

2140 Baseline Road Transportation Impact Assessment

163601192

November 21, 2019

Prepared for:

Baseline Constellation Partnership Inc.

Prepared by:

Stantec Consulting Ltd.

Stantec Consulting Ltd. 400 - 1331 Clyde Avenue, Ottawa ON K2C 3G4

November 21, 2019 File: 163601192

Attention: Mike Giampa, P.Eng. City of Ottawa 110 Laurier Avenue West, 4th Floor Tel: 613-580-2424 ext. 23657

Dear Mr. Giampa,

Reference: 2140 Baseline Road Transportation Impact Assessment

Please find the attached Transportation Impact Assessment (TIA) in support of the proposed mixed-use student residence at 2140 Baseline Road. This TIA report serves as an update to the original submission made on June 6, 2018 and subsequent resubmissions made on January 9, 2019 and March 29, 2019.

The updated report addresses City staff comments received on March 1, 2019. The updated report also includes a revised site plan with minor changes, notably an increase in the number of proposed residences (increased from 144 units to 271 units) and a reduction in the ground floor retail (reduced from 14,488 ft² to 4,710 ft²). The revised site plan also includes an increase in the number of parking stalls (increased from 75 to 127).

The revised site plan is estimated to generate approximately 45 to 50 fewer person trips during peak periods than originally forecasted in the June 2018 TIA. Based on our review, the findings and recommendations identified in the original June 6, 2018 report remain valid and therefore the analyses contained within *Section 3 (Forecasting)* and *Section 4 (Strategy)* of the TIA report were not revised. This approach provides a conservative assessment of the trip generation potential of the proposed development.

Please contact the undersigned should you have any questions or require any additional information.

Regards,

Stantec Consulting Ltd.

Lauren O'Grady P.Eng Transportation Engineer Phone: 613 722 4420 Lauren.O'Grady@stantec.com

Design with community in mind

Certification

- I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered¹ professional in good standing, whose field of expertise is either transportation engineering or transportation planning.

Signature of individual certifier that s/he meets the above four criteria.

Lauren O'Grady, P.Eng. Transportation Engineer 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4

Phone: (613) 724-4420 Lauren.O'Grady@stantec.com

¹ License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works

Table of Contents

1.0	SCREENING	1
1.1	SUMMARY OF DEVELOPMENT	1
1.2	TRIP GENERATION TRIGGER	1
1.3	LOCATION TRIGGERS	2
1.4	SAFETY TRIGGERS	2
1.5	SUMMARY	2
2.0	SCOPING	3
2.1	EXISTING AND PLANNED CONDITIONS	3
2.2	STUDY AREA AND TIME PERIODS	15
2.3	EXEMPTIONS REVIEW	16
3.0	FORECASTING	
3.1	DEVELOPMENT GENERATED TRAVEL DEMAND	
3.2	BACKGROUND NETWORK TRAVEL DEMAND	27
3.3	DEMAND RATIONALIZATION	28
4.0	STRATEGY	31
4.1	DEVELOPMENT DESIGN	31
4.2	PARKING	
4.3	BOUNDARY STREET DESIGN	32
4.4	ACCESS INTERSECTIONS DESIGN	35
4.5	TRANSPORTATION DEMAND MANAGEMENT	36
4.6	NEIGHBOURHOOD TRAFFIC MANAGEMENT	
4.7	TRANSIT	36
4.8	REVIEW OF NETWORK CONCEPT	37
4.9	INTERSECTION DESIGN	37
5.0	CONCLUSION	55

List of Tables

Table 1 - Assumed Land Uses	4
Table 2 - City of Ottawa Transportation Master Plan Projects	13
Table 3 - Exemptions Review	
Table 4 - Vehicle Trip Generation Rates	17
Table 5 - Person Trips Generated by Land Use	17
Table 6 - Future Mode Share Targets (Residential Component)	
Table 7 - Future Mode Share Targets (Mixed-Use Retail Component)	
Table 8 - Trips Generated by Travel Mode	
Table 9 - Pass-By and Internal Capture Trips	
Table 10 - Trip Distribution	23
Table 10 - MMLOS Conditions (Segments)	
Table 12 - 2025 Ultimate Access Intersection Operations (Synchro)	35
Table 13 - 2018 Existing Intersection Operations (Synchro)	
Table 14 - 2018 Existing MMLOS (Baseline Road / Centrepointe Drive)	41
Table 15 - 2018 Existing MMLOS (Baseline Road / Constellation Drive)	
Table 16 - 2020 Future Background Intersection Operations (Synchro)	43
Table 17 - 2020 Future Background MMLOS (Baseline Road / Centrepointe Drive)	45
Table 18 - 2020 Future Background MMLOS (Baseline Road / Constellation Drive)	
Table 19 - 2020 Total Future Intersection Operations (Synchro)	47
Table 20 - 2020 Total Future MMLOS (Baseline Road / Centrepointe Drive)	49
Table 21 - 2020 Total Future MMLOS (Baseline Road / Constellation Drive)	50
Table 22 - 2025 Ultimate Intersection Operations (Synchro)	51
Table 23 - 2025 Ultimate MMLOS (Baseline Road at Centrepointe)	53
Table 24 - 2025 Ultimate MMLOS (Baseline Road at Constellation Drive)	54

List of Figures

Figure 1 - Site Location	4
Figure 1 - Site Location Figure 2 - Proposed Site Plan	5
Figure 3 - Existing Lane Configuration and Traffic Control	7
Figure 4 - Existing Pedestrian and Cycling Network	
Figure 5 - Study Area Transit Routes and Stops	9
Figure 6 - Study Area Transit Routes and Stops	10
Figure 7 - 2018 Existing Volumes (AM Peak)	12
Figure 8 - 2018 Existing Volumes (PM Peak)	
Figure 9 - Planned Road Network Modifications	14
Figure 10 - 2020 Pass-By Volumes (AM Peak)	
Figure 11 - 2020 Pass-By Volumes (PM Peak)	
Figure 12 - Site Traffic Assignment Assumptions	
Figure 13 - New Site Generated Volumes (AM Peak)	
Figure 14 - New Site Generated Volumes (PM Peak)	
Figure 15 - Net Site Generated Volumes (AM Peak)	
Figure 16 - Net Site Generated Volumes (PM Peak)	
Figure 17 - 2020 Future Background Volumes (AM Peak)	
Figure 18 - 2020 Future Background Volumes (PM Peak)	
Figure 19 - 2020 Total Future Volumes (AM Peak)	
Figure 20 - 2020 Total Future Traffic Volumes (PM Peak)	
Figure 21 - 2025 Ultimate Traffic Volumes (AM Peak)	
Figure 22 - 2020 Ultimate Traffic Volumes (PM Peak)	30

Appendices

- APPENDIX A Turning Movement Counts
- APPENDIX B Collision Detailed Summary
- APPENDIX C Intersection Performance Worksheets
- APPENDIX D TDM Checklists

Screening

1.0 SCREENING

1.1 SUMMARY OF DEVELOPMENT

Municipal Address	
Description of Location	Nepean, southwest quadrant of Baseline Road and Constellation Drive
Land Use Classification	Mixed-use (Residence + Ground Level Retail)
Development Size (units)	1 Building: 271 units (412 beds), 4,710 ft ² ground level retail
Development Size (m ²)	13,550 m² GFA (145,851 ft² GFA)
Number of Accesses and Locations	1 full access at Gemini Way
Phase of Development	1
Buildout Year	Fall 2020

If available, please attach a sketch of the development or site plan to this form.

1.2 TRIP GENERATION TRIGGER

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size	Triggered
Single-family homes	40 units	×
Townhomes or apartments	90 units	\checkmark
Office	3,500 m²	×
Industrial	5,000 m²	×
Fast-food restaurant or coffee shop	100 m ²	\checkmark
Destination retail	1,000 m ²	\checkmark
Gas station or convenience market	75 m²	×

* If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

If the proposed development size is greater than the sizes identified above, <u>the Trip Generation Trigger is</u> <u>satisfied.</u>

Screening

1.3 LOCATION TRIGGERS

	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?		×
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone? *	\checkmark	

*DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

If any of the above questions were answered with 'Yes,' the Location Trigger is satisfied.

1.4 SAFETY TRIGGERS

	Yes	No
Are posted speed limits on a boundary street are 80 km/hr or greater?		×
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?		×
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?		×
Is the proposed driveway within auxiliary lanes of an intersection?		×
Does the proposed driveway make use of an existing median break that serves an existing site?		×
Is there a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		×
Does the development include a drive-thru facility?		×

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.

1.5 SUMMARY

	Yes	No
Does the development satisfy the Trip Generation Trigger?	✓	
Does the development satisfy the Location Trigger?	✓	
Does the development satisfy the Safety Trigger?		×

If none of the triggers are satisfied, <u>the TIA Study is complete</u>. If one or more of the triggers is satisfied, <u>the TIA Study must continue into the next stage</u> (Screening and Scoping).

2.0 SCOPING

2.1 EXISTING AND PLANNED CONDITIONS

2.1.1 Proposed Development

The proposed mixed-use college student residence and commercial retail development is located in the Centrepointe community of Ottawa, Ontario. The subject site is located at the southwest quadrant of the intersection of Baseline Road and Constellation Drive and is bound by Baseline Road to the north, Constellation Drive to the east, Gemini Way to the south, and the Nepean Medical Centre building to the west.

Figure 1 illustrates the site location. The subject site is currently zoned as MC F(2.0) H(34); the purpose of the MC – Mixed-Use Centre Zone, according to the City of Ottawa Official Plan, is to:

- Ensure that the areas designated Mixed-Use Centres in the Official Plan, or a similar designation in a Secondary Plan, accommodate a combination of transit-supportive uses such as offices, secondary and post secondary schools, hotels, hospitals, large institutional buildings, community recreation and leisure centres, day care centres, retail uses, entertainment uses, service uses such as restaurants and personal service businesses, and high- and medium-density residential uses;
- Allow the permitted uses in a compact and pedestrian-oriented built form in mixed-use buildings or side by side in separate buildings;
- Impose development standards that ensure medium to high profile development while minimizing its impact on surrounding residential areas

The proposed development consists of a single, 14 storey mixed-use student residence and retail building. The ground floor consists of 4,710 ft² of commercial retail. Floors 2 to 14 consist of 271 student rooming units with a total of 412 beds. The building has a combined gross-floor-area (GFA) of 13,550 m² (i.e. 145,851 ft²).

A single, full-movement vehicular access is proposed on Gemini Way. Pedestrian access to the building is facilitated through two entrances: a main entrance along the south of the building facing Gemini Way, and a secondary entrance along Baseline Road. Ground level retail units will be accessible along the frontage of the building.

A total of 124 vehicle parking spaces (7 surface level parking spaces, 117 underground parking spaces) and 244 bicycle parking spaces are proposed as part of the development.

Buildout and occupancy of the building is anticipated to occur in Fall 2020.

Table 1 outlines the proposed Institute of Transportation (ITE) land uses assumed for the analysis.

Figure 2 illustrates the proposed site plan.

Scoping

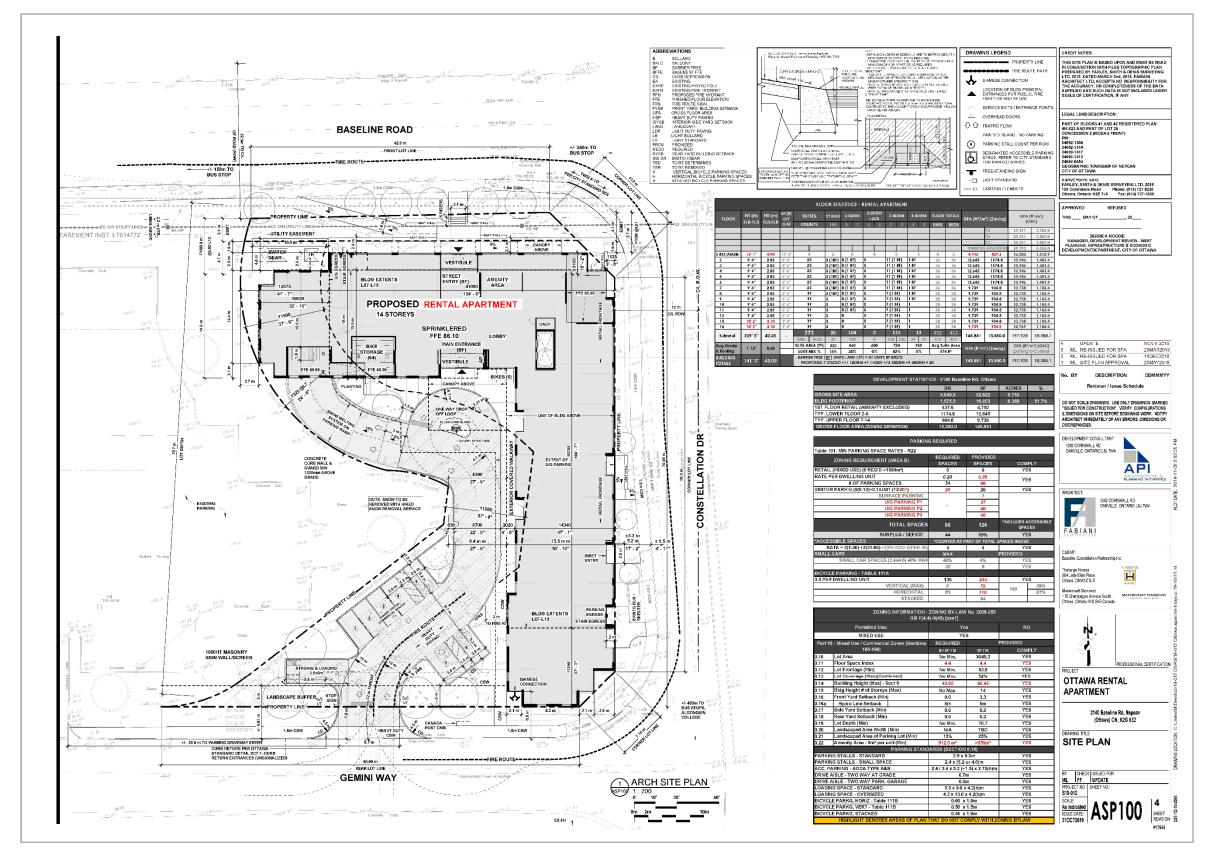


Figure 1 - Site Location

Table 1 - Assumed Land Uses

Floor	Size	Assumed ITE Land Use			
L1	4,710 ft² (GFA)	LUC 820: Shopping Centre LUC 936: Coffee / Donut Shop without Drive-Through Window			
L2 - L14	271 units	LUC 222: High-rise apartments (13 floors) Amenities Space			

Figure 2 - Proposed Site Plan

Scoping

2.1.2 Existing Conditions

2.1.2.1 Roads and Traffic Control

The roadways under consideration in the study area are described as follows:

Baseline Road Baseline Road is a municipally-owned, four-lane divided arterial roadway with a posted speed limit of 60 kph across the frontage of the proposed site.
Centrepointe Drive Centrepointe Drive is a municipally-owned, four-lane undivided major-collector roadway with a posted speed limit of 40 kph in the vicinity of the proposed site.
Constellation Drive Constellation Drive is a municipally-owned, four-lane collector roadway with a default speed limit of 50 kph across the frontage of the proposed site. South of Baseline Road, Constellation Drive is divided by a median for 130 m after which the median tapers off and the roadway becomes undivided.
Gemini Way Gemini Way is a municipally-owned, two-lane undivided collector roadway with a default speed limit of 50 kph in the vicinity of the proposed site. On-street pay-and-display parking is provided along the north side of the road near the Nepean Medical Centre.

Two access driveways to a medical office building are provided on the north side of Gemini Way. A single access to a Bell service building is currently provided on the south side of Gemini Way. Two accesses to an office building are provided on the east side of Constellation Drive south of Baseline Road.

Figure 3 illustrates the existing lane configuration and traffic control.

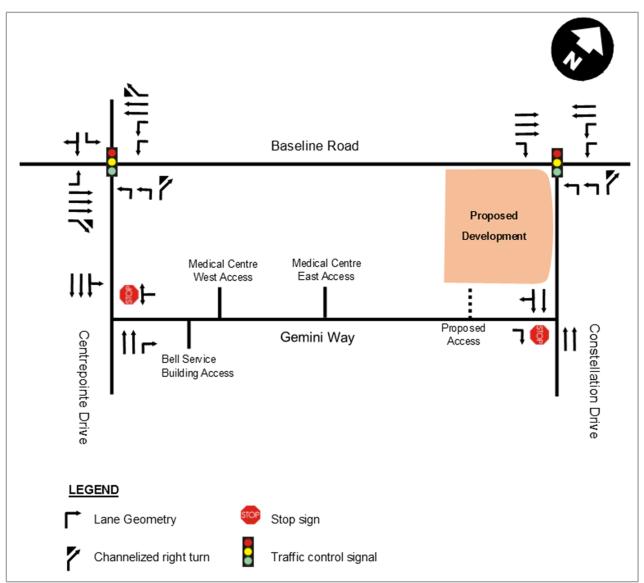


Figure 3 - Existing Lane Configuration and Traffic Control

Scoping

2.1.2.2 Walking and Cycling

Figure 4 illustrates the existing pedestrian and cycling facilities.

Figure 4 - Existing Pedestrian and Cycling Network

Scoping

2.1.2.3 Transit

The subject site is currently well serviced by transit through the following routes:

- Route 88 Is a *Frequent* route providing high frequency bus service along major roads including Baseline Road and Constellation Drive. This route provides service between Terry Fox Station and the Hurdman Station.
- Baseline Station is a Transitway Station located along the Southwest Transitway corridor. This key station currently accommodates upwards of 20 bus routes including *Rapid* Transitway routes such as 91, 94 and 95.

The subject site is located within 200 m of two existing on-street bus stops servicing Route 88: one bus stop and shelter is located at the southeast corner of the intersection of Baseline Road and Centrepointe Drive, and another is located at the northwest corner of Constellation Drive and Gemini Way.

Figure 5 illustrates nearby transit routes and bus stop shelter locations.

The subject site is also located within 600 m of Baseline Station and is therefore within the Transitway Station catchment area.

Figure 6 illustrates the location of the proposed development within the 600-meter catchment area near Baseline Station.

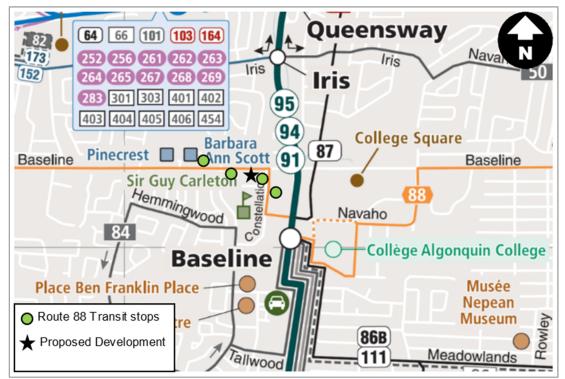


Figure 5 - Study Area Transit Routes and Stops

Source: OC Transpo System Map, accessed March 2018

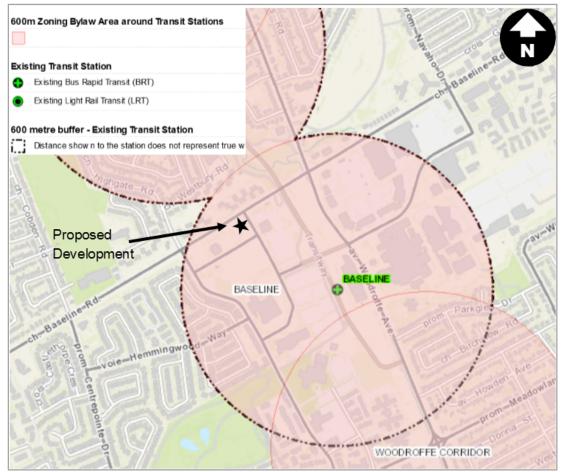


Figure 6 - Study Area Transit Routes and Stops

Source: geoOttawa, accessed March 2018

2.1.2.4 Traffic Management Measures

The following traffic management measures were identified in the vicinity of the proposed development:

- 1. The restriction of the northbound and southbound through movements at the intersection of Baseline Road at Centrepointe Drive / Highgate Road;
- The restriction of the eastbound left-turning movement and the westbound right-turning movement at the intersection of Baseline Road at Centrepointe Drive / Highgate Road during the AM peak period (7:00 am to 9:00 am); and
- 3. The restriction of the eastbound left-turn movement at the intersection of Constellation Drive at Gemini Way imposed by the existing median provided along Constellation Drive.

Scoping

2.1.2.5 Traffic Volumes

Traffic counts, conducted in 2018, were obtained from the City of Ottawa for the following intersections:

- 1. Baseline Road at Constellation Drive;
- 2. Baseline Road at Centrepointe Drive/ Highgate Road;
- 3. Constellation Drive at Gemini Way; and
- 4. Centrepointe Drive at Gemini Way.

Figure 7 and Figure 8 illustrate existing 2018 traffic volumes during the AM and PM peak hours, respectively.

Appendix A contains existing turning movement count data.

2.1.2.6 Collision History

Baseline Road at Centrepointe Drive / Highgate Road experienced 44 collisions over a five-year period between 2012 and 2016. Out of the 39 recorded collisions, 24 were classified as rear-end (55%), 8 were classified as turning collisions (18%), and 5 were classified a 'SMV Other' (11%). The remaining collisions were classified as angle, sideswipe or approaching collisions. None of the recorded collisions involved pedestrians or cyclists.

The recorded collisions involved 34 property damage only (77%) and 10 non-fatal injury (23%), indicating low impact speeds.

Baseline Road at Constellation Drive experienced 21 collisions over a five-year period between 2012 and 2016. Out of the 21 recorded collisions, 12 were classified as rear-end (57%), 4 were classified as sideswipe collisions (19%), and 3 were classified as angle collisions (14%). The remaining collisions were classified as turning and single vehicle collisions. None of the recorded collisions involved pedestrians or cyclists.

The recorded collisions involved 20 property damage only (83%) and 1 non-fatal injury (4%), indicating low impact speeds.

Centrepointe Drive at Gemini Way experienced 3 collisions over a five-year period between 2012 and 2016. Out of the 3 recorded collisions, one was classified as a rear-end collision (33%), one was classified as a turning collision (33%), and one was classified as an angle collision (33%). None of the recorded collisions involved pedestrians or cyclists.

The recorded collisions only involved property damage, indicating low impact speeds.

Constellation Drive at Gemini Way did not experience any collisions between 2012 and 2016.

Based on the available data, there does not appear to be any prevailing safety issues at study area intersections.

Appendix B contains detailed collision summary reports.

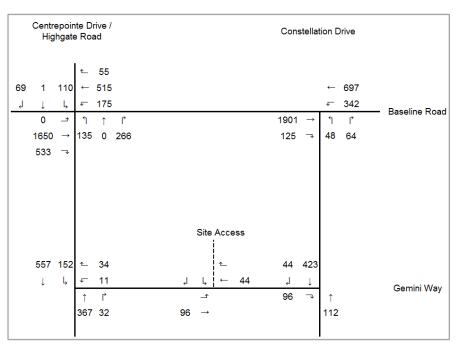
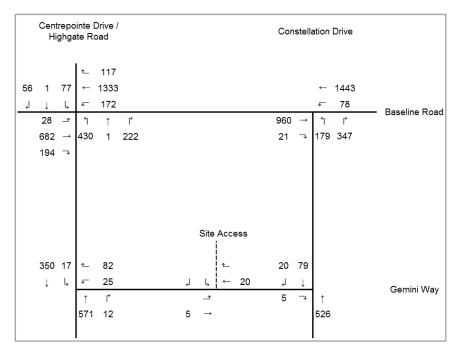



Figure 7 - 2018 Existing Volumes (AM Peak)

Figure 8 - 2018 Existing Volumes (PM Peak)

2.1.3 Planned Conditions

2.1.3.1 Road Network Modifications

Table 2 identifies the City of Ottawa Transportation Master Plan (TMP) projects located near of the study area.

Project	Description	TMP Phase		
Stage 2 LRT Confederation Line West Extension	Conversion of the West Transitway to LRT between Tunney's Pasture Station and Baseline Station. Construction of new LRT right-of-way between the existing West Transitway and Pinecrest, and conversion of West Transitway to LRT from Pinecrest to Moodie Station.	2023 Horizon		
Baseline / Heron / Walkley / St. Laurent	At-grade BRT connecting Baseline Station to Heron Station. At-grade BRT connecting Bayshore Station to St. Laurent Station.	Network Concept (i.e. Beyond 2031 horizon)		
Southwest Transitway Extension	Fully exclusive BRT between Baseline Station and Hunt Club Road.	Network Concept (i.e. Beyond 2031 horizon)		
Baseline Road	Transit signal priority and queue jump lanes between Baseline Station and Richmond Road.	Affordable Network (i.e. within 2031 horizon)		

Table 2 - City of Ottawa Transportation Master Plan Projects

As outlined in Table 2, a number of transit improvements are expected to occur near the proposed development.

Under the TMP Affordable Network, the West Transitway will be converted from a BRT system to LRT between Tunney's Pasture Station and Baseline Station. This will occur as part of Stage 2 of the Confederation Line O-Train extension which is expected to go into revenue service in 2023.

In addition to the LRT extension to Baseline Station, an at-grade BRT system is currently planned on Baseline Road between Bayshore Station and Heron Station. The new at-grade BRT system will operate along the centre median of Baseline Road with a number of at-grade stations. The implementation of the new BRT system is expected take place beyond the 2031 horizon.

Figure 9 illustrates planned network modifications near the proposed development.

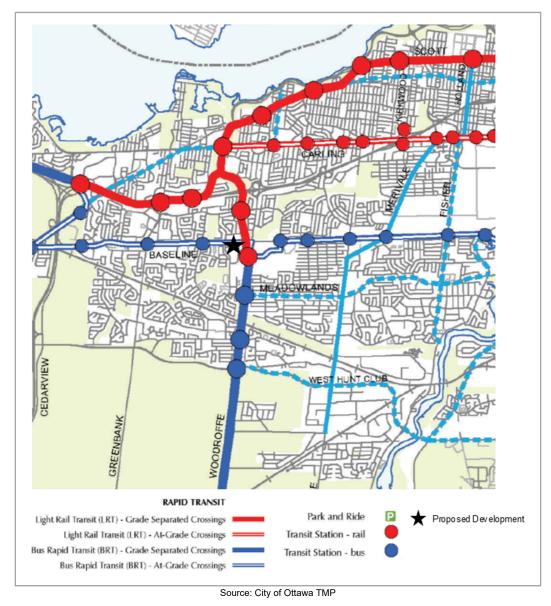


Figure 9 - Planned Road Network Modifications

2.1.3.2 Future Background Developments

The built out and occupancy of the proposed development is anticipated to occur in the Fall 2020.

There are currently no other known developments in the area.

As the area is located within a Design Priority Zone, it is anticipated that additional development and intensification, which is supported by the Baseline and Woodroffe Secondary Plans and Centrepointe Town Centre Concept Plan (CTC), will occur in the near future. At this time, no additional developments are anticipated to take place within the study time horizon.

Scoping

2.2 STUDY AREA AND TIME PERIODS

2.2.1 Study Area

The study area was limited to the following intersections:

- 1. Baseline Road at Centrepointe Drive / Highgate Road;
- 2. Baseline Road at Constellation Drive;
- 3. Gemini Way at Centrepointe;
- 4. Gemini Way at Constellation Drive; and
- 5. Gemini Way at Site Access.

2.2.2 Time Periods

The scope of the transportation assessment includes the following analysis time periods:

- Weekday AM peak hour of roadway; and
- Weekday PM peak hour of roadway.

2.2.3 Horizon Years

The scope of the transportation assessment includes the following horizon years:

- 2018 existing conditions;
- 2020 future background conditions;
- 2020 total future conditions (site build-out); and
- 2025 total future conditions (5 years beyond build-out).

2.3 EXEMPTIONS REVIEW

Table 3 summarizes the Exemptions Review table from the City of Ottawa's 2017 Transportation Impact Assessment

 Guidelines.

Module	Element	Exemption Considerations	Exempted?			
Design Review Component						
	4.1.2 Circulation and Access	Only required for site plans	No			
4.1 Development Design	4.1.3 New Street Networks	Only required for plans of subdivision	Yes			
	4.2.1 Parking Supply	Only required for site plans	No			
4.2 Parking	4.2.2 Spillover Parking	Only required for site plans where parking supply is 15% below unconstrained demand	Yes			
Network Impact Component		·				
4.5 Transportation Demand Management	All Elements	Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time	No			
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	Yes			
4.8 Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess of the equivalent volume permitted by established zoning	Yes			
4.9 Intersection Design	All Elements	Not required if site generation trigger is not met.	No			

Table 3 - Exemptions Review

3.0 FORECASTING

3.1 DEVELOPMENT GENERATED TRAVEL DEMAND

3.1.1 Trip Generation and Mode Shares

The *TRANS* Residential *Trip* Generation Residential *Trip* Rates Study Report and the ITE *Trip* Generation Manual, 9th edition, were used to forecast auto trip generation for the residential and retail portions of the development, respectively.

Table 4 outlines the assumed land uses and the vehicle trip generation rates for each land use.

As per the City of Ottawa TIA Guidelines, the auto trip generation rates of the residential portion of the proposed development were converted to person trips using the auto mode share rates for the Apartment Land Use in Table 3.13 in the *TRANS Residential Trip Generation Residential Trip Rates Study Report*. The auto trip generation rates of the retail portion of the proposed development were converted to person trip generation rates using a factor of 1.28 representing auto occupancy and transit modal shares.

Table 5 shows development-generated person trips for each land use.

LUC	Land Use	Size	Weekday AM Peak Hour			Weekday PM Peak Hour		
200	Edito 000	0120	In	Out	Rate	In	Out	Rate
222	High Rise Apartments	144 Units	24%	76%	0.24	61%	61%	0.27
820	Shopping Centre	8.69 (1000 sq.ft. GFA)	62%	38%	4.04	48%	48%	13.42
932	High Turn-Over Restaurant	2.90 (1000 sq.ft. GFA)	55%	45%	10.81	60%	60%	9.85
936	Coffee Shop without Drive-Thru	1.45 (1000 sq.ft. GFA)	51%	49%	108.38	50%	50%	40.75

Table 4 - Vehicle Trip Generation Rates

Table 5 - Person Trips Generated by Land Use

LUC	Land Use	Trip Conversion	Week	day AM	Peak Hour	Weekday PM Peak Hour			
LUC			In	Out	Total	In	Out	Total	
	222 High Rise Apartments	Auto Trips	8	26	35	24	15	39	
222		Auto Mode Share	37%	37%	37%	40%	40%	40%	
		Person Trips	22	71	93	59	38	97	
		Auto Trips	22	13	35	56	61	117	
820	Shopping Centre	Conversion Factor	1.28	1.28	1.28	1.28	1.28	1.28	
		Person Trips	28	17	45	72	78	149	
	High Turn-Over Restaurant	Auto Trips	17	14	31	17	11	29	
932		Conversion Factor	1.28	1.28	1.28	1.28	1.28	1.28	
		Person Trips	22	18	40	22	Out 15 40% 38 61 1.28 78 11	37	
		Auto Trips	80	77	157	30	30	59	
936	Coffee Shop without Drive-Thru	Conversion Factor	1.28	1.28	1.28	1.28	1.28	1.28	
		Person Trips	103	98	201	38	38	76	
	Total	Auto Trips	127	131	258	126	117	243	
Total		Person Trips	175	205	379	191	168	359	

Forecasting

The *TRANS Committee's 2011 Origin-Destination (O-D) Survey* was reviewed to identify existing travel mode shares for the Bayshore/Cedarview district. New travel mode shares were set for the residential and retail portions of the proposed development based on the development build-out year, future transportation network projects, policy directions and objectives of the City of Ottawa, and development type and location.

 Table 6 and Table 7 list the existing and future travel mode share targets for residential and retail components of the proposed development, respectively.

Table 8 outlines the anticipated trip generation potential of the proposed development by travel mode based on assumed mode shares.

	Existing	Future					
Travel Mode	OD Survey Mode Share	Mode Share Target	+/-	Rationale			
Transit	10%	40%	+30%	Proximity to Baseline Transitway Station. Conversion of the West Transitway to LRT as part of Stage 2 of the Confederation Line O-Train extension. High transit utilization by Algonquin College students.			
Walking and Cycling	3%	40%	+37%	Type of development (i.e. student residence) Location of development (i.e. proximity to Algonquin College)			
Auto Passenger	12%	0%	-12%	Low auto-ownership of students residing near campus. Reduction to allow for other mode increases in line with mode share targets.			
Auto Driver	70%	20%	-50%	Low auto-ownership of students residing near campus. Reduction to allow for other mode increases in line with mode share targets.			
Other	5%	N/A	N/A	N/A			
TOTAL	100%	100%	-	-			

Table 6 - Future Mode Share Targets (Residential Component)

	Existing	Future					
Travel Mode	OD Survey Mode Share	Mode Share Target	+/-	Rationale			
Transit	10%	30%	+20%	Proximity to Baseline Transitway Station. Conversion of the West Transitway to LRT as part of Stage 2 of the Confederation Line O-Train extension.			
Walking and Cycling	3%	25%	+22%	Location of development (i.e. proximity to Algonquin College and nearby office land uses)			
Auto Passenger	12%	0%	-12%	Reduction to allow for other mode increases in line with mode share targets.			
Auto Driver	70%	45%	-25%	Reduction to allow for other mode increases in line with mode share targets.			
Other	5%	N/A	N/A	N/A			
TOTAL	100%	100%	-	-			

Table 7 - Future Mode Share Targets (Mixed-Use Retail Component)

LUC Land Use		Trip Conversion		Weekday AM Peak Hour			Weekday PM Peak Hour		
				In	Out	Total	In	Out	Total
	High Rise Apartments	Auto	20%	4	14	18	12	8	20
222		Walk / Bike	40%	9	28	37	24	15	39
		Transit	40%	9	28	37	24	15	39
	Re	esidential Total Perso	n Trips	22	70	92	60	38	98
	Shopping Centre	Auto	45%	13	8	21	32	35	67
820		Walk / Bike	25%	7	4	11	18	19	37
		Transit	30%	8	5	13	21	23	44
	High Turn-Over Restaurant	Auto	45%	10	8	18	10	7	17
932		Walk / Bike	25%	6	5	11	5	4	9
		Transit	30%	7	5	12	7	4	11
	Coffee Shop without Drive- Thru	Auto	45%	46	44	90	17	17	34
936		Walk / Bike	25%	26	25	51	9	9	18
		Transit	30%	31	30	61	11	11	22
Retail Total Person Trips				154	134	288	130	129	259
		Auto Trips		73	74	147	71	67	138
Total		Walk / Bike Trips		48	62	110	56	47	103
		Transit Trips		55	68	123	63	53	116

Table 8 - Trips Generated by Travel Mode

A portion of the auto trips generated by the mixed-use retail component will be 'pass-by' in nature. Pass-by trips represent intermediate stops between trip origins and destinations that are drawn from existing traffic already on the roadway. While the total number of auto trips generated by a given development remains the same, the turning volumes at site accesses require adjustments to reflect the turning movements of pass-by traffic.

