

FINAL REPORT

Algonquin College

ARC Building

1385 Woodroffe Avenue

Traffic Impact Assessment

Ottawa, ON

Presented to:

Philip Belanger Project Manager

Colliers Project Leaders 150 Isabella Street, Suite 700 Ottawa, ON K1S 1V7

Report No. 1900001

October 2019

P:\2019\190000100-ALGONQUIN COLLEGE DC SOA SERVICES\\08. WORKING\\06. TRAFFIC\6-DOCUMENTATION\5-FINAL REPORT\ALGONQUIN COLLEGE - ARC BUILDING TIA STRATEGY_OCTOBER 2019.DOCX

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check √ appropriate field(s)] is either transportation engineering □ or transportation planning N.

^{1,2} License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

City Of Ottawa Infrastructure Services and Community Sustainability Planning and Growth Management 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 1J1 Tel.: 613-580-2424 Fax: 613-560-6006 Ville d'Ottawa Services d'infrastructure et Viabilité des collectivités Urbanisme et Gestion de la croissance 110, avenue Laurier Ouest Ottawa (Ontario) K1P 1J1 Tél.: 613-580-2424 Télécopieur: 613-560-6006

Dated at Office (City)	this <u>7</u> day of <u>October</u> , 201 <u>9</u> .
Name:	Alex Buck (Please Print)
Professional Title:	Transportation Technologist
	10 mm

Signature of Individual certifier that s/he meets the above four criteria

Office Contact Information (Please Print)
Address: 200-2932 Baseline Road
City/Postal Code: Offawa, ON K2H 1B1
Telephone / Extension: (613) 739 - 2910 x. 10222 87
E-Mail Address: abuck @ Morrison hersh field.

TABLE OF CONTENTS

1.	SCR	EENING	FORM	1
2.	EXIS	TING AN	ND PLANNED CONDITIONS	1
	2.1	Propo	osed Development	1
	2.2	Existir	ng Conditions	3
		2.2.1	Existing Pedestrian and Cycling Facilities	4
		2.2.2	Existing Transit	5
		2.2.3	Existing Area Traffic Management	6
		2.2.4	Existing Peak Hour Traffic Volumes	6
		2.2.5	Collision History	7
	2.3	Plann	ed Conditions	7
		2.3.1	Planned Roadway Modifications	7
		2.3.2	Planned Developments	8
3.	STU	DY ARE	A AND TIME PERIODS	9
4.	EXE	MPTION	IS REVIEW	9
5.	FOR	ECASTII	NG	10
	5.1	Backg	ground Network Travel Demands	10
		5.1.1	Transportation Network Plans	10
		5.1.2	Background Growth	10
		5.1.3	Other Developments	12
6.	ANA	LYSIS		12
	6.1	Devel	lopment Design	12
		6.1.1	Design for Sustainable Modes	12
		6.1.2	Circulation and Access	13
	6.2	Parkir	ng	13
		6.2.1	Parking Supply	13
	6.3	Bound	dary Street Design	13
		6.3.1	Mobility	13
		6.3.2	Road Safety	14
		6.3.3	Neighbourhood Traffic Management	14

TABLE OF CONTENTS

		Page
6.4	Access Intersections Design	15
	6.4.1 Location and Design of Access	15
	6.4.2 Intersection Control	15
	6.4.3 Intersection Design	15
7. CON	CLUSIONS AND RECOMMENDATIONS	17
TABLES		
Table 1: Scr	eening Form Summary	1
Table 2: Pro	posed Development Conditions	1
Table 3: Exis	sting Study Area Roadways	3
Table 4: Col	lision History (2014 – 2018)	7
Table 5: Otta	awa TMP Projects	7
Table 6: Cur	rent Development Applications	8
Table 7: Stu	dy Area, Time Periods and Horizon Years	9
Table 8: Pro	posed Exemptions	9
Table 9: Stu	dy Area Intersection Growth Rate Summary	10
Table 10: No	orth Access Road – Segment MMLOS	14
Table 11: Na	avaho Drive / North Access Road – Intersection MMLOS	16
Table 12: St	udy Area Intersection Performance – AM (PM) Peak Hours	16
FIGURES		
Figure 1: Pro	pposed Site Plan	2
Figure 2: Stu	udy Area Context	3
Figure 3: Exi	isting Study Area Intersections – Control / Lane Configurations	4
Figure 4: Exi	isting and Future Pedestrian Network	5
Figure 5: Exi	isting and Future Cycling Network	5
Figure 6: Exi	isting Transit Routes	5
Figure 7: Alg	jonquin College Transit Stops	5
Figure 8: Exi	isting Study Area Traffic Volumes – AM (PM) Peak Hours	6
Figure 9: Cu	rrent Development Application Locations	8
Figure 10: P	rojected Study Area Intersection Peak Hour Volumes – 2021	11
Figure 11: P	rojected Study Area Intersection Peak Hour Volumes – 2026	11

TABLE OF CONTENTS

APPENDICES

- Appendix A Screening Form
- Appendix B Historical Growth Rate Summaries
- Appendix C Intersection and Segment MMLOS
- Appendix D Signal Warrant Analysis
- Appendix E Synchro 10 Reports

Prepared By: Alex Buck, C.E.T.

Reviewed By: Bassam Hamwi, M.Eng., P.Eng.

October 7, 2019 Date:

Page

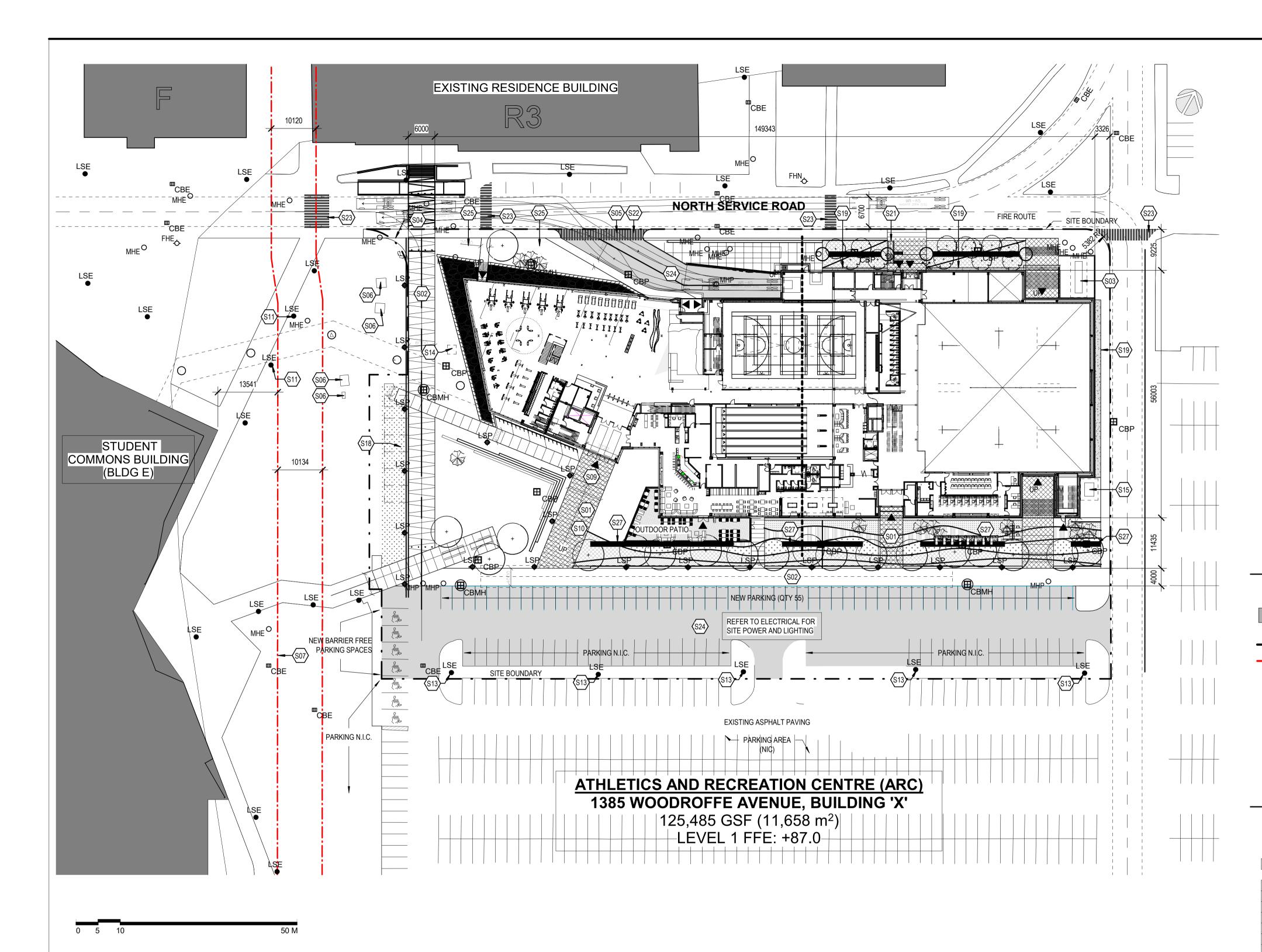
1. SCREENING FORM

The initial screening form for this TIA has been completed and is included in **Appendix A**. A summary table indicating the outcome of the screening process is provided below in **Table 1**.

Table 1: Screening Form Summary

Trigger	Satisfied?
Trip Generation	No
Location	No
Safety	Yes

2. EXISTING AND PLANNED CONDITIONS


2.1 **Proposed Development**

The following **Table 2** provides a summary of the site conditions for the proposed development.

Existing / Permitted Land Uses	The City's Zoning By-law identifies the parcel of land within Zone I2 (Major Institutional Zone). A 'recreational and athletic facility' is listed as a permitted land use.		
Proposed Land Use / Regulation	Algonquin College is submitting a Site Plan Application for the ARC Building which is proposed to have a 'recreational and athletic facility' land use.		
Development Size (m ²)	11,658 m ²		
Estimated Date of Occupancy	2021		
Planned Phasing of Development	Single Phase		
Number of Parking Spaces	Due to the proposed development's location within Area 'Z' of the Zoning Bylaw, no off-street vehicle parking is required to be provided under Section 101 – Minimum Parking Space Rates of the City's Zoning Bylaw.		
Access Points	No new vehicular access points. Use of existing accesses only.		

Table 2: Proposed Development Conditions

The proposed Site Plan is shown below in **Figure 1**. It should be noted that the Site Plan shown is not final, however any remaining adjustments are not expected to alter the outcome of this TIA.

SITE PLAN GENERAL NOTES

ALGONQUIN COLLEGE OWNER 1385 WOODROFFE AVE OTTAWA, ON K2G 1V8

LEGAL DESCRIPTION PART OF LOTS 34 & 35 CONCESSION 1 (RIDEAU FRONT) PIN: 046910289 GEOGRAPHIC TOWNSHIP OF NEPEAN CITY OF OTTAWA

LAND USE CLASSIFICATION EDUCATIONAL / INSTITUTIONAL, POST SECONDARY

ZONING INFORMATION PART 7 - MAJOR INSTITUTIONAL ZONES (SECTIONS 171 - 172)

MINIMUM LOT WIDTH MINIMUM LOT AREA MINIMUM FRONT YARD SETBACK (M) MINIMUM REAR YARD SETBACK (M) MINIMUM INTERIOR SIDE YARD SETBACK (M) MINIMUM CORNER SIDE YARD SETBACK (M) MAXIMUM HEIGHT (M), (WITHIN 12M OF R1, R2, R3 ZONE) MINIMUM WIDTH OF LANDSCAPED AREA ALONG ALL LOT LINES (M)

GROSS BUILDING AREA - PROPOSED BUILDING PROPOSED SITE BOUNDARY AREA BUILDING FOOTPRINT

LOWER LEVEL: 3002 m² (32,313 SF) LEVEL 1: 4650 m² (50,052 SF) LEVEL 2: 3285 m² (35,359 SF) MEZZANINE: 721 m² (7,761 SF) TOTAL: 11, 658 m² (125,485 SF)

BUILDING HEIGHT - PROPOSED BUILDING 17.831 m, 2 STOREYS + BASEMENT

WASTE REMOVAL

OF THE BUILDING SITE ON A DAILY BASIS.

