

Engineers, Planners & Landscape Architects

Engineering

Land / Site Development

Municipal Infrastructure

Environmental / Water Resources

Traffic / Transportation

Structural

Recreational

Planning

Land / Site Development

Planning Application Management

Municipal Planning Documents & Studies

Expert Witness (OMB)

Wireless Industry

Landscape

Architecture

Urban Design & Streetscapes

Open Space, Parks & Recreation Planning

Community & Residential Developments

Commercial & Institutional Sites

Environmental Restoration

Proposed Residential Development 593 Laurier Avenue

Development Servicing and Stormwater Management Report

PROPOSED RESIDENTIAL DEVELOPMENT 593 LAURIER AVENUE

DEVELOPMENT SERVICING AND STORMWATER MANAGEMENT REPORT

Prepared by:

NOVATECH Suite 200, 240 Michael Cowpland Drive Kanata, Ontario K2M 1P6

December 9, 2019

Ref: R-2019-193 Novatech File No. 119019

December 9, 2019

Alexander Fleck House Inc. 250 Ste Anne Avenue Ottawa, Ontario K1L 7C4

Attention: Mr. Denis Michaud

Dear Sir:

Re: Development Servicing and Stormwater Management Report Proposed 16-Storey Residential Development 593 Laurier Avenue, Ottawa, ON Novatech File No.: 119019

Enclosed is a copy of the 'Development Servicing and Stormwater Management Report' for the proposed 16-storey residential development located at 593 Laurier Avenue, in the City of Ottawa. This report addresses the approach to site servicing and stormwater management and is submitted in support of a site plan control application.

Please contact the undersigned, should you have any questions or require additional information.

Yours truly,

NOVATECH

Ul Saisé

Miroslav Savic, P. Eng. Senior Project Manager

cc: Shawn Wessel (City of Ottawa) Ryan Koolwine (Project1 Studio)

M:\2019\119019\DATA\REPORTS\DS&SWM\DS_&_SWM_REPORT.DOCX

TABLE OF CONTENTS

1.0		INTR	RODUCTION1
1	.1		ırpose1
1	.2	Si	te Description and Location1
1	.3	Pr	e-Consultation Information1
1	.4	Pr	oposed Development 2
1	.5	Re	eference Material
2.0		SITE	SERVICING
2	.1	Sa	anitary Sewage
2	.2	W	ater4
	2.	2.1	Domestic Water Demands and Watermain Analysis 4
	2.	2.2	Water Supply for Fire-Fighting6
2	.3	St	orm Drainage and Stormwater Management7
	2.	3.1	Stormwater Management Criteria and Objectives
	2.	3.2	Pre-Development Conditions and Allowable Release Rate
	2.	3.3	Post-Development Conditions8
		2.3.3	Area R-1: Controlled Flow - New Building Roof
		2.3.3	Area A-1: Uncontrolled Direct Runoff to Laurier Avenue
		2.3.3	Area A-2: Uncontrolled Runoff to Slater Street
		2.3.3	Area A-3: Controlled Flow - Heritage House Roof and Amenity Areas 9
		2.3.3	3.5 Stormwater Flow Summary10
3.0		SITE	GRADING10
4.0			TECHNICAL INVESTIGATIONS
5.0		-	SION AND SEDIMENT CONTROL
6.0		CON	CLUSION11

LIST OF FIGURES

Figure 1 Aerial Plan

LIST OF APPENDICES

Appendix A: Correspondence

- Appendix B: Development Servicing Study Checklist
- Appendix C: Water Demands, FUS Calculations and City of Ottawa Boundary Conditions
- Appendix D: IDF Curves and SWM Calculations
- Appendix E: Sanitary and Storm Sewer Design Sheets
- Appendix F: Control Flow Roof Drain Information
- Appendix G: Inlet Control Device (ICD) Information

LIST OF PLANS

General Plan of Services (119019-GP)

Outlet Sewer Plan and Profile (119019-P1)

Grading and Erosion & Sediment Control Plan (119019-GR)

Stormwater Management Plan (119019-SWM)

1.0 INTRODUCTION

The new 16-storey residential building is being proposed by 11258770 Canada Inc. and Novatech has been retained to complete the site servicing and stormwater management design for this project.

1.1 Purpose

This report addresses the approach to site servicing and stormwater management and is being submitted in support of a site plan control application.

1.2 Site Description and Location

The subject site is approximately 0.123 hectares in size and currently consists of single multi-unit residential building with accessible site access off Laurier Avenue West. The subject site is located on the northwest corner of Laurier Avenue West and Bronson Avenue. Residential lots abut the property to the north and west. The legal description of the subject site is designated as Part of Lot 40, Concession A (Ottawa Front), Geographic Township of Nepean, City of Ottawa.

Figure 1 – Aerial Plan provides an aerial view of the site.

1.3 Pre-Consultation Information

A pre-consultation meeting was held with the City of Ottawa in 2018 at which time the client was advised of the general submission requirements. Subsequent meetings were held with the City on April 26th and on June 26th, 2019. Refer to **Appendix A** for a summary of the correspondence related to the proposed development.

Based on a review of **O. Reg. 525/98: Approval Exemptions**, a Ministry of the Environment, Conservation and Parks (MECP) Environmental Compliance Approval (ECA) is anticipated to be required because the storm flows from this site are ultimately being directed into a combined sewer in Bronson Avenue.

1.4 Proposed Development

The proposed development will consist of a new 16-storey residential building adjoining the existing Heritage House facing Laurier Avenue. The proposed 16-storey residential building will be serviced by extending new laterals to the combined municipal sewer system in Bronson Avenue and to the municipal watermain in Laurier Avenue West. Barrier-free access to the proposed building will be provided off Laurier Avenue West. The Heritage House will be incorporated into the overall design of the site and will be serviced internally by the new building.

1.5 Reference Material

The following reports and studies were prepared and/or reviewed as part of the design process:

¹ The Geotechnical Investigation report (LRL File No.: 190227), prepared by LRL Engineering in June of 2019.

2.0 SITE SERVICING

The objective of the site servicing design is to provide proper sewage outlets, a suitable domestic water supply and to ensure that appropriate fire protection is provided for the proposed development. The servicing criteria, the expected sewage flows, and the water demands are to conform to the City of Ottawa municipal design guidelines for sewer and water distribution systems. Refer to the subsequent sections of the report for further details.


The City of Ottawa Servicing Study Guidelines for Development Applications requires that a Development Servicing Study Checklist be included to confirm that each applicable item is deemed complete and ready for review by City of Ottawa Infrastructure Approvals. A completed checklist is enclosed in **Appendix B** of the report.

2.1 Sanitary Sewage

The existing site does not have any municipal sewers along Laurier Avenue or Bronson Avenue. The sanitary sewage outlet for the existing building is to the north through the 140 Bronson Avenue building outletting to the existing sanitary sewer at the south-west corner of the intersection of Slater Street and Bronson Avenue. As per the pre-condition CCTV investigation, the existing 100mm service lateral is "Transite" pipe in good condition.

The following four options were considered for servicing the proposed development:

- Option 1 Maintain the existing 100mm lateral if it is determined the slope is sufficient to carry the peak design flow from the proposed site.
- Option 2 Replace the lateral with the required size generally in the same location as existing lateral within the 140 Bronson building.
- Option 3 Relocate the lateral outside the 140 Bronson building but within the site.
- Option 4 Install a new lateral within the Laurier Avenue north boulevard, extend the existing combined sewer within the boulevard and outlet to the Cambridge Avenue sewer.

The Option 3 was chosen through discussions with the City of Ottawa. Therefore, the proposed residential development will be serviced by a new 200mm dia. sanitary sewer that will be routed through the 140 Bronson property and connected to the existing 250mm dia. sanitary sewer at the corner of Slater Street and Bronson Avenue.

The City of Ottawa design criteria were used to calculate the theoretical sanitary flows for the proposed development. The following design criteria were taken from Section 4 – 'Sanitary Sewer Systems' and Appendix 4-A - 'Daily Sewage Flow for Various Types of Establishments' of the City of Ottawa Sewer Design Guidelines:

Residential and Commercial Uses

- Residential Units (Studio or 1-Bedroom): 1.4 people per unit
- Residential Units (2-Bedroom): 2.1 people per unit
- Average Daily Residential Sewage Flow: 280 L/person/day
- Residential Peaking Factor = 3.6 (Harmon Equation)
- Infiltration Allowance: 0.33 L/s/ha x 0.123 ha site = 0.04 L/s

Table 1 identifies the theoretical sanitary flows for the proposed residential development based on the above design criteria.

Residential Use	Unit Count	Design Population	Average Flow (L/s)	Peaking Factor	Peak Flow (L/s)	Total Flow (L/s)				
New Building										
Studio / 1-Bedroom	64	90	0.29	3.6	1.04	1.04				
2-Bedroom	20	42	0.14	3.6	0.50	0.50				
Heritage House	Heritage House									
1-Bedroom	2	3	0.01	3.6	0.04	0.04				
2-Bedroom	3	6	0.02	3.6	0.07	0.07				
Infiltration Allowance	-	-	-	-	-	0.04				
Total	89	141	0.46	3.6	1.65	1.69				

Table 1: Theoretical Post-Development Sanitary Flows

A 200mm dia. sanitary gravity sewer at a minimum slope of 1.0% has a full flow conveyance capacity of 34.2 L/s and will have enough capacity to convey the theoretical sanitary flows for the proposed development. Refer to **Appendix E** for a copy of the sanitary sewer design sheet for the outlet sewer.

2.2 Water

The proposed residential development will be serviced by a new 150mm dia. water service connected to the existing 200mm dia. watermain in Laurier Avenue. The water service has been sized to provide the required domestic water demand and fire flow. A shut-off valve will be provided on the proposed water service. The water meter will be located within the water entry room, with a remote meter on the exterior face of the building.

2.2.1 Domestic Water Demands and Watermain Analysis

The City of Ottawa design criteria were used to calculate the theoretical water demands for the proposed development. The following design criteria were taken from Section 4 – 'Water Distribution Systems' of the Ottawa Design Guidelines – Water Distribution:

- Residential Units (Studio or 1 Bedroom): 1.4 people per unit
- Residential Units (2 Bedroom): 2.1 people per unit
- Average Daily Residential Water Demand: 350 L/person/day

- Maximum Day Demand Peaking Factor = 2.5 x Avg. Day Demand
- Peak Hour Demand Peaking Factor = 2.2 x Max. Day Demand

 Table 2 identifies the theoretical domestic water demands for the development based on the above design criteria.

Residential Use	Unit Count	Design Population	Average Day Demand (L/s)	Max. Day Demand (L/s)	Peak Hour Demand (L/s)	
New Building						
Studio / 1-Bedroom	64	90	0.36	0.90	1.98	
2-Bedroom	20	42	0.17	0.43	0.95	
Heritage House						
1-Bedroom	2	3	0.01	0.03	0.07	
2-Bedroom	3	6	0.02	0.05	0.11	
Total	89	141	0.56	1.41	3.11	

 Table 2: Theoretical Water Demand for the Proposed Development

The following design criteria were taken from Section 4.2.2 – 'Watermain Pressure and Demand Objectives' of the City of Ottawa Design Guidelines for Water Distribution:

- Minimum system pressures are not to be less than 276 kPa (40 psi) under Peak Hour demands
- Minimum system pressures are to be 140 kPa (20 psi) under Max Day + Fire Flow demands
- Maximum system pressure is not to exceed 552 kPa (80 psi)

Preliminary domestic water demands, and fire flow requirements were provided to the City of Ottawa. These values were used to generate the municipal watermain network boundary conditions. **Table 2.1** summarizes the watermain boundary conditions and the results of the hydraulic analysis. It is anticipated that a booster pump will be required to increase pressure to the upper floors of the building.

Municipal Watermain Boundary Condition	Boundary Condition	Water Demand (L/s)	Min/Max Operating Pressure (psi)	Design Pressure (psi)*
Minimum HGL (Peak Hour Demand)	106.8 m	3.11	40 psi (min.)	41.4
Maximum HGL (Avg Day Demand)	115.3 m	0.57	80 psi (max.)	53.5
Max Day + Fire Flow HGL	105 m	150 + 1.41	20 psi (min.)	38.8

*Based on the watermain elevation of 77.7m. Design pressure = (HGL - watermain elevation) x 1.42197 PSI/m

As indicated above, the existing municipal watermain should provide adequate system pressures to the proposed development.

2.2.2 Water Supply for Fire-Fighting

The proposed building will be fully sprinklered and supplied with a fire department (siamese) connection. The siamese connection will be located on the south side of the building, within 45m of the existing municipal fire hydrant on the SW corner of Laurier Ave. West and Bronson Ave.

The Fire Underwriters Survey (FUS) was used to estimate fire flow requirements for the proposed building. Based on information provided by the architect, a 16-storey, sprinklered building, constructed using fire resistive materials was used in the calculations. The existing Heritage House was considered as a four-storey building with wood frame construction and sprinkler system.

Table 2.2 summarizes the fire flow requirements for the proposed building, based on FUS calculations.

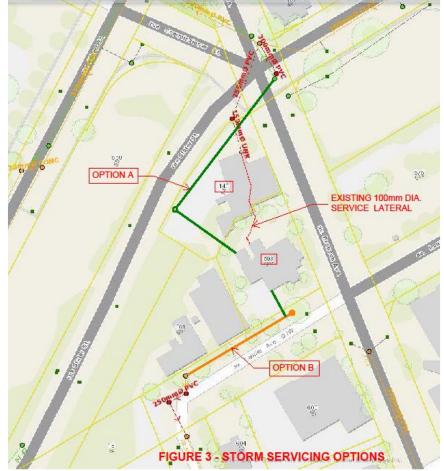
Type of Uses	Fire Flow Demand USGPM (L/s)
Existing Heritage Building	9,000 L/min (150 L/s)
Proposed Residential Building	3,000 L/min (50 L/s)

Table 2.2: Fire Flow Requirements for the Proposed Development

Refer to **Appendix C** for a copy of the preliminary FUS fire flow calculations and correspondence from the City of Ottawa.

The fire flow requirements include both sprinkler system and hose allowances in accordance with the OBC and NFPA 13. The sprinkler systems will be designed by the fire protection (sprinkler) contractor as this process involves detailed hydraulic calculations based on building layout, pipe runs, head losses, fire pump requirements, etc. Fire flow requirements calculated using the FUS method tend to generate higher values when compared to flows being calculated using the OBC and NFPA.

A multi-hydrant approach to fire-fighting is anticipated to be required. There are 3 Class AA (blue bonnet) hydrants within 90m of the proposed development (one hydrant on the SW corner of Laurier Avenue West and Bronson Avenue approximately 16m from the proposed building; another near the SW corner of Cambridge Street North and Laurier Avenue West approximately 60m from the proposed building; and a third hydrant across in front of 570 Laurier Avenue the south side of the roadway approximately 86m from the existing Heritage House. Based on *Table 1 Maximum flow to be considered from a given hydrant* in *Appendix I* of *Technical Bulletin ISTB-2018-02*, the combined flows from the three hydrants are summarized in **Table 2.3**.


Fire Hydrants < 75m from Building	Fire Hydrants > 75m < 150m from Building	Combined Fire Flow		
2 x 5,700 L/min	1 x 3,800 L/min	15,200 L/min		

The combined maximum flow from these hydrants will exceed the Max Day + Fire Flow requirement (9,000 L/min) of the proposed development. The existing municipal watermain network should therefore have adequate fire water supply for the proposed development.

2.3 Storm Drainage and Stormwater Management

There is currently no storm sewer/storm lateral serving the 593 Laurier site. Under existing conditions, surface drainage sheet flows in three directions; overland to Laurier Avenue, overland to Bronson Avenue and overland to the 140 Bronson site. The following two options were considered for servicing the proposed development:

- Option A Similar to Option 3 for the sanitary lateral, a new storm connection would be constructed outletting to a new storm sewer which would be connected the existing sewer at the north-east corner of the intersection of Slater Street and Bronson Avenue.
- Option B Similar to Option 4 for the sanitary lateral and new storm lateral would outlet to a new combined sewer extension and eventually to the existing combined sewer within the Laurier Avenue northern boulevard and outlet to Cambridge Avenue.

Through discussions with the City of Ottawa, a modified Option A was chosen with the outlet to the existing 250mm dia. combined sewer at the south-west corner of the intersection of Slater Street and Bronson Avenue, which in turn outlets into an 1800mm dia. combined sewer in Booth Street. The proposed storm drainage and stormwater management design for the site is discussed in the following sections of the report.

2.3.1 Stormwater Management Criteria and Objectives

The stormwater management criteria and objectives for the site are as follows:

- Maximize the use of on-site storage on the building roof to minimize the size of the underground SWM storage pipes.
- Provide best measures to attempt to control the post-development flows from the site to a target 2-year release rate specified by the City of Ottawa. Control post-development flows from the site being developed up to and including the 100-year design event.
- Minimize the impact on the existing combined sewer in Bronson Avenue by reducing the post-development storm flows from the site, when compared to current conditions.
- Provide guidelines to ensure that site preparation and construction is in accordance with the current Best Management Practices for Erosion and Sediment Control.

