Site Servicing and Stormwater Management Brief – Petrie's Landing III Block 8 Ottawa, ON

File: 160401331

Prepared for: Brigil Homes

Prepared by: Stantec Consulting Ltd.

December 13, 2019

Revision Record							
Revision	Description	Prepareo	Checked by		Approved by		
0	1 st submission	T. Rathnasooriya 12/10/2019		K. Kilborn	12/12/2019	A. Paerez	12/12/2019

Sign-off Sheet

This document entitled Site Servicing and Stormwater Management Brief – Petrie's Landing III Block 8 Ottawa, ON was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Brigil Homes (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by (signature)

Thakshika Rathnasooriya, P. Eng.

ADAMAD Approved by

(signature)

Ana M. Paerez, P. Eng.

Table of Contents

1.0		1.1
2.0	BACKGROUND	2.3
3.0 3.1 3.2 3.3 3.4	WATER DISTRIBUTION BACKGROUND WATER DEMANDS HYDRAULIC MODEL RESULTS SUMMARY OF FINDINGS	
4.0 4.1 4.2	SANITARY SEWER SANITARY SEWER DESIGN CRITERIA PROPOSED SERVICING	4.1
5.0 5.1 5.2 5.3	STORMWATER MANAGEMENT.OBJECTIVES.SWM CRITERIA AND CONSTRAINTS.STORMWATER MANAGEMENT DESIGN.5.3.1Design Methodology	
6.0	GRADING AND DRAINAGE	6.1
7.0	UTILITIES	7.1
8.0	APPROVALS	8.1
9.0	EROSION CONTROL DURING CONSTRUCTION	9.1
10.0	GEOTECHNICAL INVESTIGATION	
11.0 11.1 11.2 11.3 11.4 11.5 11.6	CONCLUSIONS	

LIST OF TABLES

	ed Wastewater Peak Flow	
Table 2: Peak C	ontrolled (Rooftop) 2-Year and 100-Year Release Rate	5.3
	ar ICD Characteristics	
	ncontrolled (Non-tributary) 2-Year and 100-Year Release Rates .	
	ed Discharge from Site (2-Year)	
	ed Discharge from Site (100-Year)	
Table 7: Paveme	ent Structure – Car Only Parking Areas	
Table 8: Paveme	ent Structure – Access Lanes and Heavy Truck Parking Areas	10.1
LIST OF FIGURES Figure 1: Site Loc LIST OF APPEND	cation	1.2
APPENDIX A	POTABLE WATER SERVICING ANALYSIS	A.1
APPENDIX B	SANITARY SEWER CALCULATIONS	B.1
APPENDIX C	STORMWATER MANAGEMENT CALCULATIONS	C.1
APPENDIX D	BACKGROUND REPORTS EXCERPTS	D.1
APPENDIX E	PROPOSED SITE PLAN	E.1
APPENDIX F	DRAWINGS	F.1

Introduction December 13, 2019

1.0 INTRODUCTION

Stantec Consulting Ltd. has been retained by Brigil Homes to prepare the following site servicing and stormwater management (SWM) brief to satisfy the City of Ottawa Site Plan Control Application process. The 0.75 ha site is located on Prestige Circle, with the Highway 174 to the south, Jeanne D'Arc Boulevard to the north, a residential development to the east, and Brisebois Creek and its associated stormwater management (SWM) facility to the west in the City of Ottawa (see **Figure 1** below).

The proposed Block 8 is part of an existing development for which IBI prepared a servicing analysis for Blocks 1 to 5 and for which Stantec completed the detailed design of Blocks 6 and 7 and outlined servicing criteria for Block 8 based on site plan assumptions. Block 8 is presently zoned R5 (Residential Fifth Density Zone) and consists of a ten-storey residential building comprising 214 residential units with associated surface and underground parking, and landscaped areas. A copy of the proposed site plan prepared by Neuf Architects Inc. can be found in **Appendix E**.

The intent of this report is to provide a servicing scenario for the site that is free of conflicts, provides on-site servicing in accordance with City of Ottawa design guidelines, and utilizes the existing local infrastructure in accordance with the guidelines outlined through consultation with City of Ottawa staff.

Introduction December 13, 2019

Figure 1: Site Location

Background December 13, 2019

2.0 BACKGROUND

The following background studies have been referenced during the servicing design of the proposed site:

- Design Brief Petrie's Landing II Phase 2, IBI Group., February 7, 2014
- Geotechnical Investigation, Proposed Multi-Storey Buildings Block 6, 7 and 8 Petrie's Landing II, Ottawa, Ontario, Paterson group, May 24, 2017
- Site Servicing and Stormwater Management Brief Petrie's Landing block 6, 7 and 8, Stantec Consulting Ltd., September 19, 2018
- City of Ottawa Design Guidelines Water Distribution, City of Ottawa, July 2010
- City of Ottawa Sewer Design Guidelines, City of Ottawa, October 2012
- Technical Bulletin ISDTB-2014-01, City of Ottawa, February 2014
- Technical Bulletin PIEDTB -2016-01, City of Ottawa, September 6, 2016

Water Distribution December 13, 2019

3.0 WATER DISTRIBUTION

3.1 BACKGROUND

The proposed Block 8 consists of a ten-storey apartment building with two floors of underground parking. The proposed building has a footprint of approximately 2,080 m² (0.21 ha), and is proposed to connect to the existing 200 mm diameter watermain along Prestige Circle as shown on the site servicing plan (see **Drawing SSP-1**). The building comprises 57 one bedroom units and 157 two bedroom units, totaling 214 overall residential units.

A detailed hydraulic analysis for the overall Petrie's Landing Development was included in the 2014 Petrie's Landing Design Brief prepared by IBI (see **Appendix D**). However, the FUS calculations for the proposed buildings within Blocks 6 and 7 generated higher fire flow demands than the values assumed in IBI's hydraulic analysis. As a result, the hydraulic analysis for the overall development was revised as part of the detailed design for Blocks 6 and 7 which used the same boundary conditions as per IBI's model. As the proposed site plan for Block 8 has been updated, the hydraulic model has been revised accordingly. The updated results have been included in **Appendix A**.

3.2 WATER DEMANDS

Water demands were calculated using the City of Ottawa Water Distribution Guidelines (July 2010) to determine the typical operating pressures to be expected at the buildings. A daily rate of 350 L/cap/day has been applied for the population of the proposed site. Population densities have been assumed as 1.4 persons/unit for one-bedroom units and 2.1 persons/unit for two-bedroom units. See **Appendix A** for detailed domestic water demand estimates.

The average day demand (AVDY) for the entire site was determined to be 1.7 L/s. The maximum daily demand (MXDY) is 2.5 times the AVDY for residential demand, which equates to 4.2 L/s. The peak hour demand (PKHR) is 2.2 times the MXDY for residential properties, totaling 9.1 L/s. As the average domestic demand for the site is greater than 50m³/day, the site will require 2 service connections.

Wood frame construction with 2-hour fire separation between each floor was considered in the assessment for fire flow requirements as per Ontario Building Code. The FUS Guidelines indicate that low hazard occupancies include apartments, dwellings, dormitories, hotels, and schools, and as such, a low hazard occupancy/ limited combustible building contents credit was applied. A sprinkler system conforming NFPA 13 was considered, and a credit applied per FUS Guidelines. Based on calculations per the FUS Guidelines (**Appendix A**), the maximum required fire flow for Block 8 was 150 L/s (9,000 L/min).

Water Distribution December 13, 2019

3.3 HYDRAULIC MODEL RESULTS

A hydraulic analysis was previously prepared as part of the detailed design of Blocks 6 and 7 of the development which included preliminary assumptions for Block 8. The hydraulic analysis has now been revised to include water demands and fire flow requirements based on the proposed site plan for Block 8.

The boundary conditions listed below were provided by the City of Ottawa to IBI Group and used in their 2014 hydraulic analysis for the overall development, which included Blocks One to Eight. The same boundary conditions were used in the hydraulic analysis as part of the design of Block 6 and 7 and were used in the revised hydraulic analysis for the proposed Block 8 (see model results in **Appendix A**).

Peak Hour = 108.0m

Max Day + Fire Flow = 110.0m

Average Day = 115.0m

The desired normal operating pressure range as per the City of Ottawa 2010 Water Distribution Design Guidelines is 345 kPa (50 psi) to 552kPa (80 psi) and no <u>less than 276kPa (40 psi)</u> at ground elevation. Furthermore, the maximum pressure at any point in the water distribution should not exceed 100 psi as per the Ontario Building/Plumbing Code; pressure reducing measures are required to service areas where pressures <u>greater than 552kPa (80 psi)</u> are anticipated.

A hydraulic model of the water supply system was created based on the provided boundary conditions to assess the proposed watermain layout under the above demands and during the fire flow scenario. Results of the hydraulic modeling show that pressures for Block 8 range from **75.0 psi** to **85.2 psi** under normal operating conditions. These values are outside the normal operating pressure range as defined by MECP and City of Ottawa design guidelines. As a result, it is recommended that a pressure reducing valve be installed immediately downstream of the isolation valve of the proposed building. Since the proposed building is a 10-storey building, an additional 34 kPa (5 psi) for every additional storey over two storeys is required to account for the change in elevation head and additional headloss. Given that the lowest pressure is expected to be 517 kPa (75 psi) at ground level, the resultant equivalent pressure at the 10th floor will be approximately 241 kPa (35 psi) and below the City's objective pressures. As a result, a booster pump will be required to maintain an acceptable level of service on the higher floors. Results of the hydraulic model analysis can be found in **Appendix A**.

A fire flow analysis was carried out using the hydraulic model to determine the anticipated amount of flow that could be provided for the proposed development under maximum day demands and fire flow requirements per the FUS methodology. A fire flow demand of 150 L/s was assumed at node "BLDG 8". Results of the modeling analysis indicate that flows of

Water Distribution December 13, 2019

approximately 429 L/s can be delivered to Block 8 while still maintaining a residual pressure of 140 kPa (20 psi). Results of the hydraulic modeling are included for reference in **Appendix A**.

3.4 SUMMARY OF FINDINGS

Based on the results of the hydraulic analysis, it is recommended that a pressure reducing valve be installed to ensure normal operating pressures remain within City of Ottawa required limits. The service connection will be capable of providing anticipated demands to the lower storeys but will require a booster pump to maintain minimum pressures of 276 KPs (40 psi) on the higher floors. The hydraulic model also indicates that fire flow requirements can be achieved at the proposed building location while still maintaining the minimum residual pressure per City requirements.

Sanitary Sewer December 13, 2019

4.0 SANITARY SEWER

The site will be serviced via an existing 300 mm diameter sanitary sewer situated within the Prestige Circle ROW at the southern boundary of the site (see **Drawing SSP-1**). It is proposed to connect a 200mm diameter sanitary service lateral directly to the existing sewer to service the proposed site.

The anticipated wastewater peak flows generated from the proposed development are summarized in **Table 1** below:

		Residenti				
Block	# of Units	Population	Peak Factor	Peak Flow (L/s)	Infiltration Flow (L/s)	Total Peak Flow (L/s)
Block 8	214	410	4.0	5.31	0.25	5.55

Table 1: Estimated Wastewater Peak Flow

1. Average residential flow based on 280 L/p/day

2. Peak factor for residential units calculated using Harmon's formula

3. Two-bedroom apartments assumes 2.1 persons/unit, one-bedroom apartments assumed 1.4 persons/unit.

4. Infiltration flow based on 0.33 L/s/ha.

The Prestige Circle preliminary sanitary sewer design was completed as part of IBI's design(see **Appendix D**) and was based on the applicable City of Ottawa Design Guidelines at the time of the report. A preliminary concept plan for Block 8 which consisted of 81 units totaling a population of 146 people and allowing a sanitary discharge of 2.52 L/s was assumed during detailed design of Blocks 6 and 7.

The current concept plan for the proposed building in Block 8 consists of 214 units. Although IBI's design sheet estimated lower wastewater peak flows from the proposed development, the site is within close proximity to the 900 mm diameter trunck sanitary sewer located north of Jeanned'Arch Boulevard N. The receiving sewers within the Prestige Circle Development have a residual capacity that exceeds the additional 3.03 L/s sanitary discharge from the proposed Block 8.

4.1 SANITARY SEWER DESIGN CRITERIA

As outlined in the City of Ottawa Sewer Design Guidelines and the Ministry of the Environment, Conservation and Parks (MECP) Design Guidelines for Sewage Works, the following criteria were used to calculate estimated wastewater flow rates and to size the sanitary sewers:

- Minimum Velocity 0.6 m/s (0.8 m/s for upstream sections)
- Maximum Velocity 3.0 m/s
- Manning roughness coefficient for all smooth wall pipes 0.013
- Minimum size 200mm dia. for residential areas
- Average Wastewater Generation 28 0L/cap/day

pa w:\active\160401331_petries landing block 6-8\design\report\servicing ph 8\1-first submission - december 2019\rpt_2019-12-10_servicing.docx

Sanitary Sewer December 13, 2019

- Peak Factor 4.0 (Harmon's)
- Extraneous Flow Allowance 0.33 L/s/ha (conservative value)
- Manhole Spacing 120 m
- Minimum Cover 2.50 m
- Population density for single-bedroom and bachelor apartments 1.4 pers./apartment
- Population density for two-bedroom apartments 2.1 pers./apartment

4.2 PROPOSED SERVICING

The proposed site will be serviced by gravity sewers which will direct the wastewater flows (approx. 5.55 L/s with allowance for infiltration) to the existing 300 mm diameter sanitary sewer on Prestige Circle. A sanitary sewer design sheet for the proposed sanitary sewers is included in **Appendix B**. A full port backwater valve is to be installed on the proposed sanitary service to prevent any surcharge from the downstream sewer main from impacting the proposed property. All underground parking drains should be connected to the internal building plumbing and discharged through a sump pump.

Stormwater Management December 13, 2019

5.0 STORMWATER MANAGEMENT

5.1 **OBJECTIVES**

The objective of this stormwater management (SWM) plan is to determine the measures necessary to control the quantity of stormwater released from the proposed development to the required levels, and to provide sufficient detail for approval and construction.

5.2 SWM CRITERIA AND CONSTRAINTS

The stormwater management criteria for the proposed site are based on Stantec's 2018 Site Servicing and Stormwater Management Brief for Blocks 6 to 8 and City of Ottawa Sewer Design Guidelines. The following summarizes the criteria used in the preparation of this stormwater management plan:

- Stormwater runoff from the proposed Block 8 up to and including the 100-year event to be stored on site and released into the minor system at a maximum rate of 99.5 L/s
- Maximum 100-year water depth of 0.3 m in parking and access areas
- Provide adequate emergency overflow conveyance (overland flow route) off-site
- Size storm sewers to convey 2-year storm event, assuming only roof controls are imposed (i.e. provide capacity for system without inlet control devices installed)
- Size storm sewers using an inlet time of concentration (Tc) of 10 minutes
- Quality control of runoff from the proposed development to be provided in the downstream Brisebois Creek SWM Facility prior to discharge into the Ottawa River
- Post-development runoff coefficient (C) value based on proposed impervious areas as per site plan drawing (see **Appendix E**)

5.3 STORMWATER MANAGEMENT DESIGN

The proposed 0.75ha residential development consists of a ten-storey building with underground and surface parking, and associated servicing infrastructure. The overall imperviousness of the site is 71.4% (C = 0.70).

Stormwater runoff from the proposed development will be directed to the existing storm sewers on Prestige Circle which ultimately discharge into the Brisebois Creek SWM Facility. A sump pump and backwater valve will be provided for foundation drainage of the proposed building. The

Stormwater Management December 13, 2019

proposed site plan and existing storm sewer infrastructure on Prestige Circle are shown on **Drawing SSP-1**.

5.3.1 Design Methodology

The proposed stormwater management plan is designed to detain runoff on the rooftops, underground storage pipe and on surface areas to ensure that peak flows after construction will not exceed the target release rates for the site.

Due to the proposed site plan layout and grading restrictions, a landscaped portion of the site backing into the existing ravine east of the site could not be graded to enter the site's storm system and as such it will sheet drain uncontrolled. Runoff from this uncontrolled area is included in the overall site discharge calculations.

5.3.2 Water Quantity Control

The Modified Rational Method was used to assess the quantity and volume of runoff generated during post development conditions. The site was subdivided into subcatchments (subareas) tributary to storm sewer inlets, as defined by the location of catchbasins / inlet grates and used in the storm sewer design (see **Appendix C**). A summary of subareas and runoff coefficients is provided in **Appendix C**, and **Drawing SD-1** indicates the stormwater management subcatchments.

5.3.3 Allowable Release Rate

Stantec's Site Serving and Stormwater Management Brief for Blocks 6 and 7 outlines the quantity control criteria for the overall site. The report outlines that the overall system target criteria for Block 8 is 99.5 L/s.

5.3.4 Storage Requirements

The site requires quantity control measures to meet the stormwater release criteria. It is proposed that restricted release rooftop drains be used to reduce the peak outflow from the site. Additionally, underground storage pipe and surface storage on parking areas will be provided. **Drawing SD-1** indicates the design release rate from the rooftops. Stormwater management calculations are provided in **Appendix C**.

5.3.4.1 Rooftop Storage

It is proposed to retain stormwater on the rooftops by installing restricted flow roof drains. The following calculations assume the roof will be equipped with eight (8) Watts drains 50% open, see **Appendix C** for details.

Stormwater Management December 13, 2019

Watts roof drain data has been used to calculate a practical roof release rate and detention storage volume for the rooftops. It should be noted that the "Watts" roof drain has been used as an example only and that other products may be specified for use, provided that the roof release rate is restricted to match the maximum rate of release indicated in **Table 2** and that sufficient roof storage is provided to meet (or exceed) the resulting volume of detained stormwater.

Table 2 provide details regarding the retention of stormwater on the proposed rooftop during the2 and 100-year storm events. Refer to **Appendix C** for details.

Table 2: Peak Controlled (Rooftop) 2-Year and 100-Year Release Rate

Area ID	Area (ha)	Head (m)	Q _{release} (L/s)	V _{stored} (m ³)
2 Year	0.01	0.10	7.52	24.33
100 Year	0.21	0.15	10.02	81.95

5.3.4.2 Surface and Pipe Storage

In addition to rooftop storage, it is proposed to detain stormwater on the surface parking lot areas and in one pipe section using inlet control devices (ICDs) in the proposed drainage structures. Pipe storage of 22.5 m³ will be provided in area F1004A through 35.3m of 900 mm diameter pipe connected to CBMH 1003 as shown on **Drawing SD-1**. The modified rational method was used to determine the peak volume requirement for the parking areas. **Table 3**: summarize the proposed ICD characteristics.

Table 3: 100-Year ICD Characteristics

Area ID	Structure ID	Orifice Type	Head (m)	Release Rate (L/s)	Storage Volume Required (m ³)	Storage Volume Available (m ³)
F1001A	CB 1001A	90mm Diameter Orifice	1.85	23.38	2.16	3.50
F1001B	CB 1001B	LMF 70	2.00	6.10	9.59	23.10
F1004A	СВМН 1003	90mm Diameter Orifice	1.83	23.25	66.18	67.10

5.3.5 Uncontrolled Area

A small portion of the site fronting Prestige Circle and backing onto the ravine (see area UNC-1 on **Drawing SD-1**) could not be graded to enter the site's storm system and as such it will sheet drain uncontrolled. However, as can be seen on the storm drainage plan prepared by IBI and Stantec for the entire site (see report excerpts in **Appendix D**), the area behind the proposed

Stormwater Management December 13, 2019

building was not included in the SWM calculations and was assumed to drain towards the ravine. For conservatism, runoff from this uncontrolled area is included in the overall site discharge calculations. **Table 4** summarize the 2 and 100-year uncontrolled release rates from the proposed development.

Storm Event	Area (ha)	Runoff 'C'	Tc (min)	Q _{release} (L/s)
2-Year	0.10	0.00	10	8.16
100-Year	0.19	0.20	10	23.70

5.3.6 Results

The proposed building will have underground parking and as such, it is proposed that the proposed parking ramp be equipped with a trench drain to capture the 100-year runoff. In addition, it is recommended that the proposed building be equipped with a sump pump and a backwater valve. **Table 5** and **Table 6** demonstrate that the proposed stormwater management plan provides adequate attenuation storage to meet the target peak outflows for the site.

Table 5: Estimated Discharge from Site (2-Year)

Block	Area Type	Area ID	V _{required} (m ³)	V _{available} (m ³)	Qrelease (L/s)	Target (L/s)
8	Controlled – Surface (Includes Roof area)	F1001A,F1001A, F1004A, R1002A	38.2	177.7	46.2	
BLOCK	Parking Ramp Area	F1000A	-	-	4.6	99.5
BLC	Uncontrolled Areas	UNC-1	-	-	8.2	
		Total Block 8	38.2	177.7	59.0	

Table 6: Estimated Discharge from Site (100-Year)

Block	Area Type	Area ID	V _{required} (m ³)	V _{available} (m ³)	Q _{release} (L/s)	Target (L/s)
K 8	Controlled – Surface (Includes Roof area)	F1001A,F1001A, F1004A, R1002A	159.9	177.7	62.8	
BLOCK	Parking Ramp Area	F1000A	-	-	11.9	99.5
BL	Uncontrolled Areas	UNC-1	-	-	23.7	
		Total Block 8	159.9	177.7	98.4	

Stormwater Management December 13, 2019

As can be seen in the above tables, the proposed ICDs and storage provided restrict post development peak flows from site areas to 59.0 L/s and 98.4 L/s in the 2-year and 100-year storm events respectively.

Grading and Drainage December 13, 2019

6.0 GRADING AND DRAINAGE

The proposed development site measures approximately 0.75 ha in area. The site has significant grade change from the southwestern to the northeastern boundary of the site. A detailed grading plan (see **Drawing GP-1**) has been provided to satisfy the stormwater management requirements, to meet minimum cover requirements for storm and sanitary sewers, and to provide sufficient cover over top of the underground parking garage. Site grading has been established to provide emergency overland flow routes for stormwater management in accordance with City of Ottawa requirements.

The subject site maintains emergency overland flow routes to the existing Prestige Circle ROW and to the existing ravine the northeast of the proposed development as depicted on **Drawings GP-1** and **SD-1**.

Utilities December 13, 2019

7.0 UTILITIES

The subject site has existing plants within Prestige Circle to provide Hydro, Bell, Gas and Cable servicing for the proposed development as existing residential development to the west was constructed as part of Phase 1 and Phase 2. It is anticipated that existing infrastructure will be sufficient to provide the means of distribution for the proposed site. Detailed design of the required utility services will be further investigated as part of the composite utility planning process following design circulation.

Approvals December 13, 2019

8.0 APPROVALS

Ontario Ministry of the Environment, Conservation and Parks (MECP) Environmental Compliance Approval (ECAs, formerly Certificates of Approval C of A) under the Ontario Water Resources Act are not expected to be a requirement for the development to proceed as the site falls under a separate plan of condominium with one owner and will have a separate drainage and storm sewer system discharging to a pre-existing sewer system.

The proposed site is situated 120 m of the Petrie Island Provincially Significant Wetland, and as such, it is within the RVCA's regulatory jurisdiction. As a result, written approval from the RVCA is required under Ontario Regulation 174/06 "Development, Interference with Wetlands and Alterations to Shorelines and Watercourses Regulation" under Section 28 of the Conservation Authorities Act.

Requirement for an MECP Permit to Take Water (PTTW) for pumping during construction of the underground parking levels will be confirmed by the geotechnical consultant.

Erosion Control During Construction December 13, 2019

9.0 **EROSION CONTROL DURING CONSTRUCTION**

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents.

- 1. Implement best management practices to provide appropriate protection of the existing and proposed drainage system and the receiving water course(s).
- 2. Limit extent of exposed soils at any given time.
- 3. Re-vegetate exposed areas as soon as possible.
- 4. Minimize the area to be cleared and grubbed.
- 5. Protect exposed slopes with plastic or synthetic mulches.
- 6. Provide sediment traps and basins during dewatering.
- 7. Install sediment traps (such as SiltSack® by Terrafix) between catch basins and frames.
- 8. Plan construction at proper time to avoid flooding.
- 9. Installation of a mud matt to prevent mud and debris from being transported off site.
- 10. Installation of a silt fence to prevent sediment runoff.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- 1. Verification that water is not flowing under silt barriers.
- 2. Clean and change silt traps at catch basins.

Refer to **Drawing EC-DS** for the proposed location of silt fences, and other erosion control structures.

Geotechnical Investigation December 13, 2019

10.0 GEOTECHNICAL INVESTIGATION

A geotechnical investigation was completed by Paterson Group Ltd. in May 24, 2017. The report summarizes the existing soil conditions within the subject area and construction recommendations. For details which are not summarized below, please see the original Paterson report (Excerpts included in **Appendix D**).

Subsurface soil conditions within Block 8 were determined from 3 boreholes distributed across the proposed site. In general soil stratigraphy consisted of topsoil or fill underlain by a silty clay deposit layer.

Groundwater levels were measured on July 16, 2007 and on May 1, 2017 and vary in elevation from 4.4m to 5.5m below the original ground surface.

A permissible grade raise restriction of 2m is recommended within the Paterson Group report due to the encounter of deep silty clay deposits of up to a maximum depth of 30.4 m. The grade raise restrictions has been exceeded in some spots of the proposed development due to grading constraints and as a result, the proposed grading plan has been submitted to Paterson Group for review and recommendations will be included in the next submission.

The required pavement structure for the local roadways is outlined in Table 7 and Table 8 below:

Table 7: Pavement Structure – Car Only Parking Areas

Thickness (mm)	Material Description
50	Wear Course – HL-3 or Superpave 12.5 Asphaltic Concrete
150	Base – OPSS Granular A Crushed Stone
300	Subbase - OPSS Granular B Type II
-	Subgrade – Either fill, in situ soil, or OPSS Granular B Type I or II material placed over in situ soil or fill.

Table 8: Pavement Structure – Access Lanes and Heavy Truck Parking Areas

Thickness (mm)	Material Description
40	Wear Course –Superpave 12.5 Asphaltic Concrete
50	Binder Course –Superpave 19.0 Asphaltic Concrete
150	Base – OPSS Granular A Crushed Stone
400	Subbase - OPSS Granular B Type II

pa w:\active\160401331_petries landing block 6-8\design\report\servicing ph 8\1-first submission - december 2019\rpt_2019-12-10_servicing.docx

Geotechnical Investigation December 13, 2019

Thickness (mm)	Material Description
-	Subgrade – Either fill, in situ soil, or OPSS Granular B Type I or II material placed over in situ soil or fill.

Conclusions December 13, 2019

11.0 CONCLUSIONS

11.1 WATER SERVICING

The 200 mm diameter watermain on Prestige Circle provides adequate fire flow capacity as per the Fire Underwriters Survey. The service connections will also be capable of providing anticipated demand but exceeds the maximum objective pressure of 552 kPa (80 psi). Therefore, pressure reducing measures, such as a pressure reducing valve, will be required to service the proposed building per the Ontario Plumbing Code. The building will require a booster pump to provide pressures greater than 40psi to the higher floors.

11.2 SANITARY SERVICING

The proposed sanitary sewer lateral is sufficiently sized to provide gravity drainage for the site. The proposed site will be serviced by a 200 mm diameter service lateral directing wastewater flows to the existing 300 mm dia. Prestige Circle sanitary sewer. A backflow preventer and a sump pump will be required for the proposed building in accordance with the Ottawa sewer design guidelines and will be coordinated with building mechanical engineers. The proposed sanitary drainage pattern is in accordance with the City of Ottawa Sewer Design guidelines.

11.3 STORMWATER SERVICING

The proposed stormwater management plan is in compliance with the goals specified through the stormwater management section of IBI Group's Design Brief for Petrie's Landing and with the City of Ottawa Design guidelines. Rooftop, underground pipe, and surface storage in combination with ICDs are proposed to limit inflow from the site area into the minor system to the required target release rate.

The proposed building will have underground parking and as such, it is recommended that the proposed parking ramp be equipped with trench drains to capture the 100-year runoff. In addition, it is recommended that the proposed building be equipped with a sump pump and a backwater valve.

11.4 GRADING

Grading for the site has been designed to provide an emergency overland flow route as per City requirements and reflects the overall recommendations provided in the Geotechnical Investigation. Further geotechnical recommendations regarding the areas where the grade raise restriction has been exceeded will be included in the next submission. Erosion and sediment

Conclusions December 13, 2019

control measures will be implemented during construction to reduce the impact on existing infrastructure.

11.5 UTILITIES

All utilities (Hydro Ottawa, Bell Canada, Rogers Ottawa, and Enbridge Gas) have existing plants in the subject area. Exact size, location and routing of utilities will be finalized after design circulation.

11.6 APPROVAL / PERMITS

Ontario Ministry of the Environment, Conservation and Parks (MOECP) Environmental Compliance Approvals (ECA) are not expected to be required for the subject development as the site falls under a separate plan of condominium with one owner and will have a separate drainage and storm sewer system discharge to a pre-existing sewer system. Written approval from the Rideau Valley Conservation Authority (RVCA) is required under Ontario Regulation 174/06 "Development, Interference with Wetlands and Alterations to Shorelines and Watercourses Regulation" under Section 28 of the Conservation Authorities Act for the portion of the site within 120 m of a significant wetland. A Permit to Take Water may be required for pumping requirements for construction of underground parking levels. No other approval requirements from other regulatory agencies are anticipated.

APPENDICES

Appendix A Potable Water Servicing Analysis December 13, 2019

Appendix A POTABLE WATER SERVICING ANALYSIS

Block 8 Petries Landing - Domestic Water Demand Estimates Based on Site Plan prepared by Rossmann Architecture (2019-08-09)

1 Bedroom = 57.0 2 Bedroom = 157.0

Building ID	Units	Population	Daily Rate of	Avg Da	y Demand ²	Max Day	Demand ³	Peak Hour Demand		
			Demand ¹	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)	
Block 8	214	410	350	99.5	99.5 1.66		4.15	547.4	9.12	
Total Site :				99.5	1.66	248.8	4.15	547.4	9.12	

1 Population counts based on a conversion factor of 1.4 persons/1 Bedroom Apt. and 2.1 Persons/2 Bedroom Apt.

2 Average day water demand for residential areas equal to 350 L/cap/d

3 The City of Ottawa water demand criteria used to estimate peak demand rates for residential areas are as follows:

maximum day demand rate = 2.5 x average day demand rate

peak hour demand rate = 2.2 x maximum day demand rate

Referenced from the City of Ottawa Sewer Design Guidelines (October 2012) and the Ottawa Design Guidelines: Water Distribution (July 2010)

W:\active\160401331_Petries Landing Block 6-8\design\analysis\WTR\2019-Block 8\2019-11-25_Demand.xlsx, Demands

FUS Fire Flow Calculation Sheet

Stantec Project #: 160401331 Project Name: Petries Landing Date: 12/9/2019 Fire Flow Calculation #: 1 Description: Block 8

Notes: Horizontal firewalls between each floor

Step	Task				Notes			Value Used	Req'd Fire Flow (L/min)			
1	Determine Type of Construction			1.5	-							
2	Determine Ground Floor Area of One Unit		2080	-								
2	Determine Number of Adjoining Units		Includes ac	ljacent woo	d frame struc	tures separat	ed by 3m or less	1	-			
3	Determine Height in Storeys		Does not i	nclude floor	s >50% belov	v grade or op	en attic space	1	-			
4	Determine Required Fire Flow		(F	= 220 x C x A	^{1/2}). Round to	o nearest 100	0 L/min	-	15000			
5	Determine Occupancy Charge			L	imited Comb	ustible		-15%	12750			
					-30%							
,	6 Determine Sprinkler Reduction			-10%	-5100							
°				0%	-3100							
				100%								
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-			
		North	> 45	28	1	0-30	Wood Frame or Non-Combustible	0%				
7	Determine Increase for Exposures (Max. 75%)	East	> 45	70	1	61-90	Wood Frame or Non-Combustible	0%	1275			
		South	30.1 to 45	28	4	91-120	Wood Frame or Non-Combustible	5%	12/5			
		West	30.1 to 45	70	4	> 120	Wood Frame or Non-Combustible	5%				
		Total Required Fire Flow in L/min, Rounded to Nearest 1000L/min										
8	Determine Final Required Fire Flow				Total Requ	vired Fire Flow	v in L/s		150.0			
ð	Determine Final Required File flow				Required Du	ration of Fire I	Flow (hrs)		2.00			
					Required Vo	lume of Fire F	iow (m³)		1080			

Hydraulic Model Results - Average Day Analysis

Junction Results

ID	Demand	Elevation	Head	Pres	sure
U	(L/s)	(m)	(m)	(psi)	(Kpa)
10.00	0.00	52.00	115.00	89.56	617.50
11.00	0.00	55.06	115.00	85.20	587.44
12.00	0.00	55.06	115.00	85.20	587.44
13.00	0.00	51.90	115.00	89.70	618.46
14.00	0.00	52.10	115.00	89.42	616.53
BLDG1	0.29	55.71	114.99	84.28	581.09
BLDG2	0.29	56.60	114.99	83.01	572.34
BLDG3	0.67	56.70	114.99	82.87	571.37
BLDG6	0.49	57.30	114.99	82.02	565.51
BLDG7	0.57	56.50	114.99	83.15	573.30
BLDG8	1.66	55.09	114.99	85.16	587.16

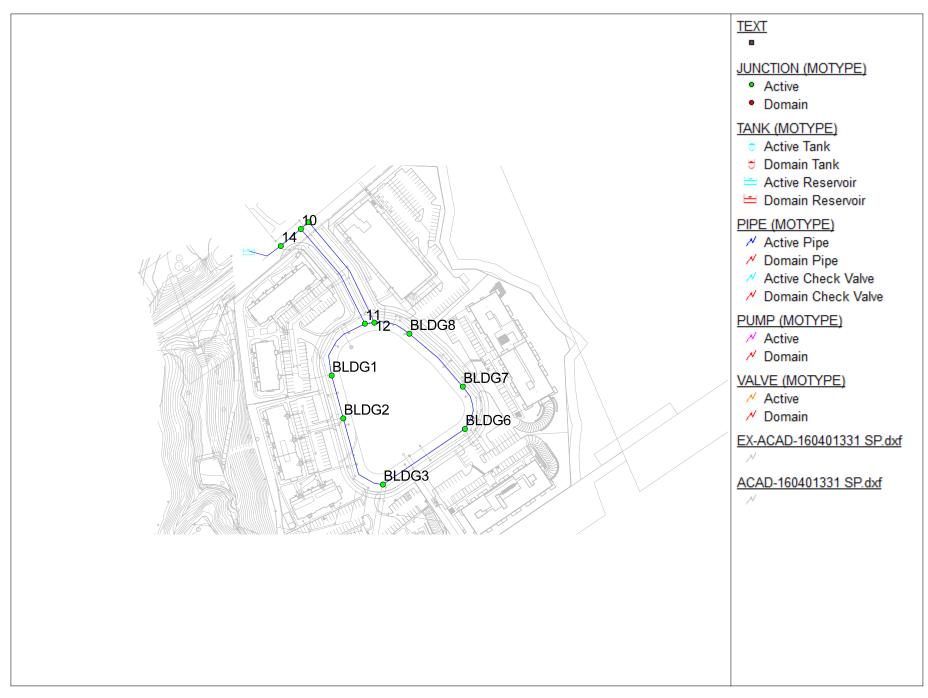
Pipe Results

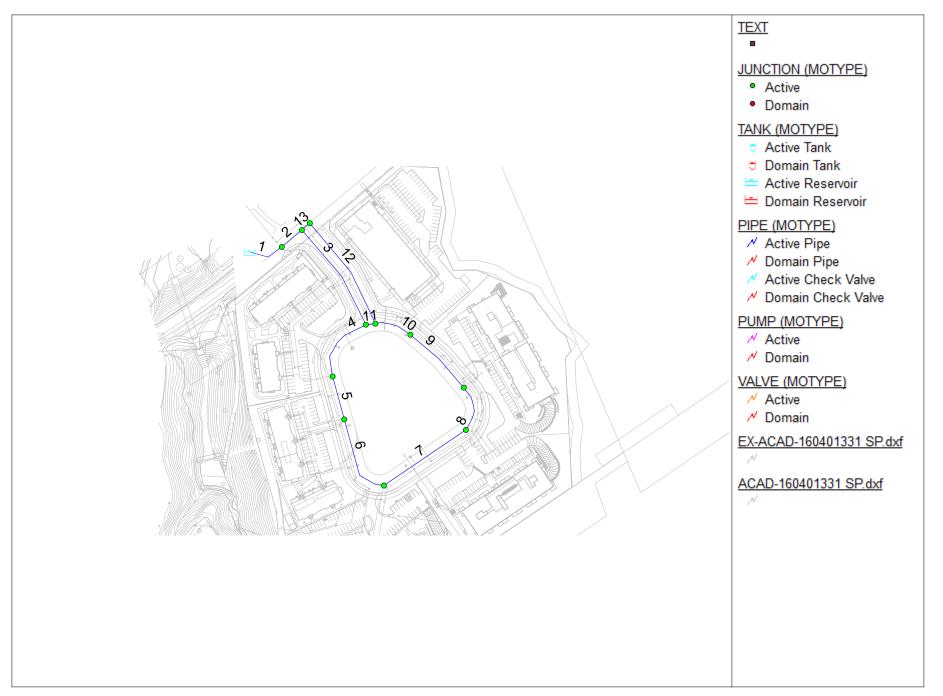
ID	From Node	To Node	Length	Diameter	Doughnoos	Flow	Velocity
U	From Node	To Node	(m)	(mm)	Roughness	(L/s)	(m/s)
1	1000	14	25.84	900	130	3.97	0.01
10	BLDG8	12	28.03	200	110	-2.51	0.08
11	12	11	7.05	200	110	-0.55	0.02
12	12	13	88.97	200	110	-1.96	0.06
13	13	10	7.80	400	120	-1.96	0.02
2	14	10	19.33	400	120	3.97	0.03
3	10	11	84.72	200	110	2.01	0.06
4	BLDG1	11	51.80	200	110	-1.46	0.05
5	BLDG2	BLDG1	32.66	200	110	-1.17	0.04
6	BLDG3	BLDG2	62.45	200	110	-0.88	0.03
7	BLDG3	BLDG6	72.85	200	110	0.21	0.01
8	BLDG6	BLDG7	34.69	200	110	-0.28	0.01
9	BLDG7	BLDG8	55.50	200	110	-0.85	0.03

Hydraulic Model Results -Peak Hour Analysis

Junction Results

ID	Demand	Elevation	Head	Pres	sure
שו	(L/s)	(m)	(m)	(psi)	(Kpa)
10	0.00	52.00	108.00	79.61	548.90
11	0.00	55.06	107.91	75.13	518.01
12	0.00	55.06	107.91	75.13	518.01
13	0.00	51.90	108.00	79.75	549.86
14	0.00	52.10	108.00	79.47	547.93
BLDG1	1.60	55.71	107.88	74.16	511.32
BLDG2	1.60	56.60	107.86	72.88	502.49
BLDG3	3.69	56.70	107.85	72.71	501.32
BLDG6	2.71	57.30	107.85	71.86	495.46
BLDG7	3.12	56.50	107.85	73.00	503.32
BLDG8	9.12	55.09	107.86	75.02	517.25

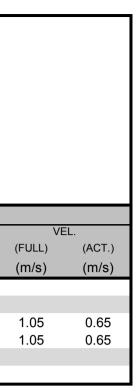

Pipe Results


10	From Node	Te Nede	Length	Diameter	Developerat	Flow	Velocity	
ID	From Node	To Node	(m)	(mm)	Roughness	(L/s)	(m/s)	
1	1000	14	25.84	900	130	21.84	0.03	
10	BLDG8	12	28.03	200	110	-13.81	0.44	
11	12	11	7.05	200	110	-3.02	0.10	
12	12	13	88.97	200	110	-10.79	0.34	
13	13	10	7.80	400	120	-10.79	0.09	
2	14	10	19.33	400	120	21.84	0.17	
3	10	11	84.72	200	110	11.05	0.35	
4	BLDG1	11	51.80	200	110	-8.03	0.26	
5	BLDG2	BLDG1	32.66	200	110	-6.43	0.20	
6	BLDG3	BLDG2	62.45	200	110	-4.83	0.15	
7	BLDG3	BLDG6	72.85	200	110	1.14	0.04	
8	BLDG6	BLDG7	34.69	200	110	-1.57	0.05	
9	BLDG7	BLDG8	55.50	200	110	-4.69	0.15	

Hydraulic Model Results -Fire Flow Analysis

ID	Static Demand	Static Pressure		Static Pressure		Static Head	Fire-Flow Demand	Residual	Pressure	Available Flow at Hydrant		ble Flow ssure
	(L/s)	(psi)	(Kpa)	(m)	(L/s)	(psi)	(Kpa)	(L/s)	(psi)	(Kpa)		
BLDG1	0.73	77.14	531.86	109.97	335	31.24	215.39	378.60	20	137.90		
BLDG2	0.73	75.87	523.11	109.97	289	34.53	238.08	341.84	20	137.90		
BLDG3	1.68	75.72	522.07	109.96	182	55.25 380.94		318.45	20	137.90		
BLDG6	1.23	74.87	516.21	109.96	250	39.87	274.90	321.70	20	137.90		
BLDG7	1.42	76.01	524.07	109.96	250	44.15	304.41	342.85	20	137.90		
BLDG8	4.15	78.01	537.86	109.97	150	69.02	69.02 475.88		20	137.90		

16041331-BIk8-JUNCTION ID



Appendix B Sanitary Sewer Calculations December 13, 2019

Appendix B SANITARY SEWER CALCULATIONS

	SUBDIVISION: Petries Landing Block 8 DATE: November 25, REVISION: 1 DESIGNED BY: TB					SANITARY SEWER DESIGN SHEET									DESIGN PARAMETERS																	
									(Cit	ty of Otta	iwa)	Ν			MAX PEAK FACTOR (RES.)=		4.0		AVG. DAILY FLOW / PERSON		SON	280	L/p/day	MINIMUM VELOCITY				0.60 m/s				
		DATE:		Novembe	er 25, 2019								MIN PEAK FACTO					2.0	2.0 COMMERCIAL			28,000.00	L/ha/day		MAXIMUM	VELOCITY		3.00	m/s			
		REVISION:			1							PEAKING FAC			CTOR (INDU	STRIAL):	2.4		INDUSTRIAL			55,000.00	L/ha/day		MANNINGS	n		0.013				
Stan	tec	DESIGNED B		Т	R	FILE NU	MBER:	1604-0133	1						PEAKING FA			1.5		INSTITUTIO			50,000.00	L/ha/day		BEDDING C	CLASS		С			
Jun		CHECKED BY	(:	AN	MP							XML Con	version		PERSONS / 2	2 Bedroom ap	-	2.1		INFILTRATIO	DN		0.33	L/s/ha		MINIMUM C	OVER		2.50	m		
														1	PERSONS / *	l bedroom apt		1.4	Ļ													
														•	PERSONS / a	average apt.		1.8	}													
	LOCATION					RESIDENTI	AL AREA AND	POPULATION				COMM INI			DUST				INFILTRATIO	N		PIPE										
AREA ID	FROM	ТО	AREA		UNITS		POP.	CUMUL		PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	
NUMBER	M.H.	M.H.		2 bed	1 bed	avg		AREA	POP.	FACT.	FLOW		AREA		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW	FLOW						(FULL)	PEAK FLOW	(F
			(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	(ha)	(ha)	(L/s)	(L/s)	(m)	(mm)			(%)	(L/s)	(%)	(n
	DI K O	041400	0.040	457	F7	0	440	0.04	440	4.00	5.04	0.00	0.00	0.00	0.00	0.00	0.00	0.507	0.54	0.00	0 747	0.75	0.05		7.4	000	DV (C		1.00	00.04	40.00	4
R3A , G3A	BLK 8	SAN100	0.210	157	57	0	410	0.21	410	4.00	5.31	0.00	0.00	0.00	0.00	0.00	0.00	0.537	0.54	0.00	0.747	0.75	0.25	5.55	7.4	200	PVC	SDR-28	1.00	33.31	16.68	1
	SAN100	EX.Sewer	0.000	U	0	0	0	0.21	410	4.00	5.31	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.54	0.00	0.000	0.75	0.25	5.55	10.5	200	PVC	SDR-35	1.00	33.31	16.68	1
								1			I							1							I							

Appendix C Stormwater Management Calculations December 13, 2019

Appendix C STORMWATER MANAGEMENT CALCULATIONS

File No:160401331Project:Petries Landing - Block 8Date:12-Dec-19

SWM Approach:	
Limit Site to 99.5 L/s	

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

		Runoff C	oefficient Table					
Sub-catch Area Catchment Type	ment ID / Description		Area (ha) "A"		Runoff Coefficient "C"	"A	x C"	Overall Runoff Coefficient
Controlled - Tributary	F1001A	Hard	0.044		0.9	0.040		
Controlled Thouldry	1 100 17 (Soft	0.019		0.2	0.004		
	Sub	total		0.063			0.04347	0.690
Controlled - Tributary	F1004A	Hard	0.235		0.9	0.212		
-		Soft	0.000		0.2	0.000		
	Sub	total		0.235			0.2115	0.900
Controlled - Tributary	F1001B	Hard	0.034		0.9	0.031		
		Soft	0.015		0.2	0.003		
	Sub	total		0.049			0.03381	0.690
Controlled - Tributary	F1000A-RAMP	Hard	0.024		0.9	0.022		
		Soft	0.000		0.2	0.000		
	Sub	total		0.024			0.0216	0.900
Roof	R1002A-BLDG	Hard	0.210		0.9	0.189		
		Soft	0.000		0.2	0.000		
	Sub	total		0.210			0.189	0.900
Uncontrolled - Non-Tributary	UNC-1	Hard	0.000		0.9	0.000		
		Soft	0.191		0.2	0.038		
	Sub	total		0.191			0.0382	0.200
Total Verall Runoff Coefficient= C:				0.772			0.538	0.70
			0.240 k					
otal Roof Areas otal Tributary Surface Areas (Co	Introlled and Uncontroll	ed)	0.210 k 0.371 k					
tal Tributary Surface Areas (Controlled and Uncontrolled) tal Tributary Area to Outlet			0.581 h					
tal Uncontrolled Areas (Non-Tributary)			0.191 ł	าล				
otal Site		0.772 ł	<u></u>					
			0.7721					

Date: 12/12/2019, 3:43 PM Stantec Consulting Ltd.

anl_2019-12-04_swm.xlsm, Area Summary W:\active\160401331_Petries Landing Block 6-8\design\analysis\SWM\2019-Block 8\

Stormwater Management Calculations

Project #160401331, Petries Landing - Block 8 Modified Rational Method Calculatons for Storage

	2 yr Intensi	ty	I = a/(t + b)	a =	732.951	t (min)	l (mm/hr)		100 yr Inte	nsity I =
	City of Otta	wa		b =	6.199	10	76.81		City of Ott	
				с =	0.81	20	52.03			
						30	40.04			
						40	32.86			
						50	28.04			
						60	24.56			
						70	21.91			
						80	19.83			
						90	18.14			
						100	16.75			
						110	15.57			
						120	14.56			
		100	YEAR Tarç	get Release	from Bloc	:k 8				
sw	M Appoach:									
	Area (ha): C:	0.772 0.55								
	0.	0.00								
	Г			1						
			00 yr) (L/s)							
		99	9.50							
	2 YEAR N	lodified F	Rational Me	thod for Ent	tire Site				100 YEAF	R Modified Ra
Subdra	ainage Area:					Control	led - Tributary	Subdr	ainage Area:	
	Area (ha):	0.06							Area (ha):	
	C:	0.69							C:	0.86
	tc	l (2 yr)	Qactual	Qrelease	Qstored	Vstored	1		tc	l (100 yr)
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)			(min)	(mm/hr)
	10	76.81	9.28	9.28	0.00	0.00	-		10	178.56
	20	52.03	6.29	6.29	0.00	0.00			20	119.95
	30	40.04	4.84	4.84	0.00	0.00			30	91.87
1	40	32.86	3.97	3.97	0.00	0.00			40	75.15
	50	28.04	3.39	3.39	0.00	0.00			50	63.95
	60 70	24.56	2.97	2.97	0.00	0.00			60 70	55.89
	70	21.91	2.65	2.65	0.00	0.00			70	49.79
	80 00	19.83 18 14	2.40	2.40	0.00	0.00			80	44.99 41 11
	90 100	18.14 16.75	2.19	2.19	0.00	0.00			90 100	41.11 27.00
	100 110	16.75 15.57	2.02 1.88	2.02 1.88	0.00 0.00	0.00 0.00			100 110	37.90 35.20
	120	14.56	1.00	1.00	0.00	0.00			120	32.89
Storage:	Above CB							Storage:		orage Above CB
Orif	ice Equation: •		0.5	Where C =	0.61			05	fice Equation:	$Q = CdA(2gh)^{4}$
	ce Diameter:	90.00	0.5 mm		0.01				fice Diameter:	$Q = CdA(2gn)^{-1}$ 90.00 mm
	vert Elevation	90.00 52.83	m						vert Elevation	52.83 m
	I/G Elevation	52.83 54.53	m						T/G Elevation	52.83 m
1		04.00								5 4 .55 m

