

Ottawa-Carleton District School Board (OCDSB)

Geotechnical Investigation

Type of Document Final

Project Name Proposed New Stittsville High School Robert Grant Drive and Cope Drive, Ottawa, ON

Project Number OTT-00245378-E1

Prepared By: Maxime Leroux, P.Eng.

Reviewed By: Susan M. Potyondy, P.Eng.

EXP Services Inc. 100-2650 Queensview Drive Ottawa, ON K2B 8H6 Canada

Date Submitted August 1, 2019

Ottawa-Carleton District School Board

1224 Stittsville Main Street Stittsville, Ontario K2S 0E2

Attention: David Lacelle

Geotechnical Investigation

Type of Document: Final

Project Name: Proposed New Stittsville High School Robert Grant Avenue and Cope Drive, Ottawa, ON

Project Number: OTT-00245378-E1

Maxime Leroux, P.Eng. Geotechnical Engineer, Geotechnical Services Earth and Environment

Susan M. Potyondy, P.Eng. Project Manager, Geotechnical Services Earth and Environment

Date Submitted: August 1, 2019

Legal Notification

This report was prepared by EXP Services Inc. (EXP) for the account of the Ottawa-Carleton District School Board (OCDSB).

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Executive Summary

EXP Services Inc. (EXP) is pleased to present the results of the detailed geotechnical investigation completed for the proposed new Stittsville High School to be located at the southwest corner of the Robert Grant Avenue and Cope Drive intersection in the Stittsville area of the City of Ottawa, Ontario (Figure 1). This work was authorized by Mr. David Lacelle of the OCDSB under SOA Number 18-007.

The proposed school building will be a three to four storey building without a basement. Associated underground services, fire route, bus loop and surface parking facility as well as basketball courts, soccer field/running track and landscaped areas are also to be constructed as part of the proposed school development. The finished floor slab of the proposed school building will be set at Elevation 108.16 m, resulting in a grade raise at the site by up to 2.5 m.

The fieldwork for the geotechnical investigation was completed in two stages and comprised the drilling of thirty-one (31) boreholes (Borehole Nos. 01 to 31) to depths ranging between 1.5 m and 7.3 m below the existing ground surface (Elevation 105.5 m to 100.2 m). Washboring and core drilling techniques were used to advance some of the boreholes beyond the auger refusal depths.

The boreholes revealed the subsurface soil conditions to comprise of surficial layers of topsoil/sand fill underlain by silty sand / sandy silt and glacial till extending to the maximum depth investigated or to the surface of the bedrock contacted at 2.0 m to 5.2 m depths (Elevation 103.8 m to 103.0 m). Washboring and core drilling techniques used to advance some of the boreholes below auger refusal depths revealed that refusal to auger was met on strong to very strong limestone bedrock in the cored boreholes.

Latest groundwater measurements taken on July 29, 2019 revealed that the groundwater table at the site ranges between the depths of 2.6 m and 4.1 m (Elevation 105.6 m to 103.0 m). The groundwater table is subject to seasonal fluctuations and may be at higher levels during wet weather conditions.

The site grading plan provided to EXP indicates that the grades at the site will be raised by up to 2.5 m from the original grades. Based on a review of the borehole log information, it is considered that the proposed grade raise of up to 2.5 m is feasible at the subject site from a geotechnical point of view.

The geotechnical conditions at the site are considered suitable to found the proposed multi-storey building on spread and strip footings set on the glacial till or on engineered fill pad comprising of OPSS 1010 Granular Type II prepared as described in the main body of the report. Footings designed to bear on glacial till or on engineered fill pad may be designed for a bearing pressure at Serviceability Limit State (SLS) of 200 kPa and factored geotechnical resistance at Ultimate Limit State (ULS) of 300 kPa. Settlements of the footings designed according to the recommendations of this report and properly constructed are expected to be within the normally tolerated limits of 25 mm total and 19 mm differential movements.

Alternatively, the footings may be designed for higher SLS and factored ULS values of 250 kPa and 375 kPa respectively provided that they are set in the dense zone of the glacial contacted at a depth of 0.9 m below the surface of the glacial till in some of the boreholes or an engineered fill pad constructed on top of the dense zone of the glacial till and prepared as per the details provided in the main body of the report.

The lowest level floor of the proposed structure may be constructed as a slab-on-grade provided it is set on engineered fill prepared as per the recommendation stated in the report. Perimeter and underfloor drainage systems will not be required. The lowest finished floor slab should be set at least 150 mm higher than the finished exterior grade.

The subsurface conditions at this site has been examined in relation to Section 4.1.8.4 of the 2012 Ontario Building Code (OBC). Based on a review of the borehole information, the site is classified as **Class C** for seismic site response in accordance with Section 4.1.8.4 of the 2012 OBC. It is also noted that a Multichannel Analysis of Surface Waves (MASW) seismic shear wave survey is currently being undertaken for the site. Depending on the results of the survey, the site may have a higher seismic site class, provided that the criteria of the maximum thickness of overburden soil under the footings is met as per the OBC 2012 requirement. The results of the survey will be reported under separate cover as soon as they become available. The on-site soils are not considered to be susceptible to liquefaction during a seismic event.

Excavations must comply with the most recent Occupational Health and Safety Act (OHSA) Ontario Regulations 213/91 (August 1, 1991). In accordance with the definitions provided in OHSA, the soils to be excavated are considered to be Type 3 and the excavation side slopes must be cut back at 1H:1V from the bottom of the excavation. Within zones of persistent seepage and below the groundwater level in the soils, the excavation side slopes are expected to slough and eventually stabilize at a slope of 2H:1V to 3H:1V. If the above side slopes cannot be achieved due to space restrictions on site, the excavation would have to be undertaken within the confines of an engineered support system (shoring system). The engineered support system should be designed and installed in accordance with the OHSA and the 2006 Canadian Foundation Engineering Manual (Fourth Edition).

Seepage of the surface and subsurface water into the excavations is anticipated in localized areas. However, it should be possible to collect any water entering the excavations in perimeter ditches or low points and to remove it by pumping from sumps. In areas of high infiltration or in areas where more permeable soil layers may exist, higher water seepage should be anticipated. Therefore, the need of high capacity pumps to keep the excavation dry should not be overlooked.

It is anticipated that the majority of the fill required for engineered fill construction to raise site grades and to backfill footing trenches, service trenches and against the subsurface walls would have to be imported and should preferably conform to the Ontario Provincial Standard Specification (OPSS 1010) requirements for Granular A and Granular B Type II.

The access road and fire route at the site should consist of 110 mm of asphaltic concrete underlain by 150 mm of OPSS 1010 Granular A base and 450 mm of OPSS 1010 Granular B Type II sub-base. The pavement structure for light-duty parking areas should consist of 65 mm of asphaltic concrete underlain by 150 mm of Granular A base and 300 mm of Granular B sub-base. The basketball courts and pathways should be provided with 50 mm of asphaltic concrete underlain by 150 mm of Granular A and 200 mm of Granular B Type II material.

General Use (GU) Portland cement may be used in the sub-surface concrete at this site.

The above and other related considerations are discussed in greater detail in the main body of this report.

Table of Contents

Exe	cutive	e SummaryEX-i				
1	Intro	duction1				
2	Site I	Description				
3	Procedure4					
4	Subs	urface Soil and Groundwater Conditions				
	4.1	Topsoil				
	4.2	Fill				
	4.3	Silty Sand / Sandy Silt				
	4.4	Glacial Till (Silty Sand to Sandy Silt)7				
	4.5	Cobbles and Boulders or Weathered Bedrock7				
	4.6	Auger Refusal				
	4.7	Limestone Bedrock				
	4.8	Groundwater Level				
5	Lique	efaction Potential and Seismic Site Classification				
	5.1	Liquefaction Potential				
	5.2	Seismic Classification				
6	Grad	e Raise Restriction 12				
7	Site 0	Grading				
	7.1	Engineered Pad for Future Portables13				
8	Foun	dation Considerations 14				
9	Floor	^r Slab and Drainage Requirements 16				
10	Exca	vations and De-Watering Requirements 17				
	10.1	Excavations				
	10.2	De-Watering Requirements17				
11	Pipe	Bedding Requirements 19				
12	Back	filling Requirements and Suitability of On-Site Soils for Backfilling Purposes . 20				
13	Acce	ss Roads and Parking Areas 21				
14	Soccer Field and Running Track					

15	5 Subsurface Concrete Requirements and Corrosion Potential of Subsurface		
	Soil to Buried Steel	. 24	
16	Additional Comments	. 25	
17	General Closure	. 26	

List of Tables

Page

Table I: Summary of Results from Grain-Size Analysis – Glacial Till	7
Table II: Summary of Auger Refusal Depths and Elevations in Boreholes	8
Table III: Unit Weight and Unconfined Compressive Strength Test Results - Bedrock Cores	9
Table IV: Summary of Groundwater Levels in Boreholes	10
Table V: Recommended Pavement Structure Thicknesses	21
Table VI: Results of pH, Chloride, Sulphate and Resistivity Tests on Selected Soil and Bedrock Samples	24

List of Figures

Figure 1: Site Location Plan					
Figure 2: Borehole Location Plan					
Figures 3 to 33: Borehole Logs					
Figures 34 to 42: Grain-size Distribution Curves					
Figures 43 to 47: Rock Core Photographs					

List of Appendices

Appendix A: AGAT Laboratories Certificate of Analysis

1 Introduction

A detailed geotechnical investigation was undertaken at the site of the proposed New Stittsville High School to be located at the southwest corner of the Robert Grant Avenue and Cope Drive intersection in the Stittsville area of the City of Ottawa, Ontario (Figure 1). This work was authorized by Mr. David Lacelle of the OCDSB under SOA Number 18-007.

