

FINAL REPORT Phase II Environmental Site Assessment

159 Forward Avenue, Ottawa, Ontario

Submitted to:

City of Ottawa 5th Floor 110 Laurier Avenue West Ottawa, ON K1P 1J1

Submitted by:

Golder Associates Ltd.

1931 Robertson Road Ottawa, Ontario, K2H 5B7 Canada

+1 613 592 9600

19120465

September 2019

Distribution List

1 e-copy - City of Ottawa

1 e-copy - Golder Associates Ltd.

Executive Summary

Golder Associates Ltd. (Golder) was retained by the City of Ottawa (City) to conduct a Phase II Environmental Site Assessment (Phase II ESA) on the property located at 159 Forward Avenue, Ottawa, Ontario (hereinafter collectively referred to as the "Site"), as shown on the attached Figure 1.

The Phase II ESA was initiated in August 2019 and was completed following recommendations to conduct a Phase II ESA in Golder's Phase I ESA report dated May 2019, entitled "*Phase I Environmental Site Assessment, 159 Forward Avenue, Ottawa, Ontario*". This Phase II ESA investigation was conducted for due diligence purposes.

Based on the information obtained during the Phase I ESA conducted at the Site, the following issues of Areas of Potential Environmental Concern (APECs) were identified on the Site:

- APEC 1 Potential for soil and/or groundwater impacts in the vicinity of the former heating oil underground storage tanks which was located at the rear (east side) of the Site building and which was removed in 2002
- APEC 2 Potential for poor quality fill to be present across the Site outside of the Site building
- APEC 3 Potential for soil and/or groundwater impacts related to a transformer located on the southwest corner of the Site
- APEC 4 Potential for soil and/or groundwater impacts in the northeast corner of the Site as a result of an off-site release of fuel oil and a former fuel product wholesaler

In order to address the above issues of potential environmental concern, a Phase II ESA was completed at the Site and consisted of six boreholes, three of which were completed as monitoring wells.

Based on the soil analytical results, the fill samples collected from three boreholes located on the south and east sides of the Site (boreholes 19-02, 19-03 and 19-06) had polycyclic aromatic hydrocarbons (PAHs) and/or metals impacts above the applicable Ministry of Environmental, Conservation and Parks (MECP) Table 7 Standards combined with the presence of the debris and black staining in the fill at locations across the Site, it is considered that widespread fill impacted by PAHs and/or metals and containing debris is present across the Site at levels above the MECP Table 7 Standards. The extent of the impacted fill is shown on Figure 3 and covers the exterior portions of the Site (approximately 870 m² in area). Based on the thickness of the fill material which was found to be 2.4, 1.1, 0.62, 0.72 and 0.28 m at boreholes 19-02 through 19-06, respectively, the average fill thickness at the Site was estimated to be 1.0 m. As such, the estimated volume of impacted fill present at the Site is 870 m³.

The highest concentration of PAHs were found in the fill at borehole 19-02 at concentrations up to 15 times of the applicable site standard. Given the groundwater level at this location was found to be within the fill, there is a possibility that PAHs may be present in the groundwater at this location. However, PAHs were not included as a chemical of concern for the groundwater analysis as the groundwater was believed to be deeper within the bedrock and PAH concentrations of this magnitude were not expected to be present in saturated overburden.

As there were no exceedances of petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and xylenes (BTEX) or polychlorinated biphenyls (PCBs) in any of the tested soil and groundwater samples, the on-Site transformer, former on-site heating oil UST and the off-Site fuel spill and former fuel product wholesaler (APECs 1, 3 and 4) do not appear to have resulted in current soil or groundwater impacts at the Site.

Considering the widespread presence of impacted fill across the Site, it is recommended that remediation or risk assessment be undertaken. In the event remediation is undertaken, it would include removal and off-site disposal of the fill material to bedrock. However, future redevelopment may require the removal of the fill material for construction purposes and as such it may be possible to complete the remediation in conjunction with the redevelopment at that time. If remediation is not undertaken, a site-specific risk assessment should be completed to evaluate potential risks to human health and the environment associated with identified contaminants. It is also recommended that groundwater sampling for PAHs be undertaken at the Site, specifically at monitoring well 19-02, to asses the potential for PAH impacted groundwater at the Site.

Table of Contents

EXE	CUTIV	E SUMMARYii
1.0	INTRO	DDUCTION1
	1.1	Background and Site Description1
	1.2	Scope of Investigation
2.0	APPL	ICABLE SITE CONDITION STANDARDS
3.0	METH	ODOLOGY AND INVESTIGATIVE TECHNIQUES4
	3.1	Borehole Drilling and Soil Sampling4
	3.2	Monitoring Well Installation4
	3.3	Groundwater Sampling5
	3.4	Sampling Location Survey5
4.0	RESU	JLTS5
	4.1	Geology and Soil Stratigraphy5
	4.2	Hydrogeological Conditions
5.0	EVAL	UATION OF RESULTS6
	5.1	Soil
	5.2	Groundwater7
	5.3	Quality Assurance and Quality Control
6.0	SUM	MARY AND CONCLUSIONS
7.0	RECO	OMMENDATIONS9
8.0	LIMIT	ATIONS

TABLES

Table 1: Areas of Potential Environmental Concern (APECs)	1
Table 2: Groundwater Levels and Elevations	5
Table 3: Soil Quality Samples	6
Table 4: Groundwater Quality Samples	7

APPENDED TABLES

Table 5: Soil Analytical Results

Table 6: Groundwater Analytical Results

FIGURES

Figure 1: Site Plan

Figure 2: Soil Exceedances

Figure 3: Extent of Impacted Fill

APPENDICES

APPENDIX A Record of Boreholes

APPENDIX B Laboratory Certificates of Analysis

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) was retained by the City of Ottawa (City) to conduct a Phase II Environmental Site Assessment (Phase II ESA) on the property located at 159 Forward Avenue, Ottawa, Ontario (hereinafter collectively referred to as the "Site"), as shown on the attached Figure 1.

The Phase II ESA was initiated in August 2019 and was completed following recommendations to conduct a Phase II ESA in Golder's Phase One ESA report dated May 2019, entitled "*Phase One Environmental Site Assessment, 159 Forward Avenue, Ottawa, Ontario*". This Phase II ESA investigation was conducted for due diligence purposes and for consideration as part of the City's potential plans for the property redevelopment.

The Phase II ESA was completed in general accordance with Canadian Standards Association (CSA) Standard Z769-00 (R2013), *Phase II Environmental Site Assessment* for the purpose of identifying contaminants of potential concern that may be present at concentrations exceeding the applicable regulatory criteria.

1.1 Background and Site Description

The Site is located at 159 Forward Avenue, Ottawa, Ontario and is currently owned by the City of Ottawa. The Site is occupied by a vacant building that was previously used as an emergency housing facility and also includes paved driveways and a private playground located on the south. The surrounding lands are occupied by residential and parkland land uses.

A Phase One ESA was completed for the Site by Golder in May 2019. Based on the information obtained during the Phase One ESA, the following issues of Areas of Potential Environmental Concern (APECs) were identified on the Site: The locations of the APECs are shown on Figure 1.

APEC	Location of APEC on the Site (as indicated on Figure 1)	PCA and Description of the Activity	Location of PCA (on-Site or off- Site)	Contaminants of Potential Concern (COCs)	Media Potentially Impacted (groundwater, soil and/or sediment)
APEC 1 Potential for soil and/or groundwater impacts in the vicinity of the former heating oil UST which was located at the rear (east side) of the Site building and was removed in 2002.	Southeast portion of the Site, behind/ east of the building.	 28. Gasoline and Associated Products Storage in Fixed Tanks High concentrations of PHCs were measured in soil and groundwater samples taken from the location of the former on-Site fuel underground storage tank (UST) during its decommissioning in 2002. 	On-Site	PHC F1- F4/BTEX	Soil and groundwater

Table 1: Areas of Potential Environmental Concern (APECs)

APEC	Location of APEC on the Site (as indicated on Figure 1)	PCA and Description of the Activity	Location of PCA (on-Site or off- Site)	Contaminants of Potential Concern (COCs)	Media Potentially Impacted (groundwater, soil and/or sediment)
APEC 2 - Potential for poor quality fill to be present across the Site outside of the Site building.	All areas of the Site outside the building footprint.	 30. Importation of Fill Materials of Unknown Quality Fill containing brick and wood pieces was documented in the fuel UST excavation and may exist Site- wide. 	On-Site	Metals, PAHs, PHCs F1- F4/BTEX	Soil
APEC 3 - Potential for soil and/or groundwater impacts related to a transformer located on the southwest corner of the Site.	Southwest corner of the Site.	 18. Electricity Generation, Transformation and Power Stations, and 55. Transformer Manufacturing, Processing or Use Current presence of a pad mounted transformer on the southwest corner of the Site. 	On-Site	PHCs F1-F4/ BTEX and PCBs	Soil and groundwater
APEC 4 - Potential for soil and/or groundwater impacts in the northeast corner of the Site as a result of an off-site release of fuel oil and a former fuel product wholesaler.	Northeast corner of the Site.	 28. Gasoline and Associated Products Storage in Fixed Tanks Fuel oil tank release and former fuel product wholesaler at adjacent property at 154 Hinchey Avenue. 	Off-Site	PHCs F1-F4/ BTEX	Soil and groundwater

In order to address the above APECs, a Phase II ESA was completed at the Site.

1.2 Scope of Investigation

To achieve the objectives of the Phase II ESA, the scope of work included:

- Drilling of six boreholes (19-01 through 19-06, inclusively) at six locations (see Figure 1) to assess the soil and groundwater quality at the Site, related to potential impacts from the APECs identified in the Phase I ESA
- Collection of soil samples during drilling for visual characterization, headspace screening or organic vapours and potential laboratory analysis. No soil samples could be collected from borehole 19-01 as the subsurface conditions at this borehole included asphalt over a thin layer of granular over inferred bedrock
- Analysis of one soil sample from each borehole excluding borehole 19-01 where a soil sample could not be collected. Analysis in soil included petroleum hydrocarbon fractions F1- F4 (PHCs F1-F4), benzene, toluene, ethylbenzene and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs) and/or metals to evaluate the soil quality at the Site
- Completion of the three boreholes (boreholes 19-01, 19-02 and 19-03) as monitoring wells (hereinafter referred to as monitoring wells 19-01, 19-02 and 19-03, respectively)
- Collection of one groundwater sample from each of the three monitoring wells for submission to an accredited laboratory for analysis of PHCs F1-F4, BTEX, and polychlorinated biphenyls (PCBs) at monitoring well 19-03
- Collection of one duplicate soil sample for analysis of the PHCs F1-F4, BTEX, PAHs and metals for Quality Assurance and Quality Control (QA/QC)
- Collection of one duplicate groundwater sample for analysis of the PHCs F1-F4, BTEX, metals and PCBs for Quality Assurance and Quality Control (QA/QC)
- One waste classification soil sample will be submitted for potential landfill disposal, as per O.Reg. 347/558
- An elevation survey of borehole and monitoring well locations using a Trimble R10 GNSS System
- Interpretation of the results and preparation of this report.

2.0 APPLICABLE SITE CONDITION STANDARDS

The soil and groundwater analytical results obtained for this Phase II ESA were compared to the standards for a non-potable groundwater condition presented in the Ontario Ministry of the Environment, Conservation and Parks (MECP) "*Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act*", dated April 15, 2011 (MOE 2011). The following was considered in selecting the applicable standards:

- The Site's latest use was residential/institutional land use and is proposed to be redeveloped with another residential building
- The Site building is supplied with municipal water. As such, non-potable groundwater conditions have been selected
- The Site is not an environmentally sensitive site as defined by Section 41, Part IX, Ontario Regulation (O.Reg.) 153/04

- The nearest water body is the Ottawa River which is located approximately 400 m north of the Site As such, the Site is not located within 30 m of a water body
- The depth to bedrock encountered during borehole drilling on-Site completed as part of the Phase II ESA was less than 2 metres below ground surface (mbgs) at more than two-thirds of the Site
- Based on field observations during the Phase II ESA, the soil is considered to be coarse-textured.

Based on the above, the applicable standards are considered to be the MECP Table 7 Standards, Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition for coarse-textured soil and Residential/Parkland/Institutional property use.

3.0 METHODOLOGY AND INVESTIGATIVE TECHNIQUES

The following sections describe the pre-field work activities and field investigation methodology employed during the Phase II ESA conducted at the Site. The field work was conducted between August 8 and 16, 2019.

Prior to initiating the fieldwork, Golder developed and implemented site-specific protocols to protect the health and safety of its employees, its subcontractors and the environment through a Site-specific Health, Safety and Environmental Plan. Prior to any intrusive investigations, Golder arranged for the completion of public and private utility clearances.

3.1 Borehole Drilling and Soil Sampling

Boreholes were advanced using a GM-100 track mounted drill rig operated by Strata Drilling Group to depths ranging from 0.44 to 3.53 mbgs. All boreholes were advanced through the overburden to practical refusal on inferred bedrock with the exception of boreholes 19-01 and 19-03 when were advanced beyond the overburden and into bedrock using air hammer techniques.