2.3.2 Pre-Development Conditions and Allowable Release Rate

The uncontrolled pre-development flows from the 0.123 ha site were calculated using the Rational Method to be 17.7 L/s during the 1:5-year design event and 34.6 L/s during the 1:100-year design event. Refer to **Appendix D** for detailed calculations. There are currently no water quantity or water quality control measures being provided on site.

As specified by the City of Ottawa, the target allowable release rate from the site was calculated using the Rational Method, to be approximately 10.5 L/s, based on a 10-minute rainfall intensity, using a 2-year return period (City of Ottawa IDF Curves) and a runoff coefficient of 0.40.

 $\begin{array}{ll} T_c &= 10 \text{ min} & C = 0.40 \\ I_{5yr} &= 76.81 \text{ mm/hr} & A = 0.123 \text{ ha} \\ \\ Q_{allow} &= 2.78 \text{ CIA} \\ &= 2.78 \times 0.40 \times 76.81 \times 0.123 \\ &= 10.5 \text{ L/s} \end{array}$

2.3.3 Post-Development Conditions

The proposed site will be serviced by connecting to the existing 250mm dia. combined sewer at the south-west corner of Slater Street and Bronson Avenue. As part of the stormwater management (SWM) strategy, stormwater runoff from the building roof will be attenuated using control flow roof drains. In addition to this, stormwater runoff from the lower roof terraces and ground level amenity areas will be directing to an oversized stormwater storage pipe system and controlled prior to being discharged into the municipal outlet sewer. Refer to plan 119019-SWM for drainage areas and detail. Refer to **Appendix E** for a copy of the storm sewer design sheet for the outlet sewer.

2.3.3.1 Area R-1: Controlled Flow - New Building Roof

The post-development flow from this sub-catchment area will be attenuated by using five (5) Watts adjustable 'Accutrol' control flow roof drains (model number RD-100-A-ADJ) prior to being directed to the proposed storm service.

Table 3 summarizes the post-development design flows from this sub-catchment area as well as the type of roof drains, the maximum anticipated ponding depths, storage volumes required, and storage volumes provided for both the 5-year and the 100-year design events.

Roof Drain ID & Drainage Area (ha)	Number of Roof Drains	Watts Roof Drain Model ID (Weir	Flov	rolled v per n (L/s)	per (L/s) Depth Above Drains (m)		Storage Volume Required (m ³)		Max. Storage Available
		Opening)	5-Yr	100-Yr			5-Yr	100-Yr	(m ³)
RD-1 (0.008 ha)	1	RD-100-A-ADJ (1/4 Exposed)	0.79	0.95	0.11	0.15	0.8	2.1	2.2
RD-2 (0.005 ha)	1	RD-100-A-ADJ (1/4 Exposed)	0.79	0.87	0.09	0.13	0.3	1.0	1.3
RD-3 (0.004 ha)	1	RD-100-A-ADJ (1/4 Exposed)	0.71	0.87	0.08	0.13	0.2	0.7	1.2
RD-4 (0.014 ha)	1	RD-100-A-ADJ (1/4 Exposed)	0.79	0.87	0.10	0.14	2.0	4.9	5.1
RD-5 (0.009 ha)	1	RD-100-A-ADJ (Closed)	0.32	0.32	0.10	0.14	1.6	3.9	4.4
Total Roof (0.040 ha)	5	-	3.40	3.88	-	-	4.9	12.6	14.2

 Table 3: Design Flow and Roof Drain Table

Refer to **Appendix D** for detailed SWM calculations and to **Appendix F** for roof drain information. As indicated in the table above, the building roof will provide sufficient storage for both the 5-year and 100-year design events.

2.3.3.2 Area A-1: Uncontrolled Direct Runoff to Laurier Avenue

The uncontrolled post-development flow from this very small sub-catchment area was calculated using the Rational Method to be approximately 0.1 L/s during the 5-year design event and 0.2 L/s during the 100-year design event. Refer to **Appendix D** for SWM calculations.

2.3.3.3 Area A-2: Uncontrolled Runoff to Slater Street

The uncontrolled post-development flow from this very small sub-catchment area was calculated using the Rational Method to be approximately 0.9 L/s during the 5-year design event and 1.7 L/s during the 100-year design event. Refer to **Appendix D** for SWM calculations.

2.3.3.4 Area A-3: Controlled Flow - Heritage House Roof and Amenity Areas

Runoff from sub-catchment A-3 will be captured by the proposed on-site storm sewer system and attenuated by an ICD installed in the outlet pipe of STM MH 5.

Temporary storage is be provided within the oversized underground storm pipes and manhole structures. The provided underground storage system will attenuate the runoff volumes for all storms up-to and including the 100-year storm event.

Table 3.1 summarizes the post-development design flow from this sub-catchment area as well as the type of ICD, the anticipated ponding elevations, storage volumes required and storage volume provided for the 2-year, 5-year and the 100-year design events.

Design	Controlled Site Flows from Area A-					
Event	ICD Type Design Flow		System Depth	Storage Vol. Required	Max Storage Provided	
2-Year		2.5 L/s	0.45 m (76.45 m)	4.0 m ³		
5-Year		2.6 L/s	0.63 m (76.63 m)	5.3 m³	21.5 m³	
100-Year	Vortex LMF (Model 65)	4.4 L/s	1.82 m (77.82 m)	10.7 m ³	21.3 11	
100-Year (+20%)		5.0 L/s	2.39 m (78.39 m)	13.3 m ³		

Table 3.1: Stormwater Flows, ICD & Underground Storage System

Refer to Appendix G for ICD information and to Appendix D for detailed SWM calculations.

2.3.3.5 Stormwater Flow Summary

Table 3.2 provides a summary of the total post-development flows from the site and compares them to the uncontrolled pre-development flows and target release rate specified by the City of Ottawa.

Decian	Pre-Develo Condit		Post-Development Conditions					
Design Event	Uncontrolled Flow (L/s)	Target Release Rate (L/s)	R-1 Flow (L/s)	A-1 Flow (L/s)	A-2 Flow (L/s)	A-3 Flow (L/s)	Total Flow (L/s)	Reduction in Flow (L/s or %) [*]
5-Yr	17.7	10.5	3.4	0.1	0.9	2.6	7.0	10.7 or 60%
100-Yr	34.6	10.5	3.9	0.2	1.7	4.4	10.2	24.4 or 71%

*Reduced flow compared to uncontrolled pre-development conditions.

As indicated in the table above, both the 5-year and the 100-year post-development flows from the site will be less than the target allowable release rate specified by the City of Ottawa. Although the target release rate of 10.5 L/s is only just achieved during the 100-year event, this still represents significant reductions in total site flow rate when compared to the respective predevelopment conditions.

3.0 SITE GRADING

The existing site is relatively flat, with elevations varying from approximately 81.0m near the southwest property corner down to approximately 80.1m near the northeast property corner adjacent to Bronson Avenue. Although the existing site does not slope too steeply, the site is perched above the surrounding properties on the north, east and south sides. The adjacent property to the west is at a similar elevation, while Laurier Avenue West drops to an elevation of approximately 79.0 at the intersection of Bronson Avenue. The grade continues to drop off significantly from south to north along Bronson Avenue. The road elevation at the intersection of Bronson and Slater is approximately 70.4m (nearly 11m below the on-site grades). There is a

significant retaining wall along the east property line to accommodate the grade change along Bronson Avenue. The existing building along the north property line on the adjacent property at 140 Bronson Avenue is bunkered into the escarpment along the shared property line. The western portion of that property has a tiered landscaped area with a stone retaining wall along the shared property line and an additional concrete retaining wall in the middle of the property to accommodate the grade change down to the north.

The finished floor elevation (FFE) of the proposed residential building will be set at an elevation of 82.45m to match into the existing main floor elevation of the Heritage House being preserved on-site. The grades along the north, east and west property lines will be maintained. The grades along the south property line will be lowered slightly to accommodate access off the lower Laurier Avenue West roadway. Refer to the enclosed Grading and Erosion & Sediment Control Plan (119019-GR) for details.

4.0 GEOTECHNICAL INVESTIGATIONS

A Geotechnical Investigation report has been prepared by LRL Engineering for the proposed project. Refer to the Geotechnical Report¹ for subsurface conditions, construction recommendations and geotechnical inspection requirements.

5.0 EROSION AND SEDIMENT CONTROL

To mitigate erosion and to prevent sediment from entering the storm sewer system, temporary erosion and sediment control measures will be implemented on-site during construction in accordance with the Best Management Practices for Erosion and Sediment Control. This includes the following temporary measures:

- Filter bags will be placed under the grates of nearby catchbasins, manholes and will remain in place until vegetation has been established and construction is completed.
- Silt fencing will be placed per OPSS 577 and OPSD 219.110 along the surrounding construction limits.
- A mud mat will be installed at the construction entrance for the site.
- Street sweeping and cleaning will be performed, as required, to suppress dust and to provide safe and clean roadways adjacent to the construction site.
- On-site dewatering is to be directed to a sediment trap and/or gravel splash pad and discharged safely to an approved outlet as directed by the engineer.

The temporary erosion and sediment control measures will be implemented prior to construction and will remain in place during all phases of construction. Regular inspection and maintenance of the erosion control measures will be undertaken.

6.0 CONCLUSION

This report has been prepared in support of a site plan control application for the proposed residential development located at 593 Laurier Avenue.

The conclusions are as follows:

- The proposed 16-storey residential building will be serviced by extending new laterals to the combined municipal sewer system in Bronson Avenue and the municipal watermain in Laurier Avenue West.
- The building will be sprinklered and supplied with a fire department siamese connection. The siamese connection will be located within 45m of the municipal fire hydrant near the south-west corner of the intersection of Laurier Avenue and Bronson Avenue.
- The site flows from sub-catchment area R-1 will be attenuated using control flow roof drains, while flows from area A-2 will be controlled by an ICD and controlled prior to being discharged into the municipal sewer system.
- The total post-development site flow will be approximately 7.0 L/s during the 5-year design event and 10.2 L/s during the 100-year event. Post-development flows will be reduced by approximately 10.7 L/s (or 60%) during the 5-year event and by as much as 24.4 L/s (or 71%) during the 100-year design event, compared to current conditions.
- Regular inspection and maintenance of the building services, roof drains, on-site SWM storage system and the sumps / ICD is recommended to ensure that the storm drainage system is clean and operational.
- Temporary erosion and sediment control measures are to be provided during construction.

It is recommended that the proposed site servicing and stormwater management design be approved for implementation.

NOVATECH

Prepared by:

Reviewed by:

Stephen Matthews, B.A. (Env.) Senior Design Technologist

Miroslav Savic, P. Eng. Senior Project Manager

APPENDIX A

Correspondence

Miro Savic

From:	McCreight, Andrew <andrew.mccreight@ottawa.ca></andrew.mccreight@ottawa.ca>
Sent:	Monday, July 8, 2019 10:31 AM
То:	Danna SeeHar; Murray Chown
Cc:	'denis@henryinvestments.ca';
	'rmartin@robertsonmartin.com'; 'Eric Darwin'; POWELL MICHAEL; Wessel, Shawn; Moise,
	Christopher; Maloney, David; Lee Sheets; Gordon, Mark
Subject:	593 Laurier - 3rd pre-consult - confidential
Attachments:	593 Laurier Ave - 3rd Meeting Minutes.pdf

Hello,

Please find attached the minutes from the 3rd pre-consult meeting held on June 26, 2019. Please let me know if any comments were recorded incorrectly, of if anyone has additional comments.

From a planning perspective, it is important that I reiterate the comment about the current proposal triggering an Official Plan Amendment, as well as the concern relative to high-rise policies /guidelines.

The Department remains very concerned about the proposed height in it's current form. This is challenging site with competing interests between heritage, planning and engineering, but one that must find balance while achieving the review framework of all.

If the addition were to remain low-rise/mid-rise, urban design solutions will be workable. If the addition remains as a high-rise, then the rules of high-rise, such as tower separation, apply and will be instrumental to the Planning Rationale and review of the application(s). Locating height on the property cannot deny abutting property owners the same "right". As noted in the first two meetings, transition remains as a concern, and now with a high-rise in the mix, the setbacks and property relationship cause for further concern. The current proposal requires more analysis to accommodate the idea of a high-rise at this location, and potentially even land acquisition to the west. Otherwise, it is difficult to see how the proposal conforms with the Official Plan.

If anyone has further comments or questions, please do not hesitate to contact me.

Regards, Andrew

ı

Andrew McCreight MCIP RPP

Planner/Urbaniste Development Review Central/Examen des demandes d'aménagement secteur centre PLANNING, INFRASTRUCTURE AND ECONOMIC DEVELOPMENT SERVICES DE PLANIFICATION, D'INFRASTRUCTURE ET DE DÉVELOPPEMENT ÉCONOMIQUE 110 Laurier Ave West | 4th Floor | Ottawa, ON | K1P 1J1 City of Ottawa | Ville d'Ottawa 613.580.2424 ext./poste 22568 ottawa.ca/planning_ / ottawa.ca/urbanisme

VACATION ALERT: I will be away July 19 - Aug 6.

Pre-application Consultation Meeting Minutes

Address: 593 Laurier Ave. Formal Pre-consultation File No.: PC2019-0069 Date: Wednesday June 26, 2019, 1:30pm – 3:00pm Location: Room Billings Room, City Hall, 110 Laurier Ave W City Contact: Andrew McCreight

City of Ottawa Staff Present:

Andrew McCreight – File Lead, Planner, Development Review Central Christopher Moise – Architect/Urban Designer David Maloney – Heritage Planner Shawn Wessel – Infrastructure Project Manager Mark Gordon – Planning Co-op Student

Invitees Present:

Denis Michaud -Owner (c/o) Danna Seehar – Planner, Novatech Murray Chown – Planner, Novatech Ryan Koolwine – Architect, Studio1 Robert Martin – Roberson Martin Architects Lee Sheets, Engineer, Novatech Miro Savic, Engineer, Novatech

Eric Darwin, Dalhousie Community Association Michael Powell, Dalhousie Community Association

Introductions and Acknowledgements

• Round table introductions

Overview of Proposal (Applicant Team)

- Took feedback from previous meeting and made a big push on heritage. The new proposal has improved the visibility of the heritage building – particularly the turret.
- The previous proposal was an "L" shape, the new proposal is a "hockey stick" shape which gives more buffer to the building.
- Building anything at ground level would obstruct the view of the turret due to grade change. Change in configuration of the addition of results in a smaller floorplate resulting in a taller building.
- This will be an iconic structure on the skyline. Submission will review long views and different perspectives.
- Animated streetscape along the lane and narrow profile along Laurier Street are improvements from previous design and lightens the building mass.
- The skew of the addition opens up the views from Slater Street and other important views.

- Glazed recessed area references the turret. This was brought down from the previous proposal to make the new building subordinate to the heritage structure.
- Precedent St. Charles Market on Beechwood Street with the "wrap" approach.
- Single-loaded corridor with five units per floor.
- Glazed room near turret could be amenity space but there is already a large amount of space at grade. The ultimate use of the space is TBD.
- The stone retaining wall may need to be demolished could reuse the stone on foundations.
- Current plans have the front door of the original home serving the entire development.
- No parking garage is planned. Two visitor parking spaces are proposed at grade.
- Preliminary idea is to clad the base of the building in rough stone, then transition to a more polished cladding above.
- The intent is to build as soon as possible. Will start with modifying the existing building once we have taken possession.

Preliminary Comments from the City

Planning Comments (Andrew McCreight)

- Obvious that many of the changes made to the proposal are to do with the heritage, and less about general planning.
- Undecided on the appropriate height due to the complex layering of policy.
- At junction of the General Urban Area, Traditional Mainstreet, Central Area and a variety of accompanying zoning.
- With the General Urban Area designation, the current proposal would trigger an official plan amendment
- Anything beyond the a mid-rise is likely to trigger an OPA.
- Our comfort with the height will come down to the context.
- The new building is as close as 1 metre to the back lot line. What happens when the abutting sites develops? There appears to be no conformity with the high-rise policies / guidelines concerning tower separation, and property compatibility/relationship. This remains a significant concern.
- The taller the proposed buildings goes, the more challenging conversations become. The City is reactionary on height and cannot tell you a height to go to, but the concerns have been flagged to date.
- The façade may need to be quieted so that it doesn't compete with the detailing on the house.

Heritage (David Maloney)

- There have been lots of good heritage moves with this version, but it is a lot of height.
- The stone wall is a heritage attribute and is protected with the home.
- The height proposed could work with the heritage homes as an urban frame, but we are not sure about supportability from a policy perspective.
- Could look at reducing the wrapping of the building.

- Quieting the expression of the new building would improve its relation to the heritage home.
- The balconies at the front of the new building could be moved or removed.
- We appreciate the additional breathing room provided to the historic home.

Urban Design (Christopher Moise)

- The current proposal has ramp users having to roll up the drive aisle before they can access the wheelchair ramp. The ramp also appears too short for the grade change and is already at 8% slope which is steep.
- Given the challenge of making up the grade change to enter through the door of the old home it may not be possible to make it barrier free. Why not set the new building at a lower height and animate the front of the new building.
- Analysis has focused on the heritage asset show some further analysis for building height.
- Would rather see a high quality tall building than a mediocre mid-rise building.
- Consider what it would look like if your neighbours build the same thing.
- Walk people through your analyses to show people how you landed on your proposal.