SNOW REMOVAL

SURVEYOR

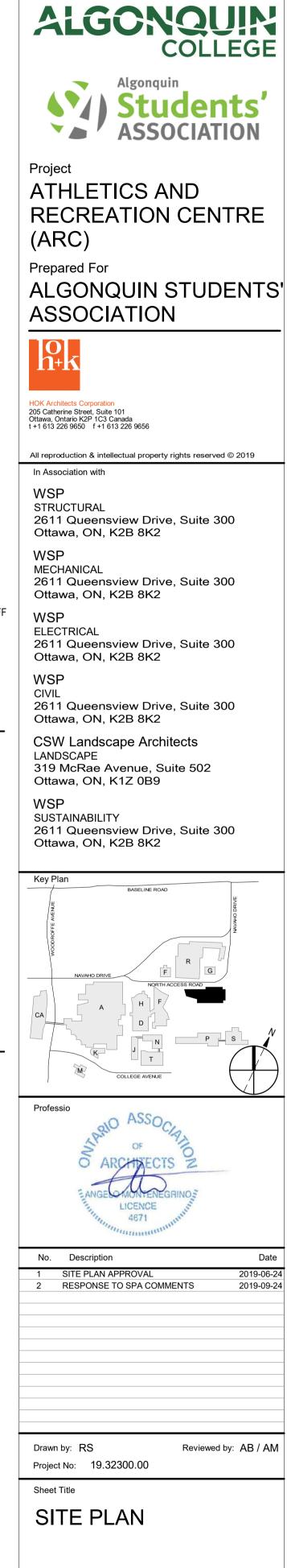
SITE PLAN LEGEND MHE^O EXISTING MAN HOLE OF WORK MHPO PROPOSED MANHOLE SEMENT CBE EXISTING CATCH BASIN B PROPOSED CATCH BASIN PROPOSED CATCH BASIN MANHOLE СВМН GM PROPOSED GAS METER MENT PROPOSED TREE - REFER TO LANDSCAPE ()

	BUILDING TO REMAIN, NOT INCLUDED IN THIS SCOPE C
	SITE BOUNDARY
	CITY WATER/SANITARY EAS
	BUILDING ACCESS
FHE ₋ O-	EXISTING FIRE HYDRANT
∽ _{FHN}	PROPOSED FIRE HYDRANT
LSE	EXISTING LIGHT STANDARD
LSP	PROPOSED LIGHT STANDAR
₽ \$	PROPOSED FIRE DEPARTMI CONNECTION

SITE PLAN KEYNOTES

Key Value	Keynote Text
S01	HATCH REGION INDICATES HEATED C.I.P. CONCRETE SIDEWALK.
S02	C.I.P. CONC PAVEMENT.
S03	GENERATOR (NATURAL GAS) ON C.I.P. CONC PAD - REFER TO ELEC.
S04	MAINTAIN EXISTING CURB.
S05	NEW PEDESTRIAN ACCESS MARKING.
S06	EXISTING TRANSFORMER TO REMAIN.
S07	SEWER / SANITARY EASEMENT.
S10	BARRIER FREE PEDESTRIAN RAMP @ 1:20.
S11	RE/ RE EXISTING LIGHT STANDARD - SEE ELEC.
S12	DASHED LINE REPRESENTS BURIED STORMWATER RETENTION TANKS - REFER TO CIVIL
S13	REMOVE EXISTING PARKING LIGHT STANDARD AND RELAMP AS PER ELEC DWGS.
S14	REMOVE EXISTING PAY STATION AND BURIED ELECTRICAL AS PER ELEC DWGS.
S15	PROPOSED GAS REGULATOR STATION.
S17	PROPOSED BIKE PARKING AREA, QTY AND SIZES AS NOTED.
S18	EXISTING PARKING TO BE REMOVED - REFER TO CIV. / LAND.
S19	MAINTENANCE EDGE.
S20	FIRE DEPARTMENT ACCESS.
S21	BARRIER FREE PEDESTRIAN RAMP @ 1:12.
S22	RAISED CURB.
S23	EXISTING PEDESTRIAN CROSSING.
S24	SHADED REGION INDICATES EXTENT OF NEW ASPHALT PAVING.
S25	LANDSCAPED TOPSOIL AND SOD.
S27	STONE SWALE - REFER TO LAND / CIV.

REQUIRED PROVIDED NO MIN. NO MIN. 7.5 7.5 7.5 7.5 NO MAX. 3

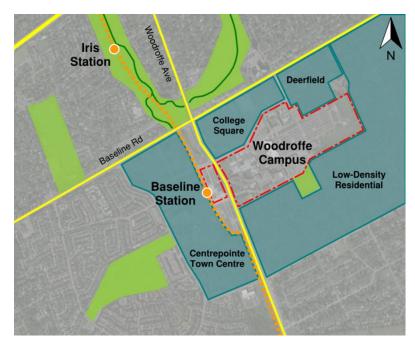

16,272 M² (175,150 SF) 7,058 M² (75,972 SF)

YES YES YES YES YES YES YES YES

ALL WASTE WILL BE COLLECTED AND REMOVED FROM THE BUILDING TO A CENTRALIZED COLLECTION AREA OFF

SNOW WILL BE REMOVE FROM PROPOSED DEVELOPMENT SITE AND STORED AS PER COLLEGE OPERATIONS.

THIS DRAWING BASED ON A SURVEY PREPARED BY STANTEC GEOMATICS LTD, DATED JUNE 20 2019.


Original drawing is A1. Do not scale contents of this drawing. Sheet Number

2.2 Existing Conditions

The proposed development is located within Algonquin College property, south of Navaho Drive and east of Woodroffe Avenue. **Figure 2** depicts the College property and the surrounding context.

Figure 2: Study Area Context

The boundary roadway adjacent to the subject development is a private roadway located on Algonquin College property and is referred to as North Access Road for the purposes of this TIA. The nearest connecting City-owned roadway is Navaho Drive and serves as a collector roadway and connects with the arterial network at Baseline Road and Woodroffe Avenue. The study area roadways included as part of this TIA are described below in **Table 3**.

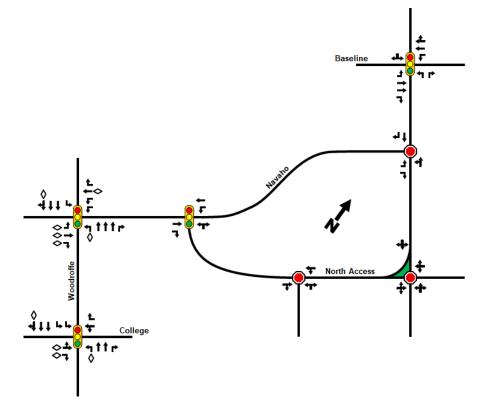
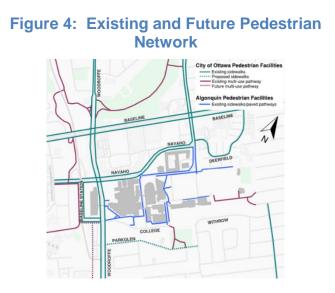

Name	Jurisdiction	Classification	Number of Lanes (Two-Way)	Posted Speed Limit (km/h)
Navaho Drive	City of Ottawa	Collector	2	50 (unposted)
North Access Road	Algonquin College	Local (assumed)	2	25

Table 3: Existing Study Area Roadways

Along North Access Road, two All-Way Stop (AWS) controlled intersections control access to/from the main parking lot serving the College. In addition to the site accesses provided along North Access Road, an additional access is provided at the south end of the property along College Avenue, connecting directly with Woodroffe Avenue. The study area intersections are illustrated below in **Figure 3** including current intersection controls and lane configurations.

Figure 3: Existing Study Area Intersections – Control / Lane Configurations

Within 200 m of the proposed site driveway (i.e. the AWS intersection at the eastern limit of North Access Road, south of Navaho Drive), an existing site driveway located north of the subject intersection provides access to Parking Lot 11, serving residence, as well as a service road. This parking lot is also served by the subject AWS intersection. Note that the site driveway located west of this intersection (serving Parking Lots 8, 9 and 12) is proposed to be closed upon the buildout of the ARC Building.

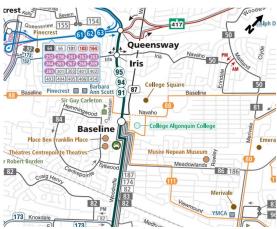

2.2.1 Existing Pedestrian and Cycling Facilities

Existing pedestrian facilities on the external road network connecting to the campus include sidewalks on both sides of Baseline Road, Woodroffe Drive and Navaho Drive. **Figure 4** illustrates the pedestrian and recreational facilities in the vicinity of the College as designated in the 2013 Pedestrian Plan.

Existing cycling facilities connecting to campus include exclusive bicycle lanes on both sides of Woodroffe Avenue between Navaho Drive and College Avenue as well as an exclusive bicycle lane on the south side of Baseline Road from Woodroffe Avenue to Navaho Drive. **Figure 5** illustrates the cycling facilities in the vicinity of the College as designated in the 2013 Cycling Plan.

P

There are also four multi-use pathways located within the campus vicinity, including pathways on the east and south sides of campus which connect to the adjacent residential communities, a pathway west of Woodroffe Avenue, and a pathway north of Baseline Road.



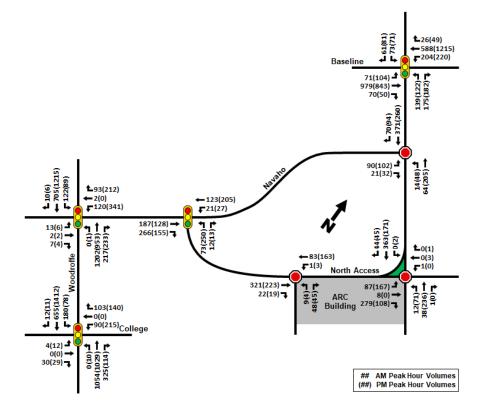
2.2.2 Existing Transit

Algonquin College is currently well-served by transit as it is located adjacent to Baseline Station which is served by primary transit routes travelling on the West and Southwest Transitway, as well as local, cross-city and express transit routes. In addition to the routes serving the Transitway station, Route 88 serves Algonquin College directly with stops located along North Access Road and the Service Road. Route 88 is a major cross-city route that operates in an east-west direction along Baseline Road within the vicinity of the college and extends to Hurdman Station in the east and Kanata in the west, providing service throughout the day.

The following **Figures 6 and 7** illustrate the transit routes and transit stops operating within the vicinity of Algonquin College.

Figure 6: Existing Transit Routes

2.2.3 Existing Area Traffic Management


The boundary roadway (North Access Road) includes several methods to manage the travel behaviour and speeds of vehicles entering and exiting the College property. The types of traffic management currently applied along North Access Road include:

- Posted Speed Limit Signs (25 km/h);
- Speed Humps;
- Painted Pedestrian Crosswalks; and
- Pedestrian Crossing Signs.

2.2.4 Existing Peak Hour Traffic Volumes

The most recent intersection movement counts have been received by the City of Ottawa for the signalized study area intersections. Historical traffic count data has been used at the AWS controlled intersections serving the internal road network. A significant change in volume, with respect to college-related traffic, is not anticipated at these locations. An illustration of morning and afternoon peak hour turning movement volumes at study area intersections is shown below in **Figure 8**.

2.2.5 Collision History

A five-year collision history (2014 to 2018, inclusive) was provided by the City. A summary of intersection and mid-block collisions is provided below in **Table 4**.

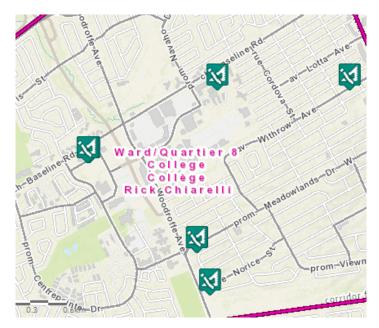
Location	Angle	Rear End	Sideswipe	Turning Movement	SMV / Other	Total	5 Year Average
		I	Intersections				
Baseline / Navaho	1	28	10	3	6	48	9.6
Navaho / 265 E of Woodroffe	0	0	0	1	0	1	0.2
Navaho / Deerfield	0	0	0	1	0	1	0.2
Navaho / Woodroffe	1	24	5	30	8	68	13.6
Woodroffe / College	0	9	1	2	1	13	2.6
Mid-Block							
Navaho (Baseline – Woodroffe)	8	1	1	5	4	19	3.8

Table 4: Collision History (2014 – 2018)

2.3 Planned Conditions

2.3.1 Planned Roadway Modifications

The Ottawa Transportation Master Plan (TMP) includes a number of transit-related improvements planned within the vicinity of Algonquin College. The following **Table 5** provides a summary of these projects.


Table 5: Ottawa TMP Projects

Project	Description	TMP Horizon
Stage 2 LRT Confederation Line West Extension		
Baseline / Heron / Walkley / St. Laurent BRT	Affordable: At-grade BRT connecting Baseline Station to Heron Station Concept: At-grade BRT connecting Bayshore Station to St. Laurent Station	Within 2031 Horizon Beyond 2031 Horizon
Southwest Transitway Extension	Fully exclusive BRT between Baseline Station and Hunt Club Road	Beyond 2031 Horizon
Baseline Road	Transit signal priority and queue jump lanes between Baseline Station and Richmond Road	Within 2031 Horizon

2.3.2 Planned Developments

A number of development applications are currently placed with the City for the construction of residential units near Algonquin College. **Figure 9** illustrates the locations of the planned developments and **Table 6** provides a summary of the development applications.