Pass-by rates of 34% and 43% were obtained from the *ITE Trip Generation Manual* for the Shopping Centre (LUC 820) and High Turn-Over Restaurant (LUC 932), respectively. No pass-by rates are defined in the *ITE Trip Generation Manual* for the coffee shop land use. As a result, a pass-by rate of 30% was assumed for the Coffee Shop without Drive-Thru land use (LUC 936).

Due to the mixed-use nature of the proposed development, a portion of the trips generated are also anticipated to be captured internally. Internal capture accounts for synergies developed within a mixed-use development, this is particularly prevalent in developments that consist of residential, office, commercial retail and restaurant land uses. An internal capture rate of 25% was assumed for the retail portion of the development to account for the anticipated synergy developed between the residential and ground floor retail land uses.

 Table 9 outlines the pass-by, internal capture, and new auto trips anticipated for the proposed development.

Figure 10 and Figure 11 illustrate the pass-by trips the proposed development is anticipated to generate.

Forecasting

LUC Land Use		Trip Conversion		Weekday AM Peak Hour			Weekday PM Peak Hour		
LUC	Land Use			In	Out	Total	In	Out	Total
	High Rise Apartments	Auto Trips		4	14	18	12	8	20
222		Pass-By	0%	0	0	0	0	0	0
		Internal Capture	0%	0	0	0	0	0	0
		New Auto Trips		4	14	18	12	8	20
		Auto Trips		13	8	21	32	35	67
000	Shopping Centre	Pass-By	34%	3	3	6	11	11	22
820		Internal Capture	25%	3	2	5	8	9	17
		New Auto Trips		6	2	8	13	15	28
	High Turn-Over Restaurant	Auto Trips		10	8	18	10	7	17
000		Pass-By	43%	4	4	8	4	4	8
932		Internal Capture	25%	2	2	4	2	2	4
		New Auto Trips		4	2	6	4	1	5
		Auto Trips		46	44	90	17	17	34
000	Coffee Shop without Drive- Thru	Pass-By	30%	14	14	28	5	5	10
936		Internal Capture	25%	12	11	23	4	4	8
		New Auto Trips		21	20	41	8	8	16
		Auto Trips		73	74	147	71	67	138
	Tatal	Pass-By		21	21	42	20	20	40
	Total	Internal Capture		17	15	32	15	15	30
		New Auto Trips		35	38	73	36	31	67

Table 9 - Pass-By and Internal Capture Trips

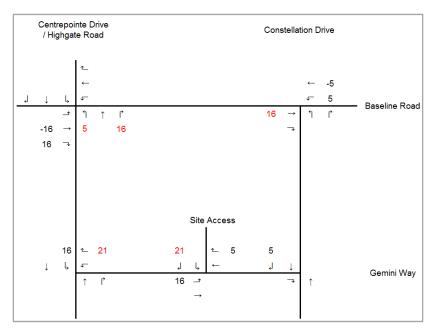
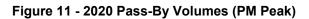




Figure 10 - 2020 Pass-By Volumes (AM Peak)

3.1.2 Trip Distribution

The distribution of traffic to / from the proposed is consistent with the *TRANS Committee's 2011 Origin-Destination Summary* for the Bayshore/Cedarview district.

Table 10 summarizes the assumed trip distribution for the proposed development.

Via (to/from) Direction Woodroffe Woodroffe Baseline Rd (East) (West) North / East 30% 15% 15% South 15% 7.5% 7.5% West 7.5% 15% 7.5% Internal * 40% 15% 17.5% 7.5% Total 100% 15% 30% 40% 15%

Table 10 - Trip Distribution

* Refers to trip origins/destinations within the same O-D Ward (Bayshore/Cedarview).

3.1.3 Trip Assignment

Site generated trips were assigned to the study area road network based on the trip distribution assumptions outlined in **Table 10**. New site trips are assigned to the road network, pass-by trips (as outlined in **Figure 10** and **Figure 11**), were then added to develop the net site trips generated by the proposed development.

Figure 12 outlines site assignment assumptions.

Figure 13 and **Figure 14** illustrate new site generated trips, prior to accounting for pass-by, during the AM and PM peak hours, respectively.

Figure 15 and **Figure 16** illustrate the net site generated trips for the proposed development after accounting for passby trips, during the AM and PM peak hours, respectively.

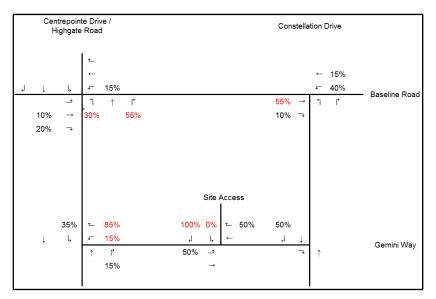


Figure 12 - Site Traffic Assignment Assumptions

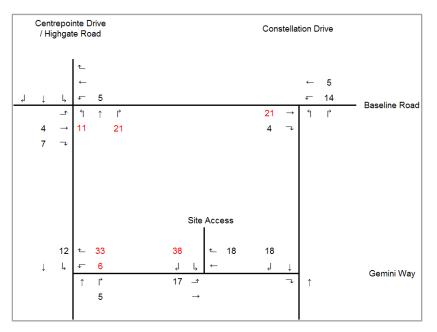
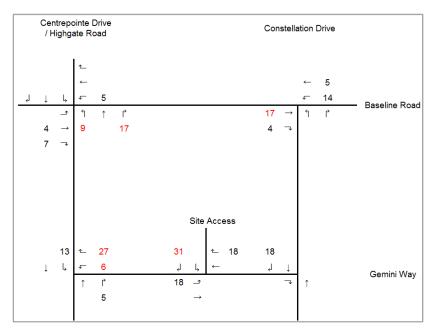



Figure 13 - New Site Generated Volumes (AM Peak)

Figure 14 - New Site Generated Volumes (PM Peak)

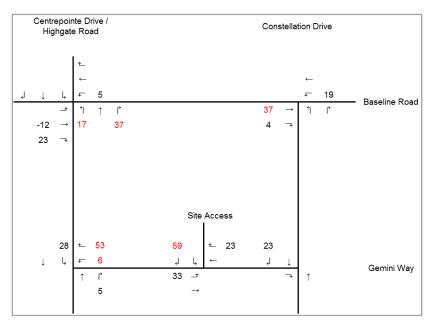
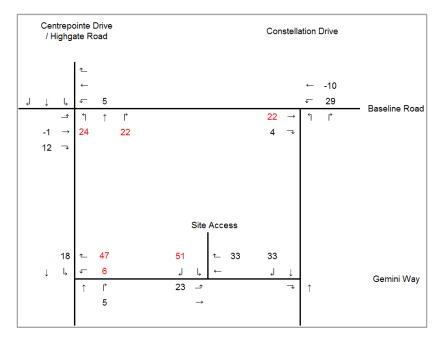



Figure 15 - Net Site Generated Volumes (AM Peak)

Figure 16 - Net Site Generated Volumes (PM Peak)

3.2 BACKGROUND NETWORK TRAVEL DEMAND

3.2.1 Transportation Network Plans

As outlined in **Table 2** in **section 2.1.3.1**, a number of transit improvements are expected to occur near the proposed development.

Under the TMP Affordable Network, the West Transitway will be converted from a BRT system to LRT between Tunney's Pasture Station and Baseline Station. This will occur as part of Stage 2 of the Confederation Line O-Train extension which is expected to go into revenue service in 2023.

In addition to the LRT extension to Baseline Station, an at-grade BRT system is currently planned on Baseline Road between Bayshore Station and Heron Station. The new at-grade BRT system will operate along the centre median of Baseline Road with a number of at-grade stations. The implementation of the new BRT system is expected take place beyond the 2031 horizon, and therefore was not considered as part of this transportation assessment.

3.2.2 Background Growth

The existing traffic counts were grown at a rate of 2% annually, non-compounding, to represent 2020 background traffic volumes.

3.2.3 Other Developments

The built out and occupancy of the proposed development is anticipated to occur in the Fall 2020.

There are currently no other known developments in the area.

As the area is located within a Design Priority Zone, it is anticipated that additional development and intensification, which is supported by the Baseline and Woodroffe Secondary Plans and Centrepointe Town Centre Concept Plan (CTC), will occur in the near future. At this time, no additional developments are anticipated to take place within the study time horizon.

3.3 DEMAND RATIONALIZATION

3.3.1 2020 Future Background Traffic

Figure 17 and Figure 18 illustrate the 2020 future background traffic volumes during the AM and PM peak hours, respectively.

The future background traffic demands are not expected to exceed capacity and therefore demand rationalization was not required.

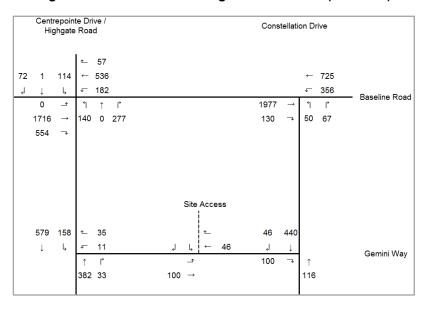
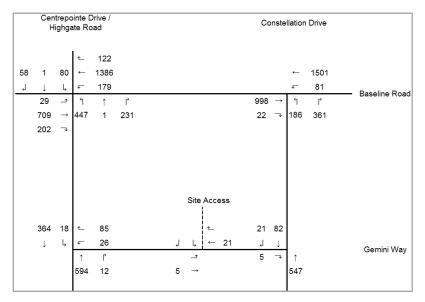



Figure 17 - 2020 Future Background Volumes (AM Peak)

3.3.2 2020 Total Future Traffic

Figure 19 and Figure 20 illustrate the 2020 total future traffic volumes during the AM and PM peak hours, respectively.

The future background traffic demands are not expected to exceed capacity and therefore demand rationalization was not required.

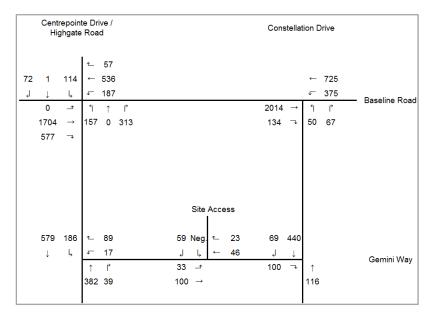
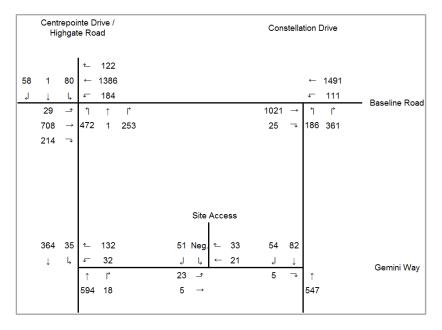



Figure 19 - 2020 Total Future Volumes (AM Peak)

Figure 20 - 2020 Total Future Traffic Volumes (PM Peak)

3.3.3 2025 Ultimate Traffic

Figure 21 and Figure 22 illustrate the 2025 ultimate traffic volumes during the AM and PM peak hours, respectively.

The future background traffic demands are not expected to exceed capacity and therefore demand rationalization was not required.

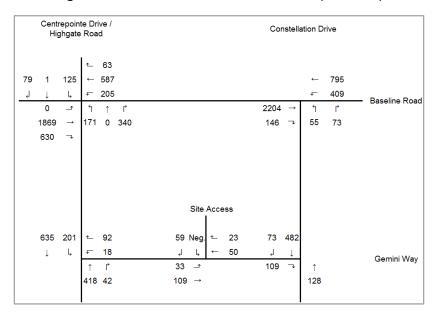
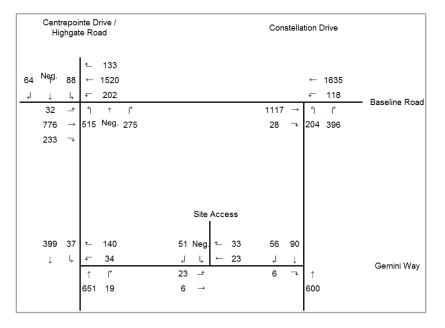



Figure 21 - 2025 Ultimate Traffic Volumes (AM Peak)

Figure 22 - 2020 Ultimate Traffic Volumes (PM Peak)

Strategy

4.0 STRATEGY

4.1 DEVELOPMENT DESIGN

4.1.1 Design for Sustainable Modes

Bicycle facilities: A total of 244 bicycle parking spaces are provided on-site (70 vertical, 110 horizontal, and 64 stacked). The underground parking ramp includes a designated bike ramp to provide convenient access to the secure underground bike racks. The location of surface level bike racks provides convenient access to Baseline Road, Constellation Drive and Constellation Drive.

Parking areas: A total of 124 parking spaces are provided. This consists of 7 surface level parking spaces and 117 underground parking spaces. Accessible parking spaces are adjacent to pedestrian paths, including an exterior covered walkway, that provide access to building entrances.

Transit facilities: Transit stops for OC Transpo Route 88 are currently provided at the intersection of Baseline Road and Centrepointe Drive / Highgate Road and at the intersection of Gemini Way at Constellation Drive. Pedestrian sidewalks and intersection crossings within the proposed development provide convenient access to transit stops.

4.1.2 Circulation and Access

A single, full-movement vehicular access is proposed on Gemini Way. Pedestrian access to the building is facilitated through two entrances: a main entrance along the south of the building facing Gemini Way, and a secondary entrance along Baseline Road. Ground level retail units will be accessible along the frontage of the building. As part of the proposed development, a new sidewalk is proposed on the north side of Gemini Way between Constellation Drive and the existing surface parking access to the adjacent medical centre.

4.1.3 New Street Networks

Not applicable; exempted during screening and scoping.

4.2 PARKING

4.2.1 Parking Supply

Auto Parking - As per City of Ottawa Zoning By-law 2016-249 (Sections 101 and 102), no minimum parking, other than visitor parking, is required. The minimum visitor parking space rate of 0.1 parking spaces per dwelling unit in excess of 12 dwelling units applies. This results in a minimum requirement of 26 visitor parking spaces. As per Section 103 of the By-Law, the proposed development is within 600 m from a rapid transit station and therefore is subject to a parking maximum of 1.5 spaces per dwelling unit. The maximum number of parking spaces permitted on site is 406 spaces. The proposed development provides 124 vehicle parking spaces (7 surface level parking spaces, 117 underground parking spaces).

2140 BASELINE ROAD TRANSPORTATION IMPACT ASSESSMENT

Strategy

Bicycle Parking – As per City of Ottawa Zoning By-law 2016-249 (Section 111), the minimum bicycle parking rate is 0.50 bicycle parking spaces per dwelling unit. The proposed development has 271 units and therefore 136 bicycle parking spaces are required. The proposed development provides 244 bicycle parking spaces.

4.2.2 Spillover Parking

Not applicable; exempted during screening and scoping.

4.3 BOUNDARY STREET DESIGN

4.3.1 Design Concept

The roadway segment multi-modal level of service (MMLOS) was evaluated for Baseline Road, Constellation Drive, Centrepointe Drive, and Gemini Way to assist with developing a design concept that maximizes the achievement of the MMLOS objectives. The MMLOS targets for the "Within 600m of a rapid transit station" policy area was adopted for the study area roadways.

Baseline Road, Constellation Drive, and Centrepointe Drive are subject to a Pedestrian LOS (PLOS) target of A.

The Ultimate Cycling Network from the City of Ottawa *Cycling Plan* (2013) designates Baseline Road as a Spine Cycling Route and Centrepointe Drive and Constellation Drive as Local Cycling Routes. These roads are therefore subject to Bicycle Level of Service (BLOS) targets of C and B, respectively. Gemini Way does not have a cycling route designation and is therefore subject to a BLOS target of D.

Within the study area limits, Baseline Road, Constellation Drive, and Centrepointe Drive do not currently feature any rapid transit or continuous transit priority measures and are therefore subject to a Transit LOS (TLOS) target of D.

Baseline Road is designated as a truck route and is therefore subject to Truck LOS (TrLOS) target of D. None of the other boundary roads are truck routes and are therefore not subject to TrLOS targets.

Table 11 presents the MMLOS conditions for roadway segments.

All boundary roads currently have a Pedestrian LOS (PLOS) below the PLOS target of A identified for developments within 600 m of a rapid transit station. Based on the MMLOS guidelines, roadway segment PLOS is largely influenced by motor vehicle traffic volumes (AADT) and operating speeds. Baseline Road, Constellation Drive and Centrepointe Drive currently operate with traffic volumes and operating speeds above 3,000 AADT and 30 km/hr, respectively, which results in PLOS below target. Gemini Way currently operates with a poor PLOS due to the lack of pedestrian sidewalks.

All boundary roads currently operate with a Bicycle LOS (BLOS) below their respective targets. Based on the MMLOS guidelines, road segment BLOS is influenced by the number of travel lanes, the availability and width of dedicated cycling facilities, and roadway operating speeds.

Strategy

			e Road		ointe Drive		ation Drive		ini Way	
	Segment	(arterial, spine cycling Segment route)			(Major-Collector, local cycling route)		(Collector, no cycling designation)		(Local, no cycling designation)	
		Existing	Build-out	Existing	Build-out	Existing	Build-out	Existing	Build-out	
	Sidewalk width (m)	2	**	2	**	2	**	None	2	
Ē	Boulevard width (m)	4.5	**	None	**	None	**	None	**	
stria	AADT > 3000?	Yes	**	Yes	**	Yes	**	No	**	
Pedestrian	On-Street parking	No	**	Yes	**	Yes	**	Yes	**	A
۵.	Operating speed (kph)	60	**	40	**	50	**	30 - 50	**	
	Level of Service	С	**	В	**	В	**	F	**	
	Type of facility	Mixed	**	Mixed	**	Mixed	**	Mixed	**	
	Number of travel lanes	5	**	4	**	4	**	2	**	
Ð	Bike lane width (m)	N/A	**	N/A	**	N/A	**	N/A	**	
Bicycle	Operating speed (kph)	60	**	40	**	50	**	30 - 50	**	C/B/B/D
ä	Centreline (yes/no)	Yes	**	Yes	**	Yes	**	No	**	
	Bike lane blockage freq.	N/A	**	N/A	**	N/A	**	N/A	**	
	Level of Service	F	**	D	**	E	**	Α	**	
ij	Type of facility	Mixed	**	Mixed	**	Mixed	**	N/A	**	
Transit	Parking/driveway friction	Low	**	Low	**	Low	**	N/A	**	D/D/D
Ē	Level of Service	В	**	D	**	D	**	N/A	**	
~	Curb lane width (m)	3.5m	**							
Truck	Number of travel lanes	5	**	Not ap	plicable	Not a	pplicable	Not applicable		D*
F	Level of Service	Α	**							

Table 11 - MMLOS Conditions (Segments)

Notes:

Auto LOS is not considered for segments in the MMLOS Guidelines.

"Mixed" means either cyclists or transit operate in a shared lane with general traffic, i.e. they do not have their own dedicated facilities.

The number of travel lanes is two-way, i.e. in both directions.

Bike lane blockage frequency is only applicable when cycling is in mixed traffic and in a commercial area.

The Bicycle LOS target C/B/B/D indicates that the target is C for Baseline Road, B for Centrepointe Drive, B for Constellation Drive, D for Gemini Way.

The Transit LOS target D/D/D indicates that the target is D for Baseline Road, D for Centrepointe Drive, and D for Constellation Drive.

* Truck LOS TARGET D is applicable to Baseline Road only.

** Indicates that are no change between horizons or scenarios.

2140 BASELINE ROAD TRANSPORTATION IMPACT ASSESSMENT

Strategy

It is anticipated that additional development within the Centrepointe Town Centre, as outlined in the Centrepointe Town Centre Secondary Plan, will provide future opportunities to implement some of these road design concept elements to improve pedestrian and cycling amenities on Centrepointe Drive, Constellation Drive, and Gemini Way.

To improve the BLOS and PLOS on boundary street segments, namely Centerpointe Drive, Constellation Drive and Gemini Way, the following road design concepts are contemplated:

Centrepointe Drive: In order to improve the PLOS and meet the PLOS target of A, a boulevard width of 0.5m or more will be required on both sides of Centrepointe Drive. In addition, traffic calming measures aimed at reducing vehicle operating speeds to 30 km/h will be required.

In order to meet the BLOS target of B on Centrepointe Drive, 1.5m bike lanes could potentially be installed on both sides of road. However, this would require the removal of on-street parking on the west side of Centrepointe Drive and the extension of the median separation along the roadway. Alternatively, the implementation of segregated cycling facilities, such as a multi-use pathway, on the east side of Centrepointe Drive would result in an improved BLOS.

Constellation Drive: In order to improve the PLOS and meet the PLOS target of A, a boulevard width of 0.5m or more will be required on both side of Constellation Drive. In addition, traffic calming measures aimed at reducing vehicle operating speeds to 30 km/h will be required.

In order to meet the BLOS target of B on Constellation Drive, 1.5m bike lanes could potentially be installed on both sides of road.

Gemini Way: In order to improve the PLOS, sidewalk facilities are recommended on both sides of Gemini Way. The roadway currently has a right-of-way width of 20m which can support 1.8 – 2.0m sidewalks on both sides of the roadway.

It is anticipated that additional development within the Centrepointe Town Centre, as outlined in the Centrepointe Town Centre Secondary Plan, will provide future opportunities to implement some of these road design concept elements to improve pedestrian and cycling amenities on Centrepointe Drive, Constellation Drive, and Gemini Way.

4.4 ACCESS INTERSECTIONS DESIGN

4.4.1 Location and Design of Access

The site access is located on a Gemini Way and is located approximately 35 m west of the intersection of Constellation Drive at Gemini Way, and 235 m east of the intersection of Centrepointe Drive at Gemini Way. This exceeds the City requirement of 18 m between the private approach and the nearest intersecting street line, as required by the Private Approach By-law No. 2003-447, S.25, L.

The site access has a width of 6.7 m which is above the minimum of 2.4 m and below the maximum width of 9.0 m.

The proposed access driveway has a clear throat length of 12 m between Gemini Way and the on-site surface parking area. As per Table 8.9.3 of the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads, the minimum clear throat distance suggested for a major driveway access on a collector roadway ranges between 8 m and 15 m for an apartment building land use with 100 and 200 residential units, respectively.

4.4.2 Intersection Control

The site access is a low-volume driveway located on a low-volume local roadway and therefore a stop control on the minor site access approach is appropriate.

4.4.3 Intersection Design

Table 12 summarizes the Synchro intersection analysis results for the site access intersection under 2025 Ultimate Traffic conditions. The analysis indicates that the access intersection will operate acceptably with a stop-control on the minor approach.

Appendix C contains the intersection performance worksheets.

Intersection	Intersection Control	Approach / Movement		LOS	V/C	Delay (s)	Queue 95 th (veh)
	Minor Approach Stop-Control	EB	Left / Through	A (A)	0.02	7.4 (7.4)	0.1 (0)
Gemini Way at		WB	Through / Right	A (A)	0	0 (0)	0 (0)
Site Access		SB	Left / Through	A (A)	0.07	9.0 (8.7)	0.2 (0.2)
		Overall Intersection		A (A)	-	2.9 (4.6)	-

Table 12 - 2025 Ultimate Access Intersection Operations (Synchro)

4.5 TRANSPORTATION DEMAND MANAGEMENT

4.5.1 Context for TDM

The proposed development is owned by Baseline Constellation Partnership Inc. and is located within a Design Priority Area (DPA) and Transit Oriented Development (TOD) zone. Property management arrangements and tenants are not known at this time. Residential tenants will comprise of post-secondary students attending the nearby Algonquin College campus. It is anticipated that students residing in the building will primarily travel by transit and active modes, particularly during the AM and PM peak periods.

The land uses proposed as part of the ground level mixed-use retail, which include a restaurant and coffee shop, are expected to accommodate students residing in the building as well as students and employees from the nearby Algonquin College campus, the medical centre and office buildings within Centrepointe. As outlined in **Table 8**, an internal capture rate of 25% was assumed for the ground level retail component to reflect the anticipated synergy between the retail, residential and nearby office land uses.

4.5.2 Need and Opportunity

In order to support the transit and active modal share targets outlined in **Table 6** (residential component) and **Table 7** (commercial component), cycling and transit modes will need to be promoted. This includes promotion of proposed cycling amenities (i.e. underground secure bicycle parking) and convenient nearby transit service to both residential and commercial tenants.

4.5.3 TDM Program

The City of Ottawa TDM Checklists were used to determine what TDM measures could be implemented based on the available information.

The TDM checklists are contained in Appendix D.

4.6 NEIGHBOURHOOD TRAFFIC MANAGEMENT

Not applicable; exempted during screening and scoping.

4.7 TRANSIT

4.7.1 Route Capacity

Assumed transit modal shares of 40% and 30% were adopted for the residential and retail components of the development, respectively. The forecasted transit trips generation for the residential component is 37 and 39 transit trips during the AM or PM peak hours, respectively. The forecasted transit trips generation for the retail component is 86 and 77 transit trips during the AM or PM peak hour, respectively. In the short term, transit service headways for OC Transpo Route 88 are anticipated to remain at 15-minutes during the morning and afternoon peak periods. Articulated buses and double-decker buses have seated capacities of 60 and 80 people; respectively, and therefore the hourly transit capacity will be 240 - 320 people per hour.

In addition to transit service provided on Baseline Road and Constellation Drive, the subject site is also located within 600 m of Baseline Station and is therefore within the Transitway Station catchment area. Baseline Station is a Transitway Station located along the Southwest Transitway corridor. This key station currently accommodates upwards of 20 bus routes including Rapid Transitway routes such as 91, 94 and 95. This station is identified as an LRT-BRT station in the future. It is, therefore, expected that the planned transit services will be able to adequately accommodate development-generated transit trips.

In addition, transit service and coverage on Baseline Road is anticipated to increase with the completion of the Baseline Transitway.

4.7.2 Transit Priority

The proposed development will be utilizing existing transit stops abutting the subject site and is therefore not expected to impact the transit travel times or trigger the need for transit priority measures.

4.8 REVIEW OF NETWORK CONCEPT

Not applicable; exempted during screening and scoping.

4.9 INTERSECTION DESIGN

4.9.1 Intersection Control

The existing intersection control will be maintained as the default control for the Baseline Road at the Centrepointe Drive / Highgate Road, Baseline Road at Constellation Drive, Gemini Way at Centrepointe Drive, and Gemini Way at Constellation Drive intersections. Any intersection improvements triggered through the intersection level of service analysis will be highlighted and adopted accordingly.

4.9.2 Intersection Design

An assessment of the study area intersections was undertaken to determine the operational characteristics of the study area intersections under the different horizons identified in the Screening and Scoping report. Intersection operational analysis was facilitated by Synchro 9.0[™] software package and the MMLOS analysis was completed for all modes and compared against the City of Ottawa's MMLOS targets.

4.9.2.1 2018 Existing Conditions

Figure 7 and Figure 8 illustrate 2018 Existing AM and PM peak hour traffic volumes at the study area intersections.

Table 13 summarizes the results of the Synchro analysis under 2018 existing conditions.

All study area intersections are currently operating satisfactorily.

Appendix C contains detailed intersection performance worksheets.

Scenario	Intersection Control	Α	pproach / Movement	LOS	V/C	Delay (s)	Queue 95 th (veh)
			Left	A (A)	0 (0.29)	0 (65.6)	0 (17.4)
		EB	Through	B (A)	0.67 (0.32)	25.1 (25.3)	157.6 (64.2)
			Right	A (A)	0.52 (0.25)	3.4 (4.4)	19.3 (16.1)
Baseline			Left	A (A)	0.57 (0.57)	66.7 (73.5)	30.4 (35.9)
Road at		WB	Through	A (C)	0.23 (0.78)	8.0 (27.0)	30.2 (#248.5)
Centrepointe Drive /	Traffic Signals		Right	A (A)	0.05 (0.14)	0.6 (1.3)	1.3 (2.3)
Highgate		NB	Left	A (C)	0.46 (0.76)	60.3 (58.8)	28.3 (73.4)
Road		IND	Right	C (A)	0.71 (0.50)	16.0 (8.9)	26.1 (20.8)
		SB	Left	B (A)	0.69 (0.52)	77.4 (67.4)	#53.1 (37.0)
		SB	Right	A (A)	0.27 (0.19)	2.6 (1.4)	0.7 (0)
		(Overall Intersection	C (C)	0.71 (0.78)	22.9 (30.6)	-
		EB	Through	B (A)	0.63 (0.31)	4.5 (6.6)	30.4 (28.9)
			Right	A (A)	0.11 (0.02)	0.2 (0.1)	m0.4 (m0.3)
Baseline		WB	Left	C (A)	0.73 (0.37)	61.5 (62.4)	61.4 (19.1)
Road at Constellation	Traffic Signals		Through	A (A)	0.25 (0.57)	2.4 (8.3)	23.2 (132.9)
Drive		NB	Left	A (A)	0.26 (0.43)	61.0 (53.4)	13.1 (32.1)
			Right	A (D)	0.44 (0.84)	21.7 (31.8)	14.5 (57.8)
		(Overall Intersection	C (D)	0.73 (0.84)	11.2 (14.5)	-
		WB	Left / Right	B (B)	0.10 (0.21)	13.1 (13.2)	0.3* (0.8*)
Gemini Way at	Minor Stop	NB	Through	A (A)	0 (0)	0 (0)	0* (0*)
Centrepointe	Minor Stop Control	ND	Right	A (A)	0 (0)	0 (0)	0* (0*)
Drive	Control	SB	Left / Through	A (A)	0.14 (0.02)	2.1 (0.5)	0.5* (0.1*)
		(Overall Intersection	A (A)	-	1.8 (1.5)	-
Gemini Way		EB	Right	B (A)	0.14 (0.01)	10.6 (8.6)	0.5* (0*)
at	Minor Stop	NB	Through	A (A)	0 (0)	0 (0)	0* (0*)
Constellation	Control	SB	Through / Right	A (A)	0 (0)	0 (0)	0* (0*)
Drive		(Overall Intersection	A (A)	-	1.5 (0.1)	-

Table 13 - 2018 Existing Intersection Operations (Synchro)

Notes:

1. Table format: AM (PM)

rable format. Am (1 m)
 v/c - represents the anticipated volume divided by the predicted capacity
 # - 95th percentile volume exceeds capacity, queue may be longer
 * - Queue lengths for these movements are in vehicles
 m - Volume for 95th percentile queue is metered by upstream signal

2140 BASELINE ROAD TRANSPORTATION IMPACT ASSESSMENT

The signalized intersection MMLOS assessment was undertaken for the intersections of Baseline Road at Centrepointe Drive / Highgate Road, and the Baseline Road at Constellation Drive intersection under 2018 Existing conditions. Intersection operations under the AM and PM peak hours were considered in the assessment. MMLOS targets for areas "Within 600m of a rapid transit station" were applied.

MMLOS - Baseline Road at Centrepointe Drive/ Highgate Road intersection (2018 Existing):

Under the current intersection configuration, pedestrian crossings are provided on the north, east, and south legs of the intersection. A pedestrian crossing is not provided on the west leg of the intersection due to the northbound left-turn signal phasing. As the intersection is within 600m of a rapid transit station, a PLOS target of A was selected for the intersection.

The Ultimate Cycling Network from the City of Ottawa *Cycling Plan* (2013) designates Baseline Road as a spine cycling route and Centrepointe Drive as a local cycling route. These roads are therefore subject to a BLOS target of C and B, respectively. A BLOS target of B was selected for the intersection.

Westbound transit service travelling on Baseline Road currently operates within a short section of dedicated transit lane. Transit service in the eastbound direction on Baseline Road and on Centrepointe currently operate within mixed traffic. Based on the MMLOS targets, a TLOS target of C was selected for the intersection.

Baseline Road is designated as a truck route, therefore the intersection is subject to TrLOS target of D.

 Table 14 presents the MMLOS conditions for the signalized intersection of Baseline Road at Centrepointe Drive /

 Highgate Road.

As outlined in the summary analysis, the pedestrian level of service at the intersection of Baseline Road / Centrepointe Drive is currently operating with a PLOS of F. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross, the intersection cycle length and subsequent delay to pedestrians, pedestrian crossing time, and the treatment of right-turn movements at intersections.

The cycling level of service at the intersection is currently operating with a BLOS of F. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds.

