

Engineering

Land / Site Development

Municipal Infrastructure

Environmental / Water Resources

Traffic / Transportation

Structural

Recreational

Planning

Land / Site Development

Planning Application Management

Municipal Planning Documents & **Studies**

Expert Witness (OMB)

Wireless Industry

Landscape Architecture

Urban Design & Streetscapes

Open Space, Parks & Recreation Planning

Community & Residential **Developments**

Commercial & **Institutional Sites**

Environmental Restoration

PROJECT PYTHON 222 CITIGATE DRIVE

Servicing and Stormwater Management Report

PROJECT PYTHON

222 CITIGATE DRIVE OTTAWA, ONTARIO

SERVICING AND STORMWATER MANAGEMENT REPORT

Prepared By:

NOVATECH

Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

Issued: April 9, 2020

Novatech File: 120025 Report Ref: R-2020-044

April 9, 2020

City of Ottawa Planning Infrastructure and Economic Development Department 110 Laurier Avenue West, 4th Floor Ottawa, ON K1P 1J1

Attention: Jeffrey Shillington

Reference: 222 CitiGate Drive, Ottawa

Servicing and Stormwater Management Report

Novatech File No.: 120025

Please find enclosed the 'Servicing and Stormwater Management Report' for the above noted project. This report is prepared in support of the Site Plan Application and is hereby submitted for review and approval.

Should you have any questions or comments, please do not hesitate to contact us.

Sincerely,

NOVATECH

Lee Sheets, C.E.T.

Director | Land Development & Public Sector Engineering

cc:

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
1.1 1.2 1.3 1.4	Existing Conditions Proposed Development Site Design and Constraints Background Reports	. 1 . 1
2.0	WATER SERVICING	. 3
	Existing Water Services Proposed Water Servicing 2.2.1 Proposed Domestic Water Demands 2.2.2 Proposed Fire Protection System CitiGate Water Allotment and Hydraulic Analysis	. 3 . 3 . 4
3.0	SANITARY SERVICING	. 6
3.1 3.2 3.3	Existing Sanitary Services	. 6 . 6
4.0	STORM SERVICING AND STORMWATER MANAGEMENT	. 8
4.1 4.2 4 4.3 4 4.4 4.4	Existing Off-Site Storm Infrastructure – CitiGate (Phase 1) Stormwater Management Criteria 1.2.1 Stormwater Quality Control 1.2.2 Stormwater Quantity Control – Allowable Release Rate Proposed On-Site Storm Infrastructure 1.3.1 Storm Sewer Sizing Criteria 1.3.2 Overland Flow Sizing Criteria	. 8 . 8 . 8 . 9 10 10 10 11 13
4.1 4.2 4 4.3 4 4.4 4.4	Existing Off-Site Storm Infrastructure – CitiGate (Phase 1) Stormwater Management Criteria 1.2.1 Stormwater Quality Control 1.2.2 Stormwater Quantity Control – Allowable Release Rate Proposed On-Site Storm Infrastructure 1.3.1 Storm Sewer Sizing Criteria 1.3.2 Overland Flow Sizing Criteria Stormwater Management Modeling 1.4.1 Design Storms 1.4.2 Model Development 1.4.3 Model Results	. 8 . 8 . 8 . 9 10 10 10 11 13
4.1 4.2 4 4.3 4 4.4 4.4 4	Existing Off-Site Storm Infrastructure – CitiGate (Phase 1) Stormwater Management Criteria 2.2.1 Stormwater Quality Control 2.2.2 Stormwater Quantity Control – Allowable Release Rate Proposed On-Site Storm Infrastructure 2.3.1 Storm Sewer Sizing Criteria 2.3.2 Overland Flow Sizing Criteria Stormwater Management Modeling 2.4.1 Design Storms 2.4.2 Model Development 2.4.3 Model Results 2.4.4 Future Development Area	. 8 . 8 . 8 . 9 10 10 10 11 13 15

LIST OF TABLES

Table 2.1: Domestic Water Demand Summary

Table 2.2: Water Demand Allotment Summary

Table 2.3: Hydraulic Analysis Summary

Table 3.1: Peak Sanitary Flow Summary

Table 3.2: Sanitary Flow Allotment Summary

Table 4.1: Storm Sewer Design Parameters

Table 4.2: Subcatchment Parameters

Table 4.3: Required (100-year) and Provided Storage Volumes

Table 4.4: Summary of Peak Flows

Table 4.5: Estimated Hydraulic Grade Line (HGL) Elevations

LIST OF FIGURES

Figure 1	Key Plan
Figure 2	Existing Conditions Site
Figure 3	Existing Conditions Overall
Figure 4	Proposed Site Plan
Figure 5	Existing Water Servicing
Figure 6	Existing Sanitary Servicing
Figure 7	Existing Storm Servicing

LIST OF APPENDICIES

Appendix A	Water Servicing Information
Appendix B	Sanitary Servicing Information
Appendix C	Storm Servicing Information
Appendix D	Stormwater Management Modeling
Appendix E	Development Servicing Study Checklist
Appendix F	Drawings

LIST OF DRAWINGS (enclosed)

Storm Sewer Drainage Area Plan (120025-STM)
Stormwater Management Drainage Area Plan (120025-SWM)

LIST OF DRAWINGS (separate)

Cover Page
Notes and Details
General Plan of Services
Grading Plan
Erosion Sediment Control Plan

(120025-ND) (120025-GP, GP1, GP2, GP3, GP4) (120025-GR, GR1, GR2, GR3, GR4)

(120025-ESC)

ENCLOSED CD

- Report (pdf)
- Drawings (pdf)
- PCSWMM Packaged Model Files
 - 100-year 3-hour Chicago Storm

Novatech Page ii

1.0 INTRODUCTION

Novatech has been retained to prepare a Servicing and Stormwater Management Report for the proposed development located at 222 CitiGate Drive within Ottawa, Ontario. This report will support a Site Plan Application for the proposed development. **Figure 1** is a Key Plan showing the site location.

This report outlines the site sanitary and water servicing, along with the proposed storm drainage and stormwater management strategy for the proposed development.

1.1 Existing Conditions

The total site area is approximately 26.0 hectares in size and is located within the CitiGate Development southeast of the Highway 416 and Fallowfield Road interchange. The site is registered as Block 13 on the registered Plan 4M-1538 of the CitiGate Development and has a municipal address of 222 CitiGate Drive. The site is bounded by Fallowfield Drive to the north, the O'Keefe Municipal Drain and the future CitiGate Drive extension to the East, vacant land to the South, and Highway 416 to the west. The topography of the site slopes easterly towards the O'Keefe Municipal Drain and the future CitiGate Drive extension. **Figure 2** shows the existing site conditions and **Figure 3** shows the subject site with respect to the surrounding areas.

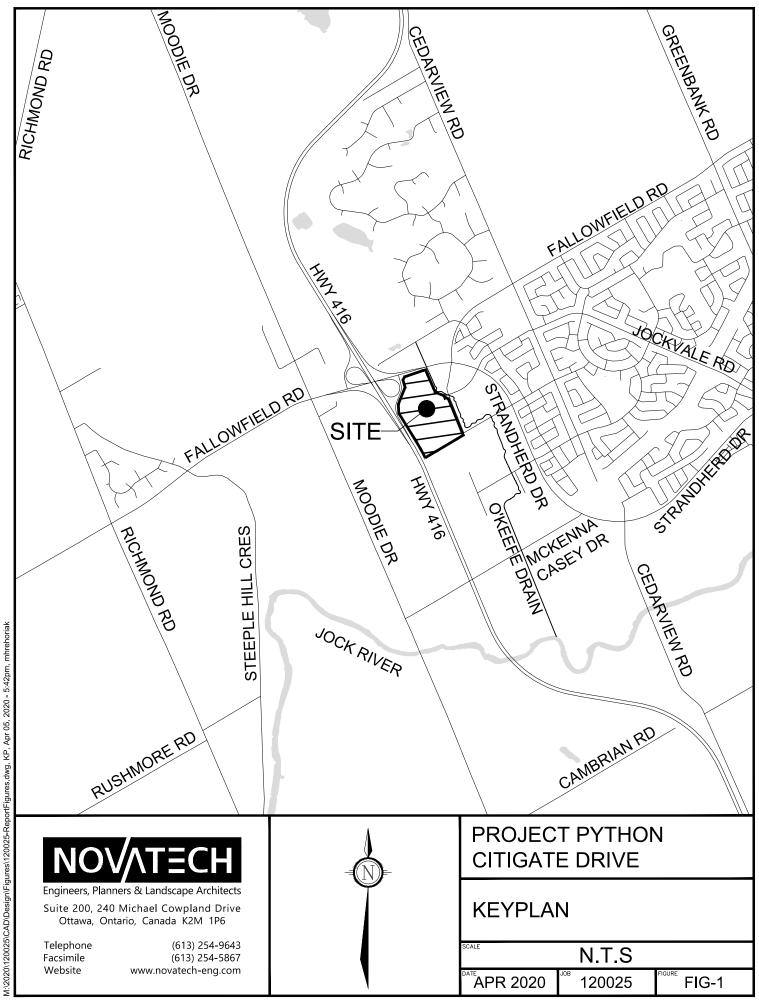
It should be noted that the CitiGate Drive extension has received City of Ottawa approval and the works will be constructed prior to the occupancy of this proposed development. The scope of work is for the construction of Systemhouse Street and CitiGate Drive extensions including the underground watermain and storm sewer infrastructure. For the purposes of this report the watermain and storm sewer extensions in CiteGate Drive and Systemhouse Street will be considered as existing.

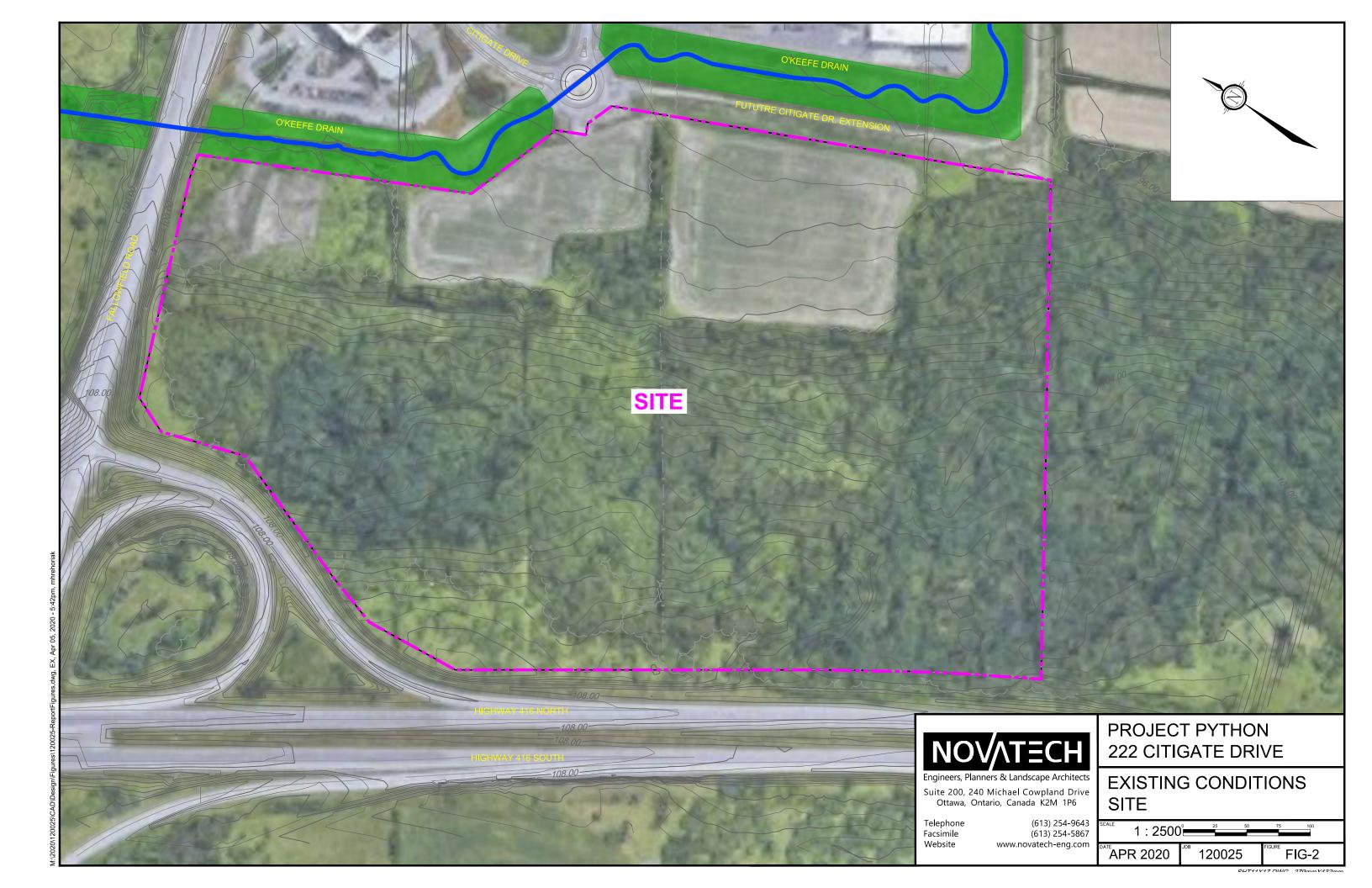
1.2 Proposed Development

The proposed development consists of a single prestige office/light industrial building, truck and trailer parking and staff parking lots which will cover approximately 23.5 hectares of the 26.0 hectare site. The remaining 2.5 hectares will remain vacant for the time being with the potential of a future development. Access to the site would be provided by 4 separate entrances, two from CitiGate Drive and two from the proposed private roadway extension. **Figure 4** shows the proposed development.

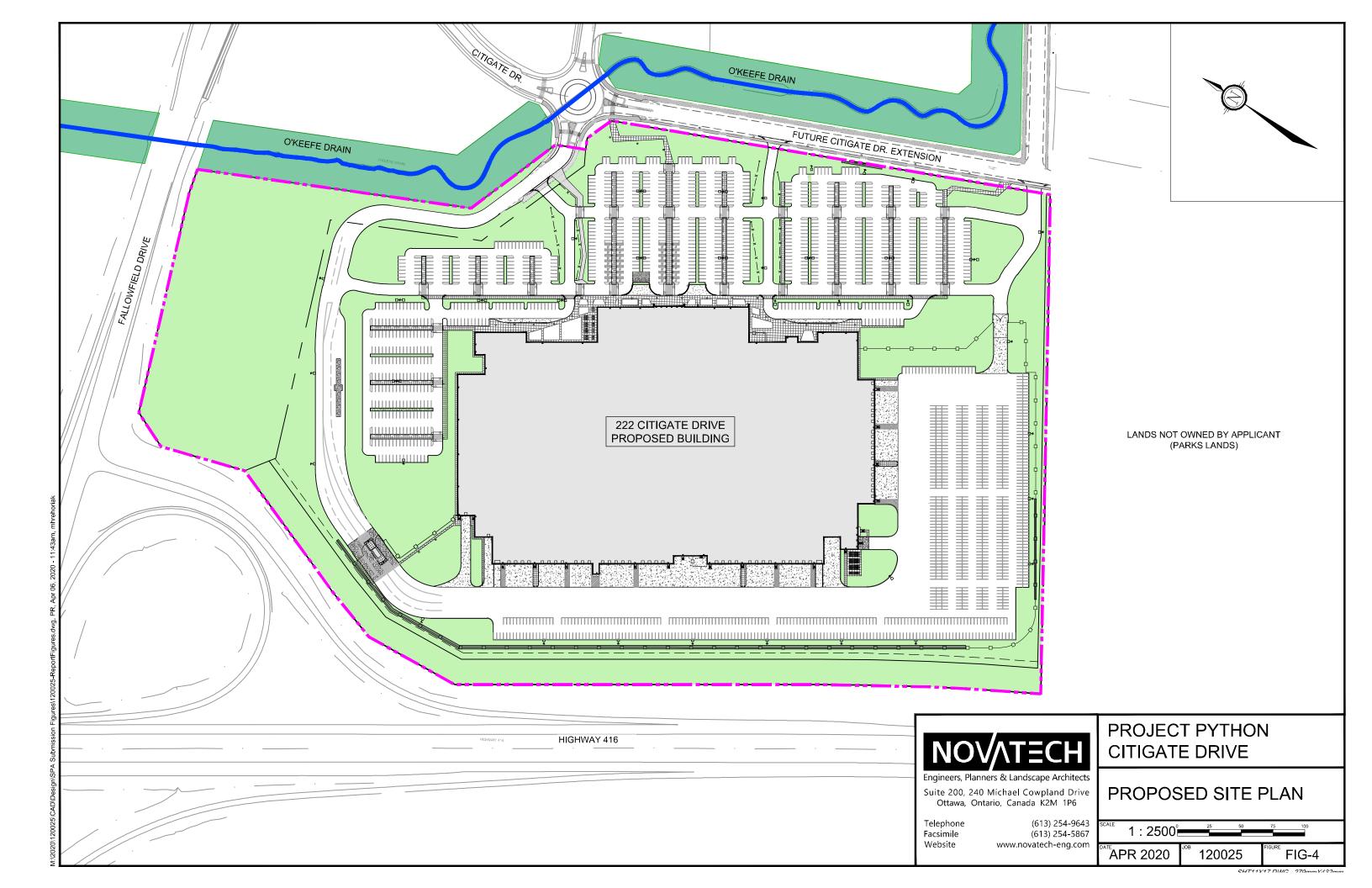
It should be noted that this report should be read in conjunction with the engineering drawing set:

120025-ND Notes and Details


120025-GP General Plan of Services


120025-GR Grading Plan

120025-ESC Erosion Sediment Control Plan


1.3 Site Design and Constraints

As indicated previously the subject site is part of the CitiGate Development. Design criteria and information for the CitiGate Development is provided in a report entitled 'CitiGate 416 Corporate Campus, Detailed Servicing and Stormwater Management Report (Phase 1)' prepared by Novatech, dated January 9, 2015 (CitiGate Phase 1 Report). The CitiGate Phase 1 Report provides design criteria for the interior sites and designed the overall servicing systems including sanitary sewers, watermain and stormwater management systems. Each system is discussed in more detail in the appropriate sections of this report.

A geotechnical investigation was completed for the subject development and a report provided entitled 'Geotechnical Investigation, Proposed Python Building Complex, CitiGate Drive, Ottawa, Ontario' prepared by Paterson Group dated March 30, 2020. The following criteria is to be included in the servicing and grading design:

- Groundwater level is estimated to be between 3 to 4 meters below existing grade.
- Bedrock elevation fluctuates over the site and is estimated between 0 to 15 meters below existing grade.
- The report also provides detailed asphalt and concrete compositions along with pipe bedding and foundation cover requirements for the site.
- There is a recommended permissible grade raise restriction for this site of 2 to 3 meters for the access roadways and parking areas on the east side of the proposed building.
- A preloading program for 8 to 12 months should be implemented to eliminate all post construction settlement.
- It should also be noted that an MECP permit to take water category 3 may be required if more than 400,000 L/day of ground and/or surface water is to be pumped during construction.

1.4 Background Reports

This report provides information on the considerations and approach by which Novatech has designed and evaluated the proposed servicing and stormwater management strategies. This report should be read in conjunction with the following:

- CitiGate 416 Corporate Campus Detailed Servicing and Stormwater Management Report (Phase1), prepared by Novatech revised dated January 9, 2015.
- Geotechnical Investigation, Proposed Python Building Complex, CitiGate Drive, Ottawa, ON, prepared by Paterson Group dated March 30,2020.

2.0 WATER SERVICING

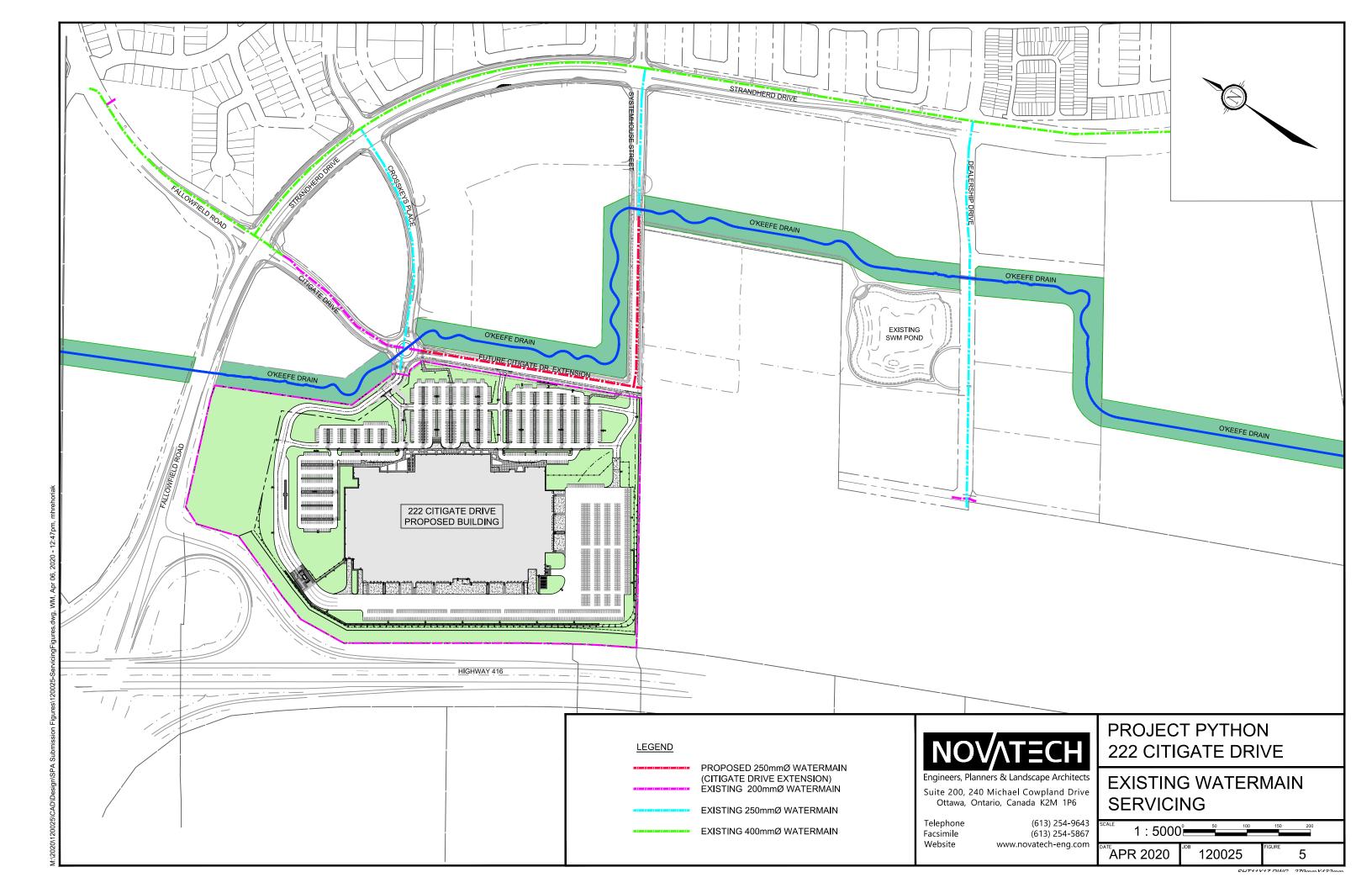
2.1 Existing Water Services

There is an existing 200mm diameter watermain in CitiGate Drive and a 250mm diameter watermain in Crosskey Place that were constructed as part of the Phase 1 CitiGate development. This watermain infrastructure currently terminates at the extents of the CitiGate Drive and Crosskey Place round-a-bout right-of-way limits. There is also an existing 250mm diameter watermain in Systemhouse Street which is capped on the west side of the realigned O'Keefe drain. Each watermain described is connected to the existing 400mm diameter watermain in Strandherd Drive.

As previously mentioned, the existing 250mm diameter watermain in CitiGate Drive is to extend from its termination point at the round-a-bout to the capped 250mm watermain in Systemhouse Street. For the purposes of this report the 250mm diameter watermain extension in CitiGate Drive will be referred to as existing. Refer to **Figure 5** Existing Water Servicing for more details.

2.2 Proposed Water Servicing

It is proposed to service the development by constructing approximately 320 meters of 250mm diameter private watermain on site. The private watermain on site will provide service to both the 100mm diameter domestic building service connection and the fire suppression water storage tank. The proposed 250mm diameter watermain on site will connect to the existing 250mm watermain in CitiGate Drive near the south east corner of the site. As per the City of Ottawa Technical Bulletin ISDTB-2014-02, the proposed development will require two service connections as the average day demand is greater than 50 cubic meters of water. The two services will be separated by an isolation valve on the existing watermain system in the event maintenance on the system is required. A water meter chamber will be required on the private watermain near the property line due to the large quantity of pipe and the potential for leakage. Refer to the General Plan of Services (120025-GP) for water servicing details.


2.2.1 Proposed Domestic Water Demands

Design Criteria from the City of Ottawa Water Distribution Guidelines and Section 8 of the Ontario Building Code were used to calculate the theoretical water demands for proposed development. The demand calculations are based on flow requirements for the proposed different uses on site.

The water demand calculations for the proposed development are calculated based on the following criteria:

- Industrial Water Demand
 - per each water closet = 950L/day
 - per each loading bay = 150L/day (each)
- Commercial Office Water Demand
 - o per each 9.3m² floor space = 75L/day
- Peaking Factor
 - Max Day = 1.5
 - o Peak Hour = 1.8

The domestic water demands for the proposed development are summarized in **Table 2.1** below.