Infrastructure Comments (Shawn Wessel)

- The site poses challenges for both storm and sanitary sewers.
- The current sewer runs through the neighbouring rear building. This will have to be removed.
- All possible new sewer configurations will involve easements across a neighbouring property.
- We suggest that your team firm up the proposal before having a meeting with City staff from various infrastructure departments. We can work together to find a solution for the sewers.
- Please arrange this meeting with Shawn Wessel at x33017 or shawn.wessel@ottawa.ca

Community Association

- We are happy with the view planes that will be protected.
- Could cut into the escarpment and build useable space underground and put fenestrations in the back wall along Bronson. A skylight could also provide light to this space.
- It would be better to have car shares rather than two visitor parking spaces.
- Looking for short layout spot for Ubers, pizza delivery etc. don't want these blocking the road and bike lanes.
- Not sure about the height but it is an odd site.
- Slater Street is going to be realigned consider how this changes the development potential of parcels along Slater Street.
- The challenge with height is that you end up with a high-rise building intruding onto Laurier Street, which is a low-rise residential streetscape.

Next Steps

- Set up a meeting with City staff to go over infrastructure challenges.
- Discuss Planning Rationale and determine application requirements and next steps.
- It is recommended that the applicant team seek input from the Ward Councillor and neighbouring property owners.

APPENDIX B

Development Servicing Study Checklist

4. Development Servicing Study Checklist

The following section describes the checklist of the required content of servicing studies. It is expected that the proponent will address each one of the following items for the study to be deemed complete and ready for review by City of Ottawa Infrastructure Approvals staff.

The level of required detail in the Servicing Study will increase depending on the type of application. For example, for Official Plan amendments and re-zoning applications, the main issues will be to determine the capacity requirements for the proposed change in land use and confirm this against the existing capacity constraint, and to define the solutions, phasing of works and the financing of works to address the capacity constraint. For subdivisions and site plans, the above will be required with additional detailed information supporting the servicing within the development boundary.

4.1	General	Content
4 . I	General	Content

NA 🗆	Executive Summary (for larger reports only).
\checkmark	Date and revision number of the report.
\checkmark	Location map and plan showing municipal address, boundary, and layout of proposed development.
\checkmark	Plan showing the site and location of all existing services.
1	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.
\checkmark	Summary of Pre-consultation Meetings with City and other approval agencies.
n a 🗆	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.
\checkmark	Statement of objectives and servicing criteria.
\checkmark	Identification of existing and proposed infrastructure available in the immediate area.
NA 🗌	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).

- Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.
- NA Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.
- NA Proposed phasing of the development, if applicable.
 - Reference to geotechnical studies and recommendations concerning servicing.
 - All preliminary and formal site plan submissions should have the following information:
 - Metric scale
 - North arrow (including construction North)
 - Key plan

1

「

- Name and contact information of applicant and property owner
- Property limits including bearings and dimensions
- Existing and proposed structures and parking areas
- Easements, road widening and rights-of-way
- Adjacent street names

4.2 Development Servicing Report: Water

N	A	Confirm consistency with Master Servicing Study, if available

- NA Availability of public infrastructure to service proposed development
 - Identification of system constraints
 - Identify boundary conditions
 - Confirmation of adequate domestic supply and pressure
 - Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.
 - Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.
- NA Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design
 - Address reliability requirements such as appropriate location of shut-off valves
- NA Check on the necessity of a pressure zone boundary modification.

Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range

Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.

Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.

Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.

Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.

N

 $\overline{\mathbf{A}}$

 $\overline{\mathbf{A}}$

 ∇

 ∇

NIA

Development Servicing Report: Wastewater

Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).

Confirm consistency with Master Servicing Study and/or justifications for deviations.

\Box	Consideration of local conditions that may contribute to extraneous flows that are
	higher than the recommended flows in the guidelines. This includes groundwater
	and soil conditions, and age and condition of sewers.

- NA Description of existing sanitary sewer available for discharge of wastewater from proposed development.
- **N**[A Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)
- NA Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.
 - Description of proposed sewer network including sewers, pumping stations, and forcemains.

NIA	Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).
NIA	Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.
NIA	Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.

NA I Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.

Special considerations such as contamination, corrosive environment etc.

4.4 D

 ∇

 ∇

 $\overline{\mathbf{V}}$

 ∇

Development Servicing Report: Stormwater Checklist

Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)

	NIA		Analysis	of available	capacity in	existing	public infrastructu	ıre.
--	-----	--	----------	--------------	-------------	----------	---------------------	------

A drawing showing the subject lands, its surroundings, the receiving watercourse,
existing drainage patterns, and proposed drainage pattern.

Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.

- WATCH Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.
 - Description of the stormwater management concept with facility locations and descriptions with references and supporting information.
 - Set-back from private sewage disposal systems.
- Watercourse and hazard lands setbacks.
- NA Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.
- NA Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.

Ţ	Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).
NIA 🗆	Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.
	Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.
NIA 🗌	Any proposed diversion of drainage catchment areas from one outlet to another.
Í	Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.
NIA 🗌	If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event.
NIA 🗌	Identification of potential impacts to receiving watercourses
NIA 🗌	Identification of municipal drains and related approval requirements.
\checkmark	Descriptions of how the conveyance and storage capacity will be achieved for the development.
1	100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.
nia 🗆	Inclusion of hydraulic analysis including hydraulic grade line elevations.
\checkmark	Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.
nia 🗌	Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.
NIA 🗌	Identification of fill constraints related to floodplain and geotechnical investigation.

4.5 Approval and Permit Requirements: Checklist

The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following:

- Note Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.
- Note Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.
 - MA Changes to Municipal Drains.
 - NA Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)

4.6

 ∇

 $\overline{\mathbf{A}}$

TBD

Conclusion Checklist

Clearly stated conclusions and recommendations

Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.

All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario

APPENDIX C

Water Demands, FUS Calculations and City of Ottawa Boundary Conditions

Miro Savic

From:	Wessel, Shawn <shawn.wessel@ottawa.ca></shawn.wessel@ottawa.ca>
Sent:	Friday, October 11, 2019 2:27 PM
То:	Miro Savic
Subject:	593 Laurier Avenue - Boundary Condition
Attachments:	593 Laurier Oct 2019.pdf

Good afternoon Mr. Savic.

Please find boundary conditions, as requested, below and attached:

The following are boundary conditions, HGL, for hydraulic analysis at 593 Laurier (zone 1W) assumed to be connected to the 203mm on Laurier (see attached PDF for location).

Minimum HGL = 106.8m Maximum HGL = 115.3m MaxDay + FireFlow (150 L/s) = 105.0m MaxDay + FireFlow (50 L/s) = 108.0m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

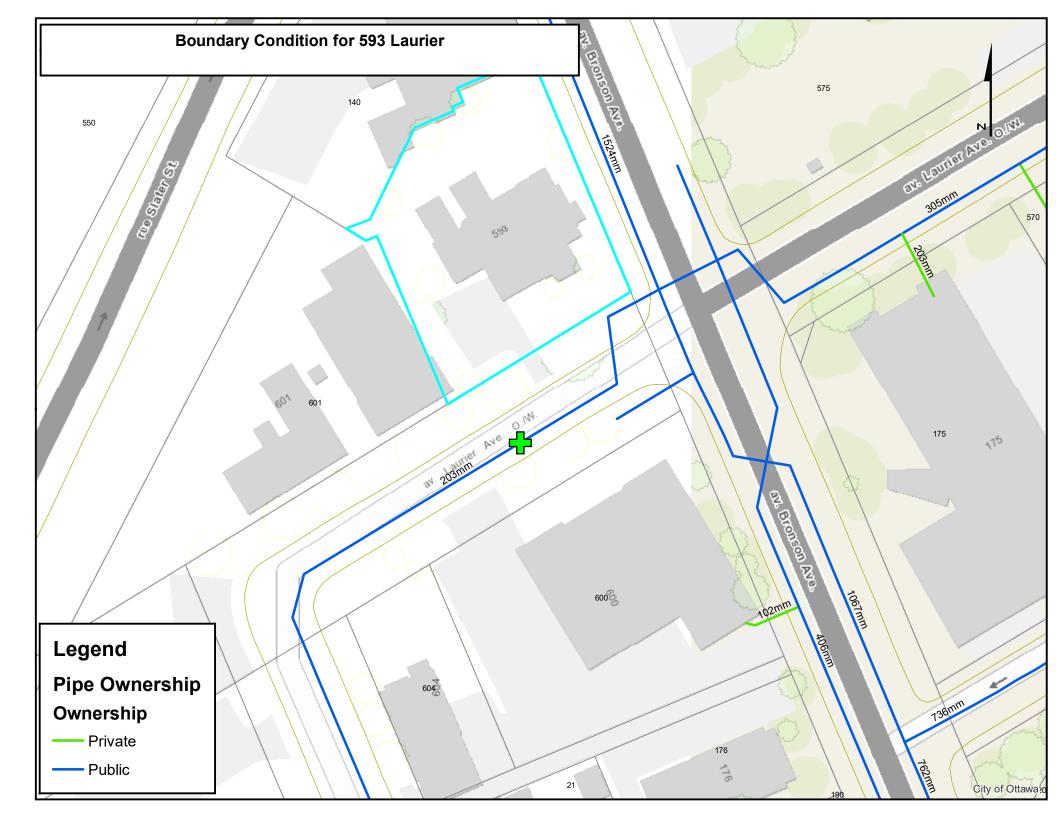
If you require additional information or clarification, please do not hesitate to contact me anytime.

Thank you

Regards,

Shawn Wessel, A.Sc.T.,rcji Project Manager - Infrastructure Approvals Gestionnaire de projet – Approbation des demandes d'infrastructures

Development Review Central Branch | Direction de l'examen des projets d'aménagement, Centrale Planning, Infrastructure and Economic Development Department | Direction générale de la planification de l'infrastructure et du développement économique City of Ottawa | Ville d'Ottawa 110 Laurier Ave. W. | 110, avenue Laurier Ouest, Ottawa ON K1P 1J1 (613) 580 2424 Ext. | Poste 33017 Int. Mail Code | Code de Courrier Interne 01-14 shawn.wessel@ottawa.ca


Please consider the environment before printing this email

ı.

ı

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

FUS - Fire Flow Calculations

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 119019 Project Name: 593 Laurier Date: 10/4/2019 Input By: S.Matthews Reviewed By: M.Savic

Engineers, Planners & Landscape Architects

Legend

Input by User No Information or Input Required

Building Description: 4 Storey Heritage Home

Wood frame

Step			Input		Value Used	Total Fire Flow (L/min)	
	•			(=,,			
	Construction Ma	terial		Mult	iplier		
	Coefficient	Wood frame	Yes	1.5			
1	related to type	Ordinary construction		1			
•	of construction	Non-combustible construction		0.8	1.5		
	C	Modified Fire resistive construction (2 hrs)		0.6			
		Fire resistive construction (> 3 hrs)		0.6			
	Floor Area						
		Building Footprint (m ²)	175.5				
2	Α	Number of Floors/Storeys	4				
2		Area of structure considered (m ²)			702		
	F	Base fire flow without reductions				9,000	
	•	$F = 220 C (A)^{0.5}$				0,000	
		Reductions or Surc	harges				
	Occupancy haza	rd reduction or surcharge		Reduction	/Surcharge		
		Non-combustible		-25%			
3		Limited combustible	Yes	-15%			
-	(1)	(1)	Combustible		0%	-15%	7,650
			Free burning		15%		
		Rapid burning		25%			
	Sprinkler Reduction			Reduction			
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%		
4	(2)	Standard Water Supply	Yes	-10%	-10%	-3,060	
		Fully Supervised System	No	-10%		-3,060	
			Cum	ulative Total	-40%		
	Exposure Surcha	arge (cumulative %)			Surcharge		
		North Side	0 - 3 m		25%		
5		East Side	> 45.1m		0%		
	(3)	South Side	30.1- 45 m		5%	4,208	
		West Side	0 - 3 m		25%		
			Cum	ulative Total	55%		
		Results					
		Total Required Fire Flow, rounded to near	rest 1000L/min		L/min	9,000	
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	150	
		(2,000 Emin < 1 iie 1 low < 40,000 Emin)		or	USGPM	2,378	
7		Required Duration of Fire Flow (hours)			Hours	2	
7	Storage Volume	Required Volume of Fire Flow (m ³)			m ³	1080	

FUS - Fire Flow Calculations

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 119019 Project Name: 593 Laurier Date: 10/4/2019 Input By: S.Matthews Reviewed By: M.Savic

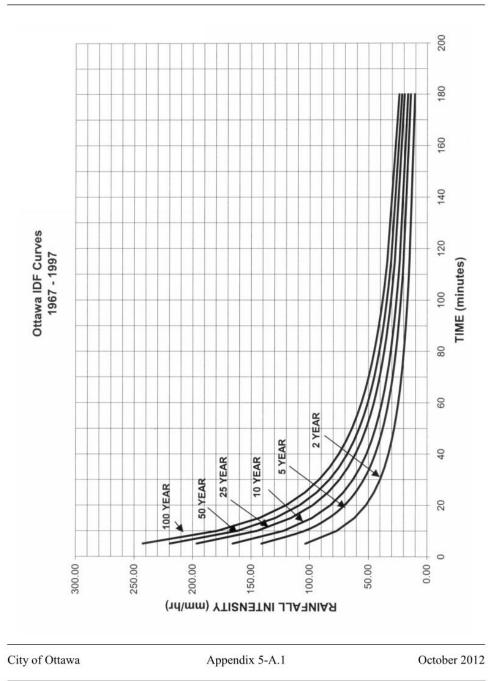
Engineers, Planners & Landscape Architects

Legend

Input by User No Information or Input Required

Building Description: 16-Storey Residential Tower

Fire Resistive Construction


Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire Flow	N			
1	Construction Material			Multiplier		
	Coefficient related to type of construction C	Wood frame		1.5	0.6	
		Ordinary construction		1		
		Non-combustible construction		0.8		
		Modified Fire resistive construction (2 hrs)	Yes	0.6		
		Fire resistive construction (> 3 hrs)		0.6		
2	Floor Area					
	A	Building Footprint (m ²)	402			
		Number of Floors/Storeys	16			
		Protected Openings (1 hr)	Yes			
		Area of structure considered (m ²)			603	
	F	Base fire flow without reductions				3,000
		$F = 220 C (A)^{0.5}$				
	-	Reductions or Surc	harges			
3	Occupancy hazard reduction or surcharge			Reduction	Surcharge	
	(1)	Non-combustible		-25%	-15%	2,550
		Limited combustible	Yes	-15%		
		Combustible		0%		
		Free burning		15%		
		Rapid burning		25%		
4				Redu	ction	
	(2)	Adequately Designed System (NFPA 13)	Yes	-30%	-30%	-1,020
		Standard Water Supply	Yes	-10%	-10%	
		Fully Supervised System	No	-10%		
			Cun	nulative Total	-40%	
5	Exposure Surcha	arge (cumulative %)			Surcharge	
	(3)	North Side	0 - 3 m		25%	1,913
		East Side	0 - 3 m		25%	
		South Side	20.1 - 30 m		10%	
		West Side	3.1 - 10 m		20%	
			Cun	nulative Total	75%	
		Results				
6	(1) + (2) + (3)	Total Required Fire Flow, rounded to near	rest 1000L/mir	ı	L/min	3,000
		(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	50
		(2,000 Emm < 1 10 1 10 × 40,000 Emm)		or	USGPM	793
7	Storage Volume	Required Duration of Fire Flow (hours)			Hours	1.25
		Required Volume of Fire Flow (m ³)			m ³	225

APPENDIX D

IDF Curves and SWM Calculations

Ottawa Sewer Design Guidelines

OTTAWA INTENSITY DURATION FREQUENCY (IDF) CURVE

Proposed 16-Storey Residential Development 593 Laurier Avenue

Pre - Development										
	A :	A impervious (ha)	A gravel (ha) A pervious (h	A pervious (ha)	Weighted	Weighted	1:5 Year	1:100 Year	Allowable	Allowable Flow
Description	Area (ha)	C=0.9	C=0.6	C=0.2	C _{w5}	C _{w100}	Flow (L/s)	Flow (L/s)	C _{value}	2 year (L/s)
Total Site Area	0.123	0.052	0.000	0.071	0.50	0.57	17.7	34.6	0.4	10.5

 $T_c = 10mins$

	Post - Development : Uncontrolled Site									
Area	Description	Area (ha)	A _{imp} (ha)	A _{perv} (ha)	C ₅	C ₁₀₀	Uncontrolled Flow (L/s)			
			C=0.9	C=0.2	3	100	5 year	100 year		
A-1	Direct Runoff to Laurier Ave.	0.001	0.000	0.001	0.38	0.44	0.1	0.2		
A-2	UnControlled Runoff to Slater St.	0.004	0.003	0.001	0.77	0.86	0.9	1.7		
A-3	Controlled Super-Pipe Storage	0.078	0.049	0.029	0.64	0.72	14.5	27.9		
R-1	Controlled Flow Roof Drains	0.040	0.040	0.000	0.90	1.00	10.4	19.9		
	Summed Area Check: 0.123 T _c = 10mins T _c									

