Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Hydrogeological Review

Proposed Multi-Storey Building 36 Robinson Avenue Ottawa, Ontario

Prepared For

Robinson Village LPIV Limited Partnership c/o TC United Development

June 8, 2020

Report PG5231-REP.02

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa, Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

Table of Contents

Page

1.0	INTRODUCTION
2.0	SITE CONDITIONS22.1Surface Conditions22.2Subsurface Profile3
3.0	HYDROGEOLOGY53.1Estimated Water Taking Rates3.2Estimated Radius of Influence3.3Water Discharge8
4.0	POTENTIAL IMPACTS104.1Adverse Effects on Adjacent Structures.104.2Adverse Effects on Neighbouring Water Wells104.3Soil, Surface Water and Groundwater114.4Adjacent Permits to Take Water12
5.0	STATEMENT OF LIMITATIONS

Appendices

Appendix 1	Figure 1.2 - Site Plan (by Others) Figure 2.3 - MECP Water Well Records (by Others)
Appendix 2	PG5231 - Soil Profile and Test Data Borehole Log Records (by Others) PG5231 - Test Hole Location Plan Figure 3.1 - Investigative Locations (by Others)
Appendix 3	MTO IDF Curves Sample Calculations - Dupuit Forchheimer Hydraulic Conductivity Results (by Others) Table 1 - Summary of Groundwater Level Readings
Appendix 4	Hobin Architecture Inc Plan/Profile Drawings
Appendix 5	City of Ottawa - Sewer Use Program - Best Management Practices

1.0 INTRODUCTION

Introduction

Paterson Group (Paterson) was commissioned by TC United Development on behalf of Robinson Village LPIV Limited Partnership to prepare a hydrogeological review for the proposed multi-storey building to be located at 36 Robinson Avenue in Ottawa, Ontario (refer to Figure 1.2 - Site Plan by others within Appendix 1).

Subsurface information was obtained from the field investigations carried out by Paterson and others to determine the subsoil and groundwater conditions at the site by means of test holes.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains the investigation findings and includes hydrogeological assessments pertaining to the proposed program as understood at the time of writing this report.

Proposed Project

It is our understanding that the proposed development will consist of a multi-storey building with three levels of underground parking. The P-3 level floor slab has been proposed at an elevation of 50.2 m. It is further understood that the proposed parking structure will occupy the entire subject site and the site will be municipally serviced.

The proposed development will incorporate a water suppression system that will reduce infiltration volumes and long term groundwater lowering at the post-construction stage. The water suppression system will consist of a horizontal concrete hydraulic barrier at the base of the excavation and a waterproofing membrane along the vertical surfaces. Any groundwater breaching the waterproofing system will be managed by the building sump pit system. Further details regarding the water suppression system have been included in geotechnical Paterson Report PG5231-1 - Revision 2 dated May 12, 2020.

2.0 SITE CONDITIONS

2.1 Surface Conditions

The subject site consists of 5 contiguous properties identified as 36 Robinson Avenue and is currently occupied by residential dwellings that will be demolished prior to redevelopment. The topography of the site is relatively flat and at grade with the surrounding roadways, with an approximate 1 m elevation difference sloping downwards towards the northeast. It is bordered to the northwest by Robinson Avenue, to the northeast and southeast by townhouse style residential dwellings followed by Robinson Avenue, and to the southwest by single residential dwellings.

According to available mapping, the subject site is located in the Ottawa Valley Clay Plains physiographic region.

Field Investigations

A geotechnical field investigation completed by Paterson was carried out on February 21, 2020. At that time, a total of 6 test pits were excavated to a maximum depth of 6.2 m below ground surface (bgs). Previous subsoil and hydrogeological investigations completed by others in 2019 have also been included as part of the current hydrogeological review. The previous investigations consisted of 12 boreholes extending to a maximum depth of 16.6 m bgs. The test hole locations were distributed in a manner to provide general coverage of the subject site taking into consideration site features as well as evaluate any environmental concerns. The borehole locations of the field investigations are presented on Drawing PG5231-1 and Figure 3.1 by others, included in Appendix 2.

The subsurface conditions observed in the test holes were recorded in detail in the field. The soil profiles are presented on the Borehole Log Records by others and the Soil Profile and Test Data sheets in Appendix 2 of this report.

Surface Water

The subject site is located within the Rideau River-Falls subwatershed. The only surface water feature identified within 500 m of the subject site is the Rideau River. Given the meandering nature of the watercourse, the Rideau River is located approximately 80 m to the north, 110 m to the east and 350 m to the south.

Groundwater

Groundwater monitoring wells were installed in select boreholes by others to permit the monitoring of the groundwater levels at the subject site. Observations of groundwater infiltration were also noted in the open hole excavations by Paterson. Groundwater information is discussed in Sections 3 of this report and details are noted on the Borehole Log Records by others and Soil Profile and Test Data sheets presented in Appendix 2 of this report.

2.2 Subsurface Profile

The subsurface profile at the subject site is generally comprised of fill material followed by a sandy silt/silty sand and/or clayey silt layers. The above noted layers are underlain by a glacial till deposit extending to the bedrock surface. Practical refusal to excavation was encountered at select test pit locations between 5.8 and 6.2 m bgs, while bedrock was encountered between 5.3 and 7.8 m bgs.

Reference should be made to the soil profile records and test hole locations completed by Paterson and others included in Appendix 2 for the details of the soil profiles encountered at each borehole location.

Based on surficial mapping prepared by the Ontario Geological Survey, the subject site is located in an area where surficial geology consists of a fluvial deposit comprised of gravel, sand, silt and clay deposited on modern flood plains.

Fill Material

A fill layer was encountered in all test holes at ground surface or underlying the asphaltic concrete. The fill material consisted of varying amounts of silty sand, clay, gravel, organics and construction debris. The fill material extended to a maximum depth of 3.7 m bgs.

Clayey Silt

Generally, the loose to dense clayey silt was encountered beneath the fill material in select boreholes and extended to a maximum depth of 3.8 m bgs.

Silty Sand

A loose to dense grey to brown silty sand layer with some clay and gravel was encountered in all boreholes underlying the fill material and/or clayey silt and extended to a maximum depth of 7.1 m bgs.

Sandy Silt

A very loose to very dense grey sandy silt layer with some clay and trace gravel was encountered in select boreholes underlying the fill material and/or silty sand and extended to a maximum depth of 5.3 m bgs.

Glacial Till

Generally, the compact to very dense glacial till deposit was noted underlying the silty sand and/or sandy silt in select boreholes. The glacial till deposit consists of clayey silt to silty sand matrix with varying amounts gravel with occasional cobbles and boulders and it extends to a maximum depth of 7.8 m bgs.

Bedrock

Based on coring results completed by others, shale bedrock was encountered between 5.3 and 7.8 m bgs and was cored to a maximum depth of 16.6 m bgs. The recovery values ranged from 50 to 100%, while the RQD values generally varied between 0 and 100%. Based on these results the quality of the bedrock ranges from very poor to excellent.

Based on available geological mapping, the subject site is located in an area where the bedrock consists of shale of the Carlsbad Formation with an overburden thickness between 5 and 10 m.

3.0 HYDROGEOLOGY

Subsequent to the subsurface investigations completed at the subject site, groundwater levels were measured at the borehole locations by Paterson and others and ranged from 1 to 4.8 m bgs. However, groundwater levels may have been influenced by surface water infiltrating the backfilled boreholes. Groundwater infiltration was also observed by Paterson during the excavation of the test pits across the subject site and varied between 5.4 and 5.7 m bgs. It should be noted that long-term groundwater levels can also be estimated based on the observed colour and consistency of the recovered soil samples. Based on these observations, a grey silty sand/sandy silt was generally encountered between 3 to 4 m below ground surface and is expected to be the approximate long-term groundwater table. It should also be noted that groundwater levels can fluctuate both seasonally and in conjunction with precipitation events. Therefore, the groundwater levels could vary at the time of construction. Groundwater level measurements have been summarized in Table 1 included in Appendix 3.

On a conceptual scale, hydrogeological/hydrologic conditions at the subject site suggest that water may infiltrate the open excavation as surface water infiltration during precipitation events and through groundwater flow within the overburden and bedrock at depth.

The excavation footprint related to the proposed multi-storey building at the subject site is expected to encompass an area of approximately 1,800 m². Therefore, the potential exists for a low amount of surface water to intercept the excavation footprint directly during significant precipitation events.

In terms of groundwater flow, the building excavation is expected to intercept the silty sand/sandy silt, glacial till and bedrock within the anticipated saturated depth of excavation. The potential exists for a low to moderate amount of groundwater inflow through the overburden and bedrock. The volume of groundwater that infiltrates through the overburden and bedrock will depend on the variability of the soil and the extent of weathering/fracturing in the bedrock across the subject site.

Based on the groundwater levels at the borehole locations, the local groundwater flow direction generally trends in a northerly direction. The regional groundwater flow direction is expected to trend northeast towards the Rideau River and following regional topography. It should be noted that groundwater levels can fluctuate based on precipitation events and seasonal variations. Therefore, groundwater levels and flow directions may vary at the time of construction.

3.1 Estimated Water Taking Rates

The potential sources of water taking at the subject site have been identified as the excavation footprint of the proposed building during the construction phase as well as long-term groundwater infiltration at post-construction.

The hydraulic conductivity values of the silty sand and bedrock were determined based on single well response tests (rising head test) completed by others at the subject site. Based on the testing, the hydraulic conductivity of the silty sand is 1.5×10^{-7} m/sec, while bedrock varied from 5.1×10^{-8} to 1.5×10^{-6} m/sec and is dependant on the quality of the bedrock. Hydraulic conductivity results from the single well response tests completed by others have been included in Appendix 3.

To determine surface water infiltration into the excavation footprint, an intensity duration frequency (IDF) curve from the Ministry of Transportation - Ontario (MTO) was obtained. The IDF curve is the graphical representation of the probability that a given average rainfall intensity will occur. For the purposes of this project, a 5 year storm event with a one hour duration was chosen as the design storm. This provides a potential rainfall intensity of 2.63 x 10^{-2} m of precipitation into the excavation footprint. Various duration storm events with their associated rainfall intensities are presented in the IDF Curve in Appendix 3.

The infiltration rates provided for the following source was calculated using the Dupuit Forchheimer method:

 $Q = \pi K((h_0^2 - h_p^2)/ln(R/r))$

- \Box K = hydraulic conductivity (m/sec)
- \Box h₀ = thickness of the aquifer (m)
- $\square \quad h_p = \text{thickness of the aquifer from the base of the excavation to the base of the aquifer (m)}$
- \Box R = effective drawdown radius for the excavation (m)
- \Box r = equivalent radius of the excavation (m)

A sample groundwater infiltration calculation is provided in Appendix 3 of this report.

Building Excavation Footprint (Construction Dewatering)

The strata at the proposed building location consists of sandy silt/silty sand followed by glacial till and very poor to excellent bedrock within the anticipated saturated depth of excavation. The maximum depth of excavation is expected to be approximately 10 m bgs to accommodate the horizontal concrete hydraulic barrier at the base of the excavation and sump pit system. Calculations are based on an excavation sizing of 1,800 m² and a saturated depth of excavation of 8 m, using a conservative groundwater level measurement of 2 m bgs. Using the above noted values and a conservative hydraulic conductivity of 1.5×10^{-6} m/sec, the steady state volume of groundwater anticipated is approximately **125,000 L/day**, and does not account for the initial groundwater inflow into the excavation or unforseen circumstances.

A factor of safety between 2 and 3 should be applied to the calculated infiltration rates to account for variability in the overburden material, quality of bedrock and any unforseen circumstances that may arise during construction activities.

With respect to the potential for surface water inflow into the excavation footprint, the proposed multi-storey building is adjacent to developed land on all sides. It is therefore expected that the majority of surface water inflow into the excavation footprint will be caused by precipitation directly onto the footprint rather than runoff from other sources. Given an excavation footprint with a sizing of 1,800 m² and a precipitation depth of 2.63 x 10^{-2} m, a total volume of approximately 50,000 L of surface water can be expected during a 5 year - 1 hour duration precipitation event. It is expected that the contractor will direct surface water away from open excavations whenever possible.

Post-Construction (Long-Term Dewatering)

Long-term groundwater infiltration breaching the water suppression system at postconstruction will be managed by the building sump pit system. Provided the proposed groundwater infiltration control system is properly installed and approved by the geotechnical engineer at the time of construction, a conservative 1 m drawdown in the groundwater table at the subject site could be expected. The steady state volume of groundwater anticipated post-construction is approximately **10,000 to 20,000 L/day**.

3.2 Estimated Radius of Influence

A series of calculations were carried out on theoretical radii of influence for the likely duration of extended pumping during the excavation of the building and postconstruction. These calculations were completed based on Sichardt (1992) using the equation: $R = r_e + 3000^* \Delta h(k^{0.5})$

- \Box R = radius of influence (m)
- \Box r_e = equivalent radius of excavation (m)
- \Box Δh = thickness of drawdown within the aquifer (m)
- □ k = hydraulic conductivity (m/sec)

For the purposes of completing the calculations, the following assumptions were made:

- \Box r_e = 28 m (building excavation); 4 m (post-construction)
- \Box k = 1.5 x 10⁻⁶ to 5.1 x 10⁻⁸ m/sec, based upon single well response tests.
- \Box $\Delta h = 7$ to 9 m (building excavation); 0.5 to 1.5 (post-construction), to review potential minimum/maximum variable conditions.

Using the above equation and assumptions, a radius of influence of approximately **5 to 33 m** will develop as a steady state condition, extending from the edge of the excavation, during the construction of the proposed building. It's expected that recharging from precipitation events and with a reasonable foundation construction schedule, **the radius of influence will be approximately 10 to 15 m**.

With the water suppression system in place, it is expected that a radius of influence of approximately **0.5 to 5.5 m** will develop as a steady state condition, extending from the edge of the building, at post-construction.

3.3 Water Discharge

The discharge point for the pumped water from the excavation sump is expected to be to the existing City of Ottawa sewer system via a sewer connection. As such, it will be subject to the City of Ottawa Sewer Use Bylaws and a permit will be required to discharge the water to the sewer system.

It is expected that BMP's as recommended by the City of Ottawa - Sewer Use Program (SUP) document (attached within Appendix 5) or similar will be used to reduce sediment loading within the water prior to discharge to the sewer system. If the pumped water does not meet the SUP criteria, it must be retained on site until test results indicate compliance with the SUP criteria or remove the water through other means such as tanker trucks.

Given the size of the excavation for the proposed development, the volumes of surface water pumped during a 100 year storm event are not expected to exceed the capacity of the nearby City sewer system. Should volumes exceed the available capacity, it's expected that water will be stored on site temporarily and released at an acceptable rate or removed via tanker trucks. The approved SUP permit may provide further discharge restrictions.

Based upon the anticipated water takings being discharged to the City sewer system, it's Paterson's opinion that the water discharged will not cause negative impacts to the natural environment. As the discharged water is not being returned directly to the natural environment, there are no negative effects expected related to the temperature of the discharged water. The location and operation of the appropriate discharge measures are the responsibility of the contractor.

4.0 POTENTIAL IMPACTS

4.1 Adverse Effects on Adjacent Structures

The subsurface profile at the subject site is generally comprised fill material overlain by sandy silt/silty sand and/or clayey silt layers followed by glacial till and bedrock. The majority of the expected groundwater infiltration will be encountered within the sandy silty sand/sandy silt, glacial till and bedrock. The potential dewatering volumes due to groundwater infiltration into excavation footprints are anticipated to be low to moderate dependant on location across the site and majority composition of the materials at a given location. The structures in the surrounding area typically consist of low-rise residential dwellings and are expected to be founded on silty sand/sandy silt, glacial till or bedrock. The compressibility of the silty sand/sandy silt, glacial till and bedrock in the area as a result of dewatering is anticipated to be minimal. Furthermore, dewatering is expected to be short term in duration, given the nature of the proposed development. As such, any effects related to ground surface settlement due to the water taking activities are anticipated to be negligible.

It is not expected mitigation methods will be required related to potential adverse effects on structures or infrastructure adjacent to the excavations due to the short term nature of the construction, theoretical radius of influence and compressibility of the overburden. However, mitigation methods would consist of halting pumping and providing monitoring of the potential settlement to determine if the negative effects are related to the dewatering program. If the dewatering is causing the consolidation/settlement effects, then a revised dewatering program to reduce the taking of water or providing a water recharge system to reduce the consolidation effects would be necessary.

Due to the currently proposed construction activities at the subject site (demolition, hoe-ramming, controlled blasting, shoring installations), a pre-construction survey is recommended to be carried out for the structures immediately surrounding the site to document existing conditions. It is additionally recommended in the Paterson geotechnical Report PG5231-1 dated May 12, 2020.

4.2 Adverse Effects on Neighbouring Water Wells

A search of the Ontario Water Well Records database indicates there are a large number of wells within 500 m of the site as depicted in Figure 2.3 by others included in Appendix 1. However, these wells are predominantly monitoring well installations or abandoned wells. It should be noted that 2 groundwater supply wells were identified east of the Rideau River and located well outside the theoretical radius of influence.

Furthermore, the area surrounding the site is serviced by municipal water supplies. Therefore, dewatering activities at the site are therefore not expected to cause any interference to the water supply of surrounding properties or other negative impacts.

Municipal water is available in the immediate area. However, in the event that the taking of water is shown to cause negative impacts to the water supplies of unknown existing users/sources that were in use prior to construction, the owner shall take action to make available a supply of water equivalent in quality and quantity of their typical takings, or shall compensate those affected for reasonable costs for doing so, or shall reduce water taking amounts to alleviate the negative impacts. The owner shall provide temporary water supplies, to those affected, to meet their typical takings or compensate such persons for reasonable costs associated to do so until permanent restoration of the affected water supply or an equivalent source.

4.3 Soil, Surface Water and Groundwater

A search of the MECP Brownfields Environmental Site Registry was conducted as part of the assessment of the site, neighbouring properties and the general area. No Brownfield sites were located within 500 m of the subject site.

Following the completion of a Phase II Environmental Site Assessment (ESA) by others at the subject site, it was determined that all groundwater samples analysed for metals, VOCs, PHCs and PAHs were in compliance with MECP Table 3 standards. Fill material impacted with mercury concentrations as well as electrical conductivity and sodium adsorption ratio exceeding MECP Table 3 standards have been identified on the subject site. Native soil impacted with benzo(a)pyrene and fluoranthene concentrations as well as electrical conductivity was also encountered on the property. The site is not considered to be in compliance with the O.Reg. 153/04 criteria for the proposed land use and requires a soil remedial/removal program.

It is anticipated that the material on site will be disposed of as per the MECP policy, *Management of Excess Soil - A Guide for Best Management Practices* dated January, 2014.

With respect to nearby surface water bodies, the Rideau River is located approximately 80 m to the north, 110 m to the east and 350 m to the south from the subject site due to meandering nature of the watercourse. Given the location of the river, it's located well outside the theoretical radius of influence that will develop as a result of the water taking at the subject site. As such, adverse effects to surface water features resulting from dewatering activities at the subject site are expected to be negligible.

The groundwater that is pumped from the site excavation must be managed in an appropriate manner. The contractor will be required to implement a water management program to dispose of the pumped water. It is expected the groundwater will be discharged to the City of Ottawa sewer system in accordance with the City Sewer Use By-Laws. Dependant upon the results of the baseline test to be performed for the discharge permit application, the City of Ottawa will determine the appropriate discharge location (storm versus sanitary sewer), on-site treatment or if off-site disposal is required.

4.4 Adjacent Permits to Take Water

It is understood that Robinson Village LPIV Limited Partnership has an EASR in place for the proposed water taking at the subject site and is for construction dewatering with a maximum taking of 400,000 L/day.

A search of the MECP Permit to Take Water database provided no active PTTW within 500 m of the subject site. A search of the MECP Environmental Activity and Sector Registry (EASR) database also provided no additional registries within 500 m of the subject site.

Given there are no active PTTW within 500 m of the subject site, the risk of cumulative impacts resulting from multiple PTTW in close proximity to each other is considered negligible.

5.0 STATEMENT OF LIMITATIONS

The recommendations provided in this report are in accordance with our present understanding of the project.

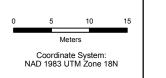
A hydrogeological review of this nature is a limited sampling of a site. The recommendations are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around the test locations. Should any conditions at the site be encountered which differ from those at the test locations, we request notification immediately in order to permit reassessment of our recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Robinson Village LPIV Limited Partnership, TC United Development, or their agent(s) is not authorized without review by Paterson Group for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

Nicholas Zulinski, P.Geo., géo.

