

Transportation Impact Assessment – Step 4: Analysis

115 Lusk Street

TIA Plan Reports - Certification

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associate documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below:

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered¹ professional in good standing, whose field of expertise [check $\sqrt{\ }$ appropriate field(s)] is either transportation engineering \Box or transportation planning \Box .

License or registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

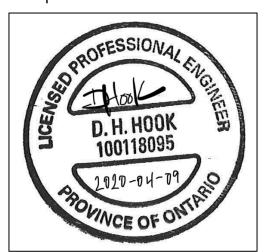
Dated at Ottawa this 9th day of April, 2020. (City)

David Hook, P.Eng. Name:

Professional Title: Project Engineer

Signature of Individual certifier that she/he meets the above four criteria

Office Contact Information (Please Print)


Address: 400-333 Preston Street

City / Postal Code: K1S 5N4

Telephone / Extension: 613-225-1311 ext. 64029

E-Mail Address: dhook@ibigroup.com

Stamp

Document Control Page

CLIENT:	DCR Phoenix
PROJECT NAME:	115 Lusk Street
REPORT TITLE:	Transportation Impact Assessment
IBI REFERENCE:	122508
VERSION:	3.0
DIGITAL MASTER:	J:\122508_115LuskSt\6.0_Technical\6.4_Traffic\6.4.3_Tech- Reports\TTR_115LuskSt_TIA_analysis_2020-04-09.docx
ORIGINATOR:	Eric M ^c Laren/ Ben Pascolo-Neveu
REVIEWER:	David Hook
AUTHORIZATION:	Justin Date
CIRCULATION LIST:	Mike Giampa - City of Ottawa Transportation Project Manager
HISTORY:	1.0 - TIA Step 1 & 2 Submitted for City Review – October 29, 2019 2.0 - TIA Step 3 Submitted for City Review – December 31, 2019 3.0 - TIA Step 4 Submitted to Client – April 13, 2020

Executive Summary

1	Introd	luction		1
2	TIA S	creening	g	2
3	Proje	ct Scopi	ing	2
	3.1	Descri	iption of Proposed Development	2
		3.1.1	Site Location	2
		3.1.2	Land Use Details	4
		3.1.3	Development Phasing & Date of Occupancy	4
	3.2	Existin	ng Conditions	6
		3.2.1	Existing Road Network	6
		3.2.2	Existing Bicycle and Pedestrian Facilities	8
		3.2.3	Existing Transit Facilities and Service	8
		3.2.4	Collision History	9
	3.3	Planne	ed Conditions	9
		3.3.1	Transportation Network	9
		3.3.2	Future Adjacent Developments	11
		3.3.3	Network Concept Screenline	14
	3.4	Study	Area	14
	3.5	Time F	Periods	14
	3.6	Study	Horizon Year	14
	3.7	Exemp	ptions Review	15
4	Forec	asting		16
	4.1	Develo	opment Generated Traffic	16
		4.1.1	Trip Generation Methodology	16
		4.1.2	Trip Generation Results	16
		4.1.3	Trip Distribution and Assignment	19
	4.2	Backg	round Network Traffic	21

		4.2.1	Changes to the Background Transportation Network	21
		4.2.2	General Background Growth Rates	21
		4.2.3	Other Area Development	21
	4.3	Demai	nd Rationalization	22
		4.3.1	Description of Capacity Issues	22
		4.3.2	Adjustment to Development Generated Demands	23
		4.3.3	Adjustment to Background Network Demands	23
	4.4	Traffic	: Volume Summary	23
		4.4.1	Future Background Traffic Volumes	23
		4.4.2	Future Total Traffic Volumes	23
5	Δnalv	eie		28
•	5.1		opment Design	
	0.1	5.1.1	Design for Sustainable Modes	
		5.1.2	Circulation and Access	
		5.1.3	New Street Networks	
	5.2		ng	
	0	5.2.1	Parking Supply	
		5.2.2	Spillover Parking	
	5.3	•	dary Streets	
		5.3.1	Mobility	
		5.3.2	Road Safety	
	5.4		s Intersections	
		5.4.1	Location and Design of Access	
		5.4.2	Access Intersection Control	
		5.4.3	Intersection Design (MMLOS)	
	5.5	Transi	portation Demand Management (TDM)	
	-	5.5.1	Context for TDM	
		5.5.2	Need and Opportunity	
		5.5.3	TDM Program	

	5.6	Neighb	ourhood Traffic Management	31
		5.6.1	Adjacent Neighbourhoods	31
	5.7	Transit		32
		5.7.1	Route Capacity	32
		5.7.1	Transit Priority Measures	32
	5.8	Review	v of Network Concept	32
	5.9	Interse	ction Design	32
		5.9.1	Intersection Control	32
		5.9.2	Intersection Analysis Criteria (Automobile)	33
		5.9.3	Intersection Capacity Analysis	34
		5.9.4	Intersection Design (MMLOS)	37
	5.10	Geome	etric Review	38
		5.10.1	Sight Distance and Corner Clearances	39
		5.10.2	Auxiliary Lane Analyses	39
	5.11	Summa	ary of Improvements Indicated and Modification Options	43
		5.11.1	Fallowfield Road & O'Keefe Court/ Cobble Hill Drive	43
		5.11.2	O'Keefe Court & Lusk Street	44
		5.11.3	Fallowfield Road & Forager Street	44
6	Conc	lusion		45
Li	st of	Tabl	es	
Tabl	le 1 - Laı	nd Use S	tatistics	4
Tabl	le 2 - Re	ported Co	ollisions within Vicinity of Proposed Development	9
		-	cent Developments	
Tabl	le 4 - Ex	emptions	Review	15
Tabl	le 5 - Ba	se Vehicı	ular Trip Generation Results	16
Tabl	le 6 - Pe	rson-Trip	Generation	17

Table 7 - 2011 OD Survey Mode Shares and Proposed Mode Share Targets	18
Table 8 - Peak Hour Person Trips by Mode	19
Table 9 - Cumulative 4401 Fallowfield Road Trip Generation	19
Table 10 - Adjacent Development Vehicle Trip Generation	22
Table 11 - Segment MMLOS Results	29
Table 12 - Development Generated Transit Demand	32
Table 13 - LOS Criteria for Signalized Intersections	33
Table 14 - LOS Criteria for Unsignalized Intersections	34
Table 15 - Intersection Capacity Analysis: Existing (2019) Traffic	35
Table 16 - Intersection Capacity Analysis: 2023 Background Traffic	35
Table 17 - Intersection Capacity Analysis: 2028 Background Traffic	36
Table 18 - Intersection Capacity Analysis: 2023 Total Traffic	36
Table 19 - Intersection Capacity Analysis: 2028 Total Traffic	37
Table 20 - Intersection MMLOS - Future Conditions	37
Table 21 - Auxiliary Left-Turn Storage Analysis at Signalized Intersections	41
Table 22 – Auxiliary Right-Turn Lane Storage Analysis at Signalized Intersections	43

April 9, 2020 iv

List of Figures	
Figure 1 - Fallowfield Road & O'Keefe Court / Cobble Hill Drive intersection	7
Figure 2 - Fallowfield Road & Forager Street	7
Figure 3 - Existing (2019) Traffic	8
Figure 4 - Future Road Network Projects	10
Figure 5 - Ultimate Cycling Network	11
List of Exhibits	
Exhibit 1 - Site Location	3
Exhibit 2 - Proposed Development	5
Exhibit 3 - Adjacent Developments	13
Exhibit 4 - Site Generated AM & PM Peak Hour Traffic Volumes	20
Exhibit 5 - Future (2023) Background Traffic	24
Exhibit 6 - Future (2028) Background Traffic	25
Exhibit 7 - Future (2023) Total Traffic	26
Exhibit 8 - Future (2028) Total Traffic	27
List of Appendices	
Appendix A – City Circulation Comments	
Appendix B – Screening Form	
Appendix C – Traffic Data	
Appendix D – OC Transpo Routes	
Appendix E – Collision Data	
Appendix F – Trip Generation Data	
Appendix G – TDM Checklist	
Appendix H – MMLOS Analysis	

April 9, 2020

Appendix I - Intersection Control Warrants

Appendix J – Intersection Capacity Analyses

Appendix K – Auxiliary Lane Analyses

April 9, 2020 ii

Executive Summary

IBI Group (IBI) was retained by DCR Phoenix to undertake a Transportation Impact Assessment (TIA) in support of a Site Plan Control application for an approximate 280 square metre proposed restaurant and 567 square metre medical office development to be located at 115 Lusk Street, Ottawa. The development represents a parcel of land in the original 4401 Fallowfield Road Plan of Subdivision.

The site is expected to be fully built out in a single phase and occupied by 2023. The horizon year of the study was therefore taken as 2028, representing 5 years beyond the expected full build-out of the site. The site will be accessed via two full-movement private approaches with direct connections to Forager Street and Lusk Street. Both of these are local streets within the 4401 Fallowfield Road subdivision and provide access to O'Keefe Court and Fallowfield Road, respectively. A total of 55 vehicle parking spaces and 8 bicycle parking spaces will be provided.

Based on the traffic analysis results, the proposed development is expected to generate up to 13 and 32 two-way vehicular trips during the weekday morning and afternoon peak hours, respectively. These traffic volumes were distributed amongst two site access driveways, representing a marginal increase in traffic volumes with respect to the overall traffic projections expected within the 2028 study horizon year. The mode share targets were based on the South Nepean Traffic Assessment Zone (TAZ) and proportionally adjusted, in accordance with the Conditions of Approval for 4401 Fallowfield Road to yield an 85% auto/ 15% non-auto mode share split. It should also be noted that this study did not apply any pass-by reductions factors to the restaurant's trip generation, as it was determined that the overall impact on the adjacent road network would be minimal.

The intersection of Fallowfield & O'Keefe/ Cobble Hill is presently operating as a two-way stop controlled intersection. The results of the analysis indicate that, by 2023, traffic signals will be operationally required under background traffic conditions, however signals are not warranted within the timeframe of this study. With traffic signals in place, the intersection would be expected to operate at an acceptable level of service (LOS 'B') beyond the study horizon year. As site-generated traffic will not contribute significantly to any potential traffic operational issues at this intersection, it is recommended that the City continue monitoring this intersection on an annual basis to determine the appropriate timing for the introduction of traffic signals.

The results of the analysis indicate that the intersections of O'Keefe Court & Lusk Street and Fallowfield Road & Forager Street are expected to operate within acceptable standards (LOS 'D' or better) during the weekday morning and afternoon peak hours. Both are T-intersections that are configured with stop control on the minor road and do not warrant auxiliary lanes or future modifications to intersection control within the timeframe of this study.

A multi-modal analysis identifies deficiencies in the existing road network and potential remediation measures have been suggested in which the City could consider to meet these prescribed targets. It should be noted that, although these measures would improve for a range of transportation modes, they are not required to safely accommodate the transportation demands of the proposed development.

A Roadway Modification Application (RMA-2019-TPD-041B) was recently approved to satisfy a conditional requirement for the 4401 Fallowfield Road Subdivision. The RMA includes the right-in/right-out intersection at Fallowfield Road & Forager Street, a multi-use pathway along the west side of Fallowfield Road and a southbound bus stop on Fallowfield Road near the O'Keefe Court intersection. As there is already an approved RMA intended to address the implementation of the above noted design elements and no off-site geometric improvements are required as a direct result of the proposed development, an RMA will not be included with the submission of this Transportation Impact Assessment.

All study area intersections were shown to operate well within the capacity constraints of the adjacent transportation network, with the appropriate modifications in place (i.e. signalization of Fallowfield & O'Keefe/ Cobble Hill by 2023). Further, the proposed development will contribute a negligible volume of

IBI GROUP TRANSPORTATION IMPACT ASSESSMENT – STEP 4: ANALYSIS 115 LUSK STREET Submitted to DCR Phoenix

traffic to the adjacent road network. A post-development Monitoring Plan is, therefore, not a requirement of this study.

Based on the findings of this study, it is the overall opinion of IBI Group that the proposed development will integrate well with and can be safely accommodated by the adjacent transportation network with the recommended actions and modifications in place.

1 Introduction

IBI Group (IBI) was retained by DCR Phoenix to undertake a Transportation Impact Assessment (TIA) in support of a Site Plan Control application for a proposed restaurant and medical office development to be located at 115 Lusk Street, Ottawa. The development represents a parcel of land in the original 4401 Fallowfield Road Plan of Subdivision.

In accordance with the City of Ottawa's Transportation Impact Assessment Guidelines, published in June 2017, the following report is divided into four major components:

- Screening Prior to the commencement of a TIA, an initial assessment of the proposed development is undertaken to establish the need for a comprehensive review of the site based on three triggers: Trip Generation, Location and Safety.
- Scoping This component of the TIA report describes both the existing and planned conditions in the vicinity of the development and defines study parameters such as the study area, analysis periods and analysis years of the development. It also provides an opportunity to identify any scope exemptions that would eliminate elements of scope described in the TIA Guidelines but not relevant to the development proposal, based on consultation with City staff.
- **Forecasting** The Forecasting component of the TIA is intended to review both the development-generated travel demand and the background network travel demand. It also provides an opportunity to rationalize this demand to ensure projections are within the capacity constraints of the transportation network.
- Analysis This component documents the results of any analyses undertaken to ensure
 that the transportation related features of the proposed development are in conformance
 with prescribed technical standards and that its impacts on the transportation network are
 both sustainable and effectively managed. It also identifies a development strategy to
 ensure that what is being proposed is aligned with the City of Ottawa's policies and citybuilding objectives.

Throughout the development of a TIA report, each of the four study components above are submitted in draft form to the City of Ottawa and undergo a review by a designated Transportation Project Manager. Any comments received are addressed to the satisfaction of the City's Transportation Project Manager before proceeding with subsequent components of the study. All technical comments and responses throughout this process are included in **Appendix A**.

A Roadway Modification Application (RMA-2019-TPD-041B) was recently approved to satisfy a conditional requirement for the Subdivision. The RMA includes a right-in/right-out intersection at Fallowfield Road & Forager Street, a multi-use pathway along the west side of Fallowfield Road and a southbound bus stop on Fallowfield Road near the O'Keefe Court intersection. As such, an RMA will not be required as part of this TIA. The submission may require a post-development Monitoring Plan to track performance of the planned TIA Strategy, however the need for a Monitoring Plan will be confirmed through the analysis undertaken in this report.

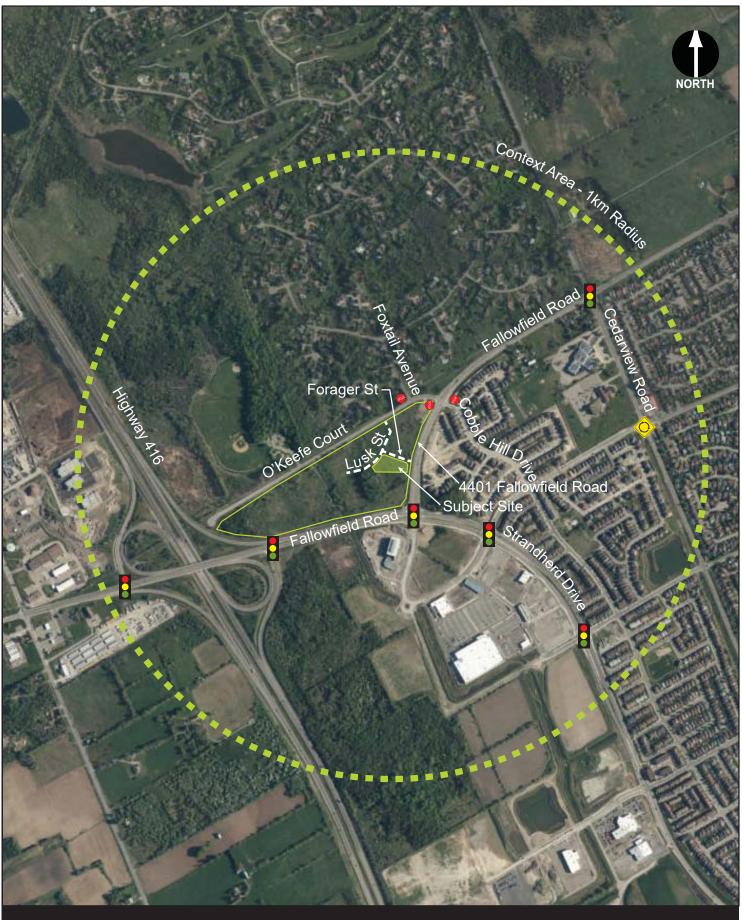
2 TIA Screening

An initial screening was completed to confirm the need for a Transportation Impact Assessment by reviewing the following three triggers:

- Trip Generation: Preliminary trip generation estimates were developed based on the Institute of Transportation Engineers (ITE) Trip Generation Manual (10th Edition). A 1.28 person-trip conversion factor was applied to the base trip generation data to obtain person-trip generation. The 60 person-trip threshold prescribed by the TIA Guidelines is met during the weekday afternoon peak hour therefore the Trip Generation trigger is satisfied.
- Location: The proposed development will not be accessed from a boundary street that is
 designated as part of the City's Transit Priority, Rapid Transit network or Spine Bicycle
 Networks nor is the subject site within a Design Priority Area or Transit-Oriented
 Development zone, therefore, the Location trigger is not satisfied.
- Safety: Boundary street conditions were reviewed to determine if there is an elevated
 potential for safety concerns adjacent the site. Based on this review, there is no elevated
 potential for safety concerns adjacent to the site, therefore the Safety trigger is not
 satisfied.

As the proposed development meets the Trip Generation trigger, the need to undertake a Transportation Impact Assessment is confirmed.

A copy of the Screening Form is provided in **Appendix B**.


3 Project Scoping

3.1 Description of Proposed Development

3.1.1 Site Location

The proposed development is located within the 4401 Fallowfield Road business park adjacent to Lusk Street, Forager Street and Fallowfield Road. The municipal address of the subject site is 115 Lusk Street. The approximately 0.4 hectare site is currently undeveloped and, based on GeoOttawa, is zoned IP[2265] H(16) – Business Park Industrial Zone.

The site location and its surrounding context is illustrated in **Exhibit 1**.

3.1.2 Land Use Details

Table 1 summarizes the proposed land uses included in this development.

Table 1 - Land Use Statistics

LAND USE	SIZE
Quality Restaurant	280 m ² (3,014 ft ²)
Medical Office	567 m ² (6,103 ft ²)

The proposed development is illustrated in Exhibit 2.

The site will be accessed via two full-movement private approaches with direct connections to Forager Street and Lusk Street. Both of these are local streets within the 4401 Fallowfield Road subdivision and provide access to O'Keefe Court and Fallowfield Road, respectively. A total of 55 vehicle parking spaces and 8 bicycle parking spaces will be provided.

3.1.3 Development Phasing & Date of Occupancy

The proposed development will be constructed in a single phase. It is anticipated that the development will be constructed and fully occupied by 2023.

Exhibit 2: Proposed Development PROJECT No. 122508 DATE: April 2020 SCALE: 0m 10m

20m

3.2 Existing Conditions

3.2.1 Existing Road Network

3.2.1.1 Roadways

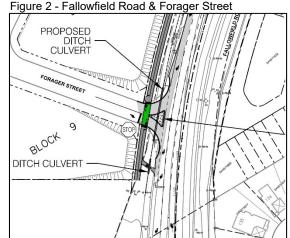
The proposed development is bound by the following street(s):

- Fallowfield Road is a two-lane undivided urban arterial roadway under the jurisdiction of the City of Ottawa with a right-of-way protection of 44.5m. From Highway 416 heading east, Fallowfield Road has a posted speed of 80km/h. At the intersection with Strandherd Drive, Fallowfield Road takes a 90-degree turn to the northeast and continues through to the study area with a reduced speed limit of 60 km/h.
- Lusk Street is a two-lane local road extending from O'Keefe Court and terminates in a cul-de-sac approximately 250m to the southwest and provides access to the 4401 Fallowfield Road business park. Lusk Street has a 20m right-of-way and an unposted speed limit of 50 km/h.
- Forager Street is a two-lane local road linking Lusk Street to Fallowfield Road and also provides access to the 4401 Fallowfield Road business park. Forager Street has a 20m right-of-way and an unposted speed limit of 50 km/h

Other streets within the vicinity of the proposed development are as follows:

- **Strandherd Drive** is a four-lane divided urban arterial road under the jurisdiction of the City of Ottawa with a posted speed limit of 80 km/h within the vicinity of the subject lands, and a right-of-way protection of 44.5m.
- O'Keefe Court is a two-lane road extending west from Fallowfield Road and terminating in a cul-de-sac approximately 800m west of the Fallowfield Road and O'Keefe Court intersection. The roadway has a rural cross-section with a posted speed limit of 50km/h. O'Keefe Court runs along the former Fallowfield Road alignment (prior to its realignment to Strandherd Drive). Its right-of-way (ROW) therefore varies and is generally 30m, however, additional ROW has been taken on a portion of the north side to accommodate a multi-use pathway (MUP).
- Cedarview Road is a City of Ottawa roadway that extends from Strandherd Drive in the south to Baseline Road in the north. Cedarview Road is a two-lane urban arterial road north of Fallowfield Road, with a 37.5m right-of-way protection. Between Fallowfield Road and Jockvale Road, it is a major collector with a 26m right-of-way. The posted speed limit on Cedarview Road is 60 km/h. South of Strandherd Drive and the VIA Rail corridor, Cedarview Road has been renamed Borrisokane Road and continues south to Barnsdale Road.
- **Foxtail Avenue** is a two-lane local road extending from O'Keefe Court that provides access for the Orchard Estates residential community. The posted speed limit is 40 km/h.

3.2.1.2 Intersections


The following existing intersections have been identified as having the greatest potential to be impacted by the proposed development:

Fallowfield Road & O'Keefe Court / Cobble Hill Drive presently exists as a four-legged unsignalized intersection with stop-control on the O'Keefe Court and Cobble Hill Drive approaches. Each leg of the intersection is configured with a single through lane and auxiliary left-turn lane. Auxiliary right-turn lanes are provided along Fallowfield Road, while the sidestreets are configured with shared through-right lanes. The City of Ottawa is currently monitoring this intersection for implementation of traffic signals, once warranted.

Figure 1 - Fallowfield Road & O'Keefe Court / Cobble Hill Drive intersection

Fallowfield Road & Forager Street is a new three- legged intersection with an RMA which is intended to restrict access to right-in/right-out. A multi-use pathway (MUP) crossing is proposed on Forager Street to provide a connection for the future MUP to be located on the west side of Fallowfield Road. Each leg of the intersection is configured with a single through lane, with an auxiliary right-turn lane on the southbound approach only.

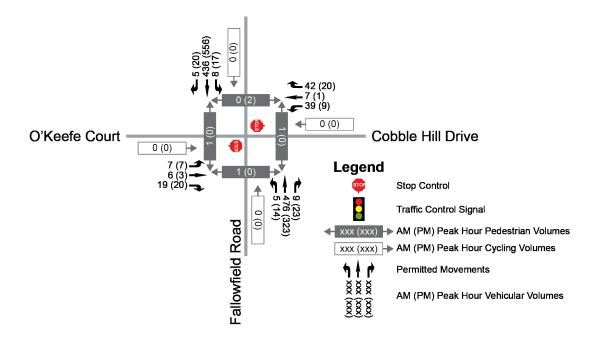
3.2.1.3 Traffic Management Measures

There are currently no traffic management or traffic calming measures on the boundary streets within the vicinity of the proposed development.

3.2.1.4 Nearby Driveways

There are currently no driveways within 200m of either proposed site access location. The adjacent Hampton Inn and Suites Hotel currently under construction and located immediately to the southwest of the 115 Lusk Street site will include private approaches, with the nearest being approximately 3 metres from the property line shared with the subject development.

3.2.1.5 Existing Traffic Volumes


Weekday morning and afternoon peak hour turning movement counts were obtained by IBI staff at the following intersection(s):

Fallowfield Road and O'Keefe Court/ Cobble Hill Drive (IBI Group – January 30, 2018)

A growth rate was applied to the through volumes along Fallowfield Road to approximate existing (2019) traffic volumes. Justification of background traffic volumes is discussed further in the Forecasting section of this report.

Peak hour vehicular, pedestrian and cyclist traffic volumes representative of existing (2019) conditions are shown in **Figure 3**. Traffic count data is provided in **Appendix C**.

Figure 3 - Existing (2019) Traffic

3.2.2 Existing Bicycle and Pedestrian Facilities

The section of Fallowfield Road within the context area is designated as a Spine cycling route, and presently provides paved shoulders on both sides of the road. A bike pocket exists along Fallowfield Road on the southbound approach to the Fallowfield Road & O'Keefe Court / Cobble Hill Drive intersection. A multi-use pathway (MUP) presently exists along the north side of O'Keefe Court from Lytle Park in the west to Cedarview Road in the east. Uni-directional cycle tracks are provided on both sides of Strandherd Drive from Fallowfield Road to Maravista Drive with cross-rides, two-stage left-turn bike boxes and bicycle signals at key signalized intersections within the context area. There are no exclusive bicycle facilities crossing Strandherd Drive, however pedestrian crosswalks are provided at each signalized intersection.

No formal pedestrian facilities are provided within the vicinity of the proposed development with the exception of concrete sidewalks (corner refuge) at the intersection of Fallowfield Road and O'Keefe Court/ Cobble Hill Drive, as well as within the reconstructed section of Strandherd Drive through the context area.

3.2.3 Existing Transit Facilities and Service

OC Transpo operates the following transit routes within close proximity to the proposed development:

 Route #179 provides weekday peak period service between the Citi-Gate development off of Strandherd Drive and the Fallowfield VIA Rail Station and operates on a 15-minute headway.

 Route #272 provides weekday peak period service between the Cobble Hill residential development in Barrhaven South and Tunney's Pasture Station and operates on a 10minute headway.

The nearest bus stops to the proposed development are located at the corner of Fallowfield Road & O'Keefe Court / Cobble Hill Drive, located approximately 270m walking distance from the proposed development.

Transit service maps for the above noted transit routes are provided in **Appendix D**.

3.2.4 Collision History

A review of historical collision data has been conducted for the road network surrounding the proposed development. The TIA Guidelines require a safety review if at least six collisions for any one movement or of a discernible pattern, over a five-year period have occurred. **Table 2** summarizes all reported collisions between January 1, 2014 and December 31, 2018.

Table 2 - Reported Collisions within Vicinity of Proposed Development

LOCATION	# OF REPORTED COLLISIONS
INTERSECTIONS	
Fallowfield Road & Strandherd Drive	35
Fallowfield Road & O'Keefe Court / Cobble Hill Drive	1
SEGMENTS	
Fallowfield Road – Strandherd Drive to O'Keefe Court / Cobber Hill Drive	1
O'Keefe Court – Fallowfield Road to cul-de-sac	1

Based on the collision history summarized above, the Fallowfield Road & Strandherd Drive intersection may require further review in the Analysis section of the report.

Detailed collision records are provided in **Appendix E**.

3.3 Planned Conditions

3.3.1 Transportation Network

3.3.1.1 Future Road Network Projects

The 2013 Transportation Master Plan (TMP) outlines future road network modifications in the 2031 'Affordable Network'. The following projects were noted that may have an impact on traffic patterns within the vicinity of the site:

• Strandherd Drive – Planned widening of Strandherd Drive from two to four lanes. The first phase included widening between Fallowfield Road and Maravista Drive (Phase 1: 2014-2019) and was completed in 2015. The second phase includes widening between Maravista Drive and Jockvale Road (Phase 2: 2020-2025).

The 2019 City-Wide Development Charges Background Study (March 15, 2019) identifies the following revisions for the timing of the TMP road network modifications described above:

• Strandherd Drive Phase 2 – The timing for the second phase of the planned widening has been revised to 2020-2024.

Figure 4 illustrates the planned changes to the arterial road network projects in the broader area, as per the TMP Affordable Plan.

PROPOSED DEVELOPMENT

Phase 1 (2014 - 2019) Widening Phase 1 (2014 - 2019) New Road

Phase 2 (2020 - 2025) Widening Phase 2 (2020 - 2025) New Road

Figure 4 - Future Road Network Projects

Source: 2013 Transportation Master Plan – Map 11 '2031 Affordable Network'

Although not part of the '2031 Affordable Network' the TMP indicates that Fallowfield Road may be widened between Strandherd Drive and Greenbank Road some time beyond the TMP's 2031 horizon.

3.3.1.2 Future Transit Facilities and Services

The 2013 TMP outlines the future rapid transit and transit priority (RTTP) network. The TMP does not identify any planned RTTP projects within the vicinity of the proposed development as part of the '2031 Affordable Network' or '2031 Network Concept'. The Roadway Modification Application (RMA) completed for the Fallowfield/ Forager intersection includes a new southbound bus stop on Fallowfield Road south of O'Keefe Court.

3.3.1.3 Future Cycling and Pedestrian Facilities

Although Fallowfield Road is identified as a Spine cycling route, the Ottawa Cycling Plan (2013) does not describe any planned improvements to bicycle infrastructure along this section of roadway within the study area.

A proposed north-south Major Pathway, identified as part of the Ultimate Cycling Network, will connect to the existing multi-use pathway north of O'Keefe Court, continue south through 4401 Fallowfield Road prior to following Highway 416 towards the Jock River. **Figure 5** shows the future cycling network in the vicinity of the proposed development. The RMA includes a portion of the multi-use pathway on the west side of Fallowfield Road along the 4401 Fallowfield subdivision frontage.

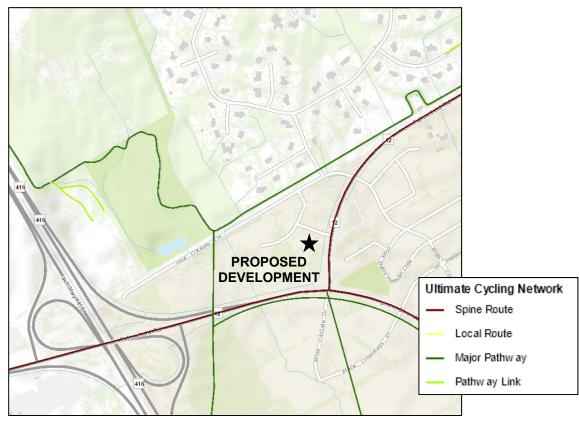


Figure 5 - Ultimate Cycling Network

No additional pedestrian network modifications are planned within the vicinity of the proposed development.

3.3.2 Future Adjacent Developments

The City of Ottawa Transportation Impact Assessment (TIA) Guidelines specify that all significant developments proposed within the surrounding area which are likely to occur within the study's horizon year must be identified and taken into consideration in the development of future background traffic projections.

