum Maximum Time of Max Depth Depth HGL Occurrence Reported Max Depth Meters Node Meters Meters days hr:min Туре Meters _____ 99.83 98.70 0.00 0.00 102.17 100.17 102.74 114.14 114.14 102.68 100 JUNCTION 0.24 0.43 0.00 0.00 0.00 0.30 0.25 0.18 0.14 0.14 2.73 06:46 $\begin{array}{c} 0.43\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.30\\ 0.25\\ 0.18\\ 0.14\\ 0.14\\ 2.73 \end{array}$ 06:46 00:00 00:00 00:00 00:00 00:00 06:24 06:15 06:19 06:24 OUTFALL OUTFALL OUTFALL HEADWALL $\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.30\\ 0.09\\ 0.00\\ 0.02\\ 0.02\\ 1.19 \end{array}$ HEADWALL OF1 OF2 OF3 OF4 1000 CB509-S ROOF-1-S ROOF-2-S TANKS OUTFALL OUTFALL OUTFALL STORAGE STORAGE STORAGE

***** Node Inflow Summary

***** Node Depth Summary

Node Type	Maximum Lateral Inflow LPS	Maximum Total Inflow LPS	Time of Max Occurrence days hr:min	Lateral Inflow Volume 10^6 ltr	Total Inflow Volume 10^6 ltr	Flow Balance Error Percent
-----------	-------------------------------------	-----------------------------------	--	---	---------------------------------------	-------------------------------------

Page 7

		2020	0-05-20-16	504015:	11_100s	CS.rpt		
100	JUNCTION	136.19	230.08	0	06:46	1.83	3.28	0.009
HEADWALL	OUTFALL	0.00	230.08	0	06:46	0	3.27	0.000
OF1	OUTFALL	24.25	24.25	0	06:15	0.0372	0.0372	0.000
OF2	OUTFALL	45.38	45.38	0	06:15	0.142	0.142	0.000
OF3	OUTFALL	23.42	23.42	0	06:15	0.0329	0.0329	0.000
OF4	OUTFALL	0.00	37.17	0	06:15	0	0.0464	0.000
1000	STORAGE	0.00	101.24	0	06:24	0	1.45	0.015
CB509-S	STORAGE	37.19	37.19	0	06:15	0.0464	0.0464	-0.001
ROOF-1-S	STORAGE	166.07	166.07	0	06:10	0.444	0.444	-0.001
ROOF-2-S	STORAGE	118.33	118.33	0	06:10	0.317	0.317	-0.001
TANKS	STORAGE	268.51	329.46	0	06:15	0.718	1.48	0.001

Node Surcharge Summary

No nodes were surcharged.

**** Node Flooding Summary

No nodes were flooded.

***** Storage Volume Summary

Storage Unit	Average	Avg	Evap	Exfil	Maximum	Max	Time of Max	Maximum
	Volume	Pcnt	Pcnt	Pcnt	Volume	Pcnt	Occurrence	Outflow
	1000 m3	Full	Loss	Loss	1000 m3	Full	days hr:min	LPS
1000	0.000	2	0	0	0.000	6	$\begin{array}{c} 0 & 06:24 \\ 0 & 00:00 \\ 0 & 06:19 \\ 0 & 06:19 \\ 0 & 06:24 \end{array}$	101.24
CB509-S	0.000	0	0	0	0.000	0		37.17
ROOF-1-S	0.011	5	0	0	0.164	85		37.11
ROOF-2-S	0.008	6	0	0	0.117	87		26.41
TANKS	0.265	28	0	0	0.607	65		101.24

Outfall Loading Summary

Outfall Node	Flow Freq Pcnt	20 Avg Flow LPS	20-05-20-1 Max Flow LPS	60401511_100SCS.rpt Total Volume 10^6 ltr
HEADWALL OF1 OF2 OF3 OF4	94.79 12.67 12.05 7.66 6.33	39.99 3.39 13.61 4.97 8.49	230.08 24.25 45.38 23.42 37.17	3.275 0.037 0.142 0.033 0.046
System	26.70	70.45	37.17	3.533

Link Flow Summary

Link	Туре	Maximum Flow LPS	Time of Max Occurrence days hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
C1 C2 Pipe_13 CISTERN-O W1 ROOF1-O ROOF2-O	CONDUIT CONDUIT CONDUIT ORIFICE WEIR DUMMY DUMMY	37.17 101.24 230.08 18.94 82.31 37.11 26.41	$ \begin{smallmatrix} 0 & 06:15 \\ 0 & 06:24 \\ 0 & 06:46 \\ 0 & 06:23 \\ 0 & 06:24 \\ 0 & 06:21 \\ 0 & 06:19 \\ 0 & 06:19 \\ \end{smallmatrix} $	1.07 1.21 1.36	0.87 0.60 0.25	0.67 0.52 0.31 1.00 0.21

***** Flow Classification Summary

Conduit	Adjusted /Actual Length	 Dry								Inlet Ctrl
C1 C2 Pipe_13	1.00	0.04	$\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$	0.00	0.00	0.00	0.00	0.96	0.00	0.00

***** Conduit Surcharge Summary

Page 9

2020-05-20-160401511_100scs.rpt

No conduits were surcharged.

Analysis begun on: Wed May 20 11:35:48 2020 Analysis ended on: Wed May 20 11:35:48 2020 Total elapsed time: < 1 sec

Appendix C Stormwater Management May 20, 2020

C.4 OIL/GRIT SEPARATOR SIZING CALCULATIONS

Detailed Stormceptor Sizing Report – WOS PH2 20 Cedarow Crt

	Project Information & Location						
Project Name	WOS PH2	Project Number	20349				
City	Ottawa	State/ Province	Ontario				
Country	Country Canada		11/4/2019				
Designer Information	Designer Information		ptional)				
Name	thakshika rathnasooriya	Name					
Company	stantec	Company					
Phone # 613-724-4081		Phone #					
Email	thakshika.rathnasooriya@stantec.com	Email					

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	WOS PH2 20 Cedarow Crt
Recommended Stormceptor Model	STC 300
Target TSS Removal (%)	80.0
TSS Removal (%) Provided	80
PSD	Fine Distribution
Rainfall Station	OTTAWA MACDONALD-CARTIER INT'L A

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizi	ng Summary
Stormceptor Model	% TSS Removal Provided
STC 300	80
STC 750	85
STC 1000	85
STC 1500	85
STC 2000	86
STC 3000	87
STC 4000	88
STC 5000	89
STC 6000	90
STC 9000	92
STC 10000	92
STC 14000	94
StormceptorMAX	Custom

Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- · Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

	Rainfall Station						
State/Province	Ontario	Total Number of Rainfall Events	4093				
Rainfall Station Name	OTTAWA MACDONALD- CARTIER INT'L A	Total Rainfall (mm)	20978.1				
Station ID #	6000	Average Annual Rainfall (mm)	567.0				
Coordinates	45°19'N, 75°40'W	Total Evaporation (mm)	982.0				
Elevation (ft)	370	Total Infiltration (mm)	10341.2				
Years of Rainfall Data	37	Total Rainfall that is Runoff (mm)	9654.9				

Notes

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

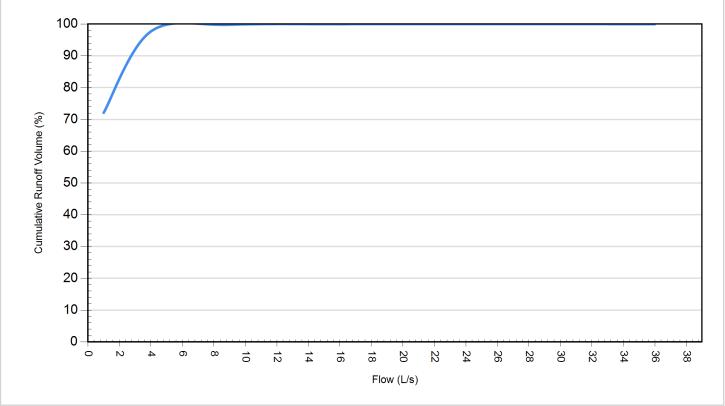
• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

FORTERRA[®]

Drainage Area			Up Str	eam Storage		
Total Area (ha)	1.60	Storage	(ha-m)	Discha	rge (cms))
Imperviousness %	50.60	0.0	00	0.000		
		0.0	30	0.	.007	
		0.0	60	0.	.015	
		0.09	90	0.	.022	
Water Quality Objective	9		Up Stream	n Flow Diversi	on	
TSS Removal (%)	80.0	Max. Flo	w to Stormce	eptor (cms)		
Runoff Volume Capture (%)			Des	ign Details		
Oil Spill Capture Volume (L)		Stormce	otor Inlet Inve	ert Elev (m)		
Peak Conveyed Flow Rate (L/s)	126.00	Stormcep	tor Outlet Inv	vert Elev (m)		
Water Quality Flow Rate (L/s)		Storm	ceptor Rim E	Elev (m)		
		Normal W	ater Level El	evation (m)		
		Pip	pe Diameter (mm)		
		Pipe Material				
		Multiple Inlets (Y/N)			N	lo
		Grate Inlet (Y/N)			N	lo
	Particle Size D	istribution (F	'SD)			
Removing the smallest fraction metals, hydrocarbons and n Distribution (PSD) that w	utrients are captu	red. The table	below identif	ies the Particle S	Size	
		stribution				
Particle Diameter (microns)	Distribut %	ion	Specific Gravity			
20.0	20.0		1.30			
60.0	20.0	1.80		1.80		
150.0	20.0			2.20		
400.0	20.0		2.65			
2000.0	20.0			2.65		

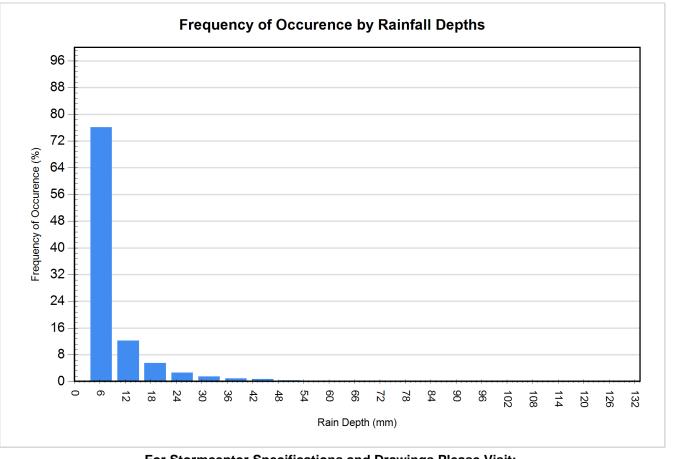
FORTERRA	


Site Name		WOS PH2 20 Cedarow Crt		
	Site I	Details		
Drainage Area		Infiltration Parameters		
Total Area (ha)	1.60	Horton's equation is used to estimate infiltration		
Imperviousness %	50.60	Max. Infiltration Rate (mm/hr) 61.98		
Surface Characteristics	\$	Min. Infiltration Rate (mm/hr) 10.16		
Width (m)	253.00	Decay Rate (1/sec) 0.00055		
Slope %	2	Regeneration Rate (1/sec)0.01		
Impervious Depression Storage (mm)	0.508	Evaporation		
Pervious Depression Storage (mm)	5.08	Daily Evaporation Rate (mm/day)2.54		
Impervious Manning's n	0.015	Dry Weather Flow		
Pervious Manning's n	0.25	Dry Weather Flow (lps) 0		
Maintenance Frequency	y	Winter Months		
Maintenance Frequency (months) >	12	Winter Infiltration 0		
	TSS Loadin	ng Parameters		
TSS Loading Function				
Buildup/Wash-off Parame	eters	TSS Availability Parameters		
Target Event Mean Conc. (EMC) mg/L		Availability Constant A		
Exponential Buildup Power		Availability Factor B		
Exponential Washoff Exponent		Availability Exponent C		
		Min. Particle Size Affected by Availability (micron)		

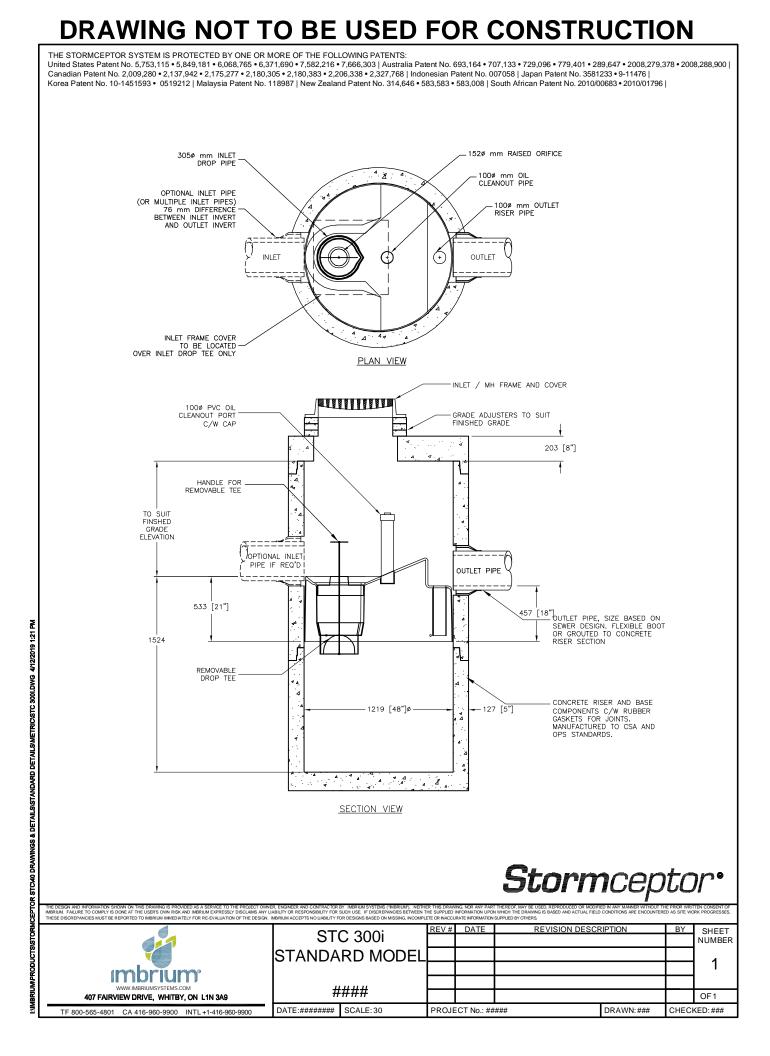
FORTERRA"

Cumulative Runoff Volume by Runoff Rate					
Runoff Rate (L/s)	Runoff Volume (m ³)	Volume Over (m ³)	Cumulative Runoff Volume (%)		
1	111983	43648	72.1		
4	151637	3654	97.7		
9	154907	370	99.8		
16	155201	73	100.0		
25	155273	0	100.0		
36	155273	0	100.0		

Cumulative Runoff Volume by Runoff Rate


For area: 1.60(ha), imperviousness: 50.60%, rainfall station: OTTAWA MACDONALD-CARTIER INT'L A

