

120 lber Road, Suite 103 Ottawa, Ontario K2S 1E9 Tel. (613)836-0856 Fax (613) 836-7183 www.DSEL.ca

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT

FOR

JACK UPPAL 3802 & 3812 GREENBANK ROAD

CITY OF OTTAWA

PROJECT NO.: 18-1060

FEBRUARY 2020- REV 4 © DSEL

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT FOR JACK UPPAL 3802 & 3812 GREENBANK ROAD

FEBRUARY 2020- REV 4 TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1 1.2	Existing Conditions Required Permits / Approvals	
2.0	GUIDELINES, PREVIOUS STUDIES AND REPORTS	3
2.1	Existing Studies, Guidelines and Reports	3
3.0	WATER SUPPLY SERVICING	5
3.1 3.2 3.3	Existing Water Supply Services Water Supply Servicing Design Water Supply Conclusion	5
4.0	WASTEWATER SERVICING	7
4.1 4.2 4.3	Existing Wastewater Services Wastewater Design Wastewater Servicing Conclusions	7
5.0	STORMWATER MANAGEMENT	9
5.1 5.2 5.3 5.4	Existing Stormwater Services Post-development Stormwater Management Targets Proposed Stormwater Management System Stormwater Servicing Conclusions	. 10 . 10
6.0	UTILITIES	.12
7.0	EROSION AND SEDIMENT CONTROL	. 13
8.0	CONCLUSION AND RECOMMENDATIONS	. 14

FIGURES

Figure 1

Site Location

TABLES

Table 1 Existing Water DemandTable 2 Water Supply Design CriteriaTable 3 Proposed Water DemandTable 4 Wastewater Design CriteriaTable 5 Summary of Proposed Wastewater FlowsTable 6 Summary of Existing Peak Storm Flow RatesTable 7 Stormwater Flow Rate Summary

APPENDICES

- Appendix A Servicing Check List / Pre-consultation
- Appendix B Water Supply Calculations
- Appendix C Wastewater Collection Calculations
- Appendix D Stormwater Management Calculations

Drawings / Figures Proposed Site Plan

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT FOR JACK UPPAL 3802 & 3812 GREENBANK ROAD

CITY OF OTTAWA

FEBRUARY 2020- REV 4

PROJECT NO.: 18-1060

1.0 INTRODUCTION

David Schaeffer Engineering Ltd. (DSEL) has been retained by Jack Uppal to prepare a Functional Servicing and Stormwater Management Report in support of a Site Plan Control Application (SPC) and Zoning By-Law Amendment (ZBLA) for the proposed development at 3802 & 3812 Greenbank Road.

The subject property is located within the City of Ottawa urban boundary, in the Barrhaven Ward. As illustrated in *Figure 1*, below, the subject property is bounded by Greenbank Road to the east and existing residential lots to the north, west and south. The subject property measures approximately *0.22 ha* and is designated Development Reserve Zone (DR) under the current City of Ottawa zoning by-law.

Figure 1: Site Location

The proposed development involves the construction of an **848** *m*², 1-storey, slab on grade retail building with a designated parking lot.

The objective of this report is to support the application for SPC & ZBLA by providing sufficient detail to demonstrate that the proposed development is supported by existing and proposed municipal servicing infrastructure and that the site design conforms to current City of Ottawa design standards.

1.1 Existing Conditions

The subject site is currently undeveloped and consists of mainly grassed area with gravel in areas where there was previously an existing driveway.

Sewer system and watermain distribution mapping collected from the City of Ottawa indicate that the following services exist across the property frontage, within the adjacent municipal road:

Greenbank Road:

- > 406 mm diameter PVC watermain;
- > 600 mm diameter HDPE sanitary sewer; and
- > 1800 mm diameter concrete storm sewer.

1.2 Required Permits / Approvals

Development of the site is subject to the City of Ottawa Planning and Development Approvals process. The City of Ottawa must approve detailed engineering designs, drawings and reports prepared to support the proposed development plan before the issuing of SPC.

1.3 Pre-consultation

Pre-consultation correspondence and the servicing guidelines checklist are located in *Appendix A*.

2.0 GUIDELINES, PREVIOUS STUDIES AND REPORTS

2.1 Existing Studies, Guidelines and Reports

The following studies were utilized in the preparation of this report:

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012. (City Standards)
 - Technical Bulletin ISDTB-2014-01 City of Ottawa, February 5, 2014. (ITSB-2014-01)
 - Technical Bulletin PIEDTB-2016-01
 City of Ottawa, September 6, 2016.
 (PIEDTB-2016-01)
 - Technical Bulletin ISTB-2018-01
 City of Ottawa, March 21, 2018.
 (ISTB-2018-01)
- Ottawa Design Guidelines Water Distribution City of Ottawa, October 2012. (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2
 City of Ottawa, December 15, 2010.
 (ISD-2010-2)
 - Technical Bulletin ISDTB-2014-02
 City of Ottawa, May 27, 2014.
 (ISDTB-2014-02)
 - Technical Bulletin ISDTB-2018-02
 City of Ottawa, March 21, 2018.
 (ISDTB-2018-02)
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)
- Ontario Building Code Compendium
 Ministry of Municipal Affairs and Housing Building Development Branch, January 1, 2010 Update.
 (OBC)

- Standard for the Inspection, Testing and Maintenance of Water-Based Fire Protection Systems National Fire Protection Association 2016 Edition. (NFPA 25)
- Drainage Management Manual Ministry of Transportation of Ontario (MTO), 1997.
 (MTO Drainage Manual)
- Barrhaven South Master Servicing Study Addendum Stantec Consulting Ltd., October 12, 2017 (BS-MSSA)
- Corrigan SWM Facility Stormwater Management Report and Design Brief IBI Group, July 2010 (CSWMF-SMRDB)

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The subject property lies within the City of Ottawa BARR pressure zone, as shown by the Pressure Zone map, located in *Appendix B.* A 406 mm diameter watermain exists within Greenbank Road right-of-way.

3.2 Water Supply Servicing Design

The subject property is proposed to be serviced via a 150 mm diameter service lateral connected to the existing 406 mm municipal watermain located within Greenbank Road.

Table 1, below, summarizes the *Water Supply Guidelines* employed in the preparation of the water demand estimate.

Water Supply Design Criteria				
Design Parameter	Value			
Commercial Retail	2.5 L/m²/d			
Commercial Maximum Daily Demand	1.5 x avg. day			
Commercial Maximum Hour Demand	1.8 x max. day			
Minimum Depth of Cover	2.4 m from top of watermain to finished grade			
During normal operating conditions desired	350 kPa and 480 kPa			
operating pressure is within				
During normal operating conditions pressure must	275 kPa			
not drop below				
During normal operating conditions pressure shall	552 kPa			
not exceed				
During fire flow operating pressure must not drop	140 kPa			
below				
** Table updated to reflect ISDTB-2018-02				

Table 1Water Supply Design Criteria

Table 2, below, summarizes the anticipated water demand and boundary conditions for the proposed development and was calculated using the *Water Supply Guidelines.*

Proposed Water Demand					
Design Parameter	Anticipated Demand ¹ (L/min)	d ¹ (m H ₂ O / kPa)			
Average Daily Demand	1.5	50.0	490.8		
Max Day + Fire Flow (per FUS)	2.2 + 4,000 = 4,002.2	47.9	470.2		
Peak Hour	4.0	47.2	463.3		
 Water demand calculation per <i>Water Supply Guidelines</i>. See <i>Appendix B</i> for detailed calculations. Boundary conditions above for connection 1 to Greenbank Road assumed ground elevation equal to 97.67 m. 					

Table 2 Proposed Water Demand

The City of Ottawa was contacted to obtain boundary conditions associated with the estimated water demand, as indicated in the boundary request correspondence included in *Appendix B*.

Based on recommendations from the City of Ottawa Water Resources Department, fire flow was determined in accordance with *ISTB-2018-02*. The following parameters, below, were provided by the Architect, see *Appendix B* for collaborating correspondence:

- > Type of construction Non-Combustible Construction;
- Occupancy type Limited Combustibility; and
- Sprinkler Protection Supervised Sprinkler System.

The required fire flow was estimated to be *4,000 L/min*, refer to supporting calculation in *Appendix B.*

There is an existing fire hydrant on Greenbank Road, across from the site and within 45m of the proposed building siamese connection. Based on *Table 18.5.4.3* of **ISTB-2018-02**, the available flow from the hydrant is equal to *5,700 L/min* sufficient to provide adequate fire flow for the proposed development.

The City provided both the anticipated minimum and maximum water pressures, as well as, the estimated water pressure during fire flow, as indicated by the correspondence in *Appendix B*. The minimum and maximum pressures fall within the required range identified in *Table 2.*

3.3 Water Supply Conclusion

It is proposed to service the subject property via a 150 mm service lateral connected to the existing 406 mm watermain located within Greenbank Road.

The anticipated water demand was submitted to the City of Ottawa for establishing boundary conditions. The City provided both the anticipated minimum and maximum water pressures, as well as, the estimated water pressure during fire flow. As demonstrated by *Table* 2 which was based on the City's model, the municipal system is capable of delivering water within the pressure range prescribed in the *Water Supply Guidelines*.

It is proposed that the development will be serviced by the existing fire hydrant located on Greenbank Road, located across from the subject property. Based on **Table 18.5.4.3** of **ISTB-2018-02**, the available flow from the hydrant is equal to **5,700** L/min sufficient to provide adequate fire flow for the proposed development.

The proposed water supply design conforms to all relevant City Guidelines and Policies.

4.0 WASTEWATER SERVICING

4.1 **Existing Wastewater Services**

The subject property lies within the South Nepean Trunk catchment area, as shown by the Trunk Sanitary Sewers and Collection Areas Map, included in Appendix C. An existing 600 mm sanitary trunk sewer exists within Greenbank Road.

4.2 Wastewater Design

The development is proposed to connect to the 600 mm sanitary sewer within Greenbank Road via a 200 mm sanitary sewer connection, refer to drawing **SSP-1** for sanitary layout and connection points. Wastewater flow from the development is proposed to ultimately discharge into the South Nepean Trunk within the local sanitary sewer system.

Table 3, below, summarizes the City Standards employed in the calculation of wastewater flow rates for the proposed development.

Wastewater Design Criteria				
Design Parameter Value				
Commercial Floor Space	5 L/m²/d			
Commercial Peaking Factor	1.5 x Average ICI Flow			
Residential Daily Demand	280 L/person/day			
Peaking Factor	Harmon's Peaking Factor. Max 3.8			
Infiltration and Inflow Allowance	0.33L/s/ha			
Sanitary sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$			
Minimum Sanitary Sewer Lateral	135mm diameter			
Minimum Manning's 'n'	0.013			
Minimum Depth of Cover	2.5m from crown of sewer to grade			
Minimum Full Flowing Velocity	0.6m/s			
Maximum Full Flowing Velocity	3.0m/s			

Table 3

Anticipated sanitary flows from the subject site were included in the **Barrhaven South** Master Servicing Study Addendum (BS-MSSA). This subject site was included in the area of MSS-A-14 in the **BS-MSSA** sanitary servicing plan provided in **Appendix C**.

A population of **107 pers/ha** was used to represent the subject property in the **BS-MSSA**. therefore, the subject property was allocated a population of approximately 24 persons (0.22 ha x 107 pers/ha). Table 4, below, demonstrates the wastewater flow from the subject property as per the anticipated population in **BS-MSSA** and the criteria laid out in Table 3, see Appendix C for associated calculations.

Table 4
Summary of Anticipated Wastewater Flows

Design Parameter	Anticipated Sanitary Flow ¹ (L/s)	
Average Dry Weather Flow Rate	0.10	
Peak Dry Weather Flow Rate	0.36	
Peak Wet Weather Flow Rate	0.43	
1) Based on criteria shown in Table 3 and population based on 107 pers/ha as per BS-MSSA.		

Table 5, below, demonstrates the anticipated peak flow from the proposed development, see *Appendix C* for associated calculations.

Table 5
Summary of Proposed Wastewater Flows

Design Parameter	Anticipated Sanitary Flow ¹ (L/s)
Average Dry Weather Flow Rate	0.10
Peak Dry Weather Flow Rate	0.15
Peak Wet Weather Flow Rate	0.22
2) Based on criteria shown in Table 3	

The estimated peak wet weather sanitary flow, based on the *Site Plan*, provided in *Drawings/Figures*, is *0.22 L/s*, which results in a *0.21 L/s* decrease from the anticipated flow contemplated in the *BS-MSSA*.

4.3 Wastewater Servicing Conclusions

The site is tributary to the South Nepean Trunk Sewer. The proposed development is anticipated to generate a peak wet weather flow of *0.22 L/s,* to be directed to the 600 mm sanitary trunk sewer within Greenbank Road and ultimately discharging into the South Nepean Trunk.

The wastewater discharge for the subject property is less than contemplated in the **BS**-**MSSA**, thus the local sewers downstream of the subject site have sufficient capacity to accommodate the flow from the proposed development.

The proposed wastewater design conforms to all relevant *City Standards*.

5.0 STORMWATER MANAGEMENT

5.1 Existing Stormwater Services

Stormwater runoff from the subject property is tributary to the City of Ottawa sewer system and is located within the City of Ottawa. As such, approvals for the proposed development within this area are under the approval authority of the City of Ottawa.

Flows that influence the watershed in which the subject property is located are further reviewed by the principal authority. The subject property is located within the Jock River watershed and is therefore, subject to review by the Rideau Valley Conservation Authority (RVCA). Consultation with the RVCA is located in *Appendix A*.

The existing stormwater runoff from the site area generally drains north towards Greenbank Road. There is an existing **1800 mm** diameter storm sewer within Greenbank Road, adjacent to the subject property.

The site area is serviced by the Corrigan Stormwater Management (SWM) Facility, referred to as Corrigan SWM Facility, per the **Corrigan SWM Facility Stormwater Management Report and Design Brief (CSWMF-SMRDB)**. The site area lies within area ID *Private Property 2*, per the Stormwater Drainage Schematic provided in **Appendix D**. The pond is designed to accommodate minor flow from the site area and provide both water quantity control in the minor event and quality control to an "Enhanced" level of treatment (80% total suspended solids removal) as per **CSWMF-SMRDB**. The pond was designed to accept minor flow at a rate of **85 L/s/ha** from the subject site and adjacent site.

The 100-year HGL at *MH103* north-west of the property and located within Greenbank Road is estimated to be **92.7** *m* and *MH102* to be free flowing as per *CSWMF-SMRDB*. Refer to *Appendix D* for 100-year HGL estimations per *CSWMF-SMRDB* and drawing *EX-1* for location of the above noted manholes.

An estimate of the pre-development peak flow directed to Corrigan SWM Facility has been completed. The time of concentration using the Federal Aviation Administration method has been calculated with the following parameters 0.22 Ha; 0.35 RC; 75 m flow length; slope equal to 1.1%; and resulting in a time of concentration of **19.5 minutes**.

The estimated pre-development peak flows for the 2, 5, and 100-year storm events are summarized in *Table 6,* below:

City of Ottawa Design Storm	Estimated Peak Flow Rate (L/s)
2-year	11.5
5-year	15.5
100-year	33.1

Table 6Summary of Existing Peak Storm Flow Rates

5.2 Post-development Stormwater Management Targets

Stormwater management requirements for the proposed development were reviewed with the City of Ottawa and RVCA and are summarized below:

- Meet an allowable release rate based on the existing Rational Method Coefficient no greater than 0.50, employing the City of Ottawa IDF parameters for a 5-year storm with a calculated time of concentration equal to or greater than 10 minutes;
- Attenuate all storms up to and including the City of Ottawa 100-year design event on site; and
- > Based on coordination with the RVCA, no quality control will be required.

Refer to city pre-consultation correspondence in *Appendix A*.

Based on the above criteria, the allowable stormwater release rate is equal to 15.5 L/s.

5.3 Proposed Stormwater Management System

The proposed development consists of a 1-storey retail building, associated parking and landscaping. It is proposed that the stormwater for the development be serviced through a connection to the **1800 mm** diameter storm sewer within Greenbank Road.

To achieve the allowable post-development stormwater runoff release rate identified in **Section 5.2**, the proposed development will employ flow attenuation using onsite storage through the use of sewers, maintenance structures and underground storage chambers. An Inlet Control Device (ICD) **IPEX LMF 85** is proposed at the outlet of **STM MH 101** to attenuate flow to the allowable release rate.

Table7, below, estimates post-development flow rates and storage requirements.

Stormwater Flow Rate Summary						
Control Area	Drainage Area	5-Year Release Rate	5-Year Storage	100-Year Release Rate	100-Year Required Storage	100-Year Available Storage
	(Ha)	(L/s)	(m ³)	(L/s)	(m³)	(m ³)
Unattenuated Areas (U1)	0.016	3.0	0.0	6.3	0.0	0.0
Attenuated Areas (A1+A2+BLDG)	0.207	5.7	32.4	9.1	92.7	95.8
Total	0.223	8.7	32.4	15.5	92.7	95.8

Table 7

ormwater	Flow Rate	Summary		

It is estimated that a total of 92.7 m³ of on-site storage is required to attenuate flow to a release rate of 15.5 L/s. Underground storm pipes, structures and underground storage chambers are proposed to provide a total of 95.8 m^3 of storage to ensure that the allowable release rate is respected. 85.0 m^3 of storage is provided by the underground storage chambers. Detailed calculations are contained within Appendix D.