All intrusive investigations were monitored in the field by Golder field personnel. Soil samples were retrieved using split a 51 mm diameter PVC sleeve with macro sampler. Soil samples were logged as to soil type, texture, moisture content, presence of staining, odour and debris, if any. Field observations made during the borehole drilling activities are summarized in the Record of Borehole sheets provided in Appendix A. Soil samples were collected into laboratory supplied bottles, placed in coolers with ice, and where recovered soil volumes permitted, additional bagged samples were collected for soil vapour headspace readings, which were conducted in the field using a photoionization detector.

Based on field observations and soil headspace organic vapour measurements, one to two soil samples from each borehole were submitted under chain of custody documentation for laboratory analysis of PHCs F1- F4, BTEX, PAHs and/or metals with the exception of borehole 19-01 from which no soil samples could be retrieved and thus none were submitted for analysis.

3.2 Monitoring Well Installation

Monitoring wells were completed at three boreholes (boreholes 19-01, 19-02 and 19-03) by installing 1.5 m long screen (32 millimetre (mm) slotted schedule 40 PVC screens) and solid riser. The annular space from the base of the screen to up to approximately 0.3 m above the screen was backfilled with silica sand. A bentonite seal was placed from the top of the sand pack to approximately 0.3 to 0.6 metres below ground surface above which silica sand was placed up to ground surface. All monitoring wells were completed with flush mount style protective casings. The riser pipes were sealed with a protective cap.

3.3 Groundwater Sampling

Following monitoring well installation, the wells were developed by purging up to ten times the well using conventional purging methods (i.e., dedicated low-density polyethylene (LDPE) tubing and inertial foot valves). After allowing each well to recover, water levels were measured in each well and groundwater samples were collected from each well using the low flow sampling method (i.e., peristaltic pump) to reduce agitation of sediment in the water column and minimize the amount of sediment present in the groundwater samples. The groundwater samples were collected after the water quality parameters stabilized. All samples were placed directly into laboratory supplied bottles and vials, placed in coolers with ice, and submitted to for laboratory analysis of PHCs F1-F4 and BTEX for monitoring wells 19-01 and 19-02 and PHCs F1-F4, BTEX and PCBs at monitoring well 19-03.

3.4 Sampling Location Survey

The locations and elevations of the boreholes and monitoring wells were surveyed using a Trimble R10 GNSS System.

4.0 RESULTS

4.1 Geology and Soil Stratigraphy

Six boreholes were advanced at the Site as part of the Phase II ESA to depths ranging between 0.44 to 3.53 mbgs.

In general, the subsurface conditions across this Site consist of approximately 0.03 to 0.24 m of pavement structure comprised of asphaltic concrete and granular fill underlain by fill material and inferred bedrock. The fill material was present at all boreholes excluding borehole 19-01 at which bedrock was inferred to be present directly below the pavement structure and extended to the full depth of the borehole (3.53 mbgs).

The fill material extended to depths between 0.44 and 3.00 mbgs and mostly consisted of sand and gravel and was noted to contain black staining and debris including wood, drive, cinder and/or ash. A faint hydrocarbon odour was also noted in the fill at borehole 19-03. A clayey silt fill layer was also present in the upper 0.30 m of fill at borehole 19-06. Where present, the fill material extended to the full depth of the overburden.

A 0.16 m thick concrete slab was encountered in the fill at a depth of 2.5 m in borehole 19-02.

Borehole 19-01 and 19-03 were advanced through inferred bedrock using air hammer techniques. The bedrock was encountered at depths of 0.20 and 2.13 mbgs, respectively, at these locations.

4.2 Hydrogeological Conditions

The following groundwater elevations in relation to geodetic benchmark were measured on August 16, 2019:

Location	Water Level (mbgs)	Groundwater Elevation (m)		
19-01	1.99	60.70		
19-02	1.41	61.22		
19-03	1.52	60.94		

Table 2: Groundwater Levels and Elevations

Notes:

mbgs: metres below ground surface

Based on the hydrogeological study of the entire Site, local shallow groundwater flow is interpreted to be northwest.

No hydrocarbon sheens or odour were detected in the monitoring wells during groundwater sampling.

5.0 EVALUATION OF RESULTS

5.1 Soil

The following soil samples were submitted for laboratory analysis, based on field observations, soil headspace screening measurements, changes in stratigraphy and targeted depth intervals:

Sample Location	Sample Name	Sample Depth (mbgs)	Soil Type	Analyses
	19-02 SA2	1.30 – 2.00	Fill (sand and gravel, contains wood, ash cinder and black staining)	PHCs F1-F4, BTEX, PAHs and metals
19-02	19-02 SA3	2.00 – 3.00	Fill (sand and gravel, contains wood, ash cinder and black staining)	PHCs F1-F4, BTEX, PAHs and metals
	19-02 SA3 DUP (duplicate of 19- 02 SA3)	2.00 – 3.00	Fill (sand and gravel, contains wood, ash cinder and black staining)	PHCs F1-F4, BTEX, PAHs and metals
19-03	19-03 SA2	0.46 – 1.22	Fill (sand and gravel, contains wood, ash, cinder and black staining, faint hydrocarbon odour)	PHCs F1-F4, BTEX, PAHs and metals
19-04	19-04 SA1	0.18 – 0.80	Fill (sand and gravel, contains wood, ash, brick, cinder and black staining)	PHCs F1-F4, BTEX, PAHs and metals
19-05	19-05 SA1	0.24 – 0.96	Fill (sand and gravel, contains ash, cinder and black staining)	PHCs F1-F4, BTEX, PAHs and metals
19-06	19-06 SA2	0.30 – 0.44	Fill (sand and gravel, contains wood, ash cinder and black staining)	PHCs F1-F4, BTEX, PAHs and metals

Table 3: Soil Quality Samples

The soil analytical results compared to the applicable standards (MECP Table 3) are provided in Tables 5a, 5b and 5c following the text of this report while the results of the TCLP soil testing are presented in Table 5d. The laboratory certificates of analysis are provided in Appendix B.

The fill samples at three of the five tested locations (borehole 19-02, 19-03 and 19-06) had exceedances of the MECP Table 7 Standards for several PAHs and/or metals (lead). More specifically, all fill samples collected from borehole 19-02 had concentrations of several PAHs above the MECP Table 7 Standards, the fill sample from borehole 19-06 had concentrations of several PAHs and lead above the MECP Table 7 Standards and the fill sample from borehole 19-03 showed an exceedance for lead. It is noted that the PAHs levels in the fill at borehole 19-02 were notably higher with concentrations up to 15 times the applicable site standard.

The fill samples analyzed from boreholes 19-04 and 19-05 satisfied the MECP Table 7 Standards for all parameters analyzed. The concentration of PHCs F1-F4 and BTEX were either below the laboratory detection limit or below the MECP Table 7 Standards in all analyzed samples.

The soil exceedances are presented on Figure 2.

The results from the TCLP soil testing under the O. Reg. 347/558 for the soil sample collected from borehole 19-01 (sample 19-02 SA2) indicated that the leachate concentrations of the parameters analyzed met the O. Reg. 347/558 Schedule 4 Leachate Quality Criteria and that the soil is not ignitable. As such, the soil is classified as non-hazardous waste and can be disposed of at non-hazardous landfill facility, should it be required.

5.2 Groundwater

The following groundwater samples were submitted for laboratory analysis as part of the Phase II ESA:

Sample Location Sample Name So		Screened Unit	Analysis		
19-01	19-01	Bedrock	PHCs F1-F4 and BTEX		
19-02	19-02	Fill	PHCs F1-F4 and BTEX		
40.00	19-03		PHCs F1-F4, BTEX and PCBs		
19-03	19-03 DUP	Bedrock	PHCs F1-F4, BTEX and PCBs		

 Table 4: Groundwater Quality Samples

The groundwater analytical results compared to the applicable standards (MECP Table 7) are provided in Tables 6a and 6b following the text of the report. The laboratory certificates of analysis are provided in Appendix B.

The concentrations of PHCs F1-F4, BTEX and PCBs were below the laboratory detection limits and the MECP Table 7 Standards in all groundwater samples.

5.3 Quality Assurance and Quality Control

One duplicate soil sample was collected from borehole 19-02 (original sample 19-02 SA3 and duplicate sample 19-02 SA3 DUP) and submitted for analysis of PHCs F1-F4, BTEX, PAHs and metals. One duplicate groundwater sample was collected from monitoring well 19-03 (original sample 19-03 and duplicate sample DUP) and submitted for analysis of PHCs F1-F4, BTEX and PCBs.

The quality assurance assessment of the field duplicate sample results was conducted according to the document entitled Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004 (amended in July 2009 and effective as of July 1, 2011) ("Analytical Protocol").

To determine the precision of the analytical methods and field sampling procedures, blind duplicate samples were collected during soil sampling. Precision is determined by the relative percent difference (RPD) between the duplicate and original samples and was calculated as follows:

 $RPD = \frac{|x_1 - x_2|}{x_m}$ Where x_1 initial sample results x_2 duplicate sample results x_m mean of x_1, x_2

Where, x₁ and x₂ are the original and duplicate concentrations. RPDs are calculated only if the concentrations of a parameter are greater than the laboratory RDL in both the duplicate and original samples. In addition, lower precision in the RPD calculation is expected when the average of the concentrations of the analytes is less than 5 times the RDL. Therefore, RPDs were calculated for the original and duplicate sample only in cases where the average of the measured concentrations of analytes was five (5) times greater than the RDL.

The following RPD limits were considered reasonable and are based on Analytical Protocol: RPDs in soil, 30% for metals, 30% for PHCs, 40% for PCBs and 40% for PAHs and in groundwater, 30% for PHCs, and 30% for PCBs.

RPDs could not be calculated for PHCs, BTEX or PCBs in the original and duplicate groundwater samples and for PCBs and BTEX in the original and duplicate soil samples, as these results were below the laboratory RDL or less that ten times greater than the RDL. The calculated RPDs for metals in the original and duplicate soil sample were within the acceptable limits except for copper and lead which were measured at beyond the control limits at 68 % and 34%, respectively. The RPDs for PAHs in soil were up to 59% which is above the acceptable limit. Although the RPDs for metals and PAHs in the original and duplicate soil samples were outside of the acceptable limits, the results of these samples not considered to be of unreliable data given the heterogenous nature of the fill and that the RPDs for all other parameters, including those for the groundwater samples, were within the control limits.

Considering the above, the analytical data generated during the investigation are generally considered valid and representative of Site conditions at the time of the investigation and may be used in this Phase II ESA without further qualification other than as described in this report.

6.0 SUMMARY AND CONCLUSIONS

Based on the soil analytical results, the fill samples collected from three boreholes located on the south and east sides of the Site (boreholes 19-02, 19-03 and 19-06) had PAHs and/or metals impacts above the applicable MECP Table 7 Standards combined with the presence of the debris and black staining in the fill at locations across the Site, it is considered that widespread fill impacted by PAHs and/or metals and containing debris is present across the exterior of the Site at levels above the MECP Table 7 Standards. The extent of the impacted fill is shown on Figure 3 and covers the exterior portions of the Site (approximately 870 m² in area). Based on the thickness of the fill material, which was found to be 2.4, 1.1, 0.62, 0.72 and 0.28 m at boreholes 19-02 through 19-06, respectively, the average fill thickness at the Site was estimated to be 1.0 m. As such, the estimated volume of impacted fill present at the Site is 870 m³.

The highest concentration of PAHs were found in the fill at borehole 19-02 at concentrations up to 15 times of the applicable site standard. Given the groundwater level at this location was found to be within the fill, there is a possibility that PAHs may be present in the groundwater at this location. However, PAHs were not included as a chemical of concern for the groundwater analysis as the groundwater was believed to be deeper within the bedrock and PAH concentrations of this magnitude were not expected to be present in saturated overburden.

As there were no exceedances of PHCs, BTEX or PCBs in any of the tested soil and groundwater samples, the on-Site transformer, former on-site heating oil UST and the off-Site fuel spill and former fuel product wholesaler (APECs 1, 3 and 4) do not appear to have resulted in current soil or groundwater impacts at the Site.

7.0 RECOMMENDATIONS

Considering the widespread presence of impacted fill across the Site, it is recommended that remediation or risk assessment be undertaken. In the event remediation is undertaken, it would include removal and off-site disposal of the fill material to bedrock. However, future redevelopment may require the removal of the fill material for construction purposes and as such it may be possible to complete the remediation in conjunction with the redevelopment at that time. If remediation is not undertaken, a site-specific risk assessment should be completed to evaluate potential risks to human health and the environment associated with identified contaminants. It is also recommended that groundwater sampling for PAHs be undertaken at the Site, specifically at monitoring well 19-02, to asses the potential for PAH impacted groundwater at the Site.

8.0 LIMITATIONS

This report was prepared for the exclusive use of the City of Ottawa. Any use of this document by a third party is expressly forbidden. No assurance is made regarding the accuracy and completeness of these data. Golder disclaims responsibility for consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

This report is intended to provide an assessment of the potential environmental conditions of the Site as defined by the Site boundaries in Figure 1, which is defined as the property located at 159 Forward Avenue in Ottawa, Ontario.