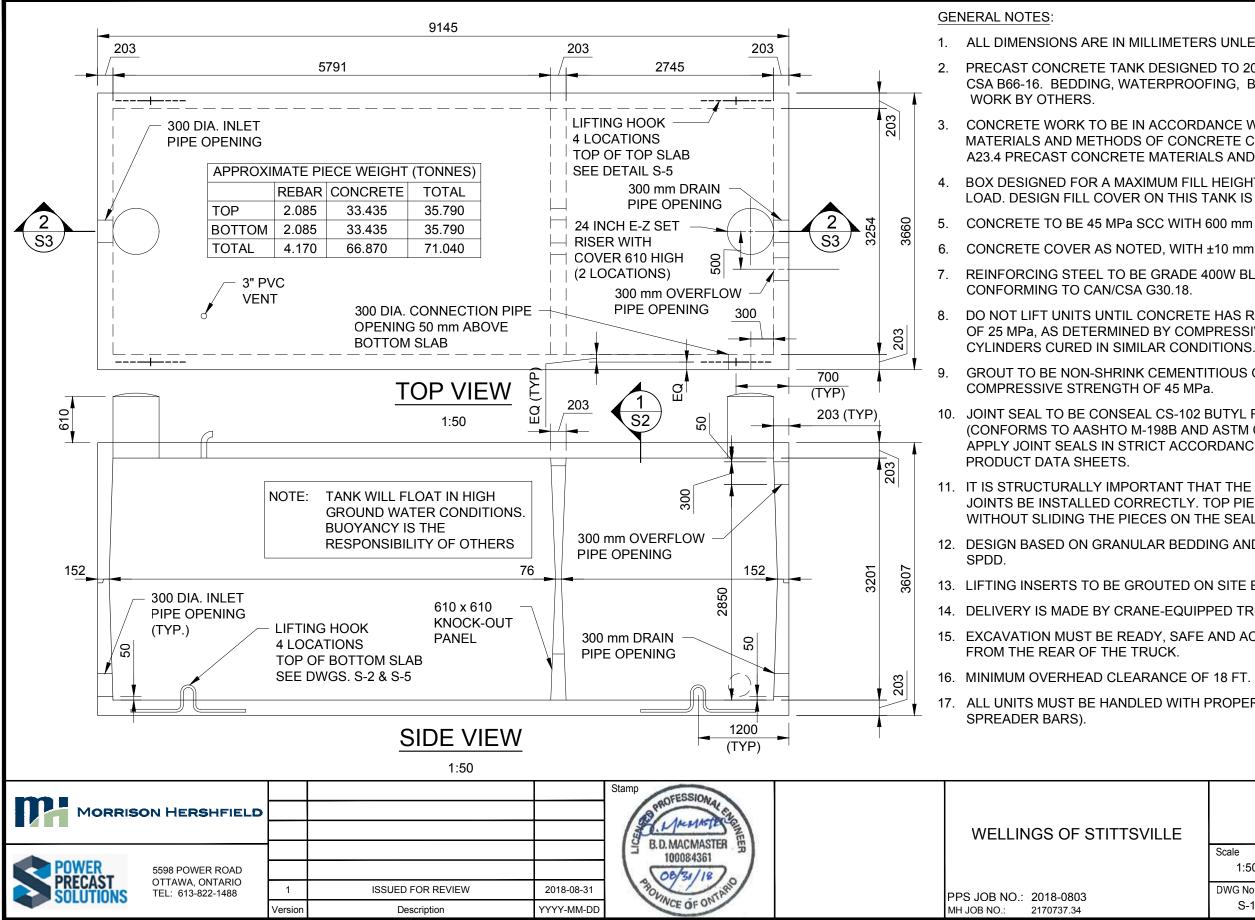
FORTERRA"


Rainfall Event Analysis					
Rainfall Depth (mm)	No. of Events	Percentage of Total Events (%)	Total Volume (mm)	Percentage of Annual Volume (%)	
6.35	3113	76.1	5230	24.9	
12.70	501	12.2	4497	21.4	
19.05	225	5.5	3469	16.5	
25.40	105	2.6	2317	11.0	
31.75	62	1.5	1765	8.4	
38.10	35	0.9	1206	5.8	
44.45	28	0.7	1163	5.5	
50.80	12	0.3	557	2.7	
57.15	7	0.2	378	1.8	
63.50	1	0.0	63	0.3	
69.85	1	0.0	64	0.3	
76.20	1	0.0	76	0.4	
82.55	0	0.0	0	0.0	
88.90	1	0.0	84	0.4	
95.25	0	0.0	0	0.0	
101.60	0	0.0	0	0.0	
107.95	0	0.0	0	0.0	
114.30	1	0.0	109	0.5	
120.65	0	0.0	0	0.0	
127.00	0	0.0	0	0.0	

Stormceptor[®]

• FORTERRA

For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications



SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix C Stormwater Management May 20, 2020

C.5 TANK SPECIFICATIONS

1. ALL DIMENSIONS ARE IN MILLIMETERS UNLESS NOTED OTHERWISE.

PRECAST CONCRETE TANK DESIGNED TO 2012 ONTARIO BUILDING CODE CSA B66-16. BEDDING, WATERPROOFING, BACKFILL, AND ALL OTHER SITE

CONCRETE WORK TO BE IN ACCORDANCE WITH CAN/CSA A23.1 CONCRETE MATERIALS AND METHODS OF CONCRETE CONSTRUCTION, AND CAN/CSA A23.4 PRECAST CONCRETE MATERIALS AND CONSTRUCTION.

BOX DESIGNED FOR A MAXIMUM FILL HEIGHT OF 760 mm WITH 12 kPa LIVE LOAD. DESIGN FILL COVER ON THIS TANK IS 610 mm.

CONCRETE TO BE 45 MPa SCC WITH 600 mm ±70 mm SLUMP.

CONCRETE COVER AS NOTED. WITH ±10 mm TOLERANCE.

REINFORCING STEEL TO BE GRADE 400W BLACK DEFORMED BARS

DO NOT LIFT UNITS UNTIL CONCRETE HAS REACHED A MINIMUM STRENGTH OF 25 MPa, AS DETERMINED BY COMPRESSIVE TESTING OF CONCRETE

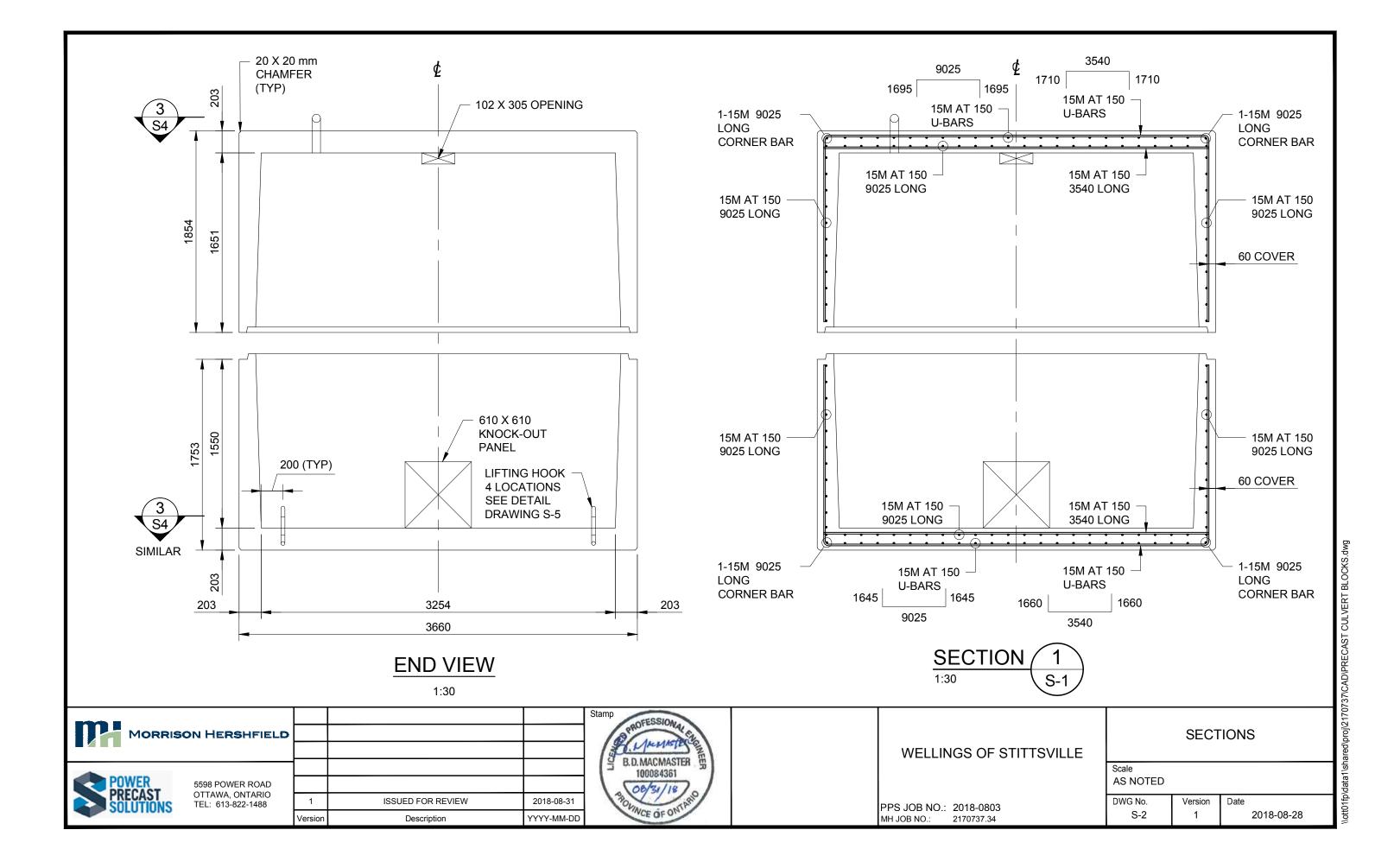
GROUT TO BE NON-SHRINK CEMENTITIOUS GROUT WITH MINIMUM

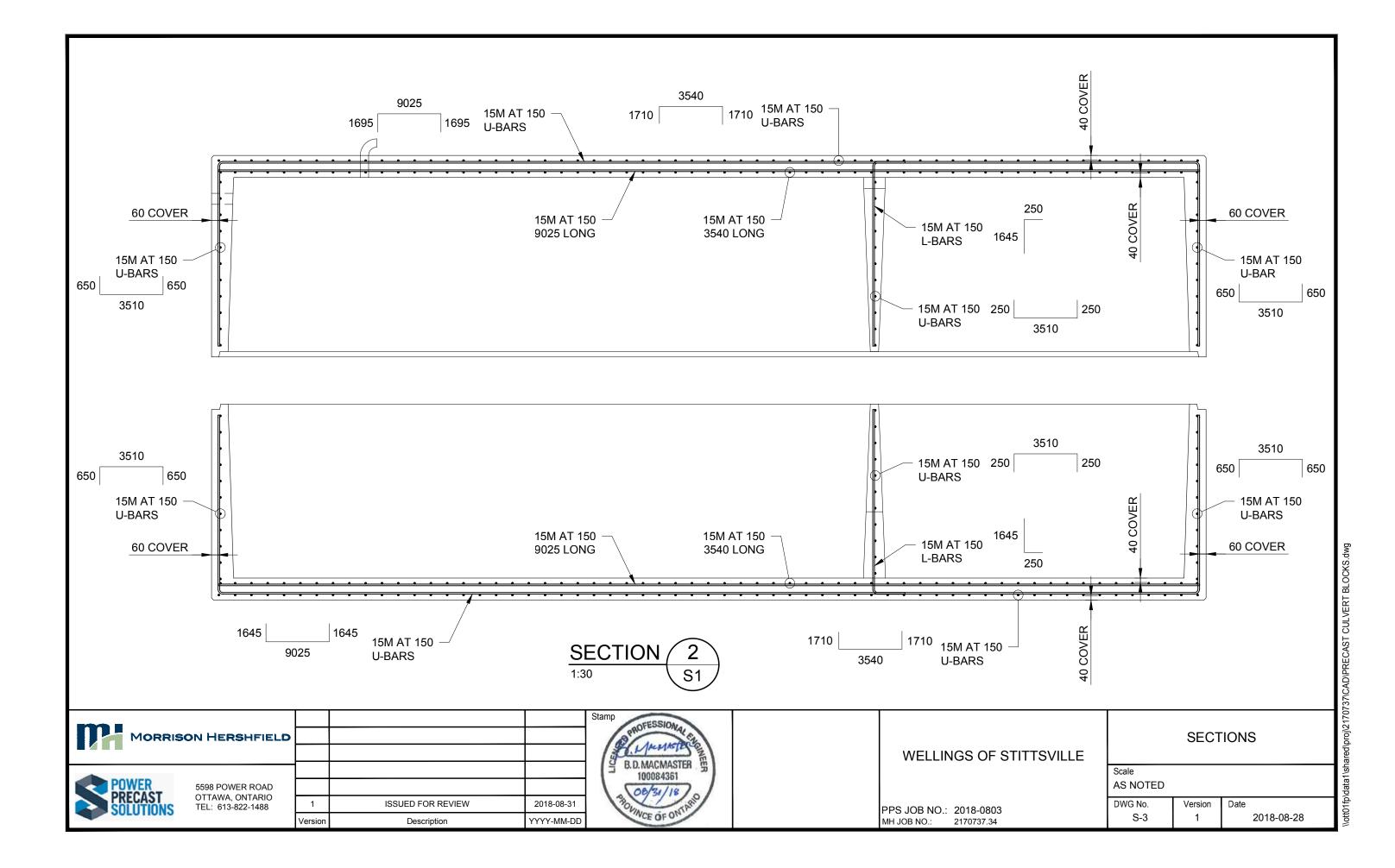
10. JOINT SEAL TO BE CONSEAL CS-102 BUTYL RUBBER SEALANT (CONFORMS TO AASHTO M-198B AND ASTM C-990-91). STORE, HANDLE AND APPLY JOINT SEALS IN STRICT ACCORDANCE WITH MANUFACTURER

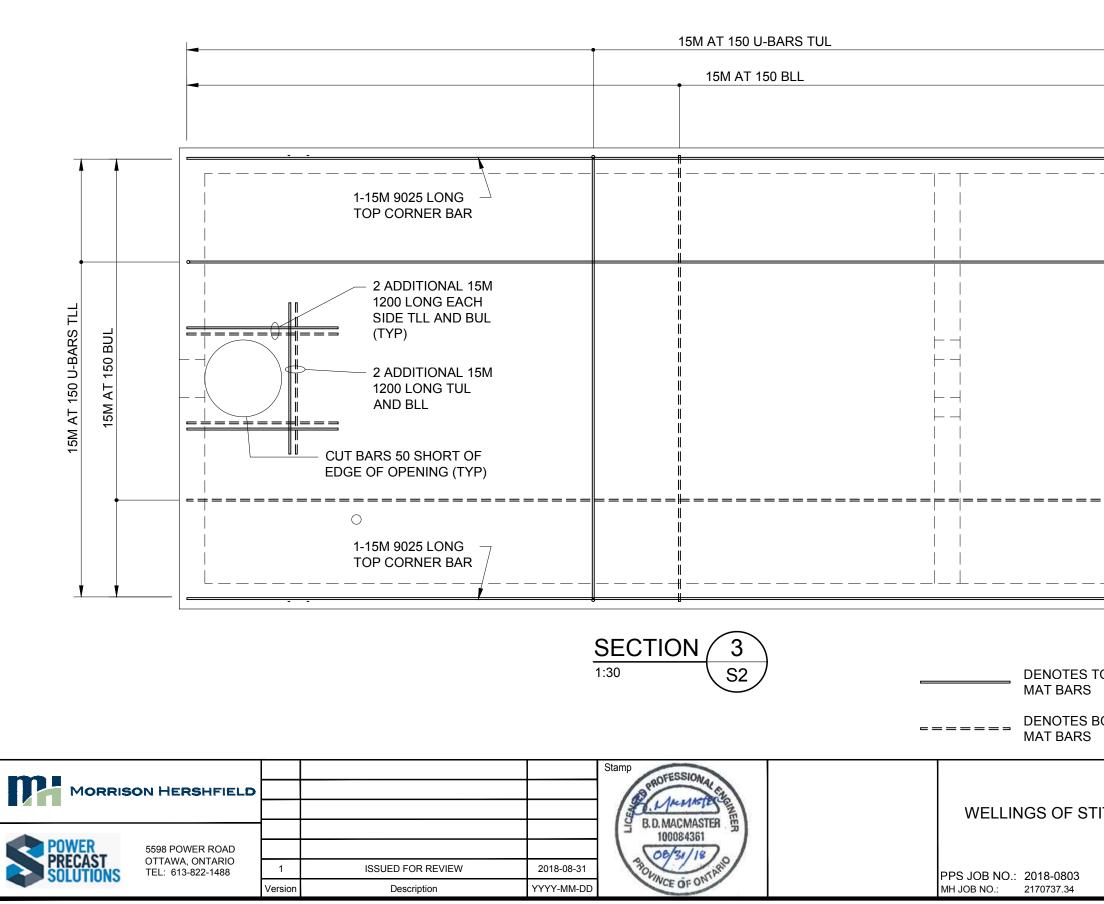
11. IT IS STRUCTURALLY IMPORTANT THAT THE SEALS IN THE HORIZONTAL JOINTS BE INSTALLED CORRECTLY. TOP PIECES MUST BE INSTALLED WITHOUT SLIDING THE PIECES ON THE SEALS.