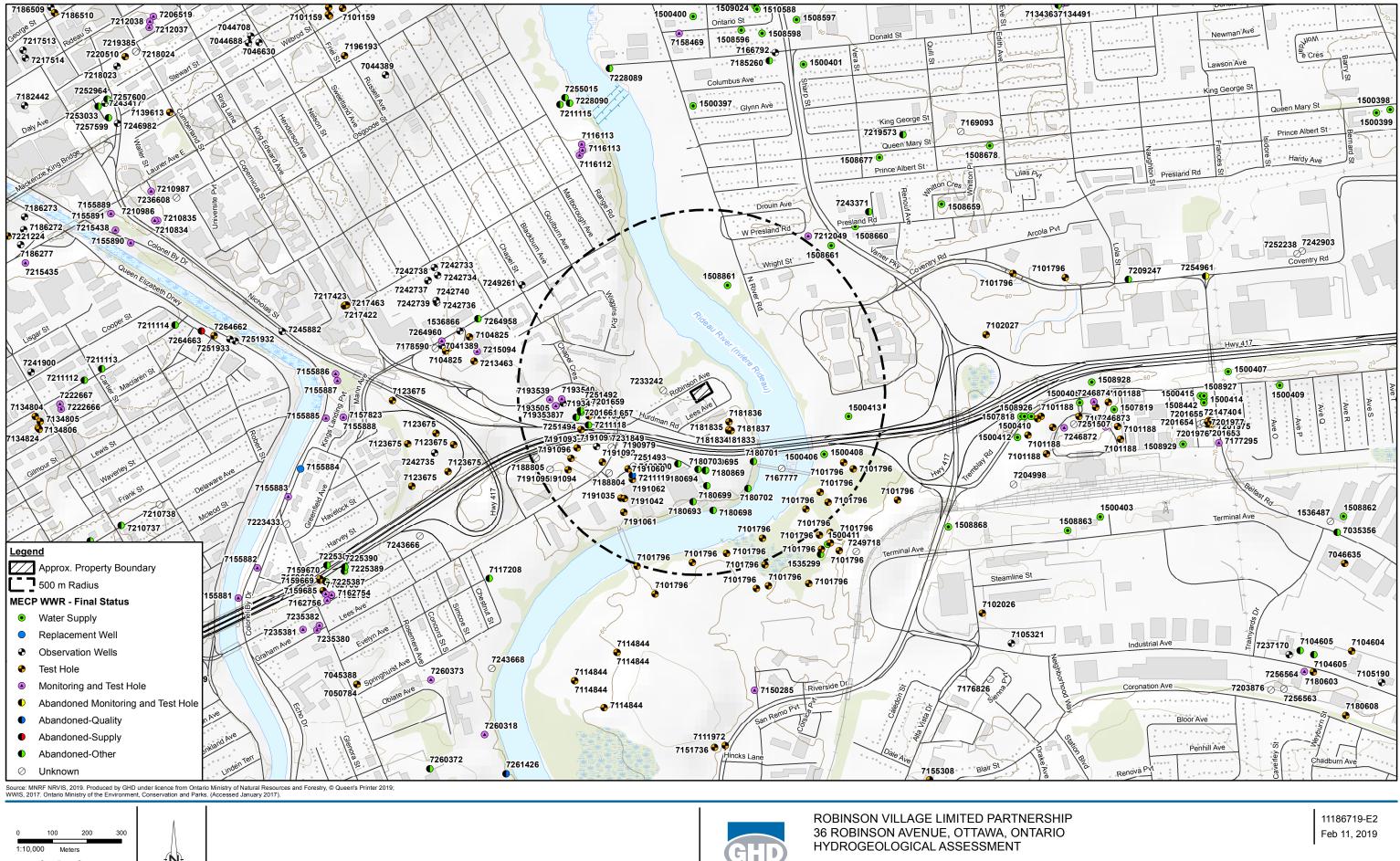
Carlos P. Da Silva, P.Eng., ing., QP_{ESA}



APPENDIX 1

Figure 1.2 - Site Plan (by Others)

Figure 2.3 - MECP Water Well Records (by Others)



ROBINSON VILLAGE LPIV LIMITED PARTNERSHIP 36 ROBINSON AVENUE, OTTAWA, ONTARIO HYDROGEOLOGICAL ASSESSMENT

SITE PLAN

FIGURE 1.2

11186719-A1 Dec 20, 2019

Coordinate System NAD 1983 UTM Zone 18N

MECP WATER WELL RECORDS

FIGURE 2.3

APPENDIX 2

PG5231 - Soil Profile and Test Data

Borehole Log Records (by Others)

PG5231 - Test Hole Location Plan

Figure 3.1 - Investigative Locations (by Others)

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, On	tario k	(2E 7J	5		Ot	tawa, Or	ntario	•		
DATUM Approximate elevations ob	otaine	d fron	n othe	ers.					FILE NO. PG5231	
REMARKS								_	HOLE NO. TO 1 00	
BORINGS BY Hydraulic Shovel				D	ATE 2	2020 Feb	ruary 21		TP 1-20	1
SOIL DESCRIPTION	РГОТ		SAN	IPLE		DEPTH (m)	ELEV. (m)		sist. Blows/0.3m mm Dia. Cone	er on
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE Pr ROD	(11)	(11)	O Wa	ater Content %	omete
GROUND SURFACE	STF	Т	NUN	RECC	N OF			20	40 60 80	Piezometer Construction
						0-	-59.40			1
FILL: Brown silty sand, trace gravel, organics and debris							-58.40			
1.40		G	1				-38.40			
GLACIAL TILL: Brown silty sand,		_ G	2			2-	-57.40			-
occasional cobbles and obulders, some clay, trace gravel										
- grey by 3.2 m depth						3-	-56.40			-
		_ G	3			4-	-55.40			-
										-
						5-	-54.40			-
						6-	-53.40			
6.20 End of Test Pit	<u>^^^^</u>	-								-
Refusal to excavation on bedrock surface @ 6.2m depth										
(TP dry upon completion)										
								20 Shear	Strength (kPa)	⊣ 00

SOIL PROFILE AND TEST DATA

 \blacktriangle Undisturbed \triangle Remoulded

154 Colonnade Road South, Ottawa, On	tario K	(2E 7J	5		Ot	tawa, Or	ntario	•			
DATUM Approximate elevations ob	otaine	d fron	1 othe	ers.					FIL	е NO. PG5231	
REMARKS									но	TP 2-20	
BORINGS BY Hydraulic Shovel				D	ATE 2	2020 Feb	ruary 21			IF 2-20	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)			t. Blows/0.3m n Dia. Cone	on
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(11)	(11)	• V	Vate	r Content %	Piezometer Construction
GROUND SURFACE			Ŋ	RE	zo	0-	-58.55	20	40	60 80	ĒŎ
FILL: Brown silty sand, trace organics, gravel and debris											
		⊒ G	1] -] -	-57.55				
GLACIAL TILL: Brown sandy silt, some clay, trace gravel, occasional cobbles and boulders		_ _ G	2			2-	-56.55				
- grey by 2.9m depth		G	3			3-	-55.55				
							-54.55				
5.90						5-	-53.55				¥
End of Test Pit		-									
Refusal to excavation on bedrock surface @ 5.9m depth											
(Open hole GWL @ 5.4m depth)								20	40	60 80 11	00
										rength (kPa)	

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, On	tario k	(2E 7J	5			tawa, Or		е			
DATUM Approximate elevations obtained from others.									FILE NO	PG5231	
REMARKS									HOLE N	ר ר	
BORINGS BY Hydraulic Shovel				DA	TE 2	2020 Feb	ruary 21			⁵ TP 3-20	
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)		lesist. Bl 50 mm Di	ows/0.3m a. Cone	er on
	STRATA	ТҮРЕ	NUMBER	~ RECOVERY	N VALUE or RQD		(11)	0	Vater Co	ntent %	Piezometer Construction
GROUND SURFACE	STI	Ĥ	IUN	RECO	N Or V		50.00	20		50 80	Piez Con:
						0-	-58.60				
FILL: Brown silty sand, trace gravel, organics and brick											
							F7 00				
		_]-	-57.60		· · · · · · · · · · · · · · · · · · ·		
		G	1								
2.00		_									
GLACIAL TILL: Brown silty clay.		_ G	2			2-	-56.60				
End of Test Pit											
(TP dry upon completion)											
								20 She	40 ar Streng	50 80 10 th (kPa)	bo
								▲ Undis		Remoulded	

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ont	ario K	2E 7J	5		Ot	tawa, Or	ntario	-			
DATUM Approximate elevations ob	taine	d fron	n othe	ers.					FILE NO.	PG5231	
REMARKS									HOLE NO		
BORINGS BY Hydraulic Shovel				D	ATE 2	2020 Feb	ruary 21			TP 4-20	
SOIL DESCRIPTION	РІОТ		SAN			DEPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia		er ion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD	(,	(,	• v	/ater Con	tent %	Piezometer Construction
GROUND SURFACE	Ñ	•	Ĩ	REC	zö	0-	-58.30	20	40 6	0 80	ы С Б
FILL: Brown silty sand, trace gravel, organics and debris											
		- G	1			1-	-57.30				
GLACIAL TILL: Brown clayey silt, 2.30 Some sand, trace gravel		G	2			2-	-56.30				
(TP dry upon completion)											
								20 Shea ▲ Undist	40 60 ar Strengt		1 DO

SOIL PROFILE AND TEST DATA

	FILE NO.
	PG5231
ATE 2020 February 21	
DEPTH ELEV.	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone
N VALUE OF RQD	50 mm Dia. Cone Joint State
0+58.95	20 40 60 80 <u><u> </u></u>
1+57.95	
2-56.95	
	20 40 60 80 100 Shear Strength (kPa)

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Or	itario k	(2E 7J	5		Ot	tawa, Or	ntario				
DATUM Approximate elevations o	btaine	d fron	n othe	ers.					FILE NO.	PG5231	
REMARKS									HOLE NO.		
BORINGS BY Hydraulic Shovel	_			D	ATE	2020 Feb	ruary 21	1		TP 6-20	
SOIL DESCRIPTION	РІОТ		SAN	IPLE		DEPTH (m)	ELEV. (m)		esist. Blov 0 mm Dia.		er ion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(,	(,				Piezometer Construction
GROUND SURFACE	STR	ΤТ	NUM	ECO	N V				/ater Conte		Piezo
GROUND SURFACE				<u>н</u>		0-	-58.90	20	40 60	80	шU
FILL: Brown silty sand, trace gravel											
and debris											
						1-	-57.90				
<u>1.5(</u>		_ G	1								
GLACIAL TILL: Brown clayey silt, some sand and gravel		_ u				2-	-56.90				
2.4(2	50.50				
<u>Z</u> . 4		-									
		_									
GLACIAL TILL: Grey sandy silt, some clay, trace gravel		_ G	2			3-	-55.90				
Some day, have graver											
						4-	-54.90				
						5-	-53.90				
5.8(G	3								¥
End of Test Pit	<u></u>	-									
Refusal to excavation on bedrock surface @ 5.8m depth											
(Open hole GWL @ 5.74m depth)											
								20	40 60		DO
								Shea	ar Strength urbed △ F	(kPa) Remoulded	

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, St, is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

Low Sensitivity:	St < 2
Medium Sensitivity:	2 < St < 4
Sensitive:	$4 < S_t < 8$
Extra Sensitive:	8 < St < 16
Quick Clay:	St > 16

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50 0-25	Poor, shattered and very seamy or blocky, severely fractured Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler
G	-	"Grab" sample from test pit or surface materials
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC%	-	Natural water content or water content of sample, %
LL	-	Liquid Limit, % (water content above which soil behaves as a liquid)
PL	-	Plastic Limit, % (water content above which soil behaves plastically)
PI	-	Plasticity Index, % (difference between LL and PL)
Dxx	-	Grain size at which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Cc	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10
0	•	and the second discuss the second

Cc and Cu are used to assess the grading of sands and gravels: Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio)	Overconsolidaton ratio = p'c / p'o
Void Rati	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

				BOR	EHOLE No.:	BI	H1						Е	SOF	RE⊢	IOL	E L	OG)
		Gli	10	ELE\	ATION:	58.	.30	m									f _1		•
PRO	JECT:	Geote	chnical Investigation										SS S SS A	plit Sp uger S	LEC oon Sample	<u>SEN</u>			
			bbinson Avenue R. Vanden Tilla	ort					bbokb	.+		 ₹		helby /ater L					
			21 January 20									°	N	/ater c tterbei		• •			
SCA	LE		STRATIGRAPHY		MONITOR WELL			SAM	PLE D	ATA			S N P	plit Sp enetra	oon s tion In	ample dex b	ased or		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDI	OF ROCK			State	Type and Number	Recovery	OVC	Penetration Index / RQD	□ (S ▲	Cu S Cu S S P	hear S ensitiv hear S ocket	Streng Streng vity Va Streng Penet	th bas th bas lue of th bas romet	ed on ed on Soil ed on er	Lab Va	'an
neters	58.30		GROUND SURI						%	ppm	Ν	10	50kPa 20	CALE 10 30	FOR ^{10kPa}	TEST 1504	RESU Pa 2	LTS 200kPa 80	90
0.5			FILL - Silty sand, some trace gravel, brown, me loose Upper 0.6 m frozen	e clay, bist,	99.17 - 0.30			SS1	25	11	5	•							-
2.0	56.6	×××	SILTY SAND- some cl some gravel, brown, m saturated, compact to	oist to	1.52 — Screen — •			SS2	63	25	26								-
3.0 3.5	55.3		SANDY SILT- some cl trace gravel, grey, satu compact		WL 2.92 — 01/25/2019	×		SS3 SS4	100	11 12	41		•						_
4.0							X	SS5	71	9	13							+	_
4.5 5.0	53.7		Borehole terminated at mbgs	4.6	- 4.57 —													+	
5.5																		+	_
6.0																		\pm	_
6.5													_				_	+	-
7.0														+				+	+
7.5														+				\pm	
8.0												_	_				_	+	_
8.5														+				+	-
9.0																	_	+	-
	neters be		round surface mate based on shoring (

		Gł	1D		EHOLE No.: /ATION:									BO Page		-		-		i
			- had a state of the state of t										SS	Split S Auger	<u>LE</u> Spoor	EGEI				
LOC	ATION:	36 Ro	binson Avenue											Shelb						
DES	CRIBED	BY:	R. Vanden Tilla	art	CHECKED B	Y:		B. Vazl	hbakł	nt		Ţ		Water						
DATE	E (STAR	T):	21 January 201	9	DATE (FINIS	H):		21 Janu	ary 2	019		-	4	Water Atterb	erg li	mits (%	6)			
SCA		>	STRATIGRAPHY		MONITO			SAM		DATA		•		Penet Split S Penet	Spoor ration	n samp	le based			
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDR	OF OCK			State	Type and Number	Recovery	OVC	Penetration Index / RQD	∆ □ S	Cu	Shear Shear Sensit Shear Pocke	Stre Stre tivity Stre et Per	ngth ba ngth ba Value ngth ba netrom	ased of Soi ased eter	on La il on	ab Va	an
neters	58.60		GROUND SURF	ACE					%	ppm	N	1	50k	SCAL	E FO	R TES	T RE	SULT	S)kPa	
0.5			FILL - Silty sand, some some gravel, organics, construction debris, bro damp to moist, very loo compact	wn,	99.51 — 0.30 — Riser — Bentonite —			201		_	10									-
1.0			Upper 0.6 m frozen Black staining and PHC	odour	1.22-		Å	SS1	83	7	19		_							ļ
1.5			from 1.2 to 2.4 mbgs		Sand — 1.52 —		\mathbb{X}	SS2	33	17	13		•							
2.0					WL 1.91 — 01/25/2019		\mathbb{N}	SS3	29	13	2	•			_					-
2.5							$\left[\right]$	SS4	4		2	•								-
3.0					Screen —		\square	SS5	25	8	1	•								-
3.5	54.9		SANDY SILT- some cla trace gravel, grey, satu		-		M	000	22	0		_								_
4.0			very loose	utou,			Δ	SS6	33	6	1	-								-
4.5	54.0		Borehole terminated at mbgs	4.6	- 4.57 —															-
5.0 5.5																				_
6.0																			<u> </u>	_
6.5																			<u> </u>	+
7.0																			_	-
																			_	1
7.5 8.0																				-
8.5																			_	-
8.5 9.0														-	+				_	
OTES:			round surface																<u> </u>	1

BĠS $\frac{2}{2}$ $\frac{1}{2}$ SOIL AND BEDROCK Solic AND SOLIC AN			Gł	ID		EHOLE No.: _									-	RE	-			3
CUENT: 1000000000000000000000000000000000000					ELEV		55	1.40	JIII						Page					
LOCATION: 38 Robinson Avenue R. Vanden Tillaari CHECKED BY: B. Varthadxin B. Varthadxin With Level														ss	Split S		JEN	Ū		
DeSCRIBED BY: R. Vanden Tillaart CHECKED BY: B. Vazhbakti DATE (FINISH): 22 January 2019 DATE (FINISH): 22 January 2019 North (FINISH): 20 January 2019 North (FINISH):		_] GS	Auger	Samp				
Decomposition Invaluent metal Decomposition Decomposition Invaluent metal DATE (START): 22 January 2019 DATE (START) 22 January 2019 Invaluent metal SCALE STRATIGRAPHY MONTOR SAMPLE DATA Invaluent metal Invaluent metal Debb Signed Signed Signed Signed Signed Invaluent metal Inval																				
SCALE STRATIGRAPHY MONITOR SAMPLE DATA Depending Signed Strate Server and server Sample Data Signed Signed <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td>Water</td><td>conter</td><td>` '</td><td></td><td></td><td></td></td<>													0		Water	conter	` '			
SURLE SIMPLEDING UELL SUPPLEDING Permandio Instance and on Develor Instance And O	DATI	E (STAR	T):	22 January 201	9				22 Janu	ary 2	019				Penet	ration I	ndex b	ased	on	
Depth BSS Description of SOLAND BEDROCK Description of SOLAND BEDROCK Description of BEBROR BEDROCK Description of BEBROR BEBRO	SCA	ALE		STRATIGRAPHY					SAM		ΔΑΤΑ		•	N	Penet	ration li	ndex b	ased c	on	
0.5 Full-Silly send. some gravel, brow, most, wery lose to oppact 1.0 SS1 67 28 13 1.5 Sill TY SAND- some clay, some gravel, grey to brown, saturated, lose to compact SS2 4 4 3.5 Sill TY SAND- some clay, some gravel, grey to brown, saturated, lose to compact SS2 4 4 4 3.6 Start atel, lose to compact WL 2.97 - 0 SS3 58 42 17 4.5 64.8 Borehole terminated at 4.6 SS5 71 16 4 4 5.6 Borehole terminated at 4.6 SS5 71 16 4 4 5.6 Borehole terminated at 4.6 SS5 71 16 4 4 5.6 Borehole terminated at 4.6 SS5 71 16 4 4 5.7 Borehole terminated at 4.6 5 5 5 5 5 5 6.0 SS5 71 SS4 5 6 4 4 4 6.0 SS5 7 SS4 5 5 5 5 5 5 </td <td>Depth BGS</td> <td>Elevation (m)</td> <td>Stratigraphy</td> <td>DESCRIPTION SOIL AND BEDF</td> <td>OF ROCK</td> <td></td> <td></td> <td>State</td> <td>Type and Number</td> <td>Recovery</td> <td>OVC</td> <td>Penetration Index / RQD</td> <td>∆ □ S</td> <td>Cu</td> <td>Shear Shear Sensi Shear</td> <td>Streng Streng tivity Va Streng</td> <td>oth bas oth bas alue of oth bas</td> <td>ed on ed on Soil ed on</td> <td>Lab V</td> <td>Vai /an</td>	Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDF	OF ROCK			State	Type and Number	Recovery	OVC	Penetration Index / RQD	∆ □ S	Cu	Shear Shear Sensi Shear	Streng Streng tivity Va Streng	oth bas oth bas alue of oth bas	ed on ed on Soil ed on	Lab V	Vai /an
0.5 Full-Silly send. some gravel, brow, most, wery lose to oppact 1.0 SS1 67 28 13 1.5 Sill TY SAND- some clay, some gravel, grey to brown, saturated, lose to compact SS2 4 4 3.5 Sill TY SAND- some clay, some gravel, grey to brown, saturated, lose to compact SS2 4 4 4 3.6 Start atel, lose to compact WL 2.97 - 0 SS3 58 42 17 4.5 64.8 Borehole terminated at 4.6 SS5 71 16 4 4 5.6 Borehole terminated at 4.6 SS5 71 16 4 4 5.6 Borehole terminated at 4.6 SS5 71 16 4 4 5.6 Borehole terminated at 4.6 SS5 71 16 4 4 5.7 Borehole terminated at 4.6 5 5 5 5 5 5 6.0 SS5 71 SS4 5 6 4 4 4 6.0 SS5 7 SS4 5 5 5 5 5 5 </td <td>neters</td> <td>59.40</td> <td></td> <td>GROUND SURF</td> <td>ACE</td> <td>-</td> <td></td> <td></td> <td></td> <td>%</td> <td>ppm</td> <td>N</td> <td></td> <td>50</td> <td>SCAL</td> <td>E FOR 100kPa</td> <td>TEST</td> <td>RESU</td> <td>JLTS 200kPa</td> <td>a</td>	neters	59.40		GROUND SURF	ACE	-				%	ppm	N		50	SCAL	E FOR 100kPa	TEST	RESU	JLTS 200kPa	a
0.5 Upper 0.6 m trozen Riser Riser No				FILL - Silty sand, some	gravel,	100.24 -	F							0 2	0 30	40	50 60			_90
1.0	0.5			compact																
1.5 .5 51.1 SILTY SAND- some clay, some gravel, grey to brown, some gravel, area to compact SS2 4																				
1.5 Sand - 1.52 - 1	- 1.0					1.22 -		X	SS1	67	28	13		•						
2.0 57.1 SILTY SAND- some clay, some clay, saturated, loose to compact Screen SS3 58 42 17 0 0 0 3.0 SS4 58 26 8 0	1.5					Sand —														
2.0 57.1 SILTY SAND-some clay, some gravel, grey to brown, some gravel, grey to brown, some gravel, grey to brown, sturated, loose to compact Screen SS3 58 42 17 • <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>M</td><td>SS2</td><td>4</td><td></td><td>3</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								M	SS2	4		3	•							
2.5 SILTY SAND-Some clay, saturated, loose to compact SS3 58 42 17 • <td>2.0</td> <td></td> <td></td> <td></td> <td></td> <td>Screen</td> <td></td> <td>\square</td> <td></td>	2.0					Screen		\square												
3.0 3.5 4.0 3.5 54.8 Borehole terminated at 4.6 4.57 5.0 54.8 Borehole terminated at 4.6 4.57 16 1 1 7.5 8.0 8.5 1 1 1 1 1 8.5 9.0 1 1 1 1 1 1 9.0 1000000000000000000000000000000000000	25	57.1		SILTY SAND- some cla	ay,															
3.5 4.0 54.8 Borehole terminated at 4.6 5.0 54.8 Borehole terminated at 4.6 5.0 6.0 6.0 6.5 6.0 6.5 6.0 6.5 6.0 6.6 6.0 6.7 6.0 6.8 6.0 6.9 6.0 6.0	2.5			some gravel, grey to br saturated, loose to com	own, npact			X	SS3	58	42	17		•						
3.5 4.0 54.8 Borehole terminated at 4.6 5.0 54.8 Borehole terminated at 4.6 5.5 6.0 6.5 6.0 6.5 7.0 7.5 8.0 6.5 8.5 6.5 9.0 0 0.0 <td>3.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>T</td> <td></td>	3.0						T													
3.5 4.0 54.8 Borehole terminated at 4.6 5.0 5.5 6.0 1 1 1 6.0 1 1 1 1 1 7.0 1 1 1 1 1 7.5 1 1 1 1 1 8.0 1 1 1 1 1 9.0 1 1 1 1 1 10 1 1 1 1 1 10 1 1 1 1 1 10 1 1 1 1 1 10 1 1 1 1 1 10 1 1 1 1 1 10 1 1 1 1 1 1 10 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 10 1 1 1 1 1						01/25/2019		M	SS4	58	26	8								
4.5 54.8 Borehole terminated at 4.6 5.0	3.5							\square			20									
4.5 54.8 Borehole terminated at 4.6 5.0	10							\square												
5.0 Borehole terminated at 4.6 Imbgs	4.0							X	SS5	71		16		•						
5.0 Borehole terminated at 4.6 5.5	4.5	54 8				4 57 -		\vdash												
5.5 6.0 6.5 7.0 8.0 8.1 9.0		04.0			4.6	1.01														
6.0	5.0																			
6.0	55																			
6.5 7.0 7.5 8.0 8.5 9.0 OTES:	5.5																			
7.0 -<	6.0																			
7.0 -<																				
7.5 8.0 8.5 9.0 9.0	6.5																			
7.5 8.0 8.5 9.0 9.0	7.0																			
8.0 8.5 9.0 OTES:																				
8.5 9.0 IOTES:	7.5																		\perp	
8.5 9.0 IOTES:	0												<u> </u>							
9.0 9.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.0																		\square	\downarrow
9.0 9.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.5																			\downarrow
IOTES:																				
nego. motore polow ground sundou			elow a	round surface																