The proposed school building will be a three to four storey building without a basement. Associated underground services, fire route, bus loop and surface parking facility as well as basketball courts, soccer field/running track and landscaped areas are also to be constructed as part of the proposed school development. The finished floor slab of the proposed school building will be set at Elevation 108.16 m, resulting in a grade raise at the site of up to 2.5 m.

It is noted that EXP Services Inc. (EXP) conducted a preliminary geotechnical investigation at the site under report number OTT-00245378-E0 dated June 20, 2018 for the OCDSB. As part of the preliminary investigation, EXP drilled five (5) boreholes throughout the site. The five (5) boreholes (Borehole Nos. 01 to 05) drilled as part of the preliminary investigation have been added to this report and discussed along with the twenty-six (26) boreholes (Borehole Nos. 05 to 31) drilled for this detailed geotechnical investigation.

This detailed geotechnical investigation was undertaken to:

- a) Establish the subsurface soil, bedrock and groundwater conditions at the borehole locations on site;
- b) Classify the site for seismic design in accordance with requirements of the 2012 Ontario Building Code (OBC) and assess the liquefication potential of the on-site soils during a seismic event;
- c) Comment on grade-raise restrictions for the site;
- Make recommendations on the most suitable type of foundations, founding depth and bearing pressure at Serviceability Limit State (SLS) and factored geotechnical resistance at Ultimate Limit State (ULS) for the proposed school building as well as anticipated total and differential settlements;
- e) Comment on slab-on-grade construction and permanent drainage requirements;
- f) Discuss excavation conditions and dewatering requirements during construction;
- g) Provide pipe bedding requirements;
- h) Comment on backfilling requirements and suitability of the on-site soils for backfilling purposes;
- i) Recommend pavement structure thickness for access roads, parking areas, paving stones and basketball courts;
- j) Provide recommendations for the construction of the soccer field and running track; and

k) Comment on subsurface concrete requirements and the corrosion potential of the subsurface soils to buried steel structures.

The comments and recommendations given in this report are based on the assumption that the abovedescribed design concept will proceed into construction. If changes are made either in the design phase or during construction, this office must be retained to review these modifications. The result of this review may be a modification of our recommendations or it may require additional field or laboratory work to check whether the changes are acceptable from a geotechnical viewpoint.

2 Site Description

The subject site is a 6.56 ha vacant parcel of land situated at the southwest corner of the Robert Grant Avenue and Cope Drive intersection in the Stittsville area of the City of Ottawa, Ontario. The surrounding areas are currently under development with new infrastructure and housing developments under construction north and east of the site.

Large stockpiles of excavated material (silty sand, gravel, cobbles and boulders) can be seen at the front of the site along Cope Drive. The site consists primarily of grass with some tree lines and old barb wire fences throughout the site. Cobbles and boulders in the areas of the tree lines are also frequent throughout the site.

The site slopes gently in the north and east directions with the ground surface elevation at the borehole locations ranging from 105.8 m to 109.1 m.

3 Procedure

The fieldwork for this investigation was undertaken on May 24 and 25, 2018 for the preliminary investigation and continued for the detailed investigation between July 12 and July 18, 2019. The two (2) geotechnical investigations comprise of the drilling of thirty-one (31) boreholes across the site to depths ranging between 1.5 m and 7.3 m below existing grade (Elevation 105.5 m to 100.2 m). The fieldwork was supervised on a full-time basis by an engineer from EXP.

The locations of the boreholes were established by the client and surveyed on site by a crew from Farley, Smith and Denis Surveying Ltd. Prior to drilling the boreholes, their locations were cleared of any public and private underground services by a local contractor. The borehole locations are shown in the Borehole Location Plan, Figure 2.

The fieldwork for this investigation was undertaken using a CME-55 track-mounted drill rig equipped with continuous flight hollow-stem augers and rock coring capabilities. Standard penetration tests (ASTM 1586) were performed in all the boreholes at regular depth intervals and soil samples retrieved by the split-barrel sampler. The presence of the bedrock was proven by coring techniques using NQ-size core barrel in five (5) boreholes. During core drilling of the bedrock, a record was kept of any sudden drops of the drill rods, colour of wash water and wash water return.

Water levels were measured in the open boreholes on completion of drilling. In addition, long-term groundwater monitoring installation consisting of 19 mm diameter polyvinyl chloride (PVC) standpipes with slotted section were placed in nine (9) of the boreholes, i.e. Borehole Nos. 1 to 4, 15, 18, 21, 26 and 31. The standpipes were installed in accordance with EXP standard practice and their installation configuration is documented on the respective borehole log. The remaining boreholes were backfilled upon completion of the fieldwork.

All the soil samples were visually examined in the field for textural classification, logged, preserved in plastic bags and identified. Similarly, all the rock cores were visually examined, placed in core boxes, identified and logged. On completion of the fieldwork, all the soil samples and rock cores were transported to the EXP laboratory in the City of Ottawa where they were visually examined in the laboratory by a geotechnical engineer and borehole logs prepared. The engineer also assigned the laboratory testing, which consisted of performing the following tests on selected soil samples and rock cores in accordance with the American Society for Testing and Materials (ASTM). The test procedures for the corrosion analysis are shown in Appendix A.

Tests on Selected Soil Samples:

Natural Moisture Content	. 138 tests	
Natural Unit Weight	. 44 tests	
Grain-size Analysis	. 9 tests	
Atterberg Limits Determination	. 2 tests	
Corrosion Analysis (pH, Sulphate, Chloride and Electrical Resist	tivity Analyses)	4 tests

Tests on Selected Rock Cores:

4 Subsurface Soil and Groundwater Conditions

A detailed description of the subsurface soil, bedrock and groundwater conditions encountered in the boreholes is given on the borehole logs, Figures 3 to 33 inclusive. The borehole logs and related information depict subsurface conditions only at the specific locations and times indicated. Subsurface conditions and water levels at other locations may differ from conditions at the locations where sampling was conducted. The passage of time may also result in changes in the conditions interpreted to exist at the locations where sampling was conducted.

It should be noted that the soil and rock boundaries indicated on the borehole logs are inferred from noncontinuous sampling and observations during drilling. These boundaries are intended to reflect approximate transition zones for the purpose of geotechnical design and should not be interpreted as exact planes of geological change. The "Notes on Sample Descriptions" preceding the borehole logs forms an integral part of this report and should be read in conjunction with this report.

A review of the borehole logs indicates the following subsurface soil and bedrock conditions with depth and groundwater level measurements.

4.1 Topsoil

A 50 mm and 350 mm thick layer of topsoil was encountered at ground surface in Borehole Nos. 1 to 5, 11 to 17 and 20 to 31.

4.2 Fill

A thin layer of fill was encountered directly at the surface and below the topsoil in thirteen (13) boreholes (i.e. Borehole Nos. 6-12, 18, 19, 21, 25, 30 and 31). The fill extends to depths ranging from 0.3 m to 0.8 m below the ground surface (Elevation 108.3 m to 105.0 m). The fill generally consists of sand with some gravel to gravelly and occasional traces of silt. It also contains occasional topsoil and organics. Cobbles and boulders can also be observed at the surface in the vicinity of some of the fill areas and are likely present throughout the fill. The SPT N-values of 4 to 28 indicate that the fill is in a loose to compact state. The natural moisture content of the fill is 8 percent to 21 percent.

4.3 Silty Sand / Sandy Silt

A silty sand to sandy silt layer was encountered below the topsoil at Borehole Nos.1, 2, 4, 13 to 17, 20, 23, 24 and 26-29. The silty sand to sandy silt extends to depths ranging from 0.4 m to 1.3 m (Elevation 108.4 m to 105.5 m). Based on the N-values from the standard penetration test (SPT) of 3 to 10, the silty sand is in a very loose to compact state. The natural moisture content of the silty sand to sandy silt is 5 percent to 28 percent.