Project #160401331, Petries Landing - Block 8 Modified Rational Method Calculatons for Storage

	yr Intensi		$= a/(t + b)^{c}$		a =	1735.688	t (min)	I (mm/hr)
City	of Ottawa	а			b =		10	178.56
					с =	0.820	20 30	119.95 91.87
							30 40	75.15
							40 50	63.95
							60	55.89
							70	49.79
							80	44.99
							90	41.11
							100	37.90
							110	35.20
							120	32.89
100	YEAR M	lodified F	Rational Me	thod for Entire S	ite			
Subdrainage			Rational Me	thod for Entire S	ite		Control	led - Tributary
Subdrainage Are	Area: F a (ha): C:	1001A 0.06 0.86	Rational Me Qactual	othod for Entire S		Qstored		led - Tributary
Subdrainage Are	Area: F a (ha): C: tc I (nin) (r	1001A 0.06 0.86 100 yr) nm/hr)		Qrelease (L/s)		(L/s)	Vstored (m^3)	led - Tributary
Subdrainage Are	Area: F a (ha): C: tc I (nin) (r 10 1	1001A 0.06 0.86 100 yr) nm/hr) 178.56	Qactual (L/s) 26.97	Qrelease (L/s) 23.38		(L/s) 3.59	Vstored (m^3) 2.16	led - Tributary
Subdrainage Are	Area: F a (ha): C: tc I (nin) (r 10 1 20 1	1001A 0.06 0.86 100 yr) nm/hr) 178.56 119.95	Qactual (L/s) 26.97 18.12	Qrelease (L/s) 23.38 18.12		(L/s) 3.59 0.00	Vstored (m^3) 2.16 0.00	led - Tributary
Subdrainage Are	Area: F a (ha): C: tc I (nin) (r 10 1 20 1 30 1	1001A 0.06 0.86 100 yr) nm/hr) 178.56 119.95 91.87	Qactual (L/s) 26.97 18.12 13.88	Qrelease (L/s) 23.38 18.12 13.88		(L/s) 3.59 0.00 0.00	Vstored (m^3) 2.16 0.00 0.00	led - Tributary
Subdrainage Are	Area: F a (ha): C: tc I (nin) (r 10 1 20 1 30 40	1001A 0.06 0.86 100 yr) mm/hr) 178.56 119.95 91.87 75.15	Qactual (L/s) 26.97 18.12 13.88 11.35	Qrelease (L/s) 23.38 18.12 13.88 11.35		(L/s) 3.59 0.00 0.00 0.00	Vstored (m^3) 2.16 0.00 0.00 0.00	led - Tributary
Subdrainage Are	Area: F a (ha): C: tc I (nin) (r 10 1 20 1 30 4 50 50	1001A 0.06 0.86 100 yr) mm/hr) 178.56 119.95 91.87 75.15 63.95	Qactual (L/s) 26.97 18.12 13.88 11.35 9.66	Qrelease (L/s) 23.38 18.12 13.88 11.35 9.66		(L/s) 3.59 0.00 0.00 0.00 0.00	Vstored (m^3) 2.16 0.00 0.00 0.00 0.00	led - Tributary
Subdrainage Are	Area: F a (ha): C: tc I (nin) (r 10 1 20 1 30 1 50 60	1001A 0.06 0.86 100 yr) nm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	Qactual (L/s) 26.97 18.12 13.88 11.35 9.66 8.44	Qrelease (L/s) 23.38 18.12 13.88 11.35 9.66 8.44		(L/s) 3.59 0.00 0.00 0.00 0.00 0.00	Vstored (m^3) 2.16 0.00 0.00 0.00 0.00 0.00	led - Tributary
Subdrainage Are	Area: F a (ha): C: tc I (nin) (r 10 1 20 1 30 1 40 50 60 70	1001A 0.06 0.86 100 yr) nm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79	Qactual (L/s) 26.97 18.12 13.88 11.35 9.66 8.44 7.52	Qrelease (L/s) 23.38 18.12 13.88 11.35 9.66 8.44 7.52		(L/s) 3.59 0.00 0.00 0.00 0.00 0.00 0.00	Vstored (m^3) 2.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00	led - Tributary
Subdrainage Are	Area: F a (ha): C: tc I (nin) (r 10 1 20 1 30 1 40 50 60 70 80 1	1001A 0.06 0.86 100 yr) nm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99	Qactual (L/s) 26.97 18.12 13.88 11.35 9.66 8.44 7.52 6.80	Qrelease (L/s) 23.38 18.12 13.88 11.35 9.66 8.44 7.52 6.80		(L/s) 3.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Vstored (m^3) 2.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	led - Tributary
Subdrainage Are	Area: F a (ha): C: tc I (nin) (r 10 1 20 1 30 1 40 50 60 70 80 90	1001A 0.06 0.86 100 yr) mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11	Qactual (L/s) 26.97 18.12 13.88 11.35 9.66 8.44 7.52 6.80 6.21	Qrelease (L/s) 23.38 18.12 13.88 11.35 9.66 8.44 7.52 6.80 6.21		(L/s) 3.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Vstored (m^3) 2.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	led - Tributary
Subdrainage Are	Area: F a (ha): C: tc I (nin) (r 10 1 20 1 30 1 40 1 50 60 70 80 90 0 00 1	1001A 0.06 0.86 100 yr) mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 44.99 41.11 37.90	Qactual (L/s) 26.97 18.12 13.88 11.35 9.66 8.44 7.52 6.80 6.21 5.73	Qrelease (L/s) 23.38 18.12 13.88 11.35 9.66 8.44 7.52 6.80 6.21 5.73		(L/s) 3.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Vstored (m^3) 2.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	led - Tributary
Subdrainage Are	Area: F a (ha): C: tc I (nin) (r 10 1 20 1 30 1 40 50 50 60 70 80 90 100 100 10	1001A 0.06 0.86 100 yr) mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 44.99 41.11 37.90 35.20	Qactual (L/s) 26.97 18.12 13.88 11.35 9.66 8.44 7.52 6.80 6.21 5.73 5.32	Qrelease (L/s) 23.38 18.12 13.88 11.35 9.66 8.44 7.52 6.80 6.21 5.73 5.32		(L/s) 3.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Vstored (m^3) 2.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	led - Tributary
Subdrainage Are	Area: F a (ha): C: tc I (nin) (r 10 1 20 1 30 1 40 50 50 60 70 80 90 10 100 120	1001A 0.06 0.86 100 yr) mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 44.99 41.11 37.90 35.20 32.89	Qactual (L/s) 26.97 18.12 13.88 11.35 9.66 8.44 7.52 6.80 6.21 5.73 5.32 4.97	Qrelease (L/s) 23.38 18.12 13.88 11.35 9.66 8.44 7.52 6.80 6.21 5.73		(L/s) 3.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Vstored (m^3) 2.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	led - Tributary
Subdrainage Are	Area: F a (ha): C: tc I (nin) (r 10 1 20 1 30 1 40 50 50 60 70 80 90 10 100 120	1001A 0.06 0.86 100 yr) mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 44.99 41.11 37.90 35.20	Qactual (L/s) 26.97 18.12 13.88 11.35 9.66 8.44 7.52 6.80 6.21 5.73 5.32 4.97	Qrelease (L/s) 23.38 18.12 13.88 11.35 9.66 8.44 7.52 6.80 6.21 5.73 5.32		(L/s) 3.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Vstored (m^3) 2.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	led - Tributary

Τ/0						m	54.53	T/G Elevation
Max Pon						m	0.00	Ponding Depth
Downs						m	0.00	ownstream W/L
	1	Volume	Vavail	Vreq	Discharge	Head	Stage	Г
		Check	(cu. m)	(cu. m)	(L/s)	(m)	0	
100-year V	1	OK	3.50	0.00	22.41	1.70	54.53	ear Water Level
Subdraii	,	ed - Tributary	Controlle				F1004A	drainage Area:
Cubula							0.24	Area (ha):
							0.90	C:
			Vstored	Qstored	Qrelease	Qactual	l (2 yr)	tc
			(m^3)	(L/s)	(L/s)	(L/s)	(mm/hr)	(min)
			13.14	21.91	23.25	45.16	76.81	10
			8.81	7.34	23.25	30.59	52.03	20
			0.52	0.29	23.25	23.54	40.04	30
			0.00	0.00	19.32	19.32	32.86	40
			0.00	0.00	16.49	16.49	28.04	50
			0.00	0.00	14.44	14.44	24.56	60
			0.00	0.00	12.88	12.88	21.91	70
			0.00	0.00	11.66	11.66	19.83	80
			0.00 0.00	0.00 0.00	10.67 9.85	10.67 9.85	18.14 16.75	90 100
			0.00	0.00	9.85 9.15	9.85 9.15	15.57	110
			0.00	0.00	8.56	8.56	14.56	120
Storage:								Above CB
Orific				0.61	Where C =	0.5	CdA(2gh)^	Drifice Equation: •
Orifice						mm	90.00	Drifice Diameter:
Inve						m	52.56	Invert Elevation
Т/0						m	54.10	T/G Elevation
Max Pon						m	0.29	Ponding Depth
Downs						m	51.45	ownstream W/L
	1	Volume	Vavail	Vreq	Discharge	Head	Stage	ſ
	4	Check	(cu. m)	(cu. m)	(L/s)	(m)	= 1	
100-year V	1	OK	67.10	13.14	23.25	1.83	54.39	ear Water Level

Max Pondi Downstre	ng Depth eam W/L	0.15 m 51.45 m					
		Stage	Head	Discharge	Vreq	Vavail	Volume
100	tonlauch	E4 60	(m)	(L/s)	(cu. m)	(cu. m)	Check
100-year Wa		54.68	1.85	23.38	2.16	<u>3.50</u> 1.34	OK
		E 4 6 6 4 6				.	
Subdraina	-					Controlle	ed - Tributary
А	rea (ha): C:	0.24 1.00					
	0.	1.00					
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	
	10	178.56	116.65	23.25	93.40	56.04	
	20	119.95	78.36	23.25	55.11	66.13	
	30	91.87	60.02	23.25	36.76	66.18	
	40	75.15	49.09	23.25	25.84	62.01	
	50	63.95	41.78	23.25	18.53	55.58	
	60	55.89	36.52	23.25	13.26	47.75	
	70	49.79	32.53	23.25	9.27	38.95	
	80	44.99	29.39	23.25	6.14	29.47	
	90	41.11	26.86	23.25	3.60	19.47	
	100	37.90	24.76	23.25	1.51	9.05	
	110	35.20	23.00	23.00	0.00	0.00	
	120	32.89	21.49	21.49	0.00	0.00	
Storage: Su	urface Sto	orage Above CE	3				
Orifice E	Equation:	Q = CdA(2gh)	^0.5	Where C =	0.61		
Orifice E	Diameter:	90.00 mr	n				
Invert	Elevation	52.56 m		Max available ponding			
T/C	Elevation	54.10 m		value	38 30	(cu.m)	
1/6		0 4 .10 III		Underground 900mm Pipe	50.50	(60.11)	
Max Pondii	na Denth	0.29 m		Storage (L = 35.3m)	22 45	(cu.m)	
	ng Dopin	0.20 m		CB Storage in STM 1003 &	22.40	(50.11)	
Downstre	eam W/L	51.45 m		1004 (H1 & H2 = 1.8)	6.36	(cu.m)	
		Stage	Head	Discharge	Vreq	Vavail	Volume
			(m)	(L/s)	(cu. m)	(cu. m)	Check
100-year Wa	ater Level	54.39	1.83	23.25	66.18	67.10	OK
		-		~	-	0.93	

Stormwater Management Calculations

Project #160401331, Petries Landing - Block 8 Modified Rational Method Calculatons for Storage

Subdra								
	ainage Area: Area (ha): C:	F1001B 0.05 0.69				Controlle	ed - Tributary	
	tc	l (2 yr)	Qactual	Qrelease	Qstored	Vstored		
	(min) 10	(mm/hr) 76.81	(L/s) 7.22	(L/s) 6.10	(L/s) 1.12	(m^3) 0.67		
	20 30	52.03 40.04	4.89 3.76	4.89 3.76	0.00 0.00	0.00 0.00		
	40	32.86	3.09	3.09	0.00	0.00		
	50 60	28.04 24.56	2.64 2.31	2.64 2.31	0.00 0.00	0.00 0.00		
	70 80	21.91 19.83	2.06 1.86	2.06 1.86	0.00 0.00	0.00 0.00		
	80 90	18.14	1.71	1.00	0.00	0.00		
	100 110	16.75 15.57	1.57 1.46	1.57 1.46	0.00 0.00	0.00 0.00		
	120	14.56	1.37	1.37	0.00	0.00		
Storage:	Above CB							
	LMF:	LMF 70	mm					
	vert Elevation T/G Elevation	52.66 54.36	m					
	onding Depth	0.30	m m					
Dow	nstream W/L	51.45	m					
]	Stage	Head	Discharge	Vreq	Vavail	Volume	
5-year	Water Level	54.66	(m) 2.00	(L/s) 6.10	(cu. m) 0.67	(cu. m) 23.10	Check OK	
Subdra	ainage Area:		A-RAMP			Controlle	ed - Tributary	
	Area (ha): C:	0.02 0.90						
	tc (min)	l (2 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)		
	10 20	76.81 52.03	4.61 3.12	4.61 3.12	0.00 0.00	0.00 0.00		
	30	40.04	2.40	2.40	0.00	0.00		
	40 50	32.86 28.04	1.97 1.68	1.97 1.68	0.00 0.00	0.00 0.00		
	60	24.56	1.47	1.47	0.00	0.00		
	70 80	21.91 19.83	1.32 1.19	1.32 1.19	0.00 0.00	0.00 0.00		
	90 100	18.14 16.75	1.09 1.01	1.09 1.01	0.00 0.00	0.00 0.00		
	110	15.57	0.93	0.93	0.00	0.00		
	120	14.56	0.87	0.87	0.00	0.00		
Subdra	ainage Area: Area (ha): C:	R1002/ 0.21 0.90	A-BLDG	N	/laximum Stor	age Depth:	Roof 150 n	nm
	tc	l (2 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	
	(min) 10	(mm/hr) 76.81	(L/s) 40.35	(L/s) 7.14	(L/s) 33.22	(m^3) 19.93	(mm) 91.4	0.
	20 30	52.03 40.04	27.34 21.04	7.48 7.52	19.86 13.52	23.83 24.33	98.2 99.0	0
	40	32.86	17.27	7.45	9.81	23.55	97.7	0
		28.04	14.73 12.90	7.33 7.19	7.40 5.71	22.20 20.56	95.3 92.5	0 0
	50 60	24.56			0.71			
	60 70	21.91	11.51	7.04	4.48	18.80	89.4	
	60			6.88 6.72			89.4 86.3 83.1	0
	60 70 80 90 100	21.91 19.83 18.14 16.75	11.51 10.42 9.53 8.80	6.88 6.72 6.56	4.48 3.54 2.81 2.23	18.80 16.99 15.19 13.41	86.3 83.1 80.1	0 0 0
	60 70 80 90	21.91 19.83 18.14	11.51 10.42 9.53	6.88 6.72	4.48 3.54 2.81	18.80 16.99 15.19	86.3 83.1	0 0 0 0
Storage:	60 70 80 90 100 110	21.91 19.83 18.14 16.75 15.57 14.56	11.51 10.42 9.53 8.80 8.18	6.88 6.72 6.56 6.41	4.48 3.54 2.81 2.23 1.77	18.80 16.99 15.19 13.41 11.67	86.3 83.1 80.1 77.0	0 0 0 0
Storage:	60 70 80 90 100 110 120	21.91 19.83 18.14 16.75 15.57 14.56	11.51 10.42 9.53 8.80 8.18	6.88 6.72 6.56 6.41	4.48 3.54 2.81 2.23 1.77	18.80 16.99 15.19 13.41 11.67	86.3 83.1 80.1 77.0	0. 0. 0.
-	60 70 80 90 100 110 120	21.91 19.83 18.14 16.75 15.57 14.56 ge	11.51 10.42 9.53 8.80 8.18 7.65 Head	6.88 6.72 6.56 6.41 6.24 Discharge	4.48 3.54 2.81 2.23 1.77 1.41	18.80 16.99 15.19 13.41 11.67 10.12 Vavail	86.3 83.1 80.1 77.0 73.7 Discharge	0. 0. 0. 0. 0.
5-year	60 70 80 90 100 110 120 Roof Storag	21.91 19.83 18.14 16.75 15.57 14.56 re Depth (mm)	11.51 10.42 9.53 8.80 8.18 7.65 Head (m)	6.88 6.72 6.56 6.41 6.24 Discharge (L/s)	4.48 3.54 2.81 2.23 1.77 1.41 Vreq (cu. m) 24.33	18.80 16.99 15.19 13.41 11.67 10.12 Vavail (cu. m) 84.00	86.3 83.1 80.1 77.0 73.7 Discharge Check	0. 0. 0.
5-year	60 70 80 90 100 110 120 Roof Storag • Water Level	21.91 19.83 18.14 16.75 15.57 14.56 Je Depth (mm) 99.03 UNC-1 0.19 0.20 I (2 yr) (mm/hr)	11.51 10.42 9.53 8.80 8.18 7.65 Head (m) 0.10 Qactual (L/s)	6.88 6.72 6.56 6.41 6.24 Discharge (L/s) 7.52 Qrelease (L/s)	4.48 3.54 2.81 2.23 1.77 1.41 Vreq (cu. m) 24.33	18.80 16.99 15.19 13.41 11.67 10.12 Vavail (cu. m) 84.00	86.3 83.1 80.1 77.0 73.7 Discharge Check 0.00	0 0 0
5-year	60 70 80 90 100 110 120 Roof Storag Water Level ainage Area: Area (ha): C: tc (min) 10	21.91 19.83 18.14 16.75 15.57 14.56 je Depth (mm) 99.03 UNC-1 0.19 0.20 I (2 yr) (mm/hr) 76.81	11.51 10.42 9.53 8.80 8.18 7.65 Head (m) 0.10 0.10 Qactual (L/s) 8.16	6.88 6.72 6.56 6.41 6.24 Discharge (L/s) 7.52 Qrelease (L/s) 8.16	4.48 3.54 2.81 2.23 1.77 1.41 Vreq (cu. m) 24.33 Und	18.80 16.99 15.19 13.41 11.67 10.12 Vavail (cu. m) 84.00 controlled - N	86.3 83.1 80.1 77.0 73.7 Discharge Check 0.00	0 0 0
5-year	60 70 80 90 100 110 120 Roof Storag • Water Level ainage Area: Area (ha): C: tc (min) 10 20 30	21.91 19.83 18.14 16.75 15.57 14.56 pe Depth (mm) 99.03 UNC-1 0.19 0.20 I (2 yr) (mm/hr) 76.81 52.03 40.04	11.51 10.42 9.53 8.80 8.18 7.65 Head (m) 0.10 0.10 Qactual (L/s) 8.16 5.53 4.25	6.88 6.72 6.56 6.41 6.24 Discharge (L/s) 7.52 Qrelease (L/s) 8.16 5.53 4.25	4.48 3.54 2.81 2.23 1.77 1.41 Vreq (cu. m) 24.33 Und	18.80 16.99 15.19 13.41 11.67 10.12 Vavail (cu. m) 84.00 controlled - N	86.3 83.1 80.1 77.0 73.7 Discharge Check 0.00	0 0 0 0
5-year	60 70 80 90 100 110 120 Roof Storag • Water Level ainage Area: Area (ha): C: tc (min) 10 20	21.91 19.83 18.14 16.75 15.57 14.56 Je Depth (mm) 99.03 UNC-1 0.19 0.20 I (2 yr) (mm/hr) 76.81 52.03	11.51 10.42 9.53 8.80 8.18 7.65 Head (m) 0.10 0.10 Qactual (L/s) 8.16 5.53	6.88 6.72 6.56 6.41 6.24 Discharge (L/s) 7.52 Qrelease (L/s) 8.16 5.53	4.48 3.54 2.81 2.23 1.77 1.41 Vreq (cu. m) 24.33 Und	18.80 16.99 15.19 13.41 11.67 10.12 Vavail (cu. m) 84.00 controlled - N	86.3 83.1 80.1 77.0 73.7 Discharge Check 0.00	0 0 0 0
5-year	60 70 80 90 100 110 120 Roof Storag • Water Level ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60	21.91 19.83 18.14 16.75 15.57 14.56 Je Depth (mm) 99.03 UNC-1 0.19 0.20 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56	11.51 10.42 9.53 8.80 8.18 7.65 Head (m) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	6.88 6.72 6.56 6.41 6.24 Discharge (L/s) 7.52 Qrelease (L/s) 8.16 5.53 4.25 3.49 2.98 2.61	4.48 3.54 2.81 2.23 1.77 1.41 Vreq (cu. m) 24.33 Und	18.80 16.99 15.19 13.41 11.67 10.12 Vavail (cu. m) 84.00 controlled - N	86.3 83.1 80.1 77.0 73.7 Discharge Check 0.00	0 0 0 0
5-year	60 70 80 90 100 110 120 Roof Storag • Water Level ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80	21.91 19.83 18.14 16.75 15.57 14.56 pe Depth (mm) 99.03 UNC-1 0.19 0.20 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83	11.51 10.42 9.53 8.80 8.18 7.65 Head (m) 0.10 0.10 Qactual (L/s) 8.16 5.53 4.25 3.49 2.98 2.61 2.33 2.11	6.88 6.72 6.56 6.41 6.24 Discharge (L/s) 7.52 Qrelease (L/s) 8.16 5.53 4.25 3.49 2.98 2.61 2.33 2.11	4.48 3.54 2.81 2.23 1.77 1.41 Vreq (cu. m) 24.33 Und	18.80 16.99 15.19 13.41 11.67 10.12 Vavail (cu. m) 84.00 controlled - N	86.3 83.1 80.1 77.0 73.7 Discharge Check 0.00	0 0 0 0
5-year	60 70 80 90 100 110 120 Roof Storag • Water Level ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90	21.91 19.83 18.14 16.75 15.57 14.56 Je Depth (mm) 99.03 UNC-1 0.19 0.20 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14	11.51 10.42 9.53 8.80 8.18 7.65 Head (m) 0.10 Qactual (L/s) 8.16 5.53 4.25 3.49 2.98 2.61 2.33 2.11 1.93	6.88 6.72 6.56 6.41 6.24 Discharge (L/s) 7.52 Qrelease (L/s) 8.16 5.53 4.25 3.49 2.98 2.61 2.33 2.11 1.93	4.48 3.54 2.81 2.23 1.77 1.41 Vreq (cu. m) 24.33 Und	18.80 16.99 15.19 13.41 11.67 10.12 Vavail (cu. m) 84.00 controlled - N	86.3 83.1 80.1 77.0 73.7 Discharge Check 0.00	0 0 0 0
5-year	60 70 80 90 100 110 120 Roof Storag • Water Level ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110	21.91 19.83 18.14 16.75 15.57 14.56 Je Depth (mm) 99.03 UNC-1 0.19 0.20 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57	11.51 10.42 9.53 8.80 8.18 7.65 Head (m) 0.10 Qactual (L/s) 8.16 5.53 4.25 3.49 2.98 2.61 2.33 2.11 1.93 1.78 1.65	6.88 6.72 6.56 6.41 6.24 Discharge (L/s) 7.52 Qrelease (L/s) 8.16 5.53 4.25 3.49 2.98 2.61 2.33 2.11 1.93 1.78 1.65	4.48 3.54 2.81 2.23 1.77 1.41 Vreq (cu. m) 24.33 Und	18.80 16.99 15.19 13.41 11.67 10.12 Vavail (cu. m) 84.00 controlled - N	86.3 83.1 80.1 77.0 73.7 Discharge Check 0.00	0 0 0 0
5-year	60 70 80 90 100 110 120 Roof Storag • Water Level ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	21.91 19.83 18.14 16.75 15.57 14.56 Je Depth (mm) 99.03 UNC-1 0.19 0.20 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56	11.51 10.42 9.53 8.80 8.18 7.65 Head (m) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	6.88 6.72 6.56 6.41 6.24 Discharge (L/s) 7.52 Qrelease (L/s) 8.16 5.53 4.25 3.49 2.98 2.61 2.33 2.11 1.93 1.78	4.48 3.54 2.81 2.23 1.77 1.41 Vreq (cu. m) 24.33 Und	18.80 16.99 15.19 13.41 11.67 10.12 Vavail (cu. m) 84.00 controlled - N	86.3 83.1 80.1 77.0 73.7 Discharge Check 0.00	0 0 0 0
5-year	60 70 80 90 100 110 120 Roof Storag • Water Level ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	21.91 19.83 18.14 16.75 15.57 14.56 Je Depth (mm) 99.03 UNC-1 0.19 0.20 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56	11.51 10.42 9.53 8.80 8.18 7.65 Head (m) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	6.88 6.72 6.56 6.41 6.24 Discharge (L/s) 7.52 Qrelease (L/s) 8.16 5.53 4.25 3.49 2.98 2.61 2.33 2.11 1.93 1.78 1.65 1.55	4.48 3.54 2.81 2.23 1.77 1.41 Vreq (cu. m) 24.33 Uno Qstored (L/s)	18.80 16.99 15.19 13.41 11.67 10.12 Vavail (cu. m) 84.00 controlled - N	86.3 83.1 80.1 77.0 73.7 Discharge Check 0.00	0 0 0 0
5-year	60 70 80 90 100 110 120 Roof Storag • Water Level ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	21.91 19.83 18.14 16.75 15.57 14.56 Je Depth (mm) 99.03 UNC-1 0.19 0.20 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 Tri cotal 2yr Fic	11.51 10.42 9.53 8.80 8.18 7.65 Head (m) 0.10 Qactual (L/s) 8.16 5.53 4.25 3.49 2.98 2.61 2.33 2.11 1.93 1.78 1.65 1.55	6.88 6.72 6.56 6.41 6.24 Discharge (L/s) 7.52 Qrelease (L/s) 8.16 5.53 4.25 3.49 2.98 2.61 2.33 2.11 1.93 1.78 1.65 1.55 0.581 50.8	4.48 3.54 2.81 2.23 1.77 1.41 Vreq (cu. m) 24.33 Und Qstored (L/s)	18.80 16.99 15.19 13.41 11.67 10.12 Vavail (cu. m) 84.00 controlled - N	86.3 83.1 80.1 77.0 73.7 Discharge Check 0.00	0 0 0 0
5-year	60 70 80 90 100 110 120 Roof Storag • Water Level ainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	21.91 19.83 18.14 16.75 15.57 14.56 Je Depth (mm) 99.03 UNC-1 0.19 0.20 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56 21.91 19.83 18.14 16.75 15.57 14.56	11.51 10.42 9.53 8.80 8.18 7.65 Head (m) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	6.88 6.72 6.56 6.41 6.24 Discharge (L/s) 7.52 Qrelease (L/s) 8.16 5.53 4.25 3.49 2.98 2.61 2.33 2.11 1.93 1.78 1.65 1.55 0.581 50.8 0.191 8.2	4.48 3.54 2.81 2.23 1.77 1.41 Vreq (cu. m) 24.33 Und Qstored (L/s)	18.80 16.99 15.19 13.41 11.67 10.12 Vavail (cu. m) 84.00 controlled - N	86.3 83.1 80.1 77.0 73.7 Discharge Check 0.00	0 0 0 0

Project #160401331, Petries Landing - Block 8 Modified Rational Method Calculatons for Storage

Moamea	Rational		alculatons for	Storage				
Subdrai	inage Area: Area (ha): C:	F1001B 0.05 0.86				Controlle	d - Tributary	
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored		
	(min) 10	(mm/hr) 178.56	(L/s) 20.98	(L/s) 6.10	(L/s) 14.88	(m^3) 8.93		
	20	119.95	14.09	6.10	7.99	9.59		
	30 40	91.87 75.15	10.79 8.83	6.10 6.10	4.69 2.73	8.45 6.55		
	50	63.95	7.51	6.10	1.41	4.24		
	60 70	55.89 49.79	6.57 5.85	6.10 5.85	0.47 0.00	1.68 0.00		
	80	44.99	5.29	5.29	0.00	0.00		
	90 100	41.11 37.90	4.83 4.45	4.83 4.45	0.00 0.00	0.00 0.00		
	110	35.20	4.14	4.14	0.00	0.00		
	120	32.89	3.86	3.86	0.00	0.00		
Storage:	Surface Sto	rage Above	СВ					
			mm					
	ert Elevation /G Elevation	52.66 54.36						
	nding Depth	0.30						
Down	stream W/L	51.45	m					
		Stage	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Volume Check	
100-year	Water Level	54.66	2.00	6.10	9.59	23.10	OK	
						13.51		
Subdrai	inage Area: Area (ha): C:	F100 0.02 1.00	0A-RAMP			Controlle	d - Tributary	
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored		
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)		
	10 20	178.56 119.95	11.91 8.00	11.91 8.00	0.00 0.00	0.00 0.00		
	30	91.87	6.13	6.13	0.00	0.00		
	40 50	75.15 63.95	5.01 4.27	5.01 4.27	0.00 0.00	0.00 0.00		
	60	55.89	3.73	3.73	0.00	0.00		
	70 80	49.79 44.99	3.32 3.00	3.32 3.00	0.00 0.00	0.00 0.00		
	90	41.11	2.74	2.74	0.00	0.00		
	100 110	37.90 35.20	2.53 2.35	2.53 2.35	0.00 0.00	0.00 0.00		
	120	32.89	2.19	2.19	0.00	0.00		
Subdra	inage Area: Area (ha): C:	0.21 1.00	2A-BLDG		Maximum Stor	age Depth:	Roof 150 n	าฑ
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	
	(min) 10	(mm/hr) 178.56	(L/s) 104.24	(L/s) 9.13	(L/s) 95.11	(m^3) 57.07	(mm) 131.0	0.00
	20	119.95	70.03	9.68	60.35	72.41	141.8	0.00
	30 40	91.87 75.15	53.63 43.87	9.84 10.00	43.79 33.87	78.82 81.29	145.0 148.1	0.00 0.00
	50	63.95	37.34	10.02	27.32	81.95	148.5	0.00
	60 70	55.89 49.79	32.63 29.07	10.00 9.96	22.63 19.11	81.46 80.25	148.2 147.3	0.00 0.00
	80	44.99	26.27	9.90	16.37	78.55	146.2	0.00
	90 100	41.11 37.90	24.00 22.13	9.83 9.75	14.17 12.38	76.53 74.28	144.7 143.1	0.00 0.00
	110	35.20	20.55	9.66	10.89	71.87	141.4	0.00
	120	32.89	19.20	9.57	9.63	69.35	139.7	0.00
Storage:	Roof Storag	je						
	l	Depth	Head	Discharge	Vreq	Vavail	Discharge	
100	Motor Laws	(mm)	(m)	(L/s)	(cu. m)	(cu. m)	Check	
ioo-year	Water Level	148.55	0.15	10.02	81.95	84.00	0.00	
Subdra	inage Area: Area (ha): C:	UNC-1 0.19 0.25			Un	controlled - N	on-Tributary	
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored		
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)		
	10 20	178.56 119.95	23.70 15.92	23.70 15.92				
	30	91.87	12.20	12.20				
	40 50	75.15 63.95	9.98 8.49	9.98 8.49				
	60	55.89	7.42	7.42				
	70 80	49.79 44.99	6.61 5.97	6.61 5.97				
	90	41.11	5.46	5.46				
	100 110	37.90 35.20	5.03 4.67	5.03 4.67				
	120	32.89	4.37	4.37				
SUMMARY	TO OUTLET							
			Tributary Area Flow to Sewer		0.581 ha 74.7 L/s			
		Non	-Tributary Area lled 100yr Flow		0.191 ha 23.7 L/s			
			al 100year Flow Target		98.4 L/s 99.5 L/s			

Project #160401331, Petries Landing - Block 8 Roof Drain Design Sheet, Area BLDG Standard Watts Drainage Model R1100 Accuflow Roof Drains

										Drawdow	n Estimate	•
	Rating	Curve			Volume I	Estimation			Total	Total		
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth	Volume	Time	Vol	Detentio
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)	(cu.m)	(sec)	(cu.m)	Time (h
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000				
0.025	0.0003	0.0025	0	0.025	47	0	0	0.025	0.0	0.0	0.0	0
0.050	0.0006	0.0050	3	0.050	187	3	3	0.050	2.7	539.4	2.7	0.1498
0.075	0.0008	0.0063	11	0.075	420	7	11	0.075	10.1	1171.2	7.4	0.4751
0.100	0.0009	0.0076	25	0.100	747	14	25	0.100	24.5	1900.6	14.4	1.0030
0.125	0.0011	0.0088	49	0.125	1167	24	49	0.125	48.2	2685.8	23.7	1.7491
0.150	0.0013	0.0101	84	0.150	1680	35	84	0.150	83.6	3505.8	35.4	2.7229

Rooftop Storage Summary

80%	2100 1680	
0070	0.99	
	232	
	8	
	0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).
	84	
	2.7	
	80%	80% 1680 0.99 232 8 0.15 84

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	5yr	100yr	Available
Qresult (cu.	.m/s) 0.008	0.010	-
Depth (m)	0.099	0.149	0.150
Volume (cu	.m) 24.3	81.9	84.0
Draintime (I	hrs) 1.0	2.7	

From Watts Drain Catalogue

			0			
Н	lead (m)	L/s				
		Open	75%	50%	25%	Closed
	0.025	0.3155	0.31545	0.31545	0.31545	0.31545
	0.050	0.6309	0.6309	0.6309	0.6309	0.6309
	0.075	0.9464	0.86749	0.78863	0.70976	0.6309
	0.100	1.2618	1.10408	0.94635	0.78863	0.6309
	0.125	1.5773	1.34067	1.10408	0.86749	0.6309
	0.150	1.8927	1.57726	1.2618	0.94635	0.6309

		Petries Landing Block 8					STORM					PARAMET																											
Stantec							DESIGN				I = a / (t+l	/				awa Guide	ines, 2012	2)																					
			2019	-12-12			(City of	Ottawa)				1:2 yr	-	-	1:100 yr																								
	REVISION: DESIGNED BY:		-	1 FR			40040400				a =	732.951				MANNING		0.013		BEDDING	CLASS =	В																	
	CHECKED BY:			NP	FILE NUM	IBER:	16040133	1			b =	6.199 0.810	6.053 0.814	6.014 0.816		MINIMUM		2.00 10																					
			A								C –	0.610	0.014					10	111111									1											<u> </u>
AREA ID	FROM	то	AREA	ARFA	ARFA	ARFA	ARFA	С	С	С	С	AxC	ACCUM	AxC		AxC	ACCUM	AxC	ACCUM	T of C	2 VEAD			I _{100-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH F	PIPE WIDTH	PIPF	PIPF	MATERIAI	CLASS	SLOPE	QCAR	% FULL	VEI	VEI	TIME OF
NUMBER	M.H.	M.H.	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)	(ROOF)	(2-YEAR)	(5-YEAR)	(10-YEAR)	(100-YEAR)	(2-YEAR)	AxC (2YR)	(5-YEAR)	AxC (5YR)	(10-YEAR)	AxC (10YR)	(100-YEAR)	AxC (100YR)	1 01 0	2-TEAR	-5-TEAR	-10-TEAR	·100-TEAR	CONTROL		(CIA/360)	0	R DIAMETEI	HEIGHT	SHAPE		02/00	02012	(FULL)		(FULL)	(ACT)	FLOW
			(ha)	(ba)	(ha)	(ha)	(ha)	(-)	(-)	(-)	(-)	(ha)	(ha)	(ba)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
F1001A	1001A	1000	0.06	0.00	0.00	0.00	0.00	0.69	0.00	0.00	0.00	0.043	0.043	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	9.3	6.0	200	200	CIRCULAR	PVC	-	1.00	33.3	27.84%	1.05	0.76	0.13
																				10.13																			
R1002A	Bldg 8 Stm	1002	0.00	0.00	0.00	0.00	0.21	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	10.0	10.0	10.0	3.6	250	250	CIRCULAR	PVC		1.00	60.4	16.59%	1.22	0.75	0.08
RT002A	Blug o Still	1002	0.00	0.00	0.00	0.00	0.21	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00	70.01	104.19	122.14	170.00	10.0	10.0	10.0	3.0	250	250	CIRCULAR	FVC	-	1.00	00.4	10.59%	1.22	0.75	0.08
Included for Underground Storage	1004	1003	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	0.0	35.3	900	900	CIRCULAR	CONCRETE	-	0.10	597.2	0.00%	0.91	0.00	0.00
F1004A	1003	1002	0.24	0.00	0.00	0.00	0.00	0.90	0.00	0.00	0.00	0.212	0.212	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	45.2	32.9	375	375	CIRCULAR	PVC		0.50	116.6	38.75%	1.11	0.87	0.63
																				10.63																			
	1002	1001	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.212	0.000	0.000	0.000	0.000	0.000	0.000	10.63	74.47	100.98	118.36	173.00	0.0	10.0	53.8	22.7	375	375	CIRCULAR	PVC	-	0.50	116.6	46.17%	1.11	0.92	0.41
																				11.04																			
F1001B	1001B	1001	0.05	0.00	0.00	0.00	0.00	0.69	0.00	0.00	0.00	0.034	0.034	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	122.14	178.56	0.0	0.0	7.2	5.9	200	200	CIRCULAR	PVC	-	1.00	33.3	21.66%	1.05	0.69	0.14
																				10.14																			
	1001	1000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.246	0.000	0.000	0.000	0.000	0.000	0.000	11.04	73.02	98.99	116.01	169.55	0.0	10.0	59.8	30.9	375	375	CIRCULAR	PVC	-	0.50	116.6	51.32%	1.11	0.95	0.54
																				11.58																			
F1000A	1000A	1000	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	104.19	100 14	178.56	0.0	0.0	10.7	10.6	150	150	CIRCULAR			1.00	15.2	69.99%	0.96	0.90	0.00
FIUUUA	TUUUA	1000	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.90	0.000	0.000	0.000	0.000	0.000	0.000	0.022	0.022	10.00	70.01	104.19	122.14	178.50	0.0	0.0	10.7	10.6	150	150	CIRCULAR	PVC	-	1.00	15.3	09.99%	0.00	0.82	0.22
	1000	27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.289	0.000	0.000	0.000	0.000	0.000	0.022	11.58	71.22	96.51	113.10	165.28	0.0	10.0	77.1	12.5	375	375	CIRCULAR	PVC	-	0.50	116.6	66.15%	1.11	1.03	0.20
																				11.79									375	375									

SITE SERVICING AND STORMWATER MANAGEMENT BRIEF – PETRIE'S LANDING III BLOCK 8 OTTAWA, ON

Appendix D Background Reports Excerpts December 13, 2019

Appendix D BACKGROUND REPORTS EXCERPTS

Site Servicing and Stormwater Management Brief – Petrie's Landing Block 6, 7 and 8 (D07-12-17-0093), Ottawa, ON

File: 160401331/83

Prepared for: Brigil Homes

Prepared by: Stantec Consulting Ltd.

			Revision	Record				
Revision	Description	Prepa	red by	Chec	ked by	Approved by		
0	1 st submission	A. Paerez	05/24/2017	K. Kilborn	05/24/2017	A. Paerez	05/24/2017	
1	2 nd submission	A. Paerez	01/12/2017	K. Kilborn	01/18/2018	A. Paerez	01/22/2018	
2	3 rd submission	A. Paerez	03/21/2018	K. Kilborn	03/22/2018	A. Paerez	03/23/2018	
3	4 th submission	A. Paerez	07/05/2018	K. Kilborn	07/05/2018	A. Paerez	07/05/2018	
4	5 th submission	A. Paerez	07/26/2018	K. Kilborn	07/26/2018	A. Paerez	07/26/2018	
5	6 th submission	A. Paerez	09/04/2018	K. Kilborn	09/05/2018	A. Paerez	09/05/2018	
6	7 th submission	A. Paerez	09/19/2018	K. Kilborn	09/19/2018	A. Paerez	09/19/2018	

Sign-off Sheet

This document entitled Site Servicing and Stormwater Management Brief – Petrie's Landing Block 6, 7 and 8 (D07-12-17-0093), Ottawa, ON was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Brigil Homes (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

ADAMAD

Approved by _

(signature)

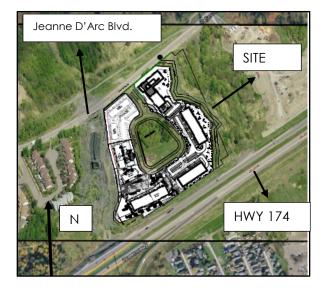
Ana M. Paerez, P. Eng.

Table of Contents

1.0	INTRODU	JCTION AND OBJECTIVE	1.1
1.1		ROUND	
1.2	OBJECTI	VE	
2.0	REFEREN	CES	2.1
3.0	WATER D	DISTRIBUTION	3.1
3.1		ROUND	
3.2		DEMANDS	
3.3		ILIC MODEL RESULTS	
3.4	Summar	ry of findings	
4.0	SANITAR	Y SEWER	4.1
4.1	Sanitar	Y SEWER DESIGN CRITERIA	
5.0	STORMW	ATER MANAGEMENT	5.1
5.1	OBJECTI	VES	5.1
5.2	SWM CR	RITERIA AND CONSTRAINTS	5.1
5.3	Stormw	VATER MANAGEMENT DESIGN	5.1
	5.3.1	Design Methodology	5.2
	5.3.2	Water Quantity Control	
	5.3.3	Allowable Release Rate	
	5.3.4	Storage Requirements	
	5.3.5	Uncontrolled Area	
	5.3.6	Results	5.5
6.0	GRADIN	G AND DRAINAGE	6.1
7.0	UTILITIES.		7.1
8.0	APPROV	'ALS	8.1
9.0	FROSION	N CONTROL DURING CONSTRUCTION	9 1
10.0	GEOTEC	HNICAL INVESTIGATION	
11.0		JSIONS	
11.1		ERVICING	
11.2		Y SERVICING	
11.3		VATER SERVICING	
11.4		G	
11.5			
11.6	APPROV	/AL / PERMITS	

LIST OF TABLES

Table 1: Estimat	ed Water Demands	3.1
Table 2: Hydrau	lic Model Results Summary	3.2
Table 3: Estimat	ed Wastewater Peak Flow	4.1
Table 4: Peak C	Controlled (Rooftop) 2-Year Release Rate	5.3
Table 5: Peak C	Controlled (Rooftop) 100-Year Release Rate	5.3
Table 6: 2-Year	ICD Characteristics	5.3
Table 7: 100-Ye	ar ICD Characteristics	5.4
Table 8: Peak U	ncontrolled (Non-tributary) 2-Year Release Rate	5.5
Table 9: Peak U	ncontrolled (Non-tributary) 100-Year Release Rate	5.5
Table 10: Estimo	ated Discharge from Site (2-Year)	5.5
Table 11: Estimo	ated Discharge from Site (100-Year)	5.6
	ment Structure – Car Only Parking Areas	
Table 13: Paver	ment Structure – Access Lanes and Heavy Truck Parking Areas	10.1
LIST OF FIGURES Figure 1: Site Lo	cation	1.1
LIST OF APPEND	ICES	
APPENDIX A	POTABLE WATER SERVICING ANALYSIS	A.1
APPENDIX B	PROPOSED SITE PLAN	B.1
APPENDIX C	SANITARY SEWER CALCULATIONS	C.1
APPENDIX D	STORMWATER MANAGEMENT CALCULATIONS	D.1
APPENDIX E	BACKGROUND REPORTS EXCERPTS	E.1
APPENDIX F	CITY COMMENTS AND RESPONSE	F.1
APPENDIX G	DRAWINGS	G.1


Introduction and Objective September 19, 2018

1.0 INTRODUCTION AND OBJECTIVE

The following site servicing and stormwater management (SWM) report has been revised to address City comments to the previous submission. A letter summarizing the City comments and Stantec's responses has been included in **Appendix F**. Specifically, the 4R plan has been revised to match the new property lines and a catchbasin has been added to ensure full capture of the 100-year runoff from area F201A. However, the results of the servicing analyses remain the same as those previously submitted. The drawings have been revised to reflect the revisions.

Stantec Consulting Ltd. has been retained by Brigil Homes to prepare the following site servicing and stormwater management (SWM) brief to satisfy the City of Ottawa Site Plan Control Application process. The 2.14 ha site is located on Prestige Circle, with the Highway 174 to the south, Jeanne D'Arc Boulevard to the north, a residential development to the east, and Brisebois Creek and its associated stormwater management (SWM) facility to the west in the city of Ottawa (see **Figure 1** below).

Block 6 of the proposed development makes up 0.61 ha of the proposed site and consists of a four-storey residential building with associated surface and underground parking, and landscaped areas. Block 7 of the proposed development makes up 0.76 ha of the proposed site and consists of a four-storey residential building with associated surface and underground parking, and landscaped areas. Similarly, Block 8 of the proposed development makes up 0.77 ha of the proposed site and consists of a four-storey residential building with associated surface and underground parking, and landscaped areas. Similarly, Block 8 of the proposed development makes up 0.77 ha of the proposed site and consists of a four-storey residential building with associated surface and underground parking, and landscaped areas. A copy of the proposed site plan prepared by Neuf Architects Inc. can be found in **Appendix B**.

Figure 1: Site Location

Introduction and Objective September 19, 2018

1.1 BACKGROUND

Blocks 6 and 7 of the proposed development are within Phase 2 of the Petrie's Landing Development which was previously designed by IBI Group in February 2014 in support of a site plan application for phase 2 and subsequently approved by the City of Ottawa (see report excerpts in **Appendix E**). Phase 1 and Blocks 3, 4 and 5 within Phase 2 of the overall development have been built.

However, the site plan within Blocks 6 and 7 has changed and the proposed site plan for Block 8, previously referenced as Phase 3, has been added to the site plan application.

1.2 OBJECTIVE

This site servicing and SWM brief has been prepared to present a servicing scheme that is free of conflicts and which utilizes the existing infrastructure as obtained from available as-built drawings. Infrastructure requirements for water supply, sanitary and storm sewer services are presented in this report.

Criteria and constraints provided in the background documents have been used as a basis for the servicing design of the proposed development. Specific elements and potential development constraints to be addressed are as follows:

- Prepare a grading plan in accordance with the proposed site plan and existing grades
- Storm Sewer Servicing
 - Define major and minor conveyance systems in conjunction with the grade control plan
 - Determine the stormwater management storage requirements to meet the allowable release rates for the site
 - Size and design inlet control devices (ICDs) to restrict minor system peak flows and meet the target release rates from the site
- Wastewater Servicing
 - Size the sanitary service laterals
- Water Servicing
 - Provide feeds to the proposed buildings from the existing 200 mm diameter watermain along Prestige Circle
 - Watermain servicing for the development is to be able to provide average day and maximum day (including peak hour) demands (i.e. non-emergency conditions) at pressures within the acceptable range of 40 to 80 psi (275 to 552 kPa)
 - Provide Fire Underwriter Survey (FUS) fire demand calculations and ensure fire demands for the proposed buildings are equal or below the values assumed in the hydraulic analysis presented in the background documents

Introduction and Objective September 19, 2018

The accompanying drawings included in the back of this report illustrate the internal servicing scheme for the site.

References September 19, 2018

2.0 **REFERENCES**

The following background studies have been referenced during the servicing design of the proposed site:

- Design Brief Petrie's Landing II Phase 2, IBI Group., February 7, 2014
- Geotechnical Investigation, Proposed Multi-Storey Buildings Block 6, 7 and 8 Petrie's Landing II, Ottawa, Ontario, Paterson group, May 24, 2017
- City of Ottawa Design Guidelines Water Distribution, City of Ottawa, July 2010
- City of Ottawa Sewer Design Guidelines, City of Ottawa, October 2012
- Technical Bulletin ISDTB-2014-01, City of Ottawa, February 2014
- Technical Bulletin PIEDTB -2016-01, City of Ottawa, September 6, 2016

Water Distribution September 19, 2018

3.0 WATER DISTRIBUTION

Given that the revised site plan has nearly the same proposed population (two units less in Block 7), same building floor space and water servicing layout, it is expected that the resulting water demands, and pressures will be practically the same as outlined in the previous submissions which are summarized in the sub-sections below.

3.1 BACKGROUND

The four-storey buildings within Blocks 6, 7 and 8 are proposed to be apartment buildings with underground parking. The proposed buildings in Block 6, 7 and 8 have total floor space of approximately 1,530 m² (0.15 ha), 1,970 m² (0.20 ha), and 2,360 m² (0.24 ha) respectively, and are proposed to connect to the existing 200 mm diameter watermain along Prestige Circle as shown on the Site Plan (see **Drawing SSP-1**).

A detailed hydraulic analysis for the overall Petrie's Landing Development was included in the 2014 Petrie's Landing Design Brief prepared by IBI (see **Appendix E**). However, the FUS calculations for the proposed buildings generated higher fire flow demands than the values assumed in IBI's hydraulic analysis. As a result, the hydraulic analysis for the overall development was revised using the same boundary conditions as per IBI's model, but with the revised water and fire flow demands for the proposed Blocks 6, 7 and 8 as shown in the following sections. Detailed calculations and the revised hydraulic model results have been included in **Appendix A**.

3.2 WATER DEMANDS

Water demands were calculated using the City of Ottawa Water Distribution Guidelines (July 2010) to determine the typical operating pressures to be expected at the buildings. A daily rate of 350 L/cap/day has been applied for the population of the proposed site. Population densities have been assumed as 1.4 persons/unit for one-bedroom units and 2.1 persons/unit for two-bedroom units. The Maximum Day (MXDY) residential demand was determined by multiplying the Average Day (AVDY) demand by a factor of 2.5 and the Peak Hour (PKHR) residential demand was determined by multiplying the MXDY demand by a factor of 2.2. The estimated demands are summarized in **Table 1**.

Building ID	Population	AVDY (L/s)	MXDY (L/s)	PKHR (L/s)
Block 6	122	0.49	1.23	2.17
Block 7	140	0.57	1.42	3.12
Block 8	141	0.57	1.43	3.15
Total	403	1.63	4.08	8.98

Table 1: Estimated Water Demands

pa w:\active\160401331_petries landing block 6-8\design\report\servicing - site plan\seventh submission - september 2018\rpt_2018-09-19_servicing_amp.docx

Water Distribution September 19, 2018

The fire flow requirements were calculated in accordance with the Fire Underwriters Survey (FUS) and determined to be approximately 15,000 L/min (250 L/s) for Block 6, 15,000 L/min (250 L/s) for Block 7, and 20,000 L/min (333 L/s) for Block 8. Wood frame construction was considered in the assessment for fire flow requirements according to the FUS Guidelines. The FUS Guidelines indicate that low hazard occupancies include apartments, dwellings, dormitories, hotels, and schools, and as such, a low hazard occupancy/ limited combustible building contents and sprinkler systems was applied to the calculations. A two-hour fire separation has been considered at the center of block 7 to reduce the fire flow requirements.

The boundary conditions listed below were provided by the City of Ottawa to IBI Group and used in their 2014 hydraulic analysis for the overall development, which included buildings one to eight. Since the number of apartment units has not drastically increased in the proposed site plan, the previous boundary conditions were considered reasonable and a conservative estimate and were used in the revised hydraulic analysis for the overall site (see model results in **Appendix A**).

Peak Hour = 108.0m Max Day + Fire Flow = 110.0m

Average Day = 115.0m

3.3 HYDRAULIC MODEL RESULTS

The desired normal operating pressure range as per the City of Ottawa 2010 Water Distribution Design Guidelines is 345 kPa (50 psi) to 552kPa (80 psi) and no <u>less than 276kPa (40 psi)</u> at ground elevation. Furthermore, the maximum pressure at any point in the water distribution should not exceed 100 psi as per the Ontario Building/Plumbing Code; pressure reducing measures are required to service areas where pressures <u>greater than 552kPa (80 psi)</u> are anticipated.

A hydraulic model of the water supply system was created by Stantec to assess the proposed watermain layout under the above demands and during fire flow scenarios. Results of the hydraulic modeling demonstrate that adequate flows are available for the proposed buildings as shown in **Table 2**.

Model Node ID	Average Day Analysis Pressure (psi)	Peak Hour Analysis Pressure (psi)
BLDG6	82.02	71.94
BLDG7	83.16	73.08
BLDG8	85.16	75.11

Table 2: Hydraulic Model Results Summar	2: Hydraulic Model Results Su	Jmmary
---	-------------------------------	--------

The above table shows that under normal operating conditions, pressures at ground level of the proposed buildings range from **72 psi** to **85 psi**. These values exceed the desired pressure range

Water Distribution September 19, 2018

of 80 psi as defined by MOECC and City of Ottawa design guidelines. As a result, it is recommended that pressure reducing valves be installed. Results of the hydraulic model analysis can be found in **Appendix A**.

A fire flow analysis was carried out using the hydraulic model to determine the anticipated amount of flow that could be provided for the proposed development under maximum day demands and fire flow requirements per the FUS methodology. Results of the modeling analysis indicate that flows in excess of the required fire flow rate can be delivered while still maintaining a residual pressure of 140 kPa (20 psi). Results of the hydraulic modeling are included for reference in **Appendix A**.