		Gł	Ð		EHOLE No. /ATION:									BOF Page:					;
PRO LOC/ DES	ATION:	Geote 36 Ro BY: _		art		BY:		B. Vazl	hbakł	nt			GS ST	Split Sp Auger S Shelby Water I Water o Atterbe	Sampl Tube _evel content	e t (%)	_		
SCA	LE		STRATIGRAPHY		MONIT			SAM	PLE C	ATA				Penetra Split Sp	boon s	ample	•		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDF	OF ROCK		-	State	Type and Number	Recovery	OVC	Penetration Index / RQD	∆ □ S	Cu Cu	Penetra Dynami Shear S Sensitiv Shear S Pocket	ic Con Streng Streng vity Va Streng Penet	e sam th bas th bas alue of th bas tromet	ple ed on ed on Soil ed on er	Field \ Lab Va	ane
meters	58.70		GROUND SURF						%	ppm	Ν	1	50k 0 2	SCALE Pa 10	FOR 00kPa 40 5	TEST 1504 50 60	RESU Pa 2 70	LTS 200kPa 80	90
0.5			FILL - Silty sand, some brown, moist, very loos loose	gravel, e to	99.45		X	SS1	4		5	•							
2.0	56.7		Black staining, PHC od 1.5 mbgs SILTY SAND- some gr some clay, grey to brow to saturated, compact	avel,	Sand — 1.52 — WL 1.69 — 01/25/2019	*		SS2	54	19	3	•							
- 3.0					Screen —			SS3 SS4	63 58	28 17	22		•	•					
4.0	54.4				4.57		X	SS5	88	14	16		•						
5.0	54.1		Borehole terminated at mbgs	4.6	4.57 —														
5.5																			
6.0																		+	+
6.5														-	-			+	+
7.0																		+	+
7.5																		_	+
- 8.0																			-
9.0																		_	+
	neters be		round surface mate based on shoring o	Irawing	1				<u> </u>		1	. 1		I			I		

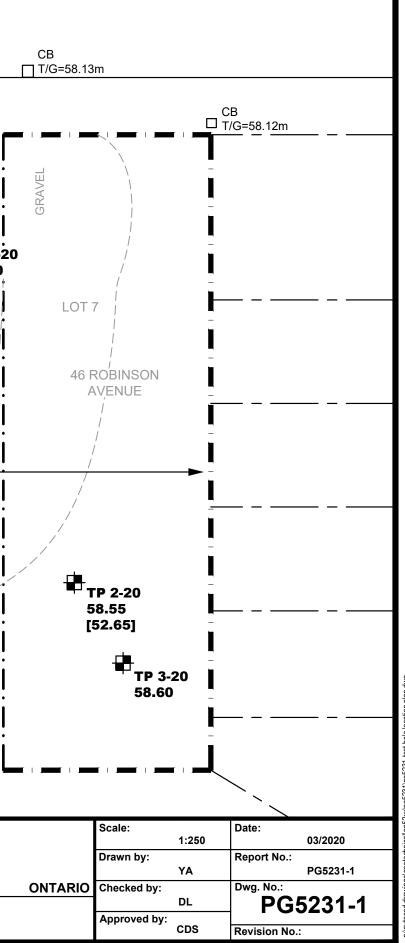
		Gł	ID												REI				G
				ELEV		58.	30	m					I	Page	: _1			1	
PRO	JECT:	Geote											GS	Auger	<u>LE</u> Spoon Samp y Tube		<u>ID</u>		
			S. Wheeler		CHECKED BY:			B Vazl	hbakh	nt		<u></u>			· Level				
			17 December 20									I	-	Atterb	conter erg lim	its (%	<i>'</i>		
SCA	LE		STRATIGRAPHY		MONITOR WELL			SAM	PLE C	ATA		•	N	Split S Penet	ration Spoon ration I	sampl ndex b	e based		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDR				State	Type and Number	Recovery	OVC	Penetration Index / RQD	∆ □ S	Cu Cu	Shear Shear Sensi Shear	nic Cor Stren Stren tivity V Stren et Pene	gth ba gth ba alue o gth ba	sed o sed o f Soil sed o	n Lab	
neters	58.30		GROUND SURF	-					%	ppm	Ν	1	50ki 0 <u>2</u> 0	SCAL	E FOR 100kPa 40	TEST 150 50 6	FRES 0kPa	ULTS 200k 0 80	S kPa 0 <u>9(</u>
0.5			FILL - Silty sand, some some gravel, possible o organics, rootlets, brow grey, moist, very loose	obbles, n and	99.14 - 5 0.61 - 🗙		$\overline{\mathbf{A}}$	SS1	71		26	0		•				_	_
1.0			compact				\square	SS2	71		17		••					\downarrow	
- 1.5 - 2.0					Cuttings —			SS3	54		3	•							
2.5	55.7		SILTY SAND- some cla some gravel, brown, me	ay, oist, very	WL 2.59 - 01/03/2019 Riser	⊻		SS4	54		20		0.						
3.0 3.5			loose to compact		Risei			SS5	71		15		•						
4.0							$\overline{\mathbf{A}}$	SS6	4		5	•	0						
4.5 5.0	53.7		SANDY SILT- some cla trace gravel, grey, satu very loose to very dens	rated,				SS7	92		3	•	-0					_	
5.5	53.0		Coarse sand layer enco at 5.2 mbgs Spoon refusal encounter	ountered ┌	5.18 – Bentonite –			SS8	100		50+		0			•		_	
6.0	52.7		5.3 mbgs SHALE- highly weathe fractured, black Auger refusal encounte	red and	5.79 — Sand — 6.10 —		I	RC1	100		0								
6.5			5.6 mbgs SHALE- very poor bec		Screen —			RC2	100		81							\pm	
7.0			good quality, black 0.1 m thick mud seam encountered at 6.1 mbg	js				1102	100		01							-	
7.5	51.0		Borehole terminated at mbgs	7.3	7.32 —		┛								-			\downarrow	
8.0																		\pm	
8.5															_			\dashv	
9.0																			
IOTES: mbgs: r Elevatio	neters b	elow g opproxi	round surface imate based on shoring c	Irawing															

REFER	ENCE No	o.:	11186719	-						ENC	CLO	SURE	No.:			i	
		GI		BOREHOLE No.:	BH6							BOF	REF	IOL	E L	OG	
		<u>e</u>		ELEVATION:	59.40) m						Page:	_1	_ (of <u>1</u>	_	
CLIE	ENT: TO	: Unite	d Group										LEC	GEN	D		
PRC	JECT:	Geote										Split Sp Auger \$		е			
											ST	Shelby	Tube				
		_								⊻ ∘		Water I Water o		t (%)			
DAT	E (STAR	T):	17 December 20	DATE (FINISH):	1	7 Decei	mber	2018			⊣ N	Atterbe	rg limi	its (%)		n	
sc	ALE		STR	ATIGRAPHY		SAM	IPLE [DATA			N	Split Sp Penetra Dynami	ation Ir	ndex b	ased or		
Depth BGS	Elevation (m)	Stratigraphy	DE SOII	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	OVC	Penetration Index / RQD	∆ □ S	Cu	Shear S Shear S Sensitiv Shear S Pocket	Streng Streng vity Va Streng Penet	th bas th bas alue of th bas trome	sed on I sed on I f Soil sed on ter	.ab Va	ane
meters	59.40						%	ppm	Ν	1	50k 0 2	SCALE Pa 10 0 30	FOR 00kPa 40 {	TEST 150 50 6	RESUI kPa 2 0 70	_TS 00kPa 	90
E			FILL - Silty sand, some moist, loose to very der	clay, trace gravel, dark brown, nse, possible cobbles													
- 0.5		NT: <u>TC United Group</u> JECT: <u>Geotechnical Investigation</u> ATION: <u>36 Robinson Avenue</u> CRIBED BY: <u>S. Wheeler</u> CHECKED E (START): <u>17 December 2018</u> DATE (FINI LE <u>STRATIGRAPHY</u> UDESCRIPTION OF SOIL AND BEDROCK			X	SS1	58		4	•	0		_				
- 1.0						SS2	33		50+		0			•		_	
													_			_	
- 1.5																_	
					X	SS3	75		21		0	•	-			_	
2.0	F7 4				А											-	
- 2.5	57.1	ÎÎÎ			Μ	004	00						+			+	
_				brown, saturated, 1005e to	M	SS4	83		11		• 0	·				+	
- 3.0					H											-	
- 25					X	SS5	88		13		••					-	
- 3.5					А								_			-	
- 4.0					Μ	SS6	0		9				-		_	-	
					Δ	330			9				-			-	
4.5																-	
5.0					X	SS7	83		10	-	••					-	
																-	
5.5					М	SS8	100		9		,		+			+	
					Δ											-	
					М								+			+	
6.5					X	SS9	100		22	-0		•					
						0040	00		50.	_			+			+	
7.0			-	-		SS10	33		50+	0			+ '	•		+	
	JZ.Z					RC1	100		92								
8.0																	
8.0						_											
						RC2	100		96								
8.5	5 0 -																
9.0	50.6		Borehole terminated at	8.9 mbgs													
NOTES		could r	not be installed due to the	e existence of a saturated sand	laver								-1	.			-
Boreho	ole backfil	led wit	ch sand, bentonite and at round surface	uger cuttings.	.4901.												
Elevati	ons are a	pproxi	mate based on shoring c	Irawing													

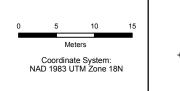
		G	1D	BORI	EHOLE No.:	В	H7							BC	DRE	EH	OL	ΕL	00	G
				ELEV	ATION:	59	.10	m						Pag	e: _	1	0	f _1		
CLIE	NT: <u>T</u>	C Unite	d Group										99	Split	L Spoo		EN	2		
PRO	JECT:	Geote	chnical Investigation												er Sar					
			obinson Avenue												by Tu					
			D.Cooper									₹ 0			er Lev er con		%)			
DATE	E (STAR	T):	18 November 20	019	-		1	8 Noven	nber	2019		•			berg tratic			ased o	'n	
SCA	LE		STRATIGRAPHY		MONITOR WELL			SAM	PLE C	DATA		•	N		Spoc etratio			ised or	ı	
	ion	aphy						er er	ery		ßD	Δ		Shea		ength	bas	ed on l		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDF	ROCK			State	Type and Number	Recovery	OVC	Penetration Index / RQD			Sens Shea Pock	sitivity ar Stre ket Pe	Valu ength enetro	ue of base omete	ed on er		
neters	59.10		GROUND SURF	ACE					%	ppm	Ν	1(50 0 2	SCA Pa 0 30	LE FC 100k	DR TI Pa 50	EST 150k 60	RESUI Pa 2 70	LTS 00kPa 80	a 90
			FILL - Sandy SILT, poc clayey silt, possible		0.46 -		М	SS1	42		16		•						+	+
1.0			cobbles/boulders, trace brown, moist, loose to o	e gravel, compact	_ ×		Ħ	000			-								+	_
1.0		\bigotimes		·	Backfill —		Й	SS2	63		7	•							+	+
2.0							\square	SS3	67		37				•				—	4
2.0	56.8	XX	CLAYEY SILT- some s	and.			Ħ												+	_
3.0			brown, moist, loose to o			\otimes	М	SS4	33		7	•				-	-	-	+	+
3.0							\square	SS5	75		14		•						—	_
4.0	55.3		SILTY SAND- trace to	some			Ħ												\pm	_
4.0			clay, grey, moist to wet		Riser	\otimes	М	SS6	71		18		•					_	+	_
5.0							\square	SS7	75		23			•					+	
5.0	53.8		CLAYEY SILT (TILL)	some			Ħ												+	-
6.0			sand and gravel, grey,				М	SS8	42		13		•			_	_	_	+	_
0.0			suitionard				\square	SS9	83		36				•				+	
7.0							Ĥ											-	+	+
7.0							М	SS10	54		53							_	+	_
8.0	51.3		SHALE- dark grey, free	sh, high	7.82 -			SS11	75		R								\pm	
0.0			strength, poor quality, la at 35°, with some calcit	aminated	Bentonite		F	SS12	100		R								+	_
9.0			defects, two noted dom defect sets, set 1 comp	ninant	9.01 —			RC13	100		37					_	_	_	+	+
			partings every 0.1-0.2 r clean, planar and smoo	m at 35°,	9.14														\mp	_
10.0			rough, set 2 comprises every 0.1-		Sand —														+	_
			9.02 m - 9.11 m, becon	ning				RC14	84		21					_	_	_	+	+
11.0			highly weathered, entire mass fractured		Screen — ►														\pm	
			9.6m, becoming very po quality													+	+		+	+
12.0			9.8m, becoming with configuration fractured, highly weather	ered				RC15	100		0								+	7
. 2.0	46.9		zones, up to 0.05 m thi approximate 0.1 m spa	ck, at 🛛 🗸	12.19 —		⊢									\pm			\pm	+
13.0			11.6 m, rock mass entir fractured, highly weath	rely												+	-	_	+	+
10.0			with zones of silty sand													_			\mp	4
14.0																			+	-
I4.0															T					
mbas: n	neters b	elow g	round surface mate based on shoring c																	

		GI	ID		EHOLE No.: _													ELC		ì
				ELEV	ATION:	58	.60	m						Page				_1_		
CLIE	NT: <u>T</u>	C Unite	d Group									\square	SS	Split	L Spoo		END			
	-												GS	Auge	er San	nple				
			obinson Avenue												by Tul er Lev					
			D.Cooper											Wate	er cont	tent (?	,			
DAT	= (51AR	 	18 November 20	19	_ DATE (FINISH): MONITOR		1	8 Noven	nber	2019		•		Pene	berg l etratio	n Ind	ex bas	sed on		
SCA	LE		STRATIGRAPHY		WELL			SAM	PLE C	DATA		•	N	Pene		n Inde	, ex base			
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDR	OF OCK			State	Type and Number	Recovery	OVC	Penetration Index / RQD	∆ □ S	Cu	Shea Shea Sens Shea	ar Stre ar Stre sitivity ar Stre	ength ength Value ength	sample based based e of So based meter	d on Fie d on La oil d on	eld V ib Va	/a
eters	58.60		GROUND SURF	ACE	-				%	ppm	Ν	1(50k	SCAI	LE FC		ST RI	ESULT a 200 70 8	FS JkPa	_
			FILL - Silty sand, with so gravel, presence of bric	ome	-		М	SS1	96		13		•		40	50		<u></u>		3
		\bigotimes	fragments, organic pock brown, moist, loose to c	kets,	0.46 —		Ħ												\vdash	-
1.0		\bigotimes		ompact			Ш	SS2	92		9	•		_			+	_	\vdash	_
					Backfill		М	SS3	63		14		•				\pm	+	F	-
2.0	56.3						Ĥ							_	_		_	_	-	-
			CLAYEY SILT- some gr and sand, brown, satura	ated,			M	SS4	46		38				•	+	1	1	\vdash	_
3.0			compact to dense		Riser		\square	SS5	71		16		•					<u> </u>		-
	54.8						A	000	<i>`</i> '		10		•	_			—	—	-	
4.0	-		SANDY SILT- some gra trace of clay, grey, satur	avel, rated,			М	SS6	83		14		•				1	+		_
			loose to compact				A	SS7	79		7						_			-
5.0	53.3						Д	337	79		1			_					<u> </u>	_
	00.0		SANDY GRAVEL- some grey, saturated, compare				М	SS8	25		22			•			_			-
6.0	52.3		dense _becoming glacial till	-	6.27 -			SS9	100		R			-	-		_		-	-
			SHALE - dark grey, lam at 0-5°, fresh, medium to	inated			T										_	—	—	_
7.0			strength, fair quality, on	ly defect				RC10	100		57						_			-
			set comprises partings a	at 0-5°	Bentonite									_			_		\vdash	_
8.0			8.01 m, becoming excel	llent													—		F	_
			quality			目		DC14	100		100								<u> </u>	_
9.0					8.92- 9.07-			RC11	100		100			-		-	+	+	\vdash	_
			9.65 m, becoming fair q	ualitv	Sand —												\pm	+		_
10.0			elee, becoming fair q					DC /-					_		_		_	+	<u> </u>	_
					Screen —			RC12	92		70				-	-	\mp	—	F	_
11.0			11.2 m, becoming excel	llent													\pm	+	\vdash	-
			quality	iii ci ii				RC13	100		100	-		+	+	+	+	+	-	_
12.0	46.5				12.12-										\mp	+	\mp	—	—	_
																				_
13.0														-			+	+	\vdash	_
																	\pm	+	F	_
14.0												_		-+	+	+	+	+	-	-
OTES:		elow a	round surface					ľ											·	-
			imate based on shoring d	rawing																