4.4 Glacial Till (Silty Sand to Sandy Silt)

The topsoil, fill and silty sandy / sandy silt are underlain by glacial till. The SPT N-values of 6 to 120 indicate that the till is in a loose to very dense state. The natural moisture content of the till is 3 percent to 14 percent and its natural unit weight is 22.0 kN/m³ to 24.1 kN/m³.

The glacial till extends to the entire depth investigated of 1.5 m to 4.6 m (Elevation 105.5 m to 103.8 m) below ground surface in Borehole Nos. 11, 12, 14 to 17 and 29. In the remaining boreholes the till extends to a depth ranging between 2.0 m and 5.3 m (Elevation 104.8 m to 102.9 m)

-	Table I: Summary of Results from Grain-Size Analysis – Glacial Till							
Borehole No.	Sample	Depth (m)	Clay (%)	Silt (%)	Sand (%)	Gravel (%)		
BH-02	SS3	1.5 – 2.1	6	43	50	1		
BH-04	SS6	3.8 – 4.4	13	58	27	2		
BH-05	SS4	2.3 – 2.9	6	47	39	8		
BH-07	SS2	0.8 – 1.4	8	25	45	22		
BH-13	SS3	1.5 – 2.1	6	39	48	7		
BH-18	SS2	0.8 – 1.4	6	49	43	2		
BH-21	SS4	2.3 – 2.9	6	31	54	9		
BH-22	SS5	3.0 - 3.6	6	39	35	20		
BH-30	SS3	0.8 – 1.4	5	50	43	2		

The results of the grain size analysis conducted on nine (9) samples of the glacial till are summarized in Table I below. The grain size distribution curves are shown in Figures 34 to 42.

Atterberg limit tests were conducted on two of the above samples of the till (BH-2 SS3 and BH-4 SS6) and revealed that the glacial till is non-plastic.

Based on a review of the results of the grain size analysis and Atterberg limit tests, the glacial till may be classified as varying from a silty sand to sandy silt with trace to some clay and gravel. The till contains cobbles and boulders as indicated on the borehole logs.

4.5 Cobbles and Boulders or Weathered Bedrock

Significant grinding of the augers was encountered at the location of Borehole Nos. 9, 10, 18 to 21, 23, 25, 26 and 28 prior to auger refusal indicating a material such as weathered bedrock or cobbles and boulders. This layer ranges in thickness between 200 mm and 900 mm and extends to auger refusal at a depth ranging between 2.5 m and 4.3 m (Elevation 104.6 m to 103.3 m).

4.6 Auger Refusal

Auger refusal was met in all the boreholes (with the exception of Borehole Nos. 11, 12, 14 to 17 and 29) at 2.0 m to 5.3 m depths (Elevation 104.7 m to 103.0 m) on inferred boulders or bedrock. Based on coring results, cobbles and boulders were confirmed to be present within the glacial till in Borehole No. 1 from 3.5 m to 5.2 m depths (Elevation 104.7 m to 103.0 m) and in Borehole No. 31 from 1.7 m to 2.0 m depths (Elevation 104.1 m to 103.8 m). A summary of the auger refusal depths and elevations is presented in Table II.

Table II: Summary of Auger Refusal Depths and Elevations in Boreholes						
Borehole No.	Ground Surface Elevation (m)	Refusal Depth (m)	Refusal Elevation (m)			
BH-01	108.2	5.2*	103.0*			
BH-02	107.1	3.4*	103.7*			
BH-03	107.5	4.3*	103.2			
BH-04	109.1	5.3	103.8			
BH-05	108.2	5.2	103.0			
BH-06	107.4	3.4	104.0			
BH-07	108.6	3.9	104.7			
BH-08	108.2	4.4	103.8			
BH-09	107.1	3.3	103.8			
BH-10	106.1	2.6	103.5			
BH-11	105.8	NE	NE			
BH-12	106.8	NE	NE			
BH-13	108.4	4.1	104.3			
BH-14	108.3	NE	NE			
BH-15	108.7	NE	NE			
BH-16	108.4	NE	NE			
BH-17	107.3	NE	NE			
BH-18	107.7	4.3	103.4			
BH-19	107.2	3.7	103.5			
BH-20	106.1	2.6	103.5			
BH-21	106.2	2.8*	103.4*			
BH-22	107.9	4.8	103.1			
BH-23	107.2	3.5	103.7			
BH-24	106.3	2.5	103.8			
BH-25	105.8	2.5	103.3			
BH-26	107.8	3.2	104.6			
BH-27	107.2	3.2	104.0			

Table II: Summary of Auger Refusal Depths and Elevations in Boreholes						
Borehole No.Ground Surface Elevation (m)Refusal Depth (m)Refusal Elevation (m)						
BH-28	106.5	2.7	103.8			
BH-29	107.6	NE	NE			
BH-30	106.8	2.5	104.3			
BH-31 105.8 2.0* 103.8*						
*Indicates that bedrock was proven at refusal depth by rock coring techniques NE – Refusal not encountered						

4.7 Limestone Bedrock

The presence of bedrock was proven in Borehole Nos. 1 to 3, 21 and 31 by coring operations. The bedrock was contacted at 2.0 m to 5.2 m depths (Elevation 103.8 m to 103.0 m) and cored to depths extending between 3.6 and 7.3 m (Elevation 102.2 m to 100.2 m).

A review of the recovered bedrock cores and published geology maps indicate that the bedrock is limestone of the Ottawa formation. The limestone is described as containing thin shaley beds, is aphanitic to fine grained with laminated to very thinly bedded and close to moderate joint spacing.

The bedrock core information indicates a Total Core Recovery (TCR) of 95 percent and 100 percent and a Rock Quality Designation (RQD) of 29 percent to 94 percent. On this basis, the bedrock quality may be described as poor to excellent.

The results of the unit weight determination and unconfined compressive strength tests performed on nine (9) rock cores are summarized in Table III. A review of the test results indicates a bedrock with compressive strength ranging between 71.8 MPa and 210.5 MPa. Based on these values, the rock may be classified, with respect to intact strength as "strong" to "very strong" (Canadian Foundation Engineering Manual, 4th Edition, 2006). The unit weight of the bedrock ranges between 2645 kN/m³ and 2704 kN/m³.

Table III: Unit Weight and Unconfined Compressive Strength Test Results - Bedrock							
Borehole No.	Depth of Rock Core (m)	Unconfined Compressive Strength (MPa)	Unit Weight (kg/m³)				
BH-01	5.4 – 5.6	146.5	2671				
BH-02	3.8 – 3.9	71.8	2645				
BH-02	4.2 - 4.4	118.0	2656				
BH-03	4.4 – 4.5	145.1	2672				
BH-03	4.7 – 4.8	188.0	2679				
BH-21	2.8 - 3.0	210.5	2689				

Table III: Unit Weight and Unconfined Compressive Strength Test Results - Bedrock							
Borehole No.	Depth of Rock Core (m)	Unconfined Compressive Strength (MPa)	Unit Weight (kg/m³)				
BH-21	4.1 – 4.3	104.8	2682				
BH-31	2.2 – 2.4	140.2	2679				
BH-31	3.2 – 3.4	141.0	2704				

Photographs of the bedrock cores are presented in Figures 43 to 47.

4.8 Groundwater Level

Groundwater level observations were made in the boreholes during drilling and in standpipes installed in selected boreholes subsequent to the completion of drilling. The groundwater level observations made in the boreholes equipped with standpipes are shown in Table IV.

Table IV: Summary of Groundwater Levels in Boreholes								
Borehole No.	Drill Date		Date of Groundwater Level Measurement	Depth of Groundwater Below Existing Ground Surface (m)	Groundwater Elevation (m)			
BH-01	108.2	May 25, 2018	July 29, 2019	3.8	104.4			
BH-02	107.1	May 25, 2018	July 29, 2019	Dry	N/A			
BH-03	107.5	May 25, 2018	July 29, 2019	3.0	104.5			
BH-04	109.1	May 24, 2018	July 29, 2019	3.5	105.6			
BH-15	108.7	July 15, 2019	July 29, 2019	3.5	105.2			
BH-18	107.7	July 16, 2019	July 29, 2019	4.1	103.6			
BH-21	106.2	July 18, 2019	July 29, 2019	2.6	103.6			
BH-26	107.8	July 15, 2019	July 29, 2019	Dry	N/A			
BH-31	105.8	July 18, 2019	July 29, 2019	2.8	103.0			

Water levels were determined in the boreholes at the times and under the conditions stated in the scope of services. Note that fluctuations in the level of groundwater may occur due to a seasonal variation such as precipitation, snowmelt, rainfall activities, and other factors not evident at the time of measurement, and therefore, may be at a higher level during wet weather periods.