The assessment of the environmental conditions and hazards at this Site has been made using the results of chemical analysis of discrete samples from a limited number of locations. The Site conditions between sampling locations have been inferred based on conditions observed at test locations. Soil and groundwater conditions will vary between and beyond sample locations. Additional study can reduce the inherent uncertainties associated with this type of study. However, it is never possible, even with exhaustive sampling and testing, to dismiss the possibility of undetected contamination.

The services performed as described in this document were conducted in a manner consistent with the level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

The content of this document is based on information collected during site investigations, our present understanding of the site conditions, and our professional judgment in light of such information at the time of this document. This document provides a professional opinion and, therefore, no warranty is either expressed, implied, or made as to the conclusions, advice and recommendations offered in this document. This document does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statutes are subject to change. The groundwater monitors installed during the course of this investigation have been left in place. These monitors are the property of the owner/client and not Golder Associates Ltd.

Signature Page

We trust that the information presented in this report meets your current requirements. Should you have any questions or concerns, please do not hesitate to contact the undersigned.

Golder Associates Ltd.

alyssa Whiteduck

Alyssa Whiteduck, PEng Environmental Engineer

Keith Holmes, MSc, PGeo Geoscientist/Associate

AW/KPH/hw https://golderassociates.sharepoint.com/sites/106964/project files/6 deliverables/phase ii esa/final report/19120465-rpt-rev0 phase ii esa 159 forward avenue - final.docx

Golder and the G logo are trademarks of Golder Associates Corporation

Appended Tables

				19-02			19-04	19-05	19-06
		MECP Table 7	08-Aug-19	08-Aug-19	08-Aug-19	08-Aug-19	08-Aug-19	08-Aug-19	08-Aug-19
		Standards (R/P/I) ⁽¹⁾⁽²⁾			19-02 SA3 DUP (duplicate of				
Parameter	Unit	Stanuarus (R/F/I)	19-02 SA2	19-02 SA3	19-02 SA3)	19-03 SA2	19-04 SA1	19-05 SA1	19-06 SA2
Sample Depth	m		1.30 - 2.00	2.00 - 3.00	2.00 - 3.00	0.46 - 1.22	0.18 - 0.80	0.24 - 0.96	0.30 - 0.44
Benzene	µg/g	0.21	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Toluene	µg/g	2.3	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Ethylbenzene	µg/g	2.0	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Total Xylenes	µg/g	3.1	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Petroleum Hydrocarbons - F1 (C6-C10)	µg/g	55	<7	<7	<7	<7	<7	<7	<7
Petroleum Hydrocarbons - F2 (C10-C16)	µg/g	98	73	61	83	<4	<4	<4	<4
Petroleum Hydrocarbons - F3 (C16-C34)	µg/g	300	141	185	275	34	59	35	56
Petroleum Hydrocarbons - F4 (C34-C50)	µg/g	2800	82	178	218	29	27	19	30

Footnotes:

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

(1) Ontario Reg 153/04 (2011) Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition, Residential/Parkland/Institutional Property Use for Coarse Grained Soils

(2) Grey and bold background indicated paramater concentration greater than the MECP Table 7 Standards

Created by: AW Checked by: SAC Page 1 of 1

Table 5b: Soil Analytical Results: Polycyclic Aromatic Hydrocarbons

				19-02		19-03	19-04	19-05	19-06
		MECP Table 7	08-Aug-19	08-Aug-19	08-Aug-19	08-Aug-19	08-Aug-19	08-Aug-19	08-Aug-19
Parameter Sample Depth	Unit	Standards (R/P/I) ⁽¹⁾⁽²⁾	19-02 SA2 1.30 - 2.00	19-02 SA3 2.00 - 3.00	19-02 SA3 DUP (duplicate of 19-02 SA3) 2.00 - 3.00	19-03 SA2 0.46 - 1.22	19-04 SA1 0.18 - 0.80	19-05 SA1 0.24 - 0.96	19-06 SA2 0.30 - 0.44
		7.0							
Acenaphthene	µg/g	7.9	1.57	0.08	0.08	0.04	0.05	< 0.02	0.05
Acenaphthylene	µg/g	0.15	0.28	0.54	0.30	0.03	0.04	0.05	0.11
Anthracene	µg/g	0.67	2.69	0.52	0.33	0.10	0.15	0.08	0.20
Benzo[a]anthracene	µg/g	0.5	3.60	1.05	0.88	0.26	0.29	0.22	0.76
Benzo[a]pyrene	µg/g	0.3	3.08	1.36	0.87	0.24	0.24	0.20	0.83
Benzo[b]fluoranthene	µg/g	0.78	4.28	2.12	1.30	0.39	0.35	0.27	1.17
Benzo[g,h,i]perylene	µg/g	6.6	1.88	1.19	0.65	0.17	0.16	0.13	0.55
Benzo[k]fluoranthene	µg/g	0.78	2.49	1.08	0.67	0.21	0.19	0.14	0.59
Chrysene	µg/g	7	3.98	1.07	1.04	0.27	0.30	0.23	0.86
Fluoranthene	µg/g	0.69	11.1	2.19	1.87	0.63	0.67	0.42	1.61
Fluorene	µg/g	62	1.35	0.10	0.09	0.03	0.06	0.02	0.07
Indeno[1,2,3-cd]pyrene	µg/g	0.38	1.77	1.09	0.61	0.16	0.15	0.12	0.52
1-Methylnaphthalene	µg/g	0.99	0.18	0.05	0.04	<0.02	0.02	< 0.02	0.06
2-Methylnaphthalene	µg/g	0.99	0.26	0.08	0.05	<0.02	0.03	<0.02	0.06
Methylnaphthalene (1&2)	µg/g	0.99	0.44	0.14	0.09	< 0.04	0.05	< 0.04	0.12
Naphthalene	µg/g	0.6	0.33	0.14	0.09	0.01	0.04	0.02	0.08
Phenanthrene	µg/g	6.2	9.81	0.99	0.76	0.38	0.57	0.24	0.97
Pyrene	µg/g	78	8.45	2.01	1.64	0.54	0.53	0.38	1.41
Dibenzo (a,h) anthracene	µg/g	0.1	0.52	0.33	0.19	0.05	0.05	0.04	0.16

Footnotes:

Tables should be read in conjunction with the accompanying

< value = Indicates parameter not detected above laboratory

> value = Indicates parameter detected above equipment

-- Chemical not analyzed or criteria not defined.

(1) Ontario Reg 153/04 (2011) Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition, Residential/Parkland/Institutional Property Use for Coarse Grained Soils

(2) Grey and bold background indicated parameter concentration greater than the MECP Table 7 Standards

				19-02		19-03	19-04	19-05	19-06
		MECP Table 7	08-Aug-19	08-Aug-19	08-Aug-19	08-Aug-19	08-Aug-19	08-Aug-19	08-Aug-19
					19-02 SA3 DUP				
Parameter	Unit	Standards (R/P/I) ⁽¹⁾⁽²⁾	19-02 SA2	19-02 SA3	(duplicate of 19-02 SA3)	19-03 SA2	19-04 SA1	19-05 SA1	19-06 SA2
Sample Depth	m		1.30 - 2.00	2.00 - 3.00	2.00 - 3.00	0.46 - 1.22	0.18 - 0.80	0.24 - 0.96	0.30 - 0.44
Boron, available	µg/g	1.5	<0.5	<0.5	0.6	<0.5	0.6	0.6	<0.5
Chromium (VI)	ug/g	8	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Mercury	ug/g	0.27	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	0.2
Antimony	ug/g	7.5	<1.0	<1.0	1.4	1.0	<1.0	<1.0	<1.0
Arsenic	ug/g	18	5.4	5.1	6.9	12.1	7.4	7.5	14.7
Barium	ug/g	390	173	112	143	157	101	137	203
Beryllium	ug/g	4	0.6	0.6	0.7	0.9	0.5	0.7	0.7
Boron	ug/g	120	5.6	<5.0	<5.0	<5.0	<5.0	8.7	5.4
Cadmium	ug/g	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	ug/g	160	35.0	15.9	17.7	18.5	13.8	22.8	21.0
Cobalt	ug/g	22	10.2	6.9	8.6	9.6	7.0	7.1	8.8
Copper	ug/g	140	29.2	26.3	53.2	29.6	25.8	19.7	42.2
Lead	ug/g	120	84.4	66.1	93.0	284	80	69.8	199
Molybdenum	ug/g	6.9	1.3	1.1	1.8	2.4	1.4	2.3	1.8
Nickel	ug/g	100	26.1	17.5	21.1	25.0	18.3	18.4	23.2
Selenium	ug/g	2.4	<1.0	<1.0	1.2	1.7	1.0	1.2	1.2
Silver	ug/g	20	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Thallium	ug/g	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Uranium	ug/g	23	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.1
Vanadium	ug/g	86	35.6	25.0	29.4	26.8	22.0	25.8	33.3
Zinc	ug/g	340	110	104	107	88.4	70.9	210	181

Footnotes:

Tables should be read in conjunction with the accompanying

< value = Indicates parameter not detected above laboratory method detection

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

(1) Ontario Reg 153/04 (2011) Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition,

Residential/Parkland/Institutional Property Use for Coarse Grained Soils

(2) Grey and bold background indicated paramater concentration greater than the MECP Table 7 Standards

Table 5d: Soil Analytical Results: Toxicity Characteristic Leaching Procedure Testing Results

Parameter Sample Depth	Unit m	O.Reg. 347/558 Schedule 4 Leachate Quality Criteria ^{(1) (2)}	19-02 08-Aug-19 19-02 SA2 1.30 - 2.00
Physical Characteristics			
Ignitability	N/A		No
EPA 1311 - TCLP Leachate Ino	rganics		
Arsenic	mg/L	2.5 mg/L	<0.05
Barium	mg/L	100 mg/L	0.22
Boron	mg/L	500 mg/L	<0.05
Cadmium	mg/L	0.5 mg/L	<0.01
Chromium	mg/L	5 mg/L	<0.05
Lead	mg/L	5 mg/L	<0.05
Mercury	mg/L	0.1 mg/L	<0.005
Selenium	mg/L	1 mg/L	<0.05
Silver	mg/L	5 mg/L	<0.05
Uranium	mg/L	10 mg/L	<0.05
EPA 1311 - TCLP Leachate Org	ganics		
Benzene	mg/L	0.5	<0.005
Benzo[a]pyrene	mg/L	0.001	<0.0001

Footnotes:

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

-- Chemical not analyzed or criteria not defined.

(1) Ontario Regulation 347/558, as amended, under the Environmental Protection Act, Schedule 4 Leachate Quality Criteria

(2) Grey and bold background indicated paramater concentration greater than O.Reg. 347 Schedule 4 Leachate Quality Criteria

Created by: AW Checked by: SAC Page 1 of 1

			19-01	19-02	19-03		
Parameter	Units	MECP Table 7 Standards ^{(1) (2)}	19-01	19-02	19-03	DUP (duplicate of 19-03) 16-Aug-19	
			16-Aug-19	16-Aug-19	16-Aug-19		
Benzene	ug/L	0.50	<0.5	<0.5	<0.5	<0.5	
Toluene	ug/L	320	<0.5	<0.5	<0.5	<0.5	
Ethylbenzene	ug/L	54	<0.5	<0.5	<0.5	<0.5	
Total Xylenes	ug/L	72	<0.5	<0.5	<0.5	<0.5	
Petroleum Hydrocarbons - F1 (C6-C10)	ug/L	420	<25	<25	<25	<25	
Petroleum Hydrocarbons - F2 (C10-C16)	ug/L	150	<100	<100	<100	<100	
Petroleum Hydrocarbons - F3 (C16-C34)	ug/L	500	<100	<100	<100	<100	
Petroleum Hydrocarbons - F4 (C34-C50)	ug/L	500	<100	<100	<100	<100	

Footnotes:

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical

-- Chemical not analyzed or criteria not defined.