As per the Corrigan SWM Facility Stormwater Management Report and Design Brief, the Corrigan SWM Facility is designed to accept minor flow at a rate of 85 L/s/ha or 18.96 L/s (0.22 Ha x 0.85 L/s/ha). As the attenuated release rate from the subject fall below the anticipated flow rate outlined in the **CSWMF-SMRDB**, the local storm system and SWM pond have sufficient capacity to convey the proposed flows from the subject development.

5.4 Stormwater Servicing Conclusions

Post development stormwater runoff will be required to be restricted to the allowable release rate for storm events up to and including the 100-year storm, in accordance with City of Ottawa City Standards. The post-development stormwater allowable release rate for the site was calculated to be 15.5 L/s. It was determined that an IPEX LMF 85 ICD and **92.7** m³ of storage will be required to attenuate flows to this release rate.

No quality control is required for the proposed development, as per correspondence with RVCA, located in Appendix A.

The proposed stormwater design conforms to all relevant *City Standards* and Policies.

6.0 UTILITIES

Bell and Streetlighting services exist within Greenbank Road right-of-way.

Utility servicing will be coordinated with the individual utility companies prior to site development.

7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. The extent of erosion losses is exaggerated during construction where vegetation has been removed and the top layer of soil becomes agitated.

Prior to topsoil stripping, earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

Silt fence will be installed around the perimeter of the site and will be cleaned and maintained throughout construction. Silt fence will remain in place until the working areas have been stabilized and re-vegetated.

Catch basins will have SILTSACKs installed under the grate during construction to protect from silt entering the storm sewer system.

A mud mat will be installed at the construction access, in order to prevent mud tracking onto adjacent roads.

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents:

- Limit extent of exposed soils at any given time;
- Re-vegetate exposed areas as soon as possible;
- Minimize the area to be cleared and grubbed;
- Protect exposed slopes with plastic or synthetic mulches;
- Install silt fence to prevent sediment from entering existing ditches;
- No refueling or cleaning of equipment near existing watercourses;
- Provide sediment traps and basins during dewatering;
- Install filter cloth between catch basins and frames;
- Plan construction at proper time to avoid flooding; and
- Establish material stockpiles away from watercourses, so that barriers and filters may be installed.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- Verification that water is not flowing under silt barriers; and
- Clean and change filter cloth at catch basins.

8.0 CONCLUSION AND RECOMMENDATIONS

David Schaeffer Engineering Ltd. (DSEL) has been retained by Jack Uppal to prepare a Functional Servicing and Stormwater Management Report in support of Site Plan Control and Zoning By-Law Amendment for the proposed development at 3802&3812 Greenbank Road. The preceding report outlines the following:

- Based on boundary conditions provided by the City, the existing municipal water infrastructure is capable of providing the proposed development with water within the City's required pressure range;
- The proposed development is anticipated to have a peak wet weather flow of 0.24 L/s directed to the 600 mm sanitary sewer within Greenbank Road, to be ultimately discharged into the West Nepean Collector Trunk. Based on the BS-MSSA, the proposed works result in 0.23 L/s less sanitary flow than anticipated, thus the municipal sanitary system will have sufficient capacity to support the development;
- Based on the consultation with the City, the proposed development is proposed to attenuate flow to a release rate of 15.5 L/s;
- It is proposed to attenuate flow through the combined use of underground storage and an *IPEX LMF 85 ICD* at *MH101*. It is anticipated that *92.7 m*³ of onsite storage will be required to attenuate flow to the established release rate above; and
- > No quality control measures are required, per correspondence with the RVCA.

Prepared by, **David Schaeffer Engineering Ltd.**

Per: Brandon Chow

Reviewed by, David Schaeffer Engineering Ltd.

Per: Robert Freel, P.Eng.

© DSEL

 $z:\bigstyle constraints and bigstyle constra$

APPENDIX A

Pre-Consultation

DEVELOPMENT SERVICING STUDY CHECKLIST

18-1060

4.1	General Content	
	Executive Summary (for larger reports only).	N/A
\boxtimes	Date and revision number of the report.	Report Cover Sheet
\boxtimes	Location map and plan showing municipal address, boundary, and layout of proposed development.	Drawings/Figures
\boxtimes	Plan showing the site and location of all existing services.	Figure 1
\boxtimes	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	Section 1.0
\boxtimes	Summary of Pre-consultation Meetings with City and other approval agencies.	Section 1.3
\boxtimes	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	Section 2.1
\boxtimes	Statement of objectives and servicing criteria.	Section 1.0
\boxtimes	Identification of existing and proposed infrastructure available in the immediate area.	Sections 3.1, 4.1, 5.1
	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	N/A
\boxtimes	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	Drawings/Figures
	Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A
	Proposed phasing of the development, if applicable.	N/A
	Reference to geotechnical studies and recommendations concerning servicing.	N/A
\boxtimes	All preliminary and formal site plan submissions should have the following information: -Metric scale -North arrow (including construction North) -Key plan -Name and contact information of applicant and property owner -Property limits including bearings and dimensions -Existing and proposed structures and parking areas -Easements, road widening and rights-of-way -Adjacent street names	N/A
4.2	Development Servicing Report: Water	
	Confirm consistency with Master Servicing Study, if available	N/A
\boxtimes	Availability of public infrastructure to service proposed development	Section 3.1
5 4		

		500000 512
\boxtimes	Identification of system constraints	Section 3.1
\boxtimes	Identify boundary conditions	Section 3.1, 3.2
\boxtimes	Confirmation of adequate domestic supply and pressure	Section 3.3

	onfirmation of adequate fire flow protection and confirmation that fire flow is alculated as per the Fire Underwriter's Survey. Output should show available	Section 3.2
	re flow at locations throughout the development.	
Pr	rovide a check of high pressures. If pressure is found to be high, an assessment	
	required to confirm the application of pressure reducing valves.	N/A
D	efinition of phasing constraints. Hydraulic modeling is required to confirm	
	ervicing for all defined phases of the project including the ultimate design	N/A
	ddress reliability requirements such as appropriate location of shut-off valves	N/A
	heck on the necessity of a pressure zone boundary modification	N/A
	eference to water supply analysis to show that major infrastructure is capable	,,,
of	f delivering sufficient water for the proposed land use. This includes data that	
	nows that the expected demands under average day, peak hour and fire flow	Section 3.2, 3.3
	onditions provide water within the required pressure range	
	escription of the proposed water distribution network, including locations of	
n	roposed connections to the existing system, provisions for necessary looping,	
	nd appurtenances (valves, pressure reducing valves, valve chambers, and fire	N/A
	ydrants) including special metering provisions.	
-	escription of off-site required feedermains, booster pumping stations, and	
	ther water infrastructure that will be ultimately required to service proposed	
	evelopment, including financing, interim facilities, and timing of	N/A
	nplementation.	
	onfirmation that water demands are calculated based on the City of Ottawa	
		Section 3.2
	esign Guidelines.	
Di Pr	esign Guidelines. rovision of a model schematic showing the boundary conditions locations.	
Dr Pr st	esign Guidelines. rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater	N/A
De De Pr st	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater	
.3 De	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should	N/A
B B B B B B C B C C C C C C C C C C C C	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow	
3 De St	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity	N/A
3 De Su da C	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure).	N/A Section 4.2
D Pr st 3 De Su da re Co	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity	N/A
3 De st 3 De Su da re Co de	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations.	N/A Section 4.2
Di Pr st 3 De Su da re Co de Co	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations. onsideration of local conditions that may contribute to extraneous flows that	N/A Section 4.2 Section 4.2
3 De 3 De 3 De 3 De 3 De 3 De 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations.	N/A Section 4.2
3 De Sundare Code are gr	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations. onsideration of local conditions that may contribute to extraneous flows that re higher than the recommended flows in the guidelines. This includes	N/A Section 4.2 Section 4.2 N/A
Di Pri st 3 De Su da cc da Cc da gr D	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations. onsideration of local conditions that may contribute to extraneous flows that re higher than the recommended flows in the guidelines. This includes roundwater and soil conditions, and age and condition of sewers.	N/A Section 4.2 Section 4.2
3 Def 3 Def	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations. onsideration of local conditions that may contribute to extraneous flows that re higher than the recommended flows in the guidelines. This includes roundwater and soil conditions, and age and condition of sewers. escription of existing sanitary sewer available for discharge of wastewater	N/A Section 4.2 Section 4.2 N/A
3 Def 3 Def 3 Def 3 Def 3 Def 3 Def 3 Def 3 Def 3 Def 4 da 4 da 4 da 4 da 4 da 4 da 4 da 4 da	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations. onsideration of local conditions that may contribute to extraneous flows that re higher than the recommended flows in the guidelines. This includes roundwater and soil conditions, and age and condition of sewers. escription of existing sanitary sewer available for discharge of wastewater rom proposed development.	N/A Section 4.2 Section 4.2 N/A Section 4.1
Du Pr st 3 De Su Su da cc dd Cc dd Cc ar gr Du fr r Vu u	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations. onsideration of local conditions that may contribute to extraneous flows that re higher than the recommended flows in the guidelines. This includes roundwater and soil conditions, and age and condition of sewers. escription of existing sanitary sewer available for discharge of wastewater om proposed development. erify available capacity in downstream sanitary sewer and/or identification of	N/A Section 4.2 Section 4.2 N/A
Di Prist 3 De Su da re Ca da Ca ar gr Di fr fr Vu ym	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations. onsideration of local conditions that may contribute to extraneous flows that re higher than the recommended flows in the guidelines. This includes roundwater and soil conditions, and age and condition of sewers. escription of existing sanitary sewer available for discharge of wastewater rom proposed development. erify available capacity in downstream sanitary sewer and/or identification of pgrades necessary to service the proposed development. (Reference can be	N/A Section 4.2 Section 4.2 N/A Section 4.1
Du Prist 3 De Su Su Su Su Su Co da Co ar gr Du fr fr Vu Uu m m prist	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations. onsideration of local conditions that may contribute to extraneous flows that re higher than the recommended flows in the guidelines. This includes roundwater and soil conditions, and age and condition of sewers. escription of existing sanitary sewer available for discharge of wastewater om proposed development. erify available capacity in downstream sanitary sewer and/or identification of pgrades necessary to service the proposed development. (Reference can be nade to	N/A Section 4.2 Section 4.2 N/A Section 4.1
Du Pr st 3 De Su no da re CC dd CC ar gr gr Du fr r Vu up m pp D Ca	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations. onsideration of local conditions that may contribute to extraneous flows that re higher than the recommended flows in the guidelines. This includes roundwater and soil conditions, and age and condition of sewers. escription of existing sanitary sewer available for discharge of wastewater om proposed development. erify available capacity in downstream sanitary sewer and/or identification of pgrades necessary to service the proposed development. (Reference can be hade to reviously completed Master Servicing Study if applicable)	N/A Section 4.2 Section 4.2 N/A Section 4.1
3 Def st 3 Def Su da cc cc dd Cc cc dd Cc cc dd cc cc dd cc cc ar gr Do fr Vu y m m pin ca l dd	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations. onsideration of local conditions that may contribute to extraneous flows that re higher than the recommended flows in the guidelines. This includes roundwater and soil conditions, and age and condition of sewers. escription of existing sanitary sewer available for discharge of wastewater om proposed development. erify available capacity in downstream sanitary sewer and/or identification of pgrades necessary to service the proposed development. (Reference can be nade to reviously completed Master Servicing Study if applicable) alculations related to dry-weather and wet-weather flow rates from the	N/A Section 4.2 Section 4.2 N/A Section 4.1 Section 4.2
Du Pr st 3 De Su no da re CC dd CC dd CC dd CC dd CC dd CC u y m m pn ca dd for fr	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations. onsideration of local conditions that may contribute to extraneous flows that re higher than the recommended flows in the guidelines. This includes roundwater and soil conditions, and age and condition of sewers. escription of existing sanitary sewer available for discharge of wastewater om proposed development. erify available capacity in downstream sanitary sewer and/or identification of pgrades necessary to service the proposed development. (Reference can be hade to reviously completed Master Servicing Study if applicable) alculations related to dry-weather and wet-weather flow rates from the evelopment in standard MOE sanitary sewer design table (Appendix 'C')	N/A Section 4.2 Section 4.2 N/A Section 4.1 Section 4.2 Section 4.2
Du Pr st 3 De Su su da re Cu da da Cu da Cu da fr fr Vu up m m pn ca da fo Du	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations. onsideration of local conditions that may contribute to extraneous flows that re higher than the recommended flows in the guidelines. This includes roundwater and soil conditions, and age and condition of sewers. escription of existing sanitary sewer available for discharge of wastewater om proposed development. erify available capacity in downstream sanitary sewer and/or identification of pgrades necessary to service the proposed development. (Reference can be nade to reviously completed Master Servicing Study if applicable) alculations related to dry-weather and wet-weather flow rates from the evelopment in standard MOE sanitary sewer design table (Appendix 'C') prmat.	N/A Section 4.2 Section 4.2 N/A Section 4.1 Section 4.2
Du Prist 3 De Su Su CC dd CC dd CC dd CC dd CC dd CC dd CC dd CC dd CC dd CC dd CC dd CC dd CC dd CC CC	rovision of a model schematic showing the boundary conditions locations, creets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations. onsideration of local conditions that may contribute to extraneous flows that re higher than the recommended flows in the guidelines. This includes roundwater and soil conditions, and age and condition of sewers. escription of existing sanitary sewer available for discharge of wastewater om proposed development. erify available capacity in downstream sanitary sewer and/or identification of pgrades necessary to service the proposed development. (Reference can be nade to reviously completed Master Servicing Study if applicable) alculations related to dry-weather and wet-weather flow rates from the evelopment in standard MOE sanitary sewer design table (Appendix 'C') ormat. escription of proposed sewer network including sewers, pumping stations, and	N/A Section 4.2 Section 4.2 N/A Section 4.1 Section 4.2 Section 4.2
3 Def st 3 Def Su 3 Def Su 3 Def Cc dd Cc Cc dd Cc Cc dd Cc Cc dd Cc Cc dd Cc Cc dd Cc Cc dd Cc Cc dd Cc Cc dd Cc Cc dd Cc Cc dd Cc Cc dd Cc Cc dd Cc Cc dd Cc Cc dd Cc Cc Cc Cc dd Cc Cc Cc Cc Cc Cc Cc Cc Cc Cc Cc Cc Cc	rovision of a model schematic showing the boundary conditions locations, treets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations. onsideration of local conditions that may contribute to extraneous flows that re higher than the recommended flows in the guidelines. This includes roundwater and soil conditions, and age and condition of sewers. escription of existing sanitary sewer available for discharge of wastewater om proposed development. erify available capacity in downstream sanitary sewer and/or identification of pgrades necessary to service the proposed development. (Reference can be hade to reviously completed Master Servicing Study if applicable) alculations related to dry-weather and wet-weather flow rates from the evelopment in standard MOE sanitary sewer design table (Appendix 'C') ormat. escription of proposed sewer network including sewers, pumping stations, and procemains.	N/A Section 4.2 Section 4.2 N/A Section 4.1 Section 4.2 Section 4.2 Section 4.2
3 Def st 3 Def Sund da rec CC da da CC da da CC da fr fr Vu yu m m pr CC da da CC da da fr fr for for for for for for for for f	rovision of a model schematic showing the boundary conditions locations, treets, parcels, and building locations for reference. evelopment Servicing Report: Wastewater ummary of proposed design criteria (Note: Wet-weather flow criteria should ot deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow ata from relatively new infrastructure cannot be used to justify capacity equirements for proposed infrastructure). onfirm consistency with Master Servicing Study and/or justifications for eviations. onsideration of local conditions that may contribute to extraneous flows that re higher than the recommended flows in the guidelines. This includes roundwater and soil conditions, and age and condition of sewers. escription of existing sanitary sewer available for discharge of wastewater om proposed development. erify available capacity in downstream sanitary sewer and/or identification of pgrades necessary to service the proposed development. (Reference can be hade to reviously completed Master Servicing Study if applicable) alculations related to dry-weather and wet-weather flow rates from the evelopment in standard MOE sanitary sewer design table (Appendix 'C') ormat. escription of proposed sewer network including sewers, pumping stations, and porcemains. iscussion of previously identified environmental constraints and impact on	N/A Section 4.2 Section 4.2 N/A Section 4.1 Section 4.2 Section 4.2