Figure 9: Current Development Application Locations

Table 6: Current Development Applications

Address	Application Type	Description
2140 Baseline Road	Site Plan Control	Residential Building (144 units)
1800 Baseline Road	Site Plan Control	Residential Townhouses (36 units)
21 Withrow Avenue	Zoning By-law Amendment	Residential Subdivision (10 lots)
155 Meadowlands Drive	Site Plan Control	Retirement Home (165 units)
193 Norice Street	Site Plan Control	Apartment Building (22 units)

3. STUDY AREA AND TIME PERIODS

The study area for the Design Review includes the development property as well as the boundary roads. The time periods to be considered include the weekday morning and afternoon peak hours as these time periods reflect the highest combination of adjacent street traffic and student-generated traffic. The development is planned to be built in 2021 and, as a result, the proposed horizon years for analysis include 2021 and 2026 (five years beyond build-out). **Table 7** summarizes the study area, time periods and horizon years for this TIA.

Element	Description
Study Area	North Access Road
Time Periods	Weekday Morning and Afternoon Peak Hours
Horizon Years	2021 (build-out) and 2026

4. EXEMPTIONS REVIEW

Discussion with the City has indicated that the Network Impact Component (i.e. Modules 4.5 to 4.9) is not required for this TIA and only the components related to Design Review (i.e. Modules 4.1 to 4.4) should be reviewed. In addition to this, further exemptions have been identified for this TIA and are shown below in **Table 8**.

Table 8: Proposed Exemptions

Module	Element	Consideration	Exempt?
4.1 Development Design	4.1.3 New Street Networks	Only required for plans of subdivision	Yes
4.2 Dorking	4.2.1 Parking Supply	Only required for site plans	No
4.2 Parking	4.2.2 Spillover Parking	Only required for site plans where parking supply is 15% below unconstrained demand	Yes

Module 4.2 requires the review of parking supply and spillover to mitigate any parking demand issues that may arise from a proposed development. However, due to the proposed development's location within Area 'Z' of the Zoning Bylaw #2008-250, no off-street vehicle parking is required to be provided under Section 101 – Minimum Parking Space Rates of the City's Zoning Bylaw. Additionally, Algonquin College has undertaken a separate design assignment which offsets the number of parking spaces absorbed by the construction of the ARC Building. As a result, 'Element 4.2.2 Parking Spillover' has been exempted from this TIA.

City staff has also advised that Modules '3.1 Development-generated Travel Demand' and '3.3 Demand Rationalization' within Step 3 (Forecasting) are not required for this TIA given the low number of trips generated by the proposed site and, as a result, these modules have also been exempted.

5. FORECASTING

As previously mentioned, Modules 3.1 and 3.3 have been exempted from this step of the TIA process. This section will include Module 3.2 Background Network Travel Demands in order to determine the extent of background traffic growth within the study area and includes a review of historical traffic data, transportation plans and other planned developments within the study area.

5.1 Background Network Travel Demands

5.1.1 Transportation Network Plans

Section 2.3.1 of this report identifies major projects planned within the vicinity of Algonquin College. Additional transportation network modifications have not been identified.

5.1.2 Background Growth

A review of historical traffic count data was completed and a summary of calculated growth rates at study area intersections is provided in **Table 9**. Detailed summaries of the historical data are provided in **Appendix B**. The historical data available ranges between 2006 and 2019 and includes traffic counts collected during school months as well as summer months when full-time classes are not in session. Additionally, broader roadway network improvements / modifications have been made over the years, which have an impact on capacity, route choice and mode choice. Given these factors, a significant amount of uncertainty exists within the available data.

	AADT		AM Peak Hour			
Intersection	Projected R		Regression	Average	Projected Regression	
	Average	Linear	Exponential	Average	Linear	Exponential
Baseline / Navaho	1.3%	1.3%	1.2%	-1.0%	-1.1%	-1.1%
Navaho / East of Woodroffe	12.9%	3.7%	3.3%	9.6%	2.8%	2.6%
Woodroffe / College	0.4%	4.1%	3.6%	-1.6%	-0.3%	-0.3%
Navaho / Woodroffe	-8.7%	-9.5%	-25.8%	-1.4%	0.0%	0.0%

Table 9:	Study Area	Intersection	Growth	Rate Su	mmary
----------	-------------------	--------------	--------	---------	-------

In addition to the above, a review of EMME travel demand plots generally indicates negative growth or no growth along the study area arterial network. It is expected that the future conversion of BRT to LRT at Baseline Station in addition to any improvements to pedestrian and cycling facilities will have an effect on mode choice. As a conservative estimate for background growth, an annual growth rate of 1% will be applied to the study area road network. Projected study area turning movement volumes for the 2021 and 2026 horizon years are illustrated below in **Figures 10 and 11**.

Figure 10: Projected Study Area Intersection Peak Hour Volumes – 2021

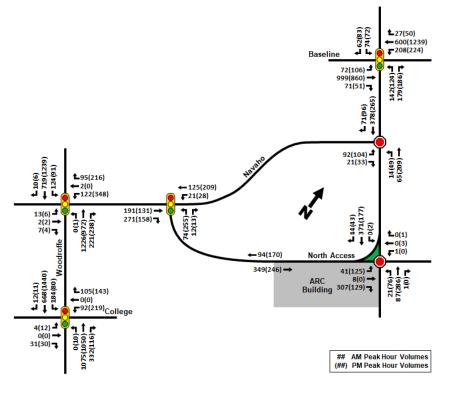
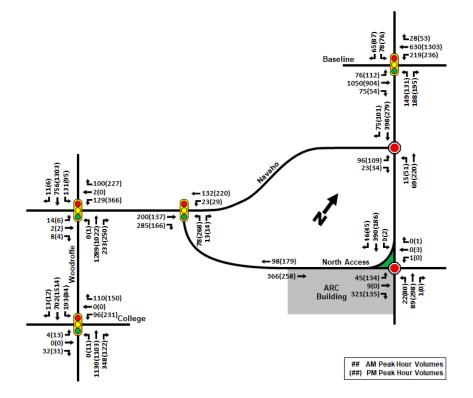



Figure 11: Projected Study Area Intersection Peak Hour Volumes – 2026

5.1.3 Other Developments

Section 2.3.2 of this report identifies development applications that are currently placed with the City for the construction of residential units near Algonquin College. Additional transportation network modifications have not been identified.

6. ANALYSIS

The following includes an overview of the Design Review components for the proposed development and provides an assessment of the study area road network impacts associated with the proposed Site Plan. This section discusses Site Plan design elements, parking and impacts to boundary streets and access intersections.

6.1 Development Design

6.1.1 Design for Sustainable Modes

Vehicle and Bicycle Parking Areas

Given the site's location with 'Area Z' of Schedule 1A of the Zoning Bylaw, no minimum number of vehicle parking spaces are required. Parking lots 8, 9 & 12 at Algonquin College currently provide approximately 2,140 parking spaces. Approximately 340 parking spaces will be lost as a result of the development of the ARC Building, reducing the total parking supply in these lots to approximately 1,800 parking spaces. During and following the buildout of the ARC Building, Algonquin College intends to offset this reduction by rearranging the layout of existing parking lots and constructing temporary gravel lots across the campus, introducing approximately 470 parking spaces (a net increase of 130 spaces). Access to vehicle parking will be provided along the south side of the proposed facility with connection to North Access Road along the east side.

The minimum bicycle parking supply for the proposed site plan is 8 spaces according to Section 111 – Bicycle Parking Space Rates and Provisions of the Zoning Bylaw. A maximum of 50% of the required bicycle parking spaces or 15 spaces, whichever is greater, may be located in a landscaped area (By-law 2011-124). Bicycle parking is provided along the southwest side of the ARC building near a main entrance and includes a total of 48 spaces.

Pedestrian Routes and Facilities

The proposed site includes sidewalk bordering all sides of the building, a barrier-free ramp and a future pedestrian link. These facilities connect the proposed ARC Building with the Student Commons Building. The Site Plan also indicates the location of existing pedestrian crossings to accommodate students travelling across North Access Road to/from Residence. An additional pedestrian crossing has been provided along the south side of North Access Road crossing the loading dock.

Transit Design and Location

Transit stops are located along both sides of North Access Road within walking distance of the proposed ARC Building. All exterior access doors of the subject development are within 400 metres of both transit stops. The existing stops currently provide shelters and permit transit connections with Route 88 travelling in the eastbound and westbound directions. Additional existing transit-related information is provided in Section 2.2.2.

6.1.2 Circulation and Access

The proposed Site Plan will utilize the existing AWS intersection at the eastern leg of North Access Road. This existing access accommodates OC Transpo transit vehicles along Route 88. The Site Plan indicates that a trailer truck (i.e. WB-65) can complete manoeuvres between North Access Road and the proposed loading dock in the following manner:

- Entering: Trucks must approach from the east, travelling in the westbound lane along North Access Road, in order to complete a reverse entry into the loading dock
- **Exiting:** Trucks must depart the loading dock by making a left-turn and head westbound along North Access Road to connect with Navaho Drive

6.2 Parking

6.2.1 Parking Supply

As previously mentioned, the proposed development is located within Area 'Z' of the Zoning Bylaw #2008-250 and as a result, no off-street vehicle parking is required to be provided under Section 101 – Minimum Parking Space Rates of the City's Zoning Bylaw.

The minimum bicycle parking supply for the proposed site plan is 8 spaces according to Section 111 – Bicycle Parking Space Rates and Provisions of the Zoning Bylaw. A maximum of 50% of the required bicycle parking spaces or 15 spaces, whichever is greater, may be located in a landscaped area (By-law 2011-124). Bicycle parking is provided along the southwest side of the ARC building near a main entrance and includes a total of 48 spaces.

6.3 Boundary Street Design

6.3.1 Mobility

An assessment of the boundary street (North Access Road) was completed to determine the Segment Multi-Modal Level Of Service (MMLOS). This assessment considers the suitability of the pedestrian, cyclist, transit and truck facilities provided and evaluates the respective comfort level for these types of road users. A summary of this evaluation is provided below in **Table 10** and a detailed analysis is provided in **Appendix C**.

Mode	Overall Segment LOS	Target LOS
Pedestrian (PLOS)	A	A
Cyclist (BLOS)	В	В
Transit (TLOS)	D	D

Table 10: North Access Road – Segment MMLOS

Based on the results of the Segment MMLOS analysis, North Access Road meets or exceeds the target LOS desired for each mode. The existing network is considered to provide adequate facilities for these modes with opportunities to connect users between mode choices. The proposed ARC Building adds to the existing sidewalk provided for pedestrians along the south side of North Access Road including a painted pedestrian crosswalk across the loading dock area. As a result of the Segment MMLOS provided above, the proposed facilities shown on the Site Plan for the ARC Building are considered acceptable and meet the City's MMLOS objectives.

6.3.2 Road Safety

A review of a five-year collision history (2014 to 2018, inclusive) has been provided in Section 2.2.5 and provides a summary of collisions by impact type. Collision data is not available along North Access Road, however the intersection of Navaho / East of Woodroffe (at North Access Road) indicated that one (1) collision has occurred at this location within the past five years. In order to reduce the potential for safety issues, North Access Road currently includes a low posted speed limit (25 km/h), speed humps and AWS controlled intersections along its corridor.

6.3.3 Neighbourhood Traffic Management

As previously mentioned in Section 2.2.3, North Access Road includes several methods to manage travel behaviour for college-related traffic. These measures include:

- Posted Speed Limit Signs (25 km/h);
- Speed Humps;
- Painted Pedestrian Crosswalks; and
- Pedestrian Crossing Signs.

Given that the boundary street currently provides measures to manage vehicle speeds and behaviour, the proposed site is not expected to exacerbate any existing operational concerns.

6.4 Access Intersections Design

6.4.1 Location and Design of Access

The development of the ARC Building does not include the provision of a new site access and will use existing access driveways and intersections to provide network connections. As previously mentioned, the main intersection access is the AWS controlled intersection at the eastern limit of North Access Road (i.e. North Access / Parking Lot intersection). A driveway access to Parking Lot 11 is located approximately 75 m north of this intersection and the signalized Navaho / North Access intersection is located approximately 360 m west of this location. The ARC Building will increase the clear throat length along the west side of the south leg of the subject intersection to approximately 70 m (currently roughly 25 m).

6.4.2 Intersection Control

The Navaho / North Access intersection is currently signalized while the North Access / Parking Lot intersection is STOP controlled on all approaches. Signal warrant analysis (included in **Appendix D**) was completed for the 2021 and 2026 horizon year traffic volumes at the North Access / Parking Lot intersection using Justification 7 from Book 12 of the Ontario Traffic Manual. This analysis indicated that signals are not warranted at this intersection for either horizon year.

The City of Ottawa has developed a Roundabout Implementation Policy that considers the feasibility of roundabouts as a form of traffic control alongside other appropriate controls or road modifications. This policy includes a screening tool to determine if the City should proceed with an Intersection Control Study. Given that the proposed development does not include the introduction of a new City intersection, warrant traffic signals or generate capacity / safety issues, screening for the possibility of a roundabout is not required.