Table 2.1: Domestic Water Demand Sur	nmary
---	-------

Use	Ave. Daily Demand (L/s)	Max. Daily Demand (L/s)	Peak Hour Demand (L/s)
Industrial Flows	1.197	1.795	3.231
Commercial Flows	0.268	0.402	0.723
Total Domestic Demands	1.46	2.20	3.95

2.2.2 Proposed Fire Protection System

The fire flow calculations and fire protection system for this type of development are complex so Civelec Consulting Inc. a specialized fire consulting engineer was retained. They have calculated the required fire flow for the development to be 1750 USGPM. Civelec has also designed the fire protection infrastructure on site which includes the following:

- The proposed 250mm diameter watermain on site provides water to the driving fire pump and provides water as required to fill the 950,000-liter fire suppression water storage tank which provides water to the standby fire pump.
- Two internal fire pump rooms in the southwest corner of the building contains 2 pumps which draw water from the city watermain and from fire suppression storage tank to pressurize the system and to control the fire as required.
- There are approximately 1140 meters of 250mm diameter high pressure fire protection watermain that loops around the building.
- There are eight proposed fire hydrants evenly spaced around the proposed building that are directly connected to the high pressure watermain loop.
- There are multiple connections to the building from the fire loop which supply the internal sprinkler system.
- There are 2 fire hydrants located next to the pump rooms and are connected to the city incoming feed main to allow the firefighter to properly use the siamese connections.

2.3 CitiGate Water Allotment and Hydraulic Analysis

An update to the original CitiGate Phase 1 hydraulic analysis is to be completed as part of the CitiGate Drive and Systemhouse Street watermain extension project. The domestic water demands, and fire flow calculations were revised and resubmitted to the City of Ottawa for updated boundary conditions. The boundary conditions were requested from the existing 400mm watermain on Strandherd Drive.

At the time of this submission the City had not yet provided the new boundary conditions to update the CitiGate hydraulic model. The requested boundary conditions include a domestic demand and fire flow allotment for block 13. This demand allotment was calculated based on overall land use using the following criteria provided in Section 4 of City of Ottawa Design Guidelines – Water Distribution:

- Site Area Block 13 = 25.1ha
- Light Industrial Water Demand = 35,000L/ha/day
- Peaking Factor
 - Max Day = 1.5; Peak Hour = 1.8
- Fire Flows = Fire Underwriters Survey

The water demand allotments are summarized below in **Table 2.3**.

Table 2.2: Water Demand Allotment Summary

Model Node	Block No.	Fire Flow	Avg Day	Max Day	Peak Hour
ID		(L/s)	(L/s)	(L/s)	(L/s)
36	Block 13	267	10.17	15.25	20.70

Once the updated boundary conditions are received the hydraulic model will be updated to include the block 13 allotment. The CitiGate phase 1 hydraulic model was prepared using EPANET software for purposes of analyzing the performance of the proposed and existing watermain systems for three theoretical conditions:

- 1. High Pressure check under Average Day conditions
- Peak Hour demand
- 3. Maximum Day + Fire Flow demand.

The phase 1 model doesn't include block 13 allotment however it does provide a good idea on the available capacity. A summary of the results for node 2 from the CitiGate phase 1 model are provided below in **Table 2.3**.

Table 2.3: Hydraulic Analysis Summary

Condition	Service Connection Location	Node ID	Min/Max Allowable Operating Pressures (psi)	Operating Pressures (psi)
High Pressure	CitiGate Dr	2	80psi (Max)	83.3
Max Day + Fire Flow	CitiGate Dr	2	20psi (Min)	65.1 (Fire at node 16)
Peak Hour	CitiGate Dr	2	40psi (Min)	73.8

The theoretical domestic water demand and fire flows calculated based on the specific building use are much lower than the flows accounted for in the CitiGate watermain extension design. The flows accounted for in CitiGate design are conservative and would allow for future development on the site. Based on the CitiGate Phase 1 hydraulic water model results for node 2 the existing watermain infrastructure can provide adequate pressures for domestic use and flows for fire protection. It is recommended to install a pressure reduction valve on the proposed private water service as pressures exceed 80psi in the average day condition. Once the City has provided updated boundary conditions the hydraulic model will be revised and provided in a subsequent submission prior to final approval.

Refer to **Appendix A** for water demand and fire flow calculations, detailed model results from the CitiGate Phase 1 report, model schematics and boundary conditions.

3.0 SANITARY SERVICING

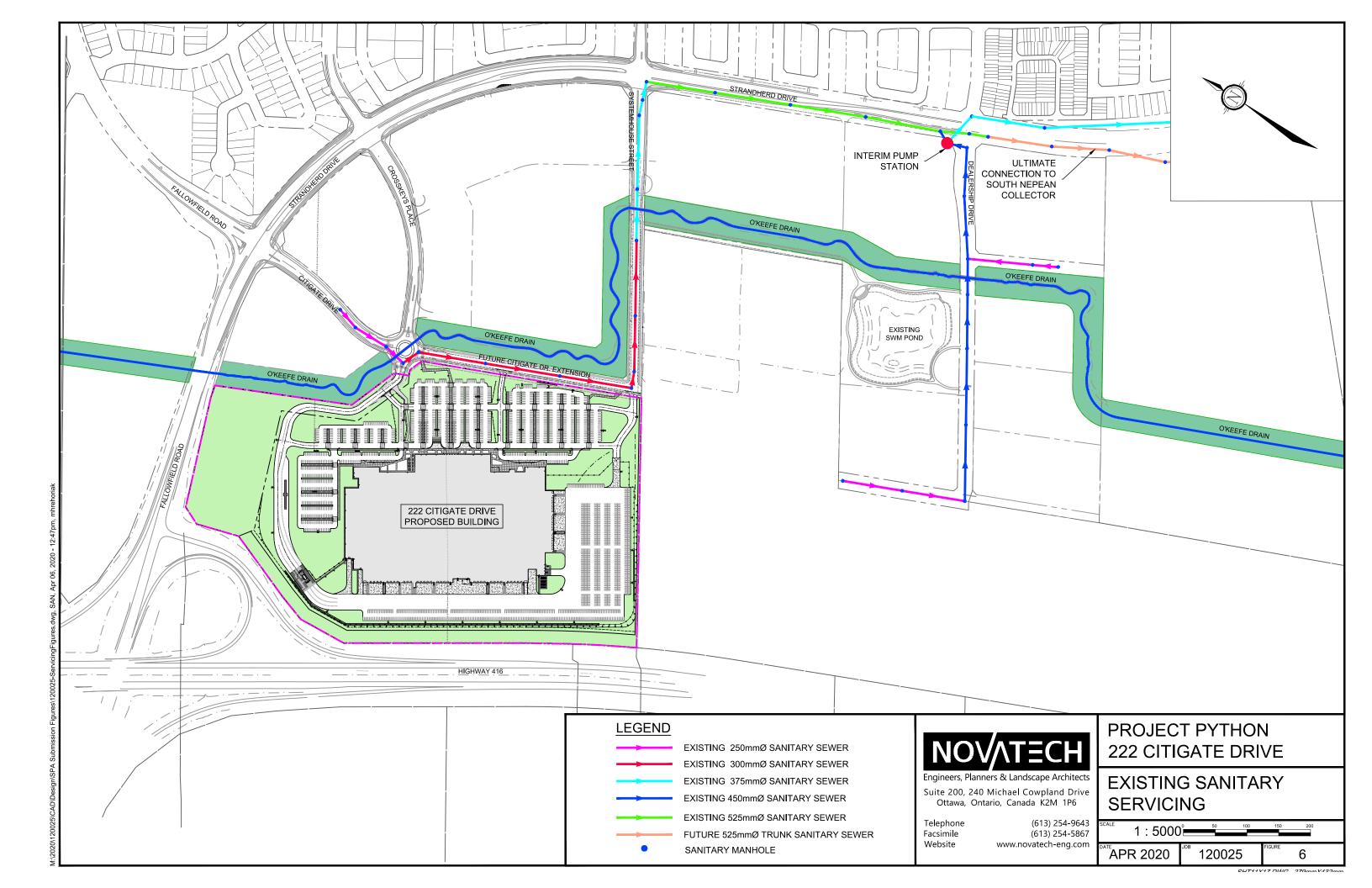
3.1 Existing Sanitary Services

There is an existing 300mm diameter sanitary sewer fronting the site in CitiGate Drive that was constructed as part of the Phase 1 CitiGate development. The conveyance of the existing sanitary sewer is as follows:

- Sanitary flows for this portion of the CitiGate development are conveyed south on CitiGate Drive and east on Systemhouse Street via a 300mm diameter sewer.
- The 300mm diameter sewer then connects to a 525mm diameter sewer in Strandherd Drive where flows are conveyed south to an interim pump station at the corner of Strandherd Drive and Dealership Drive.
- The pump station conveys flows in the interim condition to a gravity sewer which outlets to the Tartan Pump Station.
- In the ultimate condition sanitary flows from the development will be conveyed by the 300mm sewer in CitiGate Drive and Systemhouse Street to the South Nepean Collector Trunk sewer in Strandherd Drive.

Refer to Figure 6 Existing Sanitary Servicing for more details.

3.2 Proposed Sanitary Services


It is proposed to service the development by constructing approximately 810m of 250mm diameter private sanitary sewer on site. The proposed 250mm diameter sewer will outlet to the existing 300mm diameter sanitary sewer in CitiGate Drive at the far south east corner of the site as recommended in the CitiGate Phase 1 Report. Refer to the General Plan of Services (120025-GP) for details.

3.2.1 Proposed Peak Sanitary Flows

The total theoretical peak sanitary flow for the proposed development was calculated based on the following criteria from Section 4 of the City of Ottawa Sewer Design Guidelines and Section 8 of the Ontario Building Code:

- Site Area Block 13 = 26.01ha
- Industrial Sanitary Flow
 - o per each water closet = 950L/day
 - per each loading bay = 150L/day (each)
- Commercia Office Sanitary Flow
 - o per each 9.3m² floor space = 75L/day
- Commercial Peaking Factor = 1.5
- Light Industrial Peaking Factor = 3.5 (Appendix 4-B)
- Infiltration Rate = 0.33L/s/ha

The proposed sanitary flows are summarized below in **Table 3.1**.

Table 3.1: Peak Sanitary Flow Summary

Proposed Use	Peak Flow (L/s)
Industrial Flows	4.19
Commercial Flows	0.40
Sewer Infiltration Flow	8.58
Total Peak Flows	13.17

3.3 CitiGate Sanitary Flow Allotment

The proposed development block 13 was originally designed as block 14 and 15 in the original CitiGate Phase 1 report. The sanitary flow allotment for each block was calculated in CitiGate Phase 1 report using the following criteria provided in Section 4 of City of Ottawa Sewer Design Guidelines:

- Site Area Block 14 = 18.03ha
- Site Area Block 15 = 7.98ha
- Design Sanitary Flow = 50,000L/ha/d (Commercial/Institutional Flow Rate)
- Commercial Peaking Factor =1.5
- Infiltration Rate = 0.28L/s/ha

The sanitary flow allotments are summarized below in **Table 3.2**.

Table 3.2: Sanitary Flow Allotment Summary

Block No.	Peak Flow (L/s)	Infiltration Flow (L/s)	Total Peak Design Flow (L/s)
Block 14	15.65	5.05	20.70
Block 15	6.93	2.23	9.16
Total Allocation for Block 13	22.58	7.28	29.86

The Sanitary Sewer Design Sheet provided in the CitiGate Phase 1 Report shows the total sanitary flow allotment for the Block 13 development area to be 29.86 L/s. A copy of the sanitary drainage area plans and sanitary sewer design sheet from the CitiGate Phase 1 Report are included in **Appendix B** for reference.

The proposed 250mm diameter sanitary sewer on site has a theoretical capacity of 34.1 L/s at the proposed slope of 0.3%. Therefore, there is adequate capacity in the proposed infrastructure to convey the required peak flow of 13.17L/s from the site. Also, based on the total flow allotment of 29.86L/s from CitiGate Phase 1 Report there is capacity in the existing infrastructure for the proposed development. Refer to **Appendix B**, for the proposed detailed sanitary flow calculations and sanitary sewer design sheets from the CitiGate Phase 1 report.

4.0 STORM SERVICING AND STORMWATER MANAGEMENT

The storm servicing and stormwater management strategy for the site is based on the established criteria in the 2015 CitiGate SWM Report.

4.1 Existing Off-Site Storm Infrastructure – CitiGate (Phase 1)

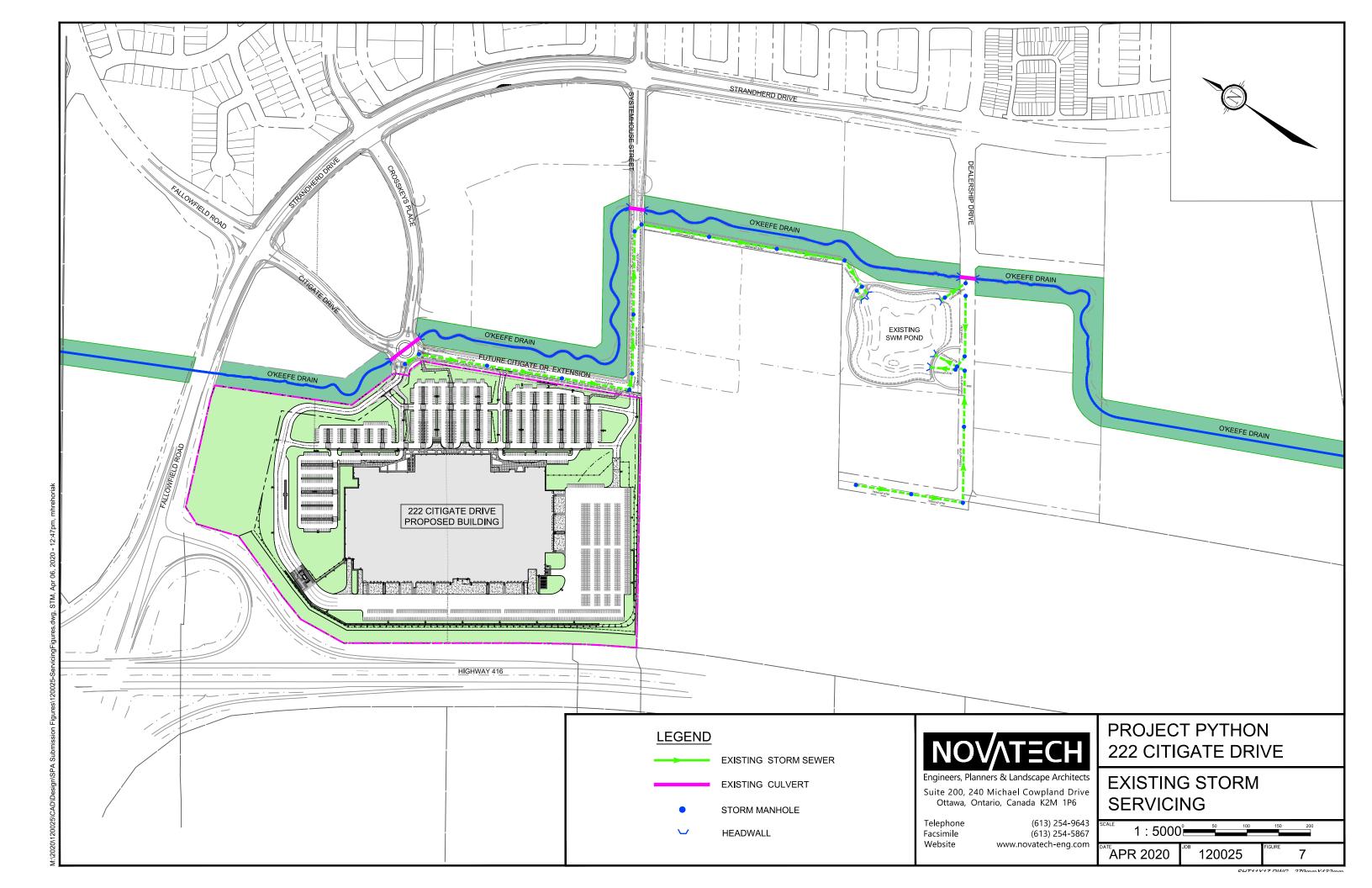
The storm infrastructure servicing the CitiGate (Phase 1) lands includes a stormwater management facility (SWM Facility 'A') and storm sewers with sizes ranging from 1800mm to 1950mm in diameter. The storm sewer system extends from the north outlet to the SWM facility, to the roundabout, along an extension of CitiGate Drive. Currently only the storm infrastructure at the north outlet to the SWM Facility is constructed. The storm sewer will be extended to the roundabout in advance of the development of the site. Refer to **Figure 7** – Existing Storm Servicing.

The CitiGate Drive storm sewer receives drainage from the proposed development, CitiGate Drive storm infrastructure, and existing flows from the Parks lands. The Parks lands are located between the proposed development and the SWM Facility. Flows are currently collected via a ditch-inlet catchbasin (DICB). The future development of the Parks lands will also outlet to the SWM Facility.

The SWM Facility was designed to provide stormwater quality and quantity control before outletting to the O'Keefe Drain. The facility was sized to accommodate all future development within the tributary drainage area, including Phases 1 & 2, and adjacent lands.

4.2 Stormwater Management Criteria

4.2.1 Stormwater Quality Control


The existing SWM Facility was sized to provide an Enhanced level of stormwater quality control. The permanent pool and extended detention have been sized to provide 80% long-term removal of total suspended solids (TSS).

The future development blocks identified in the 2015 CitiGate SWM Report were estimated to be 85% impervious. The proposed development, including the future development lands to the north, has a total imperviousness of 72.4%. The overall drainage area to the pond will remain unchanged due to the proposed development.

4.2.2 Stormwater Quantity Control – Allowable Release Rate

The 2015 CitiGate SWM Report included the following stormwater management criteria for the future development blocks that drain to SWM Facility 'A' (lands west of the O'Keefe Drain):

- Allowable release rates and storage requirements for individual sites are to be calculated as follows, based on a runoff coefficient of C=0.80:
 - The 5-year peak flow can be released uncontrolled.
- The maximum release rate is not to exceed 120% of the 5-year peak flow for all storms up to and including the 100-year event.
- Ensure no overland flow for all storms up-to and including the 100-year event.

Based on these release rates, it was anticipated that 100 m³/ha of on-site storage would be enough to prevent major system (overland) flows during the 100-year event.

The proposed development will alter the storm servicing layout that was previously approved as part of the CitiGate (Phase 1). For example, the previous storm servicing layout included a storm sewer for a 'ring-road' that encompassed the entire CitiGate lands. The proposed development includes both the future development blocks and future ring-road; therefore, the allowable release rate specified above would not apply in this case.

The allowable release rate for the proposed development was established using the approved SWMM model that was built for the CitiGate Phase 1 lands using Autodesk Storm and Sanitary Analysis (SSA). Model schematics and output are provided in **Appendix D**.

The proposed development will outlet to storm maintenance holes 208 & 214. Based on the model results, the estimated peak flow (allowable release rate) is as follows:

<u>Structure</u>	Allowable Release Rate
Storm MH208	2,769 L/s
Storm MH214	4.138 L/s

Note that the off-site storm sewer was designed to convey the 5-year peak flow and surcharge during larger storm events. The storm sewer can surcharge as there are no basement connections.

4.3 Proposed On-Site Storm Infrastructure

The on-site storm sewer and stormwater management system will include storm sewers ranging in size from 450mm to 1350mm in diameter. On-site storage will be provided underground using Stormtech MC-3500 & MC-4500 arch-type storage chambers covered in 50mm (D_{50}) clearstone. Peak flows will be attenuated to the allowable release rates specified using orifice plates. Orifice plates will be installed in the following flow control structures:

MH01: 900mm orifice plate MH11: 900mm orifice plate MH103: 300mm orifice plate MH108: 375mm orifice plate MH118: 250mm orifice plate

The south storm sewer will include two (2) flow control structures connected in series. This is to utilize all of the pipe storage at the higher elevation; instead of providing all of the storage within the chambers at the lower elevation, near the outlet.

No above ground (i.e. surface storage) is accounted for in the storm servicing design. The 100-year peak flow will be attenuated to the allowable release rate via underground storage (at the request of the client).

Refer to the General Plan of Services (Drawing 120025-GP).

4.3.1 Storm Sewer Sizing Criteria

The storm drainage design is based on the principals of dual drainage (i.e. minor and major system). The on-site storm sewers (i.e. minor system) have been designed based on the criteria outlined in the City of Ottawa Sewer Design Guidelines (October 2012) and associated technical bulletins. The design criteria used in sizing the storm sewers are summarized in **Table 4.1**.

Table 4.1: Storm Sewer Design Parameters

Parameter	Design Criteria
Private Roads	5 Year Return Period
Storm Sewer Design	Rational Method
IDF Rainfall Data	Ottawa Sewer Design Guidelines
Initial Time of Concentration (Tc)	10 min
Minimum Velocity	0.8 m/s
Maximum Velocity	3.0 m/s
Minimum Diameter	250 mm

Refer to the storm sewer design sheets provided in **Appendix C** and Storm Drainage Area Plan (Drawing 120025-STM).

4.3.2 Overland Flow Sizing Criteria

As previously indicated all flows will be contained underground for all storm events up-to and including the 100-year storm event. Storm events that exceed the 100-year storm will pond on the surface and be conveyed through major system flow pathways. The grading design includes maximum 0.35m of surface ponding before 'spilling' over a high-point. This would happen only in very rare events that exceed the 100-year storm.

Refer to the Grading Plan (Drawing 120025-GR).

4.4 Stormwater Management Modeling

The *City of Ottawa Sewer Design Guidelines* (October 2012) requires hydrologic / hydraulic modeling for all dual drainage systems. The performance of the proposed storm drainage system for the site was evaluated using the PCSWMM hydrologic / hydraulic model.

The PCSWMM model schematics and 100-year model output data are provided in **Appendix D**. Digital copies of the modeling files and model output for all storm events are provided on the enclosed CD.

4.4.1 Design Storms

The hydrologic analysis was completed using the following synthetic design storms that are consistent with the 2015 CitiGate SWM analysis:

- 3-hour Chicago storm distribution
- 12-hour SCS Type II storm distribution

The return periods analyzed include the 5-year & 100-year storm events. The IDF parameters used to generate the design storms were taken from the *City of Ottawa Sewer Design Guidelines* (October 2012).

The 3-hour Chicago distribution generated the highest peak flows for both the minor and major systems and was determined to be the critical storm distribution for the design of the storm drainage system.

The proposed drainage system was also 'stress tested' using a 100-year (+20%) 3-hour Chicago design storm. This design storm has a 20% higher intensity and total volume compared to the 100-year event.

4.4.2 Model Development

The PCSWMM model includes the subcatchment areas to the trunk storm sewer system. Individual drainage areas to each inlet have been lumped together to determine the total area to each pipe run. The purpose of the model is to ensure that the proposed storm drainage and stormwater management system adheres to the allowable release rates specified and that there is no surface ponding during the 100-year storm event.

Infiltration

Infiltration losses for all catchment areas were modeled using Horton's infiltration equation, which defines the infiltration capacity of soil over the duration of a precipitation event using a decay function that ranges from an initial maximum infiltration rate to a minimum rate as the storm progresses. The default values as specified in the City of Ottawa Sewer Design Guidelines were used for all catchments.

Horton's Equation: Initial infiltration rate: $f_0 = 76.2 \text{ mm/hr}$

 $f(t) = f_c + (f_o - f_c)e^{-k(t)}$ Final infiltration rate: $f_c = 13.2$ mm/hr

Decay Coefficient: k = 4.14/hr

Depression Storage

The default values for depression storage in the City of Ottawa were used for all subcatchments.

Depression Storage (pervious areas): 4.67 mm
Depression Storage (impervious areas): 1.57 mm

The rooftops assumed to provide no depression storage (zero-impervious parameter).

Equivalent Width

'Equivalent Width' refers to the width of the sub-catchment flow path. This parameter (Table 5.1) is calculated as described in Section 5.4.5.6 of the City of Ottawa Sewer Design Guidelines. The flow path lengths are shown on the PCSWMM model schematics provided in **Appendix D**.

Impervious Values

Runoff coefficients for each subcatchment area were determined based on the proposed site plan. Refer to the Storm Drainage Area Plan (120025-SWM) for details. Percent impervious values were calculated using:

$$\%imp = (C - 0.20) / 0.70$$

Storm Drainage Areas

For modeling purposes, the site has been divided into subcatchments based on the drainage areas tributary to each inlet of the proposed storm sewer system. The subcatchment areas are shown on the Storm Drainage Area Plan (120025-SWM).

The hydrologic modeling parameters for each subcatchment were developed based on the Site Plan (**Figure 3**) and Storm Drainage Area Plan specified above. Subcatchment parameters are provided in **Table 4.2**.