The subject site forms part of the 4401 Fallowfield Road Plan of Subdivision (previously referred to as the Highway 416 Lands development). It is located in the northwest quadrant of the Fallowfield Road and Strandherd Drive intersection that will eventually consist of two hotels and an office park.

All current development applications within the context area of the proposed development have been summarized below in **Table 3**.


Table 3 - Future Adjacent Developments

DEVELOPMENT	TIA	LAND USE AND SIZE	TARGETED BUILD-OUT ¹
Highway 416 Lands (4401 Fallowfield Road)	IBI Group (2015)	2 Hotels 496,168 ft² Business Park	2017
Hampton Inn & Suites ²	IBI Group (2018)	• 102 Hotel Rooms	2019
Gateway Industrial Centre (4497 O'Keefe Court)	Delcan (2008)	279,653 ft ² General Light Industrial	Unknown
4190, 4200, 4210, 4236 Fallowfield Road and 2740 Cedarview Road	Id Road and (2018) • 194 Residential Units		2023
CitiGate – 416 Novatech Employment Lands (2012)		 350,000 ft² Shopping Centre 200 Hotel Rooms Gas Station (8 fuel positions) 16.56 ha Business Park 67.65 ha Office Park 10.5 ha New Car Sales 	2029
CitiGate Hotel (4433 Strandherd Drive) ³	Novatech (2019)	• 99 Hotel Rooms	2020

Notes:

- 1. Target build-out date may be outdated for some developments
- 2. Located within the Highway 416 Lands development.
- 3. Located within the City Gate 416 Employment Lands development.

The locations of the adjacent developments described above are shown in **Exhibit 3**.

3.3.3 Network Concept Screenline

Network screenline analysis is not expected to be necessary for this development, as it does not trigger the threshold prescribed in the TIA Guidelines of 200 person-trips or more during the peak hour. Detailed trip generation calculations will be provided in the Forecasting section of the report.

3.4 Study Area

The information presented thus far provides a base level of information for the development's context. Based on preliminary estimates of trip generation completed for the TIA Screening, the proposed development is expected to be a low traffic generator with roughly 60 person-trips expected during the weekday afternoon peak hour. Travel demand will be subsequently stratified by mode shares, divided amongst the two proposed site access intersections and further diluted by the variation in travel routes within the broader study area. As such, the proposed development is expected to contribute minimal downstream impacts to intersections on the periphery of the context area such as Cedarview Road and Fallowfield Road.

Strandherd Drive from Fallowfield Road to Maravista Drive was also exempt from the study area, as this segment of road was reconstructed in 2015 following the City's Complete Streets design philosophy to accommodate multi-modal travel demands beyond the TMP's ultimate planning horizon of 2031. Consideration was given to the proposed development travel demands as part of the Highway 416 Lands CTS.

With respect to the exemptions discussed above, this TIA will focus on site-specific impacts, integration with its boundary streets, including a functional review of the site access geometry and intersection control, on-site drive aisle requirements to accommodate proposed design vehicles and a review of the site's parking and loading requirements.

A condensed study area is proposed for this TIA, which will consist of the following intersections:

- Fallowfield Road & O'Keefe Court / Cobble Hill Drive
- O'Keefe Court & Lusk Street
- Fallowfield Road & Forager Street

The study area is consistent with the recent TIA for the adjacent Hampton Inn and Suites.

Multi-modal level of service (MMLOS) analysis will be limited to Fallowfield Road between Forager Street and O'Keefe Court. Intersection MMLOS is only required for signalized intersections, and based on the low traffic generation projected for this development, it is unlikely that it will trigger the need for traffic signals at any of the three study area intersections. This will be verified through intersection capacity analysis in the Analysis component of the report.

3.5 Time Periods

Based on a preliminary review of trip generation rates associated with the proposed land uses, the peak weekly traffic generation is expected to occur on Saturdays. For the purposes of comparison, the weekday morning and afternoon peak periods represent 37% and 87% of this peak demand, respectively. It is important to note however that the Saturday peak likely does not coincide with the peak hour of adjacent street traffic, therefore the weekday morning and afternoon peak hour will constitute the critical analysis periods for this study.

3.6 Study Horizon Year

Traffic analyses associated with TIA's typically involve a review of existing conditions, as well as the anticipated future conditions, both with- and without the proposed development, at the year of

full-occupancy as well as five years beyond. Phased developments will often require interim analyses to provide a timeline for any necessary transportation infrastructure improvements.

It is expected that the proposed development will be constructed and fully occupied in a single phase in 2023. The horizon year for this study is therefore 2028.

3.7 Exemptions Review

The TIA Guidelines provide exemption considerations for elements of the Design Review and Network Impact components. **Table 4** summarizes the TIA modules that are not applicable to this study.

Table 4 - Exemptions Review

TIA MODULE	ELEMENT	EXEMPTION CONISDERATIONS	REQUIRED
DESIGN REVIEW	COMPONENT		
4.1 Development Design	4.1.2 Circulation and Access	Only required for site plans	✓
	4.1.3 New Street Networks	Only required for plans of subdivision	×
4.2 Parking	4.2.1 Parking Supply	Only required for site plans	✓
	4.2.2 Spillover Parking	Only required for site plans where parking supply is 15% below unconstrained demand	×
NETWORK IMPAC	T COMPONENT		
4.5 Transportation Demand Management	All Elements	Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time	×
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	✓
4.8 Network Concept	n/a	Only required when proposed development generates more than 200 person-trips during the peak hour in excess of the equivalent volume permitted by established zoning	×

4 Forecasting

4.1 Development Generated Traffic

4.1.1 Trip Generation Methodology

Peak hour site-generated traffic volumes were developed using the Institute of Transportation Engineers (ITE) Trip Generation Manual (10th Edition). The TIA Guidelines indicate that vehicle-trip generation rates from the ITE Trip Generation Manual should be converted to person-trips through the application of a 1.28 vehicle-to-person-trip conversion factor.

Following the application of the vehicle-to-person-trip conversion factor, the person-trips were then subdivided based on representative mode share percentages applicable to the study area to determine the number of vehicle, transit, pedestrian, cycling and other trip types.

Target mode shares were developed based on the local mode shares from the OD Survey and adjusted to account for Condition 6b of the Conditions of Approval of the Draft Plan of Subdivision of 4401 Fallowfield Road. Condition 6b indicates that all TIAs prepared for Site Plan Applications within the 4401 Fallowfield Road subdivision must assume a maximum non-auto mode share (transit, walking, cycling and other) of 15%. Furthermore, Condition 6a indicates that the cumulative vehicle-trip generation of all sites within the 4401 Fallowfield Road subdivision shall not exceed 739 vehicles per hour during the weekday morning and afternoon peak periods.

4.1.2 Trip Generation Results

4.1.2.1 Base Vehicle Trip Generation

Peak hour vehicular traffic volumes associated with the 115 Lusk Street development were determined using appropriate peak hour trip generation rates from the ITE Trip Generation Manual.

The vehicular trip generation results for the proposed development have been summarized in **Table 5**.

Table 5 - Base Vehicular Trip Generation Results

LANDLICE	SIZE	PERIOD	GENERATED TRIPS (VPH)		
LAND USE			IN	OUT	TOTAL
720 – Medical Offices	567 m ²	AM	11	6	17
720 Medical Offices		PM	8	13	21
931 – Quality Restaurant	280 m ²	AM	1	1	2
331 – Quality Nestaurant		PM	16	8	24

Notes: vph = Vehicles per Hour

4.1.2.2 Person Trip Generation

The TIA Guidelines indicate that a 1.28 vehicle-to-person-trip conversion rate should be utilized to convert the base vehicular trip generation results into person trips.

The resulting number of person-trips the proposed development is expected to generate is summarized in **Table 6** below.

Table 6 - Person-Trip Generation

LANDUCE	DEDIOD	PERSON TRIPS (PPH)			
LAND USE	PERIOD	IN	OUT	TOTAL	
Medical Offices	AM	13	8	21	
iviedical Offices	PM	11	16	27	
Ovality Destayment	AM	1	1	2	
Quality Restaurant	PM	20	10	30	

Notes: pph = persons per hour

4.1.2.3 Mode Share Proportions

The 2011 TRANS Origin-Destination (O-D) Survey provides approximations of the existing modal share within the South Nepean Traffic Assessment Zone (TAZ). Relevant extracts from the 2011 O-D Survey are provided in **Appendix F**.

Of the available data, the average of the weekday AM and PM peak 'Within District' mode shares was determined to be the most appropriate existing mode share references, as the subject development is expected to primarily draw traffic from the local area.

Given the context of the proposed development, the mode shares specific to this development may deviate from the average mode share experienced in the South Nepean TAZ. As discussed below, adjustments were made to all the mode shares to better represent the mode shares for the proposed development.

The subject development is located on the opposite side of Fallowfield Road from the majority of the local residential developments, with only one signalized intersection in its vicinity providing a controlled crossing of Fallowfield Road. At present, limited active transportation facilities are provided in the study area, and although isolated measures are planned in the near term, there is a decreased likelihood of significant pedestrian or cycling demand being generated by the site. It is expected, however, that the intersection of Fallowfield Road & O'Keefe Court / Cobble Hill Drive will eventually become signalized which will improve the accessibility of the site for pedestrians. This is expected to result in an increase in pedestrian demand which is reflected in the 2028 mode share targets.

Despite the planned inclusion of a southbound bus stop on Fallowfield Road south of O'Keefe Court as part of the approved RMA for the Fallowfield Road & Forager Street intersection, the transit mode share is expected to remain low, as transit service existing on the east side of Fallowfield Road will be partially inaccessible due to the lack of controlled pedestrian crossings on Fallowfield Road adjacent to the site.

Given the low probability of site-generated trips occurring by non-auto travel modes (transit, cycling, walking and other) within the horizon year of this study, the mode shares of all non-auto travel modes were proportionally adjusted to yield a total non-auto mode share of 15% in accordance with the Conditions of Approval for 4401 Fallowfield Road. The difference in mode share was reallocated to the auto driver and auto passenger mode shares.

Table 7 below summarizes the 2011 OD Survey mode shares as well as the target mode shares.

Table 7 - 2011 OD Survey Mode Shares and Proposed Mode Share Targets

TRAVEL MODE	2011 OD SURVEY MODE SHARES	2023 MODE SHARE TARGETS	2028 MODE SHARE TARGETS	
Auto Driver	40%	57%	57%	
Auto Passenger	20%	28%	28%	
Total Auto Mode Share	60%	85%	85%	
Transit	4%	2%	2%	
Cycling	2%	0%	0%	
Walking	19%	7%	13%	
Other	16%	6%	0%	
Total Non-Auto Mode Share	40%	15%	15%	

4.1.2.4 Trip Reduction Factors

Deduction of Existing Development Trips

Not Applicable: The proposed development lands are currently undeveloped, and do not generate any traffic volumes.

Pass-by Traffic

Based on survey data collected for the *ITE Trip Generation Handbook (3rd edition)*, the Quality Restaurant land use was shown to generate an average of 44% pass-by trips. This study conservatively did not apply any pass-by reduction factors, as the overall impact on the adjacent road network is expected to be minimal.

Synergy/ Internalization

Not Applicable: The proposed development will not generate internal person-trips between the proposed land uses. Non-auto trips are likely to occur to/from other sites within the 4401 Fallowfield Road subdivision, such as the adjacent Hampton Inn and Suites.

4.1.2.5 Trip Generation by Mode

The mode share targets from **Table 7** were applied to the number of development-generated person-trips to establish the expected number of trips per travel mode, as summarized in **Table 8** below.

Table 8 - Peak Hour Person Trips by Mode

	2023			2028				
MODE	AM		РМ		АМ		PM	
	IN	OUT	IN	OUT	IN	OUT	IN	OUT
Auto Driver	8	5	17	15	8	5	17	15
Auto Passenger	4	3	9	7	4	3	9	7
Transit	0	0	1	0	0	0	1	0
Cycling	0	0	0	0	0	0	0	0
Walking	1	1	2	2	2	2	4	4
Other	1	1	2	2	0	0	0	0
Total	2	4	5	7	2	4	5	7

4.1.2.6 Cumulative 4401 Fallowfield Road Trip Generation

Condition 6A of the Conditions of Approval of the Draft Plan of Subdivision of 4401 Fallowfield Road indicates that the total vehicle-trip generation of the subdivision shall not exceed 739 vehicle-trips per hour during the weekday morning and afternoon peak hours. **Table 9** summarizes the total and cumulative number of vehicle-trips generated during the weekday morning and afternoon peak hours by all sub-developments within 4401 Fallowfield Road subdivision which have been approved or are currently undergoing a Site Plan Control Application.

Table 9 - Cumulative 4401 Fallowfield Road Trip Generation

SUB-DEVELOPMENT	TOTAL AM (PM) VEHICLE TRIPS	CUMULATIVE AM (PM) VEHICLE TRIPS	
Hampton Inn & Suites	56 (64)	56 (64)	
115 Lusk Street	13 (32)	69 (96)	
Total from Curren	69 (96)		
Total Allowa	739 (739)		
Percentage of	9% (13%)		

As indicated above, the proposed development will not exceed the maximum permissible vehicular generation of the 4401 Fallowfield Road subdivision.

4.1.3 Trip Distribution and Assignment

As the proposed development is expected to primarily draw traffic from local residential areas, site-generated traffic has been distributed to the road network based on the concentrations of housing in the vicinity of the subject development:

- 40% to/from the southwest via Fallowfield Road
- 60% to/from the east via Fallowfield Road

Utilizing the estimated number of new auto trips and applying the above distribution, future sitegenerated traffic volumes are illustrated for each of the study area intersections in **Exhibit 4**.

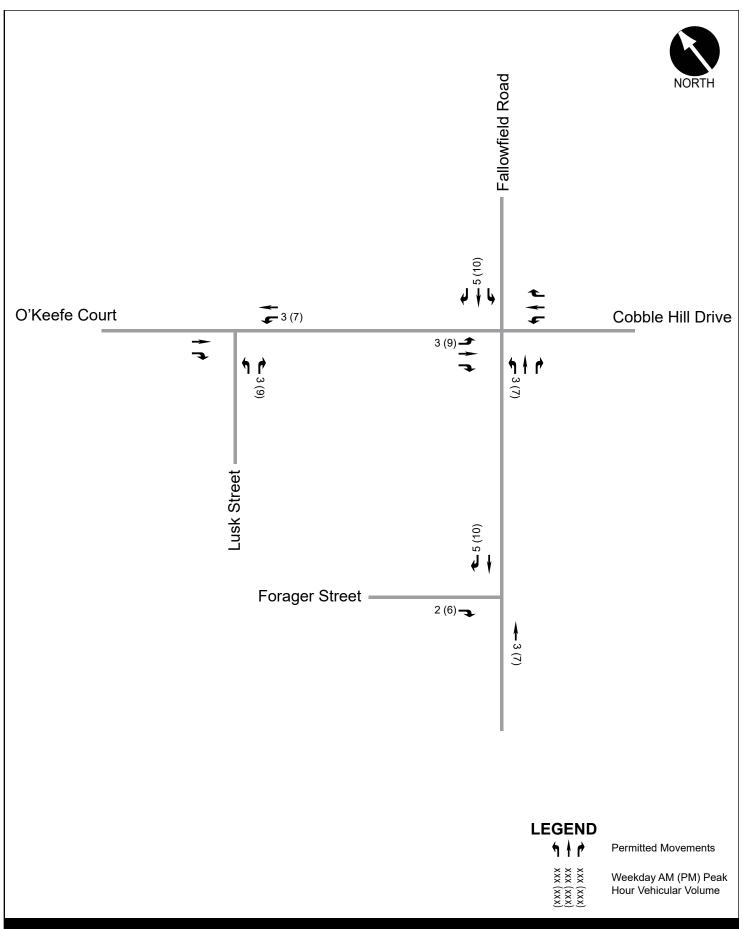


Exhibit 4: Site-Generated AM & PM Peak Hour Traffic

PROJECT No. DATE: SCALE: 122508 April 2020 N.T.S.

4.2 Background Network Traffic

4.2.1 Changes to the Background Transportation Network

To properly assess future traffic conditions, planned modifications to the transportation network that may impact travel patterns or demand within the study area must be considered. The Scoping section of this TIA reviewed the anticipated changes to the study area transportation network based on the Transportation Master Plan (TMP), the Ottawa Cycling Plan, the Ottawa Pedestrian Plan and the 2019 City-Wide Development Charges Background Study and determined that there are no major road, pedestrian or cycling network modifications planned within the study area prior to the 2028 horizon.

The intersection of Fallowfield Road/ O'Keefe/ Cobble Hill is being monitored by City staff for traffic signal warrants. As discussed previously, an RMA was recently approved for the right-in/right-out intersection of Fallowfield Road & Forager Street which includes an isolated section of multi-use path (MUP) on the west side of Fallowfield Road and a southbound bus stop on Fallowfield Road along the 4401 Fallowfield Road, south of O'Keefe Court.

4.2.2 General Background Growth Rates

The background growth rate is intended to represent regional growth from outside the study area that will travel along the adjacent road network. Consistent with the adjacent Hampton Inn & Suites TIA, a 2% rate of linear growth per annum is proposed within the study area for the calculation of future background traffic.

The background growth rate was only been applied to the through movements on Fallowfield Road as traffic generation relating to all known future adjacent developments has been explicitly accounted for in the analysis.

4.2.3 Other Area Development

All current adjacent development applications within the study area were previously identified in **Table 3**. All of the developments identified have been accounted for in the future background volume projections. The developments represent specific areas of growth within the study area and are therefore considered in addition to the general background growth rate discussed previously. **Table 10** summarizes the vehicle trip generation of all current adjacent background development applications.

Table 10 - Adjacent Development Vehicle Trip Generation

	TIA	VEHICLE TRIP GENERATION				
DEVELOPMENT		A	M	PM		
		IN	OUT	IN	OUT	
Highway 416 Lands (4401 Fallowfield Road)	IBI Group (2015)	630	109	137	533	
Hampton Inn & Suites	IBI Group (2018)	33	23	33	31	
Gateway Industrial Centre (4497 O'Keefe Court)	Delcan (2008)	20	97	94	46	
4190, 4200, 4210, 4236 Fallowfield Road and 2740 Cedarview Road	Novatech (2018)	108	33	131	76	
	Novatech (2012)	Interim (2019)				
CitiGate – 416		741	216	664	1015	
Employment Lands		Ultimate (2029)				
		3494	635	1128	3316	
CitiGate Hotel (4433 Strandherd Drive)	Novatech (2019)	29	20	27	26	

It should be noted that some of the developments shown in **Table 10** above are not expected to be fully built out by the horizon year of the study or are sub-developments within a larger development. Background development traffic volumes have been adjusted appropriately to account for this.

The CitiGate – 416 Employment Lands is a large multi-phase development that has been partially been built out and is expected to be fully built out by 2029. The projected traffic volumes generated by this development at the 2023 and 2028 analysis years were linearly interpolated and considered the development status at the time of the recorded traffic counts utilized in this study.

It was assumed that the Gateway Industrial Centre (4497 O'Keefe Court) development would be fully built out by the 2023 analysis year.

4.3 Demand Rationalization

The purpose of this section is to rationalize future travel demands within the study area to account for potential capacity limitations in the transportation network and its ability to effectively accommodate the additional demand generated by a new development.

4.3.1 Description of Capacity Issues

The TIA recently completed for the adjacent Hampton Inn and Suites indicated study area intersections including Fallowfield Road & O'Keefe Court/ Cobble Hill Drive as well as Lusk Street/ O'Keefe Court would operate below their theoretical capacities (i.e. LOS 'D' or better) beyond the build-out year of the proposed development.

4.3.2 Adjustment to Development Generated Demands

The proposed development is only expected to generate 32 two-way vehicle-trips during the weekday morning and afternoon peak hours of adjacent street traffic and therefore unlikely to trigger any capacity issues.

4.3.3 Adjustment to Background Network Demands

As no further capacity issues have been identified, no adjustments to background network demands are necessary.

The TIA recently completed for Hampton Inn and Suites did not assign any traffic to the Fallowfield/ Forager intersection. Now that the current study has assumed a reassignment of trips to this intersection.

4.4 Traffic Volume Summary

4.4.1 Future Background Traffic Volumes

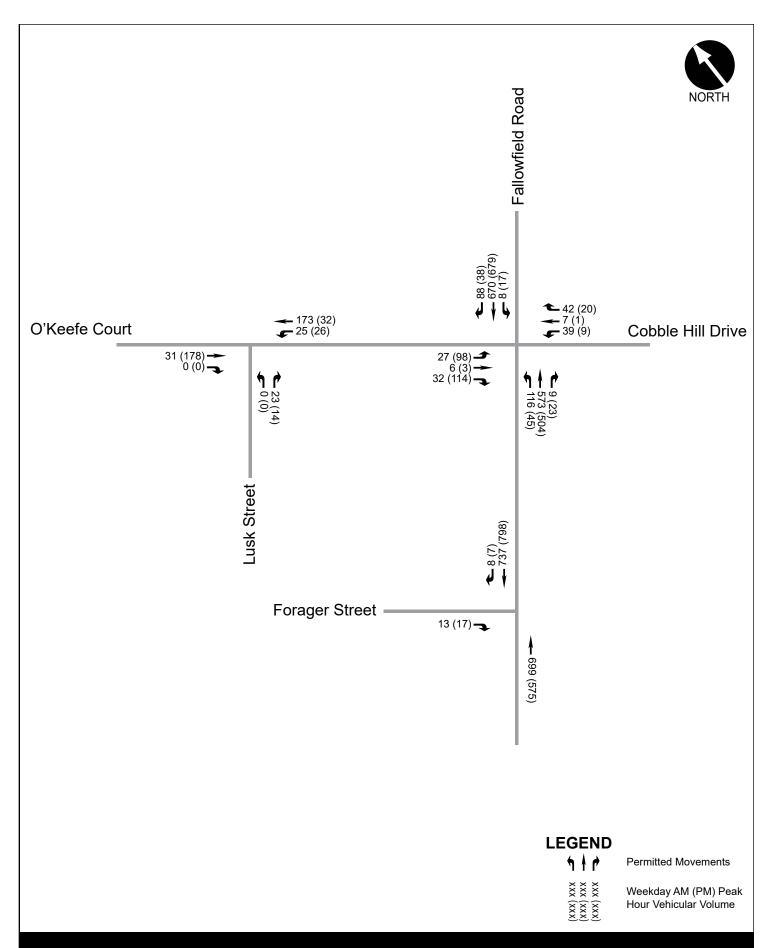

Future background traffic volumes projections have been established by combining the adjacent development traffic and background traffic derived through the application of a growth rate as discussed previously.

Exhibit 5 and **Exhibit 6** present the future background traffic volumes anticipated for the 2023 build-out year, as well as the 2028 study horizon, respectively.

4.4.2 Future Total Traffic Volumes

Future total volumes have been derived by combining the site-generated traffic from **Exhibit 4** with the future background volumes from **Exhibit 5** and **Exhibit 6**.

Exhibit 7 and **Exhibit 8** present the future total traffic volumes anticipated for 2023 and 2028 analysis years, respectively.

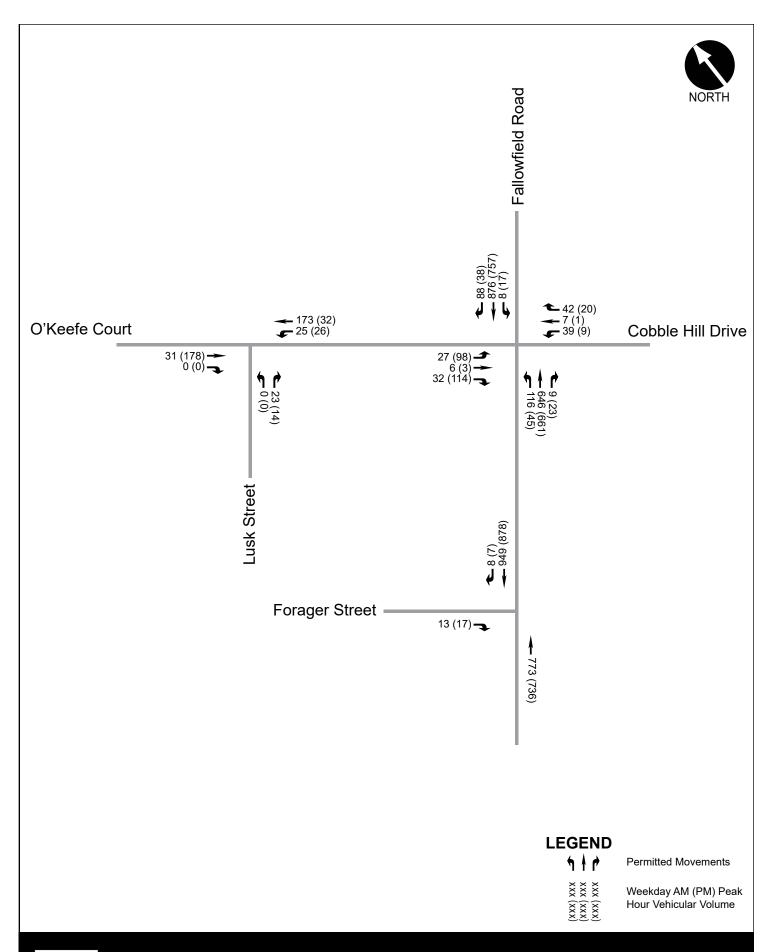


Exhibit 6: Exhibit 6: PROJECT No. Future (2028) Background DATE:
Traffic SCALE: Traffic

122508 April 2020 N.T.S.

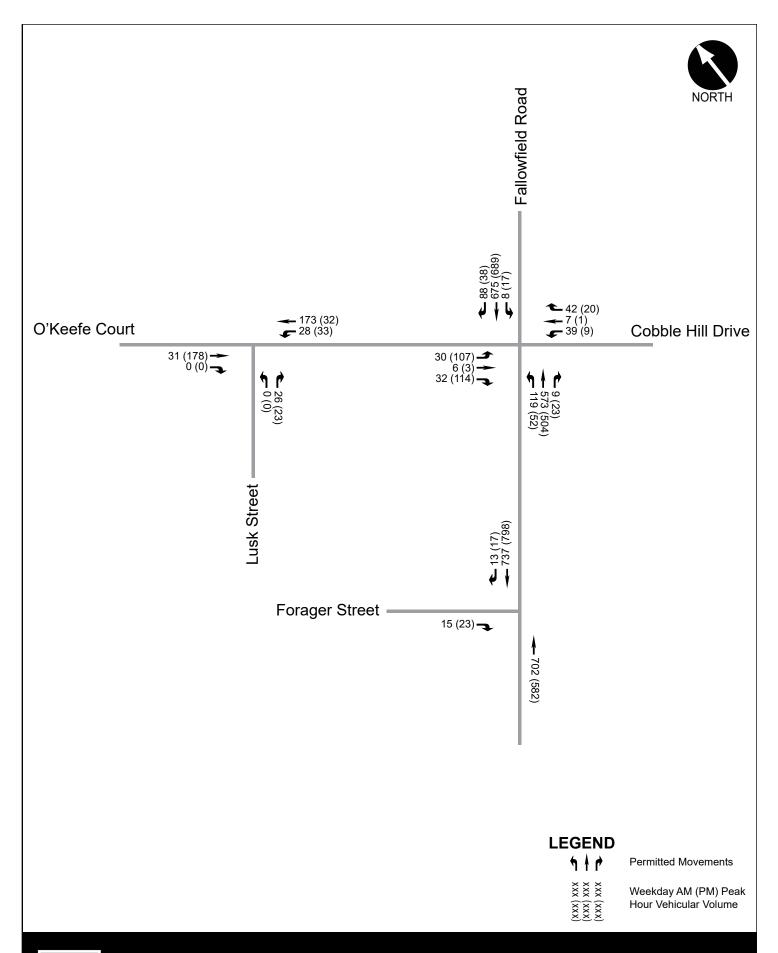
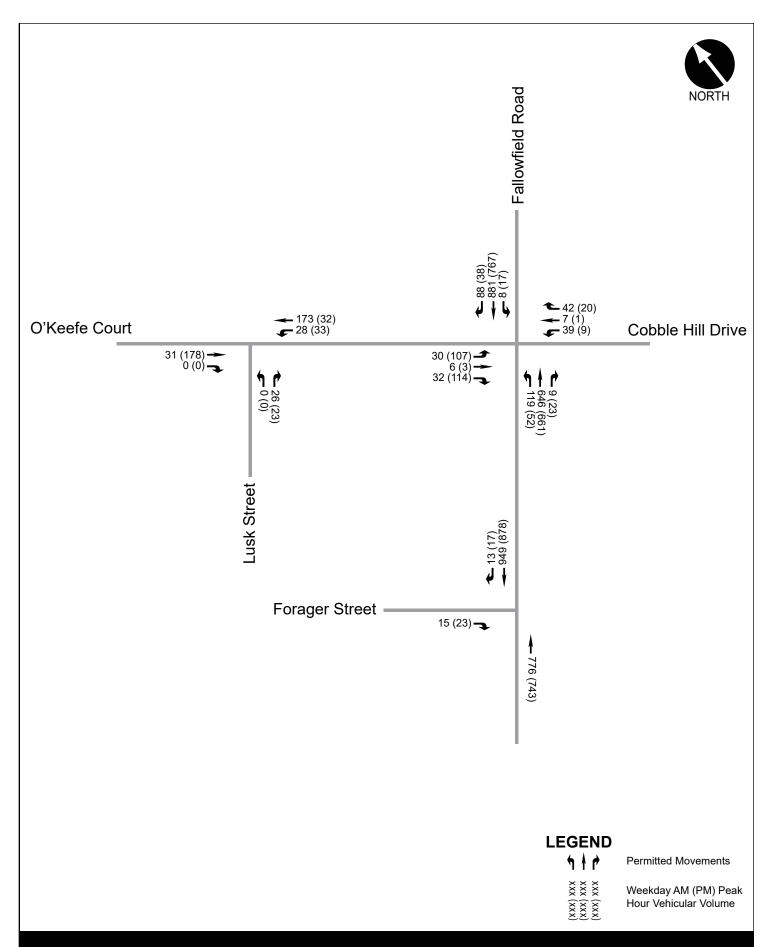



Exhibit 7: Future (2023) Total Traffic

PROJECT No. DATE: SCALE: 122508 April 2020 N.T.S.