As mentioned previously, OC Transpo Route 88 travels through Algonquin College campus and uses North Access Road. A channelized southbound right-turn movement is provided at the North Access / Parking Lot intersection allowing buses to bypass the STOP condition at this location. Signalized intersections are not provided / required on campus and as a result, the addition of isolated transit priority measures along internal campus roadways is not desirable.

6.4.3 Intersection Design

Intersection MMLOS analysis has been completed for the existing, 2021 and 2026 horizon years at the Navaho / North Access intersection and a summary is provided below in **Table 11**. Given that the existing intersection geometry at this location is planned to be maintained, the following LOS results summarize existing and projected conditions. Detailed MMLOS analysis is provided in **Appendix C**.

Mode	Overall Intersection LOS	Target LOS
Pedestrian (PLOS)	F	A
Cyclist (BLOS)	D	В
Transit (TLOS)	В	А

Table 11: Navaho Drive / North Access Road – Intersection MMLOS

In addition, vehicle LOS at study area intersections has been completed using Synchro 10 for the existing and projected conditions and a summary of the performance evaluation is provided below in **Table 12**. Detailed Synchro reports are included in **Appendix E**.

Intersections	Movements	Delay (s)	v/c Ratio	LOS	95th Queue (m)		
Existing Conditions							
	NBLR	24 (26)	0.33 (0.63)	A (B)	18 (41)		
Navaho / North Access	Overall	5 (13)	0.29 (0.45)	A (A)	-		
	EBLTR	15 (13)	0.57 (0.46)	B (B)	-		
	WBLTR	10 (9)	0.00 (0.01)	A (A)	_		
North Access / Parking Lot	NBLTR	10 (14)	0.09 (0.49)	A (B)	-		
5	SBLTR	17 (12)	0.64 (0.35)	C (B)	-		
	Overall	15 (12)	-	C (B)	-		
		Projected 202	1				
	NBLR	26 (30)	0.35 (0.67)	A (B)	17 (40)		
Navaho / North Access	Overall	6 (14)	0.28 (0.47)	A (A)	-		
	EBLTR	13 (12)	0.47 (0.37)	B (B)	-		
	WBLTR	10 (9)	0.00 (0.01)	A (A)	-		
North Access / Parking Lot	NBLTR	10 (13)	0.17 (0.50)	A (B)	-		
	SBLTR	15 (11)	0.58 (0.31)	B (B)	-		
	Overall	13 (12)	-	B (B)	-		
		Projected 202	6		•		
Novaba / North Assass	NBLR	26 (30)	0.36 (0.68)	A (B)	18 (42)		
Navaho / North Access	Overall	6 (14)	0.29 (0.48)	A (A)	-		
	EBLTR	13 (12)	0.51 (0.40)	B (B)	-		
	WBLTR	10 (9)	0.00 (0.01)	A (A)	-		
North Access / Parking Lot	NBLTR	10 (14)	0.17 (0.53)	A (B)	-		
	SBLTR	16 (11)	0.61 (0.33)	C (B)	-		
	Overall	14 (12)	-	B (B)	-		

Table 12: Study Area Intersection Performance – AM (PM) Peak Hours

The above analysis demonstrates that the Navaho / North Access and North Access / Parking Lot intersections operate acceptably from a vehicle LOS perspective within the existing, projected 2021 and projected 2026 conditions. However, LOS for pedestrian, cyclist and transit modes do not meet the minimum desirable target LOS for the Policy Area (i.e. within 600 m of a rapid transit station). Given that these results are generated by the existing condition and are

not diminished by the development of the ARC Building, mitigation is not required by the developer.

7. CONCLUSIONS AND RECOMMENDATIONS

Based on the above analysis and site plan review, this report offers the following findings:

- No minimum number of vehicle parking spaces are required for the proposed site. However, Algonquin College intends to introduce approximately 470 parking spaces following the buildout of the ARC Building (a net increase of 130 spaces);
- The minimum bicycle parking supply for the proposed site plan is 8 spaces according to Section 111 – Bicycle Parking Space Rates and Provisions of the Zoning Bylaw. Bicycle parking is provided along the southwest side of the ARC building near a main entrance and includes a total of 48 spaces;
- Trucks may enter / exit the loading dock in the following manner:
 - **Entering:** Trucks must approach from the east, travelling in the westbound lane along North Access Road, in order to complete a reverse entry into the loading dock;
 - **Exiting:** Trucks must depart the loading dock by making a left-turn and head westbound along North Access Road to connect with Navaho Drive;
- Based on the results of the Segment MMLOS analysis, North Access Road meets or exceeds the target LOS desired for each mode. The proposed ARC Building adds to the existing sidewalk provided for pedestrians along the south side of North Access Road including a painted pedestrian crosswalk across the loading dock area;
- Traffic signals are not warranted at the North Access / Parking Lot intersection within the 2021 and 2026 horizon years; and
- Based on the results of the Intersection MMLOS analysis, the Navaho / North Access and North Access / Parking Lot intersections operate acceptably from a vehicle LOS perspective within the existing, projected 2021 and projected 2026 conditions. However, LOS for pedestrian, cyclist and transit modes do not meet the minimum desirable target LOS for the Policy Area (i.e. within 600 m of a rapid transit station). Given that these results are generated by the existing condition and are not diminished by the development of the ARC Building, mitigation is not required by the developer.

APPENDIX A

SCREENING FORM

MEMORANDUM

TO: Lucas Smith, P.Eng.

FROM:	Anthony Kwok, P.Eng., Bassam Hamwi, P.Eng.
PROJECT No.:	1900001.00

DATE: 6/21/2019

RE: Algonquin College – ARC Building Transportation Impact Assessment – Screening Form

P:\2019\190000100-ALGONQUIN COLLEGE DC SOA SERVICES\08. WORKING\06. TRAFFIC\6-DOCUMENTATION\5-FINAL REPORT\APPENDIX A - SCREENING FORM\ALGONQUIN COLLEGE - ARC BUILDING TIA SCREENING.DOCX

1. Description of Proposed Development

Municipal Address	ARC Building Algonquin College 1385 Woodroffe Avenue K2G 3G7, Ottawa ON
Description of Location	The limits of the proposed ARC Building are to be built in the northwest quadrant of Parking Lot 8 & 9 at Algonquin College. The north side of the site is bounded by North Access Road (a secondary roadway off of Navaho Drive).
Land Use Classification	Health/ Fitness Club (ITE Land Use #492) Athletic Club (ITE Land Use #493)
Development Size (units)	1
Development Size (m ²)	125,485 ft ² (11,658 m ²)
Number of Accesses and Locations	0 (The site does not contain any new main vehicular access.)
Phases of Development	1
Buildout Year	2021

The proposed ARC Building development is expected to replace the existing recreational and athletic facilities on campus with larger multi-use facility. Currently, the athletics/ recreational facilities are situated in a shared building comprising of a multitude of uses, including academics. The additional capacity afforded with the new development will allow the College to expand and provide more inclusive physical and social activity programs for their students.

The total gross floor area of the existing athletics/ recreational facilities on the Algonquin College campus is approximately 47,840 ft² (4,445 m²). The proposed ARC Building development is slated to grow the footprint to 125,485 ft² (11,658 m²), or by approximately 262%. The substantial growth in the footprint of the proposed ARC Building can be attributed to an increase in the areas available for athletics (additional courts), fitness (discovery track, studios, weight rooms, etc.), and recreational (bowling alley, billiards, rock climbing wall, etc.), including lounges/ concessions. **Table 1** provides a breakdown of the existing and proposed athletics/ recreational facilities.

TABLE 1: GROSS FLOOR AREA OF EXISTING AND PROPOSED ATHLETICS/ RECREATIONAL FACILITY

	Athletics (ft ²)	Health/ Fitness (ft ²)	Total (ft ²)
Existing Athletics/ Recreational Facility	18,180	29,660	47,840
ARC Building	41,410	84,075	125,485

Based on the background information provided above, the following memo will address the Transportation Impact Assessment (TIA) screening trigger checks for trip generation, location, and safety.

2. Trip Generation Trigger

	No
Does the proposed development generate more than 60 person-	1
trips or more during weekday peak hours?	•

The land use classification for the ARC Building is noted in Section 1 as a Health/ Fitness Club and an Athletic Club. The Health/ Fitness Club land use classification describes a facility where the focus is on individual fitness or training while the Athletic Club focuses primarily on offering a comprehensive offering of athletic facilities for team sports and social gatherings. Although neither land use can accurately describe the form and function of the ARC Building, a combination of the two land uses was determined to provide a better representation of the expected trips.

Table 2 includes the trip generation equations for the two applicable land use classifications per the ITE Trip Generation Manual (2012), while **Table 3** uses the equations to calculate the expected number of trips. The expected trips generated for the Combined Land Use was determined based on the proportion of the total gross floor area attributed to each classification.

TABLE 2: LAND USE CLASSIFICATIONS

Land Use	# of Studies	2-Way Traffic (Inbound and Outbound)				
Land Use	# OI Studies	AM Peak Hour	PM Peak Hour			
Health/ Fitness Club (492)	6	T = 1.41(x)	Ln(T) = 0.95Ln(x)+1.43			
Athletic Club (493)	3 (AM) & 4 (PM)	T = 2.97(x)	T = 6.58(x) - 17.51			
Note: by represents each 1000 ar. It of group floor area						

Note: 'x' represents each 1000 sq. ft of gross floor area.

TABLE 3: TRIPS GENERATED BASED ON RELEVANT LAND USE CLASSIFICATION

Land Use	% of Land Use	Trips Generated (2-Way Traffic)				
Land Use		AM Peak Hour	PM Peak Hour			
Existing Facility						
Combined Land Use	62%Health/Fitness 38%Athletic	96 trips	207 trips			
Proposed Facility						
Health/ Fitness Club (492)	100%	178 trips (+82 trips)	412 trips (+205 trips)			
Athletic Club (493)	100%	373 trips (+277 trips)	808 trips (+601 trips)			
Combined Land Use	67%Health/Fitness 33%Athletic	243 trips (+147 trips)	536 trips (+329 trips)			

The estimate for trip generation potential per the ITE Trip Generation Manual is not representative of what can be expected by the proposed development for the following reasons:

- 1. Trip rates in the ITE Trip Generation Manual are based on suburban sites with transit mode share that is at or below 10% of total trips. The ARC Building is within close proximity to the Woodroffe Rapid Transit Station and as a result has achieved a 58% transit mode share.
- 2. Trip rates in the ITE Trip Generation Manual are based on stand-alone facilities which serve as a "destination" in and of itself. The ARC Building is an integral element of the Algonquin College campus and is intended to serve the College students' exclusively.

In light of the above, the ITE trip generation rates must be adjusted downward to account for the above and ensure that it is representative of what can reasonably be accepted.

To account for the higher transit mode share, ITE trip rates should be reduced by a factor of 53% (1-0.42/0.9). As such, the increase in trips can be expected to be 69 vph in the AM peak hour and 155 vph in the PM peak hour.

Notwithstanding the above, there is no expectation of increase in traffic generation due to the increase in facility size. Any increase in traffic generation by the building, if any, would be attributed to increase in student enrolment. Therefore, the Trip Generation trigger is considered not to be satisfied.

3. Location Triggers

	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?	\checkmark
Is the development in a Design Priority Area (DPA) or Transit- oriented Development (TOD) zone?	\checkmark

The proposed ARC Building will not require a connection to any boundary streets that are designated by the City of Ottawa as transit priority, rapid transit, or spine cycling routes. However, the development is located within the Mixed Use Centre Design Priority Area and Baseline/Woodroffe Transit-Oriented Development zone as defined in Schedule B and Annex 6 of the City of Ottawa's Official plan, respectively, which satisfies the Location Trigger.

However, since the campus is well connected to the pedestrian, cycling and transit networks, it is not viewed as having a significant potential for further improvements that are typically identified from the conduct of a TIA.

4. Safety Triggers

	No
Are posted speed limits on a boundary street are 80 km/hr or greater?	\checkmark
Are there any horizontal/ vertical curvatures on a boundary street limits sight lines at a proposed driveway?	\checkmark
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300m of	\checkmark

intersection in rural conditions, or within 150m of intersection in urban/ suburban conditions)?		
Is the proposed driveway within auxiliary lanes of an intersection?		\checkmark
Does the proposed driveway make use of an existing median break that serves an existing site?		✓
Is there a documented history of traffic operations or safety concerns on the boundary streets within 500m of the development?	~	
Does the development include a drive-thru facility?		\checkmark

The majority of the questions for the Safety Trigger were answered with 'No', with the exception that there are historical traffic operations and safety concerns for the boundary streets surrounding the proposed development and, as a result, the Safety Trigger is fulfilled.