5 Liquefaction Potential and Seismic Site Classification

5.1 Liquefaction Potential

The investigation has revealed the subsurface conditions at the site comprise primarily of compact to very dense glacial till which is not considered susceptible to liquefaction during a seismic event.

5.2 Seismic Classification

The subsurface conditions at this site has been examined in relation to Section 4.1.8.4 of the 2012 Ontario Building Code (OBC). The subsurface soils consist primarily of a compact to very dense glacial till underlain by limestone bedrock contacted at 2.0 m to 5.2 m depths (Elevation 103.8 m to 103.0 m). Based on a review of the borehole information, the site is classified as **Class C** for seismic site response in accordance with Section 4.1.8.4 of the 2012 OBC.

It is also noted that a Multi-channel Analysis of Surface Waves (MASW) seismic shear wave survey is currently being undertaken for the site. Depending on the results of the survey, the site may have a higher seismic site class, provided that the criteria of the maximum thickness of overburden under the footing is met as per the OBC 2012 requirement. The results of the survey will be reported under separate cover as soon as they become available.

EXP Services Inc.

Ottawa-Carleton District School Board Project Name: Geotechnical Investigation, Proposed New Stittsville High School Location: Robert Grant Avenue and Cope Drive, Ottawa, ON Project Number: OTT-00245378-E1 Date: August 1, 2019

6 Grade Raise Restriction

Since the subsurface soils consist of cohesionless sandy soils that are not susceptible to consolidation settlement, there is no restriction to raising the grades at the site from a consolidation settlement perspective.

7 Site Grading

The site of the proposed school development comprises of a 6.56 hectare parcel of land.

Site grading within the footprint of the proposed building, parking areas, access roads, portables, soccer field, basketball court, soccer field etc. should consist of the removal of all topsoil, organic material and fill down to the surface of native silty sand / sandy and/or glacial till whichever is contacted first. Following approval, the exposed subgrade should be proof rolled with a vibratory roller in the full-time presence of a representative of this office. Any soft or spongy subgrade areas detected should be sub-excavated and properly replaced with fill as per the requirement of Section 12.

Allowance should be made in the contract in the event that some of the subgrade materials (upper fill) require removal from under the above elements.

7.1 Engineered Pad for Future Portables

It is understood that portable classrooms will be built at the site in the future. The portable classrooms may be supported by a reinforced thickened concrete mat placed on an engineered fill pad. Excavation in the area of the engineered fill pad for the portable classrooms would consist of removing all topsoil, fill, silty any other unsuitable materials down to the native silty sand/glacial till. The exposed subgrade should then be proofrolled and approved by a geotechnician. The construction of the engineered fill pad may then proceed as per the requirements provided in Section 12.

EXP can provide the bearing pressure at Serviceability Limit State (SLS) and factored geotechnical resistance at Ultimate Limit State (ULS) once additional details regarding the portables are available.

8 Foundation Considerations

Preliminary design plans indicate that the finished floor slab will be set at Elevation 108.16 m. Within the proposed building envelope, the site grade raise will range from approximately 0.3 m to 2.4 m. Review of the borehole logs within the building envelope indicates that the subsurface conditions consists of topsoil and fill underlain by native silty sand / sandy and glacial till overlying limestone bedrock. The groundwater level ranges from 2.6 m to 4.1 m depths (Elevation 105.6 m to 103.0 m). The glacial till within the proposed building footprint was contacted at approximately 0.3 m to 1.2 m depths below the existing ground surface (Elevation 107.4 m to 105.0 m).

Based on a review of the borehole information, the existing fill and native silty sand/sandy silt are not considered suitable to support footings. Therefore, it is considered feasible to support the proposed building on strip and spread footings founded on the glacial till and on an engineered fill pad constructed on the glacial till. As part of the preparation for the footings for the building footprint, the topsoil, fill, silty sand and any unsuitable material should be removed from the areas of the footings and excavated down to the native glacial till. The excavation should extend a sufficient distance beyond the perimeter of the building to accommodate a 1.0 m wide bench of engineered fill, which is thereafter sloped at an inclination of 1H:1V down to the native glacial till.

As part of the construction of the engineered fill pad for the footings, the surface of the exposed native glacial till subgrade should be reviewed by a geotechnician. Any soft or spongy subgrade areas detected should be sub excavated and properly replaced with Ontario Provincial Standard Specification (OPSS) Granular B Type II material compacted to 100 percent of the Standard Proctor Maximum Dry Density (SPMDD). The engineered fill should be placed under the full-time supervision of a geotechnician working under the direction of a geotechnical engineer. In-place density tests should be undertaken on each lift of the engineered fill to ensure that it is properly compacted prior to placement of the subsequent lift.

The footings designed to bear on the native silty sand / sandy silt till and on the engineered fill pad constructed as noted above may be designed for a bearing pressure at Serviceability Limit State (SLS) of 200 kPa and factored geotechnical resistance at Ultimate Limit State (ULS) of 300 kPa. The factored geotechnical resistance at ULS includes a geotechnical resistance factor of 0.5.

Alternatively, the footings may be designed for a higher SLS and factored ULS values of 250 kPa and 375 kPa respectively, provided that they are set in the dense zone of the glacial till contacted at a depth of 0.9 m below the surface of the glacial till in some of the boreholes or on an engineered fill pad constructed on top of the dense glacial till and prepared as per the details above.

Settlements of the footings designed for the SLS bearing pressure recommended above and properly constructed are expected to be within the normally tolerated limits of 25 mm total and 19 mm differential movements.

Following construction of the footings, granular fill comprising of OPSS 1010 Granular B Type II should be used as backfill in the interior and exterior of the building and compacted to 98 percent of SPMDD and to 95 percent SPMDD respectively.

All footings bed should be examined by a geotechnical engineer to ensure the founding surfaces are capable of supporting the design bearing pressure and that the footing beds have been properly prepared.

A minimum of 1.5 m of earth cover should be provided to the footings to protect them from damage due to frost penetration. The frost cover should be increased to 2.1 m for unheated structures if snow will not be removed from their vicinity. If snow will be removed from the vicinity of the unheated structures, the frost cover should be increased to 2.4 m. In areas where earth cover will be les than required, rigid insulation may be used to protect the footings. Alternatively, a combination of earth cover and rigid insulation may also be used to protect the footings from frost action.

The recommended bearing pressure at SLS and factored geotechnical resistances at ULS have been calculated by EXP from the borehole information for the design stage only. The investigation and comments are necessarily on-going as new information of underground conditions becomes available. For example, more specific information is available with respect to conditions between boreholes when foundation construction is underway. The interpretation between boreholes and the recommendations of this report must therefore be checked through field monitoring provided by an experienced geotechnical engineer to validate the information for use during the construction stage.

9 Floor Slab and Drainage Requirements

The lowest level floor slab of the proposed building may be constructed as a slab-on-grade provided it is cast on a bed of well-compacted 19 mm clear stone at least 200 mm thick placed on a minimum 300 mm thick engineered fill pad constructed on the compacted silty sand and/or on the glacial till. It is noted that the silty sand contacted above the till under the floor is generally loose and will need to be compacted in the presence of a geotechnician prior to placement of any engineered fill under the floor. Any soft areas detected within the silty and should be excavated and replaced with well compacted engineered fill.

The engineered fill beneath the floor slab should be compacted to 98 percent SPMDD.

The clear stone would minimize the capillary rise of moisture from the sub-soil to the floor slab. Adequate saw cuts should be provided in the floor slab to control cracking. Alternatively, the floor slab may be cast on a bed of OPSS 1010 Granular A overlain by a vapour barrier.

Perimeter and underfloor drainage systems are not required. The finished floor slab however should be set at least 150 mm higher than the finished exterior grade.

The finished exterior grade should be sloped away from the building at an inclination of 2 percent to prevent ponding of surface water close to the exterior walls.

10 Excavations and De-Watering Requirements

10.1 Excavations

Excavations for the construction of the foundations for the proposed school building and installation of the underground services are expected to extend to a maximum depth of 4.5 m below the existing grade. These excavations will be undertaken through the fill, silty sand / sandy silt, and into the glacial till and into the limestone bedrock in localised areas. The excavations are anticipated to be approximately 0.4 m to 1.9 m below the groundwater level.

The excavations in the soil may be undertaken by conventional equipment capable of removing cobbles and boulders in the glacial till. Large boulders may need to be hoe-rammed into smaller pieces prior to removal from the site.