5 Analysis

5.1 Development Design

5.1.1 Design for Sustainable Modes

The proposed development is located an approximate 600m walking distance from an existing bus stop at the corner of Fallowfield Road & O'Keefe Court / Cobble Hill Drive, assuming that transit users cross Fallowfield Road at Strandherd Drive. The RMA for the Fallowfield Road & Forager Street intersection indicates that a new southbound bus stop will be constructed on Fallowfield Road south of O'Keefe Court, thereby reducing the walking distance to transit to approximately 200m.

The TDM-Supportive Development Design and Infrastructure Checklist as well as the TDM Measures Checklist were completed and are provided in **Appendix G**. These checklists identify anticipated measures that are being considered in association with the proposed development to offset the vehicular impact on the adjacent road network.

5.1.2 Circulation and Access

A separate loading bay has been provided for each building on the site, as shown in **Exhibit 2**, which have been designed to accommodate a standard delivery vehicle.

Separate waste collection locations have also been provided for each building on the site, as shown in **Exhibit 2**. A loading bay near each garbage location will provide space for a standard waste collection vehicle to park while workers collect the waste.

5.1.3 New Street Networks

Not Applicable: The New Street Networks element is exempt from this TIA, as defined in the study scope. This element is not required for Site Plan Control applications.

5.2 Parking

5.2.1 Parking Supply

Based on the size of the proposed restaurant and medical office, a minimum of 45 vehicle parking spaces are required to meet the Zoning Bylaw requirements. The site plan indicates that 54 vehicle parking spaces will be provided, therefore the proposed parking supply is within the permissible range.

The Zoning Bylaw also requires a minimum number of bicycle parking spaces for each land use within the subject development. A total of five bicycle parking spaces will be provided, exceeding the three spaces required.

5.2.2 Spillover Parking

The minimum parking supply requirement specified in the Zoning Bylaw has been met, therefore, no further review of parking is necessary for the purposes of this study.

5.3 Boundary Streets

There are three existing boundary streets adjacent to the proposed development: Lusk Street, Forager Street and Fallowfield Road. As discussed in Section 3.4, segment-based MMLOS analysis will be limited to Fallowfield Road between Forager and O'Keefe/ Cobble Hill.

Both Lusk Street and Forager Street are classified as local roads, and were recently constructed in accordance with the latest City road design standards, therefore no Multi-Modal Level of Service (MMLOS) analysis is provided for either road segment. Given their classification as 'local' roads, both are in essence Complete Streets, as they provide sufficient facilities for active and motorized modes of travel. Concrete sidewalks 2.0 metres in width are proposed along one side of each local road. A sidewalk is provided along the proposed development's frontage on Lusk Street, which will continue across the site access driveway, while the sidewalk on Forager Street will be constructed on the north side of the road, opposite the development. As such, the inclusion of site access driveways along Lusk Street and Forager Street are not anticipated to negatively impact the design of either local road.

5.3.1 Mobility

Segment-based Multi-Modal Level of Service (MMLOS) results for Fallowfield Road between Forager Street and O'Keefe Court / Cobble Hill Drive are provided in **Table 11** below.

Details of the MMLOS analysis are provided in **Appendix H**.

Table 11 - Segment MMLOS Results

		LEVEL OF SERVICE BY MODE					
LOCATION	PEDESTRIAN (PLOS)	BICYCLE (BLOS)	TRANSIT (TLOS)	TRUCK (TkLOS)			
SEGMENTS							
Fallowfield Road – Forager Street to O'Keefe Court / Cobble Hill Drive	F (Target: C)	F (Target: C)	D (Target: D)	C (Target: E)			

Based on the above, this segment of Fallowfield Road is not currently meeting its pedestrian and bicycle level of service targets. The following measures have been identified which could help achieve these targets:

- A reduction in operating speeds to 60 km/h or less;
- A 2.0m wide sidewalk separated from the road with a minimum 2.0m wide boulevard on either side of Fallowfield Road or the implementation of a multi-use path; and
- Bike lanes on both sides of Fallowfield Road or physically separated cycling facilities such as multi-use pathways.

As discussed previously, the approved RMA includes the planned implementation of a multi-use pathway along the west side of Fallowfield Road and a southbound bus stop on Fallowfield Road near the O'Keefe Court intersection, which should help to significantly improve both the PLOS and BLOS.

5.3.2 Road Safety

A summary of all reported collisions within the study period over the past 5 years was presented in the Scoping section of this TIA. The City requires a safety review if at least six collisions for any one movement or of a discernible pattern, over a five-year period have occurred. Based on the review of re-occurring events identified in the Scoping section of this report, none of the study area roadway segments or intersections require further analysis.

5.4 Access Intersections

5.4.1 Location and Design of Access

The proposed development will provide two new full-movement access intersections: one on Lusk Street and the other on Forager Street. The proposed site access driveways are in conformance with the City of Ottawa Private Approach By-law 2003-447, with particular confirmation of the following items:

- <u>Width</u>: A private approach should have a minimum width of 2.4m and a maximum width of 9.0m.
 - ➤ Both site access driveways will be 6.7m wide.
- <u>Distance from Intersecting Road</u>: For a commercial development on or within 46m of an arterial or major collector with between 50 and 99 parking spaces, the proposed private approach must be at least 30 metres from the nearest intersecting street line.
 - The proposed access on Forager Street is approximately 45m from the nearest intersecting street line at Fallowfield Road and is therefore in compliance with the by-law.
- Quantity and Spacing of Private Approaches: For sites with frontage between 46 and 150 metres, one (1) two-way and two (2) one-way, or two (2) two-way private approaches are permitted. Any two private approaches must be separated by at least 9.0m and can be reduced to 2.0m in the case of two one-way driveways. On lots that abut more than one roadway, these provisions apply to each frontage separately.
 - ➤ The frontage on Lusk Street is 46m and therefore the single proposed two-way private approach is compliant with the by-law. ✓
 - ➤ The frontage on Forager Street is 73m and therefore the single proposed twoway private approach is compliant with the by-law. ✓
- <u>Distance from Property Line</u>: Private approaches must be at least 3.0m from the abutting
 property line, however this requirement can be reduced to 0.3m provided that the access
 is a safe distance from the access serving the adjacent property, sight lines are adequate
 and that it does not create a traffic hazard.
 - Both proposed private approaches exceed the minimum distance required.
- Grade of Private Approach: The grade of a private approach serving a parking area of more than 50 spaces must not exceed 2% within the private property for a distance of 9m from the highway/curb line.
 - ➤ The grade of both private approaches will not exceed 2% within 9m of the curb line.

The Transportation Association of Canada's (TAC) Geometric Design Guide for Canadian Roads (June 2017) does not suggest a minimum clear throat length for site access driveways proposed on local roads. The clear throat length is provided to ensure that any queues that form due to onsite circulation blockages do not spillback onto collector and arterial roads. Given the low traffic volumes typically expected on local roads such as Lusk and Forager, occasional queue spillback is not likely to result in traffic operational issues.

5.4.2 Access Intersection Control

The proposed site access driveways on Lusk Street and Forager Street will both be stop-controlled, which is expected to be sufficient given the low site-generated traffic volumes presented in the Forecasting section of this report.

5.4.3 Intersection Design (MMLOS)

Not Applicable – Both proposed site access driveways will be unsignalized, therefore Multi-Modal Level of Service (MMLOS) analysis is not required.

5.5 Transportation Demand Management (TDM)

Not Applicable – The Transportation Demand Management (TDM) element is exempt from this TIA, as defined in the study scope. This element is not required for non-residential site plans that are projected to have fewer than 60 employees and/or students on location at any given time.

Based on the employee densities indicated in the *ITE Parking Generation Manual (4th Edition)* for the restaurant and medical office land uses, it is anticipated that there will only be up to 36 employees on site at any given time. As such, the TDM element is not required.

5.5.1 Context for TDM

Not Applicable.

5.5.2 Need and Opportunity

Not Applicable.

5.5.3 TDM Program

Not Applicable.

5.6 Neighbourhood Traffic Management

5.6.1 Adjacent Neighbourhoods

The proposed development relies on the following collector or lower-classification roads for access to the arterial road network: O'Keefe Court, Lusk Street and Forager Street. With the development of the 4401 Fallowfield Road Subdivision lands, O'Keefe Court is expected to function as a collector road, while Lusk Street and Forager Street will operate as local roads. To determine if neighbourhood traffic management measures are required, traffic volumes projected in the study horizon year are compared against the appropriate liveability thresholds, as prescribed in the TIA Guidelines.

The livability threshold for a local road is 120 vehicles per hour. Based on Future (2028) Total Traffic volumes, Lusk Street and Forager Street will be required to accommodate up to 56 and 40 vehicles per hour, respectively, during the weekday afternoon peak hour. As such, both local roads are anticipated to operate well below the 120 vehicle per hour threshold within the timeframe of this study.

Total traffic volume projections along O'Keefe Court indicate that it may slightly exceed its threshold of 300 vehicles per hour during the weekday afternoon peak hour, with up to 315 vehicles approaching Fallowfield Road. It should be noted, however, that it is not uncommon for a collector road to exceed this threshold approaching an arterial road, and that two-way volumes on O'Keefe Court through the remainder of the study area are expected operate within this threshold. As such, a neighbourhood traffic management plan will not be required for this TIA.

5.7 Transit

5.7.1 Route Capacity

The estimated future site-generated transit passenger demand was provided in the Forecasting component of this study. The results have been summarized in **Table 12** below.

Table 12 - Development Generated Transit Demand

DEDICE	PEAK PERIOD DEMAND			
PERIOD	IN	OUT		
AM	0	0		
PM	1	0		

As indicated in **Table 12** above, the subject development is expected to contribute a negligible increase in transit ridership to the existing transit network, therefore no additional transit capacity will be required to accommodate the proposed development.

5.7.1 Transit Priority Measures

Transit priority measures are not required at any of the signalized study area intersections to support the projected travel demands within the timeframe of this study.

5.8 Review of Network Concept

Not Applicable – The Network Concept element is exempt from this TIA, as defined in the study scope. This element is not required for proposed developments expected to generate less than 200 person-trips during the weekday morning and afternoon peak hours.

5.9 Intersection Design

The following sections summarize the methodology and results of the multi-modal intersection capacity analysis conducted within the study area.

5.9.1 Intersection Control

5.9.1.1 Traffic Signal Warrants

Traffic signal warrants were completed for the intersection of Fallowfield Road & O'Keefe Court / Cobble Hill Drive. Based on the results of the analysis, traffic signals are not warranted at this intersection under Future (2028) Total Traffic conditions.

The results of the traffic signal warrant analysis are provided in **Appendix I**.

5.9.1.2 Roundabout Analysis

The feasibility of implementing a roundabout was evaluated at the intersection of Fallowfield & O'Keefe/ Cobble Hill. It was determined that this form of traffic control would not be feasible, given that only one of the suitability factors had been met.

The results of the Roundabout Feasibility Screening Tool are provided in Appendix I.

5.9.2 Intersection Analysis Criteria (Automobile)

The following section outlines the City of Ottawa's methodology for determining motor vehicle Level of Service (LOS) at signalized and unsignalized intersections.

5.9.2.1 Signalized Intersections

In qualitative terms, the Level of Service (LOS) defines operational conditions within a traffic stream and their perception by motorists. A LOS definition generally describes these conditions in terms of such factors as delay, speed and travel time, freedom to manoeuvre, traffic interruptions, safety, comfort and convenience. LOS can also be related to the ratio of the volume to capacity (v/c) which is simply the relationship of the traffic volume (either measured or forecast) to the capability of the intersection or road section to accommodate a given traffic volume. This capability varies depending on the factors described above. LOS are given letter designations from 'A' to 'F'. LOS 'A' represents the best operating conditions and LOS 'E' represents the level at which the intersection or an approach to the intersection is carrying the maximum traffic volume that can, practicably, be accommodated. LOS 'F' indicates that the intersection is operating beyond its theoretical capacity.

The City of Ottawa has developed criteria as part of the Transportation Impact Assessment Guidelines, which directly relate the volume to capacity (v/c) ratio of a signalized intersection to a LOS designation. These criteria are as follows:

LOS	VOLUME TO CAPACITY RATIO (v/c)
А	0 to 0.60
В	0.61 to 0.70
С	0.71 to 0.80
D	0.81 to 0.90
E	0.91 to 1.00
F	> 1.00

Table 13 - LOS Criteria for Signalized Intersections

The intersection capacity analysis technique provides an indication of the LOS for each movement at the intersection under consideration and for the intersection as a whole. The overall v/c ratio for an intersection is defined as the sum of equivalent volumes for all critical movements at the intersection divided by the sum of capacities for all critical movements.

The Level of Service calculation is based on locally-specific parameters as described in the TIA Guidelines and incorporates existing signal timing plans obtained from the City of Ottawa. The analysis existing conditions utilized a Peak Hour Factor (PHF) of 0.90, while future conditions considers optimized signal timing plans and use of a Peak Hour Factor (PHF) of 1.0 to recognize peak spreading beyond a 15-minute period in congested conditions.

5.9.2.2 Unsignalized Intersections

The capacity of an unsignalized intersection can also be expressed in terms of the LOS it provides. For an unsignalized intersection, the Level of Service is defined in terms of the average movement delays at the intersection. This is defined as the total elapsed time from when a vehicle stops at the end of the queue until the vehicle departs from the stop line; this includes the time required for

a vehicle to travel from the last-in-queue position to the first-in-queue position. The average delay for any particular minor movement at the un-signalized intersection is a function of the capacity of the approach and the degree of saturation.

The Highway Capacity Manual 2010 (HCM), prepared by the Transportation Research Board, includes the following Levels of Service criteria for un-signalized intersections, related to average movement delays at the intersection, as indicated in **Table 14**.

Table 14 - LOS Criteria for Unsignalized Intersections

LOS	DELAY (seconds)
А	<10
В	>10 and <15
С	>15 and <25
D	>25 and <35
E	>35 and <50
F	>50

The unsignalized intersection capacity analysis technique included in the HCM and used in the current study provides an indication of the Level of Service for each movement of the intersection under consideration. By this technique, the performance of the unsignalized intersection can be compared under varying traffic scenarios, using the Level of Service concept in a qualitative sense. One unsignalized intersection can be compared with another unsignalized intersection using this concept. Level of Service 'E' represents the capacity of the movement under consideration and generally, in large urban areas, Level of Service 'D' is considered to represent an acceptable operating condition. Level of Service 'E' is considered an acceptable operating condition for planning purposes for intersections located within Ottawa's Urban Core the downtown and its vicinity). Level of Service 'F' indicates that the movement is operating beyond its design capacity.

5.9.3 Intersection Capacity Analysis

Following the established intersection capacity analysis criteria described above, the existing and future conditions are analyzed during the weekday peak hour traffic volumes derived in this study.

The following section presents the results of the intersection capacity analysis. All tables summarize study area intersection LOS results during the weekday morning and afternoon peak hour periods.

The Synchro output files have been provided in **Appendix J**.

5.9.3.1 Existing (2019) Traffic

An intersection capacity analysis has been undertaken using the Existing (2019) Traffic volumes presented in **Figure 3**, yielding the following results:

Table 15 - Intersection Capacity Analysis: Existing (2019) Traffic

		AM PEA	K HOUR	PM PEAK HOUR	
INTERSECTION	INTERSECTION TRAFFIC CONTROL		CRITICAL MOVEMENTS (V/C OR DELAY)	OVERALL LOS (V/C OR DELAY)	CRITICAL MOVEMENTS (V/C OR DELAY)
Fallowfield Road & O'Keefe Court / Cobble Hill Drive	Unsignalized	D (28.2s)	EBL (28.2s)	D (26.5s)	EBL (26.5s)

Based on the above, the intersection of Fallowfield & O'Keefe/ Cobble Hill is operating at an acceptable level of service (LOS 'D' or better) under Existing Traffic conditions.

5.9.3.2 Future (2023) Background Traffic

An intersection capacity analysis has been undertaken using the Future (2023) Background Traffic volumes presented in **Exhibit 5**, yielding the following results:

Table 16 - Intersection Capacity Analysis: 2023 Background Traffic

		AM PEA	K HOUR	PM PEAK HOUR	
INTERSECTION	TRAFFIC CONTROL	OVERALL LOS	CRITICAL MOVEMENTS	OVERALL LOS	CRITICAL MOVEMENTS
		(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)
Fallowfield Road & O'Keefe Court /	Unsignalized	F (83.6s)	WBTRL (83.6s)	F (104.6s)	EBL (104.6s)
Cobble Hill Drive	Signalized	A (0.51)	WBTRL (0.56)	A (0.54)	EBL (0.60)
Lusk Street & O'Keefe Court	Unsignalized	A (8.5s)	NBRL (8.5s)	A (9.2s)	NBRL (9.2s)
Fallowfield Road & Forager Street	Unsignalized	B (13.8s)	EBR (13.8s)	B (14.7s)	EBR (14.7s)

By 2023, it is expected that the Fallowfield & O'Keefe/ Cobble Hill intersection will operate over its theoretical capacity as a stop-controlled intersection under background traffic conditions. Analysis indicates that signalization of the intersection will be required to achieve an acceptable level of service (LOS 'D' or better) during the weekday morning and afternoon peak hours.

The intersections of Lusk Street & O'Keefe Court and Fallowfield Road & Forager Street were shown to operate at Level of Service 'C' or better as two-way stop-controlled intersections, which is well within acceptable standards.

5.9.3.3 Future (2028) Background Traffic

An intersection capacity analysis has been undertaken using the Future (2028) Background Traffic volumes presented in **Exhibit 6**, yielding the following results:

Table 17 - Intersection Capacity Analysis: 2028 Background Traffic

		AM PEA	K HOUR	PM PEA	PM PEAK HOUR	
INTERSECTION	TRAFFIC CONTROL	OVERALL LOS	CRITICAL MOVEMENTS	OVERALL LOS	CRITICAL MOVEMENTS	
		(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)	
Fallowfield Road & O'Keefe Court / Cobble Hill Drive	Signalized	A (0.59)	SBT (0.60)	A (0.59)	EBL (0.60)	
Lusk Street & O'Keefe Court	Unsignalized	A (8.5s)	NBRL (8.5s)	A (9.2s)	NBRL (9.2s)	
Fallowfield Road & Forager Street	Unsignalized	C (16.8s)	EBR (16.8s)	C (15.8s)	EBR (15.8s)	

All study area intersections are expected to operate acceptably (LOS 'D' or better) under Future (2028) Background Traffic conditions, with the Fallowfield Road & O'Keefe Court / Cobble Hill Drive intersection signalized.

5.9.3.4 Future (2023) Total Traffic

An intersection capacity analysis has been undertaken using the Future (2023) Total Traffic volumes presented in **Exhibit 7**, yielding the following results:

Table 18 - Intersection Capacity Analysis: 2023 Total Traffic

		AM PEA	K HOUR	PM PEAK HOUR		
INTERSECTION	TRAFFIC CONTROL	OVERALL LOS	CRITICAL MOVEMENTS	OVERALL LOS	CRITICAL MOVEMENTS	
		(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)	
Fallowfield Road & O'Keefe Court / Cobble Hill Drive	Signalized	A (0.51)	WBTRL (0.56)	A (0.56)	EBL (0.62)	
Lusk Street & O'Keefe Court	Unsignalized	A (8.5s)	NBRL (8.5s)	A (9.3s)	NBRL (9.3s)	
Fallowfield Road & Forager Street	Unsignalized	B (13.8s)	EBR (13.8s)	B (14.8s)	EBR (14.8s)	

Based on the above results, all study area intersections are expected to operate at Level of Service 'B' or better with the addition of site-generated traffic, provided that the intersection of Fallowfield Road & O'Keefe Court / Cobble Hill Drive is signalized.

5.9.3.5 Future (2028) Total Traffic

An intersection capacity analysis has been undertaken using the Future (2028) Total Traffic volumes presented in **Exhibit 8**, yielding the following results:

Table 19 - Intersection Capacity Analysis: 2028 Total Traffic

		AM PEA	K HOUR	PM PEAK HOUR		
INTERSECTION	TRAFFIC CONTROL	OVERALL LOS	CRITICAL MOVEMENTS	OVERALL LOS	CRITICAL MOVEMENTS	
		(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)	
Fallowfield Road & O'Keefe Court / Cobble Hill Drive	Signalized	A (0.59)	SBT (0.60)	B (0.62)	SBT (0.65)	
Lusk Street & O'Keefe Court	Unsignalized	A (8.5s)	NBRL (8.5s)	A (9.3s)	NBRL (9.3s)	
Fallowfield Road & Forager Street	Unsignalized	C (16.8s)	EBR (16.8s)	C (16.0s)	EBR (16.0s)	

All study area intersections are expected to operate at a Level of Service of 'C' or better under Future (2028) Total Traffic conditions without any additional intersection modifications beyond what was required to accommodate background traffic volumes.

5.9.4 Intersection Design (MMLOS)

Analysis of conditions for each mode has been conducted based on the methodology prescribed in the City of Ottawa Multi-Modal Level of Service Guidelines. The Level of Service for each mode has been calculated for each intersection where signals exist or are anticipated.

The Future (2028) Total Traffic intersection MMLOS results have been summarized in **Table 20**. Detailed analysis results for existing and future conditions are provided **Appendix H**.

Table 20 - Intersection MMLOS - Future Conditions

	LEVEL OF SERVICE BY MODE					
LOCATION	PEDESTRIAN (PLOS)	BICYCLE (BLOS)	TRANSIT (TLOS)	TRUCK (TkLOS)		
INTERSECTIONS						
Fallowfield Road & O'Keefe Court / Cobble Hill Drive	E (Target: C)	F (Target: C)	B (Target: D)	F (Target: E)		

5.9.4.1 Summary of Potential Improvements

Based on the MMLOS results outlined in **Table 20** above, the following measures have been identified that could improve conditions for each travel mode:

Pedestrians

The PLOS at intersections is based on several factors including the number of traffic lanes that pedestrians must cross, corner radii, and whether the crossing allows for permissive or protective right or left turns, among others. The City of Ottawa minimum target for PLOS is 'C'.

The results of the analysis indicate that the intersection of Fallowfield Road & O'Keefe Court / Cobble Hill Drive is expected to experience a PLOS of 'E' primarily due to the level of traffic exposure pedestrians crossing the north/south approaches will experience in combination with the

pedestrian delays. Providing enhanced pedestrian features such as a median, pedestrian leading interval, zebra stripe high-visibility crosswalk markings on the north and south approaches would reduce the level of pedestrian exposure on those crossings. The above features in combination with a reduced cycle length from the standard length of 120s to 70s would achieve a PLOS of 'C'. It should be noted, however, that a reduction in the cycle length may result in negative impacts to the vehicle level of service. Alternatively, design of the intersection as a 'protected intersection' will help attain the PLOS target.

Cyclists

The BLOS at intersections is dependent on several factors: the number of lanes that the cyclist is required to cross to make a left-turn; the presence of a dedicated right-turn lane on the approach; and the operating speed of each approach. The City target for BLOS is 'C'.

The results of the analysis indicate that cycling facilities at the Fallowfield Road & O'Keefe Court / Cobble Hill Drive intersection are not sufficient to achieve the BLOS target. Given the high operating speeds at this location, only the provision of physically separated cycling facilities with two-stage, left-turn bike boxes on all approaches will be sufficient to achieve the BLOS target. Alternatively, design of the intersection as a 'protected intersection' will help attain the BLOS target.

Transit

Intersection TLOS is based on the average signal delay experienced by transit vehicles at each intersection. The City Target TLOS is 'D'.

The results of the analysis indicate that the eastbound and westbound approaches are expected to experience average delays between 20 and 45 seconds during the weekday peak hours, however as there are no transit routes that utilize either approach, neither is factored into the TLOS calculation. Both the northbound and southbound approaches do currently serve as transit routes and are expected to experience minimal average delays of 10s or less, therefore the overall intersection TLOS is 'B' and well within the City's target.

Trucks

The Truck LOS (TkLOS) is based on the right-turn radii, as well as the number of receiving lanes for vehicles making a right-turn from the traffic lane being analyzed. The City of Ottawa target for TKLOS is 'E'.

Overall, the intersection TkLOS target is not attainable as a result of the tight right-turn radii to/from Cobble Hill Drive. Turning movement count data indicates that trucks infrequently utilize Cobble Hill, which is consistent with its classification as a local road and non-truck route. Given that its primary function is to provide access to adjacent residential subdivisions, the substandard right-turn radii is considered acceptable in this context. It should be noted that the right-turn radii to/from O'Keefe Court meets the TkLOS target, which is appropriate given that the Highway 416 Lands development is classified is expected to generate regular truck traffic.

The recommended measures listed above are intended only as suggestions to the City on how the MMLOS within the study area could be improved and do not identify measures to be implemented as a direct consequence of this development. The remediation measures described above would improve mobility and comfort for cyclists but are not required to accommodate the proposed development.

5.10 Geometric Review

The following section provides a review of all geometric requirements for the study area intersections.

5.10.1 Sight Distance and Corner Clearances

The Lusk Street site access driveway is located on the outside of a horizontal curve which should afford this access favorable sightlines upstream and downstream of the intersection, while the Forager Street site access driveway is located on a short, straight segment with no significant horizontal or vertical curves. Despite its curvilinear alignment, the Lusk Street access allows for visibility in excess of the 85-metre distance required by TAC for road with a 60km/h design speed. Given that Forager Street is approximately 80m in length, vehicular are not expected to reach high operating speeds (i.e. 60 km/h) within such a short distance. Provided that vegetation is kept clear of the intersection sightlines, sight distances and corner clearances are not expected to be a concern for either of the proposed development's site access driveways.

5.10.2 Auxiliary Lane Analyses

Auxiliary turning lane requirements for all study area intersections are described as follows:

5.10.2.1 Auxiliary Left-Turn Lane Requirements (Unsignalized)

The intersection of O'Keefe Court & Lusk Street does not warrant a left-turn lane based on the advancing and opposing volumes projected at this intersection under Future (2028) Total Traffic conditions.

The future intersection configuration per the approved RMA will restrict the Fallowfield & Forager intersection to right-in/ right-out movements, therefore it was not necessary to assess left-turn lane requirements at this intersection.

The results of the left-turn lane warrant analysis are provided in **Appendix K**.

5.10.2.2 Auxiliary Left-Turn Lane Requirements (Signalized)

A review of auxiliary left-turn lane storage requirements was completed at all signalized intersections within the study area under Future (2028) Total Traffic conditions. The review compared the projected 95th percentile queue lengths from Synchro operational results, and the standard queue length calculation based on the following equation:

$$Storage\ Length = \frac{NL}{C} \times 1.5$$

Where:

N = number of vehicles per hour

L = Length occupied by a vehicle in the queue = 7 m

C = number of traffic signal cycles per hour

The results of the auxiliary left-turn lane analysis are summarized below in **Table 21** below.

Table 21 - Auxiliary Left-Turn Storage Analysis at Signalized Intersections

INTERSECTION	APPROACH	95TH %ILE QUEUE LENGTH (M)	CALCULATED QUEUE LENGTH (M)	EXISTING PARALLEL LENGTH (M)	STORAGE DEFICIENCY (M)
	NB	5	10	140	Existing Storage Adequate
Fallowfield Road &	SB	5	0	60	Existing Storage Adequate
O'Keefe Court / Cobble Hill Drive	EB	25	10	50	Existing Storage Adequate
	WB	30¹	5	-	Existing Storage Adequate ²

Notes: ¹ Synchro queues were determined based on existing shared lane configuration ² Through volumes are nominal during weekday peak hours (i.e. less than 10 veh/h)

As per the results of the queue length analyses presented

April 9, 2020 41 **Table** 21 above, the existing parallel lanes have sufficient storage to accommodate the projected Future (2028) Total Traffic demand. No modifications to the existing auxiliary lanes are required within the timeframe of this study.

Synchro results indicate that with the existing shared through-left configuration, queue lengths during the weekday peak hours would be at most 16 and 27 metres on the eastbound and westbound approaches, respectively, under Future (2028) Total Traffic conditions. Queue lengths of this magnitude can be considered within an acceptable range for spillback on a through lane given the nominal through volumes of less than 10 vehicles per hour expected on these movements during the weekday peak hours.

5.10.2.3 Auxiliary Right-Turn Lane Requirements (Unsignalized)

The Transportation Association of Canada (TAC) suggests that auxiliary right-turn lanes be considered "when the volume of decelerating or accelerating vehicles compared with through vehicles causes undue hazard." Consideration for auxiliary right-turn lanes is typically given when the right-turning traffic exceeds 10% of the through volume and is at least 60 vehicles per hour.

The RMA for the Fallowfield/ Forager intersection has been designed with a parallel lane that includes sufficient deceleration length. No storage is required on this lane.

5.10.2.4 Auxiliary Right-Turn Lane Requirements (Signalized)

Similarly for signalized intersections, Section 9.14 of TAC suggests that auxiliary right-turn lanes shall be considered when more than 10% of vehicles on an approach are turning right and when the peak hour demand exceeds 60 vehicles. The purpose of this guideline is to mitigate operational impacts to through-traffic, particularly on high-speed arterial roadways such as Fallowfield Road, and may not be applicable in all circumstances.

The results of the auxiliary right-turn lane analysis are summarized in Table 22 below:

Table 22 – Auxiliary Right-Turn Lane Storage Analysis at Signalized Intersections

INTERSECTION	APPROACH	RIGHT TURN VOLUME	APPROACH VEHICLES TURNING RIGHT (%)	95TH %ILE QUEUE LENGTH (M)	EXISTING PARALLEL LENGTH (M)	STORAGE DEFICIENCY (M)
Fallowfield Road & O'Keefe Court/ Cobble Hill Drive	NB	23	3%	<10	115	Existing Storage Adequate
	SB	88	9%	<10	25	Existing Storage Adequate
	EB	114	51%	201	-	Existing Storage Adequate ²
	WB	42	48%	30¹	-	Existing Storage Adequate ²

Notes: 1 Synchro queues were determined based on existing shared lane configuration

Although the eastbound and westbound approaches technically meet the criteria for a right-turn lane, the through volumes on these approaches were observed to be nominal (i.e. 10 vehicles or less) during the weekday peak hours. Synchro results indicate that with the existing shared through-right configuration, queue lengths during the weekday peak hours would be at most 16 and 27 metres on the eastbound and westbound approaches, respectively, under Future (2028) Total Traffic conditions. Queue lengths of this magnitude can be considered within an acceptable range for spillback on a through lane given the nominal through volumes expected. Further, the right-turn criteria is typically more applicable along high-speed arterial roads and is not considered appropriate in this context.

Based on the traffic volumes projections developed for this TIA, no additional right-turn facilities are required as a result of projected background or site-generated volumes at signalized study area intersections.