	Pumping stations: impacts of proposed development on existing pumping	N/A
	stations or requirements for new pumping station to service development.	
]	Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	N/A
	Identification and implementation of the emergency overflow from sanitary	
	pumping stations in relation to the hydraulic grade line to protect against	N/A
	basement flooding.	
	Special considerations such as contamination, corrosive environment etc.	N/A
.4	Development Servicing Report: Stormwater Checklist	
3	Description of drainage outlets and downstream constraints including legality of	Section 5.1
2	outlets (i.e. municipal drain, right-of-way, watercourse, or private property)	
	Analysis of available capacity in existing public infrastructure.	N/A
3	A drawing showing the subject lands, its surroundings, the receiving	Drawings/Figures
4	watercourse, existing drainage patterns, and proposed drainage pattern.	Diawings/Figures
	Water quantity control objective (e.g. controlling post-development peak flows	
	to pre-development level for storm events ranging from the 2 or 5 year event	
\leq	(dependent on the receiving sewer design) to 100 year return period); if other	Section 5.2
7	objectives are being applied, a rationale must be included with reference to	Section 5.2
	hydrologic analyses of the potentially affected subwatersheds, taking into	
	account long-term cumulative effects.	
	Water Quality control objective (basic, normal or enhanced level of protection	
\langle	based on the sensitivities of the receiving watercourse) and storage	Section 5.3
	requirements.	
\triangleleft	Description of the stormwater management concept with facility locations and	Section 5.3
4	descriptions with references and supporting information	Section 5.3
]	Set-back from private sewage disposal systems.	N/A
	Watercourse and hazard lands setbacks.	N/A
-	Record of pre-consultation with the Ontario Ministry of Environment and the	NI / A
	Conservation Authority that has jurisdiction on the affected watershed.	N/A
٦	Confirm consistency with sub-watershed and Master Servicing Study, if	NI / A
	applicable study exists.	N/A
	Storage requirements (complete with calculations) and conveyance capacity for	
\leq	minor events (1:5 year return period) and major events (1:100 year return	Section 5.3
	period).	
	Identification of watercourses within the proposed development and how	
	watercourses will be protected, or, if necessary, altered by the proposed	N/A
	development with applicable approvals.	
	Calculate pre and post development peak flow rates including a description of	
\leq	existing site conditions and proposed impervious areas and drainage	Section 5.1, 5.3
	catchments in comparison to existing conditions.	
7	Any proposed diversion of drainage catchment areas from one outlet to	N1 / A
	another.	N/A
-	Proposed minor and major systems including locations and sizes of stormwater	
	trunk sewers, and stormwater management facilities.	N/A
	If quantity control is not proposed, demonstration that downstream system has	
	adequate capacity for the post-development flows up to and including the 100-	N/A
	year return period storm event.	
]	Identification of potential impacts to receiving watercourses	N/A
	Identification of municipal drains and related approval requirements.	N/A
۳.	activities of manipulations and related approval requirements.	11/17

\boxtimes	Descriptions of how the conveyance and storage capacity will be achieved for the development.	Section 5.3
	100 year flood levels and major flow routing to protect proposed development	
	from flooding for establishing minimum building elevations (MBE) and overall	N/A
	grading.	
	Inclusion of hydraulic analysis including hydraulic grade line elevations.	N/A
\boxtimes	Description of approach to erosion and sediment control during construction for	Section 7.0
	the protection of receiving watercourse or drainage corridors.	Section 7.0
	Identification of floodplains – proponent to obtain relevant floodplain	
	information from the appropriate Conservation Authority. The proponent may	
	be required to delineate floodplain elevations to the satisfaction of the	N/A
	Conservation Authority if such information is not available or if information	
	does not match current conditions.	
	Identification of fill constraints related to floodplain and geotechnical	N/A
	investigation.	
_		
1.5	Approval and Permit Requirements: Checklist	
	Conservation Authority as the designated approval agency for modification of	
	floodplain, potential impact on fish habitat, proposed works in or adjacent to a	
	watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement	
\leq	Act. The Conservation Authority is not the approval authority for the Lakes and	Section 1.2
	Rivers Improvement ct. Where there are Conservation Authority regulations in	
	place, approval under the Lakes and Rivers Improvement Act is not required,	
	except in cases of dams as defined in the Act.	
	Application for Certificate of Approval (CofA) under the Ontario Water	N/A
_	Resources Act.	
	Changes to Municipal Drains.	N/A
	Other permits (National Capital Commission, Parks Canada, Public Works and	N/A
	Government Services Canada, Ministry of Transportation etc.)	
.6	Conclusion Checklist	
\triangleleft	Clearly stated conclusions and recommendations	Section 8.0
	Comments received from review agencies including the City of Ottawa and	
	information on how the comments were addressed. Final sign-off from the	
	responsible reviewing agency.	
_	All draft and final reports shall be signed and stamped by a professional	
	Engineer registered in Ontario	

Brandon Chow

From:	Eric Lalande <eric.lalande@rvca.ca></eric.lalande@rvca.ca>
Sent:	November 23, 2018 4:20 PM
То:	Brandon Chow
Subject:	RE: 18-1060_ 3802-3812 Greenbank Rd - Quality Requirement

Hi Brandon,

Best management practices are encouraged on site. Quality control measures are not required as the RVCA will rely on the downstream swm facility for water quality protection.

Thank you,

Eric Lalande, MCIP, RPP Planner, Rideau Valley Conservation Authority 613-692-3571 x1137

From: Brandon Chow <BChow@dsel.ca>
Sent: Friday, November 23, 2018 4:17 PM
To: Eric Lalande <eric.lalande@rvca.ca>
Subject: 18-1060_ 3802-3812 Greenbank Rd - Quality Requirement

Good afternoon Eric,

We would like to touch base with you regarding a development we are working on located at 3802-3812 Greenbank Road.

The proposed development involves the construction of a 1-storey 848m² retail building with associated parking as shown by the attached site plan.

Stormwater collected from the site will outlet to the existing 1800mm storm sewer within Greenbank Rd and travel approximately 2,125m to the Corrigan Pond. As indicated in the attached design brief, the pond provides treatment to the enhanced level (80% TSS removal) before discharging to the Jock River.

Can you provide any comments regarding quality controls required for this site?

Thank you,

Brandon Chow Project Coordinator / Intermediate Designer

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

 phone:
 (613) 836-0856 ext.532

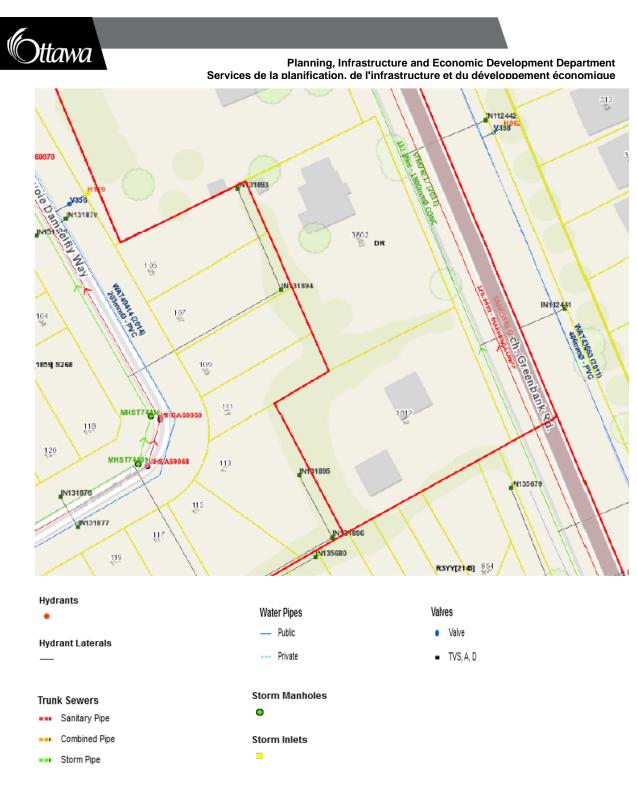
 fax:
 (613) 836-7183

 email:
 bchow@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

MEMO

Date: 21-08-2018


To / Destinataire	Kelby, Lodoen Unseth	
From / Expéditeur	Golam Sharif, Project Manager, Infrastructure Approvals	
Subject / Objet	Pre-Application Consultation 3802-3812 Greenbank, Ward No 3, <i>A zoning by law amendment and site plan</i> <i>control to transition from a development reserve</i> <i>zone to a neighborhood commercial zone to</i> <i>permit a single storey commercial/retail building</i> <i>with an approximate building footprint of</i> <i>9,123sq ft. The proposal contains 28 surface</i> <i>parking spaces.</i>	File No. PC2018-0207

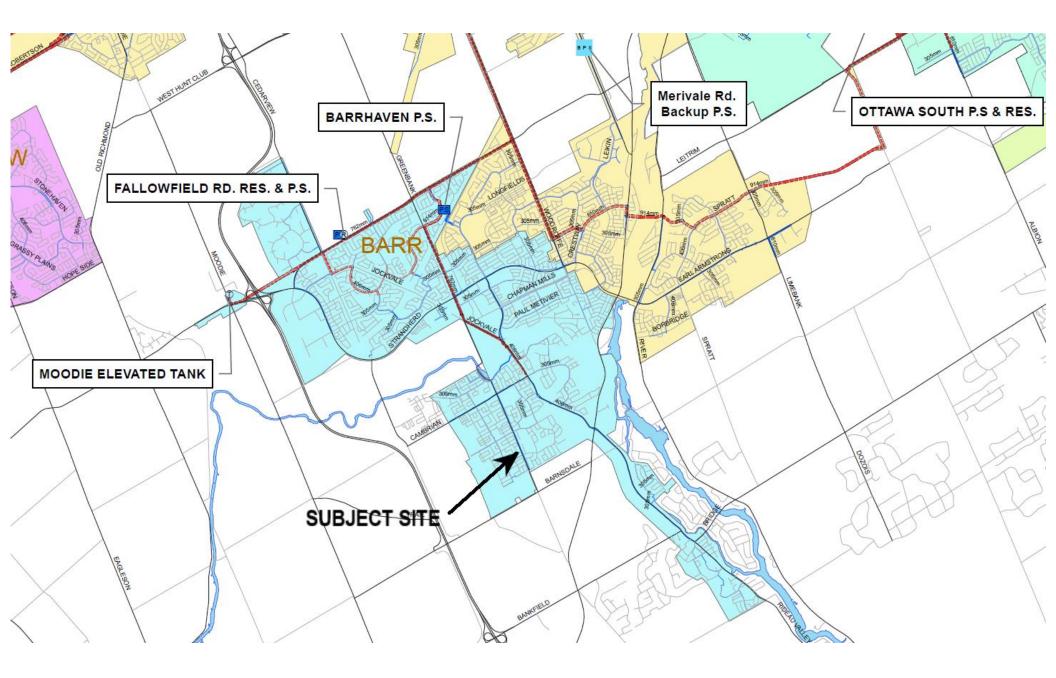
Please note the following information regarding the engineering design submission for the above noted site:

- 1. The Servicing Study Guidelines for Development Applications are available at the following address: <u>https://ottawa.ca/en/city-hall/planning-and-development/how-develop-property/development-application-review-process-2/guide-preparing-studies-and-plans</u>
- 2. Servicing and site works shall be in accordance with the following documents:
 - Ottawa Sewer Design Guidelines (October 2012) and Technical Bulletin PIEDTB-2016-01
 - Ottawa Design Guidelines Water Distribution (2010) and Technical Bulletins ISD-2010-2 and ISDTB-2014-02
 - Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007)
 - ⇒ City of Ottawa Slope Stability Guidelines for Development Applications (revised 2012)
 - ⇒ City of Ottawa Environmental Noise Control Guidelines (January, 2016)

- ⇒ City of Ottawa Park and Pathway Development Manual (2012)
- ⇒ City of Ottawa Accessibility Design Standards (2012)
- ⇒ Ottawa Standard Tender Documents (latest version)
- ⇒ Ontario Provincial Standards for Roads & Public Works (2013)
- Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at <u>InformationCentre@ottawa.ca</u> or by phone at (613) 580-2424 x.44455).
- 4. The Stormwater Management Criteria, for the subject site, is to be based on the following:
 - i. The 5-yr storm event using the IDF information derived from the Meteorological Services of Canada rainfall data, taken from the MacDonald Cartier Airport, collected 1966 to 1997.
 - ii. The pre-development runoff coefficient <u>or</u> a maximum equivalent 'C' of 0.5, whichever is less (§ 8.3.7.3).
 - iii. A calculated time of concentration (Cannot be less than 10 minutes).
 - iv. Flows to the storm sewer in excess of the 5-year storm release rate, up to and including the 100-year storm event, must be detained on site.
 - v. Barrhaven South Master Servicing Study is available for this area. Therefore, follow the requirement from the MSS and provide reference.
- 5. Deep Services (Storm, Sanitary & Water Supply)

- i. A plan view of the existing services may be seen above. Services should ideally be grouped in a common trench to minimize the number of road cuts. The sizing of existing services is:
 - a. Greenbank Road:
 - i. Sanitary 600 Concrete (2011).

- ii. Storm 1800 mm Concrete (2011).
- iii. Water 406 mm PVC (2011).
- ii. As per City's Sewer Design guideline a monitoring manhole shall be required just inside the property line located in an accessible location (ie. Not in a parking area) for all non-residential and multi residential buildings connections from a private sewer to a public sewer.
- iii. As per City's Sewer Design guideline it is expected that the alternative of a high level sewer in a public right-of-way and connected to the collector sewer is the preferred method of servicing properties.
- iv. New connections to sewer or watermain services within the City right of way is subject to City approval and are to be made above the springline of the sewermain as per:
 - a. Std Dwg S11.1 for flexible main sewers connections made using approved tee or wye fittings.
 - *b.* Std Dwg S11 (For rigid main sewers) *lateral must be less that 50% the diameter of the sewermain,*
 - *c.* Std Dwg S11.2 (for rigid main sewers using bell end insert method) for larger diameter laterals where manufactured inserts are not available; lateral must be less that 50% the diameter of the sewermain,
 - Connections to manholes permitted when the connection is to rigid main sewers where the lateral exceeds 50% the diameter of the sewermain. – Connect obvert to obvert with the outlet pipe unless pipes are a similar size.
 - e. No submerged outlet connections.
- 6. Water Boundary condition requests must include the location of the service and the expected loads required by the proposed development. Please provide the following information:
 - i. Location of service


- ii. Type of development and the amount of fire flow required (as per FUS, 1999).
- iii. Average daily demand: ____ l/s.
- iv. Maximum daily demand: ____l/s.
- v. Maximum hourly daily demand: _____ l/s.
- vi. Hydrant location and spacing to meet City's Water Design guidelines.
- vii. The water main on McGarry Terrace is a dead end main. Future water servicing may be required to connect the water servicing from McGarry Terrace to Marketplace Ave.
- 7. General comments
 - i. Consult with RVCA for quality control measures for stormwater discharge.
 - ii. Provide reference including excerpt to the Barrhaven Master Servicing Study in the Site Servicing report.

Should you have any questions or require additional information, please contact me directly at (613) 580-2424, x 20763 or by email at sharif.sharif@ottawa.ca.

Golam Sharif Project Manager – Infrastructure Approvals Development Review, South Branch

APPENDIX B

Water Supply

3802-3812 Greenbank Road Proposed Site Conditions

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Domestic Demand

Type of Housing	Per / Unit	Units	Рор	
Single Family	3.4	-	0	
Semi-detached	2.7	-	0	
Townhouse	2.7	-	0	
Apartment			0	
Bachelor	1.4	-	0	
1 Bedroom	1.4	-	0	
2 Bedroom	2.1	-	0	
3 Bedroom	3.1	-	0	
Average	1.8	-	0	

	Рор	Avg. Daily		Max Day		Peak Hour	
		m³/d	L/min	m³/d	L/min	m³/d	L/min
Total Domestic Demand	0	0.0	0.0	0.0	0.0	0.0	0.0

Institutional / Commercial / Industrial Demand

			Avg. Daily		Max Day		Peak Hour	
Property Type	Unit Rate	Units	s m³/d	L/min	m³/d	L/min	m³/d	L/min
Commercial floor space	2.5 L/m ² /d	848	2.12	1.5	3.2	2.2	5.7	4.0
Office	75 L/9.3m ² /d	-	0.00	0.0	0.0	0.0	0.0	0.0
Restaurant*	125 L/seat/d	-	0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Light	35,000 L/gross ha/o	- k	0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Heavy	55,000 L/gross ha/o	- 1	0.00	0.0	0.0	0.0	0.0	0.0
	Tota	I/CI Demand	2.1	1.5	3.2	2.2	5.7	4.0
	٦	otal Demand	2.1	1.5	3.2	2.2	5.7	4.0

 * Estimated number of seats at 1 seat per $9.3m^2$

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

Adjustments

	Type o m ²	struction f Const Total f	n ruction Co loor area l	efficient pe	Type of construction and A is the Total floor are or FUS Part II, Section 1 TUS Part II section 1
Non-Combus 0.8 848.0 5125.	Type o m ²	struction f Const Total f	n ruction Co loor area l	efficient pe based on F	er FUS Part II, Section 1 TUS Part II section 1
0.8 848.0 5125.	<i>Type o</i> m ² 2 L/min	f Const Total f	ruction Co loor area l	based on F	US Part II section 1
. 848.0 5125.	m ² 2 L/min	Total f	loor area l	based on F	US Part II section 1
		rounde	ed to the n	earest 1,00	D0 L/min
-159	%				
4250	0 I /min				
-50%	%				
-212	5 L/min	•			
	Lw	На		-	100/
					12% 8%
				-	0%
10.1m-20m			2	-	15%
% Increase					35% value not to exceed 75%
1487.	5 L/min	•			
trusture Max	F atoriaa				
	ueu up.				
	4250. -50° -212 S.D 10.1m-20m 20.1m-30m >45m 10.1m-20m % Increase 1487. structure. Max	10.1m-20m 17 20.1m-30m 14 >45m 59 10.1m-20m 58	4250.0 L/min -50% -2125 L/min S.D Lw Ha 10.1m-20m 17 20.1m-30m 14 >45m 59 10.1m-20m 58 % Increase 1487.5 L/min structure. Max 5 stories	4250.0 L/min -50% -2125 L/min -2125 L/min 10.1m-20m 17 1 20.1m-30m 14 2 >45m 59 2 10.1m-20m 58 2 % Increase 1487.5 L/min	4250.0 L/min -50% -2125 L/min S.D Lw Ha LH EC 10.1m-20m 17 1 17 20.1m-30m 14 2 28 >45m 59 2 118 10.1m-20m 58 2 116 % Increase structure. Max 5 stories