Excavations must comply with the most recent Occupational Health and Safety Act (OHSA) Ontario Regulations 213/91 (August 1, 1991). In accordance with the definitions provided in OHSA, the soils to be excavated are considered to be Type 3 and the excavation side slopes must be cut back at 1H:1V from the bottom of the excavation. Within zones of persistent seepage and below the groundwater level in the soils, the excavation side slopes are expected to slough and eventually stabilize at a slope of 2H:1V to 3H:1V. If the above side slopes cannot be achieved due to space restrictions on site, the excavation would have to be undertaken within the confines of an engineered support system (shoring system). The engineered support system should be designed and installed in accordance with the OHSA and the 2006 Canadian Foundation Engineering Manual (Fourth Edition).

In areas where removal of the limestone bedrock will be required for the installation of underground services, hoe ramming may be used for the removal of small quantity of bedrock; however, this process is expected to be very slow. Should larger quantities of bedrock require removal, line drilling and blasting techniques may be required. The bedrock may be excavated with near vertical faces. The most suitable method required for the removal of small or large volume of bedrock should be best established by the contractor undertaking the work. In addition, it is recommended that a pre-construction survey of adjacent building(s), roads, sidewalks, wells and underground services be undertaken prior to any earth and rock excavation work and vibration monitoring be conducted during construction operations.

Many geologic materials deteriorate rapidly upon exposure to meteorological elements. Unless otherwise specifically indicated in this report, walls and floors of excavations must be protected from moisture, desiccation, and frost action throughout the course of construction.

10.2 De-Watering Requirements

Seepage of the surface and subsurface water into the excavations is anticipated in localized areas. However, it should be possible to collect any water entering the excavations in perimeter ditches or low points and to remove it by pumping from sumps. In areas of high infiltration or in areas where more permeable soil layers may exist, higher water seepage should be anticipated. Therefore, the need of high capacity pumps to keep the excavation dry should not be overlooked.

EXP Services Inc.

Ottawa-Carleton District School Board Project Name: Geotechnical Investigation, Proposed New Stittsville High School Location: Robert Grant Avenue and Cope Drive, Ottawa, ON Project Number: OTT-00245378-E1 Date: August 1, 2019

It is noteworthy to mention that new legislation came into force in Ontario on March 29, 2016 to regulate groundwater takings for construction dewatering purposes. Prior to March 29, 2016, a Category 2 Permit to Take Water (PTTW) was required from the Ontario Ministry of the Environment and Climate Change (MOECC) for groundwater takings related to construction dewatering, where taking volumes in excess of 50 m³/day, but less than 400 m³/day, and the taking duration was no more than 30 consecutive days. The new legislation replaces the Category 2 PTTW for construction dewatering with a new process under the Environmental Activity and Sector Registry (EASR). The EASR is an on-line registry, which allows persons engaged in prescribed activities, such as water takings, to register with the MOECC instead of applying for a PTTW.

To be eligible for the new EASR process, the construction dewatering taking must be less than 400 m³/day under normal conditions. The water taking can be groundwater, storm water, or a combination of both. It should be noted that the 30-consecutive day limit on the water taking under the old Category 2 PTTW process has been removed in the new EASR process. Also, it should be noted that the EASR process requires two technical studies be prepared by a Qualified Person, prior to any water taking. These studies include a Water Taking Report, which provides assurance that the taking will not cause any unacceptable impacts, and a Discharge Plan, which provides assurance that the discharge will not result in any adverse impacts to the environment. A significant advantage of the new EASR process over the former Category 2 PTTW process, is that the groundwater taking may begin immediately after completing the on-line registration of the taking and paying the applicable fee, assuming the accompanying technical studies have been completed. The former PTTW process typically took more than 90 days, which had the potential to impact construction schedules. EXP can provide assistance during the EASR/PTTW process, if required.

Although this investigation has estimated the groundwater levels at the time of the field work, and commented on de-watering and general construction problems, conditions may be present that are difficult to establish from standard boring and excavating techniques. These conditions may affect the type and nature of de-watering procedures used by the contractor. These conditions include local and seasonal fluctuations in the groundwater table, erratic changes in the soil profile, thin layers of soil with large or small permeabilities compared with the soil mass, etc. Only carefully controlled tests using pumped wells and observation wells will yield the quantitative data on groundwater volumes and pressures that are necessary to adequately engineer construction de-watering systems.

11 Pipe Bedding Requirements

Based on a review of the site servicing plan, it is anticipated that the services would be founded primarily in the glacial till overburden and possibly in the limestone bedrock in localized areas of the site.

It is recommended that the bedding for underground services including material specifications, thickness of cover material and compaction requirements conform to City of Ottawa requirements and/or Ontario Provincial Standard Specifications and Drawings (OPSS and OPSD).

It is recommended that a 300 mm thick well graded, crushed stone, such as OPSS Granular A be used as pipe bedding. The bedding thickness can be reduced to 150 mm if the subgrade consists of bedrock. The bedding material should also be placed along the sides and on top of the pipe to provide a minimum cover of 300 mm. The bedding and surround material should be compacted to at least 95 percent of the SPMDD.

In areas where the services will be founded partly in bedrock and partly in soil, a transition zone should be provided by the sub-excavation of the bedrock for a sufficient distance and backfilling the excavation with OPSS 1010 Granular A compacted to 100 percent of the SPMDD. EXP can provide additional recommendation in this regard, if required.

12 Backfilling Requirements and Suitability of On-Site Soils for Backfilling Purposes

Material to be excavated from the site as part of the proposed development would comprise of topsoil, fill, native silty sand / sandy silt and glacial till and possibly limestone bedrock. From a geotechnical perspective, these soils and the bedrock are not considered suitable for reuse as backfill material. Therefore, it is anticipated that the majority of material required for backfilling purposes and subgrade preparation would have to be imported and should conform to the following specifications. Portions of the above noted soils may be reused as fill in the landscaped areas of the proposed development.

- Engineered fill under footings for the building and mat foundation for the portables OPSS 1010 Granular B Type II for the interior of the building compacted to 100 percent SPMDD.
- Underfloor fill and backfill of footing trenches (building interior and exterior) OPSS 1010 Granular B Type II placed in 300 mm thick lifts and each lift compacted to 98 percent of the SPMDD in the interior of the building and to 95 percent of the SPMDD in the exterior of the building;
- Trench backfill and subgrade fill in recreation areas, parking areas and access roadways OPSS 1010 Select Subgrade Material (SSM) placed in 300 mm thick lifts and each lift compacted to 95 percent of the SPMDD; and
- Landscaped area Clean fill free of organic and deleterious material placed in 300 mm thick lifts and each lift to compacted to 92 percent of the SPMDD.

To minimize settlement of the pavement structure over services trenches, the trench backfill material within the frost zone should match the existing material along the trench walls to minimize differential frost heaving of the subgrade soil, provided this material is compactible. Otherwise, frost tapers may be required.

13 Access Roads and Parking Areas

The subgrade for the proposed parking areas, access roadways and other hard surfaces at the site will comprise of sand fill, silty sand / sandy silt, glacial till or select subgrade material used to raise the grades to the proposed subgrade levels. Pavement structure thicknesses required for the light duty and heavy-duty roadways (bus route and fire route) as well as for pathways, paving stones and basketball courts were computed and are shown on Table V. The thicknesses are based upon an estimate of the subgrade soil properties determined from visual examination, textural classification of the soil samples and functional design life of 15 to 18 years. The proposed functional design life represents the number of years to the first rehabilitation, assuming regular maintenance is carried out.

Table V: Recommended Pavement Structure Thicknesses							
Pavement Layer	Compaction Requirements	Paving Stones	Pathways / Basketball Courts	Light Duty (Cars and Parking)	Heavy Duty (Fire and Bus Routes)		
Asphaltic Concrete (PG 58-34)	92 - 97% MRD	Paving Stones over 25 mm stone dust	50 mm HL3F	65 mm HL3 or SP12.5 Cat B	50 mm HL3 or SP12.5 Cat B 60 mm HL8 or SP19 Cat B		
OPSS 1010 Granular'A Base (crushed limestone)	100% SPMDD*	150 mm	150 mm	150 mm	150 mm		
OPSS 1010 Granular B Type II Sub-base	100% SPMDD*	200 mm	200 mm	300 mm	450 mm		
		Competent	Subgrade OR En	gineered Fill			
Notes:							
MRD denotes Maximum Relative Density – ASTM D-2041							
	SPMDD denotes Standard Proctor Maximum Dry Density, ASTM-D698-12e2,						
Asphaltic concrete in accordance with OPSS 1150 (Marshall Mixes) or OPSS 1151 (Superpave Mixes)							

The foregoing design assumes that construction is carried out during dry periods and that the subgrade is stable under the load of construction equipment. If construction is carried out during wet weather, and heaving or rolling of the subgrade is experienced, additional thickness of granular material and/or geotextile may be required.

