

Geotechnical Report Proposed Office/Receiving Building 300 Somme Street Ottawa, Ontario

Submitted to:

Novatech 240 Michael Cowpland Drive, Suite 200 Ottawa, Ontario K2M 1P6

Geotechnical Report Proposed Office/Receiving Building 300 Somme Street Ottawa, Ontario

> April 24, 2020 Project: 65080.01

TABLE OF CONTENTS

2.0 PROJECT AND SITE DESCRIPTION 1 2.1 Project Description 1 2.2 Review of Available Information 1 3.0 SUMMARY OF AVAILABLE INFORMATION 2 3.1 General 2 3.2 Summary of Subsurface Conditions 2 3.2.1 Proposed Building Area and Septic System 3 3.2.2 Outdoor Storage Area 3 4.0 GEOTECHNICAL DESIGN CONSIDERATIONS 4 4.1 General 4 4.2 Proposed Office/Receiving Building 4 4.2.1 Introduction 4 4.2.2 Overburden Excavation 4 4.2.3 Groundwater Pumping 5 4.2.4 Foundation Design 5 4.2.5 Slab on Grade Support (Heated Areas Only) 6 4.2.8 Foundation Backfill 8 4.3 Proposed Septic System 9
2.2 Review of Available Information 1 3.0 SUMMARY OF AVAILABLE INFORMATION 2 3.1 General 2 3.2 Summary of Subsurface Conditions 2 3.2.1 Proposed Building Area and Septic System 3 3.2.2 Outdoor Storage Area 3 4.0 GEOTECHNICAL DESIGN CONSIDERATIONS 4 4.1 General 4 4.2 Proposed Office/Receiving Building 4 4.2.1 Introduction 4 4.2.2 Overburden Excavation 4 4.2.3 Groundwater Pumping 5 4.2.4 Foundation Design 5 4.2.5 Slab on Grade Support (Heated Areas Only) 6 4.2.6 Seismic Design of Proposed Structures 7 4.2.7 Frost Protection of Foundations 8 4.2.8 Foundation Backfill 8
3.0 SUMMARY OF AVAILABLE INFORMATION 2 3.1 General 2 3.2 Summary of Subsurface Conditions 2 3.2.1 Proposed Building Area and Septic System 3 3.2.2 Outdoor Storage Area 3 4.0 GEOTECHNICAL DESIGN CONSIDERATIONS 4 4.1 General 4 4.2 Proposed Office/Receiving Building 4 4.2.1 Introduction 4 4.2.2 Overburden Excavation 4 4.2.3 Groundwater Pumping 5 4.2.4 Foundation Design 5 4.2.5 Slab on Grade Support (Heated Areas Only) 6 4.2.6 Seismic Design of Proposed Structures 7 4.2.7 Frost Protection of Foundations 8 4.2.8 Foundation Backfill 8
3.1General.23.2Summary of Subsurface Conditions23.2.1Proposed Building Area and Septic System33.2.2Outdoor Storage Area34.0GEOTECHNICAL DESIGN CONSIDERATIONS44.1General44.2Proposed Office/Receiving Building44.2.1Introduction44.2.2Overburden Excavation44.2.3Groundwater Pumping54.2.4Foundation Design54.2.5Slab on Grade Support (Heated Areas Only)64.2.6Seismic Design of Proposed Structures74.2.7Frost Protection of Foundations84.2.8Foundation Backfill8
3.2Summary of Subsurface Conditions23.2.1Proposed Building Area and Septic System33.2.2Outdoor Storage Area34.0GEOTECHNICAL DESIGN CONSIDERATIONS44.1General44.2Proposed Office/Receiving Building44.2.1Introduction44.2.2Overburden Excavation44.2.3Groundwater Pumping54.2.4Foundation Design54.2.5Slab on Grade Support (Heated Areas Only)64.2.6Seismic Design of Proposed Structures74.2.7Frost Protection of Foundations84.2.8Foundation Backfill8
3.2.1Proposed Building Area and Septic System33.2.2Outdoor Storage Area34.0GEOTECHNICAL DESIGN CONSIDERATIONS44.1General44.2Proposed Office/Receiving Building44.2.1Introduction44.2.2Overburden Excavation44.2.3Groundwater Pumping54.2.4Foundation Design54.2.5Slab on Grade Support (Heated Areas Only)64.2.6Seismic Design of Proposed Structures74.2.7Frost Protection of Foundations84.2.8Foundation Backfill8
3.2.2Outdoor Storage Area34.0GEOTECHNICAL DESIGN CONSIDERATIONS44.1General44.2Proposed Office/Receiving Building44.2.1Introduction44.2.2Overburden Excavation44.2.3Groundwater Pumping54.2.4Foundation Design54.2.5Slab on Grade Support (Heated Areas Only)64.2.6Seismic Design of Proposed Structures74.2.7Frost Protection of Foundations84.2.8Foundation Backfill8
4.0 GEOTECHNICAL DESIGN CONSIDERATIONS 4 4.1 General 4 4.2 Proposed Office/Receiving Building 4 4.2.1 Introduction 4 4.2.2 Overburden Excavation 4 4.2.3 Groundwater Pumping 5 4.2.4 Foundation Design 5 4.2.5 Slab on Grade Support (Heated Areas Only) 6 4.2.6 Seismic Design of Proposed Structures 7 4.2.7 Frost Protection of Foundations 8 4.2.8 Foundation Backfill 8
4.1General.44.2Proposed Office/Receiving Building.44.2.1Introduction.44.2.2Overburden Excavation44.2.3Groundwater Pumping.54.2.4Foundation Design.54.2.5Slab on Grade Support (Heated Areas Only)64.2.6Seismic Design of Proposed Structures74.2.7Frost Protection of Foundations84.2.8Foundation Backfill8
4.2Proposed Office/Receiving Building44.2.1Introduction44.2.2Overburden Excavation44.2.3Groundwater Pumping54.2.4Foundation Design54.2.5Slab on Grade Support (Heated Areas Only)64.2.6Seismic Design of Proposed Structures74.2.7Frost Protection of Foundations84.2.8Foundation Backfill8
4.2.1Introduction44.2.2Overburden Excavation44.2.3Groundwater Pumping54.2.4Foundation Design54.2.5Slab on Grade Support (Heated Areas Only)64.2.6Seismic Design of Proposed Structures74.2.7Frost Protection of Foundations84.2.8Foundation Backfill8
4.2.1Introduction44.2.2Overburden Excavation44.2.3Groundwater Pumping54.2.4Foundation Design54.2.5Slab on Grade Support (Heated Areas Only)64.2.6Seismic Design of Proposed Structures74.2.7Frost Protection of Foundations84.2.8Foundation Backfill8
4.2.2Overburden Excavation44.2.3Groundwater Pumping54.2.4Foundation Design54.2.5Slab on Grade Support (Heated Areas Only)64.2.6Seismic Design of Proposed Structures74.2.7Frost Protection of Foundations84.2.8Foundation Backfill8
4.2.3Groundwater Pumping54.2.4Foundation Design54.2.5Slab on Grade Support (Heated Areas Only)64.2.6Seismic Design of Proposed Structures74.2.7Frost Protection of Foundations84.2.8Foundation Backfill8
 4.2.5 Slab on Grade Support (Heated Areas Only)
 4.2.6 Seismic Design of Proposed Structures
4.2.7 Frost Protection of Foundations
4.2.8 Foundation Backfill
4.3 Proposed Septic System
5.0 PROPOSED PARKING AREA AND OUTDOOR STORAGE AREA
5.1 Subgrade Preparation
5.2 Drainage (Outdoor Storage Area)10
5.3 Pavement Structure (Parking Area)11
5.4 Outdoor Area Granular Structure
5.5 Granular Material Placement
6.0 ADDITIONAL CONSIDERATIONS
6.1 Subsurface Investigation12
6.2 Construction Observation

LIST OF APPENDICES

- Appendix A Test Hole Location Plan, Figure 1
- Appendix B Record of Test Hole Sheets

1.0 INTRODUCTION

GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) has carried out a geotechnical desktop review for the proposed development at 300 Somme Street in Ottawa, Ontario. The purpose of the desktop study is to summarize the general subsurface conditions at the site by reviewing available subsurface information and, based on the results of the review, to provide engineering guidelines and recommendations on the geotechnical design aspects of the project, including construction considerations that could influence design decisions.