Table 4.2: Subcatchment Parameters

Area ID	Catchment Area (ha)	Runoff Coefficient (C)	Percent Impervious (%)	Zero- Imperv. (%)	Equivalent Width (Flow Length) (m)	Average Slope (%)		
Controlled Areas								
A-01	0.52	0.55	50.0	0	116 (45)	1.5		
A-06	0.57	0.80	85.7	0	143 (40)	1.5		
A-07	0.77	0.84	91.4	0	118 (65)	1.5		
A-08	0.73	0.87	95.7	0	112 (65)	1.5		
A-09	0.87	0.78	82.9	0	145 (60)	1.5		
A-10	0.87	0.80	85.7	0	145 (60)	1.5		
A-11	0.13	0.49	41.4	0	24 (55)	1.5		
A-12	0.49	0.43	32.9	0	75 (65)	1.5		
A-13	0.23	0.20	0.0	0	66 (35)	1.5		
A-14	0.38	0.34	20.0	90	84 (45)	1.5		
A-15	0.70	0.89	98.6	60	233 (30)	1.5		
A-16	1.19	0.90	100.0	100	119 (100)	1.5		
A-17	0.64	0.90	100.0	70	142 (45)	1.5		
A-18	0.19	0.89	98.6	0	95 (20)	1.5		
A-19	0.36	0.71	72.9	0	65 (55)	1.5		
A-20	0.28	0.53	47.1	0	62 (45)	1.5		
A-21	0.52	0.30	14.3	90	104 (50)	1.5		
A-22	1.76	0.76	80.0	50	185 (95)	1.5		
A-23	2.66	0.62	60.0	40	296 (90)	1.5		
A-24	2.22	0.78	82.9	60	234 (95)	1.5		
A-25	1.91	0.66	65.7	35	294 (65)	1.5		
A-26	1.99	0.86	94.3	35	209 (95)	1.5		
A-27	1.55	0.64	62.9	10	172 (90)	1.5		
A-28	0.15	0.74	77.1	0	21 (70)	1.5		
TOTAL (Controlled)	21.68	0.72	74.5	-	-	-		
		Uncontrolled	/ Direct Runoff	Areas				
A-02	0.13	0.49	41.4	0	65 (20)	1.5		
A-03	0.18	0.43	32.9	0	60 (30)	1.5		
A-04	0.10	0.43	32.9	0	40 (25)	1.5		
A-05	0.20	0.46	37.1	0	44 (45)	1.5		
D-01	0.25	0.20	0.0	0	167 (15)	1.5		
D-02	0.62	0.29	12.9	0	155 (40)	1.5		
D-03	0.03	0.20	0.0	0	60 (5)	1.5		
TOTAL (Uncontrolled)	1.51	0.34	19.9	-	-	-		

Area ID	Catchment Area (ha)	Runoff Coefficient (C)	Percent Impervious (%)	Zero- Imperv. (%)	Equivalent Width (Flow Length) (m)	Average Slope (%)
		Future D	evelopment Are	ea		
FUT	2.77	0.80	85.0	50	231 (120)	1.5
TOTAL (OVERALL)	25.96	0.71	72.4	-	-	-

4.4.3 Model Results

The on-site storage and conveyance system requirements were refined using the PCSWMM model. The model was used to ensure that peak flows are controlled to the allowable release rates and ensure that the 100-year hydraulic grade line is contained on-site within the storm sewer system.

Storage Requirements

The 2015 CitiGate SWM analysis estimated that 100 m³/ha of storage would be sufficient to control the 100-year storm event. The 100-year storm event was to be controlled to a 5-year peak flow that is increased by 20%. Storage was assumed to be provided on the surface.

Per the client request, the 100-year storm is to be confined underground in the proposed storm sewer and stormwater management system. Due to the site configurations / building area the PCSWMM model indicates that the storage required is more than the previously estimated 100 m³/ha. The storage required and storage provided in the storm sewers and stormwater management system is shown in **Table 4.3** below.

Table 4.3: Required (100-year) and Provided Storage Volumes

Storage Node Drainage			Required Storage	Provided Storage Volume (m³)			
ĬD	Area (ha)	Plate Size (mm)	Volume (m³)	Storm Sewers	SWM System	TOTAL	
		Sout	th Outlet				
Storage-S01	10.71	900mm	2,191	360	2,298	2,658	
Storage-S02	15.19 (+4.48)	900mm	962	502	460	962	
TOTAL (South Outlet)	15.19	-	3,153	863	2,758	3,621	
		Nort	h Outlet				
Storage-N01	0.88	250	143	16	175	191	
Storage-N02	3.96	375	864	128	736	864	
Storage-N03	1.65	300	388	36	370	406	
Storage-NFUT	2.77	600	693	-	693	693	
TOTAL (North Outlet)	9.26	-	2,088	180	1,974	2,154	
TOTAL (Overall)	24.45	-	5,241	1,043	4,732	5,775	

^{*}Based on PCSWMM Model Results for a 100-year, 3-hour Chicago Storm.

Peak Flows

As shown in Error! Not a valid bookmark self-reference, the overall release rates from the site (both uncontrolled / controlled) will adhere to the allowable release rates specified in **Section 4.2.2**. Peak flows are controlled at storm MH's 208 & 214. The uncontrolled drainage to the future CitiGate Drive extension is accounted for in the overall release rates.

Table 4.4: Summary of Peak Flows

	Allowable	Peak Flow (L/s)				
Outfall	Release Rate (L/s) Uncontrolled / Direct Runoff (Total Runoff)		Controlled (ICD's)	Overall (Outfall)		
		5-year				
Storm MH208	-	95	824	842		
Storm MH214	-	41	2,372 (+1,548)	2,412 (+1,570)		
		100-year				
Storm MH208	2,769	269	1,299	1,430		
Storm MH214	4,138	138	3,770 (+2471)	3,995 (+2,565)		

^{*}Based on PCSWMM Model Results for a 3-hour Chicago Storm.

Hydraulic Grade Line (HGL)

The PCSWMM model was used to estimate the hydraulic grade line (HGL) elevation of the of the storm sewer system during the 100-year storm event. **Table 4.5** provides a summary of the 100-year HGL elevation at each storm manhole within the proposed development. The model results indicate that the 100-year HGL elevations will be confined within the storm sewer system.

Table 4.5: Estimated Hydraulic Grade Line (HGL) Elevations

MH ID	Obvert Elevation	T/G Elevation	100-yr HGL Elevation	Surcharge	Clearance from T/G	HGL in Stress Test
	(m)	(m)	(m)	(m)	(m)	(m)
CBMH109	98.45	101.85	99.87	1.42	1.98	100.81
CBMH201	98.31	100.55	99.59	1.28	0.96	100.55
CBMH211	97.85	101.14	98.82	0.97	2.32	100.49
MH01	95.92	98.18	97.62	1.70	0.56	98.15
MH02	96.04	99.07	97.71	1.67	1.36	98.25
MH04	97.93	100.92	98.85	0.92	2.07	100.13
MH05	98.76	100.67	99.32	0.56	1.35	100.67
MH06	96.62	101.01	97.89	1.27	3.12	98.44
MH07	97.70	102.11	98.18	0.48	3.93	98.75
MH08	98.80	102.82	99.50	0.70	3.32	100.58
MH09	99.06	102.39	99.87	0.81	2.52	100.97
MH10	100.37	102.47	101.01	0.64	1.46	102.27
MH101	96.78	98.62	96.55	0.00	2.07	96.96
MH102	96.94	99.56	96.72	0.00	2.84	97.23

MH ID	Obvert Elevation	T/G Elevation	100-yr HGL Elevation	Surcharge	Clearance from T/G	HGL in Stress Test
	(m)	(m)	(m)	(m)	(m)	(m)
MH103	97.70	101.09	98.82	1.12	2.27	100.49
MH104	98.72	101.88	99.60	0.88	2.28	100.67
MH105	99.23	101.45	100.01	0.78	1.44	101.00
MH106	97.10	100.69	96.85	0.00	3.84	97.51
MH107	97.18	100.84	96.94	0.00	3.90	97.65
MH108	97.90	100.79	99.59	1.69	1.20	100.72
MH11	98.29	101.60	98.81	0.52	2.79	99.65
MH110	98.55	102.17	99.95	1.40	2.22	100.84
MH111	100.58	102.79	101.01	0.43	1.78	102.22
MH113	98.88	102.33	100.12	1.24	2.21	100.93
MH114	99.51	102.48	100.81	1.30	1.67	101.75
MH115	99.79	101.68	100.88	1.09	0.80	101.68
MH116	100.80	103.48	101.27	0.47	2.21	102.47
MH117	97.45	100.00	97.12	0.00	2.88	98.08
MH118	97.89	99.87	98.63	0.74	1.24	99.15
MH119	99.30	101.44	99.21	0.00	2.23	99.84
MH12	98.57	101.53	99.45	0.88	2.08	100.04
MH120	102.09	103.50	102.01	0.00	1.49	102.49
MH13	98.82	101.47	99.86	1.04	1.61	100.50
MH14	99.24	101.51	100.55	1.31	0.96	101.24
MH15	99.60	101.57	100.99	1.39	0.58	101.57
MH16	99.91	102.07	101.19	1.28	0.88	102.07

^{*}Based on PCSWMM Model Results for a 3-hour Chicago Storm.

Stress Test

Table 4.5 also provides the estimated HGL elevations for the 'stress test' event. The stress test event represents a 20% increase (rainfall intensity and total precipitation) in the 100-year design event. The 'stress test' event will not be confined within the storm sewer system. Ponding will occur within the parking lot sags and may cascade off-site. The major system overland flow will be diverted through overland pathways and spill off-site to the future CitiGate Drive; ultimately discharging to the O'Keefe Drain.

4.4.4 Future Development Area

The PCSWMM model includes the 2.77 ha future development area to the north (adjacent Fallowfield Road). This area is represented in the model based on the following:

Drainage Area: 2.77 ha Imperviousness: 85% (C=0.80)

100-year Allowable Release Rate: 513.5 L/s (185.4 L/s/ha) *Est. On-Site Storage Requirements: 692.5 m³ (250 m³/ha)*

The future development of these lands is to adhere to the above release rates. The storage requirements have been estimated as above-ground surface storage in the PCSWMM model.

The 2015 CitiGate SWM Report originally estimated the impervious percentage (85%). This value was used for the future development blocks for the design of the stormwater management facility.

5.0 EROSION AND SEDIMENT CONTROL

Temporary erosion and sediment control measures will be implemented on-site during construction in accordance with the Best Management Practices for Erosion and Sediment Control. This includes the following temporary measures:

- Filter socks (catchbasin inserts) will be placed in existing and proposed catchbasins and catchbasin manholes, and will remain in place until vegetation has been established and construction is completed;
- Silt fencing will be placed along the surrounding construction limits;
- Mud mats will be installed at the site entrances;
- Strawbale or rock check dams will be installed in swales and ditches:
- The contractor will be required to perform regular street sweeping and cleaning as required, to suppress dust and to provide safe and clean roadways adjacent to the construction site;

Erosion and sediment control measures should be inspected daily and after every rain event to determine maintenance, repair or replacement requirements. Sediments or granulars that enter site sewers shall be removed immediately by the contractor. These measures will be implemented prior to the commencement of construction and maintained in good order until vegetation has been established. Refer to the Erosion and Sediment Control Plan (120025-ESC) for additional information.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Watermain

The analysis of the proposed watermain network confirms the following:

- The proposed 250mm diameter watermain that connects to the existing watermain along CitiGate Drive can service the proposed development.
- It is anticipated that there are adequate pressures in the existing watermain infrastructure to meet the required domestic demands for the development.
- It is anticipated that there is adequate flow to service the proposed fire protections system.
- Flows and pressures will be confirmed with an updated hydraulic analysis once the City provides new boundary conditions.

Sanitary Servicing

The analysis of the proposed sanitary servicing confirms the following:

- There is adequate capacity within the existing sanitary infrastructure to service the proposed development.
- The existing sanitary allotment would allow for future expansion or development on site.

Stormwater Management

The following provides a summary of the storm sewer and stormwater management system:

- Proposed storm sewer system is to connect with the existing storm sewer system on the extension of CitiGate Drive.
 - Storm sewers (minor system) have been designed to convey the uncontrolled 5year peak flow using the Rational Method.
 - Underground storage is be provided within the storm sewers and stormwater management systems, which are to consist of Stormtech MC-3500 / MC-4500 Arch-type Chambers (or approved equivalent).
 - There will be no surface ponding during the 100-year storm event as the 100-year hydraulic grade line (HGL) is contained within the storm sewer system.
- Parking lot graded to ensure that static ponding depths do not exceed 0.35m.
 - Surface ponding would only office for storm events greater than the 100-year event.
 - A major overland flow route is provided to the CitiGate Drive extension and ultimately the O'Keefe Drain.

Erosion and Sediment control

 Erosion and sediment control measures (i.e. filter fabric, catchbasin inserts, silt fences, etc.) will be implemented prior to construction and are to remain in place until vegetation is established.

7.0 CLOSURE

The preceding report is respectfully submitted for review and approval. Please contact the undersigned should you have questions or require additional information.

NOVATECH

Prepared by:

Matt Hrehoriak, P.Eng. Project Coordinator Land Development Engineering

Reviewed by:

C. M. STANG 100125708 April 6/29

Conrad Stang, M.A.Sc., P.Eng. Project Manager Water Resources

J. Lee Sheets, C.E.T. Director Land Development Engineering

Appendix A

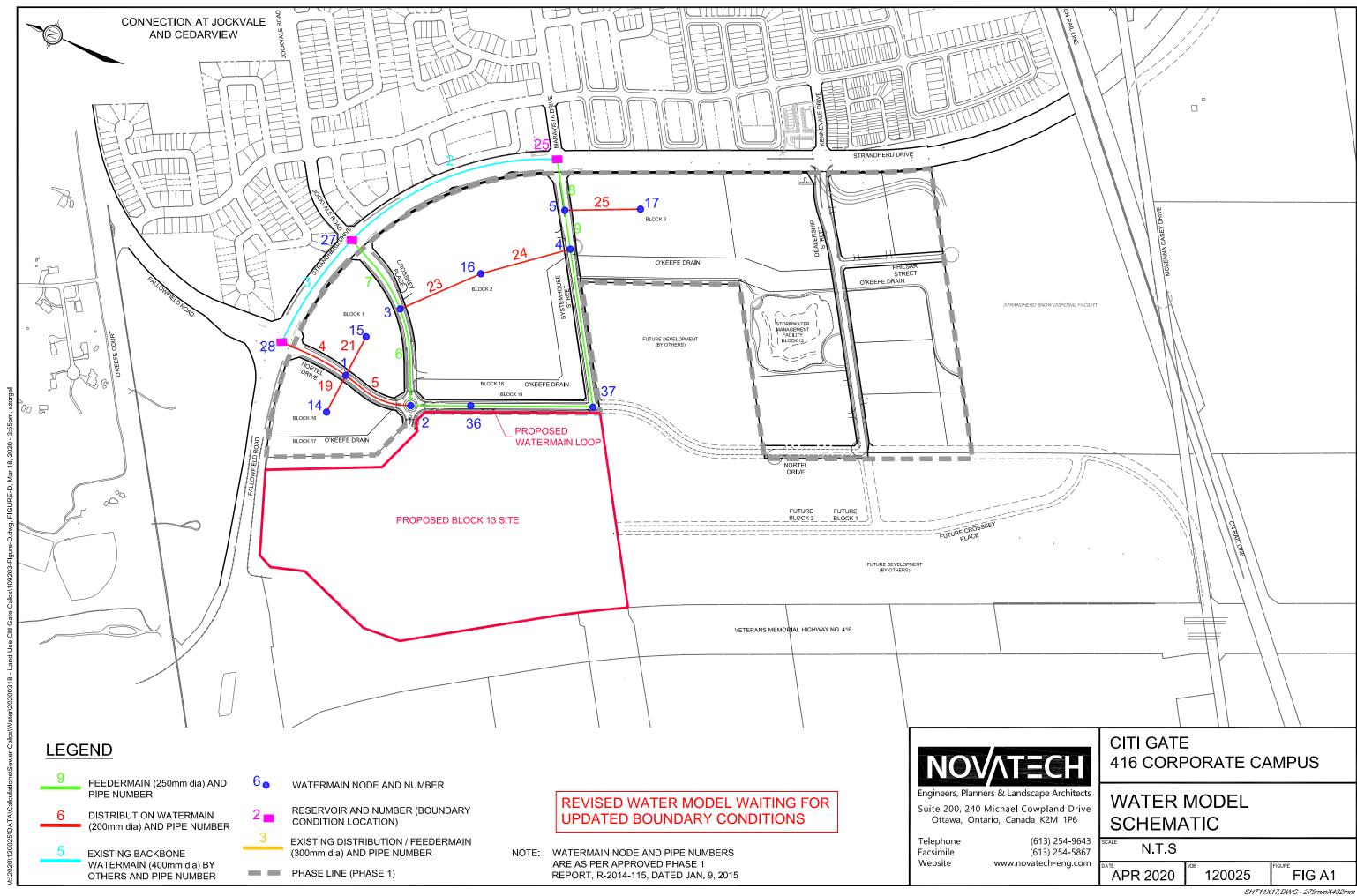
Water Servicing Information

Project No. 120025 Project Name: Python Compex Project Location: Citigate Drive, Ottawa

Date: April 2020

Detailed Building Use Domestic Water Demands

Daily Demands from OBC Table 8.2.1.3


Establishment	Daily Demand Volume		
Industrial Building:	150	L/day/loading bay	
	950	L/day/bathroom	
Commercial Office:	75	L/day/9.3m² Floor area	

Commercial / Industrial Peaking Factors City of Ottawa Water Distrubution Guidelines

Conditions	Peaking Factor		
Maximum Day	1.5 x avg day		
Peak Hour	1.8 x max day		

Proposed Development Conditions

	Commercial Office	Industrial Building	Totals
Floor Area	2870	N/A	
No. Bathrooms	N/A	100	
No. Loading Bays	N/A	56	
Total Daily Volume (Liters)	23145.2	103400.0	126545.2
Avg Day Demand (L/s)	0.268	1.197	1.46
Max Day Demand (L/s)	0.402	1.795	2.20
Peak Hour Demand (L/s)	0.723	3.231	3.95

CITI GATE - 416 Corporate Campus HYDRAULIC ANALYSIS

JOB NO. 120025 (Citigate, Job# 109203)

Table B1 Block 13 Water Demand							
	Demand (L/s)						
Node	Block #	Area (ha)	High Pressure (Average Day)	Peak Hour			
14	16	2.5	1.01	1.52	2.73		
15	1	3.5	1.42	2.13	3.83		
16	2	12.0	4.86	7.29	13.13		
17	3	5.3	2.15	3.22	5.80		
36	36 13 25.1 10.17 15.25 27.45						
	19.61 29.41 52.94						

Notes:

- 1. All water demand calculations based on the City of Ottawa Design Guidelines for Water Distribution Table 4.2.
- 2. Water Demand is based assuming all lands to be Industrial Light with a demand of 35,000L/gross ha/d.
- 3. Peaking Factors: Maximum Daily Demand = 1.5 Average Daily Demand (High Pressure); Peak Hour = 1.8 Max Daily Demand.

Fireflows

Industrial Light Fireflow - Block 13	267	L/s
Industrial Light Fireflow (as per Approved Phase 1 Design Brief	165	L/s
dated Sept. 5, 2014)		

Prepared By: NOVATECH

Date: March 18, 2020

FUS - Fire Flow Calculations

As per 1999 Fire Underwriter's Survey Guidelines

Engineers, Plan

Novatech Project #: 120025

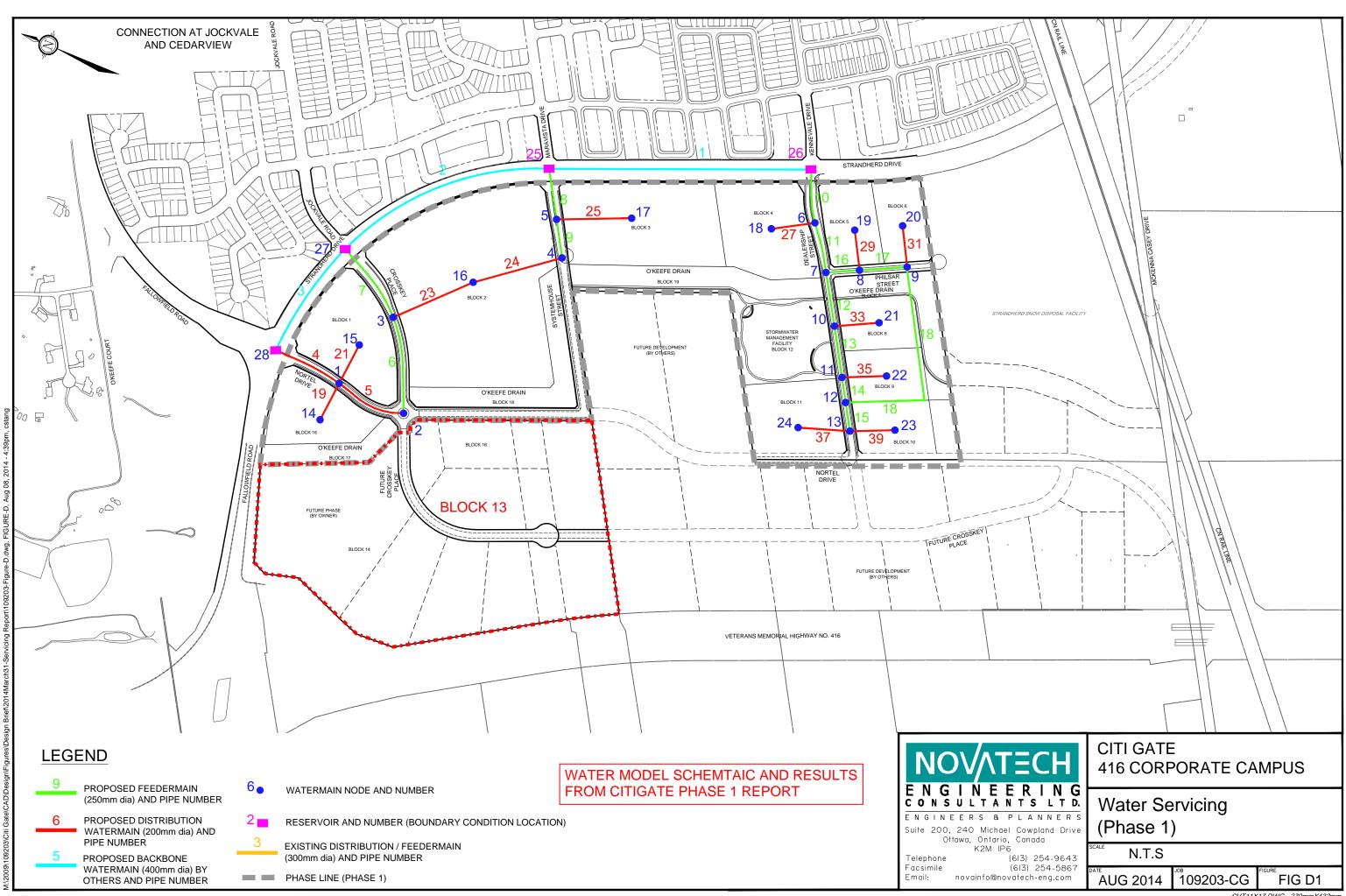
Project Name: Citigate Block 13

Date: 3/18/2020

Input By: Steve Zorgel

Reviewed By: MSP

Engineers, Planners & Landscape Architects


Legend Input by User

No Information or Input Required

Building Description: Building to have 5 floors, sprinklered, exposure is >45m all sides.