3.4 SUMMARY OF FINDINGS

Based on the results of the hydraulic analysis, it is recommended that pressure reducing valves be installed at each building to ensure normal operating pressures remain within City of Ottawa required limits. The hydraulic model also indicates that fire flow requirements can be achieved at all locations while still maintaining the minimum residual pressure per City requirements.

Sanitary Sewer September 19, 2018

4.0 SANITARY SEWER

As illustrated on Drawing SSP-1, sanitary servicing for the proposed development will be provided through the existing 300 mm diameter sanitary sewer along Prestige Circle.

The proposed 2.14 ha development will consist of three four-storey apartment buildings, surface parking, underground parking, and associated access infrastructure. The anticipated wastewater peak flows generated from the proposed development are summarized in Table 3 below:

		Residenti	al Units	_					
Block	# of Units	Population	Peak Factor	Peak Flow (L/s)	Infiltration Flow (L/s)	Total Peak Flow (L/s)			
Block 6	79	142	4.0	2.30	0.16	2.46			
Block 7	90	162	4.0	2.63	0.23	2.86			
Block 8	93	167	4.0	2.71	0.21	2.92			
	Overall Site Peak Flow:								

Table 3: Estimated Wastewater Peak Flow

1. Average residential flow based on 350 L/p/day

 Peak factor for residential units calculated using Harmon's formula
 The exact number of one and two-bedroom apartments is not available at this time and as such, an average population of 1.8 persons/unit was used in the calculations

4. Infiltration flow based on 0.28 L/s/ha.

The Prestige Circle sanitary sewer design was based on the applicable City of Ottawa Design Guidelines and a preliminary concept plan for the overall Prestige Circle Development which consisted of 248 apartments and 170 retirements units for a total of 418 units.

The current concept plan for the overall development consists of 418 units, broken-down as follows:

- Existing Phase 1: 40 units
- Existing Phase 2: 116 units
- Proposed Block 6: 79 units
- Proposed Block 7: 90 units
- Proposed Block 8: 93 units •

A detailed sanitary sewer design sheet for the proposed development is included in **Appendix C**. A backflow preventer will be required for the proposed buildings in accordance with the Ottawa sewer design guidelines and will be coordinated with building mechanical engineers.

All underground parking drains should be connected to the internal building plumbing.

Sanitary Sewer September 19, 2018

4.1 SANITARY SEWER DESIGN CRITERIA

As outlined in the City of Ottawa Sewer Design Guidelines and the Ministry of the Environment and Climate Change's (MOECC) Design Guidelines for Sewage Works, the following criteria were used to calculate estimated wastewater flow rates and to size the sanitary sewers:

- Minimum Velocity 0.6 m/s (0.8 m/s for upstream sections)
- Maximum Velocity 3.0 m/s
- Manning roughness coefficient for all smooth wall pipes 0.013
- 1.4 persons/residential unit (1 bedroom)
- 2.1 persons/residential unit (2 bedroom)
- 1.8 person/residential unit (when number of bedroom not available)
- Harmon's Formula for Peak Factor Max = 4.0
- Extraneous Flow Allowance 0.28 L/s/ha (conservative value)
- Manhole Spacing 120 m
- Minimum Cover 2.5 m

Stormwater Management September 19, 2018

5.0 STORMWATER MANAGEMENT

5.1 **OBJECTIVES**

The objective of this stormwater management (SWM) plan is to determine the measures necessary to control the quantity of stormwater released from the proposed development to the required levels, and to provide sufficient detail for approval and construction.

5.2 SWM CRITERIA AND CONSTRAINTS

The stormwater management criteria for the proposed site are based on IBI's 2014 Petrie's Landing II Phase 2 Site Servicing Report and City of Ottawa Sewer Design Guidelines. The following summarizes the criteria used in the preparation of this stormwater management plan:

- Stormwater runoff from the proposed Blocks 6, 7, and 8 up to and including the 100-year event to be stored on site and released into the minor system at a maximum rate of 290.6 L/s
- Maximum 100-year water depth of 0.3 m in parking and access areas
- Provide adequate emergency overflow conveyance (overland flow route) off-site
- Size storm sewers to convey 2-year storm event, assuming only roof controls are imposed (i.e. provide capacity for system without inlet control devices installed)
- Size storm sewers using an inlet time of concentration (Tc) of 10 minutes
- Quality control of runoff from the proposed development to be provided in the downstream Brisebois Creek SWM Facility prior to discharge into the Ottawa River
- Post-development runoff coefficient (C) value based on proposed impervious areas as per site plan drawing (see **Appendix B**)

5.3 STORMWATER MANAGEMENT DESIGN

The proposed 2.14 ha residential development consists of three (3) four-storey buildings with underground parking, landscaped areas and associated servicing infrastructure. The overall imperviousness of the site is 54% (C = 0.58).

Stormwater runoff from the proposed development will be directed to the existing storm sewers on Prestige Circle which ultimately discharge into the Brisebois Creek SWM Facility. Sump pumps and backwater valves will be provided for foundation drainage of the proposed buildings. The

Stormwater Management September 19, 2018

proposed site plan and existing storm sewer infrastructure on Prestige Circle are shown on **Drawing SSP-1**.

5.3.1 Design Methodology

The proposed stormwater management plan is designed to detain runoff on the rooftops, underground and on surface areas to ensure that peak flows after construction will not exceed the target release rates for the site.

Due to the proposed site plan layout and grading restrictions, a landscaped portion of the site backing into the existing ravine east of the site could not be graded to enter the site's storm system and as such it will sheet drain uncontrolled. Runoff from this uncontrolled area is included in the overall site discharge calculations.

5.3.2 Water Quantity Control

The Modified Rational Method was used to assess the quantity and volume of runoff generated during post development conditions. The site was subdivided into subcatchments (subareas) tributary to storm sewer inlets, as defined by the location of catchbasins / inlet grates and used in the storm sewer design (see **Appendix D**). A summary of subareas and runoff coefficients is provided in **Appendix D**, and **Drawing SD-1** indicates the stormwater management subcatchments.

5.3.3 Allowable Release Rate

IBI's 2014 Petrie's Landing II Phase 2 Site Servicing Report outlines the quantity control criteria for the overall site. The report outlines that the minor system target criteria for Phase 2 is 361.87 L/s and 99.5 L/s for Phase 3.

The existing portion of Phase 2 discharges 170.77 L/s in the 100-year storm based on the ICD schedule, 100-year minor system capture from a parking ramp area, and runoff from 0.35 ha of uncontrolled area. As a result, the minor system peak flow target from Block 6 and 7 which are within Phase 2 is 191.1 L/s (140 L/s/ha). Similarly, the minor system peak flow target for the proposed Block 8 which corresponds to Phase 3 is 99.5 L/s. Minor system peak flows from the overall proposed development will be restricted to 290.6 L/s.

5.3.4 Storage Requirements

The site requires quantity control measures to meet the stormwater release criteria. It is proposed that restricted release rooftop drains be used to reduce the peak outflow from the site. Additionally, pipe storage and surface storage on parking areas will be provided. **Drawing SD-1** indicates the design release rate from the rooftops. Stormwater management calculations are provided in **Appendix D**.

Stormwater Management September 19, 2018

5.3.4.1 Rooftop Storage

It is proposed to retain stormwater on the rooftops by installing restricted flow roof drains. The following calculations assume the roof will be equipped with Watts drains fully open, see **Appendix D** for details.

Watts roof drain data has been used to calculate a practical roof release rate and detention storage volume for the rooftops. It should be noted that the "Watts" roof drain has been used as an example only and that other products may be specified for use, provided that the roof release rate is restricted to match the maximum rate of release indicated in **Table 4** and **Table 5** and that sufficient roof storage is provided to meet (or exceed) the resulting volume of detained stormwater.

Table 4 and **Table 5** provide details regarding the retention of stormwater on the proposed rooftopduring the 2 and 100-year storm events. Refer to **Appendix D** for details.

Area ID	Area (ha)	Head (m)	Q _{release} (L/s)	V _{stored} (m ³)
BLDG Block 6	0.153	0.10	6.23	16.5
BLDG Block 7	0.197	0.10	8.63	20.4
BLDG Block 8	0.236	0.09	10.67	24.1

Table 4: Peak Controlled (Rooftop) 2-Year Release Rate

Table 5: Peak Controlled (Rooftop) 100-Year Release Rate

Area ID	Area (ha)	Head (m)	Q _{release} (L/s)	V _{stored} (m ³)
BLDG Block 6	0.153	0.15	9.28	54.6
BLDG Block 7	0.197	0.15	12.89	67.8
BLDG Block 8	0.236	0.14	16.00	79.9

5.3.4.2 Surface Storage

In addition to rooftop storage, it is proposed to detain stormwater on the surface parking lot areas and in two pipe sections using inlet control devices (ICDs) in the proposed drainage structures. The modified rational method was used to determine the peak volume requirement for the parking areas. **Table 6** and **Table 7** summarize the proposed ICD characteristics.

Area ID	Structure ID	Orifice Type	Head (m)	Release Rate (L/s)
F100B	STM100A	120mm Diameter Orifice	1.70	35.39
F102B	CB102A	83mm Diameter Orifice	2.34	7.09

Stormwater Management September 19, 2018

Area ID	Structure ID	Orifice Type	Orifice Type Head (m)	
F201A	CB200B	102mm Diameter Orifice	1.75	9.20
F201B	CBMH200C	LMF 105	1.71	12.80
F202B	CB202A	83mm Diameter Orifice	1.36	1.84
F200B	CB200A	LMF70	1.92	5.98
F300A	CB300A	LMF70	1.90	5.94

1. 2-year runoff from F100B, F102B, F201A and F202B is less than the ICD release rate at the shown head (i.e. the release rate shown is the uncontrolled 100-year runoff).

Area ID	Structure ID	Orifice Type	Head (m)	Release Rate (L/s)
F100B	STM100A	120mm Diameter Orifice	1.92	42.34
F102B	CB102A	83mm Diameter Orifice	2.42	20.60
F201A	CB200B	102mm Diameter Orifice	1.75	26.72
F201B	CBMH200C	LMF 105	1.92	13.57
F202B	CB202A	83mm Diameter Orifice	1.36	5.34
F200B	CB200A	LMF70	2.12	6.28
F300A	CB300A	LMF70	2.10	6.25

Table 7: 100-Year ICD Characteristics

1. 100-year runoff from F102B, F201A and F202B is less than the ICD release rate at the shown head (i.e. the release rate shown is the uncontrolled 100-year runoff from the catchment).

5.3.4.3 Pipe Storage

14.0 m³ of pipe storage will be provided in area F100B through 20.4m of 900 mm diameter pipe connected to STM100A as shown on **Drawing SD-1**. Similarly, 13.4 m³ of pipe storage will be provided in area F201B through 25.0m of 825 mm diameter pipe connected to CBMH200C as shown on **Drawing SD-1**.

5.3.5 Uncontrolled Area

A small portion of the site fronting Prestige Circle and backing onto the ravine (see areas UNC-1, UNC-2, and UNC-3 on **Drawing SD-1**) could not be graded to enter the site's storm system and as such it will sheet drain uncontrolled. However, as can be seen on the storm drainage plan prepared by IBI for the entire site in 2014 (see report excerpts in **Appendix E**), the area behind the proposed buildings was not included in the SWM calculations and was assumed to drain towards the ravine. **Table 8** and **Table 9** summarize the 2 and 100-year uncontrolled release rates from the proposed development.

Stormwater Management September 19, 2018

Area ID	Area (ha)	Runoff 'C'	Tc (min)	Q _{release} (L/s)
UNC-1	0.203	0.20	10	8.7
UNC-2	0.028	0.20	10	1.2
UNC-3	0.368	0.20	10	15.7

Table 8: Peak Uncontrolled (Non-tributary) 2-Year Release Rate

Area ID	Area (ha)	Runoff 'C'	Tc (min)	Q _{release} (L/s)
UNC-1	0.203	0.25	10	25.2
UNC-2	0.028	0.25	10	3.5
UNC-3	0.368	0.25	10	45.7

5.3.6 Results

The proposed buildings will have underground parking and as such, it is proposed that the proposed parking ramps be equipped with trench drains to capture the 100-year runoff. In addition, it is recommended that the proposed buildings be equipped with sump pumps and backwater valves. **Table 10** and **Table 11** demonstrate that the proposed stormwater management plan provides adequate attenuation storage to meet the target peak outflows for the site.

Table 10: Estimated Discharge from Site (2-Year)

Block	Area Type	Area ID	V _{stored} (m ³)	Q _{release} (L/s)	Target (L/s)	
BLOCK 6	Controlled – Surface (Includes Roof area)	F100B, F102B, R100A	16.5	48.7		
BLO	Parking Ramp Area	F102A	-	6.3		
	Toto	al Block 6	16.5	55.0		
BLOCK 7	Controlled – Surface (Includes Roof area)	F201A, F201B, F200B, F202B, R200A	25.3	38.4	290.6	
BLC	Parking Ramp Area	F202A	-	9.4		
	Uncontrolled Areas	UNC-1, UNC-2	-	9.9		
	Toto	al Block 7	25.3	57.7		

Stantec

Stormwater Management September 19, 2018

Block	Area Type	e Area ID V _{stored} (m ³)		Q _{release} (L/s)	Target (L/s)
8	Controlled – Surface (Includes Roof area)	F300A, R300A	36.2	16.6	
OCK	Parking Ramp Area	F300B	-	5.8	
BLOG	Uncontrolled Areas	UNC-3	-	15.7	
	Tot	36.2	38.1		

Table 11: Estimated Discharge from Site (100-Year)

Block	Area Type	Area ID	V _{stored} (m ³)	Q _{release} (L/s)	Target (L/s)	
BLOCK 6	Controlled – Surface (Includes Roof area)	· FIU/B 90.9		72.2		
BLO	Parking Ramp Area	F102A	-	16.4		
	Tot	al Block 6	90.9	88.6		
BLOCK 7	Controlled – Surface (Includes Roof area)	F201A, F201B, F200B, F202B, R200A	107.2	64.8	290.6	
BLC	Parking Ramp Area	F202A	-	25.8	270.0	
	Uncontrolled Areas	UNC-2, UNC-3	-	28.7		
	Tot	al Block 7	107.2	119.3		
ø	Controlled – Surface (Includes Roof area)	F300A, R300A	128.8	22.3		
BLOCK 8	Parking Ramp Area	F300B	-	14.9		
BLC	Uncontrolled Areas	UNC-3	-	45.7	7	
	Tot	al Block 8	128.8	82.9		

As can be seen in the above tables, the proposed ICDs and storage provided restrict post development peak flows from site areas to 150.8 L/s and 290.8 L/s in the 2-year and 100-year storm events respectively. It is important to note that the ICDs have been sized to keep the minimum release rate at 6 L/s as per previous City comments.

Grading and Drainage September 19, 2018

6.0 **GRADING AND DRAINAGE**

The proposed development site measures approximately 2.14 ha in area. The site has significant grade change from the southwestern property limit adjacent to Brisebois Creek to the northeastern limit adjacent to Jeanne D'Arc Boulevard. A detailed grading plan (see **Drawing GP-1**) has been provided to satisfy the stormwater management requirements, to meet minimum cover requirements for storm and sanitary sewers, and to provide sufficient cover over top of the underground parking garage. Site grading has been established to provide emergency overland flow routes for stormwater management in accordance with City of Ottawa requirements.

The subject site maintains emergency overland flow routes to the existing Prestige Circle ROW and to the existing ravine the east of the proposed development as depicted on **Drawings GP-1** and **SD-1**.

Utilities September 19, 2018

7.0 UTILITIES

The subject site has existing plants within Prestige Circle to provide Hydro, Bell, Gas and Cable servicing for the proposed development as existing residential development to the west was constructed as part of Phase 1. It is anticipated that existing infrastructure will be sufficient to provide the means of distribution for the proposed site. Detailed design of the required utility services will be further investigated as part of the composite utility planning process following design circulation.

Approvals September 19, 2018

8.0 APPROVALS

As each proposed block will fall under separate plan of condominium with one owner and will have a separate drainage and storm sewer system discharging to a pre-existing sewer system, Ontario Ministry of the Environment, Conservation and Parks (MOECP) Environmental Compliance Approval (ECAs, formerly Certificates of Approval (CofA) under the Ontario Water Resources Act are not expected to be a requirement for the development to proceed.

A portion of the proposed Block 8 is within 120 m of the Petrie Island Provincially Significant Wetland, and as such, it is within the RVCA's regulatory jurisdiction. As a result, written approval from the RVCA is required under Ontario Regulation 174/06 "Development, Interference with Wetlands and Alterations to Shorelines and Watercourses Regulation" under Section 28 of the Conservation Authorities Act.

Requirement for an MOECP Permit to Take Water (PTTW) for pumping during construction of the underground parking levels will be confirmed by the geotechnical consultant.

Erosion Control During Construction September 19, 2018

9.0 **EROSION CONTROL DURING CONSTRUCTION**

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents.

- 1. Implement best management practices to provide appropriate protection of the existing and proposed drainage system and the receiving water course(s).
- 2. Limit extent of exposed soils at any given time.
- 3. Re-vegetate exposed areas as soon as possible.
- 4. Minimize the area to be cleared and grubbed.
- 5. Protect exposed slopes with plastic or synthetic mulches.
- 6. Provide sediment traps and basins during dewatering.
- 7. Install sediment traps (such as SiltSack® by Terrafix) between catch basins and frames.
- 8. Plan construction at proper time to avoid flooding.
- 9. Installation of a mud matt to prevent mud and debris from being transported off site.
- 10. Installation of a silt fence to prevent sediment runoff.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- 1. Verification that water is not flowing under silt barriers.
- 2. Clean and change silt traps at catch basins.

Refer to **Drawing EC-DS** for the proposed location of silt fences, and other erosion control structures.

Geotechnical Investigation September 19, 2018

10.0 GEOTECHNICAL INVESTIGATION

A geotechnical investigation was completed by Paterson Group Ltd. in May 24, 2017. The report summarizes the existing soil conditions within the subject area and construction recommendations. For details which are not summarized below, please see the original Paterson report (Excerpts included in **Appendix E**).

Subsurface soil conditions within the subject area were determined from 6 boreholes distributed across the proposed site. In general soil stratigraphy consisted of topsoil or fill underlain by a silty clay deposit layer.

Groundwater levels were measured on July 16, 2007 and on May 1, 2017 and vary in elevation from 1.6 to 5.5 m below the original ground surface.

A permissible grade raise restriction is recommended within the Paterson Group report due to the encounter of deep silty clay deposits of up to a maximum depth of 30.4 m. A 2.0m grade raise restrictions was accounted for in the grading design of the property.

The required pavement structure for the local roadways is outlined in Error! Reference source not found. and Error! Reference source not found. below:

Thickness (mm)	Material Description
50	Wear Course – HL-3 or Superpave 12.5 Asphaltic Concrete
150	Base – OPSS Granular A Crushed Stone
300	Subbase - OPSS Granular B Type II
-	Subgrade – Either fill, in situ soil, or OPSS Granular B Type I or II material placed over in situ soil or fill.

Table 12: Pavement Structure – Car Only Parking Areas

Table 13: Pavement Structure – Access Lanes and Heavy Truck Parking Areas

Thickness (mm)	Material Description
40	Wear Course – Superpave 12.5 Asphaltic Concrete
50	Binder Course –Superpave 19.0 Asphaltic Concrete
150	Base – OPSS Granular A Crushed Stone
400	Subbase - OPSS Granular B Type II
-	Subgrade – Either fill, in situ soil, or OPSS Granular B Type I or II material placed over in situ soil or fill.

Conclusions September 19, 2018

11.0 CONCLUSIONS

11.1 WATER SERVICING

The 200 mm diameter watermain on Prestige Circle provides adequate fire flow capacity as per the Fire Underwriters Survey. The service connections will also be capable of providing anticipated demand but exceeds the maximum objective pressure of 552 kPa (80 psi). Therefore, pressure reducing measures, such as a pressure reducing valve, will be required to service the proposed buildings per the Ontario Plumbing Code. The minimum anticipated pressure of 496 kPa (72 psi) is sufficient to provide the highest floors with an acceptable equivalent pressure provided the internal plumbing is sized to minimize head loss, otherwise a booster pump could be required.

11.2 SANITARY SERVICING

The proposed sanitary sewer lateral is sufficiently sized to provide gravity drainage for the site. The proposed blocks will be serviced by a 200 mm diameter service lateral directing wastewater flows to the existing 300 mm dia. Prestige Circle sanitary sewer. A backflow preventer will be required for the proposed building in accordance with the Ottawa sewer design guidelines and will be coordinated with building mechanical engineers. The proposed sanitary drainage pattern is in accordance with the wastewater section of IBI Group's Design Brief for Petrie's Landing II Phase 2 and with the City of Ottawa Sewer Design guidelines.

11.3 STORMWATER SERVICING

The proposed stormwater management plan is in compliance with the goals specified through the stormwater management section of IBI Group's Design Brief for Petrie's Landing and with the City of Ottawa Design guidelines. Rooftop, pipe, and surface storage in combination with ICDs are proposed to limit inflow from the site area into the minor system to the required target release rates.

The proposed buildings will have underground parking and as such, it is recommended that the proposed parking ramps be equipped with trench drains to capture the 100-year runoff. In addition, it is recommended that the proposed buildings be equipped with sump pumps and backwater valves.

11.4 GRADING

Grading for the site has been designed to provide an emergency overland flow route as per City requirements and reflects the overall recommendations provided in the Geotechnical Investigation. Erosion and sediment control measures will be implemented during construction to reduce the impact on existing infrastructure.

Conclusions September 19, 2018

11.5 UTILITIES

All utilities (Hydro Ottawa, Bell Canada, Rogers Ottawa, and Enbridge Gas) have existing plants in the subject area. Exact size, location and routing of utilities will be finalized after design circulation.

11.6 APPROVAL / PERMITS

Ontario Ministry of the Environment, Conservation and Parks (MOECP) Environmental Compliance Approvals (ECA) are not expected to be required for the subject site as each proposed block will fall under separate plan of condominium with one owner and will have a separate drainage and storm sewer system discharging to a pre-existing sewer system. Written approval from the Rideau Valley Conservation Authority (RVCA) is required under Ontario Regulation 174/06 "Development, Interference with Wetlands and Alterations to Shorelines and Watercourses Regulation" under Section 28 of the Conservation Authorities Act for the portion of the site within 120 m of a significant wetland. A Permit to Take Water may be required for pumping requirements for construction of underground parking level. No other approval requirements from other regulatory agencies are anticipated.

APPENDICES

Appendix A Potable Water Servicing Analysis September 19, 2018

Appendix A POTABLE WATER SERVICING ANALYSIS

Block 6-8 Petries Landing - Domestic Water Demand Estimates

Building ID	Units	Population	Daily Rate of	Avg Day I	Demand ²	Max Day	Demand ³	Peak Hour	Demand ³
			Demand ¹	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)
Block 6	79	122	350	29.6	0.49	74.0	1.23	162.8	2.71
Block 7	92	140	350	34.0	0.57	85.1	1.42	187.2	3.12
Block 8	93	141	350	34.4	0.57	85.9	1.43	189.0	3.15
Total Site :				98.0	1.63	245.0	4.08	539.0	8.98

Water demand criteria used to estimate peak demand rates for residential areas are as follows:

1 maximum day demand rate = 2.5 x average day demand rate

2 maximum hour demand rate = 2.2 x maximum day demand rate

Notes:

FUS Fire Flow Calculation

Stantec Project #: 1604-01331 Project Name: Petries Landing Date: June 12, 2017 Data input by: Thakshika Rathnasooriya Calculations based on: "Water Supply for Public Fire Protection" by Fire Underwriters' Survey, 1999

Fire Flow Calculation #: 1 Building Type/Description/Name: Apartment Building -Block 6

		Table A: Fire	Underwriters Survey Determinat	ion of Required	Fire Flow - Long Metho	bd		
Step	Task	Term	Options	Multiplier Associated with Option	Choose:	Value Used	Unit	Total Fire Flow (L/min)
		Framing Material						
	Choose Frame Used for Construction of Unit	Coefficient related to type of construction (C)	Wood Frame	1.5	Wood Frame	1.5	-	
1			Ordinary construction	1				
			Non-combustible construction	0.8				
			Fire resistive construction (> 3 hrs)	0.6				
2	Choose Type of Housing (if TH, Enter Number of Units Per TH Block)	Floor Space Area						
		Type of Housing	Single Family	0	Other (Comm, Ind, Apt etc.)	1	Units	
			Townhouse - indicate # of units	0				
			Other (Comm, Ind, Apt etc.)	1				
2.2	# of Storeys	1	Number of Floors/Storeys in the Unit (do no	t include basement):	4	4	Storeys	
3	Enter Ground Floor Area of One Unit	Average Floor Area (A) based on fire resistive building design when vertical openings are inadequately protected:			6.132	6,132	Area in Square Meters	
						(m ²)		
4	Obtain Required Fire Flow without Reductions	Required Fire Flow (without reductions or increases per FUS) (F = 220 * C * VA) Round to nearest 1000L/min						26,000
5	Apply Factors	Reductions/Increases Due to Factors Affecting Burning						
	Combustibility of haz	Occupancy content hazard reduction or	Non-combustible	-0.25		-0.15	N/A	22,100
			Limited combustible	-0.15	Limited combustible			
5.1			Combustible	0				
			Free burning	0.15				
			Rapid burning	0.25				
5.2	Choose Reduction Due to Presence of Sprinklers	Sprinkler reduction	Adequate Sprinkler conforms to NFPA13	-0.3	conforms to NFPA13	-0.3	N/A	-6,630
			None	0]
		Water Supply Credit	Water supply is standard for sprinkler and fire dept. hose line	-0.1	for sprinkler and fire dept.	-0.1	N/A	-2,210
			Water supply is not standard or N/A	0				
		Sprinkler Supervision Credit	Sprinkler system is fully supervised	-0.1	Sprinkler not fully	0	N/A	0
			Sprinkler not fully supervised or N/A	0	supervised or N/A			
5.3	Distance Between	Exposure Distance Between Units	North Side	45.1m or greater		0.1	m	2,210
			East Side	30.1 to 45.0m	0.05			
			South Side	45.1m or greater				
		West Side 30.1 to 45.0m 0.05						45.000
6	Obtain Required Fire Flow, Duration	Total Required Fire Flow, rounded to nearest 1000 L/min, with max/min limits applied:						15,000
		Total Required Fire Flow (above) in L/s:					250	
	& Volume	Required Duration of Fire Flow (hrs)					3.25	
		Required Volume of Fire Flow (m ³)						2,925

Date: 6/12/2017 Stantec Consulting Ltd.

BLDG 1

W:\active\160401331_Petries Landing Block 6-8\design\analysis\WTR\FUS_2017-05-12-B6.xlsm

Notes:

FUS Fire Flow Calculation

Stantec Project #: 1604-01331 Project Name: Petries Landing Date: June 12, 2017 Data input by: Thakshika Rathnasooriya Calculations based on: "Water Supply for Public Fire Protection" by Fire Underwriters' Survey, 1999

Fire Flow Calculation #: 1 Building Type/Description/Name: Apartment Building -Block 7 - 1

		Table A: Fire	Underwriters Survey Determinat	ion of Required	Fire Flow - Long Meth	od		
Step	Task	Term	Options	Multiplier Associated with Option	Choose:	Value Used	Unit	Total Fire Flow (L/min)
			l	Framing Materia) 			
	Choose Frame Used		Wood Frame	1.5				
1	for Construction of	Coefficient related to type of construction	Ordinary construction	1	Wood Frame	1.5		
	Unit	(C)	Non-combustible construction	0.8	wood manie	1.5	_	
			Fire resistive construction (> 3 hrs)	0.6				
	Choose Type of			Floor Space Area	a			
2	Housing (if TH,		Single Family	0	Other (Comm, Ind, Apt			
	Enter Number of	Type of Housing	Townhouse - indicate # of units	0	etc.)	1	Units	
	Units Per TH Block)		Other (Comm, Ind, Apt etc.)	1				
2.2	# of Storeys	1	Number of Floors/Storeys in the Unit (do no	t include basement):	4	4	Storeys	
3	Enter Ground Floor	Average Floor Area (A) based on fire resistive building design wh			4,712	Area in Square	
	Area of One Unit		are inac	dequately protected:	Square Metres (m2)		Meters (m ²)	
4	Obtain Required Fire Flow without Reductions	R	Required Fire Flow (without reductions or increases per FUS) (F = 220 * C * √A) Round to nearest 1000L/min					23,000
5	Apply Factors Affecting Burning		Reductions/Increases Due to Factors Affecting Burning					
	Choose		Non-combustible	-0.25				
			Limited combustible	-0.15				
5.1	Combustibility of		Combustible	0	Limited combustible	-0.15	N/A	19,550
	Building Contents	surcharge	Free burning	0.15				
			Rapid burning	0.25				
		Sprinkler reduction	Adequate Sprinkler conforms to NFPA13	-0.3	Adequate Sprinkler conforms to NFPA13	-0.3	N/A	-5,865
			None	0				
5.2	Choose Reduction Due to Presence of	Water Supply Credit	Water supply is standard for sprinkler and fire dept. hose line	-0.1	Water supply is standard for sprinkler and fire dept.	-0.1	N/A	-1,955
5.2	Sprinklers		Water supply is not standard or N/A	0	hose line			
		Sprinkler Supervision	Sprinkler system is fully supervised	-0.1	Sprinkler not fully	0	N/A	0
		Credit	Sprinkler not fully supervised or N/A	0	supervised or N/A			
	Choose Separation		North Side	Fire Wall		-		
5.3	Distance Between	Exposure Distance	East Side	45.1m or greater	0	0.15	m	2,933
	Units	Between Units	South Side West Side	30.1 to 45.0m 45.1m or greater	0.05	-		
			Total Required Fire Flow, rounded		•	n limits a	unnlied:	15,000
	Obtain Required		rotar neganea rite riow, rounded		otal Required Fire Flov			250
6	Fire Flow, Duration & Volume				Required Duration o			3.25
		Required Volume of Fire Flow (m ³)						
					- ,		1	2,925

Date: 6/12/2017 Stantec Consulting Ltd.

BLDG 1

W:\active\160401331_Petries Landing Block 6-8\design\analysis\WTR\FUS_2017-05-12-B7-Part1.xlsm

Notes:

FUS Fire Flow Calculation

Stantec Project #: 1604-01331 Project Name: Petries Landing Date: June 12, 2017 Data input by: Thakshika Rathnasooriya Calculations based on: "Water Supply for Public Fire Protection" by Fire Underwriters' Survey, 1999

Fire Flow Calculation #: 1 Building Type/Description/Name: Apartment Building -Block 7-2

		Table A: Fire	Underwriters Survey Determination	ion of Required	Fire Flow - Long Metho	od		
Step	Task	Term	Options	Multiplier Associated with Option	Choose:	Value Used	Unit	Total Fire Flow (L/min)
				Framing Materia				
	Choose Frame Used		Wood Frame	1.5				
1	for Construction of	Coefficient related to type of construction	Ordinary construction	1	Wood Frame	1.5		
	Unit	(C)	Non-combustible construction	0.8		1.5	-	
		(C)	Fire resistive construction (> 3 hrs)	0.6				
	Choose Type of			Floor Space Area	3			
2	Housing (if TH,		Single Family	0	Other (Comm, Ind, Apt			
	Enter Number of	Type of Housing	Townhouse - indicate # of units	0	etc.)	1	Units	
	Units Per TH Block)		Other (Comm, Ind, Apt etc.)	1				
2.2	# of Storeys	1	Number of Floors/Storeys in the Unit (do no	t include basement):	4	4	Storeys	
3	Enter Ground Floor	Average Floor Area (A) based on fire resistive building design wh				Area in Square Meters	
	Area of One Unit		are inac	dequately protected:	Square Metres (m2)		(m ²)	
4	Obtain Required Fire Flow without Reductions	R	Required Fire Flow (without reductions or increases per FUS) (F = 220 * C * VA) Round to nearest 1000L/min					19,000
5	Apply Factors Affecting Burning		Reductions/Increases Due to Factors Affecting Burning					
	Anecting burning		Non-combustible	-0.25				
	Choose	ombustibility of hazard reduction or	Limited combustible	-0.15				
5.1	Combustibility of		Combustible		0 Limited combustible -0.15	N/A	16,150	
	-		Free burning	0.15				
			Rapid burning	0.25				
		Sprinkler reduction	Adequate Sprinkler conforms to NFPA13	-0.3	Adequate Sprinkler conforms to NFPA13	-0.3	N/A	-4,845
			None	0				
	Choose Reduction	Water Supply Credit	Water supply is standard for sprinkler and fire dept. hose line	-0.1	Water supply is standard for sprinkler and fire dept.	-0.1	N/A	-1,615
5.2	Due to Presence of Sprinklers		Water supply is not standard or N/A	0	In a see Use a			-
		Sprinkler Supervision	Sprinkler system is fully supervised	-0.1	Sprinkler not fully	0	N/A	0
		Credit	Sprinkler not fully supervised or N/A	0	supervised or N/A			
	Choose Separation		North Side	30.1 to 45.0m	0.05			
5.3	Distance Between	Exposure Distance	East Side	45.1m or greater	0	0.15	m	2,423
	Units	Between Units	South Side	Fire Wall	0.1	-		-
			West Side	45.1m or greater				12.000
	Obtain Required		Total Required Fire Flow, rounded					12,000
6	Fire Flow, Duration			10	otal Required Fire Flow			200
	& Volume				Required Duration o	-	2	2.50
					Required Volume of	f Fire Flo	w (m ³)	1,800

Date: 6/12/2017 Stantec Consulting Ltd. BLDG 1

W:\active\160401331_Petries Landing Block 6-8\design\analysis\WTR\FUS_2017-05-12-B7-Part2 .xlsm

Notes:

FUS Fire Flow Calculation

Stantec Project #: 1604-01331 Project Name: Petries Landing Date: June 12, 2017 Data input by: Thakshika Rathnasooriya Calculations based on: "Water Supply for Public Fire Protection" by Fire Underwriters' Survey, 1999

Fire Flow Calculation #: 1 Building Type/Description/Name: Apartment Building -Block 8

		Table A: Fire	Underwriters Survey Determinati	ion of Required	Fire Flow - Long Metho	bd			
Step	Task	Term	Options	Multiplier Associated with Option	Choose:	Value Used	Unit	Total Fire Flow (L/min)	
			·	Framing Materia	1				
	Choose Frame Used		Wood Frame	1.5					
1	for Construction of	tupe of construction	Ordinary construction	1	Wood Frame	1.5			
	Unit	(C)	Non-combustible construction	0.8	woourraine	1.5	-		
		(C)	Fire resistive construction (> 3 hrs)	0.6					
	Choose Type of			Floor Space Area	3				
2	Housing (if TH,		Single Family	0	Other (Comm, Ind, Apt				
	Enter Number of	Type of Housing	Townhouse - indicate # of units	0	etc.)	1	Units		
	Units Per TH Block)		Other (Comm, Ind, Apt etc.)	1	etc.)				
2.2	# of Storeys	r	Number of Floors/Storeys in the Unit (do no	t include basement):	4	4	Storeys		
3	Enter Ground Floor	Average Floor Area (A) based on fire resistive building design wh	sign when vertical openings 2,484		9,936	Area in Square		
5	Area of One Unit		are inac	dequately protected:	Square Metres (m2)	5,550	Meters (m ²)		
4	Obtain Required Fire Flow without Reductions	R	Required Fire Flow (without reductions or increases per FUS) (F = 220 * C * √A) Round to nearest 1000L/min					33,000	
5	Apply Factors Affecting Burning		Reductions/Increases Due to Factors Affecting Burning						
	Choose Combustibility of Building Contents		Non-combustible	-0.25					
		Combustibility of hazard rec	Occupancy content	Limited combustible	-0.15				
5.1			hazard reduction or	Combustible	0	4	-0.15	N/A	28,050
		surcharge	Free burning	0.15					
			Rapid burning	0.25					
		Sprinkler reduction	Adequate Sprinkler conforms to NFPA13	-0.3	conforms to NFPA13	-0.3	N/A	-8,415	
	Choose Reduction		None Water supply is standard for sprinkler and fire dept. hose line	-0.1					
5.2	Due to Presence of Sprinklers	Water Supply Credit	Water supply is not standard or N/A	0	for sprinkler and fire dept. hose line	-0.1	N/A	-2,805	
		Sprinkler Supervision	Sprinkler system is fully supervised	-0.1	Sprinkler not fully				
		Credit	Sprinkler not fully supervised or N/A	0	supervised or N/A	0	N/A	0	
	Choose Separation		North Side	45.1m or greater					
5.3	Distance Between	Exposure Distance	East Side	45.1m or greater		0.1	m	2,805	
2.3	Units	Between Units	South Side	30.1 to 45.0m		0.1		2,000	
			West Side	30.1 to 45.0m	0.05				
			Total Required Fire Flow, rounded					20,000	
6	Obtain Required Fire Flow, Duration			Тс	otal Required Fire Flow	v (above,) in L/s:	333	
-	& Volume				Required Duration o	f Fire Flo	w (hrs)	4.50	
					Required Volume of	f Fire Flo	w (m ³)	5,400	

Date: 6/12/2017 Stantec Consulting Ltd. BLDG 1

W:\active\160401331_Petries Landing Block 6-8\design\analysis\WTR\FUS_2017-05-12-B8.xlsm

Hydraulic Model Results - Average Day Analysis

Junction Results

ID	Demand	Elevation	Head	Pres	sure
U	(L/s)	(m)	(m)	(psi)	(Kpa)
10	0.00	52.00	115	89.56	617.50
11	0.00	55.06	115	85.21	587.51
12	0.00	55.06	115	85.21	587.51
13	0.00	51.90	115	89.7	618.46
14	0.00	52.10	115	89.42	616.53
BLDG1	0.29	55.71	115	84.28	581.09
BLDG2	0.29	56.60	115	83.02	572.41
BLDG3	0.67	56.70	115	82.87	571.37
BLDG6	0.49	57.30	115	82.02	565.51
BLDG7	0.57	56.50	115	83.16	573.37
BLDG8	0.57	55.09	115	85.16	587.16

Pipe Results

ID	From	To Nodo	Length	Diameter	Doughnoos	Flow	Velocity
U	Node	To Node	(m)	(mm)	Roughness	(L/s)	(m/s)
1	1000	14	25.84	900	130	2.88	0.00
10	BLDG8	12	28.03	200	110	-1.63	0.05
11	12	11	7.05	200	110	-0.20	0.01
12	12	13	88.97	200	110	-1.42	0.05
13	13	10	7.80	400	120	-1.42	0.01
2	14	10	19.33	400	120	2.88	0.02
3	10	11	84.72	200	110	1.46	0.05
4	BLDG1	11	51.80	200	110	-1.25	0.04
5	BLDG2	BLDG1	32.66	200	110	-0.96	0.03
6	BLDG3	BLDG2	62.45	200	110	-0.67	0.02
7	BLDG3	BLDG6	72.85	200	110	0.00	0.00
8	BLDG6	BLDG7	34.69	200	110	-0.49	0.02
9	BLDG7	BLDG8	55.50	200	110	-1.06	0.03

Hydraulic Model Results -Peak Hour Analysis

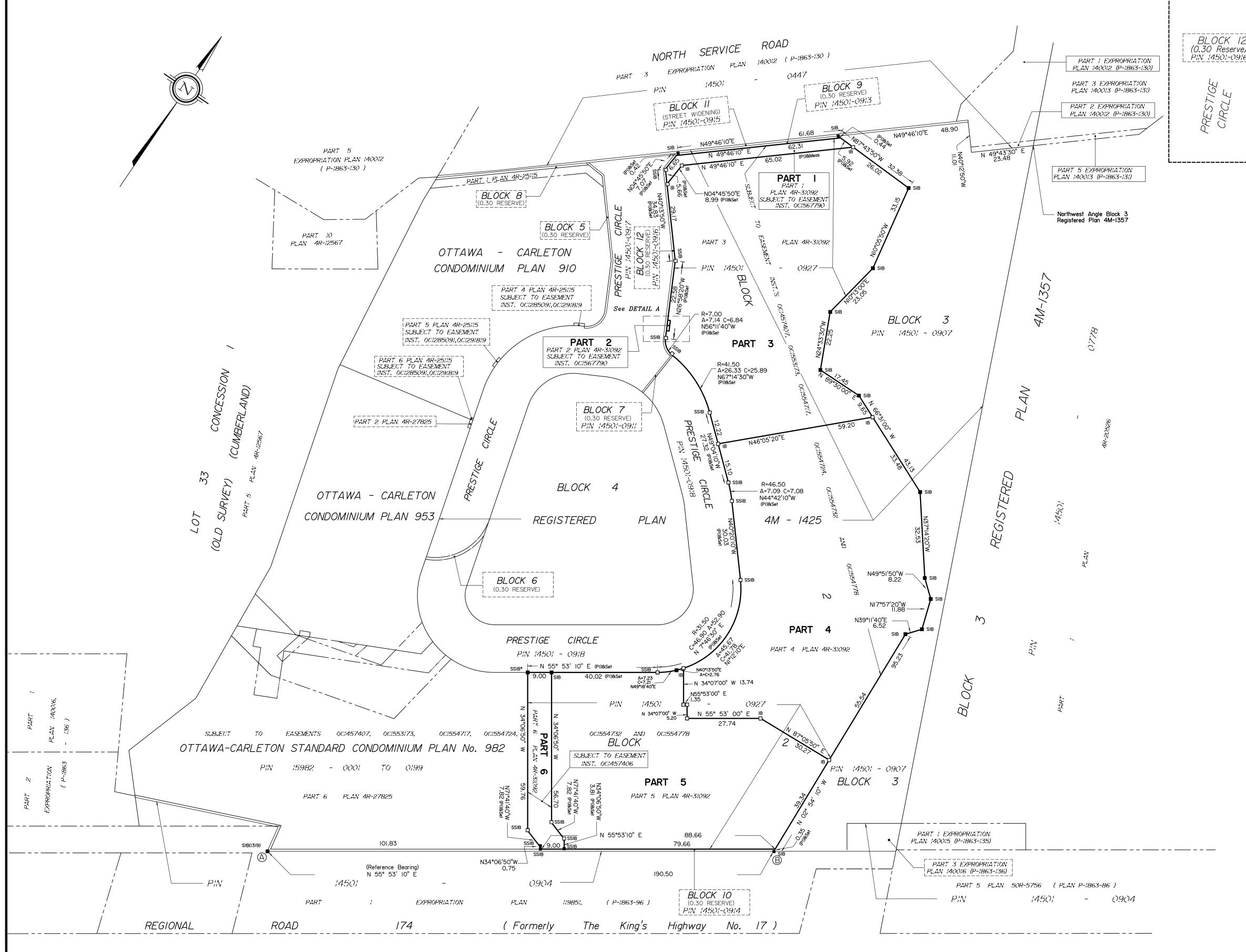
Junction Results

ID	Demand	Elevation	Head	Pres	sure
U	(L/s)	(m)	(m)	(psi)	(Kpa)
10	0.00	52.00	108.00	79.61	548.90
11	0.00	55.06	107.95	75.19	518.42
12	0.00	55.06	107.95	75.19	518.42
13	0.00	51.90	108.00	79.75	549.86
14	0.00	52.10	108.00	79.47	547.93
BLDG1	1.60	55.71	107.93	74.23	511.80
BLDG2	1.60	56.60	107.92	72.95	502.98
BLDG3	3.69	56.70	107.91	72.80	501.94
BLDG6	2.71	57.30	107.91	71.94	496.01
BLDG7	3.12	56.50	107.91	73.08	503.87
BLDG8	3.15	55.09	107.93	75.11	517.87

Pipe Results

ID	From	To Nodo	Length	Diameter	Doughnoos	Flow	Velocity
U	Node	To Node	(m)	(mm)	Roughness	(L/s)	(m/s)
1	1000	14	25.84	900	130	15.87	0.02
10	BLDG8	12	28.03	200	110	-8.95	0.29
11	12	11	7.05	200	110	-1.13	0.04
12	12	13	88.97	200	110	-7.83	0.25
13	13	10	7.80	400	120	-7.83	0.06
2	14	10	19.33	400	120	15.87	0.13
3	10	11	84.72	200	110	8.04	0.26
4	BLDG1	11	51.80	200	110	-6.92	0.22
5	BLDG2	BLDG1	32.66	200	110	-5.32	0.17
6	BLDG3	BLDG2	62.45	200	110	-3.72	0.12
7	BLDG3	BLDG6	72.85	200	110	0.03	0.00
8	BLDG6	BLDG7	34.69	200	110	-2.68	0.09
9	BLDG7	BLDG8	55.50	200	110	-5.80	0.18

Hydraulic Model Results -Fire Flow Analysis


ID	Static Demand	Static Pressure Static Fire-Flow Resid		Residual	Pressure	Available Flow at Hydrant		ble Flow ssure		
	(L/s)	(psi)	(Kpa)	(m)	(L/s)	(psi)	(Kpa)	(L/s)	(psi)	(Kpa)
BLDG1	0.73	77.15	531.93	109.98	335	31.59	217.81	380.02	20	137.90
BLDG2	0.73	75.89	523.25	109.98	289	34.86	240.35	343.11	20	137.90
BLDG3	1.68	75.74	522.21	109.98	182	55.49	382.59	319.67	20	137.90
BLDG6	1.23	74.89	516.35	109.98	250	40.23	277.38	323.11	20	137.90
BLDG7	1.42	76.03	524.21	109.98	250	44.52	306.96	344.5	20	137.90
BLDG8	1.43	78.04	538.07	109.98	333	41.23	284.27	428.91	20	137.90

SITE SERVICING AND STORMWATER MANAGEMENT BRIEF – PETRIE'S LANDING BLOCK 6, 7 AND 8 (D07-12-17-0093), OTTAWA, ON

Appendix B Proposed Site Plan September 19, 2018

Appendix B PROPOSED SITE PLAN

222	$= \frac{1}{2} $	
	PART 2 PART 2 <th< td=""><td></td></th<>	
	E + PIN 450 - 0927 SUBJECT TO EASEMENT INST.'S OCI457407, OCI553173, OCI554717, OCI554724, OCI554732 & OCI554778	
	-N63°01'40"E 1.00 PART 3 PLAN 4R-29009	

DEPOS LAND	URE THIS PLAN TO E BITED UNDER THE FITLES ACT.	RECEIVED AND DATE:	PLAN 4R- RECEIVED AND DEPOSITED DATE:		
	HARD R. GAUTHIER	R LAND REGIS	TRAR FOR THE		
		SCHEDULE			
PART	BLOCK	PLAN	PIN		
1 2 3 4 5 6	PART OF 2	4M-1425	ALL OF 14501-0927		

Parts 1 and 2: Subject to Easement Inst. OC1567790.

Part 6: Subject to Easement Inst. OC1457406. Parts 1 to 6 inclusive: Subject to Easement Inst.'s OC1457407, OC1553173, OC1554717, OC1554724, OC1554732 and OC1554778.

PLAN OF SURVEY OF PART OF BLOCK 2 REGISTERED PLAN 4M-1425 CITY OF OTTAWA

Surveyed by Annis, O'Sullivan, Vollebekk Ltd.

Metric

DISTANCES AND COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048.

Surveyor's Certificate

 I CERTIFY THAT :
 This survey and plan are correct and in accordance with the Surveys Act, the Surveyors Act and the Land Titles Act and the regulations

made under them.2. The survey was completed on the 7th day of September, 2018.

Date

Richard R. Gauthier Ontario Land Surveyor

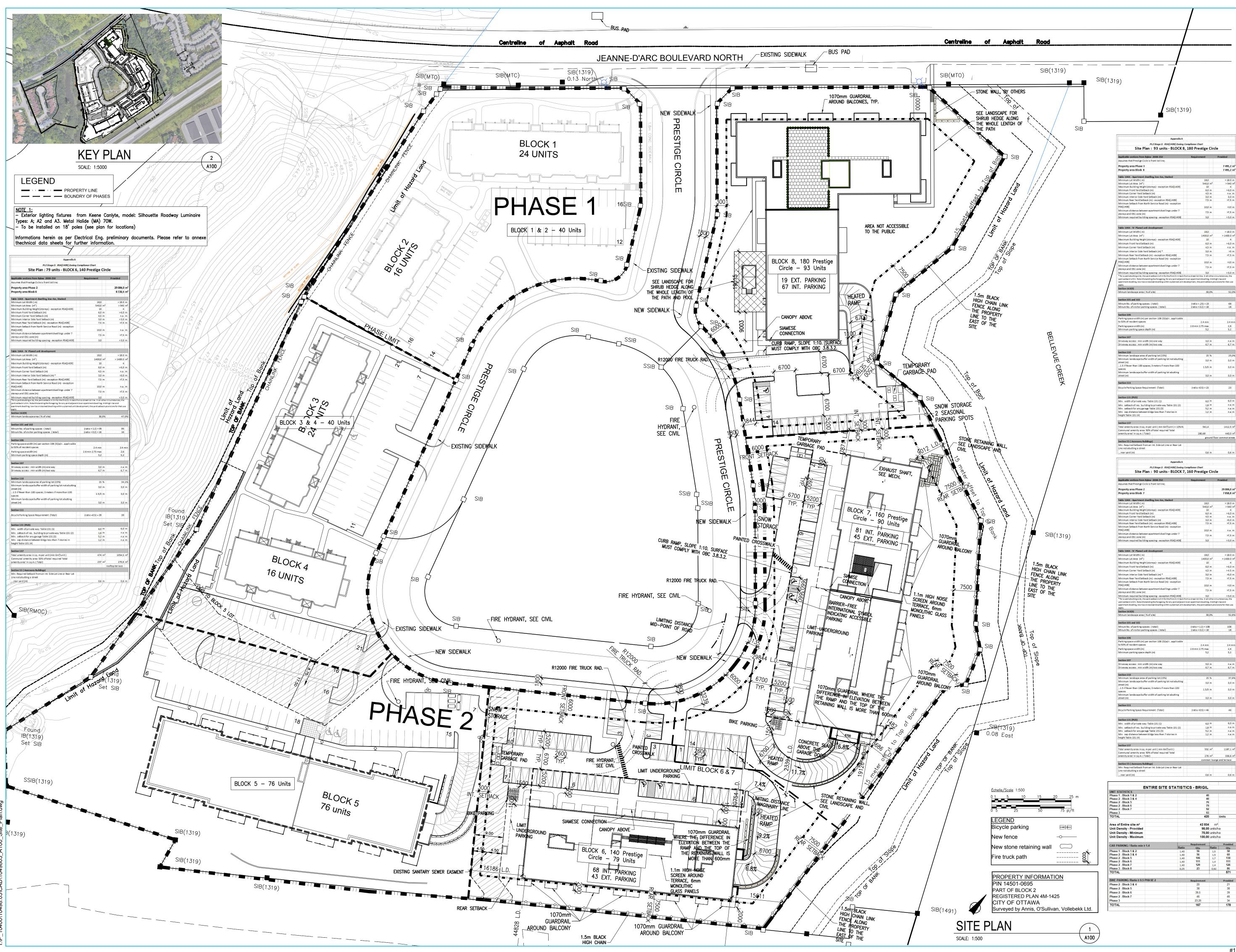
NOTES AND LEGEND

-0-	denotes	Survey Monument Planted
-8-	"	Survey Monument Found
SIB	"	Standard Iron Bar
SSIB	"	Short Standard Iron Bar
SSIB*	"	Short Standard Iron Bar 0.3 metres Long
IB	"	Iron Bar
CLF	"	Chain Link Fence
BF	"	Board Fence
(AOG)	"	Annis, O'Sullivan, Vollebekk Ltd.
(P1)	"	Plan 4R-29009

All found survey monuments are (AOG) unless otherwise noted.