2.0 PROJECT AND SITE DESCRIPTION

2.1 **Project Description**

Plans are being prepared for the construction of a storage yard for vehicles at 300 Somme Street in Ottawa. The approximate area is 17 hectares. Outdoor storage of vehicles will take up the majority of the property. An office/receiving building is proposed in the northwest corner of the property in support of the storage yard. The building will be serviced with private services including a septic system and a water supply well. The proposed building is about 1,200 square metres with a paved parking area to the south and the 3,800 L/day septic system located on the west side of the building.

The purpose of this desktop study is to provide conceptual foundation design options for the new office/receiving building as well as geotechnical guidelines for the construction of the storage yard.

2.2 Review of Available Information

The following information was provided to us for the purposes of the desktop study:

- Report prepared by INSPEC-SOL INC. titled, "Geotechnical Study Subdivision Plan, Hawthorne Industrial Park, Lots 26 & 27, Concession 6, Southeast of Hawthorne and Rideau Roads, Ottawa, Ontario", dated May 4, 2009;
- Report prepared by Pinchin Ltd titled, "Geotechnical Investigation Proposed Automotive Storage Yard, Somme Street, Ottawa, Ontario", dated January 23, 2020; and,
- Concept Plan, Drawing Number 119181-CO Rev#3, prepared by Novatech, dated April 21, 2020.

INSPEC-SOL INC. (Inspec-sol) carried out a previous geotechnical investigation for the subdivision plan. In their report, Inspec-sol also referenced test pits previously advanced by Golder Associates (Golder) on the property. As such, a number of boreholes and test pits were previously advanced on, and adjacent, to the subject site. The test holes advanced by

1

Inspec-Sol include five (5) boreholes (B6-1 to B6-4, and RB7-03), four (4) test pits (TP3-01, TP5-01, TP6-01 and TP6-02) and one (1) groundwater monitoring well (MW8-08). The boreholes and test pits were advanced to depths ranging between about 0.6 and 8.0 metres below ground surface. Bedrock coring was not carried out in any of the boreholes. The groundwater levels were measured in wells screens installed at the site.

A total of seven (7) test pits (TP-2, TP-3, TP-8 to TP-10, TP-14, and TP-15) were advanced on the subject site by Golder in 1994 and referenced in the Inspec-Sol report (but not included in their assessment of Block 6, the subject site). The test pits were advanced to depths ranging between 0.8 and 3.5 metres below ground surface. It should be noted that no fill material was noted in any of the Golder test pits advanced on the subject site and there is the possibility that the existing fill material was placed on the site between 1994 and 2009. As such, the Golder boreholes will not be referenced within this desktop study.

Pinchin Ltd. (Pinchin) also carried out a previous geotechnical investigation for the subject site in December 2019. A total of seven (7) boreholes (BH1 to BH7) were advanced by Pinchin as part of their investigation. The boreholes were advanced to depths ranging between about 1.8 and 5.9 metres below ground surface. Bedrock coring was not carried out in any of the boreholes. The groundwater levels were measured in the open boreholes prior to backfilling.

A Test Hole Location plan showing the approximate locations of the existing test holes on the subject site is provided on Figure 1 in Appendix A. The test hole logs from the referenced reports are provided in Appendix B.

3.0 SUMMARY OF AVAILABLE INFORMATION

3.1 General

The subsurface conditions described below are based on previous test holes advanced on and in the vicinity of the site by others. The subsurface conditions at the site may vary from the conditions encountered in the previous test holes. In addition to soil variability, fill material of variable physical and chemical composition can be present over portions of the site. The groundwater conditions described in this report refer only to those observed at the place and time of observation noted in the report. These conditions may vary seasonally, over time, or as a consequence of construction activities in the area.

3.2 Summary of Subsurface Conditions

A total of seventeen (17) boreholes and test pits advanced within, or adjacent, to the subject site have been reviewed as part of this desktop study. The various boreholes and test pits advanced as part of the previous investigations are widely spaced across the property. A total of four (4) of the test holes (BH4 (Pinchin), B6-1 (Inspec-Sol), TP5-01 (Inspec-Sol) and RB7-03 (Inspec-Sol) are located within 100 metres of the proposed office building and septic field. We

have therefore separately summarized the available subsurface information for the proposed building and for the proposed outdoor storage area.

- 3.2.1 Proposed Building Area and Septic System
 - Topsoil and fill material with a thickness ranging between 2.3 and 3.8 metres (where fully penetrated) was encountered from ground surface. In general, the fill material consists of varying amounts of clay, sand, and gravel with some debris (concrete, asphalt, wood). The fill has a very loose to compact relative density. TP5-01 was terminated within the fill material at a depth of about 3 metres below ground surface.
 - Native deposits of very loose silt and silty sand/sandy silt are present below the fill material. At the location of B6-1, the sandy silt is underlain by a 0.8m thick layer of very stiff sandy clay from a depth of about 4.6 metres below ground surface. BH4 was terminated within the very loose silt at a depth of about 3.6 metres below ground surface.
 - Two (2) of the boreholes (B6-1 and RB7-03) were terminated due to auger refusal on the inferred bedrock surface at depths of 4.7 and 5.3 metres below ground surface.
 - Groundwater was noted to enter the open boreholes/test pits at depths between 2.5 and 3.0 metres below ground surface. It should be noted that the closest borehole, BH4, was noted to be dry upon completion of drilling.
- 3.2.2 Outdoor Storage Area
 - Where fully penetrated, topsoil and fill material with a thickness ranging between 1.1 metres (BH1) and 4.5 metres (TP6-01) was encountered from ground surface. Where logged, the surficial topsoil layer thickness ranges from 50 millimetres to 200 millimetres. The underlying fill material generally consists of very loose to loose sand, gravel, and clay with some debris (concrete, asphalt, wood). Former topsoil layers are occasionally noted to underlay the fill material. It should be noted that no fill material was noted in BH6-4 and TP3-01 which are located at the east end of the site.
 - Native deposits of very loose to compact layered deposits of silt, sand and clay are present below the fill material, and from ground surface in BH6-4 and TP3-01. The native deposits extend to depths of 0.6 to 8 metres below ground surface.
 - The majority of the test holes encountered bedrock refusal at depths between 0.6 metres (TP3-01) and 8 metres (B6-3) below ground surface.

• Where groundwater was present, it was noted to enter the open boreholes/test pits at depths between 0.9 metres (BH6) and 4.4 metres (B6-3) below ground surface.

4.0 GEOTECHNICAL DESIGN CONSIDERATIONS

4.1 General

The information in the following sections is provided for the guidance of the design engineers and is intended for the design of this project only. The information provided in the following sections is based on the available subsurface information from within and adjacent to the site boundaries.

4.2 Proposed Office/Receiving Building

4.2.1 Introduction

The area of the proposed building could be covered by 2.3 to 3.8 metres of fill material overlying loose to compact layered deposits of sand, silt and clay. The groundwater is expected to be located between 2.5 and 3 metres below ground surface and the bedrock is anticipated between 4.7 and 5.3 metres below ground surface. On this basis, the site is not currently suitable for conventional spread footings with a slab-on-grade. As a result, it is recommended that the existing fill material within the building footprint be removed to expose the native soil and replaced with compacted engineered fill to allow for the construction of conventional spread footings with a slab-on-grade.

If excavation and replacement of the fill material is not considered practicable, the following alternate foundation options could be considered:

- Steel piles driven to bedrock with a structural slab; or,
- Ground improvement methods such as rammed aggregate piers with conventional foundations and slab.

Guidelines on removal and replacement of the fill material and conventional foundations are provided below. Geotechnical guidelines for the alternate foundation options could be provided, if required.

4.2.2 Overburden Excavation

The excavation for the proposed structure will be carried out through fill material and possibly native deposits of layered sand, silt, and clay. The sides of the excavations should be sloped in accordance with the requirements in Ontario Regulation 213/91 under the Occupational Health and Safety Act. According to the Act, the overburden soil can be classified as Type 3 and, accordingly, allowance should be made for excavation side slopes of 1 horizontal to 1 vertical extending upwards from the base of the excavation.