Fire Resistive Construction

Step			Choose		Value Used	Total Fire Flow (L/min)
	1	Base Fire Flor	N .			
	Construction Ma			Multi	plier	
1	Coefficient related to type of construction	Wood frame Ordinary construction Non-combustible construction Modified Fire resistive construction (2 hrs)	Yes	1.5 1 0.8 0.6	0.6	
		Fire resistive construction (> 3 hrs)		0.6		
	Floor Area					
2	A	Building Footprint (m ²) Number of Floors/Storeys Protected Openings (1 hr) Area of structure considered (m ²)	37200 5 Yes		55,800	
	F	Base fire flow without reductions F = 220 C (A) ^{0.5}				31,000
		Reductions or Surc	harges			
	Occupancy haza	rd reduction or surcharge		Reduction/	Surcharge	
3	(1)	Non-combustible Limited combustible Combustible Free burning	Yes	-25% -15% 0% 15%	0%	31,000
	Control don Dondero	Rapid burning		25% Redu	o4: o.e	
4	Sprinkler Reduct	Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System	Yes Yes Yes	-30% -10% -10%	-30% -10% -10%	-15,500
	F 0		Cun	nulative Total	-50%	
5		North Side East Side South Side West Side	> 45.1m > 45.1m > 45.1m > 45.1m Cun	nulative Total	0% 0% 0% 0% 0% 0%	0
	•	Results			<u> </u>	
		Total Required Fire Flow, rounded to near	est 1000L/mir	ı	L/min	16,000
6	(1) + (2) + (3 <mark>)</mark>	(2,000 L/min < Fire Flow < 45,000 L/min)		or or	L/s USGPM	267 4,227
7	Storage Volume	Required Duration of Fire Flow (hours) Required Volume of Fire Flow (m ³)			Hours m ³	3.5 3360

Large Size Building Fire Flow Calculations - Citi Gate

As per Fire Underwriter's Survey Guidelines

PROJECT: Citi Gate - 416 Corporate Campus

JOB#: 109203

DATE: August 8, 2012

Rev: March 31, 2014

C	Coefficient related to type of construction	[yes/no]			
	 ◆ Wood frame 		1.5		
	Ordinary construction	yes	1		
	 Non-combustible construction 	•	0.8		
	 ◆ Fire resistive construction (< 2 hrs) 		0.7		
	◆ Fire resistive construction (> 2 hrs)		0.6		
	• Interpolation (Using FUS Tables)				
	5 Jan 1919				
A	Area of structure considered (m ²)	5,600	<==>	60,278 ft ²	
	(All floors excluding Basement, under 2-Storeys)				
	(All hoors excluding basement, under 2-otoreys)				
F	Required fire flow (L/min)				
	$F = 220 C (A)^{0.5}$			16,463 L/min	
	Occupancy hazard reduction of surcharge	[yes/no]	_		
	 Non-combustible 		-25%		
	 Limited combustible 	yes	-15%		
	 ◆ Combustible 		0%		
	 ◆ Free burning 		15%		
	 ◆ Rapid burning 		25%		
				13,994 L/min (1	1)
	Sprinkler Reduction				
	 Non-combustible - Fire Resistive (3) 	yes	50%	6,997 L/min (2	2)
	Exposure surcharge (cumulative (%), 2 sides)	[yes/no]	_		
	0 - 3 m		25%		
	3.1 - 10 m		20%		
	10.1 - 20 m		15%		
	20.1 - 30 m	yes	10%		
	30.1- 45 m	yes	5%		
			Cumulati	ive Total 15%	
				2,099 L/min	
				•	
	Fire Wall Separation				
	 Number of Party Walls * 1000 L/min 				
	(As per City of Ottawa Standard)			2,099 L/min (3	3)
	REQUIRED FIRE FLOW [(1) - (2) + (3)]			9,096 L/min	
	(2,000 L/min < Fire Flow < 45,000 L/min)		or	151.6 L/s	
	(=,555 = 1)		or	2,003 IGPM	
			•	,	
	Prepared By: Mark Bowen		Typica	l Large Building	
	·		71		

Medium Sized Building Fire Flow Calculations - Citi Gate

As per Fire Underwriter's Survey Guidelines

PROJECT: Citi Gate - 416 Corporate Campus

JOB#: 109203

DATE: August 8, 2012

Rev: March 31, 2014

REQUIRED FIRE FLOW [(1) - (2) + (3)] (2,000 L/min < Fire Flow < 45,000 L/min)		or or	124.06	L/s	
Fire Wall Separation ◆ Number of Party Walls * 1000 L/min (As per City of Ottawa Standard)			1,718	L/min	_(3)
			1,718	L/min	
		Cumulat			
30.1- 45 m	yes				
20.1 - 30 m	yes				
10.1 - 20 m					
3.1 - 10 m		20%			
0 - 3 m	[yes/no]	- 25%			
• •					=`′
Sprinkler Reduction ◆ Non-combustible - Fire Resistive (3)	yes	50%			(2)
◆ Rapid burning		25%		L/min	(1)
◆ Free burning					
◆ Combustible	•	0%			
Limited combustible	yes				
Occupancy hazard reduction of surcharge Non-combustible	[yes/no]	- -25%			
$F = 220 \text{ C } (A)^{0.5}$			13,472	L/min	=
Required fire flow (L/min)					
(All floors excluding Basement, under 2-Storeys)	0,700	, ,	40,000	it.	
, , ,	3 750	<>	40 365	6 42	7
 Fire resistive construction (> 2 hrs) 		0.6			
•	yes	•			
Wood frame Ordinary construction	VAS	1.5 1			
↑ \Mood from		1 5			
	 Ordinary construction Non-combustible construction Fire resistive construction (< 2 hrs) Fire resistive construction (> 2 hrs) Interpolation (Using FUS Tables) Area of structure considered (m²) (All floors excluding Basement, under 2-Storeys) Required fire flow (L/min) F = 220 C (A) ^{0.5} Occupancy hazard reduction of surcharge Non-combustible Limited combustible Combustible Free burning Rapid burning Sprinkler Reduction Non-combustible - Fire Resistive (3) Exposure surcharge (cumulative (%), 2 sides) 0 - 3 m 3.1 - 10 m 10.1 - 20 m 20.1 - 30 m 30.1 - 45 m Fire Wall Separation Number of Party Walls * 1000 L/min (As per City of Ottawa Standard) REQUIRED FIRE FLOW [(1) - (2) + (3)]	• Ordinary construction • Non-combustible construction • Fire resistive construction (< 2 hrs) • Fire resistive construction (> 2 hrs) • Interpolation (Using FUS Tables) Area of structure considered (m²) (All floors excluding Basement, under 2-Storeys) Required fire flow (L/min) F = 220 C (A) ^{0.5} Occupancy hazard reduction of surcharge • Non-combustible • Limited combustible • Combustible • Free burning • Rapid burning Sprinkler Reduction • Non-combustible - Fire Resistive (3) Exposure surcharge (cumulative (%), 2 sides) 0 - 3 m 3.1 - 10 m 10.1 - 20 m 20.1 - 30 m 30.1- 45 m Fire Wall Separation • Number of Party Walls * 1000 L/min (As per City of Ottawa Standard) REQUIRED FIRE FLOW [(1) - (2) + (3)]	• Ordinary construction • Non-combustible construction • Fire resistive construction (< 2 hrs) • Fire resistive construction (< 2 hrs) • Fire resistive construction (< 2 hrs) • Interpolation (Using FUS Tables) Area of structure considered (m²) (All floors excluding Basement, under 2-Storeys) Required fire flow (L/min) F = 220 C (A) ^{0.5} Occupancy hazard reduction of surcharge • Non-combustible • Limited combustible • Limited combustible • Combustible • Free burning • Rapid burning Sprinkler Reduction • Non-combustible - Fire Resistive (3) Sprinkler Reduction • Non-combustible - Fire Resistive (3) Exposure surcharge (cumulative (%), 2 sides) 0 - 3 m 3.1 - 10 m 10.1 - 20 m 20.1 - 30 m 30.1 - 45 m yes 5% Cumulat Fire Wall Separation • Number of Party Walls * 1000 L/min (As per City of Ottawa Standard) REQUIRED FIRE FLOW [(1) - (2) + (3)] (2,000 L/min < Fire Flow < 45,000 L/min) Or	• Ordinary construction • Non-combustible construction • Fire resistive construction (< 2 hrs) • Fire resistive construction (> 2 hrs) • Interpolation (Using FUS Tables) Area of structure considered (m²) (All floors excluding Basement, under 2-Storeys) Required fire flow (L/min) F = 220 C (A) ^{0.5} Coccupancy hazard reduction of surcharge • Non-combustible • Limited combustible • Limited combustible • Combustible • Free burning • Rapid burning Praying for Reduction • Non-combustible - Fire Resistive (3) Sprinkler Reduction • Non-combustible - Fire Resistive (3) Sprinkler Reduction • Non-combustible - Fire Resistive (3) 11,451 Sprinkler Reduction • Non-combustible - Fire Resistive (3) Sprinkler Reduction • Non-combustible - Fire Resistive (3) 11,451 Sprinkler Reduction • Non-combustible - Fire Resistive (3) 10 - 3 m 3.1 - 10 m 10.1 - 20 m 20.1 - 30 m 20.1 - 30 m 30.1 - 45 m 20 yes 10 1 side Cumulative Total 1,718 Fire Wall Separation • Number of Party Walls * 1000 L/min (As per City of Ottawa Standard) 1,718 REQUIRED FIRE FLOW [(1) - (2) + (3)] (2,000 L/min < Fire Flow < 45,000 L/min) or 124.06	• Ordinary construction • Non-combustible construction (< 2 hrs) • Fire resistive construction (< 2 hrs) • Interpolation (Using FUS Tables) Area of structure considered (m²) (All floors excluding Basement, under 2-Storeys) Required fire flow (L/min) F = 220 C (A) ^{0.5} Required fore flow (L/min) F = 220 C (A) ^{0.5} Cocupancy hazard reduction of surcharge • Non-combustible • Limited combustible • Combustible • Free burning • Rapid burning Sprinkler Reduction • Non-combustible - Fire Resistive (3) Exposure surcharge (cumulative (%), 2 sides) 0 - 3 m 3.1 - 10 m 10.1 - 20 m 20.1 - 30 m 30.1 - 45 m Fire Wall Separation • Number of Party Walls * 1000 L/min (As per City of Ottawa Standard) REQUIRED FIRE FLOW [(1) - (2) + (3)] (2.000 L/min < Fire Flow < 45,000 L/min) P (3,000 L/min < Fire Flow < 45,000 L/min) P (3,000 L/min < Fire Flow < 45,000 L/min) O (124,06 L/s) 1,7443 L/min

Small Sized Building Fire Flow Calculations - Citi Gate

As per Fire Underwriter's Survey Guidelines

PROJECT: Citi Gate - 416 Corporate Campus

JOB#: 109203

DATE: August 8, 2012

Rev: March 31, 2014

С	Coefficient related to type of construction	[yes/no]		
	• Wood frame		- 1.5	
	Ordinary construction	yes	1.0	
	Non-combustible construction	yco	0.8	
	• Fire resistive construction (< 2 hrs)		0.7	
	• Fire resistive construction (> 2 hrs)		0.6	
	• Interpolation (Using FUS Tables)		0.0	
	· interpolation (Osing 1 Oo Tables)			
Α	Area of structure considered (m ²)	2,100	<==>	22,604 ft ²
	(All floors excluding Basement, under 2-Storeys)	_,:::		,
	(All floors excluding basement, under 2-Storeys)			
F	Required fire flow (L/min)			
	$F = 220 \text{ C (A)}^{0.5}$			10,082 L/min
	. ,		:	·
	Occupancy hazard reduction of surcharge	[yes/no]	_	
	 Non-combustible 		-25%	
	 Limited combustible 	yes	-15%	
	 ◆ Combustible 		0%	
	 ◆ Free burning 		15%	
	 ◆ Rapid burning 		25%	
			:	8,569 <i>L/min</i> (1)
	Sprinkler Reduction			
	 Non-combustible - Fire Resistive (3) 	n	50%	<u>0 L/min</u> (2)
	Exposure surcharge (cumulative (%), 2 sides)	[yes/no]	_	
	0 - 3 m		25%	
	3.1 - 10 m		20%	
	10.1 - 20 m		15%	
	20.1 - 30 m	yes	10%	1 side 10%
	30.1- 45 m	yes	5%	1 side 5%
			Cumulati	ve Total 15%
				1,285 L/min
	Fire Wall Separation			
	 Number of Party Walls * 1000 L/min 			
	(As per City of Ottawa Standard)		:	1,285 L/min (3)
	REQUIRED FIRE FLOW [(1) - (2) + (3)]			9,855 L/min
	(2,000 L/min < Fire Flow < 45,000 L/min)		or	164.25 L/s
			or	2,170 IGPM
	Prepared By: Mark Bowen		Typica	l Small Building

	Table 1 Phase 1										
	Pipe Data										
Pipe	Street Name	Length	Diameter	Roughness							
		(m)	(mm)								
1	Strandherd	530	400	120							
2	Strandherd	450	400	120							
3	Strandherd	250	400	120							
4	Nortel Drive	100	200	110							
5	Nortel Drive	192	200	110							
6	Crosskey Place	202	250	110							
7	Crosskey Place	160	250	110							
8	Systemhouse Street	110	250	110							
9	Systemhouse Street	60	250	110							
10	Dealership Street	160	250	110							
11	Dealership Street	125	250	110							
12	Dealership Street	102	250	110							
13	Dealership Street	110	250	110							
14	Dealership Street	55	250	110							
15	Dealership Street	35	250	110							
16	Philsar Street	115	250	110							
17	Philsar Street	110	250	110							
18	Block 8/9/10	430	250	110							
19	Block 16	56	200	110							
21	Block 1	122	200	110							
23	Block 2	160	200	110							
24	Block 2	200	200	110							
25	Block 3	160	200	110							
27	Block 4	100	200	110							
29	Blcok 5	80	200	110							
31	Blcok 6	80	200	110							
33	Block 8	80	200	110							
35	Block 9	80	200	110							
39	Block 10	80	200	110							
37	Block 11	80	200	110							

Prepared By:

NOVATECH ENGINEERING CONSULTANTS LTD.

Table 2 Phase 1 Water Demand									
		Area		Demand (L/s)					
Node	Block #	(ha)	High Pressure (Average Day)	Max. Daily	Peak Hour				
14	16	2.2	0.89	1.34	2.41				
15	1	3.7	1.50	2.25	4.05				
16	2	12.2	4.94	7.41	13.34				
17	3	6.2	2.51	3.77	6.78				
18	4	3.2	1.30	1.94	3.50				
19	5	1.8	0.73	1.09	1.97				
20	6	1.6	0.65	0.97	1.75				
21	8	1.3	0.53	0.79	1.42				
22	9	1.3	0.53	0.79	1.42				
23	10	3.0	1.22	1.82	3.28				
24	11	3.0	1.22	1.82	3.28				
			16.00	24.00	43.20				

Notes:

- 1. All water demand calculations based on the City of Ottawa Design Guidelines for Water Distribution Table 4.2.
- 2. Water Demand is based assuming all lands to be Industrial Light with a demand of 35,000L/gross ha/d.
- 3. Peaking Factors: Maximum Daily Demand = 1.5 average daily demand (High Pressure); Peak Hour = 1.8 Max daily demand.

Prepared By:

NOVATECH ENGINEERING CONSULTANTS LTD.

Date: August 9, 2012 Rev: November 20, 2012 Rev: August 9, 2013 Rev: March 31, 2014 Rev: August 6, 2014

Rev: October 1, 2014 M:\2009\109203\Citi Gate\DATA\Calculations\Hydraulics\20140717\WaterDemand.xls

	Table 3 Phase 1										
Peak Hour Check											
Node	Block #	Elevation	Demand	Head		Sure					
	#	(m)	(LPS)	(m)	(m)	(PSI)					
1		95.0	0.0	148.1	53.1	75.2					
<mark>2</mark>)		96.0	0.0	148.0	52.0	73.8					
3		96.2	0.0	148.0	51.8	73.4					
4		95.7	0.0	147.7	52.0	73.7					
5		96.1	0.0	147.7	51.6	73.2					
6		94.1	0.0	147.5	53.4	75.7					
7		93.9	0.0	147.4	53.5	75.9					
8		93.5	0.0	147.4	54.0	76.5					
9		92.4	0.0	147.4	55.0	78.0					
10		94.0	0.0	147.4	53.4	75.7					
11		94.0	0.0	147.4	53.4	75.7					
12		93.8	0.0	147.4	53.6	76.0					
13		94.0	0.0	147.4	53.4	75.7					
14	16	96.0	2.4	148.1	52.1	73.8					
15	1	96.0	4.1	148.1	52.1	73.8					
16	2	97.2	13.3	147.7	50.5	71.6					
17	3	97.1	6.8	147.7	50.6	71.8					
18	4	95.1	3.5	147.5	52.4	74.3					
19	5	94.5	2.0	147.4	52.9	75.0					
20	6	93.5	1.8	147.4	53.9	76.4					
21	8	95.0	1.4	147.4	52.4	74.3					
22	9	95.0	1.4	147.4	52.4	74.3					
23	10	95.0	3.3	147.4	52.4	74.3					
24	11	95.3	3.3	147.4	52.1	73.8					
25*		147.7	28.4	147.7	N/A	N/A					
26*		147.6	18.2	147.6	N/A	N/A					
27*		148.0	22.8	148.0	N/A	N/A					
28*		148.2	-98.2	148.2	N/A	N/A					
* Boundary	/ Conditio	n									

Minimum Pressure

Prepared By:

NOVATECH ENGINEERING CONSULTANTS LTD.

Date: August 9, 2012 Rev: November 20, 2012 Rev: August 9, 2013 Rev: March 31, 2014 Rev: July 18, 2014 Rev: August 6, 2014 Rev. October 1, 2014

	Table 4									
			Phase							
High Pressure Check (Average Day)										
Node	Block #	Elevation (m)	Demand (LPS)	Head (m)	Pres (m)	sure (PSI)	Age (hrs)			
1		95.0	0.0	154.6	59.6	84.5	1.2			
<u>2</u>		96.0	0.0	154.7	58.7	83.3	0.9			
3		96.2	0.0	154.7	58.5	82.9	0.3			
4		95.7	0.0	154.7	59.0	83.6	0.5			
5		96.1	0.0	154.7	58.6	83.2	0.3			
6		94.1	0.0	154.7	60.6	85.9	0.4			
7		93.9	0.0	154.7	60.8	86.2	0.7			
8		93.5	0.0	154.7	61.2	86.8	1.4			
9		92.4	0.0	154.7	62.3	88.3	2.4			
10		94.0	0.0	154.7	60.7	86.0	1.2			
11		94.0	0.0	154.7	60.7	86.0	2.0			
12		93.8	0.0	154.7	60.9	86.3	4.8			
13		94.0	0.0	154.7	60.7	86.0	5.0			
14	16	96.0	0.9	154.6	58.6	83.1	2.3			
15	1	96.0	1.5	154.6	58.6	83.1	2.6			
16	2	97.2	4.9	154.7	57.5	81.5	1.1			
17	3	97.1	2.5	154.7	57.6	81.7	1.4			
18	4	95.1	1.3	154.7	59.6	84.5	1.7			
19	5	94.5	0.7	154.7	60.2	85.3	3.3			
20	6	93.5	0.7	154.7	61.2	86.7	4.5			
21	8	95.0	0.5	154.7	59.7	84.6	3.9			
22	9	95.0	0.5	154.7	59.7	84.6	4.6			
23	10	95.0	1.2	154.7	59.7	84.6	6.2			
24	11	95.3	1.2	154.7	59.4	84.2	6.2			
25*		154.7	-5.5	154.7	0.0	0.0	N/A			
26*		154.7	-6.2	154.7	0.0	0.0	N/A			
27*		154.7	-66.9	154.7	0.0	N/A	N/A			
28*		154.6	62.6	154.6	0.0	N/A	N/A			
* Boundar	y Conditio	1								

Maximum Pressure
Maximum Time

Prepared By:

NOVATECH ENGINEERING CONSULTANTS LTD.

Table 5A Phase 1 Max Daily Demand and Fire at Node 14 - Block 16

Node 14 - block 16								
Node	Elevation	Demand	Head	Pres	sure			
	(m)	(LPS)	(m)	(m)	(PSI)			
	. ,	, ,	,	,	,			
1	95.0	0.0	137.7	42.7	60.6			
2	96.0	0.0	141.8	45.9	65.1			
3	96.2	0.0	143.3	47.1	66.8			
4	95.7	0.0	143.1	47.4	67.2			
5	96.1	0.0	143.1	47.1	66.7			
6	94.1	0.0	141.5	47.4	67.2			
7	93.9	0.0	141.4	47.5	67.4			
8	93.5	0.0	141.4	48.0	68.0			
9	92.4	0.0	141.4	49.0	69.5			
10	94.0	0.0	141.4	47.4	67.3			
11	94.0	0.0	141.4	47.4	67.3			
12	93.8	0.0	141.4	47.6	67.5			
13	94.0	0.0	141.4	47.4	67.3			
14	96.0	165.6	135.2	39.2	55.6			
15	96.0	2.3	137.7	41.7	59.1			
16	97.2	7.4	143.1	45.9	65.1			
17	97.1	3.8	143.1	46.0	65.3			
18	95.1	1.9	141.5	46.4	65.7			
19	94.5	1.1	141.4	46.9	66.5			
20	93.5	1.0	141.4	47.9	68.0			
21	95.0	8.0	141.4	46.4	65.8			
22	95.0	8.0	141.4	46.4	65.8			
23	95.0	1.8	141.4	46.4	65.8			
24	95.3	1.8	141.4	46.1	65.4			
25*	143.1	21.1	143.1	N/A	N/A			
26*	141.5	121.6	141.5	N/A	N/A			
27*	144.9	-61.4	144.9	N/A	N/A			
28*	145.5	-269.6	145.5	N/A	N/A			
Bounda	Boundary Condition							

Minimum Pressure

Prepared By:

NOVATECH ENGINEERING CONSULTANTS LTD.

Table 5B Phase 1 Max Daily Demand and Fire at Node 15 - Block 1 **Elevation Demand** Head **Pressure** Node (m) (LPS) (m) (m) (PSI) 0.0 1 95.0 137.7 42.7 60.6 2 96.0 0.0 141.8 45.9 65.1 3 96.2 143.3 0.0 47.1 8.66 4 95.7 0.0 143.1 47.4 67.2 5 96.1 0.0 143.1 47.1 66.7 6 141.5 94.1 0.0 47.4 67.2 7 93.9 0.0 141.4 47.5 67.4 8 93.5 141.4 0.0 48.0 68.0 9 92.4 141.4 0.0 49.0 69.5 10 94.0 0.0 141.4 47.4 67.3 11 94.0 0.0 141.4 47.4 67.3 12 141.4 93.8 0.0 47.6 67.5 141.4 94.0 13 0.0 47.4 67.3 96.0 14 1.3 137.7 41.7 59.1 15 96.0 166.6 132.2 36.2 51.4 16 97.2 7.4 143.1 45.9 65.1 17 97.1 3.8 143.1 46.0 65.3 18 95.1 1.9 141.5 46.4 65.7 19 141.4 94.5 1.1 46.9 66.5 20 141.4 93.5 1.0 47.9 68.0 21 95.0 8.0 141.4 46.4 65.8 22 95.0 8.0 141.4 46.4 65.8 23 95.0 1.8 141.4 46.4 65.8 24 95.3 1.8 141.4 46.1 65.4 25* 143.1 21.1 143.1 N/A N/A 141.5 141.5 26* 121.6 N/A N/A 27* 144.9 -61.4 144.9 N/A N/A

* Boundary Condition

28*

Minimum Pressure

-269.6

145.5

N/A

N/A

145.5

Prepared By:

NOVATECH ENGINEERING CONSULTANTS LTD.

Table 5C									
	Phase 1								
Max Daily Demand and Fire at									
		lode 16 ·							
	-			_					
Node	Elevation	Demand	Head	Pres					
	(m)	(LPS)	(m)	(m)	(PSI)				
1	95.0	0.0	144.8	49.8	70.5				
2	96.0	0.0	143.6	47.6	67.6				
3	96.2	0.0	143.2	47.0	66.6				
4	95.7	0.0	140.9	45.2	64.1				
5	96.1	0.0	141.6	45.6	64.6				
6	94.1	0.0	141.5	47.4	67.2				
7	93.9	0.0	141.4	47.5	67.4				
8	93.5	0.0	141.4	48.0	68.0				
9	92.4	0.0	141.4	49.0	69.5				
10	94.0	0.0	141.4	47.4	67.3				
11	94.0	0.0	141.4	47.4	67.3				
12	93.8	0.0	141.4	47.6	67.5				
13	94.0	0.0	141.4	47.4	67.3				
14	96.0	1.3	144.8	48.8	69.1				
15	96.0	2.3	144.8	48.8	69.1				
16	97.2	171.7	133.6	36.4	51.6				
17	97.1	3.8	141.6	44.6	63.2				
18	95.1	1.9	141.5	46.4	65.7				
19	94.5	1.1	141.4	46.9	66.5				
20	93.5	1.0	141.4	47.9	68.0				
21	95.0	8.0	141.4	46.4	65.8				
22	95.0	8.0	141.4	46.4	65.8				
23	95.0	1.8	141.4	46.4	65.8				
24	95.3	1.8	141.4	46.1	65.4				
25*	143.1	-56.7	143.1	N/A	N/A				
26*	141.5	121.6	141.5	N/A	N/A				
27*	144.9	-63.9	144.9	N/A	N/A				
28*	145.5	-189.3	145.5	N/A	N/A				
* Bounda	rv Condition								

* Boundary Condition

Minimum Pressure

Prepared By:

NOVATECH ENGINEERING CONSULTANTS LTD.

Table 5D Phase 1 Max Daily Demand and Fire at Node 17 - Block 3									
Node									
	(m)	(LPS)	(m)	(m)	(PSI)				
1	95.0	0.0	145.2	50.2	71.1				
2	96.0	0.0	144.7	48.7	69.1				
3	96.2	0.0	144.5	48.3	68.5				
4	95.7	0.0	139.6	43.9	62.3				
5	96.1	0.0	139.4	43.4	61.5				
6	94.1	0.0	141.5	47.4	67.2				
7	93.9	0.0	141.4	47.5	67.4				
8	93.5	0.0	141.4	48.0	68.0				
9	92.4	0.0	141.4	49.0	69.5				
10	94.0	0.0	141.4	47.4	67.3				
11	94.0	0.0	141.4	47.4	67.3				
12	93.8	0.0	141.4	47.6	67.5				
13	94.0	0.0	141.4	47.4	67.3				
14	96.0	1.3	145.2	49.2	69.7				
15	96.0	2.3	145.2	49.2	69.7				
16	97.2	7.4	142.0	44.8	63.5				
17	97.1	168.1	132.1	35.0	49.7				
18	95.1	1.9	141.5	46.4	65.7				
19	94.5	1.1	141.4	46.9	66.5				
20	93.5	1.0	141.4	47.9	68.0				
21	95.0	8.0	141.4	46.4	65.8				
22	95.0	8.0	141.4	46.4	65.8				
23	95.0	1.8	141.4	46.4	65.8				
24	95.3	1.8	141.4	46.1	65.4				
25*	143.1	-106.4	143.1	N/A	N/A				
26*	141.5	121.6	141.5	N/A	N/A				
27*	144.9	-25.1	144.9	N/A	N/A				
28*	145.5	-178.4	145.5	N/A	N/A				
* Boundar	ry Condition	l							

Minimum Pressure

Prepared By:

NOVATECH ENGINEERING CONSULTANTS LTD.

Table 5E Phase 1									
	M D -		· ·	. -:					
Max Daily Demand and Fire at									
	N	ode 18	- Block	4					
Node	Elevation	Demand	Head	Pres	SIIFO				
Noue	(m)	(LPS)	(m)	(m)	(PSI)				
	()	(=: 0)	()	()	(. 0.)				
1	95.0	0.0	145.3	50.3	71.3				
2	96.0	0.0	144.9	49.0	69.5				
3	96.2	0.0	144.8	48.6	68.9				
4	95.7	0.0	143.3	47.6	67.4				
5	96.1	0.0	143.2	47.1	66.8				
6	94.1	0.0	132.1	38.0	53.8				
7	93.9	0.0	132.0	38.1	54.1				
8	93.5	0.0	132.0	38.6	54.7				
9	92.4	0.0	132.0	39.6	56.2				
10	94.0	0.0	132.0	38.0	53.9				
11	94.0	0.0	132.0	38.0	53.9				
12	93.8	0.0	132.0	38.2	54.2				
13	94.0	0.0	132.0	38.0	53.9				
14	96.0	1.3	145.3	49.3	69.8				
15	96.0	2.3	145.3	49.3	69.8				
16	97.2	7.4	143.9	46.7	66.2				
17	97.1	3.8	143.2	46.1	65.4				
18	95.1	166.2	127.6	32.5	46.0				
19	94.5	1.1	132.0	37.5	53.2				
20	93.5	1.0	132.0	38.5	54.6				
21	95.0	8.0	132.0	37.0	52.5				
22	95.0	8.0	132.0	37.0	52.5				
23	95.0	1.8	132.0	37.0	52.5				
24	95.3	1.8	132.0	36.7	52.1				
25*	143.1	37.8	143.1	N/A	N/A				
26*	141.5	-42.7	141.5	N/A	N/A				
27*	144.9	-8.2	144.9	N/A	N/A				
28*	145.5	-175.2	145.5	N/A	N/A				

* Boundary Condition

Minimum Pressure

Prepared By:

NOVATECH ENGINEERING CONSULTANTS LTD.