All bearing and distances between found survey monuments are (P1)&Meas unless otherwise noted.

Distances shown on this plan are ground distances and can be converted to grid distances by multiplying by the combined scale factor of 0.999967.


Bearings are grid, derived from Can-Net 3.0 Real Time Network GPS observations on reference points A and B, shown hereon, having a bearing of N55°53'10"E and are referenced to Specified Control Points 01919680184 and 019198434761, MTM Zone 9 (76°30' West Longitude) NAD-83 (original).

Coordinates are derived from Can-Net 3.0 Real Time Network GPS observations referenced to Specified Control Points 01919680184 and 019198434761, MTM Zone 9 (76°30' West Longitude) NAD-83 (original).

Coordinate values are	to urban acc	uracy in accord	dance with	n O. Reg. 216/10
. 01919680184 . 019198434761 . Point A . Point B	Northing Northing	5040610.16 5036178.12 5039317.72 5039424.71	Easting Easting	372436.11 383314.27

Caution: Coordinates cannot, in themselves, be used to re-establish corners or boundaries shown on this plan.

NOTES GÉNÉRALES General Notes

- 1. Ces documents d'architecture sont la propriété exclusive de NEUF architect(e)s et ne pourront être utilisés, reproduits ou copiés sans autorisation écrite au préalable. / These architectural documents are the exclusive property of NEUF architect(e)s and cannot be used, copied or reproduced without written pre-authorisation.
- 2. Les dimensions apparaissant aux documents devront êtres vérifiées par 'entrepreneur avant le début des travaux. / All dimensions which appear on the documents must be verify by the contractor before starting the
- 3. Veuillez aviser l'architecte de toute dimension erreur et/ou divergences entre ces documents et ceux des autres professionnels. / The architect must be notified of all errors, omissions and discrepancies between these documents and those of other professionnals. 4. Les dimensions sur ces documents doivent être lues et non mesurées.

/ The dimensions on these documents must be read and not measured.

ARCHITECTURE DE PAYSAGE Landscape architect Levstek Consultants 5871 Hugh Crescent, Ottawa, ON K0A 2W0 T 613 826 0518 larocquelevstek.com

CIVIL Civil Stantec 400 - 1331 Clyde Avenue, Ottawa ON K2C 3G4 T 613 724 4337 stantec.com

ARCHITECTES Architect NEUF architect(e)s 630, boul. René-Lévesque O. 32e étage, Montréal QC H3B 1S6 T 514 847 1117 NEUFarchitectes.com

SCEAU Seal

7 491,2 m²

> 1400.0

29 004,0 m² 7 858,8 m²

> 18.0 m > 540 m² 4 > 6,0 m n.a. m > 3,0 m > 7,5 m

OUVRAGE Project PETRIES LANDING BLOCK 6, 7 & 8

EMPLACEMENT Location ORLEANS, ON

NO PROJET NO. 10498.03

NO	RÉVISION	DATE (aa.mm.jj
Α	CITY VALIDATION	2016-12-15
В	Site plan revision	2017-03-27
С	Site Plan Application	2017-06-13
D	For client review	2017-09-20
Е	Site plan control_1st review	2018-01-23
F	Site plan control_2nd review	2018-03-23
G	Issued for building permit	2018-06-01
Н	Site Plan Application_3rd review	2018-06-06
J	Rev. angled parking & 3m setback	2018-07-16
Κ	Radius for parking island mod.	2018-07-17
L	Site Plan Application_4th review	2018-09-07

DESSINÉ PAR Drawn by	VÉRIFIÉ PAR Checked by
A.B.	ANT. C.
DATE (aa.mm.jj)	ÉCHELLE Scale
18.09.07	INDIQUÉE
TITRE DU DESSIN Drawing Title	

Site Plan

SITE SERVICING AND STORMWATER MANAGEMENT BRIEF – PETRIE'S LANDING BLOCK 6, 7 AND 8 (D07-12-17-0093), OTTAWA, ON

Appendix C Sanitary Sewer Calculations September 19, 2018

Appendix C SANITARY SEWER CALCULATIONS

Alexandriana de la construcción de		SUBDIVISION:	ON: Petr 6-i		ng Block			ç	DES	ARY S GN SI	IEET	R			MAX PEAK F.	ACTOR (RES	.)=	4.0		AVG. DAILY	FLOW / PERS	SON		SIGN PARAM		MINIMUM VE	ELOCITY		0.60	m/s			
		DATE:		Septemb	per 4, 2018					-	-				MIN PEAK FA PEAKING FA		,	2.0 2.4		COMMERCI				L/s/ha L/s/ha		MAXIMUM V MANNINGS			3.00	m/s			
<u>Charata</u>	_	REVISION: DESIGNED B	Y:	N	4 NJS	FILE NUM	IBER:	1604-01331							PEAKING FA		· /	2.4		INSTITUTIO				L/s/na L/s/ha		BEDDING C			0.013 C				
Stante	C	CHECKED BY	1	,	AP							XML Conv	version		PERSONS / 2 PERSONS / 1			2.1 1.4		INFILTRATIO	NC		0.28	L/s/ha		MINIMUM C	OVER		2.50	m			
100						RESIDENTI		POPULATION				<u> </u>	DMM		PERSONS / a	verage apt.	PTIT	1.8	UNUSED	C+I+I		INFILTRATIO	N						PIPE				
AREA ID	FROM	то	AREA		UNITS	RESIDENTIA	POP.	CUMUL	ATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA /	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	TOTAL	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VE	L.
NUMBER	M.H.	M.H.		2 bed	1 bed	avg		AREA	POP.	FACT.	FLOW		AREA		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW	FLOW						(FULL)	PEAK FLOW	(FULL)	(ACT.)
			(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	(ha)	(ha)	(L/s)	(L/s)	(m)	(mm)			(%)	(L/s)	(%)	(m/s)	(m/s)
R1A , G1A	BLK 6 SAN1	San1 Prop.mh	0.153 0.000	0 0	0 0	79 0	142 0	0.15 0.15	142 142	4.00 4.00	2.30 2.30	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.404 0.000	0.40 0.40	0.00 0.00	0.557 0.000	0.56 0.56	0.16 0.16	2.46 2.46	4.8 27.0	200 200	PVC PVC	SDR-28 SDR-35	1.00 1.00	33.31 33.31	7.39 7.39	1.05 1.05	0.52 0.52
R2A , G2A	BLK 7 SAN2	SAN2 EX.MH21A	0.197 0.000	0 0	0 0	90 0	162 0	0.20 0.20	162 162	4.00 4.00	2.63 2.63	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.640 0.000	0.64 0.64	0.00 0.00	0.837 0.000	0.84 0.84	0.23 0.23	2.86 2.86	3.2 15.7	200 200	PVC PVC	SDR-28 SDR-35	1.00 1.00	33.31 33.31	8.58 8.58	1.05 1.05	0.54 0.54
R3A , G3A	BLK 8 SAN3	SAN3 EX.MH6A	0.236 0.000	0 0	0 0	93 0	167 0	0.24 0.24	167 167	4.00 4.00	2.71 2.71	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.511 0.000	0.51 0.51	0.00 0.00	0.747 0.000	0.75 0.75	0.21 0.21	2.92 2.92	8.5 22.9	200 200	PVC PVC	SDR-28 SDR-35	1.00 1.00	33.31 33.31	8.77 8.77	1.05 1.05	0.54 0.54

MINIMUM VELOCITY	0.60	m/s
MAXIMUM VELOCITY	3.00	m/s
MANNINGS n	0.013	
BEDDING CLASS	С	
MINIMUM COVER	2.50	m

SITE SERVICING AND STORMWATER MANAGEMENT BRIEF – PETRIE'S LANDING BLOCK 6, 7 AND 8 (D07-12-17-0093), OTTAWA, ON

Appendix D Stormwater Management Calculations September 19, 2018

Appendix D STORMWATER MANAGEMENT CALCULATIONS

STO	Brigil - Petrie's	Landing II - B	lock 6 7 a	and 8			STORM	I SEWE	R		DESIGN	PARAMET	ERS																	
	Bright - Fettle S	Landing II - D					DESIG	N SHEE	т		I = a / (t+	b) ^c		(As per C	ity of Otta	wa Guidel	ines, 2012	2)												
	DATE:		5-Sep	-2018			(City o	f Ottawa)				1:2 yr	1:100 yr																	
Stantec	REVISION:			5							a =	732.951	1735.688	MANNING	9'S n =	0.013		BEDDING	CLASS =	В										
	DESIGNED BY:		M	JS	FILE NUM	BER: 160	4-01231				b =	6.199	6.014	MINIMUM	COVER:	2.00	m													
	CHECKED BY:		A	MP							с =	0.810	0.820	TIME OF	ENTRY	10	min													
LC	OCATION									DRAINA	GE AREA			•										PIPE SELE	CTION					
AREA ID	FROM	то	AREA	AREA	AREA	С	ACCUM.	AxC	ACCUM.	ACCUM.	AxC	ACCUM.	T of C	I _{2-YEAR}	I _{10-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH	PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.	VEL.	TIME OF
NUMBER	M.H.	M.H.	(2-YEAR)	(100-YEAR)	(ROOF)		AREA (2YR)	(2-YEAR)	AxC (2YR)	AREA (100YR	(100-YEAR)	AxC (100YR)				ROOF	Q _{CONTROL}	(CIA/360)	0	OR DIAMETEI	HEIGHT	SHAPE				(FULL)		(FULL)	(ACT)	FLOW
			(ha)	(ha)	(ha)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
BLOCK 6																														
F100B	STM100A	STM 100	0.255	0.000	0.000	0.65	0.255	0.166	0.166	0.000	0.000	0.000	10.00	76.81	178.56	0.0	0.0	35.4	23.8	300	300	CIRCULAR	PVC	-	1.00	96.2	36.8%	1.37	1.06	0.37
													10.37																	
F102B	CB102A	STM 102	0.166	0.000	0.000	0.20	0.166	0.033	0.033	0.000	0.000	0.000	10.00	76.81	178.56	0.0	0.0	7.1	14.3	200	200	CIRCULAR	PVC	-	1.00	33.3	21.3%	1.05	0.69	0.34
F102A	STM102	STM 101	0.000	0.033	0.000	0.90	0.166	0.000	0.033	0.033	0.030	0.030	10.34	75.51	175.47	0.0	0.0	21.4	29.7	300	300	CIRCULAR	PVC	-	0.35	56.9	37.7%	0.81	0.64	0.78
	STM101	STM 100	0.000	0.000	0.000	0.00	0.166	0.000	0.033	0.033	0.000	0.030	11.12	72.74	168.90	0.0	0.0	20.6	36.0	300	300	CIRCULAR	PVC	-	0.35	56.9	36.3%	0.81	0.63	0.95
													12.08																	
R100A	BLOCK 6	STM 100	0.000	0.000	0.153	0.90	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	178.56	9.3	9.3	9.3	2.3	250	250	CIRCULAR	PVC	-	1.00	60.4	15.4%	1.22	0.74	0.05
													10.05																	
	STM 100	STM 1A	0.000	0.000	0.000	0.00	0.421	0.000	0.199	0.033	0.000	0.030	12.08	69.65	161.56	0.0	9.3	61.1	27.8	300	300	CIRCULAR	PVC		0.50	68.0	89.9%	0.97	0.99	0.47
DLOOK 7	-												12.55																	
BLOCK 7 F202B	CB202A	STM 202	0.043	0.000	0.000	0.20	0.043	0.009	0.009	0.000	0.000	0.000	10.00	76.81	178.56	0.0	0.0	1.8	13.2	200	200	CIRCULAR	PVC		1.00	33.3	5.5%	1.05	0.46	0.48
F202B	STM 202	STM 202	0.043	0.052	0.000	0.20	0.043	0.009	0.009	0.052	0.000	0.000	10.48	75.02	174.32	0.0	0.0	23.2	28.6	200	200	CIRCULAR	PVC		0.80	29.8	77.9%	0.94	0.92	0.48
F201A, F201B	STM 202	STM 201	0.000	0.002	0.000	0.83	0.209	0.000	0.009	0.052	0.000	0.044	11.00	73.18	169.95	0.0	0.0	47.2	50.2	375	375	CIRCULAR	PVC		0.80	29.0 87.7	53.9%	0.94	0.69	1.21
1201A, 1201D	0111/201	3111200	0.100	0.000	0.000	0.75	0.203	0.121	0.150	0.052	0.000	0.044	12.21	75.10	103.35	0.0	0.0	-1.2	50.2	575	575	OINOOLAIN	100		0.20	07.7	55.578	0.73	0.03	1.21
F200B	CB 200A	STM 200	0.071	0.000	0.000	0.68	0.071	0.048	0.048	0.000	0.000	0.000	10.00	76.81	178.56	0.0	0.0	10.3	16.4	200	200	CIRCULAR	PVC		1.00	33.3	30.9%	1.05	0.78	0.35
12000	00 2007	0.111.200	0.011	0.000	0.000	0.00	0.07.1	0.010	0.010	0.000	0.000	0.000	10.35	10.01		0.0	0.0	10.0		200	200				1.00	00.0	001070		0.10	0.00
R200A	BLOCK 7	STM 200	0.000	0.000	0.197	0.90	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	178.56	12.9	12.9	12.9	1.7	250	250	CIRCULAR	PVC	-	1.00	60.4	21.4%	1.22	0.80	0.04
													10.04																	
	STM 200	STUB	0.000	0.000	0.000	0.00	0.280	0.000	0.178	0.052	0.000	0.044	12.21	69.26	160.63	0.0	12.9	66.9	9.8	375	375	CIRCULAR	PVC	-	1.00	175.3	38.1%	1.59	1.25	0.13
													12.34																	
BLOCK 8																														
F300B	TRENCH DRAIN 8	STM 301	0.000	0.030	0.000	0.90	0.000	0.000	0.000	0.030	0.027	0.027	10.00	76.81	178.56	0.0	0.0	13.4	17.6	200	200	CIRCULAR	PVC	-	1.00	33.3	40.2%	1.05	0.83	0.35
	STM 301	STM 300	0.000	0.000	0.000	0.00	0.000	0.000	0.000	0.030	0.000	0.027	10.35	75.48	175.41	0.0	0.0	13.2	18.0	250	250	CIRCULAR	PVC	-	0.50	42.7	30.8%	0.86	0.64	0.47
													10.82																	
F300A	CB 300A	STM 300	0.139	0.000	0.000	0.80	0.139	0.111	0.111	0.000	0.000	0.000	10.00	76.81	178.56	0.0	0.0	23.7	15.8	200	200	CIRCULAR	PVC	-	1.00	33.3	71.2%	1.05	0.99	0.26
													10.26																	
R300A	BLOCK 8	STM 300	0.000	0.000	0.236	0.90	0.000	0.000	0.000	0.000	0.000	0.000	10.00	76.81	178.56	16.0	16.0	16.0	6.8	250	250	CIRCULAR	PVC	-	1.00	60.4	26.5%	1.22	0.85	0.13
													10.13																	
	STM 300	EX.MH	0.000	0.000	0.000	0.00	0.139	0.000	0.111	0.030	0.000	0.027	10.82	73.78	171.37	0.0	16.0	51.6	22.4	375	375	CIRCULAR	PVC	-	1.00	175.3	29.5%	1.59	1.16	0.32
	1												11.15																	

File No: 160401331 Project: Petries Landing - Block 6, 7 and 8

Date: 05-Sep-18

SWM Approach:

Limit site to 191.1 L/s for Blocks 6 and 7 and 99.5 L/s for Block 8

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

	Qub	-catchment	Runoff	Coefficient Table Area		Runoff			Overall
Block ID	Sub	Area		Area (ha)		Coefficient			Runoff
ID	Catchment Type	ID / Description		"A"		"C"	"A	x C"	Coefficient
	Controlled - Tributary	Parking Block 6 (F100B)	Hard	0.164		0.9	0.148		
	····,		Soft	0.091		0.2	0.018		
		Subtota			0.255			0.166	0.65
9	100-year Capture - Tributary	Parking Ramp Block 6 (F102A)	Hard	0.033		0.9	0.030		
Phase 2 - Block		Subtota	Soft	0.000	0.033	0.2	0.000	0.030	0.90
se 2	Roof - Tributary	BLDG Block 6 (R100A)	Hard Soft	0.153 0.000		0.9 0.2	0.138 0.000		
Pha		Subtota			0.153			0.138	0.90
	Controlled - Tributary	Landscaped Area Block 6 (F102B)	Hard	0.000		0.9	0.000		
	2		Soft	0.166	0.400	0.2	0.033	0.000	0.00
		Subtota			0.166			0.033	0.20
		Total Block 6 =		0.607 ha		0.60			
	Controlled - Tributary	Parking Block 7 (F201A)	Hard	0.045		0.9	0.040		
		Subtota	Soft I	0.014	0.059	0.2	0.003	0.043	0.73
							0.070		-
	Controlled - Tributary	Parking Block 7 (F201B)	Hard Soft	0.081 0.026		0.9 0.2	0.073 0.005		
		Subtota			0.107			0.078	0.73
	Controlled - Tributary	Parking Block 7 (F200B)	Hard	0.049		0.9	0.044		
	-		Soft	0.022	0.074	0.2	0.004	0.040	0.00
		Subtota			0.071			0.048	0.68
× 7	100-year Capture - Tributary	Parking Ramp Block 7 (F202A)	Hard	0.048		0.9	0.043		
Bloc		Subtota	Soft I	0.004	0.052	0.2	0.001	0.044	0.85
Phase 2 - Block 7	Roof - Tribuatry	BLDG Block 7 (R200A)	Hard	0.197		0.9	0.177		
lase	Noor - Thouadly		Soft	0.000		0.2	0.000		
ā		Subtota			0.197			0.177	0.90
	Controlled - Tributary	Landscaped Area Block 7 (F202B)	Hard	0.000		0.9	0.000		
		Subtota	Soft	0.043	0.043	0.2	0.009	0.009	0.20
	Uncontrolled - Non Tributary	Uncontrolled Block 7 (UNC-1) Subtota	Hard I Soft	0.000 0.203		0.9 0.2	0.000 0.041		
					0.203			0.041	0.20
	Uncontrolled - Non Tributary	Uncontrolled Block 7 (UNC-2)	Hard	0.000		0.9	0.000		
		Subtota	I Soft	0.028	0.028	0.2	0.006	0.006	0.20
		Total Block 7 =		0.760 ha	0.028	0.59		0.000	0.20
	Controlled - Tributary	Parking Block 8 (F300A)	Hard	0.119		0.9	0.107		
	controlled moduly		Soft	0.020		0.2	0.004		
		Subtota			0.139			0.111	0.80
lock 8	100-year Capture - Tributary	Parking Ramp Block 8 (F300B)	Hard	0.030		0.9	0.027		
Bloc		Subtota	Soft	0.000	0.030	0.2	0.000	0.027	0.90
ė									
Phase	Roof	BLDG Block 8 (R300A)	Hard Soft	0.236 0.000		0.9 0.2	0.212 0.000		
Ч		Subtota			0.236			0.212	0.90
	Uncontrolled - Non Tributary	Uncontrolled Block 8 (UNC-3)	Hard	0.000		0.9	0.000		
		Subtota	I Soft	0.368	0.368	0.2	0.074	0.074	0.20
		Total Block 8 =		0.773 ha	0.000	0.55		0.074	0.20
	Total Overall Runoff Coefficient= C:				2.140			1.237	0.58
					ha				
	Total Roof Areas Total Parking Ramp Areas			0.586 0.115	ha				
	Total Surface Areas (Controlle Total Surface Areas (Uncontro			0.840 0.599					
	Total Site Area	iicuj		2.140					
	Area to Sewer			1.541	ha				
				1.341					

anl_2018-09-04_swm.xlsm, Area Summary W:\active\160401331_Petries Landing Block 6-8\design\analysis\SWM\6th Submission - September 2018\

	2 yr Intensity City of Ottaw		I = a/(t + b) ^c	a = b = c =	6.199	t (min) 5 10 15 20 25 30 35 40 45	l (mm/hr) 103.57 76.81 61.77 52.03 45.17 40.04 36.06 32.86 30.24			100 yr Intensity City of Ottawa		I = a/(t + t)) a : b : c :	6.014	t (min) 5 10 15 20 25 30 35 40 45	l (mm/hr) 242.70 178.56 142.89 119.95 103.85 91.87 82.58 75.15 69.05	
					<u>_</u>	45 50 55 60	28.04 26.17 24.56								43 50 55 60	63.95 59.62 55.89	
			rget Release f										e from Block 8				
SWN	M Approach: Lii Area (ha): C:	mit site to 191. 1.36 0.5	7	6 and 7 and 99	.5 L/s for Blo	Ck 8 Qtarget (L/s) 191.10	Qtarget (L/s/ha) 140			SWM Approach: Area (ha): C:	Limit site to 1 0.77 0.5	3	ocks 6 and 7 and	99.5 L/s for	Qtarget (L/s) 99.50	Qtarget (L/s/ha) 129	
	2 YEAR Mo	dified Ration	al Method fo	r Entire Site						100 YEAR Modified	Rational Me	ethod for Er	tire Site				
Subdra	ainage Area: Bl Area (ha): C:	DG Block 6 (F 0.153 0.90	2100A)		Maximum Sto		of - Tributary 150	mm		Subdrainage Area: Area (ha): C:	BLDG Block 6 0.153 1.00	6 (R100A)	I	Maximum Sto		oof - Tributary 150	mm
	tc (min) 10 20 30 40 50 60 70 80 90 100	l (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75	Qactual (L/s) 29.45 19.95 15.35 12.60 10.75 9.42 8.40 7.60 6.96 6.42	Qrelease (L/s) 5.86 6.23 6.22 6.09 5.91 5.72 5.52 5.33 5.15 4.98	Qstored (L/s) 23.60 13.72 9.13 6.51 4.84 3.70 2.88 2.27 1.81 1.45	Vstored (m^3) 14.16 16.47 16.44 15.62 14.52 13.31 12.09 10.90 9.76 8.68	Depth (mm) 92.8 98.7 96.6 93.7 90.7 87.6 84.5 81.6 78.9	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		tc (min) 10 20 30 40 50 60 70 80 90 100	l (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	Qactual (L/s) 76.08 51.11 39.14 32.02 27.25 23.81 21.21 19.17 17.52 16.15	Qrelease (L/s) 8.37 9.02 9.24 9.25 9.17 9.06 8.93 8.80 8.66	Qstored (L/s) 67.70 42.09 29.90 22.73 18.00 14.65 12.16 10.24 8.72 7.49	Vstored (m^3) 40.62 50.50 53.83 54.56 54.00 52.74 51.06 49.14 47.08 44.95	Depth (mm) 132.7 143.0 146.4 147.2 146.6 145.3 143.5 141.6 139.4 137.2	
	110 120	15.57 14.56	5.97 5.58	4.81 4.63	1.16 0.95	7.65 6.85	76.2 73.4	0.00		110 120	35.20 32.89	15.00 14.02	8.52 8.37	6.48 5.64	42.79 40.62	135.0 132.7	
orage:	Roof Storage	Depth	Head	Discharge	Vreq	Vavail	Discharge		Storage:	Roof Storage	Depth	Head	Discharge	Vreq	Vavail	Discharge	
2-year	r Water Level	(mm) 98.70	(m) 0.10	(L/s) 6.23	(cu. m) 16.47	(cu. m) 57.30	Check 0.00			100-year Water Level	(mm) 147.16	(m) 0.15	(L/s) 9.28	(cu. m) 54.56	(cu. m) 57.30	Check 0.00	
Subdra	ainage Area: Pa Area (ha): C:	arking Block 6 (0.255 0.65	F100B)			Controlle	ed - Tributary			Subdrainage Area: Area (ha): C:	Parking Block 0.255 0.81	6 (F100B)			Controll	led - Tributary	
	tc (min)	l (2 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m ³)				tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m ³)		L
	10 20 30 40 50 60 70 80 90 100 110 120	76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56	35.39 23.98 18.45 15.14 12.92 11.32 10.10 9.14 8.36 7.72 7.17 6.71	35.39 35.39 35.39 35.39 35.39 35.39 35.39 35.39 35.39 35.39 35.39 35.39 35.39	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0				10 20 30 40 50 60 70 80 90 100 110 120	178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89	102.85 69.09 52.91 43.28 36.84 32.19 28.68 25.91 23.68 21.83 20.28 18.95	42.34 42.34 42.34 42.34 42.34 42.34 42.34 42.34 42.34 42.34 42.34 42.34 42.34	60.50 26.75 10.57 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00	36.30 32.10 19.03 2.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00		
orage:		ge Above CB10							Storage:	Surface Storage Above							
Inv Inv T Max Po	fice Equation: Q vert Elevation vert Elevation T/G Elevation onding Depth instream W/L	= CdA(2qh)^0. 120.00 55.33 56.98 0.05 53.91	5 m m m m							Orifice Equation: Orifice Diameter: Invert Elevation T/G Elevation Max Ponding Depth Downstream W/L	Q = CdA(2gh) 120.00 55.33 56.98 0.27 53.91)*0.5 mm m m m m	Where C =	0.61	Length 20.4	Pipe Storage Size 900	Volu 13.
2-year	r Water Level	Stage 57.03	Head (m) 1.70	Discharge (L/s) 35.39	Vreq (cu. m) 0.00	Vavail (cu. m) 37.18	Volume Check OK			100-year Water Level	Stage 57.25	Head (m) 1.92	Discharge (L/s) 42.34	Vreq (cu. m) 36.30	Vavail (cu. m) 37.18 0.88	Volume Check OK	