	Post - Development : Total Flows for Controlled Site + Uncontrolled Runoff									
Area	Description	Flo	w (L/s)	Storage Re	Provided					
Alea	Description	5 year	100 year	5 year	100 year	(m ³)				
A-1	Direct Runoff to Laurier Ave.	0.1	0.2	-	-	-				
A-2	UnControlled Runoff to Slater St.	0.9	1.7	-	-	-				
A-3	Controlled Super-Pipe Storage	2.6	4.4	5.3	10.7	21.3				
R-1	Controlled Flow Roof Drains	3.4	3.9	4.9	12.6	14.2				
	Totals :	7.0	10.2	10.2	23.3	35.5				
	Over Controlled:	3.5	0.3							

Over Controlled: 3.5 0.3

Proposed 16-Storey Residential Development								
Novatech Project No. 119019								
REQUIRED STORAGE - 1:2 YEAR EVENT								
Allowable Flow to Slater Street								
OTTAWA IDF	CURVE							
Area =	0.123	ha	Qallow =	10.5	L/s			
C =	0.40		Vol(max) =	0.0	m ³			
Time	Intensity	Q	Qnet	Vol				
(min)	(mm/hr)	(L/s)	(L/s)	(m ³)				
5	103.57	14.17	3.66	1.10				
10	76.81	10.51	0.00	0.00				
15	61.77	8.45	-2.06	-1.85				
20	52.03	7.12	-3.39	-4.07				
25	45.17	6.18	-4.33	-6.49				
30	40.04	5.48	-5.03	-9.05				
35	36.06	4.93	-5.57	-11.70				
40	32.86	4.50	-6.01	-14.42				
45	30.24	4.14	-6.37	-17.20				
50	28.04	3.84	-6.67	-20.01				
55	26.17	3.58	-6.93	-22.85				
60	24.56	3.36	-7.15	-25.73				
65	23.15	3.17	-7.34	-28.62				
70	21.91	3.00	-7.51	-31.53				
75	20.81	2.85	-7.66	-34.46				
80	19.83	2.71	-7.79	-37.41				
85	18.94	2.59	-7.91	-40.36				
90	18.14	2.48	-8.02	-43.33				

Proposed 16-Storey Residential Development										
Novatech Pro	•									
	REQUIRED STORAGE - 1:5 YEAR EVENT AREA A-1 Direct Runoff to Laurier Avenue									
	OTTAWA IDF CURVE									
Area =	0.001	ha	Qallow =	0.1	L/s					
C =	0.38		Vol(max) =	0.0	m ³					
-										
Time	Intensity	Q	Qnet	Vol						
(min)	(mm/hr)	(L/s)	(L/s)	(m ³)						
5	141.18	0.15	0.04	0.01						
10	104.19	0.11	0.00	0.00						
15	83.56	0.09	-0.02	-0.02						
20	70.25	0.07	-0.04	-0.04						
25	60.90	0.06	-0.05	-0.07						
30	53.93	0.06	-0.05	-0.09						
35	48.52	0.05	-0.06	-0.12						
40	44.18	0.05	-0.06	-0.15						
45	40.63	0.04	-0.07	-0.18						
50	37.65	0.04	-0.07	-0.21						
55	35.12	0.04	-0.07	-0.24						
60	32.94	0.03	-0.07	-0.27						
65	31.04	0.03	-0.08	-0.30						
70	29.37	0.03	-0.08	-0.33						
75	27.89	0.03	-0.08	-0.36						
80	26.56	0.03	-0.08	-0.39						
85	25.37	0.03	-0.08	-0.42						
90	24.29	0.03	-0.08	-0.45						

Proposed 16	Storey Re	sidential D	evelonment						
	Proposed 16-Storey Residential Development Novatech Project No. 119019								
REQUIRED STORAGE - 1:100 YEAR EVENT									
AREA A-1									
OTTAWA IDF	CURVE								
Area =	0.001	ha	Qallow =	0.2	L/s				
C =	0.44		Vol(max) =	0.0	m ³				
_			()						
Time	Intensity	Q	Qnet	Vol					
(min)	(mm/hr)	(L/s)	(L/s)	(m ³)					
5	242.70	0.30	0.08	0.02					
10	178.56	0.22	0.00	0.00					
15	142.89	0.17	-0.04	-0.04					
20	119.95	0.15	-0.07	-0.09					
25	103.85	0.13	-0.09	-0.14					
30	91.87	0.11	-0.11	-0.19					
35	82.58	0.10	-0.12	-0.25					
40	75.15	0.09	-0.13	-0.30					
45	69.05	0.08	-0.13	-0.36					
50	63.95	0.08	-0.14	-0.42					
55	59.62	0.07	-0.14	-0.48					
60	55.89	0.07	-0.15	-0.54					
65	52.65	0.06	-0.15	-0.60					
70	49.79	0.06	-0.16	-0.66					
75	47.26	0.06	-0.16	-0.72					
80	44.99	0.05	-0.16	-0.78					
85	42.95	0.05	-0.16	-0.84					
90	41.11	0.05	-0.17	-0.90					

Novatech Pro	Proposed 16-Storey Residential Development Novatech Project No. 119019 REQUIRED STORAGE - 1:5 YEAR EVENT AREA A-2 Uncontrolled Runoff to Slater Street							
OTTAWA IDF	CURVE							
Area =	0.004	ha	Qallow =	0.9	L/s			
C =	0.77		Vol(max) =	0.0	m ³			
Time	Intensity	Q	Qnet	Vol				
(min)	(mm/hr)	(L/s)	(L/s)	(m ³)				
5	141.18	1.20	0.32	0.09				
10	104.19	0.89	0.00	0.00				
15	83.56	0.71	-0.18	-0.16				
20	70.25	0.60	-0.29	-0.35				
25	60.90	0.52	-0.37	-0.55				
30	53.93	0.46	-0.43	-0.77				
35	48.52	0.41	-0.47	-1.00				
40	44.18	0.38	-0.51	-1.23				
45	40.63	0.35	-0.54	-1.46				
50	37.65	0.32	-0.57	-1.70				
55	35.12	0.30	-0.59	-1.94				
60	32.94	0.28	-0.61	-2.19				
65	31.04	0.26	-0.62	-2.43				
70	29.37	0.25	-0.64	-2.68				
75	27.89	0.24	-0.65	-2.93				
80	26.56	0.23	-0.66	-3.18				
85	25.37	0.22	-0.67	-3.43				
90	24.29	0.21	-0.68	-3.68				

Proposed 16-	Storey Re	sidential D	evelopment						
	Novatech Project No. 119019								
	REQUIRED STORAGE - 1:100 YEAR EVENT								
OTTAWA IDF									
Area =	0.004	ha	Qallow =	1.7	L/s				
C =	0.86		Vol(max) =	0.0	m³				
		0							
Time	Intensity	Q	Qnet	Vol					
(min)	(mm/hr)	(L/s)	(L/s)	(m ³)					
5	242.70	2.31	0.61	0.18					
10	178.56	1.70	0.00	0.00					
15	142.89	1.36	-0.34	-0.31					
20	119.95	1.14	-0.56	-0.67					
25	103.85	0.99	-0.71	-1.07					
30	91.87	0.88	-0.83	-1.49					
35	82.58	0.79	-0.92	-1.92					
40	75.15	0.72	-0.99	-2.37					
45	69.05	0.66	-1.04	-2.82					
50	63.95	0.61	-1.09	-3.28					
55	59.62	0.57	-1.13	-3.74					
60	55.89	0.53	-1.17	-4.21					
65	52.65	0.50	-1.20	-4.68					
70	49.79	0.47	-1.23	-5.16					
75	47.26	0.45	-1.25	-5.63					
80	44.99	0.43	-1.27	-6.11					
85	42.95	0.41	-1.29	-6.59					
90	41.11	0.39	-1.31	-7.08					

Proposed 16-St	torey Resi	idential Dev	/elopment			Structures	Size (
Novatech Proje	ct No. 119	9019				STM MH 5	12
REQUIRED STO	ORAGE - 1	1:5 YEAR E	VENT			CBMH 1	12
AREA A-3	Controlle	d Flow-Und	lerground Sup	er-Pipe		CBMH 2	15
OTTAWA IDF C	URVE					CBMH 3	12
Area =	0.040	ha	Qallow =	2.6	L/s	CBMH 4	12
C =	0.90		Vol(max) =	5.3	m3	CB 1	600 ×
Time	Intensity	Q	Qnet	Vol			
(min)	(mm/hr)	(L/s)	(L/s)	(m3)			
5	141.18	14.13	11.53	3.46			
10	104.19	10.43	7.83	4.70			Syst
15	83.56	8.36	5.76	5.19		Elevation	Dep
20	70.25	7.03	4.43	5.32		(m)	(m
25	60.90	6.09	3.49	5.24		75.87	0.0
30	53.93	5.40	2.80	5.03		76.00	0.1
35	48.52	4.86	2.26	4.74		76.30	0.4
40	44.18	4.42	1.82	4.37		76.56	0.6
45	40.63	4.07	1.47	3.96		77.18	1.3
50	37.65	3.77	1.17	3.50		77.52	1.6
55	35.12	3.52	0.92	3.02		78.02	2.1
60	32.94	3.30	0.70	2.51		78.42	2.5
65	31.04	3.11	0.51	1.98		79.90	4.0
70	29.37	2.94	0.34	1.43		79.95	4.0
75	27.89	2.79	0.19	0.86		80.00	4.1
90	24.29	2.43	-0.17	-0.91			
105	21.58	2.16	-0.44	-2.77		IPEX Tem	pest LM
120	19.47	1.95	-0.65	-4.69		1:100 Yr	
135	17.76	1.78	-0.82	-6.66			Flow
150	16.36	1.64	-0.96	-8.66			Hea
							Elevatio
						Outlet P	Pipe Dia.
							Volume
Proposed 16-St	orey Resi	idential Dev	/elopment			1:5 Yr	

1:100 Yr 1:5 Yr

Q (m³/s) =

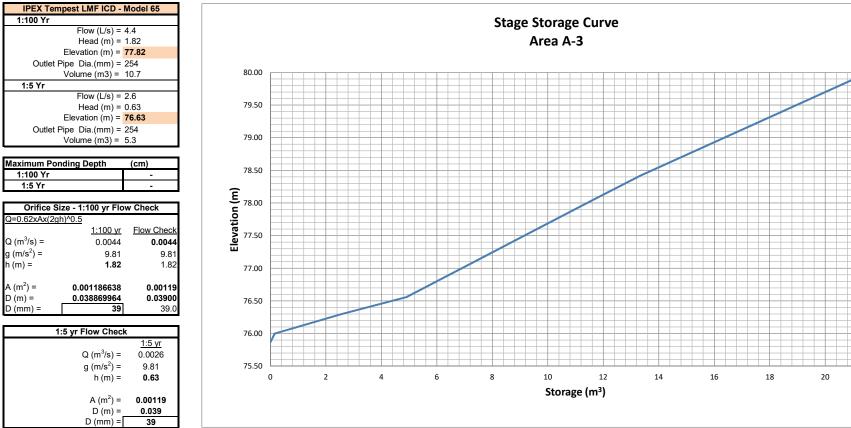
 $g(m/s^2) =$ h (m) =

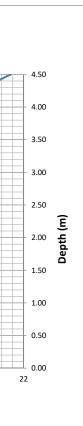
A (m²) =

D (m) =

D (mm) =

Q=0.62xAx(2gh)^0.5

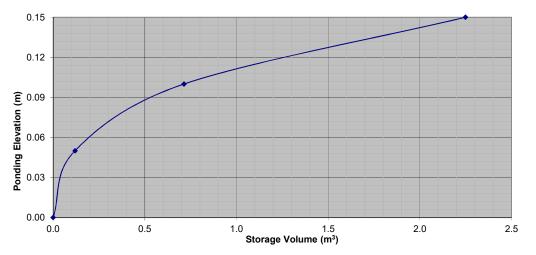

Proposed 16-Storey Residential Development Novatech Project No. 119019								
REQUIRED STORAGE - 1:100 YEAR EVENT								
	AREA A-3 Controlled Flow-Underground Super-Pipe							
Area =		ha	Qallow =	4.4	L/s			
C =	1.00		Vol(max) =	10.7	m3			
Time	Intensity	Q	Qnet	Vol				
(min)	(mm/hr)	(L/s)	(L/s)	(m3)				
5	242.70	26.99	22.59	6.78				
10	178.56	19.86	15.46	9.27				
15	142.89	15.89	11.49	10.34				
20	119.95	13.34	8.94	10.73				
25	103.85	11.55	7.15	10.72				
30	91.87	10.22	5.82	10.47				
35	82.58	9.18	4.78	10.04				
40	75.15	8.36	3.96	9.49				
45	69.05	7.68	3.28	8.85				
50	63.95	7.11	2.71	8.14				
55	59.62	6.63	2.23	7.36				
60	55.89	6.22	1.82	6.54				
65	52.65	5.85	1.45	5.67				
70	49.79	5.54	1.14	4.77				
75	47.26	5.25	0.85	3.85				
90	41.11	4.57	0.17	0.93				
105	36.50	4.06	-0.34	-2.15				
120	32.89	3.66	-0.74	-5.34				
135	30.00	3.34	-1.06	-8.62				
150	27.61	3.07	-1.33	-11.97				


Structures	Size (mm)	Area (m ²)	T/G	Inv IN	Inv OUT
STM MH 5	1219	1.17	80.55	76.00	75.87
CBMH 1	1219	1.17	80.40	76.02	76.01
CBMH 2	1524	1.82	80.25	76.09	76.03
CBMH 3	1219	0.36	80.05	-	76.10
CBMH 4	1219	0.36	79.90	78.43	78.35
CB 1	600 x 600	0.36	80.25	-	78.55

PI = 3.141592654 pipe I.D.= 533 (concrete pipe) U/G Pipe Volume End Area 0.223 (m²) Total Length 10.4 (m) Pipe Volume 2.3 (m³)

U/G Pipe Size	525mm dia.	525mm dia.	525mm dia.
Pipe Segment	STM MH 5 - CBMH 1	CBMH 1 - CBMH 2	CBMH 2 - CBMH 3
Centre-Centre Length	6.5	7.5	7.1
Inside Structure	1.5	1.7	1.7
U/G Storage Length	5.0	5.8	5.4

	Area A-3: Storage Table					Underground Storage	Total S	Storage			
	System	STM MH 5	CBMH 1	CBMH 2	CBMH 3	CBMH 4	CB 1	Total	Ponding	Total	
Elevation (m)	Depth (m)	Volume (m ْ)	Volume (m³)	Volume (m°)	Volume (m ٚ)	Volume (m°)	Volume (m°)	Volume (m ٚ)	Volume (m°)	Volume (m°)	Design Head
75.87	0.00	-	-	-	-	-	-	-	-	0	-
76.00	0.13	0.15	-	-	-	-	-	0.15	-	0.2	0.00
76.30	0.43	0.50	0.34	0.49	0.07	-	-	2.57	-	2.6	0.30
76.56	0.69	0.81	0.64	0.97	0.17	-	-	4.90	-	4.9	0.56
77.18	1.31	1.53	1.37	2.10	0.39	-	-	7.70	-	7.7	1.18
77.52	1.65	1.93	1.76	2.72	0.51	-	-	9.24	-	9.2	1.52
78.02	2.15	2.51	2.35	3.63	0.69	-	-	11.50	-	11.5	2.02
78.42	2.55	2.98	2.81	4.36	0.84	0.03	-	13.33	-	13.3	2.42
79.90	4.03	4.70	4.54	7.06	1.37	0.56	0.49	21.04	-	21.0	3.90
79.95	4.08	4.76	4.60	7.15	1.39		0.50	21.28	-	21.3	3.95
80.00	4.13	4.82	4.66	7.24	1.40		0.52	21.52	-	21.5	4.00

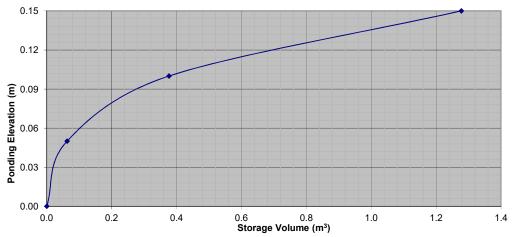

Proposed 16-Storey Residential Development									
Novatech Project No. 119019									
REQUIRED STORAGE - 1:100 YR + 20% IDF Increase									
AREA A-3 Controlled Flow-Underground Super-Pipe									
OTTAWA IDF C			_		_				
Area =	0.040	ha	Qallow =	5.0	L/s				
C =	1.00		Vol(max) =	13.3	m3				
Time	Intensity	Q	Qnet	Vol					
(min)	(mm/hr)	(L/s)	(L/s)	(m3)					
5	291.24	32.39	27.39	8.22					
10	214.27	23.83	18.83	11.30					
15	171.47	19.07	14.07	12.66					
20	143.94	16.01	11.01	13.21					
25	124.62	13.86	8.86	13.29					
30	110.24	12.26	7.26	13.07					
35	99.09	11.02	6.02	12.64					
40	90.17	10.03	5.03	12.07					
45	82.86	9.21	4.21	11.38					
50	76.74	8.53	3.53	10.60					
55	71.55	7.96	2.96	9.76					
60	67.07	7.46	2.46	8.85					
65	63.18	7.03	2.03	7.90					
70	59.75	6.64	1.64	6.90					
75	56.71	6.31	1.31	5.88					
90	49.33	5.49	0.49	2.62					
105	43.80	4.87	-0.13	-0.82					
120	39.47	4.39	-0.61	-4.40					
135	36.00	4.00	-1.00	-8.08					
150	33.13	3.68	-1.32	-11.84					

