Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Geotechnical Investigation

Proposed Multi-Storey Building 36 Robinson Avenue Ottawa, Ontario

Prepared For

Robinson Village LPIV Limited Partnership c/o TC United Development

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca April 24, 2020

Report PG5231-1- Revision 1

Table of Contents

1.0	Introduction1
2.0	Proposed Development1
3.0	Method of Investigation3.1Field Investigation23.2Field Survey23.3Laboratory Testing2
4.0	Observations4.1Surface Conditions34.2Subsurface Profile34.3Groundwater4
5.0	Discussion5.1Geotechnical Assessment.55.2Site Grading and Preparation55.3Foundation Design75.4Design for Earthquakes.85.5Basement Slab85.6Basement Wall85.7Rock Anchor Design105.8Pavement Structure.12
6.0	Design and Construction Precautions6.1Foundation Drainage and Backfill136.2Protection of Footings Against Frost Action156.3Excavation156.4Pipe Bedding and Backfill186.5Groundwater Control186.6Winter Construction196.7Corrosion Potential and Sulphate20
7.0	Recommendations 21
8.0	Statement of Limitations

Appendices

 Appendix 1 Soil Profile and Test Data Sheets Symbols and Terms Borehole Logs and Notes on Boreholes by Others Multi-Channel Analysis of Surface Wave Result by Others Laboratory Testing Results by Others Core Log Photographs by Others Building Code Seismic Hazard Calculation by Others
 Appendix 2 Figure 1 - Site Location Plan (by others) Figure 2 - Borehole Location Plan (by others) Figure 3 - Water Suppression System

Drawing PG5231-1 - Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by TC United Development on behalf of Robinson Village LPIV Limited Partnership to prepare the current geotechnical report for the proposed multi-storey building located at 36 Robinson Avenue in the City of Ottawa, Ontario (refer to Figure 1 - Key Plan in Appendix 2).

The objectives of the current investigation were to:

- □ determine the subsurface soil and groundwater conditions by means of boreholes
- review available subsoil and groundwater information previously prepared by others for the subject site.
- provide geotechnical recommendations pertaining to the design of the proposed development, including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. This report contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as understood at the time of writing this report.

Investigating the presence or potential presence of contamination on the subject property was carried out as a separate program and is reported under separate cover.

2.0 Proposed Development

It is understood that the proposed development will consist of a multi-storey building with two and one half levels of underground parking with the floor slab for P-3 level being at elevation 50.2 m. It is expected that the proposed structure will occupy the entire boundary of the subject site. The finished floor elevation at grade is currently set at elevation 58.92 m.

It is further understood that the proposed development will be municipally serviced with water and sewer.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

The field portion of the geotechnical investigation was conducted on February 21, 2020. At that time, a total of 6 test pits were completed across the subject site to a maximum depth of 8.2 m to provide general coverage of the proposed development and confirm subsoil and groundwater conditions. The test pits were conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer.

Relevant test holes (12 boreholes) completed by others as part of the previous subsoil and groundwater investigations have been included as part of the current geotechnical report. The approximate location of the test holes are presented on Drawing PG5231-1 - Test Hole Location Plan included in Appendix 2.

Groundwater

Monitoring wells were installed by others in 9 boreholes during the previous geotechnical investigation to permit monitoring of the groundwater levels subsequent to the completion of the sampling program.

Sample Storage

The test pit samples from the current geotechnical investigation will be stored in the laboratory for a period of one month after issuance of this report. They will then be discarded unless otherwise directed.

3.2 Field Survey

The test pit locations were selected, determined in the field and surveyed by Paterson. The ground surface elevation at each test hole location was extrapolated from the geotechnical report prepared by others which are considered approximate geodetic elevation based on the shoring drawing.

3.3 Laboratory Testing

All soil samples were recovered from the subject site and visually examined in our laboratory to review the results of the field logging.

4.0 Observations

4.1 Surface Conditions

The subject site consists of 5 contiguous properties identified as 36 Robinson Avenue. The properties are occupied by residential structures that will be demolished prior to commencing the re-development of the site. The site is relatively flat with the grade sloping downwards approximately 1 m from west to east towards the Rideau River.

The subject site is bordered to the north by Robinson Avenue, to the east, west and south by residential units.

4.2 Subsurface Profile

Overburden

Generally, the soil conditions encountered at the test hole locations consist of a fill material consisting of a mixture of silty sand, gravel, topsoil and debris.

The native soil consists of stratified sandy silt and clayey silt layers. Underlying this stratification layer is a glacial till deposit consisting of a sandy silt matrix along with occasional cobbles and boulders with trace levels of gravel. The glacial till deposit extended to the bedrock surface at approximate depths of 5.6 to 7.9 m below the existing grade.

Bedrock

Bedrock, consisting of a dark grey almost black limestone from the Eastview Formation, was cored by others at several locations during the previous investigation to a maximum depth of 16.5 m below the existing grade. The recovery values and RQD values for the bedrock cores were calculated by others during the previous investigation with recovery values varying between 50 to 100% and RQD values ranging from 0 and 100%. Based on these results, the bedrock quality varies from very poor to fair.

Some of the more recent test pits extended to bedrock to confirm the soundness of the bedrock. The hydraulic shovel was not able the to penetrate the black limestone surface.

4.3 Groundwater

Stabilized groundwater levels were measured on December 13, 2019 by others in the monitoring wells installed during the previous geotechnical field investigation. The measured groundwater level readings ranged from 1.4 to 3 m below the existing grade in the overburden wells while the bedrock wells had groundwater levels ranging from 2.8 to 4.7 m below the existing grade. It should be noted that surface water can become trapped within a backfilled boreholes that can lead to higher than typical groundwater level observations.

Based on our review of the historical monitoring wells installed at the subject site, general knowledge of the areas geology, experience with similar development projects in the immediate area in conjunction with the drawdown effect of the nearby Rideau River, it is expected that the long-term groundwater is located approximately 4 to 5 m below existing ground surface. However, it should be noted that a perched groundwater conditions was encountered in the overburden with water being trapped in the stratified layers of sandy silt and clayey silt.

The test pits excavated in February of 2020, did not identify any significant water infiltration issues within the overburden. The exception was encountered in TP-2 where minor water infiltration was noticed at the overburden and bedrock interface.

5.0 Discussion

5.1 Geotechnical Assessment

Based on the results of the geotechnical investigation, the subject site is considered satisfactory for the proposed development. The proposed multi-storey building will be founded on conventional spread footings placed within the bedrock unit.

Due to the depth of the proposed underground parking garage, a water suppression system is recommended to lessen the volume of water infiltration over the long term during post-construction.

Bedrock removal will be required to complete the lower portion of the excavation, dependent on the specific founding depths of the proposed building and elevator pits. This portion is discussed further in Subsection 5.2.

The above and other considerations are further discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

It is expected that all the building will be demolished and all overburden will be excavated to the bedrock surface for the entire building footprint to accommodate two levels of underground parking.

Bedrock Removal

As noted above, bedrock removal will be required for the lower portion of the excavation dependent on the final founding depths of the proposed building. Hoe ramming is an option where the bedrock is weathered and/or where only small quantities of bedrock need to be removed. Where large quantities of bedrock need to be removed, line drilling and controlled blasting is recommended. The blasting operations should be planned and completed under the guidance of a professional engineer with experience in blasting operations.

Prior to considering blasting operations, the blasting effects on the existing services, buildings and other structures should be addressed. A pre-blast or pre-construction survey of the existing structures located in proximity of the blasting operations should be conducted prior to commencing construction. The extent of the survey should be determined by the blasting consultant and sufficient to respond to any inquiries/claims related to the blasting operations.

As a general guideline, peak particle velocities (measured at the structures) should not exceed 50 mm/s during the blasting program to reduce the risks of damage to the existing structures.

The blasting operations should be planned and conducted under the supervision of a licensed professional engineer who is also an experienced blasting consultant.

Vibration Considerations

Construction operations could be the cause of vibrations, and possibly, sources of nuisance to the community. Therefore, means to reduce the vibration levels as much as possible should be incorporated in the construction operations to maintain a cooperative environment with the residents.

The following construction equipments could be the source of vibrations: piling equipment, hoe ram, compactor, dozer, crane, truck traffic, etc. The construction of the shoring system will require the use of this type of equipment. Vibrations, whether it is caused by blasting operations or by construction operations, could be the cause or the source of detrimental vibrations on the adjoining buildings and structures. Therefore, it is recommended that all vibrations be limited.

Two parameters determine the permissible vibrations, the maximum peak particle velocity and the frequency. For low frequency vibrations, the maximum allowable peak particle velocity is less than that for high frequency vibrations. As a guideline, the peak particle velocity should be less than 15 mm/s between frequencies of 4 to 12 Hz, and 50 mm/s above a frequency of 40 Hz (interpolate between 12 and 40 Hz). These guidelines are for current construction standards. These guidelines are above perceptible human level and, in some cases, could be very disturbing to some people, a pre-construction survey is recommended to minimize the risks of claims during or following the construction of the proposed building.

Fill Placement

If fill placement is required for grading beneath the proposed building to support the floor slab, unless otherwise specified, should consist of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. The fill should be approved prior to delivery to the site. The granular material should be placed in lifts no greater than 300 mm thick and compacted with suitable compaction equipment for the lift thickness. Fill placed beneath the buildings should be compacted to a minimum of 98% of the material's standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil could be placed as general landscaping fill where settlement of the ground surface is of minor concern. These materials should be spread in thin lifts and at a minimum compacted by the heavy equipment tracks to minimize voids. If these materials are to build up the subgrade level for areas to be paved, the material should be compacted in thin lifts to a minimum density of 95% of the SPMDD. Non-specified existing fill and site-excavated soils are not suitable for placement as backfill against foundation walls unless a composite drainage blanket connected to a perimeter drainage system is provided.

Non-specified existing fill and site-excavated soil are not suitable as backfill against foundation walls unless a composite drainage blanket connected to a perimeter drainage system is provided.

5.3 Foundation Design

It's expected that a mass excavation will take place and the bottom of the excavation will be relatively uniform to accept a concrete mud slab. Footings will be poured over this concrete mud slab which will also be acting as a horizontal hydraulic barrier for the water suppression system.

Concrete Hydraulic Barrier

To create a horizontal hydraulic barrier at depth, it's recommended that a concrete mud slab be placed on the bedrock surface which has been subexcavated to accommodate this additional concrete thickness. The bearing surface should be inspected by the geotechnical engineer prior to concrete placement. The concrete mud slab should consist of a 150 mm thick layer with a minimum 25 MPa compressive strength.

Bearing Resistance Values

Footings placed on the concrete mud slab overlying a sound bedrock surface can be designed using a bearing resistance value at serviceability limit states (SLS) of **2,000 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **3,500 kPa**, incorporating a geotechnical resistance factor of 0.5.

The above noted bearing resistance value at SLS will be subjected to negligible total and differential settlements.

5.4 Design for Earthquakes

A site specific shear wave velocity test was conducted by GHD in December of 2018. According to the results of the shear wave velocity test, in our opinion and interpretation of the data, the average shear wave velocity of the 30 m profile for foundations placed on the sound bedrock surface was calculated to be greater than 1,500 m/s. Therefore, a seismic **Site Class A** is applicable for the proposed building founded directly on the bedrock surface as per Table 4.1.8.4.A of the OBC 2012. The results of the shear wave velocity test are provided in Appendix 1.

5.5 Basement Slab

For the parking garage portion, the rigid pavement structure provided in Subsection 5.8 will be used in the lower level. Fill used to backfill over the concrete mud slab to the underside of the pavement structure will consist of an OPSS Granular B Type II.

For the finished lower basement areas such as locker rooms and mechanical rooms, it's recommended that the upper 200 mm of sub-slab fill consist of 19 mm clear crushed stone for better drainage. All backfill material within the proposed building footprint should be placed in maximum 300 mm thick loose lifts and compacted to at least 98% of its SPMDD.

5.6 Basement Wall

There are several combinations of backfill materials and retained soil that could be applicable for the basement walls of the subject structure. However, the conditions can be well-represented by assuming the retained soil consists of a material with an angle of internal friction of 30 degrees and a bulk (drained) unit weight of 20 kN/m³.

Where undrained conditions are anticipated (i.e. below the groundwater level), the applicable effective (undrained) unit weight of the retained soil can be taken as 13 kN/m^3 , where applicable. A hydrostatic pressure should be added to the total static earth pressure when using the effective unit weight.

Lateral Earth Pressures

The static horizontal earth pressure (p_o) can be calculated using a triangular earth pressure distribution equal to $K_o \cdot \gamma \cdot H$ where:

- K_{o} = at-rest earth pressure coefficient of the applicable retained soil (0.5)
- γ = unit weight of fill of the applicable retained soil (kN/m³)
- H = height of the wall (m)

An additional pressure having a magnitude equal to $K_0 \cdot q$ and acting on the entire height of the wall should be added to the above diagram for any surcharge loading, q (kPa), that may be placed at ground surface adjacent to the wall. The surcharge pressure will only be applicable for static analyses and should not be used in conjunction with the seismic loading case.

Actual earth pressures could be higher than the "at-rest" case if care is not exercised during the compaction of the backfill materials to maintain a minimum separation of 0.3 m from the walls with the compaction equipment.

Seismic Earth Pressures

The total seismic force (P_{AE}) includes both the earth force component (P_o) and the seismic component (ΔP_{AE}).