REFER	ENCE N	o.:	11186719	_								ENCLO	DSUF	REN	0.:			9	
		C		BOR	EHOLE No.:	В	H9						B	DR	EH	OL	Εl	_0(G
				ELE\	ATION:	59	.10	m					Pag	je: _	1	of	f _2	2	
CLIE	ENT: TO	C Unite	ed Group													EN	<u>)</u>		
PRC	JECT:	Geote	abaical lava atientica									SS 💽							
			obinson Avenue									ST 🖉	She	lby Tu	ube				
			D.Cooper									▼ ∘		er Le er cor		(%)			
DAT	E (STAR	T): _	9 December 20	19			91	Decem	ber 2	2019		• N	Pen		on In	dex ba		on	
SC	ALE		STRATIGRAPHY		MONITOR WELL			SAM				• N	Pen	t Spor	on Inc	mple lex ba samp	ased o	n	
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDF				State	Type and Number	Recovery	OVC	Penetration Index / RQD	□ Cu S ▲	She She Sen She Poc	ar Str ar Str sitivity ar Str ket Po	rengti rengti y Vali rengti enetr	n base n base ue of s n base omete	ed on ed on Soil ed on er	Lab	
meters	59.10		GROUND SURF						%	ppm	Ν	5 10	SCA 0kPa 20 3	1004 1004	OR T (Pa) 50	EST I 150kF	RESU	JLTS 200kP 80	a 90
_			Augered to practical rein no sampling	fusal with	_												-	+	
- 1.0																	+	+	_
																	-	+	
2.0													-			_	+	+	_
- 2.0					Sand —												+	\mp	_
- 3.0																	+	+	_
E																	+	+	_
- 4.0					Riser — 🗭												+	\mp	_
																	+	+	_
- 5.0																	+	+	
																	+	+	_
6.0																	_	+	<u> </u>
																	+	+	
7.0																	—	—	_
	51.7		SHALE - Highly weather	ered and	7.40-												+	+	
- 8.0			fractured, dark grey to fresh with completely w	black, reathered				RC1	87		9						+	+	
			zones, thinly laminated 20-30°. Dominant defe					NO1	01		Ŭ						-	+	
9.0			partings at approximate mm spacing		Bontarite												\pm	\pm	
			Approximately 50mm s crushed rock	eam of	Bentonite			RC2	100		50				-+		+	+	
g 10.0																	+	\mp	_
			Abundantly fractured, f														\pm	\pm	+
_ 11.0			completely weathered of seams	crushed	11.10-			RC3	92		14						_		
					Sand —												\mp	\mp	
12.0			Fresh, laminated at		11.81 —												\pm	\pm	\pm
			approximately 30°. Dor defects every 50 to 100) mm are				RC4	100		44		<u> </u>		_	_	_+	+	_
13.0			partings, occasional ca coatings, minor crushe	lcite d seams					100		-1-1						+	$\overline{+}$	
			(<5 mm) comprising of clayey sand every 300	silty													\pm	\pm	
_ 14.0			becoming more fracture	ed	Screen —									\vdash	-	+	+	+	—
		elow	round surface		. IP-0-0-17	• * * * i * i						I			1				
			imate based on shoring o	Irawing															
3																			


REFER	ENCE No	o.:	11186719	_								ENCL	SSU	RE N	o.:			9		
				BOR	EHOLE No.:	BI	Н9						R	OR	EН		F	<u>ــــــــــــــــــــــــــــــــــــ</u>	G	
		G												ge:					U	
	ENT: TO	Linite												l	_EG	EN	D			
			•									S					_			
			chnical Investigation									G				•				
			obinson Avenue					B 1/ 1				⊠ s [.] ▼		eiby i iter Le						
			D.Cooper								-	0	Wa	iter co	ntent	• •				
DAT	E (STAR	T):	9 December 20	19				Decem	ber 2	2019		• N	Pe	erberg netrati	on In	dex b	based	lon		
SC	ALE	λ	STRATIGRAPHY		MONITOR WELL			SAM	PLE [DATA		• N	Pe	lit Spo netrati namic	on Ind	dex b	ased	on		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDF	OF ROCK			State	Type and Number	Recovery	OVC	Penetration Index / RQD	□ C S ▲	u Sh u Sh Se Sh Po	ear St ear St nsitivit ear St cket P	rengt rengt sy Val rengt enetr	h bas h bas ue of h bas romet	sed or sed or Soil sed or ter	n Lab n	o Var	ne
meters	59.10		GROUND SURF	ACE		-			%	ppm	N	10	SC ^{50kPa} 20	ALE F 100 30 4	OR T kPa <u>0 5(</u>	1504	RES (Pa <u>) 7(</u>	ULTS 200k <u>8</u> (S :Pa) <u>9</u> (b
F			Approximately 50 mm	crushed				RC5	84		30						-+	\rightarrow		
- 15.0			seams encountered at	14.6 and									_				-	-		
			14.8 mbgs comprising clayey gravel	of silty																
- 16.0			Crushed seams approverse of the seams approverse of the seams approved by the seams appr	kimately				RC6	88		29						\Rightarrow	\rightarrow		
	42.5		Borehole terminated at	16.6	16.38 — 🖾 E		Ц										-	-		
- 17.0			mbgs	10.0																
–																	-+	-+		
- 18.0																				
																	\rightarrow	\rightarrow		
																		-		
- 19.0																				
																		-		
- 20.0																				
																	\rightarrow	\rightarrow		
- 21.0																		-		
													_					-		
22.0																				
F																	-+	+		
₂ - 23.0																				
21/9																	-+	-+		
24.0																	-	-		
																_	\neg	\neg	_	
																	+	+		
25.0																				
													_				\dashv	\dashv	_	
26.0																	_	_		
																	\dashv	\neg	_	
ਸ਼ੁੱ⊢ ≚																	+	+		
																	\exists			
													_				\dashv	+		
ଛे⊢ 28.0 ⊑⊢																		_		
님 NOTES 는 mbgs:	meters be	elow g	round surface																	
≚ Elevati	ons are a	pprox	imate based on shoring o	drawing																
2																				

REFER	ENCE N	0.:	11186719							ENCL	OSU	RE N	lo.:		10		
		C		BOREHOLE No.:	BH	10					В	OR	EH	OLI	E LC)G	
		<u>e</u>		ELEVATION:	59.	20 m					Pa	ige:	1	of	_1_		
CLIE	ENT: TO	C Unite	ed Group							[END			
			chnical Investigation							∑ s] G		olit Spo Iger Si					
LOC	ATION:	36 R	obinson Avenue									elby T					
DES	CRIBED	BY:	D.Cooper	CHECKED BY:		B. Vaz	hbak	ht		₹ o		ater Le ater co		(0/)			
DAT	E (STAR	T):	10 December 20	DATE (FINISH):		10 Decer	nber	2019		⊢ ● N	At	terberg	g limit	s (%)	sed on		
SC	ALE		STR	ATIGRAPHY		SAM	IPLE I	DATA		• N	Sp Pe	olit Spo enetrat	on sa on Ind	imple lex bas	sed on		
Depth BGS	Elevation (m)	Stratigraphy		SCRIPTION OF AND BEDROCK		State Type and Number	Recovery	OVC	Penetration Index / RQD		u Sh u Sh Se Sh Po	near Si near Si ensitivi near Si near Si near F	trengt trengt ty Val trengt Penetr	h base ue of S h base ometer	d on Fie d on La oil d on	ıb Va	ne
meters	59.20		-	ROUND SURFACE			%	ppm	Ν	10	SC 50kPa 20	ALE F 100 30 4	FOR T IkPa	EST R 150kP	ESULT a 200 70 8	F S 0kPa 30 9	90
_			Augered to practical rel	usal with no sampling											1		<u> </u>
-																	
- 1.0																	
_															+		
- 2.0															+		
_															1		
- 3.0															+		
-															_		
- 4.0											_						-
_											_				—		
- 5.0											_				-		
6.0	53.1																
	52.9	È	BOULDER	sh, highly fractured, occasional							_				+		
- 7.0			seams of crushed rock	comprising of silty clayey sand		RC1	50		8						<u> </u>		
-			laminated at 0 to 10°		-										+		<u> </u>
8.0															1		
			Vertical joint, planar, ca	lcite coated encounterd from 8	3.2	RC2	83		9			_			+		
9.0			to 8.9 mbgs												—		
			Thinly laminated at 5 to	10°							_						-
			5 mm crushed seem of	sandy gravel encountered at §		RC3	100		67		_						
10.0			mbgs														
- - - - - - - - - - - - - - - - - - -			at 9.9 mbgs	of sandy gravel seam encounte	ered	T I					_				+		<u> </u>
<u>_</u> 11.0			Subvertical joint, clean, encountered at 10.1 ml	planar, rough to smooth		RC4	100		89						\pm		
0			Occasional joint at 45° smooth	every 300 mm, clean, rough to)						_				—		
12.0			Sinooun		-	₽									+		
						DOF	70		04						+		<u> </u>
13.0						RC5	79		94		1				1		
	45.7	E	Borehole terminated at	13.5 mbgs		L					+	-			+	-	-
- 14.0			Doronole terminated at	10.0 11090											—		_
							<u> </u>		<u> </u>					[I	<u> </u>
			round surface imate based on shoring c	Irawing													
Elevati																	


Approximately 70° joint, smooth, clean to rough encountered at 8.9 mbgs RC4 100 98	REFER	ENCE N	o.:	11186719	-						ENCLO	DSUF	RE N	o.:		11		
CLENT: TC United Group EGEND PRCLECT: Generational Investigation Dis S days many time LOCATION: 36 Robinson Avanue Dis S days many time Description Avanue Dis S days many time Description Avanue Dis S days many time Description Avanue Dis Cooper CHENT: TC United Group CHECKED BY: Description Avanue Discomber 2019 DATE (START): 10 Decomber 2019 DATE (START): 10 Decomber 2019 SCALE STRATIGRAPHY Scale Separation Tests and on the second on Laboration Tests and on Laboration Tests and on the second on Laboration Tests and the second on Laboratis and the second on Laboration Tests and the second on					BOREHOLE No.:	BH1	1					B	OR	EH	OLE	E LC)G	
ULINE: LUMESTONE Status Status <td></td> <td></td> <td>G</td> <td></td> <td>ELEVATION:</td> <td>59.2</td> <td>0 m</td> <td></td> <td></td> <td></td> <td></td> <td>Pa</td> <td>ge:</td> <td>1</td> <td>of</td> <td>_1_</td> <td></td> <td></td>			G		ELEVATION:	59.2	0 m					Pa	ge:	1	of	_1_		
PROJECT: Geotechnical Investigation EXIS 58 Robinom Avenue LOCATION: 38 Robinom Avenue Image: State Control (S) Image: State Control (S) DESCRIBED PY:	CLIE	ENT: TO	C Unite	ed Group							_				<u>end</u>			
LOCATION: 38 Returned Avenue Discontrol View Discontrol View Weter Level DESCRIBED BY: 10 December 2019 DATE (STRAT): 10 December 2019 SCALE STRATICRAPHY SMMPLE DATA Note Stream Color stream SCALE STRATICRAPHY SMMPLE DATA Note Stream Color stream Depth Sole Description for the stream of the strea				•														
DATE (STRT): 10 December 2019 DATE (FINSH): 10 December 2019 SCALE STRATIGRAPHY SAMPLE DATA December 2019 DATE (STRATIGRAPHY SAMPLE DATA December 2019 Solid And BEDROCK is get an of the strength in the stand on one of the strength in the stand one of the s	LOC	ATION:	36 R	obinson Avenue														
DATE (START): 10 December 2019 DATE (FINISH): 10 December 2019 SCALE STRATIGRAPHY SAMPLE DATA Depth g g g g g g g g g g g g g g g g g g g	DES	CRIBED	BY:	D.Cooper	CHECKED BY:		B. Vaz	hbak	nt						(0/)			
SCALE STRATIGRAPHY SAMPLE DATA Purphysical induction processing of participal induction processing of participal induction. Purphysical induction processing of participal induction. Purphysical induction. Purphysica	DAT	E (STAR	T): _	10 December 20	DATE (FINISH):		10 Decer	nber	2019		Γ	Atte	erberg) limit	s (%)			
Depth G <td>SC</td> <td>ALE</td> <td></td> <td>STR</td> <td>ATIGRAPHY</td> <td></td> <td>SAM</td> <td>IPLE [</td> <td>DATA</td> <td></td> <td>• N</td> <td>Spl Per</td> <td>it Spo netrati</td> <td>on sa on Inc</td> <td>mple lex base</td> <td>ed on</td> <td></td> <td></td>	SC	ALE		STR	ATIGRAPHY		SAM	IPLE [DATA		• N	Spl Per	it Spo netrati	on sa on Inc	mple lex base	ed on		
1.0 Augered to practical refusal with no sampling 2.0	Depth BGS	Elevation (m)	Stratigraphy			State	Type and Number	Recovery	OVC	Penetration Index / RQD		I She Ser Ser She Poo	ear St ear St hsitivit ear St cket P	rengtl rengtl y Val rengtl enetr	n based n based ue of So n based ometer	on Fie on La oil on	ıb Va	ne
1.0 Augered to practical refusal with no sampling 2.0	meters	59.20						%	ppm	Ν	5 10	SC/ ^{0kPa}	ALE F 100 30 4	OR T kPa 0 50	EST RE 150kPa	SULT 200 70 {	「 S)kPa 30 _ 9	90
2.0 3.0 3.0 3.0 4.0 5.0 5.0 53.8 6.0 53.1 SHALE: dark grey, fresh, thinly laminated at 0 to 5*, Defects comprisined of partings in line with bedding, dean, rough to smooth 7.0 75 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs Approximately 70 junts, smooth, clean to rough encountered at 8.9 mbgs 11.0 47.3 Borehole terminated at 11.9 mbgs 13.0 NOTES: Moders below ground surface				Augered to practical re	fusal with no sampling											+		
2.0 3.0 3.0 3.0 4.0 5.0 5.0 53.8 6.0 53.1 SHALE: dark grey, fresh, thinly laminated at 0 to 5*, Defects comprisined of partings in line with bedding, dean, rough to smooth 7.0 75 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs Approximately 70 junts, smooth, clean to rough encountered at 8.9 mbgs 11.0 47.3 Borehole terminated at 11.9 mbgs 13.0 NOTES: Moders below ground surface																		
3.0 4.0 4.0 5.0 5.0 53.8 6.0 53.1 SHALE-dark grey, fresh, thinly laminated at 0 to 5°, olean, rough to smooth, olean to rough encountered at 8.8 mgs Approximately 70° joint, smooth, clean to rough encountered at 8.8 mgs Approximately 70° joint, smooth, clean to rough encountered at 9.3 mbgs 11.0 47.3 Borehole terminated at 11.9 mbgs 13.0 NOTES: mdgs: Morest Selever	- 1.0												<u> </u>			+		
3.0 4.0 4.0 5.0 5.0 53.8 6.0 53.1 SHALE - dark grey, fresh, thinly laminated at 0 to 5*, clean, rough to smooth 7.0 75 8.0 State - dark grey, fresh, thinly laminated at 0 to 5*, clean, rough to smooth 8.0 State - dark grey, fresh, thinly laminated at 0 to 5*, clean, rough to smooth 9.0 State - dark grey, fresh, thinly laminated at 0 to 5*, clean, rough to smooth 10.0 RC3 100 9.0 Weathered/crusshd seam comprising of silty sand with some clay encountered at 8.8 mbgs RC4 10.0 Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs RC4 11.0 RC5 93 82 11.0 Freshole terminated at 11.9 mbgs RC5 93 82 11.0 Freshole terminated at 11.9 mbgs Implement of the second seco																		
4.0 5.0 53.8 5.0 53.1 SHALE - dark grey, fresh, thinly laminated at 0 to 5°. Defects comprisined of partings in line with bedding, clean, rough to smooth 8.0 RC2 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs Approximately 70° joint, smooth, clean to rough encountered at 8.9 mbgs 11.0 Approximately 45° joint, smooth, clean to rough encountered at 8.3 mbgs 11.0 47.3 Borehole terminated at 11.9 mbgs 13.0 NOTES: MOTES:	2.0												-			+		
4.0 5.0 53.8 IMESTONE 5.0 53.1 SHALE - dark grey, fresh, thinly laminated at 0 to 5°. RC1 70 7.0 Defects comprisined of partings in line with bedding, clean, rough to smooth RC2 67 44 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs RC3 100 94 10.0 Weathered/crusehd seam comprising of silty sand with encountered at 8.9 mbgs RC4 100 98 11.0 Approximately X6° joint, smooth, clean to rough encountered at 8.9 mbgs RC4 100 98 11.0 Ar.3 Borehole terminated at 11.9 mbgs RC5 93 82 0 13.0 Ar.3 Borehole terminated at 11.9 mbgs 0 0 0 0 14.0 Ar.3 Borehole terminated at 11.9 mbgs 0 0 0 0 14.0 Ar.3 Borehole terminated at 11.9 mbgs 0 0 0 0 14.0 Ar.3 Borehole terminated at 11.9 mbgs 0 0 0 0	-																	
5.0 53.8 LIMESTONE 6.0 53.1 SHALE - dark grey, fresh, thinly laminated at 0 to 5°. RC1 70 7.0 SHALE - dark grey, fresh, thinly laminated at 0 to 5°. RC2 67 44 9.0 State - dark grey, fresh, thinly laminated at 0 to 5°. RC2 67 44 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs Approximately 70° joint, smooth, clean to rough encountered at 8.9 mbgs RC4 100 98 11.0 Approximately 70° joint, smooth, clean to rough encountered at 9.3 mbgs RC5 93 82 0 0 11.0 47.3 Borehole terminated at 11.9 mbgs RC5 93 82 0 0 0 11.0 AT.3 Borehole terminated at 11.9 mbgs RC5 93 82 0	- 3.0															+		
5.0 53.8 LIMESTONE 6.0 53.1 SHALE - dark grey, fresh, thinly laminated at 0 to 5°. RC1 70 7.0 SHALE - dark grey, fresh, thinly laminated at 0 to 5°. RC2 67 44 9.0 State - dark grey, fresh, thinly laminated at 0 to 5°. RC2 67 44 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs Approximately 70° joint, smooth, clean to rough encountered at 8.9 mbgs RC4 100 98 11.0 Approximately 70° joint, smooth, clean to rough encountered at 9.3 mbgs RC5 93 82 0 0 11.0 47.3 Borehole terminated at 11.9 mbgs RC5 93 82 0 0 0 11.0 AT.3 Borehole terminated at 11.9 mbgs RC5 93 82 0	_																	
53.8 LIMESTONE 6.0 53.1 SHALE- dark grey, fresh, thinly laminated at 0 to 5°. Defects comprisined of partings in line with bedding, clean, rough to smooth 8.0 9.0 Weathered/crusehd seam comprising of silty sand with encountered at 8.8 mbgs Approximately 70° joint, smooth, clean to rough encountered at 9.9 mbgs 11.0 12.0 47.3 Borehole terminated at 11.9 mbgs 13.0 NOTES: mbers	4.0															+		
53.8 LIMESTONE 6.0 53.1 SHALE- dark grey, fresh, thinly laminated at 0 to 5°. Defects comprisined of partings in line with bedding, clean, rough to smooth 8.0 9.0 Weathered/crusehd seam comprising of silty sand with encountered at 8.8 mbgs Approximately 70° joint, smooth, clean to rough encountered at 9.9 mbgs 11.0 12.0 47.3 Borehole terminated at 11.9 mbgs 13.0 NOTES: mbers																		
53.8 LIMESTONE 6.0 53.1 SHALE- dark grey, fresh, thinly laminated at 0 to 5°. Defects comprisined of partings in line with bedding, clean, rough to smooth 8.0 9.0 Weathered/crusehd seam comprising of silty sand with encountered at 8.8 mbgs Approximately 70° joint, smooth, clean to rough encountered at 9.9 mbgs 11.0 12.0 47.3 Borehole terminated at 11.9 mbgs 13.0 NOTES: mbers	E 50															+		<u> </u>
6.0 53.1 SHALE- dark grey, fresh, thinly laminated at 0 to 5°. RC2 67 44 60 7.0 Defects comprisined of partings in line with bedding, clean, rough to smooth RC2 67 44 60 60 8.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs RC3 100 94 60 60 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs RC4 100 98 60 60 10.0 Approximately 70° joint, smooth, clean to rough encountered at 8.9 mbgs 82 60 60 60 60 11.0 Borehole terminated at 11.9 mbgs RC5 93 82 60 <td< td=""><td></td><td>53.8</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		53.8					-											
SHALE - dark grey, fresh, thinly laminated at 0 to 5°. Defects comprisined of partings in line with bedding, clean, rough to smooth 8.0 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs Approximately 70° joint, smooth, clean to rough encountered at 9.3 mbgs 11.0 12.0 47.3 Borehole terminated at 11.9 mbgs NOTES: mbgs: meters below ground surface				LIMESTONE			RC1	70		75						+		
 7.0 8.0 9.0 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs Approximately 70° joint, smooth, clean to rough encountered at 9.3 mbgs 11.0 12.0 47.3 Borehole terminated at 11.9 mbgs NOTES: meters below ground surface 	6.0	53.1		SHALE- dark grey, free	sh, thinly laminated at 0 to 5°.													
 8.0 9.0 9.0 Weathered/crusshd seam comprising of silty sand with some clay encountered at 8.8 mbgs Approximately 70° joint, smooth, clean to rough encountered at 9.3 mbgs 11.0 12.0 47.3 Borehole terminated at 11.9 mbgs NOTES: meters below ground surface 	_			clean, rough to smooth	partings in line with bedding,		RC2	67		44						+		
9.0 9.0 10.0 47.3 Borehole terminated at 11.9 mbgs NOTES: mbgs: meters below ground surface	- 7.0			-														
9.0 9.0 10.0 47.3 Borehole terminated at 11.9 mbgs NOTES: mbgs: meters below ground surface	-															+		
9.0 9.0 10.0 47.3 Borehole terminated at 11.9 mbgs NOTES: mbgs: meters below ground surface	8.0						RC3	100		94						+		
Approximately 70° joint, smooth, clean to rough encountered at 8.9 mbgs RC4 100 98 0<										-								
Approximately 70° joint, smooth, clean to rough encountered at 8.9 mbgs RC4 100 98 0<	61/71/91 - 9.0			Weathered/crusehd se	am comprising of silty sand wit	h 🕂	-											
10.0 Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs RC4 100 98 0 <td< td=""><td></td><td></td><td></td><td>Approximately 70° joint</td><td>, smooth, clean to rough</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>—</td><td></td><td></td></td<>				Approximately 70° joint	, smooth, clean to rough											—		
47.3 Borehole terminated at 11.9 mbgs RC5 93 82 82 0 <td>م الم الم</td> <td></td> <td></td> <td>encountered at 8.9 mb</td> <td>gs</td> <td></td> <td>RC4</td> <td>100</td> <td></td> <td>98</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	م الم الم			encountered at 8.9 mb	gs		RC4	100		98								
47.3 47.3 Borehole terminated at 11.9 mbgs 13.0 14.0 NOTES: mbgs: meters below ground surface				encountered at 9.3 mb	gs	4	-											
47.3 47.3 Borehole terminated at 11.9 mbgs 13.0 14.0 NOTES: mbgs: meters below ground surface																		-
47.3 Borehole terminated at 11.9 mbgs 13.0 14.0 NOTES: mbgs: meters below ground surface	ר <u>ה</u> 11.0						RC5	93		82						_		
12.0 Borehole terminated at 11.9 mbgs 13.0 13.0 14.0 14.0 NOTES: mbgs: meters below ground surface																+		
13.0 14.0 NOTES: mbgs: meters below ground surface		47.3		Borehole terminated at	11.9 mbgs		-									—		
13.0 14.0 NOTES: mbgs: meters below ground surface												+				+		
NOTES: mbgs: meters below ground surface	[₩] - 13.0															\perp		
NOTES: mbgs: meters below ground surface																+		\vdash
mbgs: meters below ground surface	- 14.0																	
mbgs: meters below ground surface Elevations are approximate based on shoring drawing																		L
					drawing													
	BORE																	