Proposed	16-Storey	Reside	ntial Develop	oment	
Novatech P					
REQUIRED	STORAGE				
AREA R-1		Control	led Roof Drain	n #1	
OTTAWA ID					
Area =	0.008	ha	Qallow =	0.79	L/s
C =	0.90		Vol(max) =	0.8	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	2.83	2.04	0.61	
10	104.19	2.09	1.30	0.78	
15	83.56	1.67	0.88	0.79	
20	70.25	1.41	0.62	0.74	
25	60.90	1.22	0.43	0.64	
30	53.93	1.08	0.29	0.52	
35	48.52	0.97	0.18	0.38	
40	44.18	0.88	0.09	0.23	
45	40.63	0.81	0.02	0.06	
50	37.65	0.75	-0.04	-0.11	
55	35.12	0.70	-0.09	-0.29	
60	32.94	0.66	-0.13	-0.47	
65	31.04	0.62	-0.17	-0.66	
70	29.37	0.59	-0.20	-0.85	
75	27.89	0.56	-0.23	-1.04	
90	24.29	0.49	-0.30	-1.64	
105	21.58	0.43	-0.36	-2.26	
120	19.47	0.39	-0.40	-2.88	

Watts Accutr	ol Flow Control Roo	of Drains:	RD-100-A-ADJ	set to 1/4 Exposed	
Design	Flow/Drain (L/s)	Total Flow (L/s)	Ponding	Storage	e (m³)
Event	FIOW/Drain (L/S)	TOTAL FIOW (L/S)	(cm)	Required	Provided
1:5 Year	0.79	0.79	11	0.8	2.2
1:100 Year	0.95	0.95	15	2.1	2.2

Roof Drain Storage Table for Area RD 1					
Elevation	Area RD 1	Total Volume			
m	m²	m³			
0.00	0	0			
0.05	4.76	0.1			
0.10	19.03	0.7			
0.15	42.38	2.2			

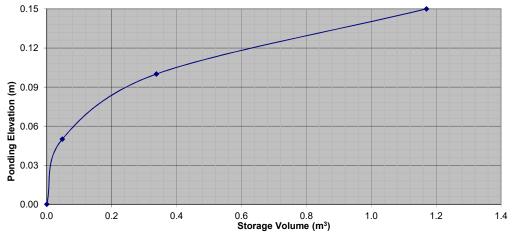
Proposed 16-Storey Residential Development								
	Novatech Project No. 119019							
REQUIRED STORAGE - 1:100 YEAR EVENT								
AREA R-1	AREA R-1 Controlled Roof Drain #1							
OTTAWA II	OF CURVE							
Area =	0.008	ha	Qallow =	0.95	L/s			
C =	1.00		Vol(max) =	2.1	m3			
Time	Intensity	Q	Qnet	Vol				
(min)	(mm/hr)	(L/s)	(L/s)	(m3)				
5	242.70	5.40	4.45	1.33				
10	178.56	3.97	3.02	1.81				
15	142.89	3.18	2.23	2.01				
20	119.95	2.67	1.72	2.06				
25	103.85	2.31	1.36	2.04				
30	91.87	2.04	1.09	1.97				
35	82.58	1.84	0.89	1.86				
40	75.15	1.67	0.72	1.73				
45	69.05	1.54	0.59	1.58				
50	63.95	1.42	0.47	1.42				
55	59.62	1.33	0.38	1.24				
60	55.89	1.24	0.29	1.06				
65	52.65	1.17	0.22	0.86				
70	49.79	1.11	0.16	0.66				
75	47.26	1.05	0.10	0.45				
90	41.11	0.91	-0.04	-0.19				
105	36.50	0.81	-0.14	-0.87				
120	32.89	0.73	-0.22	-1.57				


Proposed	Proposed 16-Storey Residential Development							
Novatech P	Novatech Project No. 119019							
	REQUIRED STORAGE - 1:5 YEAR EVENT							
AREA R-1		Control	ed Roof Drain	n #2				
OTTAWA ID	F CURVE							
Area =	0.005	ha	Qallow =	0.79	L/s			
C =	0.90		Vol(max) =	0.3	m3			
Time	Intensity	Q	Qnet	Vol				
(min)	(mm/hr)	(L/s)	(L/s)	(m3)				
5	141.18	1.77	0.98	0.29				
10	104.19	1.30	0.51	0.31				
15	83.56	1.05	0.26	0.23				
20	70.25	0.88	0.09	0.11				
25	60.90	0.76	-0.03	-0.04				
30	53.93	0.67	-0.12	-0.21				
35	48.52	0.61	-0.18	-0.38				
40	44.18	0.55	-0.24	-0.57				
45	40.63	0.51	-0.28	-0.76				
50	37.65	0.47	-0.32	-0.96				
55	35.12	0.44	-0.35	-1.16				
60	32.94	0.41	-0.38	-1.36				
65	31.04	0.39	-0.40	-1.57				
70	29.37	0.37	-0.42	-1.77				
75	27.89	0.35	-0.44	-1.99				
90	24.29	0.30	-0.49	-2.63				
105	21.58	0.27	-0.52	-3.28				
120	19.47	0.24	-0.55	-3.93				

Dueueeed	10.010.000	Deside	atial Davida					
Proposed 16-Storey Residential Development								
Novatech Project No. 119019 REQUIRED STORAGE - 1:100 YEAR EVENT								
AREA R-1	STORAGE		lled Roof Drai					
OTTAWA IE		Contro		11 #2				
Area =	0.005	ha	Qallow =	0.87	L/s			
C =	1.00	na	Vol(max) =	1.0	m3			
0-	1.00		voi(max) =	1.0	1115			
Time	Intensity	Q	Qnet	Vol				
(min)	(mm/hr)	(L/s)	(L/s)	(m3)				
5	242.70	3.37	2.50	0.75				
10	178.56	2.48	1.61	0.97				
15	142.89	1.99	1.12	1.00				
20	119.95	1.67	0.80	0.96				
25	103.85	1.44	0.57	0.86				
30	91.87	1.28	0.41	0.73				
35	82.58	1.15	0.28	0.58				
40	75.15	1.04	0.17	0.42				
45	69.05	0.96	0.09	0.24				
50	63.95	0.89	0.02	0.06				
55	59.62	0.83	-0.04	-0.14				
60	55.89	0.78	-0.09	-0.34				
65	52.65	0.73	-0.14	-0.54				
70	49.79	0.69	-0.18	-0.75				
75	47.26	0.66	-0.21	-0.96				
90	41.11	0.57	-0.30	-1.61				
105	36.50	0.51	-0.36	-2.28				
120	32.89	0.46	-0.41	-2.97				

Watts Accutr	ol Flow Control Roo	of Drains:	RD-100-A-ADJ	set to 1/4 Exposed			
Design	Flow/Drain (L/s) Total Flow (L/s) Ponding Storage		Ponding Storage (Total Flow (L/o) Ponding Storage		e (m ³)
Event	Flow/Drain (L/S)	Total Flow (L/S)	(cm)	Required	Provided		
1:5 Year	0.79	0.79	9	0.3	1.3		
1:100 Year	0.87	0.87	13	1.0	1.3		

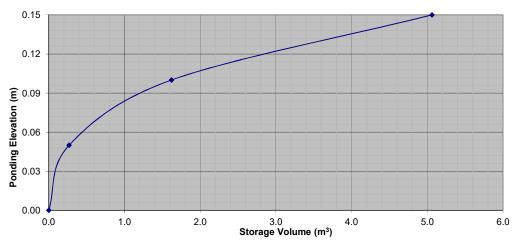
Roof Drain Storage Table for Area RD 2					
Elevation					
m	m ²	m ³			
0.00	0	0			
0.05	2.51	0.1			
0.10	10.05	0.4			
0.15	25.99	1.3			


Proposed 16-Storey Residential Development							
Novatech Project No. 119019							
REQUIRED STORAGE - 1:5 YEAR EVENT AREA R-1 Controlled Roof Drain #3							
OTTAWA ID		Control	ed Rooi Drair	1#3			
		h	0	0.74	1./-		
Area = C =	0.004 0.90	ha	Qallow =	0.71 0.2	L/s m3		
C =	0.90		Vol(max) =	0.2	1113		
Time	Intensity	Q	Qnet	Vol			
(min)	(mm/hr)	(L/s)	(L/s)	(m3)			
5	141.18	1.41	0.70	0.21			
10	104.19	1.04	0.33	0.20			
15	83.56	0.84	0.13	0.11			
20	70.25	0.70	-0.01	-0.01			
25	60.90	0.61	-0.10	-0.15			
30	53.93	0.54	-0.17	-0.31			
35	48.52	0.49	-0.22	-0.47			
40	44.18	0.44	-0.27	-0.64			
45	40.63	0.41	-0.30	-0.82			
50	37.65	0.38	-0.33	-1.00			
55	35.12	0.35	-0.36	-1.18			
60	32.94	0.33	-0.38	-1.37			
65	31.04	0.31	-0.40	-1.56			
70	29.37	0.29	-0.42	-1.75			
75	27.89	0.28	-0.43	-1.94			
90	24.29	0.24	-0.47	-2.52			
105	21.58	0.22	-0.49	-3.11			
120	19.47	0.19	-0.52	-3.71			

Proposed 16-Storey Residential Development						
Novatech Project No. 119019						
REQUIRED	STORAGE	E - 1:100	YEAR EVENT			
AREA R-1		Contro	lled Roof Drai	n #3		
OTTAWA IE	OF CURVE					
Area =	0.004	ha	Qallow =	0.87	L/s	
C =	1.00		Vol(max) =	0.7	m3	
Time	Intensity	Q	Qnet	Vol		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	242.70	2.70	1.83	0.55		
10	178.56	1.99	1.12	0.67		
15	142.89	1.59	0.72	0.65		
20	119.95	1.33	0.46	0.56		
25	103.85	1.15	0.28	0.43		
30	91.87	1.02	0.15	0.27		
35	82.58	0.92	0.05	0.10		
40	75.15	0.84	-0.03	-0.08		
45	69.05	0.77	-0.10	-0.28		
50	63.95	0.71	-0.16	-0.48		
55	59.62	0.66	-0.21	-0.68		
60	55.89	0.62	-0.25	-0.89		
65	52.65	0.59	-0.28	-1.11		
70	49.79	0.55	-0.32	-1.33		
75	47.26	0.53	-0.34	-1.55		
90	41.11	0.46	-0.41	-2.23		
105	36.50	0.41	-0.46	-2.92		
120	32.89	0.37	-0.50	-3.63		

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design	Flow/Drain (L/s)	Total Flow (L/s)	Ponding	Storage	e (m ³)
Event	Event	10tai 110w (L/S)	(cm)	Required	Provided
1:5 Year	0.71	0.71	8	0.2	1.2
1:100 Year	0.87	0.87	13	0.7	1.2

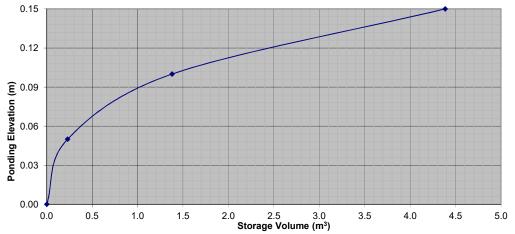
	Roof Drain Storage Table for Area RD 3				
	Elevation	Area RD 3	Total Volume		
ſ	m	m ²	m ³		
	0.00	0	0		
	0.05	1.92	0.0		
	0.10	9.68	0.3		
	0.15	23.6	1.2		


Proposed 16-Storey Residential Development					
Novatech P	roject No.	119019			
REQUIRED	STORAGE				
AREA R-1		Control	led Roof Drain	n #4	
OTTAWA ID					
Area =	0.014	ha	Qallow =	0.79	L/s
C =	0.90		Vol(max) =	2.0	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	4.95	4.16	1.25	
10	104.19	3.65	2.86	1.72	
15	83.56	2.93	2.14	1.92	
20	70.25	2.46	1.67	2.00	
25	60.90	2.13	1.34	2.01	
30	53.93	1.89	1.10	1.98	
35	48.52	1.70	0.91	1.91	
40	44.18	1.55	0.76	1.82	
45	40.63	1.42	0.63	1.71	
50	37.65	1.32	0.53	1.59	
55	35.12	1.23	0.44	1.45	
60	32.94	1.15	0.36	1.31	
65	31.04	1.09	0.30	1.16	
70	29.37	1.03	0.24	1.00	
75	27.89	0.98	0.19	0.84	
90	24.29	0.85	0.06	0.33	
105	21.58	0.76	-0.03	-0.21	
120	19.47	0.68	-0.11	-0.78	

Proposed 16-Storey Residential Development						
Novatech Project No. 119019						
	STORAGE		YEAR EVENT			
AREA R-1		Contro	led Roof Drai	n #4		
OTTAWA IE	OF CURVE					
Area =	0.014	ha	Qallow =	0.87	L/s	
C =	1.00		Vol(max) =	4.9	m3	
Time	Intensity	Q	Qnet	Vol		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	242.70	9.45	8.58	2.57		
10	178.56	6.95	6.08	3.65		
15	142.89	5.56	4.69	4.22		
20	119.95	4.67	3.80	4.56		
25	103.85	4.04	3.17	4.76		
30	91.87	3.58	2.71	4.87		
35	82.58	3.21	2.34	4.92		
40	75.15	2.92	2.05	4.93		
45	69.05	2.69	1.82	4.91		
50	63.95	2.49	1.62	4.86		
55	59.62	2.32	1.45	4.79		
60	55.89	2.18	1.31	4.70		
65	52.65	2.05	1.18	4.60		
70	49.79	1.94	1.07	4.48		
75	47.26	1.84	0.97	4.36		
90	41.11	1.60	0.73	3.94		
105	36.50	1.42	0.55	3.47		
120	32.89	1.28	0.41	2.95		

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design	Flow/Drain (L/s)	Total Flow (L/s)	Ponding	Storage	e (m ³)
Event	Event Flow/Drain (L/S)	Total Flow (L/S)	(cm)	Required	Provided
1:5 Year	0.79	0.79	10	2.0	5.1
1:100 Year	0.87	0.87	14	4.9	5.1

Roof Drain Storage Table for Area RD 4				
Elevation	Area RD 4	Total Volume		
m	m ²	m ³		
0.00	0	0		
0.05	10.81	0.3		
0.10	43.21	1.6		
0.15	94.46	5.1		


Proposed 16-Storey Residential Development					
Novatech Project No. 119019					
REQUIRED	STORAGE				
AREA R-1		Control	led Roof Drain	n #5	
OTTAWA ID	F CURVE				
Area =	0.009	ha	Qallow =	0.32	L/s
C =	0.90		Vol(max) =	1.6	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	3.18	2.86	0.86	
10	104.19	2.35	2.03	1.22	
15	83.56	1.88	1.56	1.41	
20	70.25	1.58	1.26	1.51	
25	60.90	1.37	1.05	1.58	
30	53.93	1.21	0.89	1.61	
35	48.52	1.09	0.77	1.62	
40	44.18	0.99	0.67	1.62	
45	40.63	0.91	0.59	1.61	
50	37.65	0.85	0.53	1.58	
55	35.12	0.79	0.47	1.55	
60	32.94	0.74	0.42	1.52	
65	31.04	0.70	0.38	1.48	
70	29.37	0.66	0.34	1.43	
75	27.89	0.63	0.31	1.39	
90	24.29	0.55	0.23	1.23	
105	21.58	0.49	0.17	1.05	
120	19.47	0.44	0.12	0.85	
I					

Proposed 16-Storey Residential Development						
Novatech Project No. 119019						
	STORAGE		YEAR EVENT			
AREA R-1		Contro	led Roof Drai	n #5		
OTTAWA IE						
Area =	0.009	ha	Qallow =	0.32	L/s	
C =	1.00		Vol(max) =	3.9	m3	
		0	O 1			
Time	Intensity	Q	Qnet	Vol		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	242.70	6.07	5.75	1.73		
10	178.56	4.47	4.15	2.49		
15	142.89	3.58	3.26	2.93		
20	119.95	3.00	2.68	3.22		
25	103.85	2.60	2.28	3.42		
30	91.87	2.30	1.98	3.56		
35	82.58	2.07	1.75	3.67		
40	75.15	1.88	1.56	3.74		
45	69.05	1.73	1.41	3.80		
50	63.95	1.60	1.28	3.84		
55	59.62	1.49	1.17	3.87		
60	55.89	1.40	1.08	3.88		
65	52.65	1.32	1.00	3.89		
70	49.79	1.25	0.93	3.89		
75	47.26	1.18	0.86	3.88		
90	41.11	1.03	0.71	3.83		
105	36.50	0.91	0.59	3.74		
120	32.89	0.82	0.50	3.62		

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to Closed	
Design	Flow/Drain (L/s) Total Flow (L/s		Ponding	Storage	e (m ³)
Event	Event Flow/Drain (L/S)	Total Flow (L/S)	(cm)	Required	Provided
1:5 Year	0.32	0.32	10	1.6	4.4
1:100 Year	0.32	0.32	14	3.9	4.4