12. DESIGN BASED ON GRANULAR BEDDING AND BACKFILL COMPACTED TO 95%

13. LIFTING INSERTS TO BE GROUTED ON SITE BY OTHERS.

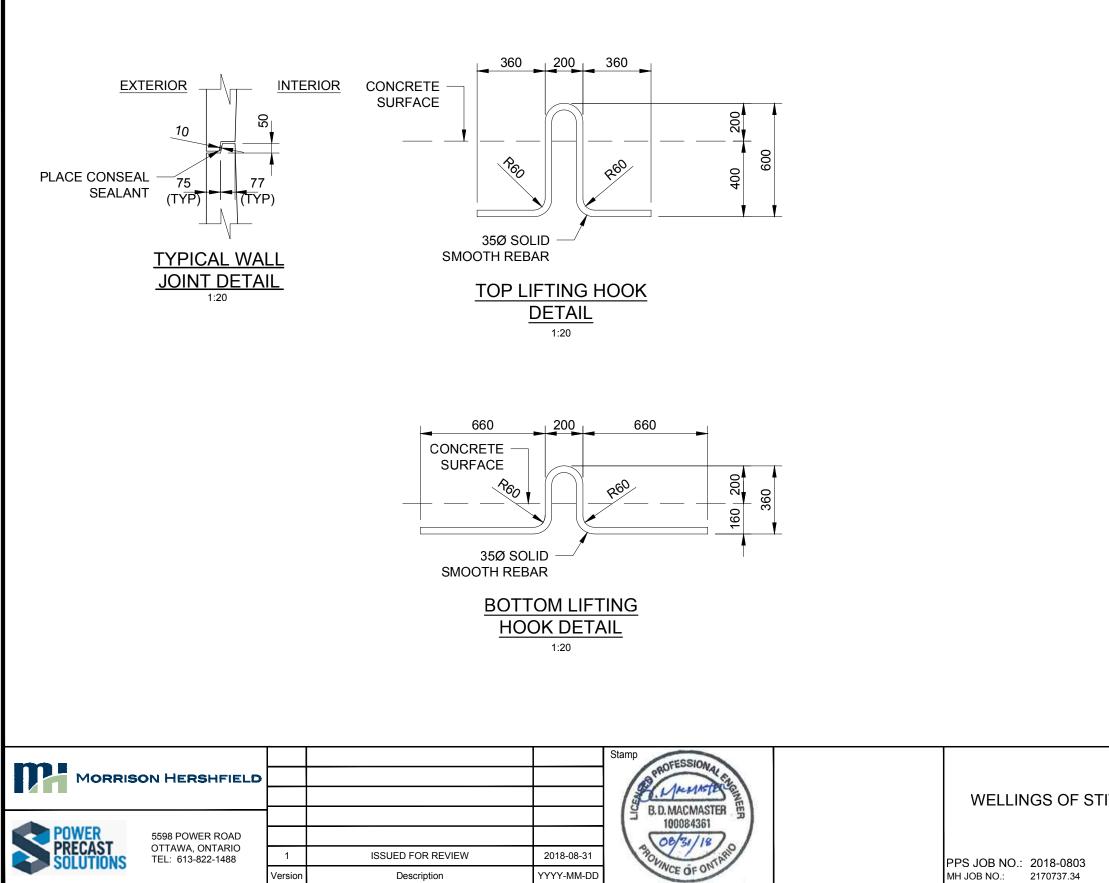

14. DELIVERY IS MADE BY CRANE-EQUIPPED TRUCKS.


15. EXCAVATION MUST BE READY, SAFE AND ACCESSIBLE FOR UNLOADING


16. MINIMUM OVERHEAD CLEARANCE OF 18 FT. IS REQUIRED.

17. ALL UNITS MUST BE HANDLED WITH PROPER LIFTING EQUIPMENT (i.e.

TTSVILLE	TANK DIMENSIONS		
	Scale 1:50		
	DWG No.	Version	Date
	S-1	1	2018-08-28



	· — Ţ — Ţ		
LEGEN	ID		
	TLL BUL	TOP LOV BOTTOM	YER LAYER VER LAYER UPPER LAYER LOWER LAYER
ITTSVILLE	Scale	SECT	IONS
	AS NOTED DWG No. S-4	Version 1	Date 2018-08-28

Nott01fpIdata1lshared\proj\2170737\CAD\PRECAST CULVERT BLOCKS.dwg

TTSVILLE	DETAILS			
	Scale AS NOTED			\\ott01fp\data1\shared\proj\2170
	DWG No. S-5	Version 1	Date 2018-08-28	\\ott01fp

SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix D Geotechnical Investigation May 20, 2020

Appendix D GEOTECHNICAL INVESTIGATION

patersongroup

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Geotechnical Investigation

Proposed Mixed-Use Development Wellings of Stittsville - Phase 2 20 Cedarow Court Ottawa, Ontario

Prepared For

Nautical Lands Group

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca March 7, 2019

Report PG4772-1

Table of Contents

1.0	Pag Introduction	-
2.0	Proposed Project	1
3.0	Method of Investigation3.1Field Investigation3.2Field Survey3.3Laboratory Testing3.4Analytical Testing	3 3
4.0	Observations4.1Surface Conditions4.2Subsurface Profile4.3Groundwater	4
5.0	Discussion5.1Geotechnical Assessment.5.2Site Grading and Preparation5.3Foundation Design5.4Design for Earthquakes.5.5Basement Slab5.6Basement Wall5.7Pavement Structure.	5 8 10 11
6.0	Design and Construction Precautions6.1Foundation Drainage and Backfill6.2Protection of Footings Against Frost Action6.3Excavation Side Slopes6.4Pipe Bedding and Backfill6.5Groundwater Control6.6Winter Construction6.7Corrosion Potential and Sulphate6.8Limit of Hazard Lands6.9Landscaping Considerations	15 15 17 18 18 19
7.0 8.0	Recommendations	

Geotechnical Investigation Proposed Mixed-Use Development 20 Cedarow Court - Ottawa

Appendices

Appendix 1	Soil Profile and Test Data Sheets Symbols and Terms Analytical Testing Results
Appendix 2	Figure 1 - Key Plan Figures 2 to 4 - Slope Stability Analysis Sections Drawing PG4772-1 - Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Nautical Lands Group to conduct a geotechnical investigation for the proposed mixed-use development to be located at 20 Cedarow Court in the City of Ottawa, Ontario (refer to Figure 1 - Key Plan in Appendix 2).

The objectives of the current investigation were to:

- Determine the subsurface conditions by means of boreholes.
- □ Provide geotechnical recommendations for the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project. This report contains geotechnical findings and includes recommendations pertaining to the design and construction of the proposed development as understood at the time of writing this report.

2.0 Proposed Development

Based on the available drawings, it is our understanding that the proposed development will consist of four, five (5) storey mixed-use buildings with a shared underground parking level occupying the majority of the footprint of the subject site. The buildings are understood to include retail, office space and residential units. A one (1) storey restaurant building is also proposed within the centre of the site. At-grade parking areas, access lanes and landscaped areas are also anticipated a part of the development. It is anticipated that the proposed development will be municipally serviced.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

The field program for the current investigation was carried out from January 14, 2019 to January 18, 2019. At that time, 29 boreholes were drilled to a maximum depth of 4 m below existing grade. The borehole locations were distributed in a manner to provide general coverage of the proposed development. The locations of the boreholes are shown on Drawing PG4772-1 - Test Hole Location Plan included in Appendix 2.

The boreholes were drilled using a track-mounted auger drill rig operated by a two-person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel with the direction of a senior engineer. The drilling procedure consisted of augering to the required depths at the selected locations, sampling and testing the overburden.

Sampling and In Situ Testing

Soil samples were recovered from a 50 mm diameter split-spoon or the auger flights. The split-spoon and auger samples were classified on site and placed in sealed plastic bags. All samples were transported to our laboratory. The depths at which the split-spoon and auger samples were recovered from the boreholes are presented as SS and AU, respectively, on the Soil Profile and Test Data sheets.

Standard Penetration Tests (SPT) were conducted and recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sample 300 mm into the soil after the initial penetration of 150 mm using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength tests were conducted in cohesive soils with a field vane apparatus.

The subsurface conditions observed in the boreholes were recorded in detail in the field. The soil profiles are presented on the Soil Profile and Test Data sheets in Appendix 1.

Groundwater

Flexible polyethylene standpipes were installed in the majority of the boreholes to permit groundwater results subsequent to the sampling program completion. Monitoring wells were installed in BH 4, BH 9, BH 15, BH 22, and BH 27 to provide general site coverage as part of our hydrogeological study. The groundwater observations are discussed in Subsection 4.3 and presented in the Soil Profile and Test Data Sheets in Appendix 1.

Sample Storage

All samples will be stored in the laboratory for a period of one month after issuance of this report at which time the samples will be discarded unless otherwise directed.

3.2 Field Survey

The borehole locations were selected by Paterson taking in consideration site features. The ground surface at the test pit locations was located and surveyed by Annis, O'Sullivan, Vollebekk LTD. It is understood that the ground surface elevations at the borehole locations were referenced to a geodetic datum. The locations and ground surface elevation at the boreholes are presented on Drawing PG4772-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil samples recovered from the subject site were visually examined in our laboratory to review the field logs. All samples will be stored in the laboratory for a period of one month after the issuance of this report. They will then be discarded unless we are otherwise directed.

3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the potential for exposed ferrous metals and the sulphate potential against subsurface concrete structures. The results are discussed further in Subsection 6.7.

4.0 Observations

4.1 Surface Conditions

The subject site is currently undeveloped and grass covered with a tree-line located along the west boundary line of Cedarow Court. The ground surface across the site is relatively flat and approximately 1 m lower than adjacent properties and Hazeldean Road. Poole Creek ravine runs along the western border of the subject site approximately 3 m below the subject site.

The subject site is bordered by an active construction site for Phase 1 of the Wellings of Stittsville development along the north, Hazeldean Road along the east, and commercial buildings at the edge of Cedarow Court along the south.

4.2 Subsurface Profile

Overburden

The subsurface profile at the borehole locations consists of topsoil overlying a hard to very stiff silty clay crust followed by a grey, very stiff to stiff silty clay layer. Glacial till was encountered below the silty clay layer consisting of compact silty sand to sandy silt with clay, gravel, cobbles and boulders. A deposit of very stiff to hard clayey silt was encountered below the topsoil in BH 17, BH 18, BH 24, BH 25, BH 26, and BH 27. Practical refusal to augering on inferred bedrock was encountered in all boreholes at depths ranging between 1.6 to 4.0 m. Specific details of the soil profile at each test hole location are presented on the Soil Profile and Test Data sheets provided in Appendix 1.

Bedrock

Based on available geological mapping, the subject site consists of interbedded dolostone and limestone of the Gull River formation and an approximate drift thickness of 2 to 15 m.

4.3 Groundwater

The measured groundwater levels at the borehole locations are presented in Table 1. Groundwater readings recorded in flexible piezometers could be influenced by surface water infiltrating the backfilled boreholes. The long-term groundwater level can also be estimated based on observations of the recovered soil samples, such as the moisture level, soil consistency and colouring. Based on these observations, the long-term groundwater level is anticipated at a depth ranging between 2.5 to 3.5 m below existing grade. Groundwater levels are subject to seasonal fluctuations and could vary at the time of construction.

Proposed Mixed-Use Development 20 Cedarow Court - Ottawa

Test Hole	Ground	Dooording Data		
Number	Elevation (m)	Depth	Elevation	Recording Date
BH 1	104.37	DRY	n/a	January 29, 2019
BH 2	103.59	3.05	100.54	January 29, 2019
BH 3	103.55	1.81	101.74	January 29, 2019
BH 4	103.28	3.05	100.23	January 29, 2019
BH 5	103.45	3.05	100.40	January 29, 2019
BH 6	103.49	3.04	100.45	January 29, 2019
BH 7	103.41	DRY	n/a	January 29, 2019
BH 8	103.46	DRY	n/a	January 29, 2019
BH 9	103.42	3.17	100.25	January 29, 2019
BH 10	103.31	2.18	101.13	January 29, 2019
BH 11	103.44	DRY	n/a	January 29, 2019
BH 12	103.58	DRY	n/a	January 29, 2019
BH 13	103.55	DRY	n/a	January 29, 2019
BH 14	104.18	DRY	n/a	January 29, 2019
BH 15	103.65	2.92	100.73	January 29, 2019
BH 16	103.66	DRY	n/a	January 29, 2019
BH 17	104.19	DRY	n/a	January 29, 2019
BH 18	104.15	DRY	n/a	January 29, 2019
BH 19	103.78	DRY	n/a	January 29, 2019
BH 20	103.59	DRY	n/a	January 29, 2019
BH 21	103.58	DRY	n/a	January 29, 2019
BH 22	103.65	DRY	n/a	January 29, 2019
BH 23	103.87	2.62	101.25	January 29, 2019
BH 24	104.04	2.55	101.49	January 29, 2019
BH 25	104.07	1.68	102.39	January 29, 2019
BH 26	104.30	DRY	n/a	January 29, 2019
BH 27	103.97	DRY	n/a	January 29, 2019
BH 28	103.78	DRY	n/a	January 29, 2019
BH 29	103.71	DRY	n/a	January 29, 2019

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is suitable for the proposed development. The proposed structures will be founded on conventional shallow foundations placed on an undisturbed, hard to very stiff silty clay, compact to dense glacial till and/or clean, surface sounded bedrock bearing surface. Alternatively, conventional shallow footings can be placed over a near vertical, zero entry, concrete in-filled trenches extending to a clean, surface sounded bedrock bearing surface.

Permissible grade raise restriction areas are also required due to the silty clay deposit. A permissible grade raise restriction of **2 m** is recommended for areas where settlement sensitive structures are founded over the silty clay deposit.

Depending on the extent of the underground parking garage and potential grade raise, the bedrock may be encountered during excavation and construction. All contractors should be prepared for bedrock removal within the subject site.

Prior to considering blasting operations, if required, the blasting effects on the existing services, buildings and other structures should be addressed. A pre-blast or preconstruction survey of the existing structures located in proximity of the blasting operations should be carried out prior to commencing site activities. The extent of the survey should be determined by the blasting consultant and should be sufficient to respond to any inquiries/claims related to the blasting operations.

The blasting operations should be planned and conducted under the supervision of a licensed professional engineer who is also an experienced blasting consultant.

The above and other considerations are discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as those containing organic materials, should be stripped from under any buildings, paved areas, pipe bedding, and other settlement sensitive structures.

Bedrock Removal

Bedrock removal can be accomplished by hoe ramming where only small quantity of the bedrock needs to be removed. Sound bedrock may be removed by line drilling and controlled blasting and/or hoe ramming.

Prior to considering blasting operations, the blasting effects on the existing services, buildings and other structures should be addressed. A pre-blast or pre-construction survey of the existing structures located in proximity of the blasting operations should be completed prior to commencing site activities. The extent of the survey should be determined by the blasting consultant and should be sufficient to respond to any inquiries/claims related to the blasting operations.

As a general guideline, peak particle velocities (measured at the structures) should not exceed 25 mm/s during the blasting program to reduce the risks of damage to the existing structures.

The blasting operations should be planned and conducted under the supervision of a licensed professional engineer who is also an experienced blasting consultant.

