

BRIGHTPATH EARLY LEARNING & CHILD CARE

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

90 MAPLE GROVE ROAD, OTTAWA, ONTARIO

FINAL REPORT

JANUARY 20, 2020

Terrapex Environmental Ltd. 20 Gurdwara Road, Unit 1 Ottawa, Ontario, K2E 8B3 Telephone: (613) 745-6471 Website: <u>www.terrapex.com</u>

TABLE OF CONTENTS

1.0			SUMMARY	
2.0	2.1		ON DESCRIPTION	
	2.1		ERTY OWNERSHIP	
	2.2		ENT AND PROPOSED FUTURE USES	
	2.3		CABLE SITE CONDITION STANDARDS	
3.0				
0.0	3.1		CAL SETTING	
	011	3.1.1	WATER BODIES & AREAS OF NATURAL SIGNIFICANCE	-
		3.1.2	TOPOGRAPHY & SURFACE WATER DRAINAGE	6
	3.2	PAST	INVESTIGATIONS	6
4.0	SCOF	-	IVESTIGATION	-
	4.1		VIEW OF SITE INVESTIGATION	
	4.2		NINVESTIGATED	
	4.3		E ONE CONCEPTUAL SITE MODEL	
	4.4.1		TIONS FROM THE SAMPLING AND ANALYSIS PLAN	
- 0	4.5		DIMENTS	
5.0				-
	5.1 5.2	-	RAL	-
	5.2 5.3			_
	5.5	5.3.1	SOIL SAMPLING	
		5.3.2	FIELD SCREENING MEASUREMENTS	
	- 4			
	5.4			
		5.4.1	MONITORING WELL INSTALLATION	
		5.4.2	MONITORING WELL DEVELOPMENT METHOD	15
		5.4.3	FIELD MEASUREMENTS OF WATER QUALITY PARAMETERS	15
		5.4.4	GROUNDWATER SAMPLING	15
	5.5	SEDIM	1ENT	
		5.6.1	SEDIMENT SAMPLING	16
	5.6		TICAL TESTING	
	5.7	-	UE MANAGEMENT PROCEDURES	
	5.8		ATION SURVEYING	
	5.9		TY ASSURANCE AND QUALITY CONTROL MEASURES	-
6.0				
	6.1	GEOL	OGY	20

	6.2	GROUNDWATER ELEVATIONS AND FLOW DIRECTION	20
	6.3	GROUNDWATER HYDRAULIC GRADIENTS	21
	6.4	FINE-MEDIUM SOIL TEXTURE	21
	6.5	SOIL FIELD SCREENING	21
	6.6	SOIL QUALITY	21
	6.7	GROUNDWATER QUALITY	22
	6.8	SEDIMENT QUALITY	23
	6.9	QUALITY ASSURANCE AND QUALITY CONTROL RESULTS	23
	6.10	PHASE TWO CONCEPTUAL SITE MODEL	24
7.0	CON	CLUSIONS	34
	7.1	SIGNATURES	34
8.0	REFE	RENCES	36

FIGURES

- Figure 1 Site Location
- Figure 2 General Site Layout
- Figure 3 Phase One Conceptual Site Model Study Area
- Figure 4 Phase One Conceptual Site Model PCAs
- Figure 5A Phase One Conceptual Site Model APECs
- Figure 5B Phase One Conceptual Site Model APECs & Sampling Locations Soil
- Figure 5C Phase One Conceptual Site Model APECs & Sampling Locations Groundwater
- Figure 6 Cross-Section Plan
- Figure 7 Cross-Section A-A'
- Figure 8 Cross-Section B-B'
- Figure 9 Interpreted Groundwater Contours (as of October 23, 2019)
- Figure 10 Soil Analytical Results Metals
- Figure 11 Soil Analytical Results Hydride-Forming Metals
- Figure 12 Soil Analytical Results Boron (Hot Water Soluble)
- Figure 13 Soil Analytical Results Hexavalent Chromium
- Figure 14 Soil Analytical Results Cyanide
- Figure 15 Soil Analytical Results Mercury
- Figure 16 Soil Analytical Results pH
- Figure 17 Soil Analytical Results Electrical Conductivity
- Figure 18 Soil Analytical Results Sodium Adsorption Ratio
- Figure 19 Soil Analytical Results BTEX
- Figure 20 Soil Analytical Results PHC F1-F4
- Figure 21 Soil Analytical Results PAHs
- Figure 22 Soil Analytical Results PCBs

TABLE OF CONTENTS (CONTINUED)

- Figure 23 Groundwater Analytical Results Metals
- Figure 24 Groundwater Analytical Results Hydride-Forming Metals
- Figure 25 Groundwater Analytical Results Hexavalent Chromium
- Figure 26 Groundwater Analytical Results Cyanide
- Figure 27 Groundwater Analytical Results Mercury
- Figure 28 Groundwater Analytical Results Sodium
- Figure 29 Groundwater Analytical Results Chloride
- Figure 30 Groundwater Analytical Results BTEX
- Figure 31 Groundwater Analytical Results PHC F1-F4
- Figure 32 Groundwater Analytical Results PAHs
- Figure 33 Groundwater Analytical Results PCBs

TABLES

- Table 1Groundwater Monitoring Data
- Table 2
 Soil Analytical Results Metals & Inorganics
- Table 3Soil Analytical Results BTEX & PHCs
- Table 4Soil Analytical Results PAHs
- Table 5Soil Analytical Results PCBs
- Table 6
 Groundwater Analytical Results Metals & Inorganics
- Table 7
 Groundwater Analytical Results BTEX & PHCs
- Table 8 Groundwater Analytical Results PAHs
- Table 9
 Groundwater Analytical Results PCBs
- Table 10Maximum Concentrations in Soil
- Table 11
 Maximum Concentrations in Groundwater

APPENDICES

- Appendix I Plan of Survey, Proposed Development Plan
- Appendix II Non-Potable Groundwater Notification
- Appendix III Sampling and Analysis Plan
- Appendix IV Borehole Logs
- Appendix V Laboratory Certificates of Analysis

1.0 EXECUTIVE SUMMARY

Terrapex Environmental Ltd. (Terrapex) was retained by BrightPath Early Learning and Child Care (BrightPath) to conduct a Phase Two Environmental Site Assessment (ESA) of the property located at 90 Maple Grove Road, in Ottawa, Ontario (referenced variously as the "Phase Two Property" or the "Site"). The Phase Two ESA documented herein is being undertaken to support the filing of a Record of Site Condition (RSC) per Ontario Regulation 153/04 (O.Reg. 153/04), *Records of Site Condition - Part XV.1 of the Act* for the Site. The Site is proposed be developed for use as a daycare and the therefore the Site is expected to be "institutional" property use" per Section 14.5 and 14.8 of O. Reg. 153/04.

The objective of the Phase Two ESA was to assess Areas of Potential Environmental Concern (APECs) identified during a previous Phase One ESA work program at the Site in order to identify the location and concentration of contaminants, and (if necessary) to remediate contaminants found in the land or water on, in, or under the Phase Two Property.

The Site is irregular in shape and occupies an approximate footprint of 11,291 m². The Site is situated to the northwest of the intersection of Maple Grove Road and Terry Fox Drive. A Hydro Ottawa garage and storage yard is located to the north and west of the Site. The Site was developed by Kanata Hydro (precursor of Hydro Ottawa) in 1985 and used as an office building and for line operations until 2002. The Site was then leased Ottawa Telecom (2000-2008), Atria Networks (2008-2014) and Annidis Corporation (2014 to 2018).

The Site is developed with an irregularly shaped single-storey commercial building. The footprint of the building is approximately 1,700 m². An asphalt parking lot is located to the north, west and south of the on-Site building. The southern portion of the asphalt parking lot is shared with the neighboring 100 Maple Grove Road property located to the west and north of the Site. The remainder of the Site is grass covered with trees.

Based on a Phase One ESA study of the Site, the Phase Two ESA was undertaken to assess five on-Site APECs.

On October 16, 2015, nine boreholes were drilled at the Site to a maximum depth of 6.1 m below grade (bg). Four of the boreholes were completed as monitoring wells.

Selected soil samples recovered from the boreholes were submitted for laboratory analyses for a variety of parameters including benzene, toluene, ethylbenzene, and xylenes (collectively, BTEX) and the F1, F2, F3, and F4 petroleum hydrocarbon (PHC) parameters, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), cyanide and metallic and inorganic parameters. Selected groundwater samples recovered from the monitoring wells were submitted for laboratory analyses of BTEX and F1 to F4 PHCs, PAHs PCBs, and metal and inorganic parameters.

The generic Site Condition Standards (SCS) listed in Table 3 of the April 15, 2011 *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act* (the Ministry of the Environment, Conservation and Parks, 2011) that are applicable to residential / parkland / institutional land use, fine/medium textured soils, in a non-potable groundwater condition (hereafter referenced as the MECP Table 3 SCS) were selected for evaluating laboratory analytical results.

SAR and EC exhibited concentrations in excess of the MECP (2011) Table 3 SCS in soil samples BH108-2 and BH109-2. It is Terrapex's opinion that based on the location of the borehole BH108 and BH109 the concentrations of SAR and EC present in the soil samples are related to winter salting operations for the safety of vehicular and pedestrian traffic. Therefore in accordance with Section 49.1 of O.Reg. 153/04, the MECP (2011) Table 3 SCS is deemed not to have been exceeded for EC and SAR for both sampling locations.

None of the parameters analysed in any of the soil and groundwater samples exceeded the MECP (2011) Table 3 SCS.

Sediment is not present at the Site, and therefore contaminants of concern are not present within sediment.

2.0 INTRODUCTION

Terrapex Environmental Ltd. (Terrapex) was retained by BrightPath Early Learning and Child Care (BrightPath) to conduct a Phase Two Environmental Site Assessment (ESA) of the property located at 90 Maple Grove Road, in Ottawa, Ontario (referenced variously as the "Phase Two Property" or the "Site").

It is understood that the study documented herein is being undertaken by BrightPath for the purpose of filing a Record of Site Condition (RSC) per Ontario Regulation 153/04 (O.Reg. 153/04), *Records of Site Condition - Part XV.1 of the Act* for the Site on the basis future institutional land use. It is understood that BrightPath intends to redevelop the Site to use as a daycare.

The objective of the investigation was to assess Areas of Potential Environmental Concern (APECs) identified during a previous Phase One ESA work program at the Site in order to identify the location and concentration of contaminants in the land or water on, in, or under the Phase Two Property, and (if necessary) to remediate contaminants found in the land or water on, in, or under the Phase Two property.

The findings of the Phase One ESA are documented in Terrapex's report entitled *Phase One Environmental Site Assessment, 90 Maple Grove Road, Ottawa, Ontario, Final Report,* dated October 18, 2019.

2.1 SITE DESCRIPTION

The Site is irregular in shape and occupies an approximate footprint of 11,291 square metres (m²). The Site is situated to the northwest of the intersection of Maple Grove Road and Terry Fox Drive. A Hydro Ottawa garage and storage yard is located to the north and west of the Site.

The Site is developed with an irregularly shaped single-storey commercial building. Parking lots are located to the south and west of the building. The footprint of the building is approximately 1,700 m². An asphalt parking lot is located to the north, west and south of the on-Site building. The southern portion of the asphalt parking lot is shared with the neighboring 100 Maple Grove Road property located to the west and north of the Site. The remainder of the Site is grass covered with trees.

The legal description of the Site is as follows:

PART OF LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, DESIGNATED AS PARTS 16, 17, 18, 19 AND 20 ON PLAN 4R-24734. TOGETHER WITH AN EASEMENT IN FAVOUR OF PARTS 16, 17, 18 AND 19 PLAN 4R-24734 OVER PART LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, PARTS 3 AND 21 PLAN 4R-24734 AS IN OC1171860. TOGETHER WITH AN EASEMENT IN FAVOUR OF PARTS 16, 17, 18 AND 19 PLAN 4R-24734 OVER PART LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, PARTS 3 AND 21 PLAN 4R-24734 AS IN OC1171860. TOGETHER WITH AN EASEMENT IN FAVOUR OF PARTS 16, 17, 18 AND 12 PLAN 4R-24734 AS IN OC1171860. TOGETHER WITH AN EASEMENT IN FAVOUR OF PARTS 16, 17, 18 AND 12 PLAN 4R-24734 AS IN OC1171860. TOGETHER WITH AN EASEMENT IN FAVOUR OF PARTS 16, 17, 18 AND 19 PLAN 4R-24734 OVER PART LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, PARTS 16, 17, 18 AND 19 PLAN 4R-24734 OVER PART LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, PART 5 PLAN 4R-24734 AS IN OC1171860. TOGETHER WITH AN EASEMENT IN FAVOUR OF PARTS 16, 17, 18 AND 19 PLAN 4R-24734 OVER PART LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, PART 5 PLAN 4R-24734 AS IN OC1171860. TOGETHER WITH AN EASEMENT IN FAVOUR OF PARTS 16, 17, 18 AND

19 PLAN 4R-24734 OVER PART LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, PARTS 8, 11 AND 14 PLAN 4R-24734 AS IN OC1171860.; SUBJECT TO AN EASEMENT OVER PART 17 PLAN 4R-24734 IN FAVOUR OF PART LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, PARTS 1 TO 6 AND 21 PLAN 4R-24734 AS IN OC1171860; SUBJECT TO AN EASEMENT OVER PART 17 PLAN 4R-24734 IN FAVOUR OF PART LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, PARTS 7 TO 15 AND 21 PLAN 4R-24734 AS IN OC1171860; SUBJECT TO AN EASEMENT OVER PART 19 PLAN 4R-24734 IN FAVOUR OF PART LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, PARTS 7 TO 15 AND 21 PLAN 4R-24734 AS IN OC1171860; SUBJECT TO AN EASEMENT OVER PART 19 PLAN 4R-24734 IN FAVOUR OF PART LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, PARTS 1 TO 6 AND 21 PLAN 4R-24734 AS IN OC1171860; SUBJECT TO AN EASEMENT OVER PART 19 PLAN 4R-24734 IN FAVOUR OF PART LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, PARTS 1 TO 6 AND 21 PLAN 4R-24734 IN FAVOUR OF PART LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, PARTS 1 TO 6 AND 21 PLAN 4R-24734 IN FAVOUR OF PART LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, PARTS 1 TO 6 AND 21 PLAN 4R-24734 IN FAVOUR OF PART LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, PARTS 1 TO 6 AND 21 PLAN 4R-24734 IN FAVOUR OF PART LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, PARTS 1 TO 6 AND 21 PLAN 4R-24734 IN FAVOUR OF PART LOT 1, CONCESSION 2, FORMERLY TOWNSHIP OF MARCH, PARTS 7 TO 15 PLAN 4R-24734 AS IN OC1171860; CITY OF OTTAWA

A Site location plan is provided as Figure 1. Figure 2 shows the layout of the property at the time of the Phase Two ESA.

BrightPath provided a plan of survey for the Site, entitled *Part of Lot 1, Concession 2, Geographic Township of March, City of Ottawa* surveyed by Annis, O'Sullivan Vollebekk Ltd., dated Sept 19, 2019. The Site is associated with PIN 045090134. A copy of the plan of survey is included in Appendix I.

2.2 PROPERTY OWNERSHIP

The registered owner of the Site is Hydro Ottawa Limited. Authorization to proceed with the study was provided by Ms. Angela Collier at Hydro Ottawa, 2711 Hunt Club Road, Ottawa, Ontario, K1G 3S4.

2.3 CURRENT AND PROPOSED FUTURE USES

The Site was developed by Hydro Ottawa in 1985 and used as an office building and for line operations until 2002. The Site was then leased Ottawa Telecom (2000-2008), Atria Networks (2008-2014) and Annidis Corporation (2014 to 2018). The Site's was formerly a part of the 100 Maple Grove Road until it was reportedly severed from that property in 2005. The 100 Maple Grove Road property was listed as a former polychlorinated biphenyl (PCB) storage Site until 2003 (as part of the Hydro Ottawa operations) when the PCBs were removed and the Site was deregistered.

The Site was formerly leased to Ottawa Telecom (2000-2008), Atria Networks (2008-2014) and Annidis Corporation (2014 to 2018) for various commercial activities. At the time of the study the Site was vacant.

The Site is proposed be developed for use as a daycare and therefore, the Site is expected to be "institutional property use" per Section 14.5 and 14.8 of O. Reg. 153/04.

2.4 APPLICABLE SITE CONDITION STANDARDS

Generic Ministry of the Environment, Conservation and Parks (MECP, previously Ministry of the Environment and Climate Change, MOECC) Site Condition Standards (SCSs) for evaluating laboratory analytical results were selected from the April 15, 2011 *Soil, Ground Water and*

Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (MECP, 2011) document on the basis of the criteria specified in O. Reg. 153/04.

The Site specific details which influenced the soil and groundwater standards selection are summarized below:

- more than 2 metres (m) of overburden was observed during the work program;
- the pH determined for soil samples submitted for laboratory analysis as part of this Phase Two ESA, ranged from 6.96 to 7.92, which is between the prescribed values for the application of generic SCS (5 to 9 for surface soil above 1.5 m; 5 to 11 for subsurface soil below 1.5 m);
- the Site does not include land within 30 m of an area of natural significance and is not otherwise considered "potentially sensitive";
- stratified site conditions will not be used when evaluating laboratory analytical results;
- future use of the Site is excepted to be for an institutional use (daycare);
- the Site and developed properties within 250 m of the Site are serviced with a municipal drinking water supply; and,
- soil texture at the Site has been classified as "medium and fine textured" based on the result of grain size analysis conducted for two representative soil samples.

Based on the above, full depth background generic MECP SCS corresponding to residential / parkland / institutional land use in non-potable groundwater condition with a medium-fine textured soil listed in Table 3 of the April 15, 2011 *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act,* (hereafter referenced as the MECP Table 3 SCS) are suitable for evaluating soil and groundwater laboratory analytical results.

Notification was provided to the City of Ottawa on December 9, 2019 of the intent to use the nonpotable groundwater standards for the purpose of filing a RSC. The City approved the use of the non-potable groundwater standards on January 2, 2010. Copies of the notification letter and the City response are provided in Appendix II.

3.0 BACKGROUND INFORMATION

3.1 PHYSICAL SETTING

3.1.1 WATER BODIES & AREAS OF NATURAL SIGNIFICANCE

Water Bodies: The nearest water body is the Carp River (located 500 m to the west), which flows northwest until ultimately discharging into the Ottawa River (the confluence of the rivers located approximately 32 kilometres (km) to the northwest of the Site).

Areas of Natural Significance: Information from the the Ministry of Natural Resources (MNR) and the Mississippi Valley Conservation Authority (MVCA) showed that the Site is not located within or adjacent to a Natural Heritage Restoration Areas, an environmental sensitive/ significant area, or an Area of Natural and Scientific Interest (Life and Earth Science).

3.1.2 TOPOGRAPHY & SURFACE WATER DRAINAGE

Topography: A review of the 2010 Ontario Base Map (OBM) indicates the Site is located at an approximate elevation of 100 m above mean sea level (amsl). The regional topography at the Site slopes downward to the west, towards the Carp River.

The plan of survey *Part of Lot 1, Concession 2, Geographic Township of March, City of Ottawa* surveyed by Annis, O'Sullivan Vollebekk Ltd., dated Sept 19, 2019 (see Appendix I), indicates that the Site slopes down to the west with elevations ranging from approximately 102.30 m to 99.52 m amsl.

Surface Water Drainage: Mapping available from the MVCA website (<u>www.mvc.on.ca</u>) indicates that the Site is within the Carp River watershed. Accordingly, surface water drainage from the Site ultimately flows towards the Carp River, which is located approximately 500 m to the west of the Site.

Interpreted Direction of Groundwater Flow: Based on topography, the inferred direction of local groundwater flow is to the west, towards the Carp River. Regional groundwater flow is expected to be to the west towards the Carp River as well. It should be recognized that local groundwater flow may also be influenced by local subsurface structures and utilities.

3.2 PAST INVESTIGATIONS

Terrapex was provided with the following previous environmental reports by Hydro Ottawa for review as part of the scope of the Phase One ESA.

• Inspection and Investigation of PCB Storage Container #210 Hydro Ottawa, 100 Maple Grove Road, Ottawa (Kanata), Ontario, prepared by Water Earth Science Associates Ltd. and dated June 23, 2003.

A summary of pertinent investigation findings presented in this document is presented below.

Inspection and Investigation 2003

The report described the decommissioning of a PCB storage container located on the 100 Maple Grove Property. Reportedly the PCBs were stored in a metal shipping container with an internal containment tray for spill containment. The ground surface beneath the container was gravel surfaced. The metal shipping container (used to hold the PCBs) was removed from 100 Maple Grove Road property on June 4, 2003 and a site inspection by WESA indicated that no oil staining was present on the gravel surface immediately underneath. The location of the PCB metal storage container could not be ascertained from the report.

A five point composite sample of the gravel underneath the metal shipping container was collected for laboratory analysis of PCBs. Laboratory analysis indicated that no PCBs were detected above the laboratory detection limit in the collected soil sample of the surface material. It should be noted that the reported detection limit (2 μ g/g), although less than the criteria at the time (25 μ g/g), would not be less than the current MECP standard of 1.1 μ g/g for a commercial or industrial property or 0.35 μ g/g for residential, parkland or institutional land uses. The report concluded that all PCB material and the PCB storage container had been removed from 100 Maple Grove Road property.

A subsequent follow up letter from the Ministry of Environment (MOE, former name of the MECP) dated July 14, 2003, to Ottawa Hydro acknowledged the deregistration of the 100 Maple Grove Road property as a PCB storage site.

Review of the aerial photographs (further described in Section 4.3.1) showed no metal shipping containers were stored on the Site in 2002. The aforementioned report was limited in that it only pertains to the metal shipping container and not to historic spills to the soil or grounds (if any) in the vicinity of the PCB storage site or elsewhere on the 100 Maple Grove Road property (which the Site would have been a part of at the time).

4.0 SCOPE OF INVESTIGATION

4.1 OVERVIEW OF SITE INVESTIGATION

The scope of Terrapex's assessment comprised the following:

- preparing a sampling and analysis plan which identified target sampling locations and associated rationale, a proposed laboratory analytical program, sample containers and preservation methods, and the number and type of Quality Control (QC) samples;
- advancing nine boreholes to depths between 2.0 m and 6.1 m bg (below grade) using a track-mounted drill rig with standard solid-stem augers and dual-tube sampling equipment.
- collecting soil samples during drilling, and logging of visual, olfactory and tactile soil characteristics, and evidence of petroleum hydrocarbon or other chemical impacts, if any;
- measuring combustible soil vapour (CSV) concentrations in soil samples;
- submitting selected soil samples for laboratory analyses of contaminants of potential concern (COPCs) based on the sampling and analysis plan and field observations;
- installing groundwater monitoring wells at four of the borehole locations;
- developing the newly installed groundwater monitoring wells;
- monitoring the wells, and collecting and submitting groundwater samples for laboratory analyses of COPCs based on the sampling and analysis plan;
- surveying the elevation of each of the newly installed wells relative to a temporary benchmark;
- evaluating laboratory analytical results with respect to the selected SCS; and,
- refining the existing Conceptual Site Model (developed during the Terrapex Phase One ESA work program) in light of the information collected during the Phase Two ESA activities.

The sampling and analysis plan is attached in Appendix III. The sampling procedures are documented in detail in Section 5.0.

4.2 MEDIA INVESTIGATED

Based on the findings of the previous Phase One ESA work program (Terrapex, 2019) and previously conducted work programs by others, the Phase Two ESA work program documented herein included investigation of the environmental quality of both native soil, fill and groundwater at the Site.

The environmental quality of sediment was not investigated as sediment is not present at the Site.

Soil, fill and groundwater were investigated by drilling boreholes and installing monitoring wells, as described above, and in Section 5.0.

4.3 PHASE ONE CONCEPTUAL SITE MODEL

The identified PCAs and APECs associated with the CSM developed during the 2019 Terrapex Phase One ESA are illustrated on Figures 3 and 5, respectively. A summary of the CSM is provided below.

Site Features: The Site is irregular in shape and occupies an approximate footprint of 11,291 m². The Site is situated to the northwest of the intersection of Maple Grove Road and Terry Fox Drive. A Hydro Ottawa garage and storage yard is located to the north and west of the Site.

The Site is developed with an irregularly shaped single-storey commercial building. The footprint of the building is approximately 1,700 m². An asphalt parking lot is located to the north, west and south of the on-Site building. The southern portion of the asphalt parking lot is shared with the neighboring 100 Maple Grove Road property, located to the west and north of the Site. The remainder of the Site is grass covered with trees

Site History: The Site was developed by Kanata Hydro (currently Hydro Ottawa) in 1985 and used as an office building and for line operations until 2002. The Site was formerly a part of the 100 Maple Grove Road property until it was severed from that property in 2005. The 100 Maple Grove Road property was listed a former PCB storage Site until 2003 when the PCBs were removed and the Site was deregistered.

The Site was leased to Ottawa Telecom (2000-2008), Atria Networks (2008-2014) and Annidis Corporation (2014 to 2018). The Site is currently vacant.

Uses of Adjacent Properties: There are commercial businesses to the north and west of the Site. A park (Walter Baker Park) is located to the south across Maple Grove Road, and residential properties are located to the east, across Terry Fox Drive.

Existing Buildings and Structures: The building at the Site is irregular in shape and encompasses a footprint of approximately 1,700 m². Site interviews have determined that the building was initially constructed in 1986. The building is a single storey slab on grade construction

outfitted with metal and brick siding.

A truck garage located in the northern portion of the on-Site building which is can be accessed from three garage doors located on each side (the eastern and western) of the building. Catch basins were located throughout the garage, including two manholes which could not be opened at the time of the Site visit.

Water Bodies: The Site does not include and is not adjacent to or within 30 m of a water body, as defined in O. Reg. 153/04. The nearest water body to the Site is the Carp River, located approximately 500 m west of the Site, flows to the north into the Ottawa River.

Areas of Natural Significance: The Site does not include, and is not within, adjacent to, or within 30 m of an area of natural significance, as defined in O. Reg. 153/04, and no areas of natural significance were identified as being located in whole or in part in the Phase One Study Area.

Geology/Hydrogeology: The Site is located in a physiographic region known as the Limestone plains. The Site is located in a mixed area with fine-textured glaciomarine deposits characterized predominantly by silt and clay minor sand and gravel, massive to well laminated in the western portion of the Site and coarse-textured glaciomarine deposits characterized predominantly by sand, gravel and minor amounts of silt and clay in the eastern portion of the Site. Bedrock geology consists of primarily of limestone, dolostone shale, arkose and sandstone.

Surface runoff on the Site generally flows into catch basins and ditches located throughout the Site. MVCA mapping indicates that the Site is within the Carp River Watershed. Accordingly, surface water drainage from the Site may ultimately flow toward this river.

Potentially Contaminating Activities (PCAs): Four PCAs, as listed in Table 2 of Schedule D of O. Reg. 153/04, were identified at the Site:

- PCA 30 Importation of Fill Material of Unknown Quality;
- PCA 58 Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners (the Site was formerly registered as a former PCB storage facility);
- PCA 28 Gasoline and Associated Products Storage in Fixed Tanks (associated with the onsite diesel generator); and,
- PCA 28 Gasoline and Associated Products Storage in Fixed Tanks (the record of an AST possibly being located onsite).

Eight off-Site PCAs were identified within the Phase One Study Area, but only one resulted in APECs at the Site, which was the presence of the storage yard located to the west of the Site containing wooden poles The location of the PCAs is provided in Figure 4.

As a result of the PCAs and other considerations, five APECs were identified at the Site, as summarized below.

AREAS OF POTENTIAL ENVIRONMENTAL CONCERN

Area of Potential Environ- mental Concern ¹	Location Of Area of Potential Environmental Concern On Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site Or Off- Site)	Contaminants Of Potential Concern ³	Media Potentially Impacted (Ground water, Soil, and/or Sediment)
APEC 1	 Encompassing the entirety of the Site 	- 30 - Importation of Fill Material of Unknown Quality	- PCA 1 - (On-site)	 Metals As, Sb, Se Cr (VI) & Hg B-HWS EC, SAR BTEX, PHCs PAHs 	- Soil
APEC 2	 Encompassing the western portion of the Site along the Hydro Ottawa work yard 	 59 - Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products 	- PCA 3 - (off-Site)	 Metals As, Sb, Se Cr (VI) & Hg B-HWS EC, SAR BTEX, PHCs PAHs Na, Cl (groundwater) 	- Soil - Groundwater
APEC 3	 Encompassing beside the garage and western portion of the Site. 	 58 – Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners 	- PCA 4 - (On-Site or Off-site)	- PCBs	- Soil - Groundwater
APEC 4	 Encompassing the area adjacent to the fuel AST for the backup generator 	 28 – Gasoline and Associated Products Storage in Fixed Tanks 	- PCA 2 - (On-Site)	- PHCs - BTEX	- Soil - Groundwater
APEC 5	 Due to the lack of information regarding the location of the fuel storage tank, the APEC encompasses the entire Site 	 28 – Gasoline and Associated Products Storage in Fixed Tanks 	 PCA 6 (exact location unknown) (On-Site or Off-Site) 	- PHCs - BTEX	- Soil - Groundwater

Areas of potential environmental concern means the area on, in or under a Phase One property where one or more contaminants 1 are potentially present, as determined through the Phase One environmental site assessment, including through, (a) identification of past or present uses on, in or under the Phase One property, and

(b) identification of potentially contaminating activity.

2 Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a Phase One study area.

3 Contaminants of potential concern according to the Method Groups as identified in the "Protocol for in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", March 9, 2004, amended as of July 1, 2011: BTEX: benzene, toluene, ethylbenzene, xylenes As: arsenic Hg: mercury PHCs: petroleum hydrocarbons (F1-F4) B - HWS boron, hot water soluble Sb: antimony VOCs: volatile organic compounds Cr (VI): chromium (hexavalent) Se: selenium

PAHs: polycyclic aromatic hydrocarbons

Na: sodium

CI: chloride

EC: electrical conductivity SAR: sodium adsorption ratio **Contaminants of Potential Concern:** The COPCs associated with the PCAs listed include BTEX, PHCs, PAHs, metals, metal hydrides (arsenic, antimony, selenium), hot water soluble boron, hexavalent chromium, mercury, EC, SAR, sodium, chloride and PCBs.

Migration Pathways: In general, potential preferential migration pathways for sub-surface contaminants at a Site comprise buried utilities, naturally occurring sand seams, or other subsurface areas of increased permeability. Therefore, any sandy or gravelly fill material or soil as well as service lines within the Site (if any) could act as potential migration pathways.

Uncertainty: The main uncertainties in the Phase One CSM are the following:

- a) The lack of information regarding subsurface utilities.
- b) The unknown location of the storage tank previously registered to Kanata Hydro at 100 Maple Grove as documented in the ERIS report.
- c) The lack of information on the quality of the fill brought in during the development.
- d) The lack of availability of Site operating records for the former hydro operation at the Site including PCB storage at the Site.

4.4.1 DEVIATIONS FROM THE SAMPLING AND ANALYSIS PLAN

Deviations from the proposed sampling and analysis plan are the following:

- The monitoring well installed along the western boundary of the Site was installed in borehole BHF instead of MWC (actual BH106 location) as originally planned.
- A soil sample collected from the native material in borehole BHF (installed as MW105) was submitted for additional laboratory analysis of metals and inorganics to evaluate the metals in the native soils at the Site.

These deviations are not considered to have significantly affected the data or the conclusions of the ESA. The sampling and analysis plan is provided in Appendix III.

4.5 IMPEDIMENTS

Access to and throughout the Site was not impeded at any time during the Phase Two ESA work program.

The presence of buried services at the Site did limit the placement of boreholes and monitoring wells at the Site. Some locations required minor adjustments in the field to the planned location of boreholes to avoid damaging these utilities. These impediments are not considered to have significantly affected the data or the conclusions of the ESA.

5.0 INVESTIGATION METHOD

5.1 GENERAL

Prior to drilling at the Site, local utility companies were contacted in order to obtain stake-outs and clearance with respect to buried services. A private locating company, CCC Scanning Ltd. (CCC), was also retained to provide clearance with respect to buried services in the drill areas. All intrusive sampling locations were greater than the required distance from all located underground utilities, and were therefore given clearance. The approximate locations of the on-Site underground utility locations are provided in Figure 2.

For work that Terrapex supervised, a Site-specific health and safety plan (HASP) and a Daily Safe Work Permit were also prepared by Terrapex prior to commencing all field work. All team members, including sub-contractors, read and signed the HASP before working at the Site.

All methods used during the investigation were completed as per Terrapex's associated standard operating procedures (SOPs).

5.2 DRILLING

Borehole drilling and monitoring well installation services required for the Phase Two ESA were provided by Strata Drilling Group (Strata) of Stouffville, Ontario under contract with Terrapex. Strata is a MECP-licensed well drilling contractor.

Borehole drilling and monitoring well installations required for the Phase Two ESA work program were completed using a track-mounted Geoprobe 6620DT direct-push drill rig equipped with standard solid-stem augers and dual-tube sampling equipment. Boreholes were advanced to a maximum depth of 6.1 m bg with monitoring wells being advanced to at least 1.0 m below the apparent water table for evaluation of environmental quality of both native soil and groundwater at the Site, as well as surficial soil.

On October 16, 2019, nine boreholes (MW101, BH102, MW103, MW104, MW105, BH106, BH107, MW108, MW109) were drilled to depths ranging between 1.8 m and 6.1 m bg. The borehole locations relative to the identified APECs are shown on the Figure 5B. All field work was completed under the full-time supervision of Terrapex staff.

5.3 SOIL

5.3.1 SOIL SAMPLING

Soil samples were generally collected on a continuous basis at each borehole location using a 1.2 m long, 60 mm diameter direct-push sampler.

To mitigate potential cross-contamination, clean drilling augers were used at each borehole and new PVC liners were used for each soil sample. Fresh nitrile gloves were donned for the handling of each sample.

Each recovered sample was divided into two portions, with one portion placed in a clear sampling bag for field screening/logging, and the second portion placed in laboratory supplied sampling containers, brought to the laboratory and extracted at the laboratory within the required 7 days of sampling. Soil descriptions were recorded based on the Unified Soil Classification System (USCS).

Samples for analyses were placed in a cooler with ice and delivered with a signed chain of custody to the project laboratory for analysis.

Borehole and monitoring well locations are shown on Figure 5B and 6. Graphic borehole logs illustrating the stratigraphy encountered, chemical analysis samples and measured combustible soil vapour concentrations are included in Appendix IV.

5.3.2 FIELD SCREENING MEASUREMENTS

CSV concentrations were measured in each soil sample, using a RKI Eagle portable gas detector calibrated to n-hexane and operated in methane elimination mode. The Eagle gas detector can measure total combustible organic compounds to a nominal detection level of 10 parts per million by volume (ppm), with an accuracy of approximately ±5%.

The gas detector was calibrated according to the manufacturer's instructions before the field investigation.

"Worst-case" soil samples were selected on the basis of vapour screening, visual and olfactory evidence of contamination, and sample location in relation to potential point sources of impact.

5.4 **GROUNDWATER**

5.4.1 MONITORING WELL INSTALLATION

Monitoring wells were installed in four of the boreholes (MW101, MW103, MW104 and MW105) using new 50 mm inside-diameter schedule 40 PVC well pipe and # 10 slot screen. The annulus of each well was backfilled with washed silica sand to a depth of approximately 0.3 m above the screened interval. A hydrated bentonite seal was placed above the sand pack to prevent infiltration of surface water into the monitoring well. A steel flushmount casing, cemented in place, was installed at each of the four well locations.

To mitigate potential cross-contamination, new materials were used for the installation of each monitoring well. Fresh nitrile gloves were donned for the handling of the well material at each well location.

Well installation details are provided on the borehole logs in Appendix IV.

5.4.2 MONITORING WELL DEVELOPMENT METHOD

The monitoring wells installed as part of the current work program were developed on October 18, 2019 to remove drilling debris that may have been introduced during well installation. Well development was conducted to minimize any potential sampling and analytical bias that may result from excessive particulate capture within groundwater samples recovered from these wells.

Depth to water and depth to the bottom of the wells were measured prior to well development. The volume of water in the well and its annulus were calculated based on the depth measurements, diameter of the well standpipe and annulus, and assumed annulus porosity of 30%.

The wells were developed using a surge block and a dedicated inertial sampler comprising low density polyethylene (LDPE) tubing and a LDPE foot valve. Each well was surged and purged until water free of visible particulate was yielded, or until ten well volumes of water were removed, whichever came first. The use of this technique resulted in the removal of between 40 L and 129 L from each of the monitoring wells.

5.4.3 FIELD MEASUREMENTS OF WATER QUALITY PARAMETERS

Water quality parameters including temperature, pH, specific conductivity, dissolved oxygen (DO), and oxidation reduction potential (ORP), were measured during sampling of groundwater using a peristaltic pump and a YSI Pro Plus water quality meter. Prior to sampling, Terrapex recorded the water quality parameters over 3-minute intervals. When the parameters stabilized to within requirements as outlined in the *Groundwater Sampling, Low Volume Purging, Using Peristaltic Pump* SOP, the well was deemed appropriate for sampling.

5.4.4 GROUNDWATER SAMPLING

Groundwater samples were collected from the monitoring wells on October 23, 2019. Prior to sampling, monitoring activities included the measurement of combustible vapours within the headspace of the well immediately upon removal of the well standpipe cap, using a RKI Eagle portable gas detector calibrated to n-hexane and operated in "methane elimination" mode. The depth to water in the well was measured using a Solinst interface probe. The presence, and apparent thickness (if applicable), of any light non-aqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL) in the well was also assessed using the interface probe. To mitigate potential cross-contamination, the interface probe was washed with a liquid solution of Alconox detergent and rinsed with fresh water between each monitoring well. A fresh pair of latex or nitrile gloves was donned at each well location.

Sampling was conducted using "low-flow" methodology with a peristaltic pump (Spectra) as per Terrapex's SOP.

Groundwater samples were collected directly into pre-cleaned, laboratory-supplied bottles, placed in a cooler with ice, and shipped within four days of collection under chain of custody to the project laboratory for analysis.

5.5 SEDIMENT

5.6.1 SEDIMENT SAMPLING

The sampling of sediments was not completed as part of this work program as sediment is not present at the Site.

5.6 ANALYTICAL TESTING

Laboratory analytical services for this work program were provided by Bureau Veritas (BV) in Mississauga, Ontario under contract with Terrapex. BV was accredited by Standards Council of Canada (SCC) to International Standard ISO/IEC 17025:2005, *General Requirement for the Competence of Testing and Calibration Laboratories*.

Soil samples were analyzed as follows:

- One shallow sample from each of boreholes BH102, BH106, BH107, BH108 and BH109 of any perceived fill, was submitted for laboratory analysis of BTEX, PHCs F1-F4, PAHs, and metals and inorganics to evaluate any impacts from the fill of unknown quality and/or impacts from the adjacent work yard (APEC 1 and 2 respectively).
- One shallow soil sample from borehole BH105 was submitted for laboratory analysis of PAHs, and metals and inorganics to evaluate any impacts from the fill of unknown quality and/or impacts from the adjacent work yard (APEC 1 and 2 respectively).
- One soil sample from each of the boreholes MW101, MW103, MW104, MW105, BH106 and BH107 was submitted for laboratory analysis of PCBs to evaluate any impacts from the historic use of the Site and neighboring property as a PCB storage Site (APEC 3).
- One soil sample (selected from the apparent depth of the water table in the absence of field evidence of impact) from each of boreholes MW101, MW103, MW104 and MW105 was submitted for laboratory analyses of BTEX and PHC F1-F4 to evaluate potential contaminants from either the onsite fuel generator, the possible former presence of a fuel AST on the Site, respectively (APECs 3, 4 and 5).

- Soil sample MW105-5 collected from the native material at borehole MW105 was additionally submitted for laboratory analysis of metals and inorganics to evaluate the native silty clay for any naturally occurring elevated metals concentrations.
- One duplicate soil sample was submitted for analysis of BTEX, PHC F1-F4, PCBs PAHs and metallic and inorganic parameters for QA/QC purposes.
- One methanol blank sample (labelled "Trip Blank") was submitted for analysis of BTEX and PHC F1 for QA/QC purposes.

Groundwater samples were analyzed as follows:

- One groundwater sample recovered from each of the monitoring wells were submitted for laboratory analyses of BTEX, PHC F1-F4 and PCBs to evaluate potential impacts from the onsite diesel AST (APEC 4), the former presence of a fuel AST on the 100 Maple Grove property (APEC 5), and the storage of PCBs on the 100 Maple Grove Road property (APEC 3).
- One groundwater sample recovered from monitoring well MW105 was submitted for laboratory analysis of PAHs and metals and inorganics to evaluate potential impacts from the possible impacts from wood preservation in the adjacent work yard (APEC 2).
- One duplicate groundwater sample was submitted for laboratory analyses of BTEX, PHC F1-F4, PAHs, PCBs and metals and inorganics for QA/QC purposes.
- One trip spike and one trip blank sample were submitted for laboratory analyses of BTEX and PHC F1 for QA/QC purposes.

The specific sample locations and parameters analyzed at each location are shown on Figure 5B for soil and Figure 5C for groundwater.

5.7 RESIDUE MANAGEMENT PROCEDURES

All soil cuttings produced during borehole drilling, were contained in a 205 L drum at the Site. Based on the laboratory analytical results (further discussed in Sections 6.6 and 6.7), the concentrations of all tested parameters from soil and groundwater samples were less than the MECP Table 3 SCS. As such, this material is suitable to remain on Site. The purged groundwater which was free of any hydrocarbon sheen or any obvious signs of impact was poured onto the ground at the Site and allowed to infiltrate.

5.8 ELEVATION SURVEYING

The elevation of the top of the pipe and ground surface at each existing and newly installed monitoring well was surveyed by Terrapex on October 18, 2019 with reference to a temporary benchmark. The fire hydrant spindle located on the southern portion Site was used as a benchmark and was assigned the elevation of 102.22 m amsl (based on the Plan of Survey).

5.9 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES

To mitigate potential cross-contamination during drilling, clean drilling augers were used for each borehole and new PVC liners inside the direct-push sampler were used for each soil sample. Fresh nitrile gloves were donned for the handling of each sample.

During groundwater sampling, newly installed dedicated sampling tubing was used at each monitoring well location. To mitigate cross-contamination, the interface probe was washed with a liquid solution of Alconox detergent and rinsed with fresh municipal water between each monitoring well. A fresh pair of nitrile gloves was donned at each well location.

Pre-cleaned soil and groundwater sample containers for the Site's specific parameters were provided by BV and used at each borehole and monitoring well location for the collection of soil and groundwater samples.

The sample containers and preservation methods for soil and groundwater samples collected for this investigation are provided in the Sampling and Analysis Plan in Appendix III.

Samples for analyses were placed in an enclosed cooler with loose ice and transported under signed chain of custody and custody seals to BV for analysis. Soil samples for analysis of volatile organic parameters were received at the laboratory, and immediately extracted.

BV QA/QC program consisted of the analysis of laboratory replicates, matrix spikes, matrix blanks, method blanks and surrogate percent recoveries, as appropriate for the particular analysis protocol.

Three "blind" field duplicates were submitted to the laboratory for chemical analysis for QA/QC purposes during the Phase Two ESA work program:

- one duplicate soil sample MW104-6 (identified as MW104-16) was submitted for analysis of BTEX, PHC F1-F4, and PCBs;
- one duplicate soil sample BH109-2 (identified as BH109-12) was submitted for analysis of PAHs and metals and inorganics; and,
- one duplicate groundwater sample of MW105 (identified as MW111) was submitted for analyses of BTEX, PHC F1-F4, PAHs, PCBs and metals and inorganics.

One methanol blank sample for soil (labelled as "Field Blank"), one trip blank sample for groundwater (identified as "Trip Blank"), and one trip spike sample for groundwater (identified as "Trip Spike") were also submitted for analysis as QA/QC measures. The trip blank and trip spike samples were prepared by the laboratory, and the sampling container remained within the bottle order package from the time of the delivery, sampling and submission to the laboratory.

With the exception of the trip blank and trip spike samples that were prepared by BV itself, the laboratory was not informed of the nature or number of field QA/QC samples.

6.0 **REVIEW AND EVALUATION**

6.1 GEOLOGY

Stratigraphy encountered during the drilling program generally consisted of various amounts of a silty sand fill or reworked native material underlain by a native clayey silt clay transitioning to a silty clay, underlain by a silty sand with some coarse gravel. Various fill material found beneath surface at the Site consisted of coarse sand, reworked silty sand and gravel. Sample recovery of coarse fill material at surface was poor so depths of the fill layers are approximated. No deleterious material was observed in samples of fill collected during drilling.

Saturated conditions (i.e., the apparent water table) were observed at a depth of approximately 1.60 m to 2.16 m bg in the clayey silt stratum. Auger refusal on apparent bedrock was encountered in boreholes MW101 (3.8 m bg), BH102 (3.1 m bg), MW103 (4.9 m bg), MW104 (6.1 m bg) and BH108 (1.8 m bg).

A copy of the borehole logs is included in Appendix IV. Cross sections showing the depth to bedrock and water are provided in Figure 7 and 8.

6.2 GROUNDWATER ELEVATIONS AND FLOW DIRECTION

The monitoring wells were screened from a depth of approximately 1.8 m bg to a depth of approximately 3.0 m bg, based on field observation of moisture content. Installation details of the monitoring wells are shown on Table 1 and on the borehole logs in Appendix IV.

Depths to groundwater from ground surface in the monitoring wells measured on October 23, 2019 were 1.60 m (MW105), 1.95 m (MW101), (MW103), 2.13 m and 2.16 m (MW104). Monitoring data is shown on Table 1.

No evidence of either light, non-aqueous phase liquid (LNAPL) or dense, non-aqueous phase liquid (DNAPL) was observed during monitoring, purging, or sampling of the monitoring wells during this work program. LNAPL and DNAPL monitoring data are shown on Table 1.

Groundwater elevations were calculated using the surveyed elevation of the top of the well pipe and the measured depth to water on October 23, 2019. The minimum groundwater elevation on this date was 99.24 m (MW105), and the maximum groundwater elevation was 100.84 m (MW101).

Groundwater contours were electronically generated using Surfer[™] Surface Mapping System with Point Kriging geostatistical gridding method to interpolate the data points. Interpreted groundwater contours based on these calculations are shown on Figure 9. The general flow direction of shallow groundwater at the Site was determined to be to the southwest towards the Carp River.

As the water table is fairly shallow, the direction of groundwater flow may be somewhat influenced by seasonal factors. It may also be influenced by deeper utilities (e.g., water and sewer lines), but the contouring results do not suggest that this is occurring.

6.3 GROUNDWATER HYDRAULIC GRADIENTS

Based on the measured groundwater elevations, the average horizontal hydraulic gradient over the area assessed was calculated as approximately 0.019 m/m calculated between MW101 and MW105 which are along the same groundwater flow path (southwesterly).

The horizontal hydraulic conductivity in the sandy silty clay is estimated to be 1.0×10^{-7} m/s based on the published values for this type of soil (*Groundwater*, Freeze and Cherry, 1979). Assuming an average hydraulic gradient of 0.019 m/m and a typical porosity for sandy silty clay of 0.4, the average linear horizontal groundwater velocity across the clayey silt layer (where the majority of groundwater flow would be expected) at the Site is calculated, using Darcy's Law, to be in the order of 0.1 m/year.

6.4 FINE-MEDIUM SOIL TEXTURE

Two representative soil samples of the native silty sand (BH106-2 and MW103-6) of the dominant stratigraphy encountered (clay/ silty clay) at the Site were submitted to BV for grain size analysis.

The results of the analyses indicated that both samples were medium/fine textured as defined by O. Reg. 153/04.

6.5 SOIL FIELD SCREENING

No visual (staining) or olfactory (odour) evidence of impacted soil was observed in the soil samples recovered from the borehole locations. CSV concentrations measured in all recovered soil samples were less than 10 ppm.

6.6 SOIL QUALITY

Laboratory analytical results of the soil samples submitted for analyses of metal and inorganic parameters, BTEX and PHC F1-F4, PAHs and PCBs are summarized in Tables 2 through 5, respectively. The maximum concentrations, sample names and well screen intervals, are summarized in Table 10. Plan view for all contaminants of potential concern in soil, are provided in Figure 10 through Figure 22. Copies of the Laboratory Certificates of Analyses are attached in Appendix V. The CSV concentration measured for each soil sample, the soil conditions, sample depths and chemical parameters analysed at each borehole are presented in the borehole logs in Appendix IV. A discussion of the results by parameter group is provided below.

Metals and Inorganics (Table 2, Figures 10-18): Analysis of seven samples (excluding the blind duplicate) of soil for metals and other regulated parameters has not identified any soil exceeding the Table 3 SCS with the exception of two soil samples (BH108-2 and BH109-2) as follows:

- Soil sample BH108-2 collected from a borehole in the parking lot in the southern portion of the Site were in excess of the Table 3 SCS for SAR; and,
- Soil sample BH109-2 (and its associated duplicate pair) collected from a borehole in the parking lot in the southern portion of the Site were in excess of the the Table 3 SCS for SAR and EC.