(1) Ontario Reg 153/04 (2011) Table 7: Generic Site Condition Standards for Shallow Soils

in a Non-Potable Ground Water Condition, All Types of Property Use

(2) Grey and bold background indicated paramater concentration greater than the MECP Table 7

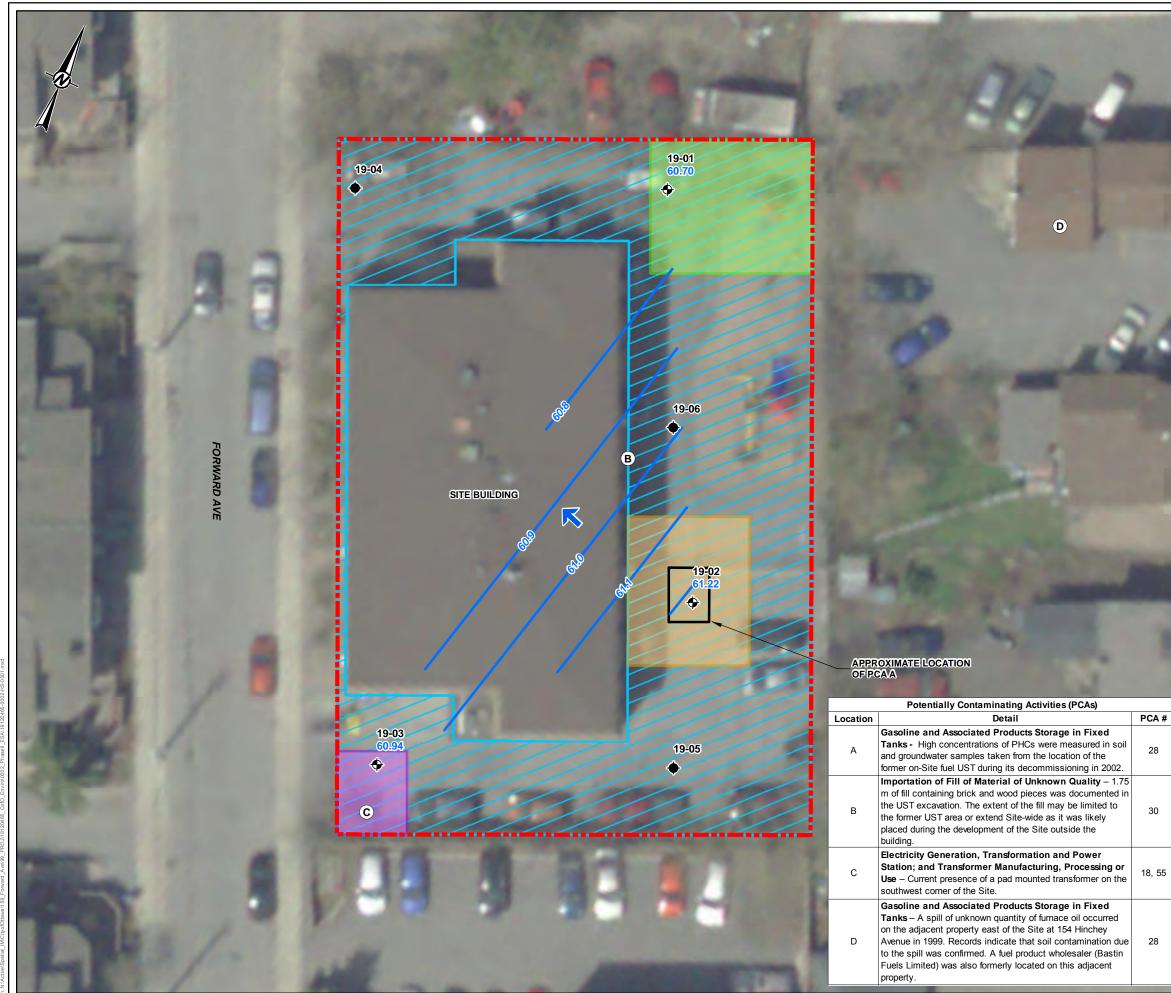
			1	9-03
Parameter	Units	MECP Table 7 Standards ^{(1) (2)}	19-03	DUP (duplicate of 19-03)
			16-Aug-19	16-Aug-19
PCBs, total	ug/L	0.2	<0.05	<0.05

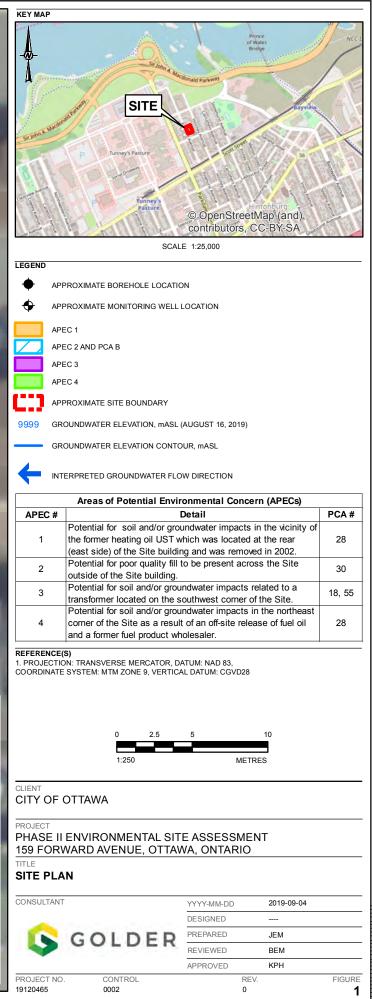
Footnotes:

Tables should be read in conjunction with the accompanying document.

< value = Indicates parameter not detected above laboratory method detection limit.

> value = Indicates parameter detected above equipment analytical range.

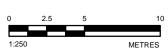

-- Chemical not analyzed or criteria not defined.


(1) Ontario Reg 153/04 (2011) Table 7: Generic Site Condition Standards for Shallow Soils in a Non-Potable Ground Water Condition, All Types of Property Use

(2) Grey and bold background indicated paramater concentration greater than the MECP Table 7 Standards



Figures



25mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET

CITY OF OT	TAWA			
	VIRONMENTAL SIT RD AVENUE, OTTA			
TITLE SOIL EXCEE				
CONSULTANT		YYYY-MM-DD	2019-09-04	
CONCOLIANT				
A	OLDER		JEM	
50	OLDER	REVIEWED	BEM	
6	OLDER	REVIEWED APPROVED	BEM KPH	

1.87

0.61

0.76

0.07	2.69	0.52
0.5	3.60	1.05
0.3	3.08	1.36
0.78	4.28	2.12
0.78	2.49	1.08
0.69	11.1	2.19
0.38	1.77	1.09
6.2	9.81	0.99

Table 7 s (R/P/I) ^{(1) (2)}	19-02 SA2	19-02 SA3	19-02 SA3 DUP (duplicate of 19-02 SA3)
s (R/P/I)	8-Aug-19	8-Aug-19	8-Aug-19
.15	0.28	0.54	0.30
.67	2.69	0.52	0.33
0.5	3.60	1.05	0.88
0.3	3.08	1.36	0.87
.78	4.28	2.12	1.30
.78	2.49	1.08	0.67

(R/P/I) (1) (2)	8-Aug-19
.5	0.76
.3	0.83
78	1.17
69	1.61
38	0.52
.1	0.16

199

Table 7	19-06 SA2
(R/P/I) ^{(1) (2)}	8-Aug-19
.5	0.76
.3	0.83

able 7	19-06 SA2
(R/P/I) ^{(1) (2)}	8-Aug-19
5	0.76
3	0.83
70	4 4 7

blo 7	40.00 0.40

APPROXIMATE SITE BOUNDARY

NOTE(S) 1. ONTARIO REG 153/04 (2011) TABLE 7: GENERIC SITE CONDITION STANDARDS FOR SHALLOW SOILS IN A NON-POTABLE GROUND WATER CONDITION, RESIDENTIAL/PARKLAND/INSTITUTIONAL PROPERTY USE FOR COARSE GRAINED SOILS 2. GREYAND BOLD BACKGROUND INDICATES EXCEEDANCE OF THE MECP TABLE 7

REFERENCE(S) 1. PROJECTION: TRANSVERSE MERCATOR, DATUM: NAD 83, COORDINATE SYSTEM: MTM ZONE 9, VERTICAL DATUM: CGVD28

LEGEND

٠

APPROXIMATE BOREHOLE LOCATION

٠

APPROXIMATE MONITORING WELL LOCATION

LEGEND

- APPROXIMATE BOREHOLE LOCATION
- APPROXIMATE MONITORING WELL LOCATION

0.62 FILL THICKNESS, metres

AREA OF IMPACTED FILL BY PAHS AND/OR METALS AND CONTAINING DEBRIS

APPROXIMATE SITE BOUNDARY

REFERENCE(S) 1. PROJECTION: TRANSVERSE MERCATOR, DATUM: NAD 83, COORDINATE SYSTEM: MTM ZONE 9, VERTICAL DATUM: CGVD28

CLIENT CITY OF OTTAWA

PROJECT PHASE II ENVIRONMENTAL SITE ASSESSMENT 159 FORWARD AVENUE, OTTAWA, ONTARIO

TITLE EXTENT OF IMPACTED FILL

YYYY-MM-DD		2019-09-04	
DESIGNED			
PREPARED		JEM	
REVIEWED		BEM	
APPROVED		KPH	
	REV.		FIGURE
	0		3

APPENDIX A

Record of Boreholes

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Cu	$Cu = \frac{D_{60}}{D_{10}} \qquad \qquad Cc = \frac{(D_{30})^2}{D_{10}xD_{60}}$		$\frac{(30)^2}{xD_{60}}$	Organic USCS Group Content Symbol Group		Group Name									
		vith Grade state transformer of the state of		Poorly Graded		<4		≤1 or ≥3			GP	GRAVEL								
s)	(mm 2			×12% Sinces (by mass)		Since		HERS SIZE		%21≥ ⊒ 220 fines (tion is transs)		Well Graded		≥4		1 to 3	3		GW	GRAVEL
by mas	SOILS n 0.07!			Below A Line					GM	SILTY GRAVEL										
ANIC ≤30%	INED ((>5 cot large	>12% fines (by mass)	Above A Line			n/a				GC	CLAYEY GRAVEL								
NORG	E-GRA s is lar	, f	Sands with	Poorly Graded		<6		≤1 or ≩	≥3	≤30%	SP	SAND								
INORGANIC (Organic Content S30% by mass)	OARSI y mas	DS mass c iction is 4.75 m	≤12% fines (by mass)	Well Graded		≥6		1 to 3	3		SW	SAND								
(Org	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm)	Sands with	Below A Line			n/a				SM	SILTY SAND								
	÷	(≥5i coa smalle	>12% fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND								
Organic	Soil		(by mass)	Laboratory			Field Indica	tors		Organic	USCS Group	Primary								
or Inorganic	Group	Туре	of Soil	Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Content	Symbol	Name								
		plot	L	I favoid I facili	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT								
(sc	5 mm)	and LI	ine sity ow)	Liquid Limit <50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT								
INORGANIC (Organic Content ≤30% by mass)	OILS an 0.07	SILTS	below A-Line on Plasticity Chart below)		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT								
ANIC ≤30%	FINE-GRAINED SOILS mass is smaller than 0.	SILTS SILTS (Non-Plastic or Pl and LL plot below A-Line on Plasticity Chart below)		Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT								
INORGANIC Content ≤30%	-GRAIN	Nor		≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT								
ganic C	FINE y mas	CLAYS CLAYS (Pl and LL plot above A-Line on Plasticity Chart below)		Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY								
(O	FINE-GRAINED SOILS (≥50% by mass is smaller than 0.075 mm)			LAYS nd LL ⊧ A-Lin€ icity Ch		Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	CI	SILTY CLAY						
	2)			Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY								
<u></u> ,υ,	() ()		mineral soil tures			•				30% to		SILTY PEAT, SANDY PEAT								
HIGHLY ORGANIC SOILS	Content > 30% by mass)	Predomin may con	antly peat, tain some il, fibrous or							75% 75% to	PT	PEAT								
40			ous peat	1edium Plasticity	≺ Hig	gh Plasticity		•		^{100%} symbol is	two symbols s SW-SC and CI	separated by								
4 0 0	10	See Note 1) 20	25.5 30	SILTY CLAY CI RUPE LAYEY SILT ML RGANIC SILT OL quid Limit (LL) that plot in this a	CLAY CH CLAYEY S ORGANIC S	70	so	the soil h transitional gravel. For cohess liquid limit of the plass Borderlin separated A borderlin has been transition b	as between il material be ive soils, the and plasticity sticity chart (s e Symbol — by a slash, fo be symbol sh identified as between similar ay be used to	5% and etween "c dual symb / index val ee Plastici A borderl or example ould be us s having p ar materia	ymbols must b 12% fines (i.e lean" and "di ool must be us ues plot in the ty Chart at left ine symbol is e, CL/CI, GM/S sed to indicate properties that ls. In addition a range of simi	 a. to identify rty" sand or ed when the CL-ML area b. two symbols SM, CL/ML. that the soil are on the a borderline 								

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

named SILT. Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICI E SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier
>35	Use 'and' to combine major constituents (<i>i.e.</i> , SAND and GRAVEL)
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
> 5 to 12	some
≤ 5	trace

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd: The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

Cor	npactness ²
Term	SPT 'N' (blows/0.3m) ¹
Very Loose	0 to 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	>50

NON-COHESIVE (COHESIONLESS) SOILS

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' 2. value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.
	Dry Moist

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
ТО	Thin-walled, open - note size (Shelby tube)
TP	Thin-walled, piston – note size (Shelby tube)
WS	Wash sample

SOIL TESTS

-
water content
plastic limit
liquid limit
consolidation (oedometer) test
chemical analysis (refer to text)
consolidated isotropically drained triaxial test1
consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
relative density (specific gravity, Gs)
direct shear test
specific gravity
sieve analysis for particle size
combined sieve and hydrometer (H) analysis
Modified Proctor compaction test
Standard Proctor compaction test
organic content test
concentration of water-soluble sulphates
unconfined compression test
unconsolidated undrained triaxial test
field vane (LV-laboratory vane test)
unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU. 1.