As the intersection of Baseline Road at Centrepointe Drive is an arterial-major collector intersection, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified to improve the pedestrian and cycling LOS at the intersection.

It is anticipated that the pedestrian, cycling and transit level of service will improve with the completion of the Baseline Transitway. Under the recommended plan, the Baseline Transitway maintains two general traffic lanes in each direction, and features 23 km of new sidewalks, 22 km of cycle tracks, a 4 km multi-use pathway, and 1.5 km of on-road/shoulder bike lanes. These improvements are currently identified under the TMP Network Concept and therefore are anticipated to be in place beyond the 2031 horizon.

MMLOS - Baseline Road at Constellation Drive intersection (2018 Existing):

Under the current intersection configuration, pedestrian crossings are provided on the east, and south legs of the intersection. A pedestrian crossing is not provided on the west leg of the intersection due to the northbound left-turn signal phasing. As the intersection is within 600m of a rapid transit station, a PLOS target of A was selected for the intersection.

The Ultimate Cycling Network from the City of Ottawa *Cycling Plan* (2013) designates Baseline Road as a spine cycling route and Constellation Drive as a local cycling route. These roads are therefore subject to a BLOS target of C and B, respectively. A BLOS target of B was selected for the intersection.

Transit service at the intersection of Baseline Road and Constellation Drive currently operates within mixed traffic. Based on the MMLOS targets, a TLOS target of C was selected for the intersection.

Baseline Road is designated as a truck route, therefore the intersection is subject to TrLOS target of D.

Table 15 presents the MMLOS conditions for the signalized intersection of Baseline Road at Constellation Drive.

As outlined in the summary analysis, the pedestrian level of service at the intersection of Baseline Road / Constellation Drive is currently operating with a PLOS of F. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross, the intersection cycle length and subsequent delay to pedestrians, pedestrian crossing time, and the treatment of right-turn movements at intersections.

The cycling level of service at the intersection is currently operating with a BLOS of F. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds.

As the intersection of Baseline Road at Constellation Drive is an arterial-collector intersection, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified to improve the pedestrian and cycling LOS at the intersection.

It is anticipated that the pedestrian, cycling and transit level of service will improve with the completion of the Baseline Transitway. Under the recommended plan, the Baseline Transitway maintains two general traffic lanes in each direction, and features 23 km of new sidewalks, 22 km of cycle tracks, a 4 km multi-use pathway, and 1.5 km of on-road/shoulder bike lanes. These improvements are currently identified under the TMP Network Concept and therefore are anticipated to be in place beyond the 2031 horizon.

	0		2018 Exist	ing Traffic		
	Segment	EB	WB	NB	SB	Target
	Lanes crossed	6	4	10	NA	
	Median (yes/no)	No	No	No	NA	
	Island refuge >=2.4m (yes/no)	Yes	Yes	Yes	NA	
	Left turn phasing	Protected	Protected	Protected	NA	
	Right turn conflict	Yield Control	Yield Control	Yield Control	NA	
	RTOR (yes/no)	Yes	Yes	Yes	NA	
	Leading ped interval (yes/no)	No	No	No	NA	
SC	Right turn corner radius (m)	Right-turn Channel	Right-turn Channel	Right-turn Channel	NA	
PLOS	Crosswalk treatment	Standard	Standard	Standard	NA	Α
	Cycle length (s)	130	130	130	NA	
	Effective walk time (s)	49	58	39	NA	
	PETSI Points	35	68	-30	NA	
	PETSI Points LOS	E	С	F	NA	
	Average Pedestrian Delay (s)	25.2	19.9	31.9	NA	
	Ped Delay LOS	С	В	D	NA	
	Level of Service	E	С	F	NA	
	Level of Service		F	-		
	Type of bike lane	Mixed	Mixed	Mixed	Mixed	
	Left-turn - lanes crossed	3	3	0	1	
	Left-turn - vehicle operating speed (km/hr)	60	60	40	40	
S	Right-turn - number of turn lanes	1	1	1	0	
BLOS	Right-turn - turn lane length (m)	140	100	110	NA (Shared)	В
ш	Right-turn - turning speed (km/hr)	15	15	15	15	
	Right-turn - location of bike lane	NA	NA	NA	NA	
	Level of Service	F	F	F	В	
	Level of Service		F	-		
TLOS	Intersection Average Delay (s)		14	.5		с
Ę	Level of Service		C	•		C
	Effective corner radius (m)	>15	>15	NA	NA	
TkLOS	Number of receiving lanes	>1	>1	NA	NA	D
Ţĸ	Level of Service	А	А	NA	NA	D
	Level of Service		ł	4		
S	Maximum Volume-to-capacity (v/c)	0.67	0.78	0.76	0.69	
VLOS	Level of Service	В	С	С	В	D
>	Level of Service		C			

Table 14 - 2018 Existing MMLOS (Baseline Road / Centrepointe Drive)

	Commont	20	018 Existing Traf	fic	Townst
	Segment	EB	WB	NB	Target
	Lanes crossed	5	NA	8	
	Median (yes/no)	No	NA	No	
	Island refuge >=2.4m (yes/no)	Yes	NA	Yes	
	Left turn phasing	Protected	NA	NA	
	Right turn conflict	Protected / Permissive	NA	Yield Control	
	RTOR (yes/no)	Yes	NA	Yes	
	Leading ped interval (yes/no)	No	NA	No	
PLOS	Right turn corner radius (m)	> 5 to 10	NA	Smart Channel	Α
4	Crosswalk treatment	Standard	NA	Standard	~
	Cycle length (s)	130	NA	130	
	Effective walk time (s)	66	NA	34	
	PETSI Points	50	NA	8	
	PETSI Points LOS	D	NA	F	
	Average Pedestrian Delay (s)	15.8	NA	35.4	
	Ped Delay LOS	В	NA	D	
	Level of Service	D	NA	F	
	Level of Service		F		
	Type of bike lane	Pocket Bike Lane	Mixed	Mixed	
	Left-turn - lanes crossed	NA	2	0	
	Left-turn - vehicle operating speed (km/hr)	NA	60	50	
S	Right-turn - number of turn lanes	50	NA	1	
BLOS	Right-turn - turn lane length (m)	140	NA	> 50	В
	Right-turn - turning speed (km/hr)	15	NA	15	
	Right-turn - location of bike lane	Left	NA	NA	
	Level of Service	В	F	F	
	Level of Service		F		
SC	Intersection Average Delay (s)		30.6		С
TLOS	Level of Service		E		L L
	Effective corner radius (m)	>15	>15	NA	
SO	Number of receiving lanes	>1	>1	NA	_
TkLOS	Level of Service	А	А	NA	D
	Level of Service		Α		
(0)	Maximum Volume-to-capacity (v/c)	0.63	0.73	0.84	
VLOS	Level of Service	В	С	D	D
5	Level of Service		D		

Table 15 - 2018 Existing MMLOS (Baseline Road / Constellation Drive)

4.9.2.2 2020 Future Background Conditions

Figure 17 and Figure 18 illustrate 2020 Future Background AM and PM peak hour traffic volumes at the study area intersections.

All study area intersections are anticipated to operate satisfactorily.

Table 16 summarizes the results of the Synchro analysis for 2020 Future Background conditions.

Appendix C contains detailed intersection performance worksheets.

Scenario	Intersection Control	A	pproach / Movement	LOS	V/C	Delay (s)	Queue 95 th (veh)
			Left	A (A)	0 (0.22)	0 (31.3)	0 (14.3)
		EB	Through	B (A)	0.63 (0.30)	23.9 (24.1)	146.4 (59.4)
			Right	A (A)	0.50 (0.24)	3.3 (4.2)	19.0 (15.5)
Baseline			Left	A (A)	0.56 (0.56)	67.7 (71.0)	29.7 (33.0)
Road at		WB	Through	A (B)	0.22 (0.65)	7.9 (17.0)	29.1 (163.2)
Centrepointe Drive /	Traffic Signals		Right	A (A)	0.05 (0.12)	0.5 (1.5)	1.0 (3.1)
Highgate			Left	A (C)	0.45 (0.75)	60.2 (59.1)	27.2 (70.7)
Road		NB	Right	B (A)	0.70 (0.50)	16.1 (9.2)	25.8 (20.8)
		SB	Left	B (A)	0.67 (0.51)	75.5 (67.6)	48.1 (35.7)
			Right	A (A)	0.26 (0.22)	2.4 (1.9)	0 (0)
		(Overall Intersection	B (C)	0.70 (0.75)	22.2 (26.0)	-
	Traffic Signals	EB	Through	A (A)	0.59 (0.29)	4.4 (5.2)	29.1 (24.4)
		ED	Right	A (A)	0.11 (0.02)	0.2 (0.3)	m0.3 (m0.1)
Baseline		WB	Left	C (A)	0.72 (0.36)	61.7 (62.3)	59.2 (18.4)
Road at Constellation			Through	A (A)	0.24 (0.53)	2.4 (5.9)	22.0 (95.1)
Drive		NB	Left	A (A)	0.25 (0.53)	61.0 (60.1)	12.7 (33.5)
			Right	A (C)	0.43 (0.76)	22.0 (16.7)	14.2 (31.6)
		(Overall Intersection	C (C)	0.72 (0.76)	11.2 (11.5)	-
		WB	Left / Right	B (B)	0.09 (0.19)	12.6 (12.8)	0.3* (0.7*)
Gemini Way	Minor Stor	NB	Through	A (A)	0 (0)	0 (0)	0* (0*)
at Centrepointe	Minor Stop Control	ND	Right	A (A)	0 (0)	0 (0)	0* (0*)
Drive	Control	SB	Left / Through	A (A)	0.14 (0.02)	2.1 (0.5)	0.5* (0.1*)
		(Overall Intersection	A (A)	-	1.8 (1.5)	-
Gemini Way		EB	Right	B (A)	0.13 (0.01)	10.5 (8.6)	0.5* (0*)
at	Minor Stop	NB	Through	A (A)	0 (0)	0 (0)	0* (0*)
Constellation	Control	SB	Through / Right	A (A)	0 (0)	0 (0)	0* (0*)
Drive		(Overall Intersection	A (A)	-	1.5 (0.1)	-

Table 16 - 2020 Future Background Intersection Operations (Synchro)

Notes:

Table format: AM (PM) 1.

v/c - represents the anticipated volume divided by the predicted capacity 2.

3. # - 95th percentile volume exceeds capacity, queue may be longer

* - Queue lengths for these movements are in vehicles 4.

m = Volume for 95th percentile queue is metered by upstream signal5.

2140 BASELINE ROAD TRANSPORTATION IMPACT ASSESSMENT

The signalized intersection MMLOS assessment was undertaken for the intersections of Baseline Road at Centrepointe Drive / Highgate Road, and the Baseline Road at Constellation Drive intersection under 2020 Future Background conditions. Intersection operations under the AM and PM peak hours were considered in the assessment. MMLOS targets for areas "Within 600m of a rapid transit station" were applied.

MMLOS - Baseline Road at Centrepointe Drive/ Highgate Road (2020 Future Background):

 Table 17 outlines 2020 Future Background MMLOS conditions for the signalized intersection of Baseline Road at

 Centrepointe Drive / Highgate Road.

As outlined in the summary analysis, the pedestrian level of service at the intersection of Baseline Road / Centreppointe Drive is expected to continue to operate with a PLOS of F. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross, the intersection cycle length and subsequent delay to pedestrians, pedestrian crossing time, and the treatment of right-turn movements at intersections.

The cycling level of service at the intersection is expected to continue to operate with a BLOS of F. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds.

As the intersection of Baseline Road at Centrepointe Drive is an arterial-major collector intersection, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified to improve the pedestrian and cycling LOS at the intersection.

It is anticipated that the pedestrian, cycling and transit level of service will improve with the completion of the Baseline Transitway. Under the recommended plan, the Baseline Transitway maintains two general traffic lanes in each direction, and features 23 km of new sidewalks, 22 km of cycle tracks, a 4 km multi-use pathway, and 1.5 km of on-road/shoulder bike lanes.

MMLOS - Baseline Road at Constellation Drive (2020 Future Background):

 Table 18 outlines 2020 Future Background MMLOS conditions for the signalized intersection of Baseline Road at

 Constellation Drive.

As outlined in the summary analysis, the pedestrian level of service at the intersection of Baseline Road / Constellation Drive is expected to continue to operate with a PLOS of F. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross, the intersection cycle length and subsequent delay to pedestrians, pedestrian crossing time, and the treatment of right-turn movements at intersections.

The cycling level of service at the intersection is expected to continue to operate with a BLOS of F. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds.

As the intersection of Baseline Road at Constellation Drive is an arterial-collector intersection, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified to improve the pedestrian and cycling LOS at the intersection.

	0		2018 Exist	ing Traffic			
	Segment	EB	WB	NB	SB	Target	
	Lanes crossed	6	4	10	NA		
	Median (yes/no)	No	No	No	NA		
	Island refuge >=2.4m (yes/no)	Yes	Yes	Yes	NA	1	
	Left turn phasing	Protected	Protected	Protected	NA		
	Right turn conflict	Yield Control	Yield Control	Yield Control	NA		
	RTOR (yes/no)	Yes	Yes	Yes	NA		
	Leading ped interval (yes/no)	No	No	No	NA		
SC	Right turn corner radius (m)	Right-turn Channel	Right-turn Channel	Right-turn Channel	NA		
PLOS	Crosswalk treatment	Standard	Standard	Standard	NA	Α	
	Cycle length (s)	130	130	130	NA		
	Effective walk time (s)	49	58	39	NA		
	PETSI Points	35	68	-30	NA		
	PETSI Points LOS	E	С	F	NA		
	Average Pedestrian Delay (s)	25.2	19.9	31.9	NA		
	Ped Delay LOS	С	В	D	NA		
	Level of Service	E	С	F	NA		
	Level of Service		F	-			
	Type of bike lane	Mixed	Mixed	Mixed	Mixed		
	Left-turn - lanes crossed	3	3	0	1		
	Left-turn - vehicle operating speed (km/hr)	60	60	40	40		
S	Right-turn - number of turn lanes	1	1	1	0		
BLOS	Right-turn - turn lane length (m)	140	100	110	NA (Shared)	В	
ш	Right-turn - turning speed (km/hr)	15	15	15	15		
	Right-turn - location of bike lane	NA	NA	NA	NA		
	Level of Service	F	F	F	В		
	Level of Service		F	-			
TLOS	Intersection Average Delay (s)		26	i.0		с	
Ę	Level of Service		E)		C	
	Effective corner radius (m)	>15	>15	NA	NA		
SO	Number of receiving lanes	>1	>1	NA	NA	D	
TkLOS	Level of Service	А	A	NA	NA	U	
	Level of Service		ł	\			
S	Maximum Volume-to-capacity (v/c)	0.63	0.65	0.70	0.67		
VLOS	Level of Service	В	В	В	В	D	
>	Level of Service		E	3			

Table 17 - 2020 Future Background MMLOS (Baseline Road / Centrepointe Drive)

	Commont	20	018 Existing Traf	fic	Townst
	Segment	EB	WB	NB	Target
	Lanes crossed	5	NA	8	
	Median (yes/no)	No	NA	No	
	Island refuge >=2.4m (yes/no)	Yes	NA	Yes	
	Left turn phasing	Protected	NA	NA	
	Right turn conflict	Protected / Permissive	NA	Yield Control	
	RTOR (yes/no)	Yes	NA	Yes	
	Leading ped interval (yes/no)	No	NA	No	
PLOS	Right turn corner radius (m)	> 5 to 10	NA	Smart Channel	А
님	Crosswalk treatment	Standard	NA	Standard	<u>^</u>
	Cycle length (s)	130	NA	130	
	Effective walk time (s)	66	NA	34	
	PETSI Points	50	NA	8	
	PETSI Points LOS	D	NA	F	
	Average Pedestrian Delay (s)	15.8	NA	35.4	
	Ped Delay LOS	В	NA	D	
	Level of Service	D	NA	F	
	Level of Service		F		
	Type of bike lane	Pocket Bike Lane	Mixed	Mixed	
	Left-turn - lanes crossed	NA	2	0	
	Left-turn - vehicle operating speed (km/hr)	NA	60	50	
S	Right-turn - number of turn lanes	50	NA	1	
BLOS	Right-turn - turn lane length (m)	140	NA	> 50	В
	Right-turn - turning speed (km/hr)	15	NA	15	
	Right-turn - location of bike lane	Left	NA	NA	
	Level of Service	В	F	F	
	Level of Service		F		
SC	Intersection Average Delay (s)		11.5		0
TLOS	Level of Service		С		С
	Effective corner radius (m)	>15	>15	NA	
TkLOS	Number of receiving lanes	>1	>1	NA	_
TKL	Level of Service	А	А	NA	D
	Level of Service		Α		
(0	Maximum Volume-to-capacity (v/c)	0.59	0.72	0.76	
VLOS	Level of Service	A	С	С	D
⋝	Level of Service		С		

Table 18 - 2020 Future Background MMLOS (Baseline Road / Constellation Drive)

4.9.2.3 2020 Total Future Conditions

Figure 19 and Figure 20 illustrate 2020 Total Future AM and PM peak hour traffic volumes at the study area intersections.

All study area intersections are anticipated to operate satisfactorily.

Table 19 summarizes the results of the Synchro analysis for 2020 Total Future conditions.

Appendix C contains detailed intersection performance worksheets.

Scenario	Intersection Control	A	pproach / Movement	LOS	V/C	Delay (s)	Queue 95 th (veh)
			Left	A (A)	0 (0.23)	0 (32.6)	0 (14.6)
		EB	Through	B (A)	0.63 (0.31)	24.4 (25.0)	147.5 (60.4)
			Right	A (A)	0.52 (0.26)	3.4 (4.3)	19.6 (16.1)
Baseline			Left	A (A)	0.57 (0.57)	66.4 (69.6)	30.1 (32.9)
Road at		WB	Through	A (B)	0.23 (0.66)	8.0 (17.9)	29.1 (176.4)
Centrepointe Drive /	Traffic Signals		Right	A (A)	0.05 (0.12)	0.5 (1.6)	1.0 (3.2)
Highgate		NB	Left	A (C)	0.48 (0.76)	60.4 (58.4)	29.8 (74.0)
Road		IND	Right	C (A)	0.72 (0.51)	15.8 (8.8)	27.0 (21.4)
		SB	Left	B (A)	0.67 (0.51)	75.5 (67.6)	48.1 (35.7)
		SB	Right	A (A)	0.26 (0.22)	2.4 (1.9)	0 (0)
		(Overall Intersection	C (C)	0.72 (0.76)	22.5 (26.4)	-
		EB	Through	B (A)	0.61 (0.33)	4.7 (6.2)	31.9 (29.4)
			Right	A (A)	0.11 (0.02)	0.3 (0.1)	0.6 (m0.3)
Baseline Basel at		WB	Left	C (A)	0.73 (0.45)	61.5 (62.7)	61.9 (24.5)
Road at Constellation	Traffic Signals	VVD	Through	A (A)	0.24 (0.59)	2.4 (7.7)	22.0 (131.3)
Drive		NB	Left	A (A)	0.25 (0.49)	61.0 (56.5)	12.7 (34.4)
		IND	Right	A (C)	0.43 (0.81)	22.0 (23.2)	14.2 (46.5)
		Overall Intersection		C (D)	0.73 (0.81)	11.5 (13.6)	-
		WB	Left / Right	B (B)	0.19 (0.32)	12.9 (14.8)	0.7* (1.4*)
Gemini Way	Min en Chen	NB	Through	A (A)	0 (0)	0 (0)	0* (0*)
at Centrepointe	Minor Stop Control	IND	Right	A (A)	0 (0)	0 (0)	0* (0*)
Drive	Control	SB	Left / Through	A (A)	0.16 (0.04)	2.3 (0.9)	0.6* (0.1*)
		(Overall Intersection	A (A)	-	2.4 (2.2)	-
Gemini Way		EB	Right	B (A)	0.13 (0.01)	10.6 (8.7)	0.5* (0*)
at	Minor Stop	NB	Through	A (A)	0 (0)	0 (0)	0* (0*)
Constellation	Control	SB	Through / Right	A (A)	0 (0)	0 (0)	0* (0*)
Drive		(Overall Intersection	A (A)	-	1.5 (0.1)	-
O		EB	Left / Through	A (A)	0.02 (0.02)	1.8 (6.0)	0.1* (0*)
Gemini Way at Site	Minor Stop	WB	Through / Right	A (A)	0 (0)	0 (0)	0* (0*)
Access	Control	SB	Left/ Right	A (A)	0.07 (0.06)	8.9 (8.7)	0.2* (0.2*)
		(Overall Intersection	A (A)	-	3.0 (4.7)	-

Table 19 - 2020 Total Future Intersection Operations (Synchro)

Notes:

1. Table format: AM (PM)

2. v/c - represents the anticipated volume divided by the predicted capacity

3. # - 95th percentile volume exceeds capacity, queue may be longer

4. * - Queue lengths for these movements are in vehicles

5. m – Volume for 95th percentile queue is metered by upstream signal

2140 BASELINE ROAD TRANSPORTATION IMPACT ASSESSMENT

The signalized intersection MMLOS assessment was undertaken for the intersections of Baseline Road at Centrepointe Drive / Highgate Road, and the Baseline Road at Constellation Drive intersection under 2020 Total Future conditions. Intersection operations under the AM and PM peak hours were considered in the assessment. MMLOS targets for areas "Within 600m of a rapid transit station" were applied.

MMLOS - Baseline Road at Centrepointe Drive/ Highgate Road (2020 Total Future):

Table 20 outlines 2020 Total Future MMLOS conditions for the signalized intersection of Baseline Road at Centrepointe

 Drive.

As outlined in the summary analysis, the pedestrian level of service at the intersection of Baseline Road / Centreppointe Drive is expected to continue to operate with a PLOS of F. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross, the intersection cycle length and subsequent delay to pedestrians, pedestrian crossing time, and the treatment of right-turn movements at intersections.

The cycling level of service at the intersection is expected to continue to operate with a BLOS of F. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds.

As the intersection of Baseline Road at Centrepointe Drive is an arterial-major collector intersection, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified to improve the pedestrian and cycling LOS at the intersection.

It is anticipated that the pedestrian, cycling and transit level of service will improve with the completion of the Baseline Transitway. Under the recommended plan, the Baseline Transitway maintains two general traffic lanes in each direction, and features 23 km of new sidewalks, 22 km of cycle tracks, a 4 km multi-use pathway, and 1.5 km of on-road/shoulder bike lanes.

MMLOS - Baseline Road at Constellation Drive (2020 Total Future):

Table 21 outlines 2020 Total Future MMLOS conditions for the signalized intersection of Baseline Road at Constellation

 Drive.

As outlined in the summary analysis, the pedestrian level of service at the intersection of Baseline Road / Constellation Drive is expected to continue to operate with a PLOS of F. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross, the intersection cycle length and subsequent delay to pedestrians, pedestrian crossing time, and the treatment of right-turn movements at intersections.

The cycling level of service at the intersection is expected to continue to operate with a BLOS of F. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds.

As the intersection of Baseline Road at Constellation Drive is an arterial-collector intersection, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified to improve the pedestrian and cycling LOS at the intersection.

			2018 Exist	ing Traffic		
	Segment	EB	WB	NB	SB	Target
	Lanes crossed	6	4	10	NA	
	Median (yes/no)	No	No	No	NA]
	Island refuge >=2.4m (yes/no)	Yes	Yes	Yes	NA]
	Left turn phasing	Protected	Protected	Protected	NA	
	Right turn conflict	Yield Control	Yield Control	Yield Control	NA]
	RTOR (yes/no)	Yes	Yes	Yes	NA]
	Leading ped interval (yes/no)	No	No	No	NA	
SC	Right turn corner radius (m)	Right-turn Channel	Right-turn Channel	Right-turn Channel	NA	
PLOS	Crosswalk treatment	Standard	Standard	Standard	NA	Α
	Cycle length (s)	130	130	130	NA	
	Effective walk time (s)	49	58	39	NA	
	PETSI Points	35	68	-30	NA	
	PETSI Points LOS	E	С	F	NA	
	Average Pedestrian Delay (s)	25.2	19.9	31.9	NA	
	Ped Delay LOS	С	В	D	NA	
	Level of Service	E	С	F	NA	
	Level of Service		F	-		
	Type of bike lane	Mixed	Mixed	Mixed	Mixed	
	Left-turn - lanes crossed	3	3	0	1	
	Left-turn - vehicle operating speed (km/hr)	60	60	40	40	
S	Right-turn - number of turn lanes	1	1	1	0	
BLOS	Right-turn - turn lane length (m)	140	100	110	NA (Shared)	В
ш	Right-turn - turning speed (km/hr)	15	15	15	15	
	Right-turn - location of bike lane	NA	NA	NA	NA	
	Level of Service	F	F	F	В	
	Level of Service		F	-		
TLOS	Intersection Average Delay (s)		26	.4		с
Ę	Level of Service)		
	Effective corner radius (m)	>15	>15	NA	NA	
TkLOS	Number of receiving lanes	>1	>1	NA	NA	D
TkL	Level of Service	A	А	NA	NA	5
	Level of Service		4	4		
S	Maximum Volume-to-capacity (v/c)	0.63	0.66	0.76	0.67	
VLOS	Level of Service	В	В	С	В	D
	Level of Service		C	;		

Table 20 - 2020 Total Future MMLOS (Baseline Road / Centrepointe Drive)

	Commont	20	018 Existing Traf	fic	Torret
	Segment	EB	WB	NB	Target
	Lanes crossed	5	NA	8	
	Median (yes/no)	No	NA	No	
	Island refuge >=2.4m (yes/no)	Yes	NA	Yes	
	Left turn phasing	Protected	NA	NA	
	Right turn conflict	Protected / Permissive	NA	Yield Control	
	RTOR (yes/no)	Yes	NA	Yes	
	Leading ped interval (yes/no)	No	NA	No	
PLOS	Right turn corner radius (m)	> 5 to 10	NA	Smart Channel	Α
님	Crosswalk treatment	Standard	NA	Standard	~
	Cycle length (s)	130	NA	130	
	Effective walk time (s)	66	NA	34	
	PETSI Points	50	NA	8	
	PETSI Points LOS	D	NA	F	
	Average Pedestrian Delay (s)	15.8	NA	35.4	
	Ped Delay LOS	В	NA	D	
	Level of Service	D	NA	F	
	Level of Service		F		
	Type of bike lane	Pocket Bike Lane	Mixed	Mixed	
	Left-turn - lanes crossed	NA	2	0	
	Left-turn - vehicle operating speed (km/hr)	NA	60	50	
S	Right-turn - number of turn lanes	50	NA	1	
BLOS	Right-turn - turn lane length (m)	140	NA	> 50	В
	Right-turn - turning speed (km/hr)	15	NA	15	
	Right-turn - location of bike lane	Left	NA	NA	
	Level of Service	В	F	F	
	Level of Service		F		
TLOS	Intersection Average Delay (s)		12.1		с
Ц	Level of Service		С		L
	Effective corner radius (m)	>15	>15	NA	
SO	Number of receiving lanes	>1	>1	NA	_
TkLOS	Level of Service	А	А	NA	D
	Level of Service		Α		
(0	Maximum Volume-to-capacity (v/c)	0.61	0.73	0.76	
VLOS	Level of Service	В	С	С	D
>	Level of Service		С		1

Table 21 - 2020 Total Future MMLOS (Baseline Road / Constellation Drive)

4.9.2.4 2025 Ultimate Conditions

Figure 21 and Figure 22 illustrate 2025 Ultimate AM and PM peak hour traffic volumes at the study area intersections.

All study area intersections are anticipated to operate satisfactorily under exisiting intersection geometry.

Table 22 summarizes the results of the Synchro analysis for 2025 Ultimate conditions.

Appendix C contains detailed intersection performance worksheets.

Scenario	Intersection Control	Α	pproach / Movement	LOS	V/C	Delay (s)	Queue 95 th (veh)
			Left	A (A)	0 (0.37)	0 (46.3)	0 (#20.7)
		EB	Through	C (A)	0.72 (0.36)	28.1 (27.3)	182.4 (69.3)
			Right	A (A)	0.56 (0.29)	3.9 (4.6)	22.6 (17.4)
Baseline			Left	A (A)	0.59 (0.59)	64.9 (71.4)	30.7 (37.2)
Road at		WB	Through	A (C)	0.25 (0.74)	8.9 (20.2)	31.5 (170.2)
Centrepointe Drive /	Traffic Signals		Right	A (A)	0.06 (0.14)	0.8 (1.8)	1.6 (3.7)
Highgate		NB	Left	A (C)	0.47 (0.77)	58.5 (57.4)	30.7 (79.0)
Road		IND	Right	C (A)	0.77 (0.52)	20.2 (8.3)	36.6 (21.6)
		CD.	Left	C (A)	0.72 (0.54)	79.5 (69.1)	#56.3 (38.7)
		SB	Right	A (A)	0.29 (0.24)	3.6 (2.2)	1.9 (0)
		(Overall Intersection	C (C)	0.77 (0.77)	24.7 (27.9)	-
		EB	Through	B (A)	0.68 (0.33)	5.4 (6.2)	37.6 (29.4)
			Right	A (A)	0.12 (0.02)	0.5 (0.1)	m1.1 (m0.3)
Baseline		WB	Left	C (A)	0.75 (0.45)	61.1 (62.7)	66.5 (24.5)
Road at Constellation	Traffic Signals	VVD	Through	A (A)	0.27 (0.59)	2.5 (7.7)	24.8 (131.3)
Drive		NB	Left	A (A)	0.27 (0.49)	61.1 (56.5)	13.6 (34.4)
		IND	Right	A (C)	0.45 (0.81)	21.6 (23.2)	14.7 (46.5)
		Overall Intersection		C (C)	0.75 (0.76)	11.9 (13.6)	-
		WB	Left / Right	B (B)	0.22 (0.32)	14.0 (14.8)	0.8* (1.4*)
Gemini Way	Minor Otom	NB	Through	A (A)	0 (0)	0 (0)	0* (0*)
at Centrepointe	Minor Stop Control	IND	Right	A (A)	0 (0)	0 (0)	0* (0*)
Drive	Control	SB	Left / Through	A (A)	0.18 (0.04)	2.4 (0.9)	0.6* (0.1*)
		(Overall Intersection	A (A)	-	2.5 (2.3)	-
Gemini Way		EB	Right	B (A)	0.15 (0.01)	10.9 (8.7)	0.5* (0*)
at	Minor Stop	NB	Through	A (A)	0 (0)	0 (0)	0* (0*)
Constellation	Control	SB	Through / Right	A (A)	0 (0)	0 (0)	0* (0*)
Drive		(Overall Intersection	A (A)	-	1.5 (0.1)	-
a · · · · ·		EB	Left / Through	A (A)	0.02 (0.02)	1.7 (5.8)	0.1* (0*)
Gemini Way at Site	Minor Stop	WB	Through / Right	A (A)	0 (0)	0 (0)	0* (0*)
Access	Control	SB	Left/ Right	A (A)	0.07 (0.06)	9.0 (8.7)	0.2* (0.2*)
,		(Overall Intersection	A (A)	-	2.9 (4.7)	-

Table 22 - 2025 Ultimate Intersection Operations (Synchro)

Notes:

Table format: AM (PM) 1.

2. v/c - represents the anticipated volume divided by the predicted capacity

3. # - 95th percentile volume exceeds capacity, queue may be longer

4. * - Queue lengths for these movements are in vehicles
5. m - Volume for 95th percentile queue is metered by upstream signal

2140 BASELINE ROAD TRANSPORTATION IMPACT ASSESSMENT

The signalized intersection MMLOS assessment was undertaken for the intersections of Baseline Road at Centrepointe Drive / Highgate Road, and the Baseline Road at Constellation Drive intersection under 2025 Ultimate conditions. Intersection operations under the AM and PM peak hours were considered in the assessment. MMLOS targets for areas "Within 600m of a rapid transit station" were applied.

MMLOS - Baseline Road at Centrepointe Drive/ Highgate Road (2025 Ultimate):

 Table 23 outlines 2025 Ultimate MMLOS conditions for the signalized intersection of Baseline Road at Centrepointe

 Drive.

As outlined in the summary analysis, the pedestrian level of service at the intersection of Baseline Road / Centreppointe Drive is expected to continue to operate with a PLOS of F. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross, the intersection cycle length and subsequent delay to pedestrians, pedestrian crossing time, and the treatment of right-turn movements at intersections.

The cycling level of service at the intersection is expected to continue to operate with a BLOS of F. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds.

As the intersection of Baseline Road at Centrepointe Drive is an arterial-major collector intersection, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified to improve the pedestrian and cycling LOS at the intersection.

It is anticipated that the pedestrian, cycling and transit level of service will improve with the completion of the Baseline Transitway. Under the recommended plan, the Baseline Transitway maintains two general traffic lanes in each direction, and features 23 km of new sidewalks, 22 km of cycle tracks, a 4 km multi-use pathway, and 1.5 km of on-road/shoulder bike lanes.

MMLOS - Baseline Road at Constellation Drive intersection (2025 Ultimate):

 Table 24 outlines 2025 Ultimate MMLOS conditions for the signalized intersection of Baseline Road at Constellation

 Drive.

As outlined in the summary analysis, the pedestrian level of service at the intersection of Baseline Road / Constellation Drive is expected to continue to operate with a PLOS of F. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross, the intersection cycle length and subsequent delay to pedestrians, pedestrian crossing time, and the treatment of right-turn movements at intersections.

The cycling level of service at the intersection is expected to continue to operate with a BLOS of F. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds.

As the intersection of Baseline Road at Constellation Drive is an arterial-collector intersection, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified to improve the pedestrian and cycling LOS at the intersection.