Total Fire Flow

Fire Flow

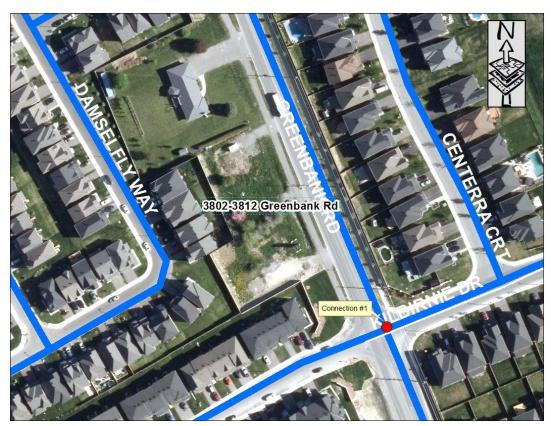
3612.5 L/min fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4 4000.0 L/min rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provided by S.J. Lawrence Architects. -Calculations based on Fire Underwriters Survey - Part II

BOUNDARY CONDITIONS

Boundary Conditions For: 3802-3812 Greenbank Rd


Date of Boundary Conditions: 2018-Nov-22

Provided Information:

Scenario	Demand		
	L/min	L/s	
Average Daily Demand	1.5	0.02	
Maximum Daily Demand	2.2	0.04	
Peak Hour	4.0	0.07	
Fire Flow #1 Demand	4,000	66.7	

Number Of Connections: 1

Location:

BOUNDARY CONDITIONS

Results:

Pre-Configuration

Connection #: 1

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	159.0	87.1
Peak Hour	142.1	63.1
Max Day Plus Fire (4,000) L/min	136.9	55.8

¹Elevation: **97.670 m**

Post-Configuration

Connection #: 1

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	147.7	72.8
Peak Hour	144.9	68.8
Max Day Plus Fire (4,000) L/min	145.6	69.7

¹Elevation: **97.670 m**

Notes:

1) As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:

- a) If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
- b) Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a

BOUNDARY CONDITIONS

variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Amr Salem

From:Brandon ChowSent:September 24, 2019 10:56 AMTo:Amr SalemSubject:FW: 3802 and 3812 Greenbank Road (Barrhaven South) - Construction/Occupancy Type

FYI

Brandon Chow Project Coordinator / Intermediate Designer

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext.532 fax: (613) 836-7183 email: <u>bchow@DSEL.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

From: Amanda Lawrence <amanda@sjlarchitect.com>
Sent: October 10, 2018 11:53 AM
To: Brandon Chow <BChow@dsel.ca>
Subject: RE: 3802 and 3812 Greenbank Road (Barrhaven South) - Construction/Occupancy Type

Hi Brandon,

Hope you also had a great long weekend. Please assume the sprinkler system will be supervised and a C-2 Limited Combustibility occupancy.

Regards,

Amanda Lawrence, Architect, B.AS, M.Arch, OAA, MRAIC S.J. Lawrence Architect Incorporated

Ph: 613.739.7770 Fax: 613.739.7703 Email: amanda@sjlarchitect.com Address: 18 Deakin St, Suite 205 Nepean ON K2E 8B7 Web: sjlarchitect.com

From: Brandon Chow <<u>BChow@dsel.ca</u>> Sent: Tuesday, October 9, 2018 10:44 AM To: Amanda Lawrence <<u>amanda@sjlarchitect.com</u>> Subject: RE: 3802 and 3812 Greenbank Road (Barrhaven South) - Construction/Occupancy Type

Hi Amanda,

Hope you had a great long weekend. Thank you for confirming the construction class and that the building will be sprinklered. Will the sprinkler system be fully supervised? For the occupancy type, we're looking to confirm which of the below categories the building falls under based on the ISO guide. (see pages 11-13)

CHAPTER 3

Occupancy Factor (O)

The factors below reflect the influence of the occupancy in the subject building on the needed fire flow:

Occupancy Combustibility Class	Occupancy Factor (O)
C-1 (Noncombustible)	0.75
C-2 (Limited Combustibility)	0.85
C-3 (Combustible)	1.00
C-4 (Free Burning)	1.15
C-5 (Rapid Burning or Flash Burning)	1.25

Thank you,

Brandon Chow Project Coordinator / Intermediate Designer

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext.532 fax: (613) 836-7183 email: <u>bchow@DSEL.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

From: Amanda Lawrence <<u>amanda@sjlarchitect.com</u>>
Sent: October 5, 2018 3:11 PM
To: Brandon Chow <<u>BChow@dsel.ca</u>>
Subject: RE: 3802 and 3812 Greenbank Road (Barrhaven South) - Construction/Occupancy Type

Hi Brandon,

The client would like a steel frame (non-combustible) construction. The building will be sprinklered with Type E (Retail & small restaurants) and D (office) occupancy.

Happy Thanksgiving long weekend!

Regards,

Amanda Lawrence, Architect, B.AS, M.Arch, OAA, MRAIC

S.J. Lawrence Architect Incorporated

Ph: 613.739.7770 Fax: 613.739.7703 Email: amanda@sjlarchitect.com Address: 18 Deakin St, Suite 205 Nepean ON K2E 8B7 Web: sjlarchitect.com

From: Brandon Chow <<u>BChow@dsel.ca</u>>
Sent: Thursday, October 4, 2018 11:19 AM
To: Amanda Lawrence <<u>amanda@sjlarchitect.com</u>>
Subject: RE: 3802 and 3812 Greenbank Road (Barrhaven South) - Construction/Occupancy Type

Hi Amanda,

Just wanted to follow up on this. Let me know if you have any questions or need any clarification.

Thanks,

Brandon Chow Project Coordinator / Intermediate Designer

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext.532 fax: (613) 836-7183 email: <u>bchow@DSEL.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

From: Brandon Chow Sent: October 2, 2018 12:09 PM To: 'Amanda Lawrence' <<u>amanda@sjlarchitect.com</u>> Subject: RE: 3802 and 3812 Greenbank Road (Barrhaven South)

Hi Amanda,

Further to the email below, can you confirm that after reviewing section 2 (pages 5,6) in the ISO guide, the class of construction would be "non-combustible"?

Can you also confirm the Occupancy Type for the building? See ISO guide Chapter 3, pages 11 to 13 for definitions to clarify.

Thanks,

Brandon Chow Project Coordinator / Intermediate Designer

DSEL david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext.532 fax: (613) 836-7183 email: <u>bchow@DSEL.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

From: Amanda Lawrence <<u>amanda@sjlarchitect.com</u>>
Sent: September 24, 2018 7:20 PM
To: Brandon Chow <<u>BChow@dsel.ca</u>>
Cc: Steve Merrick <<u>SMerrick@dsel.ca</u>>
Subject: RE: 3802 and 3812 Greenbank Road (Barrhaven South)

Hi Brandon,

Based on the building size a sprinkler system is not required, the building is also permitted to be combustible or noncombustible or combustible construction, Also no roof rating is required as per building classification 3.2.2.61. Group E, up to two storeys.

I will review more tomorrow and discuss construction systems with the client - I believe they are looking for a light frame steel building.

Regards,

Amanda Lawrence, Architect, B.AS, M.Arch, OAA, MRAIC S.J. Lawrence Architect Incorporated

Ph: 613.739.7770 Fax: 613.739.7703 Email: amanda@sjlarchitect.com Address: 18 Deakin St, Suite 205 Nepean ON K2E 8B7 Web: sjlarchitect.com

From: Brandon Chow <<u>BChow@dsel.ca</u>>
Sent: Monday, September 24, 2018 11:51 AM
To: Amanda Lawrence <<u>amanda@sjlarchitect.com</u>>
Cc: Steve Merrick <<u>SMerrick@dsel.ca</u>>
Subject: 3802 and 3812 Greenbank Road (Barrhaven South)

Hi Amanda,

We are preparing an estimate for the total fire demand for the proposed building at 3802-3812 Greenbank Road and hope you can provide input on the items below:

1) We will need to know if the building will be protected by a sprinkler system that is fully supervised.

- 2) Would you be able to confirm the ISO construction type for the units. I have included the ISO guide in which sections 1, 2 and 3 on pages 3 to 8 provides definitions to clarify as well as the section from the City's technical bulletin. Note that ISO refers only to fire-resistive for fire ratings not less than 1-hour.
- A. Determine the type of construction.
 - Coefficient C in the FUS method is equivalent to coefficient F in the ISO method:

FUS type of construction	ISO class of construction	Coefficient C
Fire-resistive construction	Class 6 (fire resistive)	0.6
	Class 5 (modified fire resistive)	0.6
Non-combustible construction	Class 4 (masonry non-combustible)	0.8
	Class 3 (non-combustible)	0.8
Ordinary construction	Class 2 (joisted masonry)	1.0
Wood frame construction	Class 1 (frame)	1.5

Correspondence between FUS and ISO construction coefficients

However, the FUS definition of fire-resistive construction is more restrictive than those of ISO construction classes 5 and 6 (modified fire resistive and fire resistive). FUS requires structural members and floors in buildings of fire-resistive construction to have a fire-resistance rating of 3 hours or longer.

- With the exception of fire-resistive construction that is defined differently by FUS and ISO, practitioners can refer to the definitions of the ISO construction classes (and the supporting definitions of the types of materials and assemblies that make up the ISO construction classes) found in the current ISO guide [4] (see Annex i) to help select coefficient C.
- To identify the most appropriate type of construction for buildings of mixed construction, the rules included in the current ISO guide [4] can be followed (see Annex i). For a building to be assigned a given classification, the rules require ¾ (67%) or more of the total wall area and ¾ (67%) or more of the total floor and roof area of the building to be constructed according to the given construction class or a higher class.
- New residential developments (less than 4 storeys) are predominantly of wood frame construction (C = 1.5) or ordinary construction (C = 1.0) if exterior walls are of brick or masonry. Residential buildings with exterior walls of brick or masonry veneer and those with less than ⅔ (67%) of their exterior walls made of brick or masonry are considered wood frame construction (C = 1.5).

Please feel free to let me know if you have any questions.

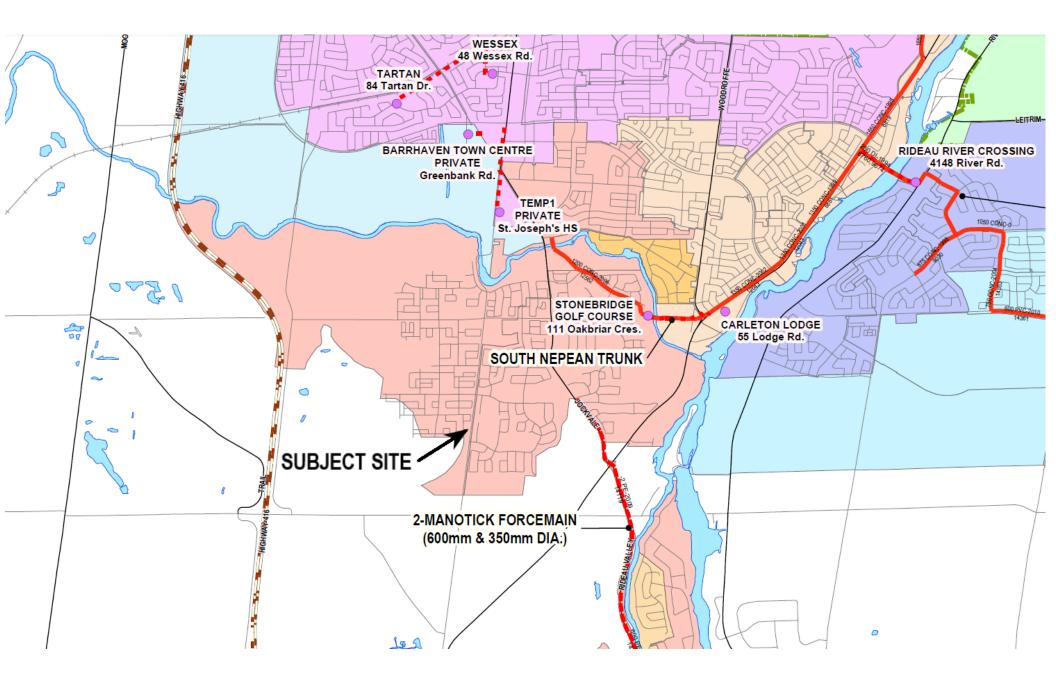
Thanks,

Brandon Chow Project Coordinator / Intermediate Designer

DSEL david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

 phone:
 (613) 836-0856 ext.532


 fax:
 (613) 836-7183

 email:
 bchow@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

APPENDIX C

Wastewater Collection

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

Site Area			0.223 ha	
Extraneous Flow Allowanc		ation / Inflow	0.07 L/s	
Domestic Contributions				
Unit Type	Unit Rate	Units	Рор	
Single Family	3.4		0	
Semi-detached and duplex	2.7		0	
Townhouse	2.7		0	
Stacked Townhouse	2.3		0	
Apartment				
Bachelor	1.4		0	
1 Bedroom	1.4		0	
2 Bedroom	2.1		0	
3 Bedroom	3.1		0	
Average	1.8		0	
-				

Total Pop	24
Average Domestic Flow	0.10 L/s
Peaking Factor	3.70

Peak Domestic Flow

Institutional / Commercial / Industrial Contributions Property Type Unit Rate

Property Type	Unit	Rate	No. of Units	Avg Wastewater (L/s)
Commercial floor space*	5	L/m²/d		0.00
Hospitals	900	L/bed/d		0.00
School	70	L/student/d		0.00
Ex. Industrial - Light**	35,000	L/gross ha/d		0.00
Industrial - Light**	35,000	L/gross ha/d		0.00
Industrial - Heavy**	55,000	L/gross ha/d		0.00

Average I/C/I Flow	0.00
Peak Institutional / Commercial Flow	0.00
Peak Industrial Flow**	0.00
Peak I/C/I Flow	0.00

0.36 L/s

* assuming a 12 hour commercial operation

** peak industrial flow per City of Ottawa Sewer Design Guidelines Appendix 4B

Total Estimated Average Dry Weather Flow Rate	0.10 L/s
Total Estimated Peak Dry Weather Flow Rate	0.36 L/s
Total Estimated Peak Wet Weather Flow Rate	0.43 L/s

3802-3812 Greenbank Road Proposed Site Conditions

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

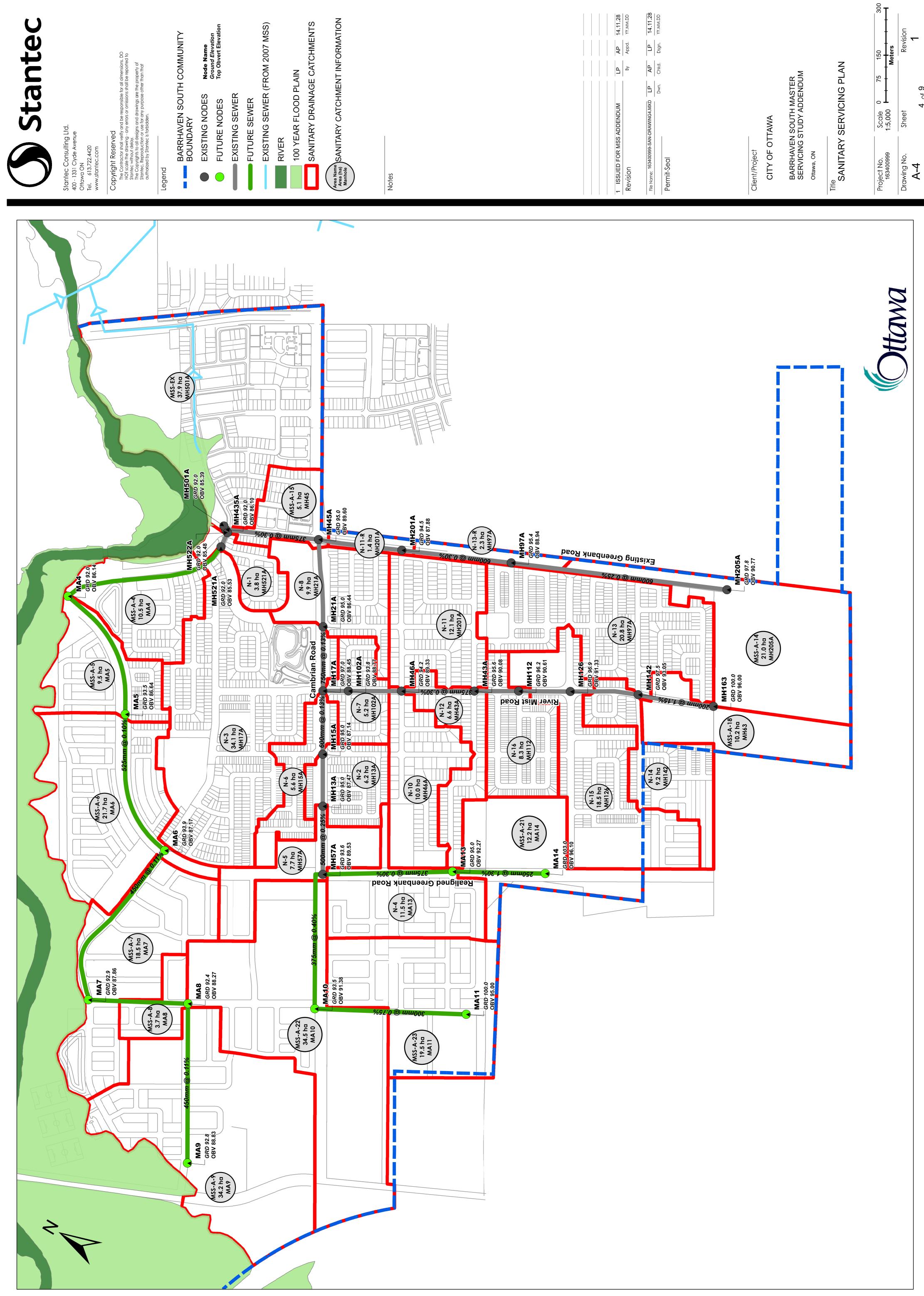
Site Area			0.223 ha	
Extraneous Flow Allowance		ition / Inflow	0.07 L/s	
Domestic Contributions				
Unit Type	Unit Rate	Units	Рор	
Single Family	3.4		0	
Semi-detached and duplex	2.7		0	
Townhouse	2.7		0	
Stacked Townhouse	2.3		0	
Apartment				
Bachelor	1.4		0	
1 Bedroom	1.4		0	
2 Bedroom	2.1		0	
3 Bedroom	3.1		0	
Average	1.8		0	