5.11 Summary of Improvements Indicated and Modification Options

As per the intersection capacity, Multi-Modal Level of Service and auxiliary lane analyses results presented above, off-site improvements to the adjacent road network have been recommended in order to accommodate the transportation demands of both background and site-generated traffic. The MMLOS results indicate existing deficiencies with respect user comfort and safety that could be considered for implementation by the City but are not required to safely accommodate the proposed development.

5.11.1 Fallowfield Road & O'Keefe Court/ Cobble Hill Drive

The intersection of Fallowfield & O'Keefe/ Cobble Hill is presently operating as a two-way stop-controlled intersection. The results of the analysis indicates that, by 2023, traffic signals will be operationally required under background traffic conditions, however traffic signals are not warranted within the timeframe of this study. As indicated in **Exhibit 4**, the proposed development

² Through volumes are nominal during weekday peak hours (i.e. less than 10 veh/h)

is only expected to contribute nominal volumes at this intersection. With traffic signals in place, the intersection would be expected to operate at an acceptable level of service (i.e. LOS 'B') under Future (2028) Total Traffic conditions. It is recommended that the City monitor this intersection on an annual basis to determine the appropriate timing for its signalization.

An analysis of auxiliary lane requirements found that auxiliary lane storage at this intersection is sufficient and can accommodate future travel demands within the context of this study.

Based on the MMLOS analysis, in order to meet the Pedestrian Level of Service and Bicycle Level of Service targets, various measures would need to be implemented. To attain the PLOS target, zebra stripe high-visibility crosswalk markings, a pedestrian leading interval and a median on the northbound/ southbound approaches are required in conjunction with a reduce cycle length to satisfy the Pedestrian Delay Evaluation. The implementation of bike lanes or higher-order cycling facilities on all approaches, along with two-stage, left-turn bike boxes are required to meet the BLOS targets. Alternatively, design of the intersection as a 'protected intersection' with fully-integrated pedestrian and cycling facilities will help attain the PLOS and BLOS targets. These features should be considered by the City upon signalization of this intersection but are not required to accommodate the proposed development.

5.11.2 O'Keefe Court & Lusk Street

O'Keefe Court & Lusk Street is a new three-legged intersection that is expected to operate at a high level of service (i.e. LOS 'A') beyond the horizon year of this study with stop control on Lusk Street and free-flow along O'Keefe Court.

Analysis indicated that left- or right-turn auxiliary lanes are not required on any of the intersection approaches within the timeframe of this study.

5.11.3 Fallowfield Road & Forager Street

Fallowfield Road & Forager Street is a new three-legged intersection with an approved RMA intended to restrict movements to right-in/right-out. With these turning restrictions in place, the intersection is anticipated to operate at LOS 'C' or better within the timeframe of this study.

6 Conclusion

The proposed restaurant and medical office development at 115 Lusk Street is expected to generate up to 13 and 32 two-way vehicular trips during the weekday morning and afternoon peak hours, respectively. These traffic volumes were distributed amongst two site access driveways, representing a marginal increase in traffic volumes with respect to the overall traffic projections expected within the 2028 study horizon year. The mode share targets were based on the South Nepean Traffic Assessment Zone (TAZ) and proportionally adjusted, in accordance with the Conditions of Approval for 4401 Fallowfield Road to yield an 85% auto/ 15% non-auto mode share split. It should also be noted that this study did not apply any pass-by reductions factors to the restaurant's trip generation, as it was determined that the overall impact on the adjacent road network would be minimal.

The intersection of Fallowfield & O'Keefe/ Cobble Hill is presently operating as a two-way stop controlled intersection. The results of the analysis indicate that, by 2023, traffic signals will be operationally required under background traffic conditions, however signals are not warranted within the timeframe of this study. With traffic signals in place, the intersection would be expected to operate at LOS 'B' beyond the study horizon year. As site-generated traffic will not contribute significantly to any potential traffic operational issues at this intersection, it is recommended that the City continue monitoring this intersection on an annual basis to determine the appropriate timing for the introduction of traffic signals.

The results of the analysis indicate that the intersections of O'Keefe Court & Lusk Street and Fallowfield Road & Forager Street are expected to operate within acceptable standards (LOS 'D' or better) during the weekday morning and afternoon peak hours. Both are T-intersections that are configured with stop control on the minor road and do not warrant auxiliary lanes or future modifications to intersection control within the timeframe of this study.

A multi-modal analysis identifies deficiencies in the existing road network and potential remediation measures have been suggested in which the City could consider to meet these prescribed targets. It should be noted that, although these measures would improve for a range of transportation modes, they are not required to safely accommodate the transportation demands of the proposed development.

A Roadway Modification Application (RMA-2019-TPD-041B) was recently approved to satisfy a conditional requirement for the 4401 Fallowfield Road Subdivision. The RMA includes the right-in/right-out intersection at Fallowfield Road & Forager Street, a multi-use pathway along the west side of Fallowfield Road and a southbound bus stop on Fallowfield Road near the O'Keefe Court intersection. As there is already an approved RMA intended to address the implementation of the above noted design elements and no off-site geometric improvements are required as a direct result of the proposed development, an RMA will not be included with the submission of this Transportation Impact Assessment.

All study area intersections were shown to operate well within the capacity constraints of the adjacent transportation network, with the appropriate modifications in place (i.e. signalization of Fallowfield & O'Keefe/ Cobble Hill by 2023). Further, the proposed development will contribute a negligible volume of traffic to the adjacent road network. A post-development Monitoring Plan is, therefore, <u>not</u> a requirement of this study.

Based on the findings of this study, it is the overall opinion of IBI Group that the proposed development will integrate well with and can be safely accommodated by the adjacent transportation network with the recommended actions and modifications in place.

Appendix A – City Circulation Comments

April 9, 2020

Step 1 & 2 Submission (Screening & Scoping) – Circulation Comments & Response

Report Submitted: October 29, 2019 Comments Received: November 1, 2019

Transportation Project Manager: Josiane Gervais

Module 2.3 - Exceptions Review

Table 4: Possible Exemptions

Module	Element	Exe	mption Considerations
4.5 Transportation Demand Management	All elements	fewer than 60	for non-residential site plans expected to have employees and/or students on location at e — Please confirm how many employees are r the site.

- > The exact number of employees envisioned for the site is not available yet. However, the ITE Parking Generation Manual (4th Edition) provides average employee densities for a variety of land uses. The average employee densities relevant to this site are as follows:
 - o Office (ITE Land Use 701): 3.4 employees / 1000 ft²
 - O Quality Restaurant (ITE Land Use 931): 4.2 employees / 1000 ft²
 The medical office and restaurant will be 600 m² (6458 ft²) and 300 m² (3229 ft²), respectively, which, when multiplied by their respective employee densities, results in a total of 36 employees for both land uses combined. The Transportation Demand Management module is therefore exempt from the study.

Step 3 Submission (Forecasting) - Circulation Comments & Response

Report Submitted: December 31, 2019 Comments Received: January 17, 2020

Transportation Project Manager: Josiane Gervais

Transportation Engineering Services

- Consider increasing the walking mode share at ultimate build-out (while staying below the 15% non-auto mode outlined within the subdivision conditions). Once O'Keefe/Fallowfield is signalized, there may be a few more walking trips to the development.
 - ➢ IBI Response: The mode share targets for 2023 and 2028 have been separated, with the 2028 analysis year adjusted to reflect a higher pedestrian mode share anticipated by this time. The 15% non-auto mode share target in 2028 will be stratified as follows: 2% transit, 0% cycling, 13% walking and 0% other mode share target. The mode share targets for 2023 have not been modified.
- Provide the number of trips from the other developments in a table.
 - ➤ IBI Response: A table has been added in Section 4.2.3 summarizing the number of trips generated by each adjacent development.

Traffic Signal Operations

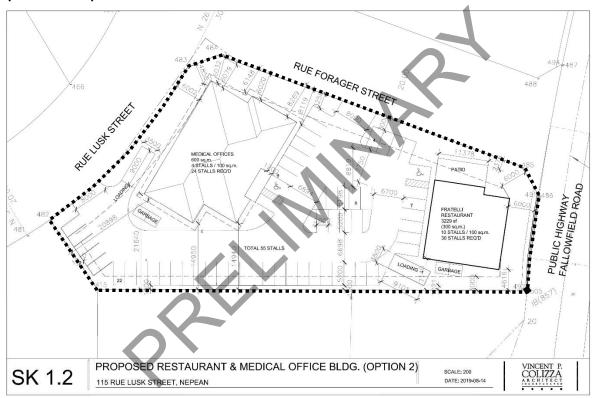
No comments.

Development Review Transportation

• No comments.

Appendix B – Screening Form

City of Ottawa 2017 TIA Guidelines Screening Form


1. Description of Proposed Development

Municipal Address	115 Lusk Street
Description of Location	South Nepean – North of Strandherd Drive, West of Fallowfield Road and east of Highway 416
	O. Keels Count. Strandherd Drive
Land Use Classification	Quality Restaurant and Medical Office
Development Size (units)	N/A
Development Size (m²)	Quality Restaurant – 300 m ²
	Medical Office – 600 m ²
Number of Accesses and	One (1) access off of Lusk Street
Locations	One (1) access off of Forager Street
Phase of Development	Single Phase
Buildout Year	2023 (Assumed)

If available, please attach a sketch of the development or site plan to this form.

Proposed Development:

2. Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size
Single-family homes	40 units
Townhomes or apartments	90 units
Office	3,500 m ²
Industrial	5,000 m ²
Fast-food restaurant or coffee shop	100 m ²
Destination retail	1,000 m²
Gas station or convenience market	75 m ²

^{*} If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

Preliminary trip generation estimates were calculated based on average trip generation characteristics derived from the applicable land indicated in the Institute of Transportation Engineers (ITE) Trip Generation (10th Edition), the Quality Restaurant land use (931) and Medical-Dental Office Building land use (720). The 1.28 person-trip conversion factor recommended in the TIA Guidelines was applied to the base trip generation results to obtain the equivalent person-trip generation.

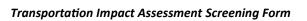
As indicated below, trip generation may slightly exceed the 60 person-trip threshold during the weekday afternoon peak hour, therefore the trip generation trigger is satisfied.

Baseline Vehicle Trips											
				1	AM Peak H	our		PM Peak H	lour		
ITE Land Use	Units	Size		In	Out	Total	ln	Out	Total		
720: Medical-Dental Office Bldg	ft2	6458.35	Equation:		T=2.78*X			T=3.46*X			
		% C	Distribution:	62%	38%	100%	39%	61%	100%		
		Baseline Ve	hicle Trips:	11	7	18	9	14	22		
931: Quality Restaurant	ft2	3229.17	Equation:		T=0.73*X			T=7.80*	X		
		% E	Distribution:	50%	50%	100%	67%	33%	100%		
		Baseline Ve	hicle Trips:	1	1	2	17	8	25		
			Subtotal:	12	8	20	26	22	48		
Note: Directional distribution is not p Person Trips											
				ı	AM Peak H	our		PM Peak H	lour		
ITE Land Use				In	Out	Total	In	Out	Total		
720: Medical-Dental Office Bldg		Convers	sion Factor	1.2	28		1.	28			
				14	9	23	11	17	29		
		0		1.2	20		1	28			
931: Quality Restaurant		Convers	sion Factor	1.2	20						
931: Quality Restaurant		Convers	sion Factor	2	2	3	22	11	32		

Transportation Impact Assessment Screening Form

3. Location Triggers

	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?		✓
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone?*		✓


^{*}DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

Based on the results above, the Location Trigger is <u>NOT</u> satisfied.

4. Safety Triggers

	Yes	No
Are posted speed limits on a boundary street are 80 km/hr or greater?		\checkmark
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?		✓
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?		✓
Is the proposed driveway within auxiliary lanes of an intersection?		\checkmark
Does the proposed driveway make use of an existing median break that serves an existing site?		✓
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		✓
Does the development include a drive-thru facility?		✓

Based on the results above, the Safety Trigger is NOT satisfied.

5. Summary

	Yes	No
Does the development satisfy the Trip Generation Trigger?	√	
Does the development satisfy the Location Trigger?		✓
Does the development satisfy the Safety Trigger?		✓

CONCLUSION: The Trip Generation Trigger is satisfied, therefore a TIA is required.

Appendix C – Traffic Data

Survey Date: Tuesday January 30 2018
Weather: Sunny

TURNING MOVEMENT COUNT SUMMARY - ALL MODES

IBI

 AM Peak Hour:
 8:00 AM
 to
 9:00 AM

 MD Peak Hour:
 12:15 PM
 to
 1:15 PM

 PM Peak Hour:
 4:30 PM
 to
 5:30 PM

AADT FACTOR: 1.1

							Turnir	ng Mov	/emer	nt Coun	t - Ful	ll Study	y Sumi	mary F	Report	(Vehic	les)							
Time I	Dovind			<mark>lowfield Ro</mark> Iorthbound					llowfield R Southbour			N/S STREET		(O'Keefe Co				(O'Keefe Cou Westboun			E/W STREET	Grand
Time i	renoa	LT	ST	RT	U-Turns	NB TOTAL	LT	ST	RT	U-Turns	SB TOTAL	TOTAL	LT	ST	RT	U-Turns	EB TOTAL	LT	ST	RT	U-Turns	WB TOTAL	TOTAL	TOTAL
7:00	8:00	3	488	12	0	503	9	288	3	1	301	804	4	5	8	0	17	33	7	38	0	78	95	899
8:00	9:00	9	923	12	0	944	14	896	11	0	921	1865	6	12	22	0	40	78	12	82	0	172	212	2077
9:00	10:00	7	196	9	0	212	7	243	4	0	254	466	3	3	11	0	17	16	8	20	0	44	61	527
AVG AN	VI Pk HR	6	536	11	0	553	10	476	6	0	492	1045	4	7	14	0	25	42	9	47	0	98	123	1168
11:30	12:30	4	486	9	0	499	5	205	2	0	212	711	2	4	12	0	18	17	4	17	0	38	56	767
12:30	13:30	3	923	14	0	940	10	388	14	0	412	1352	8	5	12	0	25	15	14	29	0	58	83	1435
AVG MI	D Pk HR	4	705	12	0	720	8	297	8	0	312	1032	5	5	12	0	22	16	9	23	0	48	70	1101
15:00	16:00	8	869	14	0	891	87	461	9	0	557	1448	3	3	9	0	15	13	2	23	0	38	53	1501
16:00	17:00	8	814	16	0	838	16	564	6	0	586	1424	6	2	12	1	21	10	2	21	0	33	54	1478
17:00	18:00	25	239	7	0	271	48	1073	11	0	1132	1403	11	5	26	1	43	19	1	40	0	60	103	1506
AVG PN	M Pk HR	14	641	12	0	667	50	699	9	0	758	1425	7	3	16	1	26	14	2	28	0	44	70	1495
TO ⁻	TAL	77	6,178	116	0	6,371	214	4,890	74	1	5,179	11,550	52	50	138	2	242	259	68	340	0	667	909	12,459
EQ 1	12Hr	107	8588	161	0	8855	297	6797	103	2	7199	16054	73	70	191	3	337	360	95	472	0	927	1264	17318
	Note:	These volum	es are calcul	ated by mu	ltiplying the t	otals by the	appropriat	e expansion	factor.		1.39	•												
AVG	12Hr	117	9446	177	0	9740	326	7477	113	2	7919	17659	80	77	210	3	370	397	104	519	0	1020	1390	19049
	Note:	These volum	es are calcul	ated by mu	ltiplying the E	quivalent 1	2 hr. totals	by the AAD	T factor.		1.1	1												
AVG		154 These volum	12375 es are calcul	231 ated by mu	0 Itiplying the A	12760 werage Dail	428 y 12hr. tota	9795 als by the 12	148 2 to 24 exp	3 ansion factor	10373	23134	105 1.31	100	276	4	485	519	136	680	0	1336	1821	24955

		T	urning Movement Count - Full	Study S	fummary Report (Pedestrians)			
T : a	Daviad	Fallowfield Road	Fallowfield Road	N/S	O'Keefe Court	O'Keefe Court	E/W	Grand
Time	Period	NB Approach (East or West Crossing)	SB Approach (East or West Crossing)	STREET TOTAL	EB Approach (North or South Crossing)	WB Approach (North or South Crossing)	TOTAL	TOTAL
7:00	8:00	0	0	0	0	1	1	1
8:00	9:00	0	0	0	0	0	0	0
9:00	10:00	1	0	1	1	16	17	18
11:30	12:30	0	0	0	0	0	0	0
12:30	13:30	0	1	1	0	0	0	1
15:00	16:00	0	2	2	0	0	0	2
16:00	17:00	0	15	15	0	0	0	15
17:00	18:00	0	0	0	0	0	0	0
TO	TAL:	1	18	19	1	17	18	37

		Turning Movement Count - Fu	II Stud	y Summary Report (Cyclists)			
Time Devied	Fallowfield Road	Fallowfield Road	N/S	O'Keefe Court	O'Keefe Court	E/W	Grand

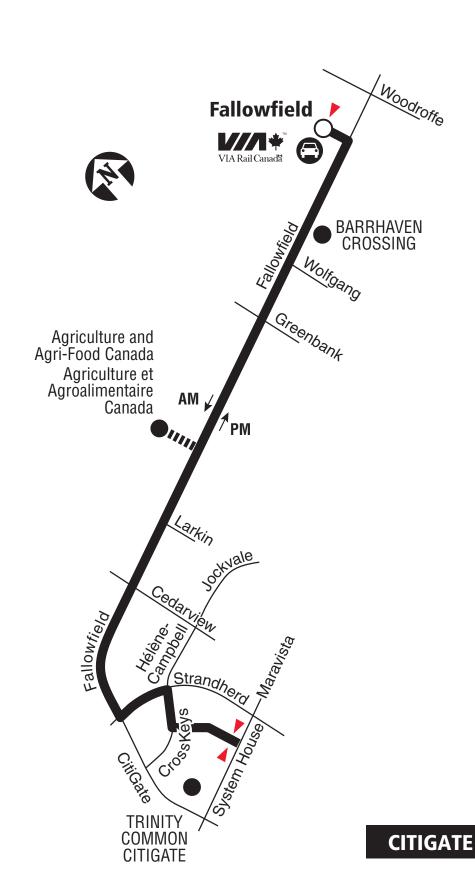
Time	renou	Northbound	Southbound	TOTAL	Eastbound	Westbound	TOTAL	TOTAL
7:00	8:00	0	0	0	0	0	0	0
8:00	9:00	0	0	0	0	0	0	0
9:00	10:00	0	0	0	0	0	0	0
11:30	12:30	0	0	0	0	0	0	0
12:30	13:30	0	0	0	0	0	0	0
15:00	16:00	0	0	0	0	0	0	0
16:00	17:00	0	0	0	0	0	0	0
17:00	18:00	0	0	0	0	0	0	0
тот	ΓAL:	0	0	0	0	0	0	0

						Tui	rning I	Moven	nent C	Count -	Full St	udy Su	mmar	y Repo	ort (He	eavy Ve	hicles)							
Time Period			owfield Ro orthbound			Fallowfield Road Southbound					N/S STREET	Fasthound						(E/W STREET	Grand				
Time	renou	LT	ST	RT	U-Turns	NB TOTAL	LT	ST	RT	U-Turns	SB TOTAL	TOTAL	LT	ST	RT	U-Turns	EB TOTAL	LT	ST	RT	U-Turns	WB TOTAL	TOTAL	TOTAL
7:00	8:00	1	18	0	0	19	0	20	0	0	20	39	0	1	0	0	1	0	0	1	0	1	2	41
8:00	9:00	0	23	5	0	28	1	18	0	0	19	47	0	0	1	0	1	1	1	0	0	2	3	50
9:00	10:00	0	12	1	0	13	0	36	0	0	36	49	0	0	1	0	1	1	1	1	0	3	4	53
11:30	12:30	0	7	2	0	9	0	21	0	0	21	30	0	0	1	0	1	1	0	1	0	2	3	33
12:30	13:30	0	10	0	0	10	0	8	0	0	8	18	1	1	0	0	2	0	1	0	0	1	3	21
15:00	16:00	0	22	1	0	23	0	19	0	0	19	42	0	0	0	0	0	0	1	5	0	6	6	48
16:00	17:00	0	10	1	0	11	1	22	0	0	23	34	0	0	0	0	0	0	0	0	0	0	0	34
17:00	18:00	0	6	0	0	6	0	13	0	0	13	19	0	0	0	0	0	1	0	1	0	2	2	21
TOT	TAL:	1	108	10	0	119	2	157	0	0	159	278	1	2	3	0	6	4	4	9	0	17	23	301

Appendix D – OC Transpo Routes

April 9, 2020

179


FALLOWFIELD CITIGATE

Local

Monday to Friday / Lundi au vendredi

Peak periods only Périodes de pointe seulement

FALLOWFIELD

0

Transitway & Station

Some trips / Quelques trajets
Park & Ride / Parc-o-bus

Timepoint / Heures de passage

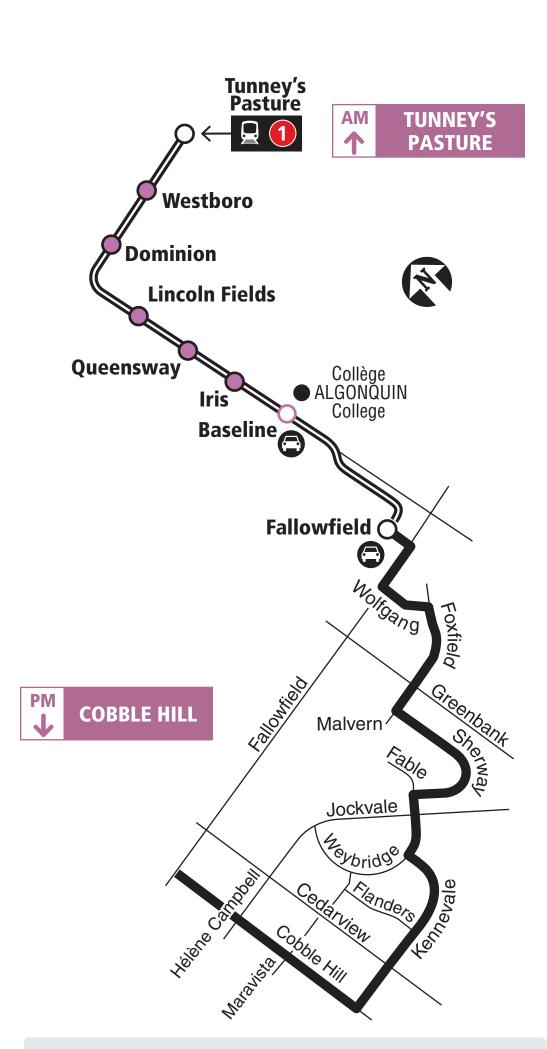
2019.06

Security / Sécurité 613-741-2478

Effective June 25, 2017 En vigueur 25 juin 2017

C Transpo

INFO 613-741-4390 octranspo.com



COBBLE HILL TUNNEY'S PASTURE

Connexion

Monday to Friday / Lundi au vendredi

Peak periods only Périodes de pointe seulement

Transitway & Station

Limited stops: Off only in AM / No stop in PM Arrêts limités : Débarquement en AM seul. /

Aucun arrêt en PM

AM: Off only - PM: Full Service

AM: Débarquement seul. - PM: Service complet

Park & Ride / Parc-o-bus

2019.07

Future route after O-Train Line 1 is open **Trajet du circuit après l'ouverture** de la Ligne 1 de l'O-Train

Lost and Found / Objets perdus...... **613-563-4011** Security / Sécurité 613-741-2478

INFO 613-741-4390 octranspo.com

Appendix E – Collision Data

City Operations - Transportation Services

Collision Details Report - Public Version

From: January 1, 2014 **To:** December 31, 2018

Location: CEDARVIEW RD @ FALLOWFIELD RD

Traffic Control: Traffic signal Total Collisions: 29

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
2018-Aug-16, Thu,08:29	Clear	Rear end	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	
					West	Slowing or stopping	Automobile, station wagon	Other motor vehicle	
2018-Jul-30, Mon,13:56	Clear	Turning movement	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	
					North	Going ahead	Passenger van	Other motor vehicle	
2018-Jul-09, Mon,11:21	Clear	Rear end	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Jun-22, Fri,08:35	Clear	Turning movement	P.D. only	Dry	West	Slowing or stopping	Automobile, station wagon	Other motor vehicle	
					East	Turning left	Automobile, station wagon	Other motor vehicle	
2018-Jun-14, Thu,08:35	Rain	Rear end	P.D. only	Wet	East	Going ahead	Automobile, station wagon	Other motor vehicle	
					East	Slowing or stopping	Automobile, station wagon	Other motor vehicle	
2018-May-22, Tue,08:18	Clear	Turning movement	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	

October 10, 2019 Page 1 of 11

					North	Going ahead	Automobile, station wagon	Other motor vehicle
2018-Jan-22, Mon,18:13	Snow	Turning movement	P.D. only	Loose snow	East		Automobile, station wagon	Other motor vehicle
					West	Turning left	Automobile, station wagon	Other motor vehicle
					East	Slowing or stopping	Automobile, station wagon	Other motor vehicle
2017-Dec-18, Mon,22:05	Snow	Sideswipe	Non-fatal injury	Loose snow	South	Changing lanes	Unknown	Other motor vehicle
					South	Going ahead	Passenger van	Other motor vehicle
2017-Nov-04, Sat,11:29	Clear	Turning movement	P.D. only	Dry	North	Turning left	Pick-up truck	Other motor vehicle
					South	Turning right	Automobile, station wagon	Other motor vehicle
2017-Nov-02, Thu,16:27	Rain	Rear end	P.D. only	Wet	West	Slowing or stopping	Automobile, station wagon	Skidding/sliding
					West	Stopped	Automobile, station wagon	Other motor vehicle
2017-Mar-21, Tue,17:18	Clear	Rear end	P.D. only	Wet	South	Slowing or stopping	Automobile, station wagon	Other motor vehicle
					South	Stopped	Pick-up truck	Other motor vehicle
2017-Feb-15, Wed,18:11	Snow	Angle	P.D. only	Loose snow	South	Turning left	Automobile, station wagon	Other motor vehicle
					West	Going ahead	Snow plow	Other motor vehicle

October 10, 2019 Page 2 of 11

2017-Jan-27, Fri,16:46	Snow	Turning movement	Non-fatal injury	Wet	East	Turning left	Automobile, station wagon	Other motor vehicle
					West	Going ahead	Automobile, station wagon	Other motor vehicle
2016-Jun-27, Mon,14:50	Clear	Angle	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle
					South	Unknown	Unknown	Other motor vehicle
2016-Feb-25, Thu,18:49	Snow	Rear end	Non-fatal injury	Slush	North	Slowing or stopping	Automobile, station wagon	Other motor vehicle
					North	Stopped	Automobile, station wagon	Other motor vehicle
2016-Feb-22, Mon,13:47	Clear	Sideswipe	Non-fatal injury	Dry	North	Changing lanes	Passenger van	Other motor vehicle
					North	Turning left	Automobile, station wagon	Other motor vehicle
2016-Jan-11, Mon,17:30	Clear	Other	P.D. only	Wet	North	Reversing	Automobile, station wagon	Other motor vehicle
					South	Stopped	Automobile, station wagon	Other motor vehicle
2016-Jan-06, Wed,07:26	Clear	Turning movement	P.D. only	Dry	South	Turning left	Passenger van	Other motor vehicle
					North	Going ahead	Pick-up truck	Other motor vehicle
2015-Oct-31, Sat,01:40	Clear	Turning movement	P.D. only	Dry	South	Turning left	Passenger van	Other motor vehicle
					North	Going ahead	Automobile, station wagon	Other motor vehicle

October 10, 2019 Page 3 of 11

2015-Jul-01, Wed,07:35	Rain	Angle	P.D. only	Wet	North	Turning left	Truck and trailer	Other motor vehicle
					East	Going ahead	Automobile, station wagon	Other motor vehicle
2015-Jun-23, Tue,08:00	Clear	Rear end	P.D. only	Dry	West	Turning right	Automobile, station wagon	Other motor vehicle
					West	Turning right	Pick-up truck	Other motor vehicle
2015-Apr-12, Sun,13:48	Clear	Sideswipe	Non-fatal injury	Dry	South	Turning left	Automobile, station wagon	Cyclist
					South	Turning left	Bicycle	Other motor vehicle
2014-Oct-22, Wed,14:00	Clear	Angle	P.D. only	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicle
					South	Going ahead	Automobile, station wagon	Other motor vehicle
2014-Oct-11, Sat,22:48	Clear	Turning movement	P.D. only	Wet	North	Turning left	Automobile, station wagon	Other motor vehicle
					South	Going ahead	Automobile, station wagon	Other motor vehicle
2014-Oct-05, Sun,17:28	Clear	Angle	P.D. only	Dry	South	Going ahead	Passenger van	Other motor vehicle
					East	Going ahead	Automobile, station wagon	Other motor vehicle
2014-Aug-04, Mon,11:48	Clear	Angle	Non-fatal injury	Dry	West	Going ahead	Pick-up truck	Other motor vehicle
					North	Going ahead	Pick-up truck	Other motor vehicle

October 10, 2019 Page 4 of 11

2014-Aug-02, Sat,13:04	Clear	Rear end	P.D. only	Dry	West	Slowing or stopping	g Automobile, station wagon	Other motor vehicle
					West	Stopped	Automobile, station wagon	Other motor vehicle
2014-Apr-04, Fri,07:39	Clear	Angle	Non-fatal injury	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle
					South	Going ahead	Passenger van	Other motor vehicle
2014-Feb-11, Tue,17:00	Clear	Sideswipe	P.D. only	Dry	West	Overtaking	Automobile, station wagon	Other motor vehicle
					West	Stopped	Automobile, station wagon	Other motor vehicle

Location: FALLOWFIELD RD @ O'KEEFE CRT

Traffic Control: Stop sign Total Collisions: 1

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2015-Sep-28, Mon,07:47	Clear	Angle	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	
					East	Going ahead	Pick-up truck	Other motor vehicle	

Location: FALLOWFIELD RD @ STRANDHERD DR

Traffic Control: Traffic signal Total Collisions: 35

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2018-Dec-22, Sat,08:04	Snow	Turning movement	P.D. only	Loose snow	West	Going ahead	Automobile, station wagon	Other motor vehicle	
					East	Turning left	Automobile, station wagon	Other motor vehicle	
2018-Oct-24, Wed,08:45	Clear	Rear end	Non-fatal injury	Dry	West	Changing lanes	Automobile, station wagon	Other motor vehicle	