			2018 Exist	ing Traffic		
	Segment	EB	WB	NB	SB	Target
	Lanes crossed	6	4	10	NA	
	Median (yes/no)	No	No	No	NA	
	lsland refuge >=2.4m (yes/no)	Yes	Yes	Yes	NA	
	Left turn phasing	Protected	Protected	Protected	NA	
	Right turn conflict	Yield Control	Yield Control	Yield Control	NA	
	RTOR (yes/no)	Yes	Yes	Yes	NA	
	Leading ped interval (yes/no)	No	No	No	NA	
SC	Right turn corner radius (m)	Right-turn Channel	Right-turn Channel	Right-turn Channel	NA	
PLOS	Crosswalk treatment	Standard	Standard	Standard	NA	Α
	Cycle length (s)	130	130	130	NA	
	Effective walk time (s)	49	58	39	NA	
	PETSI Points	35	68	-30	NA	
	PETSI Points LOS	E	С	F	NA	
	Average Pedestrian Delay (s)	25.2	19.9	31.9	NA	
	Ped Delay LOS	С	В	D	NA	
	Level of Service	E	С	F	NA	
	Level of Service		F			
	Type of bike lane	Mixed	Mixed	Mixed	Mixed	
	Left-turn - lanes crossed	3	3	0	1	
	Left-turn - vehicle operating speed (km/hr)	60	60	40	40	
S	Right-turn - number of turn lanes	1	1	1	0	
BLOS	Right-turn - turn lane length (m)	140	100	110	NA (Shared)	В
ш	Right-turn - turning speed (km/hr)	15	15	15	15	
	Right-turn - location of bike lane	NA	NA	NA	NA	
	Level of Service	F	F	F	В	
	Level of Service		F	•		
TLOS	Intersection Average Delay (s)		27	.9		с
Ę	Level of Service)		Ŭ
	Effective corner radius (m)	>15	>15	NA	NA	
TkLOS	Number of receiving lanes	>1	>1	NA	NA	D
TkL	Level of Service	A	А	NA	NA	U
	Level of Service		4	4		
S	Maximum Volume-to-capacity (v/c)	0.72	0.74	0.77	0.72	
VLOS	Level of Service	С	С	С	С	D
>	Level of Service		C	>		

Table 23 - 2025 Ultimate MMLOS (Baseline Road at Centrepointe)

	Commont	20	018 Existing Traf	fic	Townst
	Segment	EB	WB	NB	Target
	Lanes crossed	5	NA	8	
	Median (yes/no)	No	NA	No	
	Island refuge >=2.4m (yes/no)	Yes	NA	Yes	
	Left turn phasing	Protected	NA	NA	
	Right turn conflict	Protected / Permissive	NA	Yield Control	
	RTOR (yes/no)	Yes	NA	Yes	
	Leading ped interval (yes/no)	No	NA	No	
PLOS	Right turn corner radius (m)	> 5 to 10	NA	Smart Channel	Α
Ч	Crosswalk treatment	Standard	NA	Standard	~
	Cycle length (s)	130	NA	130	
	Effective walk time (s)	66	NA	34	
	PETSI Points	50	NA	8	
	PETSI Points LOS	D	NA	F	
	Average Pedestrian Delay (s)	15.8	NA	35.4	
	Ped Delay LOS	В	NA	D	
	Level of Service	D	NA	F	
	Level of Service		F		
	Type of bike lane	Pocket Bike Lane	Mixed	Mixed	
	Left-turn - lanes crossed	NA	2	0	
	Left-turn - vehicle operating speed (km/hr)	NA	60	50	
SC	Right-turn - number of turn lanes	50	NA	1	_
BLOS	Right-turn - turn lane length (m)	140	NA	> 50	В
	Right-turn - turning speed (km/hr)	15	NA	15	
	Right-turn - location of bike lane	Left	NA	NA	
	Level of Service	В	F	F	
	Level of Service		F		
TLOS	Intersection Average Delay (s)		13.6		с
Ę	Level of Service		С		U
	Effective corner radius (m)	>15	>15	NA	
TkLOS	Number of receiving lanes	>1	>1	NA	D
TkL	Level of Service	А	А	NA	U
	Level of Service		Α		
S	Maximum Volume-to-capacity (v/c)	0.68	0.75	0.81	
VLOS	Level of Service	В	С	D	D
>	Level of Service		D		

Table 24 - 2025 Ultimate MMLOS (Baseline Road at Constellation Drive)

5.0 CONCLUSION

The development-generated trips are not anticipated to adversely impact traffic operations at study area intersections.

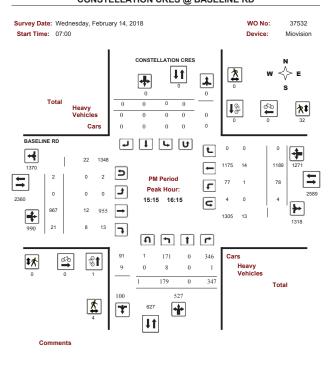
The Multi-Modal Level of Service (MMLOS) assessment identified poor pedestrian and cycling levels of service under existing conditions. As Baseline Road is an arterial roadway, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified at study area intersections.

Additional development within the Centrepointe Town Centre, as outlined in the Centrepointe Town Centre Secondary Plan, will provide future opportunities to improve pedestrian and cycling amenities on Centrepointe Drive, Constellation Drive, and Gemini Way.


It is anticipated that the pedestrian, cycling and transit levels of service will improve on Baseline Road with the completion of the Baseline Transitway. Under the recommended plan, the Baseline Transitway would maintain two general traffic lanes in each direction and would include 23 km of new sidewalks, 22 km of cycle tracks, a 4 km multiuse pathway, and 1.5 km of on-road/shoulder bike lanes. These improvements are currently identified under the TMP Network Concept and therefore are anticipated to be in place beyond the 2031 horizon.

Based on the transportation evaluation presented in this study, no roadway modification application (RMA) or a monitoring report is required for the proposed development. The proposed mixed-use development at 2140 Baseline Road within the Centrepointe community of Ottawa should be permitted to proceed from a transportation impact perspective.

Appendix A **TURNING MOVEMENT COUNTS**

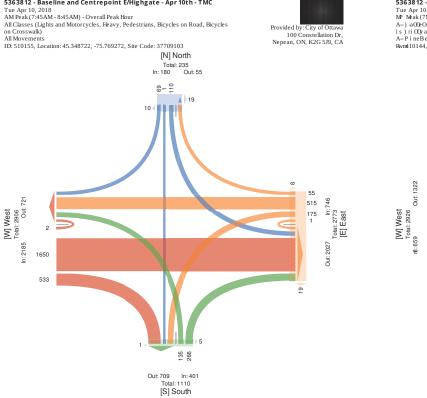

Transportation Services - Traffic Services

Ottawa Turning Movement Count - Full Study Peak Hour Diagram CONSTELLATION CRES @ BASELINE RD

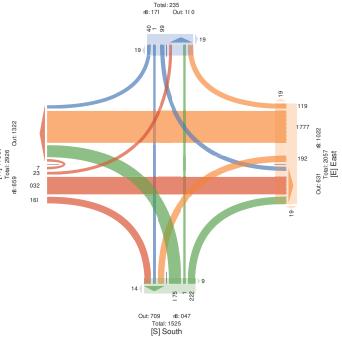
Ottawa **Transportation Services - Traffic Services**

Turning Movement Count - Full Study Peak Hour Diagram CONSTELLATION CRES @ BASELINE RD

2018-Mar-27


5363812 - Baseline and Centrepoint E/Highgate - Apr 10th - TMC

Page 1 of 4


2018-Mar-27

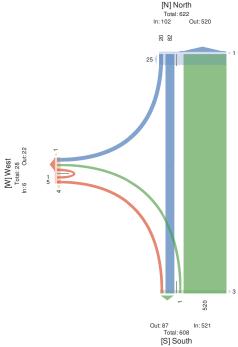
Page 4 of 4

MinlLeLShm) lChibf Caya 100) is Ctè–aCtis wr, Nepeas, fN, K2G4J6,)A

5363812 - Baseline and Centrepoint E/Highgate - Apr 10th - TMC 5363812 - Baseline and Centrepoint E/Highgate - Apr 10th - TMC Tue Apr 10, 2018 M Meka (7MP : 4MP 5 A -) ατοθ (VHHOCOSL I: 0 GrghgeQ t eanh, MeLeGElasQ dighgeOis c i aL, dighgeO is) ri QY ak5 A - P i neBes GO Rwm10144, vi gaGi sm74ID78, 22, :. 41.362, 2, 91@) i LenD , 0610D Rwm20144, vi gaGi sm74ID78, 22, :. 41.362, 2, 91@) i LenD , 0610D

[N] North

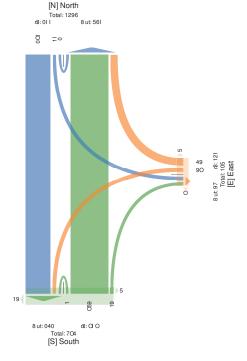
5363812 - Constellation and Gemini - Apr 10th - TMC


5305812 - COnstellation and Genamin - April Construction - Line Am Picak (7:40AM 58:40AM - 5) OrrawPeak Hur Awo wCEC (Sing EfCan n MHHrdchec I eaCe, PeneChlat C y kicdee CH BHan, y kicdee C H orfCRaw-AwMHDewer IC nl : DIO1, 1, sHahlth : 3D63349, , 57D7, DB. 2, Sile o Hie: 47710104 [N] North Total: 603 Out: 106 ln: 497 453 4 18 1 [W] West Total: 140 1: 96 Out: 44 96 ċ 24 17 2 106 Out: 549 In: 106 Total: 655 [S] South

5363812 - Constellation and Gemini - Apr 10th - TMC

540 58 12 - COnstellation and Geninin - Ap. 1997 -

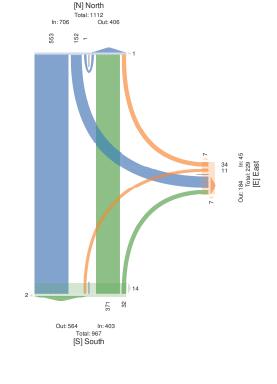
[N] North


4 of 6

5363812 - Centrepointe and Gemini - Apr 10th - TMC

5363812 - Centrepointe and Gemini - Apr 10th - TMC Tue Apr 10, 2018 MP Meak (745MP - 4455MP) A000 GHI el (HK-SI Lai g P hlbrtni @], deacn, Megel Iraai I, yant@l hi Bhag, yant@l hi vrhl Ra@) A00P hcewei II nl :5101DI, Hhralahi : 45,748027, -L5,LB832B, 6de vhge: 7DDI 1107 D D L = 1

Mihcogeg 9n: voln hSb II.a.Ra 100 vhil LeoQuldhi Ir, fepeai, bf, N2K 5OJ, vA


6 of 6

Provided Sy: City obOttawa 100 Constellation Dr, f epean, Of , N2K 5G, CA

5363812 - Centrepointe and Gemini - Apr 10th - TMC

Appendix B COLLISION DETAILED SUMMARY

	AC Reporting											FROM: 2012-01-01	TO: 2013-01-01
Former Municip		OIN	IEDI		Traffic Co	ntrol: Traffic s	ignal		Numb	er of Collisions: 13			
	DATE DA	у ті	ME I	ENV	LIGHT	IMPACT TYPE	CLASS	DIR	SURFACE COND'N	VEHICLE MANOEUVRE	VEHICLE TYPE	FIRST EVENT	No. PED
1	2012-01-04 W	e 17:	20 S	inow	Dusk	Rear end	P.D. only	V1 N V2 N	Wet Wet	Going ahead Stopped	Automobile, station Pick-up truck	Other motor vehicle Other motor vehicle	0
2	2012-01-20 Fr	14	:35 C	lear	Daylight	Rear end	P.D. only	V1 U V2 U	Wet Wet	Going ahead Stopped	Pick-up truck Automobile, station	Other motor vehicle Other motor vehicle	0
3	2012-01-23 M	19	:01 F	reezin	Dark	Turning	Non-fatal	V1 E V2 W	Slush Slush	Going ahead Turning left	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle	0
4	2012-02-03 Fr	17	:58 C	lear	Dark	Rear end	P.D. only	V1 W V2 W V3 W	Wet Wet	Slowing or Stopped Stopped	Automobile, station Automobile, station Automobile, station	Other motor vehicle Other motor vehicle	0
5	2012-02-26 St	n 18	:35 C	lear	Dark	Approaching	Non-fatal	V5 W V5 W V1 N V2 S V3 W V4 W	Dry Dry Dry Dry	Stopped Stopped Turning left Going ahead Turning left Turning left	Automobile, station Pick-up truck Pick-up truck Pick-up truck Automobile, station Passenger van	Other motor vehicle Other motor vehicle Other motor vehicle Other motor vehicle Other motor vehicle Other motor vehicle	0
6	2012-03-10 Sa	t 10	40 C	lear	Daylight	Rear end	P.D. only	V1 E V2 F	Wet	Changing lanes Slowing or	Automobile, station	Other motor vehicle	0
7	2012-03-16 Fr	13	:47 C	lear	Daylight	Rear end	P.D. only		Wet	Slowing or Slowing or	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle	0
8	2012-05-03 Th	u 10	:00 R	tain	Daylight	Rear end	P.D. only	V1 W V2 W	Wet Wet	Slowing or Stopped	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle	0
9	2012-05-06 Su	n 18	:39 C	lear	Daylight	Rear end	P.D. only	V1 W V2 W	Dry Dry	Going ahead Slowing or	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle	0
10	2012-06-01 Fr	22	:40 R	tain	Dark	Rear end	P.D. only	V1 W V2 W	Wet Wet	Going ahead Stopped	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle	0

	llision Main												
On	TRAC Repor	ting S	System									FROM: 2012-01-01	TO: 2013-01-01
11	2012-07-14	Sat	16:21	Clear	Daylight	Rear end	P.D. only	V1 W V2 W	Dry Dry	Going ahead Stopped	Municipal transit bus Automobile, station	Other motor vehicle Other motor vehicle	0
12	2012-09-04	Tue	19:07	Rain	Dusk	Rear end	P.D. only	V1 W V2 W	Wet	Slowing or Stopped	Passenger van Automobile, station	Other motor vehicle	0
13	2012-09-13	8 Thu	14:07	Clear	Daylight	Rear end	P.D. only		Dry Dry	Going ahead Stopped	Automobile, station Pick-up truck	Other motor vehicle Other motor vehicle	0
BASELINE	RD & CONS	TELL	ATIO	N CRE									
Former Muni	icipality: Ottawa				Traffic Co	ontrol: Traffic :	signal		Numbe	er of Collisions: 3			
	DATE	DAY	тімі	ENV	LIGHT	IMPACT TYPE	CLASS	DIR	SURFACE COND'N	VEHICLE MANOEUVRE	VEHICLE TYPE	FIRST EVENT	No. PED
14	2012-02-29	9 We	07:49	Clear	Daylight	Rear end	P.D. only	V1 E V2 E V3 E	Dry Dry Dry	Going ahead Going ahead Going ahead	Automobile, station Automobile, station Automobile, station	Other motor vehicle Other motor vehicle Other motor vehicle	0
15	2012-05-09	9 We	21:14	Rain	Dark	Single vehicle	P.D. only	V1 W	Wet	Unknown	Pick-up truck	Skidding/Sliding	0
16	2012-05-15	5 Tue	17:15	Clear	Daylight	Angle	P.D. only	V1 E V2 N	Dry Dry	Going ahead Turning left	Pick-up truck Automobile, station	Other motor vehicle Other motor vehicle	0
CENTREPO	DINTE DR &	GEM		Y									
Former Muni	icipality: Nepea	n			Traffic Co	ontrol: Stop si	gn		Numbe	er of Collisions: 1			
	DATE	DAY	TIME	ENV	LIGHT	IMPACT TYPE	CLASS	DIR	SURFACE COND'N	VEHICLE MANOEUVRE	VEHICLE TYPE	FIRST EVENT	No. PED
17	2012-08-24	Fri	17:10	Clear	Daylight	Rear end	P.D. only	V1 N V2 N	Dry Dry	Going ahead Stopped	Automobile, station Automobile, station	Other motor vehicle Other motor vehicle	0

(Note: Time of Day = "00.00" represents unknown collision time Wednesday, April 25, 2018

Page 1 of 2

(Note: Time of Day = "00:00" represents unknown collision time Wednesday, April 25, 2018

Page 2 of 2

Ottawa

City Operations - Transportation Services Collision Details Report - Public Version

Traffic Control: Tra	ffic signal							ollisions: 18	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	r Vehicle type	First Event	No. Ped
2016-May-13, Fri,09:15	Rain	Rear end	Non-fatal injury	Wet	East	Going ahead	Automobile, station wagon	Other motor vehicle	
					East	Slowing or stopping	Pick-up truck	Other motor vehicle	
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2016-Apr-06, Wed, 19:00	Snow	Angle	P.D. only	Slush	West	Going ahead	Automobile, station wagon	Other motor vehicle	
					North	Turning left	Automobile, station wagon	Other motor vehicle	
2016-Mar-29, Tue, 13:51	Clear	Sideswipe	P.D. only	Dry	West	Turning left	Pick-up truck	Other motor vehicle	
					West	Turning left	Automobile, station wagon	Other motor vehicle	
2015-Oct-28, Wed, 19:20	Rain	Sideswipe	P.D. only	Wet	West	Changing lanes		Other motor	
					West	Going ahead	station wagon Automobile, station wagon	vehicle Other motor vehicle	
2015-Jul-30, Thu,15:15	Clear	Rear end	P.D. only	Dry	North	Turning right	Automobile, station wagon	Other motor vehicle	
					North	Turning right	Automobile, station wagon	Other motor vehicle	

2015-Jun-26. Fri.15:31	Clear	Rear end	D.D. selv	Dry	West	Turning left	Automobile.	Other motor	
2010-301-20, FR,15:31	CIRRI	rtear end	P.D. only	Ury	viest	i unning lett	station wagon	vehicle	
					West	Turning left	Pick-up truck	Other motor vehicle	
2014-Nov-19. Wed.08:52		Sideswipe	P.D. only	Wet	West	Changing lanes		Other motor	
2014-NOV-19, Wed, U8:52	Clear	Sideswipe	P.D. only	wet	west	Changing lanes	station wagon	vehicle	
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
	-			_					
2014-May-14, Wed, 16:00	Clear	Sideswipe	P.D. only	Dry	East	Changing lanes	Automobile, station wagon	Other motor vehicle	
					East	Going ahead	Pick-up truck	Other motor vehicle	
	-								
2014-Apr-09, Wed,13:20	Clear	Rear end	P.D. only	Dry	North	Turning right	Pick-up truck	Other motor vehicle	
					North	Turning right	Automobile, station wagon	Other motor vehicle	
	-								
2014-Mar-07, Fri,15:55	Clear	Rear end	P.D. only	Wet	West	Unknown	Automobile, station wagon	Other motor vehicle	
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2014-Feb-14, Fri,10:00	Snow	Rear end	P.D. only	Loose snow	East	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2014-Feb-05, Wed,07:10	Clear	Rear end	P.D. only	Dry	East	Going ahead	Pick-up truck	Other motor	
					- ·			vehicle	
					East	Stopped	Automobile, station wagon	Other motor vehicle	
					East	Stopped	Automobile, station wagon	Other motor vehicle	

2014-Feb-03, Mon,08:46	Clear	Rear end	P.D. only	Slush	East	Slowing or stopping		Other motor vehicle
					East	Stopped		Other motor vehicle
2013-Dec-09, Mon,06:49	Snow	Rear end	P.D. only	Loose snow	East	Going ahead		Other motor vehicle
					East	Stopped		Other motor vehicle
2013-Sep-04, Wed,09:38	Clear	Angle	P.D. only	Dry	West	Going ahead		Other motor vehicle
					North	Turning left	Municipal transit bus	Other motor vehicle
2013-Aug-28, Wed, 11:30	Clear	Turning movement	P.D. only	Dry	East	Turning right	Pick-up truck	Other motor vehicle
					East	Turning right		Other motor vehicle
2013-Jul-18, Thu,12:00	Clear	Rear end	P.D. only	Dry	West	Slowing or stopping	g Unknown	Other motor vehicle
					West	Stopped		Other motor vehicle
2013-Jan-24, Thu,08:00	Clear	Rear end	P.D. only	Ice	East	Slowing or stopping		Other motor vehicle
					East	Stopped	Pick-up truck	Other motor vehicle

Gu
Ottawa

City Operations - Transportation Services Collision Details Report - Public Version

Traffic Control: Tra	ffic signal						Total C	ollisions: 31	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2016-Dec-22, Thu,09:00	Snow	SMV other	P.D. only	Loose snow	West	Turning right	Automobile, station wagon	Skidding/sliding	
2016-Dec-15, Thu, 19:52	Clear	Sideswipe	P.D. only	lce	West	Changing lanes	Automobile, station wagon	Other motor vehicle	
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2016-Dec-04, Sun,21:16	Clear	Turning movement	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	
					East	Turning left	Pick-up truck	Other motor vehicle	
2016-Oct-16, Sun,09:10	Clear	Angle	Non-fatal injury	Dry	West	Going ahead	Pick-up truck	Other motor vehicle	
					North	Turning left	Pick-up truck	Other motor vehicle	
2016-Sep-07, Wed, 15:03	Fog, mist, smoke dust	, Rear end	Non-fatal injury	Dry	West	Turning left	Automobile, station wagon	Other motor vehicle	
					West	Turning left	Automobile, station wagon	Other motor vehicle	
2016-Aug-17, Wed,06:00	Rain	SMV other	P.D. only	Wet	North	Turning left	Automobile, station wagon	Curb	

Wednesday, April 25, 2018

Page 1 of 5

Wednesday, April 25, 2018

Page 3 of 3

2016-Mar-11, Fri,15:30	Clear	Rear end	Non-fatal injury	Dry	West	Going ahead	Pick-up truck	Other motor vehicle		
					West	Stopped	Automobile, station wagon	Other motor vehicle		
					West	Stopped	Automobile, station wagon	Other motor vehicle		
2016-Jan-29, Fri,07:26	Snow	Angle	P.D. only	Loose snow	North	Turning left	Automobile, station wagon	Other motor vehicle		
					East	Going ahead	Municipal transit bus	Other motor vehicle		
2015-Nov-23, Mon,07:47	Clear	Rear end	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle		
					East	Turning right	Automobile, station wagon	Other motor vehicle		
2015-Oct-31, Sat, 12:09	Clear	Turning movement	Non-fatal injury	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle		
					East	Turning left	Automobile, station wagon	Other motor vehicle		
2015-Oct-18, Sun,08:06	Clear	Rear end	Non-fatal injury	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicle		
					East	Stopped	Automobile, station wagon	Other motor vehicle		
2015-Oct-13, Tue,07:59	Rain	Rear end	P.D. only	Wet	East	Going ahead	Pick-up truck	Other motor vehicle		
					East	Stopped	Pick-up truck	Other motor vehicle		
					East	Stopped	Automobile, station wagon	Other motor vehicle		
					East	Stopped	Automobile, station wagon	Other motor vehicle		
					East	Stopped	Pick-up truck	Other motor vehicle		
Vednesday, April 25	, 2018								Pag	je 2 of 5

2015-Aug-01, Sat,21:04	Clear	Turning movement	P.D. only	Dry	East	Going ahead	Pick-up truck	Other motor vehicle
					West	Turning left	Automobile, station wagon	Other motor vehicle
2015-Jun-16, Tue, 11:50	Rain	Rear end	Non-fatal injury	Wet	West	Slowing or stopping	g Automobile, station wagon	Other motor vehicle
					West	Stopped	Pick-up truck	Other motor vehicle
2015-Jan-27, Tue,08:19	Clear	Rear end	P.D. only	Dry	East	Slowing or stopping	g Automobile, station wagon	Other motor vehicle
					East	Slowing or stopping	g Passenger van	Other motor vehicle
					West	Slowing or stopping	g Pick-up truck	Other motor vehicle
					West	Slowing or stopping	g Pick-up truck	Other motor vehicle
2014-Oct-16, Thu, 12:33	Rain	Turning movement	P.D. only	Wet	East	Going ahead	Automobile, station wagon	Other motor vehicle
					West	Turning left	Passenger van	Other motor vehicle
2014-Oct-06, Mon,13:15	Rain	Sideswipe	P.D. only	Wet	West	Changing lanes	Pick-up truck	Other motor vehicle
					West	Going ahead	Automobile, station wagon	Other motor vehicle
2014-Oct-03, Fri,21:53	Clear	Rear end	P.D. only	Wet	West	Slowing or stopping	g Automobile, station wagon	Other motor vehicle
					West	Stopped	Pick-up truck	Other motor vehicle

Wednesday, April 25, 2018

2014-Jul-30, Wed,10:31	Clear	Rear end	P.D. only	Dry	West West	Going ahead Stopped	Automobile, station wagon Automobile, station wagon	Other motor vehicle Other motor vehicle
2014-May-26, Mon, 18:27	Clear	Turning movement	P.D. only	Dry	West	Turning left	Automobile, station wagon	Other motor vehicle
					West	Turning left	Automobile, station wagon	Other motor vehicle
2014-May-18, Sun, 12:38	Clear	Rear end	Non-fatal injury	Dry	North	Turning right	Automobile, station wagon	Other motor vehicle
					North	Turning right	Passenger van	Other motor vehicle
2014-May-01, Thu,20:35	Clear	Turning movement	P.D. only	Dry	West	Turning left	Automobile, station wagon	Other motor vehicle
					West	Turning left	Automobile, station wagon	Other motor vehicle
2014-Apr-22, Tue, 15:33	Rain	Turning movement	Non-fatal injury	Wet	East	Turning left	Automobile, station wagon	Other motor vehicle
					West	Going ahead	Passenger van	Other motor vehicle
2014-Feb-14, Fri,09:00	Snow	Sideswipe	P.D. only	Loose snow	West	Going ahead	Automobile, station wagon	Other motor vehicle
					West	Turning left	Passenger van	Other motor vehicle
					West	Turning left	Automobile, station wagon	Other motor vehicle
					West	Turning left	Automobile, station wagon	Other motor vehicle
					West	Turning left	Passenger van	Other motor vehicle

2014-Jan-06, Mon,02:42	Freezing Rain	SMV other	P.D. only	lce	North	Going ahead	Automobile, station wagon	Ran off road
2013-Nov-27, Wed,08:58	Snow	SMV other	P.D. only	Slush	West	Going ahead	Automobile, station wagon	Skidding/sliding
2013-Nov-26, Tue, 17:36	Snow	SMV other	P.D. only	Slush	East	Turning left	Pick-up truck	Pole (utility, power)
2013-Aug-31, Sat, 13:00	Clear	Rear end	P.D. only	Dry	North	Turning right	Automobile, station wagon	Other motor vehicle
					North	Turning right	Pick-up truck	Other motor vehicle
2013-May-23, Thu, 13:42	Rain	Rear end	P.D. only	Wet	West	Turning left	Pick-up truck	Other motor vehicle
					West	Turning left	Pick-up truck	Other motor vehicle
2013-May-08, Wed,18:10	Clear	Angle	P.D. only	Dry	East	Going ahead	Bicycle	Other motor vehicle
					North	Turning left	Automobile, station wagon	Cyclist
2013-Feb-22, Fri,08:48	Clear	Rear end	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle
					West S	Slowing or stopping	g Automobile, station wagon	Other motor vehicle

Wednesday, April 25, 2018

Page 4 of 5

Wednesday, April 25, 2018

Page 5 of 5

Ottawa

City Operations - Transportation Services Collision Details Report - Public Version

							From: Janu	ary 1, 2013	To: December 31, 2016
Location: CENTR	EPOINTE DR	@ GEMINI WAY							
Traffic Control: Sto	p sign						Total C	ollisions: 2	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2016-Feb-04, Thu,09:10	Clear	Angle	P.D. only	Wet	West	Turning left	Automobile, station wagon	Other motor vehicle	
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2013-May-04, Sat,07:49	Clear	Turning movement	P.D. only	Dry	North	Turning right	Automobile, station wagon	Other motor vehicle	
					North	Going ahead	Automobile, station wagon	Other motor vehicle	

Page 1 of 1

Appendix C INTERSECTION PERFORMANCE WORKSHEET

Lanes, Volumes, Timings 1: Centrepointe Drive/Highgate Road & Baseline Road

2140 Baseline Road TIA 2018 Existing AM Peak

	٦	-	\mathbf{r}	*	+	×.	•	1	1	1	Ļ	-
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations	٦	<u>†††</u>	1	ኻኻ	† †	1	ኻኻ		1	٦		
raffic Volume (vph)	0	1650	533	175	515	55	135	0	266	110	0	6
uture Volume (vph)	0	1650	533	175	515	55	135	0	266	110	0	6
Satd. Flow (prot)	1883	5142	1601	3471	3579	1601	3471	0	1601	1789	0	160
It Permitted				0.950			0.950	-		0.950	-	
Satd. Flow (perm)	1883	5142	1601	3471	3579	1601	3471	0	1601	1789	0	160
Satd. Flow (RTOR)	1000	0112	579	0111	0010	85	0.111	Ŭ	289		Ű	13
ane Group Flow (vph)	0	1793	579	190	560	60	147	0	289	120	0	7
Furn Type	Perm	NA	Perm	Prot	NA	Perm	Prot	0	Perm	Prot	0	Perr
Protected Phases	renn	2	renn	1	6	reim	10		reilli	4		ren
Permitted Phases	2	2	2		0	6	10		10	4		
Detector Phase	2	2	2	1	6	6	10		10	4		
Switch Phase	2	2	2		0	0	10		10	4		
Minimum Initial (s)	10.0	10.0	10.0	5.0	10.0	10.0	10.0		10.0	10.0		10.
Minimum Split (s)	25.7	25.7	25.7	11.2	25.7	25.7	38.8		38.8	16.3		16.
Total Split (s)	47.0	47.0	47.0	24.0	71.0	71.0	39.0		39.0	20.0		20.
Fotal Split (%)	36.2%	36.2%	36.2%	18.5%	54.6%	54.6%	30.0%		30.0%	15.4%		15.49
fellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.0		3.0	3.3		3.
All-Red Time (s)	2.0	2.0	2.0	2.5	2.0	2.0	3.8		3.8	3.0		3.
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.
Fotal Lost Time (s)	5.7	5.7	5.7	6.2	5.7	5.7	6.8		6.8	6.3		6.
.ead/Lag	Lag	Lag	Lag	Lead								
ead-Lag Optimize?	Yes	Yes	Yes	Yes								
Recall Mode	C-Max	C-Max	C-Max	None	C-Max	C-Max	None		None	None		Non
Act Effct Green (s)		68.0	68.0	12.4	86.6	86.6	11.9		11.9	12.6		12.
Actuated g/C Ratio		0.52	0.52	0.10	0.67	0.67	0.09		0.09	0.10		0.1
/c Ratio		0.67	0.52	0.57	0.23	0.05	0.46		0.71	0.69		0.2
Control Delay		25.1	3.4	66.7	8.0	0.6	60.3		16.0	77.4		2.
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.
Total Delay		25.1	3.4	66.7	8.0	0.6	60.3		16.0	77.4		2.
.0S		С	A	E	А	A	E		В	E		
Approach Delay		19.8			21.2			30.9			48.6	
Approach LOS		В			С			С			D	
ntersection Summary												
Cycle Length: 130 Actuated Cycle Length: 130												
Offset: 76 (58%), Reference		0.EDTI	and GIME	T Clore	of Croop							
Vatural Cycle: 115	u to priase	Z.LDIL	anu o.w.	I, Starr	JI Gleen							
Control Type: Actuated-Cod	rdinatod											
Maximum v/c Ratio: 0.71	nuinateu											
	0.0				ntersectio	- 1 00: 0						
ntersection Signal Delay: 2					CU Level							
ntersection Capacity Utiliza	1001 00.2%	•		10	JU Level	of Servic	86					
Analysis Period (min) 15												
Splits and Phases: 1: Ce	ntrepointe	Drive/Hig	hgate Roa	ad & Bas	eline Roa	d						
√ Ø1	02 (R)					<* ø4		10	10			
<u></u>	7s					20 s		39 s				
Ø6 (R)				_								
												_

Lanes, Volumes, T 2: Constellation Dr		aseline	e Road				2140 Baseline Road TIA 2018 Existing AM Peak
	→	¥	4	+	٩	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	†††	1	ሻሻ	††	ሻሻ	1	
Traffic Volume (vph)	1901	125	342	697	48	64	
Future Volume (vph)	1901	125	342	697	48	64	
Satd. Flow (prot)	5142	1601	3471	3579	3471	1601	
Flt Permitted			0.950		0.950		
Satd. Flow (perm)	5142	1601	3471	3579	3471	1601	
Satd. Flow (RTOR)		70				70	
Lane Group Flow (vph)	2066	136	372	758	52	70	
Turn Type	NA	pm+ov	Prot	NA	Prot	Perm	
Protected Phases	2	4	1	6	4		
Permitted Phases		2				4	
Detector Phase	2	4	1	6	4	4	
Switch Phase	5.0	5.0	5.0	40.0	5.0	5.0	
Minimum Initial (s)	5.0	5.0	5.0	10.0	5.0	5.0	
Minimum Split (s)	32.5 66.0	33.9 34.0	11.5 30.0	16.5 96.0	33.9 34.0	33.9 34.0	
Total Split (s)	50.8%	26.2%	23.1%	96.0 73.8%	26.2%	26.2%	
Total Split (%) Yellow Time (s)	3.7	20.2%	23.1%	3.7	20.2%	3.0	
All-Red Time (s)	2.8	3.9	2.8	2.8	3.9	3.9	
	2.0	0.0	2.0	2.0	0.0	0.0	
Lost Time Adjust (s) Total Lost Time (s)	6.5	6.9	6.5	6.5	6.9	6.9	
Lead/Lag	Lag	0.5	Lead	0.5	0.5	0.5	
Lead-Lag Optimize?	Yes		Yes				
Recall Mode	C-Max	None	None	C-Max	None	None	
Act Effct Green (s)	83.4	97.5	19.1	109.0	7.6	7.6	
Actuated g/C Ratio	0.64	0.75	0.15	0.84	0.06	0.06	
v/c Ratio	0.63	0.11	0.73	0.25	0.26	0.44	
Control Delay	4.5	0.2	61.5	2.4	61.0	21.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	4.5	0.2	61.5	2.4	61.0	21.7	
LOS	A	A	E	A	E	С	
Approach Delay	4.3			21.9	38.5		
Approach LOS	A			С	D		
Intersection Summary							
Cycle Length: 130 Actuated Cycle Length: 130)						
Offset: 74 (57%), Referenc Natural Cycle: 90	ed to phase	e 2:EBT a	ind 6:WB	T, Start of	f Green		
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 0.73							
Intersection Signal Delay: 1	1.2			li li	ntersectio	n LOS: B	
Intersection Capacity Utilization	ation 67.2%	5		10	CU Level	of Service C	
Analysis Period (min) 15							
Splits and Phases: 2: Co	nstellation	Drive & B	laseline R	load			
√ Ø1 30 s	66 s	12 (R)					3 ∕04 34 s
406 (R)	ou s						5 7 5
96 s							Cumpler: 0.Dt
06/01/2018							Synchro 9 Report Page 3

Queues 1: Centrepointe Drive/Highgate Road & Baseline Road

2140 Baseline Road TIA 2018 Existing AM Peak

	+	*	4	+	•	1	1	1	~	
ane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBR	SBL	SBR	
Lane Group Flow (vph)	1793	579	190	560	60	147	289	120	75	
v/c Ratio	0.67	0.52	0.57	0.23	0.05	0.46	0.71	0.69	0.27	
Control Delay	25.1	3.4	66.7	8.0	0.6	60.3	16.0	77.4	2.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	25.1	3.4	66.7	8.0	0.6	60.3	16.0	77.4	2.6	
Queue Length 50th (m)	119.1	0.0	25.1	24.4	0.0	18.9	0.0	30.0	0.0	
Queue Length 95th (m)	157.6	19.3	30.4	30.2	1.3	28.3	26.1	#53.1	0.7	
Internal Link Dist (m)	158.7			258.8						
Turn Bay Length (m)		135.0	110.0		95.0			37.5		
Base Capacity (vph)	2691	1114	475	2385	1095	859	613	188	286	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.67	0.52	0.40	0.23	0.05	0.17	0.47	0.64	0.26	
Intersection Summary										
# 95th percentile volume e	xceeds ca	pacity, qu	eue may	be longer	r.					