Additional comments on the construction of the pavement structure areas are as follows:

1. As part of the subgrade preparation, the proposed parking area, access roadways, basketball courts and paving stone areas should be stripped of topsoil and other obviously unsuitable material. In areas where existing fill is present, the fill may be left in place, however it should be compacted

and proof rolled in the presence of a geotechnician and approved before placement of the granular materials for the pavement structure (or granular materials for the grade raise).

- 2. Fill required to raise the grades to design elevations should conform to requirement as per Section 12 which should be placed and compacted to 95 percent of the SPMDD. The subgrade should be properly shaped, crowned, then proof rolled with a heavy vibratory roller in the full-time presence of a representative of this office. Any soft or spongy subgrade areas detected should be sub excavated and properly replaced with suitable approved backfill compacted to 98 percent SPMDD.
- 3. The long-term performance of the pavement structure is highly dependent upon the subgrade support conditions. Stringent construction control procedures should be maintained to ensure that uniform subgrade moisture and density conditions are achieved. The need for adequate drainage cannot be over-emphasized. Sub-drains must be installed on both sides of the access roads, in the proposed parking area, soccer field, basketball courts and any other paved surfaces or paving stone surfaces. The sub-drains should be installed at low points and should be continuous between catch basins to intercept excess surface and subsurface moisture and to prevent subgrade softening. This will ensure no water collects in the granular course, which could result in pavement failure during the spring thaw.
- 4. To minimize the problems of differential movement between the pavement and catch basins/ manhole due to frost action, the backfill around the structures should consist of free-draining granular preferably conforming to OPSS 1010 Granular B Type II material. Weep holes should be provided in the catch basins/manholes to facilitate drainage of the granular fill.
- 5. The most severe loading conditions on pavement areas and the subgrade may occur during construction. Consequently, special provisions such as restricted lanes, half-loads during paving, etc., may be required, especially if construction is carried out during unfavorable weather.
- 6. The finished pavement surface should be free of depressions and should be sloped (preferably at a minimum cross fall of 2 percent) to provide effective surface drainage towards catch basins. Surface water should not be allowed to pond adjacent to the outside edges of paved areas.
- 7. Relatively weaker subgrade may develop over service trenches at subgrade level if wet soils is used to backfill of the service trenches. Therefore, only dry and compactible material should be used to backfill service trenches as recommended in Section 12 of the report.
- 8. The granular materials used for pavement structure should conform to OPSS 1010 for Granular A and Granular B Type II and should be compacted to 100 percent of the SPMDD.
- 9. The asphaltic concrete used and its placement should meet OPSS 1150 or 1151 requirements. It should be compacted from 92 to 97 percent of the Maximum Relative Density (ASTM D2041). Asphalt placement should be in accordance with OPSS 310 and OPSS 313.

It is recommended that EXP be retained to review the final pavement structure design and drainage plans prior to construction to ensure that they are consistent with the recommendations of this report.

14 Soccer Field and Running Track

The soccer field should be provided with 150 mm of topsoil underlain by 150 mm of growing medium and 300 mm of OPSS Granular B Type II base. The running track surrounding the soccer field should be constructed with 100 mm of stone dust underlain by 300 mm thick OPSS 1010 Granular B Type II base. A landscaped architect should be consulted for the final design of the soccer field.

The subgrade or subgrade fill underlying the granular base for the soccer field and running track as well as the installation of sub-drains should be prepared as per the recommendations stated in Section 13 of the report. The base and sub-base materials should be compacted to at least 95 percent of SPMDD.

15 Subsurface Concrete Requirements and Corrosion Potential of Subsurface Soil to Buried Steel

Chemical tests limited to pH, sulphate, chloride and electrical resistivity were undertaken on four (4) selected soil samples and one (1) rock sample and the results are shown in Table VI. The laboratory certificate of analysis for the chemical tests is shown in Appendix A.

Table VI: Results of pH, Chloride, Sulphate and Resistivity Tests on Selected Soil and Bedrock Samples						
Borehole No Sample No.	Soil / Rock	Depth (m)	рН	Sulphate (%)	Chloride (%)	Resistivity (ohm.cm)
Threshold Values			<5	>0.1	>0.04	<1500 ohm.cm Corrosive
BH-01 – SS3	Silty Sand Till	1.5 – 2.1	7.71	0.0004	0.0004	9710
BH-03 – SS4	Sandy Silt Till	2.3 – 2.9	7.75	0.0003	0.0003	12800
BH-21 – SS3	Silty Sand Till	1.5 – 2.1	7.91	0.0002	< 0.0002	12200
BH-22 – SS4	Silt & Sand Till	2.3 – 2.5	7.80	0.0013	0.0011	7410
BH-31 – Run 2	Limestone	2.1 – 2.2	7.92	0.0078	0.0063	2650

The results indicate a soil and bedrock with sulphate and chloride content of less than 0.1 percent and 0.04 percent respectively. These concentrations of sulphate and chloride would have a negligible potential of sulphate and chloride attack on subsurface concrete. The concrete should be in accordance with Table Nos. 3 and 6 of CSA A.23.1-14. However, the concrete should be dense, well compacted and cured.

The results of the resistivity tests indicate that the soil is mildly to slightly corrosive while the bedrock is moderately corrosive to underground bare steel structures. It is recommended that a corrosion expert should be consulted to determine if any special measures are required if exposed steel is to be buried below ground surface.

Ottawa-Carleton District School Board Project Name: Geotechnical Investigation, Proposed New Stittsville High School Location: Robert Grant Avenue and Cope Drive, Ottawa, ON Project Number: OTT-00245378-E1 Date: August 1, 2019

16 Additional Comments

The investigation and comments are necessarily on-going as new information of underground conditions becomes available. For example, more specific information is available with respect to conditions between borehole locations when construction is underway. The interpretation between the boreholes, as well as the recommendations of this report, must, therefore, be checked through field inspections provided by EXP to validate the information for use during the construction stage.

All earthwork activities from placement and compaction of fill in the service trenches to subgrade preparation, placement and compaction of granular materials and asphaltic concrete should be inspected by qualified geotechnicians to ensure that all constructions of the services and pavement structures proceed according to the specifications. All the footing beds should also be examined by a geotechnical engineer to ensure that the design bearing pressure is available at the founding level and that the footing beds have been properly cleaned.

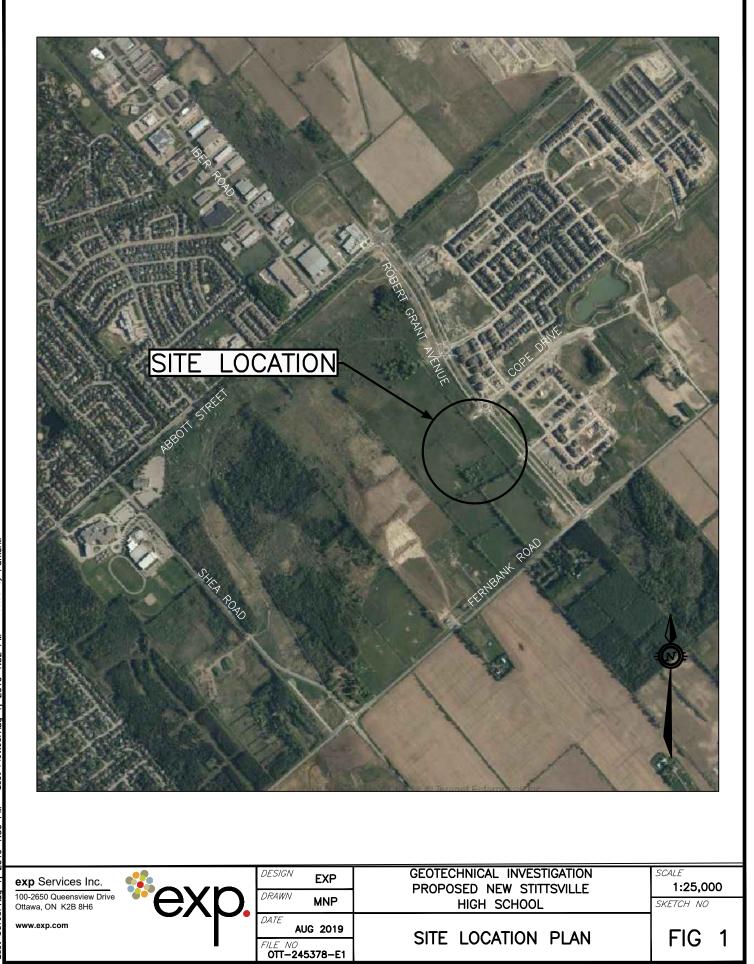
Ottawa-Carleton District School Board Project Name: Geotechnical Investigation, Proposed New Stittsville High School Location: Robert Grant Avenue and Cope Drive, Ottawa, ON Project Number: OTT-00245378-E1 Date: August 1, 2019