The seismic earth force (ΔP_{AE}) can be calculated using $0.375 \cdot a_c \cdot \gamma \cdot H^2/g$ where:

- $a_{c} = (1.45 a_{max}/g)a_{max}$
- γ = unit weight of fill of the applicable retained soil (kN/m³)
- H = height of the wall (m)
- $g = gravity, 9.81 \text{ m/s}^2$

The peak ground acceleration, (a_{max}) , for the Ottawa area is 0.32g according to OBC 2012. Note that the vertical seismic coefficient is assumed to be zero.

The earth force component (P_o) under seismic conditions can be calculated using $P_o = 0.5 \text{ K}_o \gamma \text{ H}^2$, where $K_o = 0.5$ for the soil conditions noted above. The total earth force (P_{AE}) is considered to act at a height, h (m), from the base of the wall, where:

 $h = {P_{o} \cdot (H/3) + \Delta P_{AE} \cdot (0.6 \cdot H)}/P_{AE}$

The earth forces calculated are unfactored. For the ULS case, the earth loads should be factored as live loads, as per OBC 2012.

5.7 Rock Anchor Design

The geotechnical design of grouted rock anchors in sedimentary bedrock is based upon two possible failure modes. The anchor can fail either by shear failure along the grout/rock interface or a 60 to 90 degree pullout of rock cone with the apex of the cone near the middle of the bonded length of the anchor. Interaction may develop between the failure cones of anchors that are relatively close to one another resulting in a total group capacity smaller than the sum of the load capacity of each individual anchor.

A third failure mode of shear failure along the grout/steel interface should be reviewed by the structural engineer to ensure all typical failure modes have been reviewed.

The anchor should be provided with a bonded length at the base of the anchor which will provide the anchor capacity, as well an unbonded length between the rock surface and the top of the bonded length.

Permanent anchors should be provided with corrosion protection. As a minimum, the entire drill hole should be filled with cementious grout. The free anchor length is provided by installing a plastic sleeve to act as a bond break, with the sleeve filled with grout or a corrosion inhibiting mastic. Double corrosion protection can be provided with factory assembled systems, such as those available from Dywidag Systems International or Williams Form Engineering Corp. Recognizing the importance of the anchors for the long term performance of the foundation of the proposed building, the rock anchors for this project are recommended to be provided with double corrosion protection.

Grout to Rock Bond

The Canadian Foundation Engineering Manual recommends a maximum allowable grout to rock bond stress (for sound rock) of 1/30 of the unconfined compressive strength (UCS) of either the grout or rock (but less than 1.3 MPa) for an anchor of minimum length (depth) of 3 m. Generally, the UCS of shale ranges between about 40 and 50 MPa, which is stronger than most routine grouts. A factored tensile grout to rock bond resistance value at ULS of **1.0 MPa**, incorporating a resistance factor of 0.4, can be calculated. A minimum grout strength of 40 MPa is recommended.

Rock Cone Uplift

The rock anchor capacity depends on the dimensions of the rock anchors and the anchorage system configuration. Based on existing bedrock information, a **Rock Mass Rating (RMR) of 65** was assigned to the bedrock, and Hoek and Brown parameters (**m and s**) were taken as **0.575 and 0.00293**, respectively.

Recommended Grouted Rock Anchor Parameters

Parameters used to calculate grouted rock anchor lengths are provided in Table 1.

Table 1 - Parameters used in Rock Anchor Review								
Grout to Rock Bond Strength - Factored at ULS	1.0 MPa							
Compressive Strength - Grout	40 MPa							
Rock Mass Rating (RMR) - Good quality Shale Hoek and Brown parameters	65 m=0.575 and s=0.00293							
Unconfined compressive strength - Shale	60 MPa							
Unit weight - Submerged Bedrock	15 kN/m³							
Apex angle of failure cone	60°							
Apex of failure cone	mid-point of fixed anchor length							

The fixed anchor length will depend on the diameter of the drill holes. Recommended anchor lengths are provided in Table 2. The factored tensile resistance values provided are based on a single anchor with no group influence effects.

Table 2 - Recommended Rock Anchor Lengths - Grouted Rock Anchor										
Diameter of	Ai	Factored Tensile Resistance (kN)								
Drill Hole (mm)	Bonded Length									
	2	0.8	2.8	450						
75	2.6	1	3.6	600						
	3.2	1.2	4.4	750						
	4.5	2	6.5	1000						
	1.6	0.6	2.2	600						
125	2	1	3	750						
	2.6	1.4	4	1000						
	3.2	1.8	5	1250						

It is recommended that the anchor drill hole diameter be within 1.5 to 2 times the rock anchor tendon diameter and the anchor drill holes be inspected by geotechnical personnel and should be flushed clean prior to grouting. The use of a grout tube to place grout from the bottom up in the anchor holes is further recommended.

The geotechnical capacity of each rock anchor should be proof tested at the time of construction. More information on testing can be provided upon request. Compressive strength testing is recommended to be completed for the rock anchor grout. A set of grout cubes should be tested for each day grout is prepared.

5.8 Pavement Structure

For design purposes, the pavement structures presented in the following tables are recommended, where required.

Table 3 - Recommended Pavement Structure - Access Lanes								
Thickness (mm) Material Description								
40	Wear Course - Superpave 12.5 Asphaltic Concrete							
50	Binder Course - Superpave 19.0 Asphaltic Concrete							
150	BASE - OPSS Granular A Crushed Stone							
400	SUBBASE - OPSS Granular B Type II							
SUBGRADE - Existing imported fill, or OPSS Granular B Type I or II material placed over glacial till deposit.								

Table 4 - Recommended Rigid Pavement Structure - Lower Parking Level										
Thickness (mm) Material Description										
150	32 MPa Concrete									
300	BASE - OPSS Granular A Crushed Stone									
SUBGRADE - Existing imported fill, or OPSS Granular B Type I or II material placed over concrete mud slab/bedrock.										

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material. The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 99% of the material's SPMDD using suitable vibratory equipment.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

Water Suppression System and Foundation Drainage

To manage and control groundwater water infiltration over the long term, the following water suppression system is recommended to be installed for the exterior foundation walls and underfloor drainage (refer to Figure 3 - Water Suppression System in Appendix 2 for an illustration of this system cross-section):

- □ The concrete mud slab will create a horizontal hydraulic barrier to lessen the water infiltration at the base of the excavation and will consist of a 150 mm thick layer of 25 MPa compressive strength concrete. The 150 mm minimum thickness is required to enable the support of construction traffic until the footings are poured and the area is backfilled.
- A waterproofing membrane will be required to lessen the effect of water infiltration for the underground parking levels starting at 3 m below finished grade (which is approximately 1 m above the high groundwater table). The waterproofing membrane will consist of bentonite panels fastened to the soldier pile and timber lagging shoring system and the grinded bedrock surface. The membrane should extend to the bottom of the excavation at the founding level of the proposed footings over the concrete mud slab. Consideration can be given to doubling the bentonite panels in the lower P2 and P3 levels where minor hydrostatic pressure will be created.
- A composite drainage layer will be placed from finished grade to the bottom of the foundation wall. It is recommended that the composite drainage system (such as Delta Drain 6000 or equivalent) extend down to the bottom of the foundation wall. It's expected that 150 mm diameter sleeves placed at 3 m centres be cast in the foundation wall at the footing interface to allow the infiltration of water to flow to an interior perimeter drainage pipe. The perimeter drainage pipe should direct water to the sump pit(s) within the lower basement area. Water infiltration will result from two sources. The first will be water infiltration from the upper 3 m which is above the vertical waterproofed area. The second source will be groundwater breaching the waterproofing membrane.

Underfloor Drainage

Underfloor drainage may be required to control water infiltration below the lowest underground parking level slab that breaches the horizontal hydraulic barrier (minimum 150 mm thick concrete mud slab). For design purposes, it's recommended that a 150 mm diameter perforated pipe be placed in each bay. The final spacing of the underfloor drainage system should be confirmed at the time of completing the excavation when water infiltration can be better assessed.

Water Infiltration Volumes

During the construction phase, it's expected that water infiltration should have a steady state volume of less than 150,000 L/day plus any surface water infiltration following a precipitation event. The initial influx will be greater once the excavation extends below the long term groundwater level. The zone of influence associated with the temporary dewatering during the construction excavation for 2.5 levels of underground parking will be approximately 10 m.

Based on the proposed water suppression system, it's expected that long term groundwater infiltration will be significantly reduced during post-construction. With a properly implemented water suppression system, it's expected that post-construction volumes will be less than 20,000 L/day.

Foundation Backfill

Where required, backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls, unless used in conjunction with a drainage geocomposite, such as Delta Drain 6000, connected to the perimeter foundation drainage system. Imported granular materials, such as clean sand or OPSS Granular B Type I or OPSS Granular A granular material, should otherwise be used for this purpose.

Adverse Effects from Dewatering on Adjacent Structures

The temporary dewatering program during construction will have a limited zone of influence of less than 10 m from the foundation perimeter. The underlying native soil below the groundwater table at the subject site is a glacial till deposit with a varying soil matrix. The dewatering of the glacial till deposit during the excavation and construction stage will not be susceptible to further consolidation since the material is compact to dense and has cobbles and boulders.

In our opinion, no adverse effects to surrounding structures and infrastructure within the nearby roadway right of way are expected.

Implementation of the water suppression system recommended above is expected to limit the drawdown of the local groundwater table over the long term and in a limited area. Therefore, in our opinion, no adverse effects to nearby structures and infrastructure are expected over the long term.

6.2 **Protection of Footings Against Frost Action**

Perimeter footings of heated structures are required to be insulated against the deleterious effects of frost action. A minimum of 1.5 m of soil cover, or a minimum of 0.6 m of soil cover in conjunction with foundation insulation, should be provided.

Exterior unheated footings, such as those for isolated exterior piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure proper and require additional protection, such as soil cover of 2.1 m or a combination of soil cover and foundation insulation.

It is expected that the foundations will generally not require protection against frost action due to the founding depth. However, unheated structures, such as the access ramp, may require insulation against the deleterious effect of frost action.

6.3 Excavation

It's expected that temporary shoring will be required due to the proposed depth for the underground parking levels. Furthermore, it's expected that the foundation walls will be blind poured against the shoring system.

Excavation Side Slopes for Servicing and Shallow Excavations

The subsoil at this site is considered to be mainly a Type 2 and Type 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects. The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below the groundwater level.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

Temporary Shoring

Temporary shoring will be required due to the depth of the excavation, the proximity of the adjacent structures and underground services. Due to the glacial till deposit and the excavation below the bedrock surface, it's assumed that the temporary shoring will consist of drilled soldier piles and timber lagging system. Temporary shoring will be required to support the overburden for the entire perimeter of the excavation.

The design and approval of the shoring system will be the responsibility of the shoring contractor and the shoring designer hired by the shoring contractor. It is the responsibility of the shoring contractor to ensure that the temporary shoring is in compliance with safety requirements, designed to avoid any damage to adjacent structures and include dewatering control measures. In the event that subsurface conditions differ from the approved design during the actual installation, it is the responsibility of the shoring contractor to commission the required experts to re-assess the design and implement the required changes. Furthermore, the design of the temporary shoring system should take into consideration, a full hydrostatic condition which can occur during significant precipitation events.

For design purposes, the temporary system will most likely consist of a drilled soldier pile and timber lagging system. Drilled soldier piles will be required to penetrate through expected occasional boulders and bedrock. These systems can be anchored or braced. Generally, it is expected that the shoring system will be provided with tieback anchors to ensure their stability and greater safety.

Typical Geotechnical Parameters

Generally, it is expected that the shoring systems will be provided with tie-back anchors to ensure their stability.

The geotechnical design of grouted anchors is based upon two possible failure modes. The anchor can fail either by shear failure along the grout interface or by pullout of a 60 to 90 degree cone with the apex of the cone near the middle of the bonded length of the anchor.

The earth pressures acting on the shoring system may be calculated using the following parameters.

Table 5 - Soil Parameters							
Parameters	Values						
Active Earth Pressure Coefficient (K _a)	0.33						
Passive Earth Pressure Coefficient (K_p)	3						
At-Rest Earth Pressure Coefficient (K_o)	0.5						
Dry Unit Weight (γ), kN/m ³	20						
Effective Unit Weight (γ), kN/m ³	13						

The active earth pressure should be calculated where wall movements are permissible while the at-rest pressure should be calculated if no movement is permissible.

The dry unit weight should be used above the groundwater level while the effective unit weight should be used below the groundwater level.

The hydrostatic groundwater pressure should be added to the earth pressure distribution wherever the effective unit weights are used for earth pressure calculations. If the groundwater level is lowered, the dry unit weight for the soil should be used full weight, with no hydrostatic groundwater pressure component.

For design purposes, the minimum factor of safety of 1.5 should be calculated.

Soldier Pile and Lagging System

The active earth pressure acting on a soldier pile and lagging shoring system can be calculated using a rectangular earth pressure distribution with a maximum pressure of $0.65 \cdot \text{K} \cdot \gamma \cdot \text{H}$ for strutted or anchored shoring, or a triangular earth pressure distribution with a maximum value of $\text{K} \cdot \gamma \cdot \text{H}$ for a cantilever shoring system. H is the height of the excavation.

The active earth pressure should be used where wall movements are permissible while the at-rest pressure should be used if no movement is permissible. The total unit weight should be used above the groundwater level while the submerged unit weight should be used below the groundwater level.

The hydrostatic groundwater pressure should be added to the earth pressure distribution wherever the submerged unit weights are used for earth pressure calculations should the level on the groundwater not be lowered below the bottom of the excavation. If the groundwater level is lowered, the total unit weight for the soil should be used full weight, with no hydrostatic groundwater pressure component.

It should be noted that some relief of hydrostatic pressure is anticipated with the implementation of the above noted water suppression system.