October 10, 2019 Page 5 of 11

					West	Stopped	Automobile, station wagon	Other motor vehicle
2018-Sep-17, Mon,14:10	Clear	Rear end	P.D. only	Dry	South	Turning right	Pick-up truck	Other motor vehicle
					South	Turning right	Automobile, station wagon	Other motor vehicle
2018-Sep-10, Mon,07:45	Clear	Sideswipe	P.D. only	Dry	West	Unknown	Unknown	Other motor vehicle
					West	Going ahead	Automobile, station wagon	Other motor vehicle
2018-Aug-16, Thu,12:28	Clear	Rear end	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle
					West	Stopped	Automobile, station wagon	Other motor vehicle
2018-Jun-24, Sun,14:01	Clear	Rear end	P.D. only	Dry	South	Turning right	Automobile, station wagon	Other motor vehicle
					South	Turning right	Automobile, station wagon	Other motor vehicle
2018-Jun-19, Tue,21:05	Clear	Angle	Non-fatal injury	Dry	South	Going ahead	Motorcycle	Other motor vehicle
					East	Going ahead	Automobile, station wagon	Other motor vehicle
2018-Apr-26, Thu,16:11	Clear	Rear end	P.D. only	Dry	South	Turning right	Automobile, station wagon	Other motor vehicle
					South	Turning right	Passenger van	Other motor vehicle
2018-Mar-09, Fri,10:55	Snow	Angle	Non-fatal injury	Wet	West	Going ahead	Automobile, station wagon	Other motor vehicle

October 10, 2019 Page 6 of 11

					South	Turning left	Pick-up truck	Other motor vehicle
2018-Feb-16, Fri,15:35	Clear	Rear end	P.D. only	Dry	East		Automobile, station wagon	Other motor vehicle
					East		Automobile, station wagon	Other motor vehicle
2018-Feb-09, Fri,17:45	Clear	Rear end	Non-fatal injury	Wet	West	Slowing or stopping	Automobile, station wagon	Skidding/sliding
					West	Slowing or stopping	Automobile, station wagon	Other motor vehicle
2018-Feb-08, Thu,15:46	Clear	Angle	P.D. only	Dry	East		Automobile, station wagon	Other motor vehicle
					South	Going ahead	Pick-up truck	Other motor vehicle
2018-Jan-08, Mon,12:55	Snow	Rear end	Non-fatal injury	Slush	East	Slowing or stopping	Pick-up truck	Skidding/sliding
					East		Automobile, station wagon	Other motor vehicle
2017-Nov-17, Fri,12:02	Clear	Rear end	P.D. only	Dry	West	Going ahead	Pick-up truck	Other motor vehicle
					West	Stopped	Passenger van	Other motor vehicle
2017-Oct-17, Tue,17:28	Clear	Rear end	P.D. only	Dry	West		Automobile, station wagon	Other motor vehicle
					West		Automobile, station wagon	Other motor vehicle
2017-Sep-20, Wed,20:10	Clear	Rear end	P.D. only	Dry	West		Automobile, station wagon	Other motor vehicle

October 10, 2019 Page 7 of 11

					West	Turning right	Automobile, station wagon	Other motor vehicle
2017-Aug-15, Tue,14:45	Clear	Angle	Non-fatal injury	Dry	East	Going ahead	Passenger van	Other motor vehicle
					North	Turning left	Pick-up truck	Other motor vehicle
2017-Aug-12, Sat,18:56	Rain	Rear end	Non-fatal injury	Wet	West	Going ahead	Automobile, station wagon	Other motor vehicle
					West	Stopped	Automobile, station wagon	Other motor vehicle
2017-Jul-26, Wed,07:34	Clear	Sideswipe	P.D. only	Dry	West	Changing lanes	Automobile, station wagon	Other motor vehicle
					West	Going ahead	Automobile, station wagon	Other motor vehicle
2017-Jul-14, Fri,18:11	Clear	Rear end	P.D. only	Dry	South	Turning right	Pick-up truck	Other motor vehicle
					South	Stopped	Automobile, station wagon	Other motor vehicle
					South	Merging	Automobile, station wagon	Other motor vehicle
2017-Jun-05, Mon,14:45	Clear	Rear end	P.D. only	Dry	South	Turning right	Automobile, station wagon	Other motor vehicle
					South	Turning right	Automobile, station wagon	Other motor vehicle
					South	Turning right	Automobile, station wagon	Other motor vehicle
2017-Apr-20, Thu,08:40	Clear	Rear end	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle
					East	Turning left	Pick-up truck	Other motor vehicle

October 10, 2019 Page 8 of 11

2017-Feb-26, Sun,14:09	Clear	Sideswipe	P.D. only	Dry	West	Changing lanes	Automobile, station wagon	Other motor vehicle
					West	Changing lanes	· ·	Other motor vehicle
2017-Jan-12, Thu,06:25	Rain	Approaching	P.D. only	Wet	West	Unknown	Unknown	Other motor vehicle
					East	Going ahead	Pick-up truck	Other motor vehicle
2016-Jun-18, Sat,13:50	Clear	Rear end	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle
					West	Stopped	Automobile, station wagon	Other motor vehicle
2016-Feb-20, Sat,03:57	Rain	Rear end	P.D. only	Slush	West	Going ahead	Automobile, station wagon	Other motor vehicle
					West	Stopped	Automobile, station wagon	Other motor vehicle
2016-Jan-19, Tue,06:27	Clear	Rear end	P.D. only	Ice	West	Slowing or stopping	Automobile, station wagon	Other motor vehicle
					West	Stopped	Automobile, station wagon	Other motor vehicle
2016-Jan-13, Wed,15:11	Clear	Sideswipe	P.D. only	Wet	West	Changing lanes	Pick-up truck	Other motor vehicle
					West	Going ahead	Pick-up truck	Other motor vehicle
2015-Aug-14, Fri,16:39	Clear	Sideswipe	P.D. only	Dry	East	Changing lanes	Automobile, station wagon	Other motor vehicle
					East	Going ahead	Automobile, station wagon	Other motor vehicle

October 10, 2019 Page 9 of 11

2015-Jul-22, Wed,20:20	Clear	Rear end	P.D. only	Dry	East	Turning left	Pick-up truck	Other motor vehicle	
					East	Turning left	Automobile, station wagon	Other motor vehicle	
		_		_					
2015-Feb-24, Tue,12:48	Clear	Rear end	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2014-Oct-20, Mon,08:45	Clear	SMV other	Non-fatal injury	Dry	East	Going ahead	Automobile, station wagon	Pedestrian	1
2044 Aug 20 Ed 00:50	Class	Deerand	D.D. colu	D	Cauth	Transis a vialet	A ta a la ila	Othermoter	
2014-Aug-29, Fri,08:56	Clear	Rear end	P.D. only	Dry	South	Turning right	Automobile, station wagon	Other motor vehicle	
					South	Turning right	Pick-up truck	Other motor vehicle	
2014 Jun 09 Sun 04:47	Cloar	SMV other	D.D. only	Dny	West	Coing shood	Automobile,	Curb	
2014-Jun-08, Sun,04:47	Clear	Siviv other	P.D. only	Dry	west	Going ahead	station wagon	Curb	
2014-Mar-26, Wed,17:53	Clear	Rear end	Non-fatal injury	Dry	East	Going ahead	Pick-up truck	Other motor vehicle	
					East	Stopped	Pick-up truck	Other motor vehicle	
					East	Stopped	Pick-up truck	Other motor vehicle	

Location: FALLOWFIELD RD btwn O'KEEFE CRT & CEDARVIEW RD

Traffic Control: No control

Total Collisions: 4

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	er Vehicle type	First Event	No. Ped
2016-Sep-01, Thu,11:31	Clear	Sideswipe	P.D. only	Dry	East	Overtaking	Pick-up truck	Other motor vehicle	
					East	Going ahead	Automobile, station wagon	Other motor vehicle	

October 10, 2019 Page 10 of 11

2016-Jul-24, Sun,00:39	Clear	Approaching	P.D. only	Dry	East	Going ahead	Pick-up truck	Other motor vehicle
					West	Going ahead	Automobile, station wagon	Other motor vehicle
2015-Jan-29, Thu,17:52	Snow	SMV other	P.D. only	Loose snow	East	Going ahead	Automobile, station wagon	Ditch
2014-Nov-05, Wed,07:20	Clear	Sideswipe	P.D. only	Dry	East	Changing lanes	Pick-up truck	Other motor vehicle
					East	Going ahead	Truck - dump	Other motor vehicle

Location: FALLOWFIELD RD btwn STRANDHERD DR & O'KEEFE CRT

Traffic Control: No control

Total Collisions: 1

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver Vehicle type	First Event	No. Ped
2016-Apr-22, Fri,15:13	Rain	Rear end	P.D. only	Wet	South	Slowing or stopping Automobile, station wagon	Other motor vehicle	
					South	Slowing or stopping Automobile, station wagon	Other motor vehicle	

Location: O'KEEFE CRT btwn FOXTAIL AVE & FALLOWFIELD RD

Traffic Control: No control

Total Collisions: 1

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	er Vehicle type	First Event	No. Ped
2015-Aug-26, Wed,16:49	Clear	Rear end	P.D. only	Dry	West	Unknown	Unknown	Other motor vehicle	
					West	Stopped	Pick-up truck	Other motor vehicle	

October 10, 2019 Page 11 of 11

Appendix F – Trip Generation Data

April 9, 2020 6

Medical-Dental Office Building

(720)

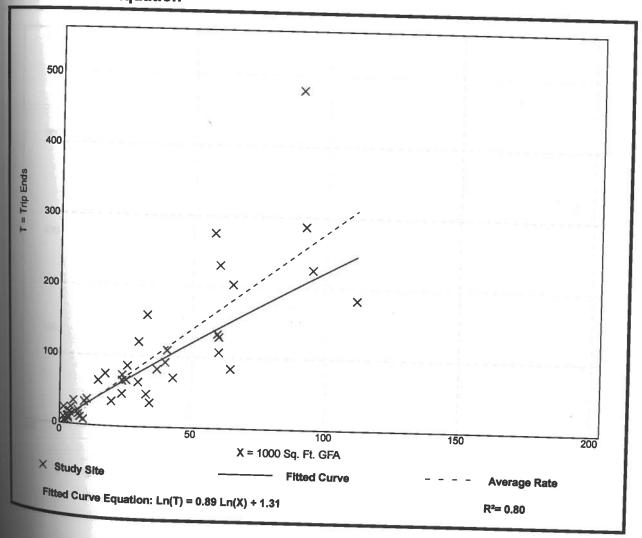
Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m. Setting/Location: General Urban/Suburban

Number of Studies: 4


1000 Sq. Ft. GFA: 32

Directional Distribution: 78% entering, 22% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

	Par 1999 od: I t. Ol A	
Average Rate	Range of Rates	Standard Deviation
2.78	0.85 - 14.30	1.28

Data Plot and Equation

Medical-Dental Office Building

(720)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

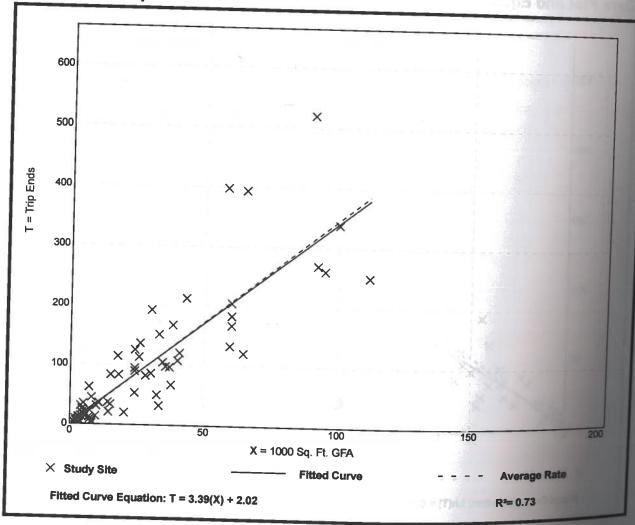
Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location:

General Urban/Suburban

Number of Studies:


65 28

1000 Sq. Ft. GFA: Directional Distribution: 28% entering, 72% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
3.46	0.25 - 8.86	
	0.23 - 0.86	1.58

Data Plot and Equation

Quality Restaurant (931)

Vehicle Trip Ends vs: Seats

On a: Weekday,

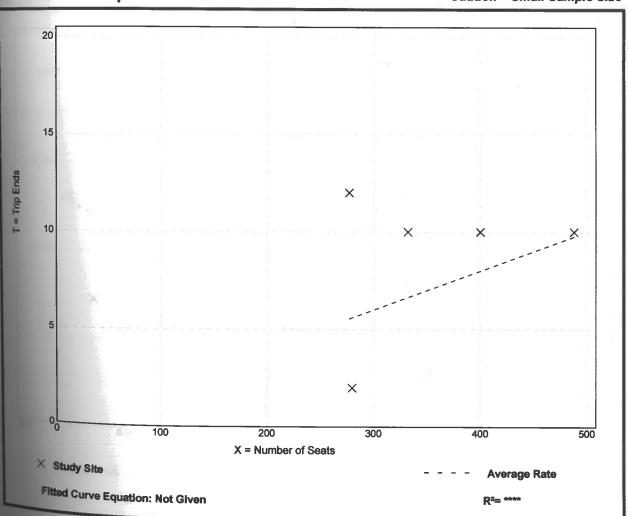
Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location:

General Urban/Suburban

Number of Studies: Avg. Num. of Seats: 355


Directional Distribution: Not Available

Vehicle Trip Generation per Seat

Average Rate	Range of Rates	Standard Deviation
0.02	0.01 - 0.04	0.01

Data Plot and Equation

Caution - Small Sample Size

Quality Restaurant (931)

Vehicle Trip Ends vs: Seats

On a: Weekday,

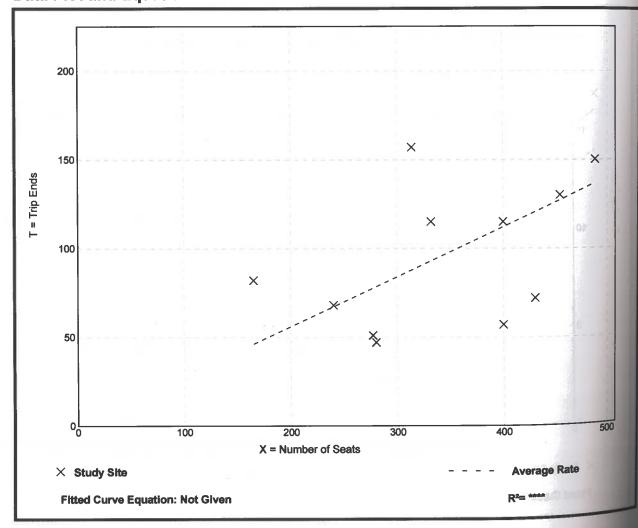
Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location:

General Urban/Suburban

Number of Studies: 11


Avg. Num. of Seats: 344

Directional Distribution: 67% entering, 33% exiting

Vehicle Trip Generation per Seat

Average Rate	Range of Rates	Standard Deviation
0.28	0.14 - 0.50	0.11

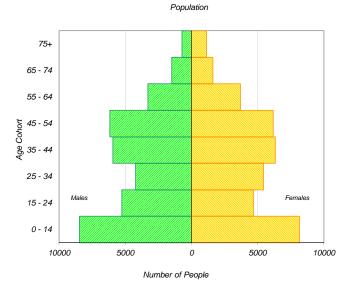
Data Plot and Equation

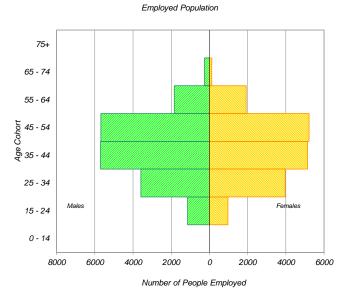
South Nepean

Demographic Characteristics

Population	72,750	Actively Trav	/elled	57,830
Employed Population	35,540	Number of \	ehicles/	44,130
Households	26,260	Area (km²)		54.8
Occupation				
Status (age 5+)		Male	Female	Total
Full Time Employed		17,630	14,730	32,350
Part Time Employed		620	2,570	3,190
Student		9,910	9,420	19,340
Retiree		3,420	4,200	7,620
Unemployed		720	500	1,220
Homemaker		180	2,390	2,570
Other		270	540	810
Total:		32,750	34,350	67,100
Traveller Characteristics		Male	Female	Total
Transit Pass Holders		5,590	6,100	11,700
Licensed Drivers		24,480	25,260	49,740
Telecommuters		60	310	370
Trips made by residents		88,180	97,380	185,550

tal:	32,750	34,350	67,100	0 975 15 3	A End Feb
eveller Characteristics	Male	Female	Total	7	K
ansit Pass Holders	5,590	6,100	11,700		
ensed Drivers	24,480	25,260	49,740	Household Size	
lecommuters	60	310	370	1 person	3,
				2 persons	7,
ps made by residents	88,180	97,380	185,550	3 persons	5,
			<u> </u>	4 persons	6,
				5+ persons	3.

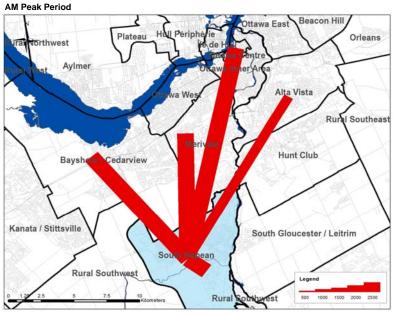

Bayshore / Cedarview Merivale Hunt Club & South Gloup	ester N.eitrim
Hunt Club	
	NA G
150 PM 15	MORE ST
The state of the s	H5 ad
South Nepean	
	The state of the s
Rural Southwest and Paul Range Rural Southwest	12 13
Rural Southeast	la mo
0 935 15 3 49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STATE
0 805 1.5 3 45 0 60	N N N N N N N N N N N N N N N N N N N


Household Size		
1 person	3,560	14%
2 persons	7,300	28%
3 persons	5,500	21%
4 persons	6,320	24%
5+ persons	3,590	14%
Total:	26,260	100%

Households by Vehicle Availability					
0 vehicles 810 35					
1 vehicle	9,500	36%			
2 vehicles	13,800	53%			
3 vehicles	1,730	7%			
4+ vehicles	410	2%			
Total:	26,260	100%			

Households by Dwelling Typ	e	
Single-detached	14,530	55%
Semi-detached	3,090	12%
Townhouse	7,770	30%
Apartment/Condo	870	3%
Total:	26.260	100%

Selected Indicators	
Daily Trips per Person (age 5+)	2.77
Vehicles per Person	0.61
Number of Persons per Household	2.77
Daily Trips per Household	7.07
Vehicles per Household	1.68
Workers per Household	1.35
Population Density (Pop/km2)	1330



^{*} In 2005 data was only collected for household members aged $11^{^{\star}}$ therefore these results cannot be compared to the 2011 data.

Travel Patterns

Top Five Destinations of Trips from South Nepean

;	Summary of Trips to and from South Nepean						
	AM Peak Period (6:30 - 8:59)	Destinations of	ns of Origins of				
		Trips From		Trips To			
1	Districts	District	% Total	District	% Total		
(Ottawa Centre	3,820	9%	30	0%		
	Ottawa Inner Area	2,270	5%	340	1%		
(Ottawa East	630	2%	50	0%		
	Beacon Hill	370	1%	50	0%		
/	Alta Vista	2,360	6%	460	2%		
ı	Hunt Club	920	2%	440	2%		
ı	Merivale	4,310	10%	790	3%		
(Ottawa West	1,830	4%	160	1%		
E	Bayshore / Cedarview	3,230	8%	700	3%		
(Orléans	330	1%	200	1%		
F	Rural East	20	0%	60	0%		
F	Rural Southeast	250	1%	580	2%		
9	South Gloucester / Leitrim	100	0%	310	1%		
9	South Nepean	17,260	42%	17,260	74%		
F	Rural Southwest	580	1%	970	4%		
ı	Kanata / Stittsvile	1,800	4%	690	3%		
F	Rural West	80	0%	30	0%		
î	le de Hull	840	2%	50	0%		
H	Hull Périphérie	260	1%	40	0%		
1	Plateau	0	0%	40	0%		
1	Aylmer	60	0%	40	0%		
F	Rural Northwest	40	0%	40	0%		
1	Pointe Gatineau	0	0%	0	0%		
(Gatineau Est	0	0%	20	0%		
ı	Rural Northeast	10	0%	20	0%		
_	Buckingham / Masson-Angers	20	0%	0	0%		
(Ontario Sub-Total:	40,160	97%	23,120	99%		
(Québec Sub-Total:	1,230	3%	250	1%		
1	Total:	41,390	100%	23,370	100%		

Trips by Trip Purpose

24 Hours	From District	1	o District	Wi	thin District	
Work or related	25,640	41%	5,290	8%	4,680	6%
School	5,310	8%	1,430	2%	10,610	13%
Shopping	4,940	8%	4,220	7%	12,840	16%
Leisure	6,960	11%	4,020	6%	5,760	7%
Medical	1,720	3%	900	1%	840	1%
Pick-up / drive passenger	4,040	6%	3,920	6%	7,530	9%
Return Home	11,460	18%	40,960	65%	34,630	43%
Other	2,640	4%	2,090	3%	3,020	4%
Total:	62,710	100%	62,830	100%	79,910	100%
AM Peak (06:30 - 08:59)	From District	1	o District	Wi	thin District	
Work or related	18,160	75%	2,890	47%	2,120	12%
School	3,280	14%	1,170	19%	9,180	53%
Shopping	180	1%	70	1%	720	4%
Leisure	350	1%	230	4%	220	1%
Medical	400	2%	60	1%	100	1%
Pick-up / drive passenger	1,060	4%	770	13%	2,860	17%
Return Home	210	1%	640	10%	1,070	6%
Other	520	2% 290		5%	990	6%
Total:	24,160	100%	6,120	100%	17,260	100%
PM Peak (15:30 - 17:59)	From District	1	o District	Wi	thin District	
Work or related	410	5%	290	1%	410	2%
School	250	3%	0	0%	50	0%
Shopping	900	11%	1,090	5%	2,090	11%
Leisure	1,420	17%	790	3%	1,840	10%
Medical	190	2%	230	1%	90	0%
Pick-up / drive passenger	820	10%	1,700	7%	1,610	9%
Return Home	3,800	47%	18,990	81%	11,810	64%
Other	360	4%	490	2%	540	3%
Total:	8,150	100%	23,580	100%	18,440	100%
Peak Period (%)	Total:	9	% of 24 Hours	W	ithin Distric	ct (%)
24 Hours	205,450				39%	

47,540

50,170

23%

24%

36%

37%

Trips by Primary Travel Mode

24 Hours	From District		To District	Wit	thin District	:
Auto Driver	41,340	66%	41,280	66%	39,110	49%
Auto Passenger	9,400	15%	10,030	16%	15,320	19%
Transit	9,990	16%	9,520	15%	2,260	3%
Bicycle	310	0%	320	1%	960	1%
Walk	80	0%	170	0%	13,060	16%
Other	1,600	3%	1,520	2%	9,210	12%
Total:	62,720	100%	62,840	100%	79,920	100%
AM Peak (06:30 - 08:59)	From District		To District	Wit	thin District	:
Auto Driver	14,570	60%	4,360	71%	5,800	34%
Auto Passenger	1,930	8%	780	13%	3,210	19%
Transit	6,610	27%	330	5%	730	4%
Bicycle	80	0%	50	1%	320	2%
Walk	20	0%	10	0%	3,000	17%
Other	930	4%	590	10%	4,200	24%
Total:	24,140	100%	6,120	100%	17,260	100%
PM Peak (15:30 - 17:59)	From District		To District	Wit	thin District	:
Auto Driver	5,840	72%	14,640	62%	8,420	46%
Auto Passenger	1,730	21%	2,680	11%	3,930	21%
Transit	350	4%	5,770	24%	650	4%
Bicycle	80	1%	110	0%	150	1%
Walk	30	0%	0	0%	3,680	20%
Other	100	1%	380	2%	1,590	9%
Total:	8,130	100%	23,580	100%	18,420	100%
Avg Vehicle Occupancy	From District		To District	Wi	thin District	:
24 Hours	1.23		1.24		1.39	
AM Peak Period	1.13		1.18		1.55	
PM Peak Period	1.30		1.18		1.47	
Transit Modal Split	From District		To District	\A/i+	thin District	
24 Hours	16%		16%	771	4%	
AM Peak Period	29%		6%		4% 7%	
PM Peak Period	4%		25%		5%	
rivi reak ref100	470		23%		370	

AM Peak Period

PM Peak Period

Appendix G – TDM Checklist

April 9, 2020 7

TDM-Supportive Development Design and Infrastructure Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

Legend				
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed			
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users			
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance			

TDM-supportive design & infrastructure measures: Non-residential developments			Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	☑
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	$oxed{oxed}$
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	N/A - no rapid transit service exists within the vicinity of the proposed development
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	A network of sidewalks is proposed within the development

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	All sidewalks will be constructed per City standards
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	Proposed pedestrian facilities will conform to AODA standards
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

	TDM-s	upportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILITY	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	Number of bicycle parking spaces exceeds Zoning Bylaw requirements and are located within close proximity to building entrances
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	All 5 bicycyle parking spaces are horizontal
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	N/A
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	
	2.3	Shower & change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	
	2.4	Bicycle repair station	
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non-residential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	Parking supply is within the permissible range specified in the Zoning Bylaw
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	
	7.	OTHER	
	7.1	On-site amenities to minimize off-site trips	
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands	

Appendix H – MMLOS Analysis

April 9, 2020 8

Multi-Modal Level of Service

115 Lusk Street TIA

Scenario: Future Conditions

INTER	SECTIONS		d & O'Keefe (
		NORTH leg	SOUTH leg	EAST leg	WEST leg				
	Lanes (do NOT include lanes protected by bulb-outs)		4	2	3				
	Median Island Refuge	No Median	No Median	No Median	No Median				
	Conflicting Left Turns (from street to right)	Permissive	Permissive	Permissive	Permissive				
	Conflicting Right Turns (from street to left)	Permissive or	Permissive or	Permissive or	Permissive or				
		yield control	yield control	yield control	yield control				
	RTOR? (from street to left) Ped Leading Interval? (on cross street)	RTOR allowed No	RTOR allowed No	RTOR allowed No	RTOR allowed No				
	Corner Radius	> 10m to 15m	> 5m to 10m	> 5m to 10m	> 10m to 15m				
Pedestrian		No right turn	No right turn	No right turn	No right turn				
str	Right Turn Channel	channel	channel	channel	channel				
ge	O	Standard	Standard	Standard	Standard				
a	Crosswalk Type	transverse markings	transverse markings	transverse markings	transverse markings				
	LOC (DETCI)	53	54	86	70				
	LOS (PETSI)	D	D	В	С				
	Cycle Length (sec)	120	120	120	120				
	Pedestrian Walk Time (solid white symbol) (sec)	7 54.3	7	7 54.3	7				
	LOS (Delay,seconds)	54.3 E	54.3 E	54.3 E	54.3 E				
	Overall Level of Service	_							
	Overall Level of Service	Bike Pocket at		<u> </u>					
	Type of Bikeway	Intersection	Mixed Traffic	Mixed Traffic	Mixed Traffic				
	Turning Speed (based on corner radius & angle)	Slow	Slow						
	Right Turn Storage Length	≤ 50m	> 50m						
	Dual Right Turn?	No	No	.,	.,				
<u>is</u> :	Shared Through-Right? Bike Box?	No No	No No	Yes No	Yes No				
Cyclist				No Lanes					
O	Number of Lanes Crossed for Left Turns	1 Lane Crossed	1 Lane Crossed	Crossed	1 Lane Crossed				
	Operating Speed on Approach	≥ 60km/h	≥ 60km/h	≥ 60km/h	≥ 60km/h				
	Dual Left Turn Lanes?	No	No	No	No				
	Level of Service	E	F	- D	F				
Sit	Average Signal Delay	≤10 sec	≤10 sec						
Transit	Level of Service			<u>.</u> В			 		
	Turning Radius (Right Turn)	10 to 15m	< 10m	< 10m	10 to 15m				
×	Number of Receiving Lanes	10 10 15111	1	1	10 10 15111				
Truck	Training Laries	E	F	F	E				
-				=					
0									
Auto	Level of Service		B (AM)	/ B (PM)					
SEGMI	ENTS		Fallowfield –	Forager Street to 2	O'Keete Court 3	_		-	
	Sidewalk Width		No Sidewalk		ა				
_	Boulevard Width		N/A						
riar	AADT		N/A						
sti									
	On-Street Parking		N/A						
ed	On-Street Parking Operating Speed								
Pedestrian	Operating Speed		N/A						
Ped	Operating Speed Level of Service		N/A 61 km/h or more	F				-	
Ped	Operating Speed Level of Service Type of Bikeway		N/A 61 km/h or more	F Mixed Traffic					
Ped	Operating Speed Level of Service Type of Bikeway Number of Travel Lanes (per direction)		N/A 61 km/h or more	F Mixed Traffic avel Lane Per Dire	ection				
Ped	Operating Speed Level of Service Type of Bikeway Number of Travel Lanes (per direction) Raised Median?		N/A 61 km/h or more		ection				
	Operating Speed Level of Service Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width		N/A 61 km/h or more		ection				
	Operating Speed Level of Service Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Operating Speed Bike Lane Blockages (Commercial Areas)		N/A 61 km/h or more	avel Lane Per Dire	ection				
Cyclist	Operating Speed Level of Service Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Operating Speed Bike Lane Blockages (Commercial Areas) Median Refuge		N/A 61 km/h or more	avel Lane Per Dire	ection				
	Operating Speed Level of Service Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Operating Speed Bike Lane Blockages (Commercial Areas) Median Refuge Number of Travel Lanes on Sidestreet		N/A 61 km/h or more	avel Lane Per Dire	ection				
	Operating Speed Level of Service Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Operating Speed Bike Lane Blockages (Commercial Areas) Median Refuge Number of Travel Lanes on Sidestreet Sidestreet Operating Speed		N/A 61 km/h or more	avel Lane Per Dire	ection				
	Operating Speed Level of Service Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Operating Speed Bike Lane Blockages (Commercial Areas) Median Refuge Number of Travel Lanes on Sidestreet		N/A 61 km/h or more	avel Lane Per Dire	ection				
Cyclist	Operating Speed Level of Service Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Operating Speed Bike Lane Blockages (Commercial Areas) Median Refuge Number of Travel Lanes on Sidestreet Sidestreet Operating Speed		N/A 61 km/h or more F	avel Lane Per Dire ≥ 70 km/h Mixed Traffic					
Cyclist	Operating Speed Level of Service Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Operating Speed Bike Lane Blockages (Commercial Areas) Median Refuge Number of Travel Lanes on Sidestreet Sidestreet Operating Speed		N/A 61 km/h or more F	avel Lane Per Dire ≥ 70 km/h					
Cyclist	Operating Speed Level of Service Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Operating Speed Bike Lane Blockages (Commercial Areas) Median Refuge Number of Travel Lanes on Sidestreet Sidestreet Operating Speed Level of Service Facility Type Friction		N/A 61 km/h or more F	avel Lane Per Dire ≥ 70 km/h Mixed Traffic					
	Operating Speed Level of Service Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Operating Speed Bike Lane Blockages (Commercial Areas) Median Refuge Number of Travel Lanes on Sidestreet Sidestreet Operating Speed Level of Service Facility Type Friction Level of Service		N/A 61 km/h or more F 1 Tra	avel Lane Per Dire ≥ 70 km/h Mixed Traffic I parking/driveway					
Transit Cyclist	Operating Speed Level of Service Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Operating Speed Bike Lane Blockages (Commercial Areas) Median Refuge Number of Travel Lanes on Sidestreet Sidestreet Operating Speed Level of Service Facility Type Friction Level of Service Curb Lane Width		N/A 61 km/h or more F 1 Tra Limited	avel Lane Per Dire ≥ 70 km/h Mixed Traffic I parking/driveway					
Transit Cyclist	Operating Speed Level of Service Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Operating Speed Bike Lane Blockages (Commercial Areas) Median Refuge Number of Travel Lanes on Sidestreet Sidestreet Operating Speed Level of Service Facility Type Friction Level of Service		N/A 61 km/h or more F 1 Tra	avel Lane Per Dire ≥ 70 km/h Mixed Traffic I parking/driveway					
Cyclist	Operating Speed Level of Service Type of Bikeway Number of Travel Lanes (per direction) Raised Median? Bike Lane Width Operating Speed Bike Lane Blockages (Commercial Areas) Median Refuge Number of Travel Lanes on Sidestreet Sidestreet Operating Speed Level of Service Facility Type Friction Level of Service Curb Lane Width		N/A 61 km/h or more F 1 Tra Limited	avel Lane Per Dire ≥ 70 km/h Mixed Traffic I parking/driveway					