The native overburden deposits are sensitive to disturbance from ponded water, vibration and construction traffic. Allowance should be made to remove and replace any disturbed native soil, or areas of subexcavation, with compacted sand and gravel such as that meeting OPSS Granular A or Granular B Type II, where required.

Excavation of the overburden deposits at this site below the groundwater level within the fill material and native deposits could present some constraints. Below the groundwater level, the deposits could slough into the excavation, which could result in undermining of the side slopes. Where necessary, the side slopes could be made flatter and/or buttressed with a 0.3 to 0.6 metre thick layer of OPSS Granular B Type 2 or well graded blast rock.

As indicated above, a considerable thickness of fill material exists at this site. The fill material will need to be removed from the building footprint and the zone of influence of the foundations. This will require removal of fill material in the zone extending 0.3 metres horizontally from the edge of the footings and extending down and out at 1 horizontal to 1 vertical from that point. As such, the excavation footprint will be significantly greater than the building footprint.

4.2.3 Groundwater Pumping

In general, groundwater inflow from the overburden deposits into the excavations should be controlled by pumping from filtered sumps within the excavation. Suitable detention and filtration will be required before discharging the water to any ditches.

In order to minimize disturbance of the silty sand soils at this site, if groundwater is encountered, the level should be kept to at least 0.3 metres below the base of the excavation.

It is not expected that short term pumping during excavation will have a significant effect on nearby structures and services.

4.2.4 Foundation Design

Based on the available subsurface information, the proposed structure will likely be founded on conventional spread footings bearing on engineered fill placed on the native soil.

Following the removal of fill or otherwise unsuitable material, the grade below the proposed building should be raised to the underside of footing level using engineered fill. The engineered fill should consist of granular material meeting OPSS requirements for Granular B Type II.. Given the thickness of engineered fill that may be required, consideration could be given to using well graded blast rock for the lower portion of the fill replacement. If blast rock is used, it should consist of well graded material with a maximum particle size of about 300 millimetres. Also, the blast rock should be capped with a minimum of 450 millimetres of material meeting OPSS Granular B Type II.

It is suggested that any granular materials used beneath the proposed structure be composed of virgin material only, for environmental reasons. The OPSS Granular B Type III should be compacted in maximum 200 millimetre thick lifts to at least 95 percent of the standard Proctor dry density value. The blast rock should be compacted using the bucket of the excavator and the hauling and spreading equipment under the supervision of geotechnical personnel.

To provide adequate spread of load below the footings, the engineered fill material, and any blast rock should extend at least 0.3 metres horizontally beyond the edge of the footings and down and out from this point at 1 horizontal to 1 vertical, or flatter. The excavation should be sized to accommodate this fill placement.

The following table provides preliminary foundation bearing values based on the available information.

Footing	Subgrade Surface	Serviceability Limit State (SLS)	Ultimate Limit State (ULS)
Pad or strip	Native Soil	75 kilopascals	150 kilopascals
Pad or strip	Engineered fill (minimum 1 metre thick) overlying native soil	125 kilopascals	250 kilopascals

Table 4.1: Summary of Foundation Bearing Values

The above bearing values assume a maximum grade raise of 1 metre above the existing ground surface elevations.

The post construction total and differential settlement at SLS for footings bearing on the above noted deposits should be less than 25 and 20 millimetres, respectively, provided that fill material and loose or disturbed soil is removed from below the bearing surfaces and that the engineered fill is placed and prepared as described above.

4.2.5 Slab on Grade Support (Heated Areas Only)

Based on the available subsurface information, the area of the proposed building is underlain by a significant thickness of fill material overlying native soil deposits. The fill material is not considered suitable for the support of the slab on grade. To prevent long term settlement and cracking/distortion of the floor slab, all fill or disturbed material encountered should be removed from below the proposed slab.

The grade within the proposed building could be raised, where necessary, with granular material meeting OPSS Granular B Type I or II or OPSS Granular A gradation specifications. The use of OPSS Granular B Type II material is preferred under wet conditions. The granular base for the proposed slab on grade should consist of at least 150 millimetres of OPSS Granular A.

It is suggested that any granular materials used beneath the floor slab be composed of virgin material (100 percent crushed rock or natural sand and gravel deposits) only, for environmental reasons.

All imported granular materials placed below the proposed floor slab should be compacted in maximum 200 millimetre thick lifts to at least 95 percent of the standard Proctor maximum dry density value.

Underfloor drainage is not considered necessary provided that the floor slab level is above the finished exterior grade.

If any areas of the building are to remain unheated during the winter period, thermal protection of the slab on grade may be required. However, if the underside of the slab is backfilled with at least 1.8 metres of non-frost susceptible engineered fill (as required in order to remove all of the fill material), thermal protection of the concrete slab may not be required, even for an unheated condition. The requirement for thermal protection should be assessed as the design progresses.

Proper moisture protection with a vapour retarder should be used for floor slab where the floor will be covered by moisture sensitive flooring material or where moisture sensitive equipment, products or environments will exist. The "Guide for Concrete Floor and Slab Construction", ACI 302.1R-04 should be considered for the design and construction of vapour retarders below the floor slab.

4.2.6 Seismic Design of Proposed Structures

Based on the results of the desktop study, the foundations will likely bear on compacted engineered fill material above the native deposits of very loose to compact sand, silt, and clay. The seismic Site Class at this site will be dependent on the founding depth and subgrade soil at the building location. According to the National Building Code of Canada, in the absence of shear wave velocity measurements within the upper 30 metres, the average standard penetration resistance can be used to determine the Seismic Site Class. Based on the results of BH4 and assuming a bedrock depth of 6 metres, it is anticipated that the proposed structure could be designed for Seismic Site Class D.

However, the other boreholes in proximity to the proposed building show that groundwater may be present within the very loose to compact native soils. As such, there is the potential for liquefaction of the native soils at this site. It is recommended that at least one (1) borehole be advanced in the area of the proposed building and a well screen be installed in order to assess the potential for liquefaction of the very loose to compact native soils, and to confirm the seismic Site Class.

4.2.7 Frost Protection of Foundations

All exterior footings for heated portions of the proposed structures should be provided with at least 1.5 metres of earth cover for frost protection purposes. Isolated footings located outside of the building footprint or footings located within unheated areas of the building should be provided with at least 1.8 metres of earth cover. If the required depth of earth cover is not practicable, a combination of earth cover and polystyrene insulation could be considered. An insulation detail could be provided upon request. The required depth of frost protection can be reduced by the thickness of any engineered fill beneath the foundations.

If the new foundation and\or concrete slab on grade is insulated in a way that reduces heat loss towards the surrounding soil, the required earth cover over the footings should conform to that of an unheated structure (i.e. 1.8 metres).

4.2.8 Foundation Backfill

The fill and native soils at this site are frost susceptible and should not be used as backfill against foundations. To avoid frost adhesion and possible heaving, the foundations should be backfilled with imported, free-draining, non-frost susceptible granular material such as that meeting OPSS Granular B Type I or II requirements. Alternatively, a bond break such as a double layer of 6 mil polyethylene sheeting or a proprietary drainage system (e.g. System Platon) could be placed on the foundation walls and the walls backfilled with approved, on-site material.

Where the backfill will ultimately support areas of hard surfacing (pavement, sidewalks or other similar surfaces), the backfill should be placed in maximum 200 millimetre thick lifts and should be compacted to at least 95 percent of the standard Proctor maximum dry density value using suitable vibratory compaction equipment. Where future landscaped areas will exist next to the proposed structure and if some settlement of the backfill is acceptable, the backfill could be compacted to at least 90 percent of the standard Proctor maximum dry density value.

Where areas of hard surfacing (concrete, sidewalk, pavement, etc.) abut the proposed building, a gradual transition should be provided between those areas of hard surfacing underlain by nonfrost susceptible granular wall backfill and those areas underlain by existing frost susceptible native materials to reduce the effects of differential frost heaving. It is suggested that granular frost tapers be constructed from 1.5 metres below finished grade to the underside of the granular base/subbase material for the hard surfaced areas. The frost tapers should be sloped at 1 horizontal to 1 vertical, or flatter. Based on the measured groundwater elevation on this site, perimeter foundation drainage is not required provided that the finished floor elevation is above the finished exterior grade.