It is Terrapex's opinion that based on the location of the borehole BH108 and BH109 the concentrations of SAR and EC present in the soil samples are related to winter salting operations for the safety of vehicular and pedestrian traffic. Therefore in accordance with Section 49.1 of O.Reg. 153/04, the MECP (2011) Table 3 SCS is deemed not to have been exceeded for EC and SAR for both sampling locations.

BTEX (Table 3, Figure 19): Analysis of nine samples of soil (excluding a blind field duplicate) for BTEX has not identified any soil with concentrations, exceeding the Table 3 SCS.

PHCs (Table 3, Figure 20): Analysis of nine samples of soil (excluding a blind field duplicate) for petroleum parameters (PHC F1 to F4) has not identified any soil with concentrations, exceeding the Table 3 SCS.

PAHs (Table 4, Figure 21): Analysis of six samples of soil (excluding a blind field duplicate) for PAHs has not identified any soil with concentrations, exceeding the Table 3 SCS.

PCBs (Table 5, Figure 22): Analysis of six samples of soil (excluding a blind field duplicate) for PCBs has not identified any soil with concentrations, exceeding the Table 3 SCS.

6.7 GROUNDWATER QUALITY

Laboratory analytical results of the groundwater samples submitted for analysis which contribute to the Phase Two CSM are summarized in Tables 6 through 9. The maximum concentrations, sample names and well screen intervals, are summarized in Table 11. Copies of the Laboratory Certificates of Analyses are attached in Appendix V. A discussion of the results by parameter group is provided below.

Metals and Inorganics (Table 6, Figures 23-29): Analysis of one groundwater sample for metals and inorganics has not identified any groundwater with concentrations, exceeding the Table 3 SCS

BTEX (Table 7, Figure 30): Analysis of four samples of groundwater (excluding a blind field duplicate) for BTEX has not identified any groundwater with concentrations, exceeding the Table 3 SCS.

PHCs (Table 7, Figure 31): Analysis of four samples of groundwater (excluding a blind field duplicate) for petroleum parameters (PHCs F1 to F4) has not identified any groundwater with concentrations, exceeding the Table 3 SCS.

PAHs (Table 8, Figure 32): Analysis of one samples of groundwater (excluding a blind field duplicate) for PAHs has not identified any groundwater with concentrations, exceeding the Table 3 SCS.

PCBs (Table 9, Figure 33): Analysis of four samples of groundwater (excluding a blind field duplicate) for PAHs has not identified any groundwater with concentrations, exceeding the Table 3 SCS.

6.8 SEDIMENT QUALITY

The environmental quality of sediment was not investigated as sediment is not present at the Site.

6.9 QUALITY ASSURANCE AND QUALITY CONTROL RESULTS

QA/QC Control Limits: A review of the quality assurance reports attached to the laboratory certificates of analyses indicate that the laboratory QA/QC samples were within the quality control limits.

Matrix Spike Recoveries: The groundwater matrix spike for silver was 70%, below the QC limit of 80%. BV concluded that while the recovery was outside the control limits the overall quality control for the analysis met the acceptability criteria. Furthermore, no detectable concentrations of silver present in either of the samples submitted for analysis. All other matrix spike recoveries were within the acceptable QC limits.

Detection Limits: No sample dilution was required by the laboratory. Laboratory detection limits for soil sample MW104-6 (and its duplicate pair MW104-16) were raised for PCBs however they were below the relevant MECP (2011) Table 3 SCS so therefore there is no affect for interpretation.

Travel Spike Samples: Travel spike recoveries reported by the laboratory are summarized in the groundwater analytical results Table 7. The recoveries of all analysed parameters within the travel spike sample were within acceptance limits.

Travel Blank Samples: Laboratory results for the methanol blank sample is presented in the soil analytical results Table 3. Laboratory results for the Trip Blank sample for groundwater is

presented in Tables 7. Detectable concentrations of the tested parameters were not reported in the travel blank samples.

Field Duplicate Samples: Field duplicate sample results are presented in the soil and groundwater analytical results tables (Tables 2 through 9). Relative percent difference (RPD) for field duplicate sample results is calculated as follows:

$$RPD = \left| \frac{result_1 - result_2}{\frac{1}{2} x (result_1 + result_2)} \right| x \ 100\%$$

RPD is not calculated where reported concentrations are less than five times the method detection limit. Increased RPD values may be encountered whenever duplicate analyses are completed on samples representing heterogeneous fill materials. However, significant concerns regarding the validity of analytical results would generally not be suspected if calculated RPD do not exceed the specified alert criteria by more than a factor of 2.(i.e., an RPD of >60%).

Quantitative correlation was not calculable for the BTEX and PHC, PAH and PCBs analytical results of the field duplicate soil and groundwater samples (and their respective sample pairs), as the reported concentrations of all tested parameters for either one or both samples were less than five times the reportable detection limits.

Calculated RPDs for the field duplicate soil samples for the analysis of metallic and inorganic parameters are presented in Table 2. The acceptable correlation between original and field duplicate samples is typically 30% for inorganics. In several parameters (barium, hexavalent chromium, cobalt, copper, nickel, thallium and zinc) had RPDs greater than the alert criteria However, this suspected to be due to nature of the fill material of where these soil samples were collected. Generally the analytical results are within two factors of the alert criteria (i.e less than 60%) and therefore do not represent as significant concern. In all cases, concentrations of those parameters were less than the MECP (2011) Table 3 SCS.

Calculated RPDs for the field duplicate groundwater sample for the analysis of metallic and inorganic parameters are presented in Table 6. All calculable RPDs for the field duplicate groundwater samples for inorganics were below the alert criteria.

Sample Holding Times: Sample holding times were met for all samples.

6.10 PHASE TWO CONCEPTUAL SITE MODEL

A preliminary CSM was developed as part of the Phase One ESA, which is discussed in Section 4.3. Following the completion of the Phase Two ESA field program, the CSM has been updated to present the current Site characteristics and identify actual or potential sources of contamination, pathways, release mechanisms, receptors, and exposure routes. Additional inputs to the CSM include:

- Approximate locations underground utilities at the Site;
- stratigraphy observed during this Phase Two ESA work program;
- results of chemical testing for the current soil and groundwater conditions; and,
- groundwater levels and interpreted groundwater flow direction.

A narrative summary of the Phase Two CSM is provided below. Figures 1 through 33 illustrating the Phase Two CSM are attached, and referenced in the appropriate sections below.

OVERVIEW

Site Description (Figures 1 and 2): The Site is irregular in shape and occupies an approximate footprint of 11,291 m². The Site is situated to the northwest of the intersection of Maple Grove Road and Terry Fox Drive. A Hydro Ottawa garage and storage yard is located to the north and west of the Site.

The Site is developed with an irregularly shaped single-storey building. The footprint of the building is approximately 1,700 m². An asphalt parking lot is located to the north, west and south of the on-Site building. The southern portion of the asphalt parking lot is shared with the neighboring 100 Maple Grove Road property located to the west and north of the Site. The remainder of the Site is grass covered with trees.

Past and Present Uses (Figures 3 and 5A): The Site was developed by Kanata Hydro (currently Hydro Ottawa) in 1985 and used as an office building and for line operations until 2002. The Site was formerly a part of the 100 Maple Grove Road property until it was reportedly severed from that property in 2005. The 100 Maple Grove Road property was listed a former PCB storage Site until 2003 when it was deregistered.

The Site was leased to Ottawa Telecom (2000-2008), Atria Networks (2008-2014) and Annidis Corporation (2014 to 2018). The Site is currently vacant.

Adjacent Land Uses (Figure 3): Uses and occupants of the properties located adjacent to the Site are a mix of residential, parkland, commercial and institutional, as follows:

North: Commercial properties, Palladium Drive and commercial properties beyond.

West: Hydro Ottawa storage yard, commercial development and Silver Seven Road, and the Carp River beyond.

South: Maple Grove Road and Walter Baker Park beyond.

Southwest: Terry Fox Drive, residential properties and Esso gas station and automotive garage (44 Edgewater Street).

East: Terry Fox Drive and residential properties beyond.

Assessment Criteria: The generic MECP SCS determined to be applicable to the intended use of the Site are those for residential/parkland/institutional property use, fine/medium-textured soils, in a non-potable groundwater situation (MECP Table 3 Site Condition Standards). The Site is not environmentally sensitive per the definition of O. Reg. 153/04.

PCAs AND APECs

Potential Contaminating Activities (PCA) (Figure 4): Four on-Site PCAs and eight off-Site PCAs relating to activities or incidents within the Phase One Study Area were identified.

PCA	ADDRESS	POTENTIAL ENVIRONMENT AL CONCERN	DATA SOURCE	POTENTIALLY CONTAMINATIN G ACTIVITY (as set out in Column A of Table 2 in Schedule D of O. Reg. 153/04)	UNCERTAINTY	LIKELIHOOD TO AFFECT THE SITE
PCA 1	90 Maple Grove Road (The Site)	- The presence of fill brought to the Site during development.	- Aerial Photographs	 30 – Importation of Fill Material of Unknown Quality 	- High	- Possible
PCA 2	90 Maple Grove Road (The Site)	- The presence of a diesel fuel AST associated with the backup generator located at the Site.	- Site Reconnaissa nce	 28 – Gasoline and Associated Products Storage in Fixed Tanks 	- Low. Presence is confirmed	- Possible
PCA 3	100 Maple Grove Road (Adjacent to the Site, north and west)	- Presence of the storage yard located to the west of the Site containing wooden poles.	- Aerial Photographs	 59 - Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products 	- Low. Presence is confirmed.	 Possible due to being either on the Site or adjacent.

POTENTIALLY CONTAMINATING ACTIVITIES WITHIN THE PHASE ONE STUDY AREA

PCA	ADDRESS	POTENTIAL ENVIRONMENT AL CONCERN	DATA SOURCE	POTENTIALLY CONTAMINATIN G ACTIVITY (as set out in Column A of Table 2 in Schedule D of O. Reg. 153/04)	UNCERTAINTY	LIKELIHOOD TO AFFECT THE SITE
PCA 4	90 Maple Grove Road (The Site's former addresses was 100 Maple Grove prior to 2005)	- ERIS identified 100 Maple Grove as a PCB storage yard. Soil testing was limited and detection limits inadequate to current soil standards.	- ERIS	 58 – Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners 	- High, the location of the PCB storage is not confirmed, but is understood to have been in a shipping container in the yard area of 100 Maple Grove (off-site)	- Possible if the PCB being located on the Site.
PCA 5	100 Maple Grove Road (Adjacent to the Site, north and west)	- Presence of a diesel AST associated with a backup generator located in the eastern portion of the property.	- ERIS - Site Reconnaissa nce	 28 – Gasoline and Associated Products Storage in Fixed Tanks 	- Low	- Unlikely, due to limited volume and horizontal distance from the Site and apparently situated down- gradient of the Site.
PCA 6	90 Maple Grove Road The Site's former addresses was 100 Maple Grove prior to 2005)	 Presence of a 2000 L fuel storage tank as identified in the ERIS report registered to Kanata Hydro at 100 maple grove Road 	- ERIS	 28 – Gasoline and Associated Products Storage in Fixed Tanks 	 High, location, type, and construction unknown 	 Possible, however exact location of AST unknown and no corroborating information is available.
PCA 7	501 Palladium Drive (Approximately 300 m west of the Site).	- Manufacturing of microchips and computer equipment at Lockheed Martin (2019 - 2015) and Smart Technologies (2015 -2007).	 ERIS Report Aerial Photographs 	 19 – Electronic and Computer Equipment Manufacturing 	 Existence confirmed by multiple listings and records in the ERIS report 	 Unlikely due to the length of operation (since 2007) and the property is situated in a down gradient position relative to the Site.

PCA	ADDRESS	POTENTIAL ENVIRONMENT AL CONCERN	DATA SOURCE	POTENTIALLY CONTAMINATIN G ACTIVITY (as set out in Column A of Table 2 in Schedule D of O. Reg. 153/04)	UNCERTAINTY	LIKELIHOOD TO AFFECT THE SITE
PCA 8	400 Maple Grove Road (approximately 130 m to the west of the Site)	- Manufacturing of microchips and computer equipment at Honeywell Ltd from 2007 to present.	 ERIS Report Aerial Photographs 	 19 – Electronic and Computer Equipment Manufacturing 	 Existence confirmed by multiple listings and records in the ERIS report 	- Unlikely due to the length of operation (since 1997) and the property is situated in a down gradient position relative to the Site.
PCA 9	333 Palladium Drive (Approximately 100 m northwest of the Site)	 Manufacturing of microchips and computer equipment at Curtiss Wright since at least 1997 (formerly known as DY 4 Systems). 	 ERIS Report Aerial Photographs 	 19 – Electronic and Computer Equipment Manufacturing 	- Existence confirmed by multiple listings and records in the ERIS report	 Unlikely due to the length of operation (since 1990s) and the property is situated in a cross gradient and slightly down gradient position relative to the Site.
PCA 10	308 Palladium Drive (located approximately 270 m to the north of the Site)	- Manufacturing of microchips and computer equipment at Xilinc Inc. for a unknown amount of time	- ERIS Report	 19 – Electronic and Computer Equipment Manufacturing 	 High, only one record detailed the existence of manufacturing. No listings of the CA or ECA database for air emissions were identified. 	- Unlikely due to the length of operation (since 1990s) and the property is situated in a cross gradient and slightly down gradient position relative to the Site.
PCA 11	44 Edgewater Street (Approximately 250 m southwest of the Site)	 Presence of the gasoline fuel station since 2002 until present 	 Aerial Photographs HLUI 	 28 – Gasoline and Associated Products Storage in Fixed Tanks 	 Existence confirmed by multiple listings and records in the ERIS report 	- Unlikely due to the large horizontal distance and the property is situated cross gradient position relative to the Site

PCA	ADDRESS	POTENTIAL ENVIRONMENT AL CONCERN	DATA SOURCE	POTENTIALLY CONTAMINATIN G ACTIVITY (as set out in Column A of Table 2 in Schedule D of O. Reg. 153/04)	UNCERTAINTY	LIKELIHOOD TO AFFECT THE SITE
PCA 12	638 Terry Fox Drive (Approximately 250 m southwest of the Site)	 Presence of Mr. Lube automotive garage since 2007 until present 	 ERIS Site Reconnaissa nce Aerial Photographs 	 27 – Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles 	- Existence confirmed by multiple listings and records in the ERIS report	- Unlikely due to the large horizontal distance and the property is situated cross gradient relative to the Site

Areas of Potential Environmental Concern (APEC) (Figure 5A): Five APECs were identified at the Site as a result of the PCAs. Details regarding the sources of the APECs, their locations, the contaminants of potential concern and the media which may be affected are provided below. The locations of the APECs are shown on Figure 5A and the resulting sampling locations are provided in Figure 5B and Figure 5C.

Area of Potential Environ- mental Concern ¹	Location Of Area of Potential Environmental Concern On Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site Or Off- Site)	Contaminants Of Potential Concern ³	Media Potentially Impacted (Ground water, Soil, and/or Sediment)
APEC 1	 Encompassing the entirety of the Site 	- 30 - Importation of Fill Material of Unknown Quality	- PCA 1 - (On-site)	- Metals - As, Sb, Se - Cr (VI) & Hg - B-HWS - EC, SAR - BTEX, PHCs - PAHs - CN-	- Soil
APEC 2	 Encompassing the western portion of the Site along the Hydro Ottawa work yard 	 59 - Wood Treating and Preservative Facility and Bulk Storage of Treated and Preserved Wood Products 	- PCA 3 - (off-Site)	 Metals As, Sb, Se Cr (VI) & Hg B-HWS EC, SAR BTEX, PHCs PAHs CN- Na, Cl (groundwater) 	- Soil - Groundwater

AREAS OF POTENTIAL ENVIRONMENTAL CONCERN

Area of Potential Environ- mental Concern ¹	Location Of Area of Potential Environmental Concern On Phase One Property	Potentially Contaminating Activity ²	Location of PCA (On-Site Or Off- Site)	Contaminants Of Potential Concern ³	Media Potentially Impacted (Ground water, Soil, and/or Sediment)
APEC 3	 Encompassing beside the garage and western portion of the Site. 	 58 – Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners 	- PCA 4 - (On-Site or off- site)	- PCBs	- Soil - Groundwater
APEC 4	- Encompassing the area adjacent to the fuel AST for the backup generator	 28 – Gasoline and Associated Products Storage in Fixed Tanks 	- PCA 2 - (On-Site)	- PHCs - BTEX	- Soil - Groundwater
APEC 5	 Due to the lack of information regarding the location of the fuel storage tank, the APEC encompasses the entire Site 	 28 – Gasoline and Associated Products Storage in Fixed Tanks 	 PCA 6 (exact location unknown) (On-Site or off- Site) 	- PHCs - BTEX	- Soil - Groundwater

Areas of potential environmental concern means the area on, in or under a Phase One property where one or more contaminants are potentially present, as determined through the Phase One environmental site assessment, including through, (a) identification of past or present uses on, in or under the Phase One property, and (b) identification of potentially contaminating activity.

² Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a Phase One study area.

Contaminants of potential concern according to the Method Groups as identified in the "Protocol for in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", March 9, 2004, amended as of July 1, 2011: BTEX: benzene, toluene, ethylbenzene, xylenes Hg: mercury As: arsenic PHCs: petroleum hydrocarbons (F1-F4) B - HWS boron, hot water soluble Sb: antimonv VOCs: volatile organic compounds Cr (VI): chromium (hexavalent) Se: selenium CN-: Cyanide

PAHs: polycyclic aromatic hydrocarbons

Na: sodium

CI: chloride

EC: electrical conductivity SAR: sodium adsorption ratio

Subsurface Structures and Utilities That May Affect Contaminant Distribution and *Transport (Figure 2):* During the Phase Two ESA work program, local utility companies were contacted in order to obtain stake outs and clearance with respect to buried services under the Phase Two Property. A private locating company Capital Concrete Coring Ltd. (CCC) was also retained to provide clearance with respect to buried services in the drill areas. Underground utilities at the Phase Two Property include hydro, natural gas, electrical, telephone and sanitary and storm sewers. The locations of the underground utilities present at the Site are provided in Figure 2.

In general, potential preferential migration pathways for sub-surface contaminants at a site comprise buried utilities, naturally occurring sand seams, or other subsurface areas of increased

permeability. As a result, the underground utilities present throughout the Phase Two Property could be considered as potential preferential migration pathways.

However, the results of the Phase Two ESA indicate that the groundwater conditions at the Phase Two Property meet the MECP SCS listed in Table 3 of the April 15, 2011 *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act* (MOE, 2011) corresponding to residential / parkland / institutional land use in non-potable groundwater situation for the COPCs analysed, the potential preferential migration pathways are not considered to be of concern.

Physical Setting of The Phase Two ESA Property

Stratigraphy: Stratigraphy encountered during the drilling program generally consisted of various amounts of a silty sand fill or reworked native material underlain by a native clayey silt clay transitioning to a silty clay, underlain by a silty sand with some coarse gravel. Various fill material found beneath surface at the Site consisted of coarse sand, reworked silty sand and gravel varying in depths from 0.3 to 1.2 m bg. Sample recovery of coarse fill material at surface was poor, so depths of the fill layers are approximated. No deleterious material was observed in samples of fill collected during drilling.

Refer to Figures 2 for the borehole locations, Figures 7 and 8 for the cross sections showing the soil stratigraphy of the Phase Two Property. Borehole logs showing the soil stratigraphy encountered in the boreholes are provided in Appendix IV.

Hydrogeological Characteristics: Based on the measured groundwater elevations, the average horizontal hydraulic gradient over the area assessed was calculated as approximately 0.019 m/m calculated between MW101 and MW105 which are along the same groundwater flow path (southwesterly).

The horizontal hydraulic conductivity in the sandy silty clay is estimated to be 1.0×10^{-7} m/s based on the published values for this type of soil (*Groundwater*, Freeze and Cherry, 1979). Assuming an average hydraulic gradient of 0.019 m/m and a typical porosity for sandy silty clay of 0.4, the average linear horizontal groundwater velocity across the sandy silty clay layer (where the majority of groundwater flow would be expected) at the Site is calculated, using Darcy's Law, to be in the order of 0.1 m/year.

The general flow direction of shallow groundwater at the Phase Two Property was determined to be to the southwest towards the Carp River. As the water table is fairly shallow, the direction of groundwater flow may be somewhat influenced by seasonal factors. It may also be influenced by deeper utilities (e.g. water and sewer lines), but the contouring results do not suggest that this is occurring. Refer to Figure 9 for the monitoring well locations and interpreted groundwater elevation contours.

Depth to Bedrock: Bedrock was encountered in several boreholes advanced in this Phase Two ESA in depths varying between 1.8 to 6.1 m bg.

Depth to Water Table: Monitoring data is shown on Table 1. Depths to groundwater in the monitoring wells measured on October 23, 2019 were 1.60 m (MW105), 1.95 m (MW101), 2.13 m (MW103) and 2.16 m (MW104) from ground surface. Monitoring data is shown on Table 1. No evidence of either LNAPL or DNAPL was observed during monitoring, purging, or sampling of the monitoring wells during the Phase Two ESA work program.

Refer to Figures 5C for the monitoring well locations, Figures 7 and 8 for the cross sections showing the water table of the Phase Two Property, and Borehole Logs for water table encountered in the boreholes.

Applicability of Section 41 or 43.1 of O. Reg. 153/04: O. Reg. 153/04 describes conditions, which when present, can constitute an "environmentally sensitive site". They include the presence of areas of natural significance (such as wetlands, provincial parks, nature reserves and valuable animal habitats) within 30 m of the Site, and sites where soil pH lies outside the range of 5 to 9 for shallow soil and 5 to 11 for deep soil.

The Site is not located within an area of natural significance (such as wetlands, provincial parks, nature reserves and valuable animal habitats), does not include and is not adjacent to an area of natural significance or part of such an area, and does not include land that is within 30 m of an area of natural significance or part of such an area.

Soil pH values are within the required ranges.

Areas Where Soil has been Brought to the Property: No soil was excavated for reuse on the Phase Two Property or brought from another property following completion of the Phase Two ESA.

Locations of Proposed Buildings and Structures: At the time of this investigation, there was the only the main building which was vacant at the time of the Phase Two ESA. The main onsite building will redeveloped as a daycare. The proposed development plan is presented in Appendix I.

Contamination

Media of Concern: Soil and groundwater have been identified as the media of concern at the Site at the Site. Sediment is not present at the Site.

Contaminants of Concern: All soil samples recovered from the sample locations had concentrations of metals and inorganics, BTEX and PHC F1-F4, PAHs, and PCBs parameters

less than the applicable MECP Table 3 SCS. All groundwater samples collected from the sample locations had concentrations of metals and inorganics, BTEX and PHC F1-F4, PAHs, and PCBs less than the applicable MECP Table 3 SCS. Therefore, there were no COPCs identified in soil and groundwater during this Phase Two ESA program.

SAR and EC exhibited concentrations in excess of the MECP (2011) Table 3 SCS in soil samples BH108-2 and BH109-2. It is Terrapex's opinion that based on the location of the borehole BH108 and BH109 the concentrations of SAR and EC present in the soil samples are related to winter salting operations for the safety of vehicular and pedestrian traffic. Therefore in accordance with Section 49.1 of O.Reg. 153/04, the MECP (2011) Table 3 SCS is deemed not to have been exceeded for EC and SAR for both sampling locations.

Areas, Origin, Extent, Distribution and Delineation of Contamination: No contaminants were identified at the Site.

Migration of Contaminants: The Phase Two ESA has identified no contaminants present at the Site.

Climatic or Meteorological Impacts on Contaminant Migration: As no contaminants were identified in either the soil or groundwater at the Site climatic or meteorological impacts on contaminant migration is not a concern.

Soil Vapour Intrusion of Contaminants into Buildings: As volatile contaminants have not been identified at the Site, there are no concerns related to the intrusion of vapours into the existing or future buildings at the Site.

7.0 CONCLUSIONS

The Phase Two ESA investigation of the Site, as documented in this report, indicated that contaminants of concern were not identified within soil or groundwater at the Site.

Sediment is not present at the Site, and therefore contaminants of concern are not present within sediment.

The date of the last work on all of the planning of the Site investigation, conducting the investigation, and receiving and evaluating the information gathered during the Site inspection for the Phase Two ESA (per Section 33.5 (1) (a) of O. Reg. 153/04) is December 20, 2019. For the purposes of filing a Record of Site Condition, the Certification Date of the Phase Two ESA (per Section 17 (3) of O. Reg. 153/04) is October 23, 2019.

7.1 SIGNATURES

The environmental assessment described herein was conducted in accordance with the terms of reference for this project, agreed upon by BrightPath and Terrapex Environmental Ltd.

The Phase Two Environmental Site Assessment of the property located at 90 Maple Grove Road Ottawa, Ontario was conducted in general accordance with O.Reg. 153/04 by, or under the supervision of a Qualified Person as required by the regulation.

Terrapex Environmental Ltd. has exercised due care, diligence, and judgement in the performance of this Phase Two ESA; however, studies of this nature have inherent limitations. The reported information is believed to provide a reasonable representation of the general environmental conditions at the Site, at the time the assessment was conducted. However, the data were collected at discrete locations and conditions may vary at other locations or with the passage of time. The assessment was also limited to a study of those chemical parameters specifically addressed in this report.

In addition, our comments, conclusions, and recommendations are based in part on the observations and data documented by third parties. By necessity, except where explicitly noted, we have relied upon the accuracy and completeness of information presented by said third parties, regardless of any disclaimers regarding reliance provided in the documentation subjected to peer review. Terrapex Environmental Ltd. does not assume any responsibility for errors, omissions, or other limitations pertaining to third party work programs.

This report has been prepared for the sole use of BrightPath Early Learning & Child Care and Terrapex Environmental Ltd. accepts no liability for claims arising from the use of this report, or from actions taken or decisions made as a result of this report, by parties other than BrightPath Early Learning & Child Care.

Greg Sabourin, P.Eng. Project Manager Qualified Person per O. Reg. 153/04

Keith Brown, P.Eng. Senior Reviewer Qualified Person per O.Reg. 153/04

Rod Rose, P.Geo. (Limited) Branch Manager Qualified Person per O. Reg. 153/04

8.0 REFERENCES

Ontario Regulation 153/04, *Records of Site Condition – Part XV.1 of the Environmental Protection Act.*

Topographic Map: National Topographic Systems (NTS), Natural Resources Canada, (1:50 000), 2013, information current as of 2010, Map 30M/14.

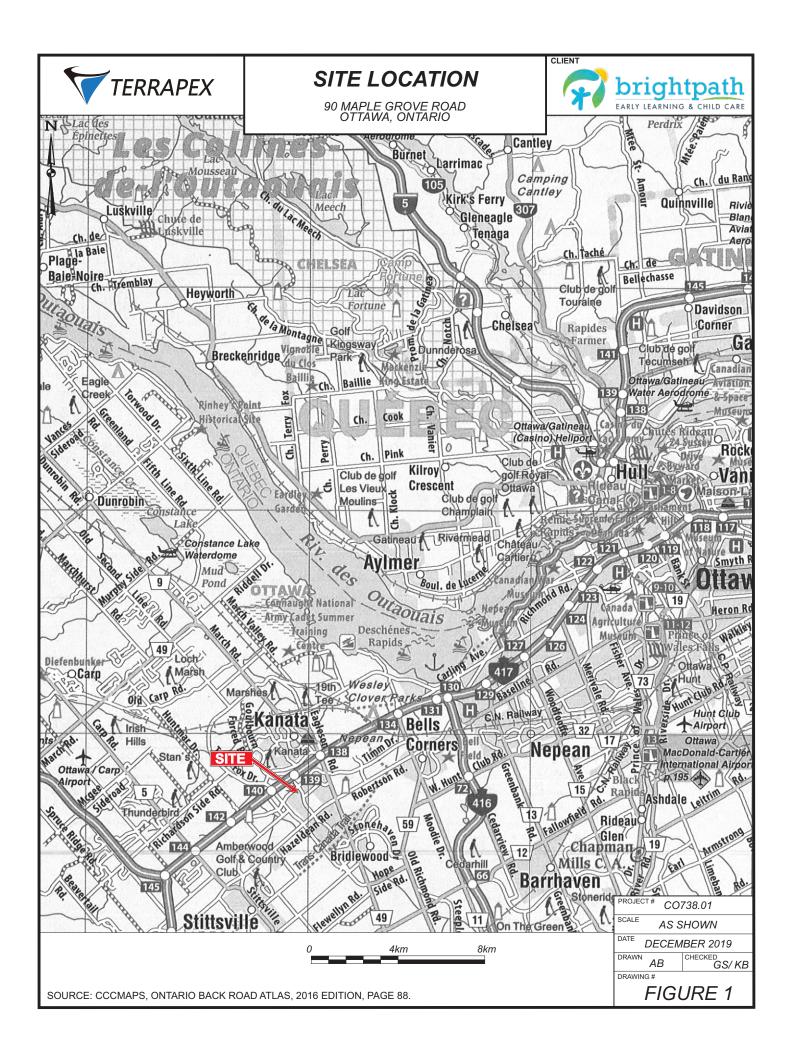
Ontario Base Map (OBM): MNR, 2010, available from EcoLog ERIS.

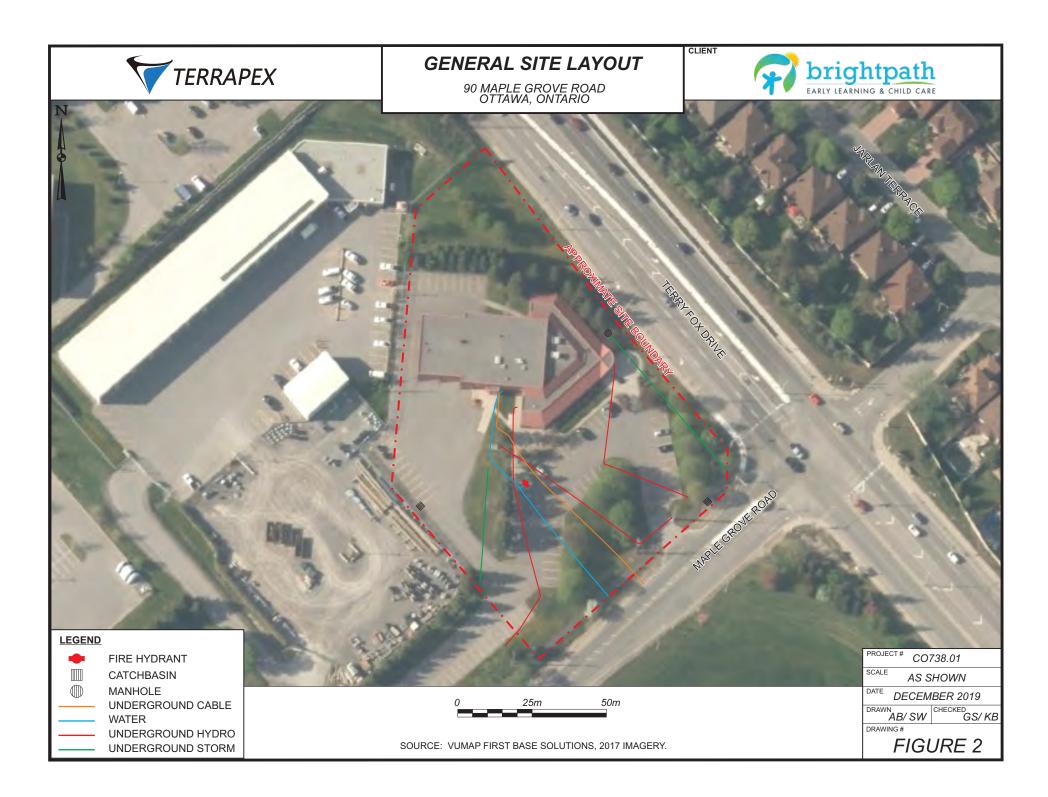
Quaternary Geology of Ontario, Southern Sheet, Map 2556, Ministry of Northern Development and Mines, 1991.

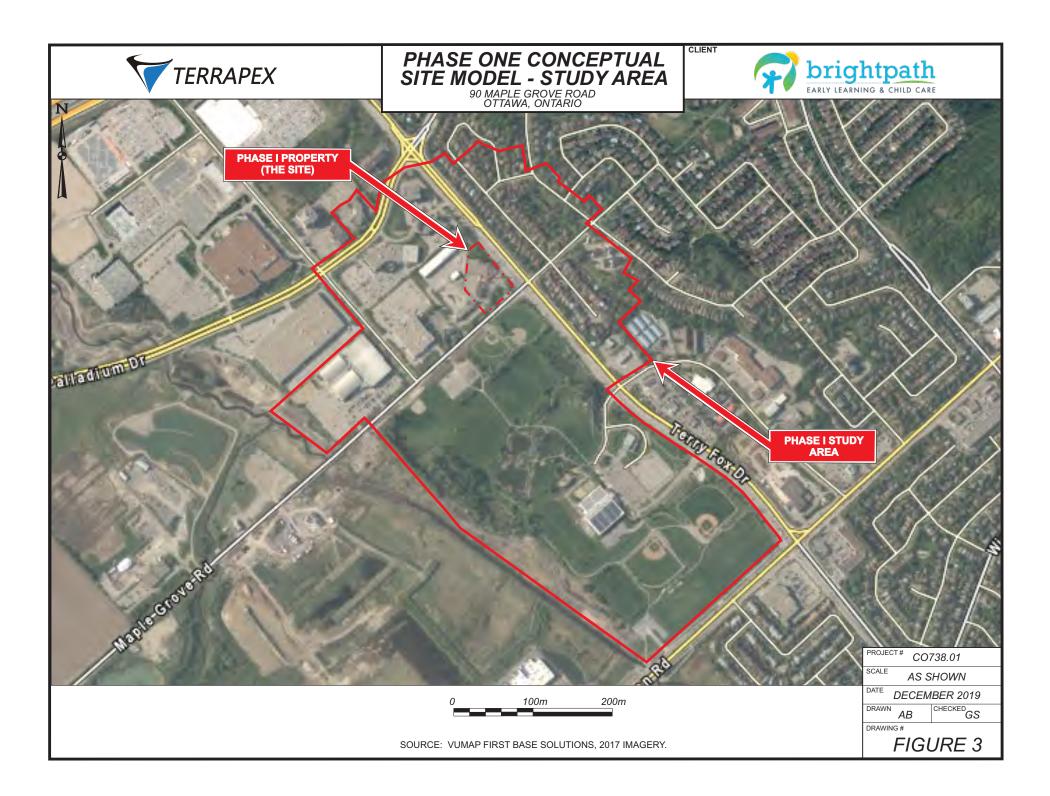
Bedrock Geology of Ontario, Southern Sheet, Ontario Geological Survey, Map 2544, Ministry of Northern Development and Mines, 1991.

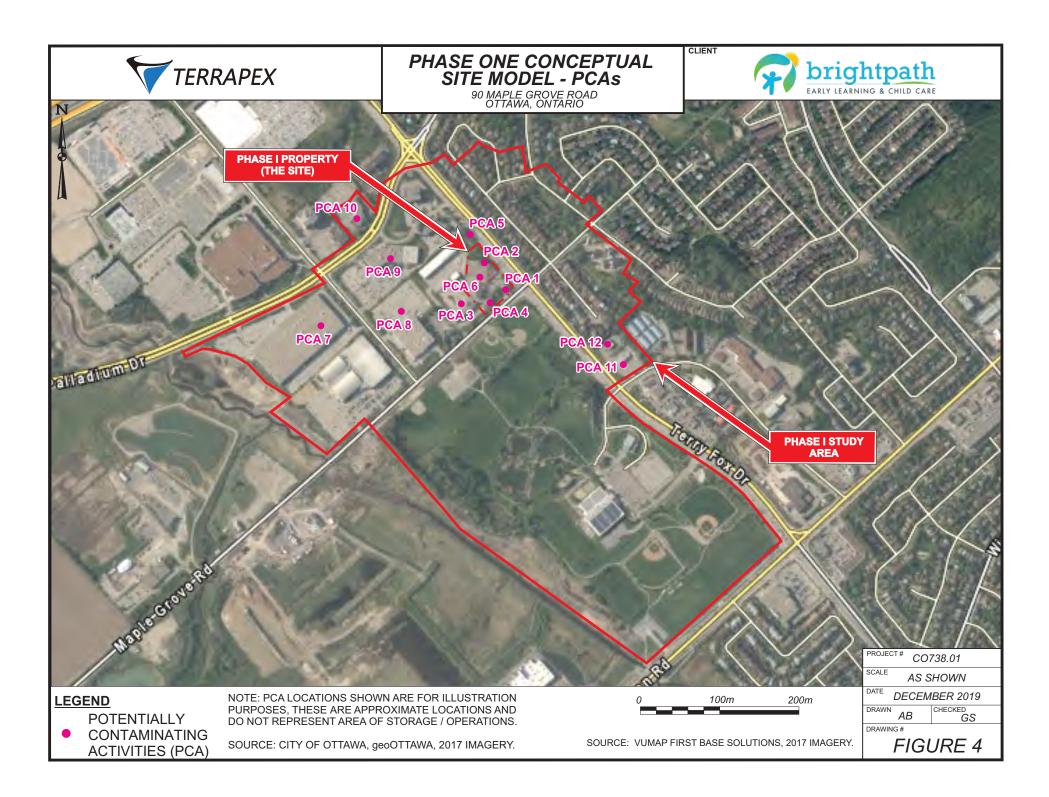
The Physiography of Southern Ontario, Chapman and Putnam, Ontario Research Foundation, 1966.

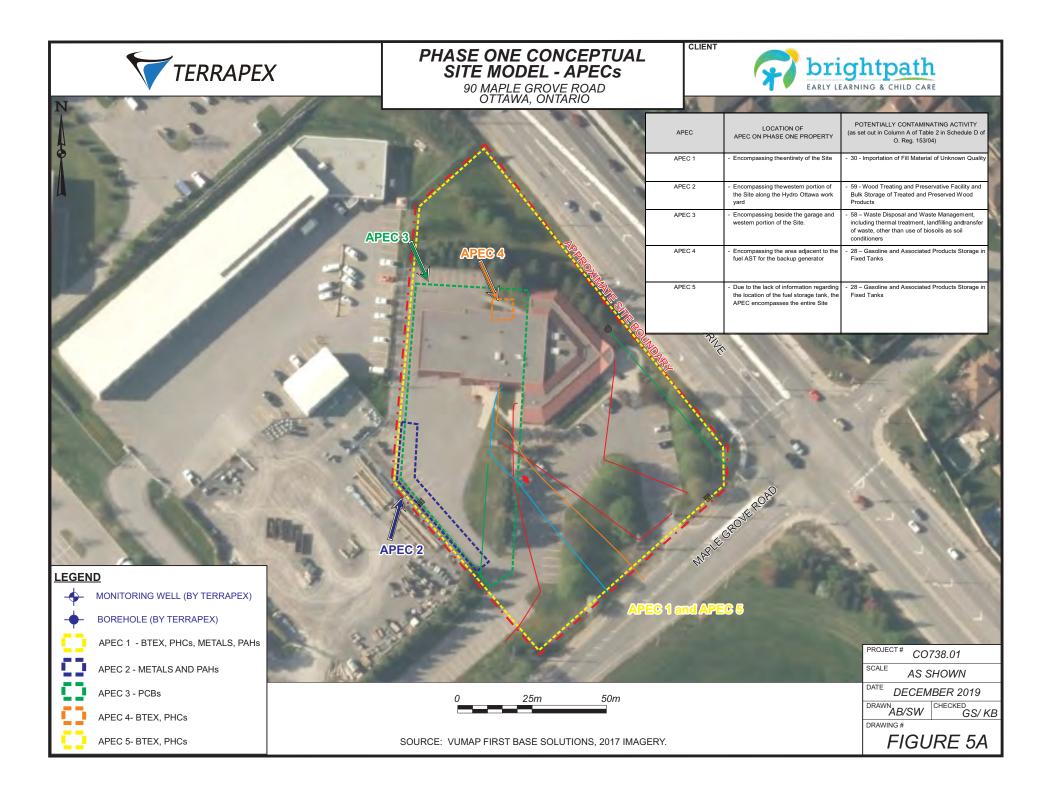
Ministry of the Environment (MOE), Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.

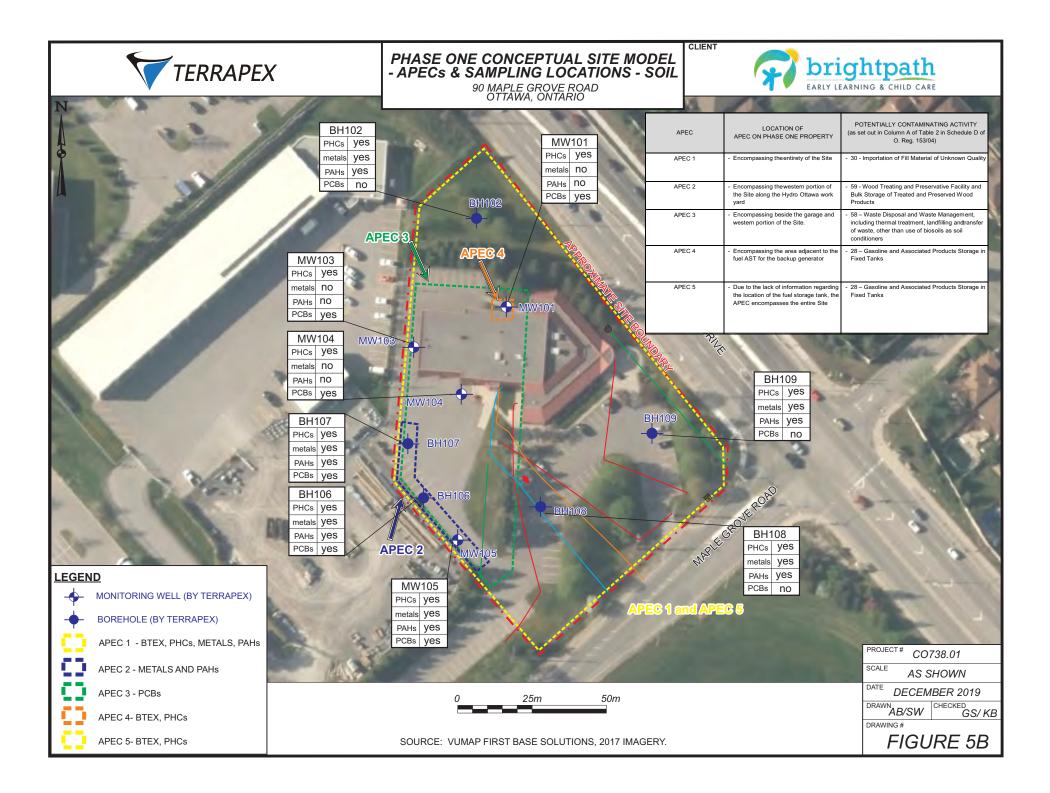

Ministry of Natural Resources (MNR), 2014 "Land Information Ontario (LIO)". Available online at: (<u>http://www.ontario.ca/environment-and-energy/land-information-ontario</u>).

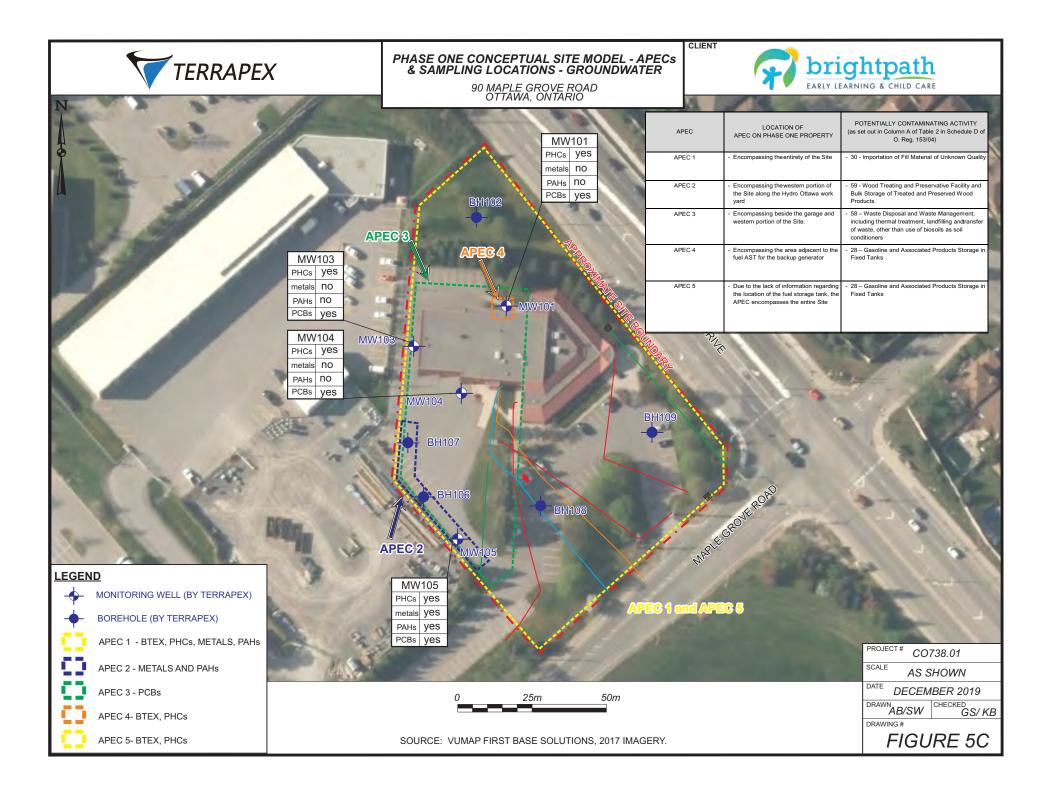

Environmental Reports:

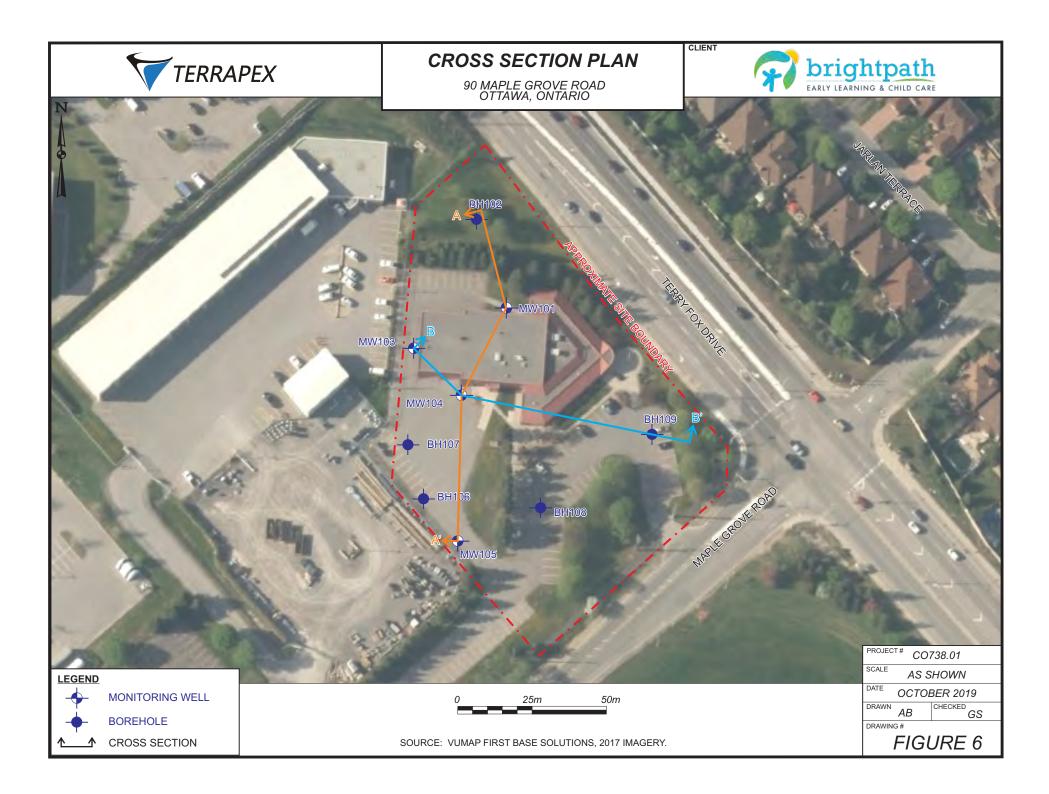

Inspection and Investigation of PCB Storage Container #210 Hydro Ottawa, 100 Maple Grove Road, Ottawa (Kanata), Ontario prepared by Water Earth Science Associates Ltd. Dated June 23, 2003.