	COHESIVE SOILS	
	Consistency	
Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)
Very Soft	<12	0 to 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 200	15 to 30
Hard	>200	>30

1. SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct 2 measurement of undrained shear strength or other manual observations.

	Water Content
Term	Description
w < PL	Material is estimated to be drier than the Plastic Limit.
w ~ PL	Material is estimated to be close to the Plastic Limit.
w > PL	Material is estimated to be wetter than the Plastic Limit.

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a) w	Index Properties (continued) water content
π	3.1416	w _l or LL	liquid limit
ln x	natural logarithm of x	w _p or PL	plastic limit
log ₁₀	x or log x, logarithm of x to base 10 acceleration due to gravity	l₀ or PI NP	plasticity index = (w _l – w _p) non-plastic
g t	time	Ws	shrinkage limit
		IL	liquidity index = $(w - w_p) / I_p$
		lc	consistency index = $(w_l - w) / I_p$
		emax	void ratio in loosest state
		emin	void ratio in densest state
П.	STRESS AND STRAIN	ID	density index = $(e_{max} - e) / (e_{max} - e_{min})$ (formerly relative density)
	shear strain	(b)	Hydraulic Properties
$\gamma \Delta$	change in, e.g. in stress: $\Delta \sigma$	(b) h	hydraulic head or potential
2 8	linear strain	q	rate of flow
εv	volumetric strain	V	velocity of flow
η	coefficient of viscosity	i	hydraulic gradient
υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress		(coefficient of permeability)
σ	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress		
σ1, σ2, σ3	principal stress (major, intermediate, minor)	(c)	Consolidation (one-dimensional)
		C _c	compression index
σoct	mean stress or octahedral stress		(normally consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	Cr	recompression index
τ	shear stress		(over-consolidated range)
u	porewater pressure	Cs	swelling index
E	modulus of deformation	Cα	secondary compression index
G K	shear modulus of deformation bulk modulus of compressibility	mv Cv	coefficient of volume change coefficient of consolidation (vertical
IX .			direction)
		Ch	coefficient of consolidation (horizontal direction)
		Tv	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
(2)	Index Properties	σ′ _P OCR	pre-consolidation stress
(a) ρ(γ)	Index Properties bulk density (bulk unit weight)*	OCK	over-consolidation ratio = σ'_p / σ'_{vo}
ρ(γ) ρ _d (γ _d)	dry density (dry unit weight)	(d)	Shear Strength
ρω(γω)	density (unit weight) of water	τρ, τr	peak and residual shear strength
ρs(γs)	density (unit weight) of solid particles	φ' δ	effective angle of internal friction
γ'	unit weight of submerged soil	δ	angle of interface friction
	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = tan δ
D _R	relative density (specific gravity) of solid	C'	effective cohesion
-	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength ($\phi = 0$ analysis)
e	void ratio porosity	p n'	mean total stress $(\sigma_1 + \sigma_3)/2$
n S	degree of saturation	p' q	mean effective stress $(\sigma'_1 + \sigma'_3)/2$ $(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
0		Ч Qu	compressive strength ($\sigma_1 - \sigma_3$)
		St	sensitivity
* Danai	ty oumbol is a Unit weight symbol is	Notes: 1	
	ty symbol is ρ . Unit weight symbol is γ e $\gamma = \rho g$ (i.e. mass density multiplied by	Notes: 1	$\tau = c' + \sigma' \tan \phi'$ shear strength = (compressive strength)/2
	eration due to gravity)	-	

LOCATION: N 5030046.1 ;E 364935.6

SAMPLER HAMMER, 64kg; DROP, 760mm

RECORD OF BOREHOLE: 19-01

BORING DATE: August 8, 2019

SHEET 1 OF 1

DATUM: Local

ļ	ПОН	SOIL PROFILE			SA	MPLE		DYNAMIC PEN RESISTANCE,	IETRA1 BLOW	'ION S/0.3m	ì	HYDRAL	JLIC CO k, cm/s	ONDUCT	IVITY,	و ب	PIEZOMETER
METRES	BORING METHOD		STRATA PLOT		н.		BLOWS/0.30m		40		80			0 ⁻⁵ 1			OR
MET	SNG	DESCRIPTION	VTA F	ELEV. DEPTH (m)	IMBE	TYPE	NS/0	SHEAR STREM Cu, kPa	NGTH	nat V. + rem V. 4	- Q - O				PERCEN		INSTALLATION
1	BOR		STRA	(m)	٦		BLOV		10						<u> </u>		i
-		GROUND SURFACE		62.68		$\left \right $		20 4	+0	60	80	20	4	06	v 8	0	1
0		ASPHALTIC CONCRETE		62.68 0.00 0.04			+										Flush Mount
		GRANULAR FILL		62.48													Casing
		Inferred BEDROCK		0.20													
			- XA														
			- KA														
			Ŵ														Bentonite Seal
1			K														Seniorite Gedi
			X A														
			KA														
																	Silica Sand
2																	<u></u>
-			X														
			- XA														
			Ŵ														
			K A														
																	32 mm Diam. PVC
																	32 mm Diam. PVC #10 Slot Screen
3			- XA														
			Ň														
																	1
				59.15 3.53													
		End of Borehole		3.53													
																	W.L. in Screen at Elev. 60.70 m on
																	August 16, 2019
4																	
5																	
					<u> </u>				<u> </u>							· · · · ·	
DEI		SCALE						GO) L	DE	R						logged: Jd Hecked: Adw

RECORD OF BOREHOLE: 19-02

BORING DATE: August 8, 2019

SHEET 1 OF 1

DATUM: Local

LOCATION: N 5030021.6 ;E 364947.8 SAMPLER HAMMER, 64kg; DROP, 760mm

Ţ	ДОН	SOIL PROFILE	1.		SA	MPLE	s	HEADSPACE COMBUSTIBLE VAPOUR CONCENTRATIONS [PPM] ⊕ ND = Not Detected 20 40 60 80	HYDRAULIC CONDUCTIVITY, k, cm/s	βŕ	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE		ND = Not Detected 20 40 60 80 HEADSPACE ORGANIC VAPOUR CONCENTRATIONS [PPM]	WATER CONTENT PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
5	BOR		STRA	(m)	NN		BLOV	ND = Not Detected 20 40 60 80	Wp H WI 20 40 60 80	LA	
		GROUND SURFACE		62.63							
0			-/****	0.03							Flush Mount
		GRANULAR FILL									Casing
1		FILL - (SW) SAND and GRAVEL, angular, black with black staining, contains wood, cinder and ash; non-cohesive, moist, compact		<u>62.03</u> 0.60	1	SS	-				Bentonite Seal
											Silica Sand
2					2	SS	- @	·			32 mm Diam. PVC #10 Slot Screen
		CONCRETE SLAB; weak		60.13 2.50	3	SS	- €	,			
3 -		FILL - (SW) SAND and GRAVEL, angular, black with black staining, contains wood, cinder and ash; \non-cohesive, moist, compact End of Borehole		59.79 2.84 59.63 3.00							
		Auger Refusal									W.L. in Screen at Elev. 61.22 m on August 16, 2019
4											
5											
DEF 1:2		SCALE						GOLDER			OGGED: JD IECKED: ADW

RECORD OF BOREHOLE: 19-03

BORING DATE: August 8, 2019

SHEET 1 OF 1

DATUM: Local

LOCATION: N 5030003.6 ;E 364932.8 SAMPLER HAMMER, 64kg; DROP, 760mm

Ţ	дон-	SOIL PROFILE			SA	MPL			ACE COMBU CONCENTR Detected 40	STIBLE ATIONS [F	PPM] ⊕		k, cm/s	ONDUCT		NG	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.30m		ACE ORGANI TRATIONS [F Detected	C VAPOL PPM]		10 W/ Wp 20	ATER CO			ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0		GROUND SURFACE	.,	62.46				20	40			2	, 4	0 0			
Ű		ASPHALTIC CONCRETE		0.00													Flush Mount Casing
		FILL - (SM) SAND, fine to medium; brown; non-cohesive, moist, compact		0.12		ss	- €	Ð									
		FILL - (SW) SAND and GRAVEL, angular; black with black staining, very faint hydrocarbon odour, contains wood, cinder and ash; non-cohesive, moist, compact		<u>62.00</u> 0.46													Bentonite Seal
1					2	SS	- €	D									Silica Sand
		Inferred BEDROCK		61.24 1.22													
																	32 mm Diam. PVC #10 Slot Screen
2																	
																	a and a start of the
3		End of Borehole		59.41 3.05													
																	W.L. in Screen at Elev. 60.94 m on August 16, 2019
4																	
5																	
DEF	PTH S	CALE						G	OL	DE	R	· 1			·		OGGED: JD IECKED: ADW

RECORD OF BOREHOLE: 19-04

BORING DATE: August 8, 2019

SHEET 1 OF 1

DATUM: Local

LOCATION: N 5030038.1 ;E 364916.5 SAMPLER HAMMER, 64kg; DROP, 760mm

ш		DC	SOIL PROFILE			SA	MPL	ES					HYDR/	ONDUCT	TIVITY,		0	
DEPTH SCALE	RS	BORING METHOD		LOT		ч		30m	HEADSPAC VAPOUR C ND = Not D 20	etected 40	60 8	30	10			0 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR
PTH	METF	NG N	DESCRIPTION		ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.30m	HEADSPAC				w				DDITI B. TE	STANDPIPE INSTALLATION
DE		BOR		STR ^A	(m)	٦٢		BLOV	ND = Not D 20	etected 40		30	Wp			WI 30	LA	
-	0		GROUND SURFACE ASPHALTIC CONCRETE GRANULAR FILL FILL - (SW) SAND and GRAVEL,		62.46 0.00 0.04 62.28 0.18													
-			FILL - (SW) SAND and GRAVEL, angular; brown black with black staining, contains wood, cinder, ash and brick; non-cohesive, moist, compact			1	SH	- €	Ð									
-			End of Borehole Auger Refusal		61.66 0.80													-
-	1																	-
-																		
ŀ																		-
-																		-
-	2																	-
-																		-
-																		
-																		-
-	3																	-
-																		-
-																		
-																		-
2	4																	-
26/19 JE																		-
.GDT 09/																		-
GAL-MIS																		-
165.GPJ																		-
01 19120	5																	_
<u>н</u>	DEF 1:2		SCALE						G	OL	DE	R						DGGED: JD ECKED: ADW

RECORD OF BOREHOLE: 19-05

BORING DATE: August 8, 2019

SHEET 1 OF 1

DATUM: Local

LOCATION: N 5030011.1 ;E 364950.9 SAMPLER HAMMER, 64kg; DROP, 760mm

E: August 8, 2019

	BORING METHOD	SOIL PROFILE	1.		SA	MPL	_	HEADSPACE CO VAPOUR CONCE ND = Not Detecte	ENTRAT	IBLE IONS [PI	PM] ⊕		k, cm/s				μģ	PIEZOMETER
METRES	MET		LOT		щ		.30m	20 40	60	80		10-6	10	⁵ 10)-4 1	0 ⁻³	ADDITIONAL LAB. TESTING	OR
MET	DNG	DESCRIPTION	TA F	ELEV. DEPTH	NUMBER	TYPE	VS/0.	HEADSPACE OF CONCENTRATIC	GANIC		۲		TER CO	NTENT			B. TE	STANDPIPE INSTALLATION
	BOR		STRATA PLOT	(m)	Ŋ	-	BLOWS/0.30m	ND = Not Detecte	d					-0 ^W			LAI	
-+	-	GROUND SURFACE	S				ш	20 40	60	80)	20	40	6	U 8	30	+	
0		ASPHALTIC CONCRETE		62.64 0.00 0.04		$\left \right $						\vdash					+	
		GRAVEL (PAVEMENET STRUCTURE)		0.04														
				62.40														
		FILL - (SW) SAND and GRAVEL, angular; brown black with black staining,		0.24														
		contains cinder, ash and brick; non-cohesive, moist, compact																
					1	SS	- €)										
				61.68														
1		End of Borehole Auger Refusal		0.96														
2																		
,																		
3																		
4																		
5																		
-					L													
	יידר							GO										
116	- I H S	SCALE															LC	GGED: JD

PROJECT: 19120465

RECORD OF BOREHOLE: 19-06

BORING DATE: August 8, 2019

SHEET 1 OF 1

DATUM: Local

LOCATION: N 5030031.8 ;E 364942.1 SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

4	ЦОН	SOIL PROFILE			SA	MPLE		VAPOUR CONCEN	TRATIONS [PPM] ⊕	IIIDKA	ULIC CO k, cm/s		vii i,		لې پ	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION		ELEV. DEPTH	NUMBER	түре	BLOWS/0.30m	HEADSPACE COM VAPOUR CONCEN ND = Not Detected 20 40 HEADSPACE ORG CONCENTRATION ND = Net Detected	ANIC VAPOL			ATER CO	-5 10 NTENT			ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
2	BO		STR	(m)	z		BLO	ND = Not Detected 20 40	<u>60 8</u>	30	20 20				0		
0		GROUND SURFACE ASPHALTIC CONCRETE		62.69 0.00 0.08													
		GRANULAR FILL FILL - (ML) CLAYEY SILT, some sand and gravel; light brown, compact, moist		0.08	1	SS	- 6	•									
		FILL - (SM) SAND and GRAVEL, angular; brown black with black staining, contains wood, brick, cinder and ash;		0.30 62.25	2	ss	- 6	•									
		contains wood, brick, cinder and ash; non-coheisve, moist, compact		0.44													
		Auger Refusal															
1																	
2																	
3																	
4																	
5																	
DEF	PTH S	CALE					6	GOL	DF	R						LO	GGED: JD

APPENDIX B

Laboratory Certificates of Analysis

RELIABLE.