Total Pop	0
Average Domestic Flow	0.00 L/s
Peaking Factor	3.80

Peak Domestic Flow 0.00 L/s

Institutional / Commercial / Industrial Contributions Property Type Unit Rate

				(L/s)	
Commercial floor space*	5	L/m²/d	848	0.	.10
Hospitals	900	L/bed/d		0.	.00
School	70	L/student/d		0.	.00
Ex. Industrial - Light**	35,000	L/gross ha/d		0.	.00
Industrial - Light**	35,000	L/gross ha/d		0.	.00
Industrial - Heavy**	55,000	L/gross ha/d		0.	.00
		Ave	rage I/C/I Flow	0.	.10


Peak I/C/I Flow	0.15
Peak Industrial Flow**	0.00
Peak Institutional / Commercial Flow	0.15

No. of Units Avg Wastewater

* assuming a 12 hour commercial operation

** peak industrial flow per City of Ottawa Sewer Design Guidelines Appendix 4B

Total Estimated Average Dry Weather Flow Rate	0.10 L/s
Total Estimated Peak Dry Weather Flow Rate	0.15 L/s
Total Estimated Peak Wet Weather Flow Rate	0.22 L/s

4 _{of} 9

DESIGN PARAMETERS As per CDP (unitsha) 350 Lpúday MINIMUM VELOCITY 0.60 m/s LOW DENSITY RESDENTIAL	50,000 Lhadday MAXIMUM VELOCITY 3.00 m/s 55,000 Lhadday MANNINGS n 0.013 35,000 Lhadday BEDDING CLASS B 50.000 Lhadday MININUM COVER 2.50 m 0.28 L/s/ha	INFLITATION TOTAL PIPE PRE ACCU. INFLT FLOW LENGTH DIA MATERIAL SLOPE CAP. VEL. VEL. VEL. AREA FLOW FLOM FLOM ("HUL) PEAK FLOW (FULL) VEL. VET. VET. <th>30.1 482.1 300 PVC 0.75 87.6 34% 1.20 1.08 1 64.4 449.7 375 PVC 0.40 115.1 56% 1.01 1.04</th> <th>295.0 PVC 1.30 71.4 25% 1.40 1.12 413.1 375 PVC 0.30 100.3 38% 0.88 0.81</th> <th>500 CPP 0.25 188.2 57% 0.96 0.99 500 CPP 0.20 168.6 6.9% 0.86 0.33 500 0.31 230.7 56% 0.79 0.81 501 0.81 501 56% 0.81 563</th> <th>PVC 1.15 35.8 39% 1.12 1.00 PVC 1.15 67.3 21% 1.32 1.00 PVC 1.40 63.5 47% 0.87 0.87 PVC 0.40 63.5 47% 0.87 0.86 PVC 0.41 64.2 447% 0.87 0.86 PVC 0.43 122.0 41% 1.01 1.01 PVC 0.45 122.0 41% 1.07 1.01 PVC 0.31 100.1 67% 0.88 0.39 PVC 0.33 100.3 67% 0.88 0.31 PVC 0.30 100.3 67% 0.88 0.35 PVC 0.30 100.3 67%</th> <th>P 0.13 419.5 55% 0.92 0.94 P 0.13 419.5 56% 0.92 0.95</th> <th>0.25 321.2 12% 1.10 0.73 0.25 321.2 12% 1.10 0.73 0.25 321.2 12% 1.10 0.73 0.25 321.2 12% 1.10 0.73 0.25 321.2 12% 1.10 0.73 0.26 321.2 12% 1.10 0.73 0.26 321.2 12% 1.10 0.73 0.26 321.2 12% 1.10 0.73 0.30 350.4 18% 1.20 0.89 0.30 350.4 18% 1.20 0.89 0.30 350.4 18% 1.20 0.89 0.30 350.4 22% 1.20 0.89 0.30 350.4 22% 1.20 0.94 0.30 350.4 22% 1.20 0.94 0.30 350.4 22% 1.20 0.94 0.30 350.4 27% 1.20</th> <th>0.10 597.0 51% 0.91 0.91</th> <th>0.11 98.4 47% 0.60 0.59 0.11 98.4 52% 0.60 0.61 0.11 98.4 52% 0.60 0.67 0.11 98.4 81% 0.60 0.67 0.11 98.4 81% 0.60 0.67 0.11 98.4 81% 0.69 0.71 0.10 201.5 56% 0.69 0.73 0.10 201.5 56% 0.65 0.73 0.10 201.5 56% 0.65 0.73 0.11 201.5 56% 0.65 0.75 0.12 201.5 68% 0.66 0.75 0.13 201.5 68% 0.66 0.73 0.11 202.2 48% 1.00 0.99 0.11 623.2 66% 0.95 1.02</th>	30.1 482.1 300 PVC 0.75 87.6 34% 1.20 1.08 1 64.4 449.7 375 PVC 0.40 115.1 56% 1.01 1.04	295.0 PVC 1.30 71.4 25% 1.40 1.12 413.1 375 PVC 0.30 100.3 38% 0.88 0.81	500 CPP 0.25 188.2 57% 0.96 0.99 500 CPP 0.20 168.6 6.9% 0.86 0.33 500 0.31 230.7 56% 0.79 0.81 501 0.81 501 56% 0.81 563	PVC 1.15 35.8 39% 1.12 1.00 PVC 1.15 67.3 21% 1.32 1.00 PVC 1.40 63.5 47% 0.87 0.87 PVC 0.40 63.5 47% 0.87 0.86 PVC 0.41 64.2 447% 0.87 0.86 PVC 0.43 122.0 41% 1.01 1.01 PVC 0.45 122.0 41% 1.07 1.01 PVC 0.31 100.1 67% 0.88 0.39 PVC 0.33 100.3 67% 0.88 0.31 PVC 0.30 100.3 67% 0.88 0.35 PVC 0.30 100.3 67%	P 0.13 419.5 55% 0.92 0.94 P 0.13 419.5 56% 0.92 0.95	0.25 321.2 12% 1.10 0.73 0.25 321.2 12% 1.10 0.73 0.25 321.2 12% 1.10 0.73 0.25 321.2 12% 1.10 0.73 0.25 321.2 12% 1.10 0.73 0.26 321.2 12% 1.10 0.73 0.26 321.2 12% 1.10 0.73 0.26 321.2 12% 1.10 0.73 0.30 350.4 18% 1.20 0.89 0.30 350.4 18% 1.20 0.89 0.30 350.4 18% 1.20 0.89 0.30 350.4 22% 1.20 0.89 0.30 350.4 22% 1.20 0.94 0.30 350.4 22% 1.20 0.94 0.30 350.4 22% 1.20 0.94 0.30 350.4 27% 1.20	0.10 597.0 51% 0.91 0.91	0.11 98.4 47% 0.60 0.59 0.11 98.4 52% 0.60 0.61 0.11 98.4 52% 0.60 0.67 0.11 98.4 81% 0.60 0.67 0.11 98.4 81% 0.60 0.67 0.11 98.4 81% 0.69 0.71 0.10 201.5 56% 0.69 0.73 0.10 201.5 56% 0.65 0.73 0.10 201.5 56% 0.65 0.73 0.11 201.5 56% 0.65 0.75 0.12 201.5 68% 0.66 0.75 0.13 201.5 68% 0.66 0.73 0.11 202.2 48% 1.00 0.99 0.11 623.2 66% 0.95 1.02
DESIGN PARAMETERS SSON 350 Lipiday MINIMUM VELOCITY 0.60 m/s	50,000 Lhadday MAXIMUM VELOCITY 3.00 m/s 55,000 Lhadday MANNINGS n 0.013 35,000 Lhadday BEDDING CLASS B 50.000 Lhadday MININUM COVER 2.50 m 0.28 L/s/ha	ION TOTAL PIPE NFILT. FLOW LENGTH DIA MATERIAL SLOPE CAP. FLOW FLOW (PULL) PEAK FLOW (PULL) PEAK FLOW (L/S) (L/S) (m) (m) (%) (L/S) (%)	30.1 482.1 300 PVC 0.75 87.6 34% 64.4 449.7 375 PVC 0.40 115.1 56%	250 PVC 1.30 71.4 25% 375 PVC 0.30 100.3 38%	CPP 0.25 188.2 57% CPP 0.20 168.6 69% CPP 0.13 230.7 56%	1,15 35.8 39% 1,15 67.3 21% 1,15 67.3 21% 1,15 67.3 21% 1,16 67.3 21% 1,15 67.3 21% 1,16 63.5 47% 0,40 63.5 47% 0,45 124.2 41% 0,45 124.2 41% 0,45 124.2 41% 0,45 124.2 41% 0,45 124.2 41% 0,45 10.3 60% 0,30 100.3 67% 0,30 100.3 67% 0,30 100.3 67% 0,30 100.3 67% 0,30 100.3 67% 0,30 100.3 67% 0,30 100.3 67% 0,30 100.3 67% 0,30 100.3 76% 0,30 100.3 76%	0.13 419.5 55% 0.13 419.5 56%	371.2 12% 321.2 12% 321.2 12% 321.2 12% 321.2 12% 350.4 18% 350.4 18% 350.4 18% 350.4 18% 350.4 18% 350.4 18% 350.4 172% 350.5 17%	597.0 51%	98.4 47% 98.4 52% 98.4 61% 201.5 56% 201.5 56% 201.5 62% 181.0 76% 201.5 68% 192.7 73% 292.0 48% 292.0 48%
DESIGN PARAMETERS SSON 350 Lipiday MINIMUM VELOCITY 0.60 m/s	50,000 Lhadday MAXIMUM VELOCITY 3.00 m/s 55,000 Lhadday MANNINGS n 0.013 35,000 Lhadday BEDDING CLASS B 50.000 Lhadday MININUM COVER 2.50 m 0.28 L/s/ha	ION TOTAL PIPE NFILT FLOW LENGTH DIA MATERIAL SLOPE CAP. FLOW (L/S) (m) (mm) (%) (L/S)	30.1 482.1 300 PVC 0.75 87.6 64.4 449.7 375 PVC 0.40 115.1	250 PVC 1.30 71.4 375 PVC 0.30 100.3	CPP 0.25 188.2 CPP 0.20 168.6 CPP 0.13 230.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.13 419.5 0.13 419.5	321.2 321.2 321.2 321.2 321.2 321.2 350.4 350.4 350.4 350.4 350.4 350.4 350.4 350.4 350.4 350.4	597.0	98.4 98.4 98.4 201.5 201.5 201.5 201.5 201.5 201.5 201.5 201.5 202.0 292.0
DESIGN PARAMETERS SSON 350 Lipiday MINIMUM VELOCITY 0.60 m/s	50,000 Lhadday MAXIMUM VELOCITY 3.00 m/s 55,000 Lhadday MANNINGS n 0.013 35,000 Lhadday BEDDING CLASS B 50.000 Lhadday MININUM COVER 2.50 m 0.28 L/s/ha	ION TOTAL PIPE NFLT. FLOW LENGTH DIA MATERIAL SLOPE FLOW (L/S) (m) (mm) (%)	30.1 482.1 300 PVC 0.75 64.4 449.7 375 PVC 0.40	250 PVC 1.30 375 PVC 0.30	CPP 0.25 CPP 0.20 CPP 0.13	1.15 1.15 1.15 1.15 0.40 0.40 0.33 0.33 0.33 0.33 0.33 0.33	0.13 0.13			
DESIGN PARAMETERS SSON 350 Lipiday MINIMUM VELOCITY 0.60 m/s	50,000 Lhadday MAXIMUM VELOCITY 3.00 m/s 55,000 Lhadday MANNINGS n 0.013 35,000 Lhadday BEDDING CLASS B 50.000 Lhadday MININUM COVER 2.50 m 0.28 L/s/ha	IDTAL TOTAL INFLT. FLOW LENGTH MATERIAL FLOW (L/S) (m) (mm)	30.1 482.1 300 PVC 64.4 449.7 375 PVC	250 PVC 375 PVC	СРР СРР			0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.10	0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10
DESIGN PARAMETERS SSON 350 Lipiday MINIMUM VELOCITY 0:60	50.000 Linaday MAXIMUM VELOCITY 3.00 55.000 Linaday MANNINGS n 0.013 35.000 Linaday BEDDING CLASS B 50.000 Linaday MINIMUM COVER 2.50 0.28 Lisha MINIMUM COVER 2.50	ION TOTAL INFLT. FLOW LENGTH DIA FLOW (ШS) (TUS) (m)	30.1 482.1 300 64.4 449.7 375	250 375			<u>م</u> م			
DESIGN PARAMETERS 350 Lipiday MINIMUM VELOCITY 350N	50,000 Lhadday MAXIMUM VELOCITY 3.0 55,000 Lhadday MANNINGS n 0.01 35,000 Lhadday BEDDING CLASS 50,00 Lhadday MINIMUM COVER 2.1 0.28 LiSha	TOTAL TOTAL INFILT. FLOW LENGTH FLOW (L/S) (m)	30.1 482.1 64.4 449.7		500 600		СРР		СРР	
DESIGN PARAMETERS 350 Lipiday	50,000 Lhaiday 55,000 Lhaiday 35,000 Lhaiday 50,000 Lhaiday 0.28 Lisha	ION TOTAL INFILT. FLOW FLOW (L/S)	30.1 64.4	295.0 413.1		200 250 250 300 300 375 375 375 375 375 375 375 375 375 375	750 750		006	450 450 600 600 600 600 600 600 600
DESIGN PARAMETERS 350 Lipiday	50,000 Lhaiday 55,000 Lhaiday 35,000 Lhaiday 50,000 Lhaiday 0.28 Lisha	ION INFILT. FLOW (L/S)			216.5 165.2 202.0	36.3 87.2 7.55 7.4.4 7.4.8 6.4.7 8.6.0 8.8.0 8.8.0 8.8.0 8.8.0 8.4.00 8.4.00 8.000 8.4.000 8.4.000 8.4.000 8.4.000 8.4.0000000000	204.3 277.8	126.0 125.0 108.0 108.0 108.0 125.0 123.0 123.0 123.0 123.0 123.0 123.0 123.0 26.0	296.6	507.5 573.1 573.1 473.3 220.0 501.5 44.4 46.0 44.4 10.8 10.8
DESIGN PARAMET RSON 350	50,000 Lhaiday 55,000 Lhaiday 35,000 Lhaiday 50,000 Lhaiday 0.28 Lisha	NO		18.2 38.1	108.2 117.1 128.3	14.0 14.0 14.0 29.8 29.8 29.8 29.8 49.5 60.6 60.6 60.6 60.6 60.6 60.6 60.6 60	229.9 236.7	38.2 38.2 38.2 38.2 38.2 38.2 64.3 64.3 64.3 64.3 76.9 76.9 76.9	301.8	45.8 50.7 50.7 79.8 112.1 122.1 122.1 137.1 137.1 140.7 140.7 140.7 140.7
DESIGN PARAMET RSON 350	50,000 55,000 35,000 50,000 50,000	INFILTRATION ACCU. AREA (ha)	5.5 15.1	3.4 6.7	23.9 25.7 27.2	2.9 2.9 5.4 5.4 13.0 10.6 14.8 14.8 14.8 14.8 14.8 14.8 17.6 17.6 17.6 17.6	55.9 58.6	5.9 5.9 5.9 5.9 11.7 11.7 15.1 15.1 15.1 15.1	75.2	9.6 10.6 15.8 21.9 24.5 26.8 26.8 26.8 26.8 26.8 26.8 27.9 27.9 27.9 27.9 103.0
DESIGN PARAMET RSON 350	50,000 55,000 35,000 50,000 50,000	-	19.5 54.0	12.3 23.8	85.5 91.7 97.3	10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	199.5 209.4	210 210 210 210 210 210 210 210 230 530 530 530 530 530 530 530 530 530 5	268.4	34.2 37.9 56.4 78.1 87.6 95.7 95.7 95.7 99.5 99.5 99.5 367.9
SON		TOTAL AREA (ha)	19.5 34.5	12.3 11.5	7.7 6.2 5.6	$\begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	34.1 9.9	21.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.1	34.2 34.2 18.5 21.7 21.7 9.1 0.0 0.0 0.0 0.0
AVG. DAILY FLOW / PERSO		C+I+I PEAK FLOW (L/S)	2 8.7	6.5 6.5	18.1 18.1 18.1	2 2 2 4 4 4 7 2 4 4 4 4 4 4 4 4 4 4 4 4	25.0 25.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	25.0	22 22 22 22 22 22 22 22 22 22 22 22 22
AVG. DAILY FL	L (HEAVY) (LIGHT) AL J	UNUSED ACCU. AREA (ha)	2.5 17.0	0.0	17.5 17.5 17.5	a a a a a a a a a a a a a a a a a a a	25.1 28.0	00000000000000000000000000000000000000	28.8	9.5 10.3 10.3 10.3 10.3 10.3 10.3 10.3 39.1
	COMMERCIAL INDUSTRIAL (HEAVY) INDUSTRIAL (LIGHT) INSTITUTONAL INFILTRATION	GREEN / L AREA (ha)	2.5 14.5	0.0	0.0 0.0	$\begin{smallmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	5.1 2.9	0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0	9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
		TIONAL ACCU. AREA (ha)	2.8 10.0	7.5 7.5	17.5 17.5 17.5	2 2 8 8 2 2 8 8 2 8 8 2 8 8 2 8 8 2 8 8 2 8 8 2 8 8 2 8 8 2 8 8 2 2 8 2 8 2 8 2 8 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 2 8 2 2 2 8 2	25.4 25.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	25.4	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
4.0	2.0 2.4 3.4 2.7 1.8	INSTITU AREA (ha)	2.8 7.2	7.5 0.0	0.0 0.0	$\begin{smallmatrix} 2 & 2 \\ 2 & 0 \\ 2 & 0 \\ 0 $	3.0	0.0000000000000000000000000000000000000	0.0	2.5 0.0 0.0 0.0 0.0 0.0 0.0
	RIAL): INST.):	RIAL (H) ACCU. AREA (ha)	0.0	0.0	0.0 0.0		0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AX PEAK FACTOR (RES.)=	WIN PEAK FACTOR (RES.)= =EAKING FACTOR (INDUSTRIAL): =EAKING FACTOR (INDUSTRIAL): =ERSONS / SINGLE UNIT =ERSONS / APARTMENT =ERSONS / APARTMENT	INDUSTI AREA (ha)	0.0	0.0	0.0		0.0	000000000000000000000000000000000000000	0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MAX PEAK FA	MIN PEAK FACTOR (RES. PEAKING FACTOR (INDU: PEAKING FACTOR (COMI PERSONS / SINGLE UNIT PERSONS / TOWNHOME PERSONS / APARTMENT	RIAL (L) ACCU. AREA (ha)	0.0	0.0	0.0 0.0 0.0		0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	2 or more	INDUST AREA (ha)	0.0	0.0	0.0		0.0		0.0	
	HMB values Most US MH Estimated value MH receiving flow from 2 or more severs	ERCIAL ACCU. AREA (ha)	0.0	0.0	3.4 3.4 3.4		3.4 3.4		3.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4
		COMM AREA (ha)	0.0	0.0	3.4 0.0 0.0		0.0	0.0000000000000000000000000000000000000	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ίĿ	colour code: Hard coded values Caculated value Value from subdivision design	PEAK FLOW (L/s)	22.6 40.6	8.3 24.9	66.2 73.3 83.0	8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 34.6 4.3 34.6 4.3 4.3 34.6 4.7.6 4.7.6 54.3 54.3 54.3 54.3 55.3 54.3 55.3	149.0 153.1	32.3 32.3 32.3 32.3 32.3 32.3 32.3 52.6 57.6 57.6 51.8 61.8 61.8 61.8	201.6	34.0 37.9 61.8 61.8 88.0 98.9 98.9 98.9 108.1 108.1 110.6 110.6 110.6 281.3
DESIGN SHEET (City of Ottawa)	Colour code: Hard coded values Caculated value Value from subdivisi design	PEAK FACT.	3.67 3.46	3.97 3.64	3.24 3.19 3.13	8 9 9 9 9 9 9 9 9 9 9 9 9 9	2.84 2.83	3.55 3.55 3.55 3.55 3.55 3.55 3.55 3.55	2.68	3.53 3.48 3.27 3.11 3.01 3.01 3.01 3.01 3.00 3.00 3.00
	e alue	CUMULATIVE REA POP. 1a)	1,523 2,894	513 1,689	5,041 5,675 6,545	543 543 543 543 543 543 543 547 1,470 1,470 1,470 1,470 3,113 3,113 3,113 3,465 3,465 3,465 3,34653,3465 3,46653,4665 3,4665 3,46653,4665 3,4665 3,46653,4665 3,4665 3,46653,4665 3,4665 3,46653,4665 3,4665 3,46653,4665 3,4665 3,46653,4665 3,466553,46655555555555555555555555555555555555	12,948 13,356	2,246 2,246 2,246 2,246 2,246 3,877 3,877 3,877 3,877 3,877 3,877 4,664 4,664 4,664	18,568	2,378 2,686 4,665 6,985 8,005 8,005 8,868 8,868 8,868 8,868 8,868 8,868 8,868 8,868 8,909 9,099
	163400999 updated va	ATION CUML AREA (ha)	14.20 27.00	4.8 15.8	47.1 53.3 58.9	6.5 6.5 6.5 6.5 6.5 7.5 15.7 15.7 15.7 15.7 15.7 40.5 80.5 55.5 55.5 55.5 55.5 55.5 60.7	145.6 152.6	21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	210.8	22.2 25.1 25.1 65.3 65.3 74.8 82.9 82.9 86.7 86.7 86.7 86.7
		A AND POPUI TOTAL POP	1,523 1,371	513 1,176	458 634 870	$\begin{array}{c} 5.4\\ 5.4\\ 7.6\\ 5.6\\ 5.6\\ 5.6\\ 5.6\\ 5.6\\ 5.6\\ 5.6\\ 5$	1,956 408	2,246 2,246 0 0 1,631 1,631 0 787 0 0	548	2,378 308 1,979 2,320 1,020 863 0 231 0 0 0 0
	BER:	DENTIAL ARE TOTAL AREA (ha)	14.2 12.8	4.8 11.0	4.3 6.2 5.6	6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	26.0 7.0	21.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.1	22.2 2.9 2.1.7 9.5 9.5 0.0 0.0 3.8 0.0 0.0
	FILE NUMBER:	ADD'N POP	1,523 1,371	513 1,176	458 3 2	2000000000000000000000000000000000000	00	2,246 0 0 0 0 0 0 0 0 0 0 0 0 0 0	548	2,378 308 1,979 2,320 1,020 863 0 0 54 0 0 0
Η LD	2017/09/29 2 LP /	ADD'N RES AREA (ha)	14.2 12.8	4.8 11.0	4.3 0.0 0.0	$\begin{smallmatrix} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & $	0.0	21.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.1	22.2 2.9 21.7 9.5 9.5 9.5 0.0 0.0 0.0 0.0
EN SOUT	2017 L	DEV POP	00	00	0 631 868	$\begin{array}{c} 5.4\\ 5.6\\ 5.6\\ 5.6\\ 5.6\\ 5.6\\ 5.6\\ 5.6\\ 5.6$	1,956 408	0 0 1,625 0 787 0 0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BARRHAVEN SOUTH MASTER SERVICING STUDY	: 0 BY: BY:	DEV AREA (ha)	0.00	0.0	0.0 5.6	6.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	26.0 7.0	0.0 0.0 0.0 0.0 19.3 0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EMAS	DATE: REVISION: DESIGNED BY: CHECKED BY:	TO M.H.	MA10 MH57A	MA13 MH57A	MH13A MH15A MH17A	162 161 161 161 161 142 142 142 142 142 142 142 1445 1445	MH21A MH45	MH98A MH100A MH100A MH204A MH206A MH97A MH96A MH96A MH2018 MH2018 MH2013 MH200C MH45	MH435A	M48 M47 M46 M46 M45 M27A M15200 M15200 M1522A M1521A M1351A M15014
		FROM M.H.	MA11 MA10	MA14 MA13	MH57A MH13A MH15A		MH17A MH21A	MH205A MH98A MH99A MH100A MH204A MH96A MH96A MH95A MH201A MH201A MH200A MH200A	MH45	M49 M48 M47 M46 M45 M45 M45204 MH5234 MH522A MH4354 MH4354
		Source				Stantec Stantec Stantec Stantec Stantec Stantec Stantec IBI IBI IBI IBI IBI IBI IBI IBI IBI IB				
				Realigned Greenbank Road MSS-A-21 N-4						