4.3 Proposed Septic System

Due to the variable composition of the fill material at the proposed location for the septic system, it is recommended that the fill be removed below the entire area of the leaching bed so as to expose native soil. The removal of the existing fill will help limit settlement below the leaching bed and promote drainage, therefore improving the long term performance of the leaching bed.

If raising of the grade below the proposed leaching bed is required (e.g. for site grading purposes, groundwater level), this may be accomplished by importing approved sandy soil and adequately compacting the imported material in maximum 200 millimetre lifts. Whether the leaching bed is installed on the native soil or imported grade raise fill above the native soil, it is recommended that the leaching bed be sized based on the characteristics of the native soil.

5.0 PROPOSED PARKING AREA AND OUTDOOR STORAGE AREA

5.1 Subgrade Preparation

In preparation for the construction of the new asphaltic concrete surfaced parking area and the outdoor storage area, all topsoil, organic material and any loose/soft or wet soil should be removed from the proposed subgrade surface and replaced with suitable compacted earth borrow or granular fill. The site is underlain by fill material which was likely not properly compacted during its initial placement and could compress (settle) following construction.

It is not considered necessary to remove all of the fill material from within the parking area and outdoor storage area provided that some future settlement of the surface can be tolerated. It is however suggested that any exposed fill material which contains an abundance of organic material or otherwise deleterious material be subexcavated and replaced with suitable earth borrow. Prior to placing granular fill for the parking area and outdoor storage area, the exposed subgrade should be heavily proof-rolled with a large (10 tonne) steel drum roller under dry conditions. Any soft areas evident from the proof-rolling should be subexcavated and replaced with suitable, compacted earth borrow.

In order to prevent softening and disturbance of the subgrade fill soils, consideration should be given to the construction of a temporary access road(s) to be used by the construction traffic during the construction of the building, parking area, and outdoor storage area. The temporary access road(s) could be constructed with a minimum of 1 metre of crushed granular material such as OPSS Granular B Type II. This material could be reclaimed for the construction of the parking lot or outdoor storage area.

The above guidelines will minimize the amount of disturbance of the subgrade soil, but may not completely eliminate it. It may also be required to allow the excess pore water pressure to

dissipate from the softened subgrade surface after it has been disturbed by stopping construction traffic in those affected areas for a period of time.

The subgrade surfaces should be made smooth and crowned or sloped prior to placing the granular materials to promote drainage of the pavement base and subbase materials. Additional guidelines for the drainage of the outdoor storage area is provided in Section 5.2.

5.2 Drainage (Outdoor Storage Area)

As previously noted, the subgrade surface should be shaped and crowned to promote drainage of the granular base and subbase materials.

Adequate drainage of the granular materials and subgrade is important for the long term performance of the outdoor storage area at this site. Based on the size of the outdoor storage area, additional drainage measures may be required to help promote drainage of the site. As per discussions with Novatech, consideration is currently being given to strategic cut and fill of the site coupled with the construction of French drains.

It is understood that the surface water of the outdoor storage area will be drained towards a perimeter swale around the property, where the surface water will be collected and then treated prior to releasing the water into adjacent ditches. Based on preliminary site grades, in order to minimize the amount of excavation and backfill the site will be divided into 3 sections. The north portion of the site, which will be the largest (9.1 hectares), will drain towards the north swale while the west portion (3.0 hectares) will drain towards the west, and the south and east (5.6 hectares) will drain towards the south and east. As such, the larger north portion of the site may require additional drainage measures in order to properly drain the granular material.

Therefore, consideration is currently being given to installing a system of French drains that would drain to the perimeter swale on the north portion of the site. The main trunks of the French drains will be constructed in a north-south alignment, with collector branches being constructed on an east-west alignment. The top of the pipes should be at the base of the drainage layer (i.e. in a trench with a minimum of 300-millimetre clear crushed stone on the sides and 150 millimetres underneath). It is recommended that the pipe be filter wrapped to reduce the potential for the ingress of fines into the perforations. The French drains, granular subbase and base layers should extend to the swales.

As the design progresses and the anticipated dewatering rates become known, GEMTEC could provide additional details for the design of the drainage system (i.e. pipe size, spacing, etc.).

The manufacturers of the perforated pipes should be consulted regarding depth and construction traffic (for areas where the French drains will cross the access roads) to ensure proper pipe material is selected.

5.3 Pavement Structure (Parking Area)

For the proposed car (light vehicle) parking lot, the following minimum pavement structure is suggested:

- 50 millimetres of asphaltic concrete, over
- 150 millimetres of OPSS Granular A base, over
- 300 millimetres of OPSS Granular B Type II or III subbase

The asphaltic concrete surface should consist of one layer of Superpave 12.5 (Traffic Level B) incorporating PG 58-34 asphalt cement.

For any access roadways, parking areas and loading bays which will be used by heavy trucks (including fire trucks), the following minimum pavement structure is suggested:

- 100 millimetres of asphaltic concrete comprising 40 millimetres of Superpave 12.5 incorporating PG 58-34 asphalt cement placed over 60 millimetres of Superpave 19.0 asphaltic concrete incorporating PG 58-34 asphalt cement), over
- 150 millimetres of OPSS Granular A base, over
- 450 millimetres of OPSS Granular B Type II

The granular thicknesses given above assume that the subgrade surfaces are prepared as described in this report. If the subgrade surface is disturbed or wetted due to construction operations or precipitation, the granular thicknesses given above may not be adequate and it may be necessary to increase the thickness of the Granular B Type II subbase. The contractor should be made responsible for their construction access.

5.4 Outdoor Area Granular Structure

For the proposed outdoor storage area which will be accessed primarily by heavy trucks, the following minimum granular structure is suggested:

- 150 millimetres of OPSS Granular A base, over
- 450 millimetres of OPSS Granular B Type II

The granular thicknesses given above assume that the subgrade surfaces are prepared as described in this report. If the subgrade surface is disturbed or wetted due to construction operations or precipitation, the granular thicknesses given above may not be adequate and it may be necessary to increase the thickness of the Granular B Type II subbase. The contractor should be made responsible for their construction access.

The gravel structure should be graded as required to restore the surface grading.

5.5 Granular Material Placement

The granular base and subbase materials should be compacted in maximum 200 millimetre thick lifts to at least 99 percent of the standard Proctor maximum dry density value.

6.0 ADDITIONAL CONSIDERATIONS

6.1 Subsurface Investigation

As indicated above, the summary of subsurface conditions and preliminary geotechnical comments for the office/receiving building are based on available information within about 100 metres of the proposed building location. The geotechnical guidelines provided in this report are considered suitable for the design of the proposed development. It is suggested that additional boreholes be advanced in the vicinity of the building and septic footprint prior to construction to confirm the depth of fill material at these locations.

6.2 Construction Observation

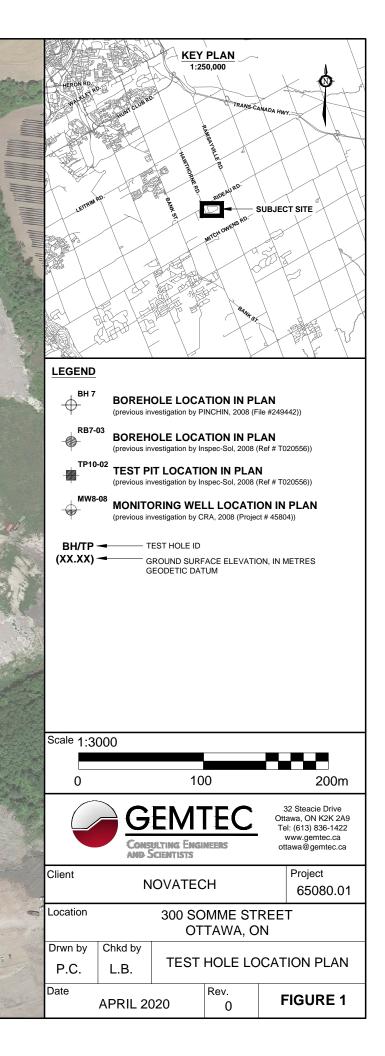
The engagement of the services of GEMTEC during construction is recommended to confirm that the subsurface conditions at the proposed structure does not materially differ from those given in the report and that the construction activities do not adversely affect the intent of the design.