Excavation side slopes in sound bedrock can be excavated almost vertical side walls. A minimum 1 m horizontal ledge, should remain between the overburden excavation and the bedrock surface. The ledge will provide an area to allow for potential sloughing or a stable base for the overburden shoring system.

Vibration Considerations

Construction operations are the cause of vibrations, and possibly, sources of nuisance to the community. Therefore, means to reduce the vibration levels as much as possible should be incorporated in the construction operations to maintain, as much as possible, a cooperative environment with the residents.

The following construction equipments could be the source of vibrations: hoe ram, compactor, dozer, crane, truck traffic, etc. Vibrations, whether caused by blasting operations or by construction operations, could be the source of detrimental vibrations on the nearby buildings and structures. Therefore, all vibrations are recommended to be limited.

Two parameters are used to determine the permissible vibrations, namely, the maximum peak particle velocity and the frequency. For low frequency vibrations, the maximum allowable peak particle velocity is less than that for high frequency vibrations. As a guideline, the peak particle velocity should be less than 15 mm/s between frequencies of 4 to 12 Hz, and 50 mm/s above a frequency of 40 Hz (interpolate between 12 and 40 Hz). The guidelines are for current construction standards. Considering that these guidelines are above perceptible human level and, in some cases, could be very disturbing to some people, a pre-construction survey is recommended be completed to minimize the risks of claims during or following the construction of the proposed buildings.

Fill Placement

Fill placed for grading beneath the structure(s) or other settlement sensitive areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. This material should be tested and approved prior to delivery to the site. The engineered fill should be placed in maximum 300 mm thick lifts and compacted to 98% of the material's standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil can be placed as general landscaping fill where surface settlement is a minor concern. The backfill materials should be spread in thin lifts and at a minimum compacted by the tracks of the spreading equipment to minimize voids. If the non-specified backfill is to be placed to increase the subgrade level for areas to be paved, the fill should be compacted in maximum 300 mm lifts and compacted to 95% of the material's SPMDD. Non-specified existing fill and site-excavated soils are not suitable for placement as backfill against foundation walls unless a composite drainage blanket connected to a perimeter drainage system is provided.

5.3 Foundation Design

Bearing Resistance Values (Shallow Foundation)

Footings for the proposed buildings can be designed with the following bearing resistance values presented in Table 2.

Table 2 - Bearing Resistance Values				
Bearing Surface	Bearing Resistance Value at SLS (kPa)	Factored Bearing Resistance Value at ULS (kPa)		
Very stiff to hard silty clay	150	250		
Compact to dense glacial till	200	300		
Lean Concrete In-filled Trenches	-	1,500		
Clean, Surface Sounded Limestone - 1,500				
 Note: Strip footings, up to 3 m wide, and pad footings, up to 8 m wide, placed over an undisturbed, silty clay bearing surface can be designed using the abovenoted bearing resistance values. A geotechnical resistance factor of 0.5 was applied to the above noted bearing resistance value at ULS. 				

The above-noted bearing resistance values at SLS for soil bearing surfaces will be subjected to potential post-construction total and differential settlements of 25 and 20 mm, respectively. Footings bearing on an acceptable bedrock bearing surface and designed for the bearing resistance values provided herein will be subjected to negligible potential post-construction total and differential settlements.

The bearing resistance values are provided on the assumption that the footings are placed on undisturbed soil bearing surfaces. An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

A clean, surface-sounded bedrock bearing surface should be free of loose materials, and have no near surface seams, voids, fissures or open joints which can be detected from surface sounding with a rock hammer.

Lean Concrete Filled Trenches

Where bedrock is encountered below the design underside of footing elevation, consideration should be given to excavating vertical trenches to expose the underlying bedrock surface and backfilling with lean concrete (**15 MPa** 28-day compressive strength). Typically, the excavation sidewalls will be used as the form to support the concrete. The additional width of the concrete poured against an undisturbed trench sidewall will suffice in providing a direct transfer of the footing load to the underlying bedrock.

The effectiveness of this operation will depend on the ability of maintaining vertical trenches until the lean concrete can be poured. It is suggested that once the bottom of the excavation is exposed, an assessment should be completed to determine the water infiltration and stability of the excavation sidewalls extending to the bedrock surface.

The trench excavation should be at least 300 mm wider than all sides of the footing at the base of the excavation. The excavation bottom should be relatively clean using the hydraulic shovel only (workers will not be permitted in the excavation below a 1.5 m depth). Once approved by the geotechnical engineer, lean concrete can be poured up to the proposed founding elevation.

Bedrock/Soil Transition

Where a building is founded partly on bedrock and partly on soil, it is recommended to decrease the soil bearing resistance value by 25% for the footings placed on soil bearing media to reduce the potential long term total and differential settlements. Also, at the soil/bedrock and bedrock/soil transitions, it is recommended that the upper 0.5 m of the bedrock be removed for a minimum length of 2 m (on the bedrock side) and replaced with nominally compacted OPSS Granular A or Granular B Type II material. The width of the sub-excavation should be at least the proposed footing width plus 0.5 m. Steel reinforcement, extending at least 3 m on both sides of the 2 m long transition, should be placed in the top part of the footings and foundation walls.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to an engineered fill, stiff silty clay or glacial till above the groundwater table when a plane extending horizontally and vertically from the underside of the footing at a minimum of 1.5H:1V passing through in situ soil of the same or higher bearing capacity as the bearing medium soil.

Permissible Grade Raise Restriction

Based on the current borehole information, a **permissible grade raise restriction of 2 m** is recommended for the proposed buildings and settlement sensitive structures where founded over a silty clay deposit. A post-development groundwater lowering of 0.5 m was assumed for our calculations.

5.4 Design for Earthquakes

The site class for seismic site response can be taken as **Class C** for the foundations considered at this site. However, a higher site class, such as Class A or B can be provided if a site specific shear wave velocity test is completed to confirm the seismic site classification. The soils underlying the subject site are not susceptible to liquefaction. Refer to the latest revision of the Ontario Building Code for a full discussion of the earthquake design requirements.

5.5 Basement Slab

The basement area for the proposed project will be mostly parking and the recommended pavement structure noted in Subsection 5.7 will be applicable. However, if storage or other uses of the lower level where a concrete floor slab will be constructed, the upper 200 mm of sub-slab fill is recommended to consist of 19 mm clear crushed stone. The upper 200 mm of sub-slab fill is recommended to consist of OPSS Granular A crushed stone for slab on grade construction. All backfill material within the footprint of the proposed building(s) should be placed in maximum 300 mm thick loose layers and compacted to a minimum of 98% of the SPMDD.

Any soft areas should be removed and backfilled with appropriate backfill material prior to placing any fill. OPSS Granular A or Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab. All backfill material within the footprint of the proposed building(s) should be placed in maximum 300 mm thick loose layers and compacted to a minimum of 98% of the SPMDD.

A subfloor drainage system, consisting of lines of perforated drainage pipe subdrains connected to a positive outlet, should be provided in the clear stone under the lower basement floor (discussed in Subsection 6.1).

5.6 Basement Wall

There are several combinations of backfill materials and retained soils that could be applicable for the proposed structure's basement walls. However, the conditions can be well-represented by assuming the retained soil consists of a material with an angle of internal friction of 30 degrees and a dry unit weight of 20 kN/m³.

The foundation wall is anticipated to be provided with a perimeter drainage system; therefore, the retained soils should be considered drained. For the undrained conditions, the applicable effective unit weight of the retained soil can be designed with13 kN/m³. A hydrostatic pressure should be added to the total static earth pressure when calculating the effective unit weight. The total earth pressure (P_{AE}) includes both the static earth pressure component (P_o) and the seismic component (ΔP_{AE}).

Two distinct conditions, static and seismic, should be reviewed for design calculations. The parameters for design calculations for the two conditions are presented below.

Static Conditions

The static horizontal earth pressure (p_o) could be calculated with a triangular earth pressure distribution equal to $K_o \cdot \gamma \cdot H$ where:

- K_{o} = at-rest earth pressure coefficient of the applicable retained soil, 0.5
- γ = unit weight of fill of the applicable retained soil (kN/m³)
- H = height of the wall (m)

An additional pressure with a magnitude equal to $K_0 \cdot q$ and acting on the entire height of the wall should be added to the above formula for any surcharge loading, q (kPa), that may be placed at ground surface adjacent to the wall. The surcharge pressure should only be applicable for static analyses and not be calculated in conjunction with the seismic loading case. Actual earth pressures could be higher than the "at-rest" case if care is not exercised during the compaction of the backfill materials to maintain a minimum separation of 0.3 m from the walls with the compaction equipment.

Seismic Conditions

The total seismic force (P_{AE}) includes both the earth force component (P_o) and the seismic component (ΔP_{AE}) .

The seismic earth force (ΔP_{AE}) could be calculated using 0.375 $\cdot a_c \cdot \gamma \cdot H^2/g$ where:

 $a_c = (1.45 - a_{max}/g)a_{max}$ $\gamma = unit weight of fill of the applicable retained soil (kN/m³)$ H = height of the wall (m)g = gravity, 9.81 m/s²

The peak ground acceleration, (a_{max}) , for the Ottawa area is 0.32g according to OBC 2012. The vertical seismic coefficient is assumed to be zero. The earth force component (P_o) under seismic conditions could be calculated using P_o = 0.5 K_o γ H², where K_o = 0.5 for the soil conditions presented above.

The total earth force (P_{AE}) is considered to act at a height, h (m), from the base of the wall, where:

 $h = \{P_{o} \cdot (H/3) + \Delta P_{AE} \cdot (0.6 \cdot H)\} / P_{AE}$

The earth forces calculated are unfactored. For the ULS case, the earth loads should be factored as live loads, as per OBC 2012.

5.7 Pavement Structure

For design purposes, the pavement structure presented in the following tables could be used for the design of car only parking areas and access lanes, if required.

Table 3 - Recommended Flexible Pavement Structure - At-Grade Parking Areas		
Thickness (mm)	Material Description	
50	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete	
150	BASE - OPSS Granular A Crushed Stone	
300	SUBBASE - OPSS Granular B Type II	
	SUBGRADE - In situ soil, or OPSS Granular B Type I or II material placed over in situ soil	

	Table 4 - Recommended Flexible Pavement Structure - Access Lanes and Heavy Truck Parking Areas		
Thickness (mm)	Material Description		
40	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete		
50	Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete		
150	BASE - OPSS Granular A Crushed Stone		
450	SUBBASE - OPSS Granular B Type II		
	SUBGRADE - In situ soil, or OPSS Granular B Type I or II material placed over in situ soil		

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be sub-excavated and replaced with OPSS Granular B Type II material.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 98% of the SPMDD.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

Foundation Drainage

A perimeter foundation drainage system is recommended to be provided for the proposed structures. The composite drainage system (such as Miradrain G100N, Delta Drain 6000 or an approved equivalent) is recommended to extend to the footing level. Sleeves, 150 mm diameter, at 3 m centres are recommended to be placed in the footing or at the foundation wall/footing interface for blind sided pours to allow the infiltration of water to flow to the interior perimeter drainage pipe. The perimeter drainage pipe and underfloor drainage system should direct water to sump pit(s) within the lower basement area.

Underfloor Drainage

Underfloor drainage is recommend to control water infiltration for the proposed structures. For design purposes, Paterson recommends 150 mm diameter PVC, corrugated, perforated pipes be placed at 3 to 6 m centres. The spacing of the underfloor drainage system should be confirmed at the time of completing the excavation when water infiltration can be better assessed.

Adverse Effects of Dewatering on Adjacent Properties

Due to the low permeability of the subsoils profile, any minor dewatering will be considered relatively minor due to the proposed building. Therefore, adverse effects to the surrounding buildings or properties are not expected with respect to any groundwater lowering.

Foundation Backfill

Backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls where frost heave sensitive structures, such as a concrete sidewalk, will be placed. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material may be used for this purpose. A composite drainage system, such as Delta Drain 6000, Miradrain G100 or an approved equivalent, should be placed against the foundation wall to promote drainage toward the perimeter drainage pipe.

6.2 Protection of Footings Against Frost Action

Perimeter footings of heated structures are recommended to be protected against the deleterious effects of frost action. A minimum of 1.5 m of soil cover alone, or a combination of soil cover and foundation insulation should be provided.

Exterior unheated footings, such as isolated exterior piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure proper and require additional protection, such as soil cover of 2.1 m or a combination of soil cover and foundation insulation.

The parking garage should not require protection against frost action due to the founding depth. Unheated structures, such as the access ramp wall footings, may be required to be insulated against the deleterious effect of frost action. A minimum of 2.1 m of soil cover alone, or a minimum of 0.6 m of soil cover, in conjunction with foundation insulation, should be provided.

6.3 Excavation Side Slopes

Temporary Side Slopes

The temporary excavation side slopes should either be excavated to acceptable slopes or retained by shoring systems from the beginning of the excavation until the structure is backfilled.

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be excavated at 1H:1V or shallower. The shallower slope is required for excavation below groundwater level. The subsurface soil is considered to be mainly Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should maintain safe working distance from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

A trench box is recommended to be installed at all times to protect personnel working in trenches with steep or vertical sides. Services are expected to be installed by "cut and cover" methods and excavations should not be remain exposed for extended periods of time.

Temporary Shoring

Temporary shoring may be required for the overburden soil to complete the required excavations where insufficient room is available for open cut methods. The shoring requirements designed by a structural engineer specializing in those works will depend on the excavation depths, the proximity of the adjacent structures and the elevation of the adjacent building foundations and underground services. The design and implementation of these temporary systems will be the responsibility of the excavation contractor and their design team. Inspections and approval of the temporary system will also be the responsibility of the designer. Geotechnical information provided below is to assist the designer in completing a suitable and safe shoring system. The designer should take into account the impact of a significant precipitation event and designate design measures to ensure that a precipitation will not negatively impact the shoring system or soils supported by the system. Any changes to the approved shoring design system should be reported immediately to the owner's structural designer prior to implementation.

The temporary system could consist of soldier pile and lagging system or interlocking steel sheet piling. Any additional loading due to street traffic, construction equipment, adjacent structures and facilities, etc., should be included to the earth pressures described below. These systems could be cantilevered, anchored or braced. Generally, it is expected that the shoring systems will be provided with tie-back rock anchors to ensure their stability. The shoring system is recommended to be adequately supported to resist toe failure and inspected to ensure that the sheet piles extend well below the excavation base. It should be noted if consideration is being given to utilizing a raker style support for the shoring system that lateral movements can occur and the structural engineer should ensure that the design selected minimizes these movements to tolerable levels.

Table 6 - Soil Parameters		
Parameters	Values	
Active Earth Pressure Coefficient (K _a)	0.33	
Passive Earth Pressure Coefficient (K _p)	3	
At-Rest Earth Pressure Coefficient (K_o)	0.5	
Dry Unit Weight (γ), kN/m ³	20	
Effective Unit Weight (γ), kN/m ³	13	

The earth pressures acting on the shoring system may be calculated with the following parameters.

The active earth pressure should be calculated where wall movements are permissible while the at-rest pressure should be calculated if no movement is permissible. The dry unit weight should be calculated above the groundwater level while the effective unit weight should be calculated below the groundwater level.

The hydrostatic groundwater pressure should be included to the earth pressure distribution wherever the effective unit weight are calculated for earth pressures. If the groundwater level is lowered, the dry unit weight for the soil/bedrock should be calculated full weight, with no hydrostatic groundwater pressure component.

For design purposes, the minimum factor of safety of 1.5 should be calculated.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications and Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

A minimum of a 150 mm layer of OPSS Granular A crushed stone should be placed for pipe bedding for sewer and water pipes for a soil subgrade. The bedding thickness should be increased to 300 mm for areas where the subgrade consists of bedrock. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to at least 300 mm above the obvert of the pipe should consist of OPSS Granular A. The bedding and cover materials should be placed in maximum 300 mm thick lifts compacted to a minimum of 95% of the SPMDD.