Certificate of Analysis

Golder Associates Ltd. (Ottawa)

1931 Robertson Rd. Ottawa, ON K2H 5B7 Attn: Alyssa Whiteduck

Client PO: Project: 19120465/159 Forward Avenue Custody: 113605

Report Date: 19-Aug-2019 Order Date: 9-Aug-2019

Order #: 1932561

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1932561-01 19-02 SA2

Approved By:

Mark Frata

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 19-Aug-2019 Order Date: 9-Aug-2019 Project Description: 19120465/159 Forward Avenue

Order #: 1932561

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Ignitability	Match Test	12-Aug-19	12-Aug-19
Metals, ICP-MS	TCLP EPA 6020 - Digestion - ICP-MS	15-Aug-19	15-Aug-19
REG 558 - Benzene	EPA 624 - P&T GC-MS	14-Aug-19	15-Aug-19
REG 558 - Mercury by CVAA	EPA 7470A - Cold Vapour AA	15-Aug-19	15-Aug-19
REG 558 - PAHs	EPA 625 - GC-MS	19-Aug-19	19-Aug-19
Solids, %	Gravimetric, calculation	15-Aug-19	15-Aug-19

Report Date: 19-Aug-2019

Order Date: 9-Aug-2019

	-		·		
	Client ID:	19-02 SA2	-	-	-
	Sample Date:	08-Aug-19 09:00	-	-	-
	Sample ID:	1932561-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	94.2	-	-	-
Ignitability	N/A	Negative	-	-	-
EPA 1311 - TCLP Leachate Me	etals				
Arsenic	0.05 mg/L	<0.05	-	-	-
Barium	0.05 mg/L	0.22	-	-	-
Boron	0.05 mg/L	<0.05	-	-	-
Cadmium	0.01 mg/L	<0.01	-	-	-
Chromium	0.05 mg/L	<0.05	-	-	-
Lead	0.05 mg/L	<0.05	-	-	-
Mercury	0.005 mg/L	<0.005	-	-	-
Selenium	0.05 mg/L	<0.05	-	-	-
Silver	0.05 mg/L	<0.05	-	-	-
Uranium	0.05 mg/L	<0.05	-	-	-
EPA 1311 - TCLP Leachate Vo	latiles				
Benzene	0.005 mg/L	<0.005	-	-	-
Toluene-d8	Surrogate	99.4%	-	-	-
EPA 1311 - TCLP Leachate Or	ganics				
Benzo [a] pyrene	0.0001 mg/L	<0.0001	-	-	-
Terphenyl-d14	Surrogate	115%	-	-	-

Order #: 1932561

Report Date: 19-Aug-2019

Order Date: 9-Aug-2019

Project Description: 19120465/159 Forward Avenue

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
EPA 1311 - TCLP Leachate Metals	S								
Arsenic	ND	0.05	mg/L						
Barium	ND	0.05	mg/L						
Boron	ND	0.05	mg/L						
Cadmium	ND	0.01	mg/L						
Chromium	ND	0.05	mg/L						
Lead	ND	0.05	mg/L						
Mercury	ND	0.005	mg/L						
Selenium	ND	0.05	mg/L						
Silver	ND	0.05	mg/L						
Uranium	ND	0.05	mg/L						
EPA 1311 - TCLP Leachate Organ	nics								
Benzo [a] pyrene	ND	0.0001	mg/L						
Surrogate: Terphenyl-d14	0.23		mg/L		113	37.1-155.6			
EPA 1311 - TCLP Leachate Volati	les								
Benzene	ND	0.005	mg/L						
Surrogate: Toluene-d8	0.667		mg/L		96.9	76-118			

Order #: 1932561

Report Date: 19-Aug-2019

Order Date: 9-Aug-2019

Project Description: 19120465/159 Forward Avenue

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
EPA 1311 - TCLP Leachate M	etals								
Arsenic	ND	0.05	mg/L	ND			0.0	29	
Barium	0.539	0.05	mg/L	0.604			11.4	34	
Boron	0.072	0.05	mg/L	0.072			0.2	33	
Cadmium	ND	0.01	mg/L	ND			0.0	33	
Chromium	ND	0.05	mg/L	ND			0.0	32	
Lead	ND	0.05	mg/L	ND			0.0	32	
Mercury	ND	0.005	mg/L	ND			0.0	30	
Selenium	ND	0.05	mg/L	ND			0.0	28	
Silver	ND	0.05	mg/L	ND			0.0	28	
Uranium	ND	0.05	mg/L	ND			0.0	27	
EPA 1311 - TCLP Leachate O	rganics								
Benzo [a] pyrene	ND	0.0001	mg/L	ND				50	
Surrogate: Terphenyl-d14	0.21		mg/L		107	37.1-155.6			
EPA 1311 - TCLP Leachate Vo	olatiles		-						
Benzene	ND	0.005	mg/L	ND				25	
Surrogate: Toluene-d8	0.687		mg/L		99.9	76-118			
0	0.007								
Physical Characteristics	0 4 ·	C 1	0/1	C 1 1			0.0	65	
% Solids	31.1	0.1	% by Wt.	31.4			0.8	25	

Order #: 1932561

Report Date: 19-Aug-2019 Order Date: 9-Aug-2019

Project Description: 19120465/159 Forward Avenue

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
EPA 1311 - TCLP Leachat	te Metals								
Arsenic	48.5		ug/L	0.091	96.8	83-119			
Barium	102		ug/L	60.4	83.1	83-116			
Boron	47.1		ug/L	7.19	79.8	71-128			
Cadmium	41.5		ug/L	0.184	82.5	78-119			
Chromium	51.7		ug/L	0.116	103	80-124			
Lead	40.9		ug/L	0.795	80.1	77-126			
Mercury	0.0276	0.005	mg/L	ND	92.1	70-130			
Selenium	41.0		ug/L	0.086	81.8	81-125			
Silver	40.2		ug/L	ND	80.4	70-128			
Uranium	42.8		ug/L	0.065	85.4	70-131			
EPA 1311 - TCLP Leachat	te Organics								
Benzo [a] pyrene	0.0336	0.0001	mg/L		67.2	39-123			
Surrogate: Terphenyl-d14	0.21		mg/L		107	37.1-155.6			
EPA 1311 - TCLP Leachat	te Volatiles								
Benzene	0.040	0.005	mg/L		100	55-141			

Report Date: 19-Aug-2019 Order Date: 9-Aug-2019 Project Description: 19120465/159 Forward Avenue

Qualifier Notes:

Login Qualifiers :

Container(s) - Bottle and COC sample ID don't match -Applies to samples: 19-02 SA2

Sample Qualifiers :

Sample Data Revisions None

.....

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

GPARACEL	F F			Paracel I)						awa, 1-800	9 St. I Ontar -749-1	Laurent E io K1G 1947 aracellab	4J8			ab Use (Y
LABORATORIES LTD															Paj	ge _L o	of /	
Client Name: Golda Associates				Project Reference	19120	46	5								Turn	around	d Time	e:
Contact Name: Alussa White cluck /Ki: Address: 1931 Rubuter Read Otta	th Ho	Ins		Quote #	ty if (2						011	Day		□ 3 I	Day
Address: 1931 Robertson Road Otta	us eq			PO #	5									021	Jav		Q Re	aular
Polosbana				Email Address:										1.000	Requir	rade	PRE	gular
Telephone: (613 - 5672 - 91600) Criteria: XO. Reg. 153/04 (As Amended) Table Z 🗆 RSC	Ellino .C	O Pao	558/00		COME TIS	IR (St	() ((ns	CC	Sanita	rv) M	unicinal	itv	Date	· ·	Other:	<u>.</u>	82.
											.,,	unreipu			'	/unci.		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	SS (Storm'S	Sanitary S	ewer) P	(Paint) A (Air) O (Other)	-	quir	red A	naly	ses		1	1	1.5	Q.	1.0		T
Paracel Order Number: 1932561 - TCIP 1932562 - BVIN	×	Air Volume	of Containers	Sample	Taken	PHCs F1-F4+BTEX			s by ICP		(S)	153	Bargo	58 motel	& hours	in tabili		
Sample ID/Location Name	Matrix	Vir V	of	Date	Time	HCS	vocs	PAHs	Metals by I	Hg	B (HWS)	SA	22	55	558	ic +		+1
1 19:00 SAD BGM 00	5		3	Aug. 8/19		5	X	X	-		-	X	X	X	X	X	-2X	150mi
2 19.00 SA3	1		1			V	-	K				X						T
3 19.05 SA3 Dup			3			X		X				X						V
4 19-63 SH2			2,	Y		X		X				/			250	mi.		
5 19-04-5A1			3			X		×				Y		2X	2500	nut	1 19	-
6 19.05 SM			3			1		X				X				V		
7 19.06 SAD	W		3	V		X		X		_	_	X		- 0	500	n (+	100	01-
8						_				_	-							
9								-		_	_			Ļ				
10			1	L			4		Ц	, I							1	
Comments: & Sample ID on Fi	NES+	Vis	TC	The All	Sets SH	rea	R	2	6	M.,					HON	of Delive	ay:	
Relinquished By (Sign): Alvroa Whitelact	Receive	xl by Dri	ver Dépe	TROUSE	.))	ved at 1	pa		م معدي و سر ر ه	0	Section and section of the local section of the loc	mai	Verifio	Ma	h	H	4	
Relinquished By (Print): Alyson While related	a sea of the second second	me: 0	9/0	8/191	26 Date	Time:	K	VG	09,	201	9 6	94.64	a case of cases	Contract of the state of	J.	- Ý-	10	19:00
Date/Time: Qua 1,2019 11:30	Temper	ature:		C /	Temp	crature	11	V	C			11/10/	pli Ver	filled [4]	By:			

RELIABLE.

Certificate of Analysis

Golder Associates Ltd. (Ottawa)

1931 Robertson Rd. Ottawa, ON K2H 5B7 Attn: Alyssa Whiteduck

Client PO: Project: 19120465/159 Forward Avenue Custody:

Report Date: 19-Aug-2019 Order Date: 9-Aug-2019

Order #: 1932562

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1932562-01	19-02 SA2
1932562-02	19-02 SA3
1932562-03	19-02 SA3 DUP
1932562-04	19-03 SA2
1932562-05	19-04 SA1
1932562-06	19-05 SA1
1932562-07	19-06 SA2

Approved By:

Mark Frata

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1932562

Report Date: 19-Aug-2019 Order Date: 9-Aug-2019

Project Description: 19120465/159 Forward Avenue

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Boron, available	MOE (HWE), EPA 200.7 - ICP-OES	14-Aug-19	14-Aug-19
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	17-Aug-19	17-Aug-19
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	14-Aug-19	16-Aug-19
Mercury by CVAA	EPA 7471B - CVAA, digestion	14-Aug-19	14-Aug-19
PHC F1	CWS Tier 1 - P&T GC-FID	17-Aug-19	17-Aug-19
PHC F4G (gravimetric)	CWS Tier 1 - Extraction Gravimetric	15-Aug-19	15-Aug-19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	10-Aug-19	14-Aug-19
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	14-Aug-19	15-Aug-19
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	14-Aug-19	15-Aug-19
Solids, %	Gravimetric, calculation	15-Aug-19	15-Aug-19

Order #: 1932562

Report Date: 19-Aug-2019 Order Date: 9-Aug-2019

	Client ID: Sample Date: Sample ID: MDL/Units	19-02 SA2 08-Aug-19 09:00 1932562-01 Soil	19-02 SA3 08-Aug-19 09:00 1932562-02 Soil	19-02 SA3 DUP 08-Aug-19 09:00 1932562-03 Soil	19-03 SA2 08-Aug-19 09:00 1932562-04 Soil
Physical Characteristics					
% Solids	0.1 % by Wt.	92.5	74.0	78.0	90.5
Metals			•	<u>.</u>	
Antimony	1.0 ug/g dry	<1.0	<1.0	1.4	1.0
Arsenic	1.0 ug/g dry	5.4	5.1	6.9	12.1
Barium	1.0 ug/g dry	173	112	143	157
Beryllium	0.5 ug/g dry	0.6	0.6	0.7	0.9
Boron	5.0 ug/g dry	5.6	<5.0	<5.0	<5.0
Boron, available	0.5 ug/g dry	<0.5	<0.5	0.6	<0.5
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	5.0 ug/g dry	35.0	15.9	17.7	18.5
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	<0.2	<0.2
Cobalt	1.0 ug/g dry	10.2	6.9	8.6	9.6
Copper	5.0 ug/g dry	29.2	26.3	53.2	29.6
Lead	1.0 ug/g dry	84.4	66.1	93.0	284
Mercury	0.1 ug/g dry	<0.1	<0.1	<0.1	0.1
Molybdenum	1.0 ug/g dry	1.3	1.1	1.8	2.4
Nickel	5.0 ug/g dry	26.1	17.5	21.1	25.0
Selenium	1.0 ug/g dry	<1.0	<1.0	1.2	1.7
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	<0.3
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	10.0 ug/g dry	35.6	25.0	29.4	26.8
Zinc	20.0 ug/g dry	110	104	107	88.4
Volatiles			!	ł	
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	<0.05
Toluene-d8	Surrogate	90.1%	87.2%	89.6%	96.9%
Hydrocarbons				-	
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	<7
F2 PHCs (C10-C16)	4 ug/g dry	73	61	83	<4
F3 PHCs (C16-C34)	8 ug/g dry	141	185	275	34

PARACEL LABORATORIES LTD.