The subgrade for the proposed building and septic system should be inspected and approved by GEMTEC personnel to ensure that the subgrade is suitable. Inspection and testing should be carried out during the placement of imported, granular fill to ensure that the gradation and compaction specifications meet the guidelines provided in this report.

6.3 Closure

We trust this report provides sufficient information for your present purposes. If you have any questions concerning this report, please do not hesitate to contact our office.

Luc Bouchard, P.Eng., ing.



APPENDIX A

Test Hole Location Plan, Figure 1

Report to: Novatech Project: 65080.01 (April 24, 2020)

APPENDIX B

Record of Test Hole Sheets

Report to: Novatech Project: 65080.01 (April 24, 2020)

REFER	ENCE N	o.:	T020556-A1	·						ENCI	_OSU	RE N	lo.:			4	
				BOREHOLE No.:							BC	ORE	HC	DLE	LC	G	
	JSPE	C*	SOL	ELEVATION:	91.25	<u>m</u>					Pa	ige:	1	0	f _1		
CLIE	ENT: R.	W.Tor	nlinson Ltd.											END	2		
PRC	JECT:	Geote									SS Sp ST Sh						
LOC	ATION:	Lot 2	6 and 27, concession 6, 0	Ottawa, Ontario							RC Ro						
DES	CRIBED	BY:	B.Beveridge	CHECKED BY:		J.Ber	nett			⊥ o		ater Le		/0/ \			
DAT	E (STAR	T):	October 23, 2008	DATE (FINISH):	(October	23, 20	800		ш	Att	ater co erberg	g limit	s (%)			
SC	ALE		STR	ATIGRAPHY		SA	MPLE			• 1	Sp N Pe	netrati lit Spo netrati	oon sa on Ind	ample lex ba	sed on		
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	CRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Organic Vapou ppm or %LEL	Penetration Index / RQD	∆ (□ (S	Cu Sh Cu Sh Se Sh Po	ear St nsitivi ear St cket P	rengti rengti ty Val rengti enetr	h bas h bas ue of h bas omete	ed on ed on Soil ed on er	Lab V	ane
meters	91.25		GRO	OUND SURFACE			%	ppm	Ν	10	SCA 50kPa 20	ALE FO		EST R 150k	ESUL Pa 70	TS 200kPa	3 90
-				avel, asphalt fragments and								<u> </u>	ĬĬ				
- 1.0			sand, trace oxidation, very stiff, greyish brown, moist SS1 67 FILL- silty clay, some gravel and sand, trace organics and oxidation, hard, greyish brown, moist SS2 67														
2.0	89.73				X	SS2	67		14		•	-					
- - - - - 3.0			-some trace of gravel to stiff, less organics		6	•						_					
-	87.44		-trace to some sand, m		4	•	-										
_ 4.0	86.68		wet	vel, very loose, brownish grey,	Å	SS 5	75		3	•	4						
5.0	85.92		SANDY CLAY- some gr		10 R	•		•				_					
6.0	85.89		brownish grey, wet	avel, trace organics, very stiff,		SS7											
				uger Refusal umed Bedrock												+	
- 7.0 -													_				
- 8.0																	
9.0																	
- - - 10.0																	
- 11.0																	
12.0																	
E 12 O												-	-				
- 13.0																	
NOTES	:	I								·							

REFER	ENCE N	o.:	T020556-A1		_					ENCL	.osu	RE N	lo.:			5	
1				BOREHOLE No.:E	36-2	2					вс	RE	HC	DLE	ELO	C	
i N	JSPI		SOL	ELEVATION: 90	.50	m									of		
CLIE		W Tor	nlinson Ltd.	<i>b</i>								<u> </u>	EG				
1			- h - i l l ti ti ti								SS Sp T Sh						
1	-		6 and 27, concession 6, 0								RC Ro						
				CHECKED BY:						Ţ	Wa	ater Le	evel				
				B DATE (FINISH):						°	Att	ater co erberç) limits	s (%)			
SC	ALE		STR	ATIGRAPHY	Τ	SAM	NPLE	DATA		• •	Sp	lit Spo	on sa	mple			
		È				_		ELő	<u> </u>	• •	Dyi	namic	Cone	samp			
Depth BGS	Elevation (m)	Stratigraphy		CRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Organic Vapour ppm or %LEL	Penetration Index / RQD	□ (S ▲	Sh Po	ear St nsitivif ear St cket P	rength ty Valu rength enetre	n bas ue of n bas omet	ed on Soil ed on er	Lab \	Vane
meters	90.50		GRO	OUND SURFACE			%	ppm	Ν	10	SCA 50kPa 20	LE FO 100 30 4	DR TE kPa 0 50	EST F 150k		LTS 200kP	'a 90
-		\otimes	FILL- silty clay, some gr organics, hard, brown, g	avel and asphalt fragments, trace								ļ,					
		\bigotimes	organics, nard, brown, y	groy, moist						+						+	
- 1.0					X	SS1	67		23		•					_	
									_		+			_		+	
2.0			-becomes hard to very	Stiff	Å	SS2	21		R							_	
					∇	SS3	13		15						+		
3.0	87.40	\bigotimes												_			
-	07.40		SILTY CLAY- some sar stiff, grey, brown moist	nd and gravel, trace organics, very	X	SS4	50		17		•			_	-+	+	
E 4.0	86.69	<u> M</u>		nd and gravel, trace oxidation,	F										_		
- ⁻			stiff, grey, brown, moist		Å	SS5	34		11	-	4			-		-	
	85.93		SANDY SILT- some gra moist	avel and organics, compact, grey,	N	SS6	50		12								
- 5.0			moist								+	+		_	+-	_	
					X	SS7	0		R						-	_	
6.0	84.40 84.22		-becomes compact to d	ense ravel, very stiff, brownish grey,	Ē	SS8	25		R		+	•					
-	04.22		moist		/												
- 7.0			A	d of borehole uger Refusal													
			Pres	sumed Bedrock									_				
8.0															_		
-												-					
§ 9.0											_					+	
										-							
												_					
- 10.0																	
11.0																	
											_						
12.0																	
															_		
[- 13.0																	
												_				_	
	:						I										
· • · · · · · · · · · · · · · · · · · ·																	

ìN	JSPI	E C *	SOL		EHOLE No.: ATION:										EH(ſ
						91.0	54						۲	2.	1			1	
CLIE	ENT: <u>R</u>	W.Tor	mlinson Ltd.		· · · · · · · · · · · · · · · · · · ·						_		ss s		LEC	5ENI	נ		
PRC	JECT:	Geote	echnical Investigation										ST S	shelby	Tube				
			6 and 27, concession 6,										RC F						
			B.Beveridge									₹ v		Vater Vater o	Level conten	t (%)			
DAT	E (STAR	T): _	October 31, 200	8	DATE (FINISH):		C	ctober 3	31, 20	800			4 A	tterbe	erg lim	its (%)		
SC	ALE	>	STRATIGRAPHY		MONITOR WELL			SAN	IPLE				N F	Split S Penetra	ation i poon s ation Ir ic Con	sample idex ba	e ased o		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDR		93.06- 92.96-	F	State	Type and Number	Recovery	Organic Vapour ppm or %LEL	Penetration Index / RQD	∆ □ S	Cu S Cu S S F	hear hear ensiti hear ocket	Streng Streng vity Va Streng Pene	oth bas oth bas alue o oth bas trome	sed on sed on f Soil sed on ter	ו Lab	Van
neters	91.84		GROUND SURF	ACE					%	ppm	Ν	10	50kPa		FOR 00kPa 40	TEST 150	RESU	LTS 200kF	Pa 90
	and the second	\otimes	FILL- silty clay and san	id, trace			\square					Ĩ	20		40	50 0			
- 1.0			gravel, asphalt fragme organics, very stiff, bro grey, moist	nts and wnish	0.00-		\mathbb{H}	SS1			26			•					
	90.32	\otimes					В												
2.0			FILL- silty clay, some s asphalt fragments, trac oxidation, green brown	e			М	SS2			55					•			
	89.55		moist		1 🛛 🕅		Μ	SS3			R			+	+			-	
3.0	88.79 88.49		FILL- silty clay, some g trace organics, grey br moist				A	SS4			7							_	
	00.49	H	FILL- silty clay, some s gravel, grey, moist	and trace			Д	004			ſ	-		┦					_
4.0			SILTY CLAY- trace gra root matter, stiff, brown		4.27 — WL 4.40 ∽	¥⊗	Д	SS5			5	• 4		+					_
5.0	87.27 87.19 87.06	ŤŤ	red / black, moist -becoming stiff to firm SANDY SILT- loose, b		4.88- 5.18-		\square	SS6			7	•							
			grey, wet SILTY CLAY- some sa		0.10		M	SS7			7	•			-				_
6.0	85.74		greenish brown, wet SILTY SAND- , trace c	lay,			Ø	SS8			10	•							
7.0			loose, blackish grey, lo SILTY SAND- loose bl grey, wet		6.71 <i>—</i> 7.01 <i>—</i>														
	84.52		SANDY SILT- some gr trace clay, very dense,	avel, grey, wet			\mathbb{A}	SS9			R								
8.0	83.81	<u> </u>	End of Boreho Auger Refusa		8.03-		h						-		-			_	_
			Presumed Bedr															_	
9.0																-			
														-		+		-	
10.0																		$ \downarrow$	
														_	_	-		-+	
																			-
11.0																_		_	
													_						
12.0																-		+	
																	-	_	
13.0																			
																		+	
OTES	S:	1											I			-	<u> </u>		