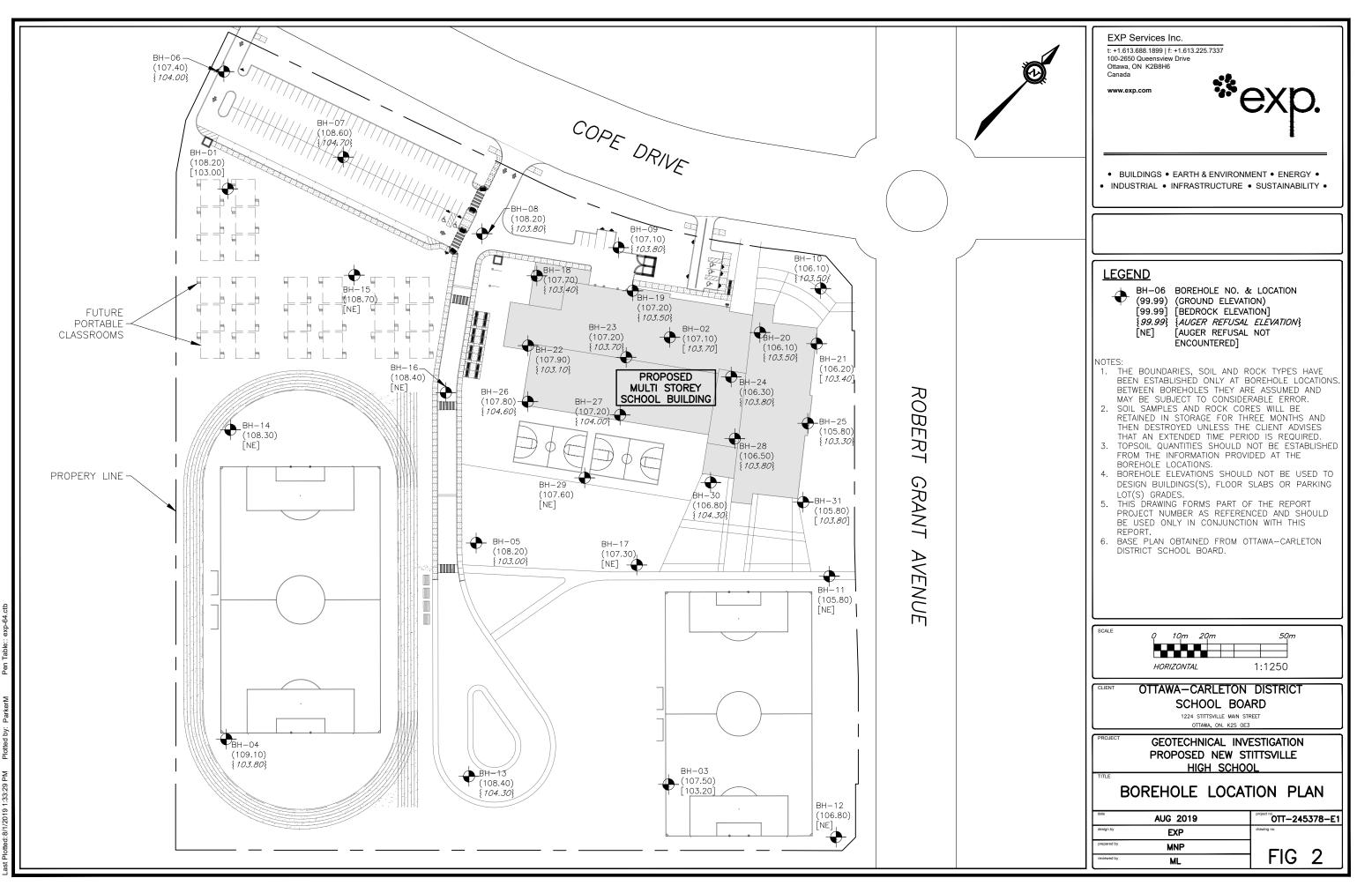
17 General Closure

The comments given in this report are intended only for the guidance of design engineers. The number of boreholes required to determine the localized underground conditions, between boreholes affecting construction costs, techniques, sequencing, equipment, scheduling, etc., would be much greater than has been carried out for design purposes. Contractors bidding on or undertaking the works should, in this light, decide on their own investigations, as well, as their own interpretations of the factual borehole results, so that they may draw their own conclusions as to how the subsurface conditions may affect them.

The information contained in this report is not intended to reflect on environmental aspects of the soils. Should specific information be required, including for example, the presence of pollutants, contaminants or other hazards in the soil additional testing may be required.

We trust that the information contained in this report will be satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.




EXP Services Inc.

Ottawa-Carleton District School Board Project Name: Geotechnical Investigation, Proposed New Stittsville High School Location: Robert Grant Avenue and Cope Drive, Ottawa, ON Project Number: OTT-00245378-E1 Date: August 1, 2019

FIGURES

Filename: p.\projects\geotechnical\240000\245000\245378 e1- detailed geo inv stittsville hs osdsblo - drawinglold report 245378 - bh-fer Last Saved: 8/1/2019 1:30:51 PM Last Plonted: 8/1/2016 1:33:30 PM Dicted hv: DaytorM Den Table:: exp.fd cth

gwb

Ottawa-Carleton District School Board Project Name: Geotechnical Investigation, Proposed New Stittsville High School Location: Robert Grant Avenue and Cope Drive, Ottawa, ON Project Number: OTT-00245378-E1 Date: August 1, 2019

Notes On Sample Descriptions

1. All sample descriptions included in this report follow the Canadian Foundations Engineering Manual soil classification system. This system follows the standard proposed by the International Society for Soil Mechanics and Foundation Engineering. Laboratory grain size analyses provided by **exp** Services Inc. also follow the same system. Different classification systems may be used by others; one such system is the Unified Soil Classification. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

ISSMFE SOIL CLASSIFICATION											
CLAY	2.03	SILT			SAND	2		GRAVEL		COBBLES	BOULDERS
	FIN	IE MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		
-	0.002 I	0.006 I	0.02 I			0.6 I DIAMETER			20 60 I	2	
CLAY (P	LASTIC)	TO		FINE		MEDIUM	CRS.	FINE	COARSE		
SILT (NO	ONPLAST	IC)				SAND	0	GR	AVEL		

UNIFIED SOIL CLASSIFICATION

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

		V V	VAIER	(LE	IVEL RECC	RDS			1		COF		∟∟iivG ŀ		/	
DTES:		v		R LE	EVEL RECC	RDS					COF		LLING F	RECORD)	
⊨⊥ B	orehole Terminated at 7.3 m De	100 epth).9													
		4		7											: : :	
		_													-	Run 4
duali □quali	ty)			6												
grain	ed, laminated to very thinly bed joint spacing, grey, (poor to go	ded,													╢	
	STONE BEDROCK e thin shaly beds, aphanitic to fi														i	Run 3
			3.0	5												Run 2
		-														
				4								·····				Run ⁻
			104.4													
							0				X				X	
		-		3		50 f	or 100 m	ım								
		-					57 O				×				X	22.9
				2		32 O					×				X	
	pact to very dense)	-,													;	
Som	e gravel, trace clay, cobbles and ders, brown to grey-brown, mois	1 _		1	17 O						×				X	23.2
Brow	n, moist, (loose) Y SAND TILL	107	7.5													
	SOIL ~200 mm Y SAND TO SANDY SILT	108		0	4 O							×			N	
L	SOIL DESCRIPTION	108	m 3.2	e p t h	20 Shear Stren 50	40 gth 10			80 200	kPa	Natu Atterbo 2		ture Conte s (% Dry \ 40	ent % Weight) 60	PLES	Unit W kN/m ³
S Y B O		Ge	eodetic	D e			etration T				25	50 5	00	ing (ppm) 750	S A M P	Natura
ogged by:	M.L. Checked by:	1.1.			Shear Streng Vane Test	h by		+ s	5		Penetron					
atum:	Geodetic			;	Dynamic Con Shelby Tube				-		Undraine % Strain Shear Str	at Failure	е			\oplus
ill Type:	CME-55 Track Mounted Drill R	ig		:	SPT (N) Value	•		C			Atterberg	Limits		F		-Õ
	'May 25, 2018				Split Spoon S Auger Sample	•					Combust Natural M			ing		□ ×
ocation:	Robert Grant Avenue and Cop	e Drive, City	of Ot	tav	va, Ontario)						·				
roject:	Geotechnical Investigation - Pr	roposed New	v Stitts	svil	le High So	hoo				-	-		1 of	- 1		
										F	igure N	lo.	3			I