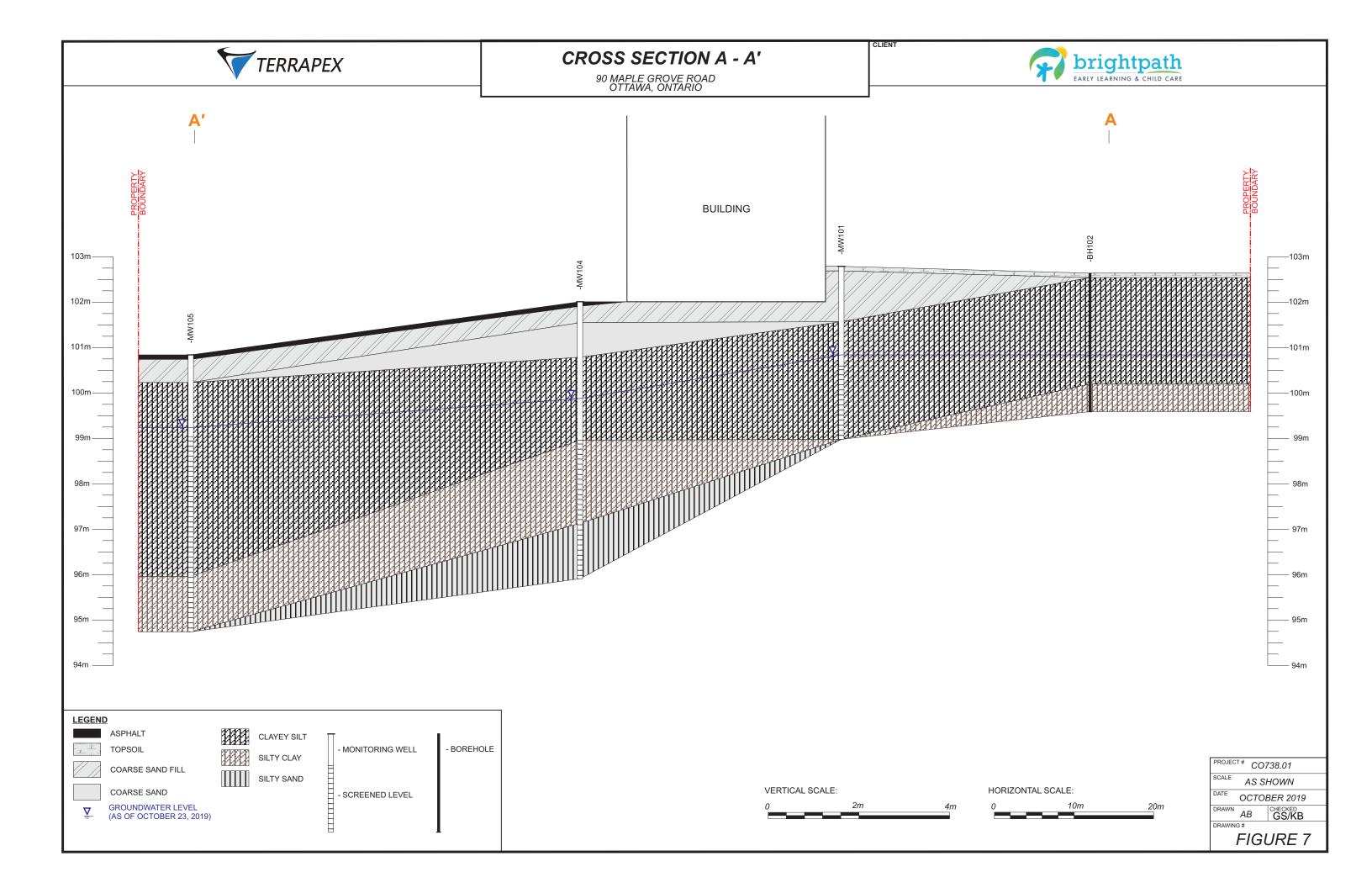

Terrapex, *Phase One Environmental Site Assessment, 90 Maple Grove Road, Ottawa, Ontario, Final Report,* dated October 18, 2019.