APPENDIX D

Stormwater Management

Estimated Peak Stormwater Flow Rate City of Ottawa Sewer Design Guidelines, 2012

Existing Drainage Charateristics From Internal Site

Area	0.2235 ha
С	0.35 Rational Method runoff coefficient
L	75 m
Up Elev	97.82 m
Dn Elev	96.86 m
Slope	1.3 %
Tc	19.5 min

1) Time of Concentration per Federal Aviation Administration

+	_	$1.8(1.1-C)L^{0.5}$
c	_	S ^{0.333}

tc, in minutes

C, rational method coefficient, (-)

L, length in ft

S, average watershed slope in %

Estimated Peak Flow

	2-year	5-year	100-year
i	52.8	71.4	121.9 mm/hr
Q	11.5	15.5	33.1 L/s

 $Z: \label{eq:linear} Z: \label{eq:linear} Z: \label{eq:linear} IS 12. \label{eq:linear} IS 12.$

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

Target Flow Rate

Area	0.223 ha
С	0.35 Rational Method runoff coefficient
t _c	19.5 min

5-year

- i 71.4 mm/hr
- **Q** 15.5 L/s

Estimated Post Development Peak Flow from Unattenuated Areas

Total Area 0.016 ha

C 0.64 Rational Method runoff coefficient

		5-year				5-year 100-year						
ſ	t _c (min)	i (mm/hr)	Q _{actual} (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	i (mm/hr)	Q _{actual} * (L/s)	Q _{release} (L/s)	Q _{stored} (L/s)	V _{stored} (m ³)	
-	()	((=, =)	(=,=)	(=,=)	()	((=,=)	(=,=)	(=,=)	()	
	10.0	104.2	3.0	3.0	0.0	0.0	178.6	6.3	6.3	0.0	0.0	

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

 $Z: \label{eq:linear} Z: \label{eq:linear} Z: \label{eq:linear} IS 12. \label{eq:linear} IS 12.$

Estimated Post Development Peak Flow from Attenuated Areas

Area ID A1 Available Sub-surface Storage Maintenance Structures

	Ю	STM101	STM102	CB102A	CB102B		
	Structure Dia./Area (mm/mm ²)	1200	1200	360	360		
	T/L*	97.33	97.33	97.33	97.33		
	INV	94.73	95.19	96.25	96.30		
	Depth	2.60	2.14	1.08	1.03		
	V _{structure} (m ³)	2.9	2.4	0.1	0.1		
Sewers	ID	250mm	300mm	U/G STORG.			
	Storage Pipe Dia (mm)	250	300				
	L (m)	85.7	14				
	V _{sewer} (m ³)	4.2	1.0	85.0			
	*Top of lid or max ponding elevation =						

Total Subsurface Storage (m³) 95.8

Stage Attenuated Areas Storage Summary

	_	Surface Storage			Surfa	ice and Sub	surface Stor	age
	Stage	Ponding	h _o	0	V*	V _{acc} **	Q _{release} †	V _{drawdown}
	(m)	(m²)	(m)	(m)	(m ³)	(m ³)	(L/s)	(hr)
Orifice INV	94.73		0.00			0.0	0.0	0.00
Storage Pipe OBV	96.74		2.01	2.01	93.4	93.4	9.2	2.82
Max Ponding	97.33		2.60	0.59	2.5	95.8	10.3	2.58

* V=Incremental storage volume **V_{acc}=Total surface and sub-surface

† Q_{release} = Release rate calculated from orifice equation

Orifice Location STM101 IPEX LMF 85

0.207 ha **Total Area**

С

0.75 Rational Method runoff coefficient Note: Rational Method Coefficient "C" increased by 25% for 100-year calculations

	5-year					100-year				
t _c	i	Q _{actual} ‡	$\mathbf{Q}_{release}$	Q _{stored}	V _{stored}	i	Q _{actual} ‡	Q _{release}	Q _{stored}	V _{stored}
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m ³)
10	104.2	45.2	5.7	39.5	23.7	178.6	96.9	5.2	91.8	55.1
15	83.6	36.3	5.7	30.6	27.5	142.9	77.6	5.2	72.4	65.2
20	70.3	30.5	5.7	24.8	29.8	120.0	65.1	5.2	60.0	71.9
25	60.9	26.4	5.7	20.7	31.1	103.8	56.4	5.2	51.2	76.8
30	53.9	23.4	5.7	17.7	31.9	91.9	49.9	5.2	44.7	80.5
35	48.5	21.1	5.7	15.4	32.3	82.6	44.8	5.2	39.7	83.3
40	44.2	19.2	5.7	13.5	32.4	75.1	40.8	5.2	35.6	85.5
45	40.6	17.6	5.7	11.9	32.2	69.1	37.5	5.2	32.3	87.3
50	37.7	16.4	5.7	10.7	32.0	64.0	34.7	5.2	29.6	88.7
55	35.1	15.3	5.7	9.6	31.5	59.6	32.4	5.2	27.2	89.8
60	32.9	14.3	5.7	8.6	31.0	55.9	30.3	5.2	25.2	90.7
65	31.0	13.5	5.7	7.8	30.3	52.6	28.6	5.2	23.4	91.4
70	29.4	12.8	5.7	7.1	29.6	49.8	27.0	5.2	21.9	91.9
75	27.9	12.1	5.7	6.4	28.8	47.3	25.6	5.2	20.5	92.2
80	26.6	11.5	5.7	5.8	28.0	45.0	24.4	5.2	19.3	92.5
85	25.4	11.0	5.7	5.3	27.1	43.0	23.3	5.2	18.2	92.6
90	24.3	10.5	5.7	4.8	26.2	41.1	22.3	5.2	17.2	92.7
95	23.3	10.1	5.7	4.4	25.2	39.4	21.4	5.2	16.3	92.7
100	22.4	9.7	5.7	4.0	24.2	37.9	20.6	5.2	15.4	92.5
105	21.6	9.4	5.7	3.7	23.1	36.5	19.8	5.2	14.7	92.4

	105	21.6	9.4	5.7	3.7	23.1	36.5	19.8	5.2	14.7	92.4
	110	20.8		5/		22.1	35.2		52	14.0	92.1

5-year Q _{attenuated}	5.70 L/s	100-year Q _{attenuated}	9.13 L/s
5-year Max. Storage Required	32.4 m ³	100-year Max. Storage Required	92.7 m ³
Est. 5-year Storage Elevation	95.43 m	Est. 100-year Storage Elevation	96.73 m

Summary of Release Rates and Storage Volumes

Control Area	5-Year Release Rate (L/s)	5-Year Required Storage (m ³)	100-Year Release Rate (L/s)	100-Year Required Storage (m ³)	100-Year Available Storage (m ³)
Unattenuated Areas	3.0	0.0	6.3	0.0	0.0
Attenutated Areas	5.7	32.4	9.1	92.7	95.8
Total	8.7	32.4	15.5	92.7	95.8

										Sewer Data								
Area ID	Up	Down	Area	С	Indiv AxC	Acc AxC	Tc	Ι	Q	DIA	Slope	Length	A _{hydraulic}	R	Velocity	Qcap	Time Flow	Q / Q full
			(ha)	(-)			(min)	(mm/hr)	(L/s)	(mm)	(%)	(m)	(m²)	(m)	(m/s)	(L/s)	(min)	(-)
A1	CB102B	STM102	0.029	0.30	0.01	0.01	10.0	104.2	2.5	250	1.00	18.3	0.049	0.063	1.21	59.5	0.3	0.04
A2	STM102	STM101	0.094	0.77	0.07	0.08	10.3	102.9	23.2	300	0.50	11.7	0.071	0.075	0.97	68.4	0.2	0.34
BLDG	STM101	EX. STM SEWER	0.085	0.90	0.08	0.16	10.5	101.9	44.6	300	2.00	20	0.071	0.075	1.93	136.8	0.2	0.33
BLDG SER\	/ICE		0.085	0.90	0.08	0.08	0.0	230.5	49.0	250	1.00	10.1	0.049	0.063	1.21	59.5	0.1	0.82

ADVANCED DRAINAGE SYSTEMS, INC.