The site excavated material may be placed above cover material if the excavation operations are completed in dry weather conditions and the site excavated material is approved by the geotechnical consultant. All cobbles greater than 200 mm in the longest dimension should be removed prior to the site materials being reused.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to reduce differential frost heaving. The trench backfill should be placed in maximum 225 mm thick loose lifts and compacted to a minimum of 95% of the SPMDD. Within the frost zone (1.8 m below finished grade), non frost susceptible materials should be used when backfilling trenches below the original bedrock level.

Clay seals are recommended for the subject site. The seals should be a minimum of 1.5 m long (in the trench direction) and should extend from trench wall to trench wall. Generally, the seals should extend from the frost line and fully penetrate the bedding, subbedding and cover material. The barriers should consist of relatively dry and compactable brown silty clay placed in maximum 225 mm thick loose layers and compacted to a minimum of 95% of the SPMDD. The clay seals should be placed at the site boundaries, roadway intersections and at a maximum distance of every 50 m in the service trenches.

6.5 Groundwater Control

Groundwater Control for Building Construction

It is anticipated that groundwater infiltration into the excavations should be low and controllable using open sumps. Pumping from open sumps should be sufficient to control the groundwater influx through the sides of shallow excavations. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

A temporary Ministry of the Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MECP.

For typical ground or surface water volumes, being pumped during the construction phase, between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.

6.6 Winter Construction

Precautions must be provided if winter construction is considered for this project. Where excavations are completed in proximity of existing structures which may be adversely affected due to the freezing conditions. In particular, where a shoring system is constructed, the soil behind the shoring system will be subjected to freezing conditions and could result in heaving of the structure(s) placed within or above frozen soil. Provisions in the contract documents should be provided to protect the excavation walls from freezing, if applicable. In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the installation of straw, propane heaters and tarpaulins or other suitable means. The excavation base should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be considered if such activities are to be completed during freezing conditions. Additional information could be provided, if required.

6.7 Corrosion Potential and Sulphate

The results on analytical testing show that the sulphate content is less than 0.1%. The results are indicative that Type 10 Portland Cement (Type GU) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity in indicative of a low to moderate corrosive environment.

6.8 Limit of Hazard Lands

Field Observations

Paterson conducted a site visit on January 13, 2019 to review the slope located along the west boundary of the subject site, assess the current slope conditions and confirm the grades provided in the existing topographic mapping. A section of Poole Creek is located within the west portion of the site and shown in Drawing PG4772-1 - Test Hole Location Plan.

Three (3) slope cross-sections were reviewed in the field as the worst case scenarios. The cross section locations are presented on Drawing PG4772-1 - Test Hole Location Plan in Appendix 2. Generally, the riverbanks along both sides of Poole Creek are currently well vegetated and were observed in an acceptable condition. Poole Creek was observed within a 20 to 40 m wide flood plain. The slope along the east side of Poole Creek ranged in height between 3 and 5 m with an inclination ranging between 2.3H:1V and 3.3H:1V. The upper slope was observed to be well vegetated with little to no signs of active surficial erosion.

Slope Stability Analysis

Limit of Hazard Lands

The slope condition was reviewed based on available topographic mapping along the east side slopes of Poole Creek within the west portion of the subject development. A total of 3 slope cross-sections were assessed as the worst case scenarios. The cross section locations are presented on Drawing PG4772-1 - Test Hole Location Plan in Appendix 2.

A slope stability assessment was carried out to determine the required stable slope allowance setback from the top of slope based on a factor of safety of 1.5. A toe erosion and 6 m erosion access allowances were also included in the determination of limits of hazard lands and are discussed below. The proposed limit of hazard lands (as shown on Drawing PG4772-1 - Test Hole Location Plan) includes:

- a geotechnical slope stability allowance with a factor of safety of 1.5
- a toe erosion allowance
- a 6 m erosion access allowance and top of slope

Slope Stability Analysis

The analysis of the stability of the slope sections was carried out using SLIDE, a computer program which permits a two-dimensional slope stability analysis using several methods including the Bishop's method, which is a widely used and accepted analysis method. The program calculates a factor of safety, which represents the ratio of the forces resisting failure to those favoring failure. Theoretically, a factor of safety of 1.0 represents a condition where the slope is stable. However, due to intrinsic limitations of the calculation methods and the variability of the subsoil and groundwater conditions, a factor of safety greater than one is usually required to ascertain than the risks of failure are acceptable. A minimum factor of safety of 1.5 is generally recommended for conditions where the failure of the slope would endanger permanent structures.

An analysis considering seismic loading was also completed. A horizontal acceleration of 0.16G was considered for the sections for the seismic loading condition. A factor of safety of 1.1 is considered to be satisfactory for stability analyses including seismic loading.

The cross-sections were analysed taking into account a groundwater level at ground surface, which represents a worse-case scenario that can be reasonably expected to occur in cohesive soils. The stability analysis assumes full saturation of the soil with groundwater flow parallel to the slope face. Subsoil conditions at the cross-sections were inferred based on the findings at borehole locations along the top of slope and general knowledge of the area's geology.

Stable Slope Allowance

The results of the stability analysis for static conditions at Sections A through C are presented in Figures 2A to 4A in Appendix 2. All the reviewed slope sections along the subject creek were noted to be shaped to at least a 2.3H:1V. Based on the soil conditions observed and the results of the slope stability analysis, the slope stability factor of safety was calculated to be 1.5 or greater for all the slope sections which indicates that a stable slope allowance is not required for the subject slope.

The results of the analyses including seismic loading are shown in Figures 2B to 4B for the slope sections. The results indicate that the factor of safety for the sections are greater than 1.1.

It should be noted that the existing vegetation on the slope face should not be removed as it contributes to the stability of the slope and reduces erosion. If the existing vegetation needs to be removed, it is recommended that a 100 to 150 mm of topsoil mixed with a hardy seed and/or topped with an erosion control blanket be which can be placed across the exposed slope face.

Toe Erosion and Erosion Access Allowance

The toe erosion allowance for the valley corridor wall slope was based on the cohesive nature of the top layers of the subsoils, the observed current erosional activities and the width and location of the current watercourse. It should be noted that if the flood plain is measured to be greater than 20 m, no toe erosion will be required. Therefore, based on the above factors, no toe erosion allowance is considered for the subject slope.

An erosion access allowance of 6 m is required from the top of slope to ensure access is provided should future maintenance to the slope face is required. The limit of hazard lands, which includes these allowances, is indicated on Drawing PG4772-1 - Test Hole Location Plan in Appendix 2.

6.9 Landscaping Considerations

Tree Planting Restrictions

According to the City of Ottawa Guidelines for tree planting, where a sensitive silty clay deposit is present within the vicinity of the site, tree planting restrictions should be determined. However, for this site, based on the founding medium of the underground parking level which will occupy the majority of the site, tree planting restrictions are not required from a geotechnical perspective.

7.0 Recommendations

A materials testing and observation services program is a requirement for the provided foundation design data to be applicable. The following aspects of the program should be performed by the geotechnical consultant:

- **Q** Review detailed grading plan(s) from a geotechnical perspective.
- □ Review groundwater conditions at the time of construction to determine if waterproofing is required.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials used.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- **G** Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that the construction work has been conducted in general accordance with the above recommendations could be issued, upon request, following the completion of a satisfactory materials testing and observation program by the geotechnical consultant.

8.0 Statement of Limitations

The recommendations provided in the report are in accordance with Paterson's present understanding of the project. Paterson request permission to review the recommendations when the drawings and specifications are completed.

A geotechnical investigation is a limited sampling of a site. Should any conditions encountered during construction differ from the borehole locations, Paterson requests immediate notification to permit reassessment of the recommendations provided herein.

The recommendations provided should only be used by the design professionals associated with this project. The recommendations are not intended for contractors bidding on or constructing the project. The latter should evaluate the factual information provided in the report. The contractor should also determine the suitability and completeness for the intended construction schedule and methods. Additional testing may be required for the contractors purpose.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Nautical Lands Group or their agent(s) is not authorized without review by Paterson for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

Faisal I. Abou-Seido, P.Eng.

Report Distribution:

- Nautical Lands Group (3 copies)
- Paterson Group (1 copy)

David J. Gilbert, P.Eng.

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

ANALYTICAL TESTING RESULTS

patersongr		In	Con	sulting		SOIL	PRO	FILE AI	ND TE	ST DATA	
154 Colonnade Road South, Ottawa, Oni		_		ineers	Pr	otechnic oposed M tawa, Or	/lixed-Us		ment - 20) Cedarow C	t.
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	_				FILE NO.	PG4772	,
REMARKS									HOLE NO)	
BORINGS BY CME 55 Power Auger				DA	TE 2	2019 Jan	uary 14			BH 1	
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)		esist. Bl 0 mm Dia	ows/0.3m a. Cone	er Ion
	STRATA	ТҮРЕ	NUMBER	~ © © © © ©	N VALUE or RQD	()	()	• v	Vater Cor	ntent %	Piezometer Construction
GROUND SURFACE	s N	~	Z	RE	z ⁰	0-	-104.37	20	40 6	50 80	ы С Б С
FILL: Compact brown silty sand, some gravel			1								
		SS	2	38	15	1-	-103.37				
<u>1.52</u>											
		SS	3	42	7	2-	-102.37				
Very stiff, brown SILTY CLAY, trace gravel		ss	4	58	4						
						3-	-101.37		Δ	1	29
<u>3.73</u> End of Borehole											
Practical refusal to augering at 3.73m depth											
(BH dry - Jan 29/19)											
								20 Shea ▲ Undist	ar Streng		⊣ 00

patersongr		ır	Con	sulting		SOIL	- PRO	FILE AI	ND TES	T DATA	
154 Colonnade Road South, Ottawa, On		-		ineers	P	eotechnic roposed M ttawa, Or	/lixed-Us		oment - 20	Cedarow C	t.
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	_				FILE NO.	PG4772	
REMARKS									HOLE NO.		1
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 14			BH 2	
SOIL DESCRIPTION	PLOT .			/IPLE 거	61	DEPTH (m)	ELEV. (m)		tesist. Blo 50 mm Dia.		ter tion
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or ROD				Nater Cont		Piezometer Construction
GROUND SURFACE		XX		<u></u>	4		103.59	20	40 60	80	
FILL: Brown silty sand, some gravel			1								
		ss	2	33	4	1-	- 102.59				
Very stiff to stiff, brown SILTY CLAY						2-	- 101.59		<u></u>		
- grey and trace gravel by 3.0m depth		ss	3		50.		- 100.59				
3.51			3		50+						
Practical refusal to augering at 3.51m depth											
(GWL @ 3.05m depth - Jan 29/19)											
								20 Shea ▲ Undist	40 60 ar Strengtl turbed △		⊣ 00

natersonar						SOIL	PRO		ND TEST DATA			
154 Colonnade Road South, Ottawa, Ont		-		ineers	P	eotechnic roposed M ttawa, Or	/lixed-Us		oment - 20 (Cedarow C	t.	
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	_				FILE NO.	PG4772		
REMARKS									HOLE NO.	BH 3		
BORINGS BY CME 55 Power Auger					TE	2019 Jan	uary 14	Dem D				
SOIL DESCRIPTION	A PLOT			/IPLE 값	Ĕ٥.	DEPTH (m)	ELEV. (m)		Resist. Blov 50 mm Dia.		eter ction	
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	~ RECOVERY	N VALUE or RQD			0 V 20	Nater Conte 40 60	ent % 80	Piezometer Construction	
		×				- 0-	-103.55					
TOPSOIL 0.33		AU	1									
		ss	2	21	7	1-	-102.55					
Very stiff to stiff, brown SILTY CLAY												
		SS	3	62	7	2-	-101.55					
- grey by 2.3m depth												
						3-	-100.55			<u> </u>		
								▲				
End of Borehole <u>3.66</u>												
Practical refusal to augering at 3.66m depth												
(GWL @ 1.81m depth - Jan 29/19)												
									40 60 ar Strength sturbed △ F		[⊣] 00	

patersongr		ın	Con	sulting		SOIL	- PRO	FILE AI		ST DATA	
154 Colonnade Road South, Ottawa, On		-		ineers	Pr	eotechnic oposed M tawa, Or	/lixed-Us		oment - 20	Cedarow C	t.
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	_				FILE NO.	PG4772	,
REMARKS									HOLE NO	<u> </u>	
BORINGS BY CME 55 Power Auger				DA	TE 2	2019 Jan	uary 14			BH 4	
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)		esist. Blo 60 mm Dia		g Well ion
	STRATA	ТҮРЕ	NUMBER	~ © © © © ©	N VALUE or RQD				Vater Con		Monitoring Well Construction
		8		<u>к</u>	4	0-	-103.28	20	40 6	0 80	≥0 ≣≣
TOPSOIL			1								արերիներիներիներիներիներիներիներիներիների
Very stiff, brown SILTY CLAY		ss	2	25	6		- 102.28		4		
- grey by 2.4m depth - trace sand and gravel by 3.0m depth		X SS	3	100	50+		- 101.28 - 100.28			1	59 •
3.18 End of Borehole					00.						
Practical refusal to augering at 3.18m depth (GWL @ 3.05m depth - Jan 29/19)											
								20 Shea ▲ Undis	40 6 ar Strengt turbed △		

patersongr		In	Con	sulting		SOIL	PRO	FILE AI	ND TEST DATA			
154 Colonnade Road South, Ottawa, Ont		-		ineers	Pr	eotechnic oposed M tawa, Or	/lixed-Us		oment - 20 Ce	darow Ct	t.	
DATUM Ground surface elevations	prov	ded b	y Anr	nis, O'S					FILE NO.	PG4772		
REMARKS										BH 5		
BORINGS BY CME 55 Power Auger					TE 2	2019 Jan	uary 14					
SOIL DESCRIPTION	PLOT			NPLE ਮੁ	ы .	DEPTH (m)	ELEV. (m)		esist. Blows 60 mm Dia. C		ter tion	
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	∾ RECOVERY	N VALUE or RQD			0 V 20	Vater Conten 40 60	nt % 80	Piezometer Construction	
TOPSOIL		AU	1			0-	-103.45					
Hard to very stiff, brown SILTY CLAY		SS	2	38	6	1-	-102.45					
- grey by 2.1m depth						2-	- 101.45				39	
3.40						3-	- 100.45	· · · · · · · · · · · · · · · · · · ·			79	
End of Borehole		-										
Practical refusal to augering at 3.40m depth												
(GWL @ 3.05m depth - Jan 29/19)								20 Shea ▲ Undist	40 60 ar Strength (turbed △ Rei		00	

natersonar						SOIL	PRO	FILE AN	ND TEST DA	٩ΤΑ
154 Colonnade Road South, Ottawa, On		-		ineers	Pi	eotechnic roposed M ttawa, Or	/lixed-Us		ment - 20 Cedar	ow Ct.
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	_				FILE NO.	4772
REMARKS										
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 14		BH	5
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)		esist. Blows/0.3 0 mm Dia. Cone	
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or RQD			0 W 20	/ater Content %	
		×				- 0-	103.49			
TOPSOIL		× AU	1							
<u>0.30</u>										
		$\overline{1}$								
		ss	2	58	8	1-	-102.49			
Very stiff, brown SILTY CLAY										
				_						
		SS	3	71	9	2-	-101.49			
- grey by 2.0m depth						2	101.49			
		17								
		ss	4	100	5					
						3-	-100.49			
										249
End of Borehole 3.56										
Practical refusal to augering at 3.56m depth										
(GWL @ 3.04m depth - Jan 29/19)										
									40 60 80 Ir Strength (kPa)
								▲ Undist	urbed $ riangle$ Remoul	ded

patersongr		In	Con	sulting		SOIL	PRO	FILE AND TEST DATA
154 Colonnade Road South, Ottawa, Ont		-		ineers	Pi	eotechnic roposed M ttawa, Or	/lixed-Us	tigation se Development - 20 Cedarow Ct.
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	-			. FILE NO. PG4772
REMARKS								HOLE NO. BH 7
BORINGS BY CME 55 Power Auger					TE	2019 Jan	uary 14	
SOIL DESCRIPTION	PLOT			/IPLE と	E .	DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			50 mm Dia. Cone 50 mm Dia. Cone 0 Water Content % 20 40 60 80
GROUND SURFACE		×		щ			-103.41	
TOPSOIL		AU	1					
Very stiff to hard, brown SILTY		ss	2	58	7	1-	-102.41	
CLAY								
- grey by 1.8m depth		SS	3	92	6	2-	-101.41	
								139
						3-	-100.41	
								209
<u>3.83</u> End of Borehole								
Practical refusal to augering at 3.83m depth								
(BH dry - Jan 29/19)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