6.4 Pipe Bedding and Backfill

At least 150 mm of OPSS Granular A should be placed for bedding for sewer or water pipes when placed on soil/bedrock subgrade. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to at least 300 mm above the obvert of the pipe, should consist of OPSS Granular A (concrete or PSM PVC pipes) or sand (concrete pipe). The bedding and cover materials should be placed in maximum 225 mm thick lifts compacted to a minimum of 95% of the SPMDD.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to reduce the potential differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD.

6.5 Groundwater Control

Groundwater Control for Building Construction

Given the depth of the proposed excavation below the groundwater level and the predominantly sandy soils encountered overlying the bedrock, groundwater infiltration into the excavation is anticipated to be moderate to high. It is therefore recommended that the shoring system consist of a secant pile wall which is socketed into the bedrock in order to act as a cofferdam.

A temporary Ministry of the Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MECP.

For typical ground or surface water volumes, being pumped during the construction phase, between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.

The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

Long-term Groundwater Control

Our recommendations for the proposed building's long-term groundwater control are presented in Subsection 6.1. Any groundwater breaching the waterproofing system will be directed to the proposed building's cistern/sump pit. Provided the proposed groundwater infiltration control system is properly implemented and approved by the geotechnical consultant at the time of construction, it is expected that groundwater flow will be low (less than 20,000 L/day) which includes higher volumes during peak periods noted after rain events. A more accurate estimate can be provided at the time of construction, once groundwater infiltration levels are observed. It is anticipated that the groundwater flow will be controllable using conventional open sumps.

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project.

The excavations may be completed in proximity of existing structures which could be adversely affected due to the freezing conditions. In particular, it should be recognized that where a shoring system is used, the soil behind the shoring system will be subjected to freezing conditions which could result in heaving of the structure(s) placed within or above frozen soil. Provisions should be made in the contract document to protect the walls of the excavations from freezing, if applicable.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are also difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be taken if such activities are to be carried out during freezing conditions. Additional information could be provided, if required.

6.7 Corrosion Potential and Sulphate

The results of analytical testing show that the sulphate content is less than 0.1%. This result is indicative that Type 10 Portland cement (normal cement) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of an aggressive to very aggressive corrosive environment.

7.0 Recommendations

It is a requirement for the foundation design data provided herein to be applicable that a materials testing and observation services program including the following aspects be performed by the geotechnical consultant.

- Review of the geotechnical aspects of the excavating contractor's shoring design, prior to construction.
- Observe and approve the installation of the water suppression system.
- Review proposed waterproofing and foundation drainage design and requirements.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials used.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling and follow-up field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued, upon request, following the completion of a satisfactory materials testing and observation program by the geotechnical consultant.

8.0 Statement of limitations

The recommendations provided in this report are in accordance with our present understanding of the project. We request permission to review our recommendations when the drawings and specifications are completed.

A geotechnical investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, we request immediate notification to permit reassessment of our recommendations.

The recommendations provided herein should only be used by the design professionals associated with this project. They are not intended for contractors bidding on or undertaking the work. The latter should evaluate the factual information provided in this report and determine its suitability and completeness for their intended construction schedule and methods. Additional testing may be required for their purposes.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Robinson Village LPIV Limited Partnership and TC United Development or their agents is not authorized without review by Paterson for the applicability of our recommendations to the alternative use of the report.

Paterson Group Inc.

Carlos P. Da Silva, P.Eng., ing., QP_{ESA}

Report Distribution

- TC United Development (3 copies)
- DPaterson Group (1 copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

BOREHOLE LOGS AND NOTES ON BOREHOLES BY OTHERS

MULTI-CHANNEL ANALYSIS AND SURFACE WAVE RESULTS BY OTHERS

LABORATORY TESTING RESULTS BY OTHERS

CORE LOG PHOTOGRAPHS BY OTHERS

BUILDING CODE SEISMIC HAZARD CALCULATIONS BY OTHERS

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, On	tario k	(2E 7J	5		Ot	tawa, Or	ntario	•		
DATUM Approximate elevations ob	otaine	d fron	n othe	ers.					FILE NO. PG5231	
REMARKS								_	HOLE NO. TO 1 00	
BORINGS BY Hydraulic Shovel				D	ATE 2	2020 Feb	ruary 21		IP 1-20	1
SOIL DESCRIPTION	РГОТ		SAN	IPLE		DEPTH	ELEV.	Pen. Res ● 50	sist. Blows/0.3m mm Dia. Cone	er on
	ATA	ΡE	BER	VERY	ALUE ROD	(11)	(11)		tor Contont %	omete
GROUND SURFACE	STF	Т	NUN	RECC	N OF			20	40 60 80	Piezo Cons
						0-	-59.40			1
FILL: Brown silty sand, trace gravel, organics and debris							E9 40			
1.40		G	1				-58.40 -			
GI ACIAI TILL Brown silty sand		_ G	2			2-	-57.40			-
occasional cobbles and obulders, some clay, trace gravel										
- grey by 3.2 m depth						3-	-56.40			-
		_ G	3			4-	-55.40			-
										-
						5-	-54.40			-
						6-	-53,40			
6.20 End of Test Pit	<u>^^^^</u>	-								-
Refusal to excavation on bedrock surface @ 6.2m depth										
(TP dry upon completion)										
								20 Shear	40 60 80 1 Strength (kPa) bed △ Remoulded	⊣ 00

SOIL PROFILE AND TEST DATA

 \blacktriangle Undisturbed \triangle Remoulded

154 Colonnade Road South, Ottawa, On	tario K	(2E 7J	5		Ot	tawa, Or	ntario	•			
DATUM Approximate elevations ob					FIL	е NO. PG5231					
REMARKS					но						
BORINGS BY Hydraulic Shovel				D	ATE 2	2020 Feb	ruary 21			IF 2-20	
SOIL DESCRIPTION	РІОТ		SAN	IPLE		DEPTH	ELEV.	Pen. R ● 5	esis 0 mr	t. Blows/0.3m n Dia. Cone	on
	TRATA	ТҮРЕ	UMBER	% COVERY	VALUE r ROD	(11)	(11)	• V	Vate	r Content %	ezomete instructi
GROUND SURFACE			ų	RE	zo	0-	-58 55	20	40	60 80	ĒŎ
FILL: Brown silty sand, trace organics, gravel and debris							50.00				
		⊒ G	1] -	-57.55				
GLACIAL TILL: Brown sandy silt, some clay, trace gravel, occasional cobbles and boulders		G	2			2-	-56.55				
- grey by 2.9m depth		G	3			3-	-55.55				
						4-	-54.55				
5 90						5-	-53.55				¥
End of Test Pit		-									
Refusal to excavation on bedrock surface @ 5.9m depth											
(Open hole GWL @ 5.4m depth)								20	40		
								Shea	ar St	rength (kPa)	

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5						Ottawa, Ontario						
DATUM Approximate elevations ob					FILE NO	PG5231						
REMARKS						HOLE N	^{).} TD 2 00					
BORINGS BY Hydraulic Shovel				DA	TE 2	2020 Feb	ruary 21			TP 3-20		
SOIL DESCRIPTION	РГОТ		SAN			DEPTH	ELEV.	Pen. R	lesist. Bl 50 mm Di	ows/0.3m a. Cone	er on	
	RATA	(PE	(BER	% OVERY	ALUE RQD		(11)		Nater Co	ntent %	omete structi	
GROUND SURFACE	STI	Ĥ	IUN	RECO	N Or V		50.00	20	40	50 80	Piez Con:	
						0-	-58.60					
FILL: Brown silty sand, trace gravel, organics and brick												
							F7 00					
		_]-	-57.60		· · · · · · · · · · · · · · · · · · ·			
		G	1									
2 00		_										
GLACIAL TILL: Brown silty clay, some sand and gravel 2.30		_ G	2			2-	-56.60					
End of Test Pit												
(TP dry upon completion)												
								20 She	40 ar Strepo	50 80 10 th (kPa)	bo	
								▲ Undis	turbed 2	Remoulded		

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ont	ario K	2E 7J	5		Ot	tawa, Or	ntario	-			
DATUM Approximate elevations ob					FILE NO.	PG5231					
REMARKS									HOLE NO	· TD 4 00	
BORINGS BY Hydraulic Shovel		DATE 2020 February 21 TP 4-20									
SOIL DESCRIPTION	РІОТ		SAN			DEPTH	ELEV.	Pen. Ref	esist. Blo 0 mm Dia	ows/0.3m . Cone	er ion
	TRATA	гүре	UMBER	% COVERY	VALUE r ROD	(,	(,	• v	/ater Con	tent %	zomete
GROUND SURFACE	Ñ	•	Ĩ	REC	zö	0-	50 20	20	40 6	0 80	ы С Б
FILL: Brown silty sand, trace gravel, organics and debris							-30.30				
		_ G	1			1-	-57.30				
GLACIAL TILL: Brown clayey silt, 2.30		G	2			2-	-56.30				
(TP dry upon completion)											
								20 Shea ▲ Undist	40 60 ar Strengt	0 80 10 h (kPa) Remoulded	00

SOIL PROFILE AND TEST DATA

	FILE NO
	PG5231
ATE 2020 February 21	TP 5-20
DEPTH ELEV.	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone
VIALUE RQD	 Water Content %
¤ ° ────────────────────────────────────	20 40 60 80 <u><u> </u></u>
1+57.95	
2-56.95	

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Or	itario k	(2E 7J	5		Ot	tawa, Or	ntario					
DATUM Approximate elevations o				FILE NO.	PG5231							
REMARKS		HOLE NO										
BORINGS BY Hydraulic Shovel	21 TP 6-20											
SOIL DESCRIPTION	РІОТ		SAN	IPLE		DEPTH	ELEV.	Pen. Re ● 5	vs/0.3m Cone	er ion		
	АТА	PE BER		VERY	LUE	(,	(,				mete	
	STR	ΤТ	NUM	ECO	N OF					ent %	Piezo	
GROUND SURFACE				<u>н</u>		0-	-58.90		40 80	ou	шU	
FILL: Brown silty sand, trace gravel												
and debris												
						1-	-57.90					
<u>1.50</u>		-	4									
GLACIAL TILL: Brown clayey silt, some sand and gravel		_ u				2-	-56 90					
2.40						2	50.50					
<u>Z</u> . 4		-										
		_										
GLACIAL TILL: Grey sandy silt,		_ G	2			3-	-55.90					
Some day, have graver												
						4-	-54.90					
						5-	-53.90					
5.8(G	3									
End of Test Pit	<u></u>	-										
Refusal to excavation on bedrock												
(Open hole GWI @ 5.74m depth)												
								20	40 60	80 10	00	
								Shea ▲ Undist	ar Strength urbed △ F	(KPa) Remoulded		

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85
-		

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, St, is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

St < 2
$2 < S_t < 4$
$4 < S_t < 8$
8 < St < 16
St > 16

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler
G	-	"Grab" sample from test pit or surface materials
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC%	-	Natural water content or water content of sample, %
LL	-	Liquid Limit, % (water content above which soil behaves as a liquid)
PL	-	Plastic Limit, % (water content above which soil behaves plastically)
PI	-	Plasticity Index, % (difference between LL and PL)
Dxx	-	Grain size at which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels: Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio		Overconsolidaton ratio = p'_{c} / p'_{o}
Void Ratio		Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

REFERENCE No.: 11186719 ENCLOSURE No.: 1																					
				BOR	EHOLE No.:	В	H1					BOREHOLE LOG									
		G		ELE\	ATION:	58	.30) m				Page: <u>1</u> of <u>1</u>									
CLIE	ΝΤ· ΤΟ	` Inite												L	.EG	<u>END</u>					
PRO.	JECT:	Geote	chnical Investigation										SS	Split	Spoo	on					
LOCA	ATION:	36 R	obinson Avenue										ST	Shel	er Sa Iby Tu	mpie ube					
DESC	CRIBED	BY:	R. Vanden Tilla	art	CHECKED BY:			B. Vaz	hbakl	nt		Ţ		Wate	er Le	vel					
DATE	E (STAR	T):	21 January 201	19	DATE (FINISH):			21 Janu	ary 2	019		° ⊢	4	Wate Atter	er cor rberg	ntent (limits	(%) 5 (%)				
SCA	LE		STRATIGRAPHY		MONITOR WELL			SAM	IPLE [ΔΑΤΑ		•	N N	Pene Split Pene	etratio Spoo etratio	on Ind on sa on Ind	dex bas mple lex bas	ed on, ed on			
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDF	OF ROCK			State	Type and Number Recovery OVC Penetration				△ □ S	Cu Cu	Dynamic Cone sample u Shear Strength based on Field Vane u Shear Strength based on Lab Vane Sensitivity Value of Soil Shear Strength based on Pocket Penetrometer							
meters	58.30		GROUND SURF	FACE					%	ppm	Ν	1(50k	SCA Pa	LE F 100k	OR T (Pa) 50	EST RI 150kPa 60	ESULT 20(íS JkPa 80 §	90	
0.5			FILL - Silty sand, some trace gravel, brown, mo loose Upper 0.6 m frozen	e clay, bist,	99.17													<u> </u>			
1.0					1.22 – Sand –		X	SS1	25	11	5	•						+			
- 1.5	56.6		SILTY SAND- some cla some gravel, brown, m	ay, oist to	1.52-		$\left \right $	SS2	63	25	26			•				+			
2.5			saturated, compact to c	dense	Screen — >		\mathbb{N}	SS3	100	11	41					•		+		_	
3.0	55.3		SANDY SILT- some cla	ay,	WL 2.92 — 01/25/2019	V	\square											+		_	
3.5			trace gravel, grey, satu compact	rated,			X	SS4	100	12	17		•					+			
4.0							M	SS5	71	9	13		•					+			
- 4.5	53.7		Borehole terminated at mbgs	4.6	4.57 —													+			
5.5																		+			
6.0																		+			
6.5																		+			
7.0																		_			
7.5																		+			
8.0																		+		<u> </u>	
																		+			
NOTES: mbgs: n Elevatio	neters bons are a	elow g pprox	round surface imate based on shoring o	drawing															L	L	