		GI		BOR	EHOLE No.:	В	H1	2						во	RE	HO	LE	LO	G
				ELEV	ATION:	59	9.10) m					I	Page	: _1	_	of _	1	
CLIE	NT: TO	CUnite	d Group										22	Split S		GEN	D		
	-												GS	Auger	Sam	ole			
			binson Avenue											Shelb <u>y</u> Water					
			D.Cooper 9 December 20									0		Water	conte	nt (%)	,		
SCA		·)	STRATIGRAPHY	15	MONITOR							•	Ν	Atterb Penet Split S	ration	Index	based	on	
304		λ	STRATIGRAFIT		WELL						- O		Ν	Peneti Dynan	ration nic Co	Index l ne sar	based		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDI	I OF ROCK			State	Type and Number	Recovery	OVC	Penetration Index / RQD		Cu	Shear Shear Sensit Shear Pocke	Stren tivity V Stren t Pen	gth ba alue c gth ba etrome	sed or of Soil sed or eter	n Lab n	o Van
neters	59.10		GROUND SUR	FACE					%	ppm	Ν	1	50kl	SCAL	E FOF 100kPa 40	R TES 150	FRES 0kPa 50 70	ULTS 200kf	3 Pa) <u>90</u>
	59.0		CONCRETE FILL - Sandy SILT, poo	kets of	0.10 <u></u>														
0.5			clayey silt, possible cobbles/boulders, trace	e gravel,			X	SS1	33		10		•	_	_			+	
1.0			brown, moist, loose to	compact	Riser		M	SS2	41		12		•					<u> </u>	
1.5														_	_			+	
2.0					1.98 —		\square	SS3	30		27			•				_	
2.5	56.8	Ĩ	CLAYEY SILT- some s brown, moist, loose to		Bentonite	-0-0-0	\square	SS4	57		17		•	_	_			_	
3.0					Sand — 2.90 —													\pm	
3.5							X	SS5	25		17		•	_				_	_
4.0	55.3		SILTY SAND- trace to		_		$\overline{\nabla}$											_	
4.5			clay, grey, moist to we	., 1005e	Screen —		Å	SS6	66		13		•	_					
5.0							$\left \right $	SS7	51		3	•						_	
	53.8		CLAYEY SILT (TILL)	some	_														
5.5	53.2		sand and gravel, grey, stiff to hard		5.94 —		\mathbb{N}	SS8	49		13		•					_	
6.0	00.Z				0.04													_	
6.5																		+	_
7.0																		+	
7.5															_			+	
8.0																		_	
8.5															-			+	_
9.0																		_	
			round surface	drawing															

	O MH T/G=58.89m	ОМН Т/G=58.50m	ROBIN	OMH T/G=58.07m SON AVENUE
Image: Description of the second state of the second st		ILOT 19	38 ROBINSON AVENUE LOT 16 TP 1-20 59.40 [53.20]	ROBINSON AVENUE GRAVEL GRAVEL TP 6-20 58.90 [53.10] TP 5-20 58.95
patersongroup consulting engineers			OTTAWA,	TCU DEVELOPMENTS GEOTECHNICAL INVESTIGATION 36 ROBINSON AVENUE
154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344	NO. REVISIONS	DATE INITIA		EST HOLE LOCATION PLAN

ROBINSON VILLAGE LPIV LIMITED PARTNERSHIP 36 ROBINSON AVENUE, OTTAWA, ONTARIO HYDROGEOLOGICAL INVESTIGATION

INVESTIGATIVE LOCATIONS

FIGURE 3.1

11186719-E2 Dec 11, 2019

APPENDIX 3

MTO IDF Curves

Sample Calculations - Dupuit Forchheimer

Hydraulic Conductivity Results (by Others)

 Table 1 - Summary of Groundwater Level Readings

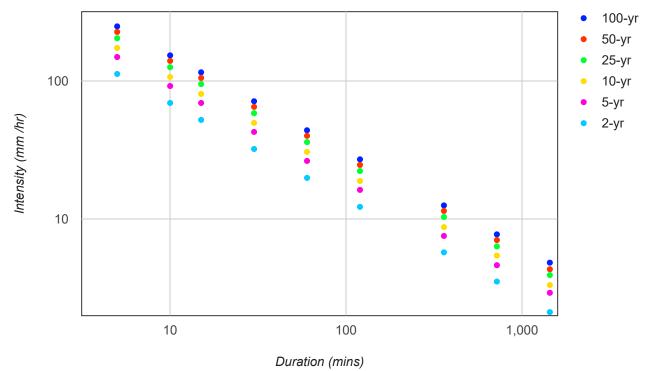
Ontario 😵 IDF CURVE LOOKUP

Active coordinate

45° 25' 15" N, 75° 39' 45" W (45.420833,-75.662500)

Retrieved: Thu, 04 Jun 2020 21:09:21 GMT

Location summary


These are the locations in the selection.

IDF Curve: 45° 25' 15" N, 75° 39' 45" W (45.420833,-75.662500)

Results

An IDF curve was found.

Coordinate: 45.420833, -75.662500 IDF curve year: 2010

Coefficient summary

IDF Curve: 45° 25' 15" N, 75° 39' 45" W (45.420833,-75.662500)

Retrieved: Thu, 04 Jun 2020 21:09:21 GMT

Data year: 2010

IDF curve year: 2010

Return period	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Α	19.8	26.3	30.6	36.0	40.0	43.9
В	-0.699	-0.699	-0.699	-0.699	-0.699	-0.699

Statistics

Rainfall intensity (mm hr⁻¹)

Duration	5-min	10-min	15-min	30-min	1-hr	2-hr	6-hr	12-hr	24-hr
2-yr	112.5	69.3	52.2	32.1	19.8	12.2	5.7	3.5	2.1
5-yr	149.4	92.0	69.3	42.7	26.3	16.2	7.5	4.6	2.9
10-yr	173.8	107.1	80.6	49.7	30.6	18.8	8.7	5.4	3.3
25-yr	204.5	126.0	94.9	58.4	36.0	22.2	10.3	6.3	3.9
50-yr	227.2	140.0	105.4	64.9	40.0	24.6	11.4	7.0	4.3
100-yr	249.4	153.6	115.7	71.3	43.9	27.0	12.5	7.7	4.8

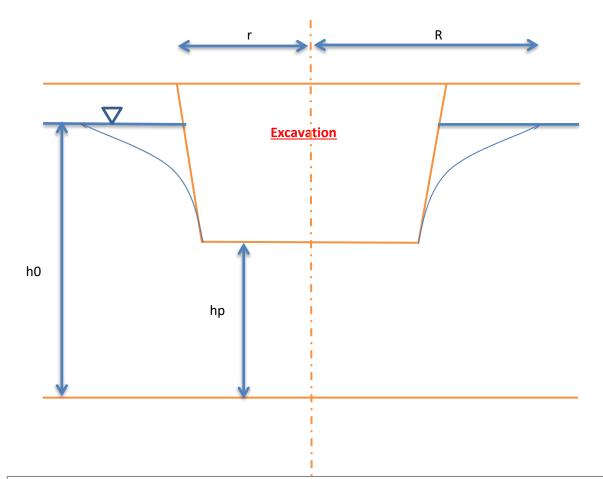
Rainfall depth (mm)

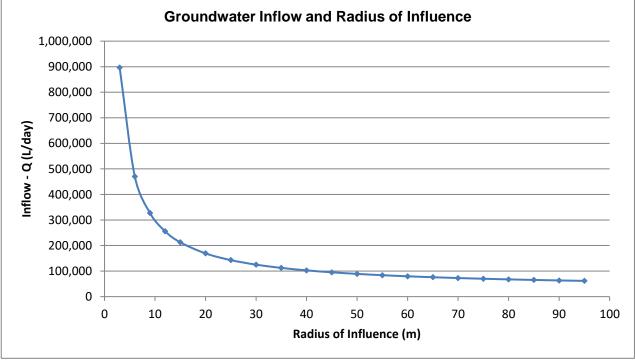
Duration	5-min	10-min	15-min	30-min	1-hr	2-hr	6-hr	12-hr	24-hr
2-yr	9.4	11.5	13.0	16.1	19.8	24.4	34.0	41.8	51.5
5-yr	12.4	15.3	17.3	21.3	26.3	32.4	45.1	55.6	68.5
10-yr	14.5	17.8	20.2	24.8	30.6	37.7	52.5	64.6	79.6
25-yr	17.0	21.0	23.7	29.2	36.0	44.4	61.7	76.1	93.7
50-yr	18.9	23.3	26.4	32.5	40.0	49.3	68.6	84.5	104.1
100-yr	20.8	25.6	28.9	35.6	43.9	54.1	75.3	92.7	114.3

Terms of Use

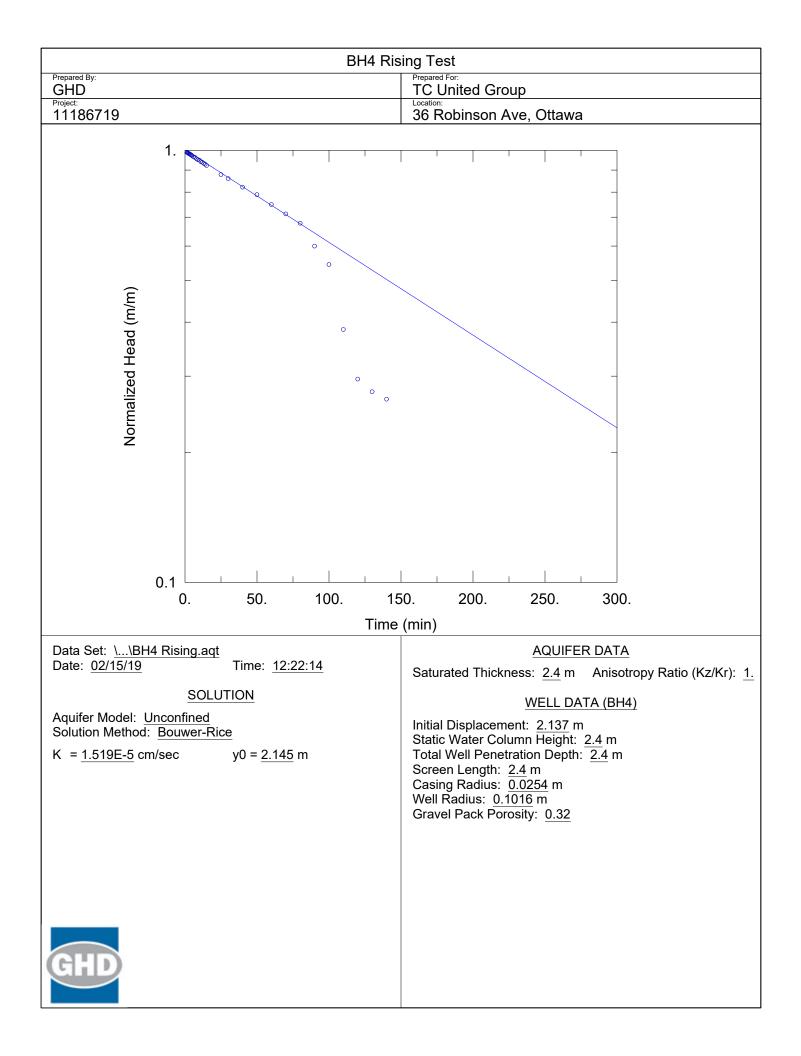
You agree to the Terms of Use of this site by reviewing, using, or interpreting these data.

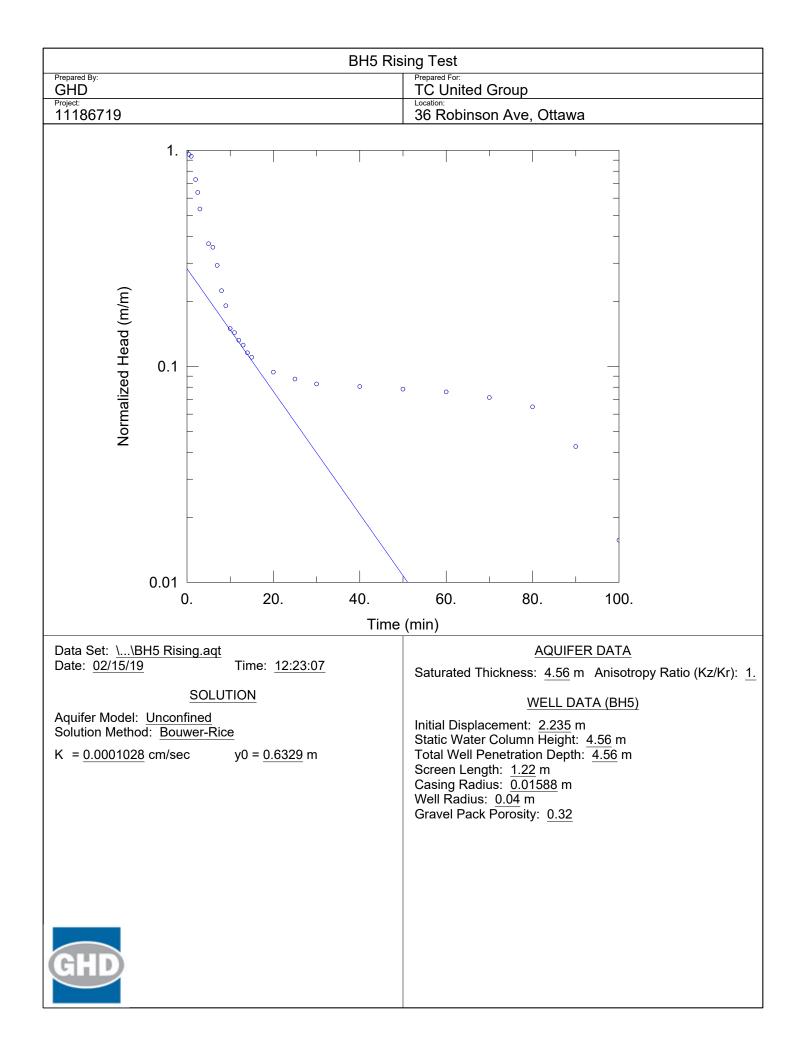
Ontario Ministry of Transportation | Terms and Conditions | About Last Modified: September 2016

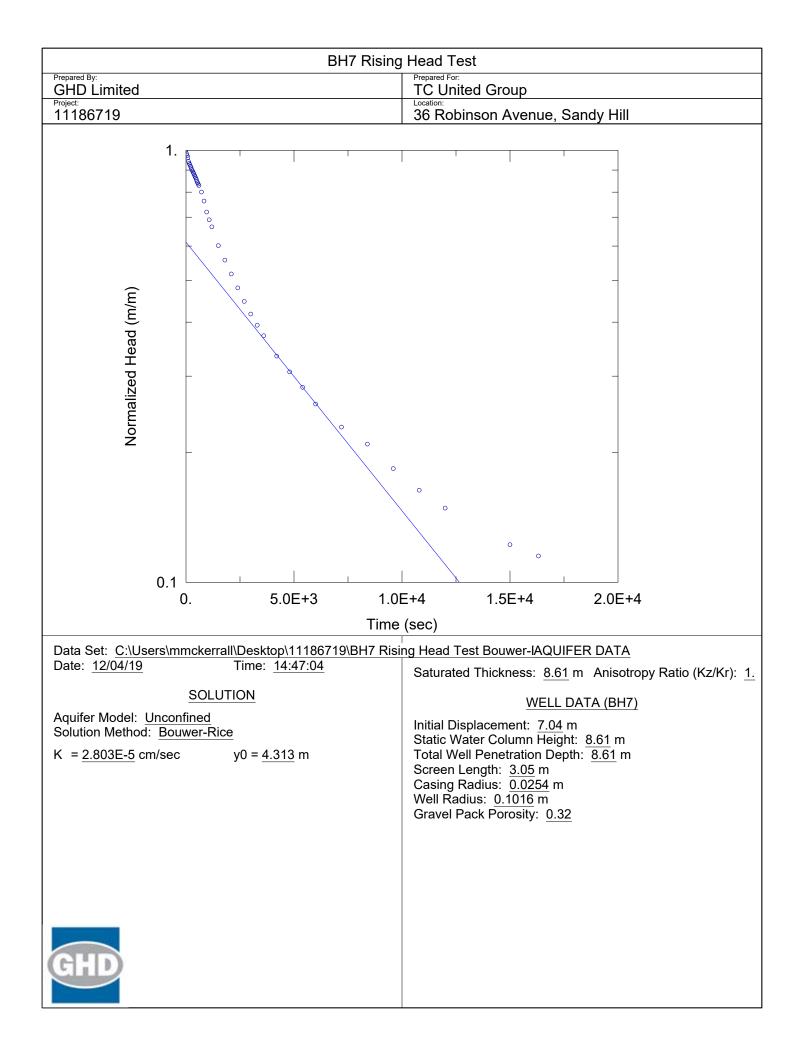

Report: PG5231-2

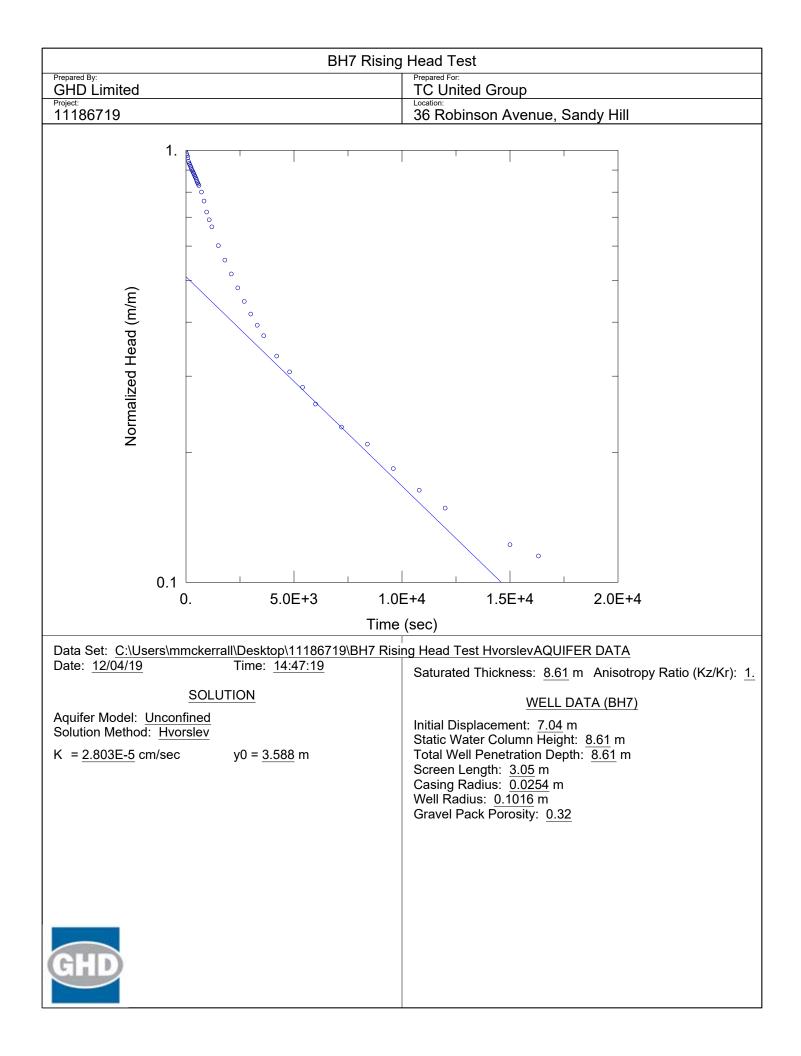

Estimated Groundwater InflowRobinson Village LPIV Limited Partnership - 36 Robinson Avenue - Building Excavation FootprintDupuit-Forchheimer Equation $Q = \pi K((h_0^2 - h_p^2)/ln(R/r))$