patersongr		In	Con	sulting		SOIL	_ PRO	FILE AI	ND TEST	DATA	
154 Colonnade Road South, Ottawa, Ont		_		ineers	P	eotechnic roposed M ttawa, Or	Mixed-Us		ment - 20 Ce	edarow C	t.
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	ulliv	an, Vollet	oekk Ltd.		FILE NO.	PG4772	
REMARKS										BH 8	
BORINGS BY CME 55 Power Auger					TE	2019 Jan	uary 14				
SOIL DESCRIPTION	A PLOT			/IPLE	ы ы	DEPTH (m)	ELEV. (m)		esist. Blows 0 mm Dia. C		eter ction
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE of ROD			0 V 20	Vater Conter 40 60	nt % 80	Piezometer Construction
		XXX					103.46				
TOPSOIL	XX	AU	1								
		滚									
		ss	2	67	7	1-	102.46				
Very stiff, brown SILTY CLAY			2		,						
		1									
		ss	3	92	6						
- grey by 2.0m depth						2-	-101.46				
									Δ	1	89
3.02 End of Borehole						3-	-100.46				
Practical refusal to augering at 3.02m depth											
(BH Dry - Jan 29/19)											
								20 Shea ▲ Undist	40 60 ar Strength (turbed △ Re		00

patersongr		ın	Con	sulting		SOII	_ PRO	FILE AND TEST DATA
154 Colonnade Road South, Ottawa, Ont		-		ineers	P	eotechnic roposed M ttawa, Or	Mixed-Us	tigation Se Development - 20 Cedarow Ct.
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S				FILE NO. PG4772
REMARKS								
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 15	BH 9
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m □ ● 50 mm Dia. Cone ⊃
	STRATA	ТҮРЕ	NUMBER	~ RECOVERY	N VALUE or RQD			Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone ○ Water Content % 20 40 60 80
GROUND SURFACE	02	×	2	RE	z ^o	- 0-	103.42	
TOPSOIL <u>0.38</u>			1					
		ss	2	71	4	1-	-102.42	
Hard to very stiff, brown SILTY CLAY								
						2-	-101.42	139
		ss	3	71	14	3-	-100.42	
3.76	μ <i>Έ</i> λ							
Practical refusal to augering at 3.76m depth (GWL @ 3.17 m depth - Jan 29/19)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

patersongr		In	Con	sulting		SOIL	PRO	FILE AN	ND TEST DATA		
154 Colonnade Road South, Ottawa, Ont		-		ineers	Pr	eotechnic oposed M tawa, Or	/lixed-Us		ment - 20	Cedarow C	t.
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	-				FILE NO.	DC 4770	
REMARKS									HOLE NO	PG4772	
BORINGS BY CME 55 Power Auger				DA	TE 2	2019 Jan	uary 15			BH10	
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia		er ion
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or RQD				Vater Con		Piezometer Construction
GROUND SURFACE		×		<u>д</u>	-	0-	103.31	20	40 60	0 80	
TOPSOIL <u>0.41</u>		AU	1								
Very stiff, brown SILTY CLAY		SS	2	67	9	1-	-102.31				
- grey by 2.1m depth		SS	3	75	6	2-	-101.31	2	y		
GLACIAL TILL: Compact, brown sandy silt, trace clay and gravel, occasional cobbles and boulders		ss	4	83	19	3-	-100.31				
		Į.									
End of Borehole Practical refusal to augering at 3.66m											
depth (GWL @ 2.18m depth - Jan 29/19)											
								20 Shea ▲ Undist	40 60 ar Strengt urbed △		100

patersongr		In	Con	sulting		SOII	_ PRO	FILE AI	ND TEST DATA			
154 Colonnade Road South, Ottawa, Ont		-		ineers	P	eotechnic roposed I ttawa, Or	Mixed-Us		ment - 20 C	edarow Ct	t.	
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	-				FILE NO.	PG4772		
REMARKS												
BORINGS BY CME 55 Power Auger					ΛTE	2019 Jan	uary 15			BH11		
SOIL DESCRIPTION	PLOT			NPLE 건	M -	DEPTH (m)	ELEV. (m)		esist. Blow 0 mm Dia. 0		ter tion	
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or ROD				Vater Conte		Piezometer Construction	
GROUND SURFACE		×		щ			103.44	20	40 60	80		
TOPSOIL		AU	1									
Very stiff, brown SILTY CLAY		SS	2	71	4	1-	-102.44				79	
						2-	-101.44				49	
3.05 GLACIAL TILL: Very dense brown to grey sandy silt, trace clay and gravel, occasional cobbles and 3.35 boulders End of Borehole Practical refusal to augering at 3.35m		ss	3	100	50+		-100.44					
depth (BH Dry - Jan 29/19)												
								20 Shea ▲ Undist	40 60 ar Strength turbed △ Re		00	

patersongr		In	Con	sulting		SOIL	PRO	FILE AND TEST DATA	
154 Colonnade Road South, Ottawa, Ont		-		ineers	Pr	eotechnic oposed M ttawa, Or	/lixed-Us	igation e Development - 20 Cedarow Ct.	
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	-			FILE NO. PG4772	
REMARKS									
BORINGS BY CME 55 Power Auger					TE	2019 Jan	uary 15	BH12	
SOIL DESCRIPTION	PLOT			MPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone	tion
	STRATA	ТҮРЕ	NUMBER	~ RECOVERY	N VALUE or RQD			• Water Content %	Construction
GROUND SURFACE	ω	~	z	RE	z ⁰	0-	-103.58	20 40 60 80 Ē	ິບິ ™
TOPSOIL 0.38		AU	1						
						1-	-102.58		
		ss	2	88	6				
Very stiff, brown SILTY CLAY		ss	3	96	5	2-	-101.58		
								139	
<u>3.05</u>						3-	-100.58		
GLACIAL TILL: Compact, brown to grey clayey silt, some sand, trace gravel, occasional cobbles and boulders		ss	4	90	11				
End of Borehole									<u>–9999</u>
Practical refusal to augering at 3.58m depth									
(BH Dry - Jan 29/19)									
								20 40 60 80 100	
								Shear Strength (kPa) ▲ Undisturbed △ Remoulded	

patersongr		In	Con	sulting	,	SOII	_ PRO	FILE AN	D TEST DAT	4				
154 Colonnade Road South, Ottawa, Ont		_		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario									
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	_				FILE NO. PG477	2				
REMARKS								-		-				
BORINGS BY CME 55 Power Auger					ΔTE	2019 Jan	uary 15		BH13					
SOIL DESCRIPTION	PLOT			/IPLE 것	61 -	DEPTH (m)	ELEV. (m)		sist. Blows/0.3m mm Dia. Cone	ter tion				
	STRATA	TYPE	NUMBER	RECOVERY	N VALUE of ROD				ter Content %	Piezometer Construction				
GROUND SURFACE		×		<u></u>	4		103.55	20	40 60 80					
TOPSOIL 0.36			1											
Hard, brown SILTY CLAY		SS	2	88	4	1-	-102.55		4					
2.90						2-	-101.55		· A	229				
End of Borehole Practical refusal to augering at 2.90m														
depth (BH Dry - Jan 29/19)								20	40 60 80	100				
									Strength (kPa)	100				

patersongr		ın	Con	sulting		SOIL	- PRO	FILE AI	ND TES	T DATA				
154 Colonnade Road South, Ottawa, Ont		-		jineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario									
DATUM Ground surface elevations	prov	ided b	y Anı	nis, O'S					FILE NO.	PG4772				
REMARKS									HOLE NO.					
BORINGS BY CME 55 Power Auger					ATE	2019 Jan	uary 15			BH14				
SOIL DESCRIPTION	PLOT			MPLE 것	ы. Ы.	DEPTH (m)	ELEV. (m)		esist. Blov 60 mm Dia.		ter stion			
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	°% RECOVERY	N VALUE or ROD			0 V 20	Vater Conte	ent % 80	Piezometer Construction			
		XX					-104.18							
TOPSOIL 0.41		AU	1											
		17												
Very stiff, brown SILTY CLAY		ss	2	67	7	1-	-103.18							
			0		0									
- grey by 2.0m depth		SS	3	96	6	2-	-102.18							
2.29														
GLACIAL TILL: Grey silty clay, trace														
sand and gravel, occasional cobbles and boulders														
3.00						2	-101.18							
End of Borehole						5	101.10							
Practical refusal to augering at 3.00m depth														
(BH Dry - Jan 29/19)														
								20 Shea	40 60 ar Strength		00			
								▲ Undist	-	Remoulded				

patersongr		In	Con	sulting		SOIL	PRO	FILE AND TEST DATA						
154 Colonnade Road South, Ottawa, Ont		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario									
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	Sullivan, Vollebekk Ltd. FILE NO.									
REMARKS					PG4772									
BORINGS BY CME 55 Power Auger	1			DA	TE	2019 Jan	uary 15	BH15						
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone	Well on					
	STRATA	ТҮРЕ	NUMBER	~ RECOVERY	VALUE Dr RQD		(11)	• Water Content %	Monitoring Well Construction					
GROUND SURFACE	LS	L	NC	REC	N O	0	-103.65	20 40 60 80	C Q					
TOPSOIL 0.36			1			0-	- 103.65		Արևերերերերերեր Մերեներերերերեր					
Very stiff, brown SILTY CLAY		SS	2	71	6	1-	-102.65		ցերերունը ա <mark>նքն</mark> ությունը ու երերերին երերերին երերերին երերերին երերերին երերերին։ ԱՄԵՄ երերերին երերերին երերերին երերերին երերերին երերերին երերերին։					
2.29		-				2-	-101.65							
Hard, brown CLAYEY SILT 3.05						3-	- 100.65		9					
GLACIAL TILL: Compact to very dense, grey clayey silt, some sand, trace gravel, occasional cobbles and boulders		ss	3	79	24									
3.99 End of Borehole		∐ ∑ss	4	100	50+									
Practical refusal to augering at 3.99m depth														
(GWL @ 2.92m depth - Jan 29/19)														
								20 40 60 80 10 Shear Strength (kPa) ▲ Undisturbed △ Remoulded	00					

patersongr		In	Con	sulting		SOIL	PRO	FILE AN	ND TE	ST DATA				
154 Colonnade Road South, Ottawa, Ont		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario									
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	-				FILE NO	PG4772	,			
REMARKS									HOLE N	n	•			
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 15			BH16				
SOIL DESCRIPTION	PLOT		SAN	MPLE		DEPTH (m)	ELEV. (m)		esist. Bl 0 mm Di	ows/0.3m a. Cone	er tion			
	STRATA	ТҮРЕ	NUMBER	~ © © © © ©	N VALUE or RQD			• v	Vater Co	ntent %	Piezometer Construction			
GROUND SURFACE	01	×	4	RE	z		-103.66	20	40	60 80	ŭ ja w w			
TOPSOIL 0.33			1											
Hard, brown SILTY CLAY		ss	2	75	4	1-	-102.66							
						2-	-101.66	Ź	×		209			
2.29 GLACIAL TILL: Dense, brown to grey clayey silt, some sand, gravel, cobbles and boulders 2.95		ss	3	46	31									
End of Borehole		<u>.</u>												
Practical refusal to augering at 2.95m depth														
(BH Dry - Jan 29/19)								20	40	60 80 1				
								-	ar Streng					

patersongr		In	Con	sulting		SOIL	- PRO	FILE AI	ND TEST DA	TA				
154 Colonnade Road South, Ottawa, Ont		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario									
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S		•			FILE NO.	1772				
REMARKS									HOLE NO.					
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 16		BH1	7				
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	-	esist. Blows/0.3 0 mm Dia. Cone					
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	~ RECOVERY	N VALUE of RQD			0 V 20	Vater Content %	on lez				
		XXXX					104.19	20						
TOPSOIL 0.38			1											
Very stiff to hard, brown CLAYEY SILT		ss	2	79	7	1-	-103.19							
- grey by 1.8m depth		ss	3	100	55	2-	-102.19							
2.23							102.10							
End of Borehole		_												
Practical refusal to augering at 2.23m depth														
(BH Dry - Jan 29/19)														
								20 Shea ▲ Undist	40 60 80 ar Strength (kPa) turbed △ Remould					

natoreonar		In	Con	sulting		SOII	_ PRO			ST DATA			
patersongr 154 Colonnade Road South, Ottawa, Ont	-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario									
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	_				FILE NO.	PG4772			
REMARKS									HOLE NO)			
BORINGS BY CME 55 Power Auger				DA	TE 2	2019 Jan	uary 16			⁷ BH18	1		
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)		esist. Bl 0 mm Dia	ows/0.3m a. Cone	er ion		
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or RQD			• v	Vater Cor	ntent %	Piezometer Construction		
GROUND SURFACE		×.	I	R	z °	0-	104.15	20	40 6	60 80	i⊑ ŭ ⊠ ⊠		
TOPSOIL													
<u>0.33</u>		AU	1										
Hard, brown CLAYEY SILT		17											
, -		ss	2	88	11	1-	103.15				ज्ञातीत ज्ञातात		
		$\overline{\mathbb{N}}$	-										
- grey by 1.8m depth 1.96		ss	3	88	50+								
End of Borehole													
Practical refusal to augering at 1.96m depth													
(BH Dry - Jan 29/19)													
								20 Shea ▲ Undist	ar Streng		⊣ 00		

patersongr		ın	Con	sulting		SOII	_ PRO	FILE AND TEST DATA						
154 Colonnade Road South, Ottawa, On		_		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario									
DATUM Ground surface elevations	s prov	ided b	y Anr	nis, O'S	_			FILE NO. PG4772						
REMARKS								HOLE NO.						
BORINGS BY CME 55 Power Auger		1		DA	TE	2019 Jan	uary 16	BH19						
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone						
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or RQD		(,	● 50 mm Dia. Cone ○ Water Content % 20 40 60 80 G						
GROUND SURFACE	01	×	4	RE	z		103.78	20 40 60 80 Ö						
TOPSOIL		AU	1											
		SS	2	88	3	1-	-102.78							
Hard, brown to grey SILTY CLAY					U									
						2-	-101.78	234						
2.44 End of Borehole		ss	3	100	50+									
Practical refusal to augering at 2.44m depth														
(BH Dry - Jan 29/19)														
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded						

patersongr		ır	Con	sulting		SOI	_ PRO	FILE AND TEST DATA					
154 Colonnade Road South, Ottawa, On		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario								
DATUM Ground surface elevations	s prov	ided b	oy Anr	nis, O'S	_			FILE NO. PG4772					
REMARKS													
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 16	BH20					
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone	er ion				
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or ROD	1		• Water Content %	Plezometer Construction				
GROUND SURFACE	ß	~	N	RE	z ⁰		- 103.59	20 40 60 80	±°S ∞∞∞				
TOPSOIL													
0.33		AU	1										
		17											
Very stiff, brown SILTY CLAY		ss	2	83	4	1	102.59						
, -		1			-								
- grey by 1.8m depth								1 59					
						2	101.59						
2.30													
		\mathbb{N}											
Loose, grey CLAYEY SILT , trace sand and gravel		ss	3	83	9								
End of Borehole	<u>1</u> 2X					3-	-100.59						
Practical refusal to augering at 3.05m													
depth (BH Dry - Jan 29/19)													
(Dri Diy - Jail 29/19)													
								20 40 60 80 100 Shear Strength (kPa)					
								▲ Undisturbed △ Remoulded					