lified Rational Meth	od Calcula															
Subdrainage Area: Pa Area (ha): C:	arking Ramp Bl 0.033 0.90	ock 6 (F102A)		10	0-year Captu	re - Tributary			Subdrainage Area: Area (ha): C:	Parking Ram 0.033 1.00	Block 6 (F10	2A)	10	0-year Captu	ıre - Tributary	
tc	l (2 yr)	Qactual	Qrelease	Qstored	Vstored	Qspill			tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	Qspill	
(min) 10	(mm/hr) 76.81	(L/s) 6.34	(L/s) 6.34	(L/s) 0.00	(m^3) 0.00	(L/s) 0.00			(min) 10	(mm/hr) 178.56	(L/s) 16.38	(L/s) 16.38	(L/s) 0.00	(m^3) 0.00	(L/s) 0.00	
20 30	52.03 40.04	4.30 3.31	4.30 3.31	0.00	0.00	0.00 0.00			20 30	119.95 91.87	11.00 8.43	11.00 8.43	0.00	0.00	0.00	
40	32.86	2.71	2.71	0.00	0.00	0.00			40	75.15	6.89	6.89	0.00	0.00	0.00	
50 60	28.04 24.56	2.32 2.03	2.32 2.03	0.00	0.00	0.00			50 60	63.95 55.89	5.87 5.13	5.87 5.13	0.00	0.00	0.00	
70	21.91	1.81	1.81	0.00	0.00	0.00			70	49.79	4.57	4.57	0.00	0.00	0.00	
80 90	19.83 18.14	1.64 1.50	1.64 1.50	0.00	0.00	0.00			80 90	44.99 41.11	4.13 3.77	4.13 3.77	0.00	0.00	0.00	
100	16.75	1.38	1.38	0.00	0.00	0.00			100	37.90	3.48	3.48	0.00	0.00	0.00	
110 120	15.57 14.56	1.29 1.20	1.29 1.20	0.00	0.00 0.00	0.00 0.00			110 120	35.20 32.89	3.23 3.02	3.23 3.02	0.00 0.00	0.00 0.00	0.00	
Subdrainage Area: La Area (ha): C:	Indscaped Area 0.166 0.20	a Block 6 (F102	2B)		Controll	ed - Tributary			Subdrainage Area: Area (ha): C:	Landscaped / 0.166 0.25	Area Block 6 (F	-102B)		Controll	ed - Tributary	
tc (min)	l (2 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)				tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)		
10	76.81	7.09	7.09	0.00	0.00				10	178.56	20.60	20.60	0.00	0.00		
20 30	52.03 40.04	4.80 3.70	4.80 3.70	0.00	0.00				20 30	119.95 91.87	13.84 10.60	13.84 10.60	0.00	0.00		
40	32.86	3.03	3.03	0.00	0.00			1	40	75.15	8.67	8.67	0.00	0.00		
50 60	28.04 24.56	2.59 2.27	2.59 2.27	0.00	0.00			1	50 60	63.95 55.89	7.38 6.45	7.38 6.45	0.00	0.00		
70	21.91	2.02	2.02	0.00	0.00			1	70	49.79	5.74	5.74	0.00	0.00		
80 90	19.83 18.14	1.83 1.67	1.83 1.67	0.00	0.00			1	80 90	44.99 41.11	5.19 4.74	5.19 4.74	0.00	0.00		
100	16.75	1.55	1.55	0.00	0.00			1	100	37.90	4.37	4.37	0.00	0.00		
110 120	15.57 14.56	1.44 1.34	1.44 1.34	0.00	0.00			1	110 120	35.20 32.89	4.06 3.80	4.06 3.80	0.00	0.00		
	ge Above CB10							Storage:	Surface Storage Above							
								Glui aye.								
Orifice Equation: Q Orifice Diameter:	= CdA(2gh)^0. 83.00	.5 mm	Where C =	0.61				1	Orifice Equation: Orifice Diameter:	Q = CdA(2gh 83.00	^0.5 mm	Where C =	0.61			
Invert Elevation T/G Elevation Max Ponding Depth Downstream W/L	54.30 56.64 0.00 53.91	m m m							Invert Elevation T/G Elevation Max Ponding Depth Downstream W/L	54.30 56.64 0.08 53.91	m m m					
Г	Stage	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Volume Check				Stage	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Volume Check	
2-year Water Level	56.64	2.34	7.09	0.00	0.50	OK			100-year Water Level	56.72	2.42	20.60	0.00	0.50	OK	
						UK										
						ON								0.50		
k 6 Peak Flow Summar al Area = 0.607 ha	1		Vol	ume Used =		m ³		Block 6 Peak Flo Total Area =	w Summary 0.607	ha		Vol	ume Used =		m ³	
	I S S S S		Vol	ume Used =					w Summary 0.607 84.9 0.0 16.4 9.3	ha Us Us Us Us Us		Vol	ume Used =		m³	
al Area = 0.607 ha target = 84.9 L/ Qunc = 0.0 L/ Qramp = 6.3 L/ Qroof = 6.2 L/ Qpark = 42.5 L/ Qtotal = 55 L/	1 5 5 5 5 5 5 5	1000.0.1	Vol	ume Used =	16.47	m³		Total Area = Q target = Q unc = Qramp = Qroof =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 89	L/s L/s L/s L/s L/s	+ 7 (P000Å)	Vol	ume Used = 3.73	90.86 L/s		
al Area = 0.607 ha target = 84.9 U Q unc = 0.0 U Qrong = 6.3 U Qroof = 6.2 U Qpark = 42.5 U Subdrainage Area: Bi Area (ha): C:	s s s s LDG Block 7 (F 0.197 0.90			Maximum Sto	16.47 Ror rage Depth:	m³ of - Tribuatry 150	mm	Total Area = Q target = Q unc = Qramp = Qroof = Qparking =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 89 Subdrainage Area: Area (ha): C:	L/s L/s L/s L/s L/s L/s BLDG Bloc 0.197 1.00	k 7 (R200A)		3.73 Maximum Sto	90.86 L/s Ro rage Depth:	of - Tribuatry 150	
al Area = 0.607 h target = 84.9 U Qunc = 0.0 U Qroof = 6.2 U Qpark = 42.5 U Quark = 42.5 U Qtotal = 55 U Area (ha): C: tc (min)	s s s DG Block 7 (F 0.197 0.90 I (2 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Maximum Sto Qstored (L/s)	16.47 Ro rage Depth: Vstored (m*3)	m ³ of - Tribuatry 150 Depth (mm)		Total Area = Q target = Q unc = Qramp = Qroof = Qparking =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 89 Subdrainage Area: Area (ha): C: tc (min)	L/s L/s L/s L/s L/s BLDG Bloc 0.197 1.00 I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	3.73 Maximum Sto Qstored (L/s)	90.86 L/s Ro rage Depth: Vstored (m^3)	of - Tribuatry 150 Depth (mm)	
I Area = 0.607 h targat = 84.9 U Jamc = 0.0 U Aramp = 6.3 U Arcof = 6.2 U Actual = 42.5 U Subdrainage Area: Bi Area (ha): C: tc (min) 10	LDG Block 7 (F 0.197 0.90 1 (2 yr) (mm/hr) 76.81	Qactual (L/s) 37.86	Qrelease (L/s) 8.17	Maximum Sto Qstored (L/s) 29.69	16.47 Ro rage Depth: Vstored (m^3) 17.81	m ³ of - Tribuatry 150 Depth (mm) 92.5	0.00	Total Area = Q target = Q unc = Qramp = Qroof = Qparking =	w Summary 0.607 84.9 16.4 9.3 62.9 89 Subdrainage Area: Area (hai: C: tc (min) 10	L/s L/s L/s L/s L/s L/s BLDG Bloc 0.197 1.00 I (100 yr) (mm/hr) 178.56	Qactual (L/s) 97.79	Qrelease (L/s) 11.73	3.73 Maximum Sto Qstored (L/s) 86.06	90.86 L/s rage Depth: Vstored (m^3) 51.64	of - Tribuatry 150 Depth (mm) 132.8	
I Area = 0.607 h targat = 84.9 U Jame = 0.0 U Jamp = 6.3 U Qarot = 6.2 U Qapark = 42.5 U Subdrainage Area: Bi Area (ha): C: C: tc (min) 20 30	s s s s DG Block 7 (F 0.197 0.90 i (2 yr) (mm/hr) 76.81 52.03 40.04	Qactual (L/s) 37.86 25.65 19.74	Qrelease (L/s) 8.17 8.63 8.57	Maximum Sto Qstored (L/s) 29.69 17.02 11.17	Ro raqe Depth: Vstored (m*3) 17.81 20.42 20.10	m ³ of - Tribuatry 150 Depth (mm) 92.5 97.7 97.0	0.00 0.00 0.00	Total Area = Q target = Q unc = Qramp = Qroof = Qparking =	w Summary 0.607 84.9 16.4 9.3 62.9 89 Subdrainage Area: Area (ha): C: tc (min) 10 20 30	L/s L/s L/s L/s L/s L/s BLDG Bloo 0.197 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87	Qactual (L/s) 97.79 65.69 50.31	Qrelease (L/s) 11.73 12.59 12.86	3.73 Maximum Sto Qstored (L/s) 86.06 53.10 37.45	90.86	of - Tribuatry 150 Depth (mm) 132.8 142.6 145.6	
I Area = 0.607 h target = 84.9 J J unc = 0.0 J Arramp = 6.3 J Arroof = 6.2 J Arcof = 6.2 J Arcof = 6.2 J Arca (ha): C: tc (min) 10 20 30 40	s s s DG Block 7 (F 0.197 0.90 1 (2 yr) (mm/hr) 76.81 52.03	Qactual (L/s) 37.86 25.65 19.74 16.20	Qrelease (L/s) 8.17 8.63 8.57 8.35	Maximum Sto Qstored (L/s) 29.69 17.02 11.17 7.85	16.47 Ro rage Depth: Vstored (m ⁻³) 17.81 20.42 20.10 18.84	m ³ of - Tribuatry 150 Depth (mm) 92.5 97.7	0.00 0.00 0.00 0.00	Total Area = Q target = Q unc = Qramp = Qroof = Qparking =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 89 Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40	L/s L/s L/s L/s L/s L/s BLDG Bloo 0.197 1.00 I (100 yr) (mm/hr) 178.56 119.95	Qactual (L/s) 97.79 65.69	Crelease (L/s) 11.73 12.59 12.86 12.89	3.73 Maximum Sto (L/s) 86.06 53.10 37.45 28.26	90.86 L/s Ro rage Depth: Vstored (m ³) 51.64 63.72 67.41 67.83	of - Tribuatry 150 Depth (mm) 132.8 142.6	
I Area = 0.607 h targot = 84.9 ∪ yunc = 0.0 ∪ tramp = 6.3 ∪ Qpork = 42.5 ∪ Xtotal = 55 ∪ Xtotal = 55 ∪ total = 65 ∪ tramp = 6.2 ∪ Qpark = 42.5 ∪ Xtotal = 55 ∪ total = 65 ∪ total = 65 ∪ total = 75 ∪ 20 30 40 50 60	LOG Block 7 (f 0.197 (0.90 1 (2 yr) (mm/hr) 76.81 52.03 40.04 22.66 28.04 24.56	Qactual (L/s) 37.86 25.65 19.74 16.20 13.82 12.10	Qrelease (L/s) 8.17 8.63 8.57 8.35 8.35 8.07 7.77	Maximum Sto (L/s) 29.69 17.02 11.17 7.85 5.75 4.33	Ro raqe Depth: Vstored (m*3) 17.81 17.81 18.84 17.26 15.59	m ³ of - Tribuatry 150 Depth (mm) 97.7 97.0 94.5 91.4 88.0	0.00 0.00 0.00 0.00 0.00 0.00	Total Area = Q target = Q unc = Qramp = Qroof = Qparking =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 89 Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60	L/s L/s L/s L/s L/s L/s BLDG Bloc 0.197 1.00 yr) 1 (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	Qactual (L/s) 97.79 65.69 50.31 41.15 35.03 30.61	Qrelease (L/s) 11.73 12.59 12.86 12.89 12.81 12.66	3.73 Maximum Sto Qstored (L/s) 86.06 53.10 37.45 28.26 22.22 17.95	90.86	of - Tribuatry 150 Depth (mm) 132.8 142.6 145.6 145.9 145.9 145.0 143.3	
Area = 0.607 h target = 84.9 U tramp = 6.3 U tramp = 6.3 U tramp = 6.2 U tramp = 42.5 U total = 55 U Subdrainage Area: Bi Area (hai: C: C: tc (min) 10 20 30 40 50 60 70	s s s s s s s s s s s s s s s s s s s	Qactual (L/s) 37.86 25.65 19.74 16.20 13.82 12.10 10.80	Qrelease (L/s) 8.17 8.63 8.57 8.35 8.07 7.77 7.48	Qstored (L/s) 29:69 17.02 11.17 7.85 5.75 4.33	16.47 Ro rage Depth: 17.81 20.42 20.10 18.84 17.26 15.59 13.94	m ³ of - Tribuatry 150 Depth (mm) 92.5 97.0 94.5 91.4 88.0 84.7	0.00 0.00 0.00 0.00 0.00 0.00 0.00	Total Area = Q target = Q unc = Qramp = Qroof = Qparking =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 89 Subdrainage Area: Area (ha): C: tc. (min) 10 20 30 40 50 60 70	L/s L/s L/s L/s L/s BLDG Bloc 0.197 1.00 1(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79	Qactual (L/s) 97.79 65.69 50.31 41.15 35.03 30.61 27.27	Qrelease (L/s) 11.73 12.59 12.86 12.89 12.81 12.66 12.48	3.73 Maximum Sto Cstored (L/s) 86.06 53.10 37.45 28.26 22.22 17.95 14.79	90.86 U/s Ro rage Depth: Vstored (m*3) 51.64 63.72 67.41 67.83 66.86 64.62 62.11	of - Tribuatry 150 132.6 142.6 145.6 145.9 145.9 145.0 143.3 141.3	
I Area = 0.607 h targat = 84.9 U yramp = 6.3 U Qroof = 6.2 U Qapark = 42.5 U total = 55 U Subdrainage Area: Bi Area (hai: C: C: tc (min) 10 20 30 40 50 60 70 80 90	s s s s s s s s s s s s s s s s s s s	Qactual (L/s) 37.86 25.65 19.74 16.20 13.82 12.10 10.80 9.77 8.94	Qrelease (L/s) 8.17 8.63 8.57 8.35 8.35 8.07 7.77 7.48 7.20 6.93	Maximum Sto (L/s) 29.69 17.02 11.17 7.85 5.75 4.33 3.32 2.57 2.01	16.47 Ro rage Depth: Vstored (m*3) 17.81 20.42 20.10 18.84 17.26 15.59 13.94 13.94 12.35 10.85	m ³ of - Tribuatry 150 Depth (mm) 92.5 97.7 97.0 94.5 91.4 88.0 84.7 81.5 78.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Total Area = Q target = Q unc = Qramp = Qroof = Qparking =	w Summary 8.607 84.9 0.0 16.4 9.3 62.9 89 Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90	L/s L/s L/s L/s L/s BLDG Bloc 0.197 1.00 I (100 yr) (mm/hr) 178.56 83.95 55.89 49.79 44.99 44.11	Qactual (L/s) 97.79 65.69 50.31 41.15 35.03 30.61 27.27 24.64 22.51	Crolease (L/s) 11.73 12.59 12.85 12.85 12.81 12.65 12.48 12.28 12.27	3.73 Maximum Sto 80.06 8	90.86 Us Ro rage Depth: 51.64 63.72 67.41 66.66 64.62 62.11 59.33 56.41	of - Tribuatry 150 132.8 142.6 145.6 145.6 145.9 141.3 139.0 136.6	
I Area = 0.607 h targot = 84.9 J yunc = 0.0 J tramp = 6.3 J Quot = 6.2 J Quork = 42.5 J Xtotal = 55 J Xtotal = 55 J (total) total = 65 J (total) Total 10 20 30 40 50 60 70 80 90 100	B B B DCG Block 7 (f 0.197 (mm/hr) 76.81 40.04 32.86 28.04 40.04 32.86 28.05 24.56 24.56 24.56 24.56 19.83 18.14 16.75	Qactual (L/s) 37.86 25.65 19.74 16.20 13.82 12.10 10.80 9.77 8.94 8.25	Crelease (U.S.) 8.17 8.63 8.63 8.63 8.65 8.07 7.77 7.48 7.20 6.93 6.68	Maximum Sto (L/s) 29.69 17.02 11.17 7.85 5.75 4.33 3.32 2.57 2.01 1.57	I6.47 Rot rage Depth: Vstored (m*3) 17.81 18.84 17.59 13.94 12.36 10.85 9.43	m ³ 56 - Tribuatry 150 Depth (mm) 92.5 97.7 97.0 94.5 91.4 84.7 81.4 84.7 81.5 75.7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Total Area = Q target = Q unc = Qramp = Qroof = Qparking =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 89 Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100	L/s L/s L/s L/s L/s L/s BLDG Bloc 0.197 1.00 I(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 55.89 94.99 44.99 44.111 37.90	Qactual (L/s) 97.79 65.69 50.31 41.15 35.03 30.61 27.27 24.64 22.51 20.76	Crelease (US) 11.73 12.89 12.89 12.89 12.89 12.89 12.86 12.28 12.28 12.28 12.28 12.27 11.85	3.73 Maximum Sto (L/s) 86.06 53.10 37.45 28.26 22.22 17.95 14.79 12.36 10.45 8.90	90.86 L/s Ro rage Depth: Vstored (m ³) 51.64 63.72 67.41 67.83 66.66 64.62 62.13 9.33 56.41 53.42	of - Tribuatry 150 Depth 132.8 142.6 145.9 145.9 145.0 143.3 141.3 139.0 136.6 134.2	mm
Area = 0.607 h target = 84.9 U tramp = 6.3 U tramp = 6.3 U tramp = 6.2 U target = 42.5 U total = 55 U Subdrainage Area: Bi Area (hai: C: C: tc (min) 10 20 30 40 50 60 70 80 90	s s s s s s s s s s s s s s s s s s s	Qactual (L/s) 37.86 25.65 19.74 16.20 13.82 12.10 10.80 9.77 8.94	Qrelease (L/s) 8.17 8.63 8.57 8.35 8.35 8.07 7.77 7.48 7.20 6.93	Maximum Sto (L/s) 29.69 17.02 11.17 7.85 5.75 4.33 3.32 2.57 2.01	16.47 Ro rage Depth: Vstored (m*3) 17.81 20.42 20.10 18.84 17.26 15.59 13.94 13.94 12.35 10.85	m ³ of - Tribuatry 150 Depth (mm) 92.5 97.7 97.0 94.5 91.4 88.0 84.7 81.5 78.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Total Area = Q target = Q unc = Qramp = Qroof = Qparking =	w Summary 8.607 84.9 0.0 16.4 9.3 62.9 89 Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90	L/s L/s L/s L/s L/s BLDG Bloc 0.197 1.00 I (100 yr) (mm/hr) 178.56 83.95 55.89 49.79 44.99 44.11	Qactual (L/s) 97.79 65.69 50.31 41.15 35.03 30.61 27.27 24.64 22.51	Crolease (L/s) 11.73 12.59 12.85 12.85 12.81 12.65 12.48 12.28 12.27	3.73 Maximum Sto 80.06 8	90.86 Us Ro rage Depth: 51.64 63.72 67.41 66.66 64.62 62.11 59.33 56.41	of - Tribuatry 150 132.8 142.6 145.6 145.6 145.9 141.3 139.0 136.6	
I Area = 0.607 h targat = 84.9 U yramp = 6.3 U Qroof = 6.2 U Qroof = 6.2 U total = 55 U Subdrainage Area: Bi Area (hai): C: C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120	s s s s s s s s s s s s s s s s s s s	Qactual (L/s) 37.86 25.65 19.74 16.20 13.82 12.10 10.80 9.77 8.94 8.25 7.67	Arelease (L/s) 8.17 8.63 8.57 8.36 8.07 7.77 7.48 6.93 6.68 6.40	Maximum Sto Qstored (L/s) 29,69 17.02 11.17 7.85 5.75 4.33 3.32 2.67 2.01 1.57 1.28	16.47 Ro race Depth: Vetored (m^3) 17.81 20.42 20.10 18.84 17.26 15.59 13.94 12.36 10.85 9.43 8.44	m ³ of - Tribuatry 150 Depth (mm) 92.5 97.0 94.5 91.4 88.0 91.4 84.7 81.5 75.7 72.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Total Area = Q target = Q unc = Qramp = Qroof = Qparking =	w Summary 8.607 84.9 0.0 16.4 9.3 62.9 89 Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 100	L/s L/s L/s L/s L/s L/s L/s L/s	Qactual (L/s) 97.79 65.69 50.31 41.15 35.03 30.61 27.27 24.64 22.51 20.76 19.28	Crolease (U3) 11.73 12.59 12.86 12.89 12.81 12.66 12.48 12.28 12.28 12.28 12.28 12.28 12.21 13.51	3.73 Maximum Sto Qstored (L/s) 86.06 53.10 37.45 28.26 22.22 17.95 17.95 12.36 10.45 8.90 7.64	90.86	of - Tribuatry 150 132.8 142.6 145.6 145.6 145.3 141.3 139.0 136.6 134.2 131.8	
I Area = 0.607 h target = 84.9 U Jource = 0.0 U Jramp = 6.3 U Qoork = 42.5 U Qoork = 42.5 U Subdrainage Area: Bi Area (hai: C: C: C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 yet: Roof Storage	s s s s s s s s s s s s s s s s s s s	Qactual (L/s) 37.86 25.65 19.74 16.20 13.82 12.10 13.82 7.7 8.94 8.25 7.67 7.18 Head (m)	Qrelease (LS) 8.17 8.63 8.57 8.857 8.07 7.48 7.48 6.93 6.40 6.12 Discharge (Us)	Maximum Sto (L/s) 29.69 17.02 11.17 7.85 5.75 3.32 2.57 2.01 1.57 1.28 1.06 Vreq (cu. m)	16.47 Ro rage Depth: Vstored (m ⁻³) 17.81 20.42 20.10 18.84 17.26 15.59 13.94 12.35 10.85 9.43 8.44 7.63 Vavail (cu. m)	m ³ Depth (mm) 92.5 97.0 97.0 94.5 91.4 88.0 84.7 81.5 75.7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Total Area = Q target = Q unc = Qramp = Qroof = Qparkina = Qparkina = Qtotal =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 89 Subdrainage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 100 20 Roof Storage	L/s L/s L/s L/s L/s L/s L/s MDG Bloc 0.197 1.00 1 (100 yr) (mm/hr) 178 56 119 95 91.87 75.15 55.89 91.87 75.15 55.89 49.79 44.99 44.99 44.99 44.99 44.99 44.99 44.99 45.90 35.20 35.	Qactual (Us) 97.79 65.69 50.31 41.15 35.03 30.61 27.27 24.64 20.76 19.28 18.02 Head Head (m)	Croless (L) 1173 12,56 12,86 12,86 12,86 12,28 11,29 12,28 12,28 11,29 12,28 11,29 12,28 11,29 1	3.73 Maximum Sto (L/s) 86.06 53.10 53.45 28.26 22.22 17.95 14.79 12.36 10.45 8.90 7.64 6.59 Vreq (cu. m)	90.86 L/s Ro rage Depth: Vstored (m^3) 51.64 63.72 67.41 53.42 50.43 47.46 Vavail (cu. m)	of - Tribuatry 150 132,8 142,6 145,6 145,6 145,9 145,0 144,3 139,0 134,3 139,0 134,2 131,8 129,3 Discharge Check	
al Area = 0.607 h target = 84.9 U Qram = 0.0 U Qram = 6.3 U Qroof = 6.2 U Qpark = 42.5 U Subdrainage Area: B training (min) (min) (min) 10 20 30 40 50 60 70 80 90 100 110 120 ge: Roof Storage	s s s s s s s s s s s s s s s s s s s	Qactual (L/s) 37.86 25.65 19.74 16.20 13.82 12.10 10.80 9.77 8.94 8.25 7.67 7.18 Head (m) 0.10	Crclease (L/s) 8.63 8.57 8.35 8.35 7.77 7.48 7.20 6.93 6.68 6.40 6.12 Discharge	Maximum Sto Qstored (L/s) 29.69 17.02 11.17 7.85 5.75 4.33 3.32 2.57 1.28 1.06 Vreq (cu. m) 20.42	I6.47 Ror race Depth: 17.81 20.42 20.41 17.81 20.42 13.94 17.26 13.94 12.35 9.43 8.44 7.63 Vavail (cu.m) 72.80	m ³ Depth (mm) 92.5 97.7 97.0 94.5 91.4 88.0 84.7 88.0 84.7 75.7 72.4 69.3 Discharge Check 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Total Area = Q target = Q unc = Qramp = Qroof = Qparkina = Qparkina = Qtotal =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storage 100-year Water Level	L/s L/s L/s L/s L/s L/s L/s L/s	Qactual (LJs) 97.79 65.69 50.31 41.15 35.03 30.61 27.27 24.64 22.51 19.28 18.02 Head (m) 0.15	Crelease (L/s) 11.73 12.59 12.86 12.86 12.86 12.81 12.85 12.85 12.85 11.85 11.85 11.84 11.42 Discharge (L/s) 12.89	3.73 Maximum Sto (L/s) 88.06 53.10 37.45 28.26 22.22 17.95 14.79 12.36 21.79 12.36 10.45 8.90 7.64 6.59 Vreq (cu. m) 67.83	90.86 L/s Ro rage Depth: 51.64 63.72 67.41 67.83 66.66 64.62 64.62 59.33 50.43 50.43 47.46 Vavail (cu. m) 72.80	of - Tribuatry Topoth (mm) 132.8 142.6 145.6 145.9 145.9 145.3 141.3 138.0 136.6 134.2 131.8 129.3 Discharge Check 0.00	
al Area = 0.607 h targat = 84.9 U Qram = 0.0 U Gram = 6.3 U Qpark = 42.5 U Quark = 42.5 U Quark = 42.5 U Subdrainage Area: Bi Area (hai: C: C: C: C: (min) 10 20 30 40 50 60 70 80 90 100 110 120 ge: Roof Storage	s s s s s s s s s s s s s s s s s s s	Qactual (L/s) 37.86 25.65 19.74 16.20 13.82 12.10 10.80 9.77 8.94 8.25 7.67 7.18 Head (m) 0.10	Qrelease (LS) 8.17 8.63 8.57 8.857 8.07 7.48 7.48 6.93 6.40 6.12 Discharge (Us)	Maximum Sto Qstored (L/s) 29.69 17.02 11.17 7.85 5.75 4.33 3.32 2.57 1.28 1.06 Vreq (cu. m) 20.42	I6.47 Ror race Depth: 17.81 20.42 20.41 17.81 20.42 13.94 17.26 13.94 12.35 9.43 8.44 7.63 Vavail (cu.m) 72.80	m ³ Depth (mm) 92.5 97.0 97.0 94.5 91.4 88.0 84.7 81.5 75.7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Total Area = Q target = Q unc = Qramp = Qroof = Qparkina = Qparkina = Qtotal =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 89 Subdrainage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 100 20 Roof Storage	L/s L/s L/s L/s L/s L/s L/s L/s	Qactual (LJs) 97.79 65.69 50.31 41.15 35.03 30.61 27.27 24.64 22.51 19.28 18.02 Head (m) 0.15	Crelease (L/s) 11.73 12.59 12.86 12.86 12.86 12.81 12.85 12.85 12.85 11.85 11.85 11.84 11.42 Discharge (L/s) 12.89	3.73 Maximum Sto (L/s) 88.06 53.10 37.45 28.26 22.22 17.95 14.79 12.36 21.79 12.36 10.45 8.90 7.64 6.59 Vreq (cu. m) 67.83	90.86 L/s Ro rage Depth: 51.64 63.72 67.41 67.83 66.66 64.62 64.62 59.33 50.43 50.43 47.46 Vavail (cu.m) 72.80	of - Tribuatry 150 132,8 142,6 145,6 145,6 145,9 145,0 144,3 139,0 134,3 139,0 134,2 131,8 129,3 Discharge Check	
al Area = 0.607 h target = 84.9 U Qram = 0.0 U Qram = 6.3 U Qroof = 6.2 U Qpark = 42.5 U Subdrainage Area: Bl Area (ha): C: C: C: C: C: C: C: C: C: C	s s s s s s s s s s s s s s s s s s s	Qactual (Us) 37.86 25.65 19.74 16.20 13.82 12.10 10.80 9.77 8.94 8.25 7.67 7.18 Head (m) 0.10 ock 7 (F202A) Qactual	Qroless (L/s) 8.17 8.63 8.57 8.56 8.07 7.48 7.20 6.93 6.40 6.12 Discharge (L/s) 8.63	Maximum Sto 26.69 77.09 11.17 7.85 5.75 3.32 2.01 1.28 1.06 Vreq (cu. m) 20.42 10 Vreq (cu. m) 20.42 10 10 10 10 10 10 10 10 10 10	I6.47 Ror race Depth: 17.81 20.42 20.41 17.81 20.42 13.94 17.26 13.94 12.35 9.43 8.44 7.63 Vavail (cu.m) 72.80	m ³ Depth (mm) 92.5 97.7 97.0 94.5 91.4 88.0 84.7 81.5 75.7 72.4 69.3 Discharge Check 0.00 re - Tributary Qspili	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Total Area = Q target = Q unc = Qramp = Qroof = Qparkina = Qparkina = Qtotal =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 89 Subdrainage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 100 100 100 100 100 100	L/s L/s L/s L/s L/s L/s L/s L/s	Qactual (Us) Qactual (Us) 97.79 65.69 50.31 141.15 35.03 30.61 27.27 24.64 22.51 19.28 18.02 19.28 Head (m) 0.15 D Block 7 (F20) Qactual	Crolesse (L/g) 1173 12.56 12.86 12.81 12.81 12.81 12.81 12.48 12.20 11.85 11.85 11.45 11.45 11.42 Discharge (L/s) 22.9 22.4 22.4 24.3	3.73 Maximum Sto (L/s) 86.06 53.10 28.66 53.10 28.25 17.95 22.22 217.95 22.22 217.95 22.22 217.95 22.22 217.95 22.22 217.95 22.25 21.25 8.90 7.64 6.59 Vreq (cu. m) 67.83 10 20 20 20 20 20 20 20 20 20 20 20 20 20	90.86 Us Ro rage Depth: Vstored (m^3) 51.64 63.72 67.41 53.42 50.43 47.46 Vavail (cu. m) 72.80 Vavail	of - Tribuatry 150 Depth (mm) 132.8 142.6 145.6 145.0 145.0 145.0 145.0 145.0 145.0 145.0 145.0 145.0 139.6 134.2 139.8 129.3 Discharge Check 0.00 mr - Tributary Gspili	
al Area = 0.607 h target = 84.9 U Qram = 0.0 U Qram = 6.3 U Qroof = 6.2 U Qpark = 42.5 U Subdrainage Area: Bl Area (ha): C: C: C: C: C: C: C: C: C: C	s s s s s s s s s s s s s s s s s s s	Qactual (Us) 37.86 25.65 19.74 16.20 13.82 12.10 10.80 9.77 8.94 8.94 7.67 7.18 Head (m) 0.10 ock 7 (F202A) Qactual (Us) 9.44	Qrolesse (L/s) 8.17 8.65 8.57 8.35 8.67 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 6.83 6.84 6.40 6.12 Discharge (L/s) 8.63 Qrelease (L/s) 9.44	Maximum Sto 26.69 17.09 11.17 7.85 5.75 3.32 2.01 1.28 1.06 Vreq (cu. m) 20.42 10 Vreq (cu. m) 20.42 10 10 10 10 10 10 10 10 10 10	16.47 Ro rage Depth: Vstored (m^3) 17.81 20.10 18.84 17.26 15.59 13.94 12.35 10.85 9.43 8.44 7.63 Vavail (cu. m) 72.80 O-vear Captu Vstored (m.3) 0.42 0.05 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.44 0.59 13.94 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.44 0.43 0.43 0.43 0.44 0.43 0.43 0.43 0.43 0.43 0.44 0.43 0.44 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.44 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05	m ³ Depth (mm) 92.5 97.7 97.0 94.5 97.4 97.9 94.4 88.0 84.7 81.5 75.7 72.4 69.3 Discharge Check 0.00 re - Tributary Casplii (L(s) 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Total Area = Q target = Q unc = Qramp = Qroof = Qparkina = Qparkina = Qtotal =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 89 Subdrainage Area: Area (ha): C: (min) 10 10 10 10 10 10 10 10 10 10	L/s L/s L/s L/s L/s L/s L/s L/s	Qactual (Us) Qactual 97.79 97.79 65.69 50.31 41.15 35.03 30.61 27.27 24.64 22.51 19.28 Head (m) 0.15 D Block 7 (F20) Qactual (Us) 25.81 25.81	Crolease (L/g) I 1173 12.56 12.86 12.81 12.81 12.81 12.81 12.48 12.48 12.49 11.85 11.45 11.45 11.45 11.42 Discharge (L/s) 22A) Qrelease (L/s) 25.81 25.81	3.73 Maximum Sto (L/s) 86.06 53.10 28.60 53.10 28.22 17.95 22.22 17.95 22.22 17.95 22.22 14.79 12.36 10.45 8.90 7.64 6.59 Vreq (cu. m) 67.83 10 20 20 20 20 20 20 20 20 20 2	90.86 Us Ro rage Depth: Vstored (m^3) 51.64 63.72 67.41 53.42 50.43 47.46 Vavail (cu. m) 72.80 Vavail (cu. m) 72.80 Vavail (cu. m) 72.80 Vavail 0.00	of - Tribuatry 150 Depth (mm) 132.8 142.6 145.0 145.0 145.0 145.0 145.0 145.0 145.0 145.0 145.0 145.0 145.0 139.6 134.2 139.8 129.3 Discharge Check 0.00	
al Area = 0.607 h taroat = 84.9 U gramp = 6.3 U Qraot = 0.0 U Qraot = 0.0 U Qramp = 6.3 U Qpark = 42.5 U Qpark = 42.5 U Subdrainage Area: 16 tc min) 10 20 30 40 50 60 70 80 90 100 110 120 ge: Roof Storage 2-year Water Level Subdrainage Area: Pr Area (ha): C: tc (tc) Min) 10 20 30 40 50 60 70 80 90 100 110 120 Subdrainage Area: Pr Area (ha): C: tc (tc) 100 100 100 100 100 100 100 10	s s s s s s s s s s s s s s s s s s s s	Qactual (U/s) 37,86 25,65 19,74 19,74 19,72 13,82 14,82 7,67 8,94 8,25 7,67 7,18 Head (m) 0,10 ock 7 (F202A) Qactual (L/s) 9,44 6,39	Crelease (L/s) 8.17 8.63 8.57 8.35 8.07 7.77 7.48 7.20 6.93 6.68 6.40 6.12 Discharge (L/s) 8.63	Maximum Sto Qstored (L/s) 29.69 17.85 5.75 4.33 3.32 2.57 1.28 1.06 Vreq (cu. m) 20.42 10 Qstored (L/s) 0.00 0.00	I6.47 Roor race Depth: 17.81 20.42 20.10 18.84 17.26 13.94 12.36 10.85 9.43 8.44 7.63 User Carbon O-year Captu Vectored (m*3) 0.00 0.00	m ³ Depth (mm) 92.5 97.7 97.0 94.5 91.4 88.0 84.7 81.5 81.5 75.7 72.4 69.3 Discharge Check 0.00 re - Tributary Caspill (LIS) 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Total Area = Q target = Q unc = Qramp = Qroof = Qparkina = Qparkina = Qtotal =	w Summary 0.607 84.9 0.0 16.4 9.3 52.9 Subdrainage Area: C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storage 100-year Water Level Subdrainage Area: C: tc (min) 120 100 100 100 100 100 100 100	L/s L/s L/s L/s L/s L/s L/s L/s	Qactual (L/s) 97.79 97.79 97.79 50.31 41.15 35.03 35.03 30.61 27.27 24.64 22.51 20.76 19.29 18.02 Head (m) 0.15 0 DBlock 7 (F20) Qactual Qactual (L/s) 25.81 17.34	Crelease (Us) 11.73 12.59 12.86 12.81 12.62 12.81 12.81 12.85 12.81 12.85 12.85 11.85 11.85 12.89 2A) Crelease C(Us) 25.81 17.34	3.73 Maximum Sto (L/s) 88.06 53.10 37.45 28.26 22.22 17.95 14.79 12.36 28.26 10.45 8.90 7.64 6.59 Vreq (cu. m) 6.783 10 0 0 0 0 0 0 0 0 0 0 0	90.86 L/s Ro rage Depth: 51.64 63.72 67.83 66.66 64.62 59.33 56.41 53.42 50.43 47.46 Vavail (cu.m) 72.80 D-year Captu Vavail (cu.m) 72.80 D-year Captu	of - Tribuatry Topoth (mm) 132.8 142.6 145.6 145.9 145.9 145.9 145.3 141.3 139.0 136.6 134.2 131.8 129.3 134.2 131.8 129.3 Discharge Check 0.00 0 0 0 0.00 0.00 0.00	
al Area = 0.607 h target = 84.9 U Qram = 0.0 U Gram = 6.3 U Qroof = 6.2 U Qpark = 42.5 U Subdrainage Area: Bi te (min) 10 20 30 40 50 60 70 80 90 100 110 120 22-year Water Level 2-year Water Level 2-year Water Level (min) 10 20 30 40 50 60 70 80 90 100 100 100 100 100 100 100	s s s s s s s s s s s s s s s s s s s s	Cactual (Us) 37,86 37,86 19,74 19,74 19,74 13,82 14,82 14,82 7,67 7,78 9,74 8,94 0,10 <t< td=""><td>Crelease (L/s) 8.17 8.63 8.57 8.35 8.77 7.48 7.77 7.48 6.68 6.40 6.12 Discharge (L/s) 8.63</td><td>Maximum Sto Qstored (L/s) 29.69 11.17 7.85 5.75 4.33 3.32 2.57 1.28 1.06 Vreq (cu. m) 20.42 10 Qstored (L/s) 0.00 0.00 0.00 0.00</td><td>I6.47 Roor race Depth: 17.81 20.42 20.10 18.84 17.26 13.94 12.36 10.85 9.43 8.44 7.63 User Capture Vavail (cu.m) 72.80 0-year Capture Vetored 0.00 0.00 0.00 0.00 0.00</td><td>m³ of - Tribuatry 150 Depth (mm) 92.5 97.7 97.0 94.5 91.4 88.0 84.7 81.5 78.5 75.7 72.4 69.3 Discharge Check 0.00 0.00 0.00 0.00 0.00 0.00</td><td>0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0</td><th>Total Area = Q target = Q unc = Qramp = Qroof = Qparkina = Qparkina = Qtotal =</th><td>w Summary 0.607 84.9 0.0 16.4 9.3 62.9 Subdrainage Area: C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storage 100-year Water Level Subdrainage Area: C: tc (min) 10 10 10 10 10 10 10 10 10 10</td><td>L/s L/s L/s L/s L/s L/s L/s L/s</td><td>Qactual (L/s) 97.79 97.79 97.79 50.31 41.15 35.03 35.03 30.61 27.27 24.64 22.51 20.76 19.29 18.02 Head (m) 0.15 0 DBlock 7 (F20 Qactual (L/s) 25.81 17.34 13.28 10.86 10.86</td><td>Crelease (Us) 11.73 12.59 12.86 12.81 12.82 12.83 12.84 12.85 12.85 12.85 11.85 11.85 12.89 2A) Crelease (Us) 25.81 17.34 13.28 13.86</td><td>3.73 Maximum Sto Octored (L/s) 88.06 53.10 37.45 28.26 22.22 17.95 14.79 12.36 28.26 10.45 8.90 7.64 6.59 Vreq (cu. m) 67.83 10 0 0.00 0.00 0.00 0.00</td><td>90.86 Us Ro rage Depth: Figure 2 Figure 2</td><td>of - Tribuatry Topology 150 Depth (mm) 132.8 142.6 145.5 145.5 145.5 145.5 145.5 145.3 141.3 139.0 136.6 134.2 131.8 129.3 Discharge Check 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td><td></td></t<>	Crelease (L/s) 8.17 8.63 8.57 8.35 8.77 7.48 7.77 7.48 6.68 6.40 6.12 Discharge (L/s) 8.63	Maximum Sto Qstored (L/s) 29.69 11.17 7.85 5.75 4.33 3.32 2.57 1.28 1.06 Vreq (cu. m) 20.42 10 Qstored (L/s) 0.00 0.00 0.00 0.00	I6.47 Roor race Depth: 17.81 20.42 20.10 18.84 17.26 13.94 12.36 10.85 9.43 8.44 7.63 User Capture Vavail (cu.m) 72.80 0-year Capture Vetored 0.00 0.00 0.00 0.00 0.00	m ³ of - Tribuatry 150 Depth (mm) 92.5 97.7 97.0 94.5 91.4 88.0 84.7 81.5 78.5 75.7 72.4 69.3 Discharge Check 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Total Area = Q target = Q unc = Qramp = Qroof = Qparkina = Qparkina = Qtotal =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 Subdrainage Area: C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storage 100-year Water Level Subdrainage Area: C: tc (min) 10 10 10 10 10 10 10 10 10 10	L/s L/s L/s L/s L/s L/s L/s L/s	Qactual (L/s) 97.79 97.79 97.79 50.31 41.15 35.03 35.03 30.61 27.27 24.64 22.51 20.76 19.29 18.02 Head (m) 0.15 0 DBlock 7 (F20 Qactual (L/s) 25.81 17.34 13.28 10.86 10.86	Crelease (Us) 11.73 12.59 12.86 12.81 12.82 12.83 12.84 12.85 12.85 12.85 11.85 11.85 12.89 2A) Crelease (Us) 25.81 17.34 13.28 13.86	3.73 Maximum Sto Octored (L/s) 88.06 53.10 37.45 28.26 22.22 17.95 14.79 12.36 28.26 10.45 8.90 7.64 6.59 Vreq (cu. m) 67.83 10 0 0.00 0.00 0.00 0.00	90.86 Us Ro rage Depth: Figure 2	of - Tribuatry Topology 150 Depth (mm) 132.8 142.6 145.5 145.5 145.5 145.5 145.5 145.3 141.3 139.0 136.6 134.2 131.8 129.3 Discharge Check 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
al Area = 0.607 h targat = 84.9 U Qram = 0.0 U Dramp = 6.3 U Qroof = 6.2 U Quork = 42.5 U Subdrainage Area: Bl Area (ha): C: C: C: C: C: C: C: C: C: C	s s s s s s s s s s s s s s	Cactual (Us) 37.86 25.65 19.74 16.20 13.82 12.10 13.82 12.82 7.67 7.18 Head (m) 0.10 Cock 7 (F202A) Qactual (L/s) 9.4.92 4.92 4.92 4.04	Qrolease (L/s) 8.17 8.63 8.57 8.56 8.07 7.48 7.20 6.83 6.40 6.12 Discharge (L/s) 9.44 6.39 4.92 9.44 6.39 4.92 4.04 3.45	Maximum Sto 26.69 77.09 77.09 77.09 77.69 77.69 77.69 77.69 77.69 77.69 77.69 77.69 77.69 77.69 7.20 1.21 1.28 1.06 Vreq (cu. m) 20.49 10 Vreq (cu. m) 20.49 10 0 0 0 0 0 0 0 0 0 0 0 0 0	16.47 Ro rage Depth: Vstored (m'3) 17.81 20.42 20.10 18.84 17.26 13.94 9.43 8.44 7.63 Vavail (cu. m) 72.80 0-year Captu Vetored (m'3) 0.00 0.00 0.00	m ³ of - Tribuatry 150 Depth (mm) 92.5 97.7 97.0 94.5 91.4 88.0 84.7 81.5 75.7 72.4 69.3 Discharge Check 0.00 re - Tributary Check 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Total Area = Q target = Q unc = Qramp = Qroof = Qparkina = Qparkina = Qtotal =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 Subdrainage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 100 100 100 100 100 100	L/s L/s L/s L/s L/s L/s L/s L/s	Qactual (Us) 97.79 95.69 50.31 41.15 35.03 30.61 27.27 24.64 22.51 19.28 18.02 19.28 Head (m) 0.15 DBock 7 (F20) Qactual (Us) 25.81 17.34 13.28 10.86 9.25 10.86	Crolease (L/g) I 1173 12.56 12.86 12.81 12.81 12.81 12.81 12.48 12.20 11.85 11.85 11.45 11.45 11.42 Discharge (L/s) (L/s) 2A) 25.81 11.328 10.86 9.25 10.86	3.73 Maximum Sto (L/s) 86.06 53.10 737.45 28.26 10.45 22.22 17.95 22.22 17.95 22.22 17.95 22.22 17.95 22.22 17.95 22.25 21.25 8.90 7.64 6.59 Vreq (cu. m) 67.83 10 0 0.00 0.00 0.00 0.00	90.86 90.86 Korade Depth: Vstored (m*3) 51.64 63.72 67.41 51.64 63.72 67.41 51.64 63.72 67.41 53.42 50.43 47.46 Vavail (cu. m) 72.80 Vavail (cu. m) (cu. m	of - Tribuatry 150 Depth (mm) 132.8 142.6 145.0 145	
I Area = 0.607 h target = 84.9 U Qunc = 0.0 U Jramp = 6.3 U Quors = 42.5 U Quork = 42.5 U Subdrainage Area: Bl Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 120 120 120 120 120 120 12	s s s s s s s s s s s s s s	Cactual (L/s) 37.86 25.65 19.74 18.20 13.22 12.10 13.22 13.22 7.67 7.18 Head (m) 0.10 cxtraft Qactual (L/s) 4.92 4.92 4.04 3.45 3.02	Qrolease (L/s) 8.17 8.63 8.57 8.56 8.07 7.48 7.20 6.93 6.40 6.12 Discharge (L/s) 9.44 6.39 4.92 9.44 6.39 4.92 4.04 3.45 3.02	Maximum Sto 26.69 77.09 11.17 7.85 5.75 5.75 3.32 2.01 1.28 1.06 Vreq (cu. m) 20.42 10 Vreq (cu. m) 20.42 10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00	16.47 Roo rage Depth: Vstored (m^3) 17.81 20.42 20.10 18.84 17.26 15.59 13.94 12.35 10.85 9.43 8.44 7.63 Vavail (cu. m) 72.80 0-year Captu Vstored (m^3) 0-year Captu	m ³ of - Tribuatry 150 Depth (mm) 92.5 97.7 97.7 97.7 97.9 94.5 91.4 88.0 84.7 81.5 75.7 72.4 69.3 Discharge Check 0.00 Check 0.00 re - Tributary Check 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Total Area = Q target = Q unc = Qramp = Qroof = Qparkina = Qparkina = Qtotal =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 Subdrainage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 100 100 100 100 100 100	L/s L/s L/s L/s L/s L/s L/s L/s	Qactual (Us) 97.79 95.69 95.031 41.15 35.03 30.61 27.27 24.64 22.51 19.28 18.02 19.28 Head (m) 0.15 DBlock 7 (F20) Qactual (Us) 25.81 17.34 13.28 10.86 9.25 8.08 7.20 7.20	Crolease (Leg) 1173 12 266 12 281 12 48 11 48 11 48 11 48 11 48 (L/s) 25 81 17 34 13 28 9 .925 28,08 7.20	3.73 Maximum Sto (L/s) 86.06 53.10 7.64 10.45 22.22 17.05 22.22 17.05 23.25 14.79 12.36 10.45 28.90 7.64 6.59 Vreq (cu. m) 67.83 10 0.00 0.00 0.00 0.00 0.00 0.00	90.86 Us Ro rage Depth: Vstored (m^3) 51.64 63.72 67.41 53.42 50.43 47.46 Vavail (cu. m) 72.80 Vavail (cu. m) 72.80 Vavail Vavail (cu. m) 72.80 Vavail (cu.	of - Tribuatry 150 Depth (mm) 132.8 142.6 145.6 145.9 145.0 145	
al Area = 0.607 h taroat = 84.9 U gramp = 6.3 U Qraot = 0.0 U Qramp = 6.3 U Qpark = 42.5 U Qpark = 42.5 U Subdrainage Area: Pi To To To To To To To To To To	s s s s	Cactual (Us) 37.86 25.65 19.74 19.74 19.72 19.74 19.74 19.75 7.67 7.78 9.84 6.77 7.18 Head (m) 0.10 Occk 7 (F202A) Qactual (L/s) 9.44 6.39 4.92 4.04 3.02 2.64	Crelease (L/s) 8.17 8.63 8.57 8.35 8.07 7.77 7.48 7.20 6.93 6.68 6.40 6.12 Discharge (L/s) 8.63	Maximum Sto Qstored (L/s) 29.69 17.85 5.75 4.33 3.32 2.57 1.28 1.06 Vreq (cu. m) 20.42 10 Qstored (L/s) 0.00	Varial (m*3) 17.81 20.42 20.41 17.81 20.42 13.94 12.36 10.884 7.726 13.94 12.35 9.43 8.44 7.63 0.43 0.444 72.80 0.vear Captu Vetored (m*3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	m ³ Depth (mm) 92.5 97.7 97.0 94.5 91.4 88.0 84.7 91.4 88.0 84.7 95.7 72.4 69.3 Discharge Check 0.00 re - Tributary Cspill (L/s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Total Area = Q target = Q unc = Qramp = Qroof = Qparkina = Qparkina = Qtotal =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 Subdrainage Area: C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storage 100-year Water Level Subdrainage Area: C: tc (min) 10 10 10 10 10 10 10 10 10 10	L/s L/s L/s L/s L/s L/s L/s L/s	Qactual (L/s) 97.79 97.79 97.79 97.79 95.031 41.15 35.03 30.61 27.27 24.64 22.51 19.28 18.02 19.28 Head (m) 0.15 0.65 0 Qactual (L/s) 25.61 17.34 13.28 10.86 9.25 8.08 7.20 6.50 6.50	Crelease (Us) 11.73 12.59 12.86 12.81 12.82 12.83 12.84 12.85 12.85 11.85 11.85 11.82 Discharge (Us) 2.89 2A) Qrelease (Us) 2.55 11.32 13.86 9.25 8.08 9.25 8.08 7.20 6.50	3.73 Maximum Sto Cstored (L/s) 88.06 53.10 37.45 28.26 22.22 17.95 14.79 12.36 28.26 28.26 10.45 8.90 7.64 6.59 Vreq (cu. m) 6.783 10 0 0.00 0.00 0.00 0.00 0.00	90.86 Us Ro rage Depth: Fig. 2 Fig	of - Tribuatry Topology 150 Depth (mm) 132.8 142.6 145.5 145.5 145.5 145.5 145.5 145.3 141.3 139.0 136.6 134.2 131.8 129.3 Discharge Check 0.00 0.	
I Area = 0.607 h taroat = 84.9 U Junc = 0.0 U Jramp = 6.3 U Qapark = 42.5 U Subdrainage Area: BL Area (ha): C: tc (min) 20 30 40 50 60 70 80 90 100 120 tc (min) 120 40 50 60 70 80 90 100 100 100 100 100 100 100	s s s s s s s s s s s s s s	Cactual (L/s) 37.86 25.65 19.74 18.20 13.22 12.10 13.22 13.22 7.67 7.18 Head (m) 0.10 cxtraft Qactual (L/s) 4.92 4.92 4.04 3.45 3.02	Qrolease (L/s) 8.17 8.63 8.57 8.56 8.07 7.48 7.20 6.93 6.40 6.12 Discharge (L/s) 9.44 6.39 4.92 9.44 6.39 4.92 4.04 3.45 3.02	Maximum Sto 26.69 77.09 11.17 7.85 5.75 5.75 3.32 2.01 1.28 1.06 Vreq (cu. m) 20.42 10 Vreq (cu. m) 20.42 10 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00	16.47 Roo rage Depth: Vstored (m^3) 17.81 20.42 20.10 18.84 17.26 15.59 13.94 12.35 10.85 9.43 8.44 7.63 Vavail (cu. m) 72.80 0-year Captu Vstored (m^3) 0-year Captu	m ³ of - Tribuatry 150 Depth (mm) 92.5 97.7 97.7 97.7 97.9 94.5 91.4 88.0 84.7 81.5 75.7 72.4 69.3 Discharge Check 0.00 Check 0.00 re - Tributary Check 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Total Area = Q target = Q unc = Qramp = Qroof = Qparkina = Qparkina = Qtotal =	w Summary 0.607 84.9 0.0 16.4 9.3 62.9 Subdrainage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 100 100 100 100 100 100 100	L/s L/s L/s L/s L/s L/s L/s L/s	Qactual (Us) 97.79 95.69 95.031 41.15 35.03 30.61 27.27 24.64 22.51 19.28 18.02 19.28 Head (m) 0.15 DBlock 7 (F20) Qactual (Us) 25.81 17.34 13.28 10.86 9.25 8.08 7.20 7.20	Crolease (Leg) 1173 12 266 12 281 12 48 11 48 11 48 11 48 11 48 (L/s) 25 81 17 34 13 28 9 .925 28,08 7.20	3.73 Maximum Sto (L/s) 86.06 53.10 7.64 10.45 22.22 17.05 22.22 17.05 23.25 14.79 12.36 10.45 28.90 7.64 6.59 Vreq (cu. m) 67.83 10 0.00 0.00 0.00 0.00 0.00 0.00	90.86 Us Ro rage Depth: Vstored (m^3) 51.64 63.72 67.41 53.42 50.43 47.46 Vavail (cu. m) 72.80 Vavail (cu. m) 72.80 Vavail Vavail (cu. m) 72.80 Vavail (cu.	of - Tribuatry 150 Depth (mm) 132.8 142.6 145.6 145.9 145.0 145	

Project #160401331, Petries Landing - Block 6, 7 and 8 Modified Rational Method Calculatons for Storage

Project #160401331, Petries Landing - Block 6, 7 and 8 Modified Rational Method Calculatons for Storage

Project #160401331, Petries Landing - Block 6, 7 and 8 Modified Rational Method Calculatons for Storage

Max Ponding Depth 0.00 m Max Ponding Depth 0.21 m 25.0 825 11 Downstream W/L 52.93 m Downstream W/L 52.93 m Stage Head Discharge Vreq Vavail Volume Stage Head Discharge Vreq Vavail Volume (m) (L/s) (cu. m) Check (m) (L/s) (cu. m) Check Check (m) Check	Lists Lists <th< th=""><th>odified Ratio</th><th>onal Meth</th><th>nod Calcula</th><th>tons for Sto</th><th>orage</th><th></th><th></th><th></th><th> Modified Rat</th><th>ional Method Calcu</th><th>latons for S</th><th>storage</th><th></th><th></th><th></th><th></th><th></th></th<>	odified Ratio	onal Meth	nod Calcula	tons for Sto	orage				 Modified Rat	ional Method Calcu	latons for S	storage					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		rea (ha):	0.203	ck 7 (UNC-1)		Ur	ncontrolled - N	lon Tributary		Area (ha):	0.203	lock 7 (UNC-1)	Ur	ncontrolled - I	Non Tributary	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	But	Г	tc	l (2 yr)	Qactual	Qrelease	Qstored	Vstored	Qspill		tc	l (100 yr)		Qrelease		Vstored	Qspill	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L																
40 3.24 3.71 3.71 0.00 <	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		20	52.03	5.87	5.87	0.00		0.00		20	119.95	16.92	16.92	0.00	0.00	0.00	
0 14/2 2/7 2/7 1/	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		40	32.86	3.71	3.71	0.00	0.00	0.00		40	75.15	10.60	10.60	0.00	0.00	0.00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	
$ \begin{array}{c c c c c c c } \hline \below & \below $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		70	21.91	2.47		0.00	0.00	0.00		70	49.79	7.02	7.02	0.00	0.00	0.00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		90	18.14	2.05	2.05	0.00	0.00	0.00		90	41.11	5.80	5.80	0.00	0.00	0.00	
Image: Section of the Control failer of (MC-2) were as the Con	Auge Auge <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$ \frac{10}{10} 1$	$ \frac{1}{2} + 1$		rea (ha):	0.028	ck 7 (UNC-2)		Ur	ncontrolled - N	lon Tributary		Area (ha):	0.028	lock 7 (UNC-2)	Ur	ncontrolled - I	Non Tributary	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \frac{1}{9} 1$	Г	tc	l (2 yr)							tc	l (100 yr)						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L												(L/s) 3.47				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c } \hline \begin{array}{c c c c c c c c c c c c c c c c c c c $		20	52.03	0.81	0.81	0.00	0.00	0.00		20	119.95	2.33	2.33	0.00	0.00	0.00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		40	32.86	0.51	0.51	0.00	0.00	0.00	1	40	75.15	1.46	1.46	0.00	0.00	0.00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \frac{1}{10} & \frac{1}{10}$		50 60			0.44				1	50 60				0.00	0.00	0.00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \frac{1}{10} + \frac{1}{10}$		70	21.91	0.34	0.34	0.00	0.00	0.00	1	70	49.79	0.97	0.97	0.00	0.00	0.00	
100 9,750 0,23 0,24 0,00	$ \frac{1}{10} & \frac{1}{15} & \frac{1}{25} & \frac{1}{25}$									1								
120 14.56 0.23 0.23 0.00 <th< td=""><td>100 14.58 0.23 0.00 0.00 0.00 100 0.64 0.64 0.64 0.64 0.60 0.00 Baddeninge Ares Pering Biols 7 (F2h h) C 0.75 0.28 0.64 0.64 0.64 0.60 0.00 Mass Bade 0.69 C 0.75 0.28 0.94 0.64 0.64 0.64 0.60 0.00 Mass Bade 0.69 C 0.75 0.52 0.95 0.64 <th0.75< th=""> 0.65 0.65 <</th0.75<></td><td></td><td>100</td><td>16.75</td><td>0.26</td><td>0.26</td><td>0.00</td><td>0.00</td><td>0.00</td><td>1</td><td>100</td><td>37.90</td><td>0.74</td><td>0.74</td><td>0.00</td><td>0.00</td><td>0.00</td><td></td></th<>	100 14.58 0.23 0.00 0.00 0.00 100 0.64 0.64 0.64 0.64 0.60 0.00 Baddeninge Ares Pering Biols 7 (F2h h) C 0.75 0.28 0.64 0.64 0.64 0.60 0.00 Mass Bade 0.69 C 0.75 0.28 0.94 0.64 0.64 0.64 0.60 0.00 Mass Bade 0.69 C 0.75 0.52 0.95 0.64 <th0.75< th=""> 0.65 0.65 <</th0.75<>		100	16.75	0.26	0.26	0.00	0.00	0.00	1	100	37.90	0.74	0.74	0.00	0.00	0.00	
Area (n):: 0.699 C: Control Contro Contro Control Contro	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	
Lens Lens <thlens< th=""> Lens Lens <thl< td=""><td> </td><td></td><td>rea (ha):</td><td>0.059</td><td>(F201A)</td><td></td><td></td><td>Controlle</td><td>d - Tributary</td><td></td><td>Area (ha):</td><td>0.059</td><td>7 (F201A)</td><td></td><td></td><td>Controll</td><td>ed - Tributary</td><td></td></thl<></thlens<>			rea (ha):	0.059	(F201A)			Controlle	d - Tributary		Area (ha):	0.059	7 (F201A)			Controll	ed - Tributary	
10 758 9.20 9.20 0.00 0.00 20 22.64 6.73 9.22 0.00 0.00 40 22.64 5.33 9.20 0.00 0.00 60 22.64 5.33 9.20 0.00 0.00 60 22.64 5.33 9.20 0.00 0.00 60 23.64 5.33 9.20 0.00 0.00 60 23.64 2.37 9.20 0.00 0.00 60 16.84 2.37 9.20 0.00 0.00 10 15.67 2.64 9.20 0.00 0.00 10 15.67 2.64 9.20 0.00 0.00 10 15.67 2.64 9.20 0.00 0.00 10 15.67 2.64 9.20 0.00 0.00 10 15.67 2.64 1.75 0.00 0.00 10 15.67 1.76 1.76	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											l (100 yr)						
30 40.04 4.79 9.20 0.00 0.00 40 2.24 3.23 0.20 0.00 0.00 60 2.45 2.24 9.20 0.00 0.00 60 2.45 2.24 9.20 0.00 0.00 60 2.45 2.24 9.20 0.00 0.00 60 1.57 1.40 2.27 0.00 0.00 100 1.57 1.40 9.20 0.00 0.00 0.00 110 1.57 1.46 9.20 0.00 0.00 0.00 0165 5.201 8.20 0.00 0.00 0.00 0.00 0.00 0165 5.00 0.00	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L																
40 22.86 3.33 9.20 0.00 0.00 0.00 90 21.64 2.32 0.00 0.00 0.00 0.00 0.00 90 21.64 2.27 9.20 0.00	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		20	52.03			0.00							26.72	0.00			
50 23.64 3.36 9.20 0.00 0.00 60 24.64 3.36 9.27 2.00 0.00 80 19.31 2.27 9.20 0.00 0.00 80 19.31 2.27 9.20 0.00 0.00 100 16.72 2.17 9.20 0.00 0.00 101 16.72 2.17 9.20 0.00 0.00 101 16.72 2.17 9.20 0.00 0.00 101 16.72 2.17 9.20 0.00 0.00 101 16.72 2.17 9.20 0.00 0.00 102 37.60 5.67 2.57.2 0.00 0.00 103 32.80 6.67 2.57.2 0.00 0.00 103 32.80 6.66 m m m m 104 175 9.20 0.00 0.00 m m med med med m m m m m m m m m <	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	
70 2191 262 9.20 0.00 0.00 80 1983 2.17 9.20 0.00 0.00 10 1984 2.17 9.20 0.00 0.00 10 1987 2.17 9.20 0.00 0.00 10 1987 2.17 9.20 0.00 0.00 10 1987 2.17 9.20 0.00 0.00 10 1987 1.86 9.20 0.00 0.00 100 1987 1.86 9.20 0.00 0.00 100 1987 1.46 0.00 0.00 0.00 1010 120 10.00 mm 0.00 0.00 0.00 1010 100 0.00 mm 0.00 0.00 0.00 0.00 1010 100 100 0.00 0.00 0.00 0.00 0.00 1010 100 0.00 0.00 0.00 0.00 0.00 0.00 1010 100 0.00 0.00 0.00	0 2191 2.42 9.20 0.00 <t< td=""><td></td><td>50</td><td>28.04</td><td>3.36</td><td>9.20</td><td>0.00</td><td>0.00</td><td></td><td></td><td></td><td>63.95</td><td>9.57</td><td>26.72</td><td>0.00</td><td>0.00</td><td></td><td></td></t<>		50	28.04	3.36	9.20	0.00	0.00				63.95	9.57	26.72	0.00	0.00		
50 1614 2.17 9.20 0.00 0.00 100 16.78 2.21 9.20 0.00 0.00 100 16.78 2.21 9.20 0.00 0.00 101 16.57 1.84 9.20 0.00 0.00 rame Suffice Storage Acce CB206 Strates Storage Acce CB207 0.61 0.61 Orifice Dameter 10.20/05 more Teaching Teach	90 18.14 2.17 9.20 0.00 0.00 10 16.75 2.01 9.20 0.00 0.00 110 15.7 1.89 9.20 0.00 0.00 110 15.7 1.89 9.20 0.00 0.00 111 15.7 1.89 0.00 0.00 0.00 111 15.7 1.89 0.00 0.00 0.00 00 14.16 1.85 2.57 0.00 0.00 110 15.7 1.89 0.00 0.00 0.00 0.00 110 15.40 1.9 0.00 0.00 0.00 0.00 0.00 110 15.7 1.89 0.00																	
100 15.75 2.01 9.20 0.00 0.00 110 15.57 1.86 9.20 0.00 0.00 120 15.67 2.817 0.00 0.00 120 15.67 2.817 0.00 0.00 120 15.67 2.817 0.00 0.00 120 15.67 2.817 0.00 0.00 120 100 5.77 2.817 0.00 0.00 110 15.20 100 5.77 2.817 0.00 0.00 100 5.77 2.817 0.00 0.00 0.00 0.00 100 0.00 mm 100 100 100 100 0.00 0.00 100 92 100 0.00	100 16.75 2.01 9.20 0.00 0.00 112 15.57 1.74 9.20 0.00 0.00 112 1.56 1.74 9.20 0.00 0.00 or Surface Standson 1.74 9.20 0.00 0.00 Order Detention 1.02 0.00 0.00 0.00 0.00 Order Detention 64.64 m m 0.61 0.61 0.61 Order Detention 64.64 m m 0.61 0.61 0.61 0.61 Order Detention 64.61 m 0.00 m 0.61																	
120 14.56 1.74 9.20 0.00 0.00 max Surface Storage Acove CB200B Strates Storage Acove CB200B Strates Storage Acove CB200B Orifice Diameter: 10.20 mm Neme C = 0.61 To Elevation 54.66 m Neme C = 0.61 Max Proving Depth 0.00 m States Storage Acove CB200B Downstream WL 52.93 m Neme C = 0.61 States Storage Acove CB200B m States Storage Acove CB200B Neme C = 0.61 States Storage Acove CB200B m States Storage Acove CB200B Neme C = 0.61 States Storage Acove CB200B m States Storage Acove CB200B Neme C = 0.61 States Storage Acove CB200B m States Storage Acove CB200B Neme C = 0.61 States Storage Acove CB200B m States Storage Acove CB200B Neme C = 0.61 States Storage Acove CB200B m States Storage Acove CB200B Storage States Storage Acove Acove CB200B m Storage Acove	120 14.56 1.74 9.20 0.00 0.00 ne: Surface Storage Alove C62008 120 32.89 4.92 2.72 0.00 0.00 Ordine Equation: 0 0 < 0.04(2)					9.20	0.00								0.00			
Ortice Equator: 0 = 0.4(2g)Y0.5 0.00 0.01 Ortice Equator: 0 = 0.4(2g)Y0.5 Where C = 0.61 Ortice Equator: 0 = 0.4(2g)Y0.5 Where C = 0.61 Ortice Equator: 0 = 0.4(2g)Y0.5 Where C = 0.61 Ortice Equator: 0 = 0.4(2g)Y0.5 Where C = 0.61 Ortice Equator: 0 = 0.4(2g)Y0.5 Where C = 0.61 Ortice Equator: 0 = 0.4(2g)Y0.5 Where C = 0.61 Ortice Equator: 0 = 0.4(2g)Y0.5 Where C = 0.61 Ortice Equator: 0 = 0.4(2g)Y0.5 Where C = 0.61 Output: 0 = 0.00 0.00 Output: 0 = 0.00 0.00 Output: 0 = 0.01 0.00 Subartinge Area: Parting Block 7 (P2018) Controlled - Tributary Area (10 / 1775 6 40.47 / 13.57 / 13.59 Controlled - Tributary Area (10 / 1775 6 40.47 / 13.57 / 13.59 / 20.90 0.00 10 / 1775 6 40.47 / 13.57 / 13.59 / 20.90 0.00 10 / 1775 6 40.47 / 13.57 / 13.59 / 20.90 0.00 10 / 1775 6 40.47 / 13.57 / 13.59 / 20.90 0.00 10 / 1775 6 40.47 / 13.57 / 13.59 / 20.90 0.00 10 / 1775 6 40.47 / 13.57 / 13.57 / 13.59 / 20.90 0.00 10 / 1775 6 40.47 / 13.57 / 13.57 / 13.57 / 13.57 0.00 10 / 175	Ordice Equation: 0 = CdA(2g)r/0.5 Ordice Durander: 10:0.0 Max Ponding Depth 0.00 m Max Ponding Depth 0.00 m Max Ponding Depth 0.00 m Downstream WL 52.33 m Ordice Equation: 0 = CdA(2g)r/0.5 Ordice Durander: 10:200 mm 0.644 m Max Ponding Depth 0.00 m Max Ponding Depth 0.00 m Downstream WL 52.33 m Where C = 0.61 Ordice Equation: 0 = CdA(2g)r/0.5 Ordice																	
Ordice Dancet: Invert Elevation 102.00 mm bescharge Confice Dancete: 102.00 mm 102.00 mm Numer Porting polit 0.00 m me 100 mm	Orifice Diameter: 102.00 mm Invert Elevation 56.66 m Trice Elevation 56.41 m Mac Proving Depth 0.00 m Downstream WL 52.93 m 2-year Water Leve Stage Head Discharge Vine Vanil Volume 2-year Water Leve Stage Head Discharge Vine Vanil Volume 2-year Water Leve Stage Head Discharge Vine Vanil Volume 2-year Water Leve Stage Head Discharge Vine Vanil Volume 2-year Water Leve Staderalasge Area: Parking Bick 7 (F201B) Controlled - Tributary One O									Storage:								
TrG Elevation 56.41 m Max Pording Depth 0.00 m Downstream WL 52.93 m 2-year Water Level 56.41 m 56.41 m 100-year Water Level 56.41 m 110 mm fm 100-year Water Level 56.41 m 100-year Water Level 56.41 m 100 mm fm 110 mm fm 100 mm fm	TrG Elevation 66.41 m Max Ponding Depth 0.00 m Downstream WL 52.93 m 2-year Water Level 56.41 1.75 0.00 56.41 1.75 0.00 m 2-year Water Level 56.41 1.75 0.00 0.00 50.41 1.75 0.00 0.00 0.00 Subdrainage Area: Parking Block 7 (F201B) Controlled - Tributary 0.00 Area (ha): 0.107 C: 0.91 Controlled - Tributary Area (ha): 0.107 Cactual Crelease Catored Vetored 10 176.56 4.64 1.357 3.68 2.92.46 40 22.86 7.14 1.280 0.00 0.00									1				vvhere C =	0.61			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Stage Head Discharge Vreq Vanil Volume 2-year Water Level 56.41 1.75 0.00	T/G E Max Pondir	Elevation ng Depth	56.41 0.00	m m						T/G Elevation Max Ponding Depth	56.41 0.00	m					
2-year Water Level 56.41 1.75 9.20 0.00 OK Subdrainage Area: Parking Block 7 (F201B) Area (ha): 0.107 0.00	2-year Water Level 56.41 1.75 9.20 0.00 0.K Subdrainage Area: Parking Block 7 (F201B) Controlled - Tributary 0.00 0.K Area (high): 0.107 C: 0.73 0.00 0.00 0.K Ite: (1/2)*/ Controlled - Tributary Controlled - Tributary Controlled - Tributary Controlled - Tributary Ite: (1/2)*/ Controlled - Tributary Controlled - Tributary Controlled - Tributary Ite: (1/2)*/ Controlled - Tributary Controlled - Tributary Controlled - Tributary Ite: (1/2)*/ Calculat Orelease Controlled - Tributary Ite: (1/2)*/ Controlled - Tributary Controlled - Tributary Ite: (1/2)*/ Controlled - Tributary Controlled - Tributary		Γ		Head								Head					
Area (ha): 0.107 C: 0.73 Image (ha): 0.107 C: 0.91 Image (ha): 0.00 0.00 Image (ha): 0.00 0.00 Image (ha): 0.00 0.00 0.00 Image (ha): 0.017 0.02 0.00 0.00 Image (ha): 0.02 0.00 0.00 0.00 Image (ha): 0.02 1.13 1.57 1.60 1.357	Area (ha): 0.107 C: 0.73 Image: triangle (ha): 0.107 C: 0.73 Image: triangle (ha): 0.107 C: 0.73 Image: triangle (ha): 0.107 C: 0.91 Image: triangle (ha): 0.107 Image: triangle (ha): 0.107 Image: triangle (ha): 0.103 0.00 0.00 Image: triangle (ha): 0.00 0.00 0.00 0.00 Image: triangle (ha): 0.00 0.00 0.00 0.00 0.00 Image: triangle (ha): 0.00				1.75			0.00	OK				1.75			0.00	OK	
(min) (min/m) (L/s) (L/s) (m/s) (L/s) <	$ \begin{array}{ $		rea (ha):	0.107	(12010)			00110010	a moduly		Area (ha):	0.107	(12010)			Control		
20 52.03 11.30 12.80 0.00 0.00 0.00 30 40.04 87.01 12.80 0.00 0.00 0.00 30 91.87 22.49 13.57 18.99 22.79 40 32.86 7.14 12.80 0.00 0.00 0.00 40 75.15 20.49 13.57 18.99 22.79 60 24.56 5.33 12.80 0.00 0.00 0.00 60 56.85 15.17 13.57 6.83 16.39 70 21.91 47.66 12.80 0.00 0.00 0.00 70 49.79 13.51 13.57 0.00 0.00 90 18.14 3.34 12.80 0.00 0.00 90 11.11 16.15.77 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 100 37.90 10.29 13.57 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 110 35.20 9.56 13.57 0.00 0.	20 52.03 11.30 12.80 0.00 0.00 30 40.04 8.70 12.80 0.00 0.00 30 30 91.87 24.94 13.57 11.37 20.46 13.57 13.57 20.47 40 32.86 7.14 12.80 0.00 0.00 0.00 40 75.15 20.49 13.57 18.39 22.79 60 24.56 5.33 12.80 0.00 0.00 0.00 60 55.89 15.17 13.57 16.89 5.77 80 19.83 4.31 12.80 0.00 0.00 0.00 60 55.89 15.17 13.57 0.00 0.00 90 18.14 3.94 12.80 0.00 0.00 0.00 100 37.90 10.29 13.57 0.00 0.00 0.00 100 16.75 3.84 12.80 0.00 0.00 0.00 110 35.20 9.56 13.57 0.00 0.00 0.00 110 35.20 9.56 13.57 0.00 0.00<		(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)			(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)		
30 40.04 8.70 12.80 0.00 0.00 40 32.86 7.14 12.80 0.00 0.00 50 28.06 7.14 12.80 0.00 0.00 50 28.04 6.09 12.80 0.00 0.00 50 63.95 17.36 13.57 3.78 11.37 20.46 50 28.04 6.09 12.80 0.00 0.00 50 63.95 17.36 13.57 3.78 11.37 20.46 50 28.04 6.09 12.80 0.00 0.00 50 63.95 17.37 13.57 1.60 5.77 70 21.91 4.76 12.80 0.00 0.00 0.00 80 44.99 13.57 0.00 0.00 10 100 15.57 3.38 12.80 0.00 0.00 0.00 10 37.90 10.29 13.57 0.00 0.00 110 15.57 3.38 12.80 0.00 0.00 0.00 10 37.90 10.29 13.57	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									1	10 20	178.56 119.95				20.94 22.79		
50 28,04 6.09 12,80 0.00 0.00 60 24,56 5.33 12,80 0.00 0.00 70 21,91 4.76 12,80 0.00 0.00 80 19,83 4.31 12,80 0.00 0.00 90 18,14 3.94 12,80 0.00 0.00 100 16,75 3.84 12,80 0.00 0.00 120 14,56 3.16 12,80 0.00 0.00 110 15,57 3.38 12,80 0.00 0.00 120 14,56 3.16 12,80 0.00 0.00 110 15,57 3.38 12,80 0.00 0.00 120 14,56 3.16 12,80 0.00 0.00 110 15,57 3.38 12,80 0.00 0.00 120 14,56 3.16 12,80 0.00 0.00 1110 15,57 0.00 0.00 0.00 112 32,89 8,93 13,57 0.00 0.00 120 32,89 8,93 13,57 0.00 0.00 120 32,89 8,93 13,57	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		30	40.04	8.70	12.80	0.00	0.00		1	30	91.87	24.94	13.57	11.37	20.46		
60 24.66 5.33 12.80 0.00 0.00 70 21.91 4.76 12.80 0.00 0.00 70 49.79 13.51 13.57 0.00 0.00 80 19.83 4.31 12.80 0.00 0.00 80 44.99 12.21 13.57 0.00 0.00 100 16.75 3.84 12.80 0.00 0.00 100 37.80 10.29 13.57 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 110 35.20 9.66 13.57 0.00 0.00 varae: Surface Storage Above CBMH200C 12.80 0.00 0.00 110 35.20 9.66 13.57 0.00 0.00 varae: Surface Storage Above CBMH200C Storage: Surface Storage Above CBMH200C Storag	60 24.56 5.33 12.80 0.00 0.00 70 24.91 4.76 12.80 0.00 0.00 70 49.79 13.51 13.57 1.60 5.77 80 19.83 4.31 12.80 0.00 0.00 80 44.99 12.21 13.57 0.00 0.00 100 16.75 3.84 12.80 0.00 0.00 0.00 100 37.90 10.29 13.57 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 0.00 110 35.20 9.56 13.57 0.00 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 0.00 110 35.20 9.56 13.57 0.00 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 0.00 110 35.20 9.56 13.57 0.00 0.00 0.00 120 32.89 8.93 13.57 0.00 0.00 0.00 0.00 0.00																	
80 19.83 4.31 12.80 0.00 0.00 90 18.14 3.34 12.80 0.00 0.00 100 16.75 3.84 12.80 0.00 0.00 110 15.57 3.38 12.80 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 120 12.80 0.00 0.00 0.00 120 32.89 8.93 13.57 0.00 0.00 race: Surface Storage Above CBMH200C Storage: Surface Storage Above CBMH200C 14.99 14.91 15.57 13.57 0.00 0.00 Invert Elevation 54.67 m T T T T 15.57 15.57 15.57 15.57 <	80 19.83 4.31 12.80 0.00		60	24.56	5.33	12.80	0.00	0.00		1	60	55.89	15.17	13.57	1.60	5.77		
90 18.14 3.94 12.80 0.00 0.00 100 16.75 3.64 12.80 0.00 0.00 110 15.57 3.38 12.80 0.00 0.00 100 37.90 10.29 13.57 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 0.00 110 35.20 9.56 13.57 0.00 0.00 vrage: Surface Storage Above CBMH200C Storage Surface Storage Above CBMH200C Storage Surface Storage Above CBMH200C Orifice Equation: LMF105 LMF105	90 18.14 3.94 12.80 0.00 0.00 100 16.75 3.64 12.80 0.00 0.00 100 37.90 10.29 13.57 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 100 37.90 10.29 13.57 0.00 0.00 ge: Surface Storage Above CBMH200C 5torage Surface Storage Above CBMH200C Storage Storage Above CBMH200C 0.00 0.00 0.00 Invert Elevation 54.67 m m 116 54.67 m meet Elevation 56.38 m meet Elevation 56.38 m 100 250 62.5 11 250 62.5 11 250 62.5 11 Downstream W/L 52.93 m 100 100 35.7 20.00 0.00 0.00 120 32.89 8.93 13.57 0.00 0.00 0.00 100 right Elevation 54.67 m meet Elevation 1.04.70 1.04.70 100 25.0 62.5 11 25.0 62.5 11 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									1								
110 15.57 3.38 12.80 0.00 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 0.00 vrage: Surface Storage Above CBMH200C 56 13.57 0.00 0.00 Orifice Equation: LMF105 5 5 110 35.20 9.56 13.57 0.00 0.00 Orifice Equation: LMF105 5 <td>110 15.57 3.38 12.80 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 120 32.89 8.93 13.57 0.00 0.00 ge: Surface Storage Above CBMH200C Storage: Surface Storage Above CBMH200C Surface Storage Above CBMH20C Surface Storag</td> <td></td> <td>90</td> <td>18.14</td> <td>3.94</td> <td>12.80</td> <td>0.00</td> <td>0.00</td> <td></td> <td>1</td> <td>90</td> <td>41.11</td> <td>11.16</td> <td>13.57</td> <td>0.00</td> <td>0.00</td> <td></td> <td></td>	110 15.57 3.38 12.80 0.00 0.00 120 14.56 3.16 12.80 0.00 0.00 120 32.89 8.93 13.57 0.00 0.00 ge: Surface Storage Above CBMH200C Storage: Surface Storage Above CBMH200C Surface Storage Above CBMH20C Surface Storag		90	18.14	3.94	12.80	0.00	0.00		1	90	41.11	11.16	13.57	0.00	0.00		
120 14.56 3.16 12.80 0.00 0.00 120 32.89 8.93 13.57 0.00 0.00 vrage: Surface Storage Above CBMH200C Storage: Surface Storage Above CBMH200C Surface Storage Above CBMH200C Surface Storage Above CBMH200C Surface Storage Above CBM120C Surface Storage Above CBM120C <td< td=""><td>120 14.56 3.16 12.80 0.00 0.00 120 32.89 8.93 13.57 0.00 0.00 ae: Surface Storage Above CBMH200C Storage: Surface Storage Above CBMH200C Confice Equation: LMF105 Storage: Surface Storage Above CBMH200C Confice Equation: LMF105 Storage: Confice Equation: LMF105 Storage: Storage: Confice Equation: LMF105 Storage: Storage:<</td><td></td><td>100 110</td><td></td><td></td><td></td><td>0.00 0.00</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>0.00 0.00</td><td>0.00 0.00</td><td></td><td></td></td<>	120 14.56 3.16 12.80 0.00 0.00 120 32.89 8.93 13.57 0.00 0.00 ae: Surface Storage Above CBMH200C Storage: Surface Storage Above CBMH200C Confice Equation: LMF105 Storage: Surface Storage Above CBMH200C Confice Equation: LMF105 Storage: Confice Equation: LMF105 Storage: Storage: Confice Equation: LMF105 Storage: Storage:<		100 110				0.00 0.00			1					0.00 0.00	0.00 0.00		
Orifice Equation: LMF105 Orifice Equation: LMF105 Invert Elevation 54.67 m Invert Elevation 54.67 m Invert Elevation 52.97 m Invert Elevation 52.93 m Invert Elevation 52.93 m Invert Elevation 52.93 m Invert Elevation Invert	Orifice Equation: LMF105 Invert Elevation 54.67 m T/G Elevation 56.38 m Max Ponding Depth 0.00 m Downstream WL 52.93 m 2-year Water Level 56.38 1.71 100-year Water Level 56.59 1.92 1.32.7 22.79 23.76 OK									1								
Invert Elevation 54.67 m Pipe Storage T/G Elevation 56.38 m Invert Elevation 56.36 m Invert Elevation 56.38 m Invert Elevation 52.93 m Voi Downstream W/L 52.93 m Downstream W/L 52.93 m S2.93 m Stage Head Discharge Vreq Vavail Volume (m) (ULS) (ou.m) Check Stage Head Discharge Vreq Vavail Volume	Invert Elevation 54.67 m Pipe Storage TrG Elevation 56.38 m Invert Elevation 56.38 m View View </td <td></td> <td></td> <td></td> <td>1H200C</td> <td></td> <td></td> <td></td> <td></td> <td>Storage:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				1H200C					Storage:								
T/G Elevation 56.38 m Length Size Vol Max Ponding Depth 0.00 m m Size Vol Vol Downstream W/L 52.93 m m Size Vol Size Vol Size Head Discharge Vreq Vavail Volume (m) (Lus) (cu. m) Check Size Max Ponding Depth 0.21 m	TriG Elevation 56.38 m m Length Size Vol Vol No No Length Size Vol Vol No No<				m												Pipe Storage	
Downstream W/L 52.93 m Downstream W/L 52.93 m Stage Head Discharge Vreq Vavail Volume Stage Head Discharge Vreq Vavail Volume (m) (L/s) (cu. m) Check (m) (L/s) (cu. m) Check	Downstream W/L 52.93 m Downstream W/L 52.93 m Stage Head Discharge Vroq Vavail Volume (m) (L/s) (cu. m) Check. (m) (L/s) (cu. m) Check. 2-year Water Level 56.38 1.71 12.80 2.376 OK 100-year Water Level 56.59 1.92 13.57 22.79 23.76 OK	T/G E	Elevation	56.38	m					1	T/G Elevation	56.38	m			Length	Size	Vol
(m) (L/s) (cu. m) (cu. m) Check (m) (L/s) (cu. m) (cu. m) Check	(m) (Us) (cu. m) (cu. m) Check (m) (Us) (cu. m) Check 2-year Water Level 56.59 1.12 1.26 2.37 O.K 100-year Water Level 56.59 1.92 1.357 22.79 23.76 O.K															25.0	825	1;
(m) (L/s) (cu. m) (cu. m) Check (m) (L/s) (cu. m) Check	(m) (Us) (cu. m) (cu. m) Check (m) (Us) (cu. m) Check 2-year Water Level 56.58 1.71 12.80 2.37.6 O.K 100-year Water Level 56.59 1.92 13.57 22.77 23.76 O.K		Γ	Stage						1		Stage						
		2-vear Wa	ter Level	56.38						1	100-vear Water Level	56 59						