Appendix I – Intersection Control Warrants

April 9, 2020 9

Input Dat	a She	et		Analysis	Sheet	Results	Sheet	Proposed	d Collision) Justificati	on:	
What are the int	tersecting r	oadways?	Fa	allowfield Roa	ad & O'Kee	efe Court / 0	Cobble Hill D	rive					▼
What is the dire	ction of the	Main Road	street?	Nor	th-South	•	When was t	he data colle	ected?	Future (202	8) Total Tra	iffic	
Justification	1 - 4: Vo	olume Wa	rrants										
a Number of I	anes on the	e Main Roa	d?	1	•								
b Number of I	anes on the	e Minor Roa	ıd?	1	•								
c How many a	approaches	? 4	•										
d What is the	operating e	environmen	1?	Urban	•	Popula	ition >= 10,000	AND	Speed < 70 I	cm/hr			
e What is the				intersection?	(Please fi	·							
C. What is the							,			l			
				☐ Minor F:	astbound A	pproach	∣ Main So		proach	Minor W	estbound A		Dadastriana
Hour Ending		rthbound A			,			ş <u>.</u>				<u>.</u>	Pedestrians Crossing Main
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
7:00	LT 119	TH 646	RT 9	LT 30	TH 6	RT 32	LT 8	TH 881	88	39		RT 42	Crossing Main
7:00 8:00	LT 119 60	TH 646 323	RT 9 5	LT 30 15	TH 6 3	RT 32 16	LT 8 4	TH 881 441	88 44	39 20		RT 42 21	Crossing Main
7:00 8:00 9:00	LT 119 60 60	TH 646 323 323	RT 9 5	LT 30 15 15	TH 6 3 3	RT 32 16 16	LT 8 4	TH 881 441 441	88 44 44	39 20 20		RT 42 21 21	Crossing Main
7:00 8:00 9:00 10:00	LT 119 60 60 60	TH 646 323 323 323	RT 9 5 5 5 5	LT 30 15 15	TH 6 3 3 3 3	RT 32 16 16	8 4 4 4	TH 881 441 441 441	88 44 44 44	39 20 20 20		RT 42 21 21 21	Crossing Main
7:00 8:00 9:00	LT 119 60 60 60	TH 646 323 323	RT 9 5	LT 30 15 15	TH 6 3 3	RT 32 16 16	8 4 4	TH 881 441 441	88 44 44 44 38	39 20 20		RT 42 21 21	Crossing Main
7:00 8:00 9:00 10:00	LT 119 60 60 60 60 52	TH 646 323 323 323 661 331	8T 9 5 5 5 23	LT 30 15 15 15 17 107	TH 6 3 3 3 3 3 3	8T 32 16 16 16 16 114	LT 8 4 4 4 17 9	TH 881 441 441 441	88 44 44 44 44 38	39 20 20 20 20 9		RT 42 21 21 21 21 20	Crossing Main
7:00 8:00 9:00 10:00 15:00	LT 119 60 60 60 52 26 26	TH 646 323 323 323 661	RT 9 5 5 5 23 12 12	LT 30 15 15 15 17 107 54	TH 6 3 3 3 2 2	RT 32 16 16 16 17 17 18 18 19 19 19 19 19 19 19 19	LT 8 4 4 4 17 9 9	TH 881 441 441 441 767	88 44 44 44 38 19	39 20 20 20 20 9		RT 42 21 21 21 20	Crossing Main
7:00 8:00 9:00 10:00 15:00	LT 119 60 60 60 52 26	TH 646 323 323 323 661 331	8T 9 5 5 5 23 12	LT 30 15 15 15 17 15 15 15 15 107	TH 6 3 3 3 3 2	RT 32 16 16 16 114 57	LT 8 4 4 4 17 9	TH 881 441 441 441 767 384	88 44 44 44 38 19	39 20 20 20 20 9		RT 42 21 21 21 21 20 10	Crossing Main
7:00 8:00 9:00 10:00 15:00 16:00 17:00	LT 119 60 60 50 52 26 26	TH 646 323 323 323 323 661 331 331	RT 9 5 5 5 23 12 12	LT 30 15 15 15 107 54 54	TH 6 3 3 3 3 2 2	RT 32 16 16 16 16 17 114 57 57	LT 8 4 4 4 17 9 9	TH 881 441 441 441 767 384 384	88 44 44 44 38 19	39 20 20 20 9 5 5		RT 42 21 21 21 20 10 10	Crossing Main
7:00 8:00 9:00 10:00 15:00 16:00 17:00	LT 119 60 60 60 52 26 26	TH 646 323 323 323 661 331 331 331	8T 9 5 5 5 23 12 12 12	LT 30 15 15 15 15 54 54 54	TH 6 3 3 3 3 2 2 2	RT 32 16 16 16 17 17 18 19 19 10 10 10 10 10 10 10 10	LT 8 4 4 4 17 9 9 9	TH 881 441 441 441 767 384 384 384	88 44 44 44 38 19 19	39 20 20 20 9 5 5	TH 7 4 4 4 1 1 1 1	RT 42 21 21 21 21 20 10 10	Crossing Main Road
7:00 8:00 9:00 10:00 15:00 16:00 17:00	LT 119 60 60 60 52 26 26	TH 646 323 323 323 661 331 331 331	8T 9 5 5 5 23 12 12 12	LT 30 15 15 15 15 54 54 54	TH 6 3 3 3 3 2 2 2	RT 32 16 16 16 17 17 18 19 19 10 10 10 10 10 10 10 10	LT 8 4 4 4 17 9 9 9	TH 881 441 441 441 767 384 384 384	88 44 44 44 38 19 19	39 20 20 20 9 5 5	TH 7 4 4 4 1 1 1 1	RT 42 21 21 21 21 20 10 10	Crossing Main Road

Justification 5: Collision Experience

Preceding Months	Number of Collisions*
1-12	
13-24	
25-36	

* Include only collisions that are susceptable to correction through the installation of traffic signal control

Justification 6: Pedestrian Volume

a.- Please fill in table below summarizing total pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

	Zon	e 1	Zor	1е 2	Zone 3 (i	f needed)	Zone 4 ((if needed)	Total
	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	Total
Total 8 hour pedestrian volume									
Factored 8 hour pedestrian volume	С)	(0	()		0	
% Assigned to crossing rate									
Net 8 Hour Pedestrian Volume at Cross	sing								0
Net 8 Hour Vehicular Volume on Street	Being Cross	ed							6,411

b.- Please fill in table below summarizing delay to pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

	Zor	ne 1	Zoi	ne 2	Zone 3 (if	needed)	Zone 4 (if needed)	Total
	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	Assisted	Unassisted	Total
Total 8 hour pedestrian volume	0	0	0	0	0	0	0	0	
Total 8 hour pedestrians delayed greater than 10 seconds									
Factored volume of total pedestrians	()		0	C)		0	
Factored volume of delayed pedestrians	()		0	C)		0	
% Assigned to Crossing Rate	0'	%	0	%	09	%	(0%	
Net 8 Hour Volume of Total Pedestrian	5								0
Net 8 Hour Volume of Delayed Pedestr	ians								0

Results	Sheet		<u>I</u> nput Sheet	Analy	sis Sheet	Propo	sed Collision		GO TO Jus
			Court / Cobble Hill Driv	ve Count D	Date: Future (20	28) Total T	raffic		
Summary I	Results				·	·			
	Justificati	ion	Complian	ce	Signal Ju]		
1. Minimum Vehicular	A Total	l Volume	100	%	YES	NO V	-		
Volume	B Cros	sing Volume	69	%					
2. Delay to Cross	A Main	Road	100	%		~			
Traffic	B Cros	sing Road	74	%					
3. Combination	A Justi	ficaton 1	69	%		V			
	B Justi	fication 2	74	%					
4. 4-Hr Volume			67	%		~			
							7		
5. Collision Exp	erience		0	%		~			
							1		
6. Pedestrians	A Volur	me	Justification no	ot met					

~

Justification not met

B Delay

City of Ottawa Roundabout Initial Feasability Screening Tool

The intent of this screening tool is to provide a relatively quick assessment of the feasibility of a roundabout at a particular intersection in comparison to other appropriate forms of traffic control or road modifications including all-way stop control, traffic signals, auxiliary lanes, etc. The intended outcome of this tool is to provide enough information to assist staff in deciding whether or not to proceed with an Intersection Control Study to investigate the feasibility of a roundabout in more detail.

1	Project Name:	115 Lusk Street - Transportation Impact Assessment
2	Intersection:	Fallowfield Road & O'Keefe Court / Cobble Hill Drive
3	Location and Description of Intersection: Lane Configuration, total or approach AADT, distance to nearby intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection then indicate type of control	The intersection is currently configured as a two-way stop-controlled intersection with free-flow on Fallowfield Road.
4	What traditional modifications are proposed? All-way stop control, traffic signals, auxiliary lanes, etc. Attach or sketch a diagram if necessary.	Traffic signals.
5	What size of roundabout is being considered? Describe, and attach a Roundabout Traffic Flow Worksheet	Multi-lane roundabout.
6	Why is a roundabout being considered?	As an alternative to traffic signals.

7 a roundabout?

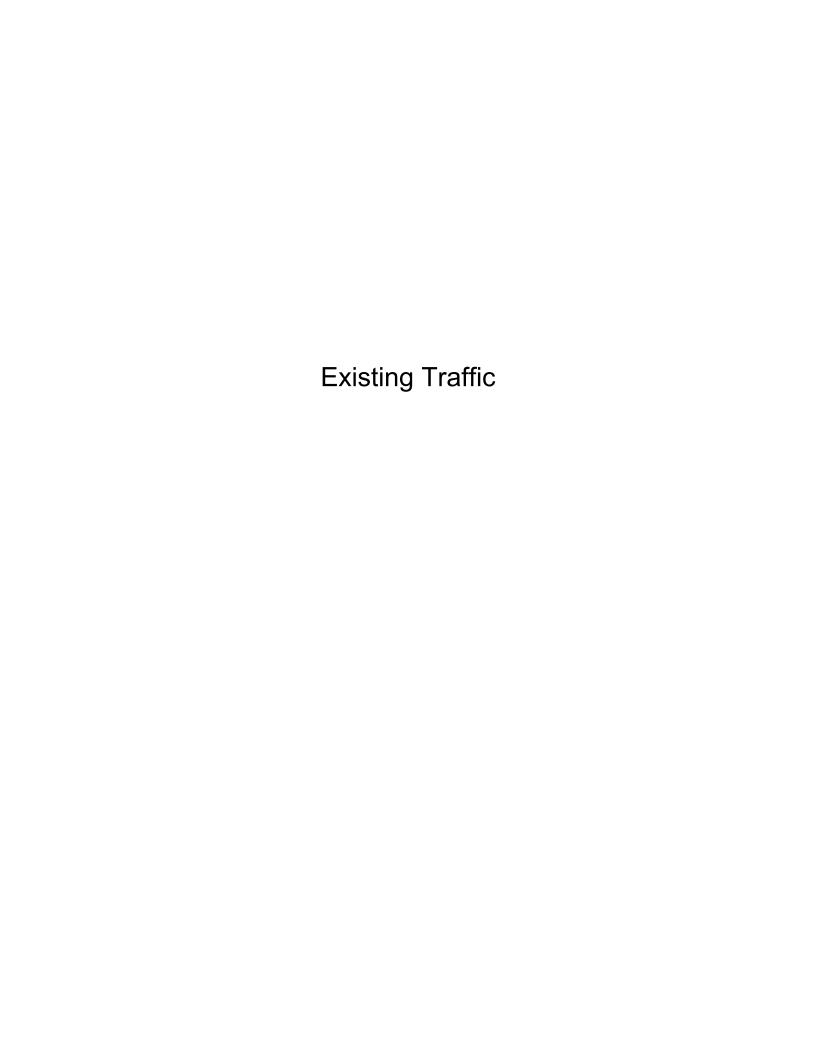
Are there contra-indications for If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a

No.	Contra-Indication	Outcome
1	Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single-lane roundabout, and less than 60 metres if considering a two-lane roundabout) or property constraints that would require demolition of adjacent structures?	Yes No X
2	Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)?	Yes No X
3	Is there an existing uncontrolled approach with a grade in excess of 4 percent?	Yes No X
4	Is the intersection located within a coordinated signal system?	Yes No X
5	Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout?	Yes No X
6	Are significant differences in directional flows or any situations of sudden high demand expected?	Yes No x
7	Are there known visually-impaired pedestrians that cross this intersection?	Yes No X

8 Are there suitability factors for a roundabout?

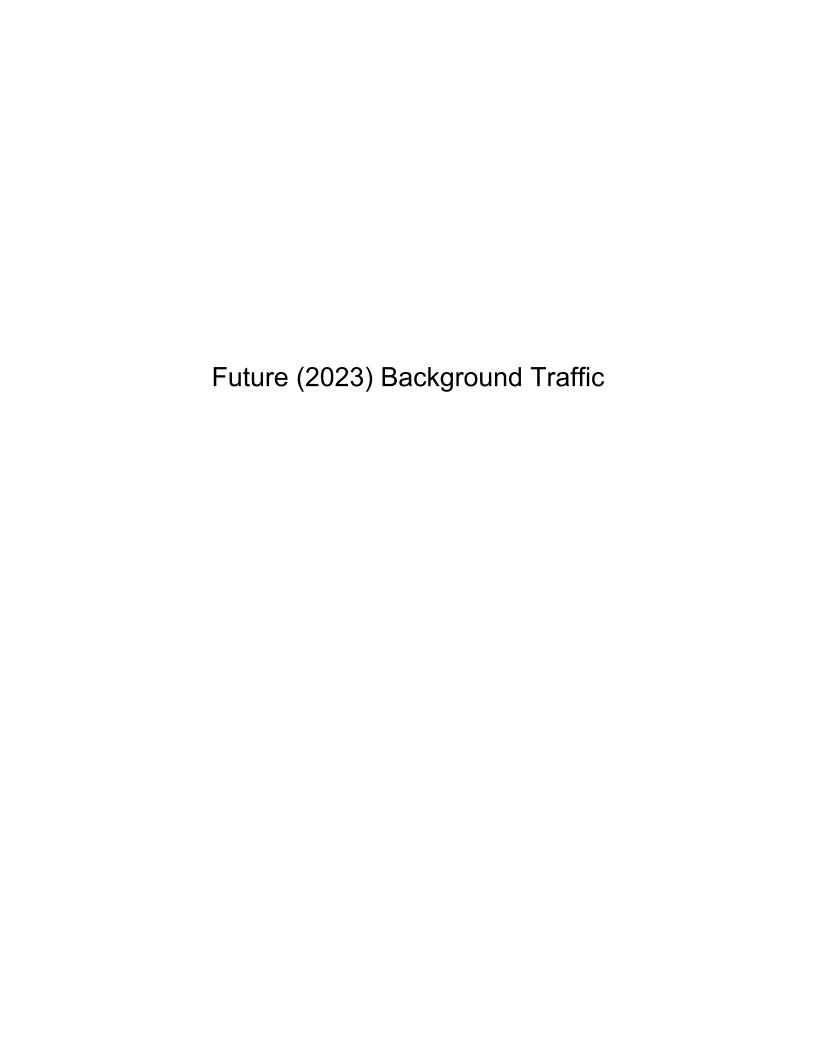
If "Yes" is indicated for two or more of the suitability factors then a roundabout should be technically feasible at the subject intersection..

No.	Suitability Factor	Outcome
1	Does the intersection currently experience an average collision frequency of more than 1.5 injury crashes per year, or a collision rate in excess of 1 injury crash per 1 million vehicles entering (MVE)?	Yes No X
2	Has there been a fatal crash at the intersection in the last 10 years?	Yes No X
3	Are capacity problems currently being experienced, or expected in the future?	Yes X No
4	Are traffic signals warranted, or expected to be warranted in the future?	Yes No X
5	Does the intersection have more than 4 legs, or unusual geometry?	Yes No X
6	Will Planned modifications to the intersection require that nearby structures be widened (i.e. to accommodate left-turn lanes)?	Yes No X
7	Is the intersection located at a transition between rural and urban environments (i.e. an urban boundary) such that a roundabout could act as a means of speed transition?	Yes No X


9 Conclusions/recommendation whether to proceed with an Intersection Control Study:

The results of the Roundabout Screening Tool indicate that the a roundabout is not feasible or recommended at the intersection of Fallowfield & O'Keefe/ Cobble Hill, given that only one of the suitability factors is met.

Appendix J – Intersection Capacity Analyses


April 9, 2020 10

Intersection												
Int Delay, s/veh	2.8											
										0.51		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		₽			4				7			7
Traffic Vol, veh/h	7	6	19	39	7	42	5	496	9	8	454	5
Future Vol, veh/h	7	6	19	39	7	42	5	496	9	8	454	5
Conflicting Peds, #/hr	0	0	1	1	0	0	1	0	1	1	0	1
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	500	-	-	-	-	-	1400	-	0	600	-	250
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	0	0	5	3	14	0	0	5	56	12	4	0
Mvmt Flow	8	7	21	43	8	47	6	551	10	9	504	6
Major/Minor N	/linor2			Minor1			Major1		N	Major2		
Conflicting Flow All	1119	1097	506	1104	1093	552	511	0	0	562	0	0
Stage 1	523	523	-	564	564	-	-	-	-	-	-	-
Stage 2	596	574	_	540	529	_	_	_	_	_	_	_
Critical Hdwy	7.1	6.5	6.25	7.13	6.64	6.2	4.1	_	_	4.22	_	_
Critical Hdwy Stg 1	6.1	5.5	0.25	6.13	5.64	- 0.2		_	_	- 1.22	_	_
Critical Hdwy Stg 2	6.1	5.5	_	6.13	5.64	_	_	_	_	_	_	_
Follow-up Hdwy	3.5	4	3.345	3.527	4.126	3.3	2.2	_	_	2.308	_	_
Pot Cap-1 Maneuver	186	215	560	188	204	537	1065	_	_	961	_	_
Stage 1	541	534	-	509	490		-	_	_	- 701	_	_
Stage 2	494	506		524	508			_	_		-	_
Platoon blocked, %	177	000		UZ-T	000			_	_		_	_
Mov Cap-1 Maneuver	163	211	559	174	201	536	1064	_	_	960	_	_
Mov Cap-2 Maneuver	163	211	-	174	201	- 500	- 1007	_	_		_	_
Stage 1	537	529	_	505	487	_	_	_	_	_	_	_
Stage 2	441	502	_	493	503	_	_	_	_	_	_	_
Jiugo Z	771	302		773	303							
				,						65		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	17.7			26.8			0.1			0.2		
HCM LOS	С			D								
Minor Lane/Major Mvmt	t	NBL	NBT	NBR	EBLn1	EBLn2V	VBLn1	SBL	SBT	SBR		
Capacity (veh/h)		1064	-	-	4.0	400	261	960	-	-		
HCM Lane V/C Ratio		0.005	_		0.048	0.069	0.375	0.009	_	_		
HCM Control Delay (s)		8.4	-	-	28.2	14.7	26.8	8.8	-	-		
HCM Lane LOS		A	_	-	D	В	D	A	-	-		
HCM 95th %tile Q(veh)		0	-	-	0.1	0.2	1.7	0	-	-		
					0.1	0.2	1.7					

HCM 2010 TWSC Synchro 10 Report EM Synchro 2020

Intersection												
Int Delay, s/veh	1.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	f)			4		ች		7			7
Traffic Vol, veh/h	7	3	20	9	1	20	14	337	23	17	578	20
Future Vol, veh/h	7	3	20	9	1	20	14	337	23	17	578	20
Conflicting Peds, #/hr	2	0	0	0	0	2	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	500	-	-	-	-	-	1400	-	0	600	-	250
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0	0	4	0	6	4	0
Mvmt Flow	8	3	22	10	1	22	16	374	26	19	642	22
Major/Minor N	/linor2		ľ	Minor1		ľ	Major1		ſ	Major2		
Conflicting Flow All	1113	1112	642	1110	1108	376	664	0	0	400	0	0
Stage 1	680	680	-	406	406	-	-	-	-	-	-	-
Stage 2	433	432	-	704	702	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	-	-	4.16	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	_	_	-	_	_
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	_	-	_	-	_
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	-	-	2.254	-	-
Pot Cap-1 Maneuver	187	211	478	188	212	675	935	-	-	1137	-	-
Stage 1	444	454	-	626	601	-	-	-	-	-	-	-
Stage 2	605	586	-	431	443	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	175	204	478	173	205	674	935	-	-	1137	-	-
Mov Cap-2 Maneuver	175	204	-	173	205	-	-	-	-	-	-	-
Stage 1	436	446	-	615	591	-	-	-	-	-	-	-
Stage 2	573	576	-	401	435	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	17.2			16.5			0.3			0.2		
HCM LOS	C			С								
Minor Lane/Major Mvmt		NBL	NBT	NBR I	FBI n1	EBLn2V	VBI n1	SBL	SBT	SBR		
Capacity (veh/h)		935	1101		175	407	347	1137		ODIT		
HCM Lane V/C Ratio		0.017	-	_			0.096		-			
HCM Control Delay (s)		8.9	-	-	26.5	14.4	16.5	8.2	-	-		
HCM Lane LOS		0.9 A	-	-	20.5 D	14.4 B	10.5	0.2 A	-	-		
HCM 95th %tile Q(veh)		0.1	-	-	0.1	0.2	0.3	0.1	-	-		
HOW FOUT FOUTE Q(VEH)		0.1			U. I	0.2	0.5	0.1	_			

Intersection												
Int Delay, s/veh	7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	T T	1>	LDI	VVDL	4	אטיי	NDL	<u> </u>	NDK 7	JDL 1	<u> </u>	30K
Traffic Vol, veh/h	27	6	32	39	7	42	116	573	9	8	670	88
Future Vol, veh/h	27	6	32	39	7	42	116	573	9	8	670	88
Conflicting Peds, #/hr	0	0	1	1	0	0	1	0	1	1	0/0	1
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	Stop -	310p	None	310p	310p	None	-	-	None	-	-	None
Storage Length	500	-	INOLIC	-	-	-	1400	-	0	600	-	250
Veh in Median Storage,		0	-	_	0	_	1400	0	-	-	0	250
Grade, %	.# -	0	_	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	5	3	14	0	0	5	56	12	4	0
Mymt Flow	27	6	32	39	7	42	116	573	9	8	670	88
IVIVIIIL F IUW	21	U	32	37	1	42	110	5/3	9	0	070	00
	/linor2			Minor1			Major1		N	Major2		
Conflicting Flow All	1521	1502	672	1556	1581	574	759	0	0	583	0	0
Stage 1	687	687	-	806	806	-	-	-	-	-	-	-
Stage 2	834	815	-	750	775	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.25	7.13	6.64	6.2	4.1	-	-	4.22	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.13	5.64	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.13	5.64	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.345	3.527	4.126	3.3	2.2	-	-	2.308	-	-
Pot Cap-1 Maneuver	98	123	451	91	102	522	862	-	-	944	-	-
Stage 1	440	450	-	374	378	-	-	-	-	-	-	-
Stage 2	365	394	-	402	391	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	75	105	450	72	87	521	861	-	-	943	-	-
Mov Cap-2 Maneuver	75	105	-	72	87	-	-	-	-	-	-	-
Stage 1	380	446	-	323	327	-	-	-	-	-	-	-
Stage 2	284	340	-	365	387	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	43.4			83.6			1.6			0.1		
HCM LOS	F			F			1.0			J. 1		
	_			•								
Minor Lane/Major Mvm		NBL	NBT	NIPD	ERI n1	EBLn2V	VRI n1	SBL	SBT	SBR		
			NDI	NDK					301	אטכ		
Capacity (veh/h) HCM Lane V/C Ratio		861	-	-	75	296 0.128	125	943	-	-		
		0.135	-	-					-	-		
HCM Lang LOS		9.8	-	-	77.9	18.9	83.6	8.8	-	-		
HCM CEth O(tillo O(toh)		A	-	-	F	C	F	A	-	-		
HCM 95th %tile Q(veh)		0.5	-	-	1.4	0.4	3.9	0	-	-		

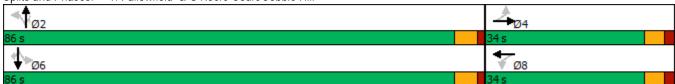
	۶	→	•	€	+	•	•	†	<i>></i>	/	ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)			4		ሻ	1	7	ሻ		7
Traffic Volume (vph)	27	6	32	39	7	42	116	573	9	8	670	88
Future Volume (vph)	27	6	32	39	7	42	116	573	9	8	670	88
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	50.0		0.0	0.0		0.0	140.0		0.0	60.0		25.0
Storage Lanes	1		0	0		0	1		1	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.98	,,,,,		1.00	,,,,,	1.00	,,,,,	0.98	1.00		0.98
Frt		0.874			0.936				0.850			0.850
Flt Protected	0.950				0.978		0.950			0.950		0.000
Satd. Flow (prot)	1729	1498	0	0	1626	0	1729	1733	992	1544	1750	1547
Flt Permitted	0.680				0.839	Ū	0.382	.,,,,	,,_	0.430		
Satd. Flow (perm)	1238	1498	0	0	1394	0	695	1733	969	698	1750	1512
Right Turn on Red	1200	1170	Yes	U	1071	Yes	070	1700	Yes	070	1700	Yes
Satd. Flow (RTOR)		32	103		36	103			23			51
Link Speed (k/h)		50			50			60	20		60	31
Link Distance (m)		201.1			305.1			207.2			300.4	
Travel Time (s)		14.5			22.0			12.4			18.0	
Confl. Peds. (#/hr)		14.5	1	1	22.0		1	12.7	1	1	10.0	1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	5%	3%	14%	0%	0%	5%	56%	12%	4%	0%
Adj. Flow (vph)	27	6	32	39	7	42	116	573	9	8	670	88
Shared Lane Traffic (%)	21	U	32	37	,	72	110	373	,	U	070	00
Lane Group Flow (vph)	27	38	0	0	88	0	116	573	9	8	670	88
Turn Type	Perm	NA	U	Perm	NA	U	Perm	NA	Perm	Perm	NA	Perm
Protected Phases	1 Cilli	4		1 Cilli	8		1 Citii	2	1 Cilli	1 Cilli	6	1 Cilli
Permitted Phases	4	Т.		8	U		2		2	6	0	6
Detector Phase	4	4		8	8		2	2	2	6	6	6
Switch Phase	'	'			U					J		J
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	33.5	33.5		33.5	33.5		27.4	27.4	27.4	27.4	27.4	27.4
Total Split (s)	34.0	34.0		34.0	34.0		86.0	86.0	86.0	86.0	86.0	86.0
Total Split (%)	28.3%	28.3%		28.3%	28.3%		71.7%	71.7%	71.7%	71.7%	71.7%	71.7%
Maximum Green (s)	28.5	28.5		28.5	28.5		80.6	80.6	80.6	80.6	80.6	80.6
Yellow Time (s)	3.6	3.6		3.6	3.6		4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	1.9	1.9		1.9	1.9		1.3	1.3	1.3	1.3	1.3	1.3
Lost Time Adjust (s)	0.0	0.0		1.7	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5			5.5		5.4	5.4	5.4	5.4	5.4	5.4
Lead/Lag	0.0	0.0			0.0		0.1	0.1	0.1	0.1	0.1	0.1
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		Max	Max	Max	Max	Max	Max
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	21.0	21.0		21.0	21.0		15.0	15.0	15.0	15.0	15.0	15.0
Pedestrian Calls (#/hr)	0	0		0	0		0	0	0	0	0	0
Act Effct Green (s)	9.4	9.4		U	9.4		87.5	87.5	87.5	87.5	87.5	87.5
Actuated g/C Ratio	0.09	0.09			0.09		0.84	0.84	0.84	0.84	0.84	0.84
v/c Ratio	0.09	0.09			0.09		0.04	0.39	0.04	0.04	0.46	0.04
VIC IXAIIO	0.24	U.ZJ			0.50		0.20	0.37	0.01	0.01	0.40	0.07