3802/3812 Greenbank Road

3802/3812 Greenbank Road

STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH MC-4500 OR APPROVED EQUAL. 1
- CHAMBERS SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS. 2.
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORT PANELS THAT 3. WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED 5 WALL STORMWATER COLLECTION CHAMBERS".
- CHAMBERS SHALL BE DESIGNED AND ALLOWABLE LOADS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE 6 FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS"
- 7 ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. THE CHAMBER MANUFACTURER SHALL SUBMIT THE FOLLOWING UPON REQUEST TO THE SITE DESIGN ENGINEER FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE:
 - A STRUCTURAL EVALUATION SEALED BY A REGISTERED PROFESSIONAL ENGINEER THAT DEMONSTRATES THAT THE SAFETY a. FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY AASHTO FOR THERMOPLASTIC PIPE.
 - A STRUCTURAL EVALUATION SEALED BY A REGISTERED PROFESSIONAL ENGINEER THAT DEMONSTRATES THAT THE LOAD b. FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET. THE 50 YEAR CREEP MODULUS DATA SPECIFIED IN ASTM F2418 MUST BE USED AS PART OF THE AASHTO STRUCTURAL EVALUATION TO VERIFY LONG-TERM PERFORMANCE.
 - STRUCTURAL CROSS SECTION DETAIL ON WHICH THE STRUCTURAL EVALUATION IS BASED. C.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 8

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-4500 CHAMBER SYSTEM

- STORMTECH MC-4500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTITIVE HAS COMPLETED A 1. PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2 STORMTECH MC-4500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR EXCAVATOR SITUATED OVER THE CHAMBERS

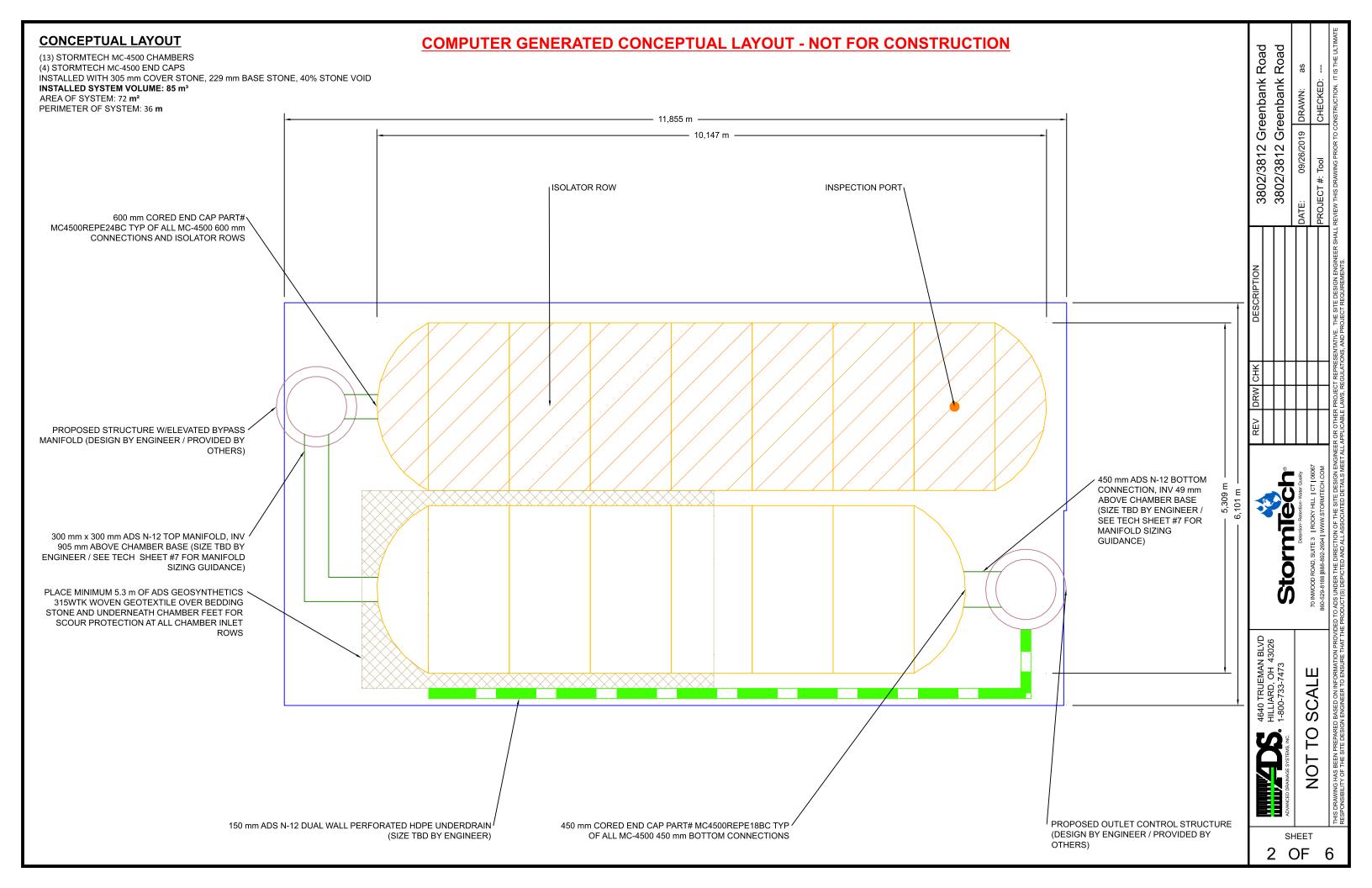
STORMTECH RECOMMENDS 3 BACKFILL METHODS:

- STONESHOOTER LOCATED OFF THE CHAMBER BED. BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
- BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS 4
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE 5.
- MAINTAIN MINIMUM 9" (230 mm) SPACING BETWEEN THE CHAMBER ROWS 6.
- INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS. 7.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 3/4-2" (20-50 mm) MEETING THE AASHTO M43 8. DESIGNATION OF #3 OR #4.
- 9. BY MORE THAN 12" (300 mm) BETWEEN ADJACENT CHAMBER ROWS.
- 10. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING.
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 11. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- STORMTECH MC-4500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 1.
- 2. THE USE OF EQUIPMENT OVER MC-4500 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY



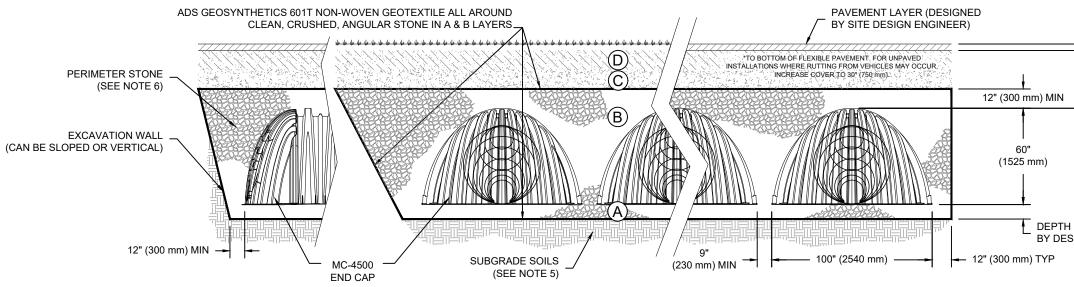
STONE SHALL BE BROUGHT UP EVENLY AROUND CHAMBERS SO AS NOT TO DISTORT THE CHAMBER SHAPE. STONE DEPTHS SHOULD NEVER DIFFER

NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE

WEIGHT LIMITS FOR CONSRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

ACCEPTABLE FILL MATERIALS: STORMTECH MC-4500 CHAMBER SYSTEMS

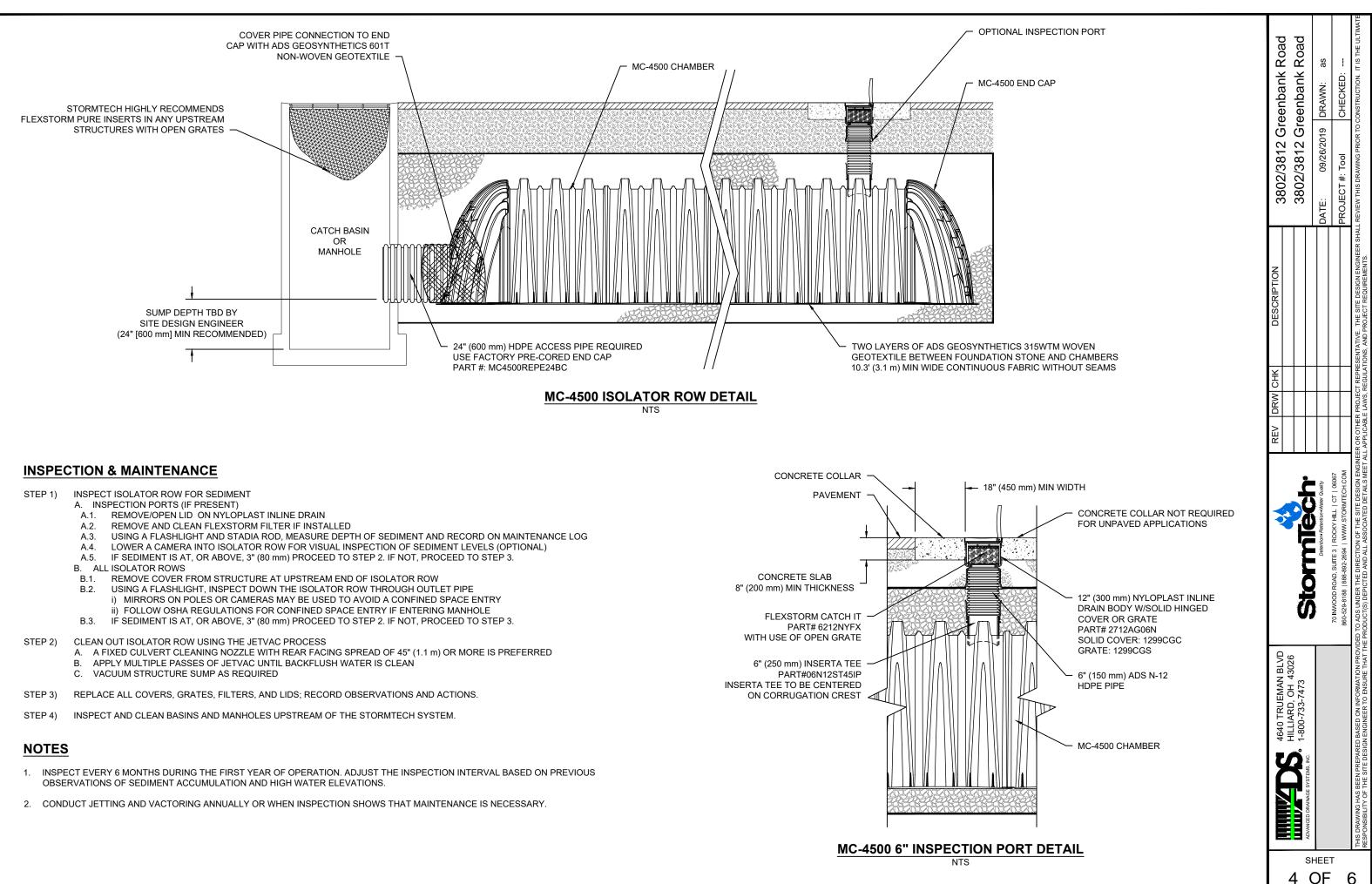

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / DE REQUIREMEN
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN ENG PAVED INSTALLATIONS MAY HA' MATERIAL AND PREPARATION R
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	FINES OR PROCESSED AGGREGATE.	OR	BEGIN COMPACTIONS AFTER 24 MATERIAL OVER THE CHAMBER COMPACT ADDITIONAL LAYERS MAX LIFTS TO A MIN. 95% PROCTO WELL GRADED MATERIAL AND DENSITY FOR PROCESSED A MATERIALS.
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION BETWEEN 3/4-2 INCH (20-50 mm)	AASHTO M43 ¹ 3, 4	NO COMPACTION REQU
A	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION BETWEEN 3/4-2 INCH (20-50 mm)	AASHTO M43 ¹ 3, 4	PLATE COMPACT OR ROLL TO A SURFACE. ^{2 3}
	C	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYERCINITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.BEMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.AFOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM)	ANY SOLAR OF THE CONSTRUCTION B FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER. B EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE. B EMBEDMENT STONE: FILL BLOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM)	MATERIAL LOCATION DESCRIPTION CLASSIFICATIONS D FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS. N/A C STARTS FROM THE 'D' LAYER GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% STORE (B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER. GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. OR B EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE (A' LAYER) TO THE 'C' LAYER ABOVE. CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION BETWEEN 3/4-2 INCH (20-50 mm) AASHTO M43' 3, 4 A FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) CLEAN, CRUSHED, ANGULAR STONE, NOMINAL SIZE DISTRIBUTION BETWEEN 3/4-2 INCH (20-50 mm) AASHTO M43' 3, 4

PLEASE NOTE:

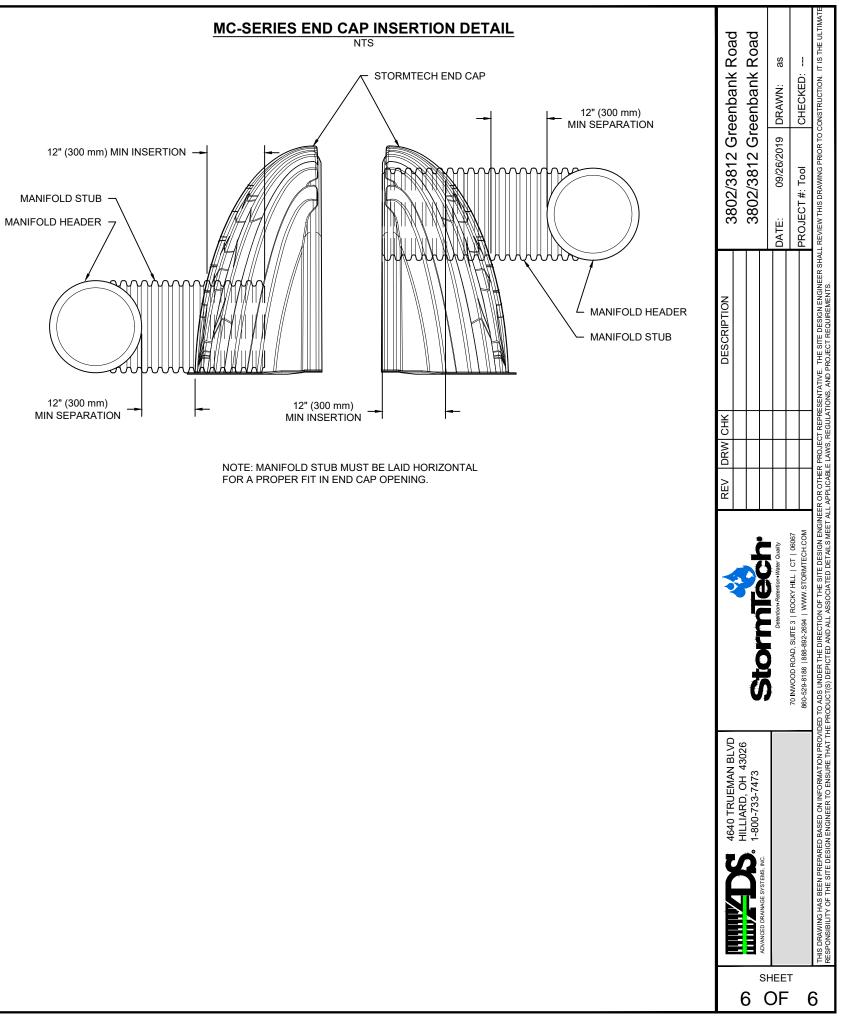
1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, ANGULAR NO. 4 (AASHTO M43) STONE".

2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY CO

3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT CO EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.


NOTES:

- 1. MC-4500 CHAMBERS SHALL CONFORM TO THE REQUIREMENTS OF ASTM F2418 "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 2. MC-4500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. "ACCEPTABLE FILL MATERIALS" TABLE ABOVE PROVIDES MATERIAL LOCATIONS, DESCRIPTIONS, GRADATIONS, AND COMPACTION REQUIREMENTS FOR FOUNDATION, EMBEDMENT, AND FILL MATERIALS.
- 4. THE "SITE DESIGN ENGINEER" REFERS TO THE ENGINEER RESPONSIBLE FOR THE DESIGN AND LAYOUT OF THE STORMTECH CHAMBERS FOR THIS PROJECT.
- 5. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 6. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 7. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.