5. Summary

	Yes	No
Does the development satisfy the Trip Generation Trigger?		\checkmark
Does the development satisfy the Location Trigger?		\checkmark
Does the development satisfy the Safety Trigger?	\checkmark	

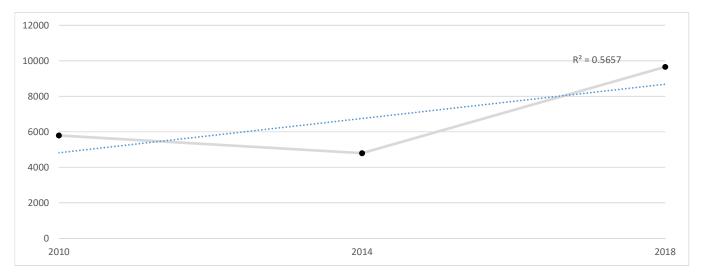
Given that the use of the proposed development will be restricted to Algonquin College students only, and serve the same student population as the current building, it is not expected that the proposed development will have a significant impact on the existing road network and traffic operations to warrant the completion of a full Transportation Impact Assessment. In light of the facts presented herein, as well as our intimate knowledge of the site and the proposed development, we propose that "Step 2 – Scoping" of the TIA reflect the above statement.

APPENDIX B

HISTORICAL GROWTH RATE SUMMARIES

Year Approach AADT Volume			Total		
Tear	Northbound	Southbound	Eastbound	Westbound	TOtal
2010	3529	1648	12598	12064	29839
2016	3989	1598	12655	14068	32310

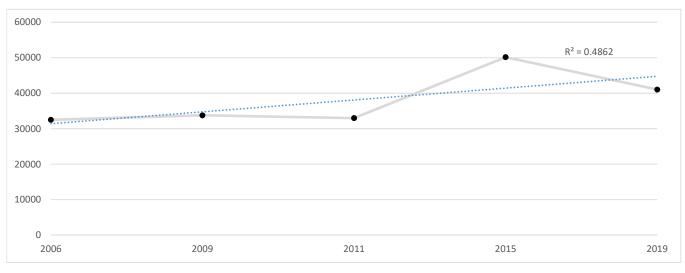
Range	Approach Exponential Growth Rates			Exponential	
Kalige	Northbound	Southbound	Eastbound	Westbound	Growth Rates
2010 - 2016	2.1%	-0.5%	0.1%	2.6%	1.3%
Average	2.1%	-0.5%	0.1%	2.6%	1.3%
Reliability	0.0%	0.0%	0.0%	0.0%	0.0%



Linear Regression					
Year	2026				
Projected Volume	36428				
Linear Growth Rate	1.27%				
Exponential Growth Rate	1.21%				

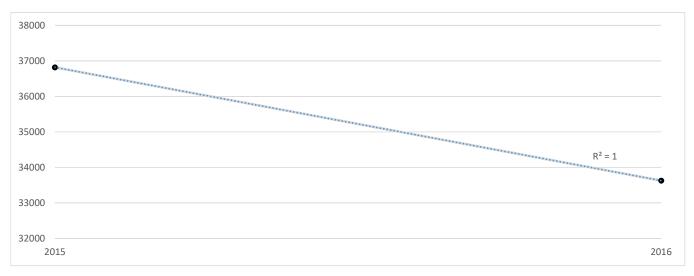
Navaho @ E of Woodroffe_AADT

Year Approach AADT Volume			Total			
Tear	Northbound	Southbound	Eastbound	Westbound	TOLAI	
2010	1010	0	2475	2312	5797	
2014	693	0	2265	1839	4797	
2018	2123	0	4656	2881	9660	


Range		Approach Exponential Growth Rates			Exponential
Kange	Northbound	Southbound	Eastbound	Westbound	Growth Rates
2010 - 2018	9.7%	0.0%	8.2%	2.8%	6.6%
2014 - 2018	32.3%	0.0%	19.7%	11.9%	19.1%
Average	21.0%	0.0%	14.0%	7.3%	12.9%
Reliability	16.0%	0.0%	8.1%	6.4%	8.9%

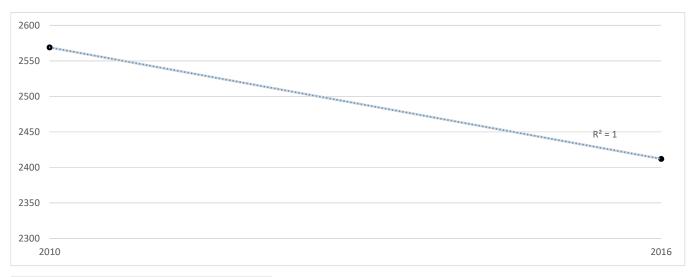
Linear Regression					
Year	2026				
Projected Volume	12546				
Linear Growth Rate	3.73%				
Exponential Growth Rate	3.32%				

Year		Total			
Tear	Northbound	Southbound	Eastbound	Westbound	TOLAI
2006	16242	14525	467	1264	32498
2009	17221	14515	374	1662	33772
2011	18981	12295	376	1327	32979
2015	24008	21390	580	4147	50125
2019	19157	17734	453	3679	41023


Range		Exponential			
Kange	Northbound	Southbound	Eastbound	Westbound	Growth Rates
2006 - 2019	1.3%	1.5%	-0.2%	8.6%	1.8%
2009 - 2019	1.1%	2.0%	1.9%	8.3%	2.0%
2011 - 2019	0.1%	4.7%	2.4%	13.6%	2.8%
2015 - 2019	-5.5%	-4.6%	-6.0%	-2.9%	-4.9%
Average	-0.8%	0.9%	-0.5%	6.9%	0.4%
Reliability	3.2%	3.9%	3.8%	7.0%	3.6%

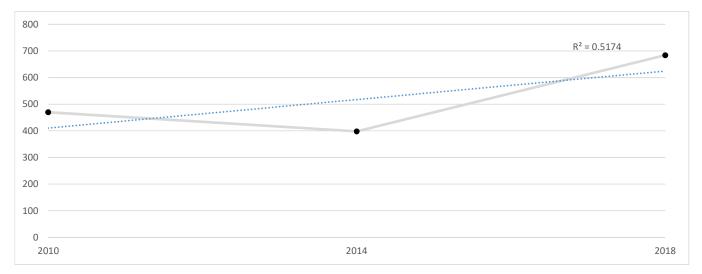
Linear Regression				
Year	2026			
Projected Volume	52652			
Linear Growth Rate	4.05%			
Exponential Growth Rate	3.63%			

Year		Approach A	Total			
Tear	Northbound	Southbound	Eastbound	Westbound	TOtal	
2015	16437	14622	206	5554	36819	
2016	15644	13155	198	4630	33627	


Range	ntial Growth Rates	Exponential			
Kalige	Northbound	Southbound	Eastbound	Westbound	Growth Rates
2015 - 2016	-4.8%	-10.0%	-3.9%	-16.6%	-8.7%
Average	-4.8%	-10.0%	-3.9%	-16.6%	-8.7%
Reliability	0.0%	0.0%	0.0%	0.0%	0.0%

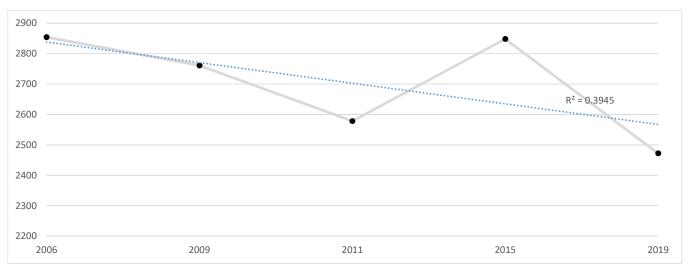
Linear Regression					
Year	2026				
Projected Volume	1707				
Linear Growth Rate	-9.49%				
Exponential Growth Rate	-25.77%				

Year		Approach AM	Total		
Tear	Northbound	Southbound	Eastbound	Westbound	TOtal
2010	292	139	1288	850	2569
2016	316	138	1128	830	2412


Range Approach Exponential Growth Rates					Exponential
Kaliye	Northbound Southbound Eastbound Westbound				Growth Rates
2010 - 2016	1.3%	-0.1%	-2.2%	-0.4%	-1.0%
Average	1.3%	-0.1%	-2.2%	-0.4%	-1.0%
Reliability	0.0%	0.0%	0.0%	0.0%	0.0%

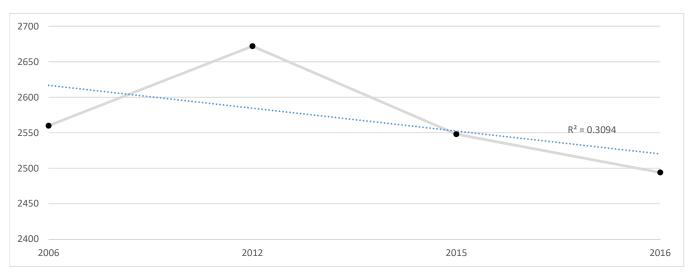
Linear Regression					
Year	2026				
Projected Volume	2150				
Linear Growth Rate	-1.09%				
Exponential Growth Rate	-1.14%				

Voor	Year Approach AM Peak Volume				
Tear	Northbound	Southbound	Eastbound	Westbound	Total
2010	65	0	264	141	470
2014	26	0	263	109	398
2018	85	0	455	144	684


Range		Approach Exponential Growth Rates				
Kange	Northbound	Southbound	Eastbound	Westbound	Growth Rates	
2010 - 2018	3.4%	0.0%	7.0%	0.3%	4.8%	
2014 - 2018	34.5%	0.0%	14.7%	7.2%	14.5%	
Average	18.9%	0.0%	10.9%	3.7%	9.6%	
Reliability	22.0%	0.0%	5.4%	4.9%	6.9%	

Linear Regression					
Year	2026				
Projected Volume	838				
Linear Growth Rate	2.81%				
Exponential Growth Rate	2.57%				

Year		Total			
	Northbound	Southbound	Eastbound	Westbound	TOtal
2006	1871	837	45	101	2854
2009	1785	837	45	94	2761
2011	1832	633	26	87	2578
2015	1607	979	30	232	2848
2019	1379	864	34	195	2472


Range	Approach Exponential Growth Rates				Exponential
	Northbound	Southbound	Eastbound	Westbound	Growth Rates
2006 - 2019	-2.3%	0.2%	-2.1%	5.2%	-1.1%
2009 - 2019	-2.5%	0.3%	-2.8%	7.6%	-1.1%
2011 - 2019	-3.5%	4.0%	3.4%	10.6%	-0.5%
2015 - 2019	-3.8%	-3.1%	3.2%	-4.3%	-3.5%
Average	-3.0%	0.4%	0.4%	4.8%	-1.6%
Reliability	0.7%	2.9%	3.3%	6.4%	1.3%

Linear Regression				
Year	2026			
Projected Volume	2415			
Linear Growth Rate	-0.33%			
Exponential Growth Rate	-0.33%			

Year	Approach AM Peak Volume				Total
Tear	Northbound	Southbound	Eastbound	Westbound	TOLAI
2006	1354	1009	26	171	2560
2012	1587	918	16	151	2672
2015	1366	999	20	163	2548
2016	1419	838	22	215	2494

Range	Approach Exponential Growth Rates				Exponential
Kaliye	Northbound	Southbound	Eastbound	Westbound	Growth Rates
2006 - 2016	0.5%	-1.8%	-1.7%	2.3%	-0.3%
2012 - 2016	-2.8%	-2.3%	8.3%	9.2%	-1.7%
2015 - 2016	3.9%	-16.1%	10.0%	31.9%	-2.1%
Average	0.5%	-6.7%	5.5%	14.5%	-1.4%
Reliability	3.3%	8.1%	6.3%	15.5%	1.0%

Linear Regression		
Year	2026	
Projected Volume	2499	
Linear Growth Rate	0.02%	
Exponential Growth Rate	0.02%	

APPENDIX C

INTERSECTION AND SEGMENT MMLOS

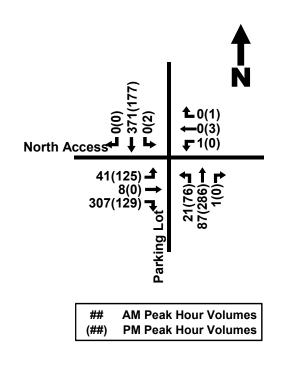
	SEGMENTS	North Acc	cess Road	
	Designation/Policy Area	Within 600m of a Rapid Transit Station		
	Roadway Classification	Lo	cal	
	Approach	Eastbound	Westbound	
	Sidewalk Width (m)	>= 2.0	1.8	
	Boulevard Width (m)	0	0	
us	AADT	<= 3000	<= 3000	
Pedestrians	On-Street Parking	N/A	N/A	
les	Operating Speed (km/h)	<= 30	<= 30	
Pec	Resultant LOS	Α	A	
	Overall Segment		A	
	Target LOS	A	A	
	Route Classification	Local	Route	
	Type of Bikeway	Mixed Traffic	Mixed Traffic	
	# of Travel Lanes (2-way)	2-3	2-3	
	Centre Median	-	-	
	Bike Lane Width (m)	-	-	
ഗ	Operating Speed (km/h)	<= 40	<= 40	
Cyclists	Bike Lane Blockage	-	-	
Sc	Unsig. Crossing Present?	Yes	Yes	
	Median Refuge (> 1.8m)?	No	No	
	# of Lanes Crossed	<= 3	<= 3	
	Side-Street Op. Speed (km/h)	<= 40	<= 40	
	Resultant LOS	В	В	
	Overall Segment	E	3	
	Target LOS	E	3	
	Transit Facility	TP - Isolate		
	Facility	Mixed Traffic	Mixed Traffic	
	Exposure to Congestion	Yes	Yes	
Jsit	Level of Friction	Low	Low	
Tran	Incident Potential	Medium	Medium	
F	Exposure Criteria	Limited Parking/Dvwy Friction	Limited Parking/Dvwy Friction	
	Resultant LOS	D	D	
	Overall Segment)	
	Target LOS)	
	Truck Facility		her	
	Curb Lane Width (m)	<= 3.5	<= 3.5	
Truck	Travel Lanes (2-way)	2	2	
Ē	Resultant LOS	C	С	
	Overall Segment			
	Target LOS	No T	arget	