Certificate of Analysis Client: Golder Associates Ltd. (Ottawa) Client PO:

Order #: 1932562

Report Date: 19-Aug-2019 Order Date: 9-Aug-2019

	Client ID: Sample Date: Sample ID:	19-02 SA2 08-Aug-19 09:00 1932562-01	19-02 SA3 08-Aug-19 09:00 1932562-02	19-02 SA3 DUP 08-Aug-19 09:00 1932562-03	19-03 SA2 08-Aug-19 09:00 1932562-04
	MDL/Units	Soil	Soil	Soil	Soil
F4 PHCs (C34-C50)	6 ug/g dry	82	178 [1]	218 [1]	29
F4G PHCs (gravimetric)	50 ug/g dry	-	690	795	-
Semi-Volatiles			-	-	
Acenaphthene	0.02 ug/g dry	1.57	0.08	0.08	0.04
Acenaphthylene	0.02 ug/g dry	0.28	0.54	0.30	0.03
Anthracene	0.02 ug/g dry	2.69	0.52	0.33	0.10
Benzo [a] anthracene	0.02 ug/g dry	3.60	1.05	0.88	0.26
Benzo [a] pyrene	0.02 ug/g dry	3.08	1.36	0.87	0.24
Benzo [b] fluoranthene	0.02 ug/g dry	4.28	2.12	1.30	0.39
Benzo [g,h,i] perylene	0.02 ug/g dry	1.88	1.19	0.65	0.17
Benzo [k] fluoranthene	0.02 ug/g dry	2.49	1.08	0.67	0.21
Chrysene	0.02 ug/g dry	3.98	1.07	1.04	0.27
Dibenzo [a,h] anthracene	0.02 ug/g dry	0.52	0.33	0.19	0.05
Fluoranthene	0.02 ug/g dry	11.1	2.19	1.87	0.63
Fluorene	0.02 ug/g dry	1.35	0.10	0.09	0.03
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	1.77	1.09	0.61	0.16
1-Methylnaphthalene	0.02 ug/g dry	0.18	0.05	0.04	<0.02
2-Methylnaphthalene	0.02 ug/g dry	0.26	0.08	0.05	<0.02
Methylnaphthalene (1&2)	0.04 ug/g dry	0.44	0.14	0.09	<0.04
Naphthalene	0.01 ug/g dry	0.33	0.14	0.09	0.01
Phenanthrene	0.02 ug/g dry	9.81	0.99	0.76	0.38
Pyrene	0.02 ug/g dry	8.45	2.01	1.64	0.54
2-Fluorobiphenyl	Surrogate	95.6%	51.5%	59.6%	52.2%
Terphenyl-d14	Surrogate	113%	61.9%	77.2%	86.2%

Order #: 1932562

Report Date: 19-Aug-2019

Order Date: 9-Aug-2019

	Client ID: Sample Date: Sample ID: MDL/Units	19-04 SA1 08-Aug-19 09:00 1932562-05 Soil	19-05 SA1 08-Aug-19 09:00 1932562-06 Soil	19-06 SA2 08-Aug-19 09:00 1932562-07 Soil	- - - -
Physical Characteristics					
% Solids	0.1 % by Wt.	82.3	94.8	84.9	-
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Arsenic	1.0 ug/g dry	7.4	7.5	14.7	-
Barium	1.0 ug/g dry	101	137	203	-
Beryllium	0.5 ug/g dry	0.5	0.7	0.7	-
Boron	5.0 ug/g dry	<5.0	8.7	5.4	-
Boron, available	0.5 ug/g dry	0.6	0.6	<0.5	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	-
Chromium	5.0 ug/g dry	13.8	22.8	21.0	-
Chromium (VI)	0.2 ug/g dry	<0.2	<0.2	<0.2	-
Cobalt	1.0 ug/g dry	7.0	7.1	8.8	-
Copper	5.0 ug/g dry	25.8	19.7	42.2	-
Lead	1.0 ug/g dry	80.0	69.8	199	-
Mercury	0.1 ug/g dry	<0.1	<0.1	0.2	-
Molybdenum	1.0 ug/g dry	1.4	2.3	1.8	-
Nickel	5.0 ug/g dry	18.3	18.4	23.2	-
Selenium	1.0 ug/g dry	1.0	1.2	1.2	-
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	-
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Uranium	1.0 ug/g dry	<1.0	<1.0	1.1	-
Vanadium	10.0 ug/g dry	22.0	25.8	33.3	-
Zinc	20.0 ug/g dry	70.9	210	181	-
Volatiles					
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Toluene-d8	Surrogate	92.7%	110%	89.8%	-
Hydrocarbons	1		1	1	
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	59	35	56	-

Order #: 1932562

Report Date: 19-Aug-2019

Order Date: 9-Aug-2019

	Client ID:	19-04 SA1	19-05 SA1	19-06 SA2	-
	Sample Date:	08-Aug-19 09:00	08-Aug-19 09:00	08-Aug-19 09:00	-
	Sample ID:	1932562-05 Soil	1932562-06 Soil	1932562-07 Soil	-
	MDL/Units 6 ug/g dry				-
F4 PHCs (C34-C50) Semi-Volatiles	o ug/g ury	27	19	30	-
Acenaphthene	0.02 ug/g dry	0.05	<0.02	0.05	-
Acenaphthylene	0.02 ug/g dry	0.04	0.05	0.00	-
Anthracene	0.02 ug/g dry	0.15	0.08	0.20	_
Benzo [a] anthracene	0.02 ug/g dry	0.29	0.22	0.76	-
Benzo [a] pyrene	0.02 ug/g dry	0.24	0.20	0.83	-
Benzo [b] fluoranthene	0.02 ug/g dry	0.35	0.27	1.17	_
Benzo [g,h,i] perylene	0.02 ug/g dry	0.16	0.13	0.55	-
Benzo [k] fluoranthene	0.02 ug/g dry	0.19	0.14	0.59	-
Chrysene	0.02 ug/g dry	0.30	0.23	0.86	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	0.05	0.04	0.16	-
Fluoranthene	0.02 ug/g dry	0.67	0.42	1.61	-
Fluorene	0.02 ug/g dry	0.06	0.02	0.07	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.15	0.12	0.52	-
1-Methylnaphthalene	0.02 ug/g dry	0.02	<0.02	0.06	-
2-Methylnaphthalene	0.02 ug/g dry	0.03	<0.02	0.06	-
Methylnaphthalene (1&2)	0.04 ug/g dry	0.05	<0.04	0.12	-
Naphthalene	0.01 ug/g dry	0.04	0.02	0.08	-
Phenanthrene	0.02 ug/g dry	0.57	0.24	0.97	-
Pyrene	0.02 ug/g dry	0.53	0.38	1.41	-
2-Fluorobiphenyl	Surrogate	59.5%	54.9%	59.2%	-
Terphenyl-d14	Surrogate	96.6%	79.9%	85.1%	-

Order #: 1932562

Report Date: 19-Aug-2019

Order Date: 9-Aug-2019

Project Description: 19120465/159 Forward Avenue

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
F4G PHCs (gravimetric)	ND	50	ug/g						
Metals			-						
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron, available	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium (VI)	ND	0.2	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND ND	5.0 1.0	ug/g						
Lead			ug/g						
Mercury Molybdenum	ND ND	0.1 1.0	ug/g ug/g						
Nickel	ND	5.0	ug/g ug/g						
Selenium	ND	1.0	ug/g ug/g						
Silver	ND	0.3	ug/g ug/g						
Thallium	ND	1.0	ug/g ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene Fluoranthene	ND ND	0.02 0.02	ug/g						
Fluoranthene	ND	0.02	ug/g ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g ug/g						
1-Methylnaphthalene	ND	0.02	ug/g ug/g						
2-Methylnaphthalene	ND	0.02	ug/g ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Fluorobiphenyl	1.26		ug/g		94.7	50-140			
Surrogate: Terphenyl-d14	1.58		ug/g		118	50-140			
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	3.07		ug/g		95.9	50-140			

Order #: 1932562

Report Date: 19-Aug-2019

Order Date: 9-Aug-2019

Project Description: 19120465/159 Forward Avenue

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	ND				30	
F4 PHCs (C34-C50)	ND	6	ug/g dry	ND				30	
F4G PHCs (gravimetric)	10100	83	ug/g dry	10100			0.0	30	PHC01
Metals									
Antimony	2.1	1.0	ug/g dry	ND			0.0	30	
Arsenic	3.1	1.0	ug/g dry	2.9			4.4	30	
Barium	345	1.0	ug/g dry	326			5.8	30	
Beryllium	0.8	0.5	ug/g dry	0.7			0.8	30	
Boron, available	ND	0.5	ug/g dry	ND			0.0	35	
Boron	6.3	5.0	ug/g dry	5.8			9.6	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium (VI)	ND	0.2	ug/g dry	ND				35	
Chromium	103	5.0	ug/g dry	99.8			3.3	30	
Cobalt	20.4	1.0	ug/g dry	20.0			2.1	30	
Copper	47.2	5.0	ug/g dry	45.7			3.1	30	
Lead	11.3	1.0	ug/g dry	10.7			5.7	30	
Mercury	ND	0.1	ug/g dry	ND			0.0	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	57.8	5.0	ug/g dry	56.2			2.9	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.3	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND			0.0	30	
Vanadium	97.5	10.0	ug/g dry	93.8			3.9	30	
Zinc	125	20.0	ug/g dry	120			4.0	30	
Physical Characteristics								05	
% Solids	31.1	0.1	% by Wt.	31.4			0.8	25	
Semi-Volatiles		0.00	ua/a dru					40	
Acenaphthene	ND ND	0.02 0.02	ug/g dry	ND ND			0.0	40 40	
Acenaphthylene Anthracene	0.026	0.02	ug/g dry	0.037			34.8	40 40	
Benzo [a] anthracene	0.028	0.02	ug/g dry	0.037			5.7	40 40	
	0.120	0.02	ug/g dry	0.150			0.1	40	
Benzo [a] pyrene Benzo [b] fluoranthene	0.308	0.02	ug/g dry ug/g dry	0.327			5.7	40	
Benzo [g,h,i] perylene	0.300	0.02	ug/g dry ug/g dry	0.194			0.6	40	
Benzo [k] fluoranthene	0.133	0.02	ug/g dry	0.112			13.0	40	
Chrysene	0.219	0.02	ug/g dry	0.230			4.6	40	
Dibenzo [a,h] anthracene	0.035	0.02	ug/g dry	0.032			8.4	40	
Fluoranthene	0.531	0.02	ug/g dry	0.487			8.7	40	
Fluorene	ND	0.02	ug/g dry	ND			0.0	40	
Indeno [1,2,3-cd] pyrene	0.144	0.02	ug/g dry	0.143			0.3	40	
1-Methylnaphthalene	0.033	0.02	ug/g dry	0.028			15.8	40	
2-Methylnaphthalene	ND	0.02	ug/g dry	ND			0.0	40	
Naphthalene	0.037	0.01	ug/g dry	0.038			4.1	40	
Phenanthrene	0.184	0.02	ug/g dry	0.185			0.7	40	
Pyrene	0.441	0.02	ug/g dry	0.449			1.7	40	
Surrogate: 2-Fluorobiphenyl	3.22		ug/g dry		87.9	50-140			
Surrogate: Terphenyl-d14	4.68		ug/g dry		127	50-140			
Volatiles									
Benzene	ND	0.02	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
Toluene									
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	

Order #: 1932562

Report Date: 19-Aug-2019

Order Date: 9-Aug-2019

Project Description: 19120465/159 Forward Avenue

Method Quality Control: Duplicate

Analyte	Reporting Result Limit	Units	Source Result %REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: Toluene-d8	3.13	ug/g dry	90.3	50-140			