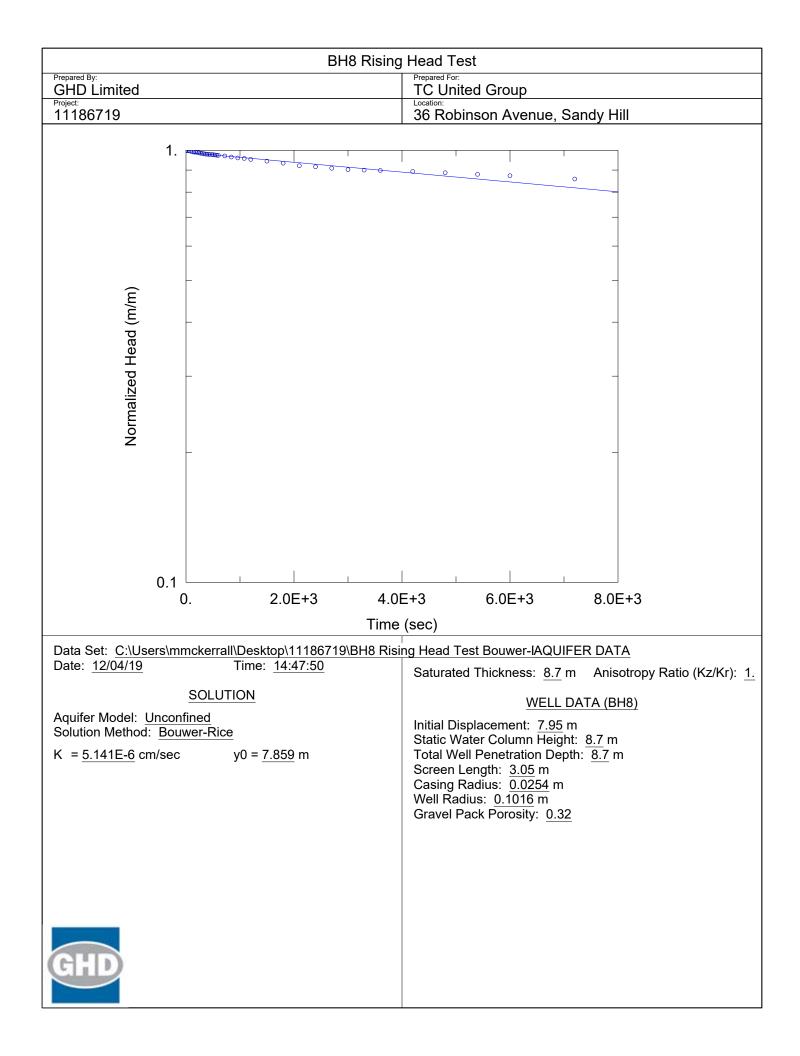
		Equivalent Radius of Excavation =	A+B=Pi*r
K (m/sec) =	1.50E-06		
h0 (m) =	18	Excavation Width (A) =	55 m
hp (m) =	10	Excavation Length (B) =	33 m
r (m) =	28.01	Perimeter Length =	176 m
		Equivalent Radius (r) =	28.01 m

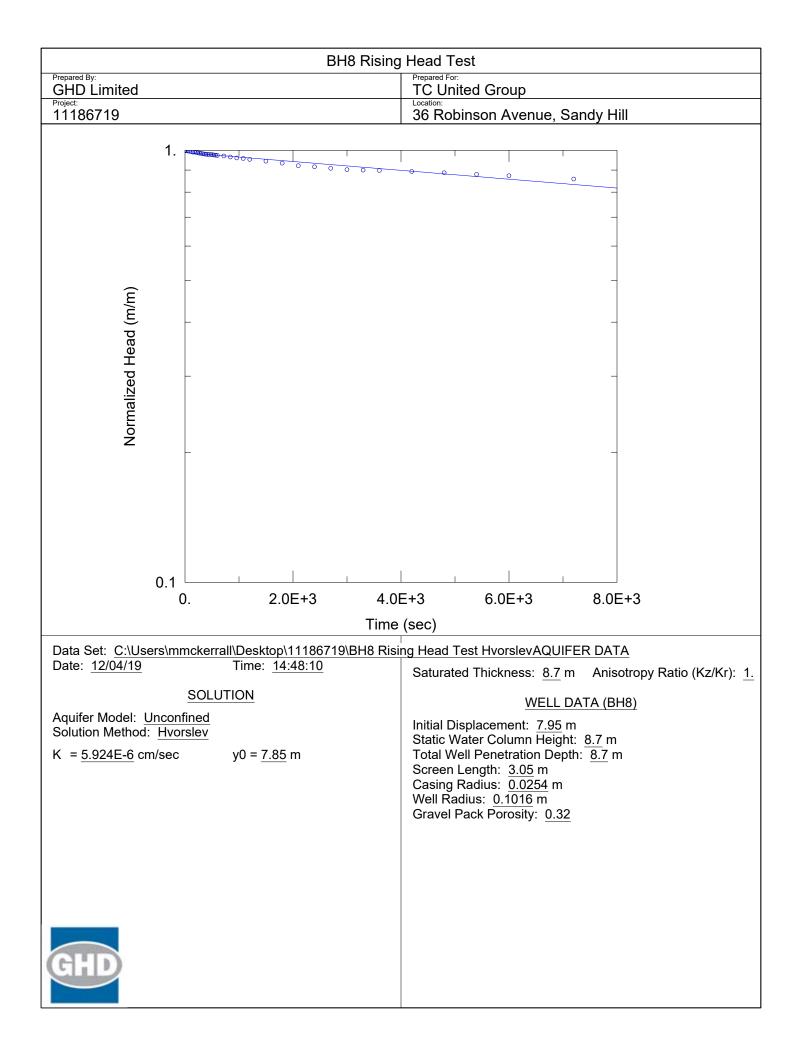

	Distance to edge of
R	excavation
31.01	3.00
34.01	6.00
37.01	9.00
40.01	12.00
43.01	15.00
48.01	20.00
53.01	25.00
58.01	30.00
63.01	35.00
68.01	40.00
73.01	45.00
78.01	50.00
83.01	55.00
88.01	60.00
93.01	65.00
98.01	70.00
103.01	75.00
108.01	80.00
113.01	85.00
118.01	90.00
123.01	95.00

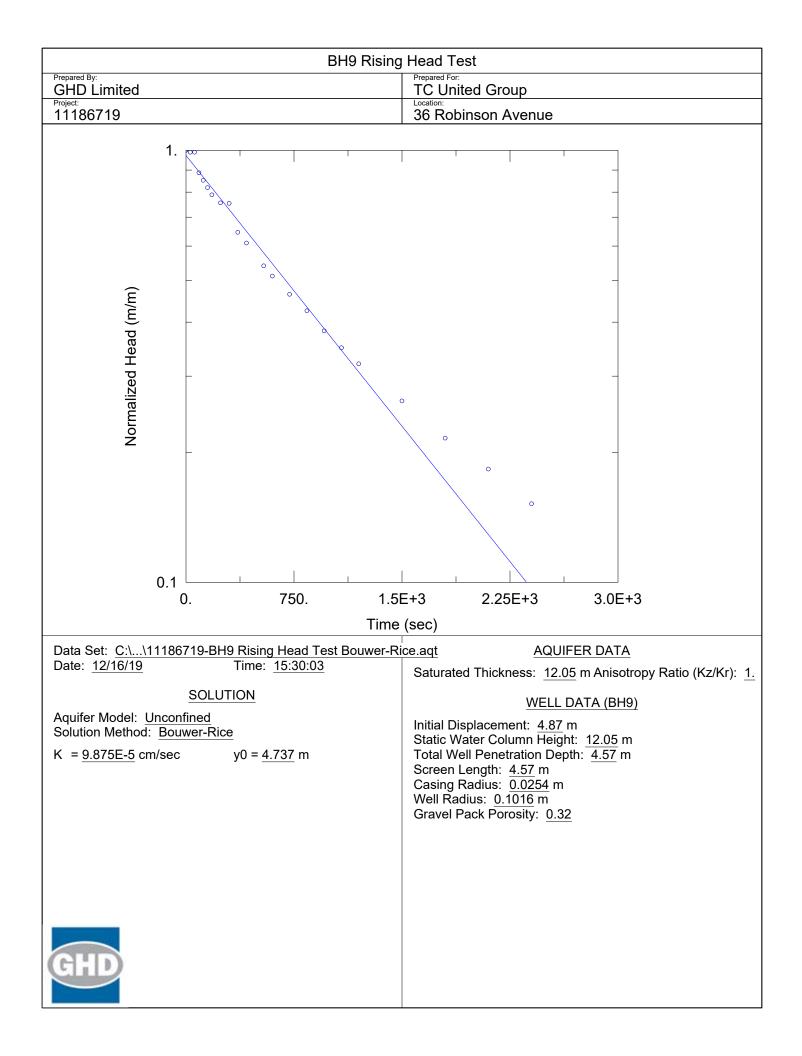

Q (m^3/s)	Q (m^3/day)	Q (L/day)
0.0104	896	896,386
0.0054	470	469,906
0.0038	327	327,339
0.0030	256	255,786
0.0025	213	212,663
0.0020	169	169,259
0.0017	143	142,972
0.0014	125	125,272
0.0013	112	112,497
0.0012	103	102,813
0.0011	95	95,199
0.0010	89	89,043
0.0010	84	83,951
0.0009	80	79,662
0.0009	76	75,994
0.0008	73	72,817
0.0008	70	70,035
0.0008	68	67,575
0.0008	65	65,383
0.0007	63	63,415
0.0007	62	61,637