Roof Drain Storage Table for Area RD 5				
Elevation	Area RD 5	Total Volume		
m	m²	m ³		
0.00	0	0		
0.05	9.2	0.2		
0.10	36.8	1.4		
0.15	83.41	4.4		

APPENDIX E

Sanitary and Storm Sewer Design Sheets

593 Laurier Avenue - Residential Development Sanitary Sewer Design Sheet

PROJECT :	119019
DESIGNED BY:	SM
CHECKED BY:	MS
DATE:	November 8, 2019

Loca	ition		Resid	dential	Commerci	al / Institutional	Residentia	al Cumulative	Peak	Factor	Residential	Infilt	ration				Pipe	Data		
Street / Area	From	То	Population	Area (ha)	Area (ha)	Accu. Area (ha)	Рор.	Area (ha)	Res Peak Factor	Comm Peak Factor	Acc. Peak Flow (I/s)	Infilt. Flow (I/s)	Accu Infil. Flow	PEAK DESIGN FLOW (I/s)	Size (mm)	Slope (%)	Length (m)	Capacity (I/s)	Full Flow Vel. (m/s)	Q/Q _{full} (%)
593 Laurier Avenue	BLDG	SAN MH 4	141.0	0.123	0.00	0.00	141.0	0.12	3.6	1.5	1.63	0.04	0.04	1.67	200	6.0	8.2	80.3	2.56	2.1%
140 Bronson Avenue	SAN MH 4	SAN MH 3	0.0	0.00	0.00	0.00	141.0	0.12	3.6	1.5	1.63	0.00	0.04	1.67	200	2.6	15.1	52.8	1.68	3.2%
140 Bronson Avenue		SAN MH 2	0.0	0.00	0.00	0.00	141.0	0.12	3.6	1.5	1.63	0.00	0.04	1.67	200	1.0	15.9	32.8	1.04	5.1%
140 Bronson Avenue	SAN MH 2	SAN MH 1	0.0	0.00	0.00	0.00	141.0	0.12	3.6	1.5	1.63	0.00	0.04	1.67	200	1.0	28.1	32.8	1.04	5.1%
140 Bronson Avenue	SAN MH 1	EX.COMB	25.2	0.134	0.00	0.00	166.2	0.26	3.5	1.5	1.91	0.04	0.08	1.99	250	1.0	5.9	59.4	1.21	3.4%
Apartment Units - Studio / 1 Average Apartment Unit Apartment Units - 2-Bedroo Single Family Lot Average Townhome or Sen Average Domestic Flow Institutional / Commercial F Extraneous Flows Foundation Drain Allowance Residential Peaking Factor	m ni-Detached U low e					1.4 1.8 2.1 3.4 2.7 280 50000 0.33 5.0 Harmon Equation		, (use 5.0 L/s/ha	for tributary a	reas < 10 ha;	3.0 L/s/ha for tr	ibutary areas	>10 ha < 100) ha; 2.0 L/s/ha f	for tributary	areas >100) ha)			
Residential Peaking Factor Institutional / Commercial P		r				Harmon Equation 1.5	, Correction F	actor = 0.8												

Note:

The Average apt./persons per unit value of 1.8 was used when determining the apartment population for the 140 Bronson Avenue property.

593 Laurier Avenue - Residential Development 1:5 Year Storm Sewer Design Sheet

DESIGNED BY: SM CHECKED BY: MS DATE: November 8, 2019

119019

PROJECT :

				AREA (ha)				TIME OF	RAINFALL	CONTROLLED	PEAK					PRO	POSED SEWE	R		
AREA		INDIV 2.78 AC	ACCUM 2.78 AC	CONC. (min)	INTENSITY (mm/hr)	FLOW* Q (L/s)	FLOW Q (L/s)	TYPE OF PIPE	SIZE	PIPE ID (mm)	GRADE (%)	LENGTH (m)	CAPACITY (L/s)	FULL FLOW VELOCITY (m/s)	TIME OF FLOW (min)	PERCENTAGE OF CAPACITY				
A-3 Controlled	CB 1	CBMH 4	0.004		0.009	0.02	0.02	10.00	104.19		2.6	PVC	200	203.2	1.00	11.4	34.2	1.06	0.18	8%
A-3 Controlled	CBMH 4	STM MH 5	0.002		0.016	0.04	0.07	10.18	103.25		6.8	PVC	250	254.0	1.00	26.6	62.0	1.22	0.36	11%
								10.54												
A-3 Controlled	CBMH 3	CBMH 2	0.012		0.008	0.03	0.03	10.00	104.19		2.8	CONC	525	533.4	0.20	9.7	200.6	0.90	0.18	1%
A-3 Controlled	CBMH 2	CBMH 1	0.004		0.006	0.02	0.04	10.18	103.25		4.5	CONC	525	533.4	0.20	7.8	200.6	0.90	0.14	2%
A-3 Controlled	CBMH 1	STM MH 5	0.006		0.006	0.02	0.06	10.32	102.51		6.4	CONC	525	533.4	0.20	5.6	200.6	0.90	0.10	3%
	02		0.000		0.000	0.02	0.00	10.43	102.01		0.1	00110	020	000.1	0.20	0.0	20010	0.00	0.10	070
Controlled Flow From A-3			A-3 is contr	olled to 2.6 I	L/s by an Ipex	CTempest LMF	ICD in the out		/I MH 5	2.6	2.6	PVC	250	254.0	6.00	21.1	152.0	3.00	0.12	2%
A-2 Un-Controlled	AD 1	Service Tee			0.027	0.07	0.07	10.00	104.19		7.0	PVC	250	254.0	1.00	26.6	62.0	1.22	0.36	11%
								10.36												
Controlled Flow From R-1			R-1 (0.040 h	a) is control	lled to 3.4 L/s	by Five (5) Wat	ts Accutrol Co	ontrol Flow Ro	of Drains	3.4	3.4	PVC	200	203.2	1.00	21.1	34.2	1.06	0.33	10%
			•	ĺ																
593 Laurier Avenue Site	STM MH 5	STM MH 4						10.54	101.41		13.0	PVC	250	254.0	6.00	21.1	152.0	3.00	0.12	9%
								10.66												
140 Bronson Avenue Site	STM MH 4	STM MH 3						10.66	100.83		13.0	PVC	250	254.0	3.00	15.7	107.5	2.12	0.12	12%
140 Bronson Avenue Site	STM MH 3	STM MH 2						10.78	100.23		13.0	PVC	250	254.0	1.00	19.0	62.0	1.22	0.26	21%
140 Bronson Avenue Site	STM MH 2	STM MH 1						11.04	99.00		13.0	PVC	250	254.0	1.00	22.6	62.0	1.22	0.31	21%
140 Bronson Avenue Site	STM MH 1	SAN MH 1						11.35	97.57		13.0	PVC	250	254.0	1.00	4.5	62.0	1.22	0.06	21%
	2							11.41	0										0.00	

NOTES:

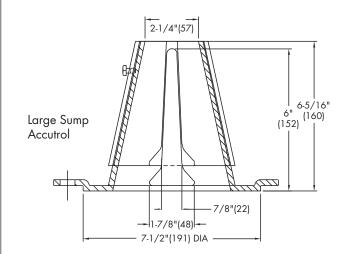
1) Refer to Novatech DSS & SWM Report (R-2019-193) for storm drainage and stormwater details

2) Refer to Novatech Drawings 119019-GP and 119019-P1 for the storm structure designations, storm pipe details and control structure tables.

Engineers, Planners & Landscape Architects

APPENDIX F

Control Flow Rood Drain Information


ADJUSTABLE ACCUTROL (for Large Sump Roof Drains only)

For more flexibility in controlling flow with heads deeper than 2", Watts Drainage offers the Adjustable Accutrol. The Adjustable Accutrol Weir is designed with a single parabolic opening that can be covered to restrict flow above 2" of head to less than 5 gpm per inch, up to 6" of head. To adjust the flow rate for depths over 2" of head, set the slot in the adjustable upper cone according to the flow rate required. Refer to Table 1 below. Note: Flow rates are directly proportional to the amount of weir opening that is exposed.

EXAMPLE:

For example, if the adjustable upper cone is set to cover 1/2 of the weir opening, flow rates above 2"of head will be restricted to 2-1/2 gpm per inch of head.

Therefore, at 3" of head, the flow rate through the Accutrol Weir that has 1/2 the slot exposed will be: [5 gpm (per inch of head) x 2 inches of head] + 2-1/2 gpm (for the third inch of head) = 12-1/2 gpm.

Wain Opening	1"	2"	3"	4"	5"	6"					
Weir Opening Exposed	Flow Rate (gallons per minute)										
Fully Exposed	5	10	15	20	25	30					
3/4	5	10	13.75	17.5	21.25	25					
1/2	5	10	12.5	15	17.5	20					
1/4	5	10	11.25	12.5	13.75	15					
Closed	5	5	5	5	5	5					

Job Name

Job Location

Engineer

Contractor's P.O. No.

Representative ____

Contractor _

Watts product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact Watts Technical Service. Watts reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Watts products previously or subsequently sold.

USA: Tel: (800) 338-2581 • Fax: (828) 248-3929 • Watts.com **Canada:** Tel: (905) 332-4090 • Fax: (905) 332-7068 • Watts.ca **Latin America:** Tel: (52) 81-1001-8600 • Fax: (52) 81-8000-7091 • Watts.com

WATTS

A Watts Water Technologies Company

APPENDIX G

Inlet Control Device (ICD) Information

IPEX Tempest™ Inlet Control Devices

Municipal Technical Manual Series

Vol. I, 2nd Edition

© 2012 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 2441 Royal Windsor Drive, Mississauga, Ontario, Canada, L5J 4C7.

The information contained here within is based on current information and product design at the time of publication and is subject to change without notification. IPEX does not guarantee or warranty the accuracy, suitability for particular applications, or results to be obtained therefrom.

PRODUCT INFORMATION: TEMPEST LOW, MEDIUM FLOW (LMF) ICD

Purpose

To control the amount of storm water runoff entering a sewer system by allowing a specified flow volume out of a catch basin or manhole at a specified head. This approach conserves pipe capacity so that catch basins downstream do not become uncontrollably surcharged, which can lead to basement floods, flash floods and combined sewer overflows.

Product Description

Our LMF ICD is designed to accommodate catch basins or manholes with sewer outlet pipes 6" in diameter and larger. Any storm sewer larger than 12" may require custom modification. However, IPEX can custom build a TEMPEST device to accommodate virtually any storm sewer size.

Available in 14 preset flow curves, the LMF ICD has the ability to provide flow rates: 2lps – 17lps (31gpm – 270gpm)

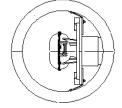
Product Function

The LMF ICD vortex flow action allows the LMF ICD to provide a narrower flow curve using a larger orifice than a conventional orifice plate ICD, making it less likely to clog. When comparing flows at the same head level, the LMF ICD has the ability to restrict more flow than a conventional ICD during a rain event, preserving greater sewer capacity.

Product Construction

Constructed from durable PVC, the LMF ICD is light weight 8.9 Kg (19.7 lbs).

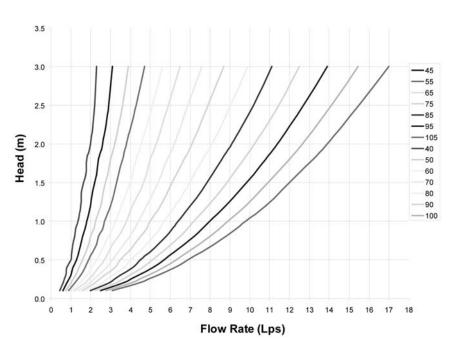
Product Applications

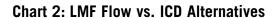

Will accommodate both square and round applications:

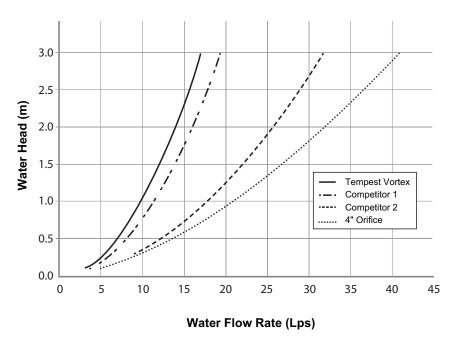
Square Application Round Application Universal Mounting Plate

Universal Mounting Plate Hub Adapter

Spigot CB


Wall Plate




4

IPEX

Chart 1: LMF 14 Preset Flow Curves

PRODUCT INSTALLATION

Instructions to assemble a TEMPEST LMF ICD into a Square Catch Basin:

STEPS:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
 - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers,
 (4) nuts, universal mounting plate, ICD device.
- Use the mounting wall plate to locate and mark the hole
 (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors.
- Install the universal mounting plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From the ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the universal mounting plate and has created a seal.

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut down the pipe flush to the catch basin wall.
- Call your IPEX representative for more information or if you have any questions about our products.

Instructions to assemble a TEMPEST LMF ICD into a Round Catch Basin:

STEPS:

- 1. Materials and tooling verification.
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level and marker.
 - Material: (4) concrete anchor 3/8 x 3-1/2, (4) washers and (4) nuts, spigot CB wall plate, universal mounting plate hub adapter, ICD device.
- 2. Use the spigot catch basin wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- Use an impact drill with a 3/8" concrete bit to make the four holes at a depth between 1-1/2" to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Thread the nuts on the top of the anchors to protect the threads when you hit the anchors with the hammer. Remove the nuts from the ends of the anchors.
- Install the CB spigot wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the spigot wall plate and the catch basin wall.
- 6. Apply solvent cement on the hub of the universal mounting plate, hub adapter and the spigot of the CB wall plate, then slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the universal mounting plate hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the mounting plate and has created a seal.

WARNING

- Verify that the outlet pipe doesn't protrude into the catch basin. If it does, cut back the pipe flush to the catch basin wall.
- The solvent cement which is used in this installation is to be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Refer to the IPEX solvent cement guide to confirm the required curing time or visit the IPEX Online Solvent Cement Training Course available at www.ipexinc.com.
- Call your IPEX representative for more information or if you have any questions about our products.

IPEX Tempest™ LMF ICD

6

PRODUCT TECHNICAL SPECIFICATION

General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's shall have no moving parts.

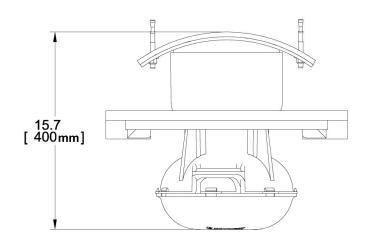
Materials

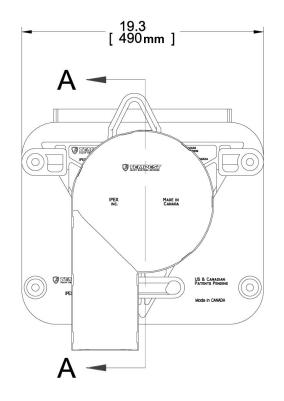
ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

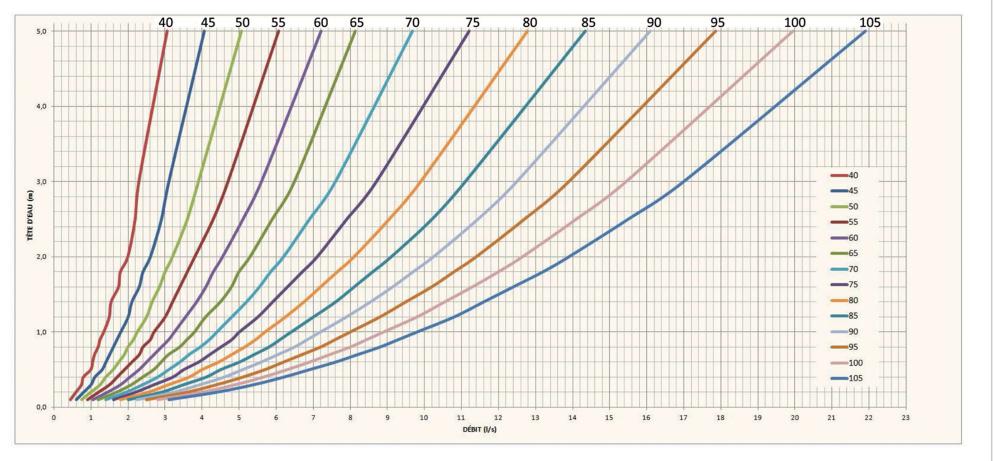
The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

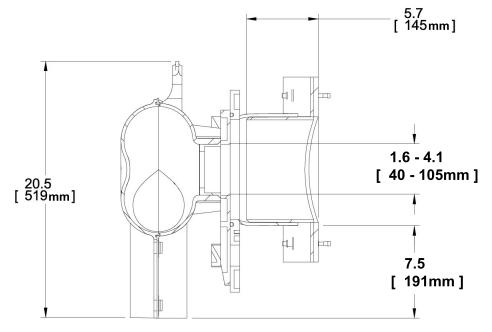
The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

All hardware will be made from 304 stainless steel.