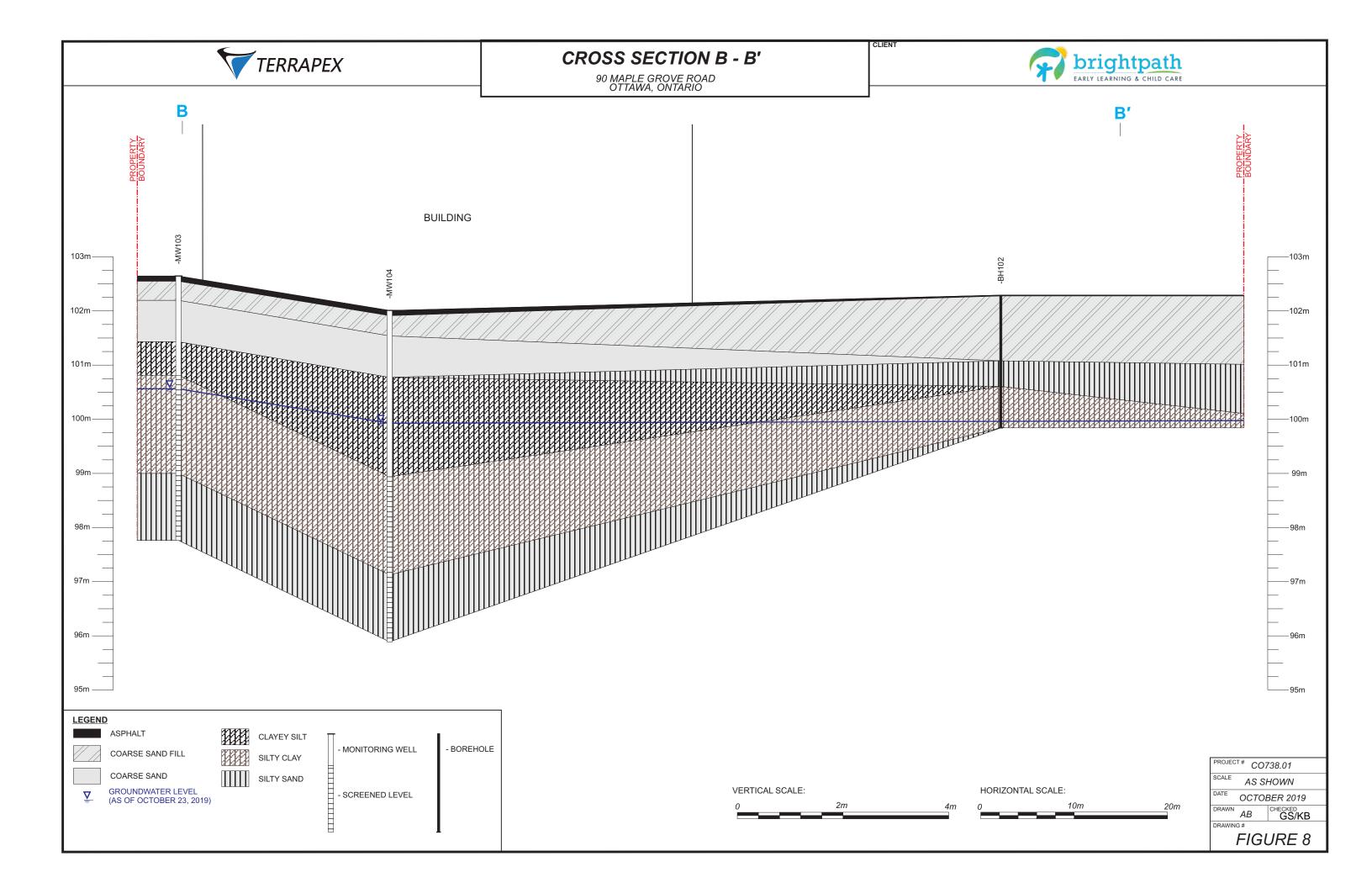

FIGURES

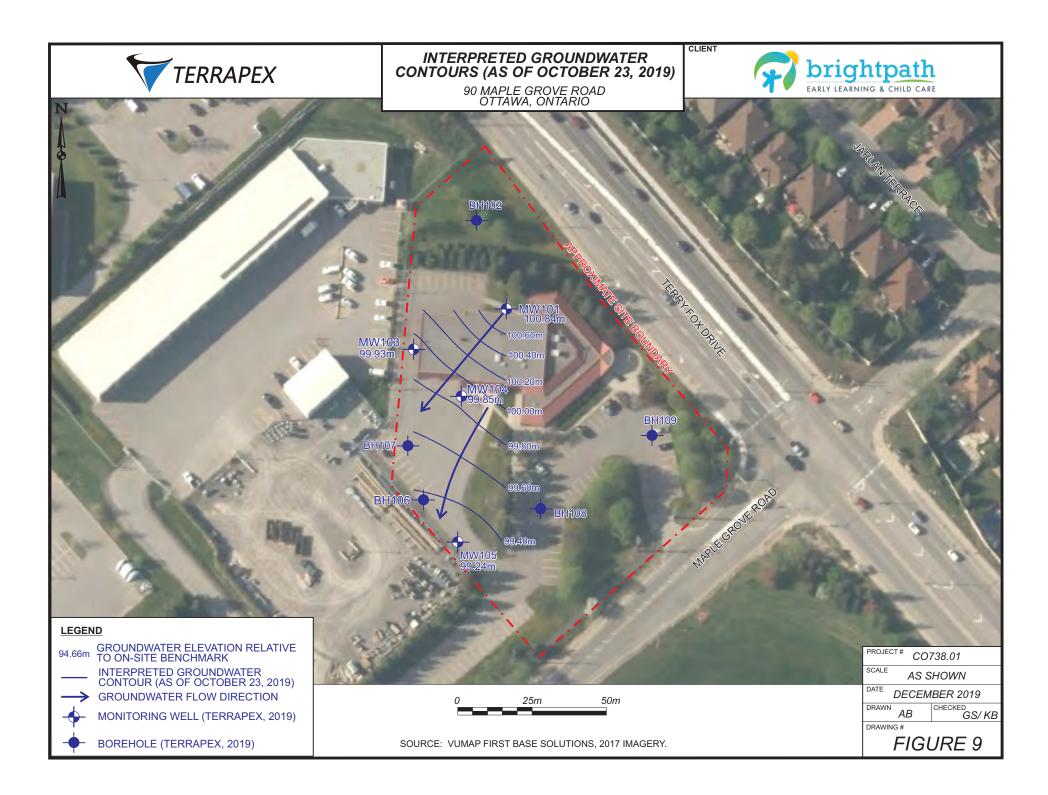


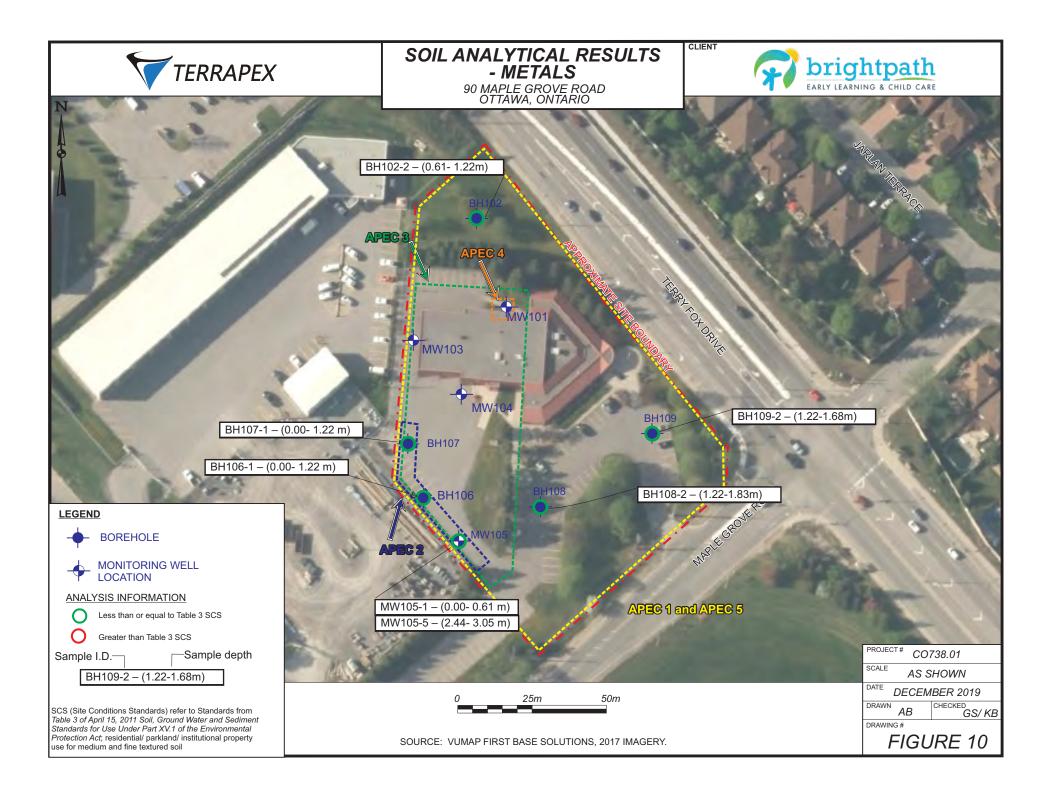


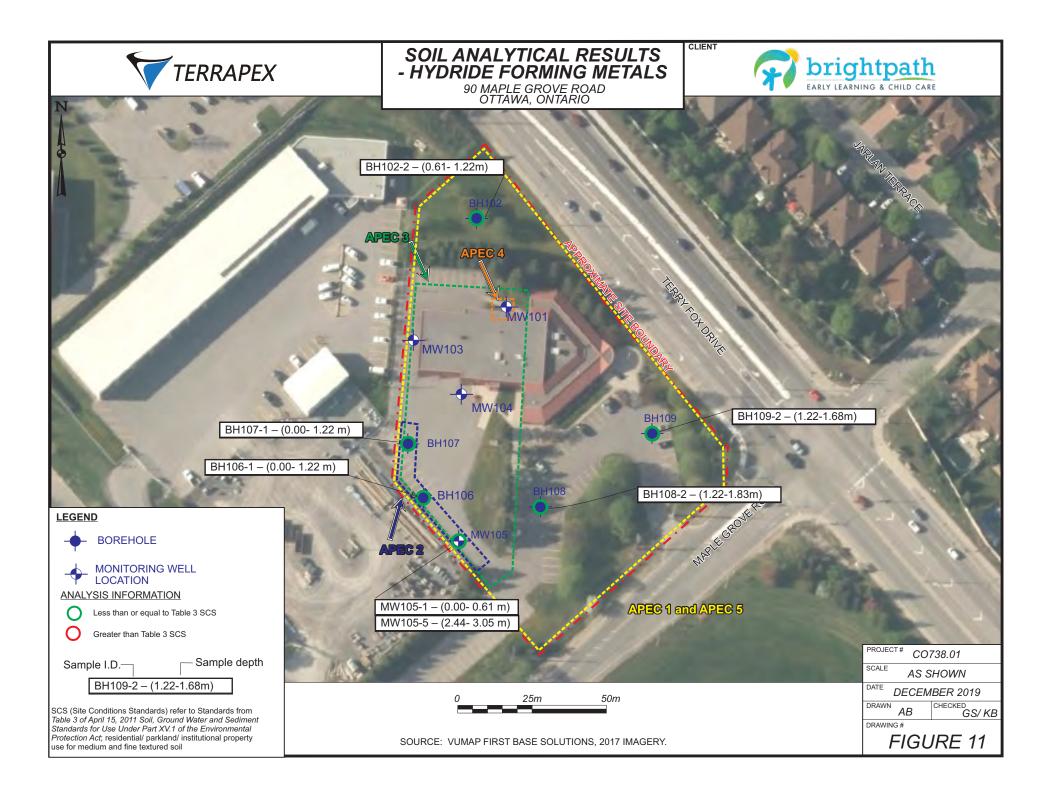


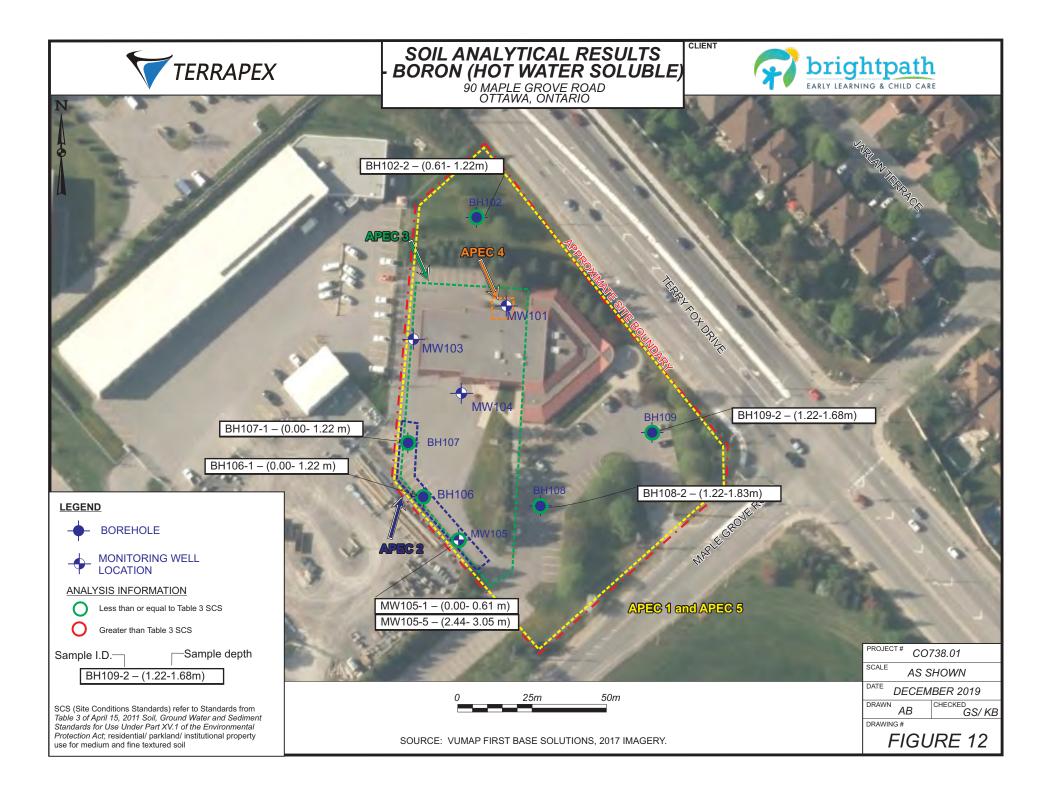


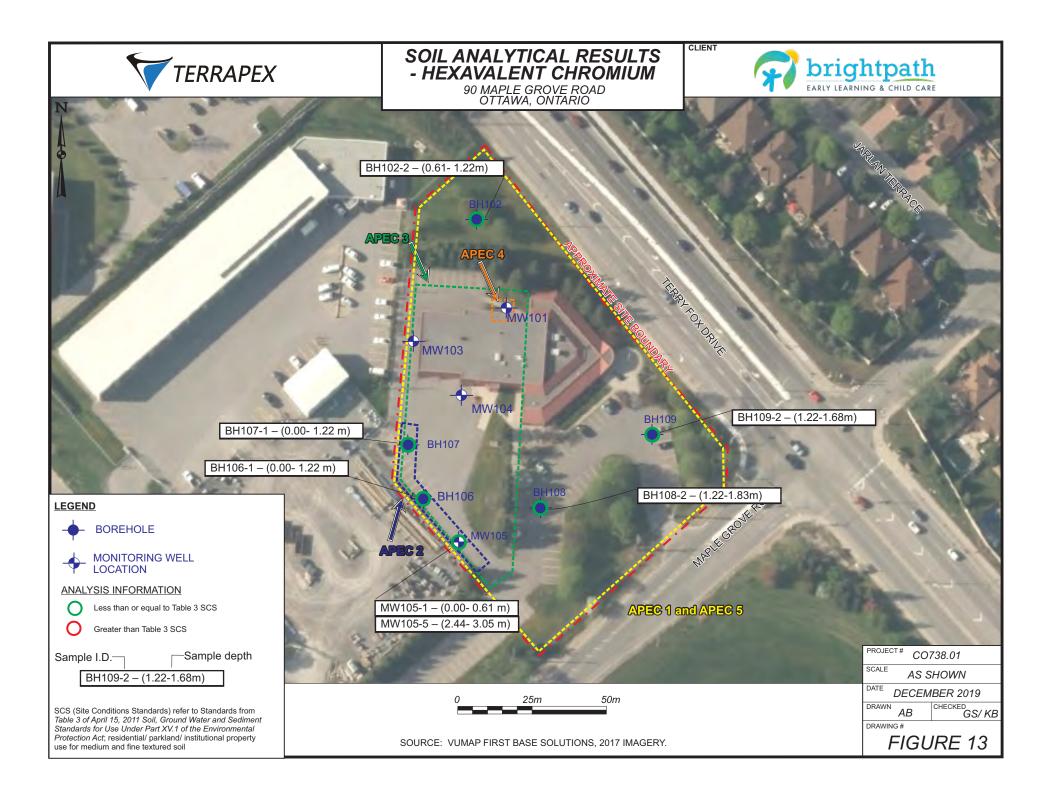


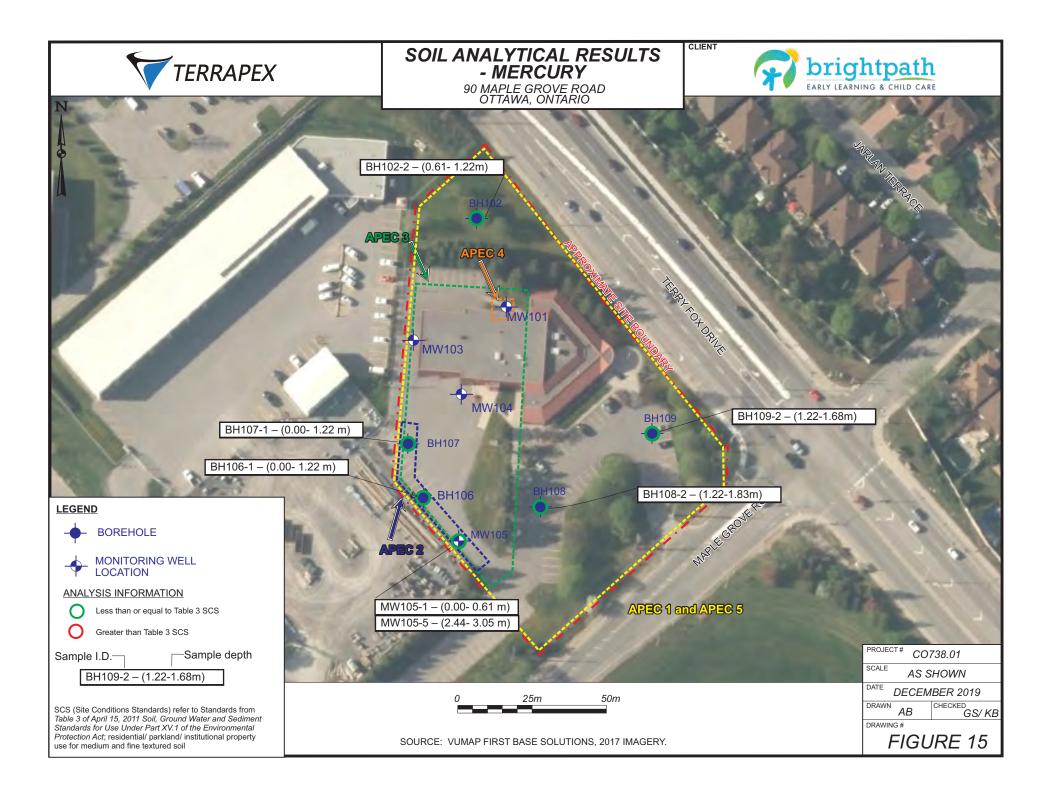


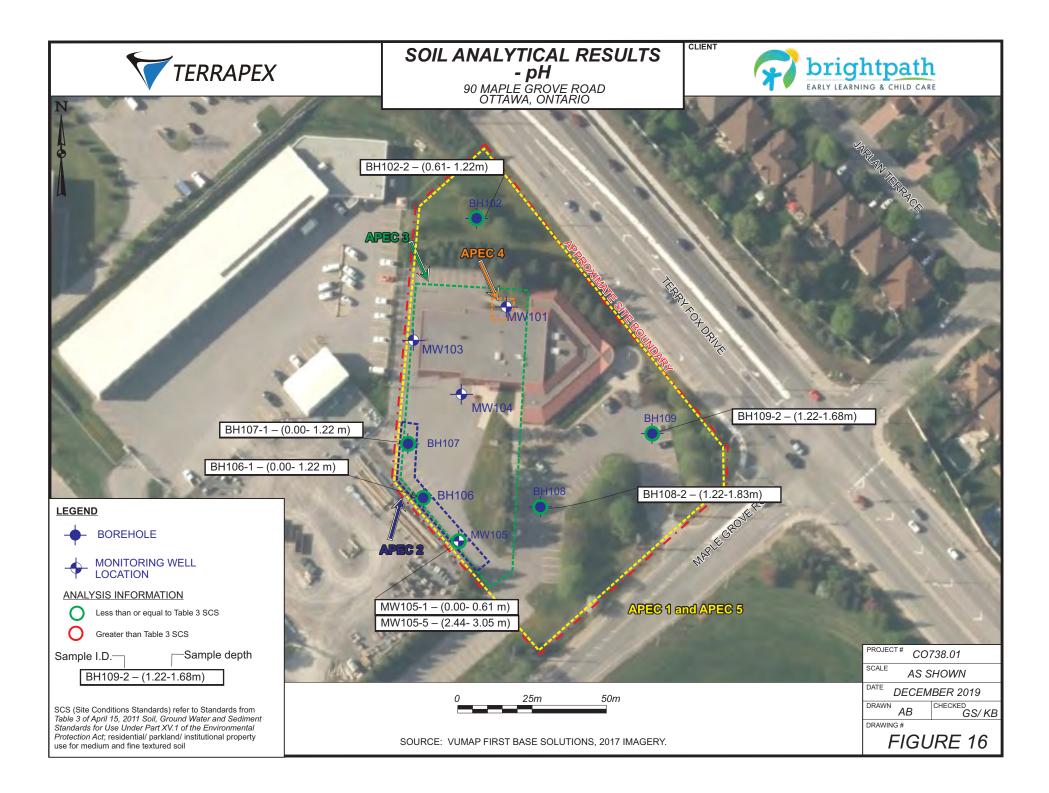


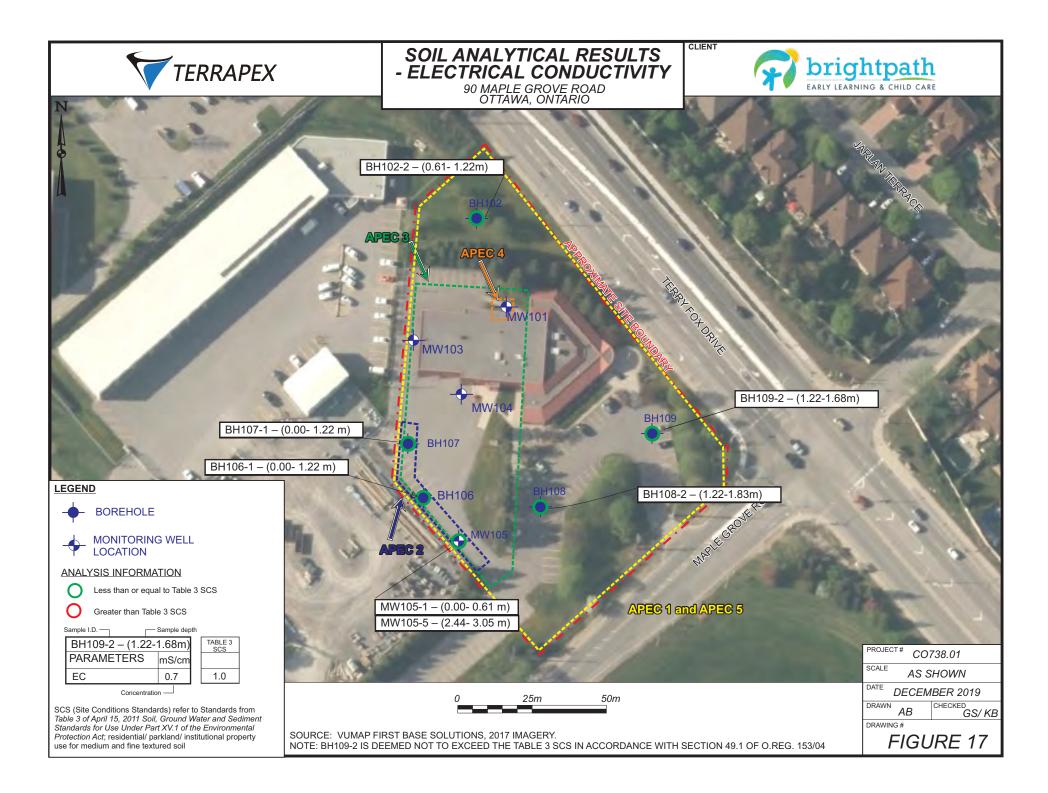


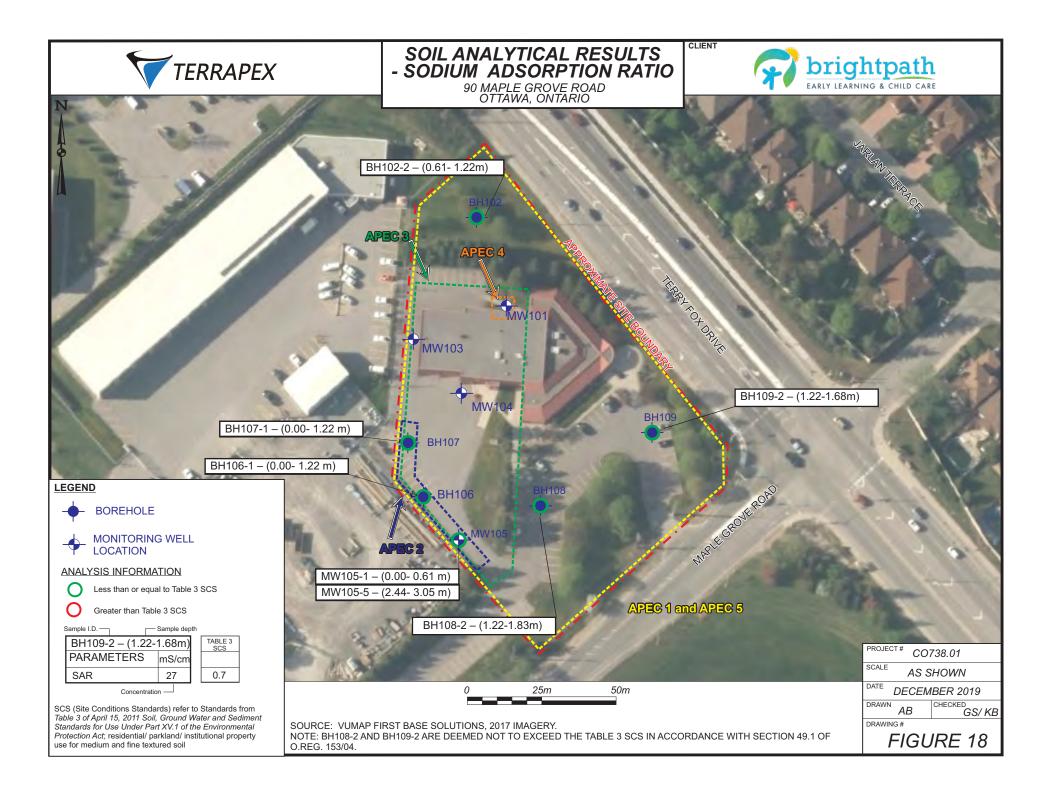


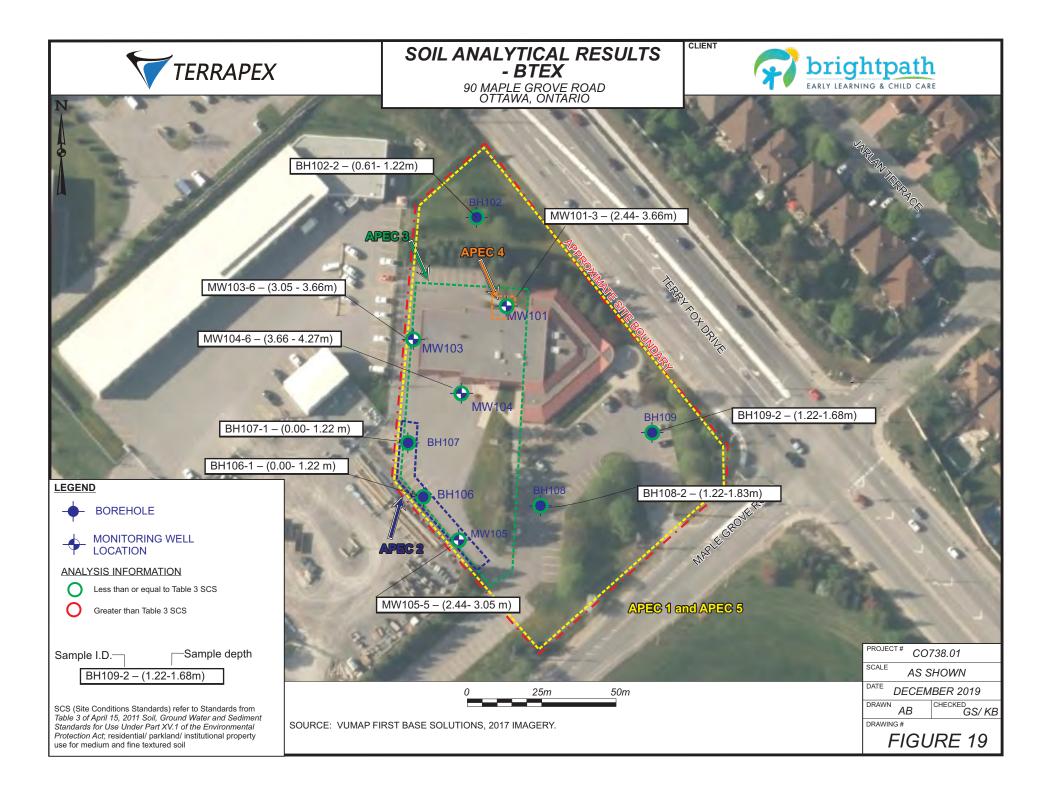


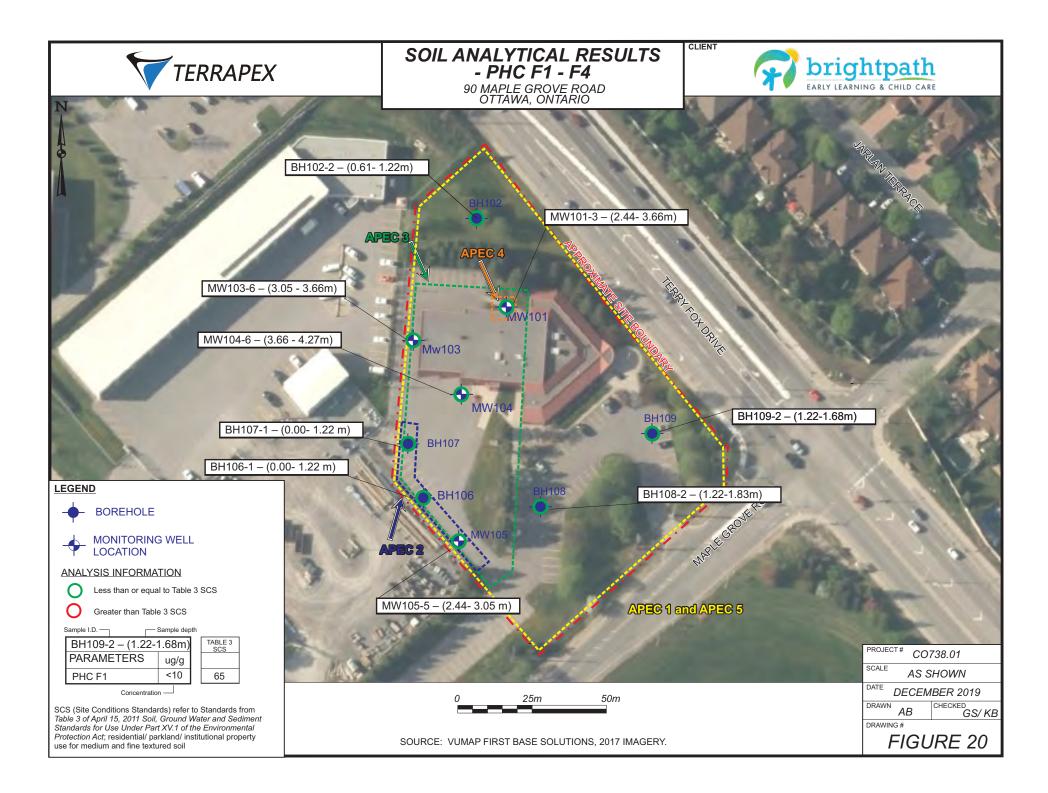


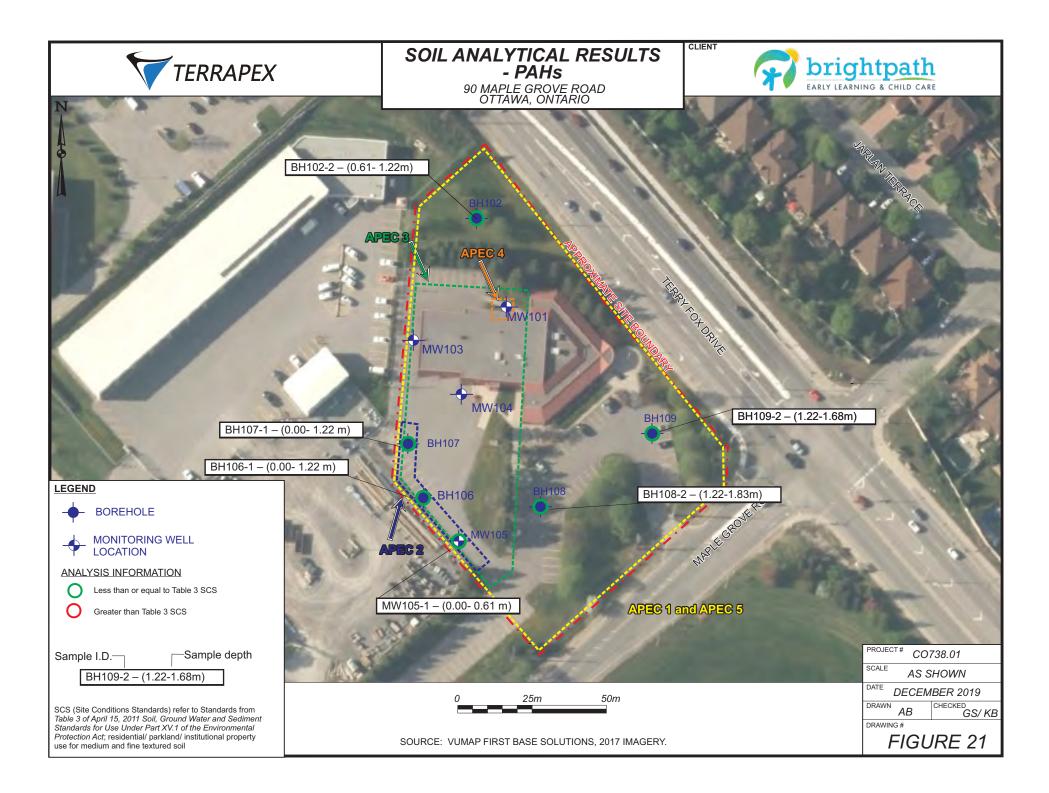


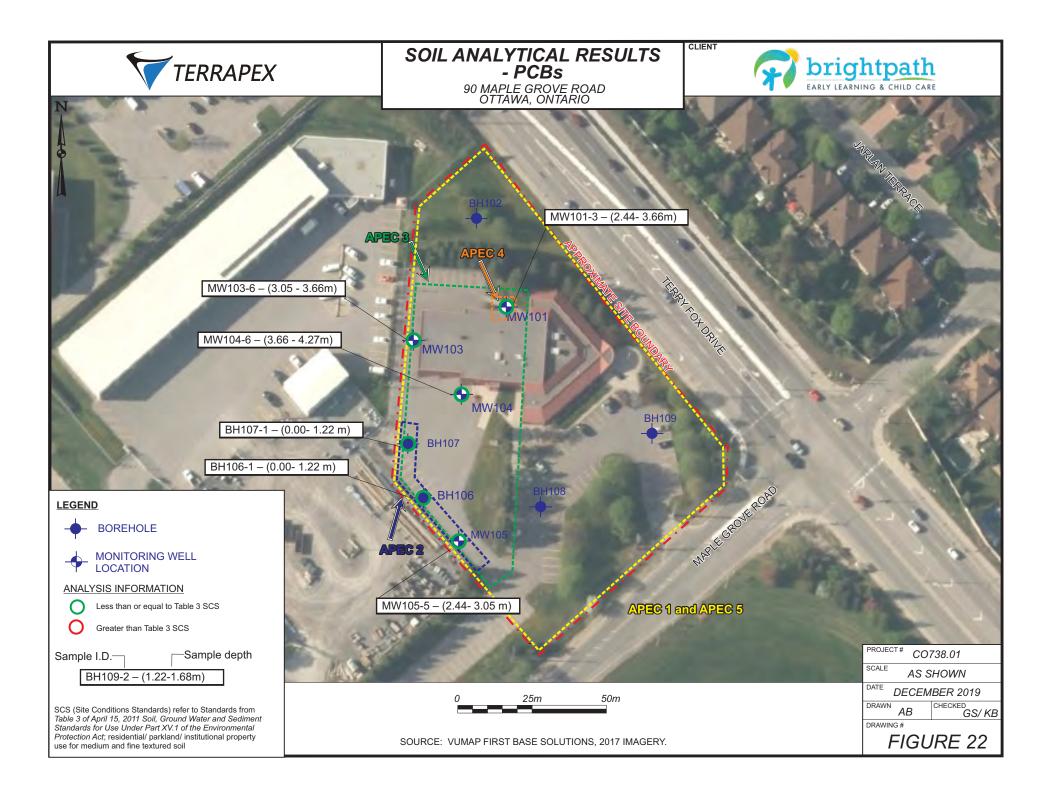


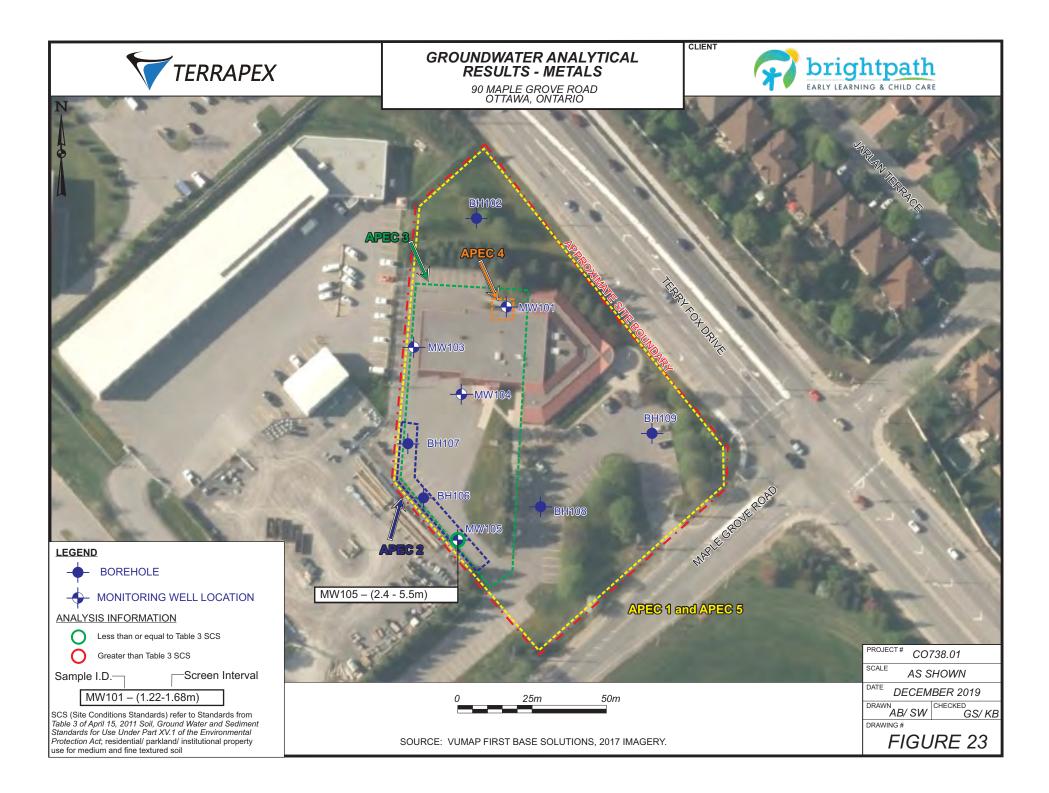


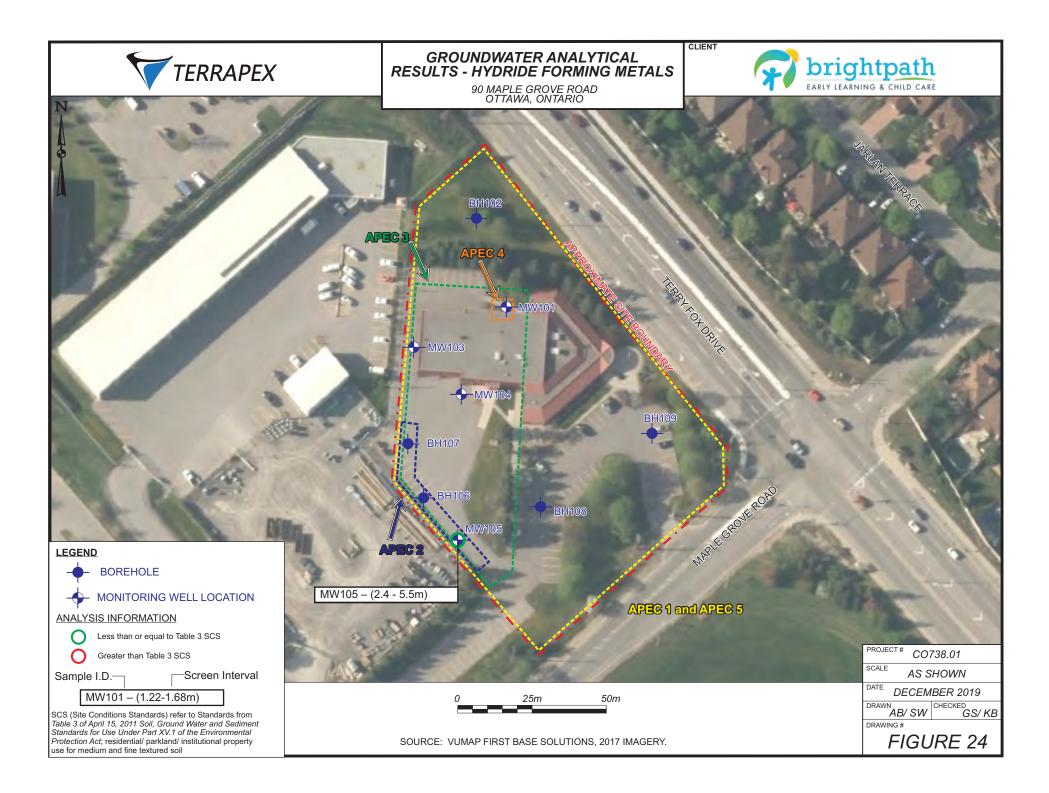


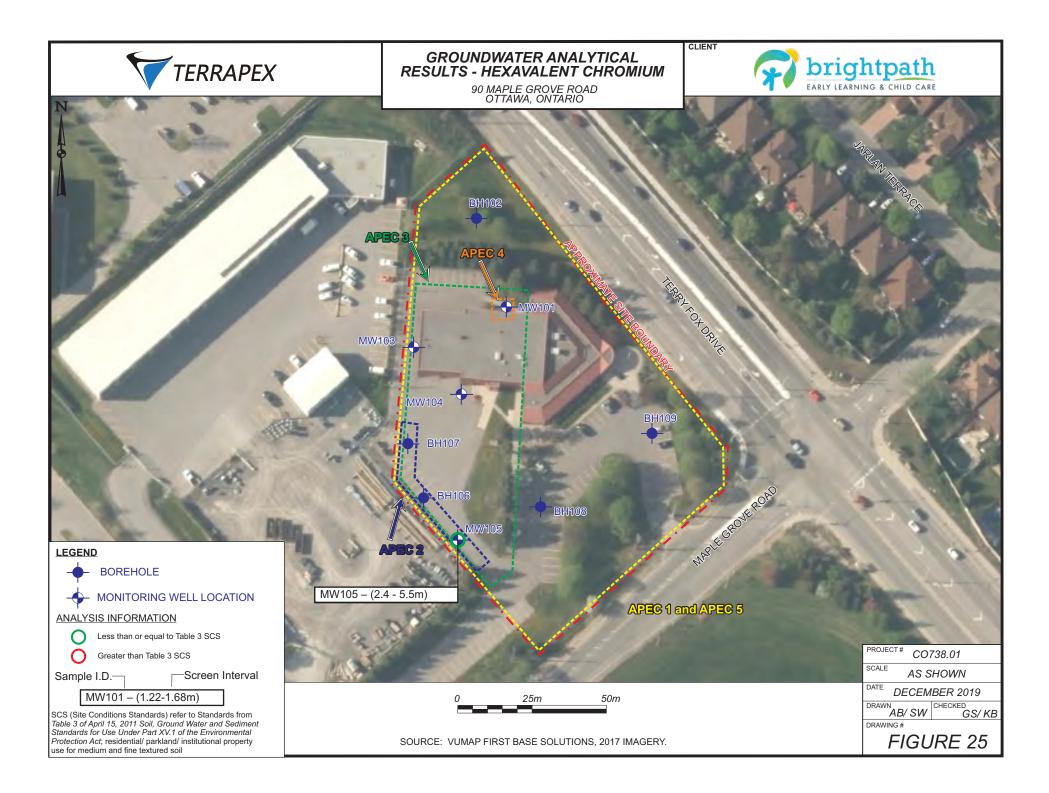


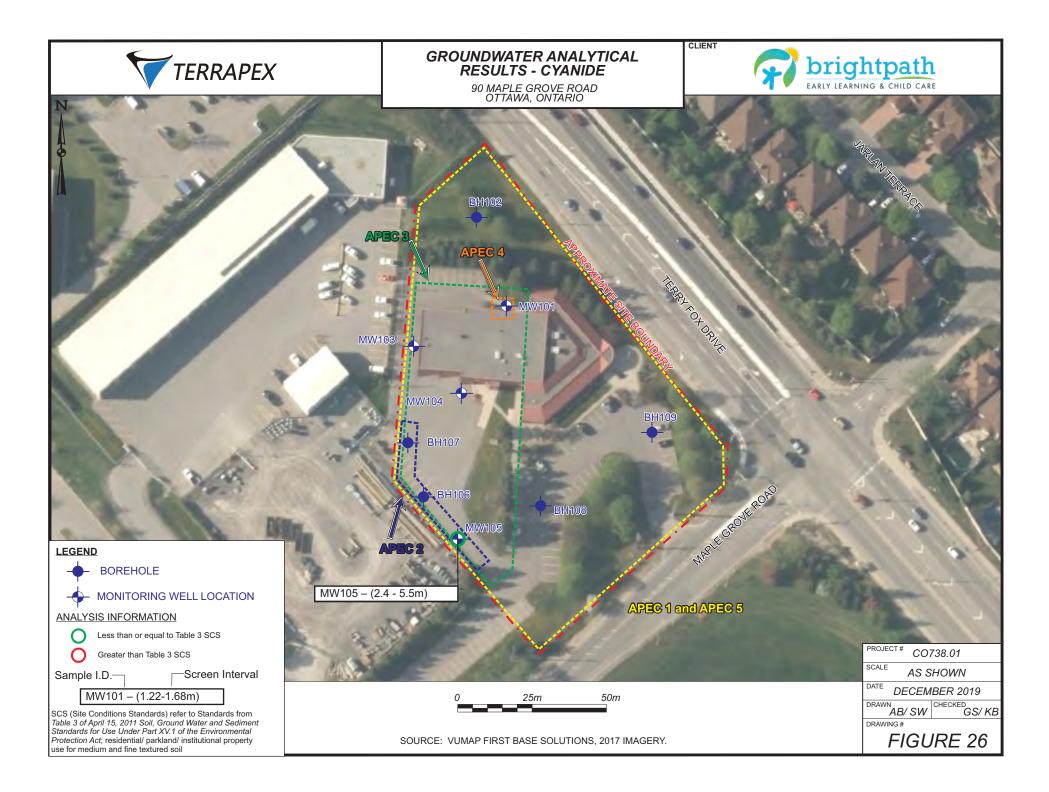


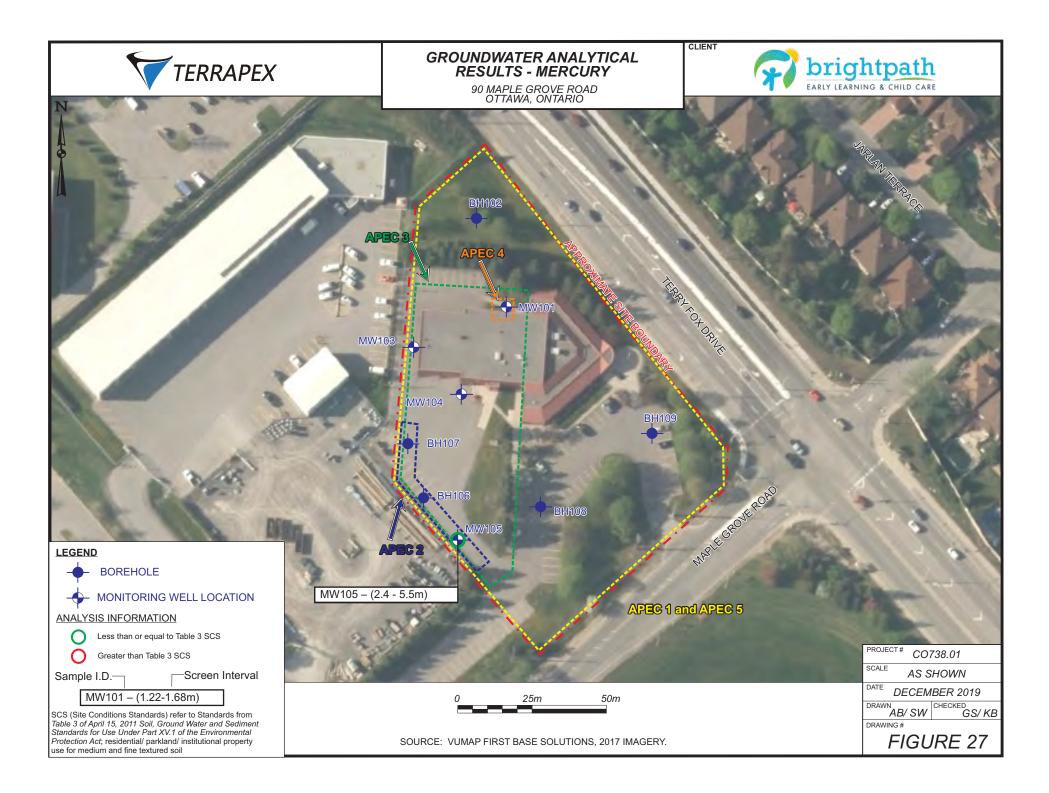


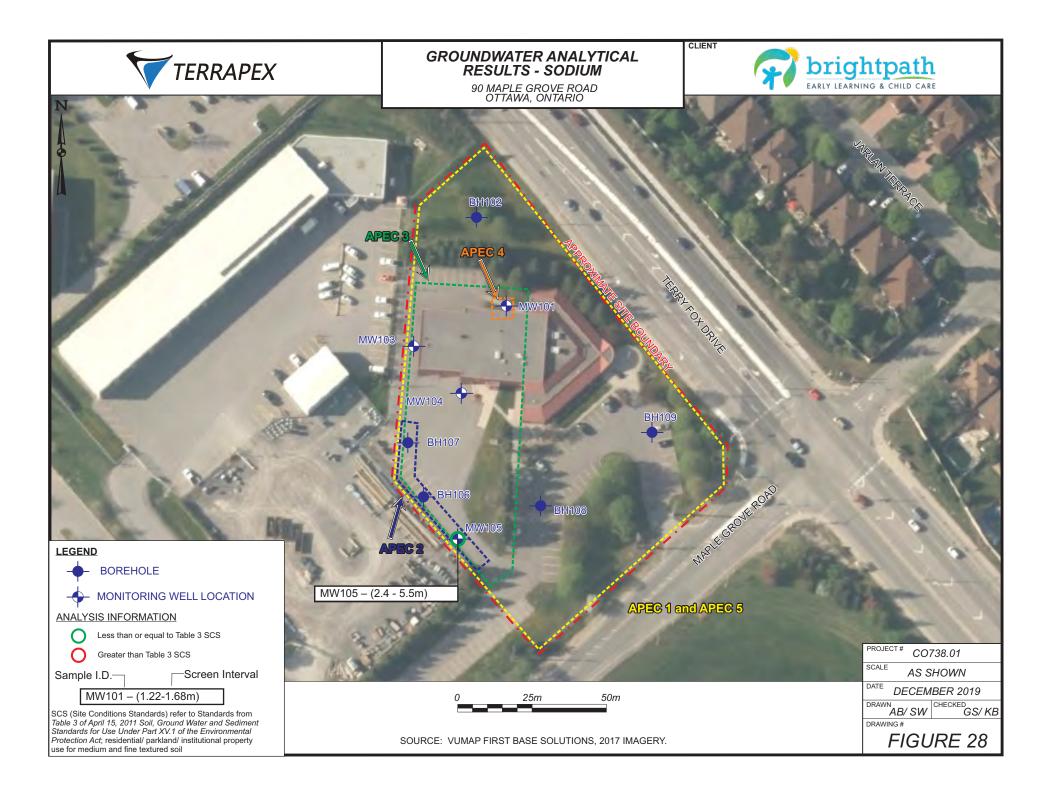


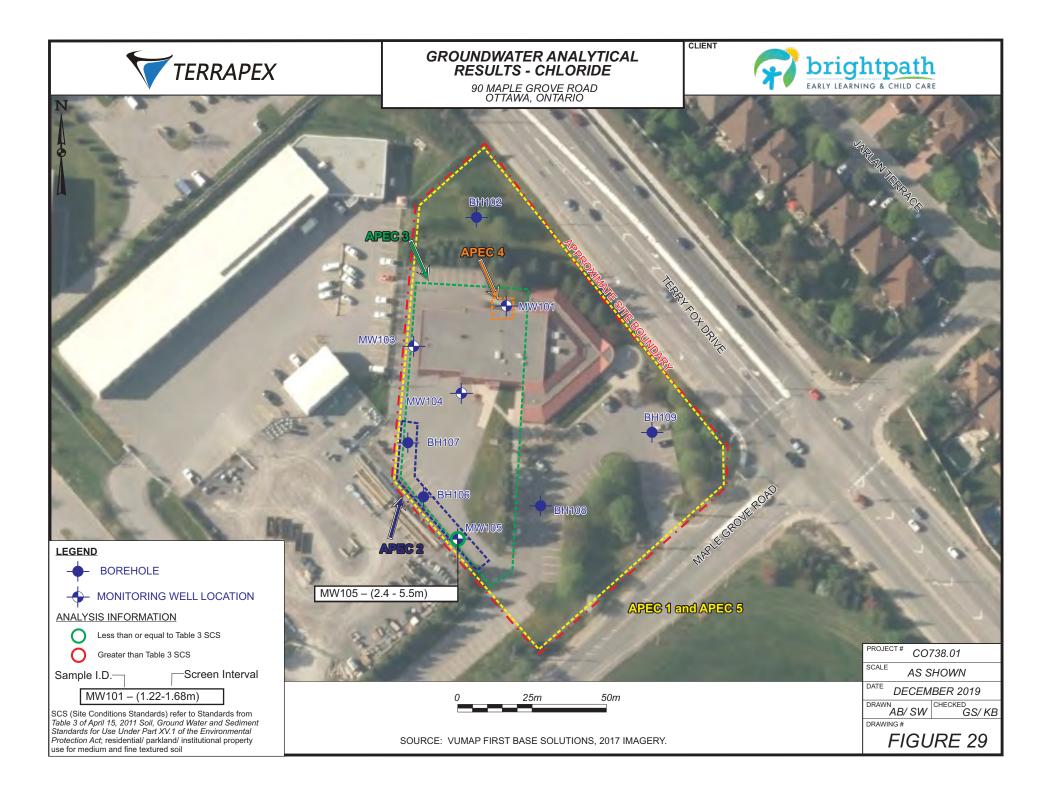


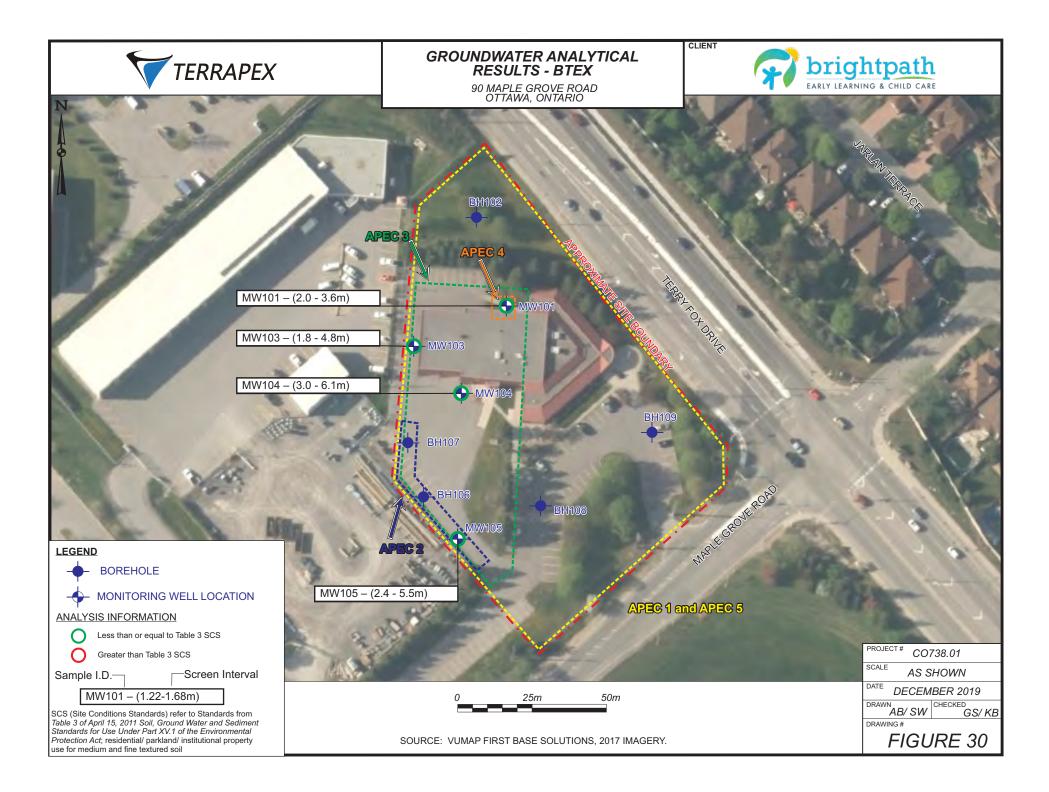


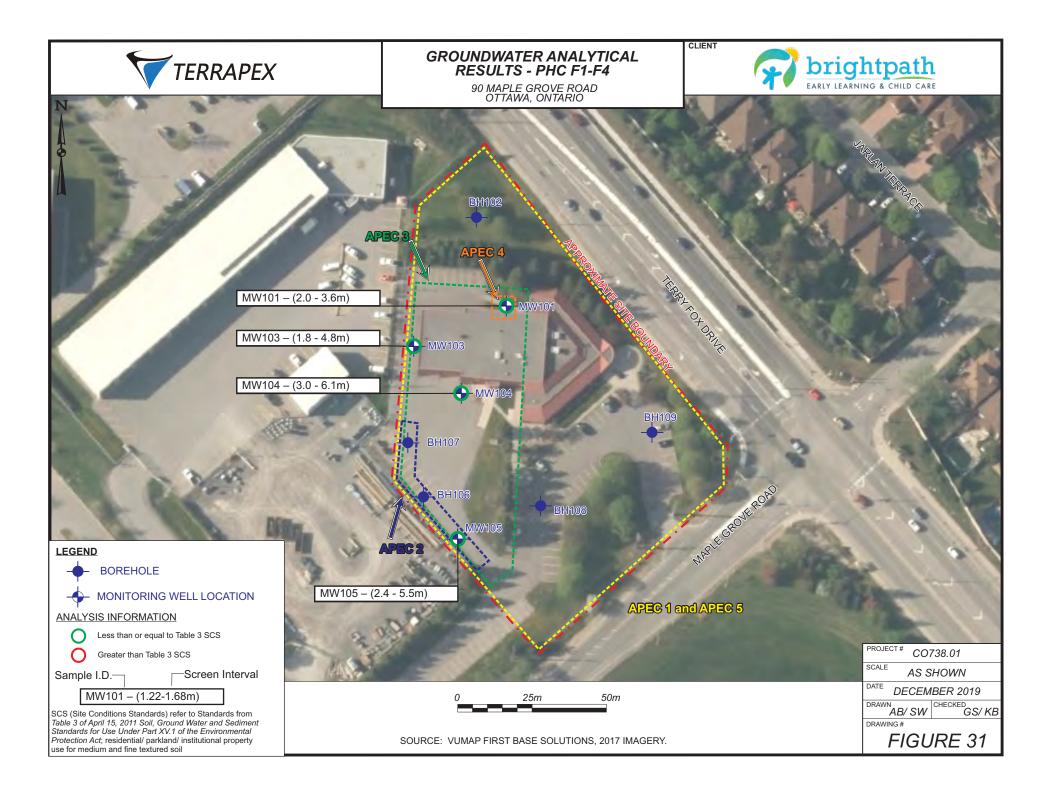


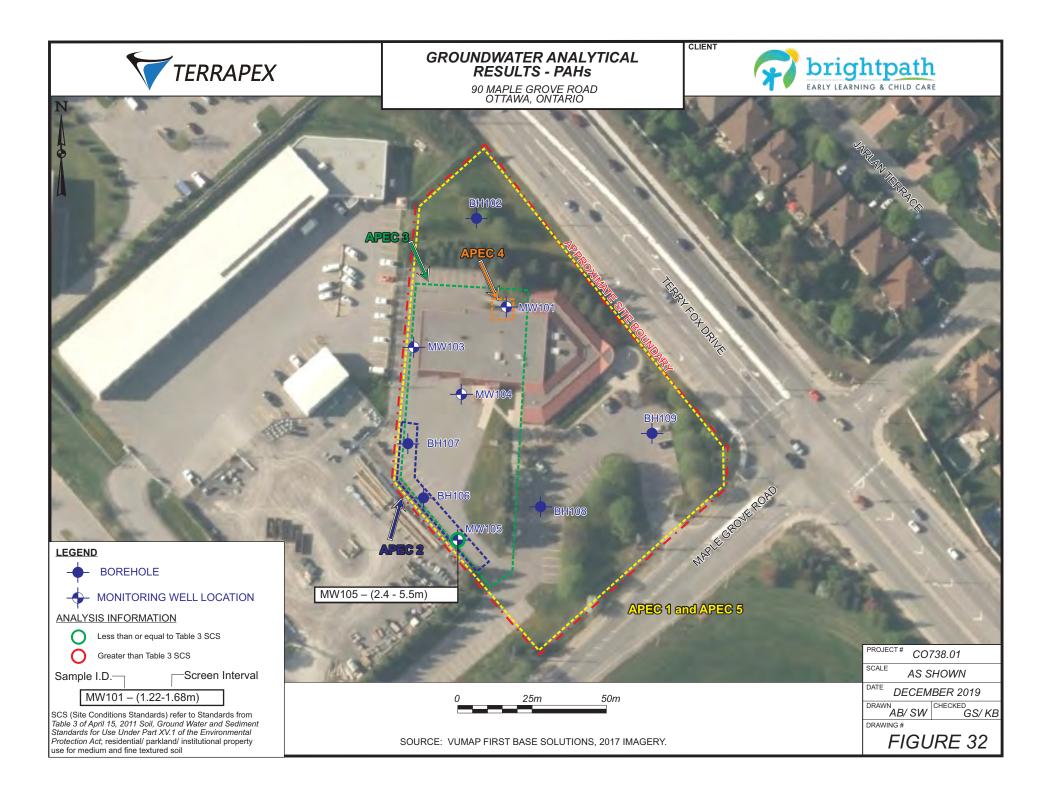


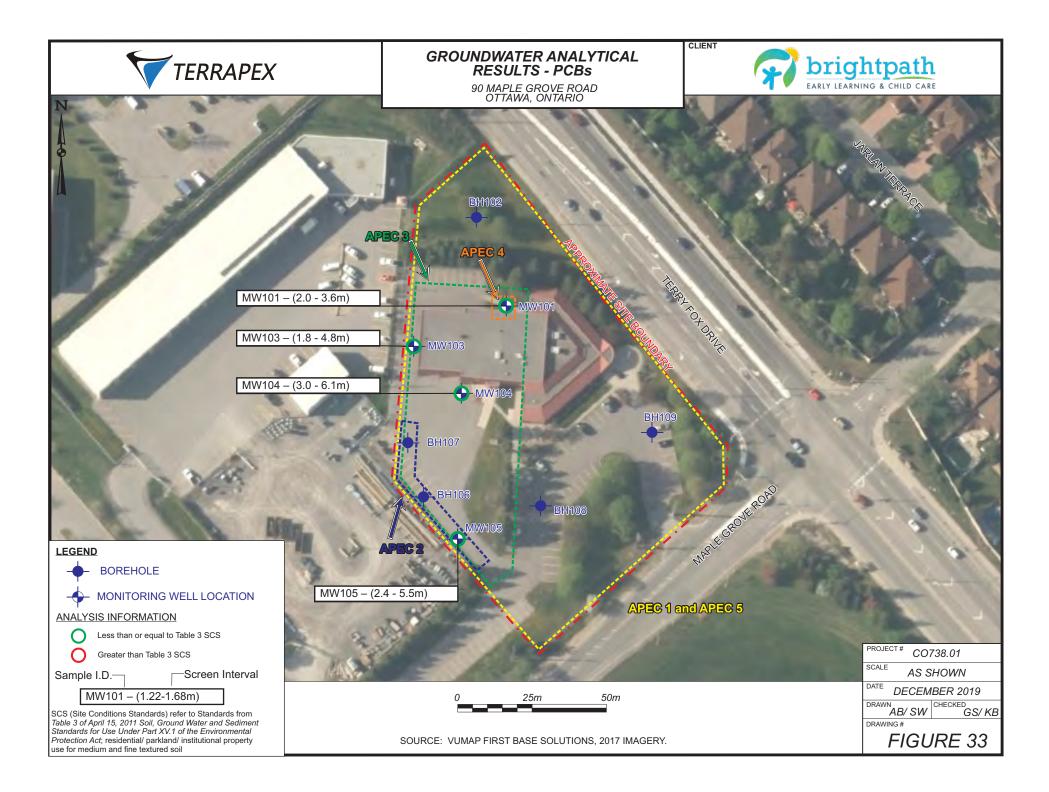












TABLES

TABLE 1 GROUNDWATER MONITORING DATA

90 Maple Grove Road, Ottawa, Ontario

WELL NUMBER	DATE	GROUND ELEVATION ¹	T.O.P. ELEVATION ²	SCREEN LENGTH	BOTTOM OF SCREEN ³	CV ⁴	DEPTH TO WATER FROM T.O.P.	DEPTH TO WATER FROM GROUND	GROUNDWATER ELEVATION ⁵	LNAPL THICKNESS ⁶
		(m)	(m)	(m)	(m)		(m)	(m)	(m)	(m)
MW101	23-Oct-19	102.79	102.66	1.53	96.69	<10 ppm	1.82	1.95	100.84	None
MW103	23-Oct-19	102.06	101.93	3.05	96.88	<10 ppm	2.00	2.13	99.93	None
MW104	23-Oct-19	102.01	101.88	3.05	96.83	<10 ppm	2.03	2.16	99.85	None
MW105	23-Oct-19	100.84	100.68	3.05	94.74	<10 ppm	1.44	1.60	99.24	None

¹ Elevation of ground surface at well location, relative to site benchmark

² Elevation of highest point of well pipe ("top of pipe"), relative to site benchmark

³ Elevation of bottom of well screened interval, relative to site benchmark

⁴ Combustible vapour concentration in well headspace in parts per million by volume (ppm) or percent of lower explosive limit (%LEL)

⁵ Static water level elevation, relatve to site benchmark

⁶ Measured thickness of light, non-aqueous phase liquid, if any

TABLE 2	SOIL ANALYTICAL RESULTS - METALS & INORGANICS
	90 Manle Grove Road, Ottawa, Ontario

Terrapex Sample Name		STANDARDS ¹	BH102-2	MW105-1	MW105-5
		2011			
		Table 3			
		R/P/I			
	Units	fine / medium			
Sample Depth	m bg	-	0.00 - 0.61	0.00 - 0.61	2.44- 3.05
CSV Reading	-	-	<10 ppm	<10 ppm	<10 ppm
Sampling Date	-	-	Oct-16-2019	Oct-16-2019	Oct-16-2019
Analysis Date	-	-	-	-	-
Certificate of Analysis No.	-	-	B9T4207	B9T4207	B9T4207
Antimony	µg/g	7.5	< 0.20	< 0.20	< 0.20
Arsenic	µg/g	18	1.1	< 1.0	1.2
Barium	µg/g	390	260	56	98
Beryllium	µg/g	5	0.83	0.27	0.36
Boron (Hot Water Soluble) ²	µg/g	1.5	0.058	0.063	0.063
Boron (Total) ²	µg/g	120	5.2	< 5.0	< 5.0
Cadmium	µg/g	1.2	0.10	< 0.10	< 0.10
Chromium	µg/g	160	59	21	25
Hexavalent Chromium	µg/g	10	< 0.2	< 0.2	< 0.2
Cobalt	µg/g	22	17	4.8	7.1
Copper	µg/g	180	32	5.8	14
Cyanide (CN-)	µg/g	0.051	<0.01	<0.01	<0.01
Lead	µg/g	120	7.2	2.9	3.6
Mercury	µg/g	1.8	< 0.050	< 0.050	< 0.050
Molybdenum	µg/g	6.9	< 0.50	< 0.50	< 0.50
Nickel	µg/g	130	33	10	14
Selenium	µg/g	2.4	< 0.50	< 0.50	< 0.50
Silver	µg/g	25	< 0.20	< 0.20	< 0.20
Thallium	µg/g	1	0.32	0.10	0.12
Uranium	µg/g	23	0.64	0.44	1.6
Vanadium	µg/g	86	80	30	39
Zinc	µg/g	340	93	28	38
рН	-	-	6.96	7.51	7.69
Electrical Conductivity	mS/cm	0.7	0.047	0.19	0.31
Sodium Adsorption Ratio	-	5	0.52	1.3	2.9

Standards from Table 3 of April 15, 2011 Soil, Ground Water

and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act; Residential / Parkland / Institutional

land use, medium and fine textured soil

subsurface soils, the Total Boron standard applies

ns No standard

m bg Meters below grade

2

CSV Reading Combustible soil vapour reading (ppm or % LEL)

ppm Parts per million (by volume)

% LEL Percent of the lower explosive limit

BOLD Exceeds standard

TABLE 2	SOIL ANALYTICAL RESULTS - METALS & INORGANICS
	90 Manle Grove Road, Ottawa, Ontario

90 Maple Grove Road, Ottawa, Or Terrapex Sample Name		STANDARDS ¹	BH106-1	BH107-1	BH108-2
Tempex Cample Name		2011	DITIOUT	BIIIO	BITTOO 2
		Table 3			
		R/P/I			
	Units	fine / medium			
Sample Depth	m bg	-	0.00 - 1.22	0.00 - 1.22	1.22 - 1.83
CSV Reading	-	-	<10 ppm	<10 ppm	<10 ppm
Sampling Date	-	-	Oct-16-2019	Oct-16-2019	Oct-16-2019
Analysis Date	-	-	-	-	-
Certificate of Analysis No.	-	-	B9T4207	B9T4207	B9T4207
Antimony	µg/g	7.5	< 0.20	< 0.20	< 0.20
Arsenic	µg/g	18	< 1.0	< 1.0	1.4
Barium	µg/g	390	46	120	49
Beryllium	µg/g	5	0.21	< 0.20	0.23
Boron (Hot Water Soluble) ²	µg/g	1.5	< 0.050	0.16	0.089
Boron (Total) ²	µg/g	120	< 5.0	< 5.0	< 5.0
Cadmium	µg/g	1.2	< 0.10	< 0.10	< 0.10
Chromium	µg/g	160	14	5.1	18
Hexavalent Chromium	µg/g	10	< 0.2	< 0.2	< 0.2
Cobalt	µg/g	22	3.8	1.6	4.0
Copper	µg/g	180	8.6	3.1	11
Cyanide (CN-)	µg/g	0.051	<0.01	<0.01	<0.01
Lead	µg/g	120	3.0	7.0	2.5
Mercury	µg/g	1.8	< 0.050	< 0.050	< 0.050
Molybdenum	µg/g	6.9	< 0.50	< 0.50	0.78
Nickel	µg/g	130	8.4	4.4	9.4
Selenium	µg/g	2.4	< 0.50	< 0.50	< 0.50
Silver	µg/g	25	< 0.20	< 0.20	< 0.20
Thallium	µg/g	1	0.14	0.27	0.078
Uranium	µg/g	23	0.37	0.33	0.39
Vanadium	µg/g	86	26	7.3	28
Zinc	µg/g	340	19	6.6	18
рН	-	-	7.82	7.87	7.80
Electrical Conductivity	mS/cm	0.7	0.12	0.21	0.38
Sodium Adsorption Ratio	-	5	1.4	1.1	<u>7.9</u>

Standards from Table 3 of April 15, 2011 Soil, Ground Water

and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act; Residential / Parkland / Institutional

land use, medium and fine textured soil

subsurface soils, the Total Boron standard applies

ns No standard

2

m bg Meters below grade

CSV Reading Combustible soil vapour reading (ppm or % LEL)

ppm Parts per million (by volume)

% LEL Percent of the lower explosive limit

BOLD Exceeds standard

TABLE 2	SOIL ANALYTICAL RESULTS - METALS & INORGANICS
	90 Maple Grove Road, Ottawa, Ontario

Terrapex Sample Name		STANDARDS ¹	BH109-2	BH109-12	
		2011			
		Table 3		duplicate of	
		R/P/I		BH109-2	
	Units	fine / medium			RPD
Sample Depth	m bg	-	1.22	- 1.68	-
CSV Reading	-	-	<10	ppm	-
Sampling Date	-	-	Oct-1	6-2019	-
Analysis Date	-	-	-	-	-
Certificate of Analysis No.	-	-	B9T4207	B9T4207	
Antimony	µg/g	7.5	< 0.20	< 0.20	-
Arsenic	µg/g	18	1.9	1.5	-
Barium	µg/g	390	130	78	50.0%
Beryllium	µg/g	5	0.44	0.31	-
Boron (Hot Water Soluble) ²	µg/g	1.5	0.089	0.050	-
Boron (Total) ²	µg/g	120	< 5.0	< 5.0	-
Cadmium	µg/g	1.2	< 0.10	< 0.10	-
Chromium	µg/g	160	31	20	43.1%
Hexavalent Chromium	µg/g	10	< 0.2	< 0.2	-
Cobalt	µg/g	22	8.7	6.0	36.7%
Copper	µg/g	180	19	14	30.3%
Cyanide (CN-)	µg/g	0.051	<0.01	<0.01	-
Lead	µg/g	120	4.6	3.4	-
Mercury	µg/g	1.8	< 0.050	< 0.050	-
Molybdenum	µg/g	6.9	0.60	< 0.50	-
Nickel	µg/g	130	19	13	37.5%
Selenium	µg/g	2.4	< 0.50	< 0.50	-
Silver	µg/g	25	< 0.20	< 0.20	-
Thallium	µg/g	1	0.14	0.095	38.3%
Uranium	µg/g	23	0.51	0.43	17.0%
Vanadium	µg/g	86	47	35	29.3%
Zinc	µg/g	340	44	30	37.8%
рН	-	-	7.90	7.92	-
Electrical Conductivity	mS/cm	0.7	<u>1.0</u>	<u>0.95</u>	5.1%
Sodium Adsorption Ratio	-	5	27	22	20.4%

Standards from Table 3 of April 15, 2011 Soil, Ground Water

and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act; Residential / Parkland / Institutional

land use, medium and fine textured soil

subsurface soils, the Total Boron standard applies

ns No standard

m bg Meters below grade

2

CSV Reading Combustible soil vapour reading (ppm or % LEL)

ppm Parts per million (by volume)

% LEL Percent of the lower explosive limit

BOLD Exceeds standard

TABLE 3 SOIL ANALYTICAL RESULTS - BTEX & PHCS 90 Maple Grove, Ottawa, Ontario

Terrapex Sample Name		STANDARDS ¹	MW101-3	BH102-2	MW103-6
		2011			
		Table 3			
		R/P/I			
	Units	fine / medium			
Sample Depth	m bg	-	2.44 - 3.66	0.61 - 1.22	3.05 - 3.66
CSV Reading	-	-	<10 ppm	<10 ppm	<10 ppm
Sampling Date	-	-	Oct-16-2019	Oct-16-2019	Oct-16-2019
Analysis Date	-	-	Oct-24/25-2019	Oct-24/25-2019	Oct-24/25-2019
Certificate of Analysis No.	-	-	B9T4207	B9T4207	B9T4207
Benzene	µg/g	0.17	< 0.020	< 0.020	< 0.020
Toluene	µg/g	6	< 0.020	< 0.020	< 0.020
Ethylbenzene	µg/g	15	< 0.020	< 0.020	< 0.020
Xylenes (total)	µg/g	25	< 0.040	< 0.040	< 0.040
Petroleum Hydrocarbons, F1	µg/g	65	< 10	< 10	< 10
Petroleum Hydrocarbons, F2	µg/g	150	< 10	< 10	< 10
Petroleum Hydrocarbons, F3	µg/g	1,300	< 50	< 50	< 50
Petroleum Hydrocarbons, F4	hð\ð	5,600	< 50	< 50	< 50

Standards from Table 3 of April 15, 2011 Soil, Ground Water

and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act; Residential / Parkland / Institutional

land use, medium and fine textured soil

- ns No standard
- m bg Meters below grade

CSV Reading Combustible soil vapour reading (ppm or % LEL)

ppm Parts per million (by volume)

% LEL Percent of the lower explosive limit

BOLD Exceeds standard

RPD Relative Percent Difference

² Results from gravimetric analysis

TABLE 3 SOIL ANALYTICAL RESULTS - BTEX & PHCS

90 Maple Grove, Ottawa, Ontario

Terrapex Sample Name		STANDARDS ¹	MW104-6	MW104-16		MW105-5	BH106-1
		2011					
		Table 3		duplicate of			
		R/P/I		MW104-6			
	Units	fine / medium			RPD		
Sample Depth	m bg	-	3.66	- 4.27	-	2.44 - 3.05	0.00 - 1.22
CSV Reading	-	-	<10	ppm	-	<10 ppm	<10 ppm
Sampling Date	-	-	Oct-16-2019	Oct-16-2019	-	Oct-16-2019	Oct-16-2019
Analysis Date	-	-	Oct-24/25-2019	Oct-24/25-2019	-	Oct-24/25-2019	Oct-24/25-2019
Certificate of Analysis No.	-	-	B9T4207	B9T4207	-	B9T4207	B9T4207
Benzene	μg/g	0.17	< 0.020	< 0.020	-	< 0.020	< 0.020
Toluene	μg/g	6	< 0.020	< 0.020	-	< 0.020	< 0.020
Ethylbenzene	μg/g	15	< 0.020	< 0.020	-	< 0.020	< 0.020
Xylenes (total)	μg/g	25	< 0.040	< 0.040	-	< 0.040	< 0.040
Petroleum Hydrocarbons, F1	µg/g	65	< 10	< 10	-	< 10	< 10
Petroleum Hydrocarbons, F2	μg/g	150	< 10	< 10	-	< 10	< 10
Petroleum Hydrocarbons, F3	µg/g	1,300	< 50	< 50	-	< 50	< 50
Petroleum Hydrocarbons, F4	hð/ð	5,600	< 50	< 50	-	< 50	< 50

¹ Standards from Table 3 of April 15, 2011 Soil, Ground Water

and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act; Residential / Parkland / Institutional

land use, medium and fine textured soil

ns No standard

m bg Meters below grade

CSV Reading Combustible soil vapour reading (ppm or % LEL)

ppm Parts per million (by volume)

% LEL Percent of the lower explosive limit

BOLD Exceeds standard

RPD Relative Percent Difference

² Results from gravimetric analysis

TABLE 3 SOIL ANALYTICAL RESULTS - BTEX & PHCS 90 Maple Grove, Ottawa, Ontario

Terrapex Sample Name		STANDARDS ¹	BH107-1	BH108-2	BH109-2	Field Blank
		2011				
		Table 3				(methanol
		R/P/I				blank)
	Units	fine / medium				
Sample Depth	m bg	-	0.00 - 1.22	1.22 - 1.83	1.22 - 1.68	-
CSV Reading	-	-	<10 ppm	<10 ppm	<10 ppm	-
Sampling Date	-	-	Oct-16-2019	Oct-16-2019	Oct-16-2019	Oct-16-2019
Analysis Date	-	-	Oct-24/25-2019	Oct-24/25-2019	Oct-24/25-2019	Oct-24/25-2019
Certificate of Analysis No.	-	-	B9T4207	B9T4207	B9T4207	B9T4207
Benzene	μg/g	0.17	< 0.020	< 0.020	< 0.020	< 0.020
Toluene	μg/g	6	< 0.020	< 0.020	< 0.020	< 0.020
Ethylbenzene	µg/g	15	< 0.020	< 0.020	< 0.020	< 0.020
Xylenes (total)	µg/g	25	< 0.040	< 0.040	< 0.040	< 0.040
Petroleum Hydrocarbons, F1	µg/g	65	< 10	< 10	< 10	< 10
Petroleum Hydrocarbons, F2	µg/g	150	< 10	< 10	< 10	-
Petroleum Hydrocarbons, F3	µg/g	1,300	< 50	< 50	< 50	-
Petroleum Hydrocarbons, F4	µg/g	5,600	140 ²	< 50	170 ²	-

¹ Standards from Table 3 of April 15, 2011 Soil, Ground Water

and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act; Residential / Parkland / Institutional

land use, medium and fine textured soil

ns No standard

m bg Meters below grade

CSV Reading Combustible soil vapour reading (ppm or % LEL)

ppm Parts per million (by volume)

% LEL Percent of the lower explosive limit

BOLD Exceeds standard

RPD Relative Percent Difference

² Results from gravimetric analysis

Terrapex Sample Name		STANDARDS ¹	BH102-2	MW105-1	BH106-1	BH107-1
		2011	DH102-2	100-1		BH107-1
		Table 3				
		R/P/I				
	Units					
Ormala Danth		fine / medium	0.00.0.01	0.00.0.01	0.00 4.00	0.00 4.00
Sample Depth	m bg	-	0.00 - 0.61	0.00 - 0.61	0.00 - 1.22	0.00 - 1.22
CSV Reading	-	-	<10 ppm	<10 ppm	<10 ppm	<10 ppm
Sampling Date	-	-	Oct-16-2019	Oct-16-2019	Oct-16-2019	Oct-16-2019
Analysis Date	-	-	Oct-24/25-19	Oct-24/25-19	Oct-24/25-19	Oct-24/25-19
Certificate of Analysis No.	-	-	B9T4207	B9T4207	B9T4207	B9T4207
Acenaphthene	µg/g	58	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Acenaphthylene	µg/g	0.17	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Anthracene	μg/g	0.74	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Benz(a)anthracene	μg/g	0.63	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Benzo(a)pyrene	μg/g	0.3	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Benzo(b)fluoranthene	µg/g	0.78	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Benzo(g,h,i)perylene	µg/g	7.8	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Benzo(k)fluoranthene	µg/g	0.78	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chrysene	µg/g	7.8	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Dibenz(a,h)anthracene	µg/g	0.1	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Fluoranthene	µg/g	0.69	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Fluorene	µg/g	69	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Indeno(1,2,3-cd)pyrene	µg/g	0.48	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Methylnaphthalene, 1- ²	µg/g	3.4	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Methylnaphthalene, 2- ²	µg/g	3.4	< 0.0050	< 0.0050	< 0.0050	0.0069
Methylnaphthalene, 1- & 2- 2	µg/g	3.4	<0.0071	<0.0071	<0.0071	<0.0071
Naphthalene	µg/g	0.75	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Phenanthrene	µg/g	7.8	< 0.0050	< 0.0050	< 0.0050	0.0054
Pyrene	µg/g	78	< 0.0050	< 0.0050	< 0.0050	< 0.0050

TABLE 4 SOIL ANALYTICAL RESULTS - PAHs 90 Maple Grove Road, Ottawa, Ontario

Standards from Table 3 of April 15, 2011 Soil, Ground Water

and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act; Residential / Parkland / Institutional

land use, medium and fine textured soil

² 2-methylnaphthalene standard applicable to 1-methylnaphthalene with the provision that if both are detected, the sum of the two

concentrations cannot exceed the standard

- ns No standard
- m bg Meters below grade

CSV Reading Combustible soil vapour reading (ppm or % LEL)

- ppm Parts per million (by volume)
- % LEL Percent of the lower explosive limit
- BOLD Exceeds standard
- RPD Relative Percent Difference

90 Maple Grove Road, Ottawa, On						
Terrapex Sample Name		STANDARDS ¹	BH108-2	BH109-2	BH109-12	
		2011				
		Table 3			duplicate of	
		R/P/I			BH109-2	
	Units	fine / medium				RPD
Sample Depth	m bg	-	1.22 - 1.83	1.22 -	· 1.68	-
CSV Reading	-	-	<10 ppm	<10	opm	-
Sampling Date	-	-	Oct-16-2019	Oct-16	5-2019	-
Analysis Date	-	-	Oct-24/25-19	Oct-24/25-19	Oct-24/25-19	-
Certificate of Analysis No.	-	-	B9T4207	B9T4207	B9T4207	-
Acenaphthene	µg/g	58	< 0.0050	< 0.0050	< 0.0050	-
Acenaphthylene	µg/g	0.17	< 0.0050	< 0.0050	< 0.0050	-
Anthracene	µg/g	0.74	< 0.0050	< 0.0050	< 0.0050	-
Benz(a)anthracene	µg/g	0.63	< 0.0050	< 0.0050	< 0.0050	-
Benzo(a)pyrene	µg/g	0.3	< 0.0050	< 0.0050	< 0.0050	-
Benzo(b)fluoranthene	µg/g	0.78	< 0.0050	< 0.0050	< 0.0050	-
Benzo(g,h,i)perylene	µg/g	7.8	< 0.0050	< 0.0050	< 0.0050	-
Benzo(k)fluoranthene	µg/g	0.78	< 0.0050	< 0.0050	< 0.0050	-
Chrysene	µg/g	7.8	< 0.0050	< 0.0050	< 0.0050	-
Dibenz(a,h)anthracene	µg/g	0.1	< 0.0050	< 0.0050	< 0.0050	-
Fluoranthene	µg/g	0.69	< 0.0050	< 0.0050	< 0.0050	-
Fluorene	µg/g	69	< 0.0050	< 0.0050	< 0.0050	-
Indeno(1,2,3-cd)pyrene	µg/g	0.48	< 0.0050	< 0.0050	< 0.0050	-
Methylnaphthalene, 1- ²	µg/g	3.4	< 0.0050	< 0.0050	< 0.0050	-
Methylnaphthalene, 2- ²	µg/g	3.4	< 0.0050	< 0.0050	< 0.0050	-
Methylnaphthalene, 1- & 2- 2	µg/g	3.4	<0.0071	<0.0071	<0.0071	-
Naphthalene	µg/g	0.75	< 0.0050	< 0.0050	< 0.0050	-
Phenanthrene	µg/g	7.8	< 0.0050	< 0.0050	< 0.0050	-
Pyrene	µg/g	78	< 0.0050	< 0.0050	< 0.0050	-

TABLE 4 SOIL ANALYTICAL RESULTS - PAHs 90 Maple Grove Road, Ottawa, Ontario

Standards from Table 3 of April 15, 2011 Soil, Ground Water

and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act; Residential / Parkland / Institutional

land use, medium and fine textured soil

² 2-methylnaphthalene standard applicable to 1-methylnaphthalene with the provision that if both are detected, the sum of the two

- concentrations cannot exceed the standard
- ns No standard
- m bg Meters below grade
- CSV Reading Combustible soil vapour reading (ppm or % LEL)
- ppm Parts per million (by volume)
- % LEL Percent of the lower explosive limit
- BOLD Exceeds standard
- RPD Relative Percent Difference

TABLE 5 SOIL ANALYTICAL RESULTS - PCBs 90 Maple Grove, Ottawa, Ontario

Terrapex Sample Name		STANDARDS ¹	MW101-3	MW103-6	MW104-6	MW104-16	
		2011					
		Table 3				Duplicate of	
		R/P/I				MW104-6	
	Units	fine / medium					RPD
Sample Depth	m bg	-	2.44 - 3.66	3.05 - 3.66	3.66	- 4.27	-
CSV Reading	-	-	<10 ppm	<10 ppm	<10	ppm	-
Sampling Date	-	-	Oct-16-2019	Oct-16-2019	Oct-16-2019	Oct-16-2019	-
Analysis Date	-	-	Oct-23-2019	Oct-23-2019	Oct-23-2019	Oct-23-2019	-
Certificate of Analysis No.	-	-					
Aroclor 1242	µg/g	-	<0.010	<0.010	<0.020	<0.020	-
Aroclor 1248	μg/g	-	<0.010	<0.010	<0.020	<0.020	-
Aroclor 1254	µg/g	-	<0.010	<0.010	<0.020	<0.020	-
Aroclor 1260	µg/g	-	<0.010	<0.010	<0.020	<0.020	-
Total PCB	µg/g	0.35	<0.010	<0.010	<0.020	<0.020	-

¹ Standards from Table 3 of April 15, 2011 Soil, Ground Water

and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act; Residential / Parkland / Institutional

land use, medium and fine textured soil

ns No standard

m bg Meters below grade

CSV Reading Combustible soil vapour reading (ppm or % LEL)

ppm Parts per million (by volume)

% LEL Percent of the lower explosive limit

BOLD Exceeds standard

TABLE 5 SOIL ANALYTICAL RESULTS - PCBs 90 Maple Grove, Ottawa, Ontario

Terrapex Sample Name		STANDARDS ¹	MW105-1	BH106-1	BH107-1
		2011			
		Table 3			
		R/P/I			
	Units	fine / medium			
Sample Depth	m bg	-	2.44 - 3.05	0.00 - 1.22	0.00 - 1.22
CSV Reading	-	-	<10 ppm	<10 ppm	<10 ppm
Sampling Date	-	-	Oct-16-2019	Oct-16-2019	Oct-16-2019
Analysis Date	-	-	Oct-23-19	Oct-23-19	Oct-23-19
Certificate of Analysis No.	-	-			
Aroclor 1242	µg/g	-	<0.010	<0.010	<0.010
Aroclor 1248	µg/g	-	<0.010	<0.010	<0.010
Aroclor 1254	µg/g	-	<0.010	<0.010	<0.010
Aroclor 1260	µg/g	-	<0.010	<0.010	<0.010
Total PCB	µg/g	0.35	<0.010	<0.010	<0.010

¹ Standards from Table 3 of April 15, 2011 Soil, Ground Water

and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act; Residential / Parkland / Institutional

land use, medium and fine textured soil

ns No standard

m bg Meters below grade

CSV Reading Combustible soil vapour reading (ppm or % LEL)

ppm Parts per million (by volume)

% LEL Percent of the lower explosive limit

BOLD Exceeds standard

TABLE 6	GROUNDWATER ANALYTICAL RESULTS - METALS & INORGANICS
	90 Maple Grove Road, Ottawa, Ontario

Terrapex Sample Name		STANDARDS ¹	MW105	MW111	
		2011			
		Table 3		duplicate of	
				MW105	
	Units	fine / medium			RPD
CV Reading	-	-	<10	ppm	-
Sampling Date	-	-	Oct-2	3-2019	-
Analysis Date	-	-	-	-	-
Certificate of Analysis No.	-	-	B9T9002	B9T9002	-
Antimony	µg/L	20,000	< 0.50	< 0.50	-
Arsenic	µg/L	1,900	1.9	1.8	-
Barium	µg/L	29,000	120	120	0.0%
Beryllium	µg/L	67	< 0.50	< 0.50	-
Boron	µg/L	45,000	23	25	-
Cadmium	µg/L	2.7	< 0.10	< 0.10	-
Chromium	µg/L	810	< 5.0	< 5.0	-
Hexavalent Chromium	µg/L	140	< 0.50	< 0.50	-
Cobalt	µg/L	66	0.95	0.93	-
Copper	µg/L	87	< 1.0	< 1.0	-
Cyanide (CN-)	µg/L	66	<1	<1	-
Lead	µg/L	25	< 0.50	< 0.50	
Mercury	µg/L	2.8	< 0.1	< 0.1	
Molybdenum	µg/L	9,200	3.1	2.9	6.7%
Nickel	µg/L	490	2.2	2.4	-
Selenium	µg/L	63	< 2.0	< 2.0	-
Silver	µg/L	1.5	< 0.10	< 0.10	-
Sodium	µg/L	2,300,000	220,000	220000	0.0%
Thallium	µg/L	510	< 0.050	< 0.050	-
Uranium	µg/L	420	5.1	5.1	0.0%
Vanadium	µg/L	250	1.1	1.0	-
Zinc	μg/L	1,100	< 5.0	< 5.0	-
Chloride	µg/L	2,300,000	260,000	260,000	0.0%