Project #160401331, Petries Landing - Block 6, 7 and 8 Modified Rational Method Calculatons for Storage

Project #160401331, Petries Landing - Block 6, 7 and 8 Modified Rational Method Calculatons for Storage inage Area: Parking Block 7 (F200B) Area (ha): 0.071 C: 0.68
 Subdrainage Area:
 Parking Block 7 (F200B)

 Area (ha):
 0.071

 C:
 0.85
 Controlled - Tributary Controlled - Tributary 0.071 0.68 0.071 0.85 l (2 yr) l (100 yr tc Qactua Qreleas Qstore Qactu Qre Ostore Vstored Vstored (L/s) 5.98 (L/s) 4.33 1.01 0.00 (m^3) 2.60 1.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (m^3) 14.20 16.61 16.43 15.18 13.34 11.14 8.70 6.07 3.32 0.46 0.00 0.00 (min) 10 20 30 40 50 60 70 80 90 100 110 120 (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 (L/s) 10.31 (min) 10 20 30 40 50 60 70 80 90 100 110 120 (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 (L/s) 29.96 (L/s) 23.07 13.84 9.13 6.32 4.45 3.09 2.07 1.27 0.61 0.08 0.00 0.00 20.12 15.41 12.61 10.73 9.38 8.35 7.55 6.90 6.36 5.91 5.52 6.98 5.37 4.41 3.76 3.30 2.94 2.66 2.44 2.25 2.09 1.95 5.98 5.37 4.41 3.76 3.30 2.94 2.66 2.44 2.25 2.09 1.95 Storage Surface Stora Above CB200A Storage Surface Storage Above CB200A Orifice Equation 1 ME70 Orifice Equation I ME70 Invert Elevation T/G Elevation 54.41 56.23 Invert Elevation T/G Elevation 54.41 m 56.23 m m m m Max Ponding Depth 0.10 52.93 Max Ponding Depth Downstream W/L 0.30 m 52.93 m Downstream W/L Stage Head Vreq Vavai Stage Discharge Vreq Vavai Discharge Volume Head Volume (m) (L/s) 5.98 (cu. m) (cu. m) Check (m) (L/s) (cu. m) 16.61 (cu. m) Check 100-year Water Level 2-year Water Level 56.33 1.92 2.60 33.30 56.53 2.12 6.28 33.30 nage Area: La Area (ha): C: scaped Area Block 7 (F202B) 0.043 0.20 Subdrainage Area: Area (ha): C: Control d - Tributary ed Area Block 7 (F202B) Controlled - Tributary 0.043 0.25 I (2 yr) (mm/hr 76.81 52.03 40.04 32.86 Qactu (L/s) 1.84 1.24 0.96 0.79 Qrelea (L/s) 1.84 1.24 0.96 0.79 Vstore (m^3) 0.00 0.00 0.00 0.00 Qstore (L/s) 0.00 0.00 0.00 0.00 l (100 yr Qreleas (L/s) 5.34 3.58 2.75 2.25 1.91 1.67 1.49 1.34 1.23 1.13 1.05 0.98 Vstored (m^3) tc (min) Jac. (L/s) 5 34 tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 (mm/hr) 178.56 119.95 91.87 75.15 0.00 0.00 0.00 0.00 0.00 0.00 5.34 3.58 2.75 2.25 20 30 40 50 60 70 80 90 100 110 120 0.67 0.67 0.59 0.52 0.47 0.43 0.40 0.37 0.35 63.95 28.04 0.00 1.91 1.67 0.00 24.56 0.00 55.89 1.67 1.49 1.34 1.23 1.13 1.05 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 55.89 49.79 44.99 41.11 37.90 35.20 32.89 21.91 19.83 0.52 0.47 0.43 0.40 0.37 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.14 16.75 15.57 14.56 ace Storage Above CB202A Surface Sto e Above CB202 Orifice Equation: Q = CdA(2gh)^0.5 Orifice Diameter: 83.00 mm Invert Elevation 53.47 m T/G Elevation 54.83 m Max Ponding Depth 0.00 m Downstream W/L 52.93 m Orifice Equation: Q = Orifice Diameter: Invert Elevation T/G Elevation Max Ponding Depth Downstream W/L = CdA(2gh)^0.5 83.00 53.47 54.83 0.00 52.93 Where C = 0.61 Where C = 0.61 mm mm m m m m m m m Stag Hear Disc Vred Volume Check Discha Va Check (m) 1.36 (L/s) 1.84 (L/s) (cu. m 0.00 (cu. m (m) (cu. m (cu. m 2-year Water Level 54 83 100-year Water Level 54.83 7 Peak Flow St 0.760 106.2 9.9 9.4 8.6 29.8 Total Area = Q target = Q unc = Qramp = Qroof = Qparking = 0.760 106.2 28.7 25.8 12.9 51.9 25.34 107.23 m³ Volume = m ha L/s L/s L/s L/s ha L/s L/s L/s L/s Q target = Q unc = Qramp = Qroof = Qparking = Qtotal = 58 1/9 Qtotal = 119 13.06 L/s 1/9 Subdrainage Area: Area (ha): C: Parking Block 8 (F300A) 0.139 0.80 Subdrainage Area: Area (ha): C: Parking Block 8 (F300A) 0.139 0.91 Controlled - Tributary Controlled - Tributary tc I (2 yr Qactua Ore Qstore Vstorer tr l (100 vr Oactua Qre 0s red Vstored (min) 10 (L/s) 23.74 (L/s) (L/s) (m^3) 10.68 (min) 10 (L/s) 62.96 (L/s) 6.25 (L/s) 56.71 (m³) 34.03 mm/h 76.81 mm/hr 178.56 16.08 12.38 10.16 20 30 40 50 60 70 80 90 100 110 120 52.03 40.04 10.14 6.43 4.21 2.72 1.65 0.83 0.19 0.00 0.00 0.00 0.00 12.17 11.58 20 30 40 50 60 70 80 90 100 110 120 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 42.30 32.39 $\begin{array}{c} 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \\ 6.25 \end{array}$ 36.04 26.14 20.24 16.30 13.46 11.30 9.61 8.24 7.11 6.16 5.35 43.25 47.05 48.59 48.89 48.44 47.47 46.13 44.51 42.67 40.65 38.49 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56 10.12 26.50 22.55 19.71 17.56 15.86 14.50 13.36 12.41 11.60 8.67 7.59 6.77 6.13 5.61 5.18 4.81 4.50 8.17 5.93 3.48 0.89 0.00 0.00 0.00 0.00 Surface Sto Above CB300/ Surface Storage Above CB300A torage Orifice Equation: Invert Elevation T/G Elevation Max Ponding Depth Downstream W/L Orifice Equation: Invert Elevation T/G Elevation Max Ponding Depth Downstream W/L LMF70 52.97 m 54.77 m 0.30 m 51.46 m LMF70 52.97 54.77 0.10 51.46 m m m Stage Head Stage Discharge Discharge Vro Vavai Volume Vrea Vavai (cu. m) 48.89 (m) 1.90 Check OK (L/s) 6.25 Check OK (L/s) 5.94 (cu. m) 12.17 (cu. m) 56.01 (cu. m) 56.01 (m) 2.10 2-year Water Level 54.87 100-year Water Level 55.07

Project #160401331, Petries Landing - Block 6, 7 and 8 Modified Rational Method Calculatons for Storage

Project #160401331, Petries Landing - Block 6, 7 and 8 Modified Rational Method Calculatons for Storage

Iodified R	ational Metr	lod Calcula	atons for Sto	rage				-	Modified Ratio	nal Method Ca	liculations for S	storage					
Subdra	ainage Area: Bl Area (ha): C:	LDG Block 8 (0.236 0.90	R300A)		Maximum Sto	orage Depth:	Roof 150 mm			Subdrainage Ar Area (I	wea: BLDG Block 8 na): 0.236 C: 1.00	(R300A)		Maximum Sto	rage Depth:	Roof 150 n	nm
	tc	l (2 yr)	Qactual	Qrelease	Qstored	Vstored	Depth			tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	
	(min) 10	(mm/hr) 76.81	(L/s) 45.35	(L/s) 10.15	(L/s) 35.20	(m^3) 21.12	(mm) 89.4	0.00	L	(min) 10	(mm/hr) 178.56	(L/s) 117.15	(L/s) 14.68	(L/s) 102.46	(m ³) 61.48	(mm) 129.3	
	20	52.03	30.72	10.67	20.05	24.06	94.0	0.00		20	119.95	78.70	15.69	63.00	75.61	138.2	
	30 40	40.04 32.86	23.64 19.41	10.58 10.29	13.07 9.12	23.52 21.88	93.1 90.6	0.00		30 40	91.87 75.15	60.27 49.30	15.99 16.00	44.29 33.30	79.72 79.92	140.8 140.9	
	40 50	28.04	16.56	9.93	9.12	21.00	90.6 87.5	0.00		40 50	63.95	49.30	15.88	26.08	79.92	139.8	
	60	24.56	14.50	9.56	4.94	17.77	84.2	0.00		60	55.89	36.67	15.69	20.98	75.54	138.1	
	70	21.91	12.94	9.20	3.74	15.70	81.0	0.00		70	49.79	32.67	15.46	17.21	72.28	136.1	
	80	19.83	11.71	8.85	2.86	13.71	78.0	0.00		80	44.99	29.52	15.20	14.32	68.72	133.9	
	90 100	18.14 16.75	10.71 9.89	8.52 8.12	2.19	11.83 10.63	75.0 71.5	0.00		90 100	41.11 37 90	26.97 24.87	14.94 14.67	12.04 10.20	65.00 61.21	131.5 129.1	
	110	15.57	9.19	7.75	1.45	9.55	68.2	0.00		110	35.20	23.10	14.39	8.70	57.43	126.8	
	120	14.56	8.60	7.41	1.19	8.56	65.2	0.00		120	32.89	21.58	14.11	7.47	53.81	124.2	
raqe:	Roof Storage								Storage:	Roof Storage							
		Depth (mm)	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Discharge Check				Depth (mm)	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Discharge Check	
2-year	Water Level	93.96	0.09	10.67	24.06	94.40	0.00			100-year Water Le		0.14	16.00	79.92	94.40	0.00	
Subdra	ainage Area: Pa	arking Ramp E	Block 8 (F300B)		10	10-year Captur	e - Tributary				ea: Parking Ramp	Block 8 (F3008	3)	10	0-year Captu	e - Tributary	
	Area (ha): C:	0.030 0.90								Area (I	na): 0.030 C: 1.00						
	tc (min)	l (2 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Qspill (L/s)		[tc (min)	l (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Qspill (L/s)	
	10	76.81	5.76	5.76	0.00	0.00	0.00		L	10	178.56	14.89	14.89	0.00	0.00	0.00	
	20	52.03	3.91	3.91	0.00	0.00	0.00			20	119.95	10.00	10.00	0.00	0.00	0.00	
	30 40	40.04	3.01 2.47	3.01	0.00	0.00	0.00			30	91.87 75.15	7.66	7.66	0.00	0.00	0.00	
	40	32.86 28.04	2.47	2.47 2.10	0.00	0.00	0.00			40 50	75.15 63.95	6.27 5.33	6.27 5.33	0.00	0.00	0.00	
	60	24.56	1.84	1.84	0.00	0.00	0.00			60	55.89	4.66	4.66	0.00	0.00	0.00	
	70	21.91	1.64	1.64	0.00	0.00	0.00			70	49.79	4.15	4.15	0.00	0.00	0.00	
	80	19.83	1.49	1.49	0.00	0.00	0.00			80	44.99	3.75	3.75	0.00	0.00	0.00	
	90 100	18.14 16.75	1.36 1.26	1.36 1.26	0.00	0.00	0.00			90 100	41.11 37.90	3.43 3.16	3.43 3.16	0.00	0.00	0.00	
	110	15.57	1.20	1.20	0.00	0.00	0.00			110	35.20	2.94	2.94	0.00	0.00	0.00	
	120	14.56	1.09	1.09	0.00	0.00	0.00			120	32.89	2.74	2.74	0.00	0.00	0.00	
Subdra	ainage Area: Ui Area (ha): C:	ncontrolled Blo 0.368 0.20	ock 8 (UNC-3)		U	ncontrolled - N	lon Tributary			Subdrainage Ar Area (I	ea: Uncontrolled B na): 0.368 C: 0.25	lock 8 (UNC-3)	I	Ur	ncontrolled - N	Ion Tributary	
	tc	l (2 yr)	Qactual	Qrelease	Qstored	Vstored	Qspill			tc	l (100 yr)	Qactual	Qrelease		Vstored	Qspill	
	(min) 10	(mm/hr) 76.81	(L/s) 15.71	(L/s) 15.71	(L/s) 0.00	(m^3) 0.00	(L/s) 0.00		L	(min) 10	(mm/hr) 178.56	(L/s) 45.67	(L/s) 45.67	(L/s) 0.00	(m ³) 0.00	(L/s) 0.00	
	20	52.03	10.65	10.65	0.00	0.00	0.00			20	119.95	30.68	30.68	0.00	0.00	0.00	
	30	40.04	8.19	8.19	0.00	0.00	0.00			30	91.87	23.50	23.50	0.00	0.00	0.00	
	40	32.86	6.72	6.72	0.00	0.00	0.00			40	75.15	19.22	19.22	0.00	0.00	0.00	
	50	28.04	5.74	5.74	0.00	0.00	0.00			50	63.95	16.36	16.36	0.00	0.00	0.00	
	60 70	24.56 21.91	5.02 4.48	5.02 4.48	0.00	0.00	0.00			60 70	55.89 49.79	14.30 12.73	14.30 12.73	0.00	0.00	0.00 0.00	
	80	19.83	4.46	4.46	0.00	0.00	0.00			80	44.99	11.51	11.51	0.00	0.00	0.00	
	90	18.14	3.71	3.71	0.00	0.00	0.00			90	41.11	10.51	10.51	0.00	0.00	0.00	
	100	16.75	3.43	3.43	0.00	0.00	0.00			100	37.90	9.69	9.69	0.00	0.00	0.00	
	110 120	15.57 14.56	3.19 2.98	3.19 2.98	0.00	0.00	0.00			110 120	35.20 32.89	9.00 8.41	9.00 8.41	0.00	0.00	0.00	
	120	14.50	2.90	2.90	0.00	0.00	0.00			120	32.09	0.41	0.41	0.00	0.00	0.00	
k 8 Peak	Flow Summar	у							Block 8 Peak Flow	v Summary							
tal Area = Q target =					Volume =	36.23 1	m ³		Total Area = Q target =	0.773 99.5	ha L/s			Volume =	128.81	m ³	
Q unc =									Q unc =	45.7	L/s						
Qramp =									Qramp =	14.9	L/s						
Qroof =	10.7 L/	s							Qroof =	16.0	L/s						
Qparking =		s							Q parking =	6.3	L/s						
		-							Q total =	82.8	L/s			-16.69	L/s		
Q total =		s							Overall Site Poles	eo Pato							
	Release Rate								Overall Site Relea Q target =		10.6 L/s						

Project #160401331, Petries Landing - Block 6, 7 and 8 Roof Drain Design Sheet, Area R100A Block 6 Standard Watts Drainage Model R1100 Accuflow Roof Drains

	Rating	Curve			Volume E	stimation		
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0016	0	0.025	32	0	0	0.025
0.050	0.0006	0.0032	2	0.050	127	2	2	0.050
0.075	0.0009	0.0047	7	0.075	287	5	7	0.075
0.100	0.0013	0.0063	17	0.100	509	10	17	0.100
0.125	0.0016	0.0079	33	0.125	796	16	33	0.125
0.150	0.0019	0.0095	57	0.150	1146	24	57	0.150

	Drawdown	n Estimate	1
Total	Total		
Volume	Time	Vol	Detention
(cu.m)	(sec)	(cu.m)	Time (hr)
0.0	0.0	0.0	0
1.9	588.7	1.9	0.16353
6.9	1065.3	5.0	0.45943
16.7	1555.8	9.8	0.8916
32.9	2052.0	16.2	1.46161
57.0	2551.0	24.1	2.17022

Rooftop Storage Summary

Total Building Area (sq.m)		1433	Excludes known areas with no roof storage available
Assume Available Roof Area (sq.m)	80%	1146	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		5	
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).
Max. Allowable Storage (cu.m)		57	
Estimated 100 Year Drawdown Time (h)		2.1	

From Watts Drain Catalogue h no roof storage available Head (m) L/s

	eau (III)	L/S				
Open		75%	50%	25%	Closed	
	0.025	0.3155	0.31545	0.31545	0.31545	0.31545
	0.050	0.6309	0.6309	0.6309	0.6309	0.6309
	0.075	0.9464	0.86749	0.78863	0.70976	0.6309
	0.100	1.2618	1.10408	0.94635	0.78863	0.6309
	0.125	1.5773	1.34067	1.10408	0.86749	0.6309
	0.150	1.8927	1.57726	1.2618	0.94635	0.6309

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	2yr	100yr	Available
Qresult (cu.m/s)	0.006	0.009	-
Depth (m)	0.099	0.147	0.150
Volume (cu.m)	16.5	54.6	57.3
Draintime (hrs)	0.883	2.097	

Project #160401331, Petries Landing - Block 6, 7 and 8 Roof Drain Design Sheet, Area BLDG Block 7 Standard Watts Drainage Model R1100 Accuflow Roof Drains

	Rating Curve								
- [Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
	(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
	0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
	0.025	0.0003	0.0022	0	0.025	40	0	0	0.025
	0.050	0.0006	0.0044	3	0.050	162	2	3	0.050
	0.075	0.0009	0.0066	9	0.075	364	6	9	0.075
	0.100	0.0013	0.0088	22	0.100	647	12	22	0.100
	0.125	0.0016	0.0110	42	0.125	1011	21	42	0.125
	0.150	0.0019	0.0132	73	0.150	1456	31	73	0.150

Drawdown Estimate								
Total	Total							
Volume	Time	Vol	Detention					
(cu.m)	(sec)	(cu.m)	Time (hr)					
0.0	0.0	0.0	0					
2.4	534.2	2.4	0.14839					
8.8	966.7	6.4	0.41691					
21.2	1411.9	12.5	0.80909					
41.8	1862.1	20.6	1.32635					
72.5	2314.9	30.7	1.96939					

Rooftop Storage Summary

Total Building Area (sq.m)		1820	Excludes known areas with no roof storage available
Assume Available Roof Area (sq.m)	80%	1456	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		7	
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).
Max. Allowable Storage (cu.m)		73	
Estimated 100 Year Drawdown Time (h)		1.9	

From Watts Drain Catalogue

le	ad (m)					
Open		75%	50%	25%	Closed	
	0.025	0.3155	0.31545	0.31545	0.31545	0.31545
	0.050	0.6309	0.6309	0.6309	0.6309	0.6309
	0.075	0.9464	0.86749	0.78863	0.70976	0.6309
	0.100	1.2618	1.10408	0.94635	0.78863	0.6309
	0.125	1.5773	1.34067	1.10408	0.86749	0.6309
	0.150	1.8927	1.57726	1.2618	0.94635	0.6309

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results		2yr	100yr	Available
G	Qresult (cu.m/s)	0.009	0.013	-
Depth (m)		0.098	0.146	0.150
V	/olume (cu.m)	20.4	67.8	72.8
D	Praintime (hrs)	0.789	1.872	

Project #160401331, Petries Landing - Block 6, 7 and 8 Roof Drain Design Sheet, Area BLDG Block 8 Standard Watts Drainage Model R1100 Accuflow Roof Drains

	Rating Curve								
	Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
	(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
	0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
	0.025	0.0003	0.0028	0	0.025	52	0	0	0.025
	0.050	0.0006	0.0057	3	0.050	210	3	3	0.050
	0.075	0.0009	0.0085	12	0.075	472	8	12	0.075
	0.100	0.0013	0.0114	28	0.100	839	16	28	0.100
	0.125	0.0016	0.0142	55	0.125	1311	27	55	0.125
	0.150	0.0019	0.0170	94	0.150	1888	40	94	0.150

	Drawdown Estimate								
Total	Total								
Volume	Time	Vol	Detention						
(cu.m)	(sec)	(cu.m)	Time (hr)						
0.0	0.0	0.0	0						
3.1	538.8	3.1	0.14966						
11.4	974.9	8.3	0.42048						
27.5	1423.9	16.2	0.81601						
54.2	1878.0	26.7	1.33769						
94.0	2334.7	39.8	1.98622						

Rooftop Storage Summary

Total Building Area (sq.m)		2360	Excludes known areas with no roof storage available
Assume Available Roof Area (sq.m)	80%	1888	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		9	
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).
Max. Allowable Storage (cu.m)		94	
Estimated 100 Year Drawdown Time (h)		1.8	

From Watts Drain Catalogue He d (m) 1 /

ł	ead (m) I					
Open		75%	50%	25%	Closed	
	0.025	0.3155	0.31545	0.31545	0.31545	0.31545
	0.050	0.6309	0.6309	0.6309	0.6309	0.6309
	0.075	0.9464	0.86749	0.78863	0.70976	0.6309
	0.100	1.2618	1.10408	0.94635	0.78863	0.6309
	0.125	1.5773	1.34067	1.10408	0.86749	0.6309
	0.150	1.8927	1.57726	1.2618	0.94635	0.6309

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	2yr	100yr	Available
Qresult (cu.m/s)	0.011	0.016	-
Depth (m)	0.094	0.141	0.150
Volume (cu.m)	24.1	79.9	94.4
Draintime (hrs)	0.748	1.757	

3223701 CANADA INC C/O BRIGIL HOMES

DESIGN BRIEF PETRIE'S LANDING II PHASE 2

31464.5.2.2

REVISED AUGUST 2012 REVISED OCTOBER 2012 REVISED NOVEMBER 2012 REVISED AUGUST 2013 REVISED NOVEMBER 2013 REVISED FEBRUARY 7, 2014

• Pavement Structure:

		Tł	nickness (mm)
	Layer	Car Parking Areas	Local Streets & Heavy Traffic Areas (Fire Route)
Wear Course:	Superpave 12.5 Asphaltic Concrete	50	40
Binder Course:	Superpave 19.0 Asphaltic Concrete		50
Base:	OPSS Granular "A" Crushed Stone	150	150
Sub-Base:	OPSS Granular "B" Type II	300	400

- Minimum Performance Grade (PG) 58-34 asphalt cement should be used;
- 3.0 m long sub-drain should be installed at each catchbasin.

The geotechnical report also provides guidelines regarding the permissible maximum grade raise(s) for the property without additional construction measures such as pre-loading, raft foundation, deep foundations or others approved alternatives such as light weight fill. The maximum grade raises vary between 1.8 m to 4.0 m depending on the building type and percentage of consolidation considered.

It should be noted that a copy of the proposed grading for the subject site has been forwarded to Paterson Group for its review and confirmation of its compliance with the grade raise recommendations.

2. MUNICIPAL SERVICES

As the Prestige Circle sewers and watermain were designed to accommodate the anticipated development along its perimeter, a simple extension of the main-line services into each sub-block will provide servicing for each of the buildings. The main design parameters for the various municipal services were designed as per the applicable City of Ottawa requirements and have been summarized in the sub-sections below.

2.1 Water Distribution

Prior to the detailed design of Prestige Circle, boundary conditions for the watermain at the intersection of Tenth Line Road and North Service Road were provided by City staff. Based on the proposed concept plan, grading and the existing boundary conditions, a 200mm diameter watermain loop complete with hydrants was proposed. The supporting hydraulic analysis demonstrated that the following municipal requirements and Fire Underwriters recommended flows for protection will be exceeded:

•	Average daily demand	350 l/cap/day (residential) 15,000 l/Ha/day (institutional)
•	Peak daily demand	875 l/cap/day (residential) 22,500 l/Ha/day (institutional)
•	Peak hour demand	1,925 l/cap/day (residential) 40,500 l/Ha/day (institutional)
•	Fire flow rate	8,000 l/min (townhouses & 3-storey apartments) 15,000 l/min (institutional)

- Minimum hydraulic grade line during max hour 275 kPa
- Minimum hydraulic grade line during max day and fire flows 140 kPa

Hence, the water servicing to Phase 2 will simply be accomplished through a number of connections to the 200mm diameter watermain along Prestige Circle.

Refer to Appendix C for the hydraulic analysis.

2.2 Wastewater

2.2.1 EXISTING CONDITIONS

In 2002 the 900mm diameter Ottawa River Sub Trunk sanitary sewer was constructed by the City of Ottawa to accommodate the Petrie's Landing II lands as well as additional lands upstream.

The sub-trunk detailed design was prepared by Stantec Consulting Ltd. It included a flow allowance of 50,000 I/Ha/d with a peaking factor of 1.5 for the Petrie's Landing II property.

The Prestige Circle sanitary sewer design was based on the applicable City of Ottawa Design Guidelines and the preliminary concept plan which originally proposed 248 apartments and 170 retirement units for a total of 418 units.

The current concept plan for the overall development is now proposing a total of 405 units. The breakdown is as follows:

- Existing Phase 1: 40 units
- Phase 2 (subject phase): 268 units
- Future Phase 3: 97 units

Thus, the number of units is within the allocated number as based on the original concept plan and associated sanitary sewer design.

It should also be noted that the distribution of the population along the perimeter of Prestige Circle will have no negative impact on the sanitary sewer as it has a significant level of residual capacity distributed along its entire length which provides flexibility in the design of the locations for the proposed block connections. Refer to Appendix D for Petrie's Landing design sheet and drawing.

2.2.2 DESIGN CRITERIA

The sanitary flows for Block 2 were determined based on the following design criteria which includes, but is not limited to the following:

- Population:
 1.8 persons per apartment/condo unit
- Domestic Flow: 350 l/cap per day
- Domestic Peak Factor: Harmon Formula
- Institutional: 50,000 l/d/Ha
- Institutional Peak Factor: 1.5
- Extraneous Flow: 0.28 l/s/Ha
- Minimum Pipe Size: 200 mm diameter
- Maximum Velocity 3.0 m/s
- Minimum Velocity 0.6 m/s

Refer to Appendix D for the resulting sanitary design sheet and drawing.

2.3 Storm Sewer

2.3.1 EXISTING CONDITIONS

In 1995, *McNeely Engineering Consultants Ltd.* was commissioned by the former Township of Cumberland to prepare a Master Drainage Plan (MDP) for the area surrounding and including the Petrie's Landing II lands. The report states that stormwater flows from the development are to be directed to the Brisebois Creek SWM facility prior to its discharge to the Ottawa River. This will ensure that quality control constraints are met. The report also recommended that post-development flows from the proposed Petrie's Landing II lands site be limited to 150 l/s/ha in order to insure that the downstream SWM facility meets its design targets.

With the above-noted constraints in mind, the overall stormwater management design for the subdivision took into account the two proposed phases within the development. Hence, both phases 1 and 2 were allocated 61.6 L/s and 461.35L/s respectively.

However, Phase 2 has subsequently been reduced in size and a third phase has been created. Thus, the initial allocation of 461.35 L/s for Phase 2 has been distributed proportionally based on the areas of the new Phases 2 and 3. The resulting flow allocation for Phase 2 is 361.87 L/s.

2.3.2 DESIGN PARAMETERS

The rational method in combination with the following parameters was used in the sizing of the storm sewer minor system for Block 2:

• Design Storms

The 5 year design storm event was used in the evaluation of the site, consistent with the City of Ottawa Sewer Design Guidelines (November, 2004).

Run-Off Coefficients

The run-off coefficients utilized for the minor system design were derived from analysis of representative samples of drainage areas within the proposed Phase. Coefficients of 0.20 and 0.90 were utilized in the analysis to represent landscaped versus hard surface areas.

• Time of Concentration

Inlet times of 10 min. for parking/hard surface areas were utilized as per the City of Ottawa Sewer Design Guidelines (November 2004).

3. STORMWATER MANAGMENT

Phase 2 is 2.91 Ha in size and as previously noted was reallocated 361.87 L/s as minor system flow as a result of its new area.

Of the 2.91 Ha design area, a total of 0.55 Ha has been left to discharge uncontrolled from the site due to grading or other constraints that do not feasibly allow for collection and control of runoff. Based on a 100-year event, where the runoff coefficient of the uncontrolled area is equal to an average of 0.30, the uncontrolled flow rate can be determined as follows:

- Q_{Uncontrolled} = 2.78*C*i_{100yr}*A, where:
 - **C** = Average site runoff coefficient uncontrolled area = 0.30
 - $\begin{aligned} \mathbf{i}_{100yr} &= \text{Intensity of 100-year storm event (mm/hr)} \\ &= 1735.688 * (T_c + 6.014)^{-0.820} \\ &= 178.56 \text{ mm/hr; where } T_c = 20 \text{ minutes} \end{aligned}$
 - A = Uncontrolled Area (Ha) = 0.55 ha

Therefore,

• **Q**_{Uncontrolled} = 2.78 X 0.30 X 119.95mm/hr X 0.55 Ha = 55.02 L/s

Additionally, an area of the site equivalent to 0.27 Ha is taken up by depressed parking ramps, which must accommodate the 100-year flow. This flow rate can also be calculated as:

 $Q_{parking}$ = 2.78*C*i_{100yr}*A = 2.78 * 0.80 * 119.95 * 0.27 = 107.22 L/s

The maximum allowable release rate from the remainder of the site can then be determined as:

$$Q_{max allowable} = Q_{restricted} - Q_{uncontrolled} - Q_{parking}$$
$$= 361.87 \text{ L/s} - 55.02 \text{ L/s} - 107.22 \text{ L/s}$$
$$= 199.62 \text{ L/s}$$

Restricting flow into the minor system from the controlled portion of the site will be achieved through the use of inlet control devices and surface ponding. The size and type of each inlet control device was determined via the Modified Rational Method and are a function of the size of the drainage area and the amount of surface storage available on-site.

Any runoff generated from storms in excess of the site's release rate will be stored on-site and gradually released into the minor system so as not to surcharge the proposed sewers. Ponding storage will be provided at specific locations. Overland flow routes have been provided in the grading and surface designs to permit emergency overflow drainage from the site.

Refer to Appendix E for the modified rational method calculations, inlet control device sizing and ponding plan.

4. GRADING

As per standard practice, the design of the site grading takes into account a number of factors. Efforts are made to ensure that the proposed grading will tie in well with the surrounding areas. This includes matching the existing grades at controlling areas, such as property lines, existing roadways and geotechnical restraint lines, where no modification of the existing grades is permissible.

Other factors, such as stormwater management and geotechnical grade raise limitations also play a part in the grading of the site. Major overflow routes have been provided in order to ensure that emergency overflow can be conveyed from the site when required. Where possible, some areas have been graded to maximize on-site ponding. The depth of water has been limited to a maximum of 0.30 m at all locations.

5. UTILITIES

As part of Prestige Circle's second and final phase of construction, all utility purveyors will be extending their current plant within the Right-of-Way in order to provide servicing to Phase 2 and future Phase 3. As part of the detail design for Phase 2, servicing designs from Hydro One, Rogers, Bell and Enbridge have been requested.

FUS WATER SUPPLY FOR PUBLIC FIRE PROTECTION 1991

EXAMPLES OF REQUIRED FIRE FLOWS (REVISED)

For convenience in making general estimates some examples of required fire flows in typical buildings are provided below. In establishing fire flows for areas of a Municipality as yet undeveloped, but where a broad range of commercial, institutional, residential and industrial occupancies may be expected to be created under modern building code requirements, an outside design figure of 15,000 L/min appears likely to be suitable. When very large or high fire load buildings are probable, 25,000 L/min is more appropriate. It should be noted particularly that the tendency to install automatic sprinkler protection in large area and high hazard industrial and commercial buildings is a key factor in keeping required fire flows within ecomonically acceptable limits in many cases.

The following examples suppose no significant exposures to other buildings nor sprinkler protection unless specified. Where areas are given they are ground areas unless specified.

DETACHED DWELLINGS (TOTAL FLOOR AREAS)

Under 100 m²

 $101 \text{ m}^2 - 200 \text{ m}^2$

= 2,000 L/min = 3,000 L/min

Over 200 m² = 4,000 L/min - Add for exposures to similar buildings on both sides:

	Ū
Over 30 m	- nil
30 — 10 m	add 1,000 L/min
10 — 3 m	add 2,000 L/min
less than 3 m	see Note "D", if Fra

- less than 3 m see Note "D", if Frame. Brick, add 3,000 L/min.
- If wood shingle or shake roofs are prevalent, add 2,000 to 4,000 L/min.
- Modern residential subdivisions of 1 and 2 storey single family homes detached 3 to 6 m require usually 4,000 to 5,000 L/min.
- Old congested two and three family tenements detached less than 3 m and running the length of the block may require 15,000 to 25,000 L/min and should be calculated according to Note "D".
- Modern Row or Town House groups may require 6,000 to 10,000 L/min including adjoining exposures, providing required fire separations are adequate.

APARTMENT BUILDINGS

- 3 storeys, frame, 300 m² = 7,000 L/min and exposure coverage.
- 4 storeys, brick, 2,000 m² = 15,000 L/min and exposure coverage.
- 3 or more storeys, fire resistive, 5,600 m² with cut off shafts and stairs = 10,000 L/min and exposure coverage.

INSTITUTIONAL BUILDINGS

- 1 storey, fire resistive school of 2,300 $m^2 = 5,000 L/min$
- 3 storey, brick ordinary school of 2,300 $m^2 = 15,000 L/min$
- 3 or more storey, fire resistive hospital with adequate floor separations 1,000 m², no exposures = 4,000 L/min.

INDUSTRIAL BUILDINGS

- Typical industrial park, 1 storey ordinary, area 3,700 m² with average combustible contents fire load =14,000 L/min.
- Frame warehouse 1 storey, moderate contents fire load 3,700 m² = 20,000 L/min.
- Warehouse high fire load contents, brick non-combustible, 1 storey, 14,000 m² = 25,000 L/min.
 With full adequate automatic sprinkler protection (item 3, P.13) 13,000 L/min.
- Traditional 3 storey brick, ordinary factory with high fire load. 9,300 m² = 35,000 L/min.

17

IBI GROUP

333 PRESTON STREET OTTAWA, ON

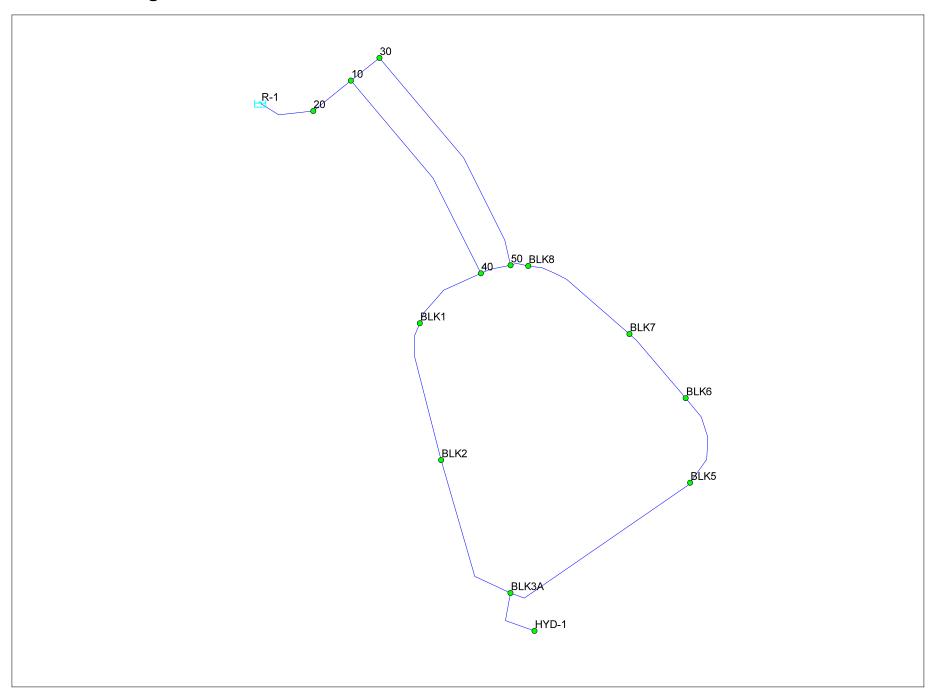
K1S 5N4

WATERMAIN DEMAND CALCULATION SHEET

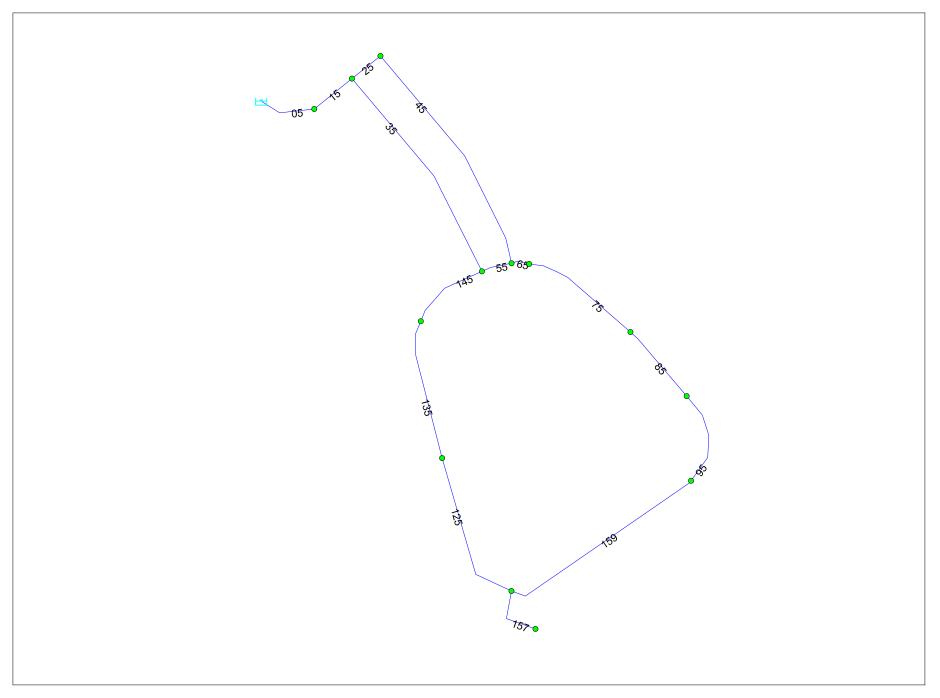
PROJECT :
LOCATION :
DEVELOPER :

PETRIE'S LANDING II - PHASE 2 CITY OF OTTAWA BRIGIL PLATINUM
 FILE:
 31464.5.7

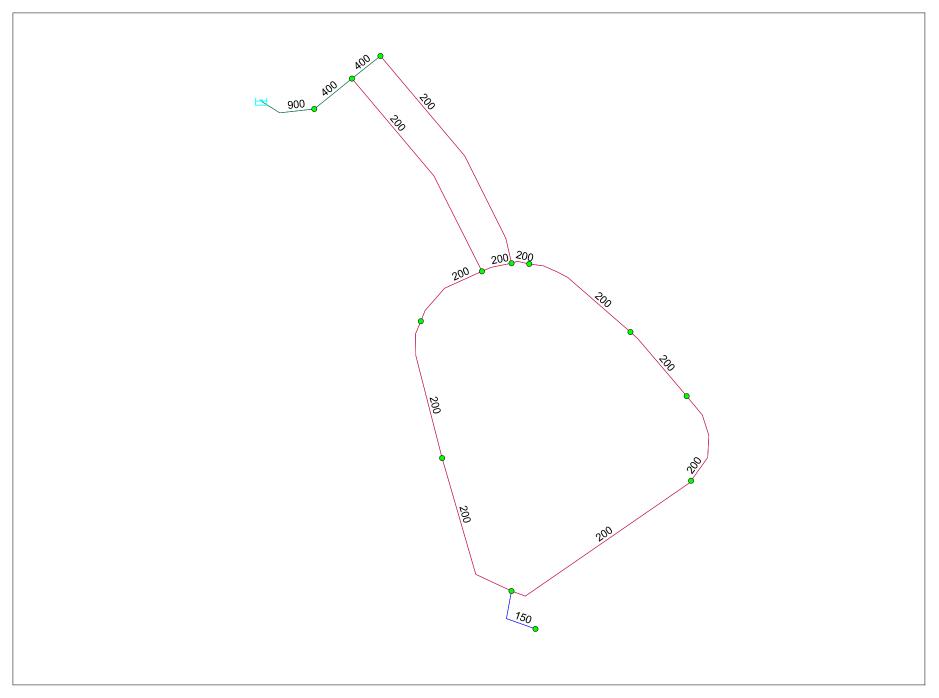
 DATE:
 2013-11-28


 DESIGN:
 RPK

 PAGE :
 1 OF 1


		RESID	ENTIAL		NON	-RESIDEN	ITIAL	A١	/ERAGE D	AILY	MAXIMUM DAILY			MAX	JRLY	FIRE	
NODE	UN	UNITS			INDTRL COMM. INST.			0	DEMAND ((l/s)	D	EMAND (I	/s)	D	EMAND (I	/s)	DEMAND
NODE	тн	APT	RES. (ha)	POP'N	(ha.)	(ha.)	(ha.)	Res.	Non-res.	Total	Res.	Non-res.	Total	Res.	Non-res.	Total	(l/min)
BLK1		40		72				0.29	0.00	0.29	0.73	0.00	0.73	1.60	0.00	1.60	8,000
BLK2		40		72				0.29	0.00	0.29	0.73	0.00	0.73	1.60	0.00	1.60	8,000
BLK3A		92		166				0.67	0.00	0.67	1.68	0.00	1.68	3.69	0.00	3.69	8,000
BLK5		76		137				0.55	0.00	0.55	1.39	0.00	1.39	3.05	0.00	3.05	8,000
BLK6		76		137				0.55	0.00	0.55	1.39	0.00	1.39	3.05	0.00	3.05	8,000
BLK7		0		0				0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8,000
BLK8		88		158				0.64	0.00	0.64	1.60	0.00	1.60	3.53	0.00	3.53	15,000
TOTALS	0	412	0	742	0.00	0.00	0.00	2.99	0.00	2.99	7.52	0.00	7.52	16.52	0.00	16.52	

		ASSUMPTIONS			
RESIDENTIAL DENSITIES		AVG. DAILY DEMAND		MAX. HOURLY DEMAND	
- Townhouse (TH)	<u>2.7</u> p/p/u	- Residential - Institutional	<u>350</u> / cap / day 15,000 / ha / day	- Residential - Institutional	<u>1,925</u> / cap / day 40,500 / ha / day
- Apartment (APT)	<u>1.8</u> p/p/u	MAX. DAILY DEMAND		FIRE FLOW	<u> </u>
		- Residential - Institutional	8 <u>75</u> I / cap / day <u>22,500</u> I / ha / day	- Townhouses - 3-Storey Apartments - Institutional	8.000 I/min 8.000 I/min 15.000 I/min