	Table 5F									
	Phase 1									
	Max Daily Demand and Fire at									
		lode 19								
	IN IN	loue 13	- DIOCK	<u> </u>						
Node	Elevation	Demand	Head	Pres	sure					
	(m)	(LPS)	(m)	(m)	(PSI)					
1	95.0	0.0	145.3	50.3	71.3					
2	96.0	0.0	144.9	49.0	69.5					
3	96.2	0.0	144.8	48.6	68.9					
4	95.7	0.0	143.3	47.6	67.4					
5	96.1	0.0	143.2	47.1	66.8					
6	94.1	0.0	132.1	38.0	53.8					
7	93.9	0.0	124.8	30.9	43.8					
8	93.5	0.0	121.2	27.7	39.3					
9	92.4	0.0	121.6	29.2	41.4					
10	94.0	0.0	124.3	30.3	42.9					
11	94.0	0.0	123.7	29.7	42.1					
12	93.8	0.0	123.4	29.6	42.0					
13	94.0	0.0	123.4	29.4	41.7					
14	96.0	1.3	145.3	49.3	69.8					
15	96.0	2.3	145.3	49.3	69.8					
16	97.2	7.4	143.9	46.7	66.2					
17	97.1	3.8	143.2	46.1	65.4					
18	95.1	1.9	132.1	37.0	52.4					
19	94.5	165.4	117.6	23.1	32.8					
20	93.5	1.0	121.6	28.1	39.8					
21	95.0	8.0	124.3	29.3	41.5					
22	95.0	8.0	123.7	28.7	40.7					
23	95.0	1.8	123.4	28.4	40.3					
24	95.3	1.8	123.4	28.1	39.9					
25*	143.1	37.8	143.1	N/A	N/A					
26*	141.5	-42.7	141.5	N/A	N/A					
27*	144.9	-8.2	144.9	N/A	N/A					
28*	145.5	-175.2	145.5	N/A	N/A					
* Bounda	ry Condition	1								
	-									

Minimum Pressure

Prepared By:

NOVATECH ENGINEERING CONSULTANTS LTD.

	Table 5G Phase 1												
	Max Daily Demand and Fire at Node 20 - Block 6												
Node	Elevation	Demand	Head	Pres									
	(m)	(LPS)	(m)	(m)	(PSI)								
1	95.0	0.0	145.3	50.3	71.3								
2	96.0	0.0	144.9	49.0	69.5								
3	96.2	0.0	144.8	48.6	68.9								
4	95.7	0.0	143.3	47.6	67.4								
5	96.1	0.0	143.2	47.1	66.8								
6	94.1	0.0	132.1	38.0	53.8								
7	93.9	0.0	124.8	30.9	43.8								
8	93.5	0.0	121.9	28.5	40.4								
9	92.4	0.0	119.2	26.8	38.1								
10	94.0	0.0	123.9	29.9	42.4 41.1								
11	94.0	0.0	123.0	29.0									
12	93.8	0.0	122.5	28.7	40.7								
13	94.0	0.0	122.5	28.5	40.4								
14	96.0	1.3	145.3	49.3	69.8								
15	96.0	2.3	145.3	49.3	69.8								
16	97.2	7.4	143.9	46.7	66.2								
17	97.1	3.8	143.2	46.1	65.4								
18	95.1	1.9	132.1	37.0	52.4								
19	94.5	1.1	121.9	27.4	38.9								
20	93.5	165.3	115.7	22.2	31.5								
21	95.0	8.0	123.9	28.9	41.0								
22	95.0	8.0	123.0	28.0	39.6								
23	95.0	1.8	122.5	27.5	39.0								
24	95.3	1.8	122.5	27.2	38.6								
25*	143.1	37.8	143.1	N/A	N/A								
26*	141.5	-42.7	141.5	N/A	N/A								
27*	144.9	-8.2	144.9	N/A	N/A								
28*	145.5	-175.2	145.5	N/A	N/A								
* Boundar	y Condition	ı											
	_												
	Minimum P	ressure											

Prepared By:

NOVATECH ENGINEERING CONSULTANTS LTD.

	Table 5H											
		Phas	se 1									
	Max Da	ily Dema	and and	Fire at								
Node 21 - Block 8												
Node	Elevation	Demand	Head	Pres								
	(m)	(LPS)	(m)	(m)	(PSI)							
4	05.0	0.0	445.0	50.0	74.0							
1	95.0	0.0	145.3	50.3	71.3							
2	96.0	0.0	144.9	49.0	69.5							
3 4	96.2	0.0	144.8	48.6	68.9							
5 5	95.7	0.0	143.3	47.6	67.4							
6	96.1	0.0	143.2	47.1	66.8							
7	94.1 93.9	0.0 0.0	132.1 124.8	38.0 30.9	53.8 43.8							
8		0.0										
9	93.5 92.4	0.0	124.3 123.8	30.8 31.4	43.7 44.5							
10	92.4 94.0	0.0	123.6 121.4	31. 4 27.4	38.9							
11	94.0 94.0	0.0										
12	94.0 93.8	0.0	121.8 122.0	27.8 28.2	39.4 40.0							
13	93.6 94.0	0.0	122.0	28.0	39.7							
14	9 4 .0 96.0	1.3	145.3	49.3	69.8							
15	96.0	2.3	145.3	49.3 49.3	69.8							
16	90.0	2.3 7.4	143.9	49.3 46.7	66.2							
17	97.2 97.1	7. 4 3.8	143.9	46.7 46.1	65.4							
18	97.1 95.1	3.6 1.9	143.2	37.0	52.4							
19	94.5	1.9	124.3	29.8	42.2							
20	94.5	1.1	124.3	30.3	43.0							
21	95.0	165.1	117.9	22.9	32.4							
22	95.0 95.0	0.8	121.8	26.8	38.0							
23	95.0 95.0	1.8	121.0	27.0	38.3							
23 24	95.0 95.3	1.8	122.0	26.7	36.3 37.8							
25*	143.1	37.8	143.1	20.7 N/A	37.6 N/A							
26*	143.1	-42.7	143.1	N/A N/A	N/A							
20 27*	141.5	-42.7 -8.2	144.9	N/A N/A	N/A N/A							
28*	144.9	-0.2 -175.2	144.9	N/A	N/A							
20	140.0	170.2	170.0	14// 1	1 1// 1							
* Bounda	ry Condition	l										

Minimum Pressure

Prepared By:

NOVATECH ENGINEERING CONSULTANTS LTD.

	Table 5I											
		Phas	se 1									
	Max Da	ilv Dem	and and	Fire at								
Max Daily Demand and Fire at Node 22 - Block 9												
NOUE 22 - DIUCK 3												
Node												
	(m)	(LPS)	(m)	(m)	(PSI)							
1	95.0	0.0	145.3	50.3	71.3							
2	95.0 96.0	0.0	145.3 144.9	50.3 49.0	71.3 69.5							
3	96.0 96.2	0.0	144.9 144.8	49.0 48.6	68.9							
3 4	96.2 95.7	0.0	144.6	46.6 47.6	67.4							
4 5												
6	96.1	0.0	143.2	47.1	66.8							
7	94.1	0.0	132.1	38.0	53.8							
<i>7</i> 8	93.9	0.0	124.8	30.9	43.8							
	93.5	0.0	123.9	30.4	43.1							
9	92.4	0.0	123.0	30.6	43.4 39.9							
10	94.0	0.0	122.2	28.2								
11	94.0	0.0	119.3	25.3	35.9							
12	93.8	0.0	119.7	25.9	36.7							
13	94.0	0.0	119.7	25.7	36.4							
14	96.0	1.3	145.3	49.3	69.8							
15	96.0	2.3	145.3	49.3	69.8							
16	97.2	7.4	143.9	46.7	66.2							
17	97.1	3.8	143.2	46.1	65.4							
18	95.1	1.9	132.1	37.0	52.4							
19	94.5	1.1	123.9	29.4	41.7							
20	93.5	1.0	123.0	29.5	41.8							
21	95.0	8.0	122.2	27.2	38.5							
22	95.0	165.1	115.8	20.8	29.5							
23	95.0	1.8	119.7	24.7	35.0							
24	95.3	1.8	119.7	24.4	34.6							
25*	143.1	37.8	143.1	N/A	N/A							
26*	141.5	-42.7	141.5	N/A	N/A							
27*	144.9	-8.2	144.9	N/A	N/A							
28*	145.5	-175.2	145.5	N/A	N/A							
* Bounda	ry Condition	l										

Minimum Pressure

Prepared By:

NOVATECH ENGINEERING CONSULTANTS LTD.

Table 5J Phase 1 Max Daily Demand and Fire at **Node 23 - Block 10**

Node	Elevation	Demand	Head	Pres	sure
	(m)	(LPS)	(m)	(m)	(PSI)
1	95.0	0.0	145.3	50.3	71.3
2	96.0	0.0	144.9	49.0	69.5
3	96.2	0.0	144.8	48.6	68.9
4	95.7	0.0	143.3	47.6	67.4
5	96.1	0.0	143.2	47.1	66.8
6	94.1	0.0	132.1	38.0	53.8
7	93.9	0.0	124.8	30.9	43.8
8	93.5	0.0	123.7	30.2	42.9
9	92.4	0.0	122.6	30.2	42.9
10	94.0	0.0	122.4	28.4	40.3
11	94.0	0.0	119.9	25.9	36.7
12	93.8	0.0	118.6	24.8	35.2
13	94.0	0.0	116.7	22.7	32.1
14	96.0	1.3	145.3	49.3	69.8
15	96.0	2.3	145.3	49.3	69.8
16	97.2	7.4	143.9	46.7	66.2
17	97.1	3.8	143.2	46.1	65.4
18	95.1	1.9	132.1	37.0	52.4
19	94.5	1.1	123.7	29.2	41.4
20	93.5	1.0	122.6	29.1	41.3
21	95.0	8.0	122.4	27.4	38.9
22	95.0	8.0	119.9	24.9	35.3
23	95.0	166.1	113.1	18.1	25.7
24	95.3	1.8	116.7	21.4	30.3
25*	143.1	37.8	143.1	N/A	N/A
26*	141.5	-42.7	141.5	N/A	N/A
27*	144.9	-8.2	144.9	N/A	N/A
28*	145.5	-175.2	145.5	N/A	N/A
Bounda	ry Condition	l			

Minimum Pressure

Prepared By:

NOVATECH ENGINEERING CONSULTANTS LTD.

Table 5K Phase 1 Max Daily Demand and Fire at **Node 24 - Block 11**

N - d -	Flavotion	Damand	Heed	Droo						
Node	Elevation	Demand	Head		sure					
	(m)	(LPS)	(m)	(m)	(PSI)					
1	95.0	95.0 0.0		50.3	71.3					
2	96.0	0.0	145.3 144.9	49.0	69.5					
3	96.2	0.0	144.8	48.6	68.9					
4	95.7	0.0	143.3	47.6	67.4					
5	96.1	0.0	143.2	47.1	66.8					
6	94.1	0.0	132.1	38.0	53.8					
7	93.9	0.0	124.8	30.9	43.8					
8	93.5	0.0	123.7	30.2	42.9					
9	92.4	0.0	122.6	30.2	42.9					
10	94.0	0.0	122.4	28.4	40.3					
11	94.0	0.0	119.9	25.9	36.7					
12	93.8	0.0	118.6	24.8	35.2					
13		94.0	94.0	94.0	0.0	116.7	22.7	32.1		
14	96.0	1.3	1.3	1.3	1.3	145.3	49.3	69.8		
15	96.0	2.3	145.3	49.3	69.8					
16	97.2	7.4	143.9	46.7	66.2					
17	97.1	3.8	143.2	46.1	65.4					
18	95.1	1.9	132.1	37.0	52.4					
19	94.5	1.1	123.7	29.2	41.4					
20	93.5	1.0	122.6	29.1	41.3					
21	95.0	8.0	122.4	27.4	38.9					
22	95.0	8.0	119.9	24.9	35.3					
23	95.0	1.8	116.7	21.7	30.7					
24	95.3	166.1	113.1	17.8	25.2					
25*	143.1	37.8	143.1	N/A	N/A					
26*	141.5	-42.7	141.5	N/A	N/A					
27*	144.9	-8.2	144.9	N/A	N/A					
28*	145.5	-175.2	145.5	N/A	N/A					
Boundary Condition										

Minimum Pressure

Prepared By:

NOVATECH ENGINEERING CONSULTANTS LTD.

Table 5 Phase 1 Max Daily Demand and Fire Flow Summary											
	Node Fire Flow Pressure										
Fire Location	Block #	Min Pressure	(LPS)	(m)	(PSI)						
14	16	14	164.3	39.2	55.6						
15	1	15	164.3	36.2	51.4						
16	2	16	164.3	36.4	51.6						
17	3	17	164.3	35.0	49.7						
18	4	18	164.3	32.5	46.0						
19	5	19	164.3	23.1	32.8						
20	6	20	164.3	22.2	31.5						
21	8	21	164.3	22.9	32.4						
22	9	22	164.3	20.8	29.5						
23	10	23	164.3	18.1	25.7						
24	11	24	164.3	17.8	25.2						

Prepared By:

NOVATECH ENGINEERING CONSULTANTS LTD.

Appendix B

Sanitary Servicing Information

Project No. 120025 Project Name: Python Compex Project Location: Citigate Drive, Ottawa

Date: April 2020

Detailed Building Use Sanitary Flows

Daily Demands from OBC Table 8.2.1.3

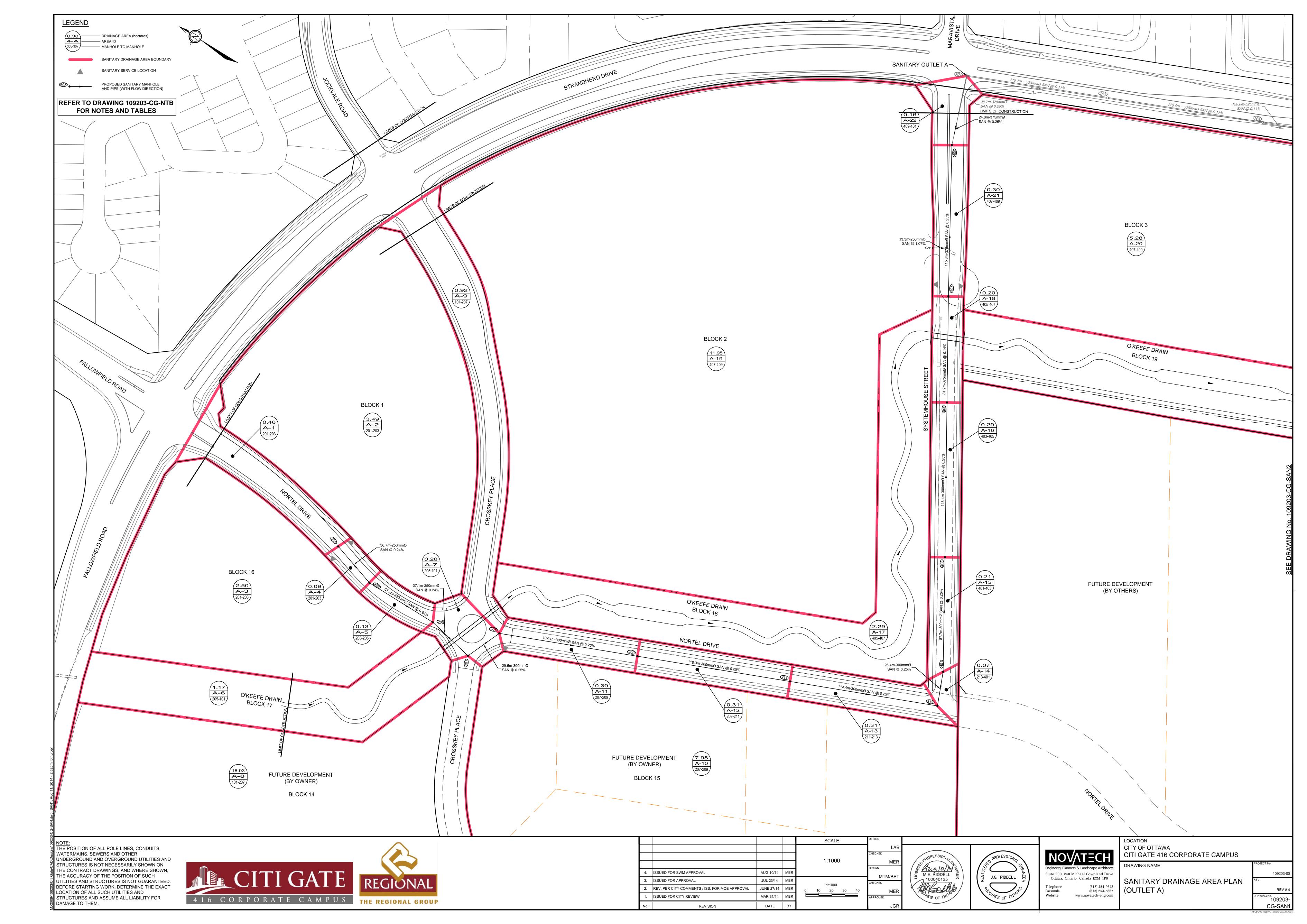
Establishment	Daily Demand Volume				
Industrial Building:	150	L/day/loading bay			
	950	L/day/bathroom			
Commercial Office:	75	L/day/9.3m² Floor area			

Commercial / Industrial Peaking Factors City of Ottawa Water Distrubution Guidelines

Building Use	Peaking Factor	
Commercial	1.5	
Industrial	3.5	Se

Sewer Design Guidelines Appendix 4B

Proposed Building Sanitary Flows


	Commercial Office	Industrial Building	Totals
Floor Area	2870	N/A	
No. Bathrooms	N/A	100	
No. Loading Bays	N/A	56	
Total Daily Volume (Liters)	23145.2	103400.0	126545.2
Peak Building Sanitary Flow (L/s)	0.402	4.189	4.59

Extraneous Flows

	Extraneous Flow	Total Extraneous Flows
Total Site Area (ha)	Alottment (L/s/ha)	(L/s)
26.01	0.33	8.58

Total Site Peak Sanitary Flows

I	Total Peak Building Sanitary	Total Extraneous Flows	Total Site Peak Flows
	Flows (L/s)	(L/s)	(L/s)
I	4.59	8.58	13.17

SANITARY SEWER DESIGN SHEET

Citi Gate 416 Corporate Campus Phase 1 - As-Built

CITY FILE NO.: D07-16-12-0023 DESIGNED BY: LAB CHECKED BY: MER/MSP PREPARED March 31, 2014 REVISED: August 10, 2014
REVISED: September 25, 2015

NOVATECH FILE NO.: 109203-0

REVISEI	D: September 25, 2015	AS-BUILT															
		Location				Wastewate	r Flow Q(w)	Extraneous	s Flow Q(i)	Design Flow Q(d) Proposed Sanitary Sewer							
Area I.D.	Street	Block Number	From MH	То МН	Area (ha)	Individual Peak Flow Rate 50,000 L/ha/d (L/s)	Cumulative Peak Flow Rate (L/s)	Individual Infiltration Rate 0.28 L/s/ha (L/s)	Cumulative Infiltration Rate (L/s)	Peak Design Flow (L/s)	Length (m)	Pipe Size (mm)	Type of Pipe	Grade %	Capacity (L/s)	Full Flow Velocity (m/s)	Percentage of Capacity
•	dherd Drive at Maravista D Drainage Area Plan (10920							,									
A-1	Nortel Drive		201	203	0.40	0.35	0.35	0.11	0.11	0.46							
A-2	Nortel Drive	Block 1	201	203	3.49	3.03	3.38	0.98	1.09	4.47							
A-3	Nortel Drive	Block 16	201	203	2.50	2.17	5.55	0.70	1.79	7.34							
A-4	Nortel Drive		201	203	0.09	0.08	5.63	0.03	1.81	7.44	36.0	250	PVC	0.53	45.16	0.89	16%
		BLC	OCK 13 AL	LOTMENT													
A-5	Nortel Drive		203	205	0.13	0.11	5.74	0.04	1.85	7.59	57.5	250	PVC	0.28	32.83	0.65	23%
A-6	Nortel Drive	Block 17	205	101	1.17	1.02	6.75	0.33	2.18	8.93							
A-7	Nortel Drive		205	101	0.20	0.17	6.93	0.06	2.23	9.16	37.3	250	PVC	0.21	28.43	0.56	32%
	Crosskey Rlace	0000		207	~~~	0.80	7737	V0.26	7.54	15.27							
A-8	Crosskey Place	Block 14	101	207	18.03	15.65	23.38	5.05	5.05	28.43	29.0	300	PVC	0.17	41.59	0.57	68%
A-0	Closskey Flace	DIUCK 14	101	201	16.03	15.05	23.30	5.05	5.05	20.43	29.0	300	PVC	0.17	41.59	0.57	00%
A-10	Nortel Drive	Block 15	207	209	7.98	6.93	30.30	2.23	9.77	40.08							+
UA11UU	North Drive		<u> </u>	1209	<u> </u>	10.26	30.56	1 0.08 1 T	9.86	40.42	106.5	300	PVC	0.27	52.42	0.72	77%
A-12	Nortel Drive		209	211	0.31	0.27	30.83	0.09	9.95	40.78	118.8	300	PVC	0.29	54.33	0.74	75%
A-13	Nortel Drive		211	213	0.31	0.27	31.10	0.09	10.03	41.13	114.6	300	PVC	0.22	47.32	0.65	87%
A-14	Systemhouse Street		213	401	0.07	0.06	31.16	0.02	10.05	41.22	26.4	300	PVC	0.23	48.38	0.66	85%
A-15	Systemhouse Street		401	403	0.21	0.18	31.35	0.06	10.11	41.46	86.8	300	PVC	0.28	53.38	0.73	78%
A-16	Systemhouse Street		403	405	0.29	0.25	31.60	0.08	10.19	41.79	118.8	300	PVC	0.32	57.07	0.78	73%
A-17	Systemhouse Street	Block 18	405	407	2.29	1.99	33.59	0.64	10.83	44.42							
A-18	Systemhouse Street		405	407	0.20	0.17	33.76	0.06	10.89	44.65	80.4	375	PVC	0.14	68.44	0.60	65%
A 40	Custombauga Ctt	Diagr. 2	407	400	11.95	10.37	44.42	3.35	14.24	58.37							+
A-19 A-20	Systemhouse Street Systemhouse Street	Block 2 Block 3	407 407	409 409	11.95 5.28	4.58	44.13 48.72	1.48	14.24 15.71	58.37 64.43							+
A-20 A-21	Systemhouse Street	DIOCK 3	407	409	0.30	0.26	48.98	0.08	15.80	64.43	117.2	375	PVC	0.25	91.46	0.80	71%
Λ*21	Systemilouse Street	+	407	403	0.30	0.20	40.30	0.00	10.00	U+.//	117.2	3/3	1 70	0.20	31.40	0.00	1 1 /0
A-22	Systemhouse Street		409	101	0.16	0.14	49.11	0.04	15.84	64.96	54.8	375	PVC	0.24	89.61	0.79	72%
,,	3,0.0		100	101	0.10	V	10.11	0.01	10.01		04.0	0.0		0.24	00.01	0.70	+
										64.96							

56.58

Q(d) = Design Flow (L/s)

Q(w) = Peak Wastewater Flow (L/s) Q(i) = Extraneous Flow (L/s)

 $\overline{1. Q(d)} = Q(w) + Q(i)$, where

2. Q(i) = 0.28 L/s/ha

3. Peaking Factor = 1.5

Legend

0.20

As-built pipe grade (%) or length (m)

SANITARY SEWER DESIGN SHEET Citi Gate 416 Corporate Campus

Phase 1 - As-Built

NOVATECH FILE NO.: 109203-0

CITY FILE NO.: D07-16-12-0023

DESIGNED BY: LAB CHECKED BY: MER/MSP DATE (Issued with report): March 31, 2014

REVISED: August 10, 2014

REVISED: September 25, 2015

AS-BUILT Location Wastewater Flow Q(w) Extraneous Flow Q(i) Design Flow Q(d) **Proposed Sanitary Sewer** Individual Peak Cumulative Individual Cumulative **Peak Design Full Flow** Pipe Flow Rate Length Type of Grade Capacity Percentage Area I.D. To MH Peak Flow Rate Infiltration Rate Infiltration Rate Size Street **Block Number** From MH Area (ha) Flow Velocity 50,000 L/ha/d (m) Pipe % (L/s) of Capacity (L/s) 0.28 L/s/ha (L/s) (L/s) (L/s) (mm) (m/s) (L/s) Sanitary Outlet B to Strandherd Drive at Kennevale Drive Plan Reference: Sanitary Drainage Area Plan (109203-CG-SAN2) Lands Owned C-1 Nortel Drive Fut 501 22.68 19.69 19.69 6.35 6.35 26.04 4.0 300 PVC 0.20 45.12 0.62 58% by Others Lands Owned PVC B-1 **Dealership Street** Fut 501 27.06 23.49 23.49 7.58 7.58 31.07 12.5 300 0.20 45.12 0.62 69% by Others Block 11 B-2 Dealership Street 501 503 2.72 2.36 45.54 0.76 14.69 60.23 Dealership Street Block 10 2.14 B-3 501 503 1.86 47.40 0.60 15.29 62.68 111.29 0.68 57% B-4 Dealership Street 501 503 0.28 0.24 47.64 0.08 15.37 63.01 119.5 450 PVC B-5 Dealership Street Block 9 503 505 1.84 1.60 49.24 0.52 15.88 65.12 118.97 55% 119.2 450 PVC 0.16 0.72 B-6 Dealership Street 503 505 0.29 0.25 49.49 0.08 15.96 65.45 B-7 Block 12 (SWM 505 507 3.20 2.78 52.27 0.90 16.86 69.12 Dealership Street 1.42 B-8 Dealership Street Block 8 505 507 1.64 53.69 0.46 17.32 71.01 450 PVC 103.03 0.63 B-9 Dealership Street 505 507 0.20 0.17 53.86 0.06 17.37 71.24 85.7 0.12 69% 74.12 B-10 Dealership Street Block 19 507 509 2.51 2.18 56.04 0.70 18.08 B-11 Dealership Street 507 509 0.13 0.11 56.15 0.04 18.11 74.27 450 PVC 0.16 118.97 0.72 62% *55.9* 601 1.62 1.41 B-12 Philsar Street Block 6 603 1.41 0.45 0.45 1.86 Philsar Street 0.20 1.61 0.06 41.2 PVC 0.19 27.04 0.53 8% B-13 603 601 0.23 0.52 2.12 250 0.16 0.05 0.25 B-15 Philsar Street 601 509 0.19 1.77 0.57 2.34 101.2 250 PVC 31.02 0.61 8% Dealership Street Block 4 509 3.39 2.94 60.87 0.95 19.63 80.50 B-16 511 450 PVC 0.17 122.63 0.75 66% B-17 Dealership Street 509 511 0.24 0.21 61.08 0.07 19.70 80.78 B-14 Dealership Street Block 5 511 513 2.14 1.86 62.93 0.60 20.30 83.23 B-18 Dealership Street 511 513 0.20 0.17 63.11 0.06 20.36 83.46 *75.9* 450 PVC 0.20 133.02 0.81 63% B-19 Outlet to Lift Station 513 515 0.03 63.14 0.01 20.37 83.51 450 PVC 192.76 1.17 43% 0.04