¹ Standards from Table 3 of April 15, 2011 Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act; medium and fine textured soil

Combustible vapour reading (ppm or % LEL)

CV ppm Parts per million (by volume)

% LEL Percent of the lower explosive limit

BOLD Exceeds standard

TABLE 7 GROUNDWATER ANALYTICAL RESULTS - BTEX & PHCs

90 Maple Grove, Ottawa, Ontario

Terrapex Sample Name		STANDARDS1	MW101	MW103	MW104
		2011			
		Table 3			
	Units	fine / medium			
CV Reading	-	-	<10 ppm	<10 ppm	<10 ppm
Sampling Date	-	-	Oct-23-2019	Oct-23-2019	Oct-23-2109
Analysis Date	-	-	-	-	-
Certificate of Analysis No.	-	-	B9T9002	B9T9002	B9T9002
Benzene	µg/L	430	< 0.20	< 0.20	< 0.20
Toluene	µg/L	18,000	< 0.20	< 0.20	< 0.20
Ethylbenzene	µg/L	2,300	< 0.20	< 0.20	< 0.20
Xylenes (total)	µg/L	4,200	< 0.40	< 0.40	< 0.40
Petroleum Hydrocarbons, F1	µg/L	750	< 25	< 25	< 25
Petroleum Hydrocarbons, F2	µg/L	150	< 100	< 100	< 100
Petroleum Hydrocarbons, F3	µg/L	500	< 200	< 200	< 200
Petroleum Hydrocarbons, F4	µg/L	500	< 200	< 200	< 200

¹ Standards from Table 3 of April 15, 2011 Soil, Ground Water

and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act; medium and fine textured soil

- ns No standard
- CV Reading Combustible vapour reading (ppm or % LEL)
- ppm Parts per million (by volume)
- % LEL Percent of the lower explosive limit
- BOLD Exceeds standard

TABLE 7 GROUNDWATER ANALYTICAL RESULTS - BTEX & PHCs

90 Maple Grove, Ottawa, Ontario

Terrapex Sample Name		STANDARDS ¹	MW105	MW111		Trip Blank	Trip Spike
		2011				·	
		Table 3					
				(duplicate of			(% recovery)
	Units	fine / medium		MW105)	RPD		,
CV Reading	-	-	<10	ppm	-	<10 ppm	<10 ppm
Sampling Date	-	-	Oct-2	3-2109	-	Oct-23-2019	Oct-23-2019
Analysis Date	-	-	-	-	-	-	-
Certificate of Analysis No.	-	-	B9T9002	B9T9002	-	B9T9002	B9T9002
Benzene	μg/L	430	< 0.20	< 0.20	-	< 0.20	110%
Toluene	µg/L	18,000	< 0.20	< 0.20	-	< 0.20	99%
Ethylbenzene	µg/L	2,300	< 0.20	< 0.20	-	< 0.20	110%
Xylenes (total)	µg/L	4,200	< 0.40	< 0.40	-	< 0.40	110%
Petroleum Hydrocarbons, F1	µg/L	750	< 25	< 25	-	< 25	-
Petroleum Hydrocarbons, F2	µg/L	150	< 100	< 100	-	-	-
Petroleum Hydrocarbons, F3	µg/L	500	< 200	< 200	-	-	-
Petroleum Hydrocarbons, F4	μg/L	500	< 200	< 200	-	-	-

¹ Standards from Table 3 of April 15, 2011 Soil, Ground Water

and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act; medium and fine textured soil

- ns No standard
- CV Reading Combustible vapour reading (ppm or % LEL)
- ppm Parts per million (by volume)
- % LEL Percent of the lower explosive limit
- BOLD Exceeds standard

TABLE 8GROUNDWATER ANALYTICAL RESULTS - PAHs90 Maple Grove, Ottawa, Ontario

Terrapex Sample Name		STANDARDS ¹	MW105	MW111	
		2011			
		Table 3			
				(duplicate of	
	Units	fine / medium		MW105)	RPD
CV Reading	-	-	<10 ppm	<10 ppm	-
Sampling Date	-	-	23-Oct-19	23-Oct-19	-
Analysis Date	-	-	30-Oct-19	30-Oct-19	-
Certificate of Analysis No.	-	-	B9T9002	B9T9002	-
Acenaphthene	µg/L	1,700	< 0.050	< 0.050	-
Acenaphthylene	µg/L	1.8	< 0.050	< 0.050	-
Anthracene	µg/L	2.4	< 0.050	< 0.050	-
Benz(a)anthracene	µg/L	4.7	< 0.050	< 0.050	-
Benzo(a)pyrene	µg/L	0.81	< 0.010	< 0.010	-
Benzo(b)fluoranthene	µg/L	0.75	< 0.050	< 0.050	-
Benzo(g,h,i)perylene	µg/L	0.2	< 0.050	< 0.050	-
Benzo(k)fluoranthene	µg/L	0.4	< 0.050	< 0.050	-
Chrysene	µg/L	1	< 0.050	< 0.050	-
Dibenz(a,h)anthracene	µg/L	0.52	< 0.050	< 0.050	-
Fluoranthene	µg/L	130	< 0.050	< 0.050	-
Fluorene	µg/L	400	< 0.050	< 0.050	-
Indeno(1,2,3-cd)pyrene	µg/L	0.2	< 0.050	< 0.050	-
Methylnaphthalene, 1-	µg/L	1,800	< 0.050	< 0.050	-
Methylnaphthalene, 2-	µg/L	1,800	< 0.050	< 0.050	-
Methylnaphthalene, 1- & 2- ²	µg/L	1,800	<0.071	<0.,071	-
Naphthalene	µg/L	6,400	< 0.050	< 0.050	-
Phenanthrene	µg/L	580	< 0.030	< 0.030	-
Pyrene	µg/L	68	< 0.050	< 0.050	-

1	Standards from Table 3 of April 15, 2011 Soil, Ground Water
	and Sediment Standards for Use Under Part XV.1 of the
	Environmental Protection Act; medium and fine textured soil
2	2-methylnaphthalene standard applicable to 1-methylnaphthalene
	with the provision that if both are detected, the sum of the two
	concentrations cannot exceed the standard
ns	No standard
CV Reading	Combustible vapour reading (ppm or % LEL)
ppm	Parts per million (by volume)
% LEL	Percent of the lower explosive limit
BOLD	Exceeds standard
RPD	Relative Percent Differences

TABLE 9 **GROUNDWATER ANALYTICAL RESULTS - PCBs**

90 Maple Grove, Ottawa, Ontario

Terrapex Sample Name		STANDARDS ¹	MW101	MW103	MW104	MW105	MW111	
		2011						
		Table 3					duplicate of	
							MW105	
	Units	fine / medium						RPD
CV Reading	-	-	<10 ppm	-				
Sampling Date	-	-	Oct-23-2019	Oct-23-2019	Oct-23-2109	Oct-23-2109	Oct-23-2019	-
Analysis Date	-	-	Oct-30-109	Oct-30-2019	Oct-30-2019	Oct-30-2109	Oct-30-2019	-
Certificate of Analysis No.	-	-	B9T9002	B9T9002	B9T9002	B9T9002	B9T9002	-
Aroclor 1242	µg/L	-	<0.05	<0.05	<0.05	<0.05	<0.05	-
Aroclor 1248	μg/L	-	<0.05	<0.05	<0.05	<0.05	<0.05	-
Aroclor 1254	μg/L	-	<0.05	<0.05	<0.05	<0.05	<0.05	-
Aroclor 1260	µg/L	-	<0.05	<0.05	<0.05	<0.05	<0.05	-
Total PCB	µg/L	15	<0.05	<0.05	<0.05	<0.05	<0.05	-

Standards from Table 3 of April 15, 2011 Soil, Ground Water

and Sediment Standards for Use Under Part XV.1 of the

Environmental Protection Act; medium and fine textured soil

No standard ns

CV Reading Combustible vapour reading (ppm or % LEL)

ppm Parts per million (by volume)

% LEL Percent of the lower explosive limit

BOLD Exceeds standard

TABLE 10 MAXIMUM CONCENTRATIONS IN SOIL 90 Maple Grove Road Ottawa ON

90 Maple Grove Road Ottawa,	ON							
					Total Number	Sample Name		Depth of First
		T3- Soil-F	Maximum	Maximum	of Occurance	of First	Date of First	Occurance
Contaminant of Potential Concern	Units	Standards	Concentration	Detection Limit	Exceeding	Occurance	Occurance	(m bg)
pH Minimum		NV	6.96	_	_	_	-	
pH Maximum		NV	7.92	-	-	-	-	-
		58	<0.0050	0.0050	-	-	-	-
Acenaphthene	µg/L				-	-	-	-
Acenaphthylene	µg/L	0.17	< 0.0050	0.0050	-	-	-	-
Anthracene	µg/L	0.74	< 0.0050	0.0050	-	-	-	-
Antimony	µg/L	7.5	<0.20	0.20	-	-	-	-
Arsenic	µg/L	18	1.9	1.0	-	-	-	-
Barium	µg/L	390	260	0.5	-	-	-	-
Benzene	µg/L	0.17	<0.020	0.020	-	-	-	-
Benz[a]anthracene	µg/L	0.63	<0.0050	0.0050	-	-	-	-
Benzo[a]pyrene	µg/L	0.3	<0.0050	0.0050	-	-	-	-
Benzo[b]fluoranthene	µg/L	0.78	<0.0050	0.0050	-	-	-	-
Benzo[g,h,i]perylene	µg/L	7.8	<0.0050	0.0050	-	-	-	-
Benzo[k]fluoranthene	µg/L	0.78	< 0.0050	0.0050	-	-	-	-
Beryllium	µg/L	5	0.83	0.2	-	-	-	-
Boron, Hot Water Soluble ¹	µg/L	1.5	0.089	0.050	-	-	-	-
Boron	µg/L	120	5.2	5.0	-	-	-	-
Cadmium	µg/L	1.2	0.10	0.10	-	-	-	-
Chromium	µg/L	160	59	1.0	-	-	-	-
Hexavalent Chromium	µg/L	10	<0.2	0.2	-	-	-	-
Chrysene	µg/L	7.8	< 0.0050	0.0050	-	-	-	-
Cobalt	µg/L	22	17	0.10	-	-		-
Copper	µg/L	180	32	0.50		_		
Cyanide	μg/L	0.051	<0.01	0.01		_		
Dibenz[a,h]anthracene	μg/L	0.1	<0.0050	0.0050				
Ethylbenzene	µg/L	15	<0.020	0.020				
Fluoranthene	μg/L	0.69	<0.020	0.0050	-	-	-	-
Fluorene		69	<0.0050	0.0050	-	-	-	-
	µg/L				-	-	-	-
Indeno[1,2,3-cd]pyrene	µg/L	0.48	<0.0050	0.0050	-	-	-	-
Lead	µg/L	120	7.2	1.0	-	-	-	-
Mercury	µg/L	1.8	<0.050	0.050	-	-	-	-
Methyl Mercury ²	µg/L	0.0094	-	-	-	-	-	-
Methlynaphthalene, 2-(1-) ³	µg/L	3.4	<0.0071	0.0071	-	-	-	-
Molybdenum	µg/L	6.9	0.78	0.50	-	-	-	-
Naphthalene	µg/L	0.75	<0.0050	0.0050	-	-	-	-
Nickel	µg/L	130	33	0.50	-	-	-	-
Petroleum Hydrocarbons F1 ⁴	µg/L	65	<10	10	-	-	-	-
Petroleum Hydrocarbons F2	µg/L	150	<10	10	-	-	-	-
Petroleum Hydrocarbons F3	µg/L	1,300	<50	50	-	-	-	-
Petroleum Hydrocarbons F4	µg/L	5,600	95	50	-	-	-	-
Petroleum Hydrocarbons F4G	µg/L	5,600	170	100	-	-	-	-
Phenanthrene	µg/L	7.8	0.0054	0.0050	-	-	-	-
Polychlorinated Biphenyls	µg/L	0.35	<0.010	0.010	-	-	-	-
Pyrene	µg/L	78	<0.0050	0.0050	-	-	-	-
Selenium	µg/L	2.4	<0.50	0.50	-	-	-	-
Silver	µg/L	25	<0.20	0.20	-	-	-	-
Thallium	µg/L	1	0.32	0.050	-	-	-	-
Toluene	µg/L	6	<0.020	0.020	-	-	-	-
Uranium	μg/L	23	1.6	0.050	-	-	-	-
Vanadium	µg/L	86	80	5.0	-	_	-	
Xylene, Total	μg/L	25	<0.040	0.040	-	-	-	-
Zinc	μg/L	340	93	5.0				
Electrical Conductivity ⁵		0.7		0.002			-	
	ms/cm		<u>1</u>	0.002	-	-	-	
Chloride	µg/L	NA	-	-	-	-	-	-
Sodium Adsorption Ratio ⁵	µg/L to surface soils («	5	<u>27</u>	-	-	-	-	-

¹ Hot water soluble boron applies to surface soils (<1.5 m bg),

² Analysis for methyl mercury only applies when mercury

³ The sum of 1-methylnaphthallene and 2- methylnaphthalene.

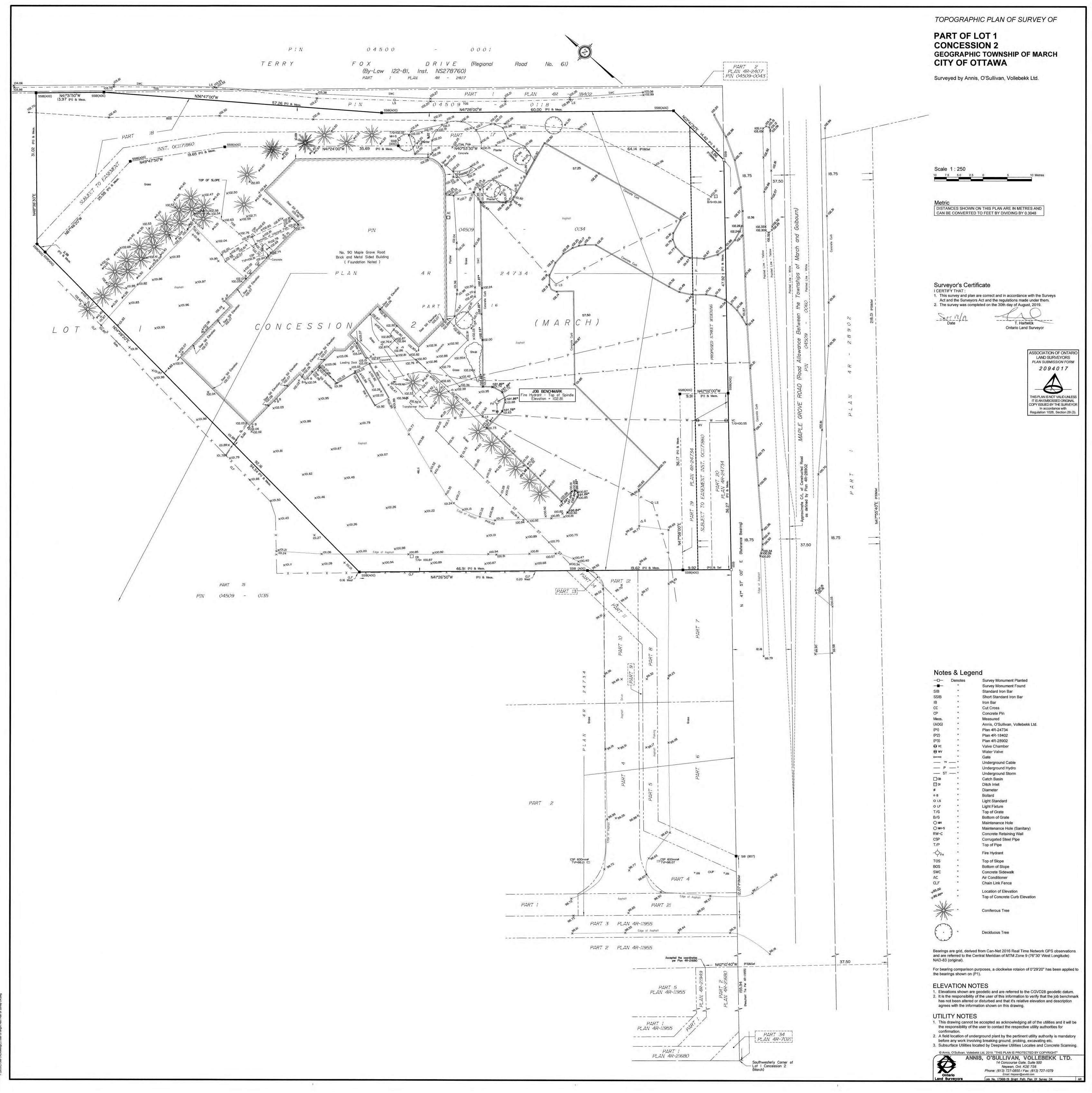
⁴ F1 fraction does not include BTEX.

⁵ deemed not to exceed as per Section 49.1 of O.Reg. 153/04

standard is exceeded.

TABLE 11 MAXIMUM CONCENTRATIONS IN GROUNDWATER

90 Maple Grove Road Ottawa, 0	ON						-	
					Total Number	Sample Name		Depth of First
		T3- GW-F	Maximum	Maximum	of Occurance	of First	Date of First	Occurance
Contaminant of Potential Concern	Units	Standards	Concentration	Detection Limit	Exceeding	Occurance	Occurance	(m bg)
pH Minimum		NV	-	-	-	-	-	-
pH Maximum		NV	-	-	-	-	-	-
Acenaphthene	µg/L	1,700	< 0.050	0.050	-	-	-	-
Acenaphthylene	µg/L	1.8	< 0.050	0.050	-			-
Anthracene	μg/L	2.4	< 0.050	0.050	-			-
Antimony	μg/L	20,000	<0.50	0.50	-			-
Arsenic	µg/L	1,900	1.9	1.0	-			-
Barium	μg/L	29,000	120	2.0				
Benzene	μg/L	430	<0.20	0.20				
Benz[a]anthracene	μg/L	4.7	<0.050	0.050	-		_	
Benzo[a]pyrene	μg/L	0.81	<0.030	0.010				
Benzo[b]fluoranthene	μg/L	0.75	<0.050	0.050				
Benzo[g,h,i]perylene	μg/L	0.2	<0.050	0.050	-	-	-	-
Benzo[k]fluoranthene	μg/L	0.2	<0.050	0.050	-	-	-	-
		67	<0.030		-	-	-	-
Beryllium	µg/L	NA	<0.50	0.50	-	-	-	-
Boron, Hot Water Soluble* Boron	µg/L		- 25	- 10	-	-	-	-
	µg/L	45,000	-	-	-	-	-	-
Cadmium	µg/L	2.7	<0.10	0.10	-	-	-	-
Chromium	µg/L	810	<5.0	5.0	-	-	-	-
Hexavalent Chromium	µg/L	140	<0.50	0.50	-	-	-	-
Chrysene	µg/L	1	<0.050	0.050	-	-	-	-
Cobalt	µg/L	66	0.95	0.5	-	-	-	-
Copper	µg/L	87	<1.0	1.0	-	-	-	-
Cyanide	µg/L	66	<1	1	-	-	-	-
Dibenz[a,h]anthracene	µg/L	0.52	<0.050	0.050	-	-	-	-
Ethylbenzene	µg/L	2,300	<0.20	0.20	-	-	-	-
Fluoranthene	µg/L	130	<0.050	0.050	-	-	-	-
Fluorene	μg/L	400	<0.050	0.050	-	-	-	-
Indeno[1,2,3-cd]pyrene	μg/L	0.2	<0.050	0.050	-	-	-	-
Lead	μg/L	25	<0.50	0.50	-	-	-	-
Mercury	µg/L	2.8	<0.1	0.1	-	-	-	-
Methyl Mercury 1	μg/L	0.15	-	-	-	-	-	-
Methlynaphthalene, 2-(1-) ²	µg/L	1,800	<0.071	0.071	-	-	-	-
Molybdenum	µg/L	9,200	3.1	0.50	-	-	-	-
Naphthalene	µg/L	6,400	<0.050	0.050	-	-	-	-
Nickel	µg/L	490	2.4	1.0	-	-	-	-
Petroleum Hydrocarbons F1 ³	µg/L	750	<25	25	-	-	-	-
Petroleum Hydrocarbons F2	µg/L	150	<100	100	-	-	-	-
Petroleum Hydrocarbons F3	µg/L	500	<200	200	-	-	-	-
Petroleum Hydrocarbons F4	µg/L	500	<200	200	-	-	-	-
Petroleum Hydrocarbons F4G	µg/L	500	-	-	-	-	-	-
Phenanthrene	μg/L	580	< 0.030	0.030	-	-	-	-
Polychlorinated Biphenyls	μg/L	15	< 0.05	0.05	-	-	-	-
Pyrene	µg/L	68	< 0.050	0.050	-	-	-	-
Selenium	μg/L	63	<2.0	2.0	-	-	-	-
Silver	μg/L	1.5	<0.10	0.10	-	-	-	-
Thallium	μg/L	510	<0.050	0.050	-	-	-	-
Toluene	µg/L	18,000	<0.20	0.20	-	-	-	-
Uranium	µg/L	420	5.3	0.10	-	-	-	-
Vanadium	μg/L	250	1.1	0.50	-	-	-	-
Xylene, Total	μg/L	4,200	<0.40	0.40	-	-	-	-
Zinc	μg/L	1,100	<5.0	5.0	-	-	-	-
Electrical Conductivity	ms/cm	NA	-	-		-	-	-
Chloride	µg/L	2,300,000	260,000	3.0	-	-	-	-
	1.3-	,,	,					1
Sodium Adsorption Ratio	-	NA	-	-	-	-	-	-


¹ Analysis for methyl mercury only applies when mercury


standard is exceeded.

² The sum of 1-methylnaphthallene and 2- methylnaphthalene.

³ F1 fraction does not include BTEX.

APPENDIX I PLAN OF SURVEY, PROPOSED DEVELOPMENT PLAN

APPENDIX II NON-POTABLE GROUNDWATER NOTIFICATION

December 12, 2019 CO738.01

City of Ottawa Planning, Infrastructure and Economic Development Michel.Kearney@ottawa.ca

Attention: Michel Kearney, P.Geo Senior Hydrogeologist

Re: Notification of Environmental Standards 90 Maple Grove Road Ottawa ON

Dear Mr. Kearney:

Terrapex Environmental Ltd. (Terrapex) has been retained by a developer to conduct a Phase Two Environmental Site Assessment at 90 Maple Grove Road, Ontario (the site).

After reviewing Ontario Regulation (O. Reg.) 153/04 *Records of Site Condition - Part XV.1 of the Act,* Terrapex has determined that the site meets the requirements for the application of generic site condition standards (SCS) in a non-potable groundwater condition. Analytical data collected at the site will be compared against the applicable O.Reg. 153/04 full depth SCS in a non-potable groundwater condition.

On behalf of the developer, and in accordance with the requirements of Section 35 of O. Reg. 153/04, Terrapex is hereby providing written notice to the City of Ottawa of the intention to apply non-potable groundwater site condition standards at the 90 Maple Grove Road property.

If you have any questions or concerns regarding this matter, please do not hesitate to contact the undersigned.

Sincerely, TERRAPEX ENVIRONMENTAL LTD.

Greg Sabourin, P.Eng. Project Manager

02 January 2020

Mr. Greg Sabourin, P.Eng. Terrapex Environmental Ltd. 20 Gurdwara Road, Unit 1 Ottawa, Ontario K2E 8B3

Dear Mr. Sabourin,

Re: Record of Site Condition - 90 Maple Grove Road

As per your letter of December 12, 2019 (attached) requesting to use non-potable standards, this is to advise that the City of Ottawa does not object to the use of non-potable groundwater standards for the property identified as 90 Maple Grove Road, Ottawa, ON, as part of the filing of a Record of Site Condition.

Best Regards,

Michel Kearney, P.Geo.

Senior Hydrogeologist Asset Management Planning, Infrastructure and Economic Development Department

Hydrogéologue principal Gestion des actifs Services de la planification, de l'infrastructure et du développement économique City of Ottawa | Ville d'Ottawa

613.580.2424 ext./poste 22872 ottawa.ca/planning / ottawa.ca/urbanisme APPENDIX III SAMPLING AND ANALYSIS PLAN

SAMPLING AND ANALYSIS PLAN PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

Site: 90 Maple Grove Road Ottawa, ON Project No: CO738.01 Date: October 15, 2019

OBJECTIVES

On behalf of City of Ottawa, Terrapex Environmental Ltd. (Terrapex) has prepared this sampling and analysis plan for a Phase Two Environmental Site Assessment (ESA) at 90 Maple Grove Road Ottawa, Ontario, the "Phase Two Property". The Phase Two ESA is to be conducted to prior to possible redevelopment in accordance to Ontario Regulation (O. Reg.) 153/04, *Records of Site Condition - Part XV.1 of the Act.* The objective of this ESA is to determine the location and concentration of contaminants in the land or water on, in or under the Phase Two Property.

The Phase Two ESA will investigate all Areas of Potential Environmental Concern (APECs) which were identified in a Phase One ESA of the property conducted by Terrapex, dated October 18, 2019. The APECs are shown on Figure 1 and listed in Table 1.

SAMPLING PROGRAM

The media to be investigated and the contaminants of concern have been determined based on findings from previously completed Phase One ESA and based on potential environmental concerns identified from on-site and off-site activities. The media, investigation and sampling methods are summarized on Table 2. The rationale for each sampling location, and the proposed laboratory analytical program for each location, is shown on Table 3. Modifications may be made to the program during the course of implementation, based on field observations, and will be documented in the Phase Two ESA report.

STANDARD OPERATING PROCEDURES

The following Terrapex Standard Operating Procedures (SOPs) will be used:

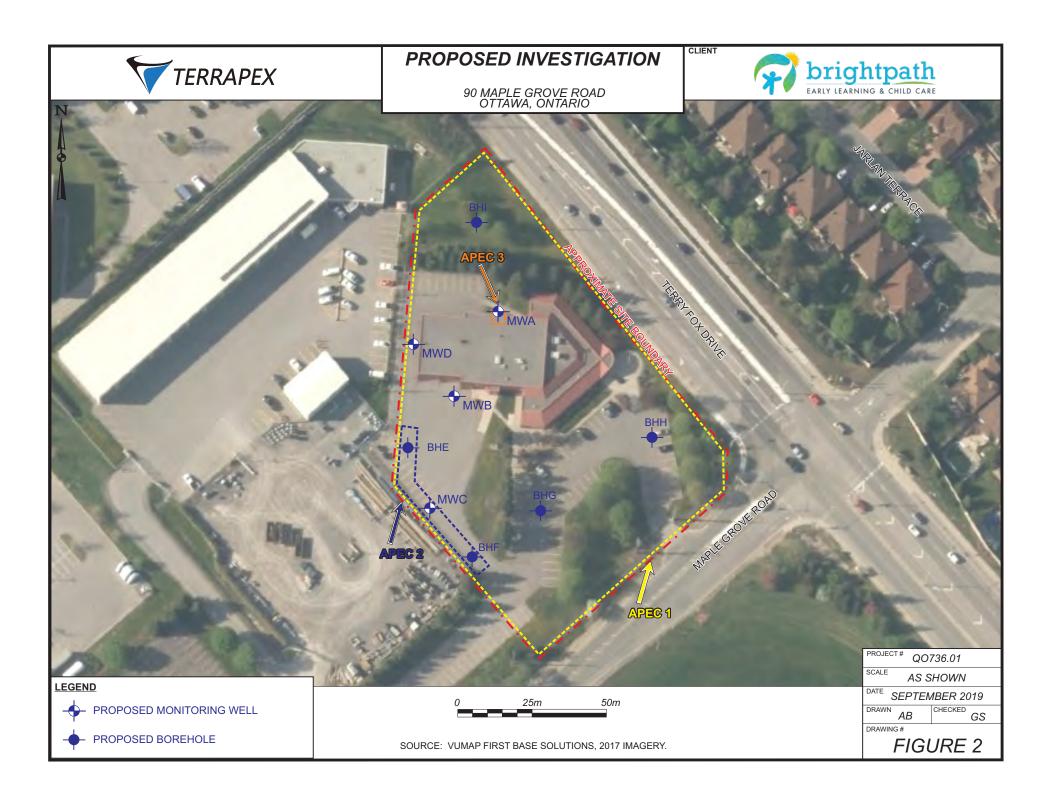
SOP E01.00 – Field Meter Calibration SOP E03.00 – Borehole Advancement Using Rotary Auger SOP E04.00 – Monitoring Well Installation SOP E05.00 – Monitoring Well Development SOP E06.00 – Groundwater Monitoring SOP E07.01 – Groundwater Sampling, Low Volume Purge, Using Peristaltic Pump SOP E09.00 – Soil Sample Handling SOP E10.00 – Soil Classification SOP E12.00 – Field Program Quality Assurance & Quality Control

DATA QUALITY OBJECTIVES

The investigation will be completed following Terrapex SOP *E12.00 - Field Program Quality Assurance & Quality Control*, which specifies requirements for minimizing cross-contamination, record-keeping, sample storage, sample submission, field QA/QC samples and data quality objectives. If the data quality objectives are not met, the Qualified Person for the project will review the results and determine whether the deviation affects decision-making or the overall objectives of the investigation.

LABORATORY PROGRAM

Project Laboratory: Bureau Veritas


Accreditation: BV is accredited by Standards Council of Canada (SCC) to International Standard ISO/IEC 17025:2005, General Requirement for the Competence of Testing and Calibration Laboratories.

Proposed Analytical Program: See Table 3, attached.

Analytical Methods: The laboratory will use the methods specified in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004, amended as of July 1, 2011 (Analytical Protocol).

Sample Containers and Preservatives: See Table 4, attached.

Bureau Veritas Quality Assurance/Quality Control (QA/QC) program will consist of the analysis of method blanks, laboratory control samples, matrix spikes, sample duplicates, and surrogates, as appropriate for the particular analysis protocol and as specified in the *Analytical Protocol*.

SUB-CONTRACTORS

All sub-contractors used in the Phase Two ESA will be approved suppliers according to Terrapex's Quality Management System. The following sub-contractors will be retained for this project:

Private utility locates: Capital Cutting and Coring Ltd. Borehole drilling and well installation: Strata Drilling Group Laboratory analyses: Bureau Veritas

ATTACHMENTS

- Figure 1 Areas of Potential Environmental Concern and Proposed Sampling Locations
- Table 1 Areas of Potential Environmental Concern
- Table 2 Media to be Investigated
- Table 3 Proposed Sampling Plan
- Table 4 Sample Containers and Preservation Plan

POTENTIALLY CONTAMINATING ACTIVITIES WITHIN THE PHASE ONE STUDY AREA (TERRAPEX, 2019)

APEC 1	LOCATION OF APEC ON PHASE ONE PROPERTY - Encompassing the area in the vicinity of the AST in south	POTENTIALLY CONTAMINATING ACTIVITY (as set out in Column A of Table 2 in Schedule D of O. Reg. 153/04) - 28 – Gasoline and Associated Products Storage in Fixed Tanks	LOCATION OF PCA (On-Site or Off- Site) - PCA 1	CONTAMINANTS OF POTENTIAL CONCERN - PHCs - BTEX	MEDIA POTENTIALLY IMPACTED (Groundwater, Soil, and/or Sediment) - Soil - Groundwater
APEC 2	eastern portion of the Site - Encompassing the area around the present locations	- Other – presence of drums with unknown contents	- PCA 2	- PHCs - VOCs	- Soil - Groundwater
APEC 3	of the drums - Encompassing the area around the former buildings located in the southeastern portion of the Site	- Other - Presence of vehicles and/or material storage during former agricultural operations	- PCA 3	- PHCs - BTEX	- Soil - Groundwater
APEC 4	- Encompassing the area around the former barn located in the central portion of the Site	 Other - Presence of vehicles and/or material storage during former agricultural operations 	- PCA 4	- PHCs - BTEX	- Soil - Groundwater
APEC 5	- Across the Site	 40 – Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) manufacturing, Processing, Bulk Storage and Large-Scale Application 	- PCA 5	 Pesticides and herbicides Metals and Inorganics 	- Soil
APEC 6	- The northeastern portion of the Site	- 30 – Importation of Fill of Unknown Quality	- PCA 6	 Metals and Inorganics PAHs PHCs and BTEX 	- Soil
APEC 7	- The southeastern portion of the Site	- 34 – Metal Fabrication	- PCA 7	 Metals and Inorganics PHCs and BTEX 	- Soil - Groundwater

PHCs: petroleum hydrocarbon PAHs: polycyclic aromatic hydrocarbons VOCs: volatile organic compounds

TABLE 2 - MEDIA INVESTIGATED, CONTAMINANTS OF CONCERN AND METHODS

Media	Contaminants of Concern	Investigation Method	Equipment	Sample Collection Method
Soil	Petroleum hydrocarbons Polycyclic aromatic hydrocarbons Volatile organic compounds Benzene, toluene, ethylbenzene, xylenes Metals, metal hydrides Mercury Chromium VI Hot water soluble boron Organochlorine pesticides	Boreholes and Test pitting	GM100 GM drill rig and Backhoe	Disposable plastic liner continous sampler and a backhoe bucket
Groundwater	Petroleum hydrocarbons Polycyclic aromatic hydrocarbons Volatile organic compounds Benzene, toluene, ethylbenzene, xylenes Metals, metal hydrides Mercury Cyanide Chromium VI Sodium, chloride Nitrite, nitrate Pesticides Polychlorinated biphenyls	Monitoring wells	GM100 GM drill rig	Low-flow sampling using peristaltic pump, target top 0.5 m of water column

TABLE 1 PROPOSED SAMPLING PLAN AND RATIONALE 90 Maple Grove Road Ottawa, ON

	90 Maple Grove Road Ottawa,	UN												
Sampling			Depth	Screened	Sampling			s	oil		1	Groun	dwater	
Location	Location	APEC	(m)	Interval (m)	Technique	Rationale	BTEX, F1-F4	Inorg.	PAHs	PCBs	BTEX, F1-F4	Inorg.	PAHs	PCBs
MWA	Near the AST	3	6.1	3.0 - 6.1	dual tube w/ PVC liner	Soil and groundwater quality in the area of the AST.	1			1	1			1
MWB	Downgradient of the AST	3	6.1	3.0 - 6.1	dual tube w/ PVC liner	Soil and groundwater quality downgradient of the AST .	1			1	1			1
MWC	Along the western boundary of the Site, adjacent to the work yard	2	6.1	3.0 - 6.1	dual tube w/ PVC liner	Soil and groundwater quality adjacent to the storage yard	1	1	1	1	1	1	1	1
MWD	Downgradient of the AST	3	6.1	3.0 - 6.1	dual tube w/	Soil and groundwater quality downgradient of the AST.	1			1	1			1
BHE	Along the western boundary of				dual tube w/	Determine the quality of fill and soil quality adjacent to the	1	1	1	1				
BHF	the Site along adjacent to the work vard	1, 2	2.0	-	PVC liner	storage yard	1	1	1	1				
BHG							1	1	1					
BHH	Throughout the Site	1	2.0	-	dual tube w/ PVC liner	Determine the quality of fill throughout the Site	1	1	1					
BHI					1.10		1	1	1					
Total Before	QA/QC Samples						9	6	6	6	4	1	1	4
QA/QC field	duplicate					One duplicate per 10 samples	1	1	1	1	1	1	1	1
QA/QC field	blank (methanol blank for soil, de	ionized wat	ter blank fo	or water)		One per sampling round (volatiles only)	1							
QA/QC trip b	lank					One per sampling round (volatiles in groundwater only)					1			
QA/QC trip s	pike					One per sampling round (volatiles in groundwater only)					1			
Total Labor	atory Analyses						11	7	7	7	7	2	2	5

Notes: APEC = Area of Potential Concern, refer to phase one ESA

VOCs = volatile organic compounds (O. Reg. 153/04)

BTEX/F1-F4 = benzene, toluene, ethylbenzene, xylenes and petroleum hydrocarbons in the F1 to F4 fractions

Inorg. = metals and general inorganic parameters (O. Reg. 153/04)

PAHs = polycyclic aromatic hydrocarbons (O. Reg. 153/04)

PCBs = Polychlorinated Biphenyls

Media	Analytical Parameter	Field Filtered	Sample Container	Preservation	Holding Time (preserved)
Soil	Metals, metal hydrides, hot water soluble boron, chromium VI, pH	Not applicable	250 mL glass jar	5 ± 3 °C	180 days
	BTEX, PHC F1	Not applicable	40 mL glass vial and 60 mL glass jar, no headspace	10 mL methanol, 5 ± 3 °C	14 days
	PHCs F2-F4	Not applicable	120 mL glass jar, teflon lined lid	5 ± 3 °C	14 days
	VOCs	Not applicable	40 mL glass vial and 60 mL glass jar, no headspace	10 mL methanol, 5 ± 3 °C	14 days
	Organochlorine pesticides	Not applicable	250 mL glass jar	5 ± 3 °C	60 days
	PAHs	Not applicable	120 mL glass jar, teflon lined lid	5 ± 3 °C	60 days
Groundwater	Metals, metal hydrides, sodium	Yes	250 mL HDPE bottle	HNO₃ to pH < 2 5 ± 3 oC	60 days
	Mercury	Yes	100 mL clear glass bottle	HCl to pH < 2 5 ± 3 oC	28 days
	Chromium VI	Yes	120 mL HDPE bottle	(NH ₄) ₂ SO ₄ /HN ₄ OH 5 ± 3 oC	28 days
	Cyanide	No	120 mL HDPE bottle	NaOH to pH > 12 5 \pm 3 °C	14 days
	BTEX, PHC F1	No	3 x 40 mL clear glass septum vial, no headspace	NaHSO₄ to pH < 2 5 ± 3 ₀C	14 days
	PHCs F2-F4	No	2 x 100 mL amber glass bottle	NaHSO₄ to pH < 2 5 ± 3 ₀C	40 days
	VOCs	No	3 x 40 mL clear glass septum vial, no headspace	NaHSO₄ to pH < 2 5 ± 3 ₀C	14 days
	PAHs	No	2 x 100 mL amber glass bottle	5 ± 3 °C	14 days

TABLE 4 - SAMPLE CONTAINERS AND PRESERVATION

BTEX = benzene, toluene, ethylbenzene, xylenes

PHC F1 - F4 = petroleum hydrocarbons F1 to F4 fractions

VOCs = volatile organic compounds

PAHs = polycyclic aromatic hydrocarbons (O. Reg. 153/04)

APPENDIX IV BOREHOLE LOGS

		D OF: MW101 NO: C0738.01		BOF	RING I	DATE:	остов	ER 16, 2	019			
CLIE	NT: B	RIGHTPATH		TYP	E OF	AUGE	R: SOIL	D STEM		TEI		DEV
ADD	RESS	LINE 1: 90 MAPLE GROVE ROAD		TYP	E OF	RIG: G	EOPRO	DBE 6620	DT	TEF	KKA	PEX
ADD	RESS	LINE 2:		CON	NTRA	CTOR:	STRAT	A DRILL	ING GROU			
CITY	/ PRC	OVINCE: OTTAWA, ONTARIO										
VAPO	DUR N	MONITOR: RKI EAGLE II B	OREHOLE D	IAM	ETER:	0.15 (6")		WELL DIA	METER: 0.051 m	า (2")	
PIPE	SCHE	EDULE: 40 S	CREEN SLO	T #:	10				SCREEN	LENGTH: 1.55		
RISE	R LEN	NGTH: 1.53 S	AND TYPE:	SILIC	CA				SEALANT	TYPE: BENTON	ITE	
		SUBSURFACE PROFILE			1		S	AMPLE				
Depth	Strataplot	Description	Elevation	Number	Type	% Recovery	SPT (n)	CSV (ppm or %LEL- if applicable)	Odour	Laboratory Testing	Mon	zometer or itoring Well stallation
-2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		Ground Surface	102.79									
0	///	TOPSOIL (GRASS SURFACE)										
		COARSE SAND FILL SOME CLAY	101.57	1	DP	40%	-	<10 ppm	None		Concrete	4.1.95 m bg (OCT 23, 2019)
ft m -2 -1 0 1 2 3 4 5 6 7 8 7		CLAYEY SILT REWORKED, WITH SOME SAND GRE SOFT	EY,	2	DP	36%	-	<10 ppm	None		Bentonite	1.95 m bg
9 10 10				3	DP	25%	-	<10 ppm	None	BTEX, PHC F1-F4 & PCBs		Silica Sand
11 12 13 14 14 15 16 15 17 18 19 20 14 14 14 14 15 16 16 21 14 14 14 14 14 14 15 16 16 16 16 16 16 16 16 16 16		REFUSAL AT 3.80 m bg	98.98								-	Silic
20 21 22 23 7												

CHECKED BY: JM

LOGGED BY: GS

INPUT BY: GS

24

INPUT DATE: OCTOBER 24, 2019

REC	COR	D OF: BH102									
PRO	JECT I	NO: CO738.01		BOF	RING I	DATE:	остов	BER 16, 20	019		
CLIEI	NT: B	RIGHTPATH		TYP	E OF	AUGEF	R: SOIL	D STEM		TER	RRAPEX
ADDF	RESS	LINE 1: 90 MAPLE GROVE ROA	AD	TYP	E OF	RIG: G	EOPRO	DBE 6620	DT	IER	KAPEA
ADDF	RESS	LINE 2:		CON	NTRA	CTOR:	STRAT	A DRILLI	NG GROL		
CITY	/ PRC	VINCE: OTTAWA, ONTARIO									
VAPC	DUR M	IONITOR: RKI EAGLE II	BOREHOLE D	IAM	ETER:	0.15 (6")		WELL DI	AMETER: -	
PIPE	SCHE	EDULE: -	SCREEN SLO	T #:	-				SCREEN	LENGTH: -	
RISE	R LEN	IGTH: -	SAND TYPE:	-					SEALAN	TYPE: BENTONI	TE
		SUBSURFACE PROFILE					S	AMPLE			
											Piezometer or
Depth	Strataplot	Description	Elevation	Number	Type	% Recovery	SPT (n)	CSV (ppm or %LEL- if applicable)	Odour	Laboratory Testing	Monitoring Well Installation
-2 ft m											
ft m -2 1 0 1 1 2 1 1 2 1 1 4 5 6 1 1 4 2 7 1 1 1 2 2 7 1 1 1 1 2 2 7 1											
0		Ground Surface	102.64					40		-	
1	Ħ	TOPSOIL (GRASS SURFACE) CLAYEY SILT		1	DP	90%	-	<10 ppm	None		
	Ħ	WITH SOME SAND, GREY, DRY								BTEX, PHC	
2	Ħ			2	DP	90%	-	<10 ppm	None	F1-F4, INORGANICS AND	
3 1										PAHs	
4			101.42								
5				3	DP	100%	-	<10 ppm	None		
6										_	
2											
7	Ħ		100.20	4	DP	100%	-	<10 ppm	None		
8	Ħ	SILTY CLAY								-	
9	Ħ	SOME COARSE GRAVEL, GREY	99.90	5	DP	100%	-	<10 ppm	None		
9 10 10 10	74	REFUSAL AT 3.05 m bg	99.59							-	
11		KEI OOME / H 0.00 H bg									
11 12											
12											
13 4											
14											
15											
16											
17											
'' -											
18											
13 14 14 15 16 16 17 18 19 19 20											
20											
21											
22											
23 7											
23 7 24											
LOG	JED B	BY: GS INPL	JT BY: GS		(HECK	ED BY:	JM		INPUT DATE: OC	IUBER 24, 2019

RE	COR	D OF: MW103									
PRO	JECT	NO: CO738.01		BOF	RING I	DATE:	остое	BER 16, 20	019		
CLIE	NT: E	RIGHTPATH		TYP	E OF	AUGE	२: SOIL	D STEM		TEI	RRAPEX
ADD	RESS	LINE 1: 90 MAPLE GROVE ROA	D	TYP	PE OF	RIG: G	EOPR	OBE 6620	DT		MAPEA
ADD	RESS	LINE 2:		CON	NTRA	CTOR:	STRAT	A DRILLI	NG GROU	IP	
CITY	/ PR(OVINCE: OTTAWA, ONTARIO									
			BOREHOLE D			0.15 (6")			AMETER: 0.051 m	
			SCREEN SLO							LENGTH: 3.05 m	
RISE	RLE		SAND TYPE:	SILI	CA				SEALAN	TYPE: BENTON	ITE
	1	SUBSURFACE PROFILE			1		S	AMPLE		1	-
Depth	Strataplot	Description	Elevation	Number	Type	% Recovery	SPT (n)	CSV (ppm or %LEL- if applicable)	Odour	Laboratory Testing	Piezometer or Monitoring Well Installation
tt m -2 tt m -1 11111111111111111111111111111111111		Ground Surface	102.66								
		ASPHALT SURFACE COARSE SAND (FILL)		1	DP	50%		<10 ppm	None	-	
1		WITH COARSE GRAVEL	102.20	1	DP	50%	-	< to ppm	NOTE	-	oncrete 2019)
2 3 1		COARSE SAND	101.44	2	DP	50%	-	<10 ppm	None		33 Ŭ
4 5		CLAYEY SILT WITH SOME FINE SAND, BROWN	100.83	3	DP	100%	-	<10 ppm	None	-	e 13 m bg (OCT
6 7 7		SILTY CLAY	100.03	4	DP	100%	-	<10 ppm	None	-	Bentonite
8 9 10 10				5	DP	100%	-	<10 ppm	None	-	
		SATURATED	<u>99.31</u> 99.00	6	DP	100%	-	<10 ppm	None	BTEX, PHC F1-F4, PCBs, grainsize & pH	Silica Sand
12 4		<i>SILTY SAND</i> WITH SOME FINE GRAVEL		7	DP	100%	-	<10 ppm	None		Silic
14			97.78	8	DP	100%	-	<10 ppm	None		
11 12 13 14 14 15 16 17 18 19 20 10 19 20 10 10 10 10 10 10 10 10 10 1		REFUSAL AT 4.9 m bg									
	GED										
LUG	GEDI	BY: GS INPU	T BY: GS		C		ED BY:	JIVI		INPUT DATE: 00	CTOBER 24, 2019

REC	COR	D OF: MW104									
PROJ	JECT	NO: CO738.01		BOF	RING I	DATE:	остое	BER 16, 20	019		
CLIEN	NT: E	RIGHTPATH		TYP	E OF	AUGEF	R: SOIL	D STEM		TEI	RRAPEX
ADDF	RESS	LINE 1: 90 MAPLE GROVE ROAD		TYP	E OF	RIG: G	EOPRO	DBE 6620	DT		KRAPEA
ADDF	RESS	LINE 2:		CON	NTRA	CTOR:	STRAT	A DRILLI	NG GROU		
CITY	/ PRC	OVINCE: OTTAWA, ONTARIO									
VAPC	OUR N	MONITOR: RKI EAGLE II BO	OREHOLE D	IAME	ETER:	0.15 (6")		WELL DIA	AMETER: 0.051 m	า (2")
PIPE	SCHI	EDULE: 40 SC	CREEN SLO	T #:	10				SCREEN	LENGTH: 3.05 m	I
RISEI	R LEI	NGTH: 1.80 m SA	ND TYPE:	SILIC	CA				SEALANT	TYPE: BENTON	ITE
		SUBSURFACE PROFILE					S	AMPLE			
Depth	Strataplot	Description	Elevation	Number	Type	% Recovery	SPT (n)	CSV (ppm or %LEL- if applicable)	Odour	Laboratory Testing	Piezometer or Monitoring Well Installation
<u>ft</u> m -2 -1 0 1 2 3 1 4 5 6 1 1 2 2 3 1 0 1 1 2 2 3 1 1 2 2 3 1 1 1 2 2 3 1 1 1 2 2 3 1 1 1 2 2 3 1 1 1 1		Ground Surface ASPHALT SURFACE COARSE SAND FILL	102.01							_	ete
		COARSE SAND	100.79	1	DP	40%	-	<10 ppm	None		Concrete
4 mlada 5 mlada 6		<i>CLAYEY SILT</i> WITH SOME SAND GREY, FIRM		2	DP	100%	-	<10 ppm	None	_	0. 2.16 m bg (OCT 23,
2 7 8				3	DP	100%	-	<10 ppm	None	_	Bentonite
9 10 10			98.96	4	DP	100%	-	<10 ppm	None	_	
11		<i>SILTY CLAY</i> GREY		5	DP	100%	-	<10 ppm	None		Silica Sand
13 4		SATURATED	98.05	6	DP	100%	-	<10 ppm	None	BTEX, PHC F1-F4, PCBs	S III
14			97.13	7	DP	100%	-	<10 ppm	None		
16 17 18		SILTY SAND WITH SOME FINE GRAVEL		8	DP	100%	-	<10 ppm	None		
			95.91	9	DP	100%	-	<10 ppm	None	_	
19 20 20 21 21 21 21 21 21 21 21 21 21											
LOGO	GEDI	BY: GS INPUT B	SY: GS		(CHECK	ED BY:	JM		INPUT DATE: 00	CTOBER 24, 2019