REFER	ENCE No	o.:					ENCL	osu	RE N	lo.:			2									
				BOR	EHOLE No.:	В	H2					BOREHOLE LOG										
		G		ELE\	ATION:	ATION: 58.60 m						Page: <u>1</u> of <u>1</u>										
															LEG	GEND						
		Cooto	ed Group									⊠s	S Sp	olit Spo	oon		_					
	ATION:	36 R	obinson Avenue									l∎ G IZIS	S AU T Sh	uger S nelbv T	ample Fube	Ð						
DES		BY:	R. Vanden Tilla	art	CHECKED BY:			B. Vaz	hbakł	nt		₽ZA U Ţ	W	ater Le	evel							
DAT	E (STAR	– T):	21 January 201	19	DATE (FINISH):			21 Janu	ary 2	019		°	W At	ater co terber	ontent g limit	(%) ts (%	.)					
SC	ALE		STRATIGRAPHY		MONITOR			SAM	PLE C	ΔΑΤΑ		• N • N	Pe Sp Pe	enetrat olit Spo enetrat	tion Ir con si ion In	ndex l ample dex b	based e based	d on				
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDF	√OF ROCK			State Type and Number Recovery OVC					4 C 4 C 5 S	Dynamic Cone sample U Shear Strength based on Field Var U Shear Strength based on Lab Var Sensitivity Value of Soil Shear Strength based on Pocket Penetrometer									
meters	58.60		GROUND SURF	FACE					%	ppm	Ν	10	SC 50kPa 20	ALE 100 30 4	FOR DkPa 40 5	TEST 150 0 6	RES kPa	ULTS 200k 0 8(S <pa 0 90</pa)		
0.5			FILL - Silty sand, some some gravel, organics, construction debris, bro damp to moist, very loc compact Upper 0.6 m frozen	e clay, own, ose to	99.51			SS1	83	7	19		•									
_ 1.5			Black staining and PH0 from 1.2 to 2.4 mbgs	C odour	1.22 — Sand — 1.52 —		$\left \right\rangle$	SS2	33	17	13	•							_			
2.0					WL 1.91 — 01/25/2019	Y	$\left \right\rangle$	SS3	29	13	2	•										
2.5							\bigwedge	SS4	4		2	•										
3.0					Screen —		A					_		-				-	_			
3.5	54.9		SANDY SILT- some cla	ay,	-		A	555	25	8								_				
4.0			trace gravel, grey, satu very loose	rated,			Å	SS6	33	6	1	•						-	_			
4.5	54.0		Borehole terminated at mbgs	4.6	4.57 —														_			
- 5.0 - 5.0																						
																		_	_			
																			_			
																		\rightarrow	\downarrow			
8.5																		\dashv	\dashv			
9.0																						
mbgs: Elevati	neters be ons are a	elow g pproxi	round surface imate based on shoring o	drawing																		

REFER	ENCE No	o.:	11186719	_								ENC	LOS	SURE	No.:			3		
		-		BOR	BOREHOLE No.: BH3							BOREHOLE LOG								
		G		ELE\	ATION:	59	.4() m				Page: 1 of 1						Ŭ		
	-NIT. TC										LEGEND									
			chnical Investigation										SS	Split Sp	oon		_			
LOC	ATION:	36 R	obinson Avenue										GS ST	Auger : Shelby	Sampl Tube	е				
DES	CRIBED	BY:	R. Vanden Tilla	art	CHECKED BY:			B. Vazl	hbakh	nt		Ţ		Water I	_evel					
DAT	E (STAR	T):	22 January 201	9	_ DATE (FINISH):	:		22 Janu	ary 2	019		° ⊢	4	Water of Atterbe	onten rg lim	t (%) its (%))			
SC	ALE		STRATIGRAPHY		MONITOR WELL			SAM	PLE C	DATA		•	N N	Penetra Split Sp Penetra	ation In boon s ation Ir	ndex b ample idex b)ased	l on on		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDF		Type and Number	Recovery	OVC	Penetration Index / RQD	∆ □ S	Cu Cu	Dynamic Cone sample u Shear Strength based on Field V u Shear Strength based on Lab Va Sensitivity Value of Soil Shear Strength based on Pocket Penetrometer						ine 1e			
meters	59.40		GROUND SURF	ACE					%	ppm	Ν	1(50k	SCALE	FOR J0kPa 40	TEST 150k 50 6(RES ^{kPa}	SULTS 2004 0 8(3 (Pa) 9(5
0.5			FILL - Silty sand, some brown, moist, very loos compact Upper 0.6 m frozen	gravel, e to	100.24 - 0.30 - Riser - Bentonite -			551	67	28	13		•							
1.5					1.22 - Sand - 1.52 -		\square	001		20	10				+					
2.0	57 1				Screen — +		Å	SS2	4		3	•			+			_		
_ 2.5	57.1		SILTY SAND- some cla some gravel, grey to bu	ay, rown,			M	SS3	58	42	17		•					_	_	
3.0			saturated, loose to con	ipaci	WL 2.97 -	X	\square													
					01/25/2019		M	SS4	58	26	8	-								
- 3.5							Д								+	$\left \right $		_	_	
4.0							\mathbb{N}	SS5	71		16		•		-			_		
4.5	54.8		Borehole terminated at	4.6	4.57 —		Π								+			_		
5.0			mbgs												+			-		
5.5																				
6.0															+			_	_	
6.5															+			\neg		
															+			\rightarrow	\rightarrow	
															+					
8.0																			_	
8.5														_	+	+		+	+	
9.0 NOTES	: motor- !		round outforce																	
Elevati	ons are a	pprox	imate based on shoring o	drawing																

REFER	RENCE N	o.:	11186719	_								ENC	LOS	SUR	E No).: _			4	
				BOR	EHOLE No.: _	В	H4	•		-				BC)RE	ΞΗ(OL	ΕI	LO	G
		G		ELE\	/ATION:	58	8.70) m		-				Page	e: _	1	of	f'	1	-
CLIF	=NT· TC	: Unite													L	EG	ΕΝΓ	2		
PRC	DJECT:	Geote	chnical Investigation										SS	Split	Spoo or Sor)n mole				
LOC	ATION:	36 R	obinson Avenue										ST	Shell	by Tu	ibe				
DES	SCRIBED	BY:	R. Vanden Tilla	art	CHECKED BY:			B. Vazl	hbakł	ht		Ţ		Wate	ər Lev	/el	0()			
DAT	E (STAR	T):	22 January 201	9	_ DATE (FINISH):	:		22 Janu	ary 2	019		L.	4	Atter	rberg	limits	%) (%)			
SC	ALE	>	STRATIGRAPHY		MONITOR WELL			SAM	PLE	DATA		•	N	Pene Split Pene Dyna	etratio Spoo etratio amic C	on Ind on sar on Indo Cone	nple nple ex ba samp	ased ised c	on on	
Depth BGS	Elevation (m)	Stratigraph	DESCRIPTION SOIL AND BEDF	OF ROCK			State	Type and Number	Recovery	ovc	Penetration Index / RQD	⊲ □ S ▲	Cu Cu	Shea Shea Sens Shea Pock	ar Stre ar Stre sitivity ar Stre ket Pe	ength ength v Valu ength enetrc	base base le of s base omete	ed on ed on Soil ed on er	i Fiel I Lab	d Vane Vane
meters	58.70		GROUND SURF	FACE					%	ppm	Ν	1(50k	SCAI (Pa 0 3(LE FC 100kl 0 40	DR TI Pa 1 50	EST F 150kF 60	RESL Pa 70	JLTS 200k 80	} Pa 90
0.5			FILL - Silty sand, some brown, moist, very loos loose	gravel, e to	99.45 0.30 Riser Bentonite															
- 1.0					1.22-		X	SS1	4		5	•			\downarrow	_	_	+	_	_
- 1.5			Black staining, PHC od	our at	Sand	T		662	54	10	2	•			_				_	
2.0	56.7		SILTY SAND- some gr some clay, grey to brow	avel, vn, moist				332	54	19	3				_	_	_	-	_	
2.5			to saturated, compact				M	SS3	63	28	22			•	-		-			
3.0					Screen											_	_	-	_	
3.5							X	SS4	58	17	10	-	•		_			_	_	
4.0							$\left \right\rangle$	SS5	88	14	16		•		+			+		
4.5	54.1		Borehole terminated at	4.6	- 4.57 -										_	_	_	-		
5.0			mbgs														_	\pm	_	
5.5															_	_	+	+	_	
6.0															\downarrow		+	+	_	
6.5															\pm	_	_	+	_	
7.0															_	_	_	+	_	
7.5															_	_	_	+	_	
8.0															+			\pm		
8.5															_	_	_	+	_	
9.0														\exists	+	+	+	+	+	
NOTES mbgs: Elevati	S: meters b ions are a	elow g approx	round surface imate based on shoring c	drawing	1				<u>ı </u>	L	1			I						

REFER	ENCE No	o.:	11186719									ENCLO	DSUF	RE No	o.:		5	
				BOR	EHOLE No.:	Bl	15						в	ORE	ЕНО	LE	LO	G
		G		ELEV	ATION:	58.	30	m					Pag	ge: _	<u>1</u>	of _	1	-
		Linite	od Croup											L	EGE	ND		
		, Unite Geote	chnical Investigation										S Spli	it Spoo	n			ĺ
LOC		36 R	obinson Avenue										s Aug She	jer Sar elby Tu	nple be			ĺ
DES	CRIBED	BY:	S. Wheeler		CHECKED BY:			B. Vazl	hbakh	nt		Ţ	Wa	ter Lev	el			
DAT	E (STAR	T):	17 December 20)18	DATE (FINISH):		17	7 Decer	nber	2018		°	Wat Atte	ter con erberg	tent (%) limits (9	6)		
sc	ALE		STRATIGRAPHY		MONITOR WELL			SAM	PLE C	ΑΤΑ		• N • N	Per Spli Per	netratio it Spoo netratio	n Index n samp n Index	based ble based	d on i on	
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDF	OF ROCK			State	Type and Number	Recovery	OVC	Penetration Index / RQD	△ Cι □ Cι S	Dyr She Ser Ser Poo	amic C ear Stre ear Stre sitivity ear Stre cket Pe	Cone sa ength b ength b Value ength b enetrom	mple ased o ased o of Soil ased o eter	n Fiel n Lab	ld Vane Vane
meters	58.30		GROUND SURF	ACE					%	ppm	Ν	5 10	SC/ 0kPa 20	ALE FC 100k 30 40	DR TES Pa 18 50	T RES 0kPa 60 7	ULTS 200k 0 80	3 (Pa) 90
0.5			FILL - Silty sand, some some gravel, possible o organics, rootlets, brow grey, moist, very loose compact	clay, cobbles, /n and to	99.14 - 5 0.61 - 5			SS1	71		26	0	•					
- 1.0							X	SS2	71		17							
2.0					Cuttings —		$\left \right $	SS3	54		3	•						
2.5	55.7		SILTY SAND- some cla some gravel, brown, m	ay, oist, very	WL 2.59 – 01/03/2019 Riser	⊻		SS4	54		20	С)•					
- 3.0 - 3.5			loose to compact				X	SS5	71		15							
4.0							X	SS6	4		5	•	0					
- 5.0	53.7		SANDY SILT- some cla trace gravel, grey, satu very loose to very dens	ay, rated, se			$\overline{\mathbf{A}}$	SS7	92		3	• •	,					
	53.0		Coarse sand layer enc	ountered	5.18 -			SS8	100		50+	c	,		•			
5.5	52.7		Spoon refusal encount 5.3 mbgs	ered at	Bentonite		T	RC1	100		0							
			fractured, black Auger refusal encounte	ered at	Sand — 6.10 —		╂		100		0							
			SHALE- very poor bec good quality, black	oming	Screen —			RC2	100		81							
	51.0		encountered at 6.1 mb Borehole terminated at	gs 7.3	7.32													
			mbgs															
																		_
	3:																	
mbgs: Elevati	meters b ions are a	elow g pprox	round surface imate based on shoring o	drawing														
б																		