	•	-	•	•	•	•	4	†	~	\	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	47.9	20.5			41.5		3.7	4.0	0.4	2.8	4.5	1.5
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	47.9	20.5			41.5		3.7	4.0	0.4	2.8	4.5	1.5
LOS	D	С			D		Α	Α	Α	Α	Α	Α
Approach Delay		31.9			41.5			3.9			4.1	
Approach LOS		С			D			Α			Α	
Queue Length 50th (m)	5.1	1.1			10.0		4.1	25.3	0.0	0.3	32.2	1.1
Queue Length 95th (m)	13.2	10.3			24.7		11.1	49.7	0.5	1.4	62.9	4.7
Internal Link Dist (m)		177.1			281.1			183.2			276.4	
Turn Bay Length (m)	50.0						140.0			60.0		25.0
Base Capacity (vph)	337	432			406		582	1451	815	584	1466	1275
Starvation Cap Reductn	0	0			0		0	0	0	0	0	0
Spillback Cap Reductn	0	0			0		0	0	0	0	0	0
Storage Cap Reductn	0	0			0		0	0	0	0	0	0
Reduced v/c Ratio	0.08	0.09			0.22		0.20	0.39	0.01	0.01	0.46	0.07
Intersection Summary												

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 104.5


Natural Cycle: 70

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.56

Intersection Signal Delay: 7.2 Intersection LOS: A Intersection Capacity Utilization 69.6% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 1: Fallowfield & O'Keefe Court/Cobble Hill

Synchro 10 Report Lanes, Volumes, Timings ΕM March 2020

Intersection						
Int Delay, s/veh	1.5					
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Þ			4	¥	
Traffic Vol, veh/h	31	0	25	173	0	23
Future Vol, veh/h	31	0	25	173	0	23
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	3	0	0	6	0	0
Mvmt Flow	31	0	25	173	0	23
	0.			.,,		
	ajor1		/lajor2	Λ	Minor1	
Conflicting Flow All	0	0	31	0	254	31
Stage 1	-	-	-	-	31	-
Stage 2	-	-	-	-	223	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1595	-	739	1049
Stage 1	-	-	-	-	997	-
Stage 2	-	-	-	-	819	-
Platoon blocked, %	_	-		_		
Mov Cap-1 Maneuver	_	_	1595	_	726	1049
Mov Cap-2 Maneuver	_	_	-	_	726	-
Stage 1	_				997	
Stage 2	_				805	_
Staye 2	-	-	-	-	000	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.9		8.5	
HCM LOS					Α	
Minor Long/Maior M		JDI1	EDT	EDD	WDI	MDT
Minor Lane/Major Mvmt	ľ	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		1049	-		1595	-
HCM Lane V/C Ratio		0.022	-	-	0.016	-
HCM Control Delay (s)		8.5	-	-	7.3	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	0.1					
		EDE	ND	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		^		7
Traffic Vol, veh/h	0	13	0	699	737	8
Future Vol, veh/h	0	13	0	699	737	8
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	250
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	6	4	0
Mvmt Flow	0	13	0	699	737	8
N 4 - 1 - 11/N 41 - 11	A' O		1-!1		4-!	
	Minor2		/lajor1		/lajor2	
Conflicting Flow All	-	737	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.2	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.3	-	-	-	-
Pot Cap-1 Maneuver	0	422	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	-	422	-	-	-	-
Mov Cap-2 Maneuver	_	-	-	-	-	-
Stage 1	-	-	_	-	-	-
Stage 2	_	_	_	_	_	_
Jugo Z						
Approach	EB		NB		SB	
HCM Control Delay, s	13.8		0		0	
HCM LOS	В					
Minor Lane/Major Mvm	ıt	NBT E	DI n1	SBT	SBR	
	it .			SBI	SBK	
Capacity (veh/h)		-		-	-	
HCM Lane V/C Ratio			0.031	-	-	
HCM Control Delay (s)		-		-	-	
HCM Lane LOS		-	В	-	-	
HCM 95th %tile Q(veh)		-	0.1	-	-	

Interception												
Intersection	8.7											
Int Delay, s/veh	8.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ.			4		1	↑	7		•	7
Traffic Vol, veh/h	98	3	114	9	1	20	45	504	23	17	679	38
Future Vol, veh/h	98	3	114	9	1	20	45	504	23	17	679	38
Conflicting Peds, #/hr	2	0	0	0	0	2	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	500	-	-	-	-	-	1400	-	0	600	-	250
Veh in Median Storage,	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0	0	4	0	6	4	0
Mvmt Flow	98	3	114	9	1	20	45	504	23	17	679	38
Major/Minor N	/linor2		N	/linor1		N	Major1			Major2		
	1331	1330	679	1385	1345	506	717	0		527	0	0
Conflicting Flow All	713	713		594	594	500	/ 1 /	0	0	0Z1	0	0
Stage 1	618	617	-	791	751		-	-		-	-	-
Stage 2	7.1	6.5	- 6 2	7.1	6.5	6.2	4.1	-	-	4.16	-	-
Critical Hdwy Stg 1		5.5	6.2		5.5	0.2	4.1	-	-	4.10	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1		-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1 3.5		3.3	6.1	5.5	3.3	2.2	-	-	2.254	-	-
Follow-up Hdwy	133	4		3.5	152	570		-	-		-	-
Pot Cap-1 Maneuver	426	156	455	122 495	153 496	5/0	893	-	-	1020	-	-
Stage 1		438	-			-	-	-	-	-	-	-
Stage 2	480	484	-	386	421	-	-	-	-	-	-	-
Platoon blocked, %	101	114	155	0E	1/2	E40	002	-	-	1020	-	-
Mov Cap-1 Maneuver	121	146	455	85 or	143	569	893	-	-	1020	-	-
Mov Cap-2 Maneuver	121	146	-	85	143	-	-	-	-	-	-	-
Stage 1	405	431	-	470	471	-	-	-	-	-	-	-
Stage 2	438	460	-	282	414	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	56.6			25.8			0.7			0.2		
HCM LOS	F			D								
Minor Lane/Major Mvm	t	NBL	NBT	MRD	RI n1	EBLn2V	//RI n1	SBL	SBT	SBR		
Capacity (veh/h)		893				432		1020	301	אשכ		
HCM Lane V/C Ratio			-	-	121	0.271	203		-	-		
		0.05 9.2	-	-			25.8		-	-		
HCM Control Delay (s) HCM Lane LOS			-	-	104.6	16.4		8.6	-	-		
		A 0.2	-	-	F	C 1.1	D	A	-	-		
HCM 95th %tile Q(veh)		U.Z	-	-	4.8	1.1	0.5	0.1	-	-		

	۶	→	•	•	←	•	•	†	<i>></i>	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	₽			4		ሻ	1	7	ሻ		7
Traffic Volume (vph)	98	3	114	9	1	20	45	504	23	17	679	38
Future Volume (vph)	98	3	114	9	1	20	45	504	23	17	679	38
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	50.0		0.0	0.0		0.0	140.0		0.0	60.0		25.0
Storage Lanes	1		0	0		0	1		1	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00				0.98							
Frt		0.854			0.910				0.850			0.850
Flt Protected	0.950				0.985		0.950			0.950		
Satd. Flow (prot)	1729	1554	0	0	1605	0	1729	1750	1547	1631	1750	1547
Flt Permitted	0.738				0.895		0.362			0.456		
Satd. Flow (perm)	1338	1554	0	0	1458	0	659	1750	1547	783	1750	1547
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		114			20				23			23
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		201.1			305.1			207.2			300.4	
Travel Time (s)		14.5			22.0			12.4			18.0	
Confl. Peds. (#/hr)	2					2						
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	4%	0%	6%	4%	0%
Adj. Flow (vph)	98	3	114	9	1	20	45	504	23	17	679	38
Shared Lane Traffic (%)	,,			•							0.7	
Lane Group Flow (vph)	98	117	0	0	30	0	45	504	23	17	679	38
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4	•		8			2	_	2	6		6
Detector Phase	4	4		8	8		2	2	2	6	6	6
Switch Phase		•					_	_	_			J
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	33.5	33.5		33.5	33.5		27.4	27.4	27.4	27.4	27.4	27.4
Total Split (s)	35.0	35.0		35.0	35.0		85.0	85.0	85.0	85.0	85.0	85.0
Total Split (%)	29.2%	29.2%		29.2%	29.2%		70.8%	70.8%	70.8%	70.8%	70.8%	70.8%
Maximum Green (s)	29.5	29.5		29.5	29.5		79.6	79.6	79.6	79.6	79.6	79.6
Yellow Time (s)	3.6	3.6		3.6	3.6		4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	1.9	1.9		1.9	1.9		1.3	1.3	1.3	1.3	1.3	1.3
Lost Time Adjust (s)	0.0	0.0		1.7	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5			5.5		5.4	5.4	5.4	5.4	5.4	5.4
Lead/Lag	0.0	0.0			0.0		О. Т	5.4	5.4	5.4	0.4	5.4
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		Max	Max	Max	Max	Max	Max
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	21.0	21.0		21.0	21.0		15.0	15.0	15.0	15.0	15.0	15.0
Pedestrian Calls (#/hr)	21.0	21.0		21.0	21.0		15.0	15.0	15.0	15.0	15.0	0
Act Effct Green (s)	13.0	13.0		U	13.0		82.6	82.6	82.6	82.6	82.6	82.6
. ,												
Actuated g/C Ratio	0.12	0.12			0.12		0.77	0.77	0.77	0.77	0.77	0.77
v/c Ratio	0.60	0.40			0.15		0.09	0.37	0.02	0.03	0.50	0.03

	•	-	\rightarrow	•	←	•	~	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	58.5	12.4			23.0		4.1	5.1	1.5	3.7	6.4	2.1
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	58.5	12.4			23.0		4.1	5.1	1.5	3.7	6.4	2.1
LOS	Е	В			С		Α	Α	Α	Α	Α	Α
Approach Delay		33.4			23.0			4.9			6.2	
Approach LOS		С			С			Α			Α	
Queue Length 50th (m)	18.9	0.6			1.8		1.8	26.5	0.0	0.7	41.5	0.6
Queue Length 95th (m)	35.2	15.7			10.0		5.7	51.1	2.0	2.7	79.6	3.3
Internal Link Dist (m)		177.1			281.1			183.2			276.4	
Turn Bay Length (m)	50.0						140.0			60.0		25.0
Base Capacity (vph)	370	512			418		510	1356	1204	607	1356	1204
Starvation Cap Reductn	0	0			0		0	0	0	0	0	0
Spillback Cap Reductn	0	0			0		0	0	0	0	0	0
Storage Cap Reductn	0	0			0		0	0	0	0	0	0
Reduced v/c Ratio	0.26	0.23			0.07		0.09	0.37	0.02	0.03	0.50	0.03
Intersection Summary												

Intersection Summary

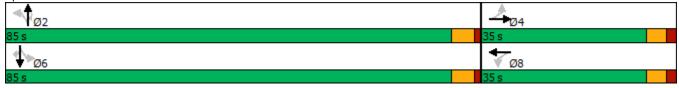
Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 106.6

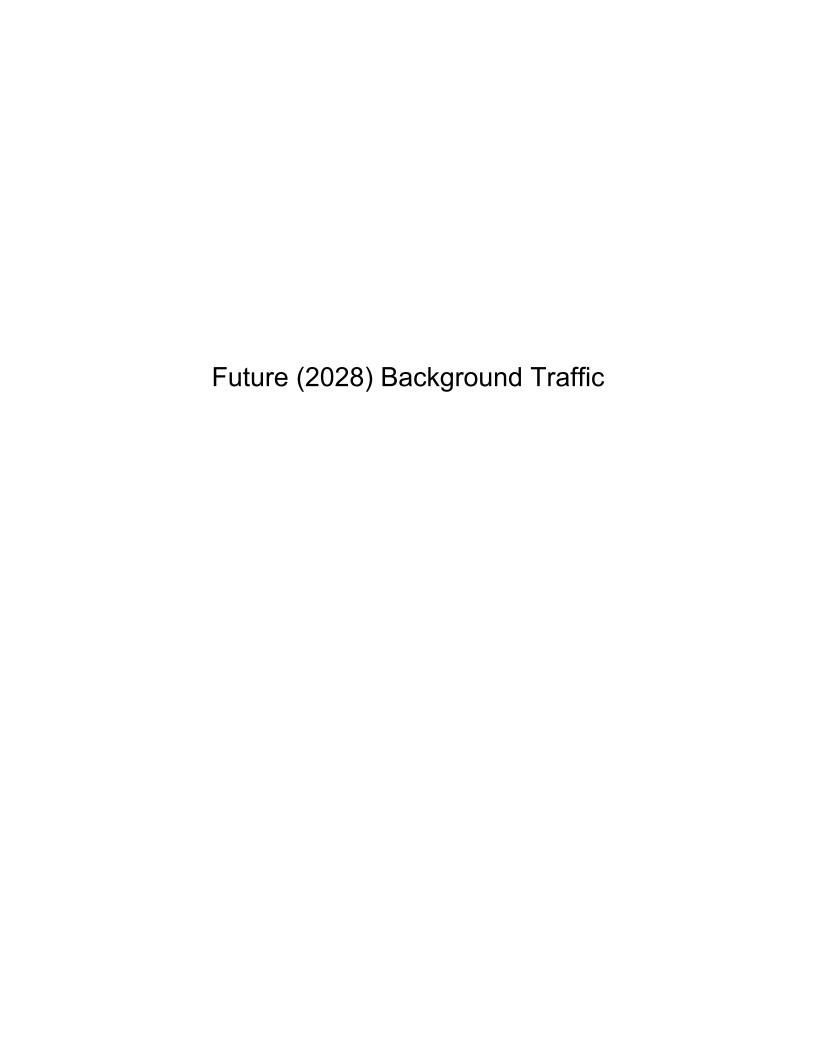
Natural Cycle: 70

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.60


Intersection Signal Delay: 9.8

Intersection Capacity Utilization 61.0%

Intersection LOS: A ICU Level of Service B


Analysis Period (min) 15

Splits and Phases: 1: Fallowfield & O'Keefe Court/Cobble Hill

Intersection						
Int Delay, s/veh	1.3					
		EDD	MDI	MOT	ND	NIDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f)			4	¥	
Traffic Vol, veh/h	178	0	26	32	0	14
Future Vol, veh/h	178	0	26	32	0	14
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	178	0	26	32	0	14
	ajor1		/lajor2	Λ	Minor1	
Conflicting Flow All	0	0	178	0	262	178
Stage 1	-	-	-	-	178	-
Stage 2	-	-	-	-	84	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	_	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1410	-	731	870
Stage 1	_	-	-	_	858	-
Stage 2	_	-	-	_	944	-
Platoon blocked, %	_	_		_	711	
Mov Cap-1 Maneuver		_	1410	_	717	870
Mov Cap-1 Maneuver	-		1410	-	717	070
	-	-	-	-	858	
Stage 1	-	-	-	-		-
Stage 2	-	-	-	-	926	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		3.4		9.2	
HCM LOS	- 0		J.7		Α.Σ	
TIOWI LOO					А	
Minor Lane/Major Mvmt	1	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		870	-		1410	
HCM Lane V/C Ratio		0.016	-		0.018	-
HCM Control Delay (s)		9.2	-	-		0
HCM Lane LOS		Α	-	-	Α	A
HCM 95th %tile Q(veh)		0	_	-	0.1	-
1.5111 75111 751110 (2(1011)		U			0.1	

Intersection						
Int Delay, s/veh	0.2					
					0==	0.5.
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		^		- 7
Traffic Vol, veh/h	0	17	0	575	798	7
Future Vol, veh/h	0	17	0	575	798	7
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	250
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	3	4	0
Mvmt Flow	0	17	0	575	798	7
NA - 1/NA1 NA	!		1-!1		4-!	
	linor2		/lajor1		/lajor2	
Conflicting Flow All	-	798	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.2	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.3	-	-	-	-
Pot Cap-1 Maneuver	0	389	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	-	389	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	_	-	-	-	_	-
Stage 2	_		_	_	_	_
3 -						
			. LID		0.5	
Approach	EB		NB		SB	
HCM Control Delay, s	14.7		0		0	
HCM LOS	В					
Minor Lane/Major Mvmt		NBT E	RI n1	SBT	SBR	
Capacity (veh/h)		וטוו	389	301	JUIC	
HCM Lane V/C Ratio		•	0.044	•	-	
HCM Control Delay (s)		-	14.7	-	-	
HCM Lane LOS		•		-	-	
HCM 95th %tile Q(veh)		-	В	-	-	
nulyi yaiti %ille Utven)		-	0.1	-	-	

	۶	→	•	•	←	•	•	†	<i>></i>	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	(î			4		ሻ	1	7	ሻ	^	7
Traffic Volume (vph)	27	6	32	39	7	42	116	646	9	8	876	88
Future Volume (vph)	27	6	32	39	7	42	116	646	9	8	876	88
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	50.0		0.0	0.0		0.0	140.0		0.0	60.0		25.0
Storage Lanes	1		0	0		0	1		1	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.98			1.00				0.98	1.00		0.98
Frt		0.874			0.936				0.850			0.850
Flt Protected	0.950				0.978		0.950			0.950		
Satd. Flow (prot)	1729	1498	0	0	1626	0	1729	1733	992	1544	1750	1547
Flt Permitted	0.678				0.839		0.289			0.394		
Satd. Flow (perm)	1234	1498	0	0	1394	0	526	1733	969	640	1750	1512
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		32			36				23			40
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		201.1			305.1			207.2			300.4	
Travel Time (s)		14.5			22.0			12.4			18.0	
Confl. Peds. (#/hr)			1	1			1		1	1		1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	5%	3%	14%	0%	0%	5%	56%	12%	4%	0%
Adj. Flow (vph)	27	6	32	39	7	42	116	646	9	8	876	88
Shared Lane Traffic (%)				0,	•			0.0	,		0.0	
Lane Group Flow (vph)	27	38	0	0	88	0	116	646	9	8	876	88
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2	_	2	6		6
Detector Phase	4	4		8	8		2	2	2	6	6	6
Switch Phase							_	_	_			J
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	33.5	33.5		33.5	33.5		27.4	27.4	27.4	27.4	27.4	27.4
Total Split (s)	33.5	33.5		33.5	33.5		86.5	86.5	86.5	86.5	86.5	86.5
Total Split (%)	27.9%	27.9%		27.9%	27.9%		72.1%	72.1%	72.1%	72.1%	72.1%	72.1%
Maximum Green (s)	28.0	28.0		28.0	28.0		81.1	81.1	81.1	81.1	81.1	81.1
Yellow Time (s)	3.6	3.6		3.6	3.6		4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	1.9	1.9		1.9	1.9		1.3	1.3	1.3	1.3	1.3	1.3
Lost Time Adjust (s)	0.0	0.0		1.7	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5			5.5		5.4	5.4	5.4	5.4	5.4	5.4
Lead/Lag	0.0	3.3			0.0		Э. т	5.4	5.4	5.4	Э. т	5.4
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		Max	Max	Max	Max	Max	Max
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	21.0	21.0		21.0	21.0		15.0	15.0	15.0	15.0	15.0	15.0
Pedestrian Calls (#/hr)	0	0		21.0	21.0		0	0	15.0	15.0	0	0
Act Effct Green (s)	9.5	9.5		U	9.5		88.1	88.1	88.1	88.1	88.1	88.1
. ,												
Actuated g/C Ratio	0.09	0.09			0.09		0.84	0.84	0.84	0.84	0.84	0.84
v/c Ratio	0.25	0.23			0.56		0.26	0.44	0.01	0.01	0.60	0.07

	۶	-	\rightarrow	•	←	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	48.3	20.6			41.6		4.6	4.4	0.4	2.8	6.2	1.7
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	48.3	20.6			41.6		4.6	4.4	0.4	2.8	6.2	1.7
LOS	D	С			D		Α	Α	Α	Α	Α	Α
Approach Delay		32.1			41.6			4.4			5.8	
Approach LOS		С			D			Α			Α	
Queue Length 50th (m)	5.1	1.1			10.0		4.4	30.8	0.0	0.3	52.4	1.5
Queue Length 95th (m)	13.3	10.4			24.9		12.7	59.8	0.5	1.4	104.1	5.2
Internal Link Dist (m)		177.1			281.1			183.2			276.4	
Turn Bay Length (m)	50.0						140.0			60.0		25.0
Base Capacity (vph)	329	423			398		441	1452	816	536	1467	1274
Starvation Cap Reductn	0	0			0		0	0	0	0	0	0
Spillback Cap Reductn	0	0			0		0	0	0	0	0	0
Storage Cap Reductn	0	0			0		0	0	0	0	0	0
Reduced v/c Ratio	0.08	0.09			0.22		0.26	0.44	0.01	0.01	0.60	0.07

Intersection Summary

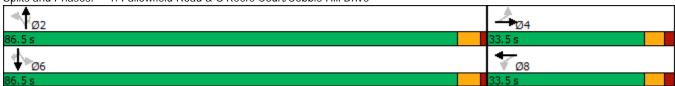
Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 105.1

Natural Cycle: 90

Control Type: Semi Act-Uncoord


Maximum v/c Ratio: 0.60

Intersection Signal Delay: 7.8
Intersection Capacity Utilization 81.1%

Intersection LOS: A ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 1: Fallowfield Road & O'Keefe Court/Cobble Hill Drive

Intersection						
Int Delay, s/veh	1.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			4	W	
Traffic Vol, veh/h	31	0	25	173	0	23
Future Vol, veh/h	31	0	25	173	0	23
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage,	# 0	_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	3	0	0	6	0	0
Mymt Flow	31	0	25	173	0	23
IVIVIII(I IOVV	JI	U	25	173	U	23
	lajor1	N	Major2	Λ	/linor1	
Conflicting Flow All	0	0	31	0	254	31
Stage 1	-	-	-	-	31	-
Stage 2	-	-	-	-	223	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1595	-	739	1049
Stage 1	-	-	-	-	997	-
Stage 2	-	-	-	-	819	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1595	-	726	1049
Mov Cap-2 Maneuver	-	-	-	-	726	-
Stage 1	-	-	_	-	997	-
Stage 2	-	-	_	-	805	_
The grade of the g						
			\4/D		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.9		8.5	
HCM LOS					Α	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		1049	-	-	1595	-
HCM Lane V/C Ratio		0.022	-	-	0.016	-
HCM Control Delay (s)		8.5	-	-	7.3	0
HCM Lane LOS		А	-	-	Α	A
HCM 95th %tile Q(veh)		0.1	-	-	0	-

Intersection						
Int Delay, s/veh	0.1					
		EDD	ND	NET	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		^	↑	7
Traffic Vol, veh/h	0	13	0	773	949	8
Future Vol, veh/h	0	13	0	773	949	8
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	250
Veh in Median Storage,	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	6	4	0
Mvmt Flow	0	13	0	773	949	8
N A = 1 = 1/N A1 = =	4'		1-1-1		4-1-0	
	/linor2		Major1		/lajor2	
Conflicting Flow All	-	949	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.2	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.3	-	-	-	-
Pot Cap-1 Maneuver	0	319	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %					_	_
Mov Cap-1 Maneuver	_	319	_	_	_	_
Mov Cap-2 Maneuver	_		_	_	_	_
Stage 1						_
Stage 2	-	-	_	_	-	_
Staye 2	-	-	-	-	-	-
Approach	EB		NB		SB	
					0	
	16.8		0		U	
HCM Control Delay, s HCM LOS	16.8 C		0		U	
HCM Control Delay, s			0		0	
HCM Control Delay, s HCM LOS	С	NPT		CDT		
HCM Control Delay, s HCM LOS Minor Lane/Major Mvml	С	NBT E	EBLn1	SBT	SBR	
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	С	-	EBLn1 319	SBT -		
HCM Control Delay, s HCM LOS Minor Lane/Major Mvml Capacity (veh/h) HCM Lane V/C Ratio	С	-	EBLn1 319 0.041	SBT - -		
HCM Control Delay, s HCM LOS Minor Lane/Major Mvml Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	С	-	319 0.041 16.8	-		
HCM Control Delay, s HCM LOS Minor Lane/Major Mvml Capacity (veh/h) HCM Lane V/C Ratio	C t	-	EBLn1 319 0.041	-		

	۶	→	•	•	←	•	1	†	<i>></i>	/	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	f)			4		ሻ		7	*		7
Traffic Volume (vph)	98	3	114	9	1	20	45	661	23	17	757	38
Future Volume (vph)	98	3	114	9	1	20	45	661	23	17	757	38
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	50.0		0.0	0.0		0.0	140.0		0.0	60.0		25.0
Storage Lanes	1		0	0		0	1		1	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00				0.98							
Frt		0.854			0.910				0.850			0.850
Flt Protected	0.950				0.985		0.950			0.950		
Satd. Flow (prot)	1729	1554	0	0	1605	0	1729	1750	1547	1631	1750	1547
Flt Permitted	0.738				0.895		0.324			0.372		
Satd. Flow (perm)	1338	1554	0	0	1458	0	590	1750	1547	639	1750	1547
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		114			20				23			23
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		201.1			305.1			207.2			300.4	
Travel Time (s)		14.5			22.0			12.4			18.0	
Confl. Peds. (#/hr)	2					2						
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	4%	0%	6%	4%	0%
Adj. Flow (vph)	98	3	114	9	1	20	45	661	23	17	757	38
Shared Lane Traffic (%)												
Lane Group Flow (vph)	98	117	0	0	30	0	45	661	23	17	757	38
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		2	2	2	6	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	33.5	33.5		33.5	33.5		27.4	27.4	27.4	27.4	27.4	27.4
Total Split (s)	34.0	34.0		34.0	34.0		86.0	86.0	86.0	86.0	86.0	86.0
Total Split (%)	28.3%	28.3%		28.3%	28.3%		71.7%	71.7%	71.7%	71.7%	71.7%	71.7%
Maximum Green (s)	28.5	28.5		28.5	28.5		80.6	80.6	80.6	80.6	80.6	80.6
Yellow Time (s)	3.6	3.6		3.6	3.6		4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	1.9	1.9		1.9	1.9		1.3	1.3	1.3	1.3	1.3	1.3
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5			5.5		5.4	5.4	5.4	5.4	5.4	5.4
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		Max	Max	Max	Max	Max	Max
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	21.0	21.0		21.0	21.0		15.0	15.0	15.0	15.0	15.0	15.0
Pedestrian Calls (#/hr)	0	0		0	0		0	0	0	0	0	0
Act Effct Green (s)	13.1	13.1			13.1		83.7	83.7	83.7	83.7	83.7	83.7
Actuated g/C Ratio	0.12	0.12			0.12		0.78	0.78	0.78	0.78	0.78	0.78
v/c Ratio	0.60	0.40			0.15		0.10	0.49	0.02	0.03	0.56	0.03

	۶	→	•	•	←	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	59.2	12.5			23.2		4.2	6.3	1.5	3.8	7.2	2.1
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	59.2	12.5			23.2		4.2	6.3	1.5	3.8	7.2	2.1
LOS	Е	В			С		Α	Α	Α	Α	Α	Α
Approach Delay		33.8			23.2			6.0			6.9	
Approach LOS		С			С			Α			Α	
Queue Length 50th (m)	19.1	0.6			1.8		1.8	40.0	0.0	0.7	50.3	0.6
Queue Length 95th (m)	35.6	15.8			9.9		5.8	76.5	2.0	2.7	96.4	3.3
Internal Link Dist (m)		177.1			281.1			183.2			276.4	
Turn Bay Length (m)	50.0						140.0			60.0		25.0
Base Capacity (vph)	354	495			401		458	1359	1206	496	1359	1206
Starvation Cap Reductn	0	0			0		0	0	0	0	0	0
Spillback Cap Reductn	0	0			0		0	0	0	0	0	0
Storage Cap Reductn	0	0			0		0	0	0	0	0	0
Reduced v/c Ratio	0.28	0.24			0.07		0.10	0.49	0.02	0.03	0.56	0.03
Intersection Summary												

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 107.7

Natural Cycle: 75

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.60

Intersection Signal Delay: 10.0 Intersection LOS: B
Intersection Capacity Utilization 63.5% ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 1: Fallowfield Road & O'Keefe Court/Cobble Hill Drive

Intersection						
Int Delay, s/veh	1.3					
		EE5	11/5:	14/5=		NES
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f)			4	¥	
Traffic Vol, veh/h	178	0	26	32	0	14
Future Vol, veh/h	178	0	26	32	0	14
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	178	0	26	32	0	14
N.A. '. 'N.A'. N.A.			4 ' 0			
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	178	0	262	178
Stage 1	-	-	-	-	178	-
Stage 2	-	-	-	-	84	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1410	-	731	870
Stage 1	-	-	-	-	858	-
Stage 2	-	-	-	-	944	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	_	-	1410	-	717	870
Mov Cap-2 Maneuver	-	_	-	-	717	-
Stage 1	-	-	-	-	858	-
Stage 2	_	_	_	_	926	_
Jugo Z					,20	
Approach	EB		WB		NB	
HCM Control Delay, s	0		3.4		9.2	
HCM LOS					Α	
Minor Lane/Major Mvmt	ı	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		870	LDI	LDIX	1410	וטיי
Capacity (venin)			-	-		
UCM Land V/C Datic		0.016	-	-	0.018	-
HCM Control Dolay (c)					7 /	()
HCM Control Delay (s)		9.2	-	-	7.6	0
			-	-	7.6 A 0.1	0 A

Intersection						
Int Delay, s/veh	0.2					
		ED.5	NS		057	055
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		^		- 7
Traffic Vol, veh/h	0	17	0	736	878	7
Future Vol, veh/h	0	17	0	736	878	7
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	250
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	3	4	0
Mvmt Flow	0	17	0	736	878	7
N A ' ' /N A' N	A ' 0		1 1 1		4 ' 0	
	/linor2		/lajor1		/lajor2	
Conflicting Flow All	-	878	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.2	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.3	-	-	-	-
Pot Cap-1 Maneuver	0	350	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	-	350	-	-	-	-
Mov Cap-2 Maneuver	_	-	_	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	_	_	_	_	_	_
Jugo Z						
Approach	EB		NB		SB	
HCM Control Delay, s	15.8		0		0	
HCM LOS	С					
Minor Lane/Major Mvm	+	NBT E	DI n1	SBT	SBR	
	l			SBI	SBK	
Capacity (veh/h)		-	000	-	-	
HCM Lane V/C Ratio			0.049	-	-	
HCM Control Delay (s)		-		-	-	
HCM Lane LOS		-	С	-	-	
HCM 95th %tile Q(veh)		_	0.2	-	_	