	INTERSECTIONS	Navaho Drive / North Access Road			
	Designation/Policy Area	Within 600m of a Rapid Transit Station			
	Roadway Classification	Collector			
	Approach	Northbound	Southbound	Eastbound	Westbound
	Total travel lanes crossed	6	-	6	5
	Centre Median (>2.4m)	No	-	Yes	No
	Left-Turn Conflict	Perm.	-	Perm.	None/Prohibited
	Right-Turn Conflict	Perm./Yield	-	None	Perm./Yield
	RTOR	Perm.	-	Perm.	Prohibited
	Leading Ped Interval	No	_	No	No
	Right-Turn Channel	No Right-Turn Channel	-	No Right-Turn Channel	No Right-Turn
s	Right-Turn Corner Radius	> 5m to 10m	-	No Right-Turn	> 5m to 10m
Pedestrians	Crosswalk Treatment	Textured/Coloured Pavement	-	Textured/Coloured Pavement	Textured/Coloured Pavement
str	PETSI Score	24	-	39	56
ede	PETSI LOS	F	-	E	D
٩.	Cycle Length (s)		6	5	
	Directional Split (s)	38	-	27	27
	FDW + Intergreen	18.8	-	19.5	19.5
	Pedestrian Delay (s)	16	-	25	25
	Delay LOS	В	-	С	С
	Resultant LOS	F	-	E	D
	Overall Intersection			F	
Target LOS A					
	Route Classification			Route	
	Facility	Mixed Traffic	-	Mixed Traffic	Mixed Traffic
	Right-Turn Type	Shared Lane	-	Shared Lane <= 50	Shared Lane <= 50
	Turning Bay Length (m) Veh. Turning Speed (km/h)	<= 50 <= 25	-	<= 50	<= 50
s	Right-Turn LOS	<- 25 D	-	D	C= 25
Cyclists	Left-Turn Type	Single Left		Single Left	Single Left
l S	# of Lanes Crossed	0	-	0	0
	Veh. Approach Speed (km/h)	<= 40	-	<= 40	<= 40
	Left-Turn LOS	B	-	В	В
	Resultant LOS	D	-	D	D
	Overall Intersection			D	
	Target LOS			В	
	Transit Facility		Rapid Tran	sit Corridor	
ij	Transit Delay (s)	-	-	<= 10	<= 10
Transit	Resultant LOS	-	-	В	В
Ē	Overall Intersection			В	
	Target LOS			Α	
	Truck Facility		Ot	her	
	Effective Corner Radius (m)	< 10	-	< 10	< 10
Truck	# of Receiving Lanes	1	-	1	1
Ē	Resultant LOS	F	-	F	F
	Overall Intersection	F			
	Target LOS		No T	arget	

APPENDIX D

SIGNAL WARRANT ANALYSIS

Signal Warrant Analysis (Justification 7) - North Access/Parking Lot


Major Street:	North Access
Minor Street:	Parking Lot
Comments:	

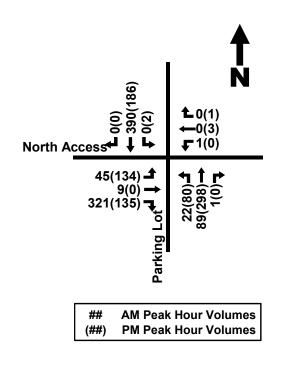
Warrant 1 - Minimum Vehicle Volume				
A - All Approaches Sectional % Entire %				
Warrant Value:	720	57%		
Actual Approach Volume:	409	5770		
B - Minor Street (Both Ap	Sectional %	57%		
Warrant Value:	170	150%		
Actual Approach Volume:	255	150 /6		

Warrant 2 - Delay to Cross Traffic				
A - Major Street (Both Approaches) Sectional % Entire %				
Warrant Value:	720	21%		
Actual Approach Volume:	154	21%		
B - Traffic Crossing Maj	or Street	Sectional %	21%	
Warrant Value:	75	247%		
Total Crossing Volume:	185	24770		

Warrant Criteria:	Single Warrant	Are signals warranted?
Projected peak hour traffic volumes:	120%	NO

Number of Major Road Through Lanes (1-way):	1
Traffic Flow Conditions:	Restricted
Type of Intersection:	4-Leg
Pedestrians Crossing Major Road:	23

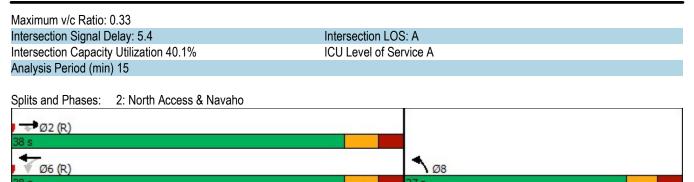
Signal Warrant Analysis (Justification 7) - North Access/Parking Lot


Major Street:	North Access
Minor Street:	Parking Lot
Comments:	

Warrant 1 - Minimum Vehicle Volume				
A - All Approach	es	Sectional %	Entire %	
Warrant Value:	720	60%		
Actual Approach Volume:	430	00 /0		
B - Minor Street (Both Ap	proaches)	Sectional %	60%	
Warrant Value:	170	158%		
Actual Approach Volume:	268	150%		

Warrant	2 - Delay to Cross	s Traffic	
A - Major Street (Both Ap	proaches)	Sectional %	Entire %
Warrant Value:	720	23%	
Actual Approach Volume:	162	2370	
B - Traffic Crossing Maj	or Street	Sectional %	23%
Warrant Value:	75	259%	
Total Crossing Volume:	194	259%	

Warrant Criteria:	Single Warrant	Are signals warranted?
Projected peak hour traffic volumes:	120%	NO


Number of Major Road Through Lanes (1-way):	1
Traffic Flow Conditions:	Restricted
Type of Intersection:	4-Leg
Pedestrians Crossing Major Road:	23

APPENDIX E

SYNCHRO REPORTS

	-	7	1	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	1	5	1	Y	
Traffic Volume (vph)	187	266	21	123	73	12
Future Volume (vph)	187	266	21	123	73	12
Satd. Flow (prot)	1728	1469	1691	1712	1478	0
Flt Permitted	1120	1400	0.628	1112	0.959	U
Satd. Flow (perm)	1728	1334	1057	1712	1467	0
Satd. Flow (RTOR)	1120	296	1001	1112	13	U
Lane Group Flow (vph)	208	296	23	137	94	0
Turn Type	NA	Perm	Perm	NA	Prot	U
Protected Phases	2	I CIIII	I CIIII	6	8	
Permitted Phases	2	2	6	U	0	
Detector Phase	2	2	6	6	8	
Switch Phase	2	2	0	0	0	
	10.0	10.0	10.0	10.0	10.0	
Minimum Initial (s)	10.0	10.0				
Minimum Split (s)	25.8	25.8	25.8	25.8	26.5	
Total Split (s)	38.0	38.0	38.0	38.0	27.0	
Total Split (%)	58.5%	58.5%	58.5%	58.5%	41.5%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.0	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5	
Lost Time Adjust (s)	-1.8	-1.8	-1.8	-1.8	-1.5	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	
Lead/Lag						
Lead-Lag Optimize?	O M	O M	O M	0 M	News	
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	
Act Effct Green (s)	48.7	48.7	48.7	48.7	12.2	
Actuated g/C Ratio	0.75	0.75	0.75	0.75	0.19	
v/c Ratio	0.16	0.28	0.03	0.11	0.33	
Control Delay	4.1	1.6	3.7	3.8	23.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	4.1	1.6	3.7	3.8	23.3	
LOS	A	A	A	A	С	
Approach Delay	2.6			3.8	23.3	
Approach LOS	A			A	С	
Queue Length 50th (m)	11.4	6.2	0.6	3.9	7.9	
Queue Length 95th (m)	14.1	6.6	2.6	9.5	17.6	
Internal Link Dist (m)	241.1			389.6	176.6	
Turn Bay Length (m)		35.0	45.0			
Base Capacity (vph)	1294	1073	791	1282	531	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.16	0.28	0.03	0.11	0.18	
Intersection Summary						
Cycle Length: 65						
Actuated Cycle Length: 65						
Offset: 0 (0%), Referenced	to phase 2:	EBT and	6:WBTL.	Start of (Green	
Natural Cycle: 55			,			
Control Type: Actuated-Coc	ordinated					
	anatou					

	٠	7	1	Ť	Ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	1		é.	1	1
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	90	21	14	64	371	70
Future Volume (vph)	90	21	14	64	371	70
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	100	23	16	71	412	78
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total (vph)	100	23	87	412	78	
Volume Left (vph)	100	0	16	0	0	
Volume Right (vph)	0	23	0	0	78	
Hadj (s)	0.57	-0.61	0.27	0.09	-0.58	
Departure Headway (s)	6.2	5.1	5.0	4.5	3.2	
Degree Utilization, x	0.17	0.03	0.12	0.51	0.07	
Capacity (veh/h)	538	653	682	782	1121	
Control Delay (s)	9.4	7.0	8.7	12.1	6.4	
Approach Delay (s)	8.9		8.7	11.2		
Approach LOS	А		А	В		
Intersection Summary						
Delay			10.5			
Level of Service			В			
Intersection Capacity Utiliza	ation		36.7%	IC	U Level o	f Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 6: Parking Lot & North Access

	٠	+	*	1	Ļ	*	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$			\$			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	87	8	279	1	0	0	12	38	1	0	363	44
Future Volume (vph)	87	8	279	1	0	0	12	38	1	0	363	44
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	97	9	310	1	0	0	13	42	1	0	403	49
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	416	1	56	452								
Volume Left (vph)	97	1	13	0								
Volume Right (vph)	310	0	1	49								
Hadj (s)	-0.35	0.20	0.07	0.01								
Departure Headway (s)	4.9	6.2	5.8	5.1								
Degree Utilization, x	0.57	0.00	0.09	0.64								
Capacity (veh/h)	696	501	551	679								
Control Delay (s)	14.2	9.2	9.3	16.7								
Approach Delay (s)	14.2	9.2	9.3	16.7								
Approach LOS	В	А	А	С								
Intersection Summary												
Delay			15.1									
Level of Service			С									
Intersection Capacity Utiliza	ation		53.2%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

	-	7	1	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,			ŧ	Y	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	321	22	1	83	9	48
Future Volume (vph)	321	22	1	83	9	48
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	357	24	1	92	10	53
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total (vph)	381	93	63			
Volume Left (vph)	0	1	10			
Volume Right (vph)	24	0	53			
Hadj (s)	-0.02	0.17	-0.41			
Departure Headway (s)	4.1	4.6	4.5			
Degree Utilization, x	0.44	0.12	0.08			
Capacity (veh/h)	856	750	722			
Control Delay (s)	10.3	8.2	7.9			
Approach Delay (s)	10.3	8.2	7.9			
Approach LOS	В	А	А			
Intersection Summary						
Delay			9.7			
Level of Service			А			
Intersection Capacity Utiliz	zation		37.6%	IC	U Level c	f Service
Analysis Period (min)			15			