REFER	ENCE No	o.:	11186719	-						ENC	CLO	SURE	No.:			<u>ن</u>	
		CI		BOREHOLE No.:	BH6							BOF	REF	IOL	E L	OG	j
				ELEVATION:	59.40	m						Page:	_1	_ (of <u>1</u>	_	
CLIE	ENT: TO	C Unite	d Group										LEC	GEN	D		
PRC	JECT:	Geote	chnical Investigation								SS GS	Split	boon Sampl	е			
LOC	ATION:	36 Ro	binson Avenue								ST	Shelby	Tube				
DES	CRIBED	BY:	S. Wheeler	CHECKED BY:		B. Vaz	hbakl	nt		▼ ○		Water I Water of	Level	t (%)			
DAT	E (STAR	T):	17 December 20	DATE (FINISH):	1	7 Decei	mber	2018		•	⊣ N	Atterbe Penetra	rg lim ation l	its (%) ndex l) based o	'n	
sc	ALE		STR	ATIGRAPHY		SAM	IPLE [DATA		•	N	Split Sp Penetra	ooon s ation Ir	ample ndex b	e ased or	۱	
Depth BGS	Elevation (m)	Stratigraphy	DE SOII	SCRIPTION OF - AND BEDROCK	State	Type and Number	Recovery	OVC	Penetration Index / RQD	∆ □ S	Cu Cu	Shear Shear Sensiti Shear Shear Pocket	Streng Streng vity Va Streng Pene	th bas th bas alue of th bas trome	sed on l sed on l f Soil sed on ter	⁻ield V _ab Va	'ane ane
meters	59.40		GF	ROUND SURFACE			%	ppm	Ν	1	50k 0 2	SCALE Pa 10 0 30	FOR 00kPa 40	TEST 150 50 6	RESU kPa 2 0 70	_TS 00kPa _80	90
E			FILL - Silty sand, some moist, loose to very der	clay, trace gravel, dark brown, nse, possible cobbles												\perp	
- 0.5					X	SS1	58		4	•	0					_	
E 10						SS2	33		50+		0		-	•			
													_				
- 1.5													_			+	
					X	SS3	75		21		0	•	_		_	+	
2.0	F7 4				А								-			+	
- 2.5	57.1		SILTY SAND- some cla	ay becoming clayey, trace to	Μ	004	00						-		_	+	
_			compact	brown, saturated, 1005e to	M	884	83		11				-		_	+	
- 3.0					H								-			+	
- 25					XI	SS5	88		13		••		-			+	
_ 3.3 _					А								_		_	_	
- 4.0					Μ	226			0				-		-	+	
					Δ	330			9				-		_	+	
4.5													-			+	
= 5.0					XI	SS7	83		10	-	••		-			+	
					\square								-		_		
5.5					М	SS8	100		9				-		-	+	
					Д											+	
					М								-			+	
6.5					X	SS9	100		22	-0		•			-	+	
			Spoon refusal encounte	erd at 7.1 mbgs		0040	22		50.							+	
	52.3	111_5	SHALE - black, highly v	veathered and fractured		5510	33		50+	0						+	
5 − 7.5	JZ.Z		SHALE- black, excelle	nt quality		RC1	100		92							+	
																+	
8.0																1	1
						RC2	100		96								
	50.0																
9.0	50.6		Borehole terminated at	8.9 mbgs													
NOTES	: rina well	could r	not be installed due to the	e existence of a saturated sand	laver									1			
Boreho	ble backfil meters b	lled wit	h sand, bentonite and au	iger cuttings.													
Elevati	ons are a	pproxi	mate based on shoring of	Irawing													

REFER	ENCE No	o.:	11186719	-								ENCL	OSUF	RE N	o.: _			7	
			J	BORI	EHOLE No.:	В	H7	1					B	OR	FH	ol	ΕI		G
		G		ELEV	ATION:	59	.10) m					Pag	ge:	1	0	of	1	U
	-N.T. T.													L	EG	EN			
		Cooto	ed Group									S	S Spl	it Spo	on		-		
	ΔΤΙΟΝ·	36 R										G	S Aug T She	ger Sa	imple ube				
DES	CRIBED	BY:	D Cooper		CHECKED BY:			B Vazł	hakł	nt		₹ T	Wa	ter Le	vel				
DAT	E (STAR	T):	18 November 20	019	DATE (FINISH):		1	8 Noven	nber	2019		°	Wa Atte	ter cor	ntent ((%) 5 (%)			
SC	ALE	, <u> </u>	STRATIGRAPHY		MONITOR			SAM	PLE C	ΟΑΤΑ		• N	Per Spl	netrati it Spo	on Ind on sa	dex b mple	ased	on	
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDF	OF ROCK			State	Type and Number	Recovery	OVC	Penetration Index / RQD	A C □ C S	Dyr u She u She Ser She Poo	ear Str ear Str ear Str sitivit ear Str cket P	Cone rength rength y Valu rength enetro	sam n bas n bas ue of n bas omet	ple ed or ed or Soil ed or er	n Fiel n Lab	d Vane Vane
meters	59.10		GROUND SURF	ACE					%	ppm	Ν	10	SC/ 50kPa 20	ALE F 1001 30 40	OR T kPa 0 50	EST 150k	RES Pa	ULTS 200k	3 Pa) 90
			FILL - Sandy SILT, poo clayey silt, possible cobbles/boulders_trace	kets of	0.46		М	SS1	42		16						_	_	
- 1.0			brown, moist, loose to	compact	-		\square	SS2	63		7	•							
2.0					Backfill —		Ø	SS3	67		37			•				-	
	56.8	Ĩ	CLAYEY SILT- some s brown, moist, loose to a	and, compact			M	SS4	33		7	•					_		
- 3.0								SS5	75		14	•					+	+	
4.0	55.3	XXX	SILTY SAND- trace to clay, grey, moist to wet	some . loose	Riser		Ā	SS6	71		18		•						
50			,,	,			Ħ	SS7	75		23		•					_	
- 5.0	53.8	THE A	CLAYEY SILT (TILL)	some				SS8	42		13	•					_	+	
6.0			stiff to hard	wet, very				550	83		36								
- 7.0								009			50					_		_	
-							Å	SS10	54 75		53 D					-			
8.0	51.3		SHALE- dark grey, free strength, poor quality, I	sh, high aminated	7.82 –			0011	100										
		իկկկ	at 35°, with some calcit defects, two noted dom	e healed	Bentonite		Î	8012 RC13	100		к 37								
			partings every 0.1-0.2 r clean, planar and smoo	orises m at 35°, oth to	9.01- 9.14			NO13	100		57						_	+	
² 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		իկկկ	rough, set 2 comprises every 0.1-	joints	Sand —			RC14	84		21							_	
			highly weathered, entire mass fractured	e rock	Screen —			KC14	04		21								
		իկկկի	9.6m, becoming very p quality 9.8m, becoming with co	oor				RC15	100		0						_	+	
	46.9		fractured, highly weath zones, up to 0.05 m thi	ered ck, at	12.19 -			NO IO	100		0								
			approximate 0.1 m spa 11.6 m, rock mass enti- fractured, highly weath	cings rely ered									-					+	
			with zones of silty sand	ly gravel									-		+	-	+	+	\square
2 – 14.0																			
NOTES mbgs: Elevation	: meters be ons are a	elow g pproxi	round surface imate based on shoring c	drawing															

REFER	ENCE No	o.:	11186719									ENC	_OS	URE	No.:			8	
				BOR	EHOLE No.:	В	H8						F	BOF	۶FF	101	F	0	G
		G		ELE\	ATION:	58	.60) m					F	age:	_1		of	1	Ŭ
CLIE	NT· TC	: Inite													LEC	EN	D		
PRC	JECT:	Geote	chnical Investigation										SS S	Split Sp	oon				
LOC	ATION:	36 R	obinson Avenue										ST S	Shelby	Tube	3			
DES	CRIBED	BY:	D.Cooper		CHECKED BY:			B. Vazł	nbakł	nt		Ţ	١	Vater L	.evel				
DAT	E (STAR	T): _	18 November 20)19	DATE (FINISH):		1	8 Noven	nber	2019		°	۱ ا	Vater c Atterbe	onten rg limi	: (%) ts (%)	,		
SC	ALE		STRATIGRAPHY		MONITOR WELL			SAM	PLE C	ATA		•	N F	Penetra Split Sp Penetra	tion li oon s	ndex l ample dex b	based e ased	on	
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDF	OF ROCK			State	Type and Number	Recovery	OVC	Penetration Index / RQD	∆ 0 □ S	Cu S Cu S F	Dynami Shear S Shear S Sensitiv Shear S Pocket	c Con Streng Streng vity Va Streng Penet	e sam th bas th bas lue of th bas rome	ple sed or sed or Soil sed or ter	า Fiel า Lab ก	d Vane Vane
meters	58.60		GROUND SURF	ACE					%	ppm	Ν	10	50kP 20	CALE a 10 30	FOR 10kPa 40 5	TEST 150 0 6	RES	ULTS 200k	S Pa 90
_		\bigotimes	FILL - Silty sand, with s	some	_		М	SS1	96		13		\mathbf{H}		ļ .			\square	
_ 1.0			fragments, organic poc brown, moist, loose to	kets, compact	0.46 -			SS2	92		9	•						+	
2.0					Backfill		Ø	SS3	63		14		•					\pm	
	56.3	ĬĬ	CLAYEY SILT- some g and sand, brown, satur	ıravel ated,			Ø	SS4	46		38							_	
- 3.0			compact to dense		Riser		Ø	SS5	71		16		•					\pm	
4.0	54.8		SANDY SILT- some gr trace of clay, grey, satu	avel, ırated,			Ø	SS6	83		14		•					_	
5.0			loose to compact				Ø	SS7	79		7	•						=	
- 60	53.3		SANDY GRAVEL- som grey, saturated, compa	e silt, ct to very			Ø	SS8	25		22		•					+	_
	52.3	<u>ILI e</u>	becoming glacial till		6.27 -		\bowtie	SS9	100		R							=	
7.0			SHALE- dark grey, lan at 0-5°, fresh, medium strength, fair quality, or set comprises partings	hinated to high hly defect at 0-5°	Bentonite			RC10	100		57								
			8.01 m, becoming exce quality	ellent	8.92- 9.07 ~			RC11	100		100								
			9.65 m, becoming fair o	quality	Sand —			RC12	92		70								
11.0		իդիդիդի	11.2 m becoming exce	llent	Screen — —			NO12	52		10							\pm	
	46.5		quality		12.12-			RC13	100		100							\pm	
	-												+					+	
																		+	+
														_				+	_
NOTES mbgs: Elevati	: meters be ons are a	elow g pprox	round surface imate based on shoring o	drawing								1	1		1		1		

REFER	ENCE N	o.:	11186719	_								ENCLO	DSUF	REN	0.:			9	
		C		BOR	EHOLE No.:	В	H9						B	DR	EH	OL	Εl	_0(G
				ELE\	ATION:	59	.10	m					Pag	je: _	1	of	f _2	2	
CLIE	ENT: TO	C Unite	ed Group											L	.EG	EN	<u>)</u>		
PRC	JECT:	Geote	echnical Investigation									SS 💽	Spli Aug	t Spo er Sa	on mple				
LOC	ATION:	36 R	obinson Avenue									🖉 ѕт	She	lby Tu	ube				
DES	CRIBED	BY:	D.Cooper		CHECKED BY:		E	B. Vazł	nbakł	nt		₹ o	Wat Wat	er Le er cor	vel ntent	(%)			
DAT	E (STAR	T): _	9 December 20	19	_ DATE (FINISH):		91	Decem	ber 2	2019		• N	Atte Pen	rberg etrati	limits on In	s (%) dex ba	ased	on	
SC	ALE		STRATIGRAPHY		WELL			SAM		DATA		• N	Spli Pen	t Spore	on sa on Inc	mple lex ba	ised c	n	
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDF	OF ROCK			State	Type and Number	Recovery	OVC	Penetration Index / RQD	∆ Cu □ Cu S	She She Sen She Poc	ar Str ar Str sitivit ar Str ket Po	rengtl rengtl y Vali rengtl enetr	n base n base ue of s n base omete	ed on ed on Soil ed on er	Field Lab \	Vane Vane
meters	59.10		GROUND SURF	ACE					%	ppm	Ν	5 10	SCA ^{0kPa} 20 3	1004 1004	OR T (Pa) 50	EST I 150kF	RESU	JLTS 200kP 80	a 90
_			Augered to practical rein no sampling	fusal with	_												-	+	
																	+	+	_
																	-	+	
													-			_	+	+	_
- 2.0					Sand —												+	\mp	_
E 3.0																	+	+	_
E																	+	+	_
- 4.0					Riser — 🗭												+	\mp	_
																	+	+	_
- 5.0																	+	+	
																	+	+	_
6.0																	_	+	<u> </u>
																	+	+	
7.0																	—	—	_
	51.7		SHALE - Highly weather	ered and	7.40-												+	+	
- 8.0			fractured, dark grey to fresh with completely w	black, reathered				RC1	87		٩						+	+	
			zones, thinly laminated 20-30°. Dominant defe	at cts are				NO1	01		Ŭ						-	+	
9.0			partings at approximate mm spacing	ely 50	Bontarite												\pm	\pm	
			Approximately 50mm s crushed rock	eam of				RC2	100		50				-+		+	+	
§ 10.0																	+	\mp	_
			Abundantly fractured, f	resh with													\pm	\pm	+
<u> </u>			completely weathered seams	crushed	11.10-			RC3	92		14						_		
					Sand —												\mp	\mp	
E 12.0			Fresh, laminated at		11.81 -												\pm	\pm	\pm
			approximately 30°. Dor defects every 50 to 100	ninant) mm are				RC4	100		44		<u> </u>		_	_	_+	+	_
<u>-</u> 13.0			partings, occasional ca coatings, minor crushe	lcite d seams					100		-1-1						+	$\overline{+}$	
			(<5 mm) comprising of clayey sand every 300	silty mm.													\pm	\pm	
<u> </u>			becoming more fracture	ed	Screen —									\vdash	-	+	+	+	—
	: meters b	elow	round surface		. IP-0-0-17	• ***i*i						I			1				
Elevati	ons are a	approx	imate based on shoring of	Irawing															
3																			