patersongr		ın	Con	sulting		SOII	_ PRO	FILE AND TEST DATA						
154 Colonnade Road South, Ottawa, On		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario									
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S				FILE NO. PG4772						
REMARKS														
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 16	BH21						
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone						
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			50 mm Dia. Cone 50 mm Dia. Cone 9						
TOPSOIL						- 0-	-103.58							
0.33		AU	1											
Very stiff, brown SILTY CLAY		ss	2	79	5	1-	-102.58							
								129						
- grey by 1.8m depth						2-	-101.58							
GLACIAL TILL: Compact to very dense, brown to grey sandy silt, some clay, gravel, cobbles and boulders		ss	3	71	13									
3.20		ss	4	100	50+	3-	-100.58							
Practical refusal to augering at 3.20m depth														
(BH Dry - Jan 29/19)														
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded						

patersongr		In	Con	sulting		SOIL	- PRO	FILE AI	ND TE	ST DATA				
154 Colonnade Road South, Ottawa, Ont		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario									
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	-				FILE NO	D. PG4772)			
REMARKS									HOLE	10	-			
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 16			BH22	_			
SOIL DESCRIPTION	PLOT		SAN	MPLE		DEPTH (m)	ELEV. (m)			lows/0.3m ia. Cone	g Well tion			
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or RQD			• V	Vater Co	ontent %	Monitoring Well Construction			
GROUND SURFACE	0,	×		R	z ⁰	- 0-	103.65	20	40	60 80	_			
TOPSOIL0.25			1								ביריביניין אין אין אין אין אין אין אין אין אין			
Very stiff, brown SILTY CLAY		ss	2	71	5	1-	- 102.65							
- grey by 2.0m depth						2-	-101.65		2					
End of Borehole														
Practical refusal to augering at 2.29m depth (BH Dry - Jan 29/19)														
								20 Shea ▲ Undis		60 80 ∕ gth (kPa) ∆ Remoulded	100			

patersongr		ır	Con	sulting		SOII	_ PRO	FILE AND TEST DATA					
154 Colonnade Road South, Ottawa, On		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario								
DATUM Ground surface elevations	s prov	ided b	y Anr	nis, O'S				FILE NO. PG4772					
REMARKS													
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 16	BH23					
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone					
	STRATA	TYPE	NUMBER	RECOVERY	N VALUE or ROD		(,	● 50 mm Dia. Cone ○ Water Content % 20 40 60 80					
GROUND SURFACE	Ø	×	Z	RE	z ^o		103.87	20 40 60 80 ÖČČ					
TOPSOIL 0.30													
<u>0.3</u> (AU	1										
		1											
Very stiff, brown SILTY CLAY , some sand		ss	2	0	6	1-	102.87						
					Ū								
1.52													
		ss	3	83	11								
						2-	101.87						
GLACIAL TILL: Dense to very dense, grey silty sand with clay,													
gravel, cobbles and boulders		ss	4	75	36								
						3-	100.87						
3.36	5	ss	5	31	50+								
End of Borehole													
Practical refusal to augering at 3.36m depth													
(GWL @ 2.62m depth - Jan 29/19)													
								20 40 60 80 100 Shear Strength (kPa)					
								▲ Undisturbed △ Remoulded					

patersongr		ın	Con	sulting		SOIL	_ PRO	FILE AND TEST DATA						
154 Colonnade Road South, Ottawa, Ont		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario									
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	-			FILE NO. PG4772						
REMARKS														
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 16	BH24						
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone ਾਹੁ ਹੁ						
	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or ROD			● 50 mm Dia. Cone ○ Water Content % 20 40 60 80						
GROUND SURFACE		×		2	Z *		104.04							
TOPSOIL		AU	1											
Very stiff, brown to grey CLAYEY		ss	2	67	10	1-	-103.04							
SILŤ														
		SS	3	79	29	2-	-102.04							
GLACIAL TILL: Compact to very dense, brown clayey silt, some sand, gravel, cobbles and boulders		ss	4	58	23									
3.15		⊔ ⊻ ss	5	100	50+	3-	-101.04							
End of Borehole Practical refusal to augering at 3.15m depth														
(GWL @ 2.55m depth - Jan 29/19)														
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded						

patersongr		ın	Con	sulting	1	SOIL	- PRO	FILE AI	ND TE	ST DATA	
154 Colonnade Road South, Ottawa, Ont		_		ineers	F	Geotechnic Proposed M Ottawa, Or	/lixed-Us		oment - 2	0 Cedarow C	;t.
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S					FILE NO		
REMARKS									HOLE	PG4772	•
BORINGS BY CME 55 Power Auger		1		D	ATE	2019 Jan	uary 16			BH25	
SOIL DESCRIPTION	РГОТ		SAN			DEPTH (m)	ELEV. (m)			lows/0.3m ia. Cone	er
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE		(,	• V	Vater Co	ontent %	Piezometer Construction
GROUND SURFACE	07	×	4	R	z		104.07	20	40	60 80	ŭ <u>ה</u> www
TOPSOIL		AU	1								
Very stiff, brown CLAYEY SILT		ss	2	75	11	1-	-103.07				
<u>1.52</u>										· · · · · · · · · · · · · · · · · · ·	
GLACIAL TILL: Very dense, grey 1.62 clayey silt with sand, gravel, cobbles, boulders End of Borehole	/^^^^/ / 	∑ ss	3	75	50+	+				· · · · · · · · · · · · · · · · · · ·	Ţ
Practical refusal to augering at 1.62m depth											
(GWL @ 1.68m depth - Jan 29/19)											
								20 Shea ▲ Undis		60 80 1 gth (kPa) ∆ Remoulded	100

patersongr		In	Con	sulting		SOIL	_ PRO	FILE AI		EST DAT	4
154 Colonnade Road South, Ottawa, Ont		-		ineers	Geotechnical Investigation Proposed Mixed-Use Development - 20 Cedarow Ct. Ottawa, Ontario						
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S		•			FILE N	o. PG477	2
REMARKS									HOLE	NO	_
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 17			BH26	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)			Blows/0.3m Dia. Cone	er ion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD					ontent %	Piezometer Construction
GROUND SURFACE		×		<u>щ</u>		- 0-	104.30	20	40	60 80	
TOPSOIL <u>0.38</u>		AU	1								
Very stiff, brown CLAYEY SILT		ss	2	75	9	1-	-103.30				
GLACIAL TILL: Compact to dense, grey silty clay with gravel, cobbles		ss	3	50	19	2-	-102.30				
and boulders 2.87		ss	4	100	46						
End of Borehole Practical refusal to augering at 2.87m		-									
depth (BH Dry - Jan 29/19)											
								20 Shea ▲ Undist		60 80 ngth (kPa) △ Remoulded	100

patersongr		In	Con	sulting		SOII	_ PRO	FILE AN	ID TES	T DATA	
154 Colonnade Road South, Ottawa, On		-		ineers	Pr	eotechnic oposed M tawa, Or	Mixed-Us		nent - 20	Cedarow C	t.
DATUM Ground surface elevations	s prov	ided b	y Anr	nis, O'S	_				FILE NO.	PG4772	
REMARKS								-	HOLE NO		
BORINGS BY CME 55 Power Auger					TE 2	2019 Jan	uary 17	Dara Da			Τ_
SOIL DESCRIPTION	A PLOT			/IPLE 것	ы о	DEPTH (m)	ELEV. (m)) mm Dia	ows/0.3m . Cone	ng Wel
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	RECOVERY	N VALUE or RQD			○ W 20	ater Con		Monitoring Well Construction
				н 		0-	103.97		40 00		
TOPSOIL	B	₩ AU	1								<u>երերերերերը։</u> Արերերերեր
Very stiff, brown CLAYEY SILT					•	1-	-102.97				
		SS	2	71	8						
		$\overline{\mathbb{N}}$									
_ grey by 1.7m depth		ss	3	88	50+						
End of Borehole											
Practical refusal to augering at 1.93m depth											
(BH Dry - Jan 29/19)											
									40 60 r Strengt	h (kPa)	00
	1							▲ Undistu		Remoulded	ſ

patersongr		ın	Con	sulting		SOII	_ PRO	FILE AND TEST DATA
154 Colonnade Road South, Ottawa, Ont		-		ineers	P	eotechnic roposed I ttawa, Or	Mixed-Us	tigation e Development - 20 Cedarow Ct.
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S				FILE NO. PG4772
REMARKS								
BORINGS BY CME 55 Power Auger				DA	TE	2019 Jan	uary 17	BH28
SOIL DESCRIPTION	PLOT		SAN	MPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone
	STRATA	ТҮРЕ	NUMBER	~ RECOVERY	N VALUE or ROD			● 50 mm Dia. Cone ○ Water Content % 20 40 60 80 Leizounetion
GROUND SURFACE	02	8	4	RE	z ^o	- 0-	103.78	20 40 60 80 <u> </u>
TOPSOIL		AU	1					
Very stiff, brown SILTY CLAY		ss	2	38	6	1-	-102.78	
								<u>م</u>
<u>2.29</u>						2-	-101.78	
GLACIAL TILL: Loose to very dense, grey silty clay with sand, gravel, cobbles and boulders		SS	3	8	2			
3 18		≍ SS	4	0	50+	3-	100.78	
End of Borehole Practical refusal to augering at 3.18m	<u></u>	-						
depth (BH Dry - Jan 29/19)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

patersongr		In	Con	sulting		SOII	_ PRO	FILE AND TEST DATA
154 Colonnade Road South, Ottawa, On		_		ineers	P	eotechnic roposed I ttawa, Or	Mixed-Us	tigation se Development - 20 Cedarow Ct.
DATUM Ground surface elevations	prov	ided b	y Anr	nis, O'S	_			FILE NO. PG4772
REMARKS								HOLE NO. BH29
BORINGS BY CME 55 Power Auger					TE	2019 Jan	uary 17	
SOIL DESCRIPTION	A PLOT			/PLE 것	ы о	DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone
	STRATA	TYPE	NUMBER	~ RECOVERY	N VALUE or RQD	1		So mm Dia. Cone So mm Dia. Cone So me Dia. Cone S
GROUND SURFACE		XXX		щ			103.71	
TOPSOIL 0.38		AU	1					
						1	-102.71	
Very stiff, brown SILTY CLAY		SS	2	50	7		102.71	
		ss	3	71	4			
2.29						2-	-101.71	
GLACIAL TILL: Loose, grey silty clay with sand, gravel, cobbles and boulders		ss	4	17	7			
2.95		ľ.						
End of Borehole Practical refusal to augering at 2.95m depth								
(BH Dry - Jan 29/19)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)			
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size			
D10	-	Grain size at which 10% of the soil is finer (effective grain size)			
D60	-	Grain size at which 60% of the soil is finer			
Cc	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$			
Cu	-	Uniformity coefficient = D60 / D10			
Cc and Cu are used to assess the grading of sands and gravels:					

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Cc	-	Compression index (in effect at pressures above p'_c)
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o
Void Rat	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

Certificate of Analysis **Client: Paterson Group Consulting Engineers** Client PO: 25648