Intersection Summary # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

06/01/2018

Synchro 9 Report Page 2

Lane Group Flow (vph) 2066 136 372 758 52 70 vic Ratio 0.63 0.11 0.73 0.25 0.26 0.44 Control Delay 4.5 0.2 61.5 2.4 61.0 21.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 1.0 21.7 Queue Length 50th (m) 22.0 0.1 47.5 15.7 6.7 0.0 Queue Length 59th (m) 30.4 m0.4 61.4 22.2 1.3 1 1.4.5 Itemati Link Dist(m) 25.8 131.8 77.4 61.0 81.8 82 82.9 83.9 83.9 83.9 83.9 33.00 14.48 62.9 3002 723 389 53.9				Road				2018 Existing AM Pea
Lane Group Flow (vph) 2066 136 372 758 52 70 vic Ratio 0.63 0.11 0.73 0.25 0.26 0.44 Control Delay 4.5 0.2 61.5 2.4 61.0 21.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 1.0 21.7 Queue Length 50th (m) 22.0 0.1 47.5 15.7 6.7 0.0 Queue Length 59th (m) 30.4 m0.4 61.4 22.2 1.3 1 1.4.5 Itemati Link Dist(m) 25.8 131.8 77.4 61.0 81.8 82 82.9 83.9 83.9 83.9 83.9 33.00 14.48 62.9 3002 723 389 53.9		-	\rightarrow	*	+	1	1	
vic Ratio 0.63 0.11 0.73 0.25 0.26 0.44 Control Delay 4.5 0.2 61.5 2.4 61.0 21.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 4.5 0.2 61.5 2.4 61.0 21.7 Queue Length 50th (m) 22.0 0.1 47.5 15.7 6.7 0.0 Queue Length 50th (m) 22.0 0.1 47.5 15.7 6.7 0.0 Queue Length 50th (m) 23.0 1.4 1.4 5 1.4 5 Itemant Link Dist(m) 25.0 115.0 60.0 8 8 8 Survation Cap Reduct 0	Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Control Delay 4.5 0.2 61.5 2.4 61.0 21.7 Deuee Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 4.5 0.2 61.5 2.4 61.0 21.7 Queue Length 50th (m) 22.0 0.1 47.5 15.7 67 0.0 Queue Length 95th (m) 30.4 m0.4 61.4 23.2 13.1 14.5 Internal Link Dist (m) 25.0 51.0 15.0 60.0 Base Capacity (vph) 300 1448 629 302 723 389 Starvation Cap Reducth 0 0 0 0 0 0 0 Spillback Cap Reducth 0 0 0 0 0 0 0 0	Lane Group Flow (vph)	2066	136	372	758	52	70	
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 4.5 0.2 61.5 2.4 61.0 21.7 Queue Length 50th (m) 22.0 0.1 47.5 15.7 6.7 0.0 Queue Length 59th (m) 30.4 m0.4 61.4 23.2 13.1 14.5 Itemat Link Dist(m) 25.8 131.8 77.4 - Turn Bay Length (m) 55.0 115.0 60.0 - Base Capacity (vph) 3300 1448 629 3002 723 389 Starvation Cap Reducth 0 0 0 0 0 0 Splitback Cap Reducth 0 0 0 0 0 0	v/c Ratio	0.63	0.11	0.73	0.25	0.26	0.44	
Total Delay 4.5 0.2 61.5 2.4 61.0 21.7 Queue Length Stbh (m) 20.0 1.4 7.5 15.7 6.7 0.0 Queue Length Stbh (m) 30.4 m0.4 61.4 23.2 13.1 14.5 Internal Link Dist (m) 258.8 131.8 77.4 60.0 Base Capacity (vph) 30.0 144.8 629 302.7 723 389 Starvation Cap Reducth 0 0 0 0 0 0 50.0 Spillback Cap Reducth 0	Control Delay	4.5	0.2	61.5	2.4	61.0	21.7	
Queue Length 50th (m) 22.0 0.1 47.5 15.7 6.7 0.0 Queue Length 95th (m) 30.4 m0.4 61.4 23.2 13.1 14.5 Internal Link Dist(m) 258.8 131.8 77.4 60.0 Base Capacity (vph) 33.00 144.8 62.9 3002 723 389 Starvation Cap Reductn 0 0 0 0 0 0 0 Spillback Cap Reductn 0	Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Oueue Length 95b (m) 30.4 m.0.4 61.4 23.2 13.1 14.5 Turn Bay Length (m) 55.0 115.0 7.4 60.0 Base Capacity (tyh) 3300 144.8 629 3002 723 389 Starvation Cap Reducth 0 0 0 0 0 0 Spillback Cap Reducth 0 0 0 0 0 0	Total Delay	4.5	0.2	61.5	2.4	61.0	21.7	
Internal Link Dist (m) 258.8 131.8 77.4 Turn Bay Length (m) 55.0 115.0 60.0 Base Capacity (vph) 3300 1448 629 3002 723 389 Starvation Cap Reductn 0 0 0 0 0 Starvation Cap Reductn 0 0 0 0 Starvation Cap Reductn 0 <td>Queue Length 50th (m)</td> <td>22.0</td> <td>0.1</td> <td>47.5</td> <td>15.7</td> <td>6.7</td> <td>0.0</td> <td></td>	Queue Length 50th (m)	22.0	0.1	47.5	15.7	6.7	0.0	
Turn Bay Length (m) 55.0 115.0 60.0 Base Capacity (vph) 3300 1448 629 3002 723 389 Starvation Cap Reducth 0 </td <td>Queue Length 95th (m)</td> <td>30.4</td> <td>m0.4</td> <td>61.4</td> <td>23.2</td> <td>13.1</td> <td>14.5</td> <td></td>	Queue Length 95th (m)	30.4	m0.4	61.4	23.2	13.1	14.5	
Base Capacity (vph) 3300 1448 629 3002 723 389 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0	Internal Link Dist (m)	258.8			131.8	77.4		
Stanvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0	Turn Bay Length (m)		55.0	115.0			60.0	
Spillback Cap Reductn 0	Base Capacity (vph)	3300	1448	629	3002	723	389	
Storage Cap Reductn 0 0 0 0 0 0	Starvation Cap Reductn	0	0	0	0	0	0	
	Spillback Cap Reductn	0	0	0	0	0	0	
	Storage Cap Reductn	0	0	0	0	0	0	
	Reduced v/c Ratio	0.63	0.09	0.59	0.25	0.07	0.18	

06/01/2018

2140 Baseline Road TIA 2018 Existing AM Peak

Intersection	_	_	_		_	_
Int Delay, s/veh	1.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		1	1	UDL	414
Traffic Vol, veh/h	11	34	367	32	152	557
Future Vol. veh/h	11	34	367	32	152	557
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- 3top	None	-			None
Storage Length	0	NULLE -		450		-
Veh in Median Storage			0	400		0
Grade, %	,# 0 0		0			0
	92	92	92	92	92	92
Peak Hour Factor		92		92		92
Heavy Vehicles, %	2		2		2	
Mvmt Flow	12	37	399	35	165	605
Major/Minor N	Ainor1	1	Major1	1	Major2	
Conflicting Flow All	972	199	0	0	399	0
Stage 1	399	-	-	-	-	-
Stage 2	573	-		-		-
Critical Hdwv	6.29	6.94		-	4.14	-
Critical Hdwy Stg 1	5.84	-	-			
Critical Hdwy Stg 2	6.04	-		-		-
Follow-up Hdwy	3.67	3.32			2.22	-
Pot Cap-1 Maneuver	283	809		-	1156	-
Stage 1	625					-
Stage 2	495		-		-	-
Platoon blocked. %	455					
Mov Cap-1 Maneuver	222	809			1156	
Mov Cap-1 Maneuver	222	009			1150	
	625					-
Stage 1	389				-	
Stage 2	369	-				-
Approach	WB		NB		SB	
	13.1		0		2.1	
HCM Control Delay, s						
HCM Control Delay, s HCM LOS	В					
	В					
HCM LOS	-	NDT		VDI n4	CDI	CDT
HCM LOS Minor Lane/Major Mvm	-	NBT	NBRV	VBLn1	SBL	SBT
HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	-	-	-	491	1156	-
HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	-	NBT - -	NBRV -	491 0.1	1156 0.143	-
HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	-	-	-	491 0.1 13.1	1156 0.143 8.6	0.3
HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	t	-	-	491 0.1	1156 0.143	-

06/01/2018

06/01/2018

Synchro 9 Report Page 6

Synchro 9 Report Page 1

	۶		~	4	+	×	•	Ť	~	5	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lane Configurations	٦	111	1	ኘካ	<u>†</u> †	1	ኘካ		1	٢		
Traffic Volume (vph)	28	682	194	172	1333	117	430	0	222	77	0	5
Future Volume (vph)	28	682	194	172	1333	117	430	0	222	77	0	5
Satd. Flow (prot)	1789	5142	1601	3471	3579	1601	3471	0	1601	1789	0	160
Flt Permitted	0.950	0142	1001	0.950	0070	1001	0.950	0	1001	0.950	0	100
Satd. Flow (perm)	1789	5142	1601	3471	3579	1601	3471	0	1601	1789	0	160
Satd. Flow (RTOR)	1703	J 142	211	3471	3313	137	J4/1	0	241	1705	U	18
ane Group Flow (vph)	30	741	211	187	1449	127	467	0	241	84	0	F
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	0	Perm	Prot	0	Pen
Protected Phases	5	2	reim	1	NA 6	Pellili	10		Pellili	4		rei
Permitted Phases	5	2	2		0	6	10		10	4		
Detector Phase	5	2	2	1	6	6	10		10	4		
Switch Phase	5	2	2		0	0	10		10	4		
	5.0	10.0	10.0	5.0	10.0	10.0	10.0		10.0	10.0		10
Minimum Initial (s)												
Minimum Split (s)	11.2	25.7	25.7	11.2	25.7	25.7	38.8		38.8	16.3		16
Total Split (s)	12.0	49.0	49.0	21.0	58.0	58.0	39.0		39.0	21.0		21
Total Split (%)	9.2%	37.7%	37.7%	16.2%	44.6%	44.6%	30.0%		30.0%	16.2%		16.2
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.0		3.0	3.3		3
All-Red Time (s)	2.5	2.0	2.0	2.5	2.0	2.0	3.8		3.8	3.0		3.
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.
Fotal Lost Time (s)	6.2	5.7	5.7	6.2	5.7	5.7	6.8		6.8	6.3		6
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes						
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None		None	None		Non
Act Effct Green (s)	7.5	57.7	57.7	12.3	67.5	67.5	23.1		23.1	11.9		11.
Actuated g/C Ratio	0.06	0.44	0.44	0.09	0.52	0.52	0.18		0.18	0.09		0.0
v/c Ratio	0.29	0.32	0.25	0.57	0.78	0.14	0.76		0.50	0.52		0.1
Control Delay	65.6	25.3	4.4	73.5	27.0	1.3	58.8		8.9	67.4		1.
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.
Total Delay	65.6	25.3	4.4	73.5	27.0	1.3	58.8		8.9	67.4		1.
LOS	E	С	A	E	С	A	E		A	E		
Approach Delay		22.0			30.1			41.8			39.6	
Approach LOS		С			С			D			D	
ntersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 130												
Offset: 71 (55%), Reference	ed to phase	e 2:EBT a	ind 6:WB	F, Start of	Green							
Vatural Cycle: 115												
Control Type: Actuated-Coo	ordinated											
Maximum v/c Ratio: 0.78												
ntersection Signal Delay: 3					ntersectio							
ntersection Capacity Utiliza	tion 70.8%	5		10	CU Level	of Service	еC					
Analysis Period (min) 15												
Splits and Phases: 1: Ce	ntrepointe	Drive/Hia	hgate Ro	ad & Bas	eline Roa	d						
	Ø2 (R)		y = 12 . 10			A #Ø4		• ∿ø	10			
21 s 49 s	02 (K)					*Ø4 21 s		39 s	10	_	_	

HCM 2010 TWSC 4: Constellation Drive & Gemini Way

Intersection						
nt Delay, s/veh	1.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	LUL	1	HDL	11	≜ 1₽	OBIT
Traffic Vol, veh/h	0	96	0	112	423	44
Future Vol. veh/h	0	96	0	112	423	44
Conflicting Peds, #/hr	0	0	0	0	42.5	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized						
	-			None	-	
Storage Length	-	0	-	-	-	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	104	0	122	460	48
Major/Minor N	/linor2		Major1	,	Major2	
						0
Conflicting Flow All	-	254		0	-	0
Stage 1		-		-		-
Stage 2	-	-		-	-	-
Critical Hdwy		6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	745	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	
Mov Cap-1 Maneuver		745				
Mov Cap-2 Maneuver	-			-		
Stage 1						-
Stage 2						
Stage 2	-			-	-	
Approach	EB		NB		SB	
HCM Control Delay, s	10.6		0		0	
HCM LOS	B					
	-					
		NBT E	EBLn1	SBT	SBR	
Minor Lane/Major Mvm			745		-	
Minor Lane/Major Mvm Capacity (veh/h)		-	745			
		-	0.14	-		
Capacity (veh/h) HCM Lane V/C Ratio					-	
Capacity (veh/h)		-	0.14	-		

06/01/2018

Synchro 9 Report Page 8

	٦	->	\mathbf{i}	*	-	•	1	1	1	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBR	SBL	SBR
Lane Group Flow (vph)	30	741	211	187	1449	127	467	241	84	61
v/c Ratio	0.29	0.32	0.25	0.57	0.78	0.14	0.76	0.50	0.52	0.19
Control Delay	65.6	25.3	4.4	73.5	27.0	1.3	58.8	8.9	67.4	1.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	65.6	25.3	4.4	73.5	27.0	1.3	58.8	8.9	67.4	1.4
Queue Length 50th (m)	7.5	43.8	0.0	23.8	172.3	0.6	59.4	0.0	21.0	0.0
Queue Length 95th (m)	17.4	64.2	16.1	35.9	#248.5	2.3	73.4	20.8	37.0	0.0
Internal Link Dist (m)		158.7			258.8					
Turn Bay Length (m)	55.0		135.0	110.0		95.0			37.5	
Base Capacity (vph)	103	2283	828	400	1857	896	859	577	202	344
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.29	0.32	0.25	0.47	0.78	0.14	0.54	0.42	0.42	0.18

Queue shown is maximum after two cycles.

Lanes, Volumes, Timings
2: Constellation Drive & Baseline Road

2140 Baseline Road T	A
2018 Existing PM Pe	ak

	→	\rightarrow	*	+	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†††	۴	ሻሻ	††	ሻሻ	1
Traffic Volume (vph)	960	21	78	1443	179	347
Future Volume (vph)	960	21	78	1443	179	347
Satd. Flow (prot)	5142	1601	3471	3579	3471	1601
Flt Permitted			0.950		0.950	
Satd. Flow (perm)	5142	1601	3471	3579	3471	1601
Satd. Flow (RTOR)		23				275
Lane Group Flow (vph)	1043	23	85	1568	195	377
Turn Type	NA	pm+ov	Prot	NA	Prot	Perm
Protected Phases	2	4	1	6	4	
Permitted Phases		2				4
Detector Phase	2	4	1	6	4	4
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	10.0	5.0	5.0
Minimum Split (s)	32.5	33.9	11.5	16.5	33.9	33.9
Total Split (s)	70.0	37.0	23.0	93.0	37.0	37.0
Total Split (%)	53.8%	28.5%	17.7%	71.5%	28.5%	28.5%
Yellow Time (s)	3.7	3.0	3.7	3.7	3.0	3.0
All-Red Time (s)	2.8	3.9	2.8	2.8	3.9	3.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.5	6.9	6.5	6.5	6.9	6.9
Lead/Lag	Lag		Lead			
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Max	None	None	C-Max	None	None
Act Effct Green (s)	84.5	108.0	8.6	99.6	17.0	17.0
Actuated g/C Ratio	0.65	0.83	0.07	0.77	0.13	0.13
v/c Ratio	0.31	0.02	0.37	0.57	0.43	0.84
Control Delay	6.6	0.1	62.4	8.3	53.4	31.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	6.6	0.1	62.4	8.3	53.4	31.8
LOS	A	A	E	A	D	C
Approach Delay	6.5			11.1	39.2	
Approach LOS	A			В	D	
Intersection Summary						
Cycle Length: 130						
Actuated Cycle Length: 13	0					
Offset: 64 (49%), Reference		e 2:EBT a	nd 6:WB	T, Start o	f Green	
Natural Cycle: 80						
Control Type: Actuated-Co	ordinated					
Maximum v/c Ratio: 0.84						
Intersection Signal Delay:	14.5			h	ntersectio	n LOS: B
Intersection Capacity Utiliz		0				of Service
Analysis Period (min) 15						
plits and Phases: 2: Co	onstellation	Drive & B	aseline F	Road		

Splits and Phases.	2. Constellation Drive & baseline Road		
√ Ø1	∎ → Ø2 (R)	₩Ø4	
23 s	70 s	37 s	
Ø6 (R) Ø6			
93 s			
06/01/2018		Synchro 9 I F	Report Page 3

HCM 2010 TWS 3: Centrepointe		- 2 G	emin	i Way	,		2140 Baseline Road TIA 2018 Existing PM Pea
				i vva	/		
Intersection							
Int Delay, s/veh	1.5						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		- 11	1		-¢††	
Traffic Vol, veh/h	25	82	571	12	17	350	
Future Vol, veh/h	25	82	571	12	17	350	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-	-	450	-	-	
Veh in Median Storage,	# 0	-	0	-	-	0	
Grade, %	0		0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles. %	2	2	2	2	2	2	

Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	27	89	621	13	18	380
Major/Minor	Minor1	N	Major1		Major2	
Conflicting Flow All	810	310	0	0	621	0
Stage 1	621		-	-	- 102	-
Stage 2	189					
Critical Hdwy	6.29	6.94	- 1			- 1
Critical Hdwy Stg 1	5.84	0.94	-	-	4.14	
Critical Hdwy Stg 2	6.04					
Follow-up Hdwy	3.67	3.32			2.22	
	350	686			956	
Pot Cap-1 Maneuver	483		-	-	950	-
Stage 1					-	
Stage 2	785		-			
Platoon blocked, %	0.40	000	-		050	-
Mov Cap-1 Maneuver		686			956	
Mov Cap-2 Maneuver			-		-	
Stage 1	483	-	-		-	-
Stage 2	766	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		0.5	
HCM LOS	B		Ŭ		0.0	
110111200						
Minor Lane/Major Mv	mt	NBT	NBRW	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	555	956	-
HCM Lane V/C Ratio		-	-	0.21	0.019	-
HCM Control Delay (s	5)	-	-	13.2	8.8	0.1
HCM Lane LOS				В	А	Α
HCM 95th %tile Q(vel	h)	-	-	0.8	0.1	-

Queues
2: Constellation Drive & Baseline Road

2140 Baseline Road TIA 2018 Existing PM Peak

	-	7	1	+	•	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Group Flow (vph)	1043	23	85	1568	195	377
v/c Ratio	0.31	0.02	0.37	0.57	0.43	0.84
Control Delay	6.6	0.1	62.4	8.3	53.4	31.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	6.6	0.1	62.4	8.3	53.4	31.8
Queue Length 50th (m)	18.1	0.0	10.9	70.4	24.4	26.1
Queue Length 95th (m)	28.9	m0.3	19.1	132.9	32.1	57.8
Internal Link Dist (m)	258.8			131.8	77.4	
Turn Bay Length (m)		55.0	115.0			60.0
Base Capacity (vph)	3343	1490	440	2741	803	582
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.31	0.02	0.19	0.57	0.24	0.65
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

06/01/2018

Synchro 9 Report Page 4

HCM 2010 TWS 4: Constellation		e & G	emir	i Wa	y		2140 Baseline Roa 2018 Existing F
Intersection							
Int Delay, s/veh	0.1						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	· · · · · · · · · · · · · · · · · · ·
Lane Configurations	LDL	1	NDL	1	†₽	ODIX	
Traffic Vol. veh/h	0	5	0	526	79	20	
Future Vol. veh/h	0	5	0	526	79	20	
Conflicting Peds, #/hr	0	0	0	0	0	20	
Sign Control	Stop			Free		Free	
RT Channelized	Stop -			None		None	
Storage Length	-	0		None -		None	
		-		0	- 0	-	
Veh in Median Storage			-	0			
Grade, %	0	-			0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	0	5	0	572	86	22	
Major/Minor N	/linor2	1	Major1	1	Major2		
Conflicting Flow All		54	-	0	-	0	
Stage 1	-	-	-	-	-	-	
Stage 2				-		-	
Critical Hdwy		6.94		-		-	
Critical Hdwy Stg 1		-					
Critical Hdwy Stg 2	-	-	-	-		-	
Follow-up Hdwy							
Pot Cap-1 Maneuver	0	1002	0				
Stage 1	0	-	0				
Stage 2	0		0				
Platoon blocked. %	0		0				
Mov Cap-1 Maneuver		1002					
Mov Cap-1 Maneuver		1002					
Stage 1							
	-	-					
Stage 2			-	-			
Approach	EB		NB		SB		
	8.6		0		0		
			0		0		
HCM Control Delay, s	Δ						
	A						
HCM Control Delay, s HCM LOS		NBT E	EBLn1	SBT	SBR		
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm				SBT	SBR		
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)		-	1002	-	SBR -		
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	t	-	1002 0.005	-	-		
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	t	-	1002	-	-		

06/01/2018

Lanes, Volumes, Timings 1: Centrepointe Drive/Highgate Road & Baseline Road

2140 Baseline Road TIA 2020 FBG AM Peak

Synchro 9 Report Page 1

	۶	-	\rightarrow	*	-	×.	1	†	1	1	÷.	4
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations	۲	<u>^</u>	1	ኘሻ	† †	1	ሻሻ		1	٦		
raffic Volume (vph)	0	1716	554	182	536	57	140	0	277	114	0	7
uture Volume (vph)	0	1716	554	182	536	57	140	0	277	114	0	7
atd. Flow (prot)	1883	5142	1601	3471	3579	1601	3471	0	1601	1789	0	160
It Permitted				0.950			0.950			0.950		
Satd. Flow (perm)	1883	5142	1601	3471	3579	1601	3471	0	1601	1789	0	160
atd. Flow (RTOR)			554			85			277			13
ane Group Flow (vph)	0	1716	554	182	536	57	140	0	277	114	0	7
urn Type	Perm	NA	Perm	Prot	NA	Perm	Prot		Perm	Prot		Perr
Protected Phases		2		1	6		10			4		
ermitted Phases	2		2			6			10			
etector Phase	2	2	2	1	6	6	10		10	4		
Switch Phase												
/inimum Initial (s)	10.0	10.0	10.0	5.0	10.0	10.0	10.0		10.0	10.0		10.
/inimum Split (s)	25.7	25.7	25.7	11.2	25.7	25.7	38.8		38.8	16.3		16.
otal Split (s)	47.0	47.0	47.0	24.0	71.0	71.0	39.0		39.0	20.0		20.
otal Split (%)	36.2%	36.2%	36.2%	18.5%	54.6%	54.6%	30.0%		30.0%	15.4%		15.49
ellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.0		3.0	3.3		3.
II-Red Time (s)	2.0	2.0	2.0	2.5	2.0	2.0	3.8		3.8	3.0		3.
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.
otal Lost Time (s)	5.7	5.7	5.7	6.2	5.7	5.7	6.8		6.8	6.3		6.
.ead/Lag	Lag	Lag	Lag	Lead								
ead-Lag Optimize?	Yes	Yes	Yes	Yes								
Recall Mode	C-Max	C-Max	C-Max	None	C-Max	C-Max	None		None	None		Non
Act Effct Green (s)		68.6	68.6	12.1	87.0	87.0	11.7		11.7	12.5		12.
ctuated g/C Ratio		0.53	0.53	0.09	0.67	0.67	0.09		0.09	0.10		0.1
/c Ratio		0.63	0.50	0.56	0.22	0.05	0.45		0.70	0.67		0.2
Control Delay		23.9	3.3	67.7	7.9	0.5	60.2		16.1	75.5		2.
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.
Total Delay		23.9	3.3	67.7	7.9	0.5	60.2		16.1	75.5		2.
.OS		С	A	E	A	A	E		В	E		
Approach Delay		18.9			21.4			30.9			47.2	
pproach LOS		В			С			C			D	
ntersection Summary												
Cycle Length: 130												_
Actuated Cycle Length: 13)											
Offset: 76 (58%), Reference	ed to phase	e 2:EBTL	and 6:WE	BT, Start	of Green							
Vatural Cycle: 105												
Control Type: Actuated-Co	ordinated											
Aaximum v/c Ratio: 0.70												
ntersection Signal Delay: 2	2.2			li I	ntersectio	n LOS: C						
ntersection Capacity Utiliz	ation 70.4%	5		10	CU Level	of Servic	еC					
Analysis Period (min) 15												
Splits and Phases: 1: Ce	ntrepointe	Drive/Hia	haate Ro	ad & Bas	eline Roa	d						
	402 (R)					<^ ₩ Ø4		▲\/e	10			
	7 s					20 s		39 s	10			
-												
Ø6 (R)												

06/01/2018

Lanes, Volumes, T 2: Constellation Dr		aseline	e Road				2140 Baseline Road TIA 2020 FBG AM Peak
	->	¥	4	+	٩	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	†††	1	ኘኘ	† †	ሻሻ	1	
Traffic Volume (vph)	1977	130	356	725	50	67	
Future Volume (vph)	1977	130	356	725	50	67	
Satd. Flow (prot)	5142	1601	3471	3579	3471	1601	
Flt Permitted			0.950		0.950		
Satd. Flow (perm)	5142	1601	3471	3579	3471	1601	
Satd. Flow (RTOR)		79				67	
Lane Group Flow (vph)	1977	130	356	725	50	67	
Turn Type	NA	pm+ov	Prot	NA	Prot	Perm	
Protected Phases	2	4	1	6	4		
Permitted Phases		2				4	
Detector Phase	2	4	1	6	4	4	
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	10.0	5.0	5.0	
Minimum Split (s)	32.5	33.9	11.5	16.5	33.9	33.9	
Total Split (s)	66.0	34.0	30.0	96.0	34.0	34.0	
Total Split (%)	50.8%	26.2%	23.1%	73.8%	26.2%	26.2%	
Yellow Time (s)	3.7	3.0	3.7	3.7	3.0	3.0	
All-Red Time (s)	2.8	3.9	2.8	2.8	3.9	3.9	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.9	6.5	6.5	6.9	6.9	
Lead/Lag	Lag		Lead				
Lead-Lag Optimize?	Yes		Yes				
Recall Mode	C-Max	None	None	C-Max	None	None	
Act Effct Green (s)	84.1	98.1	18.5	109.1	7.5	7.5	
Actuated g/C Ratio	0.65	0.75	0.14	0.84	0.06	0.06	
v/c Ratio	0.59	0.11	0.72	0.24	0.25	0.43	
Control Delay	4.4	0.2	61.7	2.4	61.0	22.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	4.4	0.2	61.7	2.4	61.0	22.0	
LOS	A	A	E	A	E	С	
Approach Delay	4.1			21.9	38.7		
Approach LOS	A			С	D		
Intersection Summary							
Cycle Length: 130 Actuated Cycle Length: 130 Offset: 74 (57%), Reference Natural Cycle: 90		e 2:EBT a	nd 6:WB	F, Start of	f Green		
Control Type: Actuated-Con	ordinated						
Maximum v/c Ratio: 0.72							
Intersection Signal Delay: 1	12			le le	ntersectio	n LOS: B	
Intersection Capacity Utiliza						of Service C	3
Analysis Period (min) 15							-
	nstellation	Drive & B	aseline F	load			
√ Ø1		12 (R)					3 /04
30 s	66 s	- (1)					34 s
← Ø6 (R)							
96 s	•						
06/01/2018							Synchro 9 Report Page 3

Queues	
1: Centrepointe Drive/Highgate I	Road & Baseline Road

2140 Baseline Road TIA 2020 FBG AM Peak

	-	\mathbf{r}	1	+	٩	1	1	1	1	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBR	SBL	SBR	
Lane Group Flow (vph)	1716	554	182	536	57	140	277	114	72	
v/c Ratio	0.63	0.50	0.56	0.22	0.05	0.45	0.70	0.67	0.26	
Control Delay	23.9	3.3	67.7	7.9	0.5	60.2	16.1	75.5	2.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	23.9	3.3	67.7	7.9	0.5	60.2	16.1	75.5	2.4	
Queue Length 50th (m)	109.9	0.0	24.7	23.4	0.0	18.0	0.0	28.4	0.0	
Queue Length 95th (m)	146.4	19.0	29.7	29.1	1.0	27.2	25.8	48.1	0.0	
Internal Link Dist (m)	158.7			258.8						
Turn Bay Length (m)		135.0	110.0		95.0			37.5		
Base Capacity (vph)	2715	1106	475	2394	1099	859	604	188	286	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.63	0.50	0.38	0.22	0.05	0.16	0.46	0.61	0.25	
Intersection Summary										

06/01/2018

	-	\mathbf{i}	1	-	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Group Flow (vph)	1977	130	356	725	50	67	
v/c Ratio	0.59	0.11	0.72	0.24	0.25	0.43	
Control Delay	4.4	0.2	61.7	2.4	61.0	22.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	4.4	0.2	61.7	2.4	61.0	22.0	
Queue Length 50th (m)	20.8	0.1	45.5	14.8	6.4	0.0	
Queue Length 95th (m)	29.1	m0.3	59.2	22.0	12.7	14.2	
Internal Link Dist (m)	258.8			131.8	77.4		
Turn Bay Length (m)		55.0	115.0			60.0	
Base Capacity (vph)	3328	1457	627	3004	723	386	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.59	0.09	0.57	0.24	0.07	0.17	

2140 Baseline Road TIA 2020 FBG AM Peak

Intersection	4.5					
Int Delay, s/veh	1.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰Y		- 11	1		- ↑ ↑↑
Traffic Vol, veh/h	11	35	382	33	158	579
Future Vol, veh/h	11	35	382	33	158	579
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-		450		-
Veh in Median Storage,	# 0	-	0	-		0
Grade, %	0	-	0			0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	11	35	382	33	158	579
		00	002	00	100	0.0
	linor1		Major1		Major2	
Conflicting Flow All	930	191	0	0	382	0
Stage 1	382		-	-	-	
Stage 2	548	-	-	-	-	-
Critical Hdwy	6.29	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	6.04	-	-	-	-	-
Follow-up Hdwy	3.67	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	299	818	-	-	1173	-
Stage 1	637	-	-	-	-	-
Stage 2	511	-	-	-	-	-
Platoon blocked, %				-		-
Mov Cap-1 Maneuver	239	818	-	-	1173	-
Mov Cap-2 Maneuver	239	-		-		-
Stage 1	637	-		-		-
Stage 2	409					
Annah	MD		NB		SB	
Approach	WB					
HCM Control Delay, s	12.6		0		2.1	
HCM LOS	В					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBL	SBT
		-	-	518	1173	-
Capacity (veh/h)				0.089		
Capacity (veh/h) HCM Lane V/C Ratio						
HCM Lane V/C Ratio		-	-	12.6	8.5	0.3
HCM Lane V/C Ratio HCM Control Delay (s)				12.6 B	8.5 A	0.3 A
HCM Lane V/C Ratio		-	-	12.6 B 0.3	8.5 A	0.3 A