		J	T020556-A1							ENC	1050		10.:			1	
				BOREHOLE No.:	<u>B6-4</u>						в	ORE	ЕНС	JLE	E LC	G	
l i l	JSPE	C*	SOL	ELEVATION: 8	9.06	m					P	age:	1	_ C	of _1		
CLIE	INT: R.	W.Tor	nlinson Ltd.								<u> </u>	plit Sp		END	2		
PRC	JECT:	Geote	chnical Investigation									helby 1					
			6 and 27, concession 6, 0									ock Co					
				CHECKED BY:						¥ ∘		/ater L /ater co		(%)			
	E (STAR	T):	October 27, 2008	DATE (FINISH):		October	27, 20	008		•	N P	tterber enetra	tion In	idex b	ased o	חט	
SC	ALE		STR	ATIGRAPHY	_	SAN			1		N P	plit Sp enetrati ynamic	ion Inc	dex ba	ised on	J	
Depth BGS	Elevation (m)	Stratigraphy		CRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Organic Vapour ppm or %LEL	Penetration Index / RQD	∆ □ S	CuS CuS S P	hear S hear S ensitivi hear S ocket F	trengt trengt ity Va trengt Peneti	th bas th bas lue of th bas romet	ed on ed on Soil ed on er	Lab V	/ane
meters	89.06	-191513		OUND SURFACE			%	ppm	N	10	50kPa 20	ALE F	OR 11 0kPa 40 5	=STF 150k	(ESUL (Pa) 70	200kPa 80	<u>90</u>
			SANDY SILT- some org greenish grey, moist	anics, trace gravel, very loose,	Х	SS1	58		7			-		-		+	
- 1.0																_	
-	87.35					SS2	17		6	•				\square		_	
- 2.0	87.23		SILTY CLAY- some san	d, gravel and organics, trace	ĥ	002										1	
			En	d of Borehole Iger Refusal	_							+	-			+	_
- 3.0				umed Bedrock							_				\mp	1	-
-																+	+
- 4.0															~	_	
												+			+		
															_	_	
- 5.0 -															-+	-	
															_	_	
- 6.0																	
-															\rightarrow	+	
- 7.0								-			_						
-											_		-		\rightarrow		
8.0																	
F													-		+		
- 9.0																\mp	_
																+	
- 10.0												-		\square		—	_
-																	_
9.0 10.0 11.0 12.0 13.0														\square			_
-																	
_ 12.0																	
-														\vdash		+	
⊢13.0 _																	
	•.																
NOTES) .																
									-								

		J	T020556-A1							ENC	.051	JRE N	0.:	_	21		
				BOREHOLE No.:	RB7-	03					B	ORE	но	LE	LO	G	
l it	JSPE	C *!	SOL	ELEVATION:	91.14	m					Ρ	age:	1	of	_1_		
CLIE	NT: R	W.Ton	nlinson Ltd.	0								Ī	EGE				
			chnical Investigation									Split Spo Shelby T					
			6 and 27, concession 6, 0									Rock Co					
DES	CRIBED	BY: _	B.Beveridge	CHECKED BY:		J.Ber	nnett			⊥ ∘		Vater Le Vater co		()			
DAT	E (STAR	T):	October 22, 2008	DATE (FINISH):	(October	22, 20	008			Α	tterberg enetrat	limits	(%)	od on		
SC	ALE		STR	ATIGRAPHY		SA	MPLE			•	S I P	plit Spo enetrati	on sar on Inde	nple x base	ed on		
Depth BGS	Elevation (m)	Stratigraphy		CRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Organic Vapour ppm or %LEL	Penetration Index / RQD	∆ (□ (S ▲	Cu S Cu S S P	ynamic hear St hear St ensitivi hear St ocket P	rength rength ly Valu rength enetro	based based e of S based meter	t on Fie f on La oil t on	b Var	e
meters	91.14			OUND SURFACE			%	ppm	Ν	10	SC 50kPa 20	CALE FO	DR TES kPa 0 <u>50</u>	ST RE 150kPa 60	SULTS 200 70	S 0kPa 809	0
		\bigotimes	FILL- asphalt and concr sand, dense, brown bla	ete fragments, some gravel a ck, dry	ind						_	_					
Ē		\otimes															
- 1.0 -					X	SS1	55		39		+					-	
2.0					X	SS2	30		8	•							
Ţ			-seepage at 2.60m dep	h	X	SS3	42		15		•						
3.0	88.09		SILTY SAND- trace gravel, organics, clay, very loose, grey, wet SS4 38								_						
- 4.0			0.01		E												
- 4.0					Х	SS5	0		50+		+		•		+	-	
	86.45		En	d of Borehole	×	SS6	50		R		_				1-		
- 5.0 -				iger Refusal umed Bedrock											+-	_	
											_				1		
- 6.0											╋			-			_
E											-				—		
7.0											-						
F														_	+		
8.0																	
-											-			-	+-	_	
9.0																	
											+						
- 																_	
											+			+	+	-	
2 - 2 - 11.0												_					-
															+		
											-				1	-	
12.0																	
13.0 C																	
9.0 9.0 10.0 10.0 11.0 11.0 11.0 11.0 12.0 NOTES	5.																

	lo.:T020556-/	<u>A1</u>		ENCLOS	URE No.:	3	3
Ŵ	INSPEC-SOL	TEST PIT No.: TP6-01 ELEVATION: 302.56 ft		TEST	PIT R	EPOF	RT
CLIENT: PROJECT: LOCATION: DESCRIBED B	INSPEC-SOL R.W. Tomlinson Lt Geotechnical Inve Lot 26 and 27, cor Y: B.Beveridge J.Bennett Elevation 0 (ft) 0 Solution 0 FIL browner	TEST PIT No.: TP6-01 ELEVATION: 302.56 ft d.	GS Cu CHEM OVC INF ▼	TEST	AMPLE (6 AMPLE (6 AMPLE (6 TEST CAL ANAL IC VAPOF ATION	REPOR environmer geotechnic YSIS	RT ntal) al)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	287.06	LTY CLAY -trace organics, brownish green, wet /ater infiltration was observed at 4.6m BGS LTY SAND- trace cobbles, trace organics, greyish black, we LTY CLAY- trace cobbles, grey, wet End of Test Pit	et				