		OF STONE TO BE DETERMINED SIGN ENGINEER 9" (230 mm) MIN			COMPACTOR. OMPACTION	, CRUSHED,	QUIRED.	REQUIREMENTS. 24" (600 mm) OF ERS IS REACHED. S IN 12" (300 mm) TOR DENSITY FOR D 95% RELATIVE AGGREGATE	IGINEER'S PLANS. IAVE STRINGENT	DENSITY INT	
	4640 TRUEMAN BLVD	\$ 7	REV	DRW (CHK	DE	DESCRIPTION	3802/3812 Greenbank Road	Greent	ank Road	
S	ADIANCED DRAINAGE SYSTEMS, INC. 1-800-733-7473	StormTech						3802/3812 Greenbank Road	Greent	ank Road	
HEE		Detention-Retention-Water Quality						DATE: 09/26/2019	19 DRAWN:	VN: as	
Г		70 INWOOD ROAD, SUITE 3 ROCKY HILL CT 06067 860-529-8188 888-892-2694 WWW.STORMTECH.COM			+			PROJECT #: Tool	CHEC	CHECKED:	
	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGIFER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER THE DIRECTION OF THE ULTIMATE RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	ED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETALS MEET AL	ER OR OTHE L APPLICABI	R PROJECT -E LAWS, RI	REPRESEN	ITATIVE. THE S, AND PROJE	SITE DESIGN ENGINEEF CT REQUIREMENTS.	R SHALL REVIEW THIS DRAWING PRIO	R TO CONSTRI	JCTION. IT IS THE UL'	MATE

3 OF

6

McNeil Farm Limited CORRIGAN STORMWATER MANAGEMENT FACILITY STORMWATER MANAGEMENT REPORT AND DESIGN BRIEF

Area ID Drainage Area (ha)		"Level of Service" Maximum Minor Inflow Rates (I/s)	Weighted On-Site Detention Available Storage [Required Storage] (m ³)
A11	10.0	5 year flow	(10.0 ha x 56 m ³ /ha) = 556 m ³
A12	12.1	(12.1 ha x 85 l/s/ha) = 1029 l/s	(12.1 ha x 56 m ³ /ha) = 672 m ³
A13	2.88	(2.88 ha x 238 l/s/ha*) = 685 l/s	N/A ²
A14	0.14	(0.14 ha x 120 l/s/ha) = 17 l/s	N/A ²
A15	0.11	(0.11 ha x 120 l/s/ha) = 13 l/s	N/A ²
B1	2.6	N/A ¹	N/A ²
B2	12.3	(12.3 ha x 85 l/s/ha) = 1046 l/s	540 m ³
В3	4.1	(4.1 ha x 85 l/s/ha) = 349 l/s	257 m ³
B4A	5.7	(5.7 ha x 85 l/s/ha) = 485 l/s	196 m ³
B4B	5.2	(5.2 ha x 85 l/s/ha) = 442 l/s	185 m ³
B5A	1.93	5 year flow	[261 m ³]
B5B	2.43	5 year flow	[258 m ³]
B5C	0.81	5 year flow	[183 m ³]
B5D	0.92	5 year flow	(0.92 ha x 300 m³/ha) = 276 m³
B6	0.35	(0.35 ha x 20 l/s/ha) = 7 l/s	[4541 m ³]
B7A	1.12	N/A ¹	N/A ²
B7B	0.76	5 year flow	N/A ²
B7C	1.06	N/A ¹	N/A ²
Private Property 1	0.12	N/A ¹	N/A ²
Private Property 2	0.62	(0.62 ha x 85 l/s/ha) = 53 l/s	N/A ²
Private Property 3	0.17	N/A ¹	N/A ²
Ext. Lands	31.9	(31.9 ha x 70 l/s/ha) = 2233 l/s	(31.9 ha x 42 m ³ /ha) = 1340 m ³

Note:

N/A¹ total flow captured by minor system

N/A² no surface storage

* 10 year flow

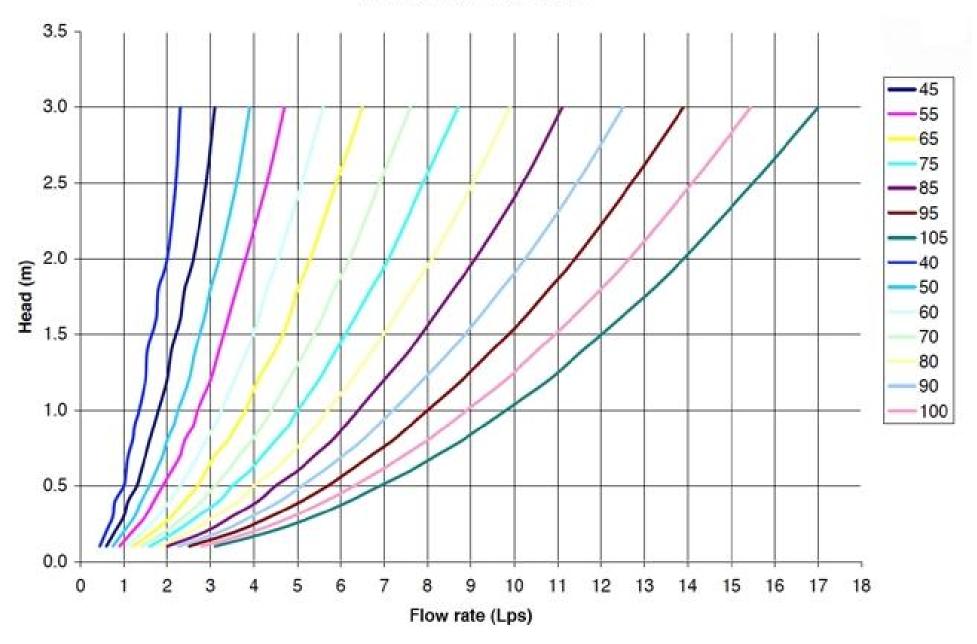
McNeil Farm Limited CORRIGAN STORMWATER MANAGEMENT FACILITY STORMWATER MANAGEMENT REPORT AND DESIGN BRIEF


the HGL analysis for the 100 year 24 hour SCS Type II are summarized in Table 7 (the HGL results have been rounded to the nearest tenth of a meter). Results for the 100 year 3 hour Chicago and July 1, 1979 storm events are presented in Appendix D.

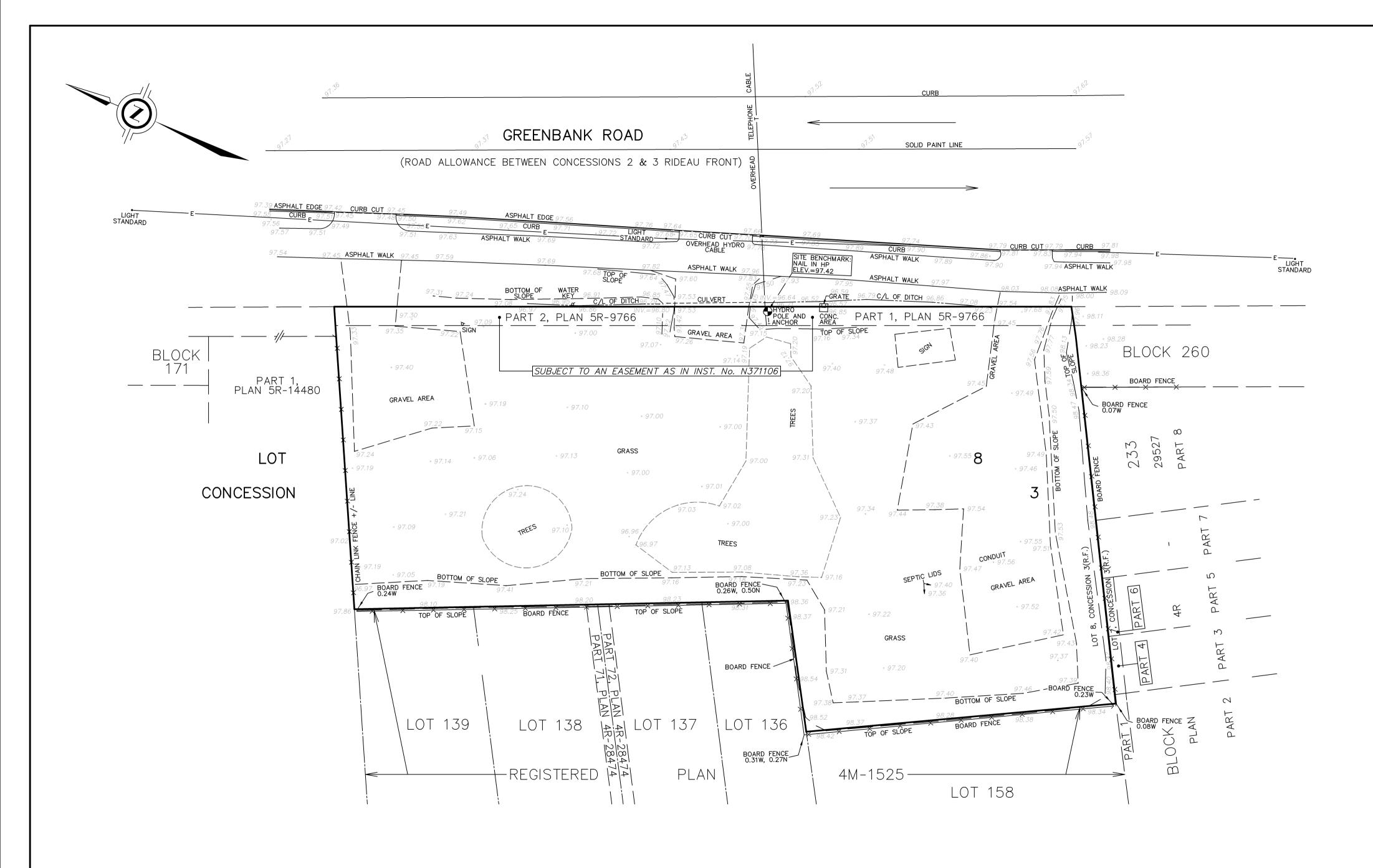
Table 7. Estimation of Hydraulic Grade Line Elevations for Trunk Sewer

МН	HGL (m)
SWM	90.1
116	N/A*
120/108	N/A*
119	N/A*
118/107	90.8
117/106	91.0
106A	91.4
105	N/A*
105B	91.8
104B	92.0
104	92.2
103B	92.7
103	92.7
102	N/A*
101	N/A*
171	92.3
166	N/A*
155/340	N/A*
153/338	N/A*
146/335	N/A*
144	N/A*
138	N/A*
136	N/A*
302	91.5
301A	91.5
301	N/A*
300	N/A*
109	N/A*
N/A* Flowing free	

As shown in Figure 4, the proposed minor system consists of two trunk sewers that connect at MH 104 and continue to the stormwater management facility. The sewer trunks are generally designed to operate at full capacity with no surcharge. Present design indicates some surcharge and therefore all USFs have to be constructed at a minimum of 0.3 m above the HGL or storm sewer obvert, whichever is higher. For areas that have been constructed or for which detailed design is underway, this level of service has been confirmed. For areas yet to be designed, grading plans versus HGL should be confirmed during the detailed design stage.


To determine the effect of the Jock River flood levels on the stormwater management facility, the finalized HEC-RAS model of the Jock River floodplain mapping was obtained from the RVCA. The trunk overflow outlet to the

1./13931_CorriganSMN/5.9 Drawings/59civil/current/Servicing Figures/CIV-stmwaterbase-2010-06-28.dwg Layout Name: figures

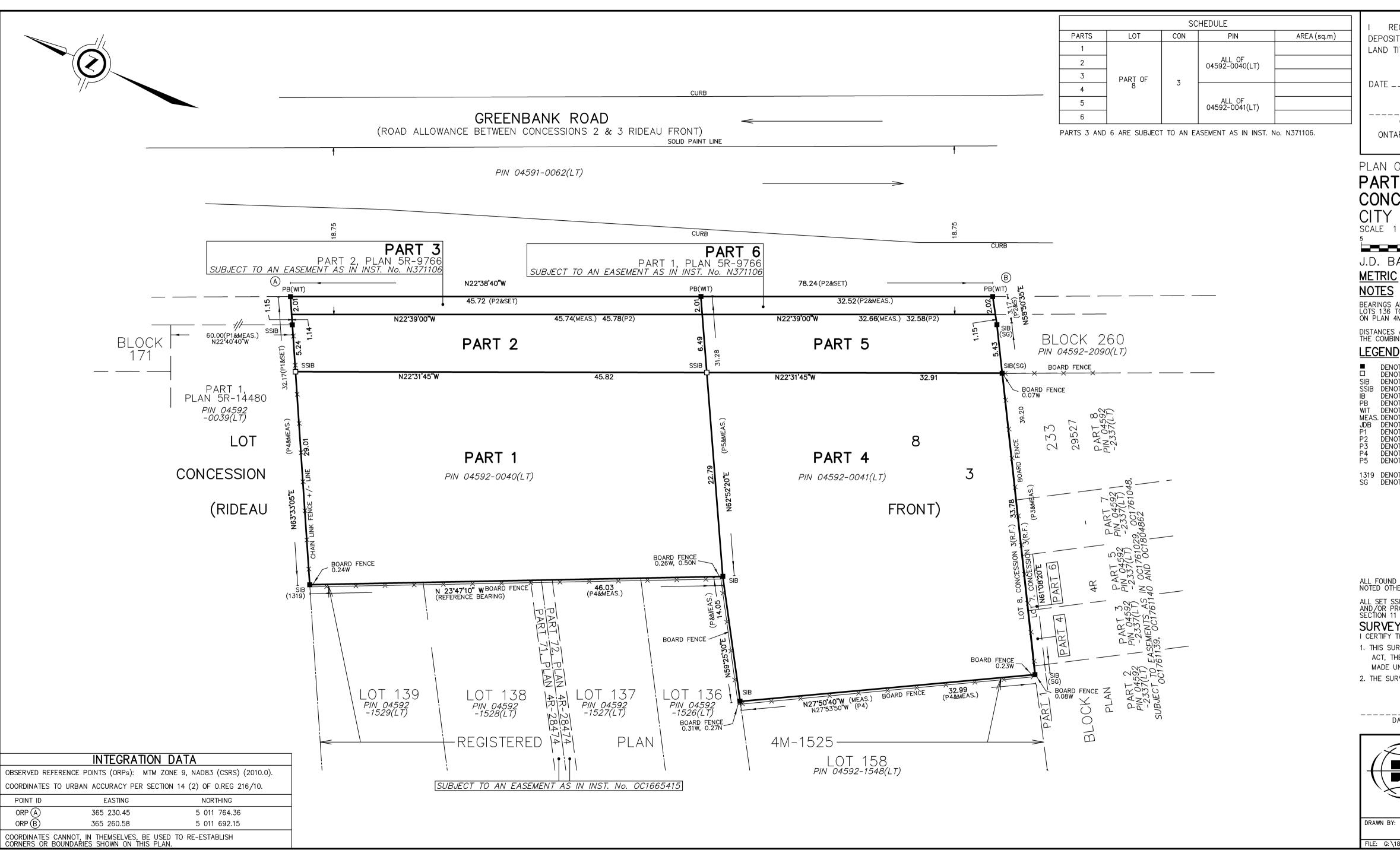

1:7500

TEMPEST LMF flow curves


DRAWINGS / FIGURES

<u>LEGEND</u>

XX.XX DENOTES TC DENOTES INV DENOTES


TOPOGRAPHIC DETAIL OF PART OF LOT 8 CONCESSION 3 (RIDEAU FRONT) CITY OF OTTAWÀ SCALE 1 : 250

J.D. BARNES LIMITED METRIC DISTANCES AND/OR COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048.

ELEVATION NOTE

ELEVATIONS ARE GEODETIC AND ARE REFERED TO THE PUBLISHED BENCHMARK No. 011964U3710 HAVING AN ELEVATION OF 71.724M.

× DENOTES LOCATION OF TOPOGRAPHIC MEASURMENT ELEVATION OF MEASURMENT TOP OF CULVERT BOTTOM OF CULVERT HP DENOTES HYDRO POLE ELEV. DENOTES ELEVATION

*

EQUIRE THIS PLAN TO BE TED UNDER THE	PLAN 4R-
TITLES ACT.	RECEIVED AND DEPOSITED
	DATE
GEORGE ZERVOS ARIO LAND SURVEYOR	REPRESENTATIVE FOR THE LAND REGISTRAR FOR THE LAND TITLES DIVISION OF OTTAWA-CARLETON (No 4)
OF SURVEY OF OF LOT 8 CESSION 3 (RII OF OTTAWA 1 : 250 1	DEAU FRONT)
ARNES LIMITED DISTANCES AND/OR COORDINA METRES AND CAN BE CONVERT	TES SHOWN ON THIS PLAN ARE IN TED TO FEET BY DIVIDING BY 0.3048.
ARE GRID AND ARE DERIVED FROI TO 139, HAVING A BEARING OF N 4M–1525.	M THE EASTERLY LIMITS OF 23°47'10"W, AS SHOWN
ARE GROUND AND CAN BE CONVINED SCALE FACTOR OF 0.999xxx.	VERTED TO GRID BY MULTIPLYING BY
✓ SURVEY MONUMENT FOUN OTES SURVEY MONUMENT FOUN OTES SURVEY MONUMENT SET OTES STANDARD IRON BAR OTES SHORT STANDARD IRON N OTES PLASTIC BAR OTES WITNESS OTES MEASURED OTES J.D. BARNES LIMITED OTES PLAN 5R-14480 OTES PLAN 5R-14480 OTES PLAN 5R-9766 OTES PLAN 5R-9766 OTES PLAN 4R-28416 OTES PLAN 4R-28416 OTES REGISTERED PLAN 4M-15 OTES REGISTERED PLAN 4M-15 OTES SURVEYOR'S REAL PROPE DATE: DECEMBER 17, 20 OTES STANTEC GEOMATICS LIM	BAR 25 ERTY REPORT BY J.D. BARNES LIMITED 215.
DRAFT PLAN	4
ROXIMITY OF UNDERGROUND UTILI" 1 (4) OF O.REG. 525/91. YOR'S CERTIFICATE THAT: IRVEY AND PLAN ARE CORRECT A	SED DUE TO LACK OF OVERBURDEN
DATE	GEORGE ZERVOS ONTARIO LAND SURVEYOR

2430	J.D.BAI LAND INFORMATION DON REID DRIVE, SUITE 204, OT 0731-7244 F: (613) 731-8955	LIMITED NSPECIALISTS TTAWA, ON K1H1E1	S U R V E Y I N G M A P P I N G G I S
·:	CHECKED BY:	REFERENCE NO .:	
СК	GZ	18-10-	057-00_RPLAN
18-10-057\00\Dr	awing\18-10-057-00_RPLAN.@	grDATED: 0X/XX/2018	
		PLOTTED: 6/1/2	018