	+	1	4	Ļ	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	1	٦	†	¥	
Traffic Volume (vph)	128	155	27	205	250	13
Future Volume (vph)	128	155	27	205	250	13
Satd. Flow (prot)	1762	1427	1691	1728	1618	0
Flt Permitted			0.666		0.955	
Satd. Flow (perm)	1762	1289	1110	1728	1561	0
Satd. Flow (RTOR)		172			5	
Lane Group Flow (vph)	142	172	30	228	292	0
Turn Type	NA	Perm	Perm	NA	Prot	
Protected Phases	2			6	8	
Permitted Phases		2	6			
Detector Phase	2	2	6	6	8	
Switch Phase						
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	25.8	25.8	25.8	25.8	26.5	
Total Split (s)	33.0	33.0	33.0	33.0	32.0	
Total Split (%)	50.8%	50.8%	50.8%	50.8%	49.2%	
Yellow Time (s)	3.3	3.3	3.3	3.3	3.0	
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5	
Lost Time Adjust (s)	-1.8	-1.8	-1.8	-1.8	-1.5	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Max	C-Max	C-Max	C-Max	None	
Act Effct Green (s)	38.6	38.6	38.6	38.6	18.4	
Actuated g/C Ratio	0.59	0.59	0.59	0.59	0.28	
v/c Ratio	0.14	0.21	0.05	0.22	0.63	
Control Delay	5.8	2.2	7.6	8.1	25.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	5.8	2.2	7.6	8.1	25.7	
LOS	А	А	А	А	С	
Approach Delay	3.8			8.0	25.7	
Approach LOS	А			А	С	
Queue Length 50th (m)	4.4	0.0	1.2	10.5	27.5	
Queue Length 95th (m)	19.7	14.1	4.9	24.7	41.0	
Internal Link Dist (m)	241.1			389.6	176.6	
Turn Bay Length (m)		35.0	45.0			
Base Capacity (vph)	1047	835	659	1027	699	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.14	0.21	0.05	0.22	0.42	
Intersection Summary						
Cycle Length: 65						
Actuated Cycle Length: 65						
Offset: 1 (2%), Referenced to	phase 2:	EBT and	6:WBTL,	Start of (Green	
Natural Cycle: 55						

Control Type: Actuated-Coordinated

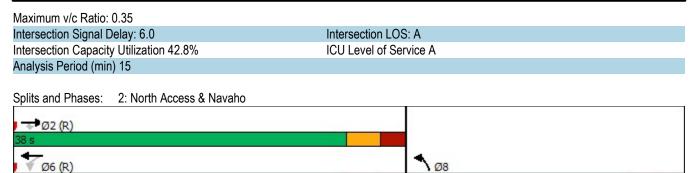
03-10-2016 Baseline

Synchro 10 Report Page 1

Ø6 (R)

Maximum v/c Ratio: 0.63		
Intersection Signal Delay: 12.5	Intersection LOS: B	
Intersection Capacity Utilization 47.8%	ICU Level of Service A	
Analysis Period (min) 15		
Splits and Phases: 2: North Access & Navaho		
₩Ø2 (R)		
22.0		

Ø8


	٦	7	1	t	ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	1		é.	•	1
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	102	32	48	205	260	94
Future Volume (vph)	102	32	48	205	260	94
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	113	36	53	228	289	104
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total (vph)	113	36	281	289	104	
Volume Left (vph)	113	0	53	0	0	
Volume Right (vph)	0	36	0	0	104	
Hadj (s)	0.50	-0.65	0.09	0.07	-0.60	
Departure Headway (s)	6.4	5.2	4.8	4.8	3.2	
Degree Utilization, x	0.20	0.05	0.38	0.38	0.09	
Capacity (veh/h)	524	632	723	725	1121	
Control Delay (s)	9.7	7.3	10.7	10.7	6.5	
Approach Delay (s)	9.2		10.7	9.6		
Approach LOS	А		В	А		
Intersection Summary						
Delay			9.9			
Level of Service			А			
Intersection Capacity Utiliza	ation		50.8%	IC	U Level o	f Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 6: Parking Lot & North Access

	٠	+	*	4	+	•	1	Ť	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	167	0	108	0	3	1	71	236	0	2	171	45
Future Volume (vph)	167	0	108	0	3	1	71	236	0	2	171	45
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	186	0	120	0	3	1	79	262	0	2	190	50
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	306	4	341	242								
Volume Left (vph)	186	0	79	2								
Volume Right (vph)	120	1	0	50								
Hadj (s)	-0.06	-0.15	0.05	-0.05								
Departure Headway (s)	5.4	5.9	5.2	5.3								
Degree Utilization, x	0.46	0.01	0.49	0.35								
Capacity (veh/h)	628	495	653	643								
Control Delay (s)	12.8	8.9	13.1	11.1								
Approach Delay (s)	12.8	8.9	13.1	11.1								
Approach LOS	В	A	В	В								
Intersection Summary												
Delay			12.4									
Level of Service			В									
Intersection Capacity Utiliza	ation		64.9%	IC	U Level o	of Service			С			
Analysis Period (min)			15									

	-	7	*	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,			é.	M	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	223	19	3	163	4	45
Future Volume (vph)	223	19	3	163	4	45
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	248	21	3	181	4	50
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total (vph)	269	184	54			
Volume Left (vph)	0	3	4			
Volume Right (vph)	21	0	50			
Hadj (s)	-0.05	0.02	-0.51			
Departure Headway (s)	4.2	4.3	4.4			
Degree Utilization, x	0.31	0.22	0.07			
Capacity (veh/h)	846	806	747			
Control Delay (s)	9.0	8.5	7.7			
Approach Delay (s)	9.0	8.5	7.7			
Approach LOS	А	А	А			
Intersection Summary						
Delay			8.7			
Level of Service			А			
Intersection Capacity Utiliz	zation		33.6%	IC	U Level c	of Service
Analysis Period (min)			15			

	-	7	4	←	1	1				
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR				
Lane Configurations	1	1	5	1	Y					
Traffic Volume (vph)	191	271	21	125	74	12				
Future Volume (vph)	191	271	21	125	74	12				
Satd. Flow (prot)	1728	1469	1691	1712	1478	0				
Flt Permitted			0.637		0.959					
Satd. Flow (perm)	1728	1334	1070	1712	1467	0				
Satd. Flow (RTOR)		271			12					
Lane Group Flow (vph)	191	271	21	125	86	0				
Turn Type	NA	Perm	Perm	NA	Prot					
Protected Phases	2			6	8					
Permitted Phases		2	6							
Detector Phase	2	2	6	6	8					
Switch Phase										
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0					
Minimum Split (s)	25.8	25.8	25.8	25.8	26.5					
Total Split (s)	38.0	38.0	38.0	38.0	27.0					
Total Split (%)	58.5%	58.5%	58.5%	58.5%	41.5%					
Yellow Time (s)	3.3	3.3	3.3	3.3	3.0					
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5					
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0					
Total Lost Time (s)	5.8	5.8	5.8	5.8	5.5					
Lead/Lag	0.0	0.0	0.0	0.0	0.0					
Lead-Lag Optimize?										
Recall Mode	C-Max	C-Max	C-Max	C-Max	None					
Act Effct Green (s)	47.5	47.5	47.5	47.5	10.5					
Actuated g/C Ratio	0.73	0.73	0.73	0.73	0.16					
v/c Ratio	0.15	0.26	0.03	0.10	0.35					
Control Delay	4.7	1.8	4.2	4.3	25.4					
Queue Delay	0.0	0.0	0.0	0.0	0.0					
Total Delay	4.7	1.8	4.2	4.3	25.4					
LOS	ч. <i>т</i> А	1.0 A	A	A.S	20.4 C					
Approach Delay	3.0	/\		4.3	25.4					
Approach LOS	0.0 A			A.S	20.4 C					
Queue Length 50th (m)	12.4	7.3	0.7	4.0	7.4					
Queue Length 95th (m)	14.8	7.7	2.6	9.4	17.2					
Internal Link Dist (m)	241.1	1.1	2.0	389.6	176.6					
Turn Bay Length (m)	271.1	35.0	45.0	000.0	110.0					
Base Capacity (vph)	1261	1047	781	1249	496					
Starvation Cap Reductn	0	0	0	0	430 0					
Spillback Cap Reductn	0	0	0	0	0					
Storage Cap Reductin	0	0	0	0	0					
Reduced v/c Ratio	0.15	0.26	0.03	0.10	0.17					
	0.13	0.20	0.00	0.10	0.17					
Intersection Summary										
Cycle Length: 65										
Actuated Cycle Length: 65										
Offset: 0 (0%), Referenced	to phase 2	EBT and	6:WBTL,	Start of 0	Green					
Natural Cycle: 55										
Control Type: Actuated-Coc	ordinated									

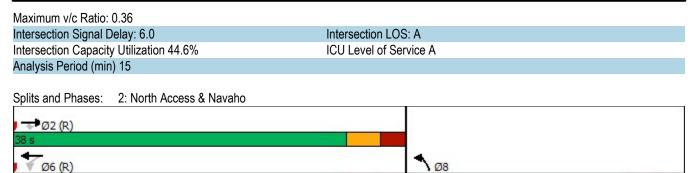
	٠	7	1	Ť	Ŧ	~		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	٢	1		د	1	1		
Sign Control	Stop			Stop	Stop			
Traffic Volume (vph)	92	21	14	65	378	71		
Future Volume (vph)	92	21	14	65	378	71		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Hourly flow rate (vph)	92	21	14	65	378	71		
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2			
Volume Total (vph)	92	21	79	378	71			
Volume Left (vph)	92	0	14	0	0			
Volume Right (vph)	0	21	0	0	71			
Hadj (s)	0.57	-0.61	0.27	0.08	-0.58			
Departure Headway (s)	6.1	4.9	4.9	4.4	3.2			
Degree Utilization, x	0.16	0.03	0.11	0.46	0.06			
Capacity (veh/h)	549	669	695	791	1121			
Control Delay (s)	9.1	6.9	8.5	11.2	6.4			
Approach Delay (s)	8.7		8.5	10.5				
Approach LOS	А		А	В				
Intersection Summary								
Delay			9.9					
Level of Service			А					
Intersection Capacity Utiliza	ation		37.2%	IC	U Level a	f Service		
Analysis Period (min)			15					

HCM Unsignalized Intersection Capacity Analysis 6: Parking Lot & North Access

	٠	→	7	4	+	•	1	Ť	1	4	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	41	8	307	1	0	0	21	87	1	0	371	44
Future Volume (vph)	41	8	307	1	0	0	21	87	1	0	371	44
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	41	8	307	1	0	0	21	87	1	0	371	44
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	356	1	109	415								
Volume Left (vph)	41	1	21	0								
Volume Right (vph)	307	0	1	44								
Hadj (s)	-0.47	0.20	0.07	0.01								
Departure Headway (s)	4.8	6.1	5.5	5.0								
Degree Utilization, x	0.47	0.00	0.17	0.58								
Capacity (veh/h)	705	504	602	691								
Control Delay (s)	12.1	9.1	9.6	14.6								
Approach Delay (s)	12.1	9.1	9.6	14.6								
Approach LOS	В	А	A	В								
Intersection Summary												
Delay			12.9									
Level of Service			В									
Intersection Capacity Utiliza	ation		54.5%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

	-	7	4	+	1	1				
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR				
Lane Configurations	4	1	٦	•	Y					
Traffic Volume (vph)	131	158	28	209	255	13				
Future Volume (vph)	131	158	28	209	255	13				
Satd. Flow (prot)	1762	1427	1691	1728	1616	0				
Flt Permitted			0.673		0.955	-				
Satd. Flow (perm)	1762	1289	1120	1728	1559	0				
Satd. Flow (RTOR)		158			5	v				
Lane Group Flow (vph)	131	158	28	209	268	0				
Turn Type	NA	Perm	Perm	NA	Prot	v				
Protected Phases	2			6	8					
Permitted Phases	-	2	6	0	J					
Detector Phase	2	2	6	6	8					
Switch Phase	۷	2	0	0	0					
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0					
Minimum Split (s)	25.8	25.8	25.8	25.8	26.5					
Total Split (s)	33.0	33.0	33.0	33.0	32.0					
Total Split (%)	50.8%	50.8%	50.8%	50.8%	49.2%					
Yellow Time (s)	3.3	3.3	3.3	3.3	49.2%					
All-Red Time (s)	3.3 2.5	3.3 2.5	3.3 2.5	3.3 2.5	3.0 2.5					
Lost Time Adjust (s)	2.5	2.5	2.5	2.5	2.5					
Total Lost Time (s)	0.0 5.8	0.0 5.8	0.0 5.8	0.0 5.8	0.0 5.5					
()	0.Ŏ	J.Ö	J.Ö	0.C	5.5					
Lead/Lag										
Lead-Lag Optimize? Recall Mode	C-Max	C-Max	C-Max	C-Max	None					
					None					
Act Effct Green (s)	37.7	37.7	37.7	37.7	16.0 0.25					
Actuated g/C Ratio	0.58	0.58	0.58	0.58						
v/c Ratio	0.13	0.19	0.04	0.21	0.67					
Control Delay	6.3	2.5	8.0	8.4	29.3					
Queue Delay	0.0	0.0	0.0	0.0	0.0					
Total Delay	6.3	2.5	8.0	8.4	29.3					
LOS	A	А	А	A	C					
Approach Delay	4.2			8.4	29.3					
Approach LOS	A	0.0	1.0	A	C					
Queue Length 50th (m)	4.2	0.0	1.2	9.9	26.3					
Queue Length 95th (m)	19.8	14.8	4.9	23.3	40.2					
Internal Link Dist (m)	241.1	0= 0	4= 0	389.6	176.6					
Turn Bay Length (m)		35.0	45.0							
Base Capacity (vph)	1020	813	648	1001	661					
Starvation Cap Reductn	0	0	0	0	0					
Spillback Cap Reductn	0	0	0	0	0					
Storage Cap Reductn	0	0	0	0	0					
Reduced v/c Ratio	0.13	0.19	0.04	0.21	0.41					
Intersection Summary										
Cycle Length: 65										
Actuated Cycle Length: 65										
Offset: 1 (2%), Referenced to phase 2:EBT and 6:WBTL, Start of Green										
Natural Cycle: 55										
Control Type: Actuated-Cod	ordinated									
	anatou									