Order #: 1932562

Report Date: 19-Aug-2019

Order Date: 9-Aug-2019

Project Description: 19120465/159 Forward Avenue

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	209	7	ug/g		105	80-120			
F2 PHCs (C10-C16)	91	4	ug/g	ND	103	60-140			
F3 PHCs (C16-C34)	258	8	ug/g	ND	119	60-140			
F4 PHCs (C34-C50)	163	6	ug/g	ND	119	60-140			
F4G PHCs (gravimetric)	860	50	ug/g		86.0	80-120			
Metals									
Antimony	43.2		ug/L	ND	86.0	70-130			
Arsenic	51.1		ug/L	1.2	99.9	70-130			
Barium	193		ug/L	130	125	70-130			
Beryllium	47.8		ug/L	ND	95.0	70-130			
Boron, available	4.17	0.5	ug/g	ND	83.5	70-122			
Boron	44.1	0.0	ug/L	ND	83.6	70-122			
Cadmium	49.1		ug/L	ND	98.1	70-130			
Chromium (VI)	0.1		mg/L	ND	64.5	70-130		C	M-05
Chromium	91.1		ug/L	39.9	102	70-130		G	
Cobalt	56.1		ug/L	8.0	96.3	70-130			
Copper	66.5		ug/L	18.3	96.4	70-130			
Lead	51.9		ug/L	4.3	95.4 95.4	70-130			
Mercury	1.12	0.1	-	4.3 ND	93.4 74.4	70-130			
Molybdenum	49.2	0.1	ug/g ug/L	ND	97.7	70-130			
Nickel	71.8			22.5	98.7	70-130			
Selenium	47.7		ug/L	22.5 ND	96.7 95.2	70-130			
Silver	47.7		ug/L	ND	95.2 96.5	70-130			
Thallium	40.3		ug/L	ND	96.5 95.3	70-130			
	47.8		ug/L			70-130			
Uranium			ug/L	ND 07 F	97.0				
Vanadium	92.3		ug/L	37.5	110 94.5	70-130			
Zinc	95.1		ug/L	47.9	94.5	70-130			
Semi-Volatiles									
Acenaphthene	0.497	0.02	ug/g	ND	108	50-140			
Acenaphthylene	0.479	0.02	ug/g	ND	104	50-140			
Anthracene	0.497	0.02	ug/g	0.037	100	50-140			
Benzo [a] anthracene	0.602	0.02	ug/g	0.134	102	50-140			
Benzo [a] pyrene	0.518	0.02	ug/g	0.150	80.3	50-140			
Benzo [b] fluoranthene	1.01	0.02	ug/g	0.327	150	50-140		C	2M-06
Benzo [g,h,i] perylene	0.541	0.02	ug/g	0.194	75.8	50-140			
Benzo [k] fluoranthene	0.782	0.02	ug/g	0.112	146	50-140		C	2M-06
Chrysene	0.823	0.02	ug/g	0.230	129	50-140			
Dibenzo [a,h] anthracene	0.456	0.02	ug/g	0.032	92.5	50-140			
Fluoranthene	1.17	0.02	ug/g	0.487	149	50-140		C	06-M
Fluorene	0.474	0.02	ug/g	ND	103	50-140			
Indeno [1,2,3-cd] pyrene	0.547	0.02	ug/g	0.143	88.0	50-140			
1-Methylnaphthalene	0.409	0.02	ug/g	0.028	83.1	50-140			
2-Methylnaphthalene	0.445	0.02	ug/g	ND	97.1	50-140			
Naphthalene	0.556	0.01	ug/g	0.038	113	50-140			
Phenanthrene	0.621	0.02	ug/g	0.185	95.1	50-140			
Pyrene	1.09	0.02	ug/g	0.449	139	50-140			
Surrogate: 2-Fluorobiphenyl	2.82		ug/g		77.0	50-140			
Volatiles									
Benzene	3.38	0.02	ug/g		84.4	60-130			
Ethylbenzene	3.66	0.05	ug/g		91.5	60-130			

Order #: 1932562

Report Date: 19-Aug-2019

Order Date: 9-Aug-2019

Project Description: 19120465/159 Forward Avenue

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Toluene	3.63	0.05	ug/g		90.8	60-130			
m,p-Xylenes	7.12	0.05	ug/g		89.0	60-130			
o-Xylene	3.75	0.05	ug/g		93.9	60-130			

Sample Qualifiers :

1: GC-FID signal did not return to baseline by C50

QC Qualifiers :

PHC01 : Moisture content >50%, sample air dried prior to extraction.

- QM-05: The spike recovery was outside acceptance limits for the matrix spike due to matrix interference.
- QM-06 : Due to noted non-homogeneity of the QC sample matrix, the spike recoveries were out side the accepted range. Batch data accepted based on other QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

GPARACEL	I D			Paracel ID): 19325	562			30 Dt	tawa, 1-800	9 St. I Ontar -749-1	Laurent E rio K1G / 1947 aracellab	4J8			Lab Use		Y
				-					2						Pa	ge 🔟	of /_	
Client Name: Golden Associates				Project Reference	19120	163	5								Turn	aroun	d Time	1
Contact Name: Alyssa Whiteduck /Keith Address: 1931 Robertson Road Ottav	h Ho	Ins		Quote # Ct	ty of c			a						010	Day		□3I)ay
TIST ROLD GUT ROOM OTTAN	24			Email Address:	a wile free	level	0-1	hlel						02 D)av		Re	oular
Telephone: 613 - 592 -9600					cholmo	Rig	ege dd	un.	col	non l	•				Requir	red:	Price	guiai
Criteria: XO. Reg. 153/04 (As Amended) Table 7 🗆 RSC F	iling C	10. Rej	g. 558/0	D DPWQO	CCME I SU	JB (Sto	erm)	D SL	BUS	anitar	y) M	unicipali	ty:	Putt	-	Other:	1	
Matrix Type: S (Soil-Sed.) GW (Ground Water) SW (Surface Water) SS							juire											
Paracel Order Number: 1932561 - TCIP BG 1932562 - BVIN	Mpt	Air Volume	# of Containers	Sample	Taken	F1-F4+BTEX			y ICP			Stalo	Berg	motella	Derizare	nitabil.h.		
	Matrix	ir Vo	of Co			PHCs F1	vocs	PAHs	Metals by	15	B (HWS)	Reg 12	28	528	558	iv.		
Sample ID/Location Name	S	<	-	Date	Time	E	5 NI	N N	Met	CrVI	B (FD	N	5	5	9	0.1	+14
1 19.02 SA2 DGM 101 2 19.02 SA3 1 102	2	-	3	Aug. 8/19		×	M.	슈	+	-	-	X	7	X	X	X	-2X	650m
3 19-02 SA3 Pup 103	-		3			X	,	5	+	+	-	X						
1 19-03 5A2 /104			2,			$\hat{\mathbf{y}}$		2	+	+		X			951	mi.		V
5 19-04 SAL 105			3			X		Ż	+	-				9.			1 /iq	
6 19-05 SAI 106			3			X	- (À	+	+	H	5		~~~	2001	104	7 11	-
19-06 SA2 107	N.		2	\checkmark		X		X	T	+		X	_	- 9	hav	v (+	100	T
8						Í	ľ		T						501	<u>n - 1</u>	7.1	12
9																		_
10							,											
Comments: :- Sample ID on Fall	+2	Við	IS		Sets 1 Le BH				31	1		t.			Method	of Delive	y:	
alypa Whitelack		~	er Depot	KOUSE	Recen	red at La JMEP	b: QUV	n		Da	distant and the	nai	Verified	nd	1	Ĥ	1	
nig son contraction	Date/Tin Tempera	ne: 09	1/00	8/19/1	Date/T	ime: rature:	AV	Contribution of the	190	019	0	4,54			8-	-Ø-	191	9:04
Julian Inge					. Jania							ł	ना गया।	ied [] B	Y		1	

RELIABLE.

Certificate of Analysis

Golder Associates Ltd. (Ottawa)

1931 Robertson Rd. Ottawa, ON K2H 5B7 Attn: Alyssa Whiteduck

Client PO: Project: 19120465/159 Forward Avenue Custody: 122506

Report Date: 27-Aug-2019 Order Date: 16-Aug-2019

Order #: 1933650

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1933650-01	19-01
1933650-02	19-02
1933650-03	19-03
1933650-04	DUP

Approved By:

Mark Frata

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 27-Aug-2019 Order Date: 16-Aug-2019 Project Description: 19120465/159 Forward Avenue

Order #: 1933650

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
BTEX by P&T GC-MS	EPA 624 - P&T GC-MS	25-Aug-19 24-Aug-19
PCBs, total	EPA 608 - GC-ECD	21-Aug-19 21-Aug-19
PHC F1	CWS Tier 1 - P&T GC-FID	23-Aug-19 24-Aug-19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	26-Aug-19 26-Aug-19

Order #: 1933650

Report Date: 27-Aug-2019 Order Date: 16-Aug-2019

	F		40.00	i	
	Client ID:	19-01	19-02	19-03	DUP
	Sample Date:	16-Aug-19 09:28	16-Aug-19 07:40	16-Aug-19 08:25	16-Aug-19 08:30
	Sample ID:	1933650-01	1933650-02	1933650-03	1933650-04
	MDL/Units	Water	Water	Water	Water
Volatiles					
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene-d8	Surrogate	71.7%	80.0%	73.1%	80.0%
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	<100
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	<100
PCBs					
PCBs, total	0.05 ug/L	-	-	<0.05	<0.05
Decachlorobiphenyl	Surrogate	-	-	73.5%	68.5%

Order #: 1933650

Report Date: 27-Aug-2019

Order Date: 16-Aug-2019

Project Description: 19120465/159 Forward Avenue

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
PCBs									
PCBs, total	ND	0.05	ug/L						
Surrogate: Decachlorobiphenyl	0.448		ug/L		89.6	60-140			
Volatiles									
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: Toluene-d8	56.0		ug/L		70.0	50-140			

Order #: 1933650

Report Date: 27-Aug-2019

Order Date: 16-Aug-2019

Project Description: 19120465/159 Forward Avenue

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles									
Benzene	ND	0.5	ug/L	ND			0.0	30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND			0.0	30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: Toluene-d8	57.4		ug/L		71.7	50-140			

Order #: 1933650

Report Date: 27-Aug-2019

Order Date: 16-Aug-2019

Project Description: 19120465/159 Forward Avenue

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	2030	25	ug/L		102	68-117			
F2 PHCs (C10-C16)	1530	100	ug/L		95.7	60-140			
F3 PHCs (C16-C34)	3740	100	ug/L		95.3	60-140			
F4 PHCs (C34-C50)	2680	100	ug/L		108	60-140			
PCBs									
PCBs, total	0.865	0.05	ug/L		86.5	60-140			
Surrogate: Decachlorobiphenyl	0.445		ug/L		88.9	60-140			
Volatiles									
Benzene	35.2	0.5	ug/L		88.0	60-130			
Ethylbenzene	39.2	0.5	ug/L		97.9	60-130			
Toluene	33.9	0.5	ug/L		84.7	60-130			
m,p-Xylenes	83.1	0.5	ug/L		104	60-130			
o-Xylene	38.5	0.5	ug/L		96.3	60-130			

Qualifier Notes:

Login Qualifiers :

Samples received submerged in water, possibly melted ice. This condition can compromise sample integrity. *Applies to samples: 19-01, 19-02, 19-03, DUP*

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

- When reported, data for F4G has been processed using a silica gel cleanup.

GPARACEL				acel ID: 19				3 () p)ttawa	19 St. , Ontai 0-749-	Laurent Blvd. io K1G 4J8 1947 aracellabs.com	Λ.	(Lab Us	Custody se Oaly) 2506	
Client Name: Golder Associator Contact Name: Alyssa Whiteduck/Ko Address: 1931 Robertson Rd. Telephone: 613 592-9600	of	AVI	c5 7	Project Reference: Quote # C.1 PO # Email Address: C PWQO C C	1912 ty o (F awhited K Molme XCME D SUI	UCK UCK	¢.	700 501	dv dv	, ce , c tary) M	Aunicipality: _	□ 1 Da	у	and Time: a 3 Da Reg	ay
Criteria: XO. Reg. 153/04 (As Amended) Table CIRSC I Matrix Type: S (Soil Sed.) GW (Ground Water) SW (Surface Water) S								Anal							
Paracel Order Number: 1933650 Sample ID/Location Name 1 19-01 65 Miob 2 19-02 66 Miob 3 19-03 66 Mio 4 DJP 86 Mill 5 6 7	S Matrix	Air Volume	# of Containers	Sample Date Zecc[os_16	Taken Time	× X X	vocs	PAHS Metals by ICP	Hg	CrVI CrVI	XX Z PCB'S				
	mol	ed by Dr C	iver:Depo	bottle re y ruilly	10:5Pate	in 19- red at L Unf Fime: crature:	03 ab:	oole	(er	Roh	Vnai 02.55 Dat		Method of T Wall Feim 8/17/1 3y:	Km Wl	: [6

Chain of Custody (Env) - Rev 0.7 Feb. 2016

golder.com