06/01/2018

Synchro 9 Report Page 6

	٦		~	1	-	×.	1	t	~	5	Ļ	1
ane Group	FBI	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
ane Configurations	1	111	1	ሻሻ	44	1	ሻሻ		1	3		
Traffic Volume (vph)	29	709	202	179	1386	122	447	0	231	80	0	5
Future Volume (vph)	29	709	202	179	1386	122	447	0	231	80	Ő	5
Satd. Flow (prot)	1789	5142	1601	3471	3579	1601	3471	0	1601	1789	0	160
It Permitted	0.155			0.950			0.950	-		0.950	-	
Satd. Flow (perm)	292	5142	1601	3471	3579	1601	3471	0	1601	1789	0	160
Satd. Flow (RTOR)			202			122		-	231		-	13
ane Group Flow (vph)	29	709	202	179	1386	122	447	0	231	80	0	5
Turn Type	Perm	NA	Perm	Prot	NA	Perm	Prot		Perm	Prot		Perr
Protected Phases		2		1	6		10			4		
Permitted Phases	2		2			6			10			
Detector Phase	2	2	2	1	6	6	10		10	4		
Switch Phase	_	_	_		-							
Vinimum Initial (s)	10.0	10.0	10.0	5.0	10.0	10.0	10.0		10.0	10.0		10.0
Vinimum Split (s)	25.7	25.7	25.7	11.2	25.7	25.7	38.8		38.8	16.3		16.
Total Split (s)	47.0	47.0	47.0	24.0	71.0	71.0	39.0		39.0	20.0		20.0
Total Split (%)	36.2%	36.2%	36.2%	18.5%	54.6%	54.6%	30.0%		30.0%	15.4%		15.49
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.0		3.0	3.3		3.3
All-Red Time (s)	2.0	2.0	2.0	2.5	2.0	2.0	3.8		3.8	3.0		3.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.
Total Lost Time (s)	5.7	5.7	5.7	6.2	5.7	5.7	6.8		6.8	6.3		6.3
_ead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
Recall Mode	C-Max	C-Max	C-Max	None	C-Max	C-Max	None		None	None		Non
Act Effct Green (s)	59.1	59.1	59.1	12.0	77.3	77.3	22.3		22.3	11.5		11.
Actuated g/C Ratio	0.45	0.45	0.45	0.09	0.59	0.59	0.17		0.17	0.09		0.0
//c Ratio	0.22	0.30	0.24	0.56	0.65	0.12	0.75		0.50	0.51		0.2
Control Delay	31.3	24.1	4.2	71.0	17.0	1.5	59.1		9.2	67.6		1.
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0
Total Delay	31.3	24.1	4.2	71.0	17.0	1.5	59.1		9.2	67.6		1.
LOS	С	С	А	E	В	A	E		A	E		1
Approach Delay		20.1			21.6			42.1			40.0	
Approach LOS		С			С			D			D	
ntersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 13	ו											
Offset: 76 (58%), Referenc		2:FBTI	and 6:WF	ST. Start	of Green							
Natural Cycle: 95												
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.75	oramatoa											
ntersection Signal Delay: 2	0.0			h	ntersectio	n LOS: C						
ntersection Capacity Utiliza					CU Level							
Analysis Period (min) 15					00 2010.	01 001110						
Splits and Phases: 1: Ce	ntrepointe	Drive/Hia	hoate Ro	ad & Bas	eline Roa	d						
✓ Ø1			Jana . 10			- Ø4		* √g	10			
	7 s			_		20 s		39 s	10			

HCM 2010 TWSC	
4: Constellation Drive & Gemini Way	

Intersection						
Int Delay, s/veh	1.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1		<u>†</u> †	≜î ⊭	
Traffic Vol, veh/h	0	100	0	116	440	46
Future Vol. veh/h	0	100	0	116	440	40
Conflicting Peds, #/hr	0	001	0	0	440	40
Sign Control	-		Free	Free	Free	Free
	Stop					
RT Channelized	-				-	110/10
Storage Length	-	0	-	-	-	-
Veh in Median Storage		-		0	0	-
Grade, %	0	-		0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	100	0	116	440	46
Major/Minor	Minor2	N	Major1	,	Major2	
Conflicting Flow All	-	243	-	0	- 10	0
Stage 1		243		-		-
Stage 2	-	-				
Critical Hdwy	-	6.94	-		-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-				-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	758	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-		-
Mov Cap-1 Maneuver		758				
Mov Cap-2 Maneuver						
Stage 1						
Stage 2						
Jidge 2						
Approach	EB		NB		SB	
HCM Control Delay, s	10.5		0		0	
HCM LOS	В					
Minor Lane/Major Mvm		NRT	EBLn1	SBT	SBR	
Capacity (veh/h)		-	758	- 100	- JUK	
			0.132			
HCM Lane V/C Ratio					-	
HCM Control Delay (s)		-		-	-	
HCM Lane LOS		-	B 0.5	-		
HCM 95th %tile Q(veh)				-		

06/01/2018

	∕	-	\rightarrow	*	+		1	1	1	-	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBR	SBL	SBR	
Lane Group Flow (vph)	29	709	202	179	1386	122	447	231	80	58	
v/c Ratio	0.22	0.30	0.24	0.56	0.65	0.12	0.75	0.50	0.51	0.22	
Control Delay	31.3	24.1	4.2	71.0	17.0	1.5	59.1	9.2	67.6	1.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	31.3	24.1	4.2	71.0	17.0	1.5	59.1	9.2	67.6	1.9	
Queue Length 50th (m)	4.4	40.7	0.0	23.2	129.7	0.2	56.9	0.0	20.0	0.0	
Queue Length 95th (m)	14.3	59.4	15.5	33.0	163.2	3.1	70.7	20.8	35.7	0.0	
Internal Link Dist (m)		158.7			258.8						
Turn Bay Length (m)	55.0		135.0	110.0		95.0			37.5		
Base Capacity (vph)	132	2337	838	475	2128	1001	859	570	188	286	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.22	0.30	0.24	0.38	0.65	0.12	0.52	0.41	0.43	0.20	

Lanes, Volumes, Timings
2: Constellation Drive & Baseline Road

Splits and Phases: 2: Constellation Drive & Baseline Road

√Ø1

30 s Ø6 (R)

2140 Baseline Road T	IA
2020 FBG PM Pe	eak

	-	\rightarrow	*	+	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	† ††	7	ሻሻ	† †	ሻሻ	1	
Traffic Volume (vph)	998	22	81	1501	186	361	
Future Volume (vph)	998	22	81	1501	186	361	
Satd. Flow (prot)	5142	1601	3471	3579	3471	1601	
Flt Permitted			0.950		0.950		
Satd. Flow (perm)	5142	1601	3471	3579	3471	1601	
Satd. Flow (RTOR)		22				351	
Lane Group Flow (vph)	998	22	81	1501	186	361	
Turn Type	NA	pm+ov	Prot	NA	Prot	Perm	
Protected Phases	2	4	1	6	4		
Permitted Phases		2				4	
Detector Phase	2	4	1	6	4	4	
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	10.0	5.0	5.0	
Minimum Split (s)	32.5	33.9	11.5	16.5	33.9	33.9	
Total Split (s)	66.0	34.0	30.0	96.0	34.0	34.0	
Total Split (%)	50.8%	26.2%	23.1%	73.8%	26.2%	26.2%	
Yellow Time (s)	3.7	3.0	3.7	3.7	3.0	3.0	
All-Red Time (s)	2.8	3.9	2.8	2.8	3.9	3.9	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.9	6.5	6.5	6.9	6.9	
Lead/Lag	Lag		Lead				
Lead-Lag Optimize?	Yes		Yes				
Recall Mode	C-Max	None	None	C-Max	None	None	
Act Effct Green (s)	88.4	108.2	8.4	103.3	13.3	13.3	
Actuated g/C Ratio	0.68	0.83	0.06	0.79	0.10	0.10	
v/c Ratio	0.29	0.02	0.36	0.53	0.53	0.76	
Control Delay	5.2	0.3	62.3	5.9	60.1	16.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	5.2	0.3	62.3	5.9	60.1	16.7	
LOS	A	A	E	A	E	В	
Approach Delay	5.1			8.8	31.5		
Approach LOS	A			А	С		
Intersection Summary							
Cycle Length: 130							_
Actuated Cycle Length: 130							
Offset: 74 (57%), Reference		2. EBT a	nd 6·WB	T Start of	f Green		
Natural Cycle: 80	a to pridat			r, clart of	0.0011		
Control Type: Actuated-Coo	rdinated						
Maximum v/c Ratio: 0.76	- annalou						
Intersection Signal Delay: 1	15			li li	ntersectio	n LOS: B	
						of Service I	R
Intersection Canacity Utiliza							
Intersection Capacity Utiliza Analysis Period (min) 15	tion 58.0%	2		n I	CO Level	UI GEIVICE I	0

\$/Ø4

Queues	
2: Constellation	Drive & Baseline Road

2140 Baseline Road TIA 2020 FBG PM Peak

	-	\mathbf{r}	*	+	•	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Group Flow (vph)	998	22	81	1501	186	361
v/c Ratio	0.29	0.02	0.36	0.53	0.53	0.76
Control Delay	5.2	0.3	62.3	5.9	60.1	16.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	5.2	0.3	62.3	5.9	60.1	16.7
Queue Length 50th (m)	15.0	0.0	10.4	56.6	23.9	2.4
Queue Length 95th (m)	24.4	m0.1	18.4	95.1	33.5	31.6
Internal Link Dist (m)	258.8			131.8	77.4	
Turn Bay Length (m)		55.0	115.0			60.0
Base Capacity (vph)	3497	1503	627	2845	723	611
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.29	0.01	0.13	0.53	0.26	0.59
Intersection Summary						

m Volume for 95th percentile queue is metered by upstream signal.

06/01/2018

HCM 2010 TWSC 4: Constellation Drive & Gemini Way

Synchro 9 Report Page 4

2140 Baseline Road TIA 2020 FBG PM Peak

06/01/2018							Synchro 9 Re Pa
HCM 2010 TWS				: \\/			2140 Baseline Road T 2020 FBG PM P
3: Centrepointe	Driv	e & G	emin	i way	/		2020 FBG PM P
Intersection Int Delay, s/veh	1.5						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y	mon	11	1	002	441	
Traffic Vol. veh/h	26	85	594	12	18	364	
Future Vol. veh/h	26	85	594	12	18	364	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	-		450			
Veh in Median Storage	# 0	-	0	-	-	0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	26	85	594	12	18	364	
Major/Minor N	/linor1	h	/lajor1	Ν	Aajor2		
Conflicting Flow All	776	297	0	0	594	0	
Stage 1	594	-	-	-		-	
Stage 2	182					-	
Critical Hdwy	6.29	6.94	-	-	4.14	-	
Critical Hdwy Stg 1	5.84	-	-		-	-	
Critical Hdwy Stg 2	6.04	-	-		-	-	
Follow-up Hdwy	3.67	3.32	-		2.22	-	
Pot Cap-1 Maneuver	366	699	-	-	978	-	
Stage 1	499	-					
Stage 2	792	-	-			-	
Platoon blocked, %	250	000			070		
Nov Cap-1 Maneuver	358	699	-		978	-	
Mov Cap-2 Maneuver Stage 1	358 499	-				-	
Stage 2	499 774	-				-	
Approach	WB		NB		SB		
HCM Control Delay, s	12.8		0		0.5		

Minor Lane/Major Mvmt	NBT	NBRWE	BLn1	SBL	SBT
Capacity (veh/h)	-	-	571	978	-
HCM Lane V/C Ratio	-	- 0).194	0.018	-
HCM Control Delay (s)	-	-	12.8	8.8	0.1
HCM Lane LOS	-	-	В	A	A
HCM 95th %tile Q(veh)	-	-	0.7	0.1	-

Intersection Int Delay, s/veh
 Movement
 EBL
 EBR
 NBL
 NBT
 SBR

 Lane Configurations
 f*
 f+
 f+
 f+

 Traffic Vol, vehh
 0
 5
 0
 547
 82
 21

 Future Vol, vehh
 0
 5
 0
 547
 82
 21

 Future Vol, vehh
 0
 5
 0
 547
 82
 21

 Conflicting Pest, #hr
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 0.1 Major/Minor Major2 Major/Minor Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Stg 1 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 1 Platoon blocked, % Mov Cap-2 Maneuver Stage 1 linor2 Major1 52 0 - 6.94 -- 3.32 0 1005 0 - 1005 Stage 1 Stage 2 ApproachEBHCM Control Delay, s8.6HCM LOSA SB Minor Lane/Major Mvmt NBT EBLn1 SBT SBR Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh) 1005 0.005 - 8.6 - A - 0 - -

Lanes, Volumes, Timings

2140 Baseline Road TIA 2020 Total Future AM Peak

Act EffC Green (s) 68.0 Actuated giC Ratio 0.52 vic Ratio 0.52 vic Ratio 0.53 Control Delay 24.4 Queue Delay 24.4 Queue Delay 0.0 Total Delay 24.4 LOS C Approach LOS B Intersection Summary Cycle Length: 130 Naturated Cycle Lingth: 130 Other: 76 (5%), Reterenced to phase 2-EBTL a Vaturated Cycle: 105 Control Type: Actuated-Coordinated Maximum vic Ratio: 0.72 Intersection Signal Delay: 22.5 Intersection Capacity Utilization 72.4% Analysis Period (min) 15 Splits and Phases: 1: Centrepointe Drive/High	rive &	Base	line Ro	ad				Baselin 2020 Total		
ane Configurations	\mathbf{r}	*	+	×.	•	1	1	1	Ļ	~
rafti: Volume (vph) 0 1704 uture Wolume (vph) 0 1704 uter Fernited 1883 5142 atd. Flow (prm) 1883 5142 atd. Flow (prm) 1883 5142 atd. Flow (prm) 0 1704 um Type Perm NA 1704 um Type Perm NA 2 techclor Phases 2 2 which Phase 10.0 10.0 finimum Snit(s) 10.0 10.0 inimum Snit(s) 3.7 3.7 itest (s) 47.0 47.0 otal Spit(%) 40.2 2.0 otal Lost Time (s) 3.7 3.7 itest add age Lag Lag aedLag Colume (s) 5.7 aedLag Ago (prizer Y ess Yes aecal-Lag O(mizer Y ess Yes <t< td=""><td>EBR</td><td>WBL</td><td>WBT</td><td>WBR</td><td>NBL</td><td>NBT</td><td>NBR</td><td>SBL</td><td>SBT</td><td>SBF</td></t<>	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
uture Volume (vph) 0 1704 atd. Flow (prot) 1883 5142 atd. Flow (prot) 1883 5142 atd. Flow (prot) 1883 5142 atd. Flow (prot) 1883 5142 atd. Flow (Parm) 1883 5142 atd. Flow (Parm) 0 1704 um Type Perm NA rotected Phases 2 elector Phase 2	7	ሻሻ	††	1	ሻሻ		7	<u>۳</u>		1
atd. Flow (prof) atd. Flow (prof) 1883 5142 thermitted atd. Flow (perm) 1883 5142 atd. Flow (perm) 1883 5142 atd. Flow (prof) 1883 5142 1883 5142 1883 5142 1883 5142 1883 5142 1883 5142 1883 5142 1883 5142 1883 5142 1883 5142 188 514 51 51 51 51 51 51 51 51 51 5 5 5 5	577	187	536	57	157	0	313	114	0	73
II Femined II Femined Adt Flow (PTOR) and Group Flow (PTOR) and Group Flow (PTOR) our Type Perm NA rotected Phases 2 reletedor Phase 2 reletedor Phase 2 reletedor Phase 2 reletedor Phase 2 2 reletedor Phase 2 2 reletedor Phase 2 2 reletedor Phase 2 2 reletedor Phase 2 2 reletedor Phase 2 2 reletedor Phase 2 2 2 reletedor Phase 2 2 2 reletedor Phase 2 2 2 reletedor Phase 2 2 2 reletedor Phase 2 2 2 reletedor Phase 2 2 2 reletedor Phase 2 2 2 reletedor Phase 2 2 2 reletedor Phase 2 2 2 reletedor Phase 2 2 2 2 2 2 2 2 2 2 2 2 2	577	187	536	57	157	0	313	114	0	73
atd. Flow (perm) atd. Flow (PTCR) ans Group Flow (vph) 0 1704 um Type Perm NA um Type Perm NA voltected Phases 2 ermited Phases 2 ermited Phases 2 ermited Phases 2 ermited Sign (s) 10.0	1601	3471	3579	1601	3471	0	1601	1789	0	160
ati. Flow (PTOR) ans Group Flow (vph) 0 1704 um Type 0 1704 um Type 2 2 170 elector Phase 2 2 elector Phase 2 2 elector Phase 2 2 thinimum Spitt (s) 45.7 25.7 otal Spitt (s) 47.0 47.0 47.0 otal Spitt (s) 45.2 5.7 63.7 otal Spitt (s) 45.0 47.0 47.0 0.00 otal Spitt (s) 45.2 5.7 63.7 otal Spitt (s) 45.2 5.7 63.7 otal Spitt (s) 45.2 5.7 63.7 otal Spitt (s) 45.2 5.7 63.7 ellow Time (s) 3.7 3.7 1.8 41.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6		0.950			0.950			0.950		
ane Group Flow (vph) 0 1704 motected Phases 2 ermitted Phases 2 ermitted Phases 2 etector Phase 2 mither Phase 4 minimum Initial (s) 10.0 10.0 Inimum Split (s) 25.7 25.7 25.7 25.7 35.7 3.7 Ji-Red Time (s) 3.6.2% 36.2% etelow Time (s) 3.6.2% 36.2% etelow Time (s) 0.0 0.0 cold Split (s) 3.7 3.7 Ji-Red Time (s) 2.0 2.0 0.0 tot Sime Adjust (s) 0.0 0.0 otal Lost Time (s) 5.7 5.7 eted1 Mode 2.4 etelow Time (s) 0.0 0.0 cold Lost Time (s) 5.7 5.7 eted1 Mode 2.4 etelow Time (s) 0.6 0.0 cold Lost Time (s) 0.7 5.7 eted1 Mode 2.4 etelow Time (s) 0.6 etelow Time (s) 0.6 etelow Time (s) 0.7 5.7 eted1 Mode 2.4 C-Max C-Max etelow 0.0 chated g/C Ratio 0.52 etel State 0.5 B tersection Summary vol Length: 130 motor 10 Jpe: A-tubeted-Coordinated laximum vic Ratio: 0.72 tersection Signal Delay: 22.5 tersection Signal Delay: 22.5 tersectio	1601	3471	3579	1601	3471	0	1601	1789	0	160
um Type Um Type Vicked Phases 2 ermited Phases 2 ermited Phases 2 etector Phase 10.0	577			85			313			13
rotectad Phases 2 emitted Phases 2 emitted Phases 2 etector Phase 2 witch Phase 1 inimum Initial (s) 10.0 10.0 inimum Split (s) 25.7 25.7 25.7 25.7 10.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1	577	187	536	57	157	0	313	114	0	7
rolected Phases 2 elector Phase 2 2 witch Phase 10.0 10	Perm	Prot	NA	Perm	Prot		Perm	Prot		Perr
elector Phase 2 2 2 witch Phase 2 2 2 witch Phase 2 2. witch Phase 10.0 10.0 10.0 25.7 25.7 25.7 25.7 25.7 Uninnum phili (s) 47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0		1	6		10			4		
witch Phase inimum hial (s) 10.0 10.0 inimum Split (s) 25.7 25.7 otal Split (s) 47.0 47.0 otal Split (s) 36.2% 86.2% ellow Time (s) 3.7 3.7 1Red Time (s) 2.0 2.0 st Time Adjust (s) 0.0 0.0 0.0 otal Lost Time (s) 5.7 5.7 sed1ag Lag aed/Lag (a) Lag Lag Lag Lag aed/Lag (b) C.Max C.Max C.Max aed/Lag (b) 0.0 0.0 0.0 cthet Crean (s) 6.7 5.7 secall Mode cthet Crean (s) 6.80 0.52 secall Mode C.Max C.Max cthet Crean (s) 0.03 0.52 Sec C 0.03 1.03 tetaet Oxici (sec) 2.4 Vec Vec 2.4 Vec Vec 2.4 Vec Vec Vec Vec Vec Vec Vec <td< td=""><td>2</td><td></td><td></td><td>6</td><td></td><td></td><td>10</td><td></td><td></td><td></td></td<>	2			6			10			
linimum Initial (s) 10.0 10.0 10.0 linimum Split (s) 25.7 25.7 25.7 25.7 27.8	2	1	6	6	10		10	4		
linimum Initial (s) 10.0 10.0 10.0 linimum Split (s) 25.7 25.7 25.7 25.7 27.8										
linimum Spilt (s) 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7	10.0	5.0	10.0	10.0	10.0		10.0	10.0		10.
total Spit (s) 47.0 47.0 47.0 total Spit (s) 36.2% 36.2% ellow Time (s) 3.7 3.7 Head Time (s) 2.0 2.0 bast Time Adjust (s) 0.0 0.0 thead Time (s) 5.7 5.7 thead Time (s) 7.4 2.0 sat Time Adjust (s) 0.0 0.0 sat Time (s) 5.7 6.7 sat Time (s) 7.7 8.7 sat Time (s) 6.7 6.7 sat Time (s) 6.7 6.7 sat Time (s) 6.7 6.7 sat Time (s) 6.8 0.63 sat Time (s) 6.8 0.62 c Ratio 0.63 0.52 c Ratio 0.63 0.52 <t< td=""><td>25.7</td><td>11.2</td><td>25.7</td><td>25.7</td><td>38.8</td><td></td><td>38.8</td><td>16.3</td><td></td><td>16.</td></t<>	25.7	11.2	25.7	25.7	38.8		38.8	16.3		16.
total Spir (%) 36.2% 36.2% total Spir (%) 36.2% 36.2% leRed Time (s) 2.0 2.0 total Lost Time (s) 2.0 2.0 st Time Adjust (s) 0.0 0.0 stad Last Time (s) 5.7 5.7 addLag Chimze? Yes Yes addLag Olymize? Yes Yes addLag Olymize? Yes Yes addLag Olymize? Yes Yes c Ratio 0.63 0.63 ontraid Delay 24.4 0.63 ontrol Delay 24.4 S S C C proach Delay 124.4 S Opticabl Delay 24.4 S S C C proach Delay 130 Total Delay ottalet Ordycle Length: 130 Total Delay 25 tersection Signal Delay 25 Tersection Signal Delay 25 tersection Signal Delay 22.5 Tersection Signal Delay 26 </td <td>47.0</td> <td>24.0</td> <td>71.0</td> <td>71.0</td> <td>39.0</td> <td></td> <td>39.0</td> <td>20.0</td> <td></td> <td>20.</td>	47.0	24.0	71.0	71.0	39.0		39.0	20.0		20.
ellow Time (s) 3.7 3.7 3.7 Tiked Time (s) 2.0 2.0 the Time (s) 2.0 2.0 total Lost Time (s) 5.7 5.7 sadulag Optimize? Yes Yes call Mode C-Max C-Max C-Max of Effic Green (s) 6.8.0 0.52 C Ratio 0.52 C	36.2%	18.5%	54.6%	54.6%	30.0%		30.0%	15.4%		15.49
II-Red Time (s) 2.0 2.0 2.0 soft Time Adjus (s) 0.0 0.0 otal Lost Time (s) 5.7 5.7 5.7 sadulag Lag sadulag Castion (s) 5.7 5.7 5.7 sadulag Castion (s) 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7	3.7	3.7	3.7	3.7	3.0		3.0	3.3		3.
ast Time Aglust (s) 0.0 0.0 0.0 add Lost Time (s) 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7	2.0	2.5	2.0	2.0	3.8		3.8	3.0		3.
tala Los Time (s) 5.7 5.7 5.7 sadulag Lag sadulag Lag sadulag Ves Yes seatil Mode C-Max C-Max ethal Greating C-Ratio 0.52 character (s) 6.63 ontrol Delay 24.4 S Cellag Verson 0.03 ontrol Delay 24.4 S C C procech Delay 19.1 pproach Delay 19.1 pproach Delay 19.1 pproach Delay 19.1 pproach Delay 19.1 pproach Delay 19.1 tersection Summary Vel Length: 130 clusted Cycle Length: 130 fiest 76 (58%), Referenced to phase 2:EBTL a atural Cycle: 105 ontrol Type A-clusted-Coordinated laximu vic Ratio. 0.72 tersection Signal Delay: 22.5 tersection 22.5 tersection 22.5 tersection 22.5 tersection 22.5 tersection 22.5 tersection 72.4% na)sis Period (min) 15 pils and Ppases: 1: Centrepointe Drive/High	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.
aadLag aadLag aadLag aadLag aadLag Chizen (s) C-Max C-Ma	5.7	6.2	5.7	5.7	6.8		6.8	6.3		6.
ad-La [®] Optimize? Yes Yes call Mode C-Max C-Max ct Effct Green (s) 68.0 ctuated g/C Ratio 0.52 Real Mode C-Max 68.0 ctuated g/C Ratio 0.53 ontrol Delay 24.4 veue Delay 24.4 Veue Delay 24.4 NS C C pproach Delay 19.1 pproach LOS B tersection Summary yde Length: 130 ftersection Summary yde Length: 130 ftersection Summary Vel Length: 130 ftersection Length: 130 ftersection Length: 130 fterse	Lag	Lead	0.1	0.1	0.0		0.0	0.0		0.
ecall Mode C-Max C-Max e Cflet Green (s) 68.0 obuated g/C Ratio 0.52 C Ratio 0.53 ontrol Delay 24.4 useue Delay 0.0 at Delay 24.4 DS C proach Delay 19.1 pproach LOS B tersection Summary obuated Cycle Length: 130 dutated Cycle Length: 140 dutated Cycl	Yes	Yes								
ct Effct Oreen (s) 68.0 ctuated g/C Ratio 0.52 C Ratio 0.52 C Ratio 0.53 ontrol Delay 24.4 0.0 otal Delay 24.4 O.0 otal Delay O.0 c C proach LOS B thesetion Munay duated Oxide Delay duated Oxide Delay ctuated Oxide duated Oxide Longth: 130 fists: no (58%), Referenced to phase 2-EBTL a atarial Oxide: 105 tersection Squal Delay Z5 tersection Capacity Utilization 72.4% ranjsis Period (min) 15 pils and Phases: 1: Centrepointe Drive/High fils ad Phases 1: Centrepointe Drive/High fils ad Phases 1: Centrepointe Drive/High fils ad A7 B A1 A7 B A1 A7 B A A7 B A A A	C-Max	None	C-Max	C-Max	None		None	None		Non
chuated g/C Ratio 0.52 c Ratio 0.63 onki Delay 24.4 ueue Delay 0.0 dai Delay 24.4 DS C prozach Delay 19.1 pproach Delay 19.1 pproach Delay 19.1 porcach Delay 19.1 ctuated Cycle Length: 130 ttatest Cycle: 105 ottuated Cycle: Length: 130 ttatest Cycle: 105 ontof1 Type: Actuated-Coordinated axinal Cycle: 105 axtiral Cycle: 105 Delay: 22.5 tersection Signal Delay: 22.5 tersection T2.4% nahisis Period (min) 15 Dils and Phases: pils and Phases: 1: Centepointe Drive/High Image: I	68.0	12.3	86.5	86.5	12.2		12.2	12.5		12
C Ratio	0.52	0.09	0.67	0.67	0.09		0.09	0.10		0.1
ontrol Delay 24.4 Usue Delay 0.0 otal Delay 24.4 OS C porceah Delay 19.1 pproach Delay 19.1 pproach Delay 19.1 porceah Delay 10 duated Cycle Length: 130 Ontrated Oxyle: 105 ontrol Type: Actuated-Coordinated Laximum vic Ratio: 0.72 laximal wic Ratio: 0.72 Stersection Signal Delay: 22.5 tersection Signal Delay: 22.5 Delay: 22.5 pills and Phases: 1: Centrepointe Drive/Hight I and	0.52	0.03	0.07	0.07	0.03		0.03	0.10		0.2
ueue Delaý 0.0 atl Delay 0.4 25 C pproach LOS 8 Ietresetion Summary vok Length: 130 drustad Gydei Length: 130 drustad Gydei 103 fistel: 76 (55%), Referenced to phase 2-EBTL a stand Gydei: 103 ontrol Type: Actuated-Coordinated aximum Vic Raito 0.72 Ietresetion Gapacity Ultization 72.4% na)sis Period (min) 15 pills and Phases: 1: Centrepointe Drive/High € 01 ← 02 (R)	3.4	66.4	8.0	0.05	60.4		15.8	75.5		2.4
otal Delay 24.4 OS 24.7 pproach Delay 19.1 pproach LoS 8 tetrasection Summary octuated Cycle Length: 130 octuated Cycle Length: 130 octuated Cycle Length: 130 ontol Type. Actuated-Coordinated laximal Cycle: 105 ontol Type. Actuated-Coordinated laximum vic Ratic 0.72 tresection Signal Delay: 22.5 tetrasection Capacity Utilization 72.4% na)sis Period (min) 15 pills and Phases: 1: Centrepointe Drive/High for 1 for 1	0.0	00.4	0.0	0.0	0.0		0.0	0.0		0.0
OS C C pproach Delay 19:1 Intersection Summary yole Length: 130 trutated Cycle Length: 130 trutated Cycle 105 ontrol Type: Actuated-Coordinated tariad Cycle: 107 tersection Signal Delay: 22.5 tersection Capacity Ultization 72.4% na)sis Period (min) 15 pills and Phases: 1: Centrepointe Drive/High	3.4	66.4	8.0	0.0	60.4		15.8	75.5		2.4
proach Delay 19.1 proach Delay 19.1 proach LOS 8 Heseticn Summary yde Length: 130 dutated Oyde Length: 130 dutated Oyde Length: 130 Histo: 176 (36%), Referenced to phase 2: EBTL a attaral Cycle: 105 ontol Type: Actuated-Coordinated laximum vic Ratio: 0.72 Hersection Signal Delay; 22.5 hersection Capacity Utilization 72.4% naj%s Period (min) 15 pills and Phases: 1: Centrepointe Drive/High	3.4 A	00.4	0.0 A	0.5 A	60.4 E		15.6 B	/5.5 F		2.
pproach LOS B tersection Summary yole Length: 130 chulated Cydel Length: 130 thated Cydel Length: 130 thated Cydel: Length: 130 thatmail Cydel: 105 antrol Type: Actualed-Coordinated takmar Ukalco 0.72 tersection Signal Delay: 22.5 tersection Signal Delay: 22.5 tersection Signal Delay: 22.5 tersection Signal Delay: 22.5 pills and Phases: 1: Centrepointe Drive/High	A	E	21.5	A	E	30.7	В	E	47.2	
yde Length: 130 ctuated Cycle Length: 130 Mise: 76 (56%), Referenced to phase 2:EBTL a attural Cycle: 105 ontol Type. Actuated-Coordinated laximum vic Ratio: 0.72 Intersection Signal Delay; 22:5 Itersection Capacity Utilization 72.4% na)sis Period (min) 15 pills and Phases: 1: Centrepointe Drive/High ✓ 01 ✓ 01 ✓ 71 ✓ 71 ✓ 75			21.5 C			30.7 C			47.2 D	
chuated Cycle Length: 130 fiket: 76 (3%), Referenced to phase 2:EBTL a atural Cycle: 105 ontrol Type: Actuated-Coordinated aximum vic Ratio: 0.72 tersection Signal Delay: 22.5 tersection Signal Delay: 22.5 tersection Signal Delay: 22.5 pills and Phases: 1: Centrepointe Drive/High										
Hist: 76 (5%), Referenced to phase 2:EBTL a latural Cycle: 105 onfoil Type: Actuated-Coordinated laximum vic Ratio: 0.72 Intersection Capacity Utilization 72.4% nalysis Period (min) 15 pills and Phases: 1: Centrepointe Drive/High f 01 f 01 f 01 f 01 f 01 f 01 f 01 f 01										
altural Cycle: 105 onfol Type: Actualed-Coordinated laximum vic Ratio: 0.72 Itersection Signal Delay: 22.5 Itersection Capacity Utilization 72.4% nalysis Period (min) 15 pills and Phases: 1: Centrepointe Drive/High										
ontrol Type: Actualed-Coordinated laximum vic Ratic: 0.72 Intersection Signal Delay, 22.5 Intersection Capacity Utilization 72.4% nalysis Period (min) 15 pills and Phases: 1: Centrepointe Drive/High f 01 f 01 f 01 f 01 f 01 f 01 f 01 f 01	and 6:WE	3T, Start	of Green							
laximum [™] vic Ratic: 0.72 Hersection Signal Delay; 22.5 Hersection Signal Delay; 22.5 Hersection Capacity Utilization 72.4% nalysis Period (min) 15 pills and Phases: 1: Centrepointe Drive/High f 01 f 01 f 0 f 0 f 0 f 0 f 0 f 0 f 0 f 0										
tersection Signal Delay; 22.5 tersection Capacity Utilization 72.4% nalysis Period (min) 15 pills and Phases: 1: Centrepointe Drive/High fol :										
tersection Capacity Utilization 72.4% nalysis Period (min) 15 pilts and Phases: 1: Centrepointe Drive/High ✓ Ø1										
nalysis Period (min) 15 plits and Phases: 1: Centrepointe Drive/High f 01 4 s 4 s 4 s 4 s		l	ntersectio	n LOS: C						
Plits and Phases: 1: Centrepointe Drive/High		l.	CU Level	of Servic	еC					
✓ Ø1 → Ø2 (R) 4 s 47 s										
4 s 47 s	igate Driv	ve & Bas	eline Roa	d						
44 s 47 s				<h>Ø4</h>		1/2	10			
••••				20 s		39 s				
Ø6 (R)										
				•		_			Synchro 9	Repo