REFER	ENCE No	o.:	11186719	_								ENCL	SSU	RE N	o.:			9		
				BOR	EHOLE No.:	BI	Н9						R		EН		F	<u>ــــــــــــــــــــــــــــــــــــ</u>	G	
		G		ELEV		59.	.10	m					Pa	ge:	2		of _	2	U	
	-NIT. TC	Linite												l	_EG	EN	D			
			ed Group									S	S Sp	lit Spo	on		_			
												G	S Au	ger Sa	ample	•				
		36 R	obinson Avenue					B 1/ 1				⊠s ▼	i Sh Wa	eiby i iter le	ube					
DES		вт: _ т)	D.Cooper					B. vazr	ואממר י		-	0	Wa	iter co	ntent	(%)				
DAT	E (STAR	T):	9 December 20	19	DATE (FINISH):			Decem	ber 2	2019		• N	Att Pe	erberg netrati	limit ion In	s (%) dex b	based	l on		
SC	ALE	λ	STRATIGRAPHY		WELL			SAM	PLE [DATA		• N	Sp Pe Dv	lit Spo netrati namic	on sa on Inc Cone	ample dex b sam	; ased	on		
Depth BGS	Elevation (m)	Stratigraph	DESCRIPTION SOIL AND BEDF	OF ROCK			State	Type and Number	Recovery	OVC	Penetration Index / RQD	∆ C □ C S	u Sh u Sh Se Sh Po	ear St ear St nsitivit ear St cket P	rengt rengt y Val rengt enetr	h bas h bas ue of h bas omet	ied or ied or Soil ied or ied or ier	n Fiel n Lab n	ld Va Var	ine 1e
meters	59.10		GROUND SURF	ACE		-			%	ppm	N	10	SC ^{50kPa} 20	ALE F 100 30 4	OR T kPa <u>0 5(</u>	1504	RES (Pa <u>) 7(</u>	ULTS 200k <u>8</u> (S :Pa) <u>9</u> (b
F			Approximately 50 mm	crushed				RC5	84		30						-+	\rightarrow		
- 15.0			seams encountered at	14.6 and									_				-	-		
			14.8 mbgs comprising clavev gravel	of silty																
- 16.0			Crushed seams approverse of the seams approverse of the seams approximately constrained by the s	kimately				RC6	88		29						\Rightarrow	\rightarrow		
	42.5		Borehole terminated at	16.6	16.38 —		Ц										-	-		
- 17.0			mbgs	10.0																
–																	-+	-+		
E 10 0																				
																	\rightarrow	\rightarrow		
- 19.0																				
																		-		
- 20.0																				
																	\rightarrow	\rightarrow		
L 21 0																		-		
													_					-		
22.0																				
F																	-+	+		
₂ - 23.0																				
21/9																	-+	-+		
24 0																	-	-		
																_	\neg	\neg	_	
																	+	+		
													_			_	\dashv	\dashv	_	
g - 26.0																	_	_		
																	\dashv	\neg	_	
≝ - ¥ - 27 ∩																	+	+		
																	\exists			
													_				\dashv	+		
≝ <u>–</u> 28.0																		_		
⊔NOTES ש mbgs:	: meters be	elow g	round surface																	
≚ Elevati	ons are a	pprox	imate based on shoring o	drawing																
2																				

REFER	ENCE N	o.:	11186719							ENCL	osu	RE N	lo.:		10		
				BOREHOLE No.:	BH	10					В	OR	EH	OLI	E LC)G	
		G		ELEVATION:	59.	20 m					Pa	ge:	1	of	_1		
CLIF	NT: T	C Unite	ed Group									ļ	LEG	END			
PRC	JECT:	Geote	chnical Investigation							⊠ s	S Sp	lit Spo	on				
LOC	ATION:	36 R	obinson Avenue							⊠s	T Sh	elby T	ube				
DES	CRIBED	BY:	D.Cooper	CHECKED BY:		B. Vaz	hbak	ht		Ţ	Wa	ater Le	evel	(0()			
DAT	E (STAR	T): _	10 December 20	DATE (FINISH):		10 Decer	nber	2019		Ŷ	Att	ater co erberg	ntent g limit	(%) s (%)			
SC	ALE		STR	ATIGRAPHY		SAM	IPLE I	DATA		• N • N	Pe Sp Pe	netrat lit Spo netrati	ion In oon sa on Ind	dex ba mple lex bas	sed on sed on		
Depth BGS	Elevation (m)	Stratigraphy	DE SOII	SCRIPTION OF - AND BEDROCK		State Type and Number	Recovery	OVC	Penetration Index / RQD	∆ C □ C S	U Sh U Sh Se Sh Pc	namic ear St ear St nsitivi ear St cket F	Cone rengt rengt ty Val rengt Penetr	sampl n base n base ue of S n base ometer	e d on Fie d on La ioil d on	əld Va ıb Va	ane ne
meters	59.20		GF	ROUND SURFACE			%	ppm	Ν	10	SC 50kPa 20	ALE F 100 30 4	FOR T IkPa	EST R 150kP	ESULT a 200	iS)kPa 80 §	90
_			Augered to practical rel	usal with no sampling							-				+	<u> </u>	Ľ
_											_	-					
- 1.0												_					
_																	
_ 2.0												-			+	<u> </u>	
_																	
- 3.0												-			+	<u> </u>	
															<u> </u>		
- 4.0											_	+			+-	-	<u> </u>
_															-		
- 5.0												+				-	
												_			—		
6.0	52 1																
-	52.9			b highly fractured accessional							_	-			_	<u> </u>	
Ezo			seams of crushed rock	comprising of silty clayey sand	ł,	RC1	50		8						+		
		Ē	laminated at 0 to 10°		-						_	-			+	<u> </u>	
															\pm		
			Vertical joint, planar, ca	lcite coated encounterd from 8	3.2	RC2	83		9		_	-			+	-	-
			to 8.9 mbgs												+		
9.0			Thinly laminated at 5 to	10°								-			+	-	
			F			RC3	100		67						—		
§⊢ 10.0			mbgs	sandy gravel encountered at s	9.8							-				-	
			13 mm crushed seam of at 9.9 mbgs	of sandy gravel seam encounte	ered	╊┤					\top	-		_	+	<u> </u>	
- 11.0		E	Subvertical joint, clean,	planar, rough to smooth		RC4	100		89						<u> </u>		
			Occasional joint at 45°	every 300 mm, clean, rough to	,						_	_			—		
E 12.0			5110001		F	₽									\pm		
												-			+	<u> </u>	
13.0						RC5	79		94						\pm		
	45.7		Developer	40.5 mb m		L					+	-		_	+	<u> </u>	-
≦ - 14.0			Borenole terminated at	13.5 mbgs											+		
	:																
mbgs:	meters b	elow g	round surface	Irawing													
	uiu (and a second on ononing t														
· •																	