REC	COR	D OF: MW105									
PRO	JECT	NO: CO738.01		BOF	RING I	DATE:	остое	BER 16, 20)19		
CLIEI	NT: B	RIGHTPATH		TYP	E OF	AUGEF	R: SOIL	D STEM		TEL	RRAPEX
ADDF	RESS	LINE 1: 90 MAPLE GROVE ROAD		TYP	E OF	RIG: G	EOPR	OBE 6620	DT		KAPEA
ADDF	RESS	LINE 2:		CON	NTRA	CTOR:	STRAT		NG GROU	P	
CITY	/ PRC	VINCE: OTTAWA, ONTARIO									
VAPC	OUR N	IONITOR: RKI EAGLE II BOREH	IOLE D	IAME	ETER:	0.15 (6")		WELL DIA	AMETER: 0.051 m	i (2")
PIPE	SCHE	EDULE: 40 SCREE	N SLO	T #:	10				SCREEN	LENGTH: 3.05 m	
RISE	R LEN	IGTH: 1.80 m SAND	TYPE:	SILIC	CA				SEALANT	TYPE: BENTON	ITE
		SUBSURFACE PROFILE					S	AMPLE			
Depth	Strataplot	Description	Elevation	Number	Type	% Recovery	SPT (n)	CSV (ppm or %LEL- if applicable)	Odour	Laboratory Testing	Piezometer or Monitoring Well Installation
m -2 -1 0 1 2 3 4 5 6 7 8 9 10		Ground Surface ASPHALT SURFACE	100.84							544	2019)
1		COARSE SAND FILL WITH SOME CLAY		1	DP	50%	-	<10 ppm	None	PAHs, INORGANICS &	ete _
2 3 3 1		CLAYEY SILT WITH SOME SAND, BROWN, FIRM	100.23	2	DP	50%	-	<10 ppm	None	PCBs	Concrete
4 5				3	DP	100%	-	<10 ppm	None	-	1.60
6 1 7 7 8)))			4	DP	100%	-	<10 ppm	None		Bentonite
9 10 10				5	DP	100%	-	<10 ppm	None	BTEX, PHC F1-F4 & INORGANICS	Bentonite
11 11 12		CLAYEY SILT WITH SOME SAND, GREY, SATURATED	97.49	6	DP	100%	-	<10 ppm	None	-	Silica Sand
13 4 14 4				7	DP	100%	-	<10 ppm	None	_	ō
11 12 13 14 14 14 15 16 17 17		SILTY CLAY	95.96	8	DP	100%	-	<10 ppm	None	_	ō
17 18		GREY		9	DP	100%	-	<10 ppm	None	_	
19 19 20	H		94.74	10	DP	100%	-	<10 ppm	None	-	
18 19 20 19 19 19 10 10 10 10 10 10 10 10 10 10		END OF HOLE									
LOG	GED E	BY: GS INPUT BY: G	S		(CHECK	ED BY:	JM		INPUT DATE: OC	TOBER 24, 2019

PRO. CLIEI ADDI ADDI	JECT NT: B RESS RESS	D OF: BH106 NO: CO738.01 RIGHTPATH LINE 1: 90 MAPLE GROVE ROAI LINE 2: DVINCE: OTTAWA, ONTARIO	D	TYP TYP	PE OF PE OF	augef Rig: g	R: SOIL	ER 16, 2 D STEM DBE 6620 A DRILLI			RRAPEX
			BOREHOLE D	IAME	ETER:	0.15 (6")		WELL DIA	METER: 0.051 m	n (2")
PIPE	SCHE	EDULE: 40	SCREEN SLO	T #:	10				SCREEN	LENGTH: 3.05 m	
RISE	R LEN	IGTH: 1.80 m	SAND TYPE:	SILIC	CA				SEALANT	TYPE: BENTON	ITE
		SUBSURFACE PROFILE					S	AMPLE			
Depth	Strataplot	Description	Elevation	Number	Type	% Recovery	SPT (n)	CSV (ppm or %LEL- if applicable)	Odour	Laboratory Testing	Piezometer or Monitoring Well Installation
-2 m -1 m 0 m	<u> </u>	Ground Surface	100.84								
ft m -2 -1 0 1 2 3 4 5 6 7 8 9 10 3		COARSE SAND FILL WITH SOME GRAVEL	99.62	1	DP	50%	-	<10 ppm	None	BTEX, PHC F1-F4, PAHs, INORGANICS & PCBs	
4 5		SILTY SAND (FILL) WITH SOME CLAY, WHITE SPECS	99.16	2	DP	50%	-	<10 ppm	None	grainsize, pH	
6 7 7		SILTY CLAY GREY		3	DP	100%	-	<10 ppm	None		
8 9 10				4	DP	100%	-	<10 ppm	None		
11 12		END OF HOLE	97.18	5	DP	100%	-	<10 ppm	None		
11 12 13 14 14 14 14 15 16 17 18 19 10 10 10 10 10 10 10 10 10 10		END OF HOLE									

CHECKED BY: JM

INPUT DATE: OCTOBER 24, 2019

LOGGED BY: GS

INPUT BY: GS

PRO. CLIEI ADDI ADDI CITY VAPO PIPE	JECT NT: B RESS / PRC DUR M SCHE R LEN	DOF: BH107 NO: C0738.01 BRIGHTPATH LINE 1: 90 MAPLE GROVE RO LINE 2: DVINCE: OTTAWA, ONTARIO MONITOR: RKI EAGLE II EDULE: -	AD BOREHOLE D SCREEN SLO SAND TYPE:	TYP TYP CON IAME T #:	E OF E OF NTRAC	AUGEF RIG: G CTOR:	R: SOIL SEOPRO STRAT 6")		DT NG GROL WELL DIA SCREEN	AMETER: - LENGTH: - I TYPE: BENTON	
		SUBSURFACE PROFILE					S	AMPLE			
- Depth	Strataplot	Description	Elevation	Number	Type	% Recovery	SPT (n)	CSV (ppm or %LEL- if applicable)	Odour	Laboratory Testing	Piezometer or Monitoring Well Installation
-2 ft m											
-1		Ground Surface	101.25								
0	***	GRAVEL SUFRACE	101.25								
ft m -2 1 -1 1 0 1 1 1 2 3 4 1 5 6 7 8 9 10 3 3		COARSE SAND FILL	100.03	1	DP	20%	-	<10 ppm	None	BTEX PHC F1-F4, PAHs, INORGANICS & PCBs	
4	H		100.03								
5 6 7 7		BROWN	98.81	2	DP	50%	-	<10 ppm	None		
8		END OF HOLE	50.01							-	
11 11 12 11 12 11 12 12 12 12 12 12 12 1	GED F		JT BY: GS			CHECK	ED BY:	JM		INPUT DATE: OC	TOBER 24, 2019

PRO. CLIEI ADDI ADDI CITY VAPO PIPE	JECT NT: E RESS RESS / PR(DUR M SCHI	DOF: BH108 NO: CO738.01 BRIGHTPATH LINE 1: 90 MAPLE GROVE ROA LINE 2: DVINCE: OTTAWA, ONTARIO MONITOR: RKI EAGLE II EDULE: - NGTH: -	AD	TYP TYP CON IAME T #:	E OF E OF ITRAC	AUGEF RIG: G CTOR:	R: SOIL GEOPRC STRAT 6")		DT NG GROU WELL DIA SCREEN		
		SUBSURFACE PROFILE					S				
Depth	Strataplot	Description	Elevation	Number	Type	% Recovery	SPT (n)	CSV (ppm or %LEL- if applicable)	Odour	Laboratory Testing	Piezometer or Monitoring Well Installation
$ \begin{array}{c} ft \\ -2 \\ -1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		ASPHALT SURFACE NO RECOVERY SILTY SAND WITH SOME GRAVEL REFUSAL AT 1.8 M BG	101.69 100.47 99.86	1	DP	10%	-	<10 ppm	None	BTEX PHC F1-F4, PAHs, INORGANICS & PCBs	
	LOGGED BY: GS INPUT BY: GS CHECKED BY: JM INPUT DATE: OCTOBER 24, 2019										

REC	COR	D OF: BH109										
PRO	JECT	NO: CO738.01			BOR	RING I	DATE:	остов	BER 16, 2	019		
CLIE	NT: E	BRIGHTPATH			TYP	E OF	AUGEF	R: SOIL	D STEM		TEL	RRAPEX
ADDF	RESS	LINE 1: 90 MAPLE GROVE ROAD	0		TYP	E OF	RIG: G	EOPRO	DBE 6620	DT		MAPLA
ADDF	RESS	LINE 2:			CON	ITRA	CTOR:	STRAT		NG GROU		
CITY	/ PRC	OVINCE: OTTAWA, ONTARIO										
VAPC	OUR N	MONITOR: RKI EAGLE II E	BOREHOL	E DI	AME	TER:	0.15 (6")		WELL DIA	METER: -	
PIPE	SCH	EDULE: - S	SCREEN S	SLOT	Γ#:	-				SCREEN	LENGTH: -	
RISE	R LEN	NGTH: - S	SAND TYF	PE: -						SEALANT	TYPE: BENTON	ITE
		SUBSURFACE PROFILE						S	AMPLE			
Depth	Strataplot	Description		Elevation	Number	Type	% Recovery	SPT (n)	CSV (ppm or %LEL- if applicable)	Odour	Laboratory Testing	Piezometer or Monitoring Well Installation
€ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		Ground Surface ASPHALT SURFACE COARSE SAND (FILL)	102	2.30								
		WITH SOME CLAY	10	1.08	1	DP	30%	-	<10 ppm	None		
huhuhuh		SILTY SAND (FILL) WITH SOME GRAVEL & WHITE SPEC ENTRAINED	cs	0.62	2	DP	100%	-	<10 ppm	None	BTEX PHC F1-F4, PAHs, INORGANICS & PCBs	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<i>SILTY CLAY</i> WITH SOME CLAY, BROWN	99	9.86	3	DP	100%	-	<10 ppm	None	FODS	
անորդունությունը է 1 2 3 4 2 2 5 5 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5		END OF HOLE										

CHECKED BY: JM

- 7

LOGGED BY: GS

INPUT BY: GS

APPENDIX V LABORATORY CERTIFICATES OF ANALYSIS

Your Project #: CO738.01 Site Location: 90 MAPLE GROVE,OTTAWA Your C.O.C. #: 743677-02-01

Attention: Greg Sabourin

Terrapex Environmental Ltd 1-20 Gurdwara Rd. Ottawa, ON CANADA K2E 8B3

> Report Date: 2019/11/14 Report #: R5965118 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: B9T9002 Received: 2019/10/23, 16:30

Sample Matrix: Water # Samples Received: 7

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Methylnaphthalene Sum (1)	1	N/A	2019/10/30	CAM SOP-00301	EPA 8270D m
Methylnaphthalene Sum (1)	1	N/A	2019/10/31	CAM SOP-00301	EPA 8270D m
Chloride by Automated Colourimetry (1)	2	N/A	2019/10/31	CAM SOP-00463	SM 23 4500-Cl E m
Chromium (VI) in Water (1)	2	N/A	2019/10/25	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide (1)	2	N/A	2019/10/28	CAM SOP-00457	OMOE E3015 m
Petroleum Hydro. CCME F1 & BTEX in Water (1)	7	N/A	2019/10/29	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	2	2019/10/30	2019/10/30	CAM SOP-00316	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Water (1, 2)	3	2019/10/30	2019/10/31	CAM SOP-00316	CCME PHC-CWS m
Mercury (1)	2	2019/10/29	2019/10/29	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS (1)	1	N/A	2019/10/30	CAM SOP-00447	EPA 6020B m
Dissolved Metals by ICPMS (1)	1	N/A	2019/11/05	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM) (1)	2	2019/10/30	2019/10/30	CAM SOP-00318	EPA 8270D m
Polychlorinated Biphenyl in Water (1)	5	2019/10/30	2019/10/30	CAM SOP-00309	EPA 8082A m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Your Project #: CO738.01 Site Location: 90 MAPLE GROVE,OTTAWA Your C.O.C. #: 743677-02-01

Attention: Greg Sabourin

Terrapex Environmental Ltd 1-20 Gurdwara Rd. Ottawa, ON CANADA K2E 8B3

> Report Date: 2019/11/14 Report #: R5965118 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: B9T9002

Received: 2019/10/23, 16:30

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Laboratories Mississauga

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alisha Williamson, Project Manager Email: Alisha.Williamson@bvlabs.com Phone# (613)274-0573

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF WATER

BV Labs ID		LCU529	LCU530		
Sampling Date		2019/10/23	2019/10/23		
Samping Date		14:00	14:10		
COC Number		743677-02-01	743677-02-01		
	UNITS	MW105	MW111	RDL	QC Batch
Inorganics					
WAD Cyanide (Free)	ug/L	ND	ND	1	6406828
Dissolved Chloride (Cl-)	mg/L	260	260	3.0	6407099
RDL = Reportable Detection L	imit				
QC Batch = Quality Control Ba	atch				
ND = Not detected					

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Chromium (VI) ug/L ND 0.50 6410947 Mercury (Hg) ug/L ND 0.1 6411819 Dissolved Antimony (Sb) ug/L ND 0.50 6424745 ND 0.50 Dissolved Antimony (Sb) ug/L 1.9 1.0 6424745 1.8 1.0 Dissolved Arsenic (As) ug/L 120 2.0 6424745 120 2.0 Dissolved Barium (Ba) ug/L 120 2.0 6424745 ND 0.50 Dissolved Beryllium (Be) ug/L ND 0.50 6424745 ND 0.50 Dissolved Boron (B) ug/L 23 10 6424745 ND 0.10 Dissolved Cadmium (Cd) ug/L ND 0.10 6424745 ND 0.10 Dissolved Cobalt (Co) ug/L ND 5.0 6424745 ND 5.0 Dissolved Cobalt (Co) ug/L ND 5.0 6424745 ND 5.0 Dissolved Cobalt (Co)	0 6424745 0 6424745 0 6424745 0 6424745	2019/10/23 14:10 743677-02-01 MW111 ND ND ND 1.8 120	RDL 0.50 0.1 0.50 1.0	QC Batch 6410947 6411819 6407396
Image: Constraint of the image: Constraint of th	0 6424745 0 6424745 0 6424745 0 6424745	743677-02-01 MW111 ND ND ND 1.8	0.50 0.1 0.50	6410947 6411819 6407396
UNITSMW105RDLQC BatchMW105 Lab-DupRDLMetalsChromium (VI)ug/LND0.506410947Mercury (Hg)ug/LND0.16411819Dissolved Antimony (Sb)ug/LND0.506424745ND0.50Dissolved Arsenic (As)ug/L1.91.064247451.81.0Dissolved Barium (Ba)ug/LND0.506424745ND0.50Dissolved Boron (B)ug/LND0.506424745ND0.50Dissolved Cadmium (Cd)ug/LND0.106424745ND0.10Dissolved Cobalt (Co)ug/LND5.06424745ND5.0Dissolved Cobalt (Co)ug/LND1.06424745ND5.0Dissolved Cobalt (Co)ug/LND1.06424745ND5.0Dissolved Cobalt (Co)ug/LND1.06424745ND5.0Dissolved Cobalt (Co)ug/LND5.06424745ND5.0Dissolved Cobalt (Co)ug/LND1.06424745ND1.0Dissolved Cobalt (Co)ug/LND1.06424745ND1.0Dissolved Cobalt (Co)ug/LND1.06424745ND5.0Dissolved Cobalt (Co)ug/LND1.06424745ND5.0Dissolved Cobalt (Pb)ug/LND1.06424745ND5.0 <td>0 6424745 0 6424745 0 6424745 0 6424745</br></td> <td>ND ND ND 1.8</td> <td>0.50 0.1 0.50</td> <td>6410947 6411819 6407396</td>	0 6424745 0 6424745 0 6424745 	ND ND ND 1.8	0.50 0.1 0.50	6410947 6411819 6407396
UNITS MW105 RDL QC Batch Lab-Dup RDL Metals Chromium (VI) ug/L ND 0.50 6410947 Mercury (Hg) ug/L ND 0.1 6411819 Dissolved Antimony (Sb) ug/L ND 0.50 6424745 ND 0.50 Dissolved Arsenic (As) ug/L 1.9 1.0 6424745 1.8 1.0 Dissolved Barium (Ba) ug/L ND 0.50 6424745 ND 0.50 Dissolved Beryllium (Be) ug/L ND 0.50 6424745 ND 0.50 Dissolved Boron (B) ug/L ND 0.50 6424745 ND 0.10 Dissolved Cadmium (Cd) ug/L ND 0.10 6424745 ND 0.10 Dissolved Cobalt (Co) ug/L ND 5.0 6424745 ND 5.0 Dissolved Cobalt (Co) ug/L ND 5.0 6424745 ND 5	0 6424745 0 6424745 0 6424745 0 6424745	ND ND ND 1.8	0.50 0.1 0.50	6410947 6411819 6407396
Mercury (Hg) ug/L ND 0.1 6411819 Dissolved Antimony (Sb) ug/L ND 0.50 6424745 ND 0.50 Dissolved Antimony (Sb) ug/L 1.9 1.0 6424745 ND 0.50 Dissolved Arsenic (As) ug/L 1.9 1.0 6424745 1.8 1.0 Dissolved Barium (Ba) ug/L 120 2.0 6424745 ND 0.50 Dissolved Beryllium (Be) ug/L ND 0.50 6424745 ND 0.50 Dissolved Boron (B) ug/L 23 10 6424745 23 10 Dissolved Cadmium (Cd) ug/L ND 0.10 6424745 ND 0.10 Dissolved Cobalt (Co) ug/L ND 5.0 6424745 ND 5.0 Dissolved Cobalt (Co) ug/L ND 5.0 6424745 ND 5.0 Dissolved Cobalt (Co) ug/L ND 5.0 6424745 ND 5.0 <td< td=""><td>6424745 6424745 6424745</td><td>ND ND 1.8</td><td>0.1 0.50</td><td>6411819 6407396</td></td<>	6424745 6424745 6424745	ND ND 1.8	0.1 0.50	6411819 6407396
Mercury (Hg) ug/L ND 0.1 6411819 Dissolved Antimony (Sb) ug/L ND 0.50 6424745 ND 0.50 Dissolved Antimony (Sb) ug/L 1.9 1.0 6424745 ND 0.50 Dissolved Arsenic (As) ug/L 1.9 1.0 6424745 1.8 1.0 Dissolved Barium (Ba) ug/L 120 2.0 6424745 ND 0.50 Dissolved Beryllium (Be) ug/L ND 0.50 6424745 ND 0.50 Dissolved Boron (B) ug/L 23 10 6424745 23 10 Dissolved Cadmium (Cd) ug/L ND 0.10 6424745 ND 0.10 Dissolved Cobalt (Co) ug/L ND 5.0 6424745 ND 5.0 Dissolved Cobalt (Co) ug/L ND 5.0 6424745 ND 5.0 Dissolved Cobalt (Co) ug/L ND 5.0 6424745 ND 5.0 <td< td=""><td>6424745 6424745 6424745</td><td>ND ND 1.8</td><td>0.1 0.50</td><td>6411819 6407396</td></td<>	6424745 6424745 6424745	ND ND 1.8	0.1 0.50	6411819 6407396
Dissolved Antimony (Sb) ug/L ND 0.50 6424745 ND 0.50 Dissolved Arsenic (As) ug/L 1.9 1.0 6424745 1.8 1.0 Dissolved Arsenic (As) ug/L 1.9 1.0 6424745 1.8 1.0 Dissolved Barium (Ba) ug/L 120 2.0 6424745 120 2.0 Dissolved Beryllium (Be) ug/L ND 0.50 6424745 ND 0.50 Dissolved Boron (B) ug/L 23 10 6424745 23 10 Dissolved Cadmium (Cd) ug/L ND 0.10 6424745 ND 0.10 Dissolved Chromium (Cr) ug/L ND 5.0 6424745 ND 5.0 Dissolved Cobalt (Co) ug/L ND 5.0 6424745 0.96 0.50 Dissolved Copper (Cu) ug/L ND 1.0 6424745 ND 1.0 Dissolved Lead (Pb) ug/L ND 0.50 6424745 ND <td>6424745 6424745 6424745</td> <td>ND 1.8</td> <td>0.50</td> <td>6407396</td>	6424745 6424745 6424745	ND 1.8	0.50	6407396
Dissolved Arsenic (As) ug/L 1.9 1.0 6424745 1.8 1.0 Dissolved Barium (Ba) ug/L 120 2.0 6424745 120 2.0 Dissolved Barium (Ba) ug/L 120 2.0 6424745 120 2.0 Dissolved Beryllium (Be) ug/L ND 0.50 6424745 ND 0.50 Dissolved Boron (B) ug/L 23 10 6424745 ND 0.10 Dissolved Cadmium (Cd) ug/L ND 0.10 6424745 ND 0.10 Dissolved Chromium (Cr) ug/L ND 5.0 6424745 ND 5.0 Dissolved Cobalt (Co) ug/L ND 5.0 6424745 ND 5.0 Dissolved Cobalt (Co) ug/L ND 5.0 6424745 ND 5.0 Dissolved Copper (Cu) ug/L ND 1.0 6424745 ND 1.0 Dissolved Lead (Pb) ug/L ND 1.0 6424745 ND	6424745 6424745 6424745	1.8		
Dissolved Barium (Ba) ug/L 120 2.0 6424745 120 2.0 Dissolved Beryllium (Be) ug/L ND 0.50 6424745 ND 0.50 Dissolved Beryllium (Be) ug/L ND 0.50 6424745 ND 0.50 Dissolved Boron (B) ug/L 23 10 6424745 23 10 Dissolved Cadmium (Cd) ug/L ND 0.10 6424745 ND 0.10 Dissolved Cadmium (Cd) ug/L ND 5.0 6424745 ND 5.0 Dissolved Cobalt (Co) ug/L ND 5.0 6424745 ND 5.0 Dissolved Cobalt (Co) ug/L ND 5.0 6424745 ND 5.0 Dissolved Copper (Cu) ug/L ND 1.0 6424745 ND 1.0 Dissolved Lead (Pb) ug/L ND 1.0 6424745 ND 1.0	0 6424745		1.0	6407206
Dissolved Beryllium (Be) ug/L ND 0.50 6424745 ND 0.50 Dissolved Boron (B) ug/L 23 10 6424745 23 10 Dissolved Boron (B) ug/L 23 10 6424745 23 10 Dissolved Cadmium (Cd) ug/L ND 0.10 6424745 ND 0.10 Dissolved Chromium (Cr) ug/L ND 5.0 6424745 ND 5.0 Dissolved Cobalt (Co) ug/L 0.95 0.50 6424745 0.96 0.50 Dissolved Copper (Cu) ug/L ND 1.0 6424745 ND 1.0 Dissolved Lead (Pb) ug/L ND 0.50 6424745 ND 0.50		120		6407396
Dissolved Boron (B) ug/L 23 10 6424745 23 10 Dissolved Cadmium (Cd) ug/L ND 0.10 6424745 ND 0.10 Dissolved Cadmium (Cd) ug/L ND 5.0 6424745 ND 0.10 Dissolved Chromium (Cr) ug/L ND 5.0 6424745 ND 5.0 Dissolved Cobalt (Co) ug/L 0.95 0.50 6424745 ND 0.50 Dissolved Copper (Cu) ug/L ND 1.0 6424745 ND 1.0 Dissolved Lead (Pb) ug/L ND 0.50 6424745 ND 0.50			2.0	6407396
Dissolved Cadmium (Cd) ug/L ND 0.10 6424745 ND 0.11 Dissolved Chromium (Cr) ug/L ND 5.0 6424745 ND 5.0 Dissolved Cobalt (Co) ug/L 0.95 0.50 6424745 ND 5.0 Dissolved Cobalt (Co) ug/L 0.95 0.50 6424745 ND 1.0 Dissolved Copper (Cu) ug/L ND 1.0 6424745 ND 1.0 Dissolved Lead (Pb) ug/L ND 0.50 6424745 ND 0.50	0 6424745	ND	0.50	6407396
Dissolved Chromium (Cr) ug/L ND 5.0 6424745 ND 5.0 Dissolved Cobalt (Co) ug/L 0.95 0.50 6424745 0.96 0.50 Dissolved Cobalt (Co) ug/L 0.95 0.50 6424745 0.96 0.50 Dissolved Copper (Cu) ug/L ND 1.0 6424745 ND 1.0 Dissolved Lead (Pb) ug/L ND 0.50 6424745 ND 0.50	6424745	25	10	6407396
Dissolved Cobalt (Co) ug/L 0.95 0.50 6424745 0.96 0.50 Dissolved Copper (Cu) ug/L ND 1.0 6424745 ND 1.0 Dissolved Lead (Pb) ug/L ND 0.50 6424745 ND 0.50	0 6424745	ND	0.10	6407396
Dissolved Copper (Cu) ug/L ND 1.0 6424745 ND 1.0 Dissolved Lead (Pb) ug/L ND 0.50 6424745 ND 0.50	6424745	ND	5.0	6407396
Dissolved Lead (Pb) ug/L ND 0.50 6424745 ND 0.50	0 6424745	0.93	0.50	6407396
	6424745	ND	1.0	6407396
	0 6424745	ND	0.50	6407396
Dissolved Molybdenum (Mo) ug/L 3.1 0.50 6424745 3.0 0.50	0 6424745	2.9	0.50	6407396
Dissolved Nickel (Ni) ug/L 2.2 1.0 6424745 2.3 1.0	0 6424745	2.4	1.0	6407396
Dissolved Selenium (Se) ug/L ND 2.0 6424745 ND 2.0	6424745	ND	2.0	6407396
Dissolved Silver (Ag) ug/L ND 0.10 6424745 ND 0.10	0 6424745	ND	0.10	6407396
Dissolved Sodium (Na) ug/L 220000 100 6424745 220000 100	0 6424745	220000	100	6407396
Dissolved Thallium (TI) ug/L ND 0.050 6424745 ND 0.05	50 6424745	ND	0.050	6407396
Dissolved Uranium (U) ug/L 5.1 0.10 6424745 5.3 0.10	0 6424745	5.1	0.10	6407396
Dissolved Vanadium (V) ug/L 1.1 0.50 6424745 1.0 0.50	0 6424745	1.0	0.50	6407396
Dissolved Zinc (Zn) ug/L ND 5.0 6424745 ND 5.0	0 6424745	ND	5.0	6407396
RDL = Reportable Detection Limit				

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

BV Labs ID		LCU529	LCU530			LCU530		
Sampling Date		2019/10/23	2019/10/23			2019/10/23		
Sampling Date		14:00	14:10			14:10		
COC Number		743677-02-01	743677-02-01			743677-02-01		
	UNITS	MW105	MW111	RDL	QC Batch	MW111 Lab-Dup	RDL	QC Batch
Calculated Parameters								
Methylnaphthalene, 2-(1-)	ug/L	ND	ND	0.071	6403773			
Polyaromatic Hydrocarbons								
Acenaphthene	ug/L	ND	ND	0.050	6414365	ND	0.050	6414365
Acenaphthylene	ug/L	ND	ND	0.050	6414365	ND	0.050	6414365
Anthracene	ug/L	ND	ND	0.050	6414365	ND	0.050	6414365
Benzo(a)anthracene	ug/L	ND	ND	0.050	6414365	ND	0.050	6414365
Benzo(a)pyrene	ug/L	ND	ND	0.010	6414365	ND	0.010	6414365
Benzo(b/j)fluoranthene	ug/L	ND	ND	0.050	6414365	ND	0.050	6414365
Benzo(g,h,i)perylene	ug/L	ND	ND	0.050	6414365	ND	0.050	6414365
Benzo(k)fluoranthene	ug/L	ND	ND	0.050	6414365	ND	0.050	6414365
Chrysene	ug/L	ND	ND	0.050	6414365	ND	0.050	6414365
Dibenz(a,h)anthracene	ug/L	ND	ND	0.050	6414365	ND	0.050	6414365
Fluoranthene	ug/L	ND	ND	0.050	6414365	ND	0.050	6414365
Fluorene	ug/L	ND	ND	0.050	6414365	ND	0.050	6414365
Indeno(1,2,3-cd)pyrene	ug/L	ND	ND	0.050	6414365	ND	0.050	6414365
1-Methylnaphthalene	ug/L	ND	ND	0.050	6414365	ND	0.050	6414365
2-Methylnaphthalene	ug/L	ND	ND	0.050	6414365	ND	0.050	6414365
Naphthalene	ug/L	ND	ND	0.050	6414365	ND	0.050	6414365
Phenanthrene	ug/L	ND	ND	0.030	6414365	ND	0.030	6414365
Pyrene	ug/L	ND	ND	0.050	6414365	ND	0.050	6414365
Surrogate Recovery (%)								
D10-Anthracene	%	114	116		6414365	114		6414365
D14-Terphenyl (FS)	%	103	104		6414365	100		6414365
D8-Acenaphthylene	%	104	111		6414365	104		6414365
RDL = Reportable Detection	Limit							
QC Batch = Quality Control B	atch							
Lab-Dup = Laboratory Initiate	ed Duplic	ate						

PETROLEUM HYDROCARBONS (CCME)

BV Labs ID		LCU526	LCU527			LCU527			LCU528		
Sampling Date		2019/10/23	2019/10/23			2019/10/23			2019/10/23		
		13:00	12:00			12:00			11:30		
COC Number		743677-02-01	743677-02-01			743677-02-01			743677-02-01		
	UNITS	MW101	MW103	RDL	QC Batch	MW103 Lab-Dup	RDL	QC Batch	MW104	RDL	QC Batch
BTEX & F1 Hydrocarbons											
Benzene	ug/L	ND	ND	0.20	6411807	ND	0.20	6411807	ND	0.20	6411807
Toluene	ug/L	ND	ND	0.20	6411807	ND	0.20	6411807	ND	0.20	6411807
Ethylbenzene	ug/L	ND	ND	0.20	6411807	ND	0.20	6411807	ND	0.20	6411807
o-Xylene	ug/L	ND	ND	0.20	6411807	ND	0.20	6411807	ND	0.20	6411807
p+m-Xylene	ug/L	ND	ND	0.40	6411807	ND	0.40	6411807	ND	0.40	6411807
Total Xylenes	ug/L	ND	ND	0.40	6411807	ND	0.40	6411807	ND	0.40	6411807
F1 (C6-C10)	ug/L	ND	ND	25	6411807	ND	25	6411807	ND	25	6411807
F1 (C6-C10) - BTEX	ug/L	ND	ND	25	6411807	ND	25	6411807	ND	25	6411807
F2-F4 Hydrocarbons											
F2 (C10-C16 Hydrocarbons)	ug/L	ND	ND	100	6414659				ND	100	6414659
F3 (C16-C34 Hydrocarbons)	ug/L	ND	ND	200	6414659				ND	200	6414659
F4 (C34-C50 Hydrocarbons)	ug/L	ND	ND	200	6414659				ND	200	6414659
Reached Baseline at C50	ug/L	Yes	Yes		6414659				Yes		6414659
Surrogate Recovery (%)											
1,4-Difluorobenzene	%	102	102		6411807	103		6411807	101		6411807
4-Bromofluorobenzene	%	105	106		6411807	104		6411807	102		6411807
D10-Ethylbenzene	%	97	97		6411807	97		6411807	99		6411807
D4-1,2-Dichloroethane	%	113	113		6411807	112		6411807	110		6411807
o-Terphenyl	%	106	106		6414659				105		6414659
RDL = Reportable Detection I	imit										
QC Batch = Quality Control B	atch										
Lab-Dup = Laboratory Initiate	ed Duplic	ate									

PETROLEUM HYDROCARBONS (CCME)

BV Labs ID		LCU528			LCU529	LCU530			LCU530		
Sampling Date		2019/10/23			2019/10/23	2019/10/23			2019/10/23		
		11:30			14:00	14:10			14:10		
COC Number		743677-02-01			743677-02-01	743677-02-01			743677-02-01		
	UNITS	MW104 Lab-Dup	RDL	QC Batch	MW105	MW111	RDL	QC Batch	MW111 Lab-Dup	RDL	QC Batch
BTEX & F1 Hydrocarbons											
Benzene	ug/L				ND	ND	0.20	6411807			
Toluene	ug/L				ND	ND	0.20	6411807			
Ethylbenzene	ug/L				ND	ND	0.20	6411807			
o-Xylene	ug/L				ND	ND	0.20	6411807			
p+m-Xylene	ug/L				ND	ND	0.40	6411807			
Total Xylenes	ug/L				ND	ND	0.40	6411807			
F1 (C6-C10)	ug/L				ND	ND	25	6411807			
F1 (C6-C10) - BTEX	ug/L				ND	ND	25	6411807			
F2-F4 Hydrocarbons											
F2 (C10-C16 Hydrocarbons)	ug/L	ND	100	6414659	ND	ND	100	6414362	ND	100	6414362
F3 (C16-C34 Hydrocarbons)	ug/L	ND	200	6414659	ND	ND	200	6414362	ND	200	6414362
F4 (C34-C50 Hydrocarbons)	ug/L	ND	200	6414659	ND	ND	200	6414362	ND	200	6414362
Reached Baseline at C50	ug/L	Yes		6414659	Yes	Yes		6414362	Yes		6414362
Surrogate Recovery (%)											
1,4-Difluorobenzene	%				102	105		6411807			
4-Bromofluorobenzene	%				103	106		6411807			
D10-Ethylbenzene	%				98	100		6411807			
D4-1,2-Dichloroethane	%				110	114		6411807			
o-Terphenyl	%	104		6414659	97	98		6414362	102		6414362
RDL = Reportable Detection Li	imit										
QC Batch = Quality Control Ba	itch										
Lab-Dup = Laboratory Initiated	d Duplic	ate									

PETROLEUM HYDROCARBONS (CCME)

BV Labs ID		LCU531			LCU532		
Sampling Date		2019/10/23			2019/10/21 12:45		
COC Number		743677-02-01			743677-02-01		
	UNITS	TRIP BLANK#4176	RDL	QC Batch	TRIP SPIKE#4785	RDL	QC Batch
BTEX & F1 Hydrocarbons							
Benzene	ug/L	ND	0.20	6411807	100	0.20	6411807
Toluene	ug/L	ND	0.20	6411807	99	0.20	6411807
Ethylbenzene	ug/L	ND	0.20	6411807	110	0.20	6411807
o-Xylene	ug/L	ND	0.20	6411807	110	0.20	6411807
p+m-Xylene	ug/L	ND	0.40	6411807	110	0.40	6411807
Total Xylenes	ug/L	ND	0.40	6411807			
F1 (C6-C10)	ug/L	ND	25	6411807			
F1 (C6-C10) - BTEX	ug/L	ND	25	6411807			
Surrogate Recovery (%)							
1,4-Difluorobenzene	%	103		6411807	105		6411807
4-Bromofluorobenzene	%	104		6411807	100		6411807
D10-Ethylbenzene	%	98		6411807	100		6411807
D4-1,2-Dichloroethane	%	113		6411807	111		6411807
RDL = Reportable Detection L	imit						
QC Batch = Quality Control Ba	atch						
ND = Not detected							

POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

BV Labs ID		LCU526	LCU527	LCU528	LCU529	LCU530		
Sampling Date		2019/10/23 13:00	2019/10/23 12:00	2019/10/23 11:30	2019/10/23 14:00	2019/10/23 14:10		
COC Number		743677-02-01	743677-02-01	743677-02-01	743677-02-01	743677-02-01		
	UNITS	MW101	MW103	MW104	MW105	MW111	RDL	QC Batch
PCBs								
Aroclor 1242	ug/L	ND	ND	ND	ND	ND	0.05	6414552
Aroclor 1248	ug/L	ND	ND	ND	ND	ND	0.05	6414552
Aroclor 1254	ug/L	ND	ND	ND	ND	ND	0.05	6414552
Aroclor 1260	ug/L	ND	ND	ND	ND	ND	0.05	6414552
Total PCB	ug/L	ND	ND	ND	ND	ND	0.05	6414552
Surrogate Recovery (%)								
Decachlorobiphenyl	%	66	65	73	71	70		6414552
RDL = Reportable Detection L QC Batch = Quality Control B ND = Not detected								

TEST SUMMARY

BV Labs ID: LCU526 Sample ID: MW101 Matrix: Water					Collected: Shipped: Received:	
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6411807	N/A	2019/10/29	Joe Paino	
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6414659	2019/10/30	2019/10/31	(Kent) Ma	olin Li
Polychlorinated Biphenyl in Water	GC/ECD	6414552	2019/10/30	2019/10/30	Svitlana Sh	
BV Labs ID: LCU527 Sample ID: MW103 Matrix: Water					Collected: Shipped: Received:	2019/10/23 2019/10/23
						2013/10/23
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6411807	N/A	2019/10/29	Joe Paino	
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6414659	2019/10/30	2019/10/31	(Kent) Ma	olin Li
Polychlorinated Biphenyl in Water	GC/ECD	6414552	2019/10/30	2019/10/30	Svitlana Sh	naula
BV Labs ID: LCU527 Dup Sample ID: MW103 Matrix: Water					Collected: Shipped: Received:	2019/10/23 2019/10/23
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6411807	N/A	2019/10/29	Joe Paino	
BV Labs ID: LCU528 Sample ID: MW104 Matrix: Water					Collected: Shipped: Received:	2019/10/23 2019/10/23
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6411807	N/A	2019/10/29	Joe Paino	
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6414659	2019/10/30	2019/10/31	(Kent) Ma	olin Li
Polychlorinated Biphenyl in Water	GC/ECD	6414552	2019/10/30	2019/10/30	Svitlana Sh	
BV Labs ID: LCU528 Dup Sample ID: MW104 Matrix: Water					Collected: Shipped: Received:	2019/10/23 2019/10/23
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6414659	2019/10/30	2019/10/31	(Kent) Ma	olin Li
BV Labs ID: LCU529 Sample ID: MW105 Matrix: Water					Collected: Shipped: Received:	
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	6403773	N/A	2019/10/31	Automate	d Statchk
Chloride by Automated Colourimetry	KONE	6407099	N/A	2019/10/31	Deonarine	Ramnarine
Chromium (VI) in Water	IC	6410947	N/A	2019/10/25	Lang Le	
Free (WAD) Cyanide	SKAL/CN	6406828	N/A	2019/10/28	Gnana Tho	omas

Page 10 of 22

Bureau Veritas Laboratories 32 Colonnade Rd, Unit #1000, Nepean, ON K2E 7J6 Phone: 613 274-0573 Fax: 613 274-0574 Website: www.bvlabs.com

TEST SUMMARY

BV Labs ID: LCU529 Sample ID: MW105 Matrix: Water					Collected: Shipped: Received:	2019/10/23 2019/10/23
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6414362	2019/10/30	2019/10/30	Anna Stug	ik Rolland
Mercury	CV/AA	6411819	2019/10/29	2019/10/29	Medhat Na	asr
Dissolved Metals by ICPMS	ICP/MS	6424745	N/A	2019/11/05	Arefa Dabl	nad
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6414365	2019/10/30	2019/10/30	Bibin Alias	Paul
Polychlorinated Biphenyl in Water	GC/ECD	6414552	2019/10/30	2019/10/30	Svitlana Sh	aula
BV Labs ID: LCU529 Dup Sample ID: MW105 Matrix: Water					Collected: Shipped: Received:	2019/10/23 2019/10/23
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Dissolved Metals by ICPMS	ICP/MS	6424745	N/A	2019/11/05	Arefa Dabl	nad
BV Labs ID: LCU530 Sample ID: MW111 Matrix: Water					Collected: Shipped: Received:	2019/10/23 2019/10/23
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum	CALC	6403773	N/A	2019/10/30	Automated	d Statchk
Chloride by Automated Colourimetry	KONE	6407099	N/A	2019/10/31	Deonarine	Ramnarine
Chromium (VI) in Water	IC	6410947	N/A	2019/10/25	Lang Le	
Free (WAD) Cyanide	SKAL/CN	6406828	N/A	2019/10/28	Gnana Tho	imas
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6411807	N/A	2019/10/29	Joe Paino	
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6414362	2019/10/30	2019/10/30	Anna Stug	ik Rolland
Mercury	CV/AA	6411819	2019/10/29	2019/10/29	Medhat Na	
Dissolved Metals by ICPMS	ICP/MS	6407396	N/A	2019/10/30	Arefa Dabl	
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6414365	2019/10/30	2019/10/30	Bibin Alias	
Polychlorinated Biphenyl in Water	GC/ECD	6414552	2019/10/30	2019/10/30	Svitlana Sh	aula
BV Labs ID: LCU530 Dup Sample ID: MW111 Matrix: Water					Collected: Shipped: Received:	2019/10/23 2019/10/23
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6414362	2019/10/30	2019/10/30	Anna Stug	ik Rolland
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6414365	2019/10/30	2019/10/30	Bibin Alias	Paul
BV Labs ID: LCU531 Sample ID: TRIP BLANK#4176 Matrix: Water					Collected: Shipped: Received:	2019/10/23 2019/10/23
		B I.	Factors at a d	Data Analuzad	6	
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	

TEST SUMMARY

	LCU532 TRIP SPIKE#4785					Collected: Shipped:	
Matrix:	Water					Received:	2019/10/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F	F1 & BTEX in Water	HSGC/MSFD	6411807	N/A	2019/10/29	Joe Paino	

GENERAL COMMENTS

Each te	mperature is the	average of up to	three cooler temperatures taken at receipt
]	Package 1	5.3°C	
Revised	report (2019/11/	14): Report revis	ed to reflect changes to data reported for metals for sample MW105 (LCU529) due to internal process error.
Sample	LCU532 [TRIP SPI	KE#4785] : F1/B	TEX Analysis: Trip spike results are expressed as percentage of the spiked amounts.
Results	relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6406828	GTO	Matrix Spike	WAD Cyanide (Free)	2019/10/28		89	%	80 - 120
6406828	GTO	Spiked Blank	WAD Cyanide (Free)	2019/10/28		96	%	80 - 120
6406828	GTO	Method Blank	WAD Cyanide (Free)	2019/10/28	ND,RDL=1		ug/L	
6406828	GTO	RPD	WAD Cyanide (Free)	2019/10/28	NC		%	20
6407099	DRM	Matrix Spike	Dissolved Chloride (Cl-)	2019/10/31		NC	%	80 - 120
6407099	DRM	Spiked Blank	Dissolved Chloride (Cl-)	2019/10/31		105	%	80 - 120
6407099	DRM	Method Blank	Dissolved Chloride (Cl-)	2019/10/31	ND,		mg/L	
					RDL=1.0			
6407099	DRM	RPD	Dissolved Chloride (Cl-)	2019/10/31	3.1		%	20
6407396	ADA	Matrix Spike	Dissolved Antimony (Sb)	2019/10/30		109	%	80 - 120
			Dissolved Arsenic (As)	2019/10/30		104	%	80 - 120
			Dissolved Barium (Ba)	2019/10/30		101	%	80 - 120
			Dissolved Beryllium (Be)	2019/10/30		113	%	80 - 120
			Dissolved Boron (B)	2019/10/30		109	%	80 - 120
			Dissolved Cadmium (Cd)	2019/10/30		107	%	80 - 120
			Dissolved Chromium (Cr)	2019/10/30		96	%	80 - 120
			Dissolved Cobalt (Co)	2019/10/30		99	%	80 - 120
			Dissolved Copper (Cu)	2019/10/30		105	%	80 - 120
			Dissolved Lead (Pb)	2019/10/30		102	%	80 - 120
			Dissolved Molybdenum (Mo)	2019/10/30		110	%	80 - 120
			Dissolved Nickel (Ni)	2019/10/30		95	%	80 - 120
			Dissolved Selenium (Se)	2019/10/30		102	%	80 - 120
			Dissolved Silver (Ag)	2019/10/30		70 (1)	%	80 - 120
			Dissolved Sodium (Na)	2019/10/30		NC	%	80 - 120
			Dissolved Thallium (TI)	2019/10/30		107	%	80 - 120
			Dissolved Uranium (U)	2019/10/30		101	%	80 - 120
			Dissolved Vanadium (V)	2019/10/30		98	%	80 - 120
			Dissolved Zinc (Zn)	2019/10/30		102	%	80 - 120
6407396	ADA	Spiked Blank	Dissolved Antimony (Sb)	2019/10/30		100	%	80 - 120
			Dissolved Arsenic (As)	2019/10/30		98	%	80 - 120
			Dissolved Barium (Ba)	2019/10/30		96	%	80 - 120
			Dissolved Beryllium (Be)	2019/10/30		106	%	80 - 120
			Dissolved Boron (B)	2019/10/30		101	%	80 - 120
			Dissolved Cadmium (Cd)	2019/10/30		99	%	80 - 120
			Dissolved Chromium (Cr)	2019/10/30 2019/10/30		93	%	80 - 120
			Dissolved Cobalt (Co) Dissolved Copper (Cu)	2019/10/30		98 97	% %	80 - 120 80 - 120
			Dissolved Lead (Pb)	2019/10/30		97 99	%	80 - 120 80 - 120
			Dissolved Lead (FD) Dissolved Molybdenum (Mo)	2019/10/30		96	%	80 - 120 80 - 120
			Dissolved Nickel (Ni)	2019/10/30		90 94	%	80 - 120 80 - 120
			Dissolved Nickel (N) Dissolved Selenium (Se)	2019/10/30		94 99	%	80 - 120 80 - 120
			Dissolved Seleman (Se)	2019/10/30		93	%	80 - 120 80 - 120
			Dissolved Soliver (Ag)	2019/10/30		99	%	80 - 120 80 - 120
			Dissolved Thallium (TI)	2019/10/30		100	%	80 - 120
			Dissolved Uranium (U)	2019/10/30		97	%	80 - 120 80 - 120
			Dissolved Vanadium (V)	2019/10/30		94	%	80 - 120 80 - 120
			Dissolved Valladian (V) Dissolved Zinc (Zn)	2019/10/30		98	%	80 - 120
6407396	ADA	Method Blank	Dissolved Antimony (Sb)	2019/10/30	ND,	50	ug/L	00 - 120
5.0.000		ethet Burn		2010/10/00	RDL=0.50		~0/ -	
			Dissolved Arsenic (As)	2019/10/30	ND,		ug/L	
			· ,		RDL=1.0		<u>,</u>	
			Dissolved Barium (Ba)	2019/10/30	ND,		ug/L	
					RDL=2.0			

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Daten	mit	QC Type	Dissolved Beryllium (Be)	2019/10/30	ND,	Recovery	ug/L	QC LITIILS
			Dissolved berymann (be)	2013/10/30	RDL=0.50		ug/ L	
			Dissolved Boron (B)	2019/10/30	ND,		ug/L	
				, -,	RDL=10		10,	
			Dissolved Cadmium (Cd)	2019/10/30	ND,		ug/L	
					RDL=0.10			
			Dissolved Chromium (Cr)	2019/10/30	ND,		ug/L	
					RDL=5.0			
			Dissolved Cobalt (Co)	2019/10/30	ND,		ug/L	
					RDL=0.50			
			Dissolved Copper (Cu)	2019/10/30	ND,		ug/L	
			Dissolved Load (Dh)	2010/10/20	RDL=1.0 ND,			
			Dissolved Lead (Pb)	2019/10/30	RDL=0.50		ug/L	
			Dissolved Molybdenum (Mo)	2019/10/30	ND,		ug/L	
			Dissolved Molybdendin (Moy	2013/10/30	RDL=0.50		ug/ L	
			Dissolved Nickel (Ni)	2019/10/30	ND,		ug/L	
					RDL=1.0		- 10 -	
			Dissolved Selenium (Se)	2019/10/30	ND,		ug/L	
					RDL=2.0		-	
			Dissolved Silver (Ag)	2019/10/30	ND,		ug/L	
					RDL=0.10			
			Dissolved Sodium (Na)	2019/10/30	ND,		ug/L	
					RDL=100			
			Dissolved Thallium (TI)	2019/10/30	ND,		ug/L	
					RDL=0.050			
			Dissolved Uranium (U)	2019/10/30	ND,		ug/L	
			Disasturad Vanadium (V)	2010/10/20	RDL=0.10			
			Dissolved Vanadium (V)	2019/10/30	ND, RDL=0.50		ug/L	
			Dissolved Zinc (Zn)	2019/10/30	ND,		ug/L	
				2019/10/30	RDL=5.0		ug/L	
6407396	ADA	RPD	Dissolved Antimony (Sb)	2019/10/30	NC		%	20
			Dissolved Arsenic (As)	2019/10/30	2.9		%	20
			Dissolved Barium (Ba)	2019/10/30	0.25		%	20
			Dissolved Beryllium (Be)	2019/10/30	NC		%	20
			Dissolved Boron (B)	2019/10/30	4.6		%	20
			Dissolved Cadmium (Cd)	2019/10/30	NC		%	20
			Dissolved Chromium (Cr)	2019/10/30	NC		%	20
			Dissolved Cobalt (Co)	2019/10/30	6.7		%	20
			Dissolved Copper (Cu)	2019/10/30	NC		%	20
			Dissolved Lead (Pb)	2019/10/30	NC		%	20
			Dissolved Molybdenum (Mo)	2019/10/30	NC		%	20
			Dissolved Nickel (Ni)	2019/10/30	NC		%	20
			Dissolved Selenium (Se)	2019/10/30	NC		%	20
			Dissolved Silver (Ag)	2019/10/30	NC		%	20
			Dissolved Thallium (TI)	2019/10/30	NC		%	20
			Dissolved Uranium (U)	2019/10/30	NC		%	20
			Dissolved Vanadium (V)	2019/10/30	4.7		%	20
	=		Dissolved Zinc (Zn)	2019/10/30	NC		%	20
6410947	LLE	Matrix Spike	Chromium (VI)	2019/10/29		103	%	80 - 120
6410947	LLE	Spiked Blank	Chromium (VI)	2019/10/29		105	%	80 - 120
6410947	LLE	Method Blank	Chromium (VI)	2019/10/29	ND,		ug/L	
					RDL=0.50			