Lanes, Volumes, 7 2: Constellation Dr		aseline	e Road	I			2140 Baseline Road TIA 2020 Total Future AM Peak
	→	7	4	+	٩	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	†††	1	ሻሻ	††	ሻሻ	1	
Traffic Volume (vph)	2014	134	375	725	50	67	
Future Volume (vph)	2014	134	375	725	50	67	
Satd. Flow (prot)	5142	1601	3471	3579	3471	1601	
Flt Permitted			0.950		0.950		
Satd. Flow (perm)	5142	1601	3471	3579	3471	1601	
Satd. Flow (RTOR)		68				67	
Lane Group Flow (vph)	2014	134	375	725	50	67	
Turn Type	NA	pm+ov	Prot	NA	Prot	Perm	
Protected Phases	2	4	1	6	4		
Permitted Phases		2				4	
Detector Phase	2	4	1	6	4	4	
Switch Phase							
Minimum Initial (s)	5.0	5.0	5.0	10.0	5.0	5.0	
Minimum Split (s)	32.5	33.9	11.5	16.5	33.9	33.9	
Total Split (s)	66.0	34.0	30.0	96.0	34.0	34.0	
Total Split (%)	50.8%	26.2%	23.1%	73.8%	26.2%	26.2%	
Yellow Time (s)	3.7	3.0	3.7	3.7	3.0	3.0	
All-Red Time (s)	2.8	3.9	2.8	2.8	3.9	3.9	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.5	6.9	6.5	6.5	6.9	6.9	
Lead/Lag	Lag		Lead				
Lead-Lag Optimize?	Yes		Yes				
Recall Mode	C-Max	None	None	C-Max	None	None	
Act Effct Green (s)	83.4	97.4	19.2	109.1	7.5	7.5	
Actuated g/C Ratio	0.64	0.75	0.15	0.84	0.06	0.06	
v/c Ratio	0.61	0.11	0.73	0.24	0.25	0.43	
Control Delay	4.7	0.3	61.5	2.4	61.0	22.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	4.7	0.3	61.5	2.4	61.0	22.0	
LOS	A	A	E	A	E	С	
Approach Delay	4.4			22.5	38.7		
Approach LOS	A			С	D		
Intersection Summary							
Cycle Length: 130							
Actuated Cycle Length: 13	0						
Offset: 74 (57%), Reference		2:EBT a	ind 6:WB	T. Start of	f Green		
Natural Cycle: 90							
Control Type: Actuated-Co	ordinated						
Maximum v/c Ratio: 0.73							
Intersection Signal Delay:	11.5			li I	ntersectio	n LOS: B	
Intersection Capacity Utiliz		,				of Service C	
Analysis Period (min) 15							
Splits and Phases: 2: Co	onstellation	Drive & B	laseline R	2nad			
✓Ø1							\$ ¹ Ø4
♥ Ø1 30 s	66 s	2 (R)					34 s
96 s							
06/01/2018							Synchro 9 Report Page 3

Queues 1: Centrepointe Drive/Highgate Drive & Baseline Road

2140 Baseline Road TIA 2020 Total Future AM Peak

	→	¥	*	Ļ	×.	1	۴	1	4	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBR	SBL	SBR	
Lane Group Flow (vph)	1704	577	187	536	57	157	313	114	72	
v/c Ratio	0.63	0.52	0.57	0.23	0.05	0.48	0.72	0.67	0.26	
Control Delay	24.4	3.4	66.4	8.0	0.5	60.4	15.8	75.5	2.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	24.4	3.4	66.4	8.0	0.5	60.4	15.8	75.5	2.4	
Queue Length 50th (m)	110.3	0.0	24.5	23.4	0.0	20.2	0.0	28.4	0.0	
Queue Length 95th (m)	147.5	19.6	30.1	29.1	1.0	29.8	27.0	48.1	0.0	
Internal Link Dist (m)	158.7			258.8						
Turn Bay Length (m)		135.0	110.0		95.0			37.5		
Base Capacity (vph)	2690	1112	475	2381	1094	859	632	188	286	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.63	0.52	0.39	0.23	0.05	0.18	0.50	0.61	0.25	
Intersection Summary										

06/01/2018

Queues 2: Constellation Dri	ive & Ba	iseline	Road				2140 Baseline Road TIA 2020 Total Future AM Peal
	→	7	4	+	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Group Flow (vph)	2014	134	375	725	50	67	
v/c Ratio	0.61	0.11	0.73	0.24	0.25	0.43	
Control Delay	4.7	0.3	61.5	2.4	61.0	22.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	4.7	0.3	61.5	2.4	61.0	22.0	
Queue Length 50th (m)	22.8	0.1	47.9	14.8	6.4	0.0	
Queue Length 95th (m)	31.9	0.6	61.9	22.0	12.7	14.2	
Internal Link Dist (m)	258.8			131.8	77.4		
Turn Bay Length (m)		55.0	115.0			60.0	
Base Capacity (vph)	3300	1448	629	3004	723	386	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.61	0.09	0.60	0.24	0.07	0.17	
Intersection Summary							

2140 Baseline Road TIA 2020 Total Future AM Peak

Intersection Int Delay, siveh 2.4 Movement WBL WBR NBT NBR SBL SBT Lane Configurations Y H rf 414 F 414 F 414 F 414 F 414 F 7 614 7 515 579 579 570 570 570 570 570 570 570 570 579							
Int Delay, siveh 2.4 Movement WBL WBR NBT NBR SBL SBT Lane Configurations Yf H1 rf 444 Taffic Oxi, vehih 17 89 382 39 186 579 Lane Configurations Yf H1 rf 444 7 444 Traffic Oxi, vehih 17 89 382 39 186 579 Conflicting Peds, #hr 0 2 <td>Intersection</td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td>	Intersection	_		_			_
Movement WBL WBR NBT NBR SBL SBL Lane Configurations Y ++ r -+ ++ <th< td=""><td></td><td>2.4</td><td></td><td></td><td></td><td></td><td></td></th<>		2.4					
Lane Configurations Ý + ř -	<i>r</i> .		WDD	NDT	NDD	0.01	ODT
Traffic Val, vehh. 17 89 382 39 186 579 Conflicting Peds, #hr 0			WRR			SBL	
Future Vol, vehh. 17 89 382 39 186 579 Conficing Peds, #hr 0 <td></td> <td></td> <td>00</td> <td></td> <td></td> <td>400</td> <td></td>			00			400	
Conflicting Peds, #hr 0							
Sign Control Stop Stop Free Free Free Free Free Free Free Free Free None							
RT Channelized None None None None Storage Length 0 - 450 - - Veh in Median Storage, # 0 - 0 - 0 - 0 Grade, % 0 - 0 - 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100					-		
Storage Length 0 - - 450 - - 0 Veh in Median Storage, # 0 - 0 - 0 0 - 0 Grade, % 0 - 0 100 100 100 100 100 Peak Hour Factor 100 100 100 100 100 100 Peak Hour Factor 17 89 382 2 2 2 2 2 Mmm Flow 17 89 382 39 186 579 Major/Minor Minor Major Major Major Major 2 2 2 2 Mmm Flow 579 Conflicting Flow All 966 191 0 0 382 39 186 - - - - Store - - Store - - - - - - Store - - - - - Store <td< td=""><td></td><td>Stop</td><td></td><td>Free</td><td></td><td></td><td></td></td<>		Stop		Free			
Veh if Median Storage, # 0 0 0 0 Grade, % 0 0 0 0 0 0 Peak Hour Factor 100 100 100 100 100 100 100 Heavy Henicles, % 2 1 0 3 3 1 1 1 1 1 1 1 1 1 1			None	-		-	None
Grade, % 0 0 0 - 0 0 - 0 0 100 <th< td=""><td></td><td></td><td>-</td><td>-</td><td>450</td><td>-</td><td>-</td></th<>			-	-	450	-	-
Pask Hour Factor 100 1100	Veh in Median Storage	,# 0	-	0	-	-	0
Heavy Vehicles, % 2 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <th2< th=""> 2 <th2< th=""></th2<></th2<>	Grade, %	0	-	0	-	-	0
Minnt Flow 17 89 382 39 186 579 Major/Minor Minor Major/I Major/I Major/I Major/I Conflicting Flow All 966 191 0 0 382 0 Stage 1 382 - - - - - - Stage 2 604 - - - - - - Critical Hoky Stg 1 5.84 - <td>Peak Hour Factor</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td>	Peak Hour Factor	100	100	100	100	100	100
Major/Minor Minor! Majorl Majorl Majorl Majorl Majorl Majorl Majorl Majorl Stage Conflicting Flow Mill Stage 1 382 -	Heavy Vehicles, %	2	2		2	2	2
Major/Minor Minor Major1 Major2 Conflicting Flow All 966 191 0 382 0 Stage 1 382 - - - - Stage 2 604 - - - - Ortical Hdwy Stg 2 604 - - - - Ortical Hdwy Stg 2 604 - - - - Ortical Hdwy Stg 2 610 - - - - Pollow-up Hdwy 3.67 3.32 - 2.22 - Pollow-up Hdwy Stg 2 614 - - - - Stage 1 637 - - - - Stage 1 637 - - - - Nov Cap-Maneuver 213 18 - - - Stage 2 365 - - - - Stage 2 365 - - - - <		17	89	382	39	186	579
Conflicting Flow All 98 191 0 0 382 0 Stage 1 382 -							
Conflicting Flow All 966 191 0 0 382 0 Stage 1 382 -	Major/Minor A	linert	_	Majort	,	Major?	
Stage 1 382 -							
Stage 2 604 - - - Critical Hdwy Stg 1 5.24 - - - Critical Hdwy Stg 1 5.84 - - - Critical Hdwy Stg 2 6.04 - - - Critical Hdwy Stg 2 6.04 - - - Critical Hdwy Stg 2 6.04 - - - Stage 1 6.37 - - 2.22 - Pol Cap-1 Maneuver 278 818 - 1173 - Stage 1 637 - - - - Stage 1 637 - - - Stage 2 477 - - - - - - Stage 1 637 - - - - - Stage 1 637 - - - - - Stage 1 637 - - - - Stage 2 365 - - - -							
Critical Hdwy E 29 6.94 - 4.14 - Critical Hdwy Stg 5.84 - - - - Critical Hdwy Stg 6.04 - - - - Follow-up Hdwy 3.67 3.32 - 2.22 - Follow-up Hdwy 3.67 3.32 - 2.22 - Stage 1 637 - - - - Stage 2 477 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 218 818 - 1173 - Stage 2 365 - - - - - Stage 2 365 - - - - - - Stage 2 365 - - - - - - - - - - - - - - -							
Critical Holwy Stg 1 5.84 - Stage 1 637 - - - - - - Stage 1 637 -							
Ortical Hdwy Sig 2 6.04 - Stage 1 637 - - - - - - Stage 1 367 365			6.94	-		4.14	
Follow-up Hdwy 3.67 3.32 - 2.22 - Pot Cap-1 Maneuver 278 818 - 1173 - Stage 1 637 - - - - Stage 1 637 - - - - Stage 1 637 - - - - Bloon blocked, % - - - - - Mov Cap-1 Maneuver 213 818 - 1173 - - Stage 1 637 - - - - - - Stage 2 365 - - - - - - Stage 2 365 - - - - - - Approach WB NB SB - - - - - - - - - - - - - - - - - - <td< td=""><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></td<>			-	-	-	-	-
Vpc Gar-1 Manieuver 278 818 - 1173 - Stage 1 637 - Stage 1 637 - - - - - - Stage 1 637 - - - - Stage 2 365 - - - - Stage 2 - - - Stage 2 - - - - Stage 2 - - - Stage 2 - - - Stag		6.04		-	-		-
Stage 1 637 -		3.67	3.32	-	-		-
Stage 2 477 - Stage 1 637 - - - - - Stage 1 637 - - - - - Stage 2 365 - - - - - - Stage 2 365 - - - - - - Stage 2 365 - <th< td=""><td>Pot Cap-1 Maneuver</td><td>278</td><td>818</td><td>-</td><td>-</td><td>1173</td><td>-</td></th<>	Pot Cap-1 Maneuver	278	818	-	-	1173	-
Platon blocked, % - Stage 1 637 - <td>Stage 1</td> <td>637</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Stage 1	637	-	-	-	-	-
Platon blocked, % - Stage 1 637 - <td></td> <td>477</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td>		477	-		-	-	-
Mov Cap-1 Maneuver 213 818 - 1173 - Mov Cap-2 Maneuver 213 - Stage 1 657 -							
Mov Cap-2 Maneuver 213 -		213	818			1173	-
Stage 1 637 -				-			-
Stage 2 365 - <							
WB NB SB Approach WB NB SB HCM Control Delay, s 12.9 0 2.3 HCM LOS B B B Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 552 1173 -			-	-		-	-
HCM Control Delay, s 12.9 0 2.3 HCM LOS B Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 562 1173 -	Stage 2	300	-			-	
HCM Control Delay, s 12.9 0 2.3 HCM LOS B Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 562 1173 -							
HCM LOS B Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/n) - 552 1173 -	Approach	WB		NB		SB	
Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 562 1173 -	HCM Control Delay, s	12.9		0		2.3	
Capacity (veh/h) 562 1173 -	HCM LOS	В					
Capacity (veh/h) 562 1173 -							
Capacity (veh/h) 562 1173 -	Minor Lane/Maior Mym	ŧ.	NRT	NRRI	NRI n1	SBI	SBT
		ι .					
HCM Lane V/C Ratio 0.189 0.159 -							
HCM Control Delay (s) 12.9 8.6 0.3							
HCM Lane LOS B A A	HCM Lane LOS		-	-			A
HCM 95th %tile Q(veh) 0.7 0.6 -							

06/01/2018

Synchro 9 Report Page 6

HCM 2010 TW 5: Gemini Way			229				2140 Baseline Road 2020 Total Future Al
o. oemini way	u on	0 / 100	000				
Intersection							
Int Delay, s/veh	3						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ب	f,		Y		
Traffic Vol, veh/h	33	100	46	23	5	59	
Future Vol, veh/h	33	100	46	23	5	59	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	-	-	-	-	0	-	
Veh in Median Storag	e,# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	100	100	100	100	100	100	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	33	100	46	23	5	59	
Major/Minor	Major1		Major2	1	Minor2		
Conflicting Flow All	69	0	-	0	224	58	
Stage 1	-	-	-		58	-	
Stage 2	-	-	-		166	-	
Critical Hdwy	4.12	-	-			6.22	
Critical Hdwy Stg 1	-	-	-		5.42	-	
Critical Hdwy Stg 2	-	-	-		5.42	-	
Follow-up Hdwy	2.218	-	-		3.518		
Pot Cap-1 Maneuver	1532	-	-	-	764	1008	
Stage 1	-	-	-		965	-	
Stage 2	-	-	-		863	-	
Platoon blocked, %		-	-	-			

Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1532	-	-	-	746	1008
Mov Cap-2 Maneuver	-	-	-	-	746	-
Stage 1	-	-	-	-	965	-
Stage 2	-	-	-	-	843	-
Approach	EB		WB		SB	
HCM Control Delay, s	1.8		0		8.9	
HCM LOS					A	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		1532	-	-	-	981
HCM Lane V/C Ratio		0.022	-	-	-	0.065
HCM Control Delay (s)		7.4	0	-	-	8.9
HCM Lane LOS		A	A	-	-	A
HCM 95th %tile O(veh))	0.1				0.2

HCM 2010 TWSC 4: Constellation Drive & Gemini Way

Intersection						
Int Delay, s/veh	1.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1		<u>†</u> †	≜ ‡₽	
Traffic Vol. veh/h	0	100	0	116	69	440
Future Vol, veh/h	0	100	0	116	69	440
Conflicting Peds, #/hr	0	001	0	0	09	440
	Stop	Stop	Free	Free	Free	Free
Sign Control	- · · · p					
RT Channelized	-		-	110110	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	100	0	116	69	440
Maland Marana A	C		Antend		4-10	
	linor2		Major1		Major2	
Conflicting Flow All	-	255	-	0	-	0
Stage 1	-	-		-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy		3.32	-	-	-	-
Pot Cap-1 Maneuver	0	744	0	-	-	-
Stage 1	0		0			
Stage 2	0		0			
Platoon blocked. %	0		0			
		744				
Mov Cap-1 Maneuver		744				
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-		-	-
Stage 2	-	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	10.6		0		0	
HCM LOS	B		0		0	
I IOW LOG	D					
Minor Lane/Major Mvm	1	NBT B	EBLn1	SBT	SBR	
Capacity (veh/h)		-	744	-	-	
HCM Lane V/C Ratio		-	0.134	-	-	
HCM Control Delay (s)		-	10.6	-	-	
HCM Lane LOS			В			
HCM 95th %tile Q(veh)			0.5			

06/01/2018

	٦	-	\mathbf{i}	*	-	•	1	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	٦	†††	1	ኘ	††	1	ኘኘ		1	٦		1
Traffic Volume (vph)	29	708	214	184	1386	122	472	0	253	80	0	5
Future Volume (vph)	29	708	214	184	1386	122	472	0	253	80	0	5
Satd. Flow (prot)	1789	5142	1601	3471	3579	1601	3471	0	1601	1789	0	160
Flt Permitted	0.153			0.950			0.950			0.950		
Satd. Flow (perm)	288	5142	1601	3471	3579	1601	3471	0	1601	1789	0	160
Satd. Flow (RTOR)			214			122			253			13
Lane Group Flow (vph)	29	708	214	184	1386	122	472	0	253	80	0	5
Turn Type	Perm	NA	Perm	Prot	NA	Perm	Prot		Perm	Prot		Perr
Protected Phases		2		1	6		10			4		
Permitted Phases	2		2			6			10			
Detector Phase	2	2	2	1	6	6	10		10	4		
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	5.0	10.0	10.0	10.0		10.0	10.0		10.
Minimum Split (s)	25.7	25.7	25.7	11.2	25.7	25.7	38.8		38.8	16.3		16.
Total Split (s)	47.0	47.0	47.0	24.0	71.0	71.0	39.0		39.0	20.0		20.
Total Split (%)	36.2%	36.2%	36.2%	18.5%	54.6%	54.6%	30.0%		30.0%	15.4%		15.49
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.0		3.0	3.3		3.
All-Red Time (s)	2.0	2.0	2.0	2.5	2.0	2.0	3.8		3.8	3.0		3.
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.
Total Lost Time (s)	5.7	5.7	5.7	6.2	5.7	5.7	6.8		6.8	6.3		6.
Lead/Lag	Lag	Lag	Lag	Lead								
Lead-Lag Optimize?	Yes	Yes	Yes	Yes								
Recall Mode	C-Max	C-Max	C-Max	None	C-Max	C-Max	None		None	None		Non
Act Effct Green (s)	57.8	57.8	57.8	12.2	76.2	76.2	23.4		23.4	11.5		11.
Actuated g/C Ratio	0.44	0.44	0.44	0.09	0.59	0.59	0.18		0.18	0.09		0.0
v/c Ratio	0.23	0.31	0.26	0.57	0.66	0.12	0.76		0.51	0.51		0.2
Control Delay	32.6	25.0	4.3	69.6	17.9	1.6	58.4		8.8	67.6		1.
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.
Total Delay	32.6	25.0	4.3	69.6	17.9	1.6	58.4		8.8	67.6		1.
LOS	С	С	A	E	В	A	E		A	E		
Approach Delay		20.6			22.4			41.1			40.0	
Approach LOS		С			С			D			D	
Intersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 13												
Offset: 76 (58%), Reference	ed to phase	2:EBTL	and 6:WE	T, Start	of Green							
Natural Cycle: 95												
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.76												
Intersection Signal Delay: 2					ntersectio							
Intersection Capacity Utiliz	ation 75.3%	, ,		10	CU Level	of Service	эD					
Analysis Period (min) 15												
Splits and Phases: 1: Ce	entrepointe	Drive/Hig	hgate Roa	ad & Bas	eline Roa	d						
1 Ø1						</td <td></td> <td>1</td> <td>010</td> <td></td> <td></td> <td></td>		1	010			
24 s 4	7 s					20 s		39 s				
						1						

Q	u	е	u	e

Queues 1: Centrepointe Drive/Highgate Road & Baseline Road

2140 Baseline Road TIA 2020 Total Future PM Peak

	٨		~	~	Ļ	A.	•	*	6	2	
	-	-	•	*)	r			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBR	SBL	SBR	
Lane Group Flow (vph)	29	708	214	184	1386	122	472	253	80	58	
v/c Ratio	0.23	0.31	0.26	0.57	0.66	0.12	0.76	0.51	0.51	0.22	
Control Delay	32.6	25.0	4.3	69.6	17.9	1.6	58.4	8.8	67.6	1.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	32.6	25.0	4.3	69.6	17.9	1.6	58.4	8.8	67.6	1.9	
Queue Length 50th (m)	4.5	42.0	0.0	23.0	133.3	0.2	59.5	0.0	20.0	0.0	
Queue Length 95th (m)	14.6	60.4	16.1	32.9	176.4	3.2	74.0	21.4	35.7	0.0	
Internal Link Dist (m)		158.7			258.8						
Turn Bay Length (m)	55.0		135.0	110.0		95.0			37.5		
Base Capacity (vph)	128	2287	831	475	2099	989	859	586	188	286	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.23	0.31	0.26	0.39	0.66	0.12	0.55	0.43	0.43	0.20	
Intersection Summary											

Lanes, Volumes, Tim 2: Constellation Drive	seline	Road			
	/	/	t	٠	

2140 Baseline Road TIA

		~	1	+	•	1		
		•	•					
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	<u></u>	1	ካካ	††	ሻሻ	7		
Traffic Volume (vph)	1021	25	111	1491	186	361		
Future Volume (vph)	1021	25	111	1491	186	361		
Satd. Flow (prot)	5142	1601	3471	3579	3471	1601		
Flt Permitted			0.950		0.950			
Satd. Flow (perm)	5142	1601	3471	3579	3471	1601		
Satd. Flow (RTOR)		25				348		
Lane Group Flow (vph)	1021	25	111	1491	186	361		
Turn Type	NA	pm+ov	Prot	NA	Prot	Perm		
Protected Phases	2	4	1	6	4			
Permitted Phases		2				4		
Detector Phase	2	4	1	6	4	4		
Switch Phase								
Minimum Initial (s)	5.0	5.0	5.0	10.0	5.0	5.0		
Minimum Split (s)	32.5	33.9	11.5	16.5	33.9	33.9		
Total Split (s)	66.0	34.0	30.0	96.0	34.0	34.0		
Total Split (%)	50.8%	26.2%	23.1%	73.8%	26.2%	26.2%		
Yellow Time (s)	3.7	3.0	3.7	3.7	3.0	3.0		
All-Red Time (s)	2.8	3.9	2.8	2.8	3.9	3.9		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.5	6.9	6.5	6.5	6.9	6.9		
Lead/Lag	Lag		Lead					
Lead-Lag Optimize?	Yes		Yes					
Recall Mode	C-Max	None	None	C-Max	None	None		
Act Effct Green (s)	87.3	107.1	9.5	103.3	13.3	13.3		
Actuated g/C Ratio	0.67	0.82	0.07	0.79	0.10	0.10		
v/c Ratio	0.30	0.02	0.44	0.52	0.52	0.76		
Control Delay	5.5	0.3	62.7	5.9	60.0	17.2		
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	5.5	0.3	62.7	5.9	60.0	17.2		
LOS	A	A	E	A	E	В		
Approach Delay	5.4			9.8	31.8			
Approach LOS	A			A	С			
Intersection Summary								
Cycle Length: 130								_
Actuated Cycle Length: 13	0							
Offset: 74 (57%), Reference		e 2:EBT a	nd 6:WB	T. Start of	Green			
Natural Cycle: 80				,				
Control Type: Actuated-Co	ordinated							
Maximum v/c Ratio: 0.76								
Intersection Signal Delay:	12.1			Ir	ntersectio	n LOS: B		
Intersection Capacity Utiliz				10	CU Level	of Service	В	
Analysis Period (min) 15								
Onlike and Discourse of C		D.:	France					
	onstellation		aseline h	090			4	
√ Ø1		02 (R)					\$ \∕Ø4	
30 s	66 S						34 s	
Ø6 (R)					_			
90 S							Synch	co (

Synchro 9 Report Page 2

				4			
	-		*			-	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Group Flow (vph)	1021	25	111	1491	186	361	
v/c Ratio	0.30	0.02	0.44	0.52	0.52	0.76	
Control Delay	5.5	0.3	62.7	5.9	60.0	17.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	5.5	0.3	62.7	5.9	60.0	17.2	
Queue Length 50th (m)	16.0	0.0	14.2	56.1	23.9	3.1	
Queue Length 95th (m)	26.1	m0.2	23.4	95.0	33.4	32.5	
Internal Link Dist (m)	258.8			131.8	77.4		
Turn Bay Length (m)		55.0	115.0			60.0	
Base Capacity (vph)	3452	1490	627	2844	723	609	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.30	0.02	0.18	0.52	0.26	0.59	

HCM 2010 TV 3: Centrepoin	VSC te Drive & Gemini Way	2140 Baseline Road TIA 2020 Total Future PM Peak
Intersection		
Int Delay, s/veh	2.2	

in Dolay, siven	2.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰Y		††	1		-4 † †
Traffic Vol, veh/h	32	132	594	18	35	364
Future Vol, veh/h	32	132	594	18	35	364
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-		450		-
Veh in Median Storage	. # 0	-	0	-		0
Grade, %	0		0			0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	32	132	594	18	35	364
WWITCHIOW	02	102	004	10	00	004
	Minor1		Major1		Major2	
Conflicting Flow All	810	297	0	0	594	0
Stage 1	594	-	-	-	-	-
Stage 2	216	-		-		-
Critical Hdwy	6.29	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84					
Critical Hdwy Stg 2	6.04		-	-	-	-
Follow-up Hdwy	3.67	3.32			2.22	
Pot Cap-1 Maneuver	350	699	-	-		
Stage 1	499					
Stage 2	761	-		-		-
Platoon blocked, %						
Mov Cap-1 Maneuver	334	699		-	978	-
Mov Cap-2 Maneuver	334	-			-	
Stage 1	499					
Stage 2	727					
Stage 2	121					
Approach	WB		NB		SB	
HCM Control Delay, s	13.7		0		0.9	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBT		VBLn1	SBL	SBT
Capacity (veh/h)		-	-	576	978	-
HCM Lane V/C Ratio		-	-	0.285		-
HCM Control Delay (s))	-	-		8.8	0.1
HCM Lane LOS		-	-	В	A	A
HCM 95th %tile Q(veh)	-	-	1.2	0.1	-
	-					

06/01/2018

2140 Baseline Road TIA 2020 Total Future PM Peak

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1		44	≜ î⊧	
Traffic Vol, veh/h	0	5	0	547	82	54
Future Vol. veh/h	0	5	0	547	82	54
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None		None
Storage Length		0		-		-
Veh in Median Storage		-		0	0	
Grade, %	0			0	0	
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	5	0	547	82	54
WWITETIOW	0	J	0	347	02	J4
	Minor2		Major1		Major2	
Conflicting Flow All	-	68	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-		-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32		-		-
Pot Cap-1 Maneuver	0	981	0	-	-	-
Stage 1	0	-	0	-		-
Stage 2	0	-	0	-		-
Platoon blocked. %	-		-			
Mov Cap-1 Maneuver	-	981		-		-
Mov Cap-2 Maneuver		-		-		
Stage 1		-	-			
Stage 2	-	-		-		
Oldge 2						
Approach	EB		NB		SB	
HCM Control Delay, s	8.7		0		0	
HCM LOS	A					
Minor Lane/Major Mvm	4	NBT I	EDI n1	SBT	SBR	
	n.	IND I	981			
Capacity (veh/h)				-	-	
HCM Lane V/C Ratio			0.005	-		
HCM Control Delay (s)			8.7	-		
HCM Lane LOS		-	A	-	-	
HCM 95th %tile Q(veh)	-	0	-		

HCM 2010 TWSC 5: Gemini Way & Site Access

Int Delay, s/veh	4.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1+		Y	
Traffic Vol, veh/h	23	5	21	33	5	51
Future Vol, veh/h	23	5	21	33	5	51
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None		None
Storage Length	-	-		-	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	23	5	21	33	5	51
Major/Minor	Major1	N	Maior2		Minor2	
Conflicting Flow All	54	0	- 10	0	89	38
Stage 1	- 54	-		-	38	- 30
				-	- 30 51	
Stage 2 Critical Hdwy	4.12	-			6.42	
Critical Howy Critical Howy Stg 1	4.1Z					0.22
		-		-	5.42	-
Critical Hdwy Stg 2	-			-		2 240
Follow-up Hdwy	2.218			-	3.518	1034
Pot Cap-1 Maneuver				-		1034
Stage 1	-	-		-	984	
Stage 2		-		-	971	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver		-		-	898	1034
Mov Cap-2 Maneuver	-	-	-	-	898	-
Stage 1		-		-	984	-
Stage 2	-	-	-	-	956	-
Approach	FB		WB		SB	
HCM Control Delay, s	6		0		8.7	
HCM LOS	0		U		0.7 A	
1001200					A	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	
Capacity (veh/h)		1551	-	-		1020
HCM Lane V/C Ratio		0.015		-		0.055
HCM Control Delay (s)	1	7.4	0	-	-	8.7
HCM Lane LOS		A	A	-		A
)	0				0.2

06/01/2018

Synchro 9 Report Page 8

06/01/2018

Lanes, Volumes, Timings 1: Centrepointe Drive/Highgate Road & Baseline Road

2140 Baseline Road TIA 2025 Ultimate AM Peak

	٦		\mathbf{r}	4	+	×.	1	1	1	1	÷.	-
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations	٦	<u></u>	1	ሻሻ	††	1	ኘሻ		1	۲		
raffic Volume (vph)	0	1869	630	205	587	63	171	0	340	125	0	7
uture Volume (vph)	0	1869	630	205	587	63	171	0	340	125	0	7
atd. Flow (prot)	1883	5142	1601	3471	3579	1601	3471	0	1601	1789	0	160
It Permitted				0.950			0.950			0.950		
Satd. Flow (perm)	1883	5142	1601	3471	3579	1601	3471	0	1601	1789	0	160
Satd. Flow (RTOR)			630			85			310			13
ane Group Flow (vph)	0	1869	630	205	587	63	171	0	340	125	0	7
urn Type	Perm	NA	Perm	Prot	NA	Perm	Prot		Perm	Prot		Perr
Protected Phases		2		1	6		10			4		
Permitted Phases	2		2			6			10			
Detector Phase	2	2	2	1	6	6	10		10	4		
Switch Phase												
/inimum Initial (s)	10.0	10.0	10.0	5.0	10.0	10.0	10.0		10.0	10.0		10.
/inimum Split (s)	25.7	25.7	25.7	11.2	25.7	25.7	38.8		38.8	16.3		16.
otal Split (s)	47.0	47.0	47.0	24.0	71.0	71.0	39.0		39.0	20.0		20.
otal Split (%)	36.2%	36.2%	36.2%	18.5%	54.6%	54.6%	30.0%		30.0%	15.4%		15.49
ellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.0		3.0	3.3		3.
All-Red Time (s)	2.0	2.0	2.0	2.5	2.0	2.0	3.8		3.8	3.0		3.
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.
otal Lost Time (s)	5.7	5.7	5.7	6.2	5.7	5.7	6.8		6.8	6.3		6.
.ead/Lag	Lag	Lag	Lag	Lead								
ead-Lag Optimize?	Yes	Yes	Yes	Yes								
Recall Mode	C-Max	C-Max	C-Max	None	C-Max	C-Max	None		None	None		Non
Act Effct Green (s)		65.9	65.9	13.0	85.0	85.0	13.5		13.5	12.7		12.
Actuated g/C Ratio		0.51	0.51	0.10	0.65	0.65	0.10		0.10	0.10		0.1
/c Ratio		0.72	0.56	0.59	0.25	0.06	0.47		0.77	0.72		0.2
Control Delay		28.1	3.9	64.9	8.9	0.8	58.5		20.2	79.5		3.
Queue Delay		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.
Total Delay		28.1	3.9	64.9	8.9	0.8	58.5		20.2	79.5		3.
.0S		С	A	E	A	A	E		С	E		
Approach Delay		22.0			21.7			33.0			50.1	
Approach LOS		С			С			С			D	
ntersection Summary												
cycle Length: 130												
Actuated Cycle Length: 13)											
Offset: 76 (58%), Reference	ed to phase	2:EBTL	and 6:WE	3T, Start	of Green							
latural Cycle: 115												
Control Type: Actuated-Co	ordinated											
Aaximum v/c Ratio: 0.77												
ntersection Signal Delay: 2	4.7			li li	ntersectio	n LOS: C						
ntersection Capacity Utiliz	ation 77.8%	5		10	CU Level	of Servic	e D					
Analysis Period (min) 15												
Splits and Phases: 1: Ce	ntrepointe	Drive/Hia	hoate Ro	ad & Bas	eline Roa	d						
	02 (R)					« Ø4		1	010			
24 s 4						20 s		39 s				
71 s												