BOREHOLE No: BH11 BOREHOLE LOS CLIENT: To United Strop:	REFER	ENCE N	o.:	11186719	-						ENCLO	DSUF	RE N	o.:		11		
ELEVATION: 59.20 m Page: 1 1 CLENT: TC Unred Group PROJECT: Generational Investigation Discordinate Investige Investigation Discordinate In					BOREHOLE No.:	BH1	1					B	OR	EH	OLE	E LC)G	
CLIENT: TC United Group Image: Control of the service of the serv			G		ELEVATION:	59.2	0 m					Pa	ge:	1	of	_1_		
PROJECT. Geodechnical investigation Stabulation LOCATION: SB Robinson Avenue Stabulation DESCRIED PY	CLIE	ENT: TO	C Unite	ed Group							_		l	EG	<u>end</u>			
LUCATION: 39 Robinson Avenue B. Vachtabahin B. Status Tues DESCRIBED BY: D. Dooper CHECKED BY: 10 December 2019 SCALE STRATIGRAPHY SAMPLE DATA Matter Low Degeth Sg. 20 Stratus Tues Matter Low Degeth Sg. 20 Stratus Tues Stratus Tues Degeth Sg. 20 Stratus Tues Stratus Tues Degeth Sg. 20 Stratus Tues Stratus Tues The Degeth Sg. 20 Stratus Tues Stratus Tues Degeth Sg. 20 Stratus Tues Stratus Tues The Degeth Sg. 20 Stratus Tues Stratus Tues Degeth Sg. 20 Stratus Tues Stratus Tues The Degeth Sg. 20 Stratus Tues Stratus Tues Stratus Tues Stratus Tues Stratus Tues Stratus Tues Stratus Tues Stratus Tues Stratus Tues Stratus Tues Degeth Sg. 20 Stratus Tues Stratus Tues Stratus Tues Stratus Tues Stratus Tues Stratus Tues Stratus Tues Stratus Tues	PRC	JECT:	Geote	chnical Investigation							SS 🔀	S Spl	it Spo ner Sa	on ample				
DESCRIBED PY: D. Cooper CHCKED PY: B. Varbaukh Y Were correct (%) DATE (START): 10 December 2019 DATE (FNISH): 10 December 2019 Were correct (%) Scale Strantoranter Strantoranter Sample Data Correct Sectoranter (%) Deck Big Strantoranter Sample Data Sample Data Correct Sectoranter (%) Deck Big Strantoranter Sample Data Sample Data Correct Sectoranter (%) Deck Big Strantoranter Sample Data Sample Data Correct Sectoranter (%) Deck Big Strantoranter Sample Data Sample Data Correct Sectoranter (%) Deck Big Strantoranter Sample Data Sample Data Correct Sample Data Deck Big Strantoranter Sample Data Sample Data Sample Data Sample Data Sample Data GROUND SURFACE Sample Data Samp	LOC	ATION:	36 R	obinson Avenue								She	elby T	ube				
DATE (\$TART): 10 December 2019 DATE (\$FINI\$*1): 10 December 2019 SOLLE STRATIGRAMMY SAMPLE DATA Depth Sg	DES	CRIBED	BY:	D.Cooper	CHECKED BY:		B. Vaz	hbak	nt		Ţ	Wa	ter Le	vel	(0/)			
SCALE STRATIGRAPHY SAMPLE DATA • • Bigs boot bases on prestration links base on the bases on some classing of the base on some classing of the base on SOL AND BEDROCK • Bigs boot bases on prestration links base on the base	DAT	E (STAR	T): _	10 December 20	DATE (FINISH):		10 Decer	nber	2019			Atte	erberg	limit:	(%) 8 (%)			
Depth Solid AND BEDROCK B B B C C Description Constraints Description Constraintets Description Constraints	SC	ALE		STR	ATIGRAPHY		SAM	IPLE [DATA		• N • N	Spl Per	it Spo netrati	on in on sa on Inc	mple Iex base	ed on		
meters 59.20 GROUND SURFACE % ppm N mspScAle lists <	Depth BGS	Elevation (m)	Stratigraphy	DE SOII	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	OVC	Penetration Index / RQD	∆ Cւ □ Cւ Տ	I She She Ser She Poo	ear St ear St nsitivit ear St cket P	rengtl rengtl y Val rengtl enetr	based based based based based bometer	on Fie on La vil on	eld V ıb Va	ane ne
1.0 Augered to practical refusal with no sampling 2.0	meters	59.20		GF	ROUND SURFACE			%	ppm	Ν	5 10	SC/ ^{0kPa}	ALE F 100 30 4	OR T kPa 0 50	EST RE 150kPa	SULT 200 70 {	「 S)kPa 30 _ 9	90
1.0 1.0 2.0 3.0 3.0 5.0 5.0 53.8 6.0 53.1 SHALE-dark grey, fresh, thiny laminated at 0 to 5°. Defects comprisine of partings in line with bedding. clan, rough to smooth 8.0 9.0 Westhered/crusehd seam comprising of silty sand with Amme clay around seam comprising of silty sand with Amme clay around seam comprising of silty sand with encountered at 8.9 mbgs. 10.0 94 9.0 Westhered/crusehd seam comprising of silty sand with encountered at 8.9 mbgs. 11.0 RC3 12.0 47.3 Borehole terminated at 11.9 mbgs 13.0 RC5 13.0 States below ground surface Elevations are approximate based on shoring drawing				Augered to practical re	fusal with no sampling											+		
1.0 2.0 3.0 3.0 4.0 5.0 5.1 SHALE: dark grey, fresh, thinly laminated at 0 to 5°. Defacts comprisined of partings in line with bedding. RC1 7.0 RC2 6.0 53.1 SHALE: dark grey, fresh, thinly laminated at 0 to 5°. Defacts comprisined of partings in line with bedding. 8.0 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs Approximately 70° juints, smooth, clean to rough encountered at 8.9 mbgs 11.0 12.0 47.3 Borehole terminated at 11.9 mbgs 13.0 NOTES: Indexts below ground surface Elevations are approximate based on shoring drawing																		
2.0 3.0 3.0 3.0 4.0 53.8 5.0 53.8 S1.1 SHALE- dark grey, fresh, thinly laminated at 0 to 5°. Defects comprisined of partings in line with bedding. RC2 6.0 53.1 SHALE- dark grey, fresh, thinly laminated at 0 to 5°. RC2 Defects comprisined of partings in line with bedding. RC3 6.0 53.1 Weathered/crusehd seam comprising of silly sand with sender dat 8.8 mbgs Approximately 70° joint, smooth, clean to rough encountered at 8.8 mbgs Approximately 70° joint, smooth, clean to rough encountered at 9.3 mbgs 11.0 RC5 93 12.0 47.3 Borehole terminated at 11.9 mbgs RC5 93 13.0 Rest below ground surface Thigs: meters below ground surface Evaluence at 8.9 mbgs Provide at 8.8 mbgs Intervide at 8.9 mbgs 13.0 RC5 93 13.0 Intervide at 8.9 mbgs 14.0 Intervide at 8.9 mbgs Intervide at 8.9 mbgs Intervide at 8.9 mbgs Intervide at 8.9 mbgs Intervide at 11.9 mbgs	- 1.0												<u> </u>			+		
2.0 3.0 3.0 4.0 4.0 53.8 5.0 53.8 6.0 53.1 SHALE-dark grey, fresh, thinly laminated at 0 to 5'. Defects comprisined of partings in line with bedding, clean, rough to smooth 8.0 9.0 Weathered/crusehd seam comprising of silty sand with sendoring, clean to rough encountered at 8.8 mbgs Approximately 70' joint, smooth, clean to rough encountered at 8.9 mbgs 11.0 12.0 47.3 Borehole terminated at 11.9 mbgs 13.0 NOTES: mbgs: meters below ground surface Elevations are approximate based on shoring drawing																		
3.0 4.0 4.0 5.0 5.0 53.8 Example Example 1 7.0 75 Deleters comprisined of partings in line with bedding. clean, rough to smooth RC2 7.0 RC2 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8 mbgs encountered at 8 mbgs encountered at 8 mbgs encountered at 8 mbgs encountered at 9.3 mbgs 11.0 RC4 12.0 47.3 Borehole terminated at 11.9 mbgs 13.0 NOTES: Image: mean approximate Mark (mark) and mark (mark) and mark (mark) and mark) for any (mark) (m	2.0												-			+		<u> </u>
3.0 4.0 5.0 53.8 6.0 53.1 SHALE- dark grey, fresh, thinky laminated at 0 to 5*, Defects comprisined of partings in line with bedding, defen, rough to smooth 7.0 RC2 8.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs encountered at 8.8 mbgs encountered at 8.8 mbgs encountered at 8.9 mbgs 10.0 Weathered/crusehd seam comprising of silty sand with encountered at 8.9 mbgs encountered at 8.9 mbgs encountered at 8.9 mbgs 11.0 RC4 47.3 Borehole terminated at 11.9 mbgs 13.0 Image: Reference in the image in the	-																	
4.0 5.0 53.8 LIMESTONE 5.0 53.1 SHALE- dark grey, fresh, thinly laminated at 0 to 5°. Defects comprising of partings in line with bedding, clean, rough to smooth RC1 70 7.0 RC2 67 44 8.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs RC3 100 94 10.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs RC4 100 98 11.0 RC4 RC4 100 98 100 94 12.0 47.3 Borehole terminated at 11.9 mbgs RC5 93 82 100 98 13.0 Identified at 11.9 mbgs 14.0 Identified at 11.9 mbgs	- 3.0															+		
4.0 5.0 53.8 LIMESTONE 6.0 53.1 SHALE- dark grey, fresh, thinly laminated at 0 to 5°. Defects comprisined of partings in line with bedding, clean, rough to smooth RC1 70 75 44 7.0 SHALE- dark grey, fresh, thinly laminated at 0 to 5°. Defects comprisined of partings in line with bedding, clean, rough to smooth RC2 67 44 44 9.0 Weathered/crusehd seam comprising of silty sand with end on the end output of the	_																	
5.0 53.8 LIMESTONE 6.0 53.1 SHALE- dark grey, fresh, thinly laminated at 0 to 5°. Peters comprisined of partings in line with bedding, clean, rough to smooth RC2 67 44 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs RC3 100 94 10.0 Approximately 70° joint, smooth, clean to rough encountered at 8.9 mbgs RC4 100 98 11.0 Approximately 45° joint, smooth, clean to rough encountered at 8.9 mbgs RC4 100 98 11.0 Approximately 45° joint, smooth, clean to rough encountered at 8.9 mbgs RC5 93 82 11.0 Ar.3 Borehole terminated at 11.9 mbgs RC5 93 82 11.0 Ar.3 Borehole terminated at 11.9 mbgs Implementation of the second strate of t	- 4.0												<u> </u>			+		
5.0 53.8 LIMESTONE 6.0 53.1 SHALE - dark grey, fresh, thinly laminated at 0 to 5°. RC1 70 7.0 SHALE - dark grey, fresh, thinly laminated at 0 to 5°. RC2 67 44 9.0 Weathered/crusehd seam comprising of silty sand with some cloay encountered at 8.8 mbgs Appriximately 70° joint, smooth, clean to rough encountered at 8.9 mbgs Appriximately 70° joint, smooth, clean to rough encountered at 9.9 mbgs Appriximately 70° joint, smooth, clean to rough encountered at 9.3 mbgs RC4 100 98 11.0 47.3 Borehole terminated at 11.9 mbgs RC5 93 82 0 0 13.0 NOTES: mbgs: meters below ground surface Elevations are approximately 430 drawing RC5 93 82 0 0 0																		
53.8 LIMESTONE 6.0 53.1 SHALE- dark grey, fresh, thinly laminated at 0 to 5°. Defects comprisined of partings in line with bedding, clean, rough to smooth 8.0 9.0 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs Approximately 76 joint, smooth, clean to rough encountered at 8.9 mbgs Approximately 76 joint, smooth, clean to rough encountered at 9.9 mbgs Approximately 76 joint, smooth, clean to rough encountered at 9.3 mbgs 11.0 12.0 47.3 Borehole terminated at 11.9 mbgs 13.0 NOTES: mbgs: meters below ground surface Elevations are approximately 76.	E 50															+		<u> </u>
6.0 53.1 SHALE- dark grey, fresh, thinly laminated at 0 to 5°. Defects comprisined of partings in line with bedding, clean, rough to smooth RC2 67 44 44 64		53.8					-											
6.0 53.1 SHALE- dark grey, fresh, thinly laminated at 0 to 5°. Defects comprisined of partings in line with bedding, clean, rough to smooth RC2 67 8.0 RC3 100 94 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs RC3 100 94 10.0 encountered at 8.9 mbgs Approximately 70° joint, smooth, clean to rough encountered at 9.3 mbgs RC4 100 98 11.0 another at 9.3 mbgs RC5 93 82 another at 0.4 13.0 Borehole terminated at 11.9 mbgs RC5 93 82 another at 0.4 14.0 NOTES: mbgs: meters below ground surface Elevations are approximate based on shoring drawing another at 0.4 another at 0.4				LIMESTONE			RC1	70		75						+		
7.0 RC2 67 44 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs encountered at 8.8 mbgs encountered at 8.9 mbgs encountered at 9.3 mbgs RC4 100 98 11.0 Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs RC5 93 82 0 0 13.0 Borehole terminated at 11.9 mbgs RC5 93 82 0 0 0 NOTES: mbgs: meters below ground surface Elevations are approximate based on shoring drawing 0 </td <td>6.0</td> <td>53.1</td> <td></td> <td>SHALE- dark grey, free</td> <td>sh, thinly laminated at 0 to 5°.</td> <td></td>	6.0	53.1		SHALE- dark grey, free	sh, thinly laminated at 0 to 5°.													
7.0 RC3 100 94 94 94 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs RC4 100 94 <t< td=""><td>_</td><td></td><td></td><td>clean, rough to smooth</td><td>partings in line with bedding,</td><td></td><td>RC2</td><td>67</td><td></td><td>44</td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td></t<>	_			clean, rough to smooth	partings in line with bedding,		RC2	67		44						+		
 8.0 9.0 9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs Approximately 70° joint, smooth, clean to rough encountered at 8.9 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs 11.0 12.0 47.3 Borehole terminated at 11.9 mbgs 13.0 NOTES: mbgs: meters below ground surface Elevations are approximate based on shoring drawing 	- 7.0			-														
8.0 RC3 100 94	-															+		
9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs Approximately 70° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 11.9 mbgs Borehole terminated at 11.9 mbgs Attack at 11.9 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs Approximately 45° joint, smoo	8.0						RC3	100		94						+		
9.0 Weathered/crusehd seam comprising of silty sand with some clay encountered at 8.8 mbgs Approximately 70° joint, smooth, clean to rough encountered at 9.3 mbgs RC4 100 98 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										-								
10.0 Some clay encountered at 8.8 mbgs Approximately 70° joint, smooth, clean to rough encountered at 9.3 mbgs RC4 100 98 11.0 RC5 93 82 0 0 12.0 47.3 Borehole terminated at 11.9 mbgs RC5 93 82 0 0 13.0 NOTES: mbers mbers 0 0 0 0 NOTES: mbers Borehole strate Borehole strate Borehole strate 0 0 0 0 Notes: Berehole strate Borehole strate Borehole strate 0 <	9.0			Weathered/crusehd se	am comprising of silty sand wit	h 🕂	-											
encountered at 8.9 mbgs Approximately 45° joint, smooth, clean to rough encountered at 9.3 mbgs 11.0 RC5 93 82 0				Approximately 70° joint	a at 8.8 mbgs											—		
11.0 12.0 47.3 Borehole terminated at 11.9 mbgs RC5 93 82 93 82 93 82 93 93 82 93 93 93 93 93 93 93 94				encountered at 8.9 mb	gs smooth, clean to rough		RC4	100		98								
11.0 47.3 Borehole terminated at 11.9 mbgs RC5 93 82 82 93 82 13.0 13.0 13.0 14.0 <td< td=""><td></td><td></td><td></td><td>encountered at 9.3 mb</td><td>gs</td><td>4</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				encountered at 9.3 mb	gs	4	-											
11.0 47.3 Borehole terminated at 11.9 mbgs RC5 93 82 12.0 47.3 13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0																		-
47.3 Borehole terminated at 11.9 mbgs 13.0 14.0 NOTES: mbgs: meters below ground surface Elevations are approximate based on shoring drawing							RC5	93		82						_		
12.0 47.3 Borehole terminated at 11.9 mbgs 13.0 13.0 13.0 14.0 14.0 NOTES: mbgs: meters below ground surface Elevations are approximate based on shoring drawing																+		
13.0 14.0	12.0	47.3		Borehole terminated at	11.9 mbgs		-									—		
13.0 13.0 14.0	¥Н											+				+		
14.0 14.0	[₩] - 13.0															1		
14.0 Image: Anticipation of the second s																+		\vdash
NOTES: mbgs: meters below ground surface Elevations are approximate based on shoring drawing	- 14.0																	
mbgs: meters below ground surface Elevations are approximate based on shoring drawing		:																L
	≝ mbgs: Elevati	meters b ons are a	elow g oprox	round surface imate based on shoring o	drawing													
	BORE																	

REFER	ENCE NO	o.:	11186719	_								ENCLO	DSUF	RE N	o.:			12	
				BOR	EHOLE No.:	Bł	-11:	2					B	٦R	FH	OL	FΙ	O	G
		G	HD	ELE\	ATION:	59	.10) m					Pad	ae:	1	of	 {	- ` 1	Ŭ
														י י ו	_EG	ENC	<u> </u>		
	ENT: <u>TC</u>	Cunite	ed Group									🖂 ss	S Spli	t Spo	on		ſ		
		Geote	chnical Investigation									G	Aug	jer Sa	ample				
		BV.						R Voz	bbakl	ot		∠ SI	Wat	ter Le	evel				
	F (STAR	ы. т).	9 December 20	10	DATE (FINISH)		(D. Vazi	hor 2	n 2010		0	Wat	er co	ntent	(%)			
sc		· <i>)</i>	STRATIGRAPHY	10	MONITOR			SAM				• N	Per Spli	etrati t Spo	on In	dex ba Imple	ased	on	
	_	۲			WELL			0, 111			0	• N	Pen Dyn	etrati amic	on Ind Cone	lex ba samp	sed o	ึ่งท	
Depth BGS	Elevatior (m)	Stratigraph	DESCRIPTION SOIL AND BEDF	I OF ROCK			State	Type and Number	Recovery	OVC	Penetration Index / RQI	△ Cι □ Cι S	I She She Ser She Poc	ear St ear St isitivit ear St eket P	rengt rengt sy Val rengt enetr	h base h base ue of \$ h base omete	ed on ed on Soil ed on er	Field Lab	l Vane Vane
meters	59.10		GROUND SUR	FACE					%	ppm	Ν	10 5	SCA 0kPa 20	ALE F 100	OR T kPa	EST F 150kF	RESU	JLTS 200kF 80	°a 90
-	59.0			luata af	0.10 <u></u>		\square												
0.5			clayey silt, possible cobbles/boulders, trace	e gravel,	_		Å	SS1	33		10	•					_	+	
- 1.0				compact	Riser —		X	SS2	41		12	•					+	+	
- 1.5							H						-				_	+	_
2.0					1.98 —		Д	SS3	30		27		•				+	_	
_ 2.5	56.8		CLAYEY SILT- some s brown, moist, loose to	and, compact	Bentonite		M	SS4	57		17		•				+	+	
3.0					Sand — 2.90 —		Д										_	_	
3.5							M	SS5	25		17		-				+	+	
40	55.3		SILTY SAND- trace to	some			Ħ										_	+	
			clay, grey, moist to we	., 100se	Screen —		М	SS6	66		13	•	-				+	+	_
- 4.5 							\square	SS7	51		3	•					\pm	\pm	
5.0	53.8						Д										+	+	
5.5			sand and gravel, grey, stiff to hard	wet, very			X	SS8	49		13	•					_	+	
	53.2	XXXL			- 5.94 - 🕮		Ĥ										+	+	
																	\downarrow	+	_
																	+	+	
																	\mp	\mp	—
													+				+	+	_
DR-LH-61 8.5																	\pm	+	
9.0																	+	+	_
NOTES): maters b		iround surface		1		1		I	<u> </u>		1							
Elevat	ions are a	pprox	imate based on shoring of	drawing															

Notes on Borehole and Test Pit Reports

Soil description :

Each subsurface stratum is described using the following terminology. The relative density of granular soils is determined by the Standard Penetration Index ("N" value), while the consistency of clayey sols is measured by the value of undrained shear strength (Cu).