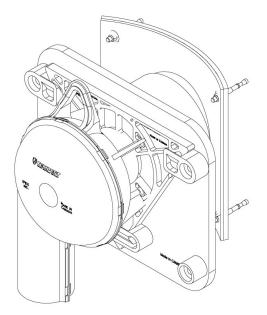

Dimensioning

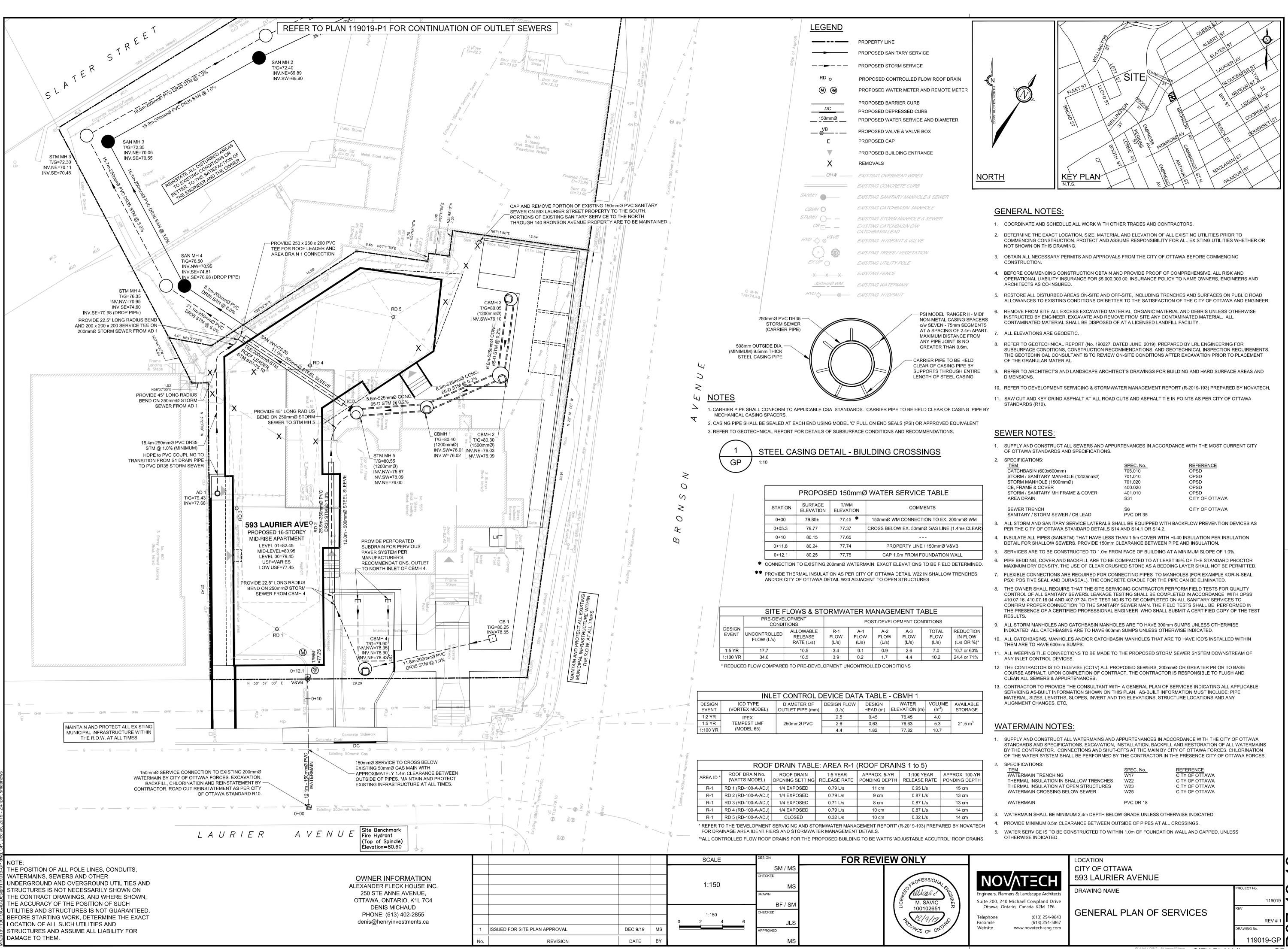

The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.

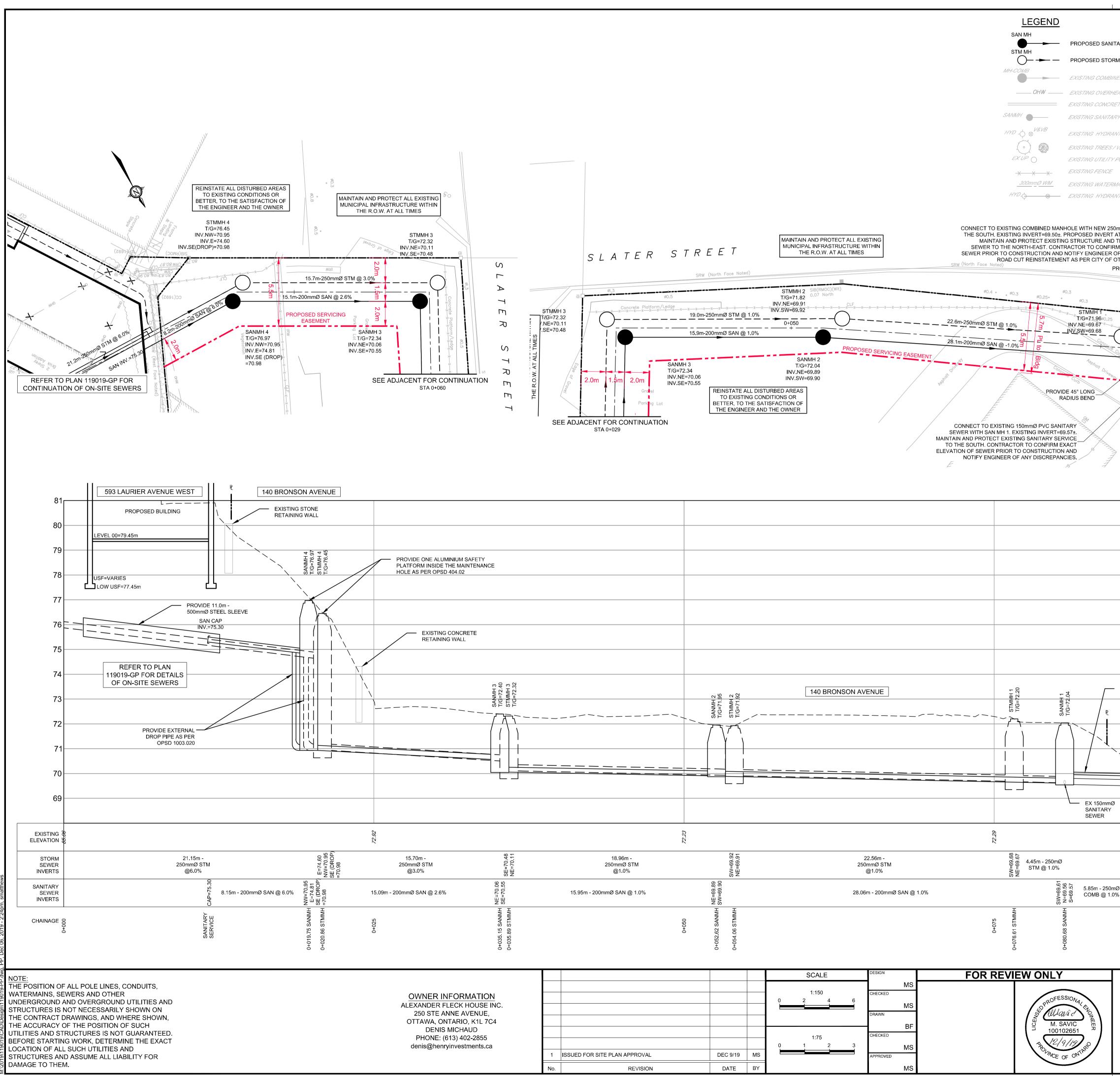

Installation

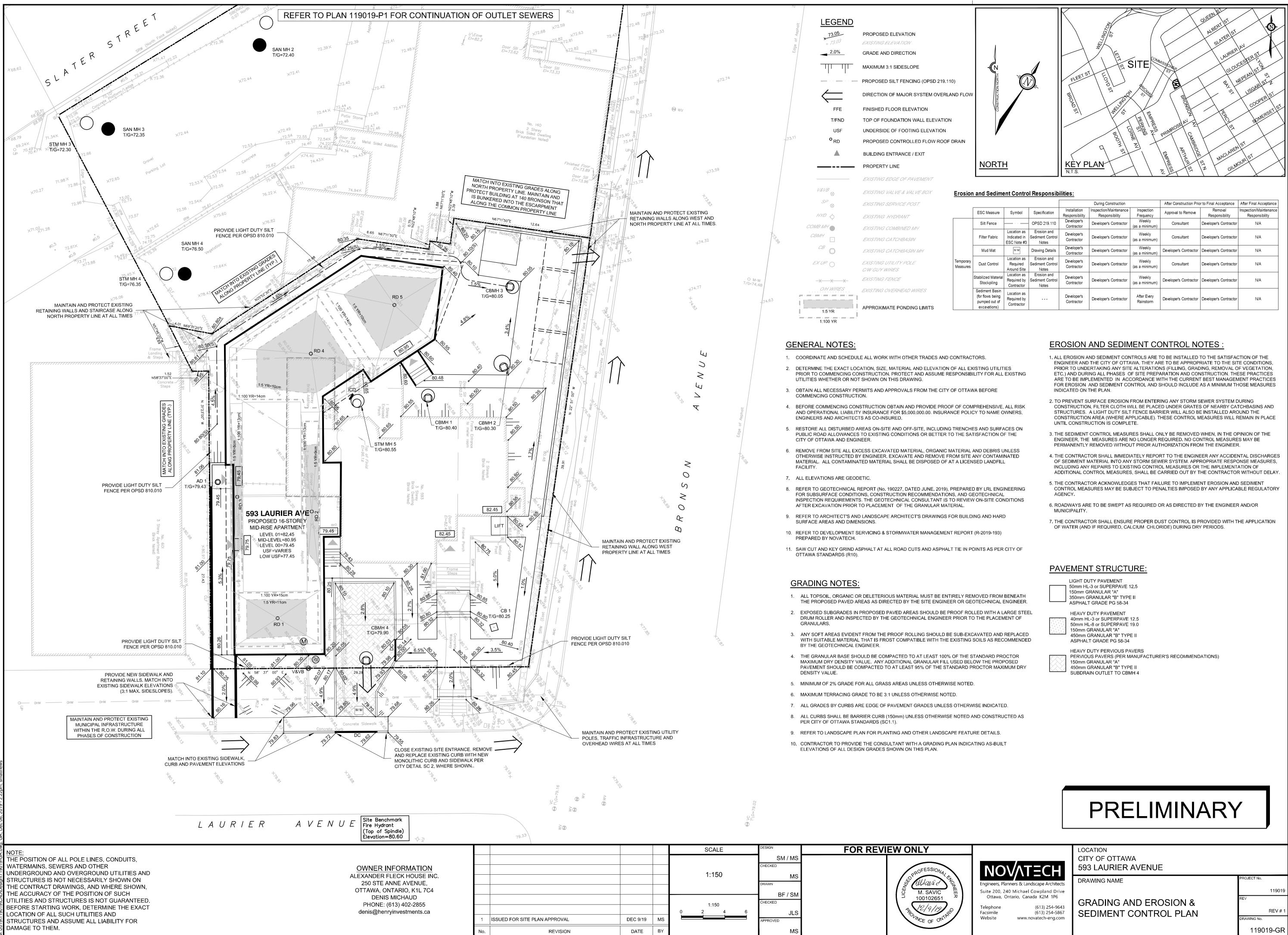

Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.

IPEX Tempest™ LMF ICD






SECTION A-A

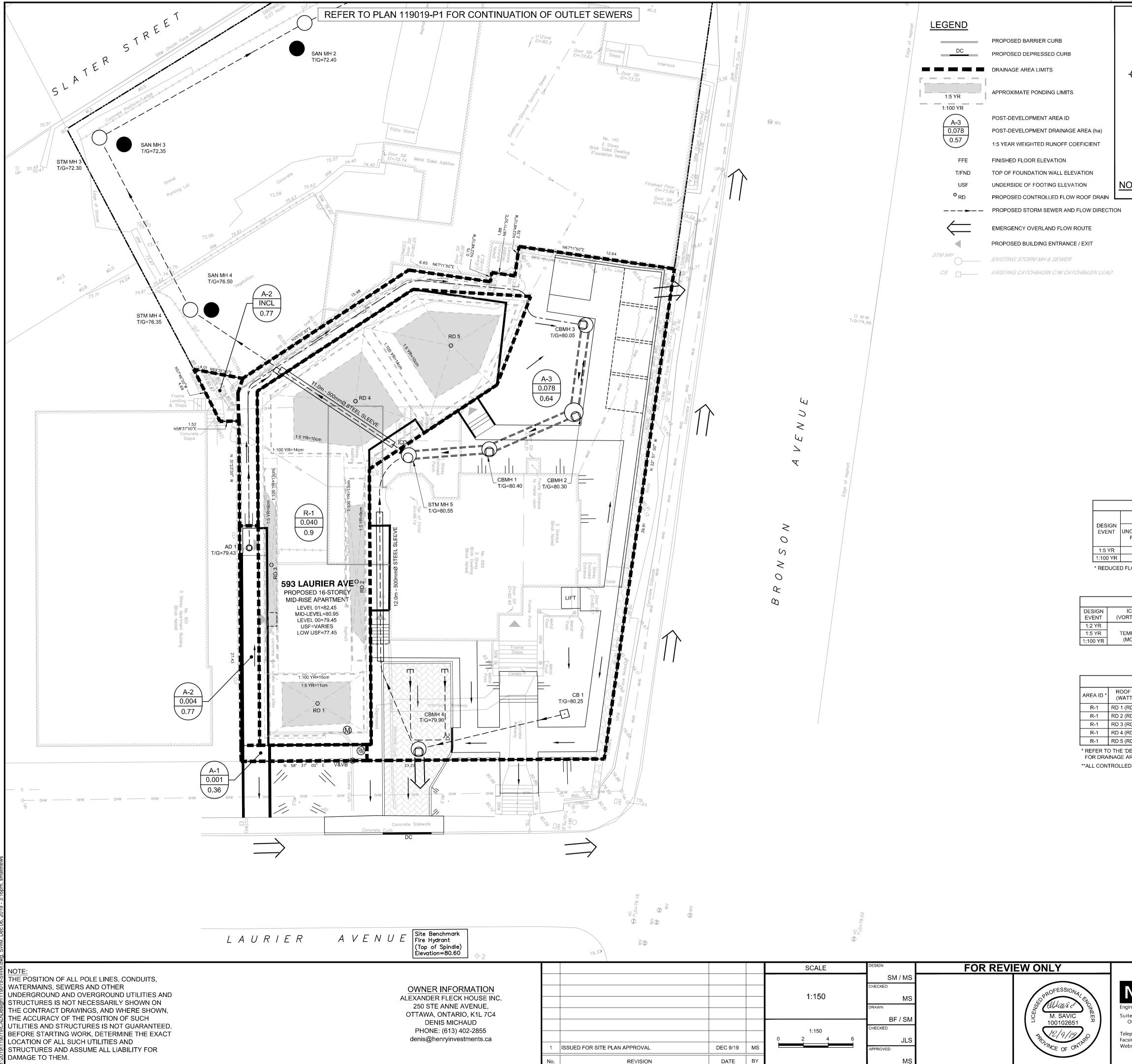


OTHERWISE INDICATED.			
ΙΟΛΛΤΞϹΗ	LOCATION CITY OF OTTAWA 593 LAURIER AVENUE		-19
eers, Planners & Landscape Architects 200, 240 Michael Cowpland Drive tawa, Ontario, Canada K2M 1P6	DRAWING NAME	PROJECT No. 119019 REV	-12
hone (613) 254-9643 nile (613) 254-5867 ite www.novatech-eng.com	GENERAL PLAN OF SERVICES	REV # 1 DRAWING No.	07-
		119019-GP	
	PLANA1.DWG - 841mmx594mm CITY PLAN	#GP)