Petrie's Landing II - Node ID's

Petrie's Landing II - Pipe ID's

Petrie's Landing II - Pipe Sizes

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1	10	0.00	51.75	115.00	619.78
2	20	0.00	52.00	115.00	617.35
3	30	0.00	51.60	115.00	621.25
4	40	0.00	55.05	115.00	587.42
5	50	0.00	55.05	115.00	587.42
6	BLK1	0.29	55.20	114.99	585.94
7	BLK2	0.29	56.70	114.99	571.24
8	BLK3A	0.67	57.00	114.99	568.30
9	BLK5	0.55	57.10	114.99	567.32
10	BLK6	0.55	56.60	114.99	572.22
11	BLK7	0.00	55.65	114.99	581.53
12	BLK8	0.64	55.00	115.00	587.91
13	HYD-1	0.00	57.10	114.99	567.32

Average Day (High Presure Check) - Junction Report (HGL = 115.00m)

Date: Thursday, November 28, 2013, Time: 14:11:43, Page 1

	ID	From Node	To Node	Length (m)	Diameter (mm)	Roughness	Flow (L/s)	Velocity (m/s)	Headloss (m)
1	05	R-1	20	0.10	900.00	130.00	2.99	0.00	0.00
2	125	BLK3A	BLK2	57.74	200.00	110.00	-0.67	0.02	0.000
3	135	BLK2	BLK1	50.89	200.00	110.00	-0.96	0.03	0.000
4	145	BLK1	40	29.62	200.00	110.00	-1.25	0.04	0.000
5	15	20	10	800.00	400.00	120.00	2.99	0.02	0.00
6	157	BLK3A	HYD-1	21.20	150.00	100.00	0.00	0.00	0.00
7	159	BLK3A	BLK5	81.61	200.00	110.00	0.00	0.000	0.00
8	25	10	30	13.11	400.00	120.00	1.47	0.01	0.00000
9	35	10	40	84.27	200.00	110.00	1.52	0.05	0.00
10	45	30	50	89.46	200.00	110.00	1.47	0.05	0.00
11	55	40	50	11.11	200.00	110.00	0.27	0.01	0.0000
12	65	50	BLK8	6.59	200.00	110.00	1.74	0.06	0.000
13	75	BLK8	BLK7	44.78	200.00	110.00	1.10	0.03	0.000
14	85	BLK7	BLK6	30.74	200.00	110.00	1.10	0.03	0.000
15	95	BLK6	BLK5	34.82	200.00	110.00	0.55	0.02	0.000

Average Day (High Presure Check) - Pipe Report (HGL = 115.00m)

	ID	HL/1000 (m/km)
1	05	0.00
2	125	0.01
3	135	0.01
4	145	0.02
5	15	0.00
6	157	0.00
7	159	0.00
8	25	0.000
9	35	0.03
10	45	0.03
11	55	0.00
12	65	0.03
13	75	0.01
14	85	0.01
15	95	0.00

<u>Average Day (High Presure Check) - Pipe Report (HGL = 115.00m)</u>

Max Day + Fire - Fireflow Report (HGL = 110.00m)

	ID	Total Demand (L/s)	Critical Node 1 ID	Critical Node 1 Pressure (kPa)	Critical Node 1 Head (m)	Adjusted Fire-Flow (L/s)	Available Flow @Hydrant (L/s)	Critical Node 2 ID	Critical Node 2 Pressure (kPa)	Critcal Node 2 Head (m)	Adjusted Available Flow (L/s)	Design Flow (L/s)
1	BLK1	134.06	HYD-1	448.81	101.00	345.12	335.18	BLK1	139.96	69.48	335.18	335.18
2	BLK2	134.06	BLK2	426.82	100.26	289.16	289.18	BLK2	139.96	70.98	289.18	289.16
3	BLK5	5 134.72	BLK5	415.09	99.46	276.06	276.08	BLK5	139.96	71.38	276.08	276.06
4	BLK6	5 134.72	BLK6	427.07	100.18	289.25	289.27	BLK6	139.96	70.88	289.27	289.25
5	BLK7	133.33	BLK5	438.59	100.41	318.44	310.34	BLK7	139.96	69.93	310.34	310.34
6	BLK8	3 251.60	BLK5	335.27	89.21	375.48	378.29	BLK6	134.64	68.74	375.44	375.44
7	HYD-	1 133.33	HYD-1	304.50	88.17	182.43	182.43	HYD-1	139.96	71.38	182.43	182.43

		ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1		10	0.00	51.75	107.95	550.69
2		20	0.00	52.00	108.00	548.76
3		30	0.00	51.60	107.95	552.16
4		40	0.00	55.05	107.89	517.83
5		50	0.00	55.05	107.89	517.82
6		BLK1	1.60	55.20	107.88	516.23
7		BLK2	1.60	56.70	107.87	501.39
8		BLK3A	3.69	57.00	107.86	498.37
9		BLK5	3.05	57.10	107.86	497.39
10		BLK6	3.05	56.60	107.86	502.32
11		BLK7	0.00	55.65	107.87	511.74
12		BLK8	3.53	55.00	107.89	518.26
13		HYD-1	0.00	57.10	107.86	497.39

Peak Hour - Junction Report (HGL = 108.00m)

APPENDIX D

SANITARY SEWER DESIGN SHEET PROJECT: PETRIE'S LANDING II - PHASE 2 LOCATION: **CITY OF OTTAWA** DEVELOPER: BRIGIL PLATINUM

LOCA	TION			INDI	/IDUAL	CUMU	LATIVE		D	ESIGN FL	OW				SE	WER DAT	4	45 74.729 45 74.729 45 74.729 45 74.729 45 74.729 00 89.819 45 96.619 45 96.619 45 96.619 45 91.559 69 91.559 45 67.659 45 67.619 00 92.909
FROM MH	TO MH	TH (#)	APT (#)	POP.	AREA (Ha)	POP.	AREA (Ha)	PEAK FACTOR	POP. FLOW (L/s)	INFILT. FLOW (L/s)	OFFSITE FLOW (L/s)	PEAK FLOW (L/s)	CAP. (L/s)	VELOCITY (FULL) (m/s)	LENGTH (m)	PIPE (mm)	SLOPE (%)	CAP.
19A	1A			0.0	0.27	0	0.27	4.00	0.00	0.08		0.08	22.47	1.23	12.49	150	2.00	99.64%
STUB	18A			17	.10 L/s from	n off-site la	nds south	of Regional	Road No.	174	17.10	17.10	67.64	0.93	2.00	300	0.45	74.729
18A	17A			0.0	0.00	0		4.00	0.00		17.10	17.10	67.64	0.93	6.91	300	0.45	
17A	1A			0.0	0.00	0	0.00	4.00	0.00	0.00	17.10	17.10	67.64	0.93	68.70	300	0.45	74.729
BLK 5	200A		76	136.8	0.25	137	0.25	4.00	2.22	0.07		2.29	22.47	1.23	32.98	150	2.00	89.81
200A	CAP	-		0.0	0.00	137	0.25	4.00	2.22	0.07		2.29	67.64	0.93	2.05	300	0.45	96.61
CAP	22A			0.0	0.00	137	0.25	4.00	2.22	0.07		2.29	67.64	0.93	8.31	300	0.45	96.61
22A	1A			0.0	0.00	137	0.25	4.00	2.22	0.07		2.29	67.64	0.93	24.22	300	0.45	96.61
1A	2A			0.0	0.07	137	0.59	4.00	2.22	0.17	17.10	19.49	67.64	0.93	51.00	300	0.45	71.19
300A	CAP		76	136.8	0.64	137	0.64	4.00	2.22	0.18		2.40	28.41	0.88	15.27	200	0.69	91 559
CAP	2A		10	0.0	0.00	137	0.64		2.22			2.40	28.41	0.88		200	0.69	
0.4	24			0.0	0.00	074	4.05	4.00	4.40	0.05	47.40	04.00	67.64	0.00	40.44	200	0.45	07.05
2A 3A	3A 4A			0.0 0.0	0.02 0.02	274 274	1.25 1.27	4.00 4.00	<u>4.43</u> 4.43		17.10 17.10	<u>21.88</u> 21.89	67.64 67.64	0.93 0.93	13.41 11.07	300 300	0.45 0.45	
4A	21A			0.0	0.02	274	1.34		4.43		17.10	21.03	67.64	0.93	15.67	300	0.45	
401A	CAP		76	136.8	0.75	137	0.75	4.00	2.22	0.21		2.43	34.21	1.06	25.51	200	1.00	02.00
CAP	21A		70	0.0	0.75	137	0.75	4.00	2.22			2.43	34.21	1.00	10.00	200	1.00	
			ļ															
= Avera	age daily	per capit	a flow	u I		350	l/cap/d	<u> </u>			1							

Q = Average daily per capita flow

350 I/cap/d 0.28 l/sec/Ha

I = Unit of peak extraneous flow M = Peaking factor = 1+(14/(4+P)^0.5)), P=pop. IN 1000'S, max. of 4

Q(p) = Peak population flow (I/s)

Q(i) = Peak extraneous flow (I/s)

Population = 2.7 per townhouse (TH) unit, 1.8 per apartment (APT) unit 0.013

Coeff. of friction (n) =

PAGE:	1 OF 2
JOB:	31464.5.7
DATE:	2013-11-28
DESIGN:	RPK

SANITARY SEWER DESIGN SHEET

PROJECT:	PETRIE'S LANDING II - PHASE 2
LOCATION:	CITY OF OTTAWA
DEVELOPER:	BRIGIL PLATINUM

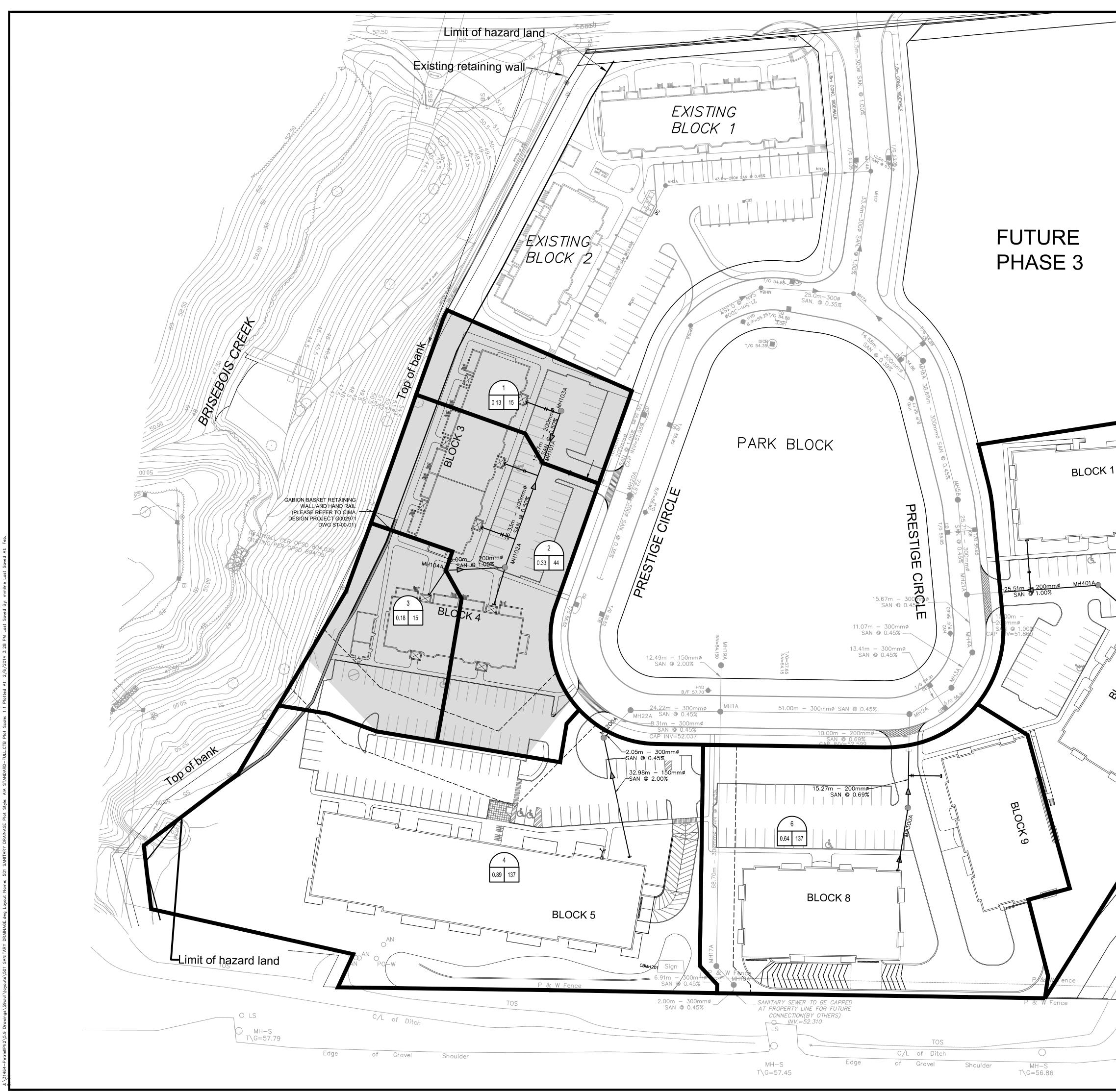
LOCA	TION			INDI\	/IDUAL	CUMUL	ATIVE		D	ESIGN FL	WC				SE	WER DAT	Α	
FROM MH	то мн	TH (#)	APT (#)	POP.	AREA (Ha)	POP.	AREA (Ha)	PEAK FACTOR	POP. FLOW (L/s)	INFILT. FLOW (L/s)	OFFSITE FLOW (L/s)	PEAK FLOW (L/s)	CAP. (L/s)	VELOCITY (FULL) (m/s)	LENGTH (m)	PIPE (mm)	SLOPE (%)	AVAIL. CAP. (%)
21A	5A			0.0	0.07	410	2.16	4.00	6.65	0.60	17.10	24.35	67.64	0.93	25.71	300	0.45	64.00%
5A	6A			0.0	0.00	410	2.16	4.00	6.65	0.60	17.10	24.35	67.64	0.93	38.68	300	0.45	64.00%
	6A		81	145.8	0.57	146	0.57	4.00	2.36	0.16		2.52						
6A	7A			0.0	0.04	556	2.77	3.95	8.90	0.78	17.10	26.78	62.97	0.86	26.08	300	0.39	57.47%
0/1				0.0	0.04	000	2.11	0.00	0.00	0.70	11.10	20.70	02.07	0.00	20.00	000	0.00	01.4170
10A	20A			0.0	0.16	0	0.16	4.00	0.00	0.04		0.04	59.69	0.82	41.00	300	0.35	99.93%
104A	102A		8	14.4	0.12	14	0.12	4.00	0.23			0.26	34.21	1.06	16.00	200	1.00	99.24%
102A	101A		24	43.2	0.27	58	0.39	4.00	0.93	0.11		1.04	24.19	0.75	26.33	200	0.50	95.70%
103A	101A		8	14.6	0.13	15	0.13	4.00	0.24	0.04		0.28	24.19	0.75	14.87	200	0.50	98.84%
101A	CAP			0.0	0.00	72	0.52	4.00	1.17	0.15		1.32	34.21	1.06	15.15	200	1.00	96.14%
CAP	20A			0.0	0.00	72	0.52	4.00	1.17	0.15		1.32	34.21	1.06	10.00	200	1.00	96.14%
20A	9A			0.0	0.03	72	0.71	4.00	1.17	0.20		1.37	59.69	0.82	48.80	300	0.35	97.70%
	9A		40	72.0	0.61	72	0.61	4.00	1.17	0.17		1.34						
	9A		40	72.0	0.01	12	0.01	4.00	1.17	0.17		1.34						
9A	8A			0.0	0.03	144	1.35	4.00	2.34	0.38		2.72	79.46	1.09	21.08	300	0.62	96.58%
8A	7A			0.0	0.03	144	1.38	4.00	2.34	0.39		2.73	68.44	0.94	25.19	300	0.46	96.01%
7A	13A			0.0	0.09	700	4.24	3.89	11.05	1.19		29.34	101.35	1.39	33.06	300	1.01	71.05%
13A	14A			0.0	0.11	700	4.35	3.89	11.05	1.22	17.10	29.37	104.85	1.44	51.59	300	1.08	71.99%
14A	15A			0.0	0.00	700	4.35	3.89	11.05	1.22	17.10	29.37	100.91	1.38	23.00	300	1.00	70.90%
15A	EX 10A			0.0	0.00	700	4.35	3.89	11.05	1.22	17.10	29.37	100.91	1.38	34.90	300	1.00	70.90%
	<u> </u>		}								+ +					\vdash		
$\Omega = \Lambda vor$	· · · ·			u I		050	l/can/d			1								

Q = Average daily per capita flow

350 l/cap/d

I = Unit of peak extraneous flow 0.28 l/sec/Ha

M = Peaking factor = $1+(14/(4+P)^{0.5}))$, P=pop. IN 1000'S, max. of 4


Q(p) = Peak population flow (l/s)

Q(i) = Peak extraneous flow (I/s)

Population = 2.7 per townhouse (TH) unit, 1.8 per apartment (APT) unit

Coeff. of friction (n) = 0.013

PAGE: 2 OF 2 JOB: 31464.5.7 DATE: 2013-11-28 DESIGN: RPK

KEY PLAN OTTAWA RIVER N.T.S. SANDERLING WIT HOL NORTH SER SITE REGIONAL ROAD No. 174	VICE ROAD	0.13 15 POPUL	N HECTARES
		C O N S T R I	COMMENTS RPK 13: 11: 26 RPK 13: 08: 19 E PLAN TRB E PLAN RPK E PLAN RPK E PLAN RPK I 12: 10: 19 E PLAN RPK I 12: 08: 27 AN RPK 12: 04: 12 ONS By Date
Production of the second secon		Cana Tel (Fax Project Title PETRIE'S PH/ PH/ PH/ PH/ PH/ PH/ PH/ PH/	wa, Ontario da K1S 5N4 (613)225–1311 (613)225–9868 LANDING II ASE 2
BOS		AREA	DRAINAGE PLAN 1:500 Date FEB. 2012
APPROVAL DATE	2014	Drawn DD Project No. 31464	Checked TRB Drawing No. 501

APPENDIX E

STORM SEWER DESIGN SHEETPROJECT:PETRIE'S LANDING II - PHASE 2LOCATION:CITY OF OTTAWADEVELOPER:BRIGIL PLATINUM

		AREA (Ha)												DESIG	N FLOW					SEW	ER DATA			
FROM	то	C=	C=	C=	C=	C=	C=	C=	INDIV.	CUM.	INLET	TIME	TOTAL	i _{5-year}	i _{100-year}	PEAK FL	.OW (L/s)	CAP.	LENGTH	PIPE	SLOPE	n	VEL.	AVAIL.
МН	МН	0.10	0.20	0.30	0.70	0.75	0.80	0.90	2.78AC	2.78AC	(min)	IN PIPE		(mm/hr)	-	IND	TOTAL	(L/s)	(m)	(mm)	(%)		(m/s)	CAP. (%)
										a / =						(7.00								
CBMH 17	MH 1		0.270						0.15	0.15	10.00	0.11	10.11	104.20		15.63	15.63	142.65	12.49	300	2.00	0.013	1.96	89.04%
MH 1	MH 2								0.00	0.15	10.11	0.62	10.73	103.60		15.54	15.54	78.15	40.05	300	0.60	0.013	1.07	80.11%
		-			-																			
GAR 8	MH 303								0.00	0.00	10.00			104.20		0.00	0.00							
0/11/0	1111 000						0.070		0.16	0.00	10.00	0.27	10.27	104.20	178.60	28.58	28.58	34.21	16.77	200	1.00	0.013	1.06	16.48%
MH 303	MH 301								0.00	0.00				102.80		0.00	0.00							
									0.00	0.16	10.27	0.17	10.43		176.20	28.19	28.19	34.21	10.50	200	1.00	0.013	1.06	17.60%
GAR 9	MH 301								0.00	0.00	10.00			104.20		0.00	0.00							
							0.050		0.11	0.11	10.00	0.26	10.26		178.60	19.65	19.65	34.21	16.69	200	1.00	0.013	1.06	42.58%
MH 301	MH 300				0.040			0.100		0.33	10.43			102.00		33.66	33.66							
									0.00	0.27	10.43	0.33	10.76		174.70	47.17	80.83	114.99	31.40	300	1.30	0.013	1.58	29.71%
05.000	000				0.400					0.00	10.00	0.04	40.04	101.00					00.05		0.70	0.040	0.00	00.500/
CB 302	CBMH 32				0.120				0.23	0.23		0.24		104.20		23.97		65.83	28.85	200	3.70	0.013	2.03	63.59%
CBMH 32	MH 300				0.110				0.21	0.21	10.00	0.06	10.06	104.20		21.88	21.88	138.74	10.31	250	5.00	0.013	2.74	84.23%
MH 300	MH 2							0.100	0.25	0.79	10.76			100.30		79.24	79.24							
10111 300	1711 1 2							0.100	0.20	0.79	10.76	0.32	11.08	100.30	171.90	46.41	125.65	151.97	25.18	375	0.69	0.013	1.33	17.32%
									0.00	0.21	10.70	0.02	11.00		171.50	14.04	125.05	101.07	20.10	5/5	0.05	0.013	1.00	17.5270
MH 2	MH 3				0.120				0.23	1.17	11.08			98.80		115.60	115.60							
									0.00	0.27	11.08	0.19	11.26		169.30	45.71		218.51	14.76	450	0.54	0.013	1.33	26.18%
MH 3	MH 4								0.00	1.17	11.26			98.00		114.66								
									0.00	0.27	11.26	0.10	11.36		167.80	45.31	159.97	361.78	9.29	525	0.65	0.013	1.62	55.78%
MH 4	MH 21								0.00	1.17	11.36			97.50		114.08	114.08							
									0.00	0.27	11.36	0.22	11.58		167.00	45.09	159.17	429.62	19.81	600	0.45	0.013	1.47	62.95%
RYCB 43	MH 404			0.050					0.04	0.04	15.00	0.21		83.60		3.34	3.34	87.71	21.28	250	2.00	0.013	1.73	96.19%
MH 404	MH 403							0.100		0.29		0.12		82.90		24.04	24.04	124.09	18.24	250	4.00	0.013	2.45	80.63%
MH 403	MH 401			-	0.140				0.27	0.56	15.33	0.21	15.54	82.50		46.20	46.20	87.71	21.57	250	2.00	0.013	1.73	47.33%
	MH 405								0.00	0.00	10.00			104.20		0.00	0.00							
GAR 10							0.070		0.00 0.16	0.00	10.00 10.00	0.23	10.23	104.20	178.60	28.58	0.00 28.58	34.21	14.23	200	1.00	0.013	1.06	16.48%
MH 405	MH 402						0.070		0.00	0.00	10.23	0.23	10.25	103.00		0.00	0.00	54.21	14.23	200	1.00	0.013	1.00	10.4078
1011 400	1011 402								0.00	0.00	10.23	0.33	10.56	100.00	176.50	28.24	28.24	34.21	21.06	200	1.00	0.013	1.06	17.46%
-									0.00	00		0.00						•= .	2.100	200		0.010		
GAR 11	MH 402								0.00	0.00	10.00			104.20		0.00	0.00							
					1		0.050		0.11	0.11		0.29	10.29		178.60	19.65		34.21	18.11	200	1.00	0.013	1.06	42.58%
MH 402	MH 401				0.060				0.12	0.12	10.56			101.30		12.16	12.16							
									0.00	0.27	10.56	0.34	10.90		173.60	46.87	59.03	114.99	32.30	300	1.30	0.013	1.58	48.67%
MH 401	MH 21							0.100		0.93				81.90		76.17								
ļ									0.00	0.27	15.54	0.26	15.79		140.00	37.80	113.97	182.87	24.70	375	1.00	0.013	1.60	37.68%
MUCH					0.000				0.40		15 70			01.10		400.00	100.00							
MH 21	MH 5				0.080				0.16	2.26	15.79	0.00	40.05	81.10	400.00	183.29		(10.07	04.00		0.44	0.040		07.054/
									0.00	0.54	15.79	0.26	16.05		138.60	74.84	258.13	410.07	21.89	600	0.41	0.013	1.41	37.05%

Q = 2.78AIC, where:

Q = Peak Flow in Litres per Second (I/s)

A = Area in Hectares (ha.)

I = Rainfall Intensity in Millimeters per Hour (mm/hr)

I=998.071/(TC+6.053)^0.814

PAGE: 1 OF 3 JOB: 31464.5.7 DATE: 2013-11-28 DESIGN: RPK

STORM SEWER DESIGN SHEETPROJECT:PETRIE'S LANDING II - PHASE 2LOCATION:CITY OF OTTAWADEVELOPER:BRIGIL PLATINUM

	AREA (Ha)											DESIGN	N FLOW					SEW	/ER DATA					
FROM	то	C=	C=	C=	C=	C=	C=	C=	INDIV.	CUM.	INLET	TIME	TOTAL	i _{5-year}	i _{100-year}	PEAK FL	.OW (L/s)	CAP.	LENGTH	PIPE	SLOPE	n	VEL.	AVAIL.
МН	МН	0.10	0.20	0.30	0.70	0.75	0.80	0.90	2.78AC	2.78AC	(min)	IN PIPE		(mm/hr)	(mm/hr)	IND	TOTAL	(L/s)	(m)	(mm)	(%)		(m/s)	CAP. (%)
	MH 5					0.330			0.69	0.69	11.00													
MH 5	MH 6								0.00	2.95				80.30		236.89								
									0.00	0.54	16.05	0.53	16.58		137.30	74.14	311.03	389.64	42.06	600	0.37	0.013	1.34	20.18%
	MH 6					0.570			1.19	1.19	11.50													
MH 6	MH 7				0.120				0.23	4.37	16.58			78.80		344.36	344.36							
					020				0.00	0.54	16.58	0.32	16.90		134.70	72.74	417.09	488.33	25.46	675	0.31	0.013	1.32	14.59%
MH 12	MH 7				0.090				0.18	0.18	10.00	0.31	10.31	104.20		18.76	18.76	172.61	27.98	375	0.89	0.013	1.51	89.13%
PARK	MH 7	0.360							0.10	0.10	10.00	0.21	10.21	104.20		10.42	10.42	62.02	15.60	250	1.00	0.013	1.22	83.20%
MH 7	MH 8				0.120				0.23	4.88	16.90			77.90		380.15	380.15							
									0.00	0.54	16.90	0.37	17.27		133.10	71.87	452.03	580.53	27.87	750	0.25	0.013	1.27	22.14%
	MH 8					0.610			1.27	1.27	11.50													
	101110					0.010			1.21	1.21	11.00													
MH 8	MH 9								0.00	6.15				76.90		472.94								
MUO	1/// 00				0.000				0.00	0.54	17.27	0.23	17.50		131.40	70.96	543.89		21.72	750	0.37	0.013	1.55	23.01%
MH 9	MH 20				0.060				0.12	6.27 0.54	17.50 17.50	0.58	18.08	76.30	130.30	478.40 70.36	478.40 548.76		51.50	825	0.30	0.013	1.49	33.08%
CB 10	MH 101				0.100				0.19	0.19	10.00	0.15	10.15	104.20		19.80	19.80	72.58	20.33	200	4.50	0.013	2.24	72.72%
CB 102	MH 101				0.130				0.25	0.25	10.00	0.10	10.10	104.20		26.05	26.05	83.80	16.02	200	6.00	0.013	2.58	68.91%
MH 101	MH 20								0.00	0.44	10.10	0.27	10.37	103.70		45.63	45.63	100.91	22.15	300	1.00	0.013	1.38	54.78%
MH 20	MH 10				0.130				0.25	6.96	18.08			74.80		520.61	520.61							
-									0.00	0.54	18.08	0.45	18.53		127.70	68.96	589.57	819.98	40.50	825	0.30	0.013	1.49	28.10%
MH 10	MH 11								0.00	6.96			10.01	73.60		512.26	512.26		(0.40	005		0.040		00.0404
MH 11	MH 13								0.00 0.00	0.54 6.96	18.53 18.61	0.08	18.61	73.50	125.80	67.93 511.56	580.19 511.56		12.48	825	1.04	0.013	2.77	62.01%
	1011113								0.00	0.50	18.61	0.28	18.89		125.50	67.77	579.33		32.06	825	0.48	0.013	1.88	44.16%
MH 13	MH 14								0.00	6.96	18.89			72.80		506.69	506.69							
									0.00	0.54	18.89	0.43	19.32		124.30	67.12	573.81	886.20	41.69	825	0.35	0.013	1.61	35.25%
CB 21	MH 200				0.140				0.27	0.27	10.00	0.34	10.34	104.20		28.13	28.13	34.21	21.47	200	1.00	0.013	1.06	17.77%
ECB 1	MH 200			0.020					0.02	0.02	10.00	0.10	10.10	104.20		2.08	2.08	62.02	7.29	250	1.00	0.013	1.22	96.64%
RYCB 22	MH 200			0.070					0.06	0.06	15.00	0.24	15.24	83.60		5.02	5.02	34.21	14.99	200	1.00	0.013	1.06	85.34%
																								55.5 . 70
GAR 5	MH 200								0.00	0.00				104.20		0.00								
							0.030		0.07	0.07	10.00	0.03	10.03		178.60	12.50	12.50	34.21	2.10	200	1.00	0.013	1.06	63.46%

Q = 2.78AIC, where:

Q = Peak Flow in Litres per Second (I/s)

A = Area in Hectares (ha.)

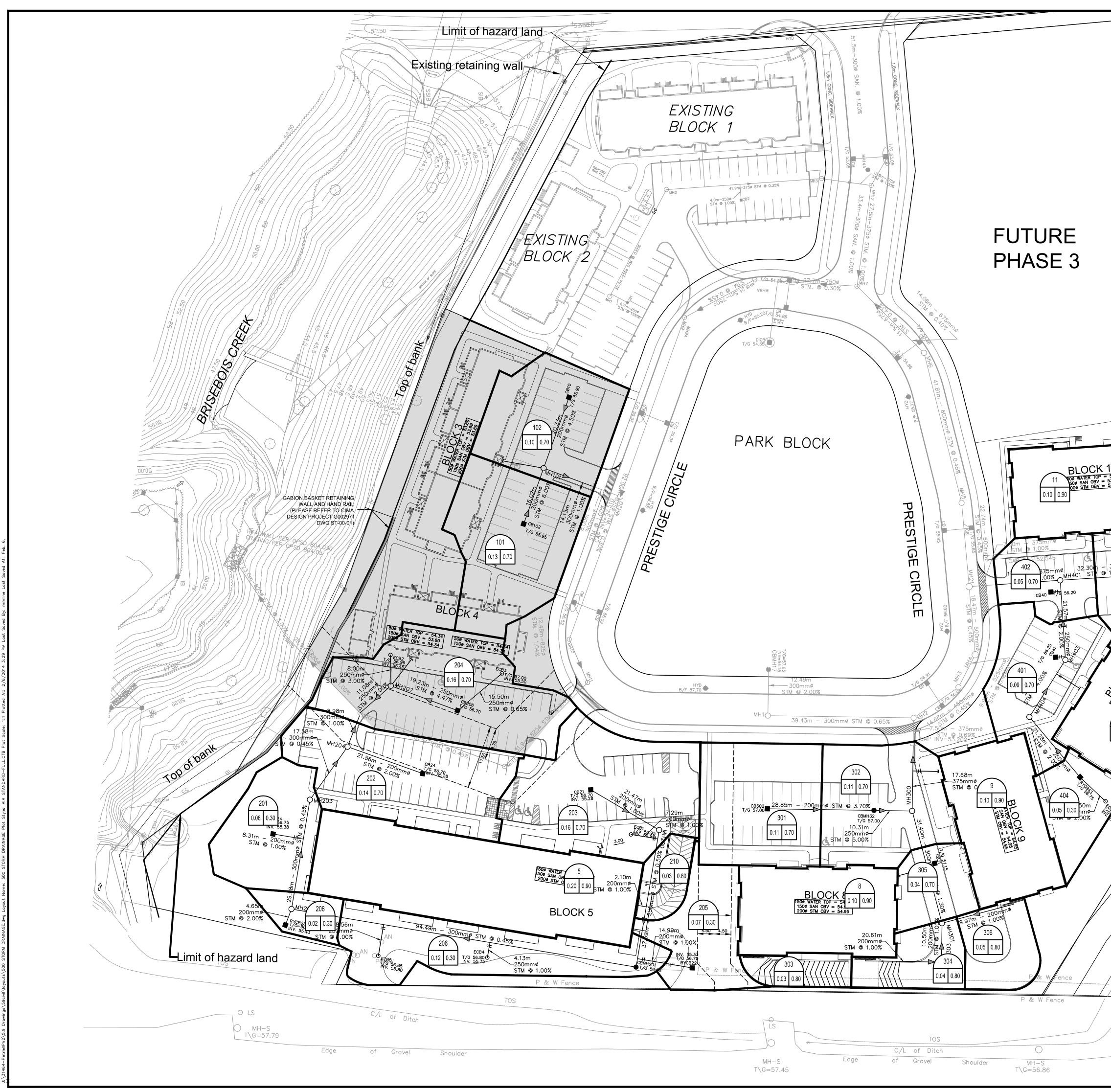
I = Rainfall Intensity in Millimeters per Hour (mm/hr)

I=998.071/(TC+6.053)^0.814

PAGE: 2 OF 3 JOB: 31464.5.7 DATE: 2013-11-28 DESIGN: RPK

STORM SEWER DESIGI	N SHEET
PROJECT:	PETRIE'S LANDING II - PHASE 2
LOCATION:	CITY OF OTTAWA
DEVELOPER:	BRIGIL PLATINUM

	AREA (Ha)											DESIGN	I FLOW					SEW	ER DATA					
FROM	то	C=	INDIV.	CUM.	INLET	TIME	TOTAL	i _{5-year}	i _{100-year}	PEAK FL	OW (L/s)	CAP.	LENGTH	PIPE	SLOPE	n	VEL.	AVAIL.						
МН	МН	0.10	0.20	0.30	0.70	0.75	0.80	0.90	2.78AC	2.78AC	(min)	IN PIPE			(mm/hr)	IND	TOTAL	(L/s)	(m)	(mm)	(%)		(m/s)	CAP. (%)
MH 200	CBMH 201								0.00	0.35	15.24			82.80		28.98	28.98							
1011200	ODIVITZOT								0.00	0.07	15.24	0.72	15.96		141.60	9.91		43.88	37.59	250	0.50	0.013	0.87	11.37%
CBMH 201	MH 202								0.00	0.35				80.60		28.21	28.21							
				0.120					0.10	0.17	15.96	1.70	17.66		137.80	23.43	51.64	67.64	94.49	300	0.45	0.013	0.93	23.66%
RYCB 23	MH 202			0.020					0.02	0.02	15.00	0.05	15.05	83.60		1.67	1.67	48.38	4.65	200	2.00	0.013	1.49	96.54%
RTCB 23	IVII I 202			0.020					0.02	0.02	15.00	0.05	15.05	03.00		1.07	1.07	40.30	4.05	200	2.00	0.013	1.49	90.34 /6
RYCB 24	MH 202			0.080					0.07	0.07	15.00	0.13	15.13	83.60		5.85	5.85	34.21	8.31	200	1.00	0.013	1.06	82.90%
MH 202	MH 203								0.00	0.44				75.80		33.35								
									0.00	0.17	17.66	0.54	18.20		129.60	22.03	55.38	67.64	29.98	300	0.45	0.013	0.93	18.12%
MH 203	MH 204								0.00	0.44	18.20			74.50		32.78	32.78							
1011200	WII 1 204								0.00	0.17	18.20	0.32	18.51	74.00	127.20	21.62		67.64	17.58	300	0.45	0.013	0.93	19.57%
CB 24	MH 204				0.140				0.27	0.27	10.00	0.24	10.24	104.20		28.13	28.13	48.38	21.56	200	2.00	0.013	1.49	41.85%
MIL 204									0.00	0.74	10.51			73.70		52.33	50.00							
MH 204	MH 14								0.00	0.71	18.51 18.51	0.11	18.62	73.70	125.90	52.33 21.40	52.33 73.73	100.91	8.98	300	1.00	0.013	1.38	26.94%
									0.00	0.17	10.01	0.11	10.02		120.00	21.40	75.75	100.51	0.00	500	1.00	0.015	1.00	20.3470
CB 206	MH 207				0.210				0.41	0.41	10.00	0.14	10.14	104.20		42.72	42.72	72.35	19.23	200	4.47	0.013	2.23	40.95%
MH 207	MH 14								0.00	0.41	10.14	0.11	10.25	103.40		42.39	42.39	87.71	11.08	250	2.00	0.013	1.73	51.67%
	14145								0.00	0.00	10.00			74.00		500.44	500.44							
MH 14	MH 15								0.00 0.00	8.08 0.71	19.32 19.32	0.18	19.50	71.80	122.60	580.14 87.05		1,519.67	29.14	825	1.03	0.013	2.75	56.10%
MH 15	HW								0.00	8.08		0.10	19.00	71.40		576.91	576.91	1,019.07	23.14	020	1.05	0.073	2.75	30.1078
									0.00	0.71	19.50	0.18	19.68		121.90	86.55		1,519.67	29.14	825	1.03	0.013	2.75	56.34%
							1																	
						ļ																		
						}	-	}																
				İ		1		1																
		0.360	0.270	0.360	1.910	1.510	0.270	0.400		9.02														


Q = 2.78AIC, where:

Q = Peak Flow in Litres per Second (I/s)

A = Area in Hectares (ha.) I = Rainfall Intensity in Millimeters per Hour (mm/hr)

I=998.071/(TC+6.053)^0.814

PAGE: 3 OF 3 JOB: 31464.5.7 DATE: 2013-11-28 DESIGN: RPK

KEY PLAN N.T.S. SANDERLING Reg. R. L. REGIONAL ROAD No. 174	0.03 0.80 RUNOFI	DENTIFICATION F COEFFICIENT N HECTARES FLOW ROUTE FLOW ROUTE
100 01 1011 100 01 010 100 000 100 000 100 00000 100 0000000000	14 13 12 11 10 9 8 REVISED PER CITY O 6 REVISED PER CITY O 6 REVISED BLOCK 5 5 RE-ISSUED FOR SITE 4 RE-ISSUED FOR SITE 3 RE-ISSUED FOR SITE 4 RE-ISSUED FOR SITE 3 RE-ISSUED FOR SITE 1 ISSUED FOR REVIEW No. REVISIO	COMMENTS RPK 13: 11: 26 RPK 13: 08: 19 E PLAN TRB 12: 11: 19 E PLAN RPK 12: 10: 19 E PLAN RPK 12: 08: 27 AN RPK 12: 04: 12 RPK 12: 03: 07
	Tower Ottaw Canad Tel (Fax (Project Title PETRIE'S	Preston Street r 1, Suite 400 va, Ontario da K1S 5N4 613)225–1311 (613)225–9868 LANDING II
	Drawing Title Scale	
TOS TOS TOS TOS TOS Felice Petti, P. Eng., Manager Development Review, Suburban Services	Design RPK Drawn DD Project No. 31464	Date FEB. 2012 Checked TRB Drawing No. 500

11.1 Brisbois Creek

11.1.1 Quantity Control

On-site detention storages consisting of parking lot and rooftop storage for all future commercial/business park developments are required to ensure that capacities of culverts at Hwy. 17 and the North Service Road are not exceeded. The release rate for the on-site storage is the 5 year post-development peak flow which is 150 l/s/ha. The required storage volume for quantity control is 160 m³/ha.

For mitigation of possible reductions in baseflows, roof drains should be discharged on grassed areas or into a drainage pit. Recharge of approximately two-thirds of the yearly average rainfall from roof areas would be sufficient to balance hard surface recharge loss. During the detailed design, however, the natural groundwater baseflow from the surficial sands should be verified to assess what ultimate mitigation measures, if any, are required.

11.1.2 Quality Control

The storage volume for quality control required in the valley upstream of the NSR is 5,300 m³. Figure 11.2 gives the stage-storage characteristics of the existing valley.

The proposed pond will have a permanent pool about 1.2 m deep near the outlet. The active storage volume for quality control of 5,300 m³ is available at elevation 47.3 m. The outlet of the quality control storage is to be sized to give a detention time of 72 hours in accordance with MNR's guidelines.

To avoid excessive velocities through the pond, a 1.8 m x 3.5 m bypass sewer as shown in Figures 11.3 and 11.4 or an increase in the cross-sectional area of the pond (Figures D3.3 and D3.4) is proposed. The preferred option will be determined at the detailed design stage.

IBI GROUP 333 PRESTON STREET OTTAWA, ON K1S 5N4 PROJECT: Petrie's Landing II - 2 DATE: 2013-11-28 FILE: 31464.5.7 REV #: 4 DESIGNED BY: RPK CHECKED BY: TRB

STORMWATER MANAGEMENT

Formulas and Descriptions

$$\begin{split} i_{\text{5yr}} = 1:5 \text{ year Intensity} &= 998.071 / (T_c + 6.053)^{0.814} \\ i_{10yr} = 1:10 \text{ year Intensity} = 1174.184 / (T_c + 6.014)^{0.816} \\ i_{100yr} = 1:100 \text{ year Intensity} = 1735.688 / (T_c + 6.014)^{0.820} \\ T_c = Time \text{ of Concentration (min)} \\ C = Average Runoff Coefficient \\ A = Area (Ha) \\ Q = Flow = 2.78CiA (L/s) \end{split}$$

Maximum Allowable Release Rate

Site Area Area = 2.91 Ha

Restricted Flowrate (based on "Servicing Design Brief - Petrie's Landing II" 2010-03-15)

Q_{restricted} = 361.87 L/s

Uncontrolled Release (Q = 2.78CiA)

C = 0.30100-year design flow $T_c = 20 \text{ min}$ $A_{uncontrolled} = 0.55 \text{ Ha}$

Q_{uncontrolled} = 55.02 L/s

Garage Ramps (Q = 2.78CiA)

C = 0.80100-year design flow $T_c = 10 min$ $A_{garage} = 0.27 Ha$

Q_{garage} =

Maximum Allowable Release Rate

 $Q_{max allowable} = Q_{restricted} - Q_{uncontrolled} - Q_{garage}$

Q_{max allowable} = 199.62 L/s

107.22 L/s

Total Proposed Release Rate

(not including Q uncontrolled + Q garage)

Q_{proposed} = 155.00 L/s

MODIFIED RATIONAL METHOD (100-Year & 5-Year Ponding)

Drainage Area	101											
rea (Ha)	0.130	Ĩ										
:=	0.70	Restricted Flow Q _r (L	_/s)=	12.00								
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	$Q_p - Q_r$	Volume 5yr	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	
10	178.56	45.17	12.00	33.17	19.90	2.5	173.95	44.01	12.00	32.01	4.80	
15	142.89	36.15	12.00	24.15	21.73	5	141.18	35.72	12.00	23.72	7.11	
20	119.95	30.35	12.00	18.35	22.01	7.5	119.59	30.25	12.00	18.25	8.21	
25	103.85	26.27	12.00	14.27	21.41	10	104.19	26.36	12.00	14.36	8.62	Required Storage
30	91.87	23.24	12.00	11.24	20.23	12.5	92.61	23.43	12.00	11.43	8.57	
35	82.58	20.89	12.00	8.89	18.67	15	83.56	21.14	12.00	9.14	8.22	
40	75.15	19.01	12.00	7.01	16.82	17.5	76.26	19.29	12.00	7.29	7.66	
45	69.05	17.47	12.00	5.47	14.76	20	70.25	17.77	12.00	5.77	6.93	

 Storage (m³)

 Overflow
 Required
 Available
 Balance

 0.00
 21.41
 31.74
 0.00
 overflows to Area 102

Drainage Area	102											
Area (ha)	0.100											
C =	0.70	Restricted Flow Q _r (L	_/s)=	12.00								
T _c Variable		Peak Flow Q _p =2.78xCi _{100yr} A		$Q_p - Q_r$	Volume 100yr (m³)	T _c Variable (min)	i _{5yr}	Peak Flow $Q_p = 2.78 \times Ci_{5yr} A$	Q,	Q _p -Q _r	Volume 5yr (m³)	
(min)	(mm/hour) 398.62	(L/s) 77.57	(L/s) 12.00	(L/s) 65.57	0.00		(mm/hour) 230.48	(L/s) 44.85	(L/s) 12.00	(L/s) 32.85	0.00	
5	242.70	47.23	12.00	35.23	10.57	2.5	173.95	33.85	12.00	21.85	3.28	
10	178.56	34.75	12.00	22.75	13.65	5	141.18	27.47	12.00	15.47	4.64	
15	142.89	27.81	12.00	15.81	14.23	7.5	119.59	23.27	12.00	11.27	5.07	Required Storage
20	119.95	23.34	12.00	11.34	13.61	10	104.19	20.28	12.00	8.28	4.97	
25	103.85	20.21	12.00	8.21	12.31	12.5	92.61	18.02	12.00	6.02	4.52	
30	91.87	17.88	12.00	5.88	10.58	15	83.56	16.26	12.00	4.26	3.83	
35	82.58	16.07	12.00	4.07	8.55	17.5	76.26	14.84	12.00	2.84	2.98	

	Storage	_		
Overflow	Required	Available	Balance	
0.00	14.23	38.79	0.00	overflows to Prestige Circle

Drainage Area	201	Ī										
Area (Ha)	0.080	Ì										
C =	0.30	Restricted Flow Q _r (L	_/s)=	6.00								
T _c Variable (min)	i _{100yr} (mm/hour)	Peak Flow Q _p =2.78xCi _{100yr} A (L/s)	Q , (L/s)	Q _p -Q _r (L/s)	Volume 100yr (m³)	T _c Variable (min)	i _{5yr} (mm/hour)	Peak Flow Q _p =2.78xCi _{5yr} A (L/s)	Q , (L/s)	Q _p -Q, (L/s)	Volume 5yr (m ³)	
(/////)	211.67	14.12	6.00	8.12	3.41	2	182.69	12.19	6.00	6.19	0.74	
8	199.20	13.29	6.00	7.29	3.50	3	166.09	11.08	6.00	5.08	0.91	
9	188.25	12.56	6.00	6.56	3.54	4	152.51	10.18	6.00	4.18	1.00	
10	178.56	11.91	6.00	5.91	3.55	5	141.18	9.42	6.00	3.42	1.03	Required Storage
11	169.91	11.34	6.00	5.34	3.52	6	131.57	8.78	6.00	2.78	1.00	
12	162.13	10.82	6.00	4.82	3.47	7	123.30	8.23	6.00	2.23	0.94]
13	155.11	10.35	6.00	4.35	3.39	8	116.11	7.75	6.00	1.75	0.84	1
14	148.72	9.92	6.00	3.92	3.30	9	109.79	7.33	6.00	1.33	0.72	

	Storage			
Overflow	Required	Available	Balance	
0.00	3.55	27.91	0.00	overflows to Brisebois Creek

Drainage Area	202	l										
Area (ha)	0.140	I										
C =	0.70	Restricted Flow Q _r (L	./s)=	15.00								
T _c Variable		Peak Flow Q _p =2.78xCi _{100yr} A		Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	
0	398.62	108.60	15.00	93.60	0.00	6	131.57	35.84	15.00	20.84	7.50	
5	242.70	66.12	15.00	51.12	15.34	7	123.30	33.59	15.00	18.59	7.81	
10	178.56	48.65	15.00	33.65	20.19	8	116.11	31.63	15.00	16.63	7.98	
15	142.89	38.93	15.00	23.93	21.54	9	109.79	29.91	15.00	14.91	8.05	Required Storage
20	119.95	32.68	15.00	17.68	21.22	10	104.19	28.39	15.00	13.39	8.03	
25	103.85	28.29	15.00	13.29	19.94	11	99.19	27.02	15.00	12.02	7.94	
30	91.87	25.03	15.00	10.03	18.05	12	94.70	25.80	15.00	10.80	7.78	
35	82.58	22.50	15.00	7.50	15.75	13	90.63	24.69	15.00	9.69	7.56	

Overflow	Storage Required	Balance	_	
0.00	21.54	82.61	0.00	overflows to Area 203

Drainage Area	203	T										
rea (ha)	0.160	1										
) =	0.70	Restricted Flow Q _r (L	_/s)=	15.00								
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	
5	242.70	75.57	15.00	60.57	18.17	2.5	173.95	54.16	15.00	39.16	5.87	
10	178.56	55.60	15.00	40.60	24.36	5	141.18	43.96	15.00	28.96	8.69	
15	142.89	44.49	15.00	29.49	26.54	7.5	119.59	37.23	15.00	22.23	10.01	
20	119.95	37.35	15.00	22.35	26.82	10	104.19	32.44	15.00	17.44	10.46	Required Storage
25	103.85	32.33	15.00	17.33	26.00	12.5	92.61	28.84	15.00	13.84	10.38	
30	91.87	28.60	15.00	13.60	24.49	15	83.56	26.02	15.00	11.02	9.91	
35	82.58	25.71	15.00	10.71	22.49	17.5	76.26	23.75	15.00	8.75	9.18	
40	75.15	23.40	15.00	8.40	20.15	20	70.25	21.87	15.00	6.87	8.25	

 Storage (m³)

 Overflow
 Required
 Available
 Balance

 0.00
 26.82
 67.07
 0.00
 overflows to Prestige Circle

Drainage Area	204	I										
Area (ha)	0.160	Ì										
C =	0.70	Restricted Flow Q _r (L	_/s)=	15.00								
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A		Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	
5	242.70	75.57	15.00	60.57	18.17	8	116.11	36.15	15.00	21.15	10.15	
10	178.56	55.60	15.00	40.60	24.36	9	109.79	34.19	15.00	19.19	10.36	
15	142.89	44.49	15.00	29.49	26.54	10	104.19	32.44	15.00	17.44	10.46	
20	119.95	37.35	15.00	22.35	26.82	11	99.19	30.88	15.00	15.88	10.48	Required Storag
25	103.85	32.33	15.00	17.33	26.00	12	94.70	29.48	15.00	14.48	10.43	
30	91.87	28.60	15.00	13.60	24.49	13	90.63	28.22	15.00	13.22	10.31	
35	82.58	25.71	15.00	10.71	22.49	14	86.93	27.07	15.00	12.07	10.14	
40	75.15	23.40	15.00	8.40	20.15	15	83.56	26.02	15.00	11.02	9.91	

_		_			
_	Overflow	Required	Available	Balance	_
	0.00	26.82	102.49	0.00	overflows to Prestige Circle