Ø6 (R)


Maximum v/c Ratio: 0.67	
Intersection Signal Delay: 13.9	Intersection LOS: B
Intersection Capacity Utilization 51.5%	ICU Level of Service A
Analysis Period (min) 15	
Splits and Phases: 2: North Access & Navaho	
₩Ø2 (R)	
33 s	

Ø8

	٦	7	1	Ť	Ļ	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	1		é.	•	1
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	104	33	49	209	265	96
Future Volume (vph)	104	33	49	209	265	96
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	104	33	49	209	265	96
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total (vph)	104	33	258	265	96	
Volume Left (vph)	104	0	49	0	0	
Volume Right (vph)	0	33	0	0	96	
Hadj (s)	0.50	-0.65	0.09	0.07	-0.60	
Departure Headway (s)	6.2	5.1	4.7	4.7	3.2	
Degree Utilization, x	0.18	0.05	0.34	0.35	0.09	
Capacity (veh/h)	537	649	735	737	1121	
Control Delay (s)	9.4	7.1	10.1	10.2	6.5	
Approach Delay (s)	8.9		10.1	9.2		
Approach LOS	А		В	А		
Intersection Summary						
Delay			9.4			
Level of Service			А			
Intersection Capacity Utiliza	ition		51.4%	IC	U Level o	f Service
Analysis Period (min)			15			

	٠	+	*	1	+	*	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	125	0	129	0	3	1	76	286	0	2	177	43
Future Volume (vph)	125	0	129	0	3	1	76	286	0	2	177	43
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	125	0	129	0	3	1	76	286	0	2	177	43
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	254	4	362	222								
Volume Left (vph)	125	0	76	2								
Volume Right (vph)	129	1	0	43								
Hadj (s)	-0.16	-0.15	0.04	-0.04								
Departure Headway (s)	5.2	5.7	5.0	5.1								
Degree Utilization, x	0.37	0.01	0.50	0.31								
Capacity (veh/h)	639	525	698	667								
Control Delay (s)	11.2	8.7	12.8	10.4								
Approach Delay (s)	11.2	8.7	12.8	10.4								
Approach LOS	В	Α	В	В								
Intersection Summary												
Delay			11.7									
Level of Service			В									
Intersection Capacity Utiliza	ition		67.5%	IC	U Level o	of Service			С			
Analysis Period (min)			15									

	-	7	1	←	1	1				
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR				
Lane Configurations	1	1	5	1	Y					
Traffic Volume (vph)	200	285	23	132	78	13				
Future Volume (vph)	200	285	23	132	78	13				
Satd. Flow (prot)	1728	1469	1691	1712	1478	0				
Flt Permitted			0.632		0.959					
Satd. Flow (perm)	1728	1334	1063	1712	1468	0				
Satd. Flow (RTOR)		285			13					
Lane Group Flow (vph)	200	285	23	132	91	0				
Turn Type	NA	Perm	Perm	NA	Prot	-				
Protected Phases	2			6	8					
Permitted Phases		2	6		-					
Detector Phase	2	2	6	6	8					
Switch Phase	-	-	•		Ū					
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0					
Minimum Split (s)	25.8	25.8	25.8	25.8	26.5					
Total Split (s)	38.0	38.0	38.0	38.0	20.0					
Total Split (%)	58.5%	58.5%	58.5%	58.5%	41.5%					
Yellow Time (s)	3.3	3.3	3.3	3.3	3.0					
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5					
Lost Time Adjust (s)	0.0	0.0	0.0	2.5	0.0					
Total Lost Time (s)	5.8	5.8	0.0 5.8	5.8	5.5					
Lead/Lag	5.0	5.0	5.0	5.0	5.5					
Lead-Lag Optimize?										
Recall Mode	C Mov	C-Max	C-Max	C-Max	None					
Act Effct Green (s)	C-Max 47.3	47.3	47.3	47.3	10.6					
	47.3 0.73	47.3 0.73	47.3 0.73	47.3 0.73	0.16					
Actuated g/C Ratio										
v/c Ratio	0.16	0.27	0.03	0.11	0.36					
Control Delay	4.6	1.7	4.3	4.4	25.5					
Queue Delay	0.0	0.0	0.0	0.0	0.0					
Total Delay	4.6	1.7	4.3	4.4	25.5					
LOS	A	А	A	A	С					
Approach Delay	2.9			4.4	25.5					
Approach LOS	A	7.0	^ -	A	C					
Queue Length 50th (m)	12.6	7.0	0.7	4.2	7.9					
Queue Length 95th (m)	14.8	7.2	2.8	10.1	17.7					
Internal Link Dist (m)	241.1		4= 0	389.6	176.6					
Turn Bay Length (m)		35.0	45.0							
Base Capacity (vph)	1258	1049	774	1246	497					
Starvation Cap Reductn	0	0	0	0	0					
Spillback Cap Reductn	0	0	0	0	0					
Storage Cap Reductn	0	0	0	0	0					
Reduced v/c Ratio	0.16	0.27	0.03	0.11	0.18					
Intersection Summary										
Cycle Length: 65										
Actuated Cycle Length: 65										
Offset: 0 (0%), Referenced	to phase 2	EBT and	6:WBTI	Start of (Green					
Natural Cycle: 55			с.н.в.г.,							
Control Type: Actuated-Coc	ordinated									
Some of type. Actuated-Cot	Junaleu									

	٨	7	1	Ť	Ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	2	1		ŧ	1	1
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	96	23	15	69	398	75
Future Volume (vph)	96	23	15	69	398	75
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	96	23	15	69	398	75
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total (vph)	96	23	84	398	75	
Volume Left (vph)	96	0	15	0	0	
Volume Right (vph)	0	23	0	0	75	
Hadj (s)	0.57	-0.61	0.27	0.08	-0.58	
Departure Headway (s)	6.2	5.0	5.0	4.5	3.2	
Degree Utilization, x	0.17	0.03	0.12	0.49	0.07	
Capacity (veh/h)	542	660	688	785	1121	
Control Delay (s)	9.2	7.0	8.6	11.7	6.4	
Approach Delay (s)	8.8		8.6	10.9		
Approach LOS	А		А	В		
Intersection Summary						
Delay			10.2			
Level of Service			В			
Intersection Capacity Utiliza	ation		38.4%	IC	U Level o	f Service
Analysis Period (min)			15			

	٠	→	7	4	+	*	1	1	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	45	9	321	1	0	0	22	89	1	0	390	46
Future Volume (vph)	45	9	321	1	0	0	22	89	1	0	390	46
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	45	9	321	1	0	0	22	89	1	0	390	46
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	375	1	112	436								
Volume Left (vph)	45	1	22	0								
Volume Right (vph)	321	0	1	46								
Hadj (s)	-0.46	0.20	0.07	0.01								
Departure Headway (s)	4.9	6.2	5.6	5.1								
Degree Utilization, x	0.51	0.00	0.17	0.61								
Capacity (veh/h)	694	478	588	683								
Control Delay (s)	12.8	9.2	9.8	15.8								
Approach Delay (s)	12.8	9.2	9.8	15.8								
Approach LOS	В	Α	A	С								
Intersection Summary												
Delay			13.9									
Level of Service			В									
Intersection Capacity Utiliza	ation		56.6%	IC	U Level o	of Service			В			
Analysis Period (min)			15									

	-	7	4	+	1	1				
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR				
Lane Configurations	4	1	٦	•	Y					
Traffic Volume (vph)	137	166	29	220	268	14				
Future Volume (vph)	137	166	29	220	268	14				
Satd. Flow (prot)	1762	1427	1691	1728	1615	0				
Flt Permitted			0.669		0.955					
Satd. Flow (perm)	1762	1289	1114	1728	1558	0				
Satd. Flow (RTOR)		166			5					
Lane Group Flow (vph)	137	166	29	220	282	0				
Turn Type	NA	Perm	Perm	NA	Prot	Ť				
Protected Phases	2			6	8					
Permitted Phases	-	2	6	0	Ŭ					
Detector Phase	2	2	6	6	8					
Switch Phase	2	2	0	0	0					
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0					
Minimum Split (s)	25.8	25.8	25.8	25.8	26.5					
Total Split (s)	25.8 33.0	25.0 33.0	25.0 33.0	25.0 33.0	32.0					
• • • •	50.8%	50.8%	50.8%	50.8%	32.0 49.2%					
Total Split (%)										
Yellow Time (s)	3.3	3.3	3.3	3.3	3.0					
All-Red Time (s)	2.5	2.5	2.5	2.5	2.5					
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0					
Total Lost Time (s)	5.8	5.8	5.8	5.8	5.5					
Lead/Lag										
Lead-Lag Optimize?	0.14	0.14	0.14	0.14	NI.					
Recall Mode	C-Max	C-Max	C-Max	C-Max	None					
Act Effct Green (s)	37.2	37.2	37.2	37.2	16.5					
Actuated g/C Ratio	0.57	0.57	0.57	0.57	0.25					
v/c Ratio	0.14	0.21	0.05	0.22	0.68					
Control Delay	6.4	2.5	8.3	8.8	29.3					
Queue Delay	0.0	0.0	0.0	0.0	0.0					
Total Delay	6.4	2.5	8.3	8.8	29.3					
LOS	А	А	А	А	С					
Approach Delay	4.3			8.8	29.3					
Approach LOS	А			А	С					
Queue Length 50th (m)	4.5	0.0	1.3	10.7	27.6					
Queue Length 95th (m)	20.8	15.5	5.1	25.1	41.8					
Internal Link Dist (m)	241.1			389.6	176.6					
Turn Bay Length (m)		35.0	45.0							
Base Capacity (vph)	1007	808	636	987	661					
Starvation Cap Reductn	0	0	0	0	0					
Spillback Cap Reductn	0	0	0	0	0					
Storage Cap Reductn	0	0	0	0	0					
Reduced v/c Ratio	0.14	0.21	0.05	0.22	0.43					
Intersection Summary										
Cycle Length: 65										
Actuated Cycle Length: 65 Offset: 1 (2%), Referenced to phase 2:EBT and 6:WBTL, Start of Green										
	to phase 2:	EBT and	o:WBTL,	Start of (Jieen					
Natural Cycle: 55										
Control Type: Actuated-Coo	ordinated									

Ø6 (R)

Maximum v/c Ratio: 0.68	
Intersection Signal Delay: 14.1	Intersection LOS: B
Intersection Capacity Utilization 52.4%	ICU Level of Service A
Analysis Period (min) 15	
Splits and Phases: 2: North Access & Navaho	
→ Ø2 (R)	
33 s	

Ø8

	٦	7	1	t	Ļ	-							
Movement	EBL	EBR	NBL	NBT	SBT	SBR							
Lane Configurations	2	1		ŧ	•	*							
Sign Control	Stop			Stop	Stop								
Traffic Volume (vph)	109	34	51	220	279	101							
Future Volume (vph)	109	34	51	220	279	101							
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00							
Hourly flow rate (vph)	109	34	51	220	279	101							
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2								
Volume Total (vph)	109	34	271	279	101								
Volume Left (vph)	109	0	51	0	0								
Volume Right (vph)	0	34	0	0	101								
Hadj (s)	0.50	-0.65	0.09	0.07	-0.60								
Departure Headway (s)	6.3	5.2	4.8	4.7	3.2								
Degree Utilization, x	0.19	0.05	0.36	0.37	0.09								
Capacity (veh/h)	531	639	728	730	1121								
Control Delay (s)	9.6	7.2	10.4	10.5	6.5								
Approach Delay (s)	9.0		10.4	9.4									
Approach LOS	А		В	А									
Intersection Summary													
Delay			9.7										
Level of Service			А										
Intersection Capacity Utiliza	ation		52.9%	IC	U Level a	f Service		А	A	А	A	A	A
Analysis Period (min)			15										

	٠	+	*	1	+	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	134	0	135	0	3	1	80	298	0	2	186	45
Future Volume (vph)	134	0	135	0	3	1	80	298	0	2	186	45
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	134	0	135	0	3	1	80	298	0	2	186	45
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	269	4	378	233								
Volume Left (vph)	134	0	80	2								
Volume Right (vph)	135	1	0	45								
Hadj (s)	-0.16	-0.15	0.04	-0.04								
Departure Headway (s)	5.3	5.8	5.1	5.2								
Degree Utilization, x	0.40	0.01	0.53	0.33								
Capacity (veh/h)	629	499	678	655								
Control Delay (s)	11.7	8.9	13.6	10.7								
Approach Delay (s)	11.7	8.9	13.6	10.7								
Approach LOS	В	А	В	В								
Intersection Summary												
Delay			12.3									
Level of Service			В									
Intersection Capacity Utiliza	ition		69.9%	IC	U Level o	of Service			С			
Analysis Period (min)			15									