	ၨ	-	•	•	←	•	•	†	/	/	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	£			4		, j		7	*	†	7
Traffic Volume (vph)	30	6	32	39	7	42	119	573	9	8	675	88
Future Volume (vph)	30	6	32	39	7	42	119	573	9	8	675	88
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	50.0		0.0	0.0		0.0	140.0		0.0	60.0		25.0
Storage Lanes	1		0	0		0	1		1	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.98			1.00		1.00		0.98	1.00		0.98
Frt		0.874			0.936				0.850			0.850
Flt Protected	0.950				0.978		0.950			0.950		
Satd. Flow (prot)	1729	1498	0	0	1626	0	1729	1733	992	1544	1750	1547
Flt Permitted	0.680				0.839		0.379			0.430		
Satd. Flow (perm)	1238	1498	0	0	1394	0	689	1733	969	698	1750	1512
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		32			36				23			51
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		201.1			305.1			207.2			300.4	
Travel Time (s)		14.5			22.0			12.4			18.0	
Confl. Peds. (#/hr)			1	1			1		1	1		1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	5%	3%	14%	0%	0%	5%	56%	12%	4%	0%
Adj. Flow (vph)	30	6	32	39	7	42	119	573	9	8	675	88
Shared Lane Traffic (%)												
Lane Group Flow (vph)	30	38	0	0	88	0	119	573	9	8	675	88
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		2	2	2	6	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	33.5	33.5		33.5	33.5		27.4	27.4	27.4	27.4	27.4	27.4
Total Split (s)	34.0	34.0		34.0	34.0		86.0	86.0	86.0	86.0	86.0	86.0
Total Split (%)	28.3%	28.3%		28.3%	28.3%		71.7%	71.7%	71.7%	71.7%	71.7%	71.7%
Maximum Green (s)	28.5	28.5		28.5	28.5		80.6	80.6	80.6	80.6	80.6	80.6
Yellow Time (s)	3.6	3.6		3.6	3.6		4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	1.9	1.9		1.9	1.9		1.3	1.3	1.3	1.3	1.3	1.3
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5			5.5		5.4	5.4	5.4	5.4	5.4	5.4
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		Max	Max	Max	Max	Max	Max
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	21.0	21.0		21.0	21.0		15.0	15.0	15.0	15.0	15.0	15.0
Pedestrian Calls (#/hr)	0	0		0	0		0	0	0	0	0	0
Act Effct Green (s)	9.4	9.4			9.4		87.4	87.4	87.4	87.4	87.4	87.4
Actuated g/C Ratio	0.09	0.09			0.09		0.84	0.84	0.84	0.84	0.84	0.84
v/c Ratio	0.27	0.23			0.56		0.21	0.39	0.01	0.01	0.46	0.07

	۶	→	\searrow	•	←	•	1	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	48.8	20.5			41.4		3.7	4.0	0.4	2.8	4.5	1.5
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	48.8	20.5			41.4		3.7	4.0	0.4	2.8	4.5	1.5
LOS	D	С			D		Α	Α	Α	Α	Α	Α
Approach Delay		33.0			41.4			3.9			4.2	
Approach LOS		С			D			Α			Α	
Queue Length 50th (m)	5.7	1.1			9.9		4.3	25.3	0.0	0.3	32.6	1.1
Queue Length 95th (m)	14.4	10.3			24.7		11.5	49.7	0.5	1.4	63.9	4.7
Internal Link Dist (m)		177.1			281.1			183.2			276.4	
Turn Bay Length (m)	50.0						140.0			60.0		25.0
Base Capacity (vph)	338	432			407		577	1451	815	584	1465	1274
Starvation Cap Reductn	0	0			0		0	0	0	0	0	0
Spillback Cap Reductn	0	0			0		0	0	0	0	0	0
Storage Cap Reductn	0	0			0		0	0	0	0	0	0
Reduced v/c Ratio	0.09	0.09			0.22		0.21	0.39	0.01	0.01	0.46	0.07

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 104.4

Natural Cycle: 70

Control Type: Semi Act-Uncoord


Maximum v/c Ratio: 0.56 Intersection Signal Delay: 7.3

Intersection LOS: A ICU Level of Service C

Intersection Capacity Utilization 70.1%

Analysis Period (min) 15

Splits and Phases: 1: Fallowfield Road & O'Keefe Court/Cobble Hill Drive

Synchro 10 Report Lanes, Volumes, Timings March 2020

Intersection						
Int Delay, s/veh	1.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations		LDK	WDL	₩ 4	NDL W	NDK
Traffic Vol, veh/h	31	0	28	173	0	26
Future Vol, veh/h	31	0	28	173	0	26
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	riee -	None	riee -	None	Stop -	None
	-					
Storage Length		-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	100	100	0	0	100
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	3	0	0	6	0	0
Mvmt Flow	31	0	28	173	0	26
Major/Minor N	1ajor1	1	Major2	N	Minor1	
Conflicting Flow All	0	0	31	0	260	31
Stage 1	-	-	-	-	31	-
Stage 2	-	_	_	_	229	_
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	_	_	- 1.1	_	5.4	- 0.2
Critical Hdwy Stg 2	-		_	_	5.4	_
Follow-up Hdwy	_		2.2	_	3.5	3.3
Pot Cap-1 Maneuver	-	_	1595	-	733	1049
•	-	-	1373	-	997	1049
Stage 1		-	-		814	
Stage 2	-	-	-	-	δ14	-
Platoon blocked, %	-	-	1505	-	710	1040
Mov Cap-1 Maneuver	-	-	1595	-	719	1049
Mov Cap-2 Maneuver	-	-	-	-	719	-
Stage 1	-	-	-	-	997	-
Stage 2	-	-	-	-	799	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1		8.5	
HCM LOS	U				Α	
TOW LOS						
Minor Lane/Major Mvmt	t I	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		1049	-		1595	-
HCM Lane V/C Ratio		0.025	-	-	0.018	-
HCM Control Delay (s)		8.5	-	-	7.3	0
HCM Lane LOS		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		0.1	-	-	0.1	-

Intersection						
Int Delay, s/veh	0.1					
		EDD	ND	NOT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		^	^	7
Traffic Vol, veh/h	0	15	0	702	737	13
Future Vol, veh/h	0	15	0	702	737	13
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	250
Veh in Median Storage,	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	6	4	0
Mvmt Flow	0	15	0	702	737	13
		_		_		
	/linor2		/lajor1		/lajor2	
Conflicting Flow All	-	737	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.2	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.3	-	-	-	-
Pot Cap-1 Maneuver	0	422	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	_	-	_
Platoon blocked, %	_		_	_	_	_
Mov Cap-1 Maneuver		422		_	_	_
Mov Cap 1 Maneuver	_	-	_	_	_	_
Stage 1						
Stage 2			_		_	_
Staye 2	-	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	13.8		0		0	
HCM LOS	В					
	_					
Minor Lang/Major Mumi	+	NDT	DI n1	CDT	CDD	
Minor Lane/Major Mvmi	l	NBT E		SBT	SBR	
Capacity (veh/h)		-		-	-	
HCM Lane V/C Ratio			0.036	-	-	
HCM Control Delay (s)		-		-	-	
HCM Lane LOS		-	В	-	-	
HCM 95th %tile Q(veh)		-	0.1	-	-	

	۶	-	•	•	←	•	•	†	/	/	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	£			4		Ĭ		7	*	†	7
Traffic Volume (vph)	107	3	114	9	1	20	52	504	23	17	689	38
Future Volume (vph)	107	3	114	9	1	20	52	504	23	17	689	38
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	50.0		0.0	0.0		0.0	140.0		0.0	60.0		25.0
Storage Lanes	1		0	0		0	1		1	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00				0.98							
Frt		0.854			0.910				0.850			0.850
Flt Protected	0.950				0.985		0.950			0.950		
Satd. Flow (prot)	1729	1554	0	0	1605	0	1729	1750	1547	1631	1750	1547
Flt Permitted	0.738				0.898		0.355			0.454		
Satd. Flow (perm)	1338	1554	0	0	1463	0	646	1750	1547	780	1750	1547
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		114			20				23			23
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		201.1			305.1			207.2			300.4	
Travel Time (s)		14.5			22.0			12.4			18.0	
Confl. Peds. (#/hr)	2					2						
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	4%	0%	6%	4%	0%
Adj. Flow (vph)	107	3	114	9	1	20	52	504	23	17	689	38
Shared Lane Traffic (%)												
Lane Group Flow (vph)	107	117	0	0	30	0	52	504	23	17	689	38
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		2	2	2	6	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	33.5	33.5		33.5	33.5		27.4	27.4	27.4	27.4	27.4	27.4
Total Split (s)	35.0	35.0		35.0	35.0		85.0	85.0	85.0	85.0	85.0	85.0
Total Split (%)	29.2%	29.2%		29.2%	29.2%		70.8%	70.8%	70.8%	70.8%	70.8%	70.8%
Maximum Green (s)	29.5	29.5		29.5	29.5		79.6	79.6	79.6	79.6	79.6	79.6
Yellow Time (s)	3.6	3.6		3.6	3.6		4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	1.9	1.9		1.9	1.9		1.3	1.3	1.3	1.3	1.3	1.3
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5			5.5		5.4	5.4	5.4	5.4	5.4	5.4
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		Max	Max	Max	Max	Max	Max
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	21.0	21.0		21.0	21.0		15.0	15.0	15.0	15.0	15.0	15.0
Pedestrian Calls (#/hr)	0	0		0	0		0	0	0	0	0	0
Act Effct Green (s)	13.8	13.8			13.8		82.6	82.6	82.6	82.6	82.6	82.6
Actuated g/C Ratio	0.13	0.13			0.13		0.77	0.77	0.77	0.77	0.77	0.77
v/c Ratio	0.62	0.39			0.15		0.10	0.37	0.02	0.03	0.51	0.03

	۶	→	•	•	←	•	4	†	/	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	59.1	12.0			22.6		4.5	5.4	1.7	3.9	6.9	2.2
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	59.1	12.0			22.6		4.5	5.4	1.7	3.9	6.9	2.2
LOS	Е	В			С		Α	Α	Α	Α	Α	Α
Approach Delay		34.5			22.6			5.2			6.6	
Approach LOS		С			С			Α			Α	
Queue Length 50th (m)	20.7	0.6			1.8		2.2	27.5	0.0	0.7	44.2	0.6
Queue Length 95th (m)	38.1	15.7			9.8		6.8	53.4	2.1	2.8	85.1	3.4
Internal Link Dist (m)		177.1			281.1			183.2			276.4	
Turn Bay Length (m)	50.0						140.0			60.0		25.0
Base Capacity (vph)	368	510			417		497	1346	1195	600	1346	1195
Starvation Cap Reductn	0	0			0		0	0	0	0	0	0
Spillback Cap Reductn	0	0			0		0	0	0	0	0	0
Storage Cap Reductn	0	0			0		0	0	0	0	0	0
Reduced v/c Ratio	0.29	0.23			0.07		0.10	0.37	0.02	0.03	0.51	0.03

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 107.3

Natural Cycle: 70

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.62

Intersection Signal Delay: 10.3
Intersection Capacity Utilization 67.6%

Intersection LOS: B
ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 1: Fallowfield Road & O'Keefe Court/Cobble Hill Drive

Intersection						
Int Delay, s/veh	1.8					
		EDD.	WDI	WDT	NDI	NDD
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	}	^	0.0	4	¥	00
Traffic Vol, veh/h	178	0	33	32	0	23
Future Vol, veh/h	178	0	33	32	0	23
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	178	0	33	32	0	23
NA - ' / NA' NA	-!1		4-!		A'1	
	ajor1		/lajor2		Minor1	
Conflicting Flow All	0	0	178	0	276	178
Stage 1	-	-	-	-	178	-
Stage 2	-	-	-	-	98	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1410	-	718	870
Stage 1	-	-	-	-	858	-
Stage 2	-	-	-	-	931	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	_	-	1410	-	701	870
Mov Cap-2 Maneuver	-	_	-	_	701	-
Stage 1	_		_	_	858	_
Stage 2					909	_
Jiago Z	-	_			707	_
Approach	EB		WB		NB	
HCM Control Delay, s	0		3.9		9.3	
HCM LOS					Α	
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBL	WBT
•	ı ı		LDI	LDIX		וטייי
Capacity (veh/h) HCM Lane V/C Ratio		870	-	-	1410	-
		0.026	-	-	0.023	-
		0.0				
HCM Control Delay (s)		9.3	-	-	7.6	0
		9.3 A 0.1	-	-	7.6 A 0.1	0 A

Intersection						
Int Delay, s/veh	0.2					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7		^	700	7
Traffic Vol, veh/h	0	23	0	582	798	17
Future Vol, veh/h	0	23	0	582	798	17
Conflicting Peds, #/hr	0	0	0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	250
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	3	4	0
Mvmt Flow	0	23	0	582	798	17
Major/Minor N	/liner?	Λ.	Najor1		/aior?	
	/linor2		/lajor1		/lajor2	
Conflicting Flow All	-	798	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.2	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.3	-	-	-	-
Pot Cap-1 Maneuver	0	389	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %	-		-	-	_	_
Mov Cap-1 Maneuver	_	389	_	_	_	_
Mov Cap-2 Maneuver	_	-	_	_	_	_
Stage 1	_	_			_	
		-	-	-	-	-
				-	-	-
Stage 2	-	-	-			
	-	-	-			
	EB	-	NB		SB	
Stage 2 Approach	EB	_				
Stage 2 Approach HCM Control Delay, s	EB 14.8		NB 0		SB 0	
Stage 2 Approach	EB					
Stage 2 Approach HCM Control Delay, s HCM LOS	EB 14.8 B		0		0	
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	EB 14.8 B	NBT E	0 EBLn1	SBT		
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	EB 14.8 B	NBT E	0 EBLn1 389	SBT_	0	
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	EB 14.8 B	NBT E	0 EBLn1 389 0.059		0 SBR	
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	EB 14.8 B	NBT E	0 EBLn1 389	-	0 SBR	
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS	EB 14.8 B	NBT E	0 EBLn1 389 0.059	-	0 SBR -	
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	EB 14.8 B	NBT E	0 EBLn1 389 0.059 14.8	- - -	0 SBR - -	

	۶	-	•	•	←	•	•	†	~	/	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	£			4		Ĭ		7	*	†	7
Traffic Volume (vph)	30	6	32	39	7	42	119	646	9	8	881	88
Future Volume (vph)	30	6	32	39	7	42	119	646	9	8	881	88
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	50.0		0.0	0.0		0.0	140.0		0.0	60.0		25.0
Storage Lanes	1		0	0		0	1		1	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.98			1.00				0.98	1.00		0.98
Frt		0.874			0.936				0.850			0.850
Flt Protected	0.950				0.978		0.950			0.950		
Satd. Flow (prot)	1729	1498	0	0	1626	0	1729	1733	992	1544	1750	1547
Flt Permitted	0.679				0.839		0.286			0.394		
Satd. Flow (perm)	1236	1498	0	0	1394	0	521	1733	969	640	1750	1512
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		32			36				23			40
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		201.1			305.1			207.2			300.4	
Travel Time (s)		14.5			22.0			12.4			18.0	
Confl. Peds. (#/hr)			1	1			1		1	1		1
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	5%	3%	14%	0%	0%	5%	56%	12%	4%	0%
Adj. Flow (vph)	30	6	32	39	7	42	119	646	9	8	881	88
Shared Lane Traffic (%)												
Lane Group Flow (vph)	30	38	0	0	88	0	119	646	9	8	881	88
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	_
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		2	2	2	6	6	6
Switch Phase	F 0	F 0		F 0	F 0		F 0	F 0	F 0	F 0	F 0	F 0
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	33.5	33.5		33.5	33.5		27.4	27.4	27.4	27.4	27.4	27.4
Total Split (s)	33.5	33.5		33.5	33.5		86.5	86.5	86.5	86.5	86.5	86.5
Total Split (%)	27.9%	27.9%		27.9%	27.9%		72.1%	72.1%	72.1%	72.1%	72.1%	72.1%
Maximum Green (s)	28.0	28.0		28.0	28.0		81.1	81.1	81.1	81.1	81.1	81.1
Yellow Time (s)	3.6	3.6		3.6	3.6		4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	1.9	1.9		1.9	1.9		1.3	1.3	1.3	1.3	1.3	1.3
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5			5.5		5.4	5.4	5.4	5.4	5.4	5.4
Lead/Lag												
Lead-Lag Optimize? Vehicle Extension (s)	3.0	3.0		2.0	3.0		2.0	2 0	2 0	2 0	3.0	2.0
Recall Mode				3.0 None			3.0	3.0 Max	3.0	3.0		3.0
	None	None		None	None		Max		Max	Max	Max	Max
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	21.0	21.0		21.0	21.0		15.0	15.0	15.0	15.0	15.0	15.0
Pedestrian Calls (#/hr)	0	0		0	0		07.0	07.0	07.0	07.0	07.0	07.0
Act Effet Green (s)	9.4	9.4			9.4		87.9	87.9	87.9	87.9	87.9	87.9
Actuated g/C Ratio	0.09	0.09			0.09		0.84	0.84	0.84	0.84	0.84	0.84
v/c Ratio	0.27	0.23			0.56		0.27	0.44	0.01	0.01	0.60	0.07

	۶	→	•	•	←	•	4	†	~	\	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	49.2	20.6			41.6		4.8	4.4	0.4	2.8	6.3	1.7
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	49.2	20.6			41.6		4.8	4.4	0.4	2.8	6.3	1.7
LOS	D	С			D		Α	Α	Α	Α	Α	Α
Approach Delay		33.2			41.6			4.4			5.8	
Approach LOS		С			D			Α			Α	
Queue Length 50th (m)	5.7	1.1			10.0		4.6	30.5	0.0	0.3	52.6	1.5
Queue Length 95th (m)	14.3	10.4			24.9		13.3	59.8	0.5	1.4	105.3	5.2
Internal Link Dist (m)		177.1			281.1			183.2			276.4	
Turn Bay Length (m)	50.0						140.0			60.0		25.0
Base Capacity (vph)	330	423			398		436	1452	816	536	1466	1274
Starvation Cap Reductn	0	0			0		0	0	0	0	0	0
Spillback Cap Reductn	0	0			0		0	0	0	0	0	0
Storage Cap Reductn	0	0			0		0	0	0	0	0	0
Reduced v/c Ratio	0.09	0.09			0.22		0.27	0.44	0.01	0.01	0.60	0.07

Intersection Summary

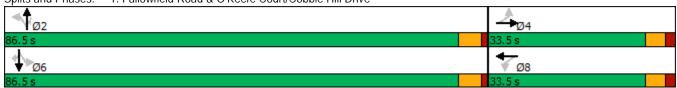
Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 104.9

Natural Cycle: 90

Control Type: Semi Act-Uncoord


Maximum v/c Ratio: 0.60

Intersection Signal Delay: 7.9
Intersection Capacity Utilization 81.5%

Intersection LOS: A ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 1: Fallowfield Road & O'Keefe Court/Cobble Hill Drive

Intersection						
Int Delay, s/veh	1.6					
		FDD	WDI	MDT	NDI	NDD
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	}		-00	4	¥	2/
Traffic Vol, veh/h	31	0	28	173	0	26
Future Vol, veh/h	31	0	28	173	0	26
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	3	0	0	6	0	0
Mvmt Flow	31	0	28	173	0	26
Major/Minor Ma	ajor1	١	/lajor2	N	Minor1	
Conflicting Flow All	0	0	31	0	260	31
Stage 1	-	-	-	-	31	-
Stage 2	_	_	_	_	229	_
Critical Hdwy	-	-	4.1		6.4	6.2
Critical Hdwy Stg 1	-	-	4.1	-	5.4	0.2
Critical Hdwy Stg 2	-	-	-		5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1595	-	733	1049
•	-	-		-	997	1049
Stage 1	-	-	-		814	-
Stage 2	-	-	-	-	δ14	-
Platoon blocked, %	-	-	1505	-	710	1040
Mov Cap-1 Maneuver	-	-	1595	-	719	1049
Mov Cap-2 Maneuver	-	-	-	-	719	-
Stage 1	-	-	-	-	997	-
Stage 2	-	-	-	-	799	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1		8.5	
HCM LOS					A	
					, ,	
		IDI.		E55	11/5:	14/5-
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		1049	-		1595	-
HCM Lane V/C Ratio		0.025	-	-	0.018	-
		8.5	-	-	,	0
		Α	-	-	Α	Α
HCM 95th %tile Q(veh)		0.1	-	-	0.1	-
HCM Control Delay (s) HCM Lane LOS		8.5 A	-	-	7.3 A	0 A

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
	EBL		NDL			
Lane Configurations	0	7	0	^	↑	12
Traffic Vol, veh/h	0	15	0	776	949	13
Future Vol, veh/h	0	15	0	776	949	13
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	250
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	6	4	0
Mvmt Flow	0	15	0	776	949	13
Major/Minor N	Minor2		Noior1	Λ.	/oior?	
			/lajor1		/lajor2	
Conflicting Flow All	-	949	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.2	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.3	-	-	-	-
Pot Cap-1 Maneuver	0	319	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	-	319	-	-	-	-
Mov Cap-2 Maneuver						
	_	-	-	_	-	-
	-		-	-	-	- -
Stage 1	- -			-		-
	- - -		-	- -	-	- - -
Stage 1 Stage 2	-		-	- - -	-	- - -
Stage 1 Stage 2 Approach	- - - EB		-	-	-	-
Stage 1 Stage 2 Approach HCM Control Delay, s	EB 16.8		-	-	-	-
Stage 1 Stage 2 Approach	EB		- - NB	-	SB	-
Stage 1 Stage 2 Approach HCM Control Delay, s	EB 16.8		- - NB	-	SB	-
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS	EB 16.8		- - NB 0	-	- - SB 0	
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	EB 16.8		- - NB 0	SBT	SB	
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	EB 16.8	NBT E	NB 0	SBT	SB 0	
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	EB 16.8 C	NBT E	NB 0 EBLn1 319 0.047	SBT	SB 0	
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	EB 16.8 C	NBT E	NB 0 EBLn1 319 0.047 16.8	SBT	SB 0	
Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	EB 16.8 C	NBT E	NB 0 EBLn1 319 0.047	SBT	SB 0	

	•	-	•	•	←	•	4	†	<i>></i>	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	£			4		*		7	ř	+	7
Traffic Volume (vph)	107	3	114	9	1	20	52	661	23	17	767	38
Future Volume (vph)	107	3	114	9	1	20	52	661	23	17	767	38
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	50.0		0.0	0.0		0.0	140.0		0.0	60.0		25.0
Storage Lanes	1		0	0		0	1		1	1		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00				0.99							
Frt		0.854			0.910				0.850			0.850
Flt Protected	0.950				0.985		0.950			0.950		
Satd. Flow (prot)	1729	1554	0	0	1607	0	1729	1750	1547	1631	1750	1547
Flt Permitted	0.738				0.873		0.280			0.346		
Satd. Flow (perm)	1340	1554	0	0	1424	0	510	1750	1547	594	1750	1547
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		111			20				39			39
Link Speed (k/h)		50			50			60			60	
Link Distance (m)		201.1			305.1			207.2			300.4	
Travel Time (s)		14.5			22.0			12.4			18.0	
Confl. Peds. (#/hr)	2					2						
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	4%	0%	6%	4%	0%
Adj. Flow (vph)	107	3	114	9	1	20	52	661	23	17	767	38
Shared Lane Traffic (%)												
Lane Group Flow (vph)	107	117	0	0	30	0	52	661	23	17	767	38
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		6
Detector Phase	4	4		8	8		2	2	2	6	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	33.5	33.5		33.5	33.5		27.4	27.4	27.4	27.4	27.4	27.4
Total Split (s)	33.5	33.5		33.5	33.5		36.5	36.5	36.5	36.5	36.5	36.5
Total Split (%)	47.9%	47.9%		47.9%	47.9%		52.1%	52.1%	52.1%	52.1%	52.1%	52.1%
Maximum Green (s)	28.0	28.0		28.0	28.0		31.1	31.1	31.1	31.1	31.1	31.1
Yellow Time (s)	3.6	3.6		3.6	3.6		4.1	4.1	4.1	4.1	4.1	4.1
All-Red Time (s)	1.9	1.9		1.9	1.9		1.3	1.3	1.3	1.3	1.3	1.3
Lost Time Adjust (s)	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5			5.5		5.4	5.4	5.4	5.4	5.4	5.4
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		Max	Max	Max	Max	Max	Max
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	21.0	21.0		21.0	21.0		15.0	15.0	15.0	15.0	15.0	15.0
Pedestrian Calls (#/hr)	0	0		0	0		0	0	0	0	0	0
Act Effct Green (s)	9.4	9.4			9.4		35.8	35.8	35.8	35.8	35.8	35.8
Actuated g/C Ratio	0.18	0.18			0.18		0.68	0.68	0.68	0.68	0.68	0.68
v/c Ratio	0.45	0.32			0.10		0.15	0.56	0.02	0.04	0.65	0.04
	0.70	0.02			0,11		0.10	0.00	0.02	0.07	0.00	0.07

	•	→	•	•	•	•	4	†	~	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	24.9	7.5			11.4		6.7	9.0	1.5	5.5	11.4	2.2
Queue Delay	0.0	0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	24.9	7.5			11.4		6.7	9.0	1.5	5.5	11.4	2.2
LOS	С	Α			В		Α	Α	Α	Α	В	Α
Approach Delay		15.8			11.4			8.6			10.8	
Approach LOS		В			В			Α			В	
Queue Length 50th (m)	8.8	0.5			0.8		1.7	31.9	0.0	0.5	41.0	0.0
Queue Length 95th (m)	20.0	10.3			5.9		6.9	71.7	1.5	2.8	#103.7	2.8
Internal Link Dist (m)		177.1			281.1			183.2			276.4	
Turn Bay Length (m)	50.0						140.0			60.0		25.0
Base Capacity (vph)	713	878			767		346	1188	1063	403	1188	1063
Starvation Cap Reductn	0	0			0		0	0	0	0	0	0
Spillback Cap Reductn	0	0			0		0	0	0	0	0	0
Storage Cap Reductn	0	0			0		0	0	0	0	0	0
Reduced v/c Ratio	0.15	0.13			0.04		0.15	0.56	0.02	0.04	0.65	0.04

Intersection Summary

Area Type: Other

Cycle Length: 70

Actuated Cycle Length: 52.7

Natural Cycle: 75

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.65

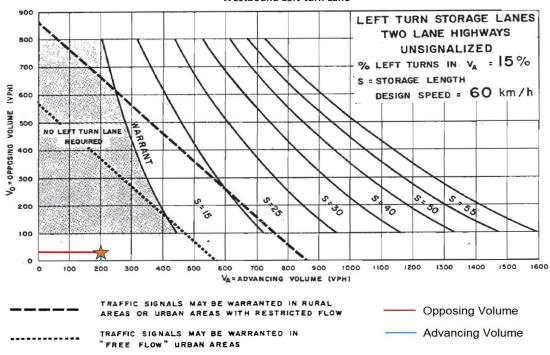
Intersection Signal Delay: 10.6 Intersection LOS: B
Intersection Capacity Utilization 67.6% ICU Level of Service C

Analysis Period (min) 15

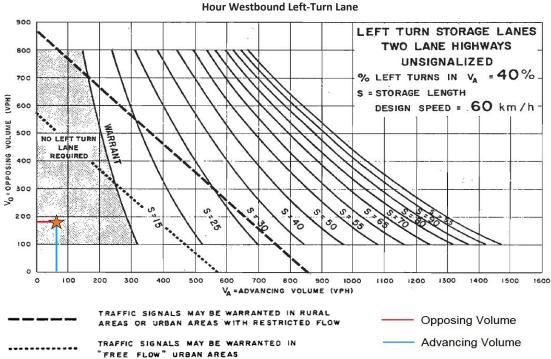
Queue shown is maximum after two cycles.

Splits and Phases: 1: Fallowfield Road & O'Keefe Court/Cobble Hill Drive

^{# 95}th percentile volume exceeds capacity, queue may be longer.


Intersection						
Int Delay, s/veh	1.8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			4	W	,,,,,,
Traffic Vol, veh/h	178	0	33	32	0	23
Future Vol, veh/h	178	0	33	32	0	23
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage,	# 0	_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	178	0	33	32	0	23
IVIVIII(I IOVV	170	U	33	32	U	23
	ajor1	N	Major2	Λ	/linor1	
Conflicting Flow All	0	0	178	0	276	178
Stage 1	-	-	-	-	178	-
Stage 2	-	-	-	-	98	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1410	-	718	870
Stage 1	-	-	-	-	858	-
Stage 2	-	-	-	-	931	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1410	-	701	870
Mov Cap-2 Maneuver	-	-	-	-	701	-
Stage 1	-	-	-	-	858	-
Stage 2	_	-	_	_	909	_
Olago 2					, , ,	
Approach	EB		WB		NB	
HCM Control Delay, s	0		3.9		9.3	
HCM LOS					Α	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		870	-		1410	-
HCM Lane V/C Ratio		0.026	-	-	0.023	-
HCM Control Delay (s)		9.3	-	-	7.6	0
HCM Lane LOS		Α	-	-	Α	A
HCM 95th %tile Q(veh)		0.1	-	-	0.1	-

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
	EBL		NDL			
Lane Configurations	0	77	0	↑ ↑	070	17
Traffic Vol, veh/h	0	23	0	743	878	17
Future Vol, veh/h	0	23	0	743	878	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	250
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	0	0	0	3	4	0
Mvmt Flow	0	23	0	743	878	17
Major/Minor N	Minor2	١	/lajor1	١	/lajor2	
Conflicting Flow All	-	878	-	0	-	0
Stage 1	_	-	_	-	_	-
Stage 2	_	_	_	_	_	_
Critical Hdwy	_	6.2	_		_	
Critical Hdwy Stg 1	-	0.2		-		-
Critical Hdwy Stg 2	-	-	-	-	-	-
		3.3				
Follow-up Hdwy	-		-	-	-	-
Pot Cap-1 Maneuver	0	350	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	-	350	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	16		0		0	
HCM LOS	C		U		U	
TIGIVI EUG	U					
Minor Lane/Major Mvm	nt	NBT E		SBT	SBR	
Capacity (veh/h)		-	350	-	-	
HCM Lane V/C Ratio		-	0.066	-	-	
HCM Control Delay (s)		-	16	-	-	
HCM Lane LOS		-	С	-	-	
HCM 95th %tile Q(veh))	-	0.2	-	-	


Appendix K – Auxiliary Lane Analyses

April 9, 2020 11

O'Keefe Court & Lusk Street - Future (2028) Total Traffic - AM Peak Hour Westbound Left-turn Lane

O'Keefe Court & Lusk Street - Future (2028) Total Traffic - PM Peak Hour Westbound Left-Turn Lane