Drainage Area	205	Ī										
Area (ha)	0.070											
C =	0.30	Restricted Flow Q _r (L	/s)=	6.00								
T _c Variable		Peak Flow Q _p =2.78xCi _{100yr} A		Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m°)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	
5	242.70	14.17	6.00	8.17	2.45	1	203.51	11.88	6.00	5.88	0.35	
6	226.01	13.19	6.00	7.19	2.59	2	182.69	10.67	6.00	4.67	0.56	
7	211.67	12.36	6.00	6.36	2.67	3	166.09	9.70	6.00	3.70	0.67	
8	199.20	11.63	6.00	5.63	2.70	4	152.51	8.90	6.00	2.90	0.70	Required Storage
9	188.25	10.99	6.00	4.99	2.69	5	141.18	8.24	6.00	2.24	0.67	
10	178.56	10.42	6.00	4.42	2.65	6	131.57	7.68	6.00	1.68	0.61	
11	169.91	9.92	6.00	3.92	2.59	7	123.30	7.20	6.00	1.20	0.50	
12	162.13	9.47	6.00	3.47	2.50	8	116.11	6.78	6.00	0.78	0.37	

Overflow	Required	Available	Balance	
0.00	2.70	4.26	0.00	overflows to ditch

Drainage Area	206	
Area (ha)	0.120	
C =	0.30 Restricted Flow Q _r (L/s)=	17.87 *

* 100-year unrestricted flow collected rear yard perforated pipe network

Drainage Area	208											
Area (ha)	0.020											
C =	0.30	Restricted Flow Q _r (L	_/s)=	6.00								
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100vr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q n=2.78xCi 5vr A	Q,	Q _p -Q _r	Volume 5yr	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	
0	398.62	6.65	6.00	0.65	0.00	0	230.48	3.84	6.00	-2.16	0.00	Required Storage
1	351.38	5.86	6.00	-0.14	-0.01	1	203.51	3.39	6.00	-2.61	-0.16	
2	315.00	5.25	6.00	-0.75	-0.09	2	182.69	3.05	6.00	-2.95	-0.35	
3	286.05	4.77	6.00	-1.23	-0.22	3	166.09	2.77	6.00	-3.23	-0.58	
4	262.41	4.38	6.00	-1.62	-0.39	4	152.51	2.54	6.00	-3.46	-0.83	
5	242.70	4.05	6.00	-1.95	-0.59	5	141.18	2.35	6.00	-3.65	-1.09	
6	226.01	3.77	6.00	-2.23	-0.80	6	131.57	2.19	6.00	-3.81	-1.37	
7	211.67	3.53	6.00	-2.47	-1.04	7	123.30	2.06	6.00	-3.94	-1.66	

	Storage	e (m ³)		
Overflow	Required	Available	Balance	
0.00	0.00	4.41	0.00	overflows to ditch

Drainage Area	305											
Area (ha)	0.040											
C =	0.70	Restricted Flow Q _r (L	_/s)=	6.00								
T _c Variable (min)	i _{100yr} (mm/hour)	Peak Flow Q _p =2.78xCi _{100yr} A (L/s)	Q , (L/s)	Q _p -Q _r (L/s)	Volume 100yr (m ³)	T _c Variable (min)	i _{5yr} (mm/hour)	Peak Flow Q _p =2.78xCi _{5yr} A (L/s)	Q , (L/s)	Q _p -Q _r (L/s)	Volume 5yr (m ³)	
5	242.70	18.89	6.00	12.89	3.87	3	166.09	12.93	6.00	6.93	1.25	
7.5	205.22	15.97	6.00	9.97	4.49	4	152.51	11.87	6.00	5.87	1.41	
10	178.56	13.90	6.00	7.90	4.74	5	141.18	10.99	6.00	4.99	1.50	
12.5	158.53	12.34	6.00	6.34	4.76	6	131.57	10.24	6.00	4.24	1.53	Required Storag
15	142.89	11.12	6.00	5.12	4.61	7	123.30	9.60	6.00	3.60	1.51	
17.5	130.31	10.14	6.00	4.14	4.35	8	116.11	9.04	6.00	3.04	1.46	
20	119.95	9.34	6.00	3.34	4.00	9	109.79	8.55	6.00	2.55	1.38	
22.5	111.26	8.66	6.00	2.66	3.59	10	104.19	8.11	6.00	2.11	1.27	

Overflow	Required	Available	Balance	_
0.00	4.76	24.70	0.00	overflows to Area 302

Drainage Area	302											
vrea (ha)	0.220	1										
) =	0.70	Restricted Flow Q _r (L	_/s)=	20.00								
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	
5	242.70	103.91	20.00	83.91	25.17	8	116.11	49.71	20.00	29.71	14.26	
10	178.56	76.44	20.00	56.44	33.87	9	109.79	47.00	20.00	27.00	14.58	
15	142.89	61.18	20.00	41.18	37.06	10	104.19	44.61	20.00	24.61	14.76	
20	119.95	51.35	20.00	31.35	37.62	11	99.19	42.47	20.00	22.47	14.83	Required Storage
25	103.85	44.46	20.00	24.46	36.69	12	94.70	40.54	20.00	20.54	14.79	
30	91.87	39.33	20.00	19.33	34.80	13	90.63	38.80	20.00	18.80	14.66	
35	82.58	35.35	20.00	15.35	32.24	14	86.93	37.22	20.00	17.22	14.46	
40	75.15	32.17	20.00	12.17	29.21	15	83.56	35.77	20.00	15.77	14.20	

 Storage (m³)

 Overflow
 Required
 Available
 Balance

 0.00
 37.62
 148.18
 0.00
 overflows to Prestige Circle

Drainage Area	401											
Area (ha)	0.090											
C =	0.70	Restricted Flow Q _r (L	_/s)=	12.00								
T _c Variable (min)	i _{100yr} (mm/hour)	Peak Flow Q _p =2.78xCi _{100yr} A (L/s)	Q , (L/s)	Q _p -Q _r (L/s)	Volume 100yr (m ³)	T _c Variable (min)	i _{5yr} (mm/hour)	Peak Flow Q _p =2.78xCi _{5yr} A (L/s)	Q , (L/s)	Q _p -Q _r (L/s)	Volume 5yr (m³)	
0	398.62	69.81	12.00	57.81	0.00	0	230.48	40.37	12.00	28.37	0.00	
5	242.70	42.51	12.00	30.51	9.15	2.5	173.95	30.47	12.00	18.47	2.77	
10	178.56	31.27	12.00	19.27	11.56	5	141.18	24.73	12.00	12.73	3.82	
15	142.89	25.03	12.00	13.03	11.72	7.5	119.59	20.94	12.00	8.94	4.03	Required Storage
20	119.95	21.01	12.00	9.01	10.81	10	104.19	18.25	12.00	6.25	3.75	
25	103.85	18.19	12.00	6.19	9.28	12.5	92.61	16.22	12.00	4.22	3.17	
30	91.87	16.09	12.00	4.09	7.36	15	83.56	14.63	12.00	2.63	2.37	
35	82.58	14.46	12.00	2.46	5.17	17.5	76.26	13.36	12.00	1.36	1.42	

	Storage	(m ³)		
Overflow	Required	Available	Balance	_
0.00	11.72	24.95	0.00	overflows to Area 402

Drainage Area	403	l										
Area (ha)	0.060	I										
C =	0.70	Restricted Flow Q _r (L	_/s)=	12.00								
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	
0	398.62	46.54	12.00	34.54	0.00	1	203.51	23.76	12.00	11.76	0.71	
2.5	299.75	35.00	12.00	23.00	3.45	2	182.69	21.33	12.00	9.33	1.12	
5	242.70	28.34	12.00	16.34	4.90	3	166.09	19.39	12.00	7.39	1.33	
7.5	205.22	23.96	12.00	11.96	5.38	4	152.51	17.81	12.00	5.81	1.39	Required Storage
10	178.56	20.85	12.00	8.85	5.31	5	141.18	16.48	12.00	4.48	1.35	
12.5	158.53	18.51	12.00	6.51	4.88	6	131.57	15.36	12.00	3.36	1.21	
15	142.89	16.68	12.00	4.68	4.22	7	123.30	14.40	12.00	2.40	1.01	
17.5	130.31	15.22	12.00	3.22	3.38	8	116.11	13.56	12.00	1.56	0.75	

	Storage	(m ³)		
Overflow	Required	Available	Balance	_
0.00	5.38	24.95	0.00	overflows to Area 402

Drainage Area	402											
rea (ha)	0.050	1										
) =	0.70	Restricted Flow Q _r (L	_/s)=	12.00								
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	
0	398.62	38.79	12.00	26.79	0.00	0	230.48	22.43	12.00	10.43	0.00	
2.5	299.75	29.17	12.00	17.17	2.57	1	203.51	19.80	12.00	7.80	0.47	
5	242.70	23.62	12.00	11.62	3.48	2	182.69	17.78	12.00	5.78	0.69	
7.5	205.22	19.97	12.00	7.97	3.59	3	166.09	16.16	12.00	4.16	0.75	Required Storage
10	178.56	17.37	12.00	5.37	3.22	4	152.51	14.84	12.00	2.84	0.68	
12.5	158.53	15.43	12.00	3.43	2.57	5	141.18	13.74	12.00	1.74	0.52	
15	142.89	13.90	12.00	1.90	1.71	6	131.57	12.80	12.00	0.80	0.29	
17.5	130.31	12.68	12.00	0.68	0.71	7	123.30	12.00	12.00	0.00	0.00	

 Storage (m³)

 Overflow
 Required
 Available
 Balance

 0.00
 3.59
 24.96
 0.00
 overflows to Prestige Circle

Drainage Area	404	Ī										
Area (ha)	0.050	I										
C =	0.30	Restricted Flow Q _r (L	_/s)=	6.00								
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A		Q _p -Q _r	Volume 100yr (m. ³)	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr (m ³)	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	, ,	
2	315.00	13.14	6.00	7.14	0.86	0	230.48	9.61	6.00	3.61	0.00	
3	286.05	11.93	6.00	5.93	1.07	1	203.51	8.49	6.00	2.49	0.15	
4	262.41	10.94	6.00	4.94	1.19	2	182.69	7.62	6.00	1.62	0.19	
5	242.70	10.12	6.00	4.12	1.24	3	166.09	6.93	6.00	0.93	0.17	Required Storag
6	226.01	9.42	6.00	3.42	1.23	4	152.51	6.36	6.00	0.36	0.09	
7	211.67	8.83	6.00	2.83	1.19	5	141.18	5.89	6.00	-0.11	-0.03	
8	199.20	8.31	6.00	2.31	1.11	6	131.57	5.49	6.00	-0.51	-0.18	
9	188.25	7.85	6.00	1.85	1.00	7	123.30	5.14	6.00	-0.86	-0.36	

_		Storage	(m ³)		
	Overflow	Required	Available	Balance	
	0.00	1.24	1.62	0.00	overflows to Creek

GARAGE RAMPS

Drainage Area	210	Ι
Area (ha)	0.030	Î.
C =	0.80	R

* 100-year unrestricted flow collected by garage drain

Drainage Area	303	ľ	
Area (ha)	0.030		
C =	0.80	Restricted Flow Q _r (L/s)=	11.91 *

* 100-year unrestricted flow collected by garage drain

Drainage Area	304		
Area (ha)	0.040		
C =	0.80	Restricted Flow Q _r (L/s)=	15.88

* 100-year unrestricted flow collected by garage drain

Drainage Area	306		
Area (ha)	0.050		
C =	0.80	Restricted Flow Q _r (L/s)=	19.86

* 100-year unrestricted flow collected by garage drain

Drainage Area	405		
Area (ha)	0.040		
C =	0.80	Restricted Flow Q _r (L/s)=	15.88

* 100-year unrestricted flow collected by garage drain

Drainage Area	406		
Area (ha)	0.050		
C =	0.80	Restricted Flow Q _r (L/s)=	19.86

* 100-year unrestricted flow collected by garage drain

Drainage Area	407		
Area (ha)	0.030		
C =	0.80	Restricted Flow Q _r (L/s)=	11.91

* 100-year unrestricted flow collected by garage drain

BUILDINGS

Building	5	I										
Area (ha)	0.200											
C =	0.90	Restricted Flow Q _r (L	_/s)=	20.00								
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	
5	242.70	121.45	20.00	101.45	30.43	5	141.18	70.65	20.00	50.65	15.19	
10	178.56	89.35	20.00	69.35	41.61	7.5	119.59	59.84	20.00	39.84	17.93	
15	142.89	71.50	20.00	51.50	46.35	10	104.19	52.14	20.00	32.14	19.28	
20	119.95	60.02	20.00	40.02	48.03	12.5	92.61	46.34	20.00	26.34	19.76	Required Storage
25	103.85	51.97	20.00	31.97	47.95	15	83.56	41.81	20.00	21.81	19.63	
30	91.87	45.97	20.00	25.97	46.75	17.5	76.26	38.16	20.00	18.16	19.07	
35	82.58	41.32	20.00	21.32	44.78	20	70.25	35.15	20.00	15.15	18.18	
40	75.15	37.60	20.00	17.60	42.25	22.5	65.20	32.63	20.00	12.63	17.05	

 Storage (m³)

 Overflow
 Required
 Available
 Balance

 0.00
 48.03
 375.00
 0.00
 controlled on roof

Building	8											
Area (ha)	0.100											
C =	0.90	Restricted Flow Q _r (L	_/s)=	10.00								
T _c Variable (min)	i _{100yr} (mm/hour)	Peak Flow Q _p =2.78xCi _{100yr} A (L/s)	Q , (L/s)	Q _p -Q _r (L/s)	Volume 100yr (m³)	T _c Variable (min)	i _{5yr} (mm/hour)	Peak Flow Q _p =2.78xCi _{5yr} A (L/s)	Q , (L/s)	Q _p -Q _r (L/s)	Volume 5yr (m³)	
5	242.70	60.72	10.00	50.72	15.22	5	141.18	35.32	10.00	25.32	7.60	
10	178.56	44.68	10.00	34.68	20.81	7.5	119.59	29.92	10.00	19.92	8.96	
15	142.89	35.75	10.00	25.75	23.18	10	104.19	26.07	10.00	16.07	9.64	
20	119.95	30.01	10.00	20.01	24.01	12.5	92.61	23.17	10.00	13.17	9.88	Required Storage
25	103.85	25.98	10.00	15.98	23.97	15	83.56	20.91	10.00	10.91	9.82	
30	91.87	22.99	10.00	12.99	23.37	17.5	76.26	19.08	10.00	9.08	9.54	
35	82.58	20.66	10.00	10.66	22.39	20	70.25	17.58	10.00	7.58	9.09	
40	75.15	18.80	10.00	8.80	21.12	22.5	65.20	16.31	10.00	6.31	8.52	

	Storage	(m ³)		
Overflow	Required	Available	Balance	_
0.00	24.01	168.75	0.00	controlled on roof

Building	9											
Area (ha)	0.100											
C =	0.90	Restricted Flow Q _r (L	_/s)=	10.00								
T _c Variable (min)		Peak Flow Q _p =2.78xCi _{100yr} A		$Q_p - Q_r$	Volume 100yr (m ³)	T _c Variable (min)	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	$Q_p - Q_r$	Volume 5yr (m³)	
(11111)	(mm/hour) 242.70	(L/s) 60.72	(L/s) 10.00	(L/s) 50.72	15.22	(1111)	(mm/hour) 141.18	(L/s) 35.32	(L/s) 10.00	(L/s) 25.32	7.60	
10	178.56	44.68	10.00	34.68	20.81	7.5	119.59	29.92	10.00	19.92	8.96	
15	142.89	35.75	10.00	25.75	23.18	10	104.19	26.07	10.00	16.07	9.64	
20	119.95	30.01	10.00	20.01	24.01	12.5	92.61	23.17	10.00	13.17	9.88	Required Storage
25	103.85	25.98	10.00	15.98	23.97	15	83.56	20.91	10.00	10.91	9.82	
30	91.87	22.99	10.00	12.99	23.37	17.5	76.26	19.08	10.00	9.08	9.54	
35	82.58	20.66	10.00	10.66	22.39	20	70.25	17.58	10.00	7.58	9.09	
40	75.15	18.80	10.00	8.80	21.12	22.5	65.20	16.31	10.00	6.31	8.52	

Overflow	Required	Available	Balance	
0.00	24.01	168.75	0.00	controlled on roof

Building	10	Ī										
Area (ha)	0.100	I										
C =	0.90	Restricted Flow Q _r (L	/s)=	10.00								
T _c Variable (min)	i _{100yr} (mm/hour)	Peak Flow Q _p =2.78xCi _{100yr} A (L/s)	Q , (L/s)	Q _p -Q _r (L/s)	Volume 100yr (m ³)	T _c Variable (min)	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A (L/s)	Q , (L/s)	Q _p -Q _r (L/s)	Volume 5yr (m ³)	
(11111)	242.70	60.72	10.00	50.72	15.22	(11111)	(mm/hour) 141.18	35.32	10.00	(L/S) 25.32	7.60	
10	178.56	44.68	10.00	34.68	20.81	7.5	119.59	29.92	10.00	19.92	8.96	
15	142.89	35.75	10.00	25.75	23.18	10	104.19	26.07	10.00	16.07	9.64	
20	119.95	30.01	10.00	20.01	24.01	12.5	92.61	23.17	10.00	13.17	9.88	Required Storage
25	103.85	25.98	10.00	15.98	23.97	15	83.56	20.91	10.00	10.91	9.82	
30	91.87	22.99	10.00	12.99	23.37	17.5	76.26	19.08	10.00	9.08	9.54	
35	82.58	20.66	10.00	10.66	22.39	20	70.25	17.58	10.00	7.58	9.09	
40	75.15	18.80	10.00	8.80	21.12	22.5	65.20	16.31	10.00	6.31	8.52	

	Storage	e (m ³)		
Overflow	Required	Available	Balance	
0.00	24.01	168.75	0.00	controlled on roof

Building	11	I										
Area (ha)	0.100	1										
C =	0.90	Restricted Flow Q _r (L	_/s)=	10.00								
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr	
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)	
5	242.70	60.72	10.00	50.72	15.22	5	141.18	35.32	10.00	25.32	7.60	
10	178.56	44.68	10.00	34.68	20.81	7.5	119.59	29.92	10.00	19.92	8.96	
15	142.89	35.75	10.00	25.75	23.18	10	104.19	26.07	10.00	16.07	9.64	
20	119.95	30.01	10.00	20.01	24.01	12.5	92.61	23.17	10.00	13.17	9.88	Required Storage
25	103.85	25.98	10.00	15.98	23.97	15	83.56	20.91	10.00	10.91	9.82	
30	91.87	22.99	10.00	12.99	23.37	17.5	76.26	19.08	10.00	9.08	9.54	
35	82.58	20.66	10.00	10.66	22.39	20	70.25	17.58	10.00	7.58	9.09	
40	75.15	18.80	10.00	8.80	21.12	22.5	65.20	16.31	10.00	6.31	8.52	

_		Storage	e (m ³)		_
	Overflow	Required	Available	Balance	
	0.00	24.01	168.75	0.00	controlled on roof

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

patersongroup

Geotechnical Investigation

Proposed Multi-Storey Buildings Blocks 6, 7 and 8 - Petrie's Landing II 8466 Jeanne D'Arc Boulevard Ottawa, Ontario

Prepared For

Construction Brigil

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca May 24, 2017

Report: PG4112-1

Table of Contents

4.0		Page
1.0	Introduction	1
2.0	Proposed Development	1
3.0	Method of Investigation3.1Field Investigation3.2Field Survey3.3Laboratory Testing3.4Analytical Testing	3 3 3
4.0	Observation4.1Surface Conditions4.2Subsurface Profile4.3Groundwater	4
5.0	Discussion5.1Geotechnical Assessment.5.2Site Grading and Preparation5.3Foundation Design5.4Design for Earthquakes.5.5Slab on Grade Construction5.6Pavement Design	6 7 8 8
6.0	Design and Construction Precautions6.1Foundation Drainage and Backfill6.2Protection of Footings Against Frost Action6.3Excavation Side Slopes6.4Pipe Bedding and Backfill6.5Groundwater Control6.6Winter Construction6.7Corrosion Potential and Sulphate6.8Landscaping Considerations	10 10 11 12 12 13
7.0	Recommendations	14
8.0	Statement of Limitations	15

Appendices

- Appendix 1 Soil Profile and Test Data Sheets Symbols and Terms Analytical Testing Results
- Appendix 2 Figure 1 Key Plan Drawing PG4112-1 - Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Construction Brigil to conduct a geotechnical investigation for Blocks 6, 7 and 8 at Petrie's Landing II residential development located at 8466 Jeanne D'Arc Boulevard in the City of Ottawa (refer to Figure 1 - Key Plan presented in Appendix 2).

The objective of the investigation was to:

- determine the subsoil and groundwater conditions at this site by means of test holes and existing soils information.
- □ provide geotechnical recommendations for the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

2.0 Proposed Development

It is understood that the current phases of the residential development will consist of three (3) residential multi-storey buildings with slab-on-grade construction, pathways, landscaping and paved parking areas with local access roadways and will be serviced by municipal services.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

The field program for the current geotechnical investigation was carried out on April 24 and 25, 2017 which consisted of extending a total of six (6) boreholes (BH 1-17 to BH 6-17) to a maximum depth of 30.4 m below existing ground surface. The borehole locations were distributed in a manner to provide general coverage of the subject site at the proposed buildings footprints area and taking into consideration site features. The locations of the boreholes are shown on Drawing PG4112-1 - Test Hole Location Plan included in Appendix 2.

The boreholes were drilled using a track-mounted auger drill rig operated by a two-person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer. The drilling procedure consisted of augering to the required depths at the selected locations, sampling and testing the overburden.

Sampling and In Situ Testing

Soil samples were recovered from a 50 mm diameter split-spoon or the auger flights. The split-spoon and auger samples were classified on site and placed in sealed plastic bags. All samples were transported to our laboratory. The depths at which the split-spoon and auger samples were recovered from the boreholes are presented as SS and AU, respectively, on the Soil Profile and Test Data sheets.

Standard Penetration Tests (SPT) were conducted and recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sample 300 mm into the soil after the initial penetration of 150 mm using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength testing, using a vane apparatus, was carried out at regular intervals of depth in cohesive soils.

Dynamic Cone Penetration Tests (DCPT) were also carried out at BH 3-17 location. The DCPT is a continuous test which utilized a dropping weight to drive a 45 degree cone and rod into the ground. The number of blows for each 300 mm penetration was recorded. The rods consisted of the same 44.4 mm diameter rods used for the SPT, and the drive weight of fall and the hammer weight were the same as the SPT. The subsurface conditions observed in the boreholes were recorded in detail in the field. The soil profiles are presented on the Soil Profile and Test Data sheets in Appendix 1.

Groundwater

Flexible polyethylene standpipes were installed in boreholes to permit monitoring of the groundwater levels subsequent to the completion of the sampling program.

3.2 Field Survey

The borehole locations and ground surface elevations at the borehole locations were provided by Annis, O'Sullivan Vollebekk Ltd. The borehole locations and the ground surface elevation at the borehole locations are presented on Drawing PG4112-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil samples recovered from the subject site were visually examined in our laboratory to review the field logs.

3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the potential for exposed ferrous metals and the sulphate potential against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity and the pH of the soil. The results are discussed further in Subsection 6.7.

4.0 Observations

4.1 Surface Conditions

The subject property is bordered to the north by Jeanne D'Arc Boulevard North, to the east by a treed area and Taylor creek, to the south by Regional Road 174, and to the west by Prestige Circle and two (2) residential dwellings located within the southwest portion of the site.

The site is relatively flat and grass covered. Some existing fill piles containing organic and construction debris were observed near the central portion of the site adjacent to Prestige Circle. The site trailer was located near the south side of Prestige Circle.

4.2 Subsurface Profile

Generally, the soil conditions encountered at the test holes locations consist of topsoil or fill overlying silty clay deposit. The silty clay deposit was not fully penetrated at any of the current borehole locations, which extended to a maximum depth of 30.4 m below existing grade.

Based on available geological mapping and previous investigations conducted by Paterson in the area, interbedded limestone and dolomite bedrock of the Gull River formation is present in this area with a drift thickness of 40 to 50 m.

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for the details of the soil profiles encountered at each test hole location.

Silty Clay

A weathered silty clay crust varying in depths between 1.8 and 3.4 m was encountered at the boreholes. In situ shear vane field testing was carried out in the lower portion of the weathered crust yielded undrained shear strength values ranging from approximately 55 to 159 kPa. These values are indicative of a stiff to very stiff consistency.

Grey silty clay which was encountered below the weathered crust at all borehole locations, did not reach refusal at a maximum depth of 30.4 m. In situ shear vane field testing carried out in the grey silty clay yielded undrained shear strength values ranging between 41 and 104 kPa. These values are indicative of a firm to stiff consistency.

4.3 Groundwater

The measured groundwater levels in the boreholes are presented in Table 1 below.

Borehole	Ground	Groundwat	er Levels (m)	
Number	Elevation (m)	Depth	Elevation	Recording Date
BH 1-17	56.90	3.09	53.81	May 1, 2017
BH 2-17	55.71	4.69	51.02	May 1, 2017
BH 3-17	53.88	1.55	52.33	May 1, 2017
BH 4-17	53.84	dry	-	May 1, 2017
BH 5-17	52.45	4.35	48.10	May 1, 2017
BH 6-17	52.59	5.48	47.11	May 1, 2017
BH 8-07	56.10	dry	-	July 16, 2007

It should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater level could vary at the time of construction.

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is considered satisfactory for the proposed multi-storey buildings. Based on the results of the field program, it is expected that the proposed buildings will be founded on conventional shallow footings placed on the undisturbed stiff silty clay bearing surface.

A permissible grade raise restriction is required for the subject site due to the presence of a deep silty clay deposit. If higher than permissible grade raises are required, preloading with or without a surcharge, lightweight fill, and/or other measures should be investigated to reduce the risks of unacceptable long-term post construction total and differential settlements.

The above and other considerations are further discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as those containing organics, should be stripped from under any buildings, paved areas, pipe bedding and other settlement sensitive structures.

Fill Placement

Fill used for grading beneath the building footprints, unless otherwise specified, should consist of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. The fill should be tested and approved prior to delivery to the site. It should be placed in lifts no greater than 300 mm thick and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the building area should be compacted to at least 98% of its standard Proctor maximum dry density (SPMDD).

Site-excavated soil can be used as general landscaping fill where settlement of the ground surface is of minor concern. These materials should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If these materials are to be used to build up the subgrade level for areas to be paved, they should be compacted in thin lifts to a minimum density of 95% of their respective SPMDD. Site-excavated soils are not suitable for use as backfill against foundation walls due to the frost heave potential of the site excavated soils below settlement sensitive areas, such as concrete sidewalks and exterior concrete entrance areas.

5.3 Foundation Design

patersongroup

Kingston

Ottawa

Spread Footing Foundations

North Bay

Footings founded on an undisturbed, stiff silty clay bearing surface can be designed using a bearing resistance value at serviceability limit states (SLS) of **150 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **225 kPa**.

An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of the concrete for the footings.

Settlement

Footings designed using the above-noted bearing resistance value at SLS will be subjected to potential post-construction total and differential settlements of 25 and 20 mm, respectively.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to silty clay or engineered fill when a plane extending down and out from the bottom edges of the footing, at a minimum of 1.5H:1V, passes only through in situ soil of the same or higher capacity as the bearing medium soil.

Permissible Grade Raise Restriction

Due to the presence of the silty clay layer, the subject site will be subjected to a permissible grade restriction. A permissible grade raise restriction of **2.0 m** is recommended for the subject site.

5.4 Design for Earthquakes

The site class for seismic site response can be taken as **Class E** as defined in the Ontario Building Code 2012 (OBC 2012; Table 4.1.8.4.A) for the foundations considered at this site. The soils underlying the proposed shallow foundations are not susceptible to liquefaction for the local seismicity.

5.5 Slab on Grade Construction

With the removal of all topsoil and deleterious materials, within the footprint of the proposed buildings, the native soil or engineered fill surface will be considered to be an acceptable subgrade surface on which to commence backfilling for the floor slab. The upper 150 mm of sub-slab fill should consist of an OPSS Granular A crushed stone. All backfill material within the footprint of the proposed buildings should be placed in maximum 300 mm thick loose lifts and compacted to at least 98% of its SPMDD.

Any soft areas should be removed and backfilled with appropriate backfill material. OPSS Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab.

5.6 Pavement Design

Car only parking areas, access lanes and heavy truck parking areas are anticipated at this site. The proposed pavement structures are shown in Tables 2 and 3.

Table 2 - Recommended Pavement Structure - Car Only Parking Areas					
Thickness (mm)	Material Description				
50	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete				
150	BASE - OPSS Granular A Crushed Stone				
300	SUBBASE - OPSS Granular B Type II				
	SUBGRADE - Either fill, in situ soil, or OPSS Granular B Type I or II material placed over in situ soil or fill				

Table 3 - Recommended Pavement Structure Access Lanes and Heavy Truck Parking Areas						
Thickness (mm)	Material Description					
40	Wear Course - Superpave 12.5 Asphaltic Concrete					
50	Binder Course - Superpave 19.0 Asphaltic Concrete					
150	BASE - OPSS Granular A Crushed Stone					
450	SUBBASE - OPSS Granular B Type II					
	SUBGRADE - Either fill, in situ soil, or OPSS Granular B Type I or II material placed over in situ soil or fill					

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material. The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 98% of the material's SPMDD using suitable vibratory equipment.

Pavement Structure Drainage

Satisfactory performance of the pavement structure is largely dependent on keeping the contact zone between the subgrade material and the base stone in a dry condition. Failure to provide adequate drainage under conditions of heavy wheel loading can result in the fine subgrade soil being pumped into the voids in the stone subbase, thereby reducing its load carrying capacity.

Due to the impervious nature of the subgrade materials consideration should be given to installing subdrains during the pavement construction. These drains should be installed at each catch basin, be at least 3 m long and should extend in four orthogonal directions or longitudinally when placed along a curb. Along local streets, the drains should be placed along the edges of the pavement. The subdrain inverts should be approximately 300 mm below subgrade level. The subgrade surface should be crowned to promote water flow to the drainage lines.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

North Bay

patersongroup

Kinaston

Ottawa

It is recommended that a perimeter foundation drainage system be provided for the proposed structures. The system should consist of a 150 mm diameter perforated corrugated plastic pipe, surrounded on all sides by 150 mm of 19 mm clear crushed stone, placed at the footing level around the exterior perimeter of the structures. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials, such as clean sand or OPSS Granular B Type I granular material. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls. A drainage geocomposite, such as Miradrain G100N or Delta Drain 6000, connected to the perimeter foundation drainage system is recommended.

6.2 Protection of Footings Against Frost Action

Perimeter footings of heated structures are required to be insulated against the deleterious effect of frost action. A minimum of 1.5 m thick soil cover (or equivalent) should be provided in this regard.

Exterior unheated footings, such as those for isolated exterior piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure proper and require additional protection, such as soil cover of 2.1 m or a combination of soil cover and foundation insulation.

6.3 Excavation Side Slopes

The side slopes of excavations in the soil and fill overburden materials should either be cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is assumed that sufficient room will be available for the greater part of the excavation to be undertaken by open-cut methods (i.e. unsupported excavations).

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level. The subsoil at this site is considered to be mainly a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

patersondroup

Kinaston

Ottawa

North Bay

Bedding and backfill materials should be in accordance with the most recent Material Specifications & Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

At least 150 mm of OPSS Granular A should be used for bedding for sewer and water pipes when placed on soil subgrade. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to at least 300 mm above the obvert of the pipe should consist of OPSS Granular A (concrete or PSM PVC pipes) or sand (concrete pipe). The bedding and cover materials should be placed in maximum 225 mm thick lifts compacted to a minimum of 95% of the material's SPMDD.

Generally, it should be possible to re-use the moist, not wet, silty clay above the cover material if the excavation and filling operations are carried out in dry weather conditions. The wet silty clay should be given a sufficient drying period to decrease its moisture content to an acceptable level to make compaction possible prior to being re-used.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD.

6.5 Groundwater Control

Groundwater Control for Building Construction

It is anticipated that groundwater infiltration into the excavations should be low to moderate and controllable using open sumps. Pumping from open sumps should be sufficient to control the groundwater influx through the sides of shallow excavations.

Permit to Take Water

A temporary Ministry of the Environment and Climate Change (MOECC) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MOECC.

For typical ground or surface water volumes, being pumped during the construction phase, between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MOECC review of the PTTW application.

The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project.

The subsoil conditions at this site consist of frost susceptible materials. In the presence of water and freezing conditions, ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters and tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are also difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be taken if such activities are to be carried out during freezing conditions. Additional information could be provided, if required.

6.7 Corrosion Potential and Sulphate

The results of analytical testing show that the sulphate content is less than 0.1%. This result is indicative that Type 10 Portland cement (normal cement) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of a non aggressive to slightly aggressive corrosive environment.

6.8 Landscaping Considerations

Tree Planting Restrictions

The proposed development is located in an area of medium sensitive silty clay deposits for tree planting. It is recommended that trees placed within 4.5 m of the foundation wall consist of low water demanding trees with shallow roots systems that extend less than 1.5 m below ground surface. Trees placed greater than 4.5 m from the foundation wall may consist of typical street trees, which are typically moderate water demand species with roots extending to a maximum 2 m depth.

It is well documented in the literature, and is our experience, that fast-growing trees located near buildings founded on cohesive soils that shrink on drying can result in long-term differential settlements of the structures. Tree varieties that have the most pronounced effect on foundations are seen to consist of poplars, willows and some maples (i.e. Manitoba Maples) and, as such, they should not be considered in the landscaping design.

Swimming Pools

The in-situ soils are considered to be acceptable for swimming pools. Above ground swimming pools must be placed at least 4 m away from the residence foundation and neighbouring foundations. Otherwise, pool construction is considered routine, and can be constructed in accordance with the manufacturer's requirements.

7.0 Recommendations

It is a requirement for the foundation design data provided herein to be applicable that the following material testing and observation program be performed by the geotechnical consultant.

- **Q** Review of the grading plan once available
- Observation of all subgrades prior to backfilling.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials used.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued upon the completion of a satisfactory inspection program by the geotechnical consultant.

8.0 Statement of Limitations

The recommendations made in this report are in accordance with our present understanding of the project. We request that we be permitted to review the grading plan once available and our recommendations when the drawings and specifications are complete.

A geotechnical investigation of this nature is a limited sampling of a site. The recommendations are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around the test locations. The extent of the limited area depends on the soil, bedrock and groundwater conditions, as well the history of the site reflecting natural, construction, and other activities. Should any conditions at the site be encountered which differ from those at the test locations, we request notification immediately in order to permit reassessment of our recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Construction Brigil or their agent(s) is not authorized without review by Paterson Group for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

David J. Gilbert, P.Eng.

Report Distribution:

Carlos P. Da Silva, P.Eng.

- □ Construction Brigil (3 copies)
- Paterson Group (1 copy)

APPENDIX 2

FIGURE 1 - KEY PLAN

DRAWING PG4112-1 - TEST HOLE LOCATION PLAN

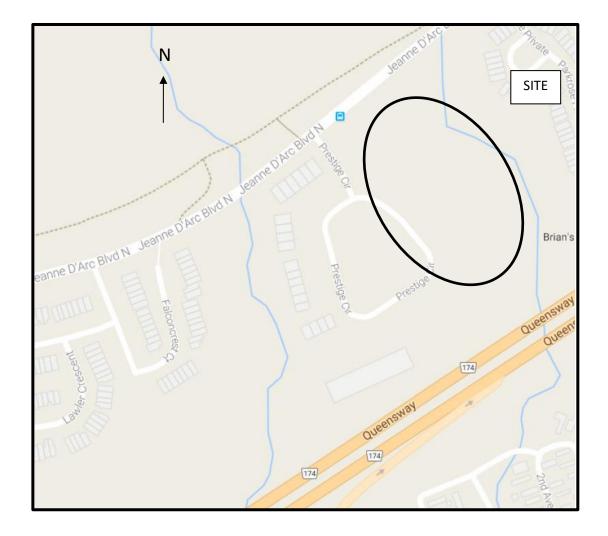
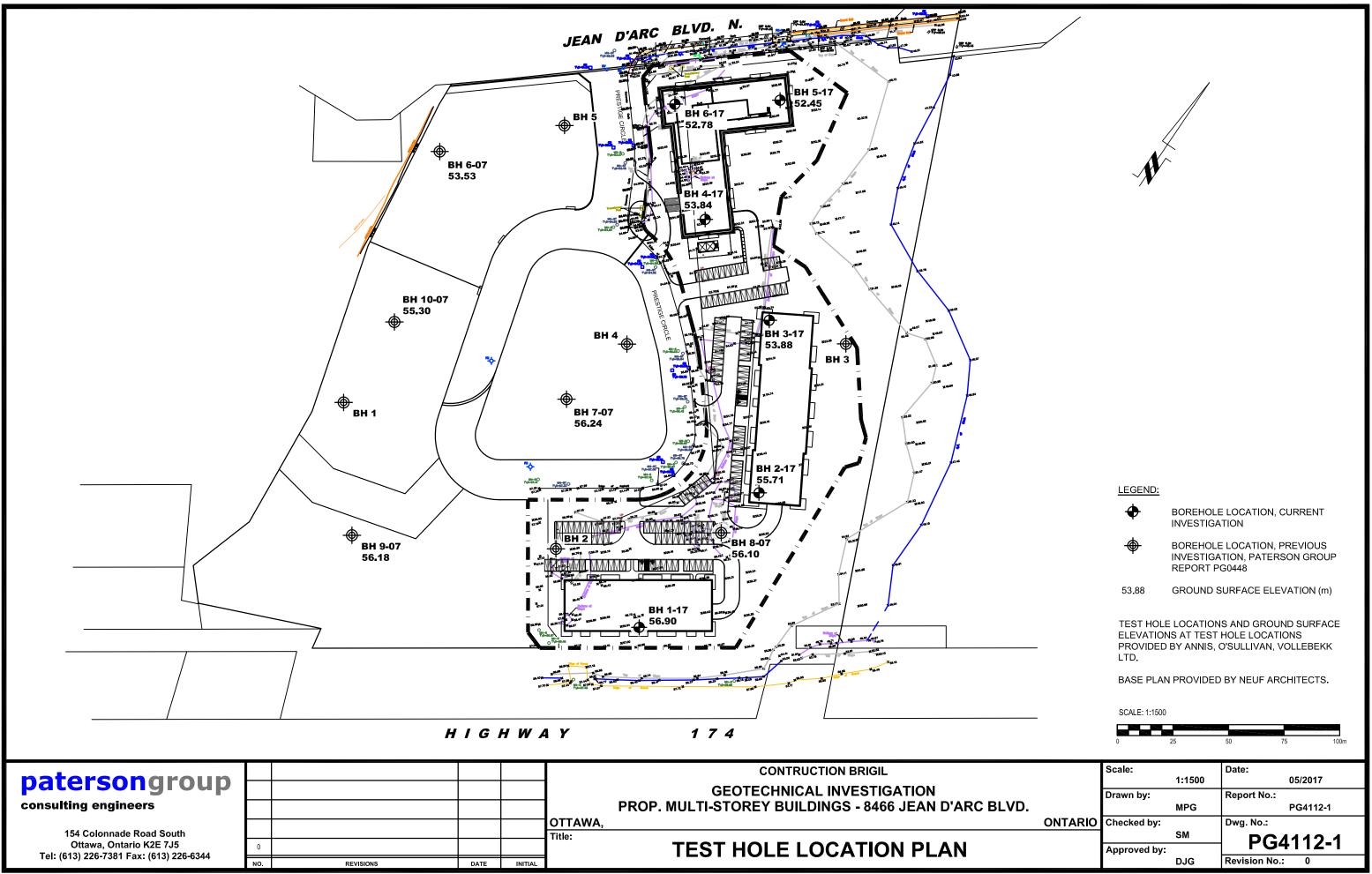
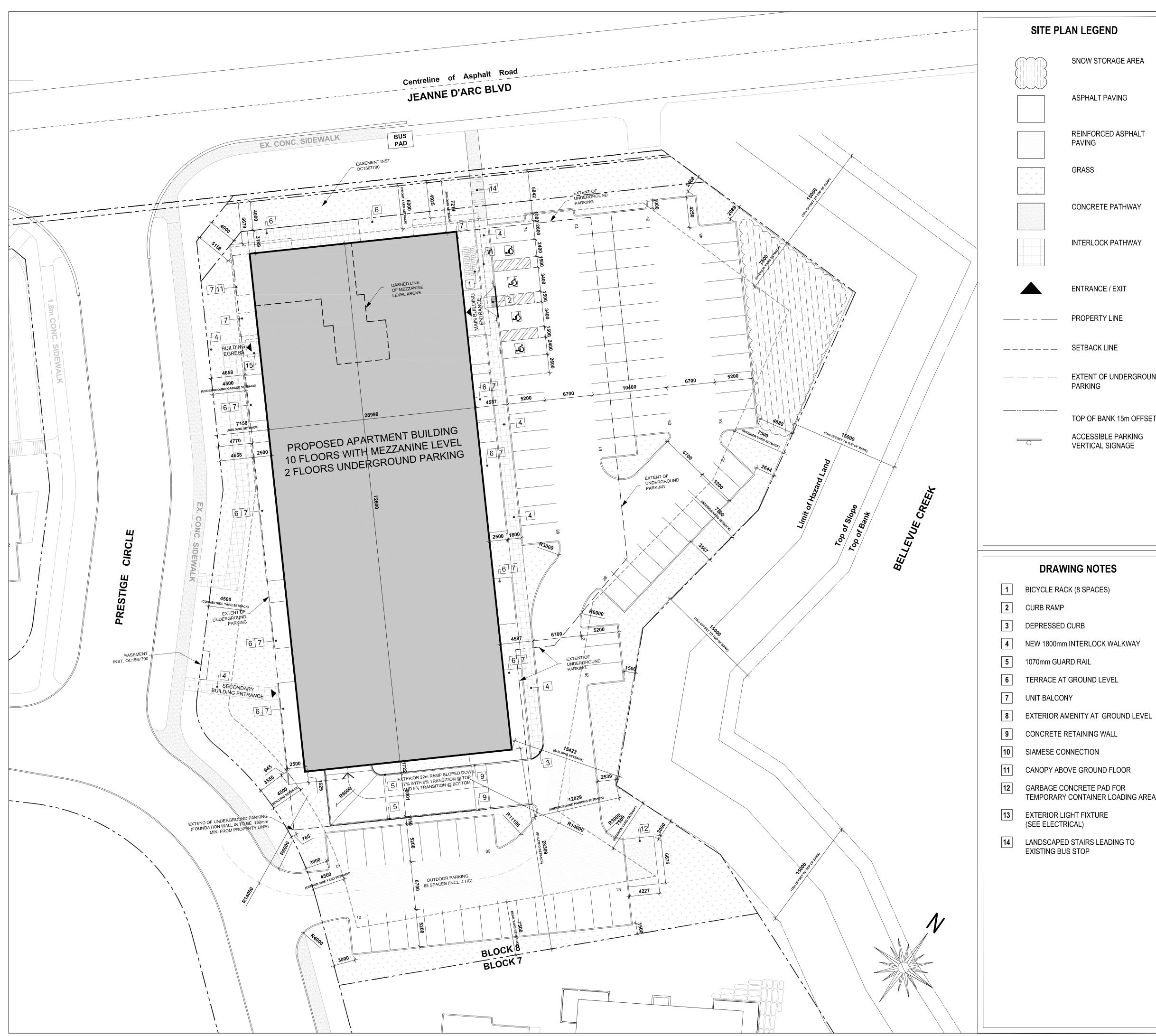



FIGURE 1 KEY PLAN



SITE SERVICING AND STORMWATER MANAGEMENT BRIEF – PETRIE'S LANDING III BLOCK 8 OTTAWA, ON

Appendix E Proposed Site Plan December 13, 2019

Appendix E PROPOSED SITE PLAN

SITE PLAN LEGEND

SNOW STORAGE AREA
SNUW STUNAGE ANLA

ASPHALT PAVING

REINFORCED ASPHALT PAVING

GRASS

CONCRETE PATHWAY

INTERLOCK PATHWAY

ENTRANCE / EXIT

PROPERTY LINE

EXTENT OF UNDERGROUND PARKING

TOP OF BANK 15m OFFSET

ACCESSIBLE PARKING VERTICAL SIGNAGE

DRAWING NOTES

TERRACE AT GROUND LEVEL

GARBAGE CONCRETE PAD FOR TEMPORARY CONTAINER LOADING AREA

LANDSCAPED STAIRS LEADING TO

PROJECT INFORMATION / STATISTICS

SITE SUMMARY

ADDRESS : ZONING : SITE AREA : PROPOSED USE :	8466 JEANNE D'ARC BLVD N R5A [1409] 7491.49 m ² RESIDENTIAL APARTMENTS (214 UNITS) 2 LEVELS OF UNDERGROUND PARKING
BUILDING AREA :	2105 m^2

ZONING SUMMARY

	REQUIRED	PROPOSED
MIN LOT AREA : MIN LOT WIDTH : BUILDING HEIGHT :	1000 m ² 25 m 10 storeys	7472.94 m ² 44.64 m 10 storeys
MIN. YARD SETBACKS • FRONT YARD : • CORNER SIDE YARD : • REAR YARD : • INTERIOR SIDE YARD : LANDSCAPE OPEN SPACE : • SOFT LANDSCAPING : m ²	6.0 m 4.5 m 7.5 m 7.5 m (30%)	7.21 m 4.77 m 28.31 m 15.42 m (31.36%) 2081.06
HARD LANDSCAPING :		262.53 m ²
TOTAL =	2241.88 m ²	2343.59 m ²
VEHICULAR PARKING		
	REQUIRED	PROPOSED
RESIDENTIAL APARTMENTS (214 UNITS) AS PER TABLE 101, • 1.2 SPACES PER DWELLING	257	257
VISITOR PARKING (196 UNITS) AS PER TABLE 102.		
• 0.2 SPACES PER DWELLING	43	43
TOTAL VEHICULAR PARKING	300	300
ACCESSIBLE PARKING (INCLUDED IN TOTAL PARKING COUNT)	8 (4 TYPE A & 4 TYPE B)	8 (4 TYPE A & 4 TYPE B)
BICYCLE PARKING		
	REQUIRED	PROPOSED

RESIDENTIAL APARTMENTS		
(214 UNITS)		
AS PER TABLE 111A,		
 0.5 SPACES PER DWELLING 	107	107

WASTE MANAGEMENT CONTAINERS SIZE AMOUNT

BUILDING SUMMARY		
ORGANICS (214 / 50 = 4.28)	240L	4
RECYCLING (214 x 0.038y = 8.13y ³)	4y ³	2
GARBAGE (214 x 0.11y = 23.54y ³)	4y ³	6

DUILDING SUM		
	GROSS FLOOR AREA	UNIT COUNT
LEVEL P2 PARKING :	3,677 m ²	0
LEVEL P1 PARKING :	3,677 m ²	0
GROUND FLOOR :	2,080 m ²	17
LEVEL 2-9 :	2,080 m ²	22
LEVEL 10 :	2,080 m ²	21
LEVEL 11 :	77 m ²	0
TOTAL =	28,231 m ² (INCL. PARKING)	214

AMENITY SPACE

 PRIVATE TERRACES / BALCONIES : 	3000 m ²
 COMMUNAL ROOF TERRACE : 	386 m ²
 COMMUNAL PARTY ROOM BALCONY: 	18.3 m ²
 COMMUNAL LOUNGE TERRACE : 	62 m ²
 COMMUNAL EXTERIOR AT GRADE : 	346 m ²

UNIT STATISTICS

1 BEDROOM + DEN :

2 BEDROOMS INTERIOR :

1 BEDROOM :

2 BEDROOMS :

1 (1%) 56 (26%) 120 (56%) 37 (17%)

GENERAL NOTES

NOTE-A : ALL DRAWINGS ARE TO BE READ IN CONJUNCTION WITH ALL OTHER DRAWINGS AND SPECIFICATIONS, INCLUDING OTHER CONSULTANT'S DRAWINGS AND SPECIFICATIONS. ANY DISCREPANCIES BETWEEN DRAWINGS WILL BE REPORTED TO THE PROJECT LEAD IMMEDIATELY FOR CLARIFICATION PRIOR TO COMMENCING ANY CONSTRUCTION.

NOTE-B : ALL GENERAL SITE INFORMATION AND CONDITIONS HAVE BEEN COMPILED FROM EXISTING PLANS AND SURVEY.

NOTE-C : CONTRACTOR IS RESPONSIBLE TO CHECK AND VERIFY ALL DIMENSIONS ON SITE AND REPORT ALL ERRORS AND / OR OMISSIONS TO THE ARCHITECT.

NOTE-D : ALL CONTRACTORS MUST COMPLY WITH ALL CURRENT APPLICABLE CODES, REGULATIONS AND BY-LAWS.

NOTE-E : DO NOT SCALE DRAWINGS.

GENERAL NOTES / NOTES GÉNÉRALES : SEE SHEET A-002 / VOIR FEUILLE A-002		
content marked contententententententententententententen		
CHATELAINE VILLAGE		
Programme 0 and 1 Trick hours 0 3 Construction of the state 1 Trick hours 0 1 Trick hours 0		
PROJECT TEAM / ÉQUIPE DU PROJET :		
CLIENT BRIGIL 98, rue Lois, Gatineau QC J8Y 3R7		
819.243.7392 SURVEYOR / ARPENTEUR		
Name ADDRESS ADDRESS Phone :		
URBAN PLANNING / AMÉNAGEMENT URBAIN PAQUETTE PLANNING ASS. Ltd.		
56 Hutchison Avenue, Ottawa ON K1Y 4A3 613.722.7217		
CIVIL ENG. / ING. CIVIL Name ADDRESS		
ADDRESS Phone : STRUCTURAL ENG. / ING. STRUCTURE		
CPF GROUPE CONSEIL 2006 rue Plessis, Montreal QC H2L 2Y3 514.667.5450		
MECHANICAL / ELECTRICAL ENG. / ING. MÉC. / ÉLECT.		
15, rue De Valcourt, Unité 6, Gatineau QC J8T 8H1 819.243.8383		
LANDSCAPE / PAYSAGEMENT LEVSTEK CONSULTANTS		
5871 Hugh Crescent, Ottawa ON K0A 2W0 613.826.0518		
04 ISSUED FOR COORDINATION 2019-10-28		
 03 ISSUED FOR COORDINATION 2019-10-07 02 ISSUED FOR COORDINATION 2019-09-10 01 ISSUED FOR COMMENTS 2019-05-28 		
revisions description date		
ARCHITECT / ARCHITECTE :		
A R C H I T E C T U R E		
Tel: 819-600-1555 www.raai.ca		
NIPASPOURC		
ONSTRUCTIO		
88 BOULEVARD SAINT-JOSEPH, GATINEAU, QC Tel: 819-600-1555 www.raai.ca		
SEAL / SCEAU :		
BRIGIL PETRIES LANDING BLOCK 8		
DRAWING / DESSIN : PROPOSED		
SITE PLAN SCALE / ÉCHELLE : 1:250		
DRAWN BY / DESSINÉ PAR : E.S E.R		
DATE : DWG NO. / NO. DESSIN :		
PROJECT NO. / NO. DE PROJET: 19-001		

5

SITE SERVICING AND STORMWATER MANAGEMENT BRIEF – PETRIE'S LANDING III BLOCK 8 OTTAWA, ON

Appendix F Drawings December 13, 2019

Appendix FDRAWINGS