	Classification	(Unified sys	stem)			Terminolo	ogy	
Clay	< 0.002 mm							
Silt	0.002 to 0.075 mm							
Cond	0.075 to 1.75 mm	fine	0.075 to 4.25 mm		"tra	ce" mo"	1-10%	
Sand	0.075 to 4.75 mm	nne	0.075 to 4.25 mm		SOI	ne otivo (oilty, condy)	10-20%	
		meaium	0.425 to 2.0 mm		adje	ective (slity, sandy) 20-35%	
		coarse	2.0 to 4.75 mm		"and	0	35-50%	
Gravel	4.75 to 75 mm	fine coarse	4.75 to 19 mm 19 to 75 mm					
Cobbles Boulders	75 to 300 mm >300 mm							
Relati gra	ve density of nular soils	Standa inde	ard penetration ex "N" value		Consi cohe	istency of sive soils	Undraine strengt	ed shear h (Cu)
		(BLO\	NS/ft – 300 mm)				(P.S.F)	(kPa)
					Ve	ery soft	<250	<12
V	ery loose		0-4			Soft	250-500	12-25
	Loose		4-10			Firm	500-1000	25-50
(Compact		10-30			Stiff	1000-2000	50-100
	Dense		30-50		Ve	erv stiff	2000-4000	100-200
Ve	erv dense		>50			Hard	>4000	>200
	Rock quality	designatio	n	7		STRATIGRAPH	IC LEGEND	
"RQI	O" (%) Value		Quality				•	
	<25	,	Very poor			00	20	
	25-50		Poor		0000000	Gravel	Cobbles& boulders	
	50-75		Fair		Sand	Clavel C		Bedrock
	75-90		Good			7777		000000
	>90		Excellent				$\sim \sim$	
					Silt	Clay	Organic soil	Fill
Samples: Type and Num The type of sam SS: Split spoon SSE, GSE, AGE	ber nple recovered is shown o E: Environmental sampling	on the log by t g	the abbreviation listed he ST: S PS: P	ereafter. The nun helby tube riston sample (Os	nbering of samples is terberg)	sequential for each AG RC GS	type of sample. : Auger : Rock core : Grab sample	
Recovery The recovery, s	hown as a percentage, is	the ratio of le	ength of the sample obta	ined to the distan	ce the sampler was o	driven/pushed into the	e soil	
RQD								
The "Rock Qual the run.	lity Designation" or "RQD'	" value, expre	essed as percentage, is t	he ratio of the tot	al length of all core fr	agments of 4 inches	(10 cm) or more to th	ne total length o
IN-SITU TEST	TS:							
N: Standard per	netration index			N _c : Dynamic	cone penetration in	dex	k: Permeat	oility
R: Refusal to pe	enetration			Cu: Undı Pr:	rained shear strength Pressure meter	I	ABS: Absorption (F	Packer test)
LABORATOR	RY TESTS:							
I Divid in the			1					O.V.: Organic
Ip: Plasticity inde	ex	H: Hy	Grain size analysis	A: Atterbe	rg iimits		n II cone	vapor
Wn: Plastic limit	ł	GSA:	Grain Size analysis	w: vvater c	aht	CHEM: Chemic	ni cone sal analysis	
wp. r idolic iillii	L Contraction of the second seco			Y. OHIL WEI	9		ai anaiyoio	

GHD PS-020.01-IA- Notes on Borehole and Test Pit Reports - Rev. 0 - 07/01/2015

Table 1

Summary of Shear Wave Velocity Measurements Seismic Site Class Determination Proposed New Residential Condominium TC United Group. 36 Robinson Avenue, Ottawa, ON

(Ass	Table 1-/ umed found	A: Average daiton at 6	e Shear Wav .0 m below e	e Velocity (existing gro	VS ₃₀) und surface)	(Ass	Table 1-A sumed found	A: Average daiton at 6	e Shear Wav .0 m below e	e Velocity (` existing grou	VS ₃₀) Ind surface)	
			Line 1						Line 2			
Laver No	Depth (m bgs)	Thickness	Vs	d./V.	Laver No	Depth (m bgs)	Thickness	Vs	d.V/	
Layer NO.	From	То	m	m/s	Ciγ V SI	Layer NO.	From	То	m	m/s		
1	6.0	8.6	2.6	414	0.0062	1	6.0	8.3	2.3	313	0.0074	
2	8.6	11.7	3.2	904	0.0035	2	8.3	11.4	3.1	565	0.0055	
3	11.7	15.7	4.0	1113	0.0036	3	11.4	15.3	3.9	1052	0.0037	
4	15.7	20.7	5.0	1212	0.0041	4	15.3	20.1	4.8	1286	0.0038	
5	20.7	36.0	15.3	1352	0.0113	5	20.1	36.0	15.9	1437	0.0111	
Total 30.0 0.0287 Total 30.0												
Avera	ge Shear W	ave Veloc	ity Along the	Line (m/s)	1046	Avera	ge Shear W	ave Veloc	ity Along the	Line (m/s)	956	

Average VS ₃₀ =	1001	m/s
Recommended Site Classe	в	Subjected to Code
Recommended Sile Class.	D	requirements

Notes:

1 - The Seismic Site class is recommended in accordance to Table 4.1.8.4.A of the National Building code of Canada 2010 and based on the lowest measured average shear wave velocity measured along the investigated lines.

2 - VS30 is calculated based on the average shear wave velocity below the proposed founding elevation.

3 - Site Classes A and B are only applicable if footings are founded on bedrock or there is no more than 3.0 m of soil between founding elevation and bedrock.

4 - The recommended site class is only applicable if site conditions for Site Class F (liquefiable soil/soft soil layers more than 3.0 m thick) are not applicable.

SIEVE ANALYSIS

SIEVE ANALYSIS

BH7-RC13/RC14/RC15

BH7-RC13, RC14, RC15 November 18, 2019						
Core Run - Depth below ground	Reco	overy	Remarks			
surface (mbgs)	m	%				
BH7 – RC13 – 8.4 to 9.6 mbgs	1.2	100	37% RQD			
BH7 – RC14 – 9.6 to 11.1 mbgs	1.3	84	21% RQD			
BH7 – RC15 – 11.1 to 12.2 mbgs	1.1	100	0% RQD			

Core Log Photographs

BH8-RC10/RC11/RC12/RC13

BH8-RC10, RC11, RC12, RC13 November 18, 2019						
Core Run - Depth below ground		overy	Remarks			
surface (mbgs)	М	%				
BH8 – RC10 – 6.5 to 8.1 mbgs	1.6	100	57% RQD			
BH8 – RC11 – 8.1 to 9.7 mbgs	1.6	100	100% RQD			
BH8 – RC12 – 9.7 to 11.2 mbgs	1.4	92	70% RQD			
BH8 – RC13 – 11.2 to 12.1 mbgs	0.9	100	100% RQD			

Core Log Photographs

BH9-RC1/RC2

BH9-RC1, RC2, RC3, RC4 December 9, 2019					
Core Run - Depth below ground	Recovery		Remarks		
surface (mbgs)	m	%			
BH9 – RC1 – 7.4 to 8.9 mbgs	1.3	87	9% RQD		
BH9 – RC2 – 8.9 to 10.4 mbgs	1.5	100	50% RQD		
BH9 – RC3 – 10.4 to 12.0 mbgs	1.5	92	14% RQD		
BH9 – RC4 – 12.0 to 13.5 mbgs	1.5	100	44% RQD		

Core Log Photographs

BH9-RC5/RC6

BH9-RC5, RC6 December 9, 2019			
Core Run - Depth below ground		overy	Remarks
surface (mbgs)	М	%	
BH9 – RC5 – 13.5 to 15.1 mbgs	1.3	84	30% RQD
BH9 – RC6 – 15.1 to 16.6 mbgs	1.3	88	29% RQD

Core Log Photographs

BH10-RC1/RC2/RC3/RC4/RC5

BH10-RC1, RC2, RC3, RC4, RC5 December 10, 2019						
Core Run - Depth below ground		overy	Remarks			
surface (mbgs)	m	%				
BH10 – RC1 – 6.1 to 7.4 mbgs	0.7	50	8% RQD			
BH10 – RC2 – 7.4 to 8.9 mbgs	1.2	83	9% RQD			
BH10 – RC3 – 8.9 to 10.5 mbgs	1.6	100	67% RQD			
BH10 – RC4 – 10.5 to 12.0 mbgs	1.5	100	89% RQD			
BH10 – RC5 – 12.0 to 13.5 mbgs	1.2	79	94% RQD			

Core Log Photographs

BH11-RC1/RC2/RC3/RC4/RC5

BH11-RC1, RC2, RC3, RC4, RC5 December 10, 2019						
Core Run - Depth below ground		overy	Remarks			
surface (mbgs)	m	%				
BH11 – RC1 – 5.4 to 5.8 mbgs	0.3	70	75% RQD			
BH11 – RC2 – 5.8 to 7.4 mbgs	1.1	67	44% RQD			
BH11 – RC3 – 7.4 to 8.9 mbgs	1.5	100	94% RQD			
BH11 – RC4 – 8.9 to 10.4 mbgs	1.5	100	98% RQD			
BH11 – RC5 – 10.4 to 11.9 mbgs	1.4	93	82% RQD			

Core Log Photographs

2015 National Building Code Seismic Hazard Calculation

INFORMATION: Eastern Canada English (613) 995-5548 français (613) 995-0600 Facsimile (613) 992-8836 Western Canada English (250) 363-6500 Facsimile (250) 363-6565

Site: 45.4183 N, 75.6658 W User File Reference:

Requested by: ,

National Building Code ground motions: 2% probability of exceedance in 50 years (0.000404 per annum)

Sa(0.05)	Sa(0.1)	Sa(0.2)	Sa(0.3)	Sa(0.5)	Sa(1.0)	Sa(2.0)	Sa(5.0)	Sa(10.0)	PGA (g)	PGV (m/s)
0.450	0.526	0.441	0.335	0.238	0.118	0.056	0.015	0.0054	0.282	0.197

Notes. Spectral (Sa(T), where T is the period in seconds) and peak ground acceleration (PGA) values are given in units of g (9.81 m/s²). Peak ground velocity is given in m/s. Values are for "firm ground" (NBCC 2015 Site Class C, average shear wave velocity 450 m/s). NBCC2015 and CSAS6-14 values are specified in **bold** font. Three additional periods are provided - their use is discussed in the NBCC2015 Commentary. Only 2 significant figures are to be used. *These values have been interpolated from a 10-km-spaced grid of points. Depending on the gradient of the nearby points, values at this location calculated directly from the hazard program may vary. More than 95 percent of interpolated values are within 2 percent of the directly calculated values.*

Ground motions for other probabilities:			
Probability of exceedance per annum	0.010	0.0021	0.001
Probability of exceedance in 50 years	40%	10%	5%
Sa(0.05)	0.044	0.149	0.249
Sa(0.1)	0.061	0.188	0.302
Sa(0.2)	0.055	0.162	0.256
Sa(0.3)	0.044	0.125	0.196
Sa(0.5)	0.031	0.088	0.139
Sa(1.0)	0.015	0.045	0.070
Sa(2.0)	0.0061	0.021	0.033
Sa(5.0)	0.0012	0.0047	0.0081
Sa(10.0)	0.0006	0.0019	0.0032
PGA	0.033	0.102	0.164
PGV	0.021	0.068	0.111

References

National Building Code of Canada 2015 NRCC no. 56190; Appendix C: Table C-3, Seismic Design Data for Selected Locations in Canada

User's Guide - NBC 2015, Structural Commentaries NRCC no. 45.5°N xxxxx (in preparation) Commentary J: Design for Seismic Effects

Geological Survey of Canada Open File 7893 Fifth Generation Seismic Hazard Model for Canada: Grid values of mean hazard to be used with the 2015 National Building Code of Canada

See the websites www.EarthquakesCanada.ca and www.nationalcodes.ca for more information

Aussi disponible en français

Natural Resources Canada Ressources naturelles Canada

November 27, 2018

APPENDIX 2

FIGURE 1 - SITE LOCATION PLAN (BY OTHERS) FIGURE 2 - BOREHOLE LOCATION PLAN (BY OTHERS) FIGURE 3 - WATER SUPPRESSION SYSTEM DRAWING PG5231-1 - TEST HOLE LOCATION PLAN

-Source: MNRF NRVIS, 2018. Produced by GHD under licence from Ontario Ministry of Natural Resources and Forestry, © Queen's Printer 2019. Coordinate System: NAD 1983 UTM Zone 18N

TC UNITED GROUP 36 ROBINSON AVENUE, OTTAWA, ONTARIO GEOTECHNICAL INVESTIGATION 11186719-A1 Jan 2, 2019

SITE LOCATION MAP

FIGURE 1

GIS File: Q:\GIS\PROJECTS\11186000s\11186719\Layouts\001\11186719-A1(001)GIS-OT005.mxd

ROBINSON VILLAGE LPIV LIMITED PARTNERSHIP 36 ROBINSON AVENUE, OTTAWA, ONTARIO GEOTECHNICAL INVESTIGATION

BOREHOLE LOCATION PLAN

FIGURE 2

11186719-A1 Dec 11, 2019

	O MH T/G=58.89m	ОМН T/G=58.50m	ROBII	T/G=58.07m NSON AVENUE
Image: Second state of the second s		I UT 19	38 ROBINSON AVENUE LOT 16 TP 1-20 59.40 [53.20]	6 ROBINSON AVENUE CONCRET
patersongroup consulting engineers			OTTAWA,	GEOTECHNICAL INVESTIGATION 36 ROBINSON AVENUE
154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344	NO. REVISIONS	DATE INITIA	Title:	TEST HOLE LOCATION PLAN