Notes:

1. Q(d) = Q(w) + Q(i), where

2. Q(i) = 0.28 L/s/ha

3. Peaking Factor = 1.5

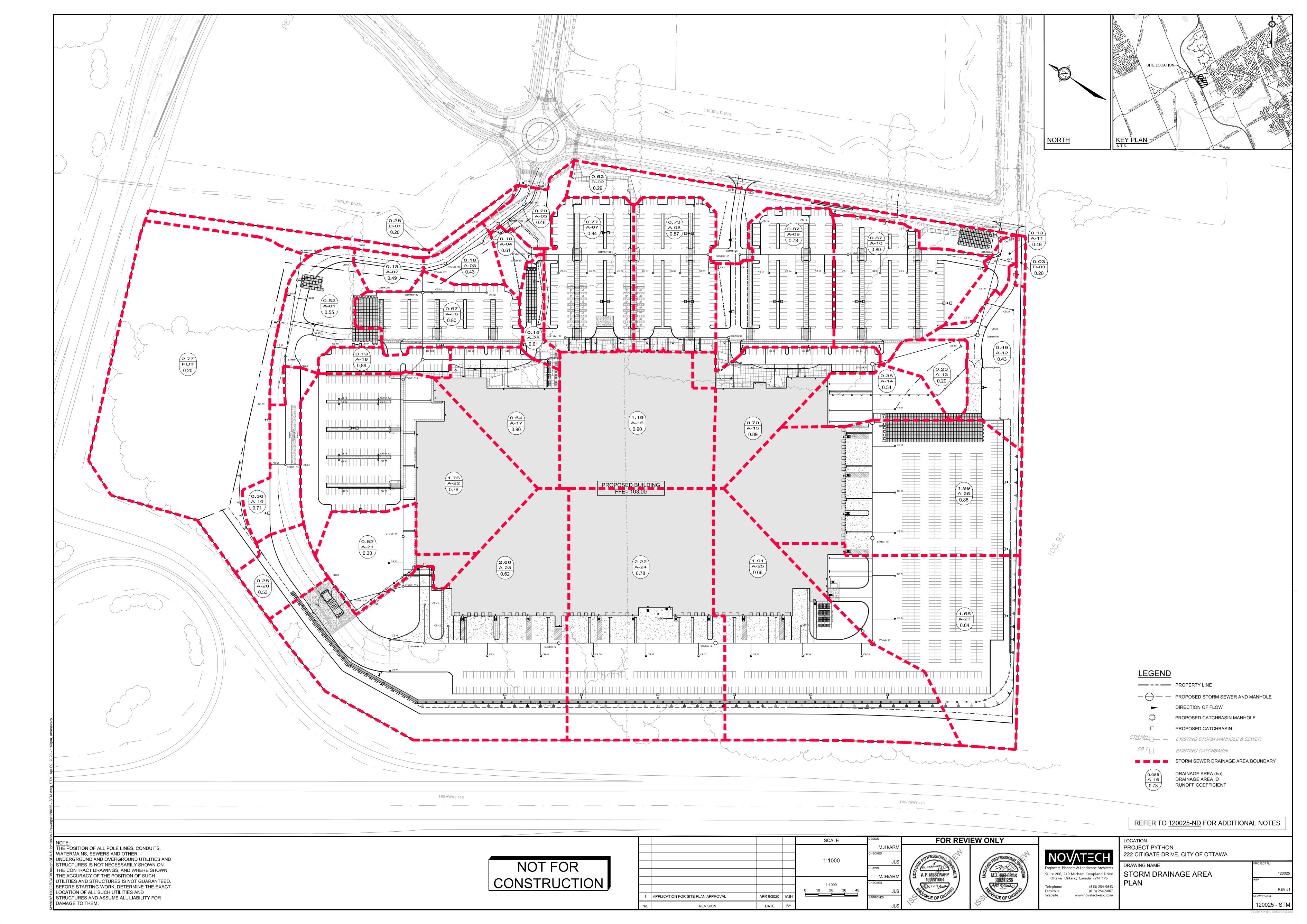
Legend:

72.74

Q(d) = Design Flow (L/s)

Q(i) = Extraneous Flow (L/s)

Q(w) = Peak Wastewater Flow (L/s)


0.20

As-built pipe grade (%) or length (m)

Appendix C

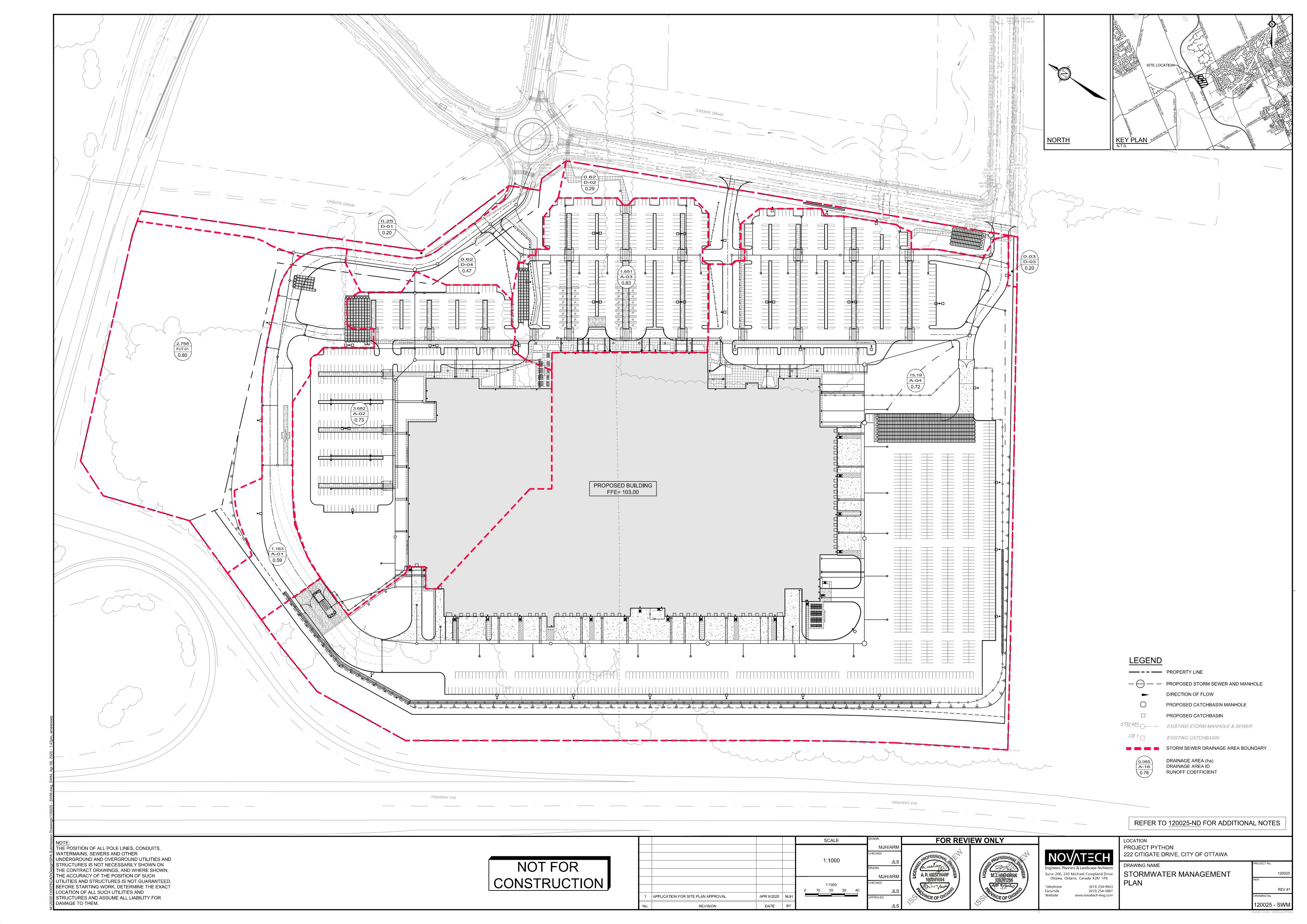
Storm Servicing Information

STORM SEWER DESIGN SHEET (222 CITIGATE DR) FLOW RATES BASED ON RATIONAL METHOD

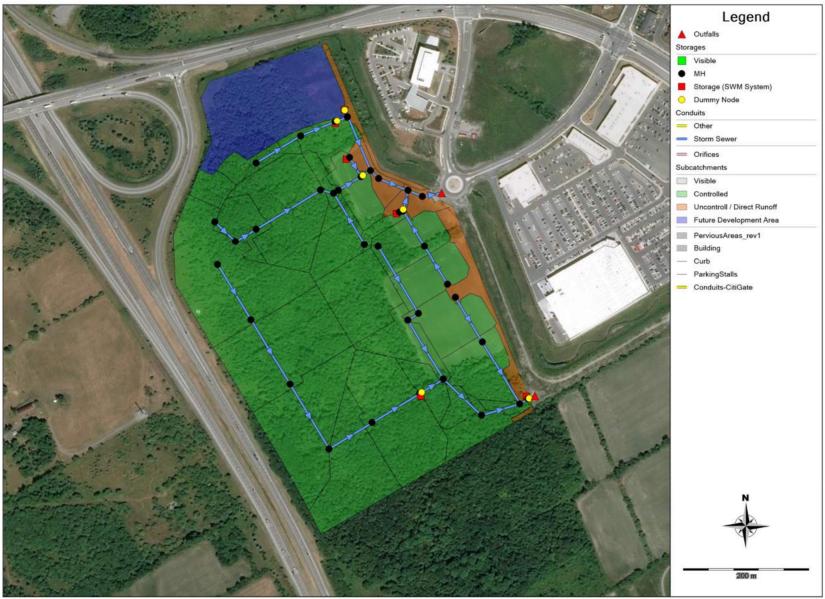
												Engineers, Planners & Landscape Architects											
	LOCATION			ARE	A (ha)					FLO)W			TOTAL FLOW				SEW	/ER DA	TA			
AREA ID	From	То	Total Area	C =	C =	C AC	Indiv	Accum	Time of	Rainfall Intensity	Rainfall Intensity	Rainfall Intensity	Peak Flow	Total Peak	Dia. (m)	Dia.	Туре	Slope	Length	Capacity	Velocity	Time	Ratio
7 11 127 1 12	Manhole	Manhole	(ha)	0.20	0.90	(ha)	2.78 AC	2.78 AC	Concentration	2 Year (mm/hr)	5 Year (mm/hr)	10 Year (mm/hr)	(L/s)	Flow, Q (L/s)	Actual	(mm)		(%)	(m)	(L/s)	(m/s)	(min)	Q/Q fu
	•				•		•	N	ORTH PARKIN	G SYSTEM (1:5 Y	EAR STORM EV	ENT)		•									
						0.00		0.000	10.00														
A-19	STMMH 120	STMMH 119	0.360	0.098	0.262	0.71 0.26	0.710	0.710	10.00		104.19		74.0	74.0	0.305	300	PVC	3.00	82.9	174.6	2.39	0.58	42%
						0.00	0.000	0.000	10.00												<u> </u>	 	
A-01	STMMH 119	STMMH 118	0.520	0.260	0.260	0.00 0.55 0.29	0.000 0.795	0.000 1.505	10.58 10.58		101.24		152.4	152.4	0.457	450	Conc	2.00	50 1	420.3	2.56	0.38	36%
Α	O TIVILVII T T TO	O TIVIIVII T T TO	0.020	0.200	0.200	0.00	0.000	0.000	10.58		101.24		102.4	102.4	0.401	400	00110	2.00	00.1	420.0	2.00	0.00	0070
						0.00	0.000	0.000	10.96														
	STMMH 118	STMMH 117				0.00	0.000	1.505	10.96		99.37		149.6	149.6	0.457	450	Conc	2.00	21.8	420.3	2.56	0.14	36%
						0.00	0.000	0.000	10.96												ļ!	<u> </u>	
						0.00		0.000	10.00								_					1	
FUT	STUB	STMMH 117	2.770	2.770	0.000	0.20 0.55	1.540	1.540	10.00		104.19		160.5	160.5	0.914	900	Conc	0.30	12.5	1,033.9	1.57	0.13	16%
						0.00	0.000	0.000	10.00									+ +			\vdash	 	
						0.00	0.000	0.000	44.40												\vdash	₩	
A-02	STMMH 117	STMMH 107	0.130	0.076	0.054	0.00 0.49 0.06	0.000 0.177	0.000 3.223	11.10 11.10		98.70		318.1	318.1	0.914	900	Conc	0.30	93.7	1,033.9	1.57	0.99	31%
A-V2	O TIVIIVII T T T	O TIVIIVII T TOT	0.130	0.070	0.054	0.49 0.00	0.000	0.000	11.10		90.70		310.1	010.1	0.514	300	Oone	0.00	30.7	1,000.0	1.07	0.55	0170
						0.00	0.000	0.000															
						0.00	0.000	0.000	10.00														
A-20	STMMH 116	STMMH 115	0.280	0.148	0.132	0.53 0.15	0.413	0.413	10.00		104.19		43.0	43.0	0.305	300	PVC	2.00	45.8	142.5	1.95	0.39	30%
						0.00	0.000	0.000	10.00												<u> </u>		
• • •	07111111111	071111111111		0.440		0.00	0.000	0.000	10.39		100.4-			00.4	0.500	505		0.70	00.0	075.4	4.00		000/
A-21	STMMH 115	STMMH 114	0.520	0.446	0.074	0.30 0.16 0.00	0.433	0.846	10.39 10.39		102.17		86.4	86.4	0.533	525	Conc	0.70	38.3	375.1	1.68	0.38	23%
						0.00	0.000	0.000	10.77												\vdash	 	
A-22	STMMH 114	STMMH 113	1.760	0.352	1.408	0.76 1.34	3.719	4.564	10.77		100.29		457.7	457.7	0.762	750	Conc	0.50	120.0	820.8	1.80	1.11	56%
						0.00	0.000	0.000	10.77												<u> </u>		
	OTMAN 440	OTM # 11 4 4 0	0.000	0.000	0.000	0.00	0.000	0.000	11.88		05.00		104.5	40.4.5	0.700	750		0.50	04.4	000.0	4.00	0.00	500/
	STMMH 113	STMMH 110	0.000	0.000	0.000	0.00	0.000	4.564 0.000	11.88 11.88		95.20		434.5	434.5	0.762	750	Conc	0.50	21.4	820.8	1.80	0.20	53%
						0.00	0.000	0.000	11.00												\vdash	 	
						0.00	0.000	0.000	10.00												\blacksquare		
A-17	STMMH 111	STMMH 110	0.640	0.000	0.640	0.90 0.58	1.601	1.601	10.00		104.19		166.8	166.8	0.457	450	Conc	1.37	95.5	347.9	2.12	0.75	48%
			3.3.0		5.5.0	0.00	0.000	0.000	10.00														
							0.000	0.000	12.08														
	STMMH 110	STMMH 109	0.000	0.000	0.000	0.00	0.000	6.165	12.08		94.35		581.7	581.7	0.762	750	Conc	1.00	8.8	1,160.8	2.55	0.06	50%
						0.00	0.000	0.000	12.08									+			 	 	1
A-18	STMMH 100	STMMH 108	0.190	0.003	0.187	0.00 0.89 0.17	0.000 0.470	0.000 6.635	12.14 12.14		94.11		624.4	624.4	0.762	750	Conc	1 00	42 5	1,160.8	2.55	0.28	54%
A-10	C I WIIWII I 109	STIVIIVII 100	0.180	0.003	0.107	0.00	0.000	0.000	12.14		0⊤. 11		U24.4	024.4	0.702	, 50	Conc	1.00	74.0	1, 100.0	2.00	0.20] //
						0.00	0.000	0.000	12.42									† †					
A-06	STMMH 108	STMMH 107	0.570	0.081	0.489	0.80 0.46	1.269	7.904	12.42		92.95		734.7	734.7	0.762	750	Conc	1.00	17.9	1,160.8	2.55	0.12	63%
					ļ	0.00	0.000	0.000	12.42									+			<u> </u>	 	
																						—	
	OTNANALI 407	CTMMU 400	0.000	0.000	0.000	0.00		0.000	12.53		00.40		4.000.0	1 000 0	0.004	075	Cono	0 20	17.0	1 200 0	1.66	0.40	000/
	STIVIVIH 107	STMMH 106	0.000	0.000	0.000	0.00	0.000	11.126 0.000	12.53 12.53		92.48		1,028.9	1,028.9	0.991	975	Conc	0.30	۵.۱۱	1,280.0	1.66	0.18	80%
					1	0.00	0.000	0.000	12.03	Į.				1									1

STORM SEWER DESIGN SHEET (222 CITIGATE DR) FLOW RATES BASED ON RATIONAL METHOD

													Engineers, Planners & Landscape Architects												
LO	OCATION			ARE	A (ha)						FLO	W			TOTAL FLOW				SE	WER DA	ATA				
485418	From	То	Total Area	C =	C =	С	AC	Indiv	Accum	Time of	Rainfall Intensity	Rainfall Intensity	Rainfall Intensity	Peak Flow	Total Peak	Dia. (m)	Dia.	Type	Slope	Length	Capacity	Velocity		Ratio	
AREA ID	Manhole	Manhole	(ha)	0.20	0.90		(ha)	2.78 AC	2.78 AC	Concentration	2 Year (mm/hr)	5 Year (mm/hr)	10 Year (mm/hr)	(L/s)	Flow, Q (L/s)	Actual	(mm)		(%)	(m)	(L/s)	(m/s)	Time (min)	Q/Q full	
							0.00	0.000	0.000	12.71															
A-03	STMMH 106	STMMH 102	0.180	0.121	0.059		0.08	0.215	11.341	12.71		91.76		1,040.7	1,040.7	0.991	975	Conc	0.30	50.7	1,280.0	1.66	0.51	81%	
							0.00	0.000	0.000	12.71															
							0.00	0.000	0.000	10.00															
A-08	STMMH 105	STMMH 104	0.730	0.031	0.699		0.64	1.766	1.766	10.00		104.19		184.0	184.0	0.533	525	Conc	0.70	70.9	375.1	1.68	0.70	49%	
		-					0.00	0.000	0.000	10.00															
		07111111111					0.00	0.000	0.000	10.70					0.50			_						100/	
A-07	STMMH 104	STMMH 103	0.770	0.066	0.704		0.65	1.798 0.000	3.564 0.000	10.70 10.70		100.62		358.6	358.6	0.610	600	Conc	1.50	66.0	784.0	2.69	0.41	46%	
							0.00	0.000	0.000	11.11															
A-04, A-28	STMMH 103	STMMH 102	0.250	0.104	0.146	0.61	0.15	0.423	3.987	11.11		98.66		393.4	393.4	0.610	600	Conc	1.50	33.4	784.0	2.69	0.21	50%	
							0.00	0.000	0.000	11.11															
	OT1 # ** :	OT1 41 *** 12 *	0.655	0.000			0.00	0.000	0.000	13.22				4.0====	4.0=0.0	0.001			0 ==	01.0	4.050	0.11	0.10	060/	
	STMMH 102	STMMH 101	0.000	0.000	0.000		0.00	0.000	15.328	13.22		89.78		1,376.2	1,376.2	0.991	975	Conc	0.50	24.8	1,652.4	2.14	0.19	83%	
						1	0.00	0.000	0.000	13.22 13.41															
A-05	STMMH 101	EX STMMH	0.170	0.107	0.063		0.08	0.000	15.545	13.41		89.06		1,384.5	1,384.5	0.991	975	Conc	0.50	31.1	1,652.4	2.14	0.24	84%	
							0.00	0.000	0.000	13.41					,						,				
SOUTH PARKING SYSTEM (1:5 YEAR STORM EVENT)																									
	0711111111	07111111					0.00	0.000	0.000	10.00								_						100/	
A-23	STMMH 16	STMMH 15	2.660	1.064	1.596		1.65	4.585	4.585	10.00		104.19		477.7	477.7	0.914	900	Conc	0.30	102.5	1,033.9	1.57	1.09	46%	
							0.00	0.000	0.000	10.00 11.09															
A-24	STMMH 15	STMMH 14	2.220	0.381	1.839		1.73	4.813	9.398	11.09		98.79		928.4	928.4	1.067	1050	Conc	0.30	120.0	1,559.7	1.74	1.15	60%	
							0.00	0.000	0.000	11.09															
4.05	OTMANII 44	OTNANALI 40	1.010	0.055	4.055		0.00	0.000	0.000	12.23		00.70		4.000.0	4 000 0	4.040	4000	0	0.00	400.0	0.000.0	4.04	4.05	E 40/	
A-25	STMMH 14	STMMH 13	1.910	0.655	1.255	0.66	0.00	3.504 0.000	12.902 0.000	12.23 12.23		93.72		1,209.2	1,209.2	1.219	1200	Conc	0.30	120.0	2,226.9	1.91	1.05	54%	
						+	0.00	0.000	0.000	13.28															
A-27	STMMH 13	STMMH 12	1.550	0.576	0.974		0.99	2.757	15.659	13.28		89.56		1,402.5	1,402.5	1.219	1200	Conc	0.30	80.4	2,226.9	1.91	0.70	63%	
							0.00	0.000	0.000	13.28				-											
4.00	CTMM4114C	CTMM41144	4.000	0.444	4.070		0.00	0.000	0.000	13.98		07.00		4 770 4	4 770 4	1 010	1000	0	0.00	00.0	0.000.0	4.04	0.77	000/	
A-26	STMMH 12	STMMH 11	1.990	0.114	1.876		0.00	4.757 0.000	20.416 0.000	13.98 13.98		87.00		1,776.1	1,776.1	1.219	1200	Conc	0.30	88.6	2,226.9	1.91	0.77	80%	
							0.00	0.000	0.000	14.76					 	-			+						
A-14	STMMH 11	STMMH 07	0.380	0.304	0.076			0.359	20.775	14.76		84.35		1,752.5	1,752.5	1.219	1200	Conc	0.30	44.5	2,226.9	1.91	0.39	79%	
							0.00	0.000	0.000	14.76															
							0.00		0.000	10.00															
A-16	STMMH 10	STMMH 09	1.190	0.000	1.190		1.07	2.977	2.977	10.00		104.19		310.2	310.2	0.610	600	Conc	1.00	125.0	640.2	2.19	0.95	48%	
							0.00	0.000	0.000	10.00 10.95									+						
	STMMH 09	STMMH 08	0.000	0.000	0.000		0.00	0.000	2.977	10.95		99.43		296.0	296.0	0.610	600	Conc	1.00	20.3	640.2	2.19	0.15	46%	
							0.00	0.000	0.000	10.95							<u> </u>								
							0.00	0.000	0.000	11.10								_							
A-15	STMMH 08	STMMH 07	0.700	0.010	0.690	0.89	0.62	1.732	4.709	11.10		98.70		464.8	464.8	0.610	600	Conc	1.00	110.0	640.2	2.19	0.84	73%	
							0.00	0.000	0.000	11.10															


STORM SEWER DESIGN SHEET (222 CITIGATE DR) FLOW RATES BASED ON RATIONAL METHOD

LC	OCATION			ARE	A (ha)			FLOW						TOTAL FLOW	W SEWER DATA									
AREA ID	From	То	Total Area	C =	C =	С	AC	Indiv	Accum	Time of	Rainfall Intensity	Rainfall Intensity	Rainfall Intensity	Peak Flow	Total Peak	Dia. (m)	Dia.	Туре	Slope	Length	Capacity	Velocity	Flow Time	Rati
AREA ID	Manhole	Manhole	(ha)	0.20	0.90		(ha)	2.78 AC	2.78 AC	Concentration	2 Year (mm/hr)	5 Year (mm/hr)	10 Year (mm/hr)	(L/s)	Flow, Q (L/s)	Actual	(mm)		(%)	(m)	(L/s)	(m/s)	(min)	Q/Q
							0.00	0.000	0.000	15.15								_						
A-13	STMMH 07	STMMH 06	0.230	0.230	0.000	0.20	0.05	0.128	25.613 0.000	15.15 15.15		83.09		2,128.2	2,128.2	1.219	1200	Conc	0.70	83.5	3,401.6	2.91	0.48	63
							0.00	0.000	0.000	15.62														\vdash
A-12	STMMH 06	STMMH 02	0.490	0.329	0.161		0.21	0.586	26.198	15.62		81.60		2,137.7	2,137.7	1.219	1200	Conc	0.70	63.6	3,401.6	2.91	0.36	63
							0.00	0.000	0.000	15.62														₩
								2 222	2.222	10.00														₩
A-09	STMMH 05	STMMH 04	0.870	0.149	0.721		0.00	0.000 1.887	0.000 1.887	10.00 10.00		104.19		196.6	196.6	0.533	525	Conc	1 00	82.9	448.4	2.01	0.69	44
A-03	STIVIIVII 1 03	311/11/11/104	0.070	0.149	0.721	0.76	0.00	0.000	0.000	10.00		104.19		190.0	190.0	0.555	323	Conc	1.00	02.9	440.4	2.01	0.03	4
					0.00	0.000	0.000	10.69														1		
A-10 STMMH 04 STMMH 02	0.870	0.124	0.746		0.70	1.935	3.822	10.69		100.69		384.9	384.9	0.610	600	Conc	1.50	115.3	784.0	2.69	0.72	4		
					0.00	0.000	0.000	10.69														+		
							0.00	0.000	0.000	15.99														_
A-11	STMMH 02	STMMH 01	0.130	0.076	0.054		0.06	0.000	30.198	15.99		80.50		2,430.9	2,430.9	1.219	1200	Conc	0.60	15.3	3,149.3	2.70	0.09	7
							0.00	0.000	0.000	15.99					,						,			
	OTMALL 04	EV CTMM	0.000	0.000	0.000		0.00	0.000	0.000	16.08		00.00		0.400.5	0.400.5	1 240	4000	0	0.00	40.0	0.440.0	0.70	0.07	_
	STMMH 01	EX STMMH	0.000	0.000	0.000		0.00	0.000	30.198 0.000	16.08 16.08		80.22		2,422.5	2,422.5	1.219	1200	Conc	0.60	12.0	3,149.3	2.70	0.07	77
							0.00	0.000	0.000	10.00														+
										†				<u> </u>										<u> </u>
2.78 AIC, where												Consult	tant:							Novated	:h			
Peak Flow in Litres pe	er Second (L/s)											Date):						A	oril 2, 20	20			
Area in hectares (ha)											Design By:					Matthew Hrehoriak								
Rainfall Intensity (mm/h	nr), 5 year storm										Client:				Dwg. Reference: Checked			d By:						
Runoff Coefficient															120025-STM LS									


Appendix D

Stormwater Management Modeling

Overall Model Schematic

Date: 2020-04-05

Subcatchments and Flow Paths

Date: 2020-04-05

Maintenance Holes (Storage Nodes)

Date: 2020-04-05

222 CitiGate Drive - Project Python (120025) PCSWMM Model Output - 100-year, 3-hour Chicago Storm

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.013)

************* Element Count ********

Name Data Source Type Interval
Raingagel C3hr-100yr INTENSITY 10 min.