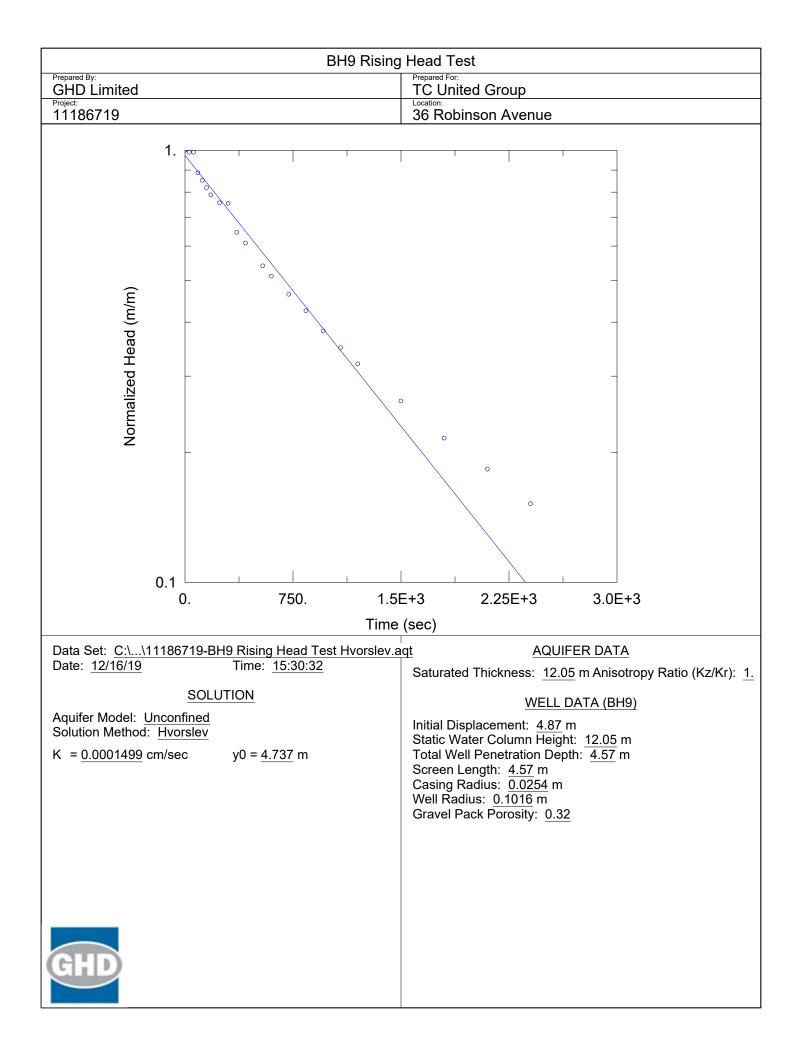


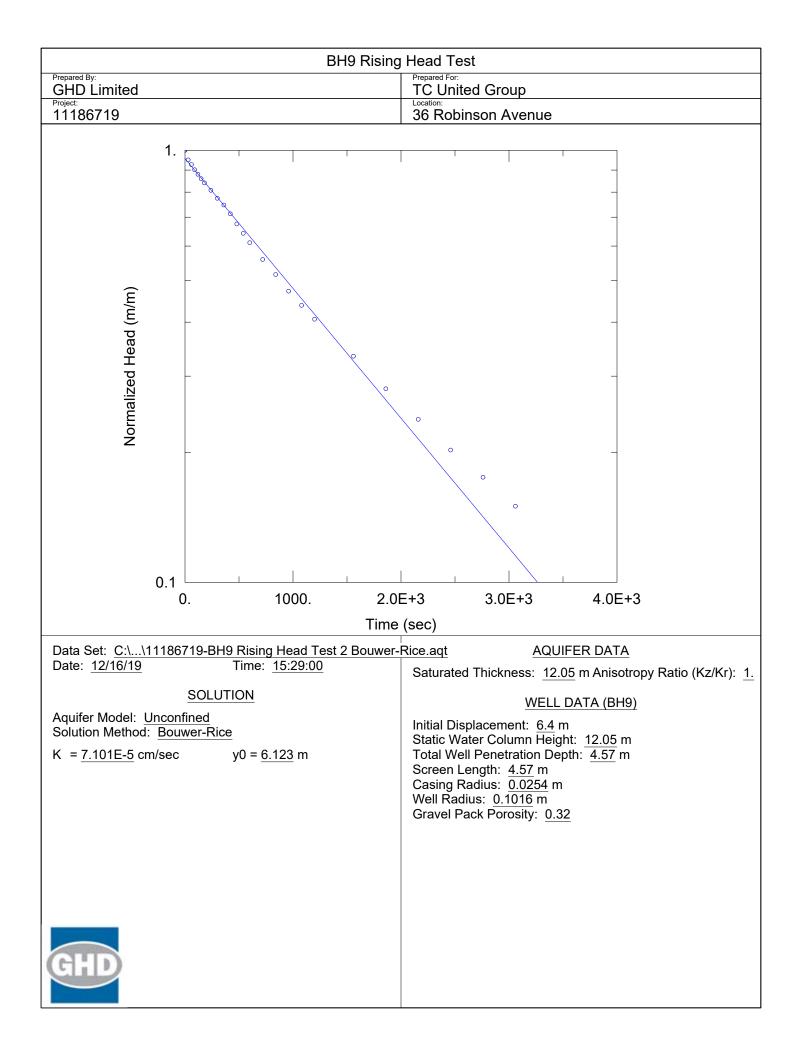


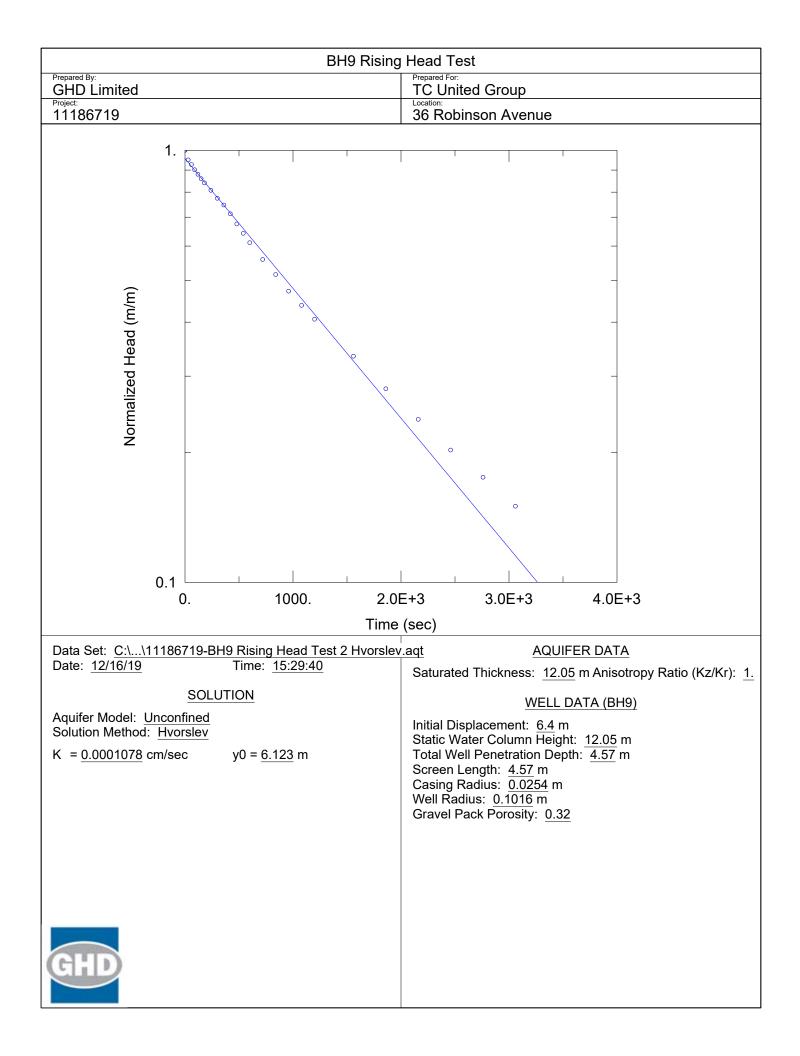

patersongroup

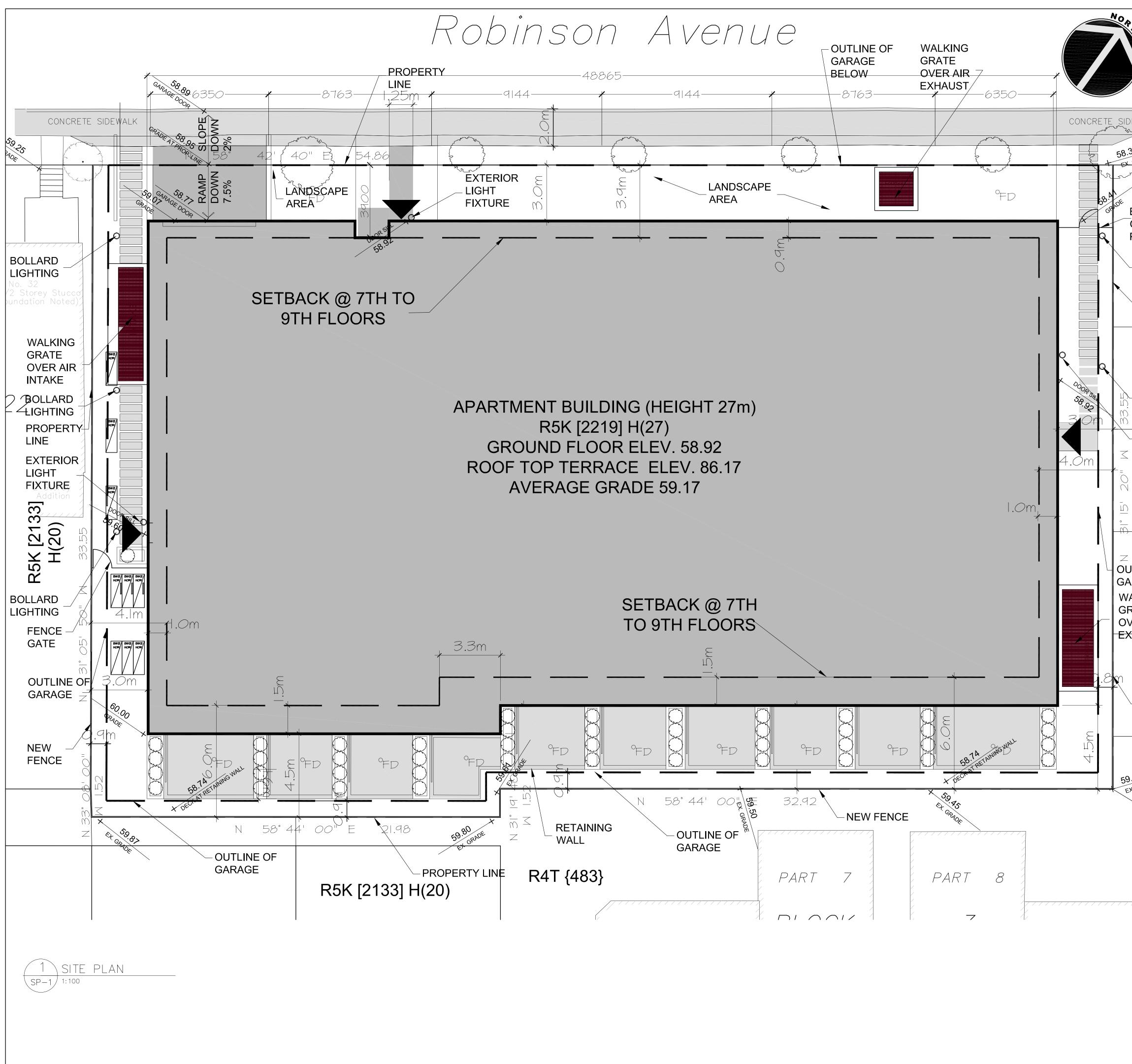






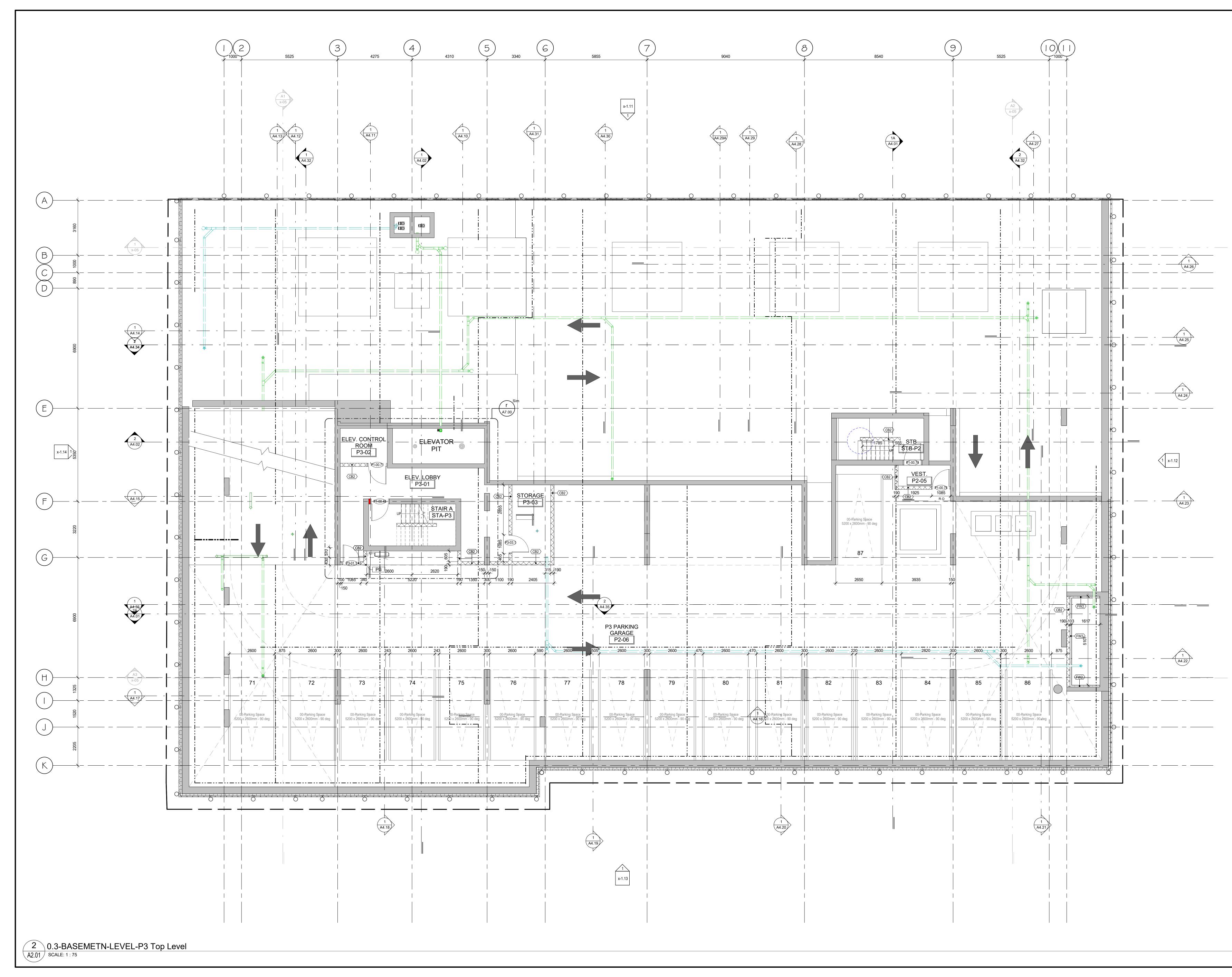


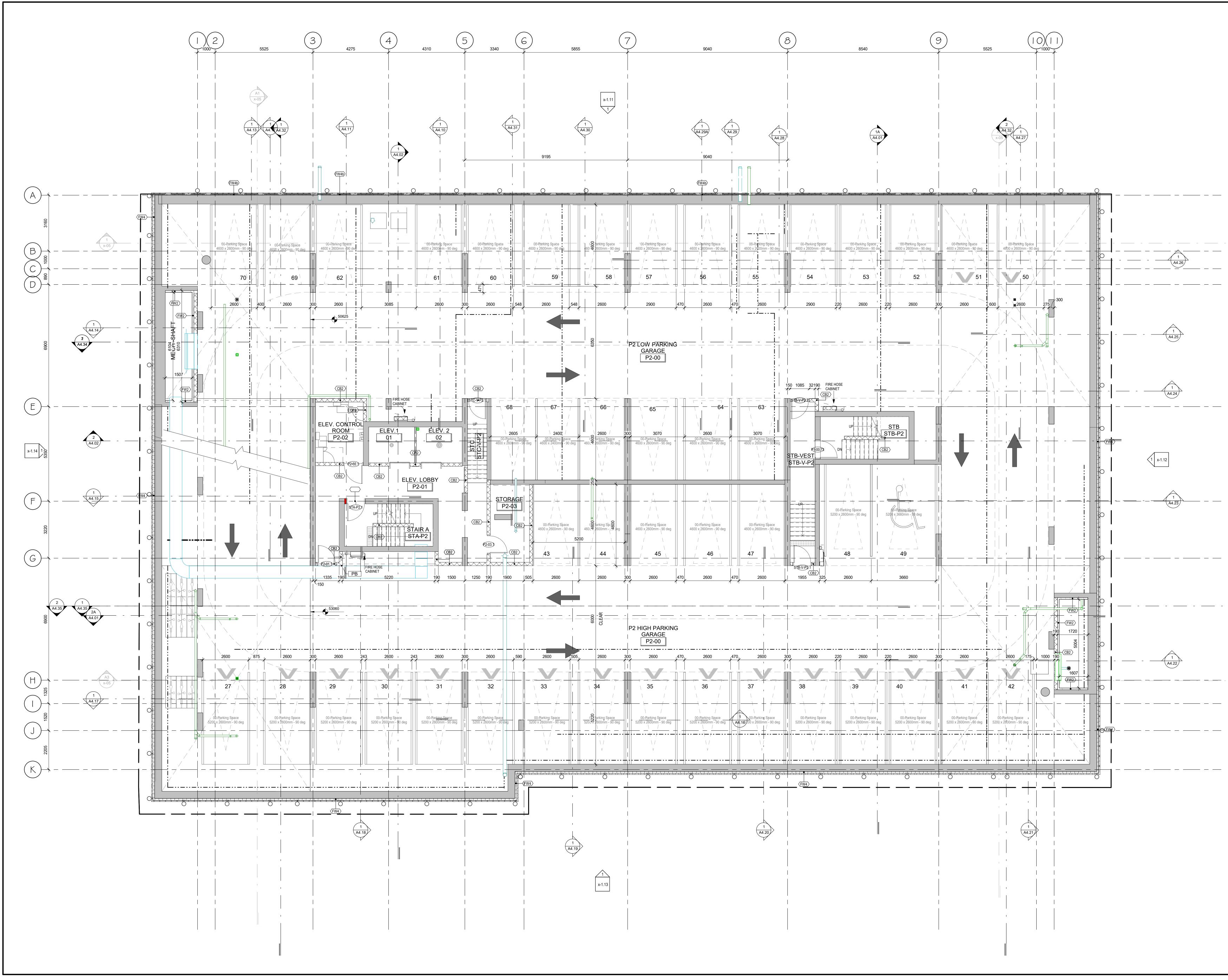




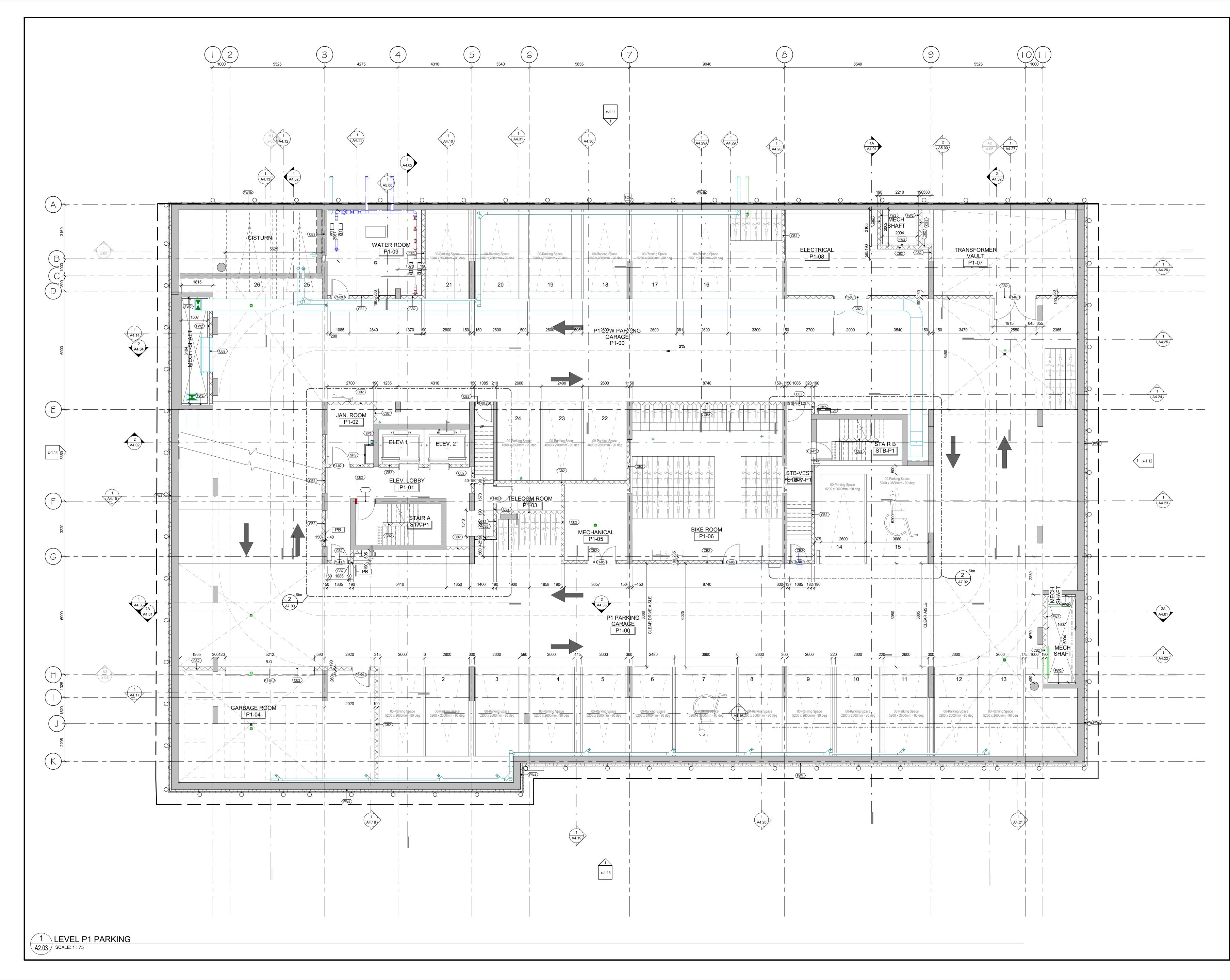
	BH1	BH2	BH3	BH4	BH5	BH6	BH7	BH8	BH9	Measured By
Screen	Overburden	Overburden	Overburden	Overburden	Bedrock	Bedrock	Bedrock	Bedrock	Bedrock	
January 25, 2019	2.9	1.9	3	2.6	2.6					Others
February 1, 2019				3.1	2.8					Others
November 29, 2019	2.6	1.3	2.3	1			3.6	3.4		Others
December 13, 2019	2.8	1.5	2.5	1.2			4.6	3.4	4.7	Others
June 3, 2020	2.9	3.11	2.8	1.8			4.3		4.3	Paterson Group

APPENDIX 4


Hobin Architecture Inc. - Plan/Profile Drawings


·	SITE DATA								
T	<u>SITE STATISTICS</u> GROSS FLOOR AREA 11,367m ²								
	LOT COVERAGE TOTAL LOT AREA: I,875m ²								
/	TOTAL GROSS BUILDING AREA: 1,299m ²								
	TOTAL LOT COVERAGE 69% TOTAL HARD LANDSCAPING AREA: 348m ²								
	TOTAL LOT COVERAGE 18% DRIVEWAY NOT INCLUDED 18%								
EWALK	TOTAL SOFT LANDSCAPING AREA:246m²TOTAL LOT COVERAGE13%								
$\geq_{\underline{\lambda}}$	PARKING (PARKING PROVISIONS 2008-25	O SECTION 100- PROVID							
GRADE	MID-RISE APT. (153-12)x.5=71 Parking Spo UNITS 153 Dwelling Unit								
کری کر	Visitor Parking (153–12)x.1=14 Visitor Park PARKING Spaces/Dwelling		Parking 14	/					
/	SPACES Total Required = 85		rovided = 87 (ed, 52 Standarc ons)						
B.F. FENCE	BICYCLE <u>REQUIRED</u> PARKING 0.5 x 153 UNITS = 77 SPA	CFS 77 SPACE	<u>D</u> ES PROVIDED						
GATE WITH		51 HORIZ.	& 17 VERT. SPACE OR SPACES TOTAL	ES					
PUSH BAR	SOLID WASTE STORAGE & DISPOSAL								
BOLLARD	APARTMENT REQUIRED: GARBAGE STORAGE COMPACTED - 5x4 yd. FIBRE (PAPER) STORAGE - 3x4 yd.	GARBAGE STORA	PROVIDED: GE COMPACTED ER) STORAGE	–5x4 yd. - 3x4 yd.					
LIGHTING	G.M.P. STORAGE - Ix3 yd. GREEN WASTE STORAGE - 4x240 L	G.M.P. STOR		- 1x3 yd. - 4x240 L					
	SURVEY INFORMATION								
\varkappa	PLAN OF SURVEY OF PART OF LANE 22) REGISTERED PLAN 190 CITY C		LOTS 15, 16, 18	, 19, 21 AND					
		F UTANA							
PROPERTY LINE	GRAPHIC SCALE			1:100					
LINI	Im 2m 3m 4m 5	5m		Om ∃	17	20/04/24		TE PLAN CONTRO	
	SITE STATISTICS				16 15	20/01/30 20/01/28		FOUNDATION PER	
BOLLARD	PLANNED UNIT DEVELOPMENT ZONING ME	CHANISM			14 13	20/01/27		TE PLAN CONTRO	
LIGHTING	ZONING: R5K [2219] H(27) DWELLING TYPE: MID RISE APARTMENT (153	UNITS)	REQUIRED	PROPOSED	12	19/11/25		TE PLAN CONTRO	
EXTERIO	MIN. WIDTH OF PRIVATE DRIVEWAY		6.Om	6.Om	 0	19/11/22 19/11/15	ISSUED FOR	REVIEW TE PLAN CONTRO	
LIGHT	MIN. WIDTH OF DRIVE AISLE WIDTH			6.0m STOREY SETBACK	9	19/10/23			
	SETBACKS (AS PER ZONING MAP) FRONT YARD - NORTH		REQUIRED 1 to 6 7 to 9 3.0m 4.0m		8	19/08/12 19/07/30		TE PLAN CONTRO	
{483}	INTERIOR SIDE YARD - EAST INTERIOR SIDE YARD - WEST REAR YARD - SOUTH		3.0m 4.0m 3.0m 4.0m 4.5m 6.0m		6	19/03/07		SITE PLAN CONT	
	MIN. LOT WIDTH MIN. LOT AREA		15.0m 450m ²	54.83m 1,875m ²	5	19/03/05 19/02/28		CONSULTANT REV	
R4T	MAX. BUILDING HEIGHT MAX. FLOOR SPACE INDEX		27m 2.0	27m 1.48m	3	19/02/26		CONSULTANT REV	
	MIN. PERCENTAGE OF LANDSCAPED ARE ABUTTING A STREET (m)	AS	30% NO MIN.	31.68% NO MIN.	2	19/02/25 19/01/30		CONSULTANT REV	
	OTHER CASES (m)		NO MIN.	NO MIN.	no.	. date	revision		
TLINE OF	MIN. TOTAL AMENITY AREA (m²) APARTM STOREYS AND 153 UNITS	ENT OF 9	6m² PER DWELLING 918m²	l,186m ²				the appropria	
RAGE	MIN. COMMUNAL AMENITY AREA (m²)		50% OF THE REQUIRED TOTAL AMENITY COMMUNAL	776.26m ²	sio	ns on site		verify all dime all errors and tect.	
ALKING	PERMITTED PROJECTIONS PROVISIONS IN THE CASE OF ANY YARDS		I.5m BUT NO CLOSER THAN Im	I.5m BUT NO CLOSER THAN IM	All	contractor	s must com	ply with all	
RATE /ER AIR	DRIVEWAY SLOPE FIRST 6 METRES		TO LOT LINE MAX 6%	TO LOT LINE 7.5%		not scale	es and by-lo drawings.	uws.	
HAUST	DUE TO SLOPE GREATER AND 6% DE WILL NEED TO BE HEATED.	RIVEWAY					may not be until signed.	used for	
						pyright res	Ū		
	ARCHITECT	CIVIL ENG							
	HOBIN ARCHITECTURE INC. 63 PAMILLA STREET,	DSEL 120 IBER RD, S							
-NEW	OTTAWA, ON KIS 3K7	ON K25 IE9 CONTACT:							
FENCE	BILL RITCEY STEVE MERRICK TEL. 613-236-7200 TEL. 613-836-0856								
	FAX. 613-265-2005 TRAFFIC PLANNING	URBAN PL	ANNING						
	CGH TRANSPORTATION OTTAWA, ON	FOTENN 223 MCLEOD S OTTAWA, ON K							
.07	CONTACT: ANDREW HARTE	CONTACT: JAMIE POSEN				Hobin Archite	ecture		
K. GRADE	TEL. 613-697-3797 EMAIL:	TEL. 613-730-5 FAX. 613-730-				I ncorporated 53 Pamilla Stre	et		
		SURVETO				Ottawa, Ontario Canada K1S 3K	7		
	GEOTECHNICAL GHD. 179 COLONNADE ROAD #400,	ANNIS, O'SULLI' 14 CONCOURSE OTTAWA, ON \$	GATE, SUITE 5		-	T: 613-238-7200			
	OTTAWA, ON K2E 7J4	CONTACT:				≕ 613-235-2005 E: mail@hobinar		OBIN	J
	CONTACT: BAHAREH VAZHBAKHT TEL. 613-727-051	V. ANDREW SH TEL. 613-727-0 FAX. 613-727-1	0850			hobinarc.co		RCHITECTURE	•
	GEOTECHNICAL	SOUND & I				oject title			
	PATERSON GROUP INC. 154 COLONNADE ROAD	GRADIENT WIN 127 WALGREEN				ROE	BINSON V		
	OTTAWA, ON K2E 7J5 CONTACT:	CONTACT: Joshua Foster				APA	RTMENT B 36 ROBINSON AVEN OTTAWA, ONTARI	UE	
/	CARLOS DASILVA TEL. 613-226-7381	613-836-0934			dro	awing title	2		
	LANDSCAPE ARCHITECT					SI	ΤΕ ΡΙ	AN	
	JAMES B. LENNOX & ASSOCIATES INC. 1419 CARLING AVENUE OTTAWA, ON KIZ 7L6					~ •	· • •		
	CONTACT:				KG	, ا	ate AN, 10/2019	scale : 00	
	JAMES LENNOX TEL. 613-722-5168 FAX. 1-866-343-3942							project	
						ARIO A.	A S	1834	
						SA	and E	drawing no	э.
						- aver a		5 I	
						M.L.	1-	CD	1
						UARI 1 LICEN 30-	HOBIN	SP-	1