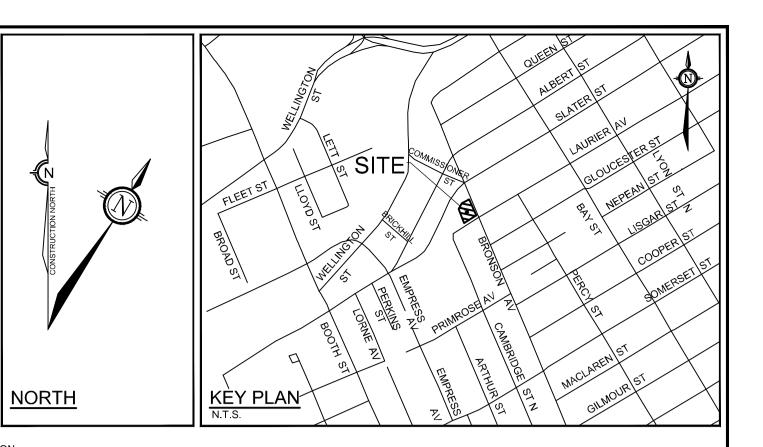
			<u>چ</u> ل			X	QUEENET	\nearrow	
ARY MANHOLE AND SEV	WER		MELLINGTON				AUBERT ST AUBERT ST SUATER ST		
M MANHOLE AND SEWE	R		ME	A -	Co	1	LAURIER	ERST	\mathbf{k}
IED MH & SEWER		/.	ST	SITE		ISSONER ST	GLOU	CESTER ST VEPEANIST 2	0
EAD WIRES ETE CURB		FLEET) ku		B	BAX ST	WEPEricals	
RY MANHOLE & SEWER		BROAD ST				BRONEON	of V	COOPE	
NT & VAL VE		ST			EMPR	SON AN T	Enge	SOME	RSETIS
VEGETATION POLE		K	1	PERMIN	I FSS	PRIMPOSEAN 2	ton ton		
			9	TH ST	T		MACLAREN	JST	$\left \right\rangle$
IAIN VT		KEY I	<u>plan</u>		\backslash	EMPRESS	ST MAC GILM	OURIST	\nearrow
					OHM /		/aterm		
mmØ PVC SEWER FROM AT CONNECTION=69.50±, THE COMBINED OUTLET M EXACT ELEVATION OF DF ANY DISCREPANCIES DTTAWA STANDARD R10. ROVIDE 100mm THICK		NICIPAL INF THE R.O		EXISTING RE WITHIN MES	~	Ø	din W	Wisting 966mm Hydro	
HI-40 INSULATION		OHN		Evisting 250	mmø Co	mbined Sewer	So and a second	3	_
40	Sills_		\$	Existing 200	5		× w -		
5.9m-25		MIH TOV-NE-COM INV-NE-COM INV-SE-CO-COM	3	/ 		Mile Mile	~ <	P	<u>_</u>
4.5m-250mØ STM 	3.0	39.50 20		4. p			~	-	а
		Y		50mmØ PVC OMBINED @ 1.0		o Junio			-0
	2 CONCINENT	SANMH 1 T/G=72.16			Asphole				-0
South Star		INV N=69.5 INV S=69.5	9.61 (2500 CON 66 (2500 STOF 7 (2000 SAN)	RM)			p 6	BOMM Hydro	-
A CONTRACT OF A			7 (150Ø EX. S NOTES:	. /		~	/	P	4
									EQ
20,3 •	PF	RIOR TO CO	DMMENCING C	CONSTRUCTIO	N. PRO		TION OF ALL EXIS ME RESPONSIBILI NG.		ES
	CC	OMMENCIN	G CONSTRUC	TION.			CITY OF OTTAWA		
	AN	ND OPERAT	TIONAL LIABIL		E FOR	\$5,000,000.00. IN	PROOF OF COMPI SURANCE POLICY	,	
	- 81 5. RE PL	ESTORE AL JBLIC ROAI	L DISTURBED D ALLOWANCE	AREAS ON-SI ES TO EXISTIN	TE AND	OFF-SITE, INCLU	JDING TRENCHES		
	80 6. RE	EMOVE FRO		EXCESS EXCA			NIC MATERIAL AN		
	M/ FA	ATERIAL. A ACILITY.	LL CONTAMIN	NATED MATER			O OF AT A LICENSI		
	8. RE	EFER TO GE		L REPORT (No.			2019), PREPARED I ATIONS, AND GEO		
	-78 _{IN:}	ISPECTION	REQUIREMEN	NTS. THE GEOT	TECHNI		NT IS TO REVIEW (
	- 77 su	URFACE AR	REAS AND DIM	IENSIONS.					,
	PF	REPARED B	Y NOVATECH	l.			EMENT REPORT (F	,	CITY OF
		ttawa sta VER NO		0).					
	1. SL	JPPLY AND	CONSTRUCT				IN ACCORDANCE	WITH THE M	OST
	- 74 _{2. SF}	URRENT CI ⁻ PECIFICATI(ITEM		A STANDARDS	S AND S	PECIFICATIONS	REFERENCE		
100mm THICK HI-40 INSULATION	-73 ⁻ 8	STORM / SA STORM / SA WATERTIGH SEWER TRE	NITARY MH F HT MH FRAME ENCH		,	701.010 401.010 401.030 S6	OPSD OPSD OPSD CITY OF OTTAW/	4	
Z E	72 3. AL	LL STORM A		Y SERVICE LAT			PPED WITH BACK 4 AND S14.1 OR S'		ENTION
SANMH EX T/G=70.54	4. IN: 71 IN:	SULATE AL	L PIPES (SAN DETAIL FOR S	/STM) THAT HA	AVE LES	S THAN 1.5m CC	VER WITH HI-40 II CLEARANCE BETW	SULATION F	
	5. SE			ISTRUCTED TO	O 1.0m l	FROM FACE OF E	BUILDING AT A MIN	IIMUM SLOPI	E OF
	- 70 6. Pil						TO AT LEAST 95% ED STONE AS A BI		
EX 250mmØ COMBINED	- 69 7. FL	OT BE PERN LEXIBLE CO	MITTED.	ARE REQUIRED) FOR (CONNECTING PIF	PES TO MANHOLE	S (FOR EXAN	MPLE
COMBINED OUTLET SEWER	EL	IMINATED.				,	RETE CRADLE FOF		
	QL QL AC AC ON TH	UALITY CON CCORDANC N ALL SANI ⁻ HE FIELD TE	NTROL OF ALL E WITH OPSS TARY SERVICI ESTS SHALL B	SANITARY SE \$ 410.07.16, 410 ES TO CONFIR E PERFORME	EWERS. 0.07.16. RM PRO ED IN TH	LEAKAGE TEST 04 AND 407.07.24 PER CONNECTIC IE PRESENCE OF	ING SHALL BE COI 4. DYE TESTING IS DN TO THE SANITA F A CERTIFIED PR	MPLETED IN TO BE COMP RY SEWER N	PLETED MAIN.
	9. AL		MANHOLES AN	ND CATCHBAS	IN MAN		ST RESULTS. HAVE 300mm SUMI m SUMPS UNLESS		F
=69.42 -69.50	- INI	DICATED.					M SUMPS UNLESS		
UN N	WI	ITHIN THEN	I ARE TO HAV G TILE CONNE	/E 600mm SUM ECTIONS TO BE	IPS. E MADE	TO THE PROPO	SED STORM SEW		
0+086.16 SANMH	ରୁ 12. T⊦	HE CONTRA	CTOR IS TO T		ΓV) ALL	PROPOSED SEW	/ERS, 200mmØ OR		
-086.16	FL	USH AND C	CLEAN ALL SE	WERS & APPU	IRTENA	NCES.	HE CONTRACTOR		
5	AF MU	PPLICABLE UST INCLUI	SERVICING A	S-BUILT INFOF ERIAL, SIZES, I	RMATIO LENGTH	N SHOWN ON TH	IIS PLAN. AS-BUIL ERT AND T/G ELE	T INFORMAT	
	01	LC	CATION						,
ΝΟΥΛΤ		_	TY OF 01 93 LAUR		INUE	E / 140 BR	ONSON AV	'ENUE	ŀ
Engineers, Planners & Lar	ndscape Archited	cts DF	RAWING NA		_			PROJECT No.	
Suite 200, 240 Michael Ottawa, Ontario, Can				SEWEF		=		REV	119019
Telephone Facsimile Website www.r	(613) 254-96 (613) 254-586 novatech-eng.co	67 67			, 160	-		DRAWING No.	REV # 1
									019-P1
				PLA	NA1.DWG	- <i>841mmx594mm</i>			

55	1											
Edge of Asphalt	LEGEND 13.05 + 73.03 2.0% 11 FFE T/FND USF °RD W&VB	PROPOSED ELEVATION EXISTING ELEVATION GRADE AND DIRECTION MAXIMUM 3:1 SIDESLOPE PROPOSED SILT FENCING (OPSD 219.110) DIRECTION OF MAJOR SYSTEM OVERLAN FINISHED FLOOR ELEVATION TOP OF FOUNDATION WALL ELEVATION UNDERSIDE OF FOOTING ELEVATION PROPOSED CONTROLLED FLOW ROOF DO BUILDING ENTRANCE / EXIT PROPERTY LINE EXISTING EDGE OF PAVEMENT	ID FLOW	NORTH			FLEET ST BROAD ST KEY P N.T.S.	LLOND ST TUT TO BOOTH ST	PERMINE AV	PRIMITICS SER	BALL OF	CESTERST CESTERST UEPEANIST2 LISCARST2 LISCARST2 COOPERIST SOMERSETST
	& <i>SP</i>	-	Elosion	and Seume		ol Responsibi						
	\otimes	EXISTING SERVICE POST	Г				Installation	During Construction	Inspection	After Construction Pric	or to Final Acceptance Removal	After Final Acceptance
	HYD -	EXISTING HYDRANT		ESC Measure	Symbol	Specification	Responsibility Developer's	Responsibility	Frequency Weekly	Approval to Remove	Responsibility	Responsibility
	COMB MH	EXISTING COMBINED MH	-	Silt Fence	Les etien en	OPSD 219.110	Contractor	Developer's Contractor	(as a minimum)	Consultant	Developer's Contractor	N/A
	CBMH	EXISTING CATCHBASIN		Filter Fabric	Location as Indicated in ESC Note #3	Erosion and Sediment Control Notes	Developer's Contractor	Developer's Contractor	Weekly (as a minimum)	Consultant	Developer's Contractor	N/A
		EXISTING CATCHBASIN MH		Mud Mat	MM	Drawing Details	Developer's Contractor	Developer's Contractor	Weekly (as a minimum)	Developer's Contractor	Developer's Contractor	N/A
	EXUP		Temporary Measures	Dust Control	Location as Required Around Site	Erosion and Sediment Control Notes	Developer's Contractor	Developer's Contractor	Weekly (as a minimum)	Consultant	Developer's Contractor	N/A
	- <u>x</u> x x	EXISTING FENCE		Stabilized Material Stockpiling	Location as Required by Contractor	Erosion and Sediment Control Notes	Developer's Contractor	Developer's Contractor	Weekly (as a minimum)	Developer's Contractor	Developer's Contractor	N/A
	O/H WIRES	EXISTING OVERHEAD WIRES		Sediment Basin (for flows being pumped out of excavations)	Location as Required by Contractor		Developer's Contractor	Developer's Contractor	After Every Rainstorm	Developer's Contractor	Developer's Contractor	N/A
	1:5 YR 1:100 YR											

LIGHT DUTY PAVEMENT 50mm HL-3 or SUPERPAVE 12.5 150mm GRANULAR "A" 350mm GRANULAR "B" TYPE II ASPHALT GRADE PG 58-34
 HEAVY DUTY PAVEMENT 40mm HL-3 or SUPERPAVE 12.5


PRELIMINARY

FROJECT NO.	
	11
REV	
	RE
DRAWING No.	
1190)19-


-GR

တ

CITY PLAN #

We

GENERAL NOTES:

- 1. COORDINATE AND SCHEDULE ALL WORK WITH OTHER TRADES AND CONTRACTORS.
- 2. DETERMINE THE EXACT LOCATION, SIZE, MATERIAL AND ELEVATION OF ALL EXISTING UTILITIES PRIOR TO COMMENCING CONSTRUCTION. PROTECT AND ASSUME RESPONSIBILITY FOR ALL EXISTING UTILITIES WHETHER OR NOT SHOWN ON THIS DRAWING.
- 3. OBTAIN ALL NECESSARY PERMITS AND APPROVALS FROM THE CITY OF OTTAWA BEFORE COMMENCING CONSTRUCTION.
- 4. BEFORE COMMENCING CONSTRUCTION OBTAIN AND PROVIDE PROOF OF COMPREHENSIVE, ALL RISK AND OPERATIONAL LIABILITY INSURANCE FOR \$5,000,000.00. INSURANCE POLICY TO NAME OWNERS, ENGINEERS AND ARCHITECTS AS CO-INSURED.
- 5. RESTORE ALL DISTURBED AREAS ON-SITE AND OFF-SITE, INCLUDING TRENCHES AND SURFACES ON PUBLIC ROAD ALLOWANCES TO EXISTING CONDITIONS OR BETTER TO THE SATISFACTION OF THE CITY OF OTTAWA AND ENGINEER.
- 6. REMOVE FROM SITE ALL EXCESS EXCAVATED MATERIAL, ORGANIC MATERIAL AND DEBRIS UNLESS OTHERWISE INSTRUCTED BY ENGINEER. EXCAVATE AND REMOVE FROM SITE ANY CONTAMINATED MATERIAL. ALL CONTAMINATED MATERIAL SHALL BE DISPOSED OF AT A LICENSED LANDFILL FACILITY.
- 7. ALL ELEVATIONS ARE GEODETIC.
- 8. REFER TO GEOTECHNICAL REPORT (No. 190227, DATED JUNE, 2019), PREPARED BY LRL ENGINEERING FOR SUBSURFACE CONDITIONS, CONSTRUCTION RECOMMENDATIONS, AND GEOTECHNICAL INSPECTION REQUIREMENTS. THE GEOTECHNICAL CONSULTANT IS TO REVIEW ON-SITE CONDITIONS AFTER EXCAVATION PRIOR TO PLACEMENT OF THE GRANULAR MATERIAL
- 9. REFER TO ARCHITECT'S AND LANDSCAPE ARCHITECT'S DRAWINGS FOR BUILDING AND HARD SURFACE AREAS AND DIMENSIONS.
- 10. REFER TO DEVELOPMENT SERVICING & STORMWATER MANAGEMENT REPORT (R-2019-193) PREPARED BY NOVATECH.
- 11. SAW CUT AND KEY GRIND ASPHALT AT ALL ROAD CUTS AND ASPHALT TIE IN POINTS AS PER CITY OF OTTAWA STANDARDS (R10).

SITE F	SITE FLOWS & STORMWATER MANAGEMENT TABLE												
PRE-DEVE CONDI		POST-DEVELOPMENT CONDITIONS											
ICONTROLLED FLOW (L/s)	ALLOWABLE RELEASE RATE (L/s)	R-1 FLOW (L/s)	A-1 FLOW (L/s)	A-2 FLOW (L/s)	A-3 FLOW (L/s)	TOTAL FLOW (L/s)	REDUCTION IN FLOW (L/s OR %)*						
17.7	10.5	3.4	0.1	0.9	2.6	7.0	10.7 or 60%						
34.6	10.5	3.9	0.2	1.7	4.4	10.2	24.4 or 71%						

* REDUCED FLOW COMPARED TO PRE-DEVELOPMENT UNCONTROLLED CONDITIONS

INLET CONTROL DEVICE DATA TABLE - CBMH 1											
ICD TYPE (VORTEX MODEL)	DIAMETER OF DESIGN FLOW DESIGN WATER VOLUME AVAILABLE OUTLET PIPE (mm) (L/s) HEAD (m) ELEVATION (m) (m ³) STORAGE										
IPEX		2.5	0.45	76.45	4.0						
TEMPEST LMF	250mmØ PVC	2.6	0.63	76.63	5.3	21.5 m ³					
(MODEL 65)		4.4	1.82	77.82	10.7						

	ROOF DRAIN TABLE: AREA R-1 (ROOF DRAINS 1 to 5)							
*	ROOF DRAIN No. (WATTS MODEL)	ROOF DRAIN OPENING SETTING	1:5 YEAR RELEASE RATE	APPROX. 5-YR PONDING DEPTH	1:100 YEAR RELEASE RATE	APPROX. 100-YR PONDING DEPTH		
	RD 1 (RD-100-A-ADJ)	1/4 EXPOSED	0.79 L/s	11 cm	0.95 L/s	15 cm		
	RD 2 (RD-100-A-ADJ)	1/4 EXPOSED	0.79 L/s	9 cm	0.87 L/s	13 cm		
	RD 3 (RD-100-A-ADJ)	1/4 EXPOSED	0.71 L/s	8 cm	0.87 L/s	13 cm		
	RD 4 (RD-100-A-ADJ)	1/4 EXPOSED	0.79 L/s	10 cm	0.87 L/s	14 cm		
	RD 5 (RD-100-A-ADJ)	CLOSED	0.32 L/s	10 cm	0.32 L/s	14 cm		

* REFER TO THE 'DEVELOPMENT SERVICING AND STORMWATER MANAGEMENT REPORT' (R-2019-193) PREPARED BY NOVATECH FOR DRAINAGE AREA IDENTIFIERS AND STORMWATER MANAGEMENT DETAILS. **ALL CONTROLLED FLOW ROOF DRAINS FOR THE PROPOSED BUILDING TO BE WATTS 'ADJUSTABLE ACCUTROL' ROOF DRAINS.

ΝΟΛΛΤΞϹΗ	LOCATION CITY OF OTTAWA 593 LAURIER AVENUE	
jineers, Planners & Landscape Architec		
te 200, 240 Michael Cowpland Driv Ottawa, Ontario, Canada K2M 1P6 ephone (613) 254-964 simile (613) 254-586 bsite www.novatech-eng.co	37 STORMWATER MANAGEMENT PLAN	119019 REV REV # 1
usite www.novatech-elig.to	PLANA1.DWG - 841mmx594mm CITY PLAN #	119019-SWM