Name	Area	Width	%Imperv	%Slope Rain Gage	Outlet	
A-01	0.52	115.56	50.00	1.5000 Raingagel	MH119	
A-02	0.13	65.00	41.40	1.5000 Raingagel	MH117	
A-03	0.18	60.00	32.90	1.5000 Raingagel	MH106	
A-04	0.10	40.00	32.90	1.5000 Raingagel	MH102	
A-05	0.20	44.44	37.10	1.5000 Raingagel	MH101	
A-06	0.57	142.50	85.70	1.5000 Raingagel	MH108	
A-07	0.77	118.46	91.40	1.5000 Raingagel	MH104	
A-08	0.73	112.31	95.70	1.5000 Raingagel	MH105	
A-09	0.87	145.00	82.90	1.5000 Raingagel	MH05	
A-10	0.87	145.00	85.70	1.5000 Raingagel	MH04	
A-11	0.13	23.64	41.40	1.5000 Raingagel	MH02	
A-12	0.49	75.39	32.90	1.5000 Raingagel	MH06	
A-13	0.23	65.71	0.00	1.5000 Raingagel	MH07	
A-14	0.38	84.44	20.00	1.5000 Raingagel	MH11	
A-15	0.70	233.33	98.60	1.5000 Raingagel	MH08	
A-16	1.19	119.00	100.00	1.5000 Raingage1	MH10	

A-17	0.64	142.22	100.00	1.5000 Raingagel	MH111
A-18	0.19	95.00	98.60	1.5000 Raingagel	CBMH109
A-19	0.36	65.45	72.90	1.5000 Raingagel	MH120
A-20	0.28	62.22	47.10	1.5000 Raingagel	MH116
A-21	0.52	104.00	14.30	1.5000 Raingagel	MH115
A-22	1.76	185.26	80.00	1.5000 Raingage1	MH114
A-23	2.66	295.56	60.00	1.5000 Raingagel	MH16
A-24	2.22	233.68	82.90	1.5000 Raingagel	MH15
A-25	1.91	293.85	65.70	1.5000 Raingagel	MH14
A-26	1.99	209.47	94.30	1.5000 Raingagel	MH12
A-27	1.55	172.22	62.90	1.5000 Raingagel	MH13
A-28	0.15	21.43	77.10	1.5000 Raingage1	MH103
D-01	0.25	166.67	0.00	1.5000 Raingage1	EX-MH208
D-02	0.62	155.00	12.90	1.5000 Raingage1	EX-MH214
D-03	0.03	60.00	0.00	1.5000 Raingage1	EX-MH214
FIIT	2 77	230 83	85 00	1 5000 Raingage1	Storage-NFIIT

L 95.64	0.97	0.0	
L 94.65	1.20	0.0	
97.70	4.15	0.0	
97.56	2.99	0.0	
97.32	3.82	0.0	
96.60	3.40	0.0	
94.72	3.46	0.0	
94.72	3.46	0.0	
94.84	4.23	0.0	
97.33	3.59	0.0	
98.23	2.44	0.0	
95.42	5.59	0.0	
96.50	5.61	0.0	
98.20	4.62	0.0	
98.46	3.93	0.0	
€ 99.77	2.70	0.0	
95.80	2.82	0.0	
95.96	3.60	0.0	
97.10	3.99	0.0	
97.10	3.99	0.0	
98.12	3.76	0.0	
98.70	2.75	0.0	
	Elev. L 95.64 L 94.65 E 97.70 E 97.56 E 97.82 E 96.60 E 94.72 E 94.84 E 97.33 E 98.23 E 98.20 E 98.70 E 99.77 E 95.80 E 99.77	Elev. Depth L 95.64 0.97 L 94.65 1.20 E 97.70 4.15 E 97.56 2.99 E 97.32 3.82 E 96.60 3.40 E 94.72 3.46 E 94.72 3.46 E 94.72 3.46 E 94.72 3.24 E 95.42 5.59 E 98.23 2.44 E 95.42 5.59 E 98.20 4.62 E 98.46 3.93 E 99.77 2.70 E 95.80 2.82 E 95.96 3.60 E 97.10 3.99 E 97.10 3.99 E 98.12 3.76	E 97.56 2.99 0.0 E 97.32 3.82 0.0 E 96.60 3.40 0.0 E 94.72 3.46 0.0 E 94.72 3.46 0.0 E 94.73 3.46 0.0 E 99.73 3.59 0.0 E 99.82 2.44 0.0 E 95.42 5.59 0.0 E 96.50 5.61 0.0 E 98.20 4.62 0.0 E 99.77 2.70 0.0 E 99.79 3.60 0.0 E 99.71 3.99 0.0 E 97.10 3.99 0.0 E 97.10 3.99 0.0 E 98.12 3.76 0.0

Date: 04/05/20

222 CitiGate Drive - Project Python (120025) PCSWMM Model Output - 100-year, 3-hour Chicago Storm

MH106	STORAGE	96.12	4.57	0.0
MH107	STORAGE	96.20	4.64	0.0
MH108	STORAGE	97.15	3.64	0.0
MH108-Dummy	STORAGE	97.15	3.64	0.0
MH11	STORAGE	97.09	4.51	0.0
MH110	STORAGE	97.80	4.37	0.0
MH111	STORAGE	100.13	2.66	0.0
MH113	STORAGE	98.13	4.20	0.0
MH114	STORAGE	98.76	3.72	0.0
MH115	STORAGE	99.26	2.42	0.0
MH116	STORAGE	100.50	2.98	0.0
MH117	STORAGE	96.55	3.45	0.0
MH118	STORAGE	97.44	2.43	0.0
MH118-Dummy	STORAGE	97.44	2.43	0.0
MH119	STORAGE	98.85	2.59	0.0
MH11-Dummy	STORAGE	97.09	4.51	0.0
MH12	STORAGE	97.37	4.16	0.0
MH120	STORAGE	101.78	1.72	0.0
MH13	STORAGE	97.62	3.85	0.0
MH14	STORAGE	98.04	3.47	0.0
MH15	STORAGE	98.55	3.02	0.0
MH16	STORAGE	99.01	3.06	0.0
Storage-N01	STORAGE	97.56	2.38	0.0
Storage-N02	STORAGE	97.66	3.01	0.0
Storage-N03	STORAGE	97.45	3.79	0.0
Storage-NFUT	STORAGE	96.60	3.40	0.0
Storage-S01	STORAGE	97.33	4.27	0.0
Storage-S02	STORAGE	95.03	3.19	0.0

****** Link Summary

Name	From Node	To Node	Type	Length	%Slope R	oughness
CBMH109-MH108	CBMH109	MH108	CONDUIT	42.5	1.0008	0.0130
CBMH201-MH108	CBMH201	MH108	CONDUIT	35.4	0.9899	0.0130
CBMH211-MH103	CBMH211	MH103	CONDUIT	6.1	1.9612	0.0130
FUT-MH117	FUT-Dummy	MH117	CONDUIT	12.5	0.3205	0.0130
MH01-MH214	MH01-Dummy	EX-MH214	CONDUIT	12.2	0.5738	0.0130
MH02-MH01	MH02	MH01	CONDUIT	15.3	0.5886	0.0130
MH04-MH02	MH 0 4	MH02	CONDUIT	115.4	1.4998	0.0130
MH05-MH04	MH05	MH 0 4	CONDUIT	82.9	1.0014	0.0130
Mh06-MH02	MH06	MH02	CONDUIT	63.6	0.7076	0.0130
MH07-MH06	MH07	MH06	CONDUIT	83.5	0.6943	0.0130
MH08-MH07	MH08	MH07	CONDUIT	110.0	1.0002	0.0130

MH09-MH08	MH09	MH08	CONDUIT	20.3	0.9843	0.0130
MH101-MH100	MH101	EX-MH208	CONDUIT	31.1	0.5143	0.0130
MH102-MH101	MH102	MH101	CONDUIT	24.8	0.4841	0.0130
MH103-Dummy	MH103-Dummy	MH102	CONDUIT	33.4	1.4972	0.0130
MH104-MH103	MH104	MH103	CONDUIT	66.0	1.5006	0.0130
MH105-MH104	MH105	MH104	CONDUIT	70.9	0.7049	0.0130
MH106-MH102	MH106	MH102	CONDUIT	50.6	0.3159	0.0130
MH107-MH106	MH107	MH106	CONDUIT	17.8	0.3375	0.0130
MH108-MH107	MH108-Dummy	MH107	CONDUIT	17.9	1.0040	0.0130
MH10-MH09	MH10	MH09	CONDUIT	125.0	1.0001	0.0130
MH110-CBMH109	MH110	CBMH109	CONDUIT	8.8	0.9978	0.0130
MH111-MH110	MH111	MH110	CONDUIT	95.5	1.3932	0.0130
MH113-MH110	MH113	MH110	CONDUIT	21.4	0.5131	0.0130
MH114-MH113	MH114	MH113	CONDUIT	120.0	0.5000	0.0130
MH115-MH114	MH115	MH114	CONDUIT	38.3	0.6783	0.0130
MH116-MH115	MH116	MH115	CONDUIT	45.8	2.0008	0.0130
MH117-MH107	MH117	MH107	CONDUIT	93.7	0.2988	0.0130
MH118-MH117	MH118-Dummy	MH117	CONDUIT	21.8	2.0178	0.0130
MH119-MH118	MH119	MH118	CONDUIT	59.1	1.9967	0.0130
MH11-MH07	MH11-Dummy	MH07	CONDUIT	44.5	0.2921	0.0130
MH120-MH119	MH120	MH119	CONDUIT	82.9	2.9933	0.0130
MH12-MH11	MH12	MH11	CONDUIT	88.6	0.3047	0.0130
MH13-MH12	MH13	MH12	CONDUIT	80.4	0.2986	0.0130
MH14-MH13	MH14	MH13	CONDUIT	120.0	0.3000	0.0130
MH15-MH14	MH15	MH14	CONDUIT	120.0	0.3000	0.0130
MH16-MH15	MH16	MH15	CONDUIT	102.5	0.3025	0.0130
Storage-N01-MH1	18 Storage-N01	MH118	CONDUIT	3.0	2.0004	0.0130
Storage-N02-CBM	H201 Storage-N02	CBMH201	CONDUIT	2.0	2.0004	0.0130
Storage-N03-CBM	H211 Storage-N03	CBMH211	CONDUIT	4.0	2.5008	0.0130
Storage-S01-MH1	1 Storage-S01	MH11	CONDUIT	7.5	1.0667	0.0130
Storage-S02-MH0	1 Storage-S02	MH01	CONDUIT	4.0	2.0004	0.0130
FUT-ICD	Storage-NFUT	FUT-Dummy	ORIFICE			
MH01-ICD	MH01	MH01-Dummy	ORIFICE			
MH103-ICD	MH103	MH103-Dummy	ORIFICE			
MH108-ICD	MH108	MH108-Dummy	ORIFICE			
MH118-ICD	MH118	MH118-Dummy	ORIFICE			
MH11-ICD	MH11	MH11-Dummy	ORIFICE			
		_				

Cross Section Summary

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow	
CBMH109-MH108	CIRCULAR	0.75	0.44	0.19	0.75	1	1113.77	

Date: 04/05/20

CBMH201-MH108	CIRCULAR	0.75	0.44	0.19	0.75	1	1107.69
CBMH211-MH103	CIRCULAR	0.53	0.22	0.13	0.53	1	602.30
FUT-MH117	CIRCULAR	0.90	0.64	0.23	0.90	1	1024.95
MH01-MH214	CIRCULAR	1.20	1.13	0.30	1.20	1	2953.40
MH02-MH01	CIRCULAR	1.20	1.13	0.30	1.20	1	2991.37
MH04-MH02	CIRCULAR	0.60	0.28	0.15	0.60	1	752.01
MH05-MH04	CIRCULAR	0.53	0.22	0.13	0.53	1	430.38
Mh06-MH02	CIRCULAR	1.20	1.13	0.30	1.20	1	3279.69
MH07-MH06	CIRCULAR	1.20	1.13	0.30	1.20	1	3248.79
MH08-MH07	CIRCULAR	0.60	0.28	0.15	0.60	1	614.12
MH09-MH08	CIRCULAR	0.60	0.28	0.15	0.60	1	609.21
MH101-MH100	CIRCULAR	0.97	0.75	0.24	0.97	1	1607.28
MH102-MH101	CIRCULAR	0.97	0.75	0.24	0.97	1	1559.31
MH103-Dummy	CIRCULAR	0.60	0.28	0.15	0.60	1	751.34
MH104-MH103	CIRCULAR	0.60	0.28	0.15	0.60	1	752.21
MH105-MH104	CIRCULAR	0.53	0.22	0.13	0.53	1	361.10
MH106-MH102	CIRCULAR	0.97	0.75	0.24	0.97	1	1259.65
MH107-MH106	CIRCULAR	0.97	0.75	0.24	0.97	1	1301.94
MH108-MH107	CIRCULAR	0.75	0.44	0.19	0.75	1	1115.54
MH10-MH09	CIRCULAR	0.60	0.28	0.15	0.60	1	614.06
MH110-CBMH109	CIRCULAR	0.75	0.44	0.19	0.75	1	1112.11
MH111-MH110	CIRCULAR	0.45	0.16	0.11	0.45	1	336.55
MH113-MH110	CIRCULAR	0.75	0.44	0.19	0.75	1	797.47
MH114-MH113	CIRCULAR	0.75	0.44	0.19	0.75	1	787.26
MH115-MH114	CIRCULAR	0.53	0.22	0.13	0.53	1	354.23
MH116-MH115	CIRCULAR	0.30	0.07	0.07	0.30	1	136.79
MH117-MH107	CIRCULAR	0.90	0.64	0.23	0.90	1	989.67
MH118-MH117	CIRCULAR	0.45	0.16	0.11	0.45	1	405.02
MH119-MH118	CIRCULAR	0.45	0.16	0.11	0.45	1	402.89
MH11-MH07	CIRCULAR	1.20	1.13	0.30	1.20	1	2107.38
MH120-MH119	CIRCULAR	0.30	0.07	0.07	0.30	1	167.31
MH12-MH11	CIRCULAR	1.20	1.13	0.30	1.20	1	2152.36
MH13-MH12	CIRCULAR	1.20	1.13	0.30	1.20	1	2130.63
MH14-MH13	CIRCULAR	1.20	1.13	0.30	1.20	1	2135.56
MH15-MH14	CIRCULAR	1.05	0.87	0.26	1.05	1	1495.77
MH16-MH15	CIRCULAR	0.90	0.64	0.23	0.90	1	995.73
Storage-N01-MH11	8 CIRCULAR	0.45	0.16	0.11	0.45	1	403.27
Storage-N02-CBMH		0.75	0.44	0.19	0.75		1 1574.66
Storage-N03-CBMH		0.53	0.22	0.13	0.53		1 680.14
Storage-S01-MH11		1.05	0.87	0.26	1.05	1	2820.53
Storage-S02-MH01	CIRCULAR	1.05	0.87	0.26	1.05	1	3862.45

 ${\tt NOTE:}$ The summary statistics displayed in this report are

based on results found at every computational time step, not just on results from each reporting time step.

*******	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	1.860	71.667
Evaporation Loss	0.000	0.000
Infiltration Loss	0.332	12.804
Surface Runoff	1.527	58.818
Final Storage	0.019	0.715
Continuity Error (%)	-0.936	

******	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	1.527	15.275
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	1.529	15.294
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.001	0.012
Continuity Error (%)	-0.201	

Highest Continuity Errors Node MH08 (1.60%) Node MH113 (-1.06%) Node MH114 (1.01%)

******* Time-Step Critical Elements Link Storage-N02-CBMH201 (25.09%) Link Storage-N02-LBMH201 (25.09%)
Link MH01-MH214 (1.95%)
Link Storage-N03-CBMH211 (1.16%)
Link Storage-S01-MH11 (1.10%)

Highest Flow Instability Indexes Link MH11-ICD (30) Link MH118-ICD (2)

Routing Time Step Summary

******* 0.11 sec 1.70 sec 2.00 sec

Minimum Time Step :
Average Time Step :
Maximum Time Step :
Percent in Steady State :
Average Iterations per Step :
Percent Not Converging : -0.00

Subcatchment Runoff Summary

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Runoff mm	Perv Runoff mm	Total Runoff mm	Total Runoff 10^6 ltr	Peak Runoff LPS	Coeff
A-01	71.67	0.00	0.00	23.05	35.21	13.17	48.38	0.25	185.21	0.675
A-02	71.67	0.00	0.00	26.38	29.07	16.36	45.42	0.06	50.00	0.634
A-03	71.67	0.00	0.00	30.78	23.11	17.87	40.98	0.07	57.35	0.572
A-04	71.67	0.00	0.00	30.55	23.10	18.18	41.28	0.04	33.57	0.576
A-05	71.67	0.00	0.00	29.33	26.09	16.15	42.24	0.08	60.20	0.589
A-06	71.67	0.00	0.00	6.34	60.47	4.20	64.67	0.37	273.34	0.902
A-07	71.67	0.00	0.00	3.81	64.62	2.53	67.15	0.52	373.13	0.937
A-08	71.67	0.00	0.00	1.89	67.66	1.32	68.99	0.50	357.97	0.963
A-09	71.67	0.00	0.00	7.67	58.58	4.82	63.40	0.55	405.04	0.885
A-10	71.67	0.00	0.00	6.39	60.56	4.08	64.65	0.56	411.75	0.902
A-11	71.67	0.00	0.00	27.52	29.16	14.80	43.96	0.06	39.62	0.613
A-12	71.67	0.00	0.00	32.14	23.16	16.24	39.41	0.19	124.40	0.550
A-13	71.67	0.00	0.00	47.21	0.00	24.99	24.99	0.06	36.76	0.349
A-14	71.67	0.00	0.00	37.83	14.32	19.92	34.24	0.13	85.27	0.478
A-15	71.67	0.00	0.00	0.61	70.45	0.46	70.91	0.50	346.42	0.989
A-16	71.67	0.00	0.00	0.00	72.29	0.00	72.29	0.86	579.20	1.009
A-17	71.67	0.00	0.00	0.00	71.73	0.00	71.73	0.46	317.01	1.001
A-18	71.67	0.00	0.00	0.61	69.40	0.46	69.86	0.13	94.04	0.975
A-19	71.67	0.00	0.00	12.29	51.47	7.42	58.89	0.21	156.74	0.822
A-20	71.67	0.00	0.00	24.45	33.16	13.85	47.01	0.13	96.33	0.656
A-21	71.67	0.00	0.00	41.00	10.24	20.80	31.04	0.16	97.96	0.433
A-22	71.67	0.00	0.00	9.15	57.20	5.36	62.56	1.10	776.68	0.873
A-23	71.67	0.00	0.00	18.92	43.18	9.96	53.13	1.41	957.56	0.741
A-24	71.67	0.00	0.00	7.78	59.41	4.65	64.05	1.42	1003.30	0.894
A-25	71.67	0.00	0.00	15.80	46.76	9.04	55.80	1.07	764.31	0.779
A-26	71.67	0.00	0.00	2.53	67.22	1.68	68.90	1.37	961.59	0.961
A-27	71.67	0.00	0.00	17.46	44.56	9.33	53.89	0.84	577.12	0.752
A-28	71.67	0.00	0.00	10.41	55.00	6.23	61.23	0.09	66.37	0.854

D-01	71.67	0.00	0.00	45.35	0.00	27.36	27.36	0.07	68.15	0.382
D-02	71.67	0.00	0.00	41.11	9.05	21.78	30.83	0.19	126.26	0.430
D-03	71.67	0.00	0.00	44.28	0.00	29.64	29.64	0.01	11.75	0.414
FUT	71.67	0.00	0.00	6.85	60.78	4.04	64.82	1.80	1247.55	0.904

Node	Type	Average Depth Meters		HGL	Occu	of Max rrence hr:min	Reported Max Depth Meters
EX-MH208	OUTFALL	0.10	0.70	96.34	0	01:13	0.70
EX-MH214	OUTFALL	0.11	0.84	95.49	0	01:14	0.84
CBMH109	STORAGE	0.15	2.17	99.87	0	01:12	2.17
CBMH201	STORAGE	0.15	2.03	99.59	0	01:23	2.03
CBMH211	STORAGE	0.09	1.50	98.82	0	01:21	1.50
FUT-Dummy	STORAGE	0.07	0.54	97.14	0	01:14	0.54
MH01	STORAGE	0.21	2.91	97.63	0	01:14	2.90
MH01-Dummy	STORAGE	0.11	0.84	95.56	0	01:14	0.84
MH02	STORAGE	0.19	2.87	97.71	0	01:14	2.86
MH04	STORAGE	0.05	1.52	98.85	0	01:12	1.51
MH05	STORAGE	0.03	1.09	99.32	0	01:11	1.09
MH06	STORAGE	0.13	2.47	97.89	0	01:14	2.46
MH07	STORAGE	0.11	1.68	98.18	0	01:14	1.67
MH08	STORAGE	0.05	1.30	99.50	0	01:11	1.30
MH09	STORAGE	0.05	1.41	99.87	0	01:11	1.40
MH10	STORAGE	0.04	1.24	101.01	0	01:10	1.23
MH101	STORAGE	0.11	0.75	96.55	0	01:13	0.75
MH102	STORAGE	0.11	0.76	96.72	0	01:13	0.76
MH103	STORAGE	0.14	1.72	98.82	0	01:21	1.72
MH103-Dummy	STORAGE	0.04	0.23	97.33	0	01:21	0.23
MH104	STORAGE	0.05	1.48	99.60	0	01:10	1.47
MH105	STORAGE	0.04	1.31	100.01	0	01:10	1.29
MH106	STORAGE	0.10	0.73	96.85	0	01:13	0.73
MH107	STORAGE	0.11	0.74	96.94	0	01:14	0.74
MH108	STORAGE	0.25	2.44	99.59	0	01:23	2.43
MH108-Dummy	STORAGE	0.08	0.45	97.60	0	01:23	0.45
MH11	STORAGE	0.18	1.72	98.81	0	01:14	1.72
MH110	STORAGE	0.13	2.15	99.95	0	01:12	2.15
MH111	STORAGE	0.03	0.88	101.01	0	01:10	0.88
MH113	STORAGE	0.10	1.99	100.12	0	01:12	1.99
MH114	STORAGE	0.07	2.05	100.81	0	01:11	2.04

MH115	STORAGE	0.04	1.62	100.88	0	01:11	1.61
MH116	STORAGE	0.02	0.77	101.27	0	01:11	0.76
MH117	STORAGE	0.08	0.57	97.12	0	01:14	0.57
MH118	STORAGE	0.07	1.19	98.63	0	01:18	1.19
MH118-Dummy	STORAGE	0.02	0.22	97.66	0	01:18	0.22
MH119	STORAGE	0.02	0.36	99.21	0	01:10	0.36
MH11-Dummy	STORAGE	0.13	1.19	98.28	0	01:14	1.19
MH12	STORAGE	0.13	2.08	99.45	0	01:11	2.08
MH120	STORAGE	0.02	0.23	102.01	0	01:10	0.23
MH13	STORAGE	0.11	2.24	99.86	0	01:11	2.23
MH14	STORAGE	0.10	2.51	100.55	0	01:11	2.49
MH15	STORAGE	0.09	2.44	100.99	0	01:11	2.43
MH16	STORAGE	0.07	2.18	101.19	0	01:11	2.17
Storage-N01	STORAGE	0.05	1.07	98.63	0	01:18	1.07
Storage-N02	STORAGE	0.13	1.93	99.59	0	01:23	1.93
Storage-N03	STORAGE	0.07	1.37	98.82	0	01:21	1.37
Storage-NFUT	STORAGE	0.10	0.99	97.59	0	01:17	0.99
Storage-S01	STORAGE	0.11	1.45	98.78	0	01:22	1.45
Storage-S02	STORAGE	0.13	2.60	97.63	0	01:14	2.59