Report Date: 22-Jan-2019

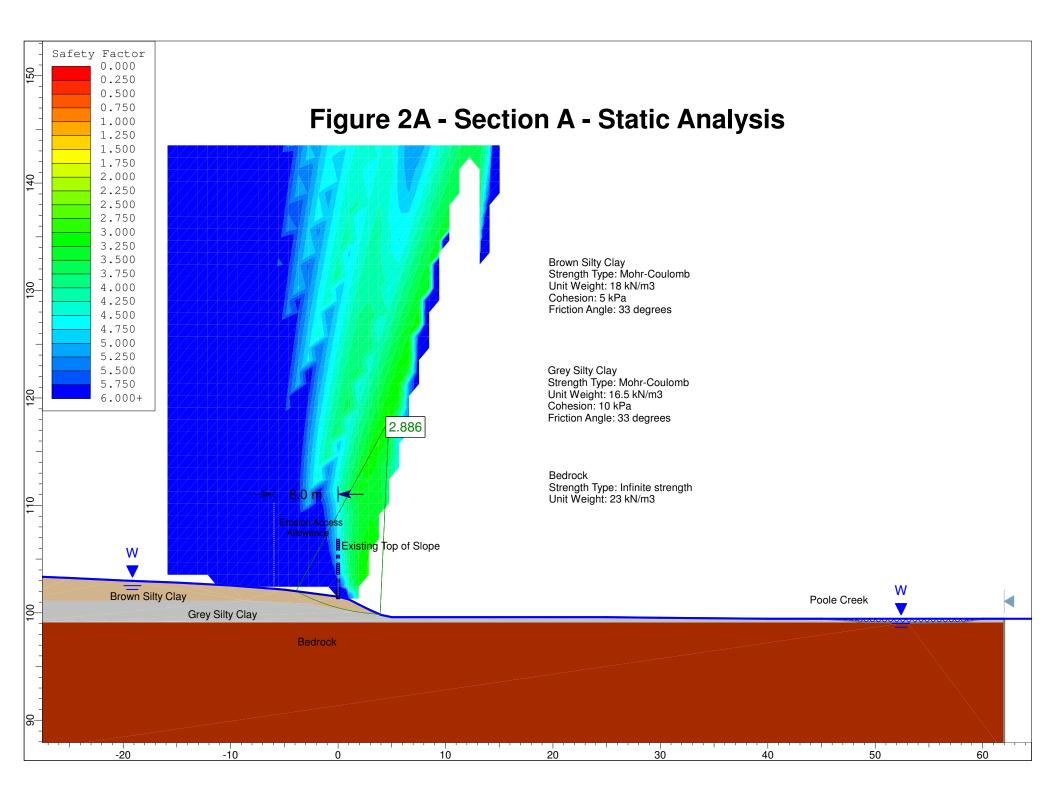
Order Date: 16-Jan-2019

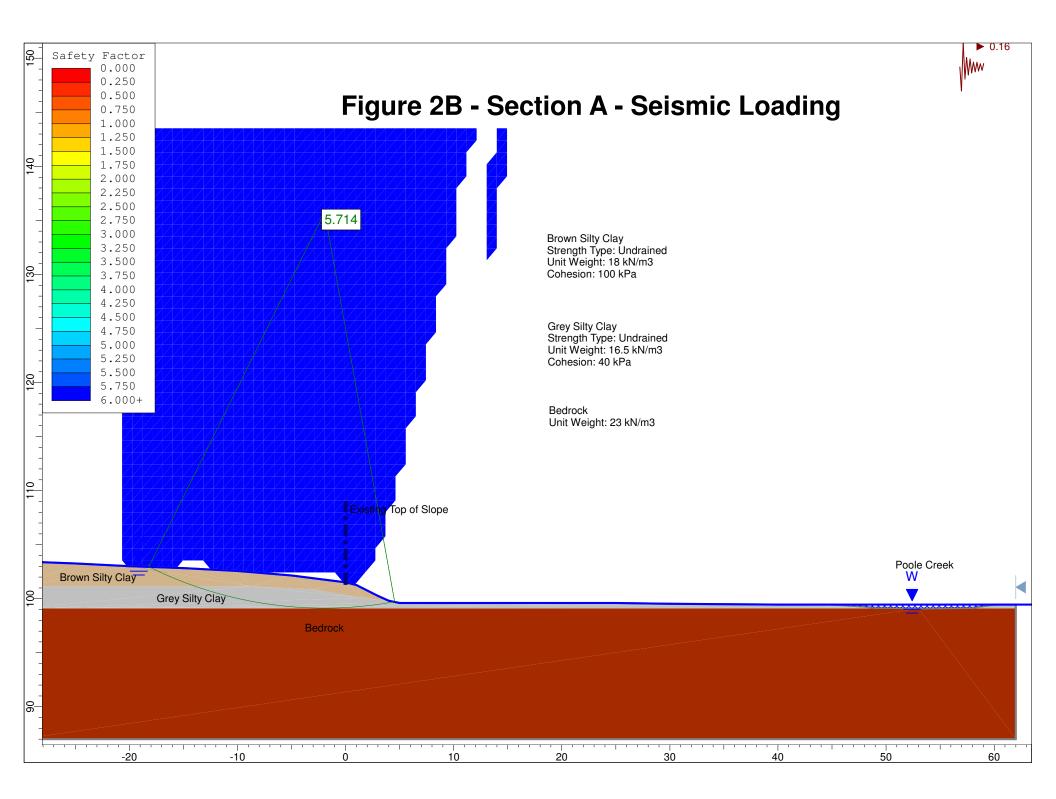
Project Description: PG4772

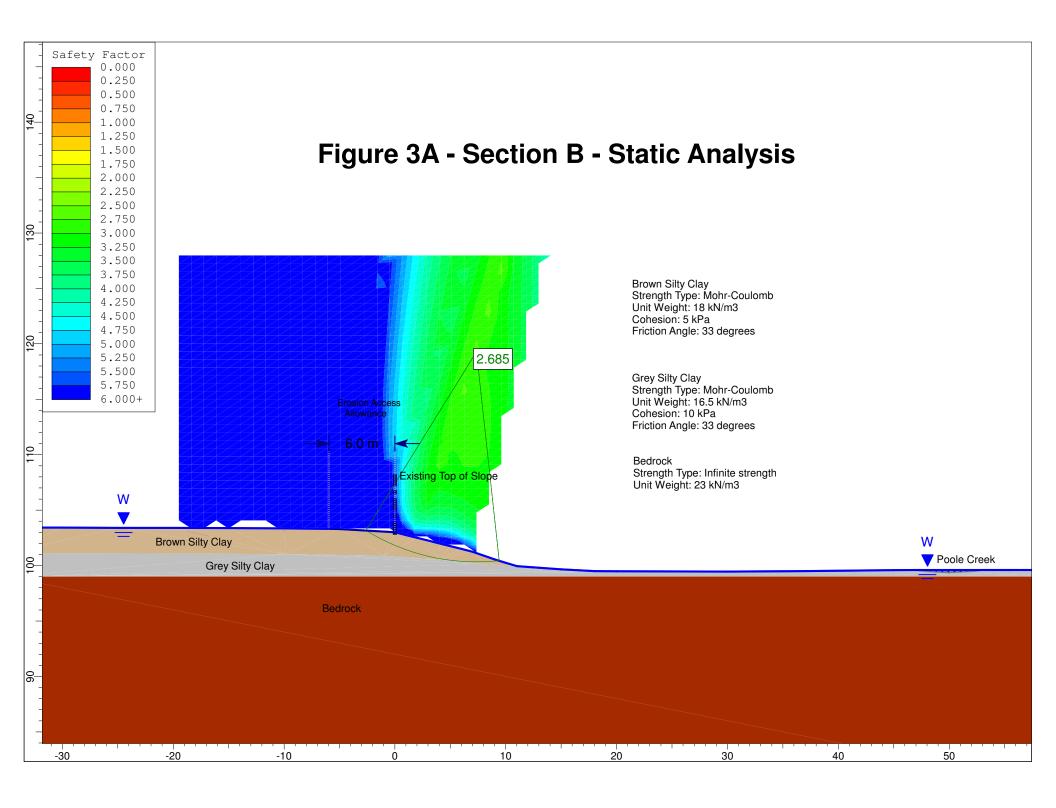
	Client ID:	BH#16-19 SS#3	-	-	-
	Sample Date:	01/15/2019 09:00	-	-	-
	Sample ID:	1903309-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	85.8	-	-	-
General Inorganics	-				
рН	0.05 pH Units	7.80	-	-	-
Resistivity	0.10 Ohm.m	76.2	-	-	-
Anions					
Chloride	5 ug/g dry	6	-	-	-
Sulphate	5 ug/g dry	6	-	-	-

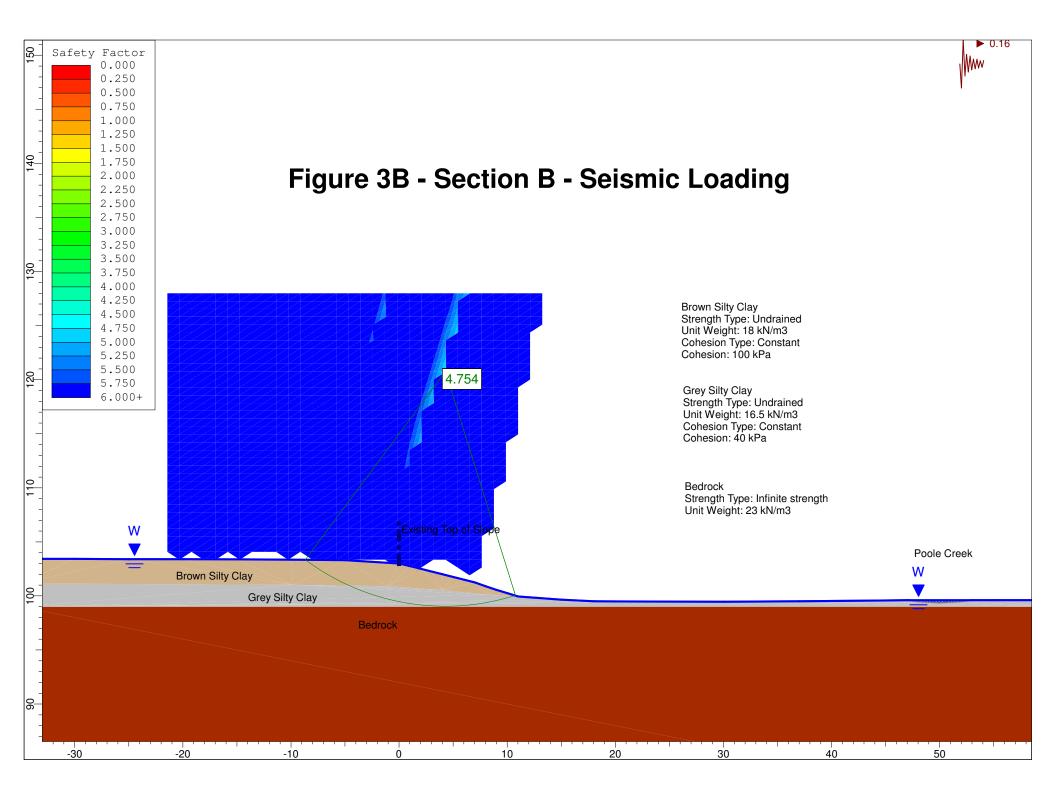
APPENDIX 2

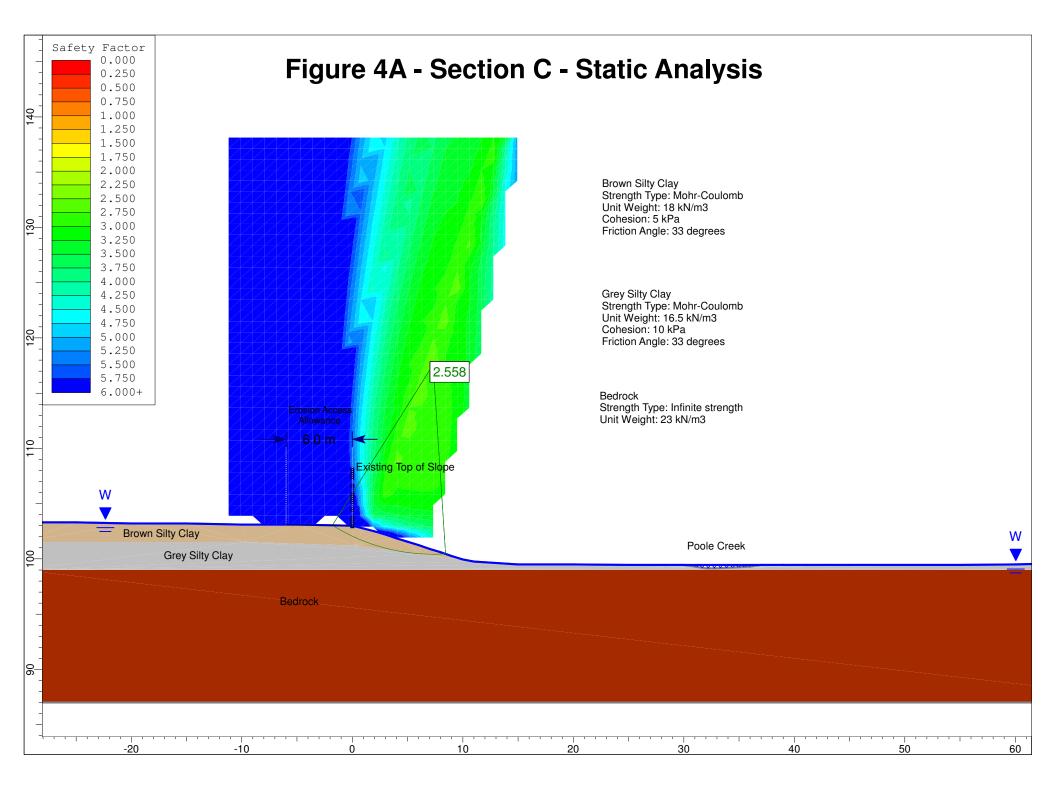
FIGURE 1 - KEY PLAN

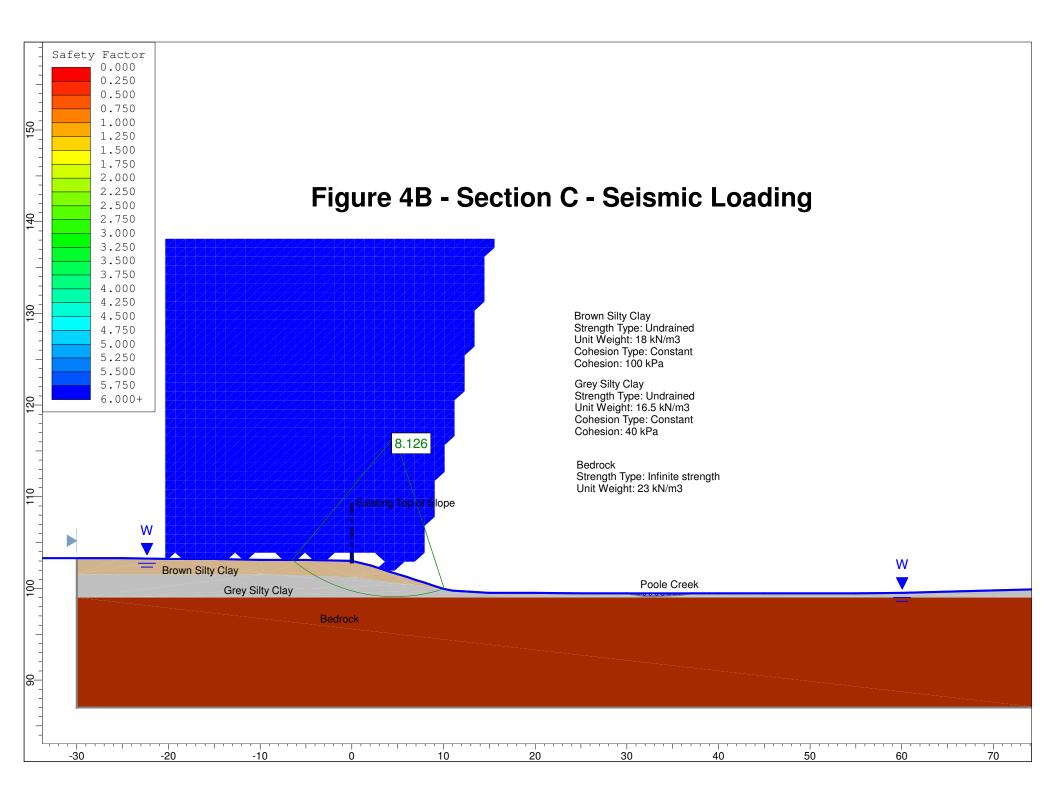

FIGURES 2 TO 4 - SLOPE STABILITY ANALYSIS SECTIONS

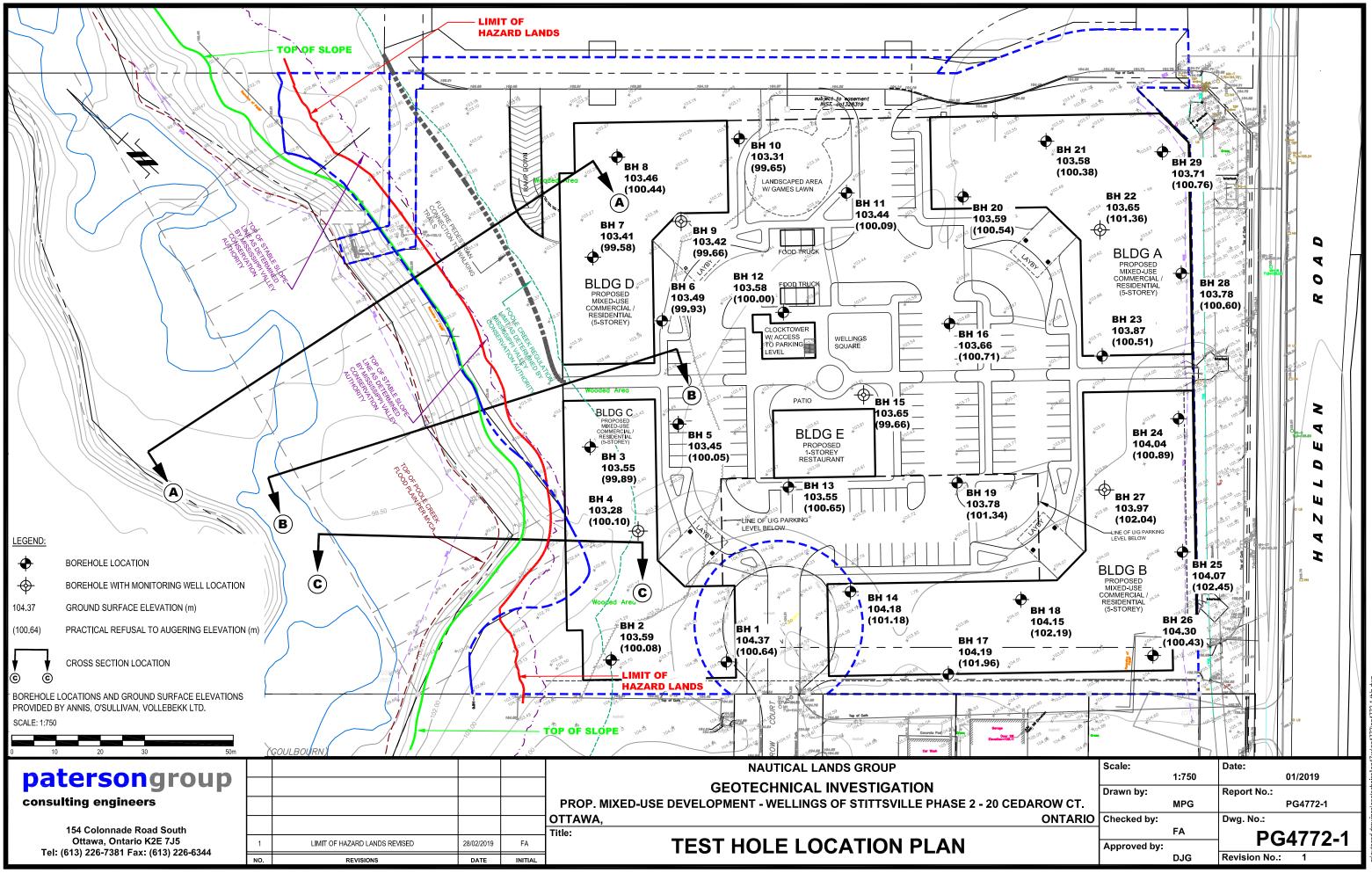

DRAWING PG4772-1 - TEST HOLE LOCATION PLAN


KEY PLAN


FIGURE 1







SERVICING AND STORMWATER MANAGEMENT BRIEF – WELLINGS OF STITTSVILLE PHASE 2, 20 CEDAROW COURT

Appendix E Drawings May 20, 2020

Appendix E DRAWINGS