06/01/2018

anes, Volumes, [*] 2: Constellation D		aseline	Road				2025 Ultimate AM Peal
	→	¥	4	+	٩	1	
ane Group	EBT	EBR	WBL	WBT	NBL	NBR	
ane Configurations	†††	1	ሻሻ	††	ሻሻ	1	
raffic Volume (vph)	2204	146	409	795	55	73	
uture Volume (vph)	2204	146	409	795	55	73	
atd. Flow (prot)	5142	1601	3471	3579	3471	1601	
It Permitted			0.950		0.950		
atd. Flow (perm)	5142	1601	3471	3579	3471	1601	
atd. Flow (RTOR)		52				73	
ane Group Flow (vph)	2204	146	409	795	55	73	
urn Type	NA	pm+ov	Prot	NA	Prot	Perm	
rotected Phases	2	4	1	6	4		
ermitted Phases		2				4	
etector Phase	2	4	1	6	4	4	
witch Phase							
linimum Initial (s)	5.0	5.0	5.0	10.0	5.0	5.0	
linimum Split (s)	32.5	33.9	11.5	16.5	33.9	33.9	
otal Split (s)	66.0	34.0	30.0	96.0	34.0	34.0	
otal Split (%)	50.8%	26.2%	23.1%	73.8%	26.2%	26.2%	
ellow Time (s)	3.7	3.0	3.7	3.7	3.0	3.0	
II-Red Time (s)	2.8	3.9	2.8	2.8	3.9	3.9	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	
otal Lost Time (s)	6.5	6.9	6.5	6.5	6.9	6.9	
ead/Lag	Lag		Lead				
ead-Lag Optimize?	Yes		Yes				
ecall Mode	C-Max	None	None	C-Max	None	None	
ct Effct Green (s)	82.0	96.2	20.4	108.9	7.7	7.7	
ctuated g/C Ratio	0.63	0.74	0.16	0.84	0.06	0.06	
c Ratio	0.68	0.12	0.75	0.27	0.27	0.45	
ontrol Delay	5.4	0.5	61.1	2.5	61.1	21.6	
lueue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
otal Delay	5.4	0.5	61.1	2.5	61.1	21.6	
OS	A	A	E	A	E	С	
pproach Delay	5.1			22.4	38.6		
pproach LOS	A			С	D		
tersection Summary							
cycle Length: 130							
ctuated Cycle Length: 13	0						
ffset: 74 (57%), Referend		2.ERT a	nd 6·WB	Start of	Green		
atural Cycle: 100				, otare o	oroon		
ontrol Type: Actuated-Co	ordinated						
laximum v/c Ratio: 0.75	orumatou						
tersection Signal Delay:	11 0			le le	ntersectio	n LOS: B	
tersection Capacity Utiliz						of Service D	
nalysis Period (min) 15	2001170.07	,			JO LOVOI		
, , ,							
	onstellation	Drive & B	aseline R	load			
√ Ø1	🖡 🔶	12 (R)					3 /04
0 s	66 s						34 s
Ø6 (R)							
6 S	•						
							Synchro 9 Repo
5/01/2018							Page

Queues 1: Centrepointe Drive/Highgate Road & Baseline Road 2140 Baseline Road TIA 2025 Ultimate AM Peak

	-	Ý	4	+	×.	٩	1	1	4	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBR	SBL	SBR	
Lane Group Flow (vph)	1869	630	205	587	63	171	340	125	79	
v/c Ratio	0.72	0.56	0.59	0.25	0.06	0.47	0.77	0.72	0.29	
Control Delay	28.1	3.9	64.9	8.9	0.8	58.5	20.2	79.5	3.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	28.1	3.9	64.9	8.9	0.8	58.5	20.2	79.5	3.6	
Queue Length 50th (m)	130.5	0.0	25.9	25.6	0.0	21.9	7.3	31.3	0.0	
Queue Length 95th (m)	182.4	22.6	30.7	31.5	1.6	30.7	36.6	#56.3	1.9	
Internal Link Dist (m)	158.7			258.8						
Turn Bay Length (m)		135.0	110.0		95.0			37.5		
Base Capacity (vph)	2605	1121	475	2341	1076	859	629	188	286	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.72	0.56	0.43	0.25	0.06	0.20	0.54	0.66	0.28	
Intersection Summary										

Intersection Summary # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

06/01/2018

Synchro 9 Report Page 1

	-	\mathbf{r}	1	+	•	~	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Group Flow (vph)	2204	146	409	795	55	73	
v/c Ratio	0.68	0.12	0.75	0.27	0.27	0.45	
Control Delay	5.4	0.5	61.1	2.5	61.1	21.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	5.4	0.5	61.1	2.5	61.1	21.6	
Queue Length 50th (m)	27.3	0.3	52.2	16.8	7.0	0.0	
Queue Length 95th (m)	37.6	m1.1	66.5	24.8	13.6	14.7	
Internal Link Dist (m)	258.8			131.8	77.4		
Turn Bay Length (m)		55.0	115.0			60.0	
Base Capacity (vph)	3243	1429	637	2999	723	391	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.68	0.10	0.64	0.27	0.08	0.19	

2140 Baseline Road TIA 2025 Ultimate AM Peak

Intersection	_	_	_	_	_	_
Int Delay, s/veh	2.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		- 11	1		4 † †
Traffic Vol, veh/h	18	92	418	42	201	635
Future Vol, veh/h	18	92	418	42	201	635
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None	-	None
Storage Length	0	-	-	450	-	-
Veh in Median Storage	.# 0	-	0	-	-	0
Grade, %	0		0			0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	18	92	418	42	201	635
WWITCHIOW	10	52	410	72	201	000
	Minor1		Major1		Major2	
Conflicting Flow All	1074	209	0	0	418	0
Stage 1	418	-	-	-	-	-
Stage 2	656	-	-	-	-	-
Critical Hdwy	6.29	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-		-		-
Critical Hdwy Stg 2	6.04	-	-	-	-	-
Follow-up Hdwy	3.67	3.32	-		2.22	-
Pot Cap-1 Maneuver	247	797	-	-	1138	-
Stage 1	612	-			-	
Stage 2	448		-			
Platoon blocked, %	440			-		
Mov Cap-1 Maneuver	180	797			1138	
Mov Cap-1 Maneuver	180	-			1130	
	612	-	-	-	-	-
Stage 1			-		-	
Stage 2	326		-		-	-
Approach	WB		NB		SB	
HCM Control Delay, s	14		0		2.4	
HCM LOS	B		-			
	0					
		UDT			0.01	0.07
Minor Lane/Major Mvm	ıt	NBT		WBLn1	SBL	SBT
Capacity (veh/h)			-	511	1138	-
HCM Lane V/C Ratio		-	-		0.177	-
HCM Control Delay (s)		-	-	14	8.8	0.4
HCM Lane LOS		-	-	В	A	A
HCM 95th %tile Q(veh))	-	-	0.8	0.6	-

06/01/2018

Synchro 9 Report Page 6

HCM 2010 TWS 5: Gemini Way		e Acc	ess				2140 Bas 2	025 Ultimat
ntersection								
Int Delay, s/veh	2.9							
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		સ	ĥ		Y			
Traffic Vol. veh/h	33	109	50	23	5	59		
Future Vol. veh/h	33	109	50	23	5	59		
Conflicting Peds. #/hr	0	0	0	0	0	0		
Sign Control	Free		Free	Free	Stop	Stop		
RT Channelized		None	Fiee -		Stop -	None		
Storage Length		None -		None	- 0	None -		
Storage Length Veh in Median Storage		0	0		0			
Grade, %	-	0	0	400	0	-		
Peak Hour Factor	100	100	100	100	100	100		
Heavy Vehicles, %	2	2	2	2	2	2		
Mvmt Flow	33	109	50	23	5	59		
Major/Minor I	Major1	1	/lajor2	1	Minor2			
Conflicting Flow All	73	0		0	237	62		
Stage 1	-	-		-	62	-		
Stage 2					175	-		
Critical Hdwy	4.12	-			6.42	6.22		
Critical Hdwy Stg 1					5.42	-		
		-			5.42			
Critical Hdwy Stg 2					3.518	3 318		
Follow-up Hdwy	2.218	-			751	1003		
Follow-up Hdwy Pot Cap-1 Maneuver			-	-	751	1003		
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1	2.218 1527	-			961			
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2	2.218 1527	-	-	-				
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, %	2.218 1527 - -	-	-	-	961 855	-		
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver	2.218 1527 - - 1527	•	-	•	961 855 734	- - 1003		
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Wov Cap-1 Maneuver Wov Cap-2 Maneuver	2.218 1527 - 1527 -	•	-	-	961 855 734 734	-		
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Aov Cap-1 Maneuver Aov Cap-2 Maneuver Stage 1	2.218 1527 - 1527 - 1527 -	-	-	- - - - - -	961 855 734 734 961	- - 1003 -		
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Wov Cap-1 Maneuver Wov Cap-2 Maneuver	2.218 1527 - 1527 -	•	-	-	961 855 734 734	- - 1003		
Follow-up Hdwy Pol Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2	2.218 1527 - 1527 - 1527 -	-	-	- - - - - -	961 855 734 734 961 835	- - 1003 -		
Follow-up Hdwy Pd Cap-1 Maneuver Stage 1 Stage 2 Platon blocked, % Wov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach	2.218 1527 - - 1527 - - - - - - - -	-	- - - - - - - - - -	- - - - - -	961 855 734 734 961 835 SB	- - 1003 -		
Follow-up Hdwy Pol Cap-1 Maneuver Stage 1 Stage 2 Platon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s	2.218 1527 - 1527 - 1527 -	-	-	- - - - - -	961 855 734 734 961 835 SB 9	- - 1003 -		
Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1	2.218 1527 - - 1527 - - - - - - - -	-	- - - - - - - - - -	- - - - - -	961 855 734 734 961 835 SB	- - 1003 -		
Follow-up Hdwy Pol Cap-1 Maneuver Stage 1 Stage 2 Platon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s	2.218 1527 - 1527 - - - - - - - - - - - - - - - - - - -	-	- - - - - - - - - -	- - - - - -	961 855 734 734 961 835 SB 9	- 1003		
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Halton blocked, % Wov Cap-1 Maneuver Hor Cap-2 Maneuver Stage 2 Stage 2 Approach HCM Control Delay, s HCM LOS	2.218 1527 - 1527 - - - - - - - - - - - - - - - - - - -	-	- - - - - - - - - - - - - - - - - - -	-	961 855 734 734 961 835 SB 9 A	- 1003		
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Halton blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s CM LOS Winor Lane/Major Mivm Zapacity (veh/h)	2.218 1527 - 1527 - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	-	961 855 734 961 835 88 9 A WBR	- 1003 - - - SBLn1 975		
Follow-up Hdwy Fol Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % How Cap-1 Maneuver Stage 1 Stage 2 Approach COM Control Delay, s -COM LOS Winor Lane/Major Mvm Zapachy (veh/h)	2.218 1527 - 1527 - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	961 855 734 961 835 88 9 A WBR	- 1003 - - - - - - - - - - - - - - - - - -		
Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS	2.218 1527 - 1527 - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	961 855 734 734 961 835 88 9 A WBR	- 1003 - - - SBLn1 975		

Synchro 9 Report Page 10

HCM 2010 TWSC
4: Constellation Drive & Gemini Way

nt Delay, s/veh	1.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	LUL		NDL	1	11-	SDIV
Traffic Vol. veh/h	0	109	0	128	482	73
	0	109		128	482	73
Future Vol, veh/h			0			
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-		0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	109	0	128	482	73
	Ŭ	100		120	102	10
	/linor2		Major1		/lajor2	
Conflicting Flow All	-	278		0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	-	-
Critical Hdwy Stg 1	-	-		-	-	-
Critical Hdwy Stg 2	-	-		-	-	-
Follow-up Hdwy		3.32				
Pot Cap-1 Maneuver	0	719	0	-	-	-
Stage 1	0	-	0			
	0		0		-	
Stage 2	U	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	-	719	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2		-				
Annah	50		ND		00	
Approach	EB		NB		SB	
HCM Control Delay, s	10.9		0		0	
HCM LOS	В					
Minor Lane/Major Mvm	ł	NBT	EBLn1	SBT	SBR	
Capacity (veh/h)		-		- 100	- ODIX	_
HCM I ane V/C Ratio			0.152			
HCM Control Delay (s)			10.9	-	-	
		-		-	-	
HCM Lane LOS		-	B 0.5	-	-	
HCM 95th %tile Q(veh)		-		-		

06/01/2018

Lane Group Lane Configurations Traffic Volume (vph) Future Volume (vph) Sald. Flow (rot) Fit Permitted Said. Flow (rotron) Sald. Flow (rotron) Sald. Flow (rotron) Sald. Flow (rotron) Sald. Flow (rotron) Fortected Phases Defector Phases Defector Phases Defector Phases Defector Phases Minimum Initial (s) Minimum Split (s) Total Split (s)	EBL 32 32 1789 0.109 205 32 Perm 2 2 10.0 25.7 47.0 36.2% 3.7	EBT 776 776 5142 5142 776 NA 2 2 10.0 25.7 47.0	EBR 233 233 1601 1601 233 233 Perm 2 2 10.0 25.7	WBL 11 202 202 3471 0.950 3471 202 Prot 1 5.0	WBT ↑↑ 1520 1520 3579 3579 1520 NA 6 6	WBR 133 133 1601 1601 125 133 Perm 6 6	NBL ** 515 515 3471 0.950 3471 515 Prot 10 10	NBT 0 0 0 0	NBR 275 275 1601 1601 275 275 Perm 10	SBL 88 88 1789 0.950 1789 88 Prot 4	SBT 0 0 0 0	SBF 6- 160 160 133 6- Perm
Traffic Volume (rph) Traffic Volume (rph) Sald, Flow (rord) Fil Permitted Sald, Flow (perm) Sald, Flow (perm) Sald, Flow (refrorf) Linn Type Promitted Phases Permitted Phases Switch Phase Switch Phase Switch Phase Switch Phase Switch State Total Split (s) Total	32 32 1789 0.109 205 32 Perm 2 2 2 10.0 25.7 47.0 36.2%	776 776 5142 5142 776 NA 2 2 10.0 25.7	233 233 1601 1601 233 233 Perm 2 2 2 10.0	202 202 3471 0.950 3471 202 Prot 1	1520 1520 3579 3579 1520 NA 6	133 133 1601 1601 125 133 Perm 6	515 515 3471 0.950 3471 515 Prot 10	0 0	275 275 1601 1601 275 275 Perm	88 88 1789 0.950 1789 88 Prot	0 0	6 6 160 13 6 Perr
Future Volume (vph) Satd. Flow (prot) File Permitted Satd. Flow (prot) Satd. Flow (PROR) Lane Group Flow (vph) Turn Type Protected Phases Detector Phase Switch Phase Switch Phase Switch Phase Minimum Initial (s) Minimum Spitt (s) Total Spitt (%) Total Spitt (%) Total Spitt (%)	32 1789 0.109 205 32 Perm 2 2 2 10.0 25.7 47.0 36.2%	776 5142 5142 776 NA 2 2 2 10.0 25.7	233 1601 233 233 Perm 2 2 2 10.0	202 3471 0.950 3471 202 Prot 1 1	1520 3579 3579 1520 NA 6	133 1601 1601 125 133 Perm 6	515 3471 0.950 3471 515 Prot 10	0 0	275 1601 1601 275 275 Perm	88 1789 0.950 1789 88 Prot	0 0	6 160 160 13 6 Perm
Said, Flow (prof) Filt Permitted Said, Flow (perm) Said, Flow (prof) Jane Group Flow (ph) Turn Type Protected Phases Permitted Phases Switch Phase Switch Phase Minimum Initial (s) Minimum Solit (s) Total Split (s) Total Split (s) Fieldw Time (s) Al-Red Time (s)	1789 0.109 205 32 Perm 2 2 2 10.0 25.7 47.0 36.2%	5142 5142 776 NA 2 2 2 10.0 25.7	1601 1601 233 233 Perm 2 2 2 10.0	3471 0.950 3471 202 Prot 1 1	3579 3579 1520 NA 6	1601 1601 125 133 Perm 6	3471 0.950 3471 515 Prot 10	0	1601 1601 275 275 Perm	1789 0.950 1789 88 Prot	0	160 160 13 6 Perr
Fit Permitted Sald. Flow (perm) Sald. Flow (PCR) Lane Group Flow Vph) Lane Group Flow Vph) Protected Phases Detector Phase Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Total Split (%) Total Split (%) Al-Red Time (s)	0.109 205 32 Perm 2 2 2 10.0 25.7 47.0 36.2%	5142 776 NA 2 2 10.0 25.7	1601 233 233 Perm 2 2 2	0.950 3471 202 Prot 1	3579 1520 NA 6	1601 125 133 Perm 6	0.950 3471 515 Prot 10	0	1601 275 275 Perm	0.950 1789 88 Prot	0	160 13 6 Perr
Said. Flow (perm) Said. Flow (RTCR) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Switch Phase Minimum Initial (s) Minimum Saitt (s) Total Spitt (s) Total Spit (s) Total Spit (s) Hellow Time (s)	205 32 Perm 2 2 10.0 25.7 47.0 36.2%	776 NA 2 2 10.0 25.7	233 233 Perm 2 2 2	3471 202 Prot 1	1520 NA 6	125 133 Perm 6	3471 515 Prot 10	-	275 275 Perm	1789 88 Prot		13 6 Perr
Satd. Flow (RTOR) Lane Group Flow (vph) Tron Type Protected Phases Pereinted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) Hal-Red Time (s)	32 Perm 2 2 10.0 25.7 47.0 36.2%	776 NA 2 2 10.0 25.7	233 233 Perm 2 2 2	202 Prot 1	1520 NA 6	125 133 Perm 6	515 Prot 10	-	275 275 Perm	88 Prot		13 6 Perr
Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Total Split (%) H.Red Time (s)	Perm 2 2 10.0 25.7 47.0 36.2%	NA 2 2 10.0 25.7	233 Perm 2 2 10.0	Prot 1	NA 6	133 Perm 6	Prot 10	0	275 Perm	Prot	0	6 Perr
Turn Type Protected Phases Permitted Phases Detector Phase Detector Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (s) Total Split (s) AlR-Red Time (s)	Perm 2 2 10.0 25.7 47.0 36.2%	NA 2 2 10.0 25.7	Perm 2 2 10.0	Prot 1	NA 6	Perm 6	Prot 10	0	Perm	Prot	0	Perr
Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Spill (s) Minimum Spill (s) Total Spill (s) Total Spill (s) Total Spill (%) Yellow Time (s) All-Red Time (s)	2 2 10.0 25.7 47.0 36.2%	2 2 10.0 25.7	2 2 10.0	1	6	6	10					
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	2 10.0 25.7 47.0 36.2%	2 10.0 25.7	2	1	-				10	4		
Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	2 10.0 25.7 47.0 36.2%	10.0 25.7	2		6		10		10			
Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	10.0 25.7 47.0 36.2%	10.0 25.7	10.0		6	6	10					
Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	25.7 47.0 36.2%	25.7		5.0					10	4		
Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	25.7 47.0 36.2%	25.7		5.0								
Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s)	47.0 36.2%				10.0	10.0	10.0		10.0	10.0		10.
Total Split (%) Yellow Time (s) All-Red Time (s)	36.2%	47.0	25.7	11.2	25.7	25.7	38.8		38.8	16.3		16.
Yellow Time (s) All-Red Time (s)			47.0	24.0	71.0	71.0	39.0		39.0	20.0		20.
All-Red Time (s)	3.7	36.2%	36.2%	18.5%	54.6%	54.6%	30.0%		30.0%	15.4%		15.49
		3.7	3.7	3.7	3.7	3.7	3.0		3.0	3.3		3.
	2.0	2.0	2.0	2.5	2.0	2.0	3.8		3.8	3.0		3.
	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.
Total Lost Time (s)	5.7	5.7	5.7	6.2	5.7	5.7	6.8		6.8	6.3		6.
Lead/Lag	Lag	Lag Yes	Lag	Lead								
Lead-Lag Optimize? Recall Mode	Yes C-Max	C-Max	Yes C-Max	None	C-Max	C-Max	None		None	None		Non
	55.2	55.2	55.2	12.9	74.3	74.3	25.1		25.1	11.8		11.
Act Effct Green (s) Actuated q/C Ratio	0.42	0.42	0.42	0.10	0.57	0.57	25.1		25.1	0.09		0.0
v/c Ratio	0.42	0.42	0.42	0.10	0.57	0.57	0.19		0.19	0.09		0.0
Control Delav	46.3	27.3	4.6	71.4	20.2	1.8	57.4		8.3	69.1		2.
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.
Total Delay	46.3	27.3	4.6	71.4	20.2	1.8	57.4		8.3	69.1		2.
LOS	40.0 D	27.5 C	4.0 A	E	20.2 C	A	57.4 E		0.5 A	E		2.
Approach Delay	U	22.8			24.5	~	-	40.3	~	-	40.9	
Approach LOS		C			24.0 C			40.0 D			-10.5 D	
••		0						5			0	
Intersection Summary												
Cycle Length: 130 Actuated Cycle Length: 130 Offset: 76 (58%), Referenced t Natural Cycle: 105 Central Turne: Actuated Central		2:EBTL	and 6:WE	IT, Start	of Green							
Control Type: Actuated-Coordi Maximum v/c Ratio: 0.77	mateu											
Intersection Signal Delay: 27.9					ntersectio	a 1 0 0 0						
Intersection Capacity Utilization					CU Level		. D					
Analysis Period (min) 15	11 00.2 /0			,	SO LEVEI		50					
Splits and Phases: 1: Centre	epointe (Drive/Higl	hgate Roa	ad & Bas	eline Roa	d						
	Ø2 (R)					<104		10	10			
24 s 47 s						20 s		39 s				
€Ø6 (R) 🕴												

Q	ueu	es	

2140 Baseline Road TIA

	٦	-	\rightarrow	4	+	×.	1	1	1	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBR	SBL	SBR	
Lane Group Flow (vph)	32	776	233	202	1520	133	515	275	88	64	
v/c Ratio	0.37	0.36	0.29	0.59	0.74	0.14	0.77	0.52	0.54	0.24	
Control Delay	46.3	27.3	4.6	71.4	20.2	1.8	57.4	8.3	69.1	2.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	46.3	27.3	4.6	71.4	20.2	1.8	57.4	8.3	69.1	2.2	
Queue Length 50th (m)	5.5	48.8	0.0	24.6	159.8	0.4	64.9	0.0	22.0	0.0	
Queue Length 95th (m)	#20.7	69.3	17.4	37.2	170.2	3.7	79.0	21.6	38.7	0.0	
Internal Link Dist (m)		158.7			258.8						
Turn Bay Length (m)	55.0		135.0	110.0		95.0			37.5		
Base Capacity (vph)	87	2184	814	475	2045	968	859	603	188	286	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.37	0.36	0.29	0.43	0.74	0.14	0.60	0.46	0.47	0.22	

 95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles. ion Summary

Lanes, Volumes, Timings 2140 Baseline Road TIA 2: Constellation Drive & Baseline Road 2025 Ultimate PM Peak -7 4 ٩ r -Lane Group Lane Configurations Traffic Volume (vph) Stat. Flow (prot) Fit Permitted Stat. Flow (prot) Stat. Flow (ptrm) Stat. Flow (ptrm) Stat. Flow (ptrm) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Permitted Phases Switch Phase Minimum Split (s) Total Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s) Total Lost Time (s) Lead Lag Chatming? EBT ††† EBR WBL ካካ WBT NBL ኻኻ NBR
 ft
 ft< 28 28 338 28 1117 28 NA pm+ov 2 4 118 1635 204 Prot NA Prot I 1 6 4 396 Perm 2 4 6 4 4
 5.0
 5.0
 5.0

 32.5
 33.9
 11.5

 66.0
 34.0
 30.0

 50.8%
 26.2%
 23.1%

 3.7
 3.0
 3.7

 2.8
 3.9
 2.8

 0.0
 0.0
 0.0

 10.0
 5.0

 16.5
 33.9

 96.0
 34.0

 73.8%
 26.2%

 3.7
 3.0

 2.8
 3.9

 0.0
 0.0
 5.0 33.9 34.0 26.2% 3.0 3.9
 26.

 28
 39
 3.

 0.9
 6.5
 6.5
 6.9

 g
 Yes
 Yes
 None
 None

 106.8
 0.81
 0.11
 15.5
 15.5

 0.82
 0.08
 0.78
 0.12
 0.12

 0.12
 0.45
 0.59
 4.94
 0.81

 0.11
 62.7
 7.7
 56.5
 22*

 0.0
 0.0
 0.0
 0.^{2}
 1.12

 0.1
 62.7
 7.7
 A
 F
 0.0 6.5 Total Lost Time (s) Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS 6.5 Lag Yes C-Max 84.8 0.65 0.33 0.75 0.12 0.12 0.59 0.49 0.81 7.7 56.5 23.2 0.0 0.0 0.0 7.7 56.5 23.2 A E C 11.4 34.5 B C 0.33 0.0 6.2 6.0 F A Intersection Summar Intersection Summary Crycle Length: 130 Actuated Crycle Length: 130 Offset: 74 (57%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Crycle: 80 Control Type: Actuated-Coordinated Maximum v/R stato: 0.81 Intersection Capacity Ultization 62.2% ICU Leve Analysis Period (min) 15 Intersection LOS: B ICU Level of Service B Splits and Phases: 2: Constellation Drive & Baseline Road **Ø**1 **\$**/Ø4

Ø6 (R) 06/01/2018

06/01/2018

Synchro 9 Report Page 2

-		*	+	1	1	
EBT	EBR	WBL	WBT	NBL	NBR	
1117	28	118	1635	204	396	
0.33	0.02	0.45	0.59	0.49	0.81	
6.2	0.1	62.7	7.7	56.5	23.2	
0.0	0.0	0.0	0.0	0.0	0.0	
6.2	0.1	62.7	7.7	56.5	23.2	
17.9	0.0	15.2	68.4	26.1	14.1	
29.4	m0.3	24.5	131.3	34.4	46.5	
258.8			131.8	77.4		
	55.0	115.0			60.0	
3354	1460	627	2784	723	601	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0	0	
0.33	0.02	0.19	0.59	0.28	0.66	
	1117 0.33 6.2 0.0 6.2 17.9 29.4 258.8 3354 0 0 0	1117 28 0.33 0.02 6.2 0.1 0.0 0.0 6.2 0.1 17.9 0.0 29.4 m0.3 258.8 55.0 3354 1460 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

2140 Baseline Road TIA 2025 Ultimate PM Peak HCM 2010 TWSC 3: Centrepointe Drive & Gemini Way Intersection Int Delay, s/veh 23

Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		††	1		444
Traffic Vol, veh/h	34	140	651	19	37	399
Future Vol, veh/h	34	140	651	19	37	399
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None			-	
Storage Length	0	-		450		-
Veh in Median Storage		-	0	-		0
Grade, %	0		0			0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	34	140	651	19	37	399
IVIVITIL FIOW	34	140	001	19	31	288
Major/Minor N	Minor1		Major1	N	/lajor2	
Conflicting Flow All	885	326	0	0	651	0
Stage 1	651	-	-	-	-	-
Stage 2	234	-		-		-
Critical Hdwy	6.29	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-			-	
Critical Hdwy Stg 2	6.04	-				
Follow-up Hdwy	3.67	3.32			2.22	
Pot Cap-1 Maneuver	317	670			931	
Stage 1	467					
Stage 2	745					
Platoon blocked. %	743					
Mov Cap-1 Maneuver	301	670	- 1		931	
Mov Cap-1 Maneuver	301	- 070			931	
	467			-		
Stage 1		-		-		-
Stage 2	707	-		-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	14.8		0		0.9	
HCM LOS	B		0		0.5	
TIOW LOO	U					
Minor Lane/Major Mvm	ıt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	541	931	-
HCM Lane V/C Ratio		-		0.322	0.04	-
HCM Control Delay (s)		-	-	14.8	9	0.1
HCM Lane LOS		-		В	Α	А
HCM 95th %tile Q(veh))		-	1.4	0.1	

Synchro 9 Report

Page 3

06/01/2018

2140 Baseline Road TIA 2025 Ultimate PM Peak

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	LDL	LDR.	NDL	1001 1101	41	JUN
	0	6	0	600	90	56
Traffic Vol, veh/h Future Vol, veh/h	0	6	0	600	90	56
	0	0	0		90	
Conflicting Peds, #/hr				0		0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	110110
Storage Length	-	0	-	-	-	-
Veh in Median Storage,		-	-	0	0	
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	6	0	600	90	56
Major/Minor M	linor2		Major1		Major2	
Conflicting Flow All	-	73	-	0	-	0
Stage 1	- 1			-		-
Stage 2	- 1					
Critical Hdwy		6.94				-
Critical Hdwy Stg 1		-		-	-	-
Critical Hdwy Stg 2		-	-	-		-
Follow-up Hdwy	-	3.32	-	-	-	-
Pot Cap-1 Maneuver	0	974	0	-	-	-
Stage 1	0	-	0	-		-
Stage 2	0	-	0	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	-	974	-	-	-	-
Mov Cap-2 Maneuver		-				-
Stage 1		-		-		-
Stage 2						
olago 2						
Approach	EB		NB		SB	
HCM Control Delay, s	8.7		0		0	
			U		U	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT I	EBLn1	SBT	SBR	
Capacity (veh/h)		-	974	-	-	
			0.006			
HCM Lane V/C Ratio		-	87		-	
HCM Lane V/C Ratio HCM Control Delay (s)		-	8.7 A	-		
HCM Lane V/C Ratio			8.7 A	-		

HCM 2010 TWSC 5: Gemini Way & Site Access

Intersection						
Int Delay, s/veh	4.6					
Movement	FBI	EBT	WBT	WBR	SBL	SBR
Lane Configurations	CUL	4	1	ADIV.	V V	001
Traffic Vol. veh/h	23	4	23	33	5	51
Future Vol. veh/h	23	6	23	33	5	51
Conflicting Peds, #/hr	0	0	20	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	- 3top	None
Storage Length		NUTIE -		NOTIE -	0	NUTIE -
Veh in Median Storage,		0	0		0	
		0	0		0	
Grade, %	-			-		-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	23	6	23	33	5	51
Major/Minor N	lajor1	1	Aajor2	1	Minor2	
Conflicting Flow All	56	0			92	40
Stage 1		-		-	40	-
Stage 2					52	
Critical Hdwy	4.12				6.42	6.22
Critical Hdwy Stg 1	4.12				5.42	0.22
Critical Hdwy Stg 1				-	5.42	
	2.218			-		2 240
			-		3.518	
Pot Cap-1 Maneuver	1549	-	-	-	908	1031
Stage 1	-	-	-		982	-
Stage 2	-	-		-	970	-
Platoon blocked, %		-		-		
	1549	-	-	-	894	1031
Mov Cap-2 Maneuver	-	-	-	-	894	-
Stage 1	-	-	-	-	982	-
Stage 2	-	-	-	-	955	-
Approach	FB		WB		SB	
HCM Control Delay, s	5.8		0		8.7	
HCM LOS	0.0		0		0.7 A	
HGIM LOS					M	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR	
Capacity (veh/h)		1549	-	-	-	1017
		0.015				0.055
HCM Lane V/C Ratio						8.7
HCM Lane V/C Ratio		7.4	0	-		0./
		7.4 A	0 A	-	-	0.7 A

06/01/2018

Synchro 9 Report Page 8

06/01/2018

Appendix D **TDM CHECKLISTS**

TDM-Supportive Development Design and Infrastructure Checklist: *Posidential Developments (multi family or condominium)*

Residential Developments (multi-family or condominium)

Legend					
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed				
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users				
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance				

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official <i>Plan policy 4.3.12</i>)	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and on- road cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	\square N/A
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	□ _{N/A}
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	$\square_{N/A}$
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	□ N/A

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	_
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well- used areas (see Zoning By-law Section 111)	
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored <i>(see Zoning By-law Section 111)</i>	
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of resident-owned bicycles, plus the expected peak number of visitor cyclists	□ N/A
	2.2	Secure bicycle parking	-
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to at least the number of units at condominiums or multi- family residential developments	□ N/A
	2.3	Bicycle repair station	
BETTER	2.3.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	□ _{N/A}
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	□ _{N/A}
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	$\square_{N/A}$

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	4.	RIDESHARING	
BASIC	4.1 4.1.1	Pick-up & drop-off facilities Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses <i>(see Zoning By-law Section 94)</i>	□ N/A
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	$\square_{N/A}$
	6.	PARKING	
	6.1	Number of parking spaces	-
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	□ _{N/A}
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	□ N/A
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking <i>(see Zoning By-law Section 111)</i>	□ N/A
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa)	□n/A

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

Legend

BASIC The measure is generally feasible and effective, and in most cases would benefit the development and its users

BETTER The measure could maximize support for users of sustainable modes, and optimize development performance

The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC ★	1.1.1	Designate an internal coordinator, or contract with an external coordinator	X
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	\mathbf{X}
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	\mathbf{X}
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	X

	TDM	measures: Residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	X
BETTER	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	X
	3.2	Transit fare incentives	
BASIC ★	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	X
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	X
	3.3	Enhanced public transit service	
BETTER ★	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels <i>(subdivision)</i>	X
	3.4	Private transit service	
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	X
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)	X
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized <i>(multi-family)</i>	X
	4.2	Carshare vehicles & memberships	
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	X
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	X
	5.	PARKING	
	5.1	Priced parking	
BASIC ★	5.1.1	Unbundle parking cost from purchase price (condominium)	X
BASIC ★	5.1.2	Unbundle parking cost from monthly rent (multi-family)	X

	TDM	measures: Residential developments	Check if proposed & add descriptions
	6.	TDM MARKETING & COMMUNICATIONS	;
	6.1	Multimodal travel information	
BASIC ★	6.1.1	Provide a multimodal travel option information package to new residents	X
	6.2	Personalized trip planning	
BETTER ★	6.2.1	Offer personalized trip planning to new residents	X