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6410947	LLE	RPD	Chromium (VI)	2019/10/29	NC	necovery	%	20
6411807	JP5	Matrix Spike [LCU527-03]	1,4-Difluorobenzene	2019/10/29		101	%	70 - 130
			4-Bromofluorobenzene	2019/10/29		104	%	70 - 130
			D10-Ethylbenzene	2019/10/29		100	%	70 - 130
			D4-1,2-Dichloroethane	2019/10/29		115	%	70 - 130
			Benzene	2019/10/29		91	%	70 - 130
			Toluene	2019/10/29		90	%	70 - 130
			Ethylbenzene	2019/10/29		102	%	70 - 130
			o-Xylene	2019/10/29		102	%	70 - 130
			p+m-Xylene	2019/10/29		102	%	70 - 130
			F1 (C6-C10)	2019/10/29		99	%	70 - 130
6411807	JP5	Spiked Blank	1,4-Difluorobenzene	2019/10/29		104	%	70 - 130
0411007	JPD	эрікей ыапк	4-Bromofluorobenzene	2019/10/29		104	%	70 - 130
						105		70 - 130
			D10-Ethylbenzene	2019/10/29			%	
			D4-1,2-Dichloroethane	2019/10/29		112	%	70 - 130
			Benzene	2019/10/29		94	%	70 - 130
			Toluene	2019/10/29		91	%	70 - 130
			Ethylbenzene	2019/10/29		103	%	70 - 130
			o-Xylene	2019/10/29		103	%	70 - 130
			p+m-Xylene	2019/10/29		108	%	70 - 130
			F1 (C6-C10)	2019/10/29		96	%	70 - 130
6411807	JP5	Method Blank	1,4-Difluorobenzene	2019/10/29		103	%	70 - 130
			4-Bromofluorobenzene	2019/10/29		102	%	70 - 130
			D10-Ethylbenzene	2019/10/29		98	%	70 - 130
			D4-1,2-Dichloroethane	2019/10/29		110	%	70 - 130
			Benzene	2019/10/29	ND, RDL=0.20		ug/L	
			Toluene	2019/10/29	ND, RDL=0.20		ug/L	
			Ethylbenzene	2019/10/29	ND, RDL=0.20		ug/L	
			o-Xylene	2019/10/29	ND, RDL=0.20		ug/L	
			p+m-Xylene	2019/10/29	ND, RDL=0.40		ug/L	
			Total Xylenes	2019/10/29	ND, RDL=0.40		ug/L	
			F1 (C6-C10)	2019/10/29	ND, RDL=25		ug/L	
			F1 (C6-C10) - BTEX	2019/10/29	ND, RDL=25		ug/L	
6411807	JP5	RPD [LCU527-03]	Benzene	2019/10/29	NC		%	30
			Toluene	2019/10/29	NC		%	30
			Ethylbenzene	2019/10/29	NC		%	30
			o-Xylene	2019/10/29	NC		%	30
			p+m-Xylene	2019/10/29	NC		%	30
			Total Xylenes	2019/10/29	NC		%	30
			F1 (C6-C10)	2019/10/29	NC		%	30
			F1 (C6-C10) - BTEX	2019/10/29	NC		%	30
6411819	MEN	Matrix Spike	Mercury (Hg)	2019/10/29		100	%	75 - 125
6411819 6411819	MEN	Spiked Blank	Mercury (Hg)	2019/10/29		98	%	80 - 120
6411819	MEN	Method Blank	Mercury (Hg)	2019/10/29	ND,	50	ug/L	55 120
1015					RDL=0.1		~0/ L	

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6411819	MEN	RPD	Mercury (Hg)	2019/10/29	NC		%	20
6414362	AS2	Matrix Spike [LCU529-02]	o-Terphenyl	2019/10/30		107	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2019/10/30		127	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2019/10/30		NC	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2019/10/30		114	%	50 - 130
6414362	AS2	Spiked Blank	o-Terphenyl	2019/10/30		108	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2019/10/30		123	%	60 - 130
			F3 (C16-C34 Hydrocarbons)	2019/10/30		121	%	60 - 130
			F4 (C34-C50 Hydrocarbons)	2019/10/30		114	%	60 - 130
6414362	AS2	Method Blank	o-Terphenyl	2019/10/30		96	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2019/10/30	ND, RDL=100		ug/L	
			F3 (C16-C34 Hydrocarbons)	2019/10/30	ND, RDL=200		ug/L	
			F4 (C34-C50 Hydrocarbons)	2019/10/30	ND, RDL=200		ug/L	
6414362	AS2	RPD [LCU530-02]	F2 (C10-C16 Hydrocarbons)	2019/10/30	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2019/10/30	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2019/10/30	NC		%	30
6414365	PP4	Matrix Spike	D10-Anthracene	2019/10/30		105	%	50 - 130
		·	D14-Terphenyl (FS)	2019/10/30		70	%	50 - 130
			D8-Acenaphthylene	2019/10/30		105	%	50 - 130
			Acenaphthene	2019/10/30		103	%	50 - 130
			Acenaphthylene	2019/10/30		106	%	50 - 130
			Anthracene	2019/10/30		102	%	50 - 130
			Benzo(a)anthracene	2019/10/30		110	%	50 - 130
			Benzo(a)pyrene	2019/10/30		103	%	50 - 130
			Benzo(b/j)fluoranthene	2019/10/30		102	%	50 - 130
			Benzo(g,h,i)perylene	2019/10/30		105	%	50 - 130
			Benzo(k)fluoranthene	2019/10/30		99	%	50 - 130
			Chrysene	2019/10/30		102	%	50 - 130
			Dibenz(a,h)anthracene	2019/10/30		102	%	50 - 130
			Fluoranthene	2019/10/30		110	%	50 - 130
			Fluorene	2019/10/30		104	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2019/10/30		109	%	50 - 130
			1-Methylnaphthalene	2019/10/30		113	%	50 - 130
			2-Methylnaphthalene	2019/10/30		104	%	50 - 130
			Naphthalene	2019/10/30		99	%	50 - 130
			Phenanthrene	2019/10/30		107	%	50 - 130
			Pyrene	2019/10/30		109	%	50 - 130
6414365	PP4	Spiked Blank	D10-Anthracene	2019/10/30		109	%	50 - 130
			D14-Terphenyl (FS)	2019/10/30		100	%	50 - 130
			D8-Acenaphthylene	2019/10/30		106	%	50 - 130
			Acenaphthene	2019/10/30		111	%	50 - 130
			Acenaphthylene	2019/10/30		112	%	50 - 130
			Anthracene	2019/10/30		110	%	50 - 130
			Benzo(a)anthracene	2019/10/30		119	%	50 - 130
			Benzo(a)pyrene	2019/10/30		113	%	50 - 130
			Benzo(b/j)fluoranthene	2019/10/30		114	%	50 - 130
			Benzo(g,h,i)perylene	2019/10/30		117	%	50 - 130
			Benzo(k)fluoranthene	2019/10/30		111	%	50 - 130
			Chrysene	2019/10/30		113	%	50 - 130
			Dibenz(a,h)anthracene	2019/10/30		112	%	50 - 130

Bureau Veritas Laboratories 32 Colonnade Rd, Unit #1000, Nepean, ON K2E 7J6 Phone: 613 274-0573 Fax: 613 274-0574 Website: www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Fluoranthene	2019/10/30		120	%	50 - 130
			Fluorene	2019/10/30		111	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2019/10/30		121	%	50 - 130
			1-Methylnaphthalene	2019/10/30		123	%	50 - 130
			2-Methylnaphthalene	2019/10/30		112	%	50 - 130
			Naphthalene	2019/10/30		105	%	50 - 130
			Phenanthrene	2019/10/30		115	%	50 - 130
C 14 13 C F			Pyrene	2019/10/30		118	%	50 - 130
6414365	PP4	Method Blank	D10-Anthracene	2019/10/30		119	%	50 - 130
			D14-Terphenyl (FS)	2019/10/30		101	%	50 - 130
			D8-Acenaphthylene	2019/10/30		110	%	50 - 130
			Acenaphthene	2019/10/30	ND, RDL=0.050		ug/L	
			Acenaphthylene	2019/10/30	ND, RDL=0.050		ug/L	
			Anthracene	2019/10/30	ND, RDL=0.050		ug/L	
			Benzo(a)anthracene	2019/10/30	ND, RDL=0.050		ug/L	
			Benzo(a)pyrene	2019/10/30	ND, RDL=0.010		ug/L	
			Benzo(b/j)fluoranthene	2019/10/30	ND, RDL=0.050		ug/L	
			Benzo(g,h,i)perylene	2019/10/30	ND, RDL=0.050		ug/L	
			Benzo(k)fluoranthene	2019/10/30	ND, RDL=0.050		ug/L	
			Chrysene	2019/10/30	ND, RDL=0.050		ug/L	
			Dibenz(a,h)anthracene	2019/10/30	ND, RDL=0.050		ug/L	
			Fluoranthene	2019/10/30	ND, RDL=0.050		ug/L	
			Fluorene	2019/10/30	ND, RDL=0.050		ug/L	
			Indeno(1,2,3-cd)pyrene	2019/10/30	ND, RDL=0.050		ug/L	
			1-Methylnaphthalene	2019/10/30	ND, RDL=0.050		ug/L	
			2-Methylnaphthalene	2019/10/30	ND, RDL=0.050		ug/L	
			Naphthalene	2019/10/30	ND, RDL=0.050		ug/L	
			Phenanthrene	2019/10/30	ND, RDL=0.030		ug/L	
			Pyrene	2019/10/30	ND, RDL=0.050		ug/L	
6414365	PP4	RPD [LCU530-02]	Acenaphthene	2019/10/30	NC		%	30
			Acenaphthylene	2019/10/30	NC		%	30
			Anthracene	2019/10/30	NC		%	30
			Benzo(a)anthracene	2019/10/30	NC		%	30
			Benzo(a)pyrene	2019/10/30	NC		%	30
			Benzo(b/j)fluoranthene	2019/10/30	NC		%	30
			Benzo(g,h,i)perylene	2019/10/30	NC		%	30

Bureau Veritas Laboratories 32 Colonnade Rd, Unit #1000, Nepean, ON K2E 7J6 Phone: 613 274-0573 Fax: 613 274-0574 Website: www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Pocovoru	UNITS	QC Limits
Dalth	Init	QCType	Benzo(k)fluoranthene	2019/10/30	NC	Recovery	%	30
			Chrysene	2019/10/30	NC		%	30
			Dibenz(a,h)anthracene	2019/10/30	NC		%	30
			Fluoranthene	2019/10/30	NC		%	30
			Fluorene	2019/10/30	NC		%	30
			Indeno(1,2,3-cd)pyrene	2019/10/30	NC		%	30
			1-Methylnaphthalene	2019/10/30	NC		%	30
			2-Methylnaphthalene	2019/10/30	NC		%	30
			Naphthalene	2019/10/30	NC		%	30
			Phenanthrene	2019/10/30	NC		%	30
			Pyrene	2019/10/30	NC		%	30
6414552	SVS	Matrix Spike	Decachlorobiphenyl	2019/10/30	Ne	86	%	60 - 130
0414552	575	Matrix Spike	Aroclor 1260	2019/10/30		103	%	60 - 130
			Total PCB	2019/10/30		103	%	60 - 130
6414552	SVS	Spiked Blank	Decachlorobiphenyl	2019/10/30		69	%	60 - 130
0414552	343	Spikeu blatik	Aroclor 1260	2019/10/30		74	%	60 - 130 60 - 130
			Total PCB	2019/10/30		74	%	60 - 130 60 - 130
6414552	SVS	Method Blank	Decachlorobiphenyl	2019/10/30		62	%	60 - 130 60 - 130
0414552	202				ND,	02		00 - 130
			Aroclor 1242	2019/10/30	RDL=0.05		ug/L	
			Aroclor 1248	2019/10/30	ND, RDL=0.05		ug/L	
			Aroclor 1254	2019/10/30	ND, RDL=0.05		ug/L	
			Aroclor 1260	2019/10/30	ND, RDL=0.05		ug/L	
			Total PCB	2019/10/30	ND, RDL=0.05		ug/L	
6414552	SVS	RPD	Aroclor 1242	2019/10/30	NC		%	30
0111332	515		Aroclor 1248	2019/10/30	NC		%	30
			Aroclor 1254	2019/10/30	NC		%	30
			Aroclor 1260	2019/10/30	NC		%	30
			Total PCB	2019/10/30	NC		%	40
6414659	KLI	Matrix Spike [LCU527-02]	o-Terphenyl	2019/10/31		113	%	60 - 130
		······································	F2 (C10-C16 Hydrocarbons)	2019/10/31		117	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2019/10/31		NC	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2019/10/31		125	%	50 - 130
6414659	KLI	Spiked Blank	o-Terphenyl	2019/10/31		108	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2019/10/31		110	%	60 - 130
			F3 (C16-C34 Hydrocarbons)	2019/10/31		121	%	60 - 130
			F4 (C34-C50 Hydrocarbons)	2019/10/31		117	%	60 - 130
6414659	KLI	Method Blank	o-Terphenyl	2019/10/31		105	%	60 - 130
0.12.0005			F2 (C10-C16 Hydrocarbons)	2019/10/31	ND, RDL=100	100	ug/L	00 100
			F3 (C16-C34 Hydrocarbons)	2019/10/31	ND, RDL=200		ug/L	
			F4 (C34-C50 Hydrocarbons)	2019/10/31	ND,		ug/L	
6414650	V U		F2 (C10 C16 Hudrossethers)	2010/10/21	RDL=200		0/	20
6414659	KLI	RPD [LCU528-02]	F2 (C10-C16 Hydrocarbons)	2019/10/31	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2019/10/31	NC		%	30
C 4 2 4 7 4 7		Mately Calles Front 500, 503	F4 (C34-C50 Hydrocarbons)	2019/10/31	NC		%	30
6424745	ADA	Matrix Spike [LCU529-08]	Dissolved Antimony (Sb)	2019/11/05		104	%	80 - 120
			Dissolved Arsenic (As)	2019/11/05		99	%	80 - 120

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC		007						
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Barium (Ba)	2019/11/05		101	%	80 - 120
			Dissolved Beryllium (Be)	2019/11/05		104	%	80 - 120
			Dissolved Boron (B)	2019/11/05		100	%	80 - 120
			Dissolved Cadmium (Cd)	2019/11/05		101	%	80 - 120
			Dissolved Chromium (Cr)	2019/11/05		94	%	80 - 120
			Dissolved Cobalt (Co)	2019/11/05		96	%	80 - 120
			Dissolved Copper (Cu)	2019/11/05		101	%	80 - 120
			Dissolved Lead (Pb)	2019/11/05		93	%	80 - 120
			Dissolved Molybdenum (Mo)	2019/11/05		102	%	80 - 120
			Dissolved Nickel (Ni)	2019/11/05		93	%	80 - 120
			Dissolved Selenium (Se)	2019/11/05		97	%	80 - 120
			Dissolved Silver (Ag)	2019/11/05		95	%	80 - 120
			Dissolved Sodium (Na)	2019/11/05		NC	%	80 - 120
			Dissolved Thallium (TI)	2019/11/05		96	%	80 - 120
			Dissolved Uranium (U)	2019/11/05		101	%	80 - 120
			Dissolved Vanadium (V)	2019/11/05		97	%	80 - 120
			Dissolved Zinc (Zn)	2019/11/05		96	%	80 - 120
6424745	ADA	Spiked Blank	Dissolved Antimony (Sb)	2019/11/05		99	%	80 - 120
			Dissolved Arsenic (As)	2019/11/05		97	%	80 - 120
			Dissolved Barium (Ba)	2019/11/05		98	%	80 - 120
			Dissolved Beryllium (Be)	2019/11/05		102	%	80 - 120
			Dissolved Boron (B)	2019/11/05		100	%	80 - 120
			Dissolved Cadmium (Cd)	2019/11/05		98	%	80 - 120
			Dissolved Chromium (Cr)	2019/11/05		93	%	80 - 120
			Dissolved Cobalt (Co)	2019/11/05		99	%	80 - 120
			Dissolved Copper (Cu)	2019/11/05		99	%	80 - 120
			Dissolved Lead (Pb)	2019/11/05		95	%	80 - 120
			Dissolved Molybdenum (Mo)	2019/11/05		96	%	80 - 120
			Dissolved Nickel (Ni)	2019/11/05		94	%	80 - 120
			Dissolved Selenium (Se)	2019/11/05		98	%	80 - 120
			Dissolved Silver (Ag)	2019/11/05		93	%	80 - 120
			Dissolved Sodium (Na)	2019/11/05		96	%	80 - 120
			Dissolved Thallium (TI)	2019/11/05		97 100	%	80 - 120
			Dissolved Uranium (U)	2019/11/05		100	%	80 - 120
			Dissolved Vanadium (V)	2019/11/05		95	%	80 - 120
C 42 47 45		Mastha al Diavela	Dissolved Zinc (Zn)	2019/11/05	ND	98	%	80 - 120
6424745	ADA	Method Blank	Dissolved Antimony (Sb)	2019/11/05	ND, RDL=0.50		ug/L	
			Dissolved Arsenic (As)	2019/11/05	ND, RDL=1.0		ug/L	
			Dissolved Barium (Ba)	2019/11/05	ND, RDL=2.0		ug/L	
			Dissolved Beryllium (Be)	2019/11/05	ND, RDL=0.50		ug/L	
			Dissolved Boron (B)	2019/11/05	ND, RDL=10		ug/L	
			Dissolved Cadmium (Cd)	2019/11/05	ND, RDL=0.10		ug/L	
			Dissolved Chromium (Cr)	2019/11/05	ND, RDL=5.0		ug/L	
			Dissolved Cobalt (Co)	2019/11/05	ND, RDL=0.50		ug/L	

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Dissolved Copper (Cu)	2019/11/05	ND,		ug/L	
					RDL=1.0			
			Dissolved Lead (Pb)	2019/11/05	ND,		ug/L	
					RDL=0.50			
			Dissolved Molybdenum (Mo)	2019/11/05	ND, RDL=0.50		ug/L	
			Dissolved Nickel (Ni)	2019/11/05	NDL=0.50 ND,		ug/L	
				2019/11/05	RDL=1.0		ug/L	
			Dissolved Selenium (Se)	2019/11/05	ND,		ug/L	
				2013/11/03	RDL=2.0		46/ L	
			Dissolved Silver (Ag)	2019/11/05	ND,		ug/L	
				, ,	RDL=0.10		· 0,	
			Dissolved Sodium (Na)	2019/11/05	ND,		ug/L	
					RDL=100			
			Dissolved Thallium (Tl)	2019/11/05	ND,		ug/L	
					RDL=0.050			
			Dissolved Uranium (U)	2019/11/05	ND,		ug/L	
					RDL=0.10			
			Dissolved Vanadium (V)	2019/11/05	ND,		ug/L	
				2010/11/05	RDL=0.50		4	
			Dissolved Zinc (Zn)	2019/11/05	ND, RDL=5.0		ug/L	
424745	ADA	RPD [LCU529-08]	Dissolved Antimony (Sb)	2019/11/05	NC		%	20
424743	ADA		Dissolved Arsenic (As)	2019/11/05	9.5		%	20
			Dissolved Barium (Ba)	2019/11/05	1.7		%	20
			Dissolved Beryllium (Be)	2019/11/05	NC		%	20
			Dissolved Boron (B)	2019/11/05	0.74		%	20
			Dissolved Cadmium (Cd)	2019/11/05	NC		%	20
			Dissolved Chromium (Cr)	2019/11/05	NC		%	20
			Dissolved Cobalt (Co)	2019/11/05	1.1		%	20
			Dissolved Copper (Cu)	2019/11/05	NC		%	20
			Dissolved Lead (Pb)	2019/11/05	NC		%	20
			Dissolved Molybdenum (Mo)	2019/11/05	1.0		%	20
			Dissolved Nickel (Ni)	2019/11/05	4.9		%	20
			Dissolved Selenium (Se)	2019/11/05	NC		%	20
			Dissolved Silver (Ag)	2019/11/05	NC		%	20
			Dissolved Sodium (Na)	2019/11/05	0.68		%	20
			Dissolved Thallium (Tl)	2019/11/05	NC		%	20
			Dissolved Uranium (U)	2019/11/05	2.7		%	20
			Dissolved Vanadium (V)	2019/11/05	2.5		%	20
			Dissolved Zinc (Zn)	2019/11/05	NC		%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Page 21 of 22

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: CO738.01 Site Location: 90 MAPLE GROVE Your C.O.C. #: 742862-01-01, 742862-02-01

Attention: Greg Sabourin

Terrapex Environmental Ltd 1-20 Gurdwara Rd. Ottawa, ON CANADA K2E 8B3

> Report Date: 2019/10/29 Report #: R5942575 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9T4207

Received: 2019/10/18, 17:00

Sample Matrix: Soil # Samples Received: 14

ice
70D m
na. Prot. 2011
E3015 m
E3530 v1 m
50/7199 m
HC-CWS m
CWS m
CWS m
HC-CWS m
20B m
2nd ed 51.2 m
70D m
70D m
32A m
15 D m
2nd ed m
10C
2n 70 70 32 45 2n

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope

Your Project #: CO738.01 Site Location: 90 MAPLE GROVE Your C.O.C. #: 742862-01-01, 742862-02-01

Attention: Greg Sabourin

Terrapex Environmental Ltd 1-20 Gurdwara Rd. Ottawa, ON CANADA K2E 8B3

> Report Date: 2019/10/29 Report #: R5942575 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9T4207

Received: 2019/10/18, 17:00

dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Laboratories Mississauga

(2) Soils are reported on a dry weight basis unless otherwise specified.

(3) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.
(4) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alisha Williamson, Project Manager Email: Alisha.Williamson@bvlabs.com Phone# (613)274-0573

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF ANALYSES OF SOIL

BV Labs ID			LBU	415			LBU	416			LBU	417			
Sampling Date			2019/2	10/16			2019/	10/16			2019/	10/16			
			09:	:10			09	:45				:30			
COC Number			742862	-01-01			742862	2-01-01			742862	2-01-01			
		UNITS	MW1	01-3	RDL	QC Batc	h BH1	02-2	RDL	QC Batch	MW1	L03-6	RDL	QC Bat	ch
Calculated Paramete	ers														
Sodium Adsorption R	latio	N/A					0.	52		6395654					
Inorganics															
Conductivity		mS/cm					0.0)47	0.002	6403572					
Moisture		%	2	7	1.0	639799	8 2	4	1.0	6397998	2	6	1.0	63972	66
Available (CaCl2) pH		рН					6.9	96		6401267	7.8	88		64012	67
WAD Cyanide (Free)		ug/g					N	D	0.01	6403761					
Miscellaneous Paran	neters						•								
Grain Size		%									FII	NE	N/A	64024	36
Sieve - #200 (<0.075r	nm)	%									7	9	1	64024	36
Sieve - #200 (>0.075r	nm)	%									2	1	1	64024	36
QC Batch = Quality C ND = Not detected N/A = Not Applicable		tcn													
abs ID	1	LBU	418	LBL	J419			LBU	J420	LBU42	21	LBU42	22		
										LBU42 2019/10					
abs ID pling Date		2019/	418 10/16 :05	2019/	J419 /10/16 3:15			2019/	J420 /10/16 I:00	LBU42 2019/10 13:5	0/16	LBU42 2019/10 16:0	0/16		
		2019/	'10/16 :05	2019/	/10/16 3:15			2019/ 14	/10/16	2019/10)/16 5	2019/10	0/16 0		
pling Date	UNITS	2019/ 13 742862	'10/16 :05	2019/ 13 74286	/10/16 3:15	1	QC Batch	2019/ 14 742862	/10/16 :00	2019/10 13:5)/16 5)1-01 7	2019/10 16:0	0/16 0 01-01	RDL	QC Ba
pling Date	UNITS	2019/ 13 742862	/10/16 :05 2-01-01	2019/ 13 74286	/10/16 3:15 2-01-0	1	QC Batch	2019/ 14 742862	/10/16 1:00 2-01-01	2019/10 13:5 742862-0)/16 5)1-01 7	2019/10 16:0 242862-0	0/16 0 01-01		QC Ba
pling Date Number	UNITS	2019/ 13 742862	/10/16 :05 2-01-01	2019/ 13 74286	/10/16 3:15 2-01-0	1	QC Batch	2019/ 14 74286 MW	/10/16 1:00 2-01-01	2019/10 13:5 742862-0)/16 5)1-01 7	2019/10 16:0 242862-0	0/16 0 01-01 5-1		
pling Date Number ulated Parameters		2019/ 13 742862	/10/16 :05 2-01-01	2019/ 13 74286	/10/16 3:15 2-01-0	1	QC Batch	2019/ 14 74286 MW	/10/16 1:00 2-01-01 105-5	2019/10 13:5 742862-0 MW10)/16 5)1-01 7	2019/10 16:0 242862-0 BH106	0/16 0 01-01 5-1		QC Ba 6395
pling Date Number ulated Parameters um Adsorption Ratio		2019/ 13 742862	/10/16 :05 2-01-01	2019/ 13 74286	/10/16 3:15 2-01-0	1	QC Batch	2019/ 14 742862 MW	/10/16 1:00 2-01-01 105-5	2019/10 13:5 742862-0 MW10	D/16 5 D1-01 7 5-1	2019/10 16:0 242862-0 BH106	0/16 0 01-01 5-1		6395
pling Date Number ulated Parameters um Adsorption Ratio ganics	N/A	2019/ 13 742862 MW1	/10/16 :05 2-01-01	2019/ 13 742862 MW1	/10/16 3:15 2-01-0	1 RDL	QC Batch 6397998	2019/ 14 742862 MW 2 0.	/10/16 1:00 2-01-01 105-5 .9	2019/10 13:5 742862-0 MW10 1.3	D/16 5 D1-01 7 5-1	2019/10 16:0 242862-0 BH106 1.4	0/16 0 01-01 5-1	RDL	6395 6403
pling Date Number ulated Parameters um Adsorption Ratio ganics ductivity	N/A mS/cm	2019/ 13 742862 MW1	(10/16 :05 2-01-01 104-6	2019/ 13 742862 MW1	/10/16 3:15 2-01-01 .04-16	1 RDL	·	2019/ 14 742860 MW 2 2 0.	(10/16 1:00 2-01-01 105-5 .9 31	2019/10 13:5 742862-0 MW10 1.3)/16 5)1-01 7 5-1	2019/10 16:0 242862-0 BH106 1.4 0.12	D/16 0 D1-01 5-1	RDL	6395

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

RESULTS OF ANALYSES OF SOIL

		LI	3U423				LBU424			LBU42	5		
ampling Date			9/10/16			2	2019/10/16			2019/10			
			16:05				16:20			16:40			
OC Number			62-01-01				42862-01-01			742862-0			
	UNITS	BI	1106-2	RDL	QC B	Batch	BH107-1	QC Ba	atch	BH108	-2	RDL	QC B
alculated Parameters													
odium Adsorption Ratio	N/A						1.1	6395	654	7.9			6395
norganics													
onductivity	mS/cm						0.21	6403	572	0.38		0.002	6403
loisture	%						4.6	6397	266	13		1.0	6397
vailable (CaCl2) pH	рН		7.80		6401	1267	7.87	6401	267	7.80			6401
VAD Cyanide (Free)	ug/g						ND	6403	761	ND		0.01	6403
Aiscellaneous Parameters													
Grain Size	%		FINE	N/A	6402	2436							
ieve - #200 (<0.075mm)	%		68	1	6402	2436							
ieve - #200 (>0.075mm)	%		32	1	6402	2436							
I/A = Not Applicable			1 BU42	5			I BU42	26		311427			1
BV Labs ID Sampling Date			LBU42 2019/10 16:40	/16			LBU42 2019/10 17:0	0/16	201	3U427 9/10/16 17:15			
BV Labs ID Sampling Date			2019/10 16:40	/16)			2019/10 17:0	0/16 0	201	9/10/16 17:15			
BV Labs ID		NITS	2019/10	/16) 2-01 -2	RDL	QC Bat	2019/10 17:0 742862-0	0/16 0 02-01	201 7428	9/10/16	RDL	QCI	Batch
BV Labs ID Sampling Date		NITS	2019/10 16:40 742862-0 BH108	/16) 2-01 -2	RDL	QC Bate	2019/10 17:0 742862-0	0/16 0 02-01	201 7428	9/10/16 17:15 62-02-01	RDL	QCI	Batch
BV Labs ID Sampling Date COC Number		NITS	2019/10 16:40 742862-0 BH108	/16) 2-01 -2	RDL	QC Bat	2019/10 17:0 742862-0	0/16 0 02-01	201 7428	9/10/16 17:15 62-02-01	RDL		Batch
BV Labs ID Sampling Date COC Number Calculated Parameters			2019/10 16:40 742862-0 BH108	/16) 2-01 -2	RDL	QC Bat	2019/10 17:0 742862-0 ch BH109	0/16 0 02-01	201 7428	9/10/16 17:15 662-02-01 109-12	RDL		
BV Labs ID Sampling Date COC Number Calculated Parameters Sodium Adsorption Ration	0 0		2019/10 16:40 742862-0 BH108	/16) 2-01 -2	RDL	QC Bat	2019/10 17:0 742862-0 ch BH109	0/16 0 02-01	201 7428 BH	9/10/16 17:15 662-02-01 109-12	RDL	639	
BV Labs ID Sampling Date COC Number Calculated Parameters Sodium Adsorption Ration Inorganics	0 0	N/A	2019/10 16:40 742862-0 BH108	/16) 2-01 -2	RDL	QC Bat	2019/10 17:0 742862-0 ch BH109 27	0/16 0 02-01	201 7428 BH	9/10/16 17:15 62-02-01 109-12 22	 	639 2 640	5654
BV Labs ID Sampling Date COC Number Calculated Parameters Sodium Adsorption Rati Inorganics Conductivity	o M	N/A S/cm	2019/10 16:40 742862-0 BH108	/16) 2-01 -2	RDL	QC Bat	2019/10 17:0 742862-0 ch BH109 27 27 1.0 24)/16 0)2-01)-2	201 7428 BH	9/10/16 17:15 62-02-01 109-12 22 0.95	0.002	639 2 640 639	5654 3572
BV Labs ID Sampling Date COC Number Calculated Parameters Sodium Adsorption Rati Inorganics Conductivity Moisture	o N	N/A S/cm %	2019/10 16:40 742862-0 BH108 Lab-Du	/16) 2-01 -2	RDL		2019/10 17:0 742862-0 ch BH109 27 27 1.0 24 57 7.90)/16 0)2-01)-2	201 7428 BH	9/10/16 17:15 62-02-01 109-12 22 0.95 17	0.002	639 2 640 639 640	5654 3572 7998
BV Labs ID Sampling Date COC Number Colculated Parameters Sodium Adsorption Rati Inorganics Conductivity Moisture Available (CaCl2) pH	1 0 m: u	V/A S/cm % pH g/g	2019/10 16:40 742862-0 BH108 Lab-Du	/16) 2-01 -2		640126	2019/10 17:0 742862-0 ch BH109 27 27 1.0 24 57 7.90)/16 0)2-01)-2	201 7428 BH	9/10/16 17:15 62-02-01 109-12 22 0.95 17 7.92	0.002	639 2 640 639 640	5654 3572 7998 1267
BV Labs ID Sampling Date COC Number Colculated Parameters Sodium Adsorption Rati Inorganics Conductivity Moisture Available (CaCl2) pH WAD Cyanide (Free)	o M m u tion Limi	V/A S/cm % pH Ig/g t	2019/10 16:40 742862-0 BH108 Lab-Du	/16) 2-01 -2		640126	2019/10 17:0 742862-0 ch BH109 27 27 1.0 24 57 7.90)/16 0)2-01)-2	201 7428 BH	9/10/16 17:15 62-02-01 109-12 22 0.95 17 7.92	0.002	639 2 640 639 640	5654 3572 7998 1267
BV Labs ID Sampling Date COC Number Calculated Parameters Sodium Adsorption Ratii Inorganics Conductivity Moisture Available (CaCl2) pH WAD Cyanide (Free) RDL = Reportable Detect	o M m u tion Limi crol Batch	N/A S/cm % pH Ig/g t	2019/10 16:40 742862-0 BH108 Lab-Du 7.80 ND	/16) 2-01 -2		640126	2019/10 17:0 742862-0 ch BH109 27 27 1.0 24 57 7.90)/16 0)2-01)-2	201 7428 BH	9/10/16 17:15 62-02-01 109-12 22 0.95 17 7.92	0.002	639 2 640 639 640	5654 3572 7998 1267

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

BV Labs ID		LBU416	LBU420	LBU421	LBU422	LBU424		
Sampling Date		2019/10/16	2019/10/16	2019/10/16	2019/10/16	2019/10/16		
		09:45	14:00	13:55	16:00	16:20		
COC Number		742862-01-01	742862-01-01	742862-01-01	742862-01-01	742862-01-01		
	UNITS	BH102-2	MW105-5	MW105-1	BH106-1	BH107-1	RDL	QC Batch
Inorganics								
Chromium (VI)	ug/g	ND	ND	ND	ND	ND	0.2	6398567
Metals				•	•	•		
Hot Water Ext. Boron (B)	ug/g	0.058	0.063	0.063	ND	0.16	0.050	6399752
Acid Extractable Antimony (Sb)	ug/g	ND	ND	ND	ND	ND	0.20	6399619
Acid Extractable Arsenic (As)	ug/g	1.1	1.2	ND	ND	ND	1.0	6399619
Acid Extractable Barium (Ba)	ug/g	260	98	56	46	120	0.50	6399619
Acid Extractable Beryllium (Be)	ug/g	0.83	0.36	0.27	0.21	ND	0.20	6399619
Acid Extractable Boron (B)	ug/g	5.2	ND	ND	ND	ND	5.0	6399619
Acid Extractable Cadmium (Cd)	ug/g	0.10	ND	ND	ND	ND	0.10	6399619
Acid Extractable Chromium (Cr)	ug/g	59	25	21	14	5.1	1.0	6399619
Acid Extractable Cobalt (Co)	ug/g	17	7.1	4.8	3.8	1.6	0.10	6399619
Acid Extractable Copper (Cu)	ug/g	32	14	5.8	8.6	3.1	0.50	6399619
Acid Extractable Lead (Pb)	ug/g	7.2	3.6	2.9	3.0	7.0	1.0	6399619
Acid Extractable Molybdenum (Mo)	ug/g	ND	ND	ND	ND	ND	0.50	6399619
Acid Extractable Nickel (Ni)	ug/g	33	14	10	8.4	4.4	0.50	6399619
Acid Extractable Selenium (Se)	ug/g	ND	ND	ND	ND	ND	0.50	6399619
Acid Extractable Silver (Ag)	ug/g	ND	ND	ND	ND	ND	0.20	6399619
Acid Extractable Thallium (Tl)	ug/g	0.32	0.12	0.10	0.14	0.27	0.050	6399619
Acid Extractable Uranium (U)	ug/g	0.64	1.6	0.44	0.37	0.33	0.050	6399619
Acid Extractable Vanadium (V)	ug/g	80	39	30	26	7.3	5.0	6399619
Acid Extractable Zinc (Zn)	ug/g	93	38	28	19	6.6	5.0	6399619
Acid Extractable Mercury (Hg)	ug/g	ND	ND	ND	ND	ND	0.050	6399619
RDL = Reportable Detection Limit				•				
QC Batch = Quality Control Batch								
ND = Not detected								

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

BV Labs ID		LBU424			LBU425	LBU426	LBU427		
Sampling Data		2019/10/16			2019/10/16	2019/10/16	2019/10/16		
Sampling Date		16:20			16:40	17:00	17:15		
COC Number		742862-01-01			742862-02-01	742862-02-01	742862-02-01		
	UNITS	BH107-1 Lab-Dup	RDL	QC Batch	BH108-2	BH109-2	BH109-12	RDL	QC Batch
Inorganics									
Chromium (VI)	ug/g				ND	ND	ND	0.2	6398567
Metals		•			•	•	•		
Hot Water Ext. Boron (B)	ug/g	0.17	0.050	6399752	0.089	0.089	0.050	0.050	6399752
Acid Extractable Antimony (Sb)	ug/g				ND	ND	ND	0.20	6399619
Acid Extractable Arsenic (As)	ug/g				1.4	1.9	1.5	1.0	6399619
Acid Extractable Barium (Ba)	ug/g				49	130	78	0.50	6399619
Acid Extractable Beryllium (Be)	ug/g				0.23	0.44	0.31	0.20	6399619
Acid Extractable Boron (B)	ug/g				ND	ND	ND	5.0	6399619
Acid Extractable Cadmium (Cd)	ug/g				ND	ND	ND	0.10	6399619
Acid Extractable Chromium (Cr)	ug/g				18	31	20	1.0	6399619
Acid Extractable Cobalt (Co)	ug/g				4.0	8.7	6.0	0.10	6399619
Acid Extractable Copper (Cu)	ug/g				11	19	14	0.50	6399619
Acid Extractable Lead (Pb)	ug/g				2.5	4.6	3.4	1.0	6399619
Acid Extractable Molybdenum (Mo)	ug/g				0.78	0.60	ND	0.50	6399619
Acid Extractable Nickel (Ni)	ug/g				9.4	19	13	0.50	6399619
Acid Extractable Selenium (Se)	ug/g				ND	ND	ND	0.50	6399619
Acid Extractable Silver (Ag)	ug/g				ND	ND	ND	0.20	6399619
Acid Extractable Thallium (Tl)	ug/g				0.078	0.14	0.095	0.050	6399619
Acid Extractable Uranium (U)	ug/g				0.39	0.51	0.43	0.050	6399619
Acid Extractable Vanadium (V)	ug/g				28	47	35	5.0	6399619
Acid Extractable Zinc (Zn)	ug/g				18	44	30	5.0	6399619
Acid Extractable Mercury (Hg)	ug/g				ND	ND	ND	0.050	6399619
RDL = Reportable Detection Limit	•								
QC Batch = Quality Control Batch									
Lab-Dup = Laboratory Initiated Duplic	cate								

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

BV Labs ID		LBU416			LBU416			LBU421		
Sampling Date		2019/10/16			2019/10/16			2019/10/16		
		09:45			09:45			13:55		
COC Number		742862-01-01			742862-01-01			742862-01-01		
	UNITS	BH102-2	RDL	QC Batch	BH102-2 Lab-Dup	RDL	QC Batch	MW105-1	RDL	QC Batch
Calculated Parameters	-			•	·					
Methylnaphthalene, 2-(1-)	ug/g	ND	0.0071	6395653				ND	0.0071	6395653
Polyaromatic Hydrocarbons		•								
Acenaphthene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
Acenaphthylene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
Anthracene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
Benzo(a)anthracene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
Benzo(a)pyrene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
Benzo(b/j)fluoranthene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
Benzo(g,h,i)perylene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
Benzo(k)fluoranthene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
Chrysene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
Dibenz(a,h)anthracene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
Fluoranthene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
Fluorene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
Indeno(1,2,3-cd)pyrene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
1-Methylnaphthalene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
2-Methylnaphthalene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
Naphthalene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
Phenanthrene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
Pyrene	ug/g	ND	0.0050	6403592	ND	0.0050	6403592	ND	0.0050	6405212
Surrogate Recovery (%)										
D10-Anthracene	%	97		6403592	106		6403592	106		6405212
D14-Terphenyl (FS)	%	83		6403592	89		6403592	108		6405212
D8-Acenaphthylene	%	96		6403592	100		6403592	101		6405212

Lab-Dup = Laboratory Initiated Duplicate

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

BV Labs ID		LBU422	LBU424	LBU425	LBU426		LBU427		
Sampling Date		2019/10/16	2019/10/16	2019/10/16	2019/10/16		2019/10/16		
		16:00	16:20	16:40	17:00		17:15		
COC Number		742862-01-01	742862-01-01	742862-02-01	742862-02-01		742862-02-01		
	UNITS	BH106-1	BH107-1	BH108-2	BH109-2	QC Batch	BH109-12	RDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/g	ND	ND	ND	ND	6395653	ND	0.0071	6395653
Polyaromatic Hydrocarbons									
Acenaphthene	ug/g	ND	ND	ND	ND	6403592	ND	0.0050	6405212
Acenaphthylene	ug/g	ND	ND	ND	ND	6403592	ND	0.0050	6405212
Anthracene	ug/g	ND	ND	ND	ND	6403592	ND	0.0050	6405212
Benzo(a)anthracene	ug/g	ND	ND	ND	ND	6403592	ND	0.0050	6405212
Benzo(a)pyrene	ug/g	ND	ND	ND	ND	6403592	ND	0.0050	6405212
Benzo(b/j)fluoranthene	ug/g	ND	ND	ND	ND	6403592	ND	0.0050	6405212
Benzo(g,h,i)perylene	ug/g	ND	ND	ND	ND	6403592	ND	0.0050	6405212
Benzo(k)fluoranthene	ug/g	ND	ND	ND	ND	6403592	ND	0.0050	6405212
Chrysene	ug/g	ND	ND	ND	ND	6403592	ND	0.0050	6405212
Dibenz(a,h)anthracene	ug/g	ND	ND	ND	ND	6403592	ND	0.0050	6405212
Fluoranthene	ug/g	ND	ND	ND	ND	6403592	ND	0.0050	6405212
Fluorene	ug/g	ND	ND	ND	ND	6403592	ND	0.0050	6405212
Indeno(1,2,3-cd)pyrene	ug/g	ND	ND	ND	ND	6403592	ND	0.0050	6405212
1-Methylnaphthalene	ug/g	ND	ND	ND	ND	6403592	ND	0.0050	6405212
2-Methylnaphthalene	ug/g	ND	0.0069	ND	ND	6403592	ND	0.0050	6405212
Naphthalene	ug/g	ND	ND	ND	ND	6403592	ND	0.0050	6405212
Phenanthrene	ug/g	ND	0.0054	ND	ND	6403592	ND	0.0050	6405212
Pyrene	ug/g	ND	ND	ND	ND	6403592	ND	0.0050	6405212
Surrogate Recovery (%)									
D10-Anthracene	%	96	91	100	103	6403592	106		6405212
D14-Terphenyl (FS)	%	83	79	87	88	6403592	110		6405212
D8-Acenaphthylene	%	96	81	99	101	6403592	98		6405212
RDL = Reportable Detection QC Batch = Quality Control B ND = Not detected									

PETROLEUM HYDROCARBONS (CCME)

BV Labs ID		LBU415		LBU416			LBU416		
Sampling Date		2019/10/16		2019/10/16			2019/10/16		
Sampling Date		09:10		09:45			09:45		
COC Number		742862-01-01		742862-01-01			742862-01-01		
	UNITS	MW101-3	QC Batch	BH102-2	RDL	QC Batch	BH102-2 Lab-Dup	RDL	QC Batch
BTEX & F1 Hydrocarbons									
Benzene	ug/g	ND	6404368	ND	0.020	6404368			
Toluene	ug/g	ND	6404368	ND	0.020	6404368			
Ethylbenzene	ug/g	ND	6404368	ND	0.020	6404368			
o-Xylene	ug/g	ND	6404368	ND	0.020	6404368			
p+m-Xylene	ug/g	ND	6404368	ND	0.040	6404368			
Total Xylenes	ug/g	ND	6404368	ND	0.040	6404368			
F1 (C6-C10)	ug/g	ND	6404368	ND	10	6404368			
F1 (C6-C10) - BTEX	ug/g	ND	6404368	ND	10	6404368			
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	ND	6403942	ND	10	6403584	ND	10	6403584
F3 (C16-C34 Hydrocarbons)	ug/g	ND	6403942	ND	50	6403584	ND	50	6403584
F4 (C34-C50 Hydrocarbons)	ug/g	ND	6403942	ND	50	6403584	ND	50	6403584
Reached Baseline at C50	ug/g	Yes	6403942	Yes		6403584	Yes		6403584
Surrogate Recovery (%)									
1,4-Difluorobenzene	%	98	6404368	100		6404368			
4-Bromofluorobenzene	%	104	6404368	105		6404368			
D10-Ethylbenzene	%	96	6404368	96		6404368			
D4-1,2-Dichloroethane	%	102	6404368	103		6404368			
o-Terphenyl	%	82	6403942	101		6403584	102		6403584
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Du									
ND = Not detected	apricate								

PETROLEUM HYDROCARBONS (CCME)

BV Labs ID		LBU417	LBU418	LBU419	LBU420		LBU422		
Compling Data		2019/10/16	2019/10/16	2019/10/16	2019/10/16		2019/10/16		
Sampling Date		10:30	13:05	13:15	14:00		16:00		
COC Number		742862-01-01	742862-01-01	742862-01-01	742862-01-01		742862-01-01		
	UNITS	MW103-6	MW104-6	MW104-16	MW105-5	QC Batch	BH106-1	RDL	QC Batch
BTEX & F1 Hydrocarbons									
Benzene	ug/g	ND	ND	ND	ND	6404368	ND	0.020	6404368
Toluene	ug/g	ND	ND	ND	ND	6404368	ND	0.020	6404368
Ethylbenzene	ug/g	ND	ND	ND	ND	6404368	ND	0.020	6404368
o-Xylene	ug/g	ND	ND	ND	ND	6404368	ND	0.020	6404368
p+m-Xylene	ug/g	ND	ND	ND	ND	6404368	ND	0.040	6404368
Total Xylenes	ug/g	ND	ND	ND	ND	6404368	ND	0.040	6404368
F1 (C6-C10)	ug/g	ND	ND	ND	ND	6404368	ND	10	6404368
F1 (C6-C10) - BTEX	ug/g	ND	ND	ND	ND	6404368	ND	10	6404368
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	ND	ND	ND	ND	6403942	ND	10	6403584
F3 (C16-C34 Hydrocarbons)	ug/g	ND	ND	ND	ND	6403942	ND	50	6403584
F4 (C34-C50 Hydrocarbons)	ug/g	ND	ND	ND	ND	6403942	ND	50	6403584
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes	6403942	Yes		6403584
Surrogate Recovery (%)	•								
1,4-Difluorobenzene	%	99	101	99	98	6404368	99		6404368
4-Bromofluorobenzene	%	103	105	103	104	6404368	104		6404368
D10-Ethylbenzene	%	87	98	91	92	6404368	97		6404368
D4-1,2-Dichloroethane	%	102	104	103	101	6404368	102		6404368
o-Terphenyl	%	90	84	88	87	6403942	100		6403584

QC Batch = Quality Control Batch

ND = Not detected

PETROLEUM HYDROCARBONS (CCME)