Р


17908

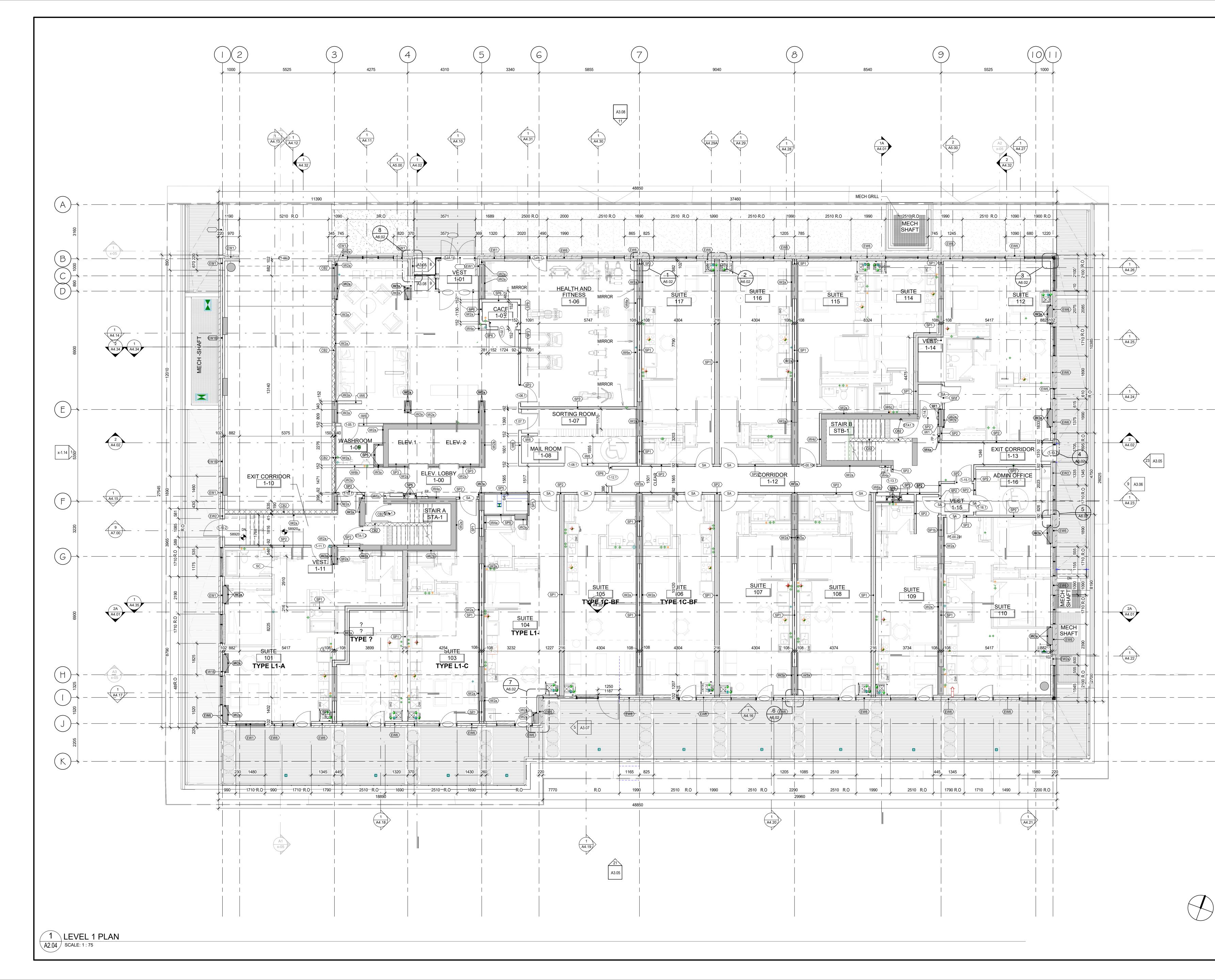
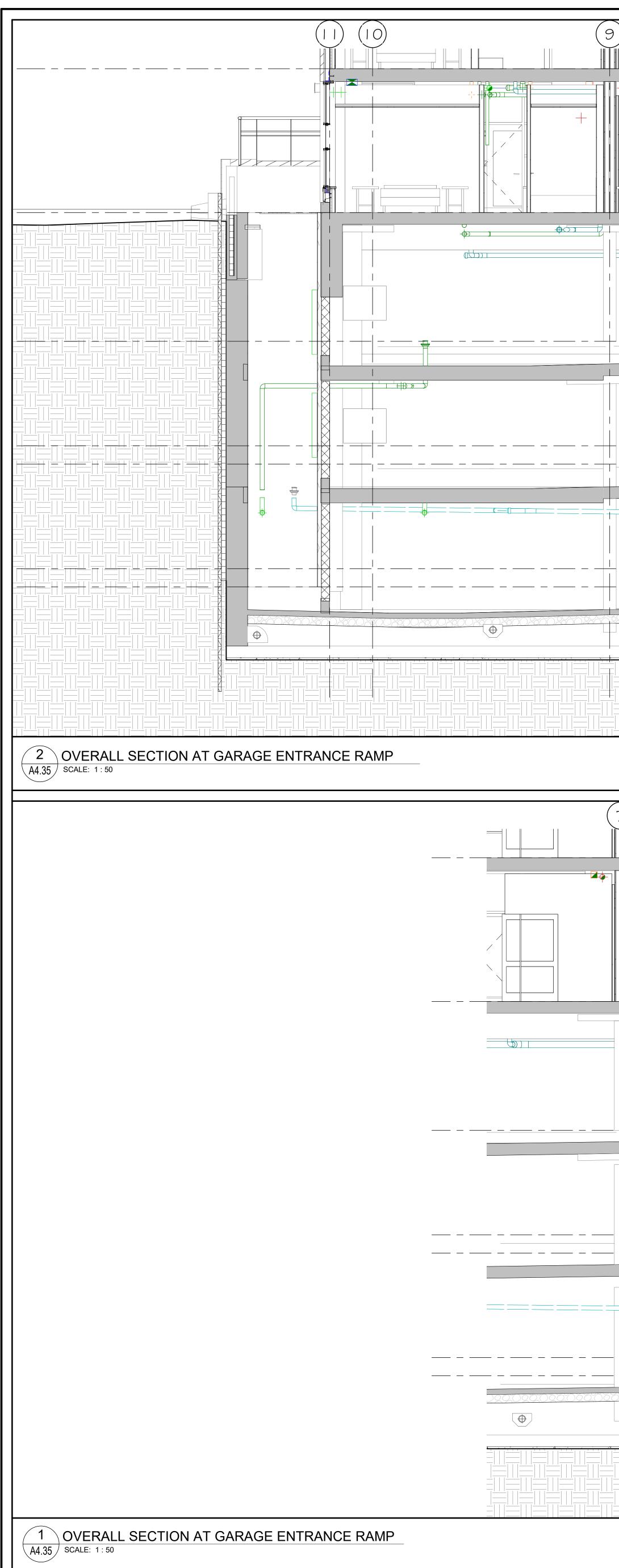

	۰ r	
-		
	B 20.01.31 ISSUED FOR EXCAVATION & FOUNDATION PERMIT	
	no. date revision It is the responsibility of the appro	priate
	contractor to check and verify all or sions on site and report all errors or omissions to the engineer.	dimen- and/
	All contractors must comply with al	
	Do not scale drawings. This drawing may not be used for construction until signed.	
	Copyright reserved.	
-		
	Hobin Architecture	
	Hobin Architecture Incorporated 63 Pamilla Street	
	Ottawa, Ontario Canada K1S 3K7	
	T: 613-238-7200 F: 613-235-2005 E: mail@hobinarc.com	
	hobinarc.com ARCHITECTU	
	PROJECT 36 ROBINSON AVENU	JE
	36 ROBINSON AVENUE	
	DRAWING TITLE	;
		-
	DRAWN DATE SC ALE Author 11/21/19 1 : 75	
	PROJECT a4.2	:9B
	A2	UT
_	REVISION	NO. B

Image: Construction of the appropriate
 contractor to check and verify all dimen- sions on site and report all errors and/ or omissions to the engineer. All contractors must comply with all Do not scale drawings. This drawing may not be used for construction until signed. Copyright reserved.
Hobin Architecture Incorporated 63 Pamilla Street Ottawa, Ontario Canada K1S 3K7 T: 613-238-7200 F: 613-235-2005 E: mail@hobinarc.com
hobinarc.com Architecture PROJECT 36 ROBINSON AVENUE 36 ROBINSON AVENUE DRAWING TITLE LEVEL P2 - PARKING DRAWN DATE SCALE
Author XX/XX/XXXX 1 : 75 PROJECT a4.29B DRAWING NO. A2.02 REVISION NO. C

Г			
B A no.		ISSUED FOR EXCA FOUNDATION PERM ISSUED FOR REVIE revision	1IT
co sic or	ntractor ons on s omissior	esponsibility of the to check and ve ite and report a ns to the engine cors must compl	erify all dimen- Il errors and/ er.
Do Thi	not scc is drawin	ile drawings. g may not be u n until signed.	
	pyright r		
]	Hobin Archi Incorporate 63 Pamilla Sti Ottawa, Ontar	d reet	
	Canada K1S T: 613-238-72 F: 613-235-20 E: mail@hobin	00	OBIN
	hobinarc . Djec t	COM AR	CHITECTURE
	36 R	OBINSON A	
DR/	awing titl	EL P1 - PA	RKING
	AWN hor	DATE 06/13/19	SC ALE 1 : 75
			PROJECT a4.29B DRAWING NO.
			A2.03
L			REVISION NO. B

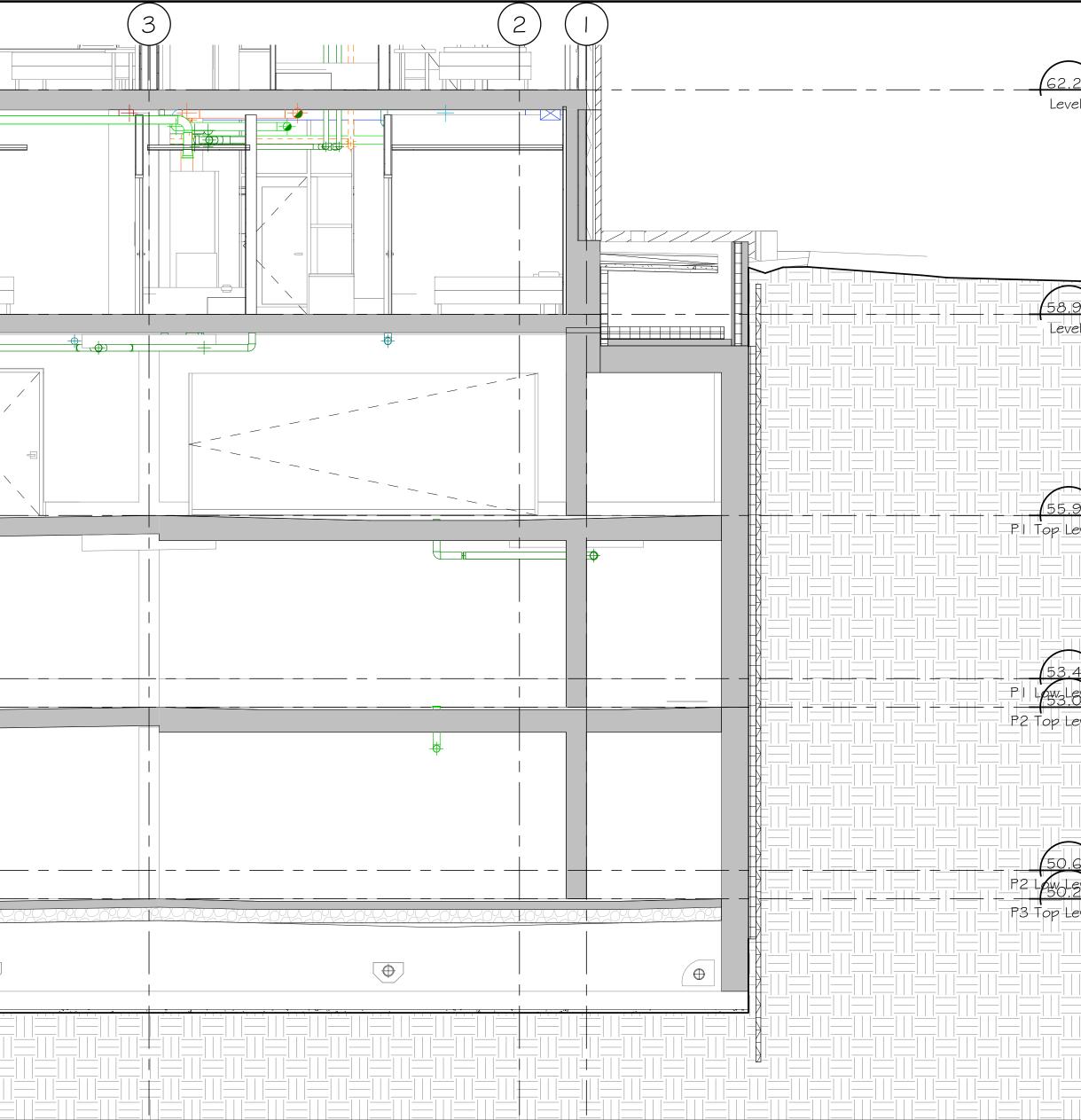
B A no.		ISSUED FOF FOUNDATION ISSUED FOF revisio	R REVIE	IIT
It co sic	is the re ntractor ons on s	esponsibility to check (v of th and ve port a	ne appropriate erify all dimen- ll errors and/ er.
Do	not sco	tors must ale drawing	s.	
со	nstructio	g may not n until sign reserved.	be uned.	sed for
	Hobin Arch Incorporate	d		
	Ottawa, Onta Canada K1S T: 613-238-72 F: 613-235-20	rio 3K7 00		
	E: mail@hobin hobinarc			OBIN CHITECTURE
PR	36 R	OBINS	ON A	AVENUE
DR/	awing titi FLO			ENUE
	AWN	DATE XX/XX/X	(XXX	SCALE 1 : 75
				PROJECT a4.29B DRAWING NO.
				A2.04
				revision no. B


 \Box

27		
2		
<u>2</u>		
.27		
rel 2		
	A 20.01.31 ISSUED FOR EXCAV	'ATION & T
.92	no. date revision It is the responsibility of th contractor to check and ver sions on site and report all or omissions to the enginee	rify all dimen— errors and/
re 	All contractors must comply Do not scale drawings. This drawing may not be us	
	Copyright reserved.	
92		
	Hobin Architecture	
49 66 evel	Incorporated 63 Pamilla Street Ottawa, Ontario Canada K1S 3K7	
		DBIN CHITECTURE
63	PROJECT 36 ROBINSON A	VENUE
evel 	36 ROBINSON AVE DRAWING TITLE SECTION THRO GARAGE RAM	OUGH
	DRAWN DATE Author 12/02/19	SCALE 1 : 50
		PROJECT a4.29B DRAWING NO.
		A4.32

 \Box

27	
	no. date revision It is the responsibility of the appropriate contractor to check and verify all dimen- sions on site and report all errors and/
	or omissions to the engineer. All contractors must comply with all Do not scale drawings. This drawing may not be used for
	construction until signed. Copyright reserved.
	Hobin Architecture Incorporated 63 Pamilla Street Ottawa, Ontario
	Canada K1S 3K7 T: 613-238-7200 F: 613-235-2005 E: mail@hobinarc.com hobinarc.com ARCHITECTURE
	PROJECT 36 ROBINSON AVENUE
20) 2vel 	DRAWING TITLE SECTION THROUGH GARAGE RAMP E-W
	DRAWN DATE SCALE Author 04/15/20 1 : 50 PROJECT a4.29B DRAWING NO.
	A4.34
_	REVISION NO.



 \Box

			8				
					۵)	 	
	0,200,200,20	0,9,70,9,70		<u>> </u>	•	200200	

	•

27 el 2	
92	no. date revision It is the responsibility of the appropriate contractor to check and verify all dimen- sions on site and report all errors and/
	or omissions to the engineer. All contractors must comply with all Do not scale drawings. This drawing may not be used for
	Copyright reserved.
92	
	Hobin Architecture Incorporated
evel	63 Pamilla Street Ottawa, Ontario Canada K1S 3K7 T: 613-238-7200 F: 613-235-2005
	E: mail@hobinarc.com hobinarc.com HOBIN ARCHITECTURE PROJECT
63 evel	36 ROBINSON AVENUE
	SECTION THROUGH GARAGE RAMP E-W
	Author 04/15/20 1 : 50 PROJECT a4.29B DRAWING NO.
	A4.35
	REVISION NO.

APPENDIX 5

City of Ottawa - Sewer Use Program - Best Management Practices

DEWATERING UNCONTAMINATED WATER FROM CONSTRUCTION ACTIVITIES TO THE STORM SEWER

For information and assistant please direct all correspondence to Compliance Officer, Sewer Use Program 800 Green Creek Drive Ottawa ON K1J 1A6; or faxed to 613-745-9197; or scanned and emailed to SUP-PUE@ottawa.ca. Should you have any questions, please call the Sewer Use Program Duty Officer at 613-580-2424 extension 23326.

HOW TO KEEP SEDIMENTS AND POLLUTANTS OUT OF THE STORM DRAINS AND SANITARY SEWERS, AND PROTECT FISH HABITAT

Dewatering activities can occur at construction sites, during in-ground utilities maintenance, and site investigations/ assessments and cleanup. Depending on soil types and site history, stormwater and groundwater pumped from these sites may be contaminated with toxics (such as oil or solvents) and /or laden with sediments.

Discharging any water containing sediments or contaminants into a street, gutter, storm drain, or creek can pollute water, contaminate sediments and harm fish habitat. Some pollutants can also interfere with the operation of the Robert O. Pickard Environmental Centre- the City of Ottawa's wastewater treatment plant.

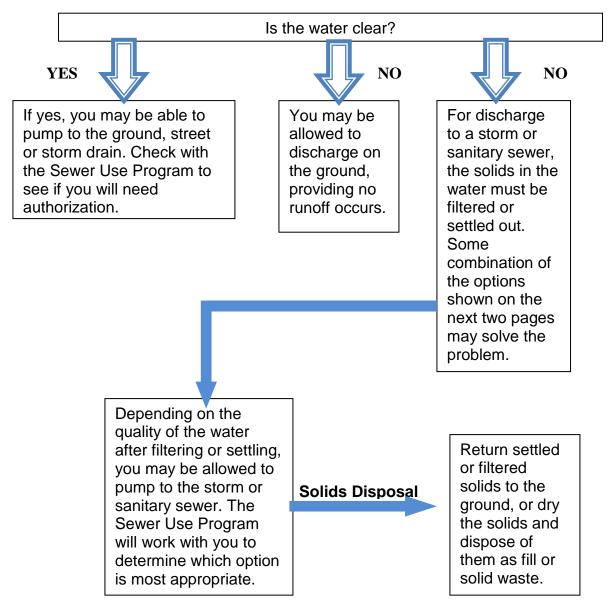
If sediments or contaminants from your job site enter a catch basin or storm drain system, you have violated the City of Ottawa's Sewer Use By-law (2003-514), as well as provincial and federal regulations. Offenders could be subject to fines and cleanup costs.

However, provided certain conditions are met, sites may dewater certain projects to the storm sewer under certain conditions.

TYPICAL PROJECTS THAT REQUIRE DEWATERING:

- Site Investigation/Assessment
- Construction, both large and small sites
- Foundation work
- Utilities infrastructure installation and repair
 - ✓ Electrical conduits
 - ✓ Vaults
 - ✓ Sewer line and storm drain maintenance
 - ✓ Phone lines and cable TV installation / repair
 - ✓ Tank removal

NOTE: Contaminated or impacted sites that involve Groundwater Remediation are not considered to be "dewatering" projects. The discharge of Remediated Groundwater to the storm sewer system is prohibited by the Sewer Use by-law. For more information on how to discharge remediated groundwater to the City's sewage works, contact the Sewer Use Program Duty Officer.

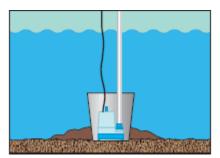


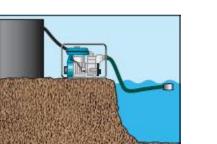
WHAT TO DO IF GROUNDWATER OR IMPOUNDED STORMWATER HAS SEDIMENTS BUT NO TOXICS ARE PRESENT

Sediments can clog storm drains, sewer lines, and smother aquatic life

HOW DO YOU DEWATER A SITE WHERE NO CONTAMINATION IS PRESENT IN THE GROUNDWATER OR IMPOUNDED STORMWATER?

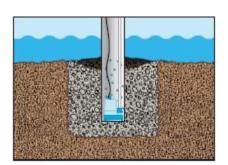
ASK YOURSELF THIS QUESTION:



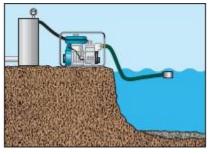

REMOVING SEDIMENTS FROM GROUNDWATER OR IMPOUNDED STORMWATER

In general, you will need to follow two steps – 1) source control; 2) filtration – to remove sediments from groundwater or impounded stormwater before you pump it off your site. Source control measures should be used before filtration. Use a combination of approaches described below for the best results. These are just some of the Best Management Practices available.

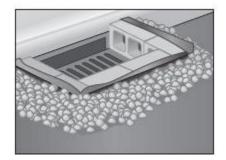
Remember to check sediment removal devices frequently to make sure they are unclogged and operating correctly. You may need to make adjustments depending on the amount of sediment in the water you're pumping.


Step 1: Control sediment loading before pumping

Using a submersible pump, pump from a bucket placed below the water level.


Place the end of the suction pipe on a float or similar device to draw off the top. Pump to a tank with sampling port(s).

Dig a small pit and fill with fine gravel. Pump through a perforated pipe sunk partway into the gravel.



Step 2: (if necessary) Filter before final discharge Options:

Pump through a filtering device such as a swimming pool filter with the end of the suction pipe on a float or similar device.

Direct water through a series of drums filled with successively finer gravel and sand.

Although not a preferred option, place filter fabric around the storm drain and anchor in place under the grate.

Surround the storm drain with concrete blocks and wrap the fabric around the outside of the blocks. Hold the fabric in place with crushed rock to complete the filtering dam.

This method is best used in conjunction with other options.

Wrap the end of the suction pipe with filter fabric and use a float or similar device to draw off the surface.

Another way to remove low levels of sediment is to discharge stormwater to a properly designed stormwater treatment facility for the type of discharge. This can include vegetated swales and/or structural devices.