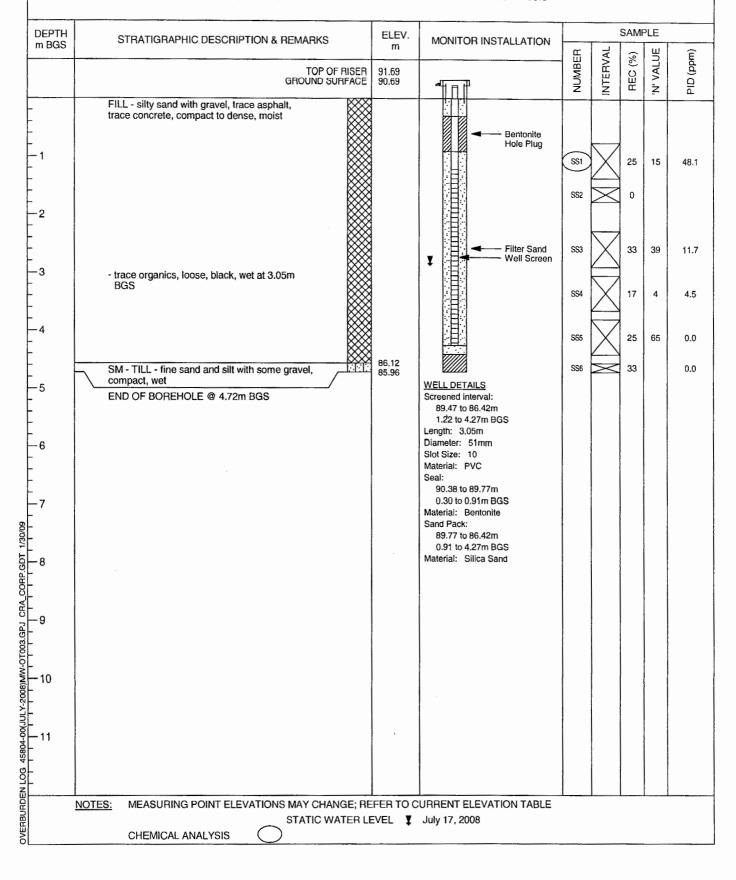
REFERENCE No.:	A1		ENCLOS	URE No.:	3	4
INSPEC-SOL	TEST PIT No.: TP6-02 ELEVATION: 297.11 ft		TEST	PIT F	REPOF	RT
CLIENT: R.W.Tomlinson L	td.	LEGE	ND			
	estigation		- GRAB S - GRAB S			
	ncession 6, Ottawa, Ontario	Cu	- SHEAR 1- CHEMIC	TEST		
	DATE:November 10, 2008	OVC	- ORGAN			NTRATION
CHECKED BY: J.Bennett		INF ¥	- INFILTR - WATER			
Depth Elevation 8			Sample	OVC	Tests	¥ /
DepthElevationOFeetMetres(ft)E297.110	STRATIGRAPHY		Type & Number	ppm	Туре	INF
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LL- silty clay, some cobbles, brick, asphalt and concrete fragn ack, moist	nents,				

REFERENCE No.: T020556-A1			ENCLOS	URE No.:	3	86
INSPEC-SOL	TEST PIT No.: TP3-01 ELEVATION: 288.81 ft	-	TEST	PIT R	EPO	रा
CLIENT: R.W.Tomlinson Ltd.		LEGE	END			
PROJECT: Geotechnical Investiga			- GRAB S - GRAB S			
LOCATION: Lot 26 and 27, conces	sion 6, Ottawa, Ontario	Cu	- SHEAR 1 - CHEMIC	TEST		
	DATE:November 10, 2008	OVC	- ORGAN	IC VAPOF		NTRATION
CHECKED BY: <u>J.Bennett</u>	DATE:		- INFILTR - WATER			
Depth Elevation 6 (ft) 5 Feet Metres 288.81	STRATIGRAPHY		Sample Type & Number	OVC ppm	Tests Type	⊻ INF
	CLAY- some organics,brown, moist	·····	Tumber		туре	
	End of Test Pit		-			
	Shovel Refusal Assumed Bedrock					
5 1.5						
6 —						
- 2.5						
9 —						
$ \begin{array}{ccccccccccccccccccccccccccccccccc$						
					1	

REFERENCE	No.: <u>T020</u> 5	556-A1						ENCLOS	URE No.:	4	0
Ŵ	INSPEC-SO	L			TP5-0 298.82			TEST	PIT R	EPOF	RT
CLIENT:	R.W.Tomlinso	on I td					LEGE	ND			
	Geotechnical		tion					- GRAB S - GRAB S			•
	Lot 26 and 27						Cu	- SHEAR	TEST		ai)
	BY: B.Beveridge						OVC	I - CHEMIC - ORGAN	IC VAPOF		TRATION
	: J.Bennett						-	- INFILTR - WA T ER			
Depth	Elevation of the first field of the field of			STRAT	GRAPHY			Sample Type &	OVC	Tests	Ţ
Feet Metres	(ft) E 298.82 S							Number	ppm	Туре	INF
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		organic	ty clay, some bri s, brownish blac	k, moist ved at 2.5		avel, cobbles, tr	ace				

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1


PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorne and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: MW8-08 DATE COMPLETED: July 15, 2008 DRILLING METHOD: HSA FIELD PERSONNEL: T. Saunders

				-			eh	ole	e: BH1	1	D)//T	
				Project #			ingl	Inve	atigation	Logged	By: WI	
		PINCHIN		Project:					-			
									g and Science, Inc.			
				Drill Date					Ottawa, Ontario	Project I	longar	• \\/T
		SUBSURFACE PROFIL	F	Dilli Dale		Jem	Dei	17,2	SAMPLE	FIOJECI	nanayer	. •• •
			L						SAWFEL			
Depth (m)	loc	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-values	SPT N-values Q Q Q Shear Strength	■ Lab Analysis	Moisture (%)	Plasticity Index
Dept	Symbol		Eleva	Moni Well	Sam	Sam	Reco	SPT	▲ kPa 50 100 150 200	Lab /	Moisi	Plast
0-	~ ~	Ground Surface	0.00	•								
-		Organics ~ 200 mm Fill Brown silt, trace sand and clay,	-0.20		SS	1	40	5				
		loose, frozen	-0.76	-								
1		Dense Sand Grey sand and gravel, trace silt, dense, damp	-1.07	tailed	SS	2	60	44				
_		Grey sand, some silt, very loose,	-1.52									
- 2		moist	-2.29	No Monitoring Well Installed	SS	3	10	3				
-		Dark brown sand, wet			ss	4	5	2	-			
3			-3.66		SS	5	70	4				
- 4 - - 5		End of Borehole Borehole terminated at 3.66 mbgs. At drilling completion, the borehole was open to 3.66 mbgs and water was measured at 2.44 mbgs.		- 포								
-	Con	tractor: Strata Drilling Group							Grade Elevatior	n: NA		
	Drill	ing Method: Hollow Stem Auger	/ Split	Spoon					Top of Casing E	Elevation:	NA	
	Well	Casing Size: NA							Sheet: 1 of 1			

				-			eh	ole	e: BH2					
				Project #	: 249	442				Logged	B <i>y:</i> WT			
		PINCHIN		Project: Geotechnical Investigation										
Client: Partner Engineering and Science, Inc. Location: Somme Street, Ottawa, Ontario														
				Drill Date	: Dec	cem	ber ′	17, 2		Project I	<i>lanager:</i> WT			
	1	SUBSURFACE PROFILI	E	1	ļ	1			SAMPLE					
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-values	SPT N-values R Q Q Shear Strength kPa 50 100 150 200	Lab Analysis	Moisture (%) Plasticity Index			
0-	****	Ground Surface	0.00	Ŧ										
		\~ 50 mm			SS	1	80	64						
- - 1-		Fill Brown silty sand and gravel, trace clay, very dense, frozen Brown sand, some silt, trace clay, compact, moist	-0.76		SS	2	70	21						
-					SS	3	60	14						
2-		<u></u>	-2.29	alled										
- - - 3-		Sand Brown sand, very loose, wet	-3.05	No Monitoring Well Installed	SS	4	0	3						
-		Start Dynamic Cone Penetration Test (DCPT)		toring	SS	5	NA	4						
				Moni	SS	6	NA	11						
4-				Ž	SS	7	NA	9						
4-					SS	8	NA	6						
-					SS	9	NA	6						
5-					SS	10	NA	8						
-					SS	11	NA	5 5						
-					SS SS	12 13	NA NA	5 6						
6-	ļ		-5.94	. ↓	SS			>50		••••••				
		End of Borehole Borehole terminated at 5.94 mbgs due to DCPT refusal on probable bedrock. At drilling completion, the borehole was open to 5.94 mbgs and water was measured at 2.13 mbgs.												
	Con	<i>tractor:</i> Strata Drilling Group	1	1	1	<u> </u>	I	I	Grade Elevation	n: NA	<u>ı </u>			
	Drill	ing Method: Hollow Stem Auger	/ Split	Spoon					Top of Casing E	levation:	NA			
	Well	Casing Size: NA	Sheet: 1 of 1											
L														