BV Labs ID		LBU424			LBU425			LBU426		
Sampling Data		2019/10/16			2019/10/16			2019/10/16		
Sampling Date		16:20			16:40			17:00		
COC Number		742862-01-01			742862-02-01			742862-02-01		
	UNITS	BH107-1	RDL	QC Batch	BH108-2	RDL	QC Batch	BH109-2	RDL	QC Batch
BTEX & F1 Hydrocarbons										
Benzene	ug/g	ND	0.020	6404368	ND	0.020	6404368	ND	0.020	6404368
Toluene	ug/g	ND	0.020	6404368	ND	0.020	6404368	ND	0.020	6404368
Ethylbenzene	ug/g	ND	0.020	6404368	ND	0.020	6404368	ND	0.020	6404368
o-Xylene	ug/g	ND	0.020	6404368	ND	0.020	6404368	ND	0.020	6404368
p+m-Xylene	ug/g	ND	0.040	6404368	ND	0.040	6404368	ND	0.040	6404368
Total Xylenes	ug/g	ND	0.040	6404368	ND	0.040	6404368	ND	0.040	6404368
F1 (C6-C10)	ug/g	ND	10	6404368	ND	10	6404368	ND	10	6404368
F1 (C6-C10) - BTEX	ug/g	ND	10	6404368	ND	10	6404368	ND	10	6404368
F2-F4 Hydrocarbons										
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	140	100	6409697				170	100	6409697
F2 (C10-C16 Hydrocarbons)	ug/g	ND	10	6403584	ND	10	6403584	ND	10	6403584
F3 (C16-C34 Hydrocarbons)	ug/g	ND	50	6403584	ND	50	6403584	ND	50	6403584
F4 (C34-C50 Hydrocarbons)	ug/g	94	50	6403584	ND	50	6403584	95	50	6403584
Reached Baseline at C50	ug/g	No		6403584	Yes		6403584	No		6403584
Surrogate Recovery (%)		•								
1,4-Difluorobenzene	%	98		6404368	99		6404368	99		6404368
4-Bromofluorobenzene	%	103		6404368	103		6404368	104		6404368
D10-Ethylbenzene	%	94		6404368	90		6404368	97		6404368
D4-1,2-Dichloroethane	%	102		6404368	100		6404368	100		6404368
o-Terphenyl	%	96		6403584	96		6403584	100		6403584
RDL = Reportable Detection Limit										
OC Patch - Quality Control Patch										

QC Batch = Quality Control Batch

PETROLEUM HYDROCARBONS (CCME)

BV Labs ID		LBU426			LBU428		
Sampling Date		2019/10/16 17:00			2019/10/16		
COC Number		742862-02-01			742862-02-01		
	UNITS	BH109-2 Lab-Dup	RDL	QC Batch	FIELD BLANK	RDL	QC Batch
BTEX & F1 Hydrocarbons							
Benzene	ug/g				ND	0.020	6404368
Toluene	ug/g				ND	0.020	6404368
Ethylbenzene	ug/g				ND	0.020	6404368
o-Xylene	ug/g				ND	0.020	6404368
p+m-Xylene	ug/g				ND	0.040	6404368
Total Xylenes	ug/g				ND	0.040	6404368
F1 (C6-C10)	ug/g				ND	10	6404368
F1 (C6-C10) - BTEX	ug/g				ND	10	6404368
F2-F4 Hydrocarbons							
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	170	100	6409697			
Surrogate Recovery (%)							
1,4-Difluorobenzene	%				99		6404368
4-Bromofluorobenzene	%				102		6404368
D10-Ethylbenzene	%				97		6404368
D4-1,2-Dichloroethane	%				100		6404368
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplic ND = Not detected	cate						

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

BV Labs ID		LBU415	LBU417		LBU418	LBU419		LBU421		
Sampling Data		2019/10/16	2019/10/16		2019/10/16	2019/10/16		2019/10/16		
Sampling Date		09:10	10:30		13:05	13:15		13:55		
COC Number		742862-01-01	742862-01-01		742862-01-01	742862-01-01		742862-01-01		
	UNITS	MW101-3	MW103-6	RDL	MW104-6	MW104-16	RDL	MW105-1	RDL	QC Batch
PCBs										
Aroclor 1242	ug/g	ND	ND	0.010	ND	ND	0.020	ND	0.010	6401870
Aroclor 1248	ug/g	ND	ND	0.010	ND	ND	0.020	ND	0.010	6401870
Aroclor 1254	ug/g	ND	ND	0.010	ND	ND	0.020	ND	0.010	6401870
Aroclor 1260	ug/g	ND	ND	0.010	ND	ND	0.020	ND	0.010	6401870
Total PCB	ug/g	ND	ND	0.010	ND	ND	0.020	ND	0.010	6401870
Surrogate Recovery (%)							-			
Decachlorobiphenyl	%	69	66		72	71		66		6401870
RDL = Reportable Detectior	Limit	•								
QC Batch = Quality Control	Batch									

BV Labs ID		LBU422	LBU424		
Sampling Date		2019/10/16 16:00	2019/10/16 16:20		
COC Number		742862-01-01	742862-01-01		
	UNITS	BH106-1	BH107-1	RDL	QC Batch
PCBs		•			-
Aroclor 1242	ug/g	ND	ND	0.010	6401870
Aroclor 1248	ug/g	ND	ND	0.010	6401870
Aroclor 1254	ug/g	ND	ND	0.010	6401870
Aroclor 1260	ug/g	ND	ND	0.010	6401870
Total PCB	ug/g	ND	ND	0.010	6401870
Surrogate Recovery (%)		•			
Decachlorobiphenyl	%	62	64		6401870
RDL = Reportable Detection	Limit				
QC Batch = Quality Control E	atch				
ND = Not detected					

TEST SUMMARY

BV Labs ID: LBU415 Sample ID: MW101-3 Matrix: Soil

Collected:	2019/10/16
Shipped:	
Received:	2019/10/18

Collected:

Shipped:

2019/10/16

Received: 2019/10/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6404368	N/A	2019/10/24	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6403942	2019/10/21	2019/10/24	Prabhjot Gulati
Moisture	BAL	6397998	N/A	2019/10/21	Gurpreet Kaur
Polychlorinated Biphenyl in Soil	GC/ECD	6401870	2019/10/23	2019/10/23	Sarah Huang

BV Labs ID:	LBU416
Sample ID:	BH102-2
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6395653	N/A	2019/10/25	Automated Statchk
Hot Water Extractable Boron	ICP	6399752	2019/10/22	2019/10/23	Jolly John
Free (WAD) Cyanide	TECH	6403761	2019/10/24	2019/10/28	Louise Harding
Conductivity	AT	6403572	2019/10/24	2019/10/24	Tanvee Kapur
Hexavalent Chromium in Soil by IC	IC/SPEC	6398567	2019/10/22	2019/10/24	Sally Norouz Coughlin
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6404368	N/A	2019/10/24	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6403584	2019/10/24	2019/10/25	(Kent) Maolin Li
Strong Acid Leachable Metals by ICPMS	ICP/MS	6399619	2019/10/22	2019/10/23	Daniel Teclu
Moisture	BAL	6397998	N/A	2019/10/21	Gurpreet Kaur
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6403592	2019/10/24	2019/10/24	Mitesh Raj
pH CaCl2 EXTRACT	AT	6401267	2019/10/23	2019/10/23	Kazzandra Adeva
Sodium Adsorption Ratio (SAR)	CALC/MET	6395654	N/A	2019/10/25	Automated Statchk

BV Labs ID:	LBU416 Dup
Sample ID:	BH102-2
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6403584	2019/10/24	2019/10/25	(Kent) Maolin Li
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6403592	2019/10/24	2019/10/24	Mitesh Raj

BV Labs ID:	LBU417
Sample ID:	MW103-6
Matrix:	Soil

Collected: 2019/10/16 Shipped: Received: 2019/10/18

Collected: 2019/10/16

Received: 2019/10/18

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6404368	N/A	2019/10/24	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6403942	2019/10/21	2019/10/24	Prabhjot Gulati
Moisture	BAL	6397266	N/A	2019/10/21	Gurpreet Kaur
Polychlorinated Biphenyl in Soil	GC/ECD	6401870	2019/10/23	2019/10/23	Sarah Huang
pH CaCl2 EXTRACT	AT	6401267	2019/10/23	2019/10/23	Kazzandra Adeva
Sieve, 75um	SIEV	6402436	N/A	2019/10/24	Min Yang

TEST SUMMARY

BV Labs ID: LBU418 Sample ID: MW104-6 Matrix: Soil Collected: 2019/10/16 Shipped: Received: 2019/10/18

Collected: 2019/10/16

Received: 2019/10/18

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6404368	N/A	2019/10/24	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6403942	2019/10/21	2019/10/24	Prabhjot Gulati
Moisture	BAL	6397998	N/A	2019/10/21	Gurpreet Kaur
Polychlorinated Biphenyl in Soil	GC/ECD	6401870	2019/10/23	2019/10/23	Sarah Huang

BV Labs ID:	LBU419
Sample ID:	MW104-16
Matrix:	Soil

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6404368	N/A	2019/10/24	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6403942	2019/10/21	2019/10/24	Prabhjot Gulati
Moisture	BAL	6397998	N/A	2019/10/21	Gurpreet Kaur
Polychlorinated Biphenyl in Soil	GC/ECD	6401870	2019/10/23	2019/10/23	Sarah Huang

BV Labs ID: Sample ID: Matrix:					Shipped:	2019/10/16 2019/10/18
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	

Hot Water Extractable Boron	ICP	6399752	2019/10/22	2019/10/23	Jolly John
Free (WAD) Cyanide	TECH	6403761	2019/10/24	2019/10/28	Louise Harding
Conductivity	AT	6403572	2019/10/24	2019/10/24	Tanvee Kapur
Hexavalent Chromium in Soil by IC	IC/SPEC	6398567	2019/10/22	2019/10/24	Sally Norouz Coughlin
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6404368	N/A	2019/10/24	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6403942	2019/10/21	2019/10/24	Prabhjot Gulati
Strong Acid Leachable Metals by ICPMS	ICP/MS	6399619	2019/10/22	2019/10/23	Daniel Teclu
Moisture	BAL	6397266	N/A	2019/10/21	Gurpreet Kaur
pH CaCl2 EXTRACT	AT	6401267	2019/10/23	2019/10/23	Kazzandra Adeva
Sodium Adsorption Ratio (SAR)	CALC/MET	6395654	N/A	2019/10/25	Automated Statchk

BV Labs ID:	LBU421
Sample ID:	MW105-1
Matrix:	Soil

Collected: 2019/10/16 Shipped: Received: 2019/10/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6395653	N/A	2019/10/25	Automated Statchk
Hot Water Extractable Boron	ICP	6399752	2019/10/22	2019/10/23	Jolly John
Free (WAD) Cyanide	TECH	6403761	2019/10/24	2019/10/28	Louise Harding
Conductivity	AT	6403572	2019/10/24	2019/10/24	Tanvee Kapur
Hexavalent Chromium in Soil by IC	IC/SPEC	6398567	2019/10/22	2019/10/24	Sally Norouz Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	6399619	2019/10/22	2019/10/23	Daniel Teclu
Moisture	BAL	6397266	N/A	2019/10/21	Gurpreet Kaur
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6405212	2019/10/24	2019/10/25	Mitesh Raj
Polychlorinated Biphenyl in Soil	GC/ECD	6401870	2019/10/23	2019/10/23	Sarah Huang

Page 15 of 29

TEST SUMMARY

BV Labs ID:	LBU421
Sample ID:	MW105-1
Matrix:	Soil

Sample ID: Matrix:	MW105-1 Soil					Shipped: Received: 2019/10/18	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	6401267	2019/10/23	2019/10/23	Kazzandra Adeva	
Sodium Adsorption Ratio	(SAR)	CALC/MET	6395654	N/A	2019/10/25	Automated Statchk	

BV Labs ID:	LBU422
Sample ID:	BH106-1
Matrix:	Soil

Collected: 2019/10/16 Shipped: Received: 2019/10/18

Collected: 2019/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6395653	N/A	2019/10/25	Automated Statchk
Hot Water Extractable Boron	ICP	6399752	2019/10/22	2019/10/23	Jolly John
Free (WAD) Cyanide	TECH	6403761	2019/10/24	2019/10/28	Louise Harding
Conductivity	AT	6403572	2019/10/24	2019/10/24	Tanvee Kapur
Hexavalent Chromium in Soil by IC	IC/SPEC	6398567	2019/10/22	2019/10/24	Sally Norouz Coughlin
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6404368	N/A	2019/10/24	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6403584	2019/10/24	2019/10/25	(Kent) Maolin Li
Strong Acid Leachable Metals by ICPMS	ICP/MS	6399619	2019/10/22	2019/10/23	Daniel Teclu
Moisture	BAL	6397266	N/A	2019/10/21	Gurpreet Kaur
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6403592	2019/10/24	2019/10/24	Mitesh Raj
Polychlorinated Biphenyl in Soil	GC/ECD	6401870	2019/10/23	2019/10/23	Sarah Huang
pH CaCl2 EXTRACT	AT	6401267	2019/10/23	2019/10/23	Kazzandra Adeva
Sodium Adsorption Ratio (SAR)	CALC/MET	6395654	N/A	2019/10/25	Automated Statchk

BV Labs ID: Sample ID: Matrix:	LBU423 BH106-2 Soil					Collected: 2019/10/16 Shipped: Received: 2019/10/18
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
pH CaCl2 EXTRACT		AT	6401267	2019/10/23	2019/10/23	Kazzandra Adeva
Sieve, 75um		SIEV	6402436	N/A	2019/10/24	Min Yang

BV Labs ID: LBU424 Sample ID: BH107-1 Matrix: Soil					Collected: 2019/10/16 Shipped: Received: 2019/10/18
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6395653	N/A	2019/10/25	Automated Statchk
Hot Water Extractable Boron	ICP	6399752	2019/10/22	2019/10/23	Jolly John
Free (WAD) Cyanide	TECH	6403761	2019/10/24	2019/10/28	Louise Harding
Conductivity	AT	6403572	2019/10/24	2019/10/24	Tanvee Kapur
Hexavalent Chromium in Soil by IC	IC/SPEC	6398567	2019/10/22	2019/10/24	Sally Norouz Coughlin
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6404368	N/A	2019/10/24	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6403584	2019/10/24	2019/10/25	(Kent) Maolin Li
F4G (CCME Hydrocarbons Gravimetric)	BAL	6409697	2019/10/28	2019/10/28	Narinderjeet Kaur
Strong Acid Leachable Metals by ICPMS	ICP/MS	6399619	2019/10/22	2019/10/23	Daniel Teclu
Moisture	BAL	6397266	N/A	2019/10/21	Gurpreet Kaur

Page 16 of 29

TEST SUMMARY

Sample ID:	BU424 3H107-1 Soil					Collected: Shipped: Received:	2019/10/16 2019/10/18
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
PAH Compounds in Soil by C	GC/MS (SIM)	GC/MS	6403592	2019/10/24	2019/10/24	Mitesh Raj	
Polychlorinated Biphenyl in	Soil	GC/ECD	6401870	2019/10/23	2019/10/23	Sarah Hua	ng
pH CaCl2 EXTRACT		AT	6401267	2019/10/23	2019/10/23	Kazzandra	Adeva
Sodium Adsorption Ratio (S	AR)	CALC/MET	6395654	N/A	2019/10/25	Automated	d Statchk
Sample ID:	.BU424 Dup 3H107-1 Soil					Collected: Shipped: Received:	2019/10/16 2019/10/18
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Hot Water Extractable Boro	n	ICP	6399752	2019/10/22	2019/10/23	Jolly John	
Sample ID:	.BU425 BH108-2 Goil					Collected: Shipped: Received:	2019/10/16 2019/10/18
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	6395653	N/A	2019/10/25	Automated	d Statchk
Hot Water Extractable Boro	n	ICP	6399752	2019/10/22	2019/10/23	Jolly John	
Free (WAD) Cyanide		TECH	6403761	2019/10/24	2019/10/28	Louise Harding	
Conductivity		AT	6403572	2019/10/24	2019/10/24	Tanvee Kapur	
Hexavalent Chromium in So	il by IC	IC/SPEC	6398567	2019/10/22	2019/10/24	Sally Norouz Coughlin	
Petroleum Hydro. CCME F1	& BTEX in Soil	HSGC/MSFD	6404368	N/A	2019/10/24	Domnica Andronescu	
Petroleum Hydrocarbons F2	2-F4 in Soil	GC/FID	6403584	2019/10/24	2019/10/25	(Kent) Mao	olin Li
Strong Acid Leachable Meta	als by ICPMS	ICP/MS	6399619	2019/10/22	2019/10/23	Daniel Tec	lu
Moisture		BAL	6397998	N/A	2019/10/21	Gurpreet k	(aur
PAH Compounds in Soil by C	GC/MS (SIM)	GC/MS	6403592	2019/10/24	2019/10/24	Mitesh Raj	
pH CaCl2 EXTRACT		AT	6401267	2019/10/23	2019/10/23	Kazzandra	Adeva
Sodium Adsorption Ratio (S	AR)	CALC/MET	6395654	N/A	2019/10/25	Automated	d Statchk
Sample ID:	.BU425 Dup 3H108-2 Soil					Collected: Shipped: Received:	2019/10/16 2019/10/18
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Free (WAD) Cyanide		TECH	6403761	2019/10/24	2019/10/28	Louise Har	ding
pH CaCl2 EXTRACT		AT	6401267	2019/10/23	2019/10/23	Kazzandra	Adeva
Sample ID:	.BU426 BH109-2 Goil					Collected: Shipped: Received:	2019/10/16 2019/10/18
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Methylnaphthalene Sum		CALC	6395653	N/A	2019/10/25	Automated	d Statchk
Hot Water Extractable Boro	n	ICP	6399752	2019/10/22	2019/10/23	Jolly John	
Free (WAD) Cyanide		TECH	6403761	2019/10/24	2019/10/28	Louise Har	ding
, , , , -,		-		/ / - ·	-,,		0

Page 17 of 29

TEST SUMMARY

BV Labs ID:	LBU426
Sample ID:	BH109-2
Matrix:	Soil

BV Labs ID: LBU426 Sample ID: BH109-2 Matrix: Soil					Collected: 2019/10/16 Shipped: Received: 2019/10/18
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductivity	AT	6403572	2019/10/24	2019/10/24	Tanvee Kapur
Hexavalent Chromium in Soil by IC	IC/SPEC	6398567	2019/10/22	2019/10/24	Sally Norouz Coughlin
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6404368	N/A	2019/10/24	Domnica Andronescu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6403584	2019/10/24	2019/10/25	(Kent) Maolin Li
F4G (CCME Hydrocarbons Gravimetric)	BAL	6409697	2019/10/28	2019/10/28	Narinderjeet Kaur
Strong Acid Leachable Metals by ICPMS	ICP/MS	6399619	2019/10/22	2019/10/23	Daniel Teclu
Moisture	BAL	6397998	N/A	2019/10/21	Gurpreet Kaur
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6403592	2019/10/24	2019/10/24	Mitesh Raj
pH CaCl2 EXTRACT	AT	6401267	2019/10/23	2019/10/23	Kazzandra Adeva
Sodium Adsorption Ratio (SAR)	CALC/MET	6395654	N/A	2019/10/25	Automated Statchk

Test Description Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
F4G (CCME Hydrocarbons Gravimetric) BAL	6409697	2019/10/28	2019/10/28	Narinderjeet Kaur	

BV Labs ID: LBU427 Sample ID: BH109-12 Matrix: Soil					Collected: 2019/10/16 Shipped: Received: 2019/10/18
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6395653	N/A	2019/10/25	Automated Statchk
Hot Water Extractable Boron	ICP	6399752	2019/10/22	2019/10/23	Jolly John
Free (WAD) Cyanide	TECH	6403761	2019/10/24	2019/10/28	Louise Harding
Conductivity	AT	6403572	2019/10/24	2019/10/24	Tanvee Kapur
Hexavalent Chromium in Soil by IC	IC/SPEC	6398567	2019/10/22	2019/10/24	Sally Norouz Coughlin
Strong Acid Leachable Metals by ICPMS	ICP/MS	6399619	2019/10/22	2019/10/23	Daniel Teclu
Moisture	BAL	6397998	N/A	2019/10/21	Gurpreet Kaur
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6405212	2019/10/24	2019/10/25	Mitesh Raj
pH CaCl2 EXTRACT	AT	6401267	2019/10/23	2019/10/23	Kazzandra Adeva
Sodium Adsorption Ratio (SAR)	CALC/MET	6395654	N/A	2019/10/25	Automated Statchk

BV Labs ID: LBU428 Sample ID: FIELD BLANK Matrix: Soil					Collected: 2019/10/16 Shipped: Received: 2019/10/18
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6404368	N/A	2019/10/24	Domnica Andronescu

GENERAL COMMENTS

Each te	emperature is the	average of up to t	nree cooler temperatures taken at receipt
	Package 1	2.3°C]
	LBU416 [BH102-2 ents a maximum ra		Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value
Sample	LBU418 [MW104	-6] : PCB Analysis	: Detection limits were adjusted for high moisture content.
Sample	LBU419 [MW104	-16] : PCB Analys	is: Detection limits were adjusted for high moisture content.
Result	relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6397266	KJP	RPD	Moisture	2019/10/21	0	necovery	%	20
6397998	KJP	RPD	Moisture	2019/10/21	6.1		%	20
6398567	SAC	Matrix Spike	Chromium (VI)	2019/10/24	0.1	82	%	70 - 130
6398567	SAC	Spiked Blank	Chromium (VI)	2019/10/24		94	%	80 - 120
6398567	SAC	Method Blank	Chromium (VI)	2019/10/24	ND,	54	ug/g	00 120
0338307	JAC	Wethod Blank		2013/10/24	RDL=0.2		ug/g	
6398567	SAC	RPD	Chromium (VI)	2019/10/24	NC		%	35
6399619	DT1	Matrix Spike	Acid Extractable Antimony (Sb)	2019/10/23		96	%	75 - 125
			Acid Extractable Arsenic (As)	2019/10/23		106	%	75 - 125
			Acid Extractable Barium (Ba)	2019/10/23		NC	%	75 - 125
			Acid Extractable Beryllium (Be)	2019/10/23		109	%	75 - 125
			Acid Extractable Boron (B)	2019/10/23		111	%	75 - 125
			Acid Extractable Cadmium (Cd)	2019/10/23		110	%	75 - 125
			Acid Extractable Chromium (Cd)	2019/10/23		NC	%	75 - 125
			Acid Extractable Cobalt (Co)	2019/10/23		114	%	75 - 125
			Acid Extractable Copper (Cu)	2019/10/23		NC	%	75 - 125
							%	75 - 125
			Acid Extractable Lead (Pb)	2019/10/23		113 108		
			Acid Extractable Molybdenum (Mo)	2019/10/23			%	75 - 125
			Acid Extractable Nickel (Ni)	2019/10/23		NC	%	75 - 125
			Acid Extractable Selenium (Se)	2019/10/23		111	%	75 - 125
			Acid Extractable Silver (Ag)	2019/10/23		112	%	75 - 125
			Acid Extractable Thallium (TI)	2019/10/23		110	%	75 - 125
			Acid Extractable Uranium (U)	2019/10/23		113	%	75 - 125
			Acid Extractable Vanadium (V)	2019/10/23		NC	%	75 - 125
			Acid Extractable Zinc (Zn)	2019/10/23		NC	%	75 - 125
			Acid Extractable Mercury (Hg)	2019/10/23		101	%	75 - 125
6399619	DT1	Spiked Blank	Acid Extractable Antimony (Sb)	2019/10/23		100	%	80 - 120
			Acid Extractable Arsenic (As)	2019/10/23		104	%	80 - 120
			Acid Extractable Barium (Ba)	2019/10/23		98	%	80 - 120
			Acid Extractable Beryllium (Be)	2019/10/23		96	%	80 - 120
			Acid Extractable Boron (B)	2019/10/23		93	%	80 - 120
			Acid Extractable Cadmium (Cd)	2019/10/23		98	%	80 - 120
			Acid Extractable Chromium (Cr)	2019/10/23		101	%	80 - 120
			Acid Extractable Cobalt (Co)	2019/10/23		101	%	80 - 120
			Acid Extractable Copper (Cu)	2019/10/23		101	%	80 - 120
			Acid Extractable Lead (Pb)	2019/10/23		104	%	80 - 120
			Acid Extractable Molybdenum (Mo)	2019/10/23		99	%	80 - 120
			Acid Extractable Nickel (Ni)	2019/10/23		100	%	80 - 120
			Acid Extractable Selenium (Se)	2019/10/23		105	%	80 - 120
			Acid Extractable Silver (Ag)	2019/10/23		102	%	80 - 120
			Acid Extractable Thallium (TI)	2019/10/23		103	%	80 - 120
			Acid Extractable Uranium (U)	2019/10/23		104	%	80 - 120
			Acid Extractable Vanadium (V)	2019/10/23		101	%	80 - 120
			Acid Extractable Zinc (Zn)	2019/10/23		103	%	80 - 120
			Acid Extractable Mercury (Hg)	2019/10/23		100	%	80 - 120
6399619	DT1	Method Blank	Acid Extractable Antimony (Sb)	2019/10/23	ND,	200	ug/g	00 120
					RDL=0.20		0,0	
			Acid Extractable Arsenic (As)	2019/10/23	ND, RDL=1.0		ug/g	
			Acid Extractable Barium (Ba)	2019/10/23	ND, RDL=0.50		ug/g	
			Acid Extractable Beryllium (Be)	2019/10/23	ND, RDL=0.20		ug/g	

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acid Extractable Boron (B)	2019/10/23	ND, RDL=5.0		ug/g	
			Acid Extractable Cadmium (Cd)	2019/10/23	ND, RDL=0.10		ug/g	
			Acid Extractable Chromium (Cr)	2019/10/23	ND, RDL=1.0		ug/g	
			Acid Extractable Cobalt (Co)	2019/10/23	ND, RDL=0.10		ug/g	
			Acid Extractable Copper (Cu)	2019/10/23	ND, RDL=0.50		ug/g	
			Acid Extractable Lead (Pb)	2019/10/23	ND, RDL=1.0		ug/g	
			Acid Extractable Molybdenum (Mo)	2019/10/23	ND, RDL=0.50		ug/g	
			Acid Extractable Nickel (Ni)	2019/10/23	ND, RDL=0.50		ug/g	
			Acid Extractable Selenium (Se)	2019/10/23	ND, RDL=0.50		ug/g	
			Acid Extractable Silver (Ag)	2019/10/23	ND, RDL=0.20		ug/g	
			Acid Extractable Thallium (Tl)	2019/10/23	ND, RDL=0.050		ug/g	
			Acid Extractable Uranium (U)	2019/10/23	ND, RDL=0.050		ug/g	
			Acid Extractable Vanadium (V)	2019/10/23	ND, RDL=5.0		ug/g	
			Acid Extractable Zinc (Zn)	2019/10/23	ND, RDL=5.0		ug/g	
			Acid Extractable Mercury (Hg)	2019/10/23	ND, RDL=0.050		ug/g	
6399619	DT1	RPD	Acid Extractable Antimony (Sb)	2019/10/23	NC		%	30
			Acid Extractable Arsenic (As)	2019/10/23	5.5		%	30
			Acid Extractable Barium (Ba)	2019/10/23	1.6		%	30
			Acid Extractable Beryllium (Be)	2019/10/23	6.1		%	30
			Acid Extractable Boron (B)	2019/10/23	11		%	30
			Acid Extractable Cadmium (Cd)	2019/10/23	15		%	30
			Acid Extractable Chromium (Cr)	2019/10/23	1.1		%	30
			Acid Extractable Cobalt (Co)	2019/10/23	1.4		%	30
			Acid Extractable Copper (Cu)	2019/10/23	2.9		%	30
			Acid Extractable Lead (Pb)	2019/10/23	0.23		%	30
			Acid Extractable Molybdenum (Mo)	2019/10/23	NC		%	30
			Acid Extractable Nickel (Ni)	2019/10/23	1.6		%	30
			Acid Extractable Selenium (Se)	2019/10/23	NC		%	30
			Acid Extractable Silver (Ag)	2019/10/23	NC		%	30
			Acid Extractable Shiver (Ag)	2019/10/23	5.6		%	30
			Acid Extractable Uranium (U)	2019/10/23	2.4		%	30
			Acid Extractable Vanadium (V)	2019/10/23	1.8		%	30
			Acid Extractable Valladidin (V) Acid Extractable Zinc (Zn)	2019/10/23	3.4		%	30
							%	
6200752		Matrix Spika [LDU424 04]	Acid Extractable Mercury (Hg)	2019/10/23	NC	102		30 75 - 125
6399752	JOH	Matrix Spike [LBU424-01]	Hot Water Ext. Boron (B)	2019/10/23		102	%	75 - 125
6399752	JOH	Spiked Blank	Hot Water Ext. Boron (B)	2019/10/23		96	%	75 - 125
6399752	JOH	Method Blank	Hot Water Ext. Boron (B)	2019/10/23	ND, RDL=0.050		ug/g	
6399752	JOH	RPD [LBU424-01]	Hot Water Ext. Boron (B)	2019/10/23	4.1		%	40

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6401267	KAD	Spiked Blank	Available (CaCl2) pH	2019/10/23		100	%	97 - 103
6401267	KAD	RPD [LBU425-01]	Available (CaCl2) pH	2019/10/23	0.054		%	N/A
6401870	SHG	Matrix Spike	Decachlorobiphenyl	2019/10/23		81	%	60 - 130
			Aroclor 1260	2019/10/23		107	%	30 - 130
			Total PCB	2019/10/23		107	%	30 - 130
6401870	SHG	Spiked Blank	Decachlorobiphenyl	2019/10/23		95	%	60 - 130
			Aroclor 1260	2019/10/23		111	%	30 - 130
			Total PCB	2019/10/23		111	%	30 - 130
6401870	SHG	Method Blank	Decachlorobiphenyl	2019/10/23		85	%	60 - 130
			Aroclor 1242	2019/10/23	ND, RDL=0.010		ug/g	
			Aroclor 1248	2019/10/23	ND, RDL=0.010		ug/g	
			Aroclor 1254	2019/10/23	ND, RDL=0.010		ug/g	
			Aroclor 1260	2019/10/23	ND, RDL=0.010		ug/g	
			Total PCB	2019/10/23	ND, RDL=0.010		ug/g	
6401870	SHG	RPD	Aroclor 1242	2019/10/23	NC		%	50
			Aroclor 1248	2019/10/23	NC		%	50
			Aroclor 1254	2019/10/23	29		%	50
			Aroclor 1260	2019/10/23	NC		%	50
			Total PCB	2019/10/23	29		%	50
6402436	GYA	QC Standard	Sieve - #200 (<0.075mm)	2019/10/24		56	%	53 - 58
			Sieve - #200 (>0.075mm)	2019/10/24		44	%	42 - 47
6402436	GYA	RPD	Sieve - #200 (<0.075mm)	2019/10/24	0.15		%	20
			Sieve - #200 (>0.075mm)	2019/10/24	0.65		%	20
6403572	ТКР	Spiked Blank	Conductivity	2019/10/24		103	%	90 - 110
6403572	ткр	Method Blank	Conductivity	2019/10/24	ND, RDL=0.002		mS/cm	
6403572	ТКР	RPD	Conductivity	2019/10/24	0		%	10
6403584	KLI	Matrix Spike [LBU416-01]	o-Terphenyl	2019/10/25		102	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2019/10/25		101	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2019/10/25		103	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2019/10/25		105	%	50 - 130
6403584	KLI	Spiked Blank	o-Terphenyl	2019/10/25		104	%	60 - 130
		-1	F2 (C10-C16 Hydrocarbons)	2019/10/25		102	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2019/10/25		105	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2019/10/25		106	%	80 - 120
6403584	KLI	Method Blank	o-Terphenyl	2019/10/25		102	%	60 - 130
0.00001			F2 (C10-C16 Hydrocarbons)	2019/10/25	ND, RDL=10	101	ug/g	00 100
			F3 (C16-C34 Hydrocarbons)	2019/10/25	ND, RDL=50		ug/g	
			F4 (C34-C50 Hydrocarbons)	2019/10/25	ND, RDL=50		ug/g	
6403584	KLI	RPD [LBU416-01]	F2 (C10-C16 Hydrocarbons)	2019/10/25	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2019/10/25	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2019/10/25	NC		%	30
6403592	RAJ	Matrix Spike [LBU416-01]	D10-Anthracene	2019/10/24		103	%	50 - 130
	-	, ,	D14-Terphenyl (FS)	2019/10/24		86	%	50 - 130
			D8-Acenaphthylene	2019/10/24		100	%	50 - 130

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acenaphthene	2019/10/24		96	%	50 - 130
			Acenaphthylene	2019/10/24		101	%	50 - 130
			Anthracene	2019/10/24		97	%	50 - 130
			Benzo(a)anthracene	2019/10/24		102	%	50 - 130
			Benzo(a)pyrene	2019/10/24		92	%	50 - 130
			Benzo(b/j)fluoranthene	2019/10/24		92	%	50 - 130
			Benzo(g,h,i)perylene	2019/10/24		94	%	50 - 130
			Benzo(k)fluoranthene	2019/10/24		82	%	50 - 130
			Chrysene	2019/10/24		96	%	50 - 130
			Dibenz(a,h)anthracene	2019/10/24		102	%	50 - 130
			Fluoranthene	2019/10/24		86	%	50 - 130
			Fluorene	2019/10/24		99	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2019/10/24		100	%	50 - 130
			1-Methylnaphthalene	2019/10/24		103	%	50 - 130
			2-Methylnaphthalene	2019/10/24		97	%	50 - 130
			Naphthalene	2019/10/24		86	%	50 - 130
			Phenanthrene	2019/10/24		94	%	50 - 130
			Pyrene	2019/10/24		87	%	50 - 130
6403592	RAJ	Spiked Blank	D10-Anthracene	2019/10/24		97	%	50 - 130
			D14-Terphenyl (FS)	2019/10/24		84	%	50 - 130
			D8-Acenaphthylene	2019/10/24		99	%	50 - 130
			Acenaphthene	2019/10/24		98	%	50 - 130
			Acenaphthylene	2019/10/24		103	%	50 - 130
			Anthracene	2019/10/24		95	%	50 - 130
			Benzo(a)anthracene	2019/10/24		104	%	50 - 130
			Benzo(a)pyrene	2019/10/24		97	%	50 - 130
			Benzo(b/j)fluoranthene	2019/10/24		97	%	50 - 130
			Benzo(g,h,i)perylene	2019/10/24		99	%	50 - 130
			Benzo(k)fluoranthene	2019/10/24		88	%	50 - 130
			Chrysene	2019/10/24		95	%	50 - 130
			Dibenz(a,h)anthracene	2019/10/24		103	%	50 - 130
			Fluoranthene	2019/10/24		90	%	50 - 130
			Fluorene	2019/10/24		103	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2019/10/24		104	%	50 - 130
			1-Methylnaphthalene	2019/10/24		106	%	50 - 130
			2-Methylnaphthalene	2019/10/24		101	%	50 - 130
			Naphthalene	2019/10/24		92	%	50 - 130
			Phenanthrene	2019/10/24		98	%	50 - 130
			Pyrene	2019/10/24		91	%	50 - 130
6403592	RAJ	Method Blank	D10-Anthracene	2019/10/24		98	%	50 - 130
			D14-Terphenyl (FS)	2019/10/24		82	%	50 - 130
			D8-Acenaphthylene	2019/10/24		94	%	50 - 130
			Acenaphthene	2019/10/24	ND,		ug/g	
					RDL=0.0050			
			Acenaphthylene	2019/10/24	ND, RDL=0.0050		ug/g	
			Anthracene	2019/10/24	ND, RDL=0.0050		ug/g	
			Benzo(a)anthracene	2019/10/24	ND, RDL=0.0050		ug/g	
			Benzo(a)pyrene	2019/10/24	ND, RDL=0.0050		ug/g	

QA/QC Batch	Init	QC Туре	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Benzo(b/j)fluoranthene	2019/10/24	ND, RDL=0.0050		ug/g	
			Benzo(g,h,i)perylene	2019/10/24	ND, RDL=0.0050		ug/g	
			Benzo(k)fluoranthene	2019/10/24	ND, RDL=0.0050		ug/g	
			Chrysene	2019/10/24	ND, RDL=0.0050		ug/g	
			Dibenz(a,h)anthracene	2019/10/24	ND, RDL=0.0050		ug/g	
			Fluoranthene	2019/10/24	ND,		ug/g	
			Fluorene	2019/10/24	RDL=0.0050 ND,		ug/g	
			Indeno(1,2,3-cd)pyrene	2019/10/24	RDL=0.0050 ND,		ug/g	
			1-Methylnaphthalene	2019/10/24	RDL=0.0050 ND,		ug/g	
			2-Methylnaphthalene	2019/10/24	RDL=0.0050 ND,		ug/g	
			Naphthalene	2019/10/24	RDL=0.0050 ND,		ug/g	
			Phenanthrene	2019/10/24	RDL=0.0050 ND,		ug/g	
			Pyrene	2019/10/24	RDL=0.0050 ND,		ug/g	
6402502	DAL		A	2010/10/24	RDL=0.0050		0/	40
6403592	RAJ	RPD [LBU416-01]	Acenaphthene	2019/10/24	NC		%	40
			Acenaphthylene	2019/10/24	NC		%	40
			Anthracene	2019/10/24	NC		%	40
			Benzo(a)anthracene	2019/10/24	NC		%	40
			Benzo(a)pyrene	2019/10/24	NC		%	40
			Benzo(b/j)fluoranthene	2019/10/24	NC		%	40
			Benzo(g,h,i)perylene	2019/10/24	NC		%	40
			Benzo(k)fluoranthene	2019/10/24	NC		%	40
			Chrysene	2019/10/24	NC		%	40
			Dibenz(a,h)anthracene	2019/10/24	NC		%	40
			Fluoranthene	2019/10/24 2019/10/24	NC		%	40
			Fluorene	2019/10/24 2019/10/24	NC		%	40
			Indeno(1,2,3-cd)pyrene	/ - /	NC		%	40
			1-Methylnaphthalene	2019/10/24	NC		%	40
			2-Methylnaphthalene	2019/10/24	NC		%	40
			Naphthalene	2019/10/24	NC		%	40
			Phenanthrene	2019/10/24	NC		%	40
C4027C4		Materia Calles [1011425-04]	Pyrene	2019/10/24	NC	00	%	40
6403761	LHA	Matrix Spike [LBU425-01]	WAD Cyanide (Free)	2019/10/28		99	%	75 - 125
6403761	LHA	Spiked Blank	WAD Cyanide (Free)	2019/10/28	ND	98	%	80 - 120
6403761	LHA	Method Blank	WAD Cyanide (Free)	2019/10/28	ND, RDL=0.01		ug/g	
6403761	LHA	RPD [LBU425-01]	WAD Cyanide (Free)	2019/10/28	NC		%	35
6403942	GUL	Matrix Spike	o-Terphenyl	2019/10/24		87	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2019/10/24		89	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2019/10/24		89	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2019/10/24		89	%	50 - 130

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6403942	GUL	Spiked Blank	o-Terphenyl	2019/10/24		89	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2019/10/24		90	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2019/10/24		90	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2019/10/24		91	%	80 - 120
6403942	GUL	Method Blank	o-Terphenyl	2019/10/24		88	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2019/10/24	ND,		ug/g	
					RDL=10			
			F3 (C16-C34 Hydrocarbons)	2019/10/24	ND,		ug/g	
					RDL=50			
			F4 (C34-C50 Hydrocarbons)	2019/10/24	ND,		ug/g	
	.				RDL=50			
6403942	GUL	RPD	F2 (C10-C16 Hydrocarbons)	2019/10/24	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2019/10/24	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2019/10/24	NC		%	30
6404368	DAN	Matrix Spike	1,4-Difluorobenzene	2019/10/24		98	%	60 - 140
			4-Bromofluorobenzene	2019/10/24		105	%	60 - 140
			D10-Ethylbenzene	2019/10/24		107	%	60 - 140
			D4-1,2-Dichloroethane	2019/10/24		104	%	60 - 140
			Benzene	2019/10/24		98	%	60 - 140
			Toluene	2019/10/24		99	%	60 - 140
			Ethylbenzene	2019/10/24		108	%	60 - 140
			o-Xylene	2019/10/24		111	%	60 - 140
			p+m-Xylene	2019/10/24		113	%	60 - 140
			F1 (C6-C10)	2019/10/24		108	%	60 - 140
6404368	DAN	Spiked Blank	1,4-Difluorobenzene	2019/10/24		102	%	60 - 140
			4-Bromofluorobenzene	2019/10/24		104	%	60 - 140
			D10-Ethylbenzene	2019/10/24		92	%	60 - 140
			D4-1,2-Dichloroethane	2019/10/24		101	%	60 - 140
			Benzene	2019/10/24		90	%	60 - 140
			Toluene	2019/10/24		89	%	60 - 140
			Ethylbenzene	2019/10/24		95	%	60 - 140
			o-Xylene	2019/10/24		97	%	60 - 140
			p+m-Xylene	2019/10/24		99	%	60 - 140
			F1 (C6-C10)	2019/10/24		109	%	80 - 120
6404368	DAN	Method Blank	1,4-Difluorobenzene	2019/10/24		100	%	60 - 140
			4-Bromofluorobenzene	2019/10/24		103	%	60 - 140
			D10-Ethylbenzene	2019/10/24		91	%	60 - 140
			D4-1,2-Dichloroethane	2019/10/24		101	%	60 - 140
			Benzene	2019/10/24	ND, RDL=0.020		ug/g	
			Toluene	2019/10/24	ND, RDL=0.020		ug/g	
			Ethylbenzene	2019/10/24	ND, RDL=0.020		ug/g	
			o-Xylene	2019/10/24	ND, RDL=0.020		ug/g	
			p+m-Xylene	2019/10/24	ND, RDL=0.040		ug/g	
			Total Xylenes	2019/10/24	ND, RDL=0.040		ug/g	
			F1 (C6-C10)	2019/10/24	ND, RDL=10		ug/g	

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			F1 (C6-C10) - BTEX	2019/10/24	ND,		ug/g	
					RDL=10			
6404368	DAN	RPD	F1 (C6-C10)	2019/10/24	NC		%	30
			F1 (C6-C10) - BTEX	2019/10/24	NC		%	30
6405212	RAJ	Matrix Spike	D10-Anthracene	2019/10/25		100	%	50 - 130
			D14-Terphenyl (FS)	2019/10/25		99	%	50 - 130
			D8-Acenaphthylene	2019/10/25		93	%	50 - 130
			Acenaphthene	2019/10/25		100	%	50 - 130
			Acenaphthylene	2019/10/25		98	%	50 - 130
			Anthracene	2019/10/25		95	%	50 - 130
			Benzo(a)anthracene	2019/10/25		106	%	50 - 130
			Benzo(a)pyrene	2019/10/25		102	%	50 - 130
			Benzo(b/j)fluoranthene	2019/10/25		100	%	50 - 130
			Benzo(g,h,i)perylene	2019/10/25		81	%	50 - 130
			Benzo(k)fluoranthene	2019/10/25		100	%	50 - 130
			Chrysene	2019/10/25		99	%	50 - 130
			Dibenz(a,h)anthracene	2019/10/25		88	%	50 - 130
			Fluoranthene	2019/10/25		102	%	50 - 130
			Fluorene	2019/10/25		94	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2019/10/25		84	%	50 - 130
			1-Methylnaphthalene	2019/10/25		110	%	50 - 130
			2-Methylnaphthalene	2019/10/25		100	%	50 - 130
			Naphthalene	2019/10/25		95	%	50 - 130
			Phenanthrene	2019/10/25		99	%	50 - 130
			Pyrene	2019/10/25		100	%	50 - 130
6405212	RAJ	Spiked Blank	D10-Anthracene	2019/10/25		105	%	50 - 130
			D14-Terphenyl (FS)	2019/10/25		105	%	50 - 130
			D8-Acenaphthylene	2019/10/25		101	%	50 - 130
			Acenaphthene	2019/10/25		102	%	50 - 130
			Acenaphthylene	2019/10/25		100	%	50 - 130
			Anthracene	2019/10/25		98	%	50 - 130
			Benzo(a)anthracene	2019/10/25		108	%	50 - 130
			Benzo(a)pyrene	2019/10/25		105	%	50 - 130
			Benzo(b/j)fluoranthene	2019/10/25		103	%	50 - 130
			Benzo(g,h,i)perylene	2019/10/25		86	%	50 - 130
			Benzo(k)fluoranthene	2019/10/25		102	%	50 - 130
			Chrysene	2019/10/25		102	%	50 - 130
			Dibenz(a,h)anthracene	2019/10/25		91	%	50 - 130
			Fluoranthene	2019/10/25		104	%	50 - 130
			Fluorene	2019/10/25		97	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2019/10/25		88	%	50 - 130
			1-Methylnaphthalene	2019/10/25		112	%	50 - 130
			2-Methylnaphthalene	2019/10/25		101	%	50 - 130
			Naphthalene	2019/10/25		96	%	50 - 130
			Phenanthrene	2019/10/25		100	%	50 - 130
a.c==			Pyrene	2019/10/25		102	%	50 - 130
6405212	RAJ	Method Blank	D10-Anthracene	2019/10/25		96	%	50 - 130
			D14-Terphenyl (FS)	2019/10/25		96	%	50 - 130
			D8-Acenaphthylene	2019/10/25		93	%	50 - 130
			Acenaphthene	2019/10/25	ND, RDL=0.0050		ug/g	
			Acenaphthylene	2019/10/25	ND, RDL=0.0050		ug/g	

QA/QC Batch	Init	QC Туре	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Anthracene	2019/10/25	ND, RDL=0.0050		ug/g	
			Benzo(a)anthracene	2019/10/25	ND, RDL=0.0050		ug/g	
			Benzo(a)pyrene	2019/10/25	ND, RDL=0.0050		ug/g	
			Benzo(b/j)fluoranthene	2019/10/25	ND, RDL=0.0050		ug/g	
			Benzo(g,h,i)perylene	2019/10/25	ND, RDL=0.0050		ug/g	
			Benzo(k)fluoranthene	2019/10/25	ND, RDL=0.0050		ug/g	
			Chrysene	2019/10/25	ND, RDL=0.0050		ug/g	
			Dibenz(a,h)anthracene	2019/10/25	ND, RDL=0.0050		ug/g	
			Fluoranthene	2019/10/25	ND, RDL=0.0050		ug/g	
			Fluorene	2019/10/25	ND, RDL=0.0050		ug/g	
			Indeno(1,2,3-cd)pyrene	2019/10/25	ND, RDL=0.0050		ug/g	
			1-Methylnaphthalene	2019/10/25	ND, RDL=0.0050		ug/g	
			2-Methylnaphthalene	2019/10/25	ND, RDL=0.0050		ug/g	
			Naphthalene	2019/10/25	ND, RDL=0.0050		ug/g	
			Phenanthrene	2019/10/25	ND, RDL=0.0050		ug/g	
			Pyrene	2019/10/25	ND, RDL=0.0050		ug/g	
5405212	RAJ	RPD	Acenaphthene	2019/10/25	NC		%	40
			Acenaphthylene	2019/10/25	NC		%	40
			Anthracene	2019/10/25	NC		%	40
			Benzo(a)anthracene	2019/10/25	NC		%	40
			Benzo(a)pyrene	2019/10/25	NC		%	40
			Benzo(b/j)fluoranthene	2019/10/25	NC		%	40
			Benzo(g,h,i)perylene	2019/10/25	NC		%	40
			Benzo(k)fluoranthene	2019/10/25	NC		%	40
			Chrysene	2019/10/25	NC		%	40
			Dibenz(a,h)anthracene	2019/10/25	NC		%	40
			Fluoranthene	2019/10/25	NC		%	40
			Fluorene	2019/10/25	NC		%	40
			Indeno(1,2,3-cd)pyrene	2019/10/25	NC		%	40
			1-Methylnaphthalene	2019/10/25	NC		%	40
			2-Methylnaphthalene	2019/10/25	NC		%	40
			Naphthalene	2019/10/25	NC		%	40
			Phenanthrene	2019/10/25	NC		%	40
			Pyrene	2019/10/25	NC		%	40
5409697	NKR	Matrix Spike [LBU424-03]	F4G-sg (Grav. Heavy Hydrocarbons)	2019/10/28		102	%	65 - 135
5409697	NKR	Spiked Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2019/10/28		102	%	65 - 135
5409697	NKR	Method Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2019/10/28	ND,	201	ug/g	00 100
				2020/20/20	RDL=100		~0/0	

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6409697	NKR	RPD [LBU426-01]	F4G-sg (Grav. Heavy Hydrocarbons)	2019/10/28	0		%	50
N/A = No	t Applic	able						
Duplicate	e: Paire	d analysis of a separate p	portion of the same sample. Used to evaluate the	variance in the measure	ment.			
Matrix Sp	oike: A s	ample to which a know	n amount of the analyte of interest has been adde	ed. Used to evaluate sam	ple matrix inte	erference.		
QC Stand	lard: A s	ample of known concen	tration prepared by an external agency under stri	ngent conditions. Used	as an independ	lent check of me	thod accur	acy.
Spiked Bl	ank: A b	lank matrix sample to w	hich a known amount of the analyte, usually fron	n a second source, has be	een added. Use	ed to evaluate m	ethod accu	iracy.
Method I	Blank: A	blank matrix containing	g all reagents used in the analytical procedure. Us	ed to identify laboratory	contamination	۱.		
Surrogate	e: A pur	e or isotopically labeled	compound whose behavior mirrors the analytes	of interest. Used to evalu	ate extraction	efficiency.		
•	•	•	atrix spike was not calculated. The relative differery calculation (matrix spike concentration was less		•	•	nd the spike	e amount
NC (Dupl differenc			as not calculated. The concentration in the sampl	e and/or duplicate was to	oo low to perm	iit a reliable RPD	calculatior	n (absolute

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.