Node	Туре	Maximum Lateral Inflow LPS	Maximum Total Inflow LPS	Occu	of Max rrence hr:min	Lateral Inflow Volume 10^6 ltr	Total Inflow Volume 10^6 ltr	Flow Balance Error Percent
EX-MH208	OUTFALL	68.15	1429.64	0	01:13	0.0685	6.06	0.000
EX-MH214	OUTFALL	138.00	2564.85	0	01:14	0.2	9.23	0.000
CBMH109	STORAGE	94.04	1137.74	0	01:11	0.133	1.99	-0.026
CBMH201	STORAGE	0.00	945.89	0	01:10	0	1.5	0.003
CBMH211	STORAGE	0.00	493.16	0	01:10	0	0.71	0.011
FUT-Dummy	STORAGE	0.00	513.41	0	01:17	0	1.79	0.001
MH01	STORAGE	0.00	2842.50	0	01:11	0	9.5	-0.005
MH01-Dummy	STORAGE	0.00	2470.79	0	01:14	0	9.03	0.004
MH02	STORAGE	39.62	2898.66	0	01:10	0.0572	9.01	-0.289
MH04	STORAGE	411.75	775.71	0	01:10	0.563	1.11	1.009
MH05	STORAGE	405.04	405.04	0	01:10	0.552	0.552	0.324
MH06	STORAGE	124.40	2296.01	0	01:10	0.193	7.84	-0.086
MH07	STORAGE	36.76	2334.65	0	01:11	0.0575	7.65	-0.049
MH08	STORAGE	346.42	834.58	0	01:10	0.496	1.36	1.624
MH09	STORAGE	0.00	530.89	0	01:10	0	0.858	-0.771

MH10	STORAGE	579.20	579.20	0	01:10	0.861	0.861	0.289
MH101	STORAGE	60.20	1380.91	0	01:13	0.0845	5.99	0.023
MH102	STORAGE	33.57	1343.81	0	01:13	0.0413	5.91	-0.021
MH103	STORAGE	66.37	732.05	0	01:10	0.0919	1.47	-0.236
MH103-Dummy	STORAGE	0.00	233.14	0	01:21	0	1.12	0.000
MH104	STORAGE	373.13	707.02	0	01:10	0.517	1.02	-0.510
MH105	STORAGE	357.97	357.97	0	01:10	0.504	0.504	0.857
MH106	STORAGE	57.35	1093.45	0	01:14	0.0738	4.75	0.018
MH107	STORAGE	0.00	1068.69	0	01:19	0	4.68	0.042
MH108	STORAGE	273.34	1362.34	0	01:10	0.369	3.12	0.007
MH108-Dummy	STORAGE	0.00	421.33	0	01:23	0	2.36	0.001
MH11	STORAGE	85.27	3623.48	0	01:11	0.13	8.07	-0.131
MH110	STORAGE	0.00	1078.22	0	01:11	0	1.85	-0.563
MH111	STORAGE	317.01	317.01	0	01:10	0.459	0.459	1.414
MH113	STORAGE	0.00	839.76	0	01:10	0	1.38	-1.051
MH114	STORAGE	776.68	919.25	0	01:10	1.1	1.39	1.016
MH115	STORAGE	97.96	174.42	0	01:10	0.161	0.293	-0.181
MH116	STORAGE	96.33	96.33	0	01:10	0.132	0.132	0.471
MH117	STORAGE	50.00	663.47	0	01:17	0.0591	2.32	-0.118
MH118	STORAGE	0.00	335.10	0	01:10	0	0.593	-0.591
MH118-Dummy	STORAGE	0.00	130.81	0	01:18	0	0.465	-0.000
MH119	STORAGE	185.21	339.78	0	01:10	0.252	0.464	0.450
MH11-Dummy	STORAGE	0.00	1505.66	0	01:24	0	6.25	-0.020
MH12	STORAGE	961.59	3587.52	0	01:10	1.37	6.11	0.008
MH120	STORAGE	156.74	156.74	0	01:10	0.212	0.212	0.000
MH13	STORAGE	577.12	2790.80	0	01:10	0.836	4.73	-0.283
MH14	STORAGE	764.31	2427.24	0	01:10	1.07	3.89	0.042
MH15	STORAGE	1003.30	1864.33	0	01:10	1.42	2.84	0.280
MH16	STORAGE	957.56	957.56	0	01:10	1.41	1.41	0.100
Storage-N01	STORAGE	0.00	202.82	0	01:10	0	0.131	0.015
Storage-N02	STORAGE	0.00	933.72	0	01:10	0	0.74	-0.025
Storage-N03	STORAGE	0.00	489.06	0	01:10	0	0.353	-0.005
Storage-NFUT	STORAGE	1247.55	1247.55	0	01:10	1.8	1.8	0.001
Storage-S01	STORAGE	0.00	2137.35	0	01:11	0	1.83	-0.003
Storage-S02	STORAGE	0.00	878.44	0	01:06	0	0.466	0.061

No nodes were surcharged.

No nodes were flooded.

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	Evap Pcnt Loss		Maximum Volume 1000 m3	Max Pcnt Full	0cci	of Max errence hr:min	Maximum Outflow LPS
CBMH109	0.000	4	0	0	0.002	52	0	01:12	1129.08
CBMH201	0.000	5	0	0	0.002	68	0	01:23	933.72
CBMH211	0.000	2	0	0	0.002	39	0	01:21	489.06
FUT-Dummy	0.000	2	0	0	0.001	16	0	01:14	513.51
MH01	0.000	6	0	0	0.003	84	0	01:14	2794.38
MH01-Dummy	0.000	3	0	0	0.001	24	0	01:14	2470.87
MH02	0.000	4	0	0	0.003	68	0	01:14	2809.26
MH04	0.000	1	0	0	0.002	42	0	01:12	698.16
MH05	0.000	1	0	0	0.001	45	0	01:11	372.12
MH06	0.000	2	0	0	0.003	44	0	01:14	2179.82
MH07	0.000	2	0	0	0.002	30	0	01:14	2176.56
MH08	0.000	1	0	0	0.001	28	0	01:11	806.43
MH09	0.000	1	0	0	0.002	36	0	01:11	520.90
MH10	0.000	2	0	0	0.001	46	0	01:10	530.89
MH101	0.000	4	0	0	0.001	26	0	01:13	1380.97
MH102	0.000	3	0	0	0.001	21	0	01:13	1344.60
MH103	0.000	4	0	0	0.002	43	0	01:21	715.35
MH103-Dummy	0.000	1	0	0	0.000	6	0	01:21	233.14
MH104	0.000	1	0	0	0.002	39	0	01:10	668.03
MH105	0.000	1	0	0	0.001	48	0	01:10	334.84
MH106	0.000	2	0	0	0.001	16	0	01:13	1094.20
MH107	0.000	2	0	0	0.001	16	0	01:14	1066.06
MH108	0.000	7	0	0	0.003	67	0	01:23	1342.18
MH108-Dummy	0.000	2	0	0	0.000	12	0	01:23	420.91
MH11	0.000	4	0	0	0.002	38	0	01:14	3604.61
MH110	0.000	3	0	0	0.002	49	0	01:12	1062.27
MH111	0.000	1	0	0	0.001	33	0	01:10	315.05
MH113	0.000	2	0	0	0.002	47	0	01:12	802.50
MH114	0.000	2	0	0	0.002	55	0	01:11	839.76
MH115	0.000	1	0	0	0.002	67	0	01:11	180.25
MH116	0.000	1	0	0	0.001	26	0	01:11	86.52
MH117	0.000	2	0	0	0.001	17	0	01:14	664.22

MH118	0.000	3	0	0	0.001	49	0	01:18	322.40
MH118-Dummy	0.000	1	0	0	0.000	9	0	01:18	130.81
MH119	0.000	1	0	0	0.000	14	0	01:10	335.10
MH11-Dummy	0.000	3	0	0	0.001	26	0	01:14	1519.84
MH12	0.000	3	0	0	0.002	50	0	01:11	3546.77
MH120	0.000	1	0	0	0.000	13	0	01:10	155.05
MH13	0.000	3	0	0	0.003	58	0	01:11	2769.65
MH14	0.000	3	0	0	0.003	72	0	01:11	2295.71
MH15	0.000	3	0	0	0.003	81	0	01:11	1686.24
MH16	0.000	2	0	0	0.002	71	0	01:11	869.11
Storage-N01	0.006	3	0	0	0.131	74	0	01:18	57.96
Storage-N02	0.064	9	0	0	0.738	100	0	01:18	177.93
Storage-N03	0.019	5	0	0	0.352	95	0	01:21	113.52
Storage-NFUT	0.067	10	0	0	0.684	98	0	01:17	513.41
Storage-S01	0.136	6	0	0	1.829	79	0	01:22	554.92
Storage-S02	0.030	7	0	0	0.462	100	0	01:11	212.03

	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
Outfall Node	Pcnt	LPS	LPS	10^6 ltr
EX-MH208	98.86	129.97	1429.64	6.060
EX-MH214	99.08	191.79	2564.85	9.233
System	98.97	321.75	2564.85	15.294

Link	Туре	Maximum Flow LPS	0ccu	of Max rrence hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
CBMH109-MH108 CBMH201-MH108 CBMH211-MH103 FUT-MH117	CONDUIT CONDUIT CONDUIT CONDUIT	1129.08 945.89 493.16 513.51	0 0 0	01:11 01:10 01:10 01:17	2.56 2.14 2.28 1.27	1.01 0.85 0.82 0.50	1.00 1.00 1.00 0.61

MH01-MH214	CONDUIT	2470.87	0	01:14	2.92	0.84	0.70
MH02-MH01	CONDUIT	2809.26	0	01:10	2.48	0.94	1.00
MH04-MH02	CONDUIT	698.16	0	01:06	2.69	0.93	1.00
MH05-MH04	CONDUIT	372.12	0	01:06	2.00	0.86	1.00
Mh06-MH02	CONDUIT	2179.82	0	01:10	1.99	0.66	1.00
MH07-MH06	CONDUIT	2176.56	0	01:10	2.74	0.67	1.00
MH08-MH07	CONDUIT	806.43	0	01:11	2.87	1.31	1.00
MH09-MH08	CONDUIT	520.90	0	01:11	1.84	0.86	1.00
MH101-MH100	CONDUIT	1380.97	0	01:13	2.33	0.86	0.74
MH102-MH101	CONDUIT	1344.60	0	01:14	2.26	0.86	0.75
MH103-Dummy	CONDUIT	233.14	0	01:21	2.34	0.31	0.38
MH104-MH103	CONDUIT	668.03	0	01:10	2.36	0.89	1.00
MH105-MH104	CONDUIT	334.84	0	01:10	1.78	0.93	1.00
MH106-MH102	CONDUIT	1094.20	0	01:14	1.81	0.87	0.76
MH107-MH106	CONDUIT	1066.06	0	01:22	1.81	0.82	0.74
MH108-MH107	CONDUIT	420.91	0	01:23	1.85	0.38	0.51
MH10-MH09	CONDUIT	530.89	0	01:10	1.99	0.86	1.00
MH110-CBMH109	CONDUIT	1062.27	0	01:11	2.40	0.96	1.00
MH111-MH110	CONDUIT	315.05	0	01:07	2.20	0.94	1.00
MH113-MH110	CONDUIT	802.50	0	01:11	1.82	1.01	1.00
MH114-MH113	CONDUIT	839.76	0	01:10	1.90	1.07	1.00
MH115-MH114	CONDUIT	180.25	0	01:14	1.21	0.51	1.00
MH116-MH115	CONDUIT	86.52	0	01:06	1.90	0.63	1.00
MH117-MH107	CONDUIT	664.22	0	01:17	1.44	0.67	0.69
MH118-MH117	CONDUIT	130.81	0	01:19	1.94	0.32	0.44
MH119-MH118	CONDUIT	335.10	0	01:10	2.56	0.83	0.90
MH11-MH07	CONDUIT	1519.84	0	01:24	1.92	0.72	1.00
MH120-MH119	CONDUIT	155.05	0	01:10	2.68	0.93	0.76
MH12-MH11	CONDUIT	3546.77	0	01:11	3.14	1.65	1.00
MH13-MH12	CONDUIT	2769.65	0	01:11	2.45	1.30	1.00
MH14-MH13	CONDUIT	2295.71	0	01:11	2.03	1.07	1.00
MH15-MH14	CONDUIT	1686.24	0	01:10	1.95	1.13	1.00
MH16-MH15	CONDUIT	869.11	0	01:10	1.54	0.87	1.00
Storage-N01-MH118	CONDUIT	202.82	0	01:10	1.30	0.50	1.00
Storage-N02-CBMH201	CONDUIT	933.72	0	01:10	2.70	0.59	1.00
Storage-N03-CBMH211	CONDUIT	489.06	0	01:10	2.76	0.72	1.00
Storage-S01-MH11	CONDUIT	2137.35	0	01:11	3.18	0.76	1.00
Storage-S02-MH01	CONDUIT	878.44	0	01:06	1.09	0.23	1.00
FUT-ICD	ORIFICE	513.41	0	01:17			1.00
MH01-ICD	ORIFICE	2470.79	0	01:14			1.00
MH103-ICD	ORIFICE	233.14	0	01:21			1.00
MH108-ICD	ORIFICE	421.33	0	01:23			1.00
MH118-ICD	ORIFICE	130.81	0	01:18			1.00
MH11-ICD	ORIFICE	1505.66	0	01:24			1.00

	Adjusted						in Flo			
	/Actual		Up	Down	Sub	Sup	Up	Down	Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
CBMH109-MH108	1.00	0.01	0.00	0.00	0.21	0.01	0.00	0.77	0.04	0.00
CBMH201-MH108	1.00	0.01	0.02	0.00	0.22	0.01	0.00	0.74	0.03	0.00
CBMH211-MH103	1.00	0.02	0.01	0.00	0.21	0.00	0.00	0.76	0.04	0.00
FUT-MH117	1.00	0.01	0.00	0.00	0.75	0.00	0.00	0.24	0.01	0.00
MH01-MH214	1.00	0.01	0.00	0.00	0.67	0.32	0.00	0.00	0.87	0.00
MH02-MH01	1.00	0.01	0.00	0.00	0.24	0.01	0.00	0.74	0.00	0.00
MH04-MH02	1.00	0.01	0.00	0.00	0.06	0.00	0.00	0.93	0.02	0.00
MH05-MH04	1.00	0.01	0.00	0.00	0.02	0.01	0.00	0.96	0.01	0.00
Mh06-MH02	1.00	0.01	0.00	0.00	0.09	0.06	0.00	0.85	0.00	0.00
MH07-MH06	1.00	0.01	0.00	0.00	0.03	0.00	0.00	0.96	0.00	0.00
MH08-MH07	1.00	0.01	0.00	0.00	0.01	0.00	0.00	0.98	0.01	0.00
MH09-MH08	1.00	0.01	0.00	0.00	0.03	0.01	0.00	0.96	0.00	0.00
MH101-MH100	1.00	0.01	0.00	0.00	0.73	0.26	0.00	0.00	0.62	0.00
MH102-MH101	1.00	0.01	0.00	0.00	0.02	0.00	0.00	0.97	0.00	0.00
MH103-Dummy	1.00	0.01	0.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00
MH104-MH103	1.00	0.01	0.00	0.00	0.22	0.01	0.00	0.75	0.09	0.00
MH105-MH104	1.00	0.01	0.00	0.00	0.04	0.00	0.00	0.94	0.02	0.00
MH106-MH102	1.00	0.01	0.00	0.00	0.99	0.00	0.00	0.00	0.74	0.00
MH107-MH106	1.00	0.01	0.00	0.00	0.13	0.00	0.00	0.86	0.00	0.00
MH108-MH107	1.00	0.01	0.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00
MH10-MH09	1.00	0.01	0.00	0.00	0.02	0.01	0.00	0.96	0.00	0.00
MH110-CBMH109	1.00	0.01	0.00	0.00	0.14	0.01	0.00	0.85	0.00	0.00
MH111-MH110	1.00	0.01	0.00	0.00	0.04	0.00	0.00	0.95	0.02	0.00
MH113-MH110	1.00	0.01	0.00	0.00	0.11	0.00	0.00	0.88	0.00	0.00
MH114-MH113	1.00	0.01	0.00	0.00	0.09	0.00	0.00	0.90	0.02	0.00
MH115-MH114	1.00	0.01	0.00	0.00	0.04	0.00	0.00	0.96	0.00	0.00
MH116-MH115	1.00	0.01	0.00	0.00	0.02	0.00	0.00	0.97	0.00	0.00
MH117-MH107	1.00	0.01	0.00	0.00	0.22	0.00	0.00	0.77	0.07	0.00
MH118-MH117	1.00	0.01	0.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00
MH119-MH118	1.00	0.01	0.00	0.00	0.05	0.02	0.00	0.92	0.03	0.00
MH11-MH07	1.00	0.01	0.00	0.00	0.01	0.00	0.00	0.98	0.00	0.00
MH120-MH119	1.00	0.01	0.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00
MH12-MH11	1.00	0.01	0.00	0.00	0.99	0.00	0.00	0.00	0.91	0.00
MH13-MH12	1.00	0.01	0.00	0.00	0.36	0.00	0.00	0.63	0.07	0.00
MH14-MH13	1.00	0.01	0.00	0.00	0.08	0.00	0.00	0.91	0.01	0.00
MH15-MH14	1.00	0.01	0.00	0.00	0.04	0.00	0.00	0.95	0.01	0.00
MH16-MH15	1.00	0.01	0.00	0.00	0.03	0.00	0.00	0.96	0.00	0.00

Storage-N01-MH118	1 00	0.02	0.01	0 00	0.21	0 01	0 00	0.76	0 04	0 00
	1.00	0.02	0.01	0.00	0.21	0.01	0.00	0.70	0.04	0.00
Storage-N02-CBMH201	1.00	0.03	0.00	0.00	0.13	0.03	0.00	0.81	0.00	0.00
Storage-N03-CBMH211	1.00	0.03	0.00	0.00	0.10	0.03	0.00	0.84	0.00	0.00
Storage-S01-MH11	1.00	0.02	0.00	0.00	0.19	0.04	0.00	0.76	0.00	0.00
Storage-S02-MH01	1.00	0.02	0.00	0.00	0.22	0.01	0.00	0.75	0.01	0.00

Conduit	Both Ends	Hours Full Upstream	 Dnstream	Hours Above Full Normal Flow	Hours Capacity Limited
CBMH109-MH108		1.08			0.03
CBMH201-MH108				0.01	
CBMH211-MH103			1.17		
MH02-MH01		0.72			
MH04-MH02	0.20		0.64		0.08
MH05-MH04	0.10				0.01
Mh06-MH02	0.49				0.01
MH07-MH06	0.19				0.01
MH08-MH07			0.19		
MH09-MH08			0.19		
MH104-MH103			1.16		
MH105-MH104			0.41		0.01
MH10-MH09	0.10		0.18		0.01
MH110-CBMH109	1.00				0.01
MH111-MH110	0.08			0.01	0.01
MH113-MH110		0.72			0.15
MH114-MH113		0.37			0.09
MH115-MH114			0.36		0.01
MH116-MH115	0.08	0.08	0.16	0.01	0.01
MH119-MH118	0.01				0.01
MH11-MH07	0.01	0.01	0.02	0.01	0.01
MH12-MH11	0.45	0.48	0.61	0.21	0.16
MH13-MH12	0.34	0.34	0.48	0.16	0.16
MH14-MH13	0.23	0.23	0.32	0.08	0.17
MH15-MH14	0.18		0.23		0.10
MH16-MH15			0.18		0.01
Storage-N01-MH118		0.67	0.74	0.01	0.01
Storage-N02-CBMH201					0.01
Storage-N03-CBMH211			0.99	0.01	0.01
Storage-S01-MH11	0.47	0.47	0.61	0.01	0.01

0.68 0.68 0.73 0.01 0.01 Storage-S02-MH01

Analysis begun on: Sun Apr 5 10:04:52 2020 Analysis ended on: Sun Apr 5 10:05:00 2020 Total elapsed time: 00:00:08

Appendix E

Development Servicing Checklist

4. Development Servicing Study Checklist

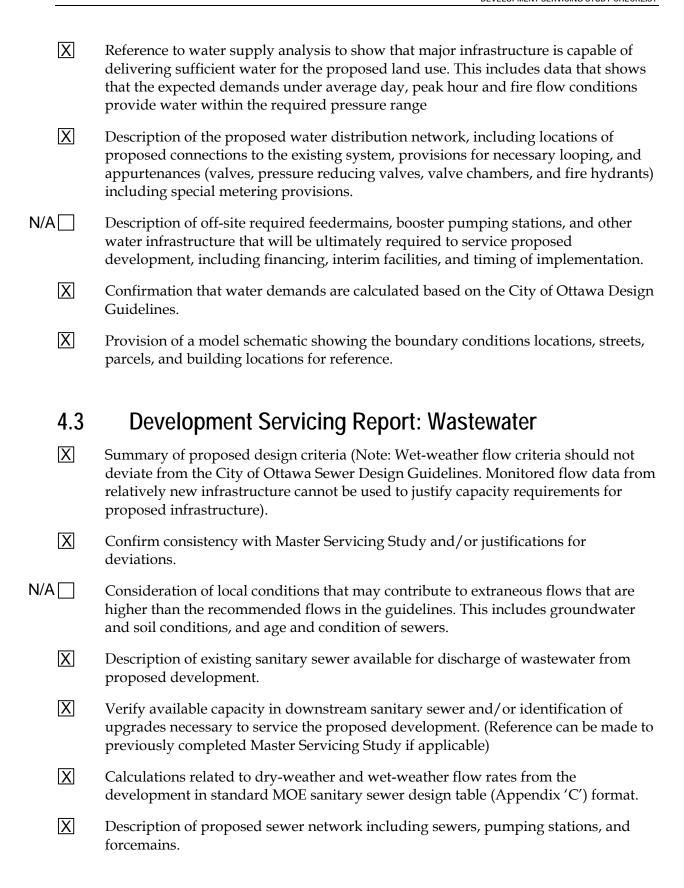
The following section describes the checklist of the required content of servicing studies. It is expected that the proponent will address each one of the following items for the study to be deemed complete and ready for review by City of Ottawa Infrastructure Approvals staff.

The level of required detail in the Servicing Study will increase depending on the type of application. For example, for Official Plan amendments and re-zoning applications, the main issues will be to determine the capacity requirements for the proposed change in land use and confirm this against the existing capacity constraint, and to define the solutions, phasing of works and the financing of works to address the capacity constraint. For subdivisions and site plans, the above will be required with additional detailed information supporting the servicing within the development boundary.

4.1 General Content

	Conordi Contont
N/A 🗌	Executive Summary (for larger reports only).
X	Date and revision number of the report.
X	Location map and plan showing municipal address, boundary, and layout of proposed development.
X	Plan showing the site and location of all existing services.
X	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.
	Summary of Pre-consultation Meetings with City and other approval agencies.
X	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.
X	Statement of objectives and servicing criteria.
X	Identification of existing and proposed infrastructure available in the immediate area.
X	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).

377776A101_WB062009009OTT 4-1


X	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.
N/A 🗌	Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.
N/A 🗌	Proposed phasing of the development, if applicable.
X	Reference to geotechnical studies and recommendations concerning servicing.
X	All preliminary and formal site plan submissions should have the following information:
	 Metric scale North arrow (including construction North) Koy plan

- Key plan
- Name and contact information of applicant and property owner
- Property limits including bearings and dimensions
- Existing and proposed structures and parking areas
- Easements, road widening and rights-of-way
- Adjacent street names

4.2 Development Servicing Report: Water

X	Confirm consistency with Master Servicing Study, if available
X	Availability of public infrastructure to service proposed development
N/A 🗌	Identification of system constraints
X	Identify boundary conditions
X	Confirmation of adequate domestic supply and pressure
X	Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.
X	Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.
N/A 🗌	Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design
X	Address reliability requirements such as appropriate location of shut-off valves
N/A 🗀	Check on the necessity of a pressure zone boundary modification

4-2 377776A101_WB102008001OTT

377776A101_WB1020080010TT 4-3

N/A 🗌	Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation soil cover, as well as protecting against water quantity and quality).
N/A 🗌	Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.
N/A 🗌	Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.
N/A 🗌	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.
	Special considerations such as contamination, corrosive environment etc.
4.4	Development Servicing Report: Stormwater Checklist
X	Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)
N/A 🗌	Analysis of available capacity in existing public infrastructure.
X	A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.
X	Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.
X	Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.
X	Description of the stormwater management concept with facility locations and descriptions with references and supporting information.
N/A 🗌	Set-back from private sewage disposal systems.
X	Watercourse and hazard lands setbacks.
N/A 🗌	Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.
X	Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.

4-4 377776A101_WB102008001OTT

X	Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).
X	Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.
X	Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.
N/A 🗌	Any proposed diversion of drainage catchment areas from one outlet to another.
X	Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.
N/A 🗌	If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event.
	Identification of potential impacts to receiving watercourses
	Identification of municipal drains and related approval requirements.
X	Descriptions of how the conveyance and storage capacity will be achieved for the development.
	100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.
N/A 🗌	Inclusion of hydraulic analysis including hydraulic grade line elevations.
X	Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.
N/A 🗌	Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.
N/A 🗌	Identification of fill constraints related to floodplain and geotechnical investigation.

4.5 Approval and Permit Requirements: Checklist

The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following:

377776A101_WB102008001OTT 4-5

X	Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.
	Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.
N/A 🗌	Changes to Municipal Drains.
N/A 🗌	Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)
4.6	Conclusion Checklist
X	Clearly stated conclusions and recommendations
N/A 🗌	Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.
X	All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario

4-6 377776A101_WB102008001OTT

Appendix F

Drawings