				Log o	f B	or	eh	ole	e: BH3			
				Project #	: 249	442				Logged	B <i>y:</i> WT	
		PINCHIN'		Project: (Geote	echn	ical	Inve	estigation			
	(\cdot)						-		g and Science, Inc.			
									Ottawa, Ontario			
				Drill Date	: Dec	cem	ber ´	17, 2		Project N	lanager: W	Т
			E						SAMPLE			
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-values	SPT N-values	Lab Analysis	Moisture (%) Plasticity Index	רומסווטוע וויעסא
0-	\sim	Ground Surface	0.00	•								
-		~ 50 mm Fill Brown silty sand and gravel, compact, frozen			SS	1	60	14				
		Compact	-0.76	No Monitoring Well Installed -	SS	2	30	11				
-		Organics seam (~ 50 mm)	-1.30	No Mon		2	30					
-		Silty sand, trace clay, compact, moist	-1.83		SS	3	50	>50		*** 		
2		End of Borehole Borehole terminated at 1.83 mbgs due to auger and split spoon refusal on probable bedrock. At drilling completion, a wet cave was measured at 1.68 mbgs, and water was measured at 1.52 mbgs.										
3-												
	Con	tractor: Strata Drilling Group							Grade Elevation	n: NA		
	Drill	ing Method: Hollow Stem Auger	/ Split	Spoon					Top of Casing E	Elevation:	NA	
		Casing Size: NA							Sheet: 1 of 1			
		•										

				Log o	f B	or	eh	ole	e: BH4					
				Project #:	249	442				Logged By	: WT			
		PINCHIN		Project: Geotechnical Investigation										
	(Client: Partner Engineering and Science, Inc.										
				Location:	Son	nme	Stre	eet,	Ottawa, Ontario					
				Drill Date	: Dec	cem	ber í	17, 2	2019	Project Ma	nager: WT			
		SUBSURFACE PROFILI	E	1	ļ				SAMPLE					
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-values	SPT N-values ■ २ 2 Shear Strength kPa 50 100 150 200	Lab Analysis	Moisture (%) Plasticity Index			
0-	~ ~	Ground Surface	0.00	*										
-		Organics ~ 100 mm Fill Brown silty sand and gravel, trace clay, loose, frozen	-0.76		SS	1	50	8						
1		Compact		Installed	SS	2	80	27						
- 2- -			-2.29	No Monitoring Well Installed	SS	3	65	11						
-		Silt Grey silt, some clay, trace gravel, soft, moist		ON INTERNET	SS	5	70	4						
3-		No gravel	-3.05											
-		End of Borehole	-3.66	-	SS	6	70	2						
4		Borehole terminated at 3.66 mbgs. At drilling completion, the borehole was open and dry.												
	Con	tractor: Strata Drilling Group	<u> </u>	1	1	<u> </u>	<u> </u>	I	Grade Elevatior	<i>n:</i> NA	I			
	Drill	ing Method: Hollow Stem Auger	/ Split	Spoon	Elevation: N/	4								
	Well	Casing Size: NA							Sheet: 1 of 1					

				Log o	f B	or	eh	ole	e: BH5					
				Project #	: 249	442				Logged By: WT				
		PINCHIN	Project: Geotechnical Investigation											
1	ľ			Client: Pa	Client: Partner Engineering and Science, Inc.									
				Location	Son	nme	Stre	eet,	Ottawa, Ontario					
				Drill Date	: Dec	cem	ber '	17, 2		Project Manager: WT				
		SUBSURFACE PROFIL	E	1		1			SAMPLE					
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-values	SPT N-values	Lab Analysis Moisture (%)				
0-	\sim	Ground Surface	0.00	•										
-	Ĩ	Organics ~ 150 mm	-0.15	$+$ \top										
-		Fill Brown silty sand and gravel, dense, frozen	-0.76		SS	1	40	30						
-		Trace asphalt, compact												
1			-1.52	stalled	SS	2	50	22						
- 2-		Trace to some silt, loose, wet	-2.29	No Monitoring Well Installed	SS	3	10	6						
-		Compact	2.20	- × 2	SS	SS 5 25 13								
3-			-3.05											
-		Loose	-3.66		SS	6	15	7						
4 5		End of Borehole Borehole terminated at 3.66 mbgs. At drilling completion, the borehole was open to 3.66 mbgs, and water was measured at 1.98 mbgs.												
	Contractor: Strata Drilling Group Drilling Method: Hollow Stem Auger / Split Spoon								Grade Elevation Top of Casing E					
	Well	Casing Size: NA							Sheet: 1 of 1					

				Log o	f B	or	eh	ole	e: BH6					
				Project #	: 249	442			Logged By: WT					
		PINCHIN		Project: (Geote	echn	ical	Inve	estigation					
	Location: Somme Street, Ottawa, Ontario													
				Drill Date	: Dec	cem	ber ′	17, 2	2019 Project Manager: WT					
		SUBSURFACE PROFILI	E						SAMPLE					
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-values	SPT N-values Shear Strength KPa 50 100 150 200 Moisture (%) Hasticity Index					
0-	~~~	Ground Surface Organics	0.00	₹										
_	\sim	~ 150 mm	-0.15											
-		Fill Brown silty sand and gravel, loose, frozen			SS	1	25	8						
			-0.76											
1-		Grey silt, some sand, trace gravel and clay, loose, moist		y Well Install	SS	2	20	5						
-			-1.52	No Monitoring Well Installed										
- 2-		Grey sand and gravel, trace silt, very loose, wet			SS	3	20	4						
		End of Borehole	-2.29	. ↓										
		Borehole terminated at 2.29 mbgs due to auger and split spoon refusal on probable bedrock. At drilling completion, the borehole was open to 2.29 mbgs, and water was measured at 0.91 mbgs.												
-														
-														
-														
	Con	tractor: Strata Drilling Group	<u> </u>	Ι		1	1	1	Grade Elevation: NA					
		ing Method: Hollow Stem Auger	/ Split	Spoon					Top of Casing Elevation: NA					
		Casing Size: NA		1 · · · ·					Sheet: 1 of 1					

				Log o Project #			eh	ole	e: BH7	ogged l		
				Project: (ical	Inve		bygeu i	<i>Jy.</i> v 1	
		PINCHIN'		-					g and Science, Inc.			
									Ottawa, Ontario			
				Drill Date	: Dec	cem	ber [·]	17, 2	2019 P	roject N	lanager	: WT
		SUBSURFACE PROFILI	E						SAMPLE			
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-values	SPT N-values ■	Lab Analysis	Moisture (%)	Plasticity Index
De	Syr			Mo We	Sar	Sar	Rec	SP	50 100 150 200	Lak	δ	Pla
0		Ground Surface Fill Brown silty sand, loose, frozen	0.00		SS	1	60	4				
- 1- -		Grey sand and gravel, very dense, wet	-0.76	stalled	SS	2	10	>50		•		
- - 2-		Loose	-1.52	No Monitoring Well Installed	SS	3	30	6				
-		Grey silty sand and gravel, compact, wet	-2.29	2	SS	4	65	19				
3-			-3.05						- · · · · · · · · · · · · · · · · · · ·			
-		Brown sand and gravel, trace silt, very dense, wet	-3.35		SS	5	70	>50		•		
- - 4 - - -	~~~~	End of Borehole Borehole terminated at 3.35 mbgs due to auger and split spoon refusal on probable bedrock. At drilling completion, the borehole was open to 3.35 mbgs, and water was measured at 2.29 mbgs.		- ▼ 								
	Con	tractor: Strata Drilling Group	1	1	1	I	<u> </u>	<u> </u>	Grade Elevation: N	IA		
	Drill	ing Method: Hollow Stem Auger	/ Split	Spoon					Top of Casing Elev	vation:	NA	
	Well	Casing Size: NA							Sheet: 1 of 1			

civil geotechnical environmental field services materials testing civil géotechnique environnementale surveillance de chantier service de laboratoire des matériaux