Ö	1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECC	DRDS		CORE DF	RILLING RECOR	RD
BHL	use by others	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %
_		Time	Level (m)	To (m)	No.	(m)		
DLE	2.19 mm standpipe installed upon completion.	Completion	N/A	4.3	1	3.5 - 4.5	33	0
OREHC	3. Field work supervised by an EXP representative.	July 29, 2019	3.8		2	4.5 - 5.2	41	0
OR	4. See Notes on Sample Descriptions				3	5.2 - 5.8	100	29
ΕB					4	5.8 - 7.3	95	81
S OF	5.Log to be read with EXP Report OTT-00245378-E1							
PO								

Project No: OTT-00245378-E1 Project: Geotechnical Investigation - Propos	sed New St	ittsv	ille Hi	gh :	Scho	ol			Figure			4 1 of	- 1		1
ocation: Robert Grant Avenue and Cope Dr	ive, City of	Otta	wa, C	nta	rio				Р	age.			<u> </u>		
ate Drilled: <u>'May 25, 2018</u>		_	Split S Auger			le						our Readi Content	ng		□ ×
rill Type: <u>CME-55 Track Mounted Drill Rig</u>		_	SPT (N	l) Va	lue		0		Atterb	erg Lir	mits		F		-Ð
atum: <u>Geodetic</u>			Dynam Shelby			st		I		ain at f	Failure	;			\oplus
ogged by: M.L. Checked by: I.T.			Shear Vane 1		ngth by	/	+ s		Shear Peneti		igth by er Tes				
S Y M B O SOIL DESCRIPTION	Geodeti	c e p		20			Test N Va 60	80		250	50		ng (ppm) 50 nt %	SAMPLES	Natural Unit Wt
0 <u>31/2: _</u> TOPSOIL ~ 150 mm	m 107.1	h 0	Shea	1 Str 50	ength	100	150 2	kPa 200		20	Limits		veignt) 30 1 · · · · ·	E S	kN/m ³
SILTY SAND Brown, moist, (loose)	107.0		7 0						×						
SILT AND SAND TILL — Trace gravel and clay, cobbles and boulders, brownish grey to grey, moist, (compact to dense)	106.4	1			29 .O				X						
	_	2				40 O			*						23.9
	_					47 0									
	103.7	3			5	0 for 75	mm		×						
LIMESTONE BEDROCK Some thin shaly beds, aphanitic to fine grained, laminated to very thinly bedded, close joint spacing, grey, (poor to good quality)	_	4												•	Run 1
	_	5												· • • •	
	_													· · ·	Run 2
Borehole Terminated at 6.1 m Depth		6							· · · · · · · · · · · · · · · · · · ·		······				

OGS	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOP	RD
BHL	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Ч	2.19 mm standpipe installed upon completion.	Completion	N/A	6.1	1	3.4 - 4.6	100	41
BOREHOLE	3. Field work supervised by an EXP representative.	July 29, 2019	Dry		2	4.6 - 6.1	100	77
BO	4. See Notes on Sample Descriptions							
LOG OF	5.Log to be read with EXP Report OTT-00245378-E1							

	Log of B	orehole B	H-0:	3 😵	avn
Project No:	OTT-00245378-E1		_	_	CNP
Project:	Geotechnical Investigation - Proposed New S	Stittsville High School		Figure No. <u>5</u>	I
Location:	Robert Grant Avenue and Cope Drive, City of	f Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	
Date Drilled:	' <u>May 25, 2018</u>	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME-55 Track Mounted Drill Rig	Auger Sample —— SPT (N) Value		Natural Moisture Content Atterberg Limits	× ⊢⊸⊖
Datum:	Geodetic	Dynamic Cone Test - Shelby Tube		Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.L. Checked by: I.T.	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	A
S S		D Standard Penetration Te	est N Value	Combustible Vapour Reading (ppm) S A Natural

G Y		Geodetic	De)			ition Test N V		2	50	pour Readii 500 7	50	S M Natu P Unit
S Y B B C L	SOIL DESCRIPTION	107.5	e p t h	onear	20 Strength 50	40 100	60 150	80 kPa 200	1	ural Mois erg Limi 0	sture Conte ts (% Dry V 40 6	Voight)	PUnit kN/
XXXXXX	TOPSOIL ~200 mm	107.3	0	12								1	Л
	SANDY SILT TILL — Trace to some gravel, cobbles and	_		0					×				\mathbb{N}
	Trace to some gravel, cobbles and boulders, grey-brown to grey, moist,												7
	_(compact to very dense)	_	1		24				X				23
												1:::::/	1
	—	_					-58						7
			2				58 O		×				(22
			2	· · · · · · · · · · · · · · · · · · ·		:						li i i i i i i i	1
		_			3							<u> </u>	Л
					• • • • • • • • • • • • • • • • • • •				×				\mathbb{N}
		104.5	5 3				· · · · · · · · · · · · · · · · · · ·						7
							57 O		×				X
	<u> </u>	-										ŀ	
1						50 for	50 mm						7
		103.2	4				0		X				X 23
	LIMESTONE BEDROCK Some thin shaly beds, aphanitic to fir												
	grained, laminated to very thinly bed	ded,											
	 close to moderate joint spacing, grey (excellent quality) 	/,	5										Ru
		_											
			6	10 0 1 0 10 0 0 0		:							
			0			:							
	1 1—	_											Ru
	-												
	4 	_	7										
<u> </u>	Borehole Terminated at 7.3 m De	100.2											-
		, p											
OTES:			RI	EVEL R	FCOR)S]		0		ILLING R	FCORD	
I.Boreh	ole data requires interpretation by EXP before y others	Elapsed		Water			e Open	Run	Dep		% Re		RQD 9
u30 D)					1				_ J P				

0GS	NOTES:	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOR	RD
BH L	1. Borehole data requires interpretation by EXP before use by others	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %
Ē	2.19 mm standpipe installed upon completion.	Time Completion	Level (m) N/A	<u>To (m)</u> 4.2	<u>No.</u>	<u>(m)</u> 4.3 - 5.8	100	90
EHO	3. Field work supervised by an EXP representative.	July 29, 2019	3.0		2	5.8 - 7.3	100	94
BOR	4. See Notes on Sample Descriptions							
Ъ	5. Log to be read with EXP Report OTT-00245378-E1							
LOG								

roject:	OTT-00245378-E1 Geotechnical Investigation - P	roposed New St	tittsv	ille Hi	igh S	Scho	ol		F	igure I	_	6			
ocation:	Robert Grant Avenue and Cop	•			0					Pa	ge	<u>1</u> of	_1_		
	'May 24, 2018			Split S			0			Combus	tible Van	our Read	ina		
	CME-55 Track Mounted Drill R	lia	_	Auger			e				Moisture		ing		×
		ay	_	SPT (N Dynan			at .	0		Atterber	g Limits ed Triaxia	al at	ŀ		-O
	Geodetic			Shelby						% Strain	ı at Failur	e			\oplus
ogged by:	M.L. Checked by:	1.1.		Shear Vane ⁻		gth by		+ s			trength b meter Te				
S Y M B O	SOIL DESCRIPTION	Geodet	ic e t	Shea	Standa 20 ar Stre	4		Fest N Valı 60 8	ue 0 kPa	2	50 5	oour Read 500 7 ture Conte s (% Dry \	750) SAZP-LIIIO	Natura Unit W kN/m
	COIL ~150 mm	109.1	C		50	1	0 1	50 20	00		l : : : :	40	60	5 :/	
	<u>Y SAND TO SANDY SILT</u> n, moist, (loose)			Ō							×			À	
	DY SILT TILL	. 108.4			24										
6/10 bould	e gravel, some clay, cobbles an lers, brownish grey to grey, moi	a — st,	1							×				X	24.1
(com	pact to dense)	_													
							45 O			×				X	
			2												
		-		1000 1000		·····	o			×	<u>11201</u>			HV	
			3											\square	
							46			×				M	
		105	5.6											HΔ	
			4				45								<i></i>
							Ō			×				Ň	22.6
		-				50	for 100 r	h						\square	
		_	5				0			×				Ă	
	Auger Refusal at 5.3 m Depth	103.8	_												
TES:]		 					· : : : : [
	equires interpretation by EXP before	Elapsed		EVEL Wate	r		Hole Op		Run	Dep	th	LLING F % Re			QD %
19 mm standpip	e installed upon completion.	Time Completion		<u>evel (ı</u> Dry	<u>m)</u>		<u>To (m)</u> 5.2		No.	<u>(m</u>)		\rightarrow		
	rvised by an EXP representative.	July 29, 2019		3.5											

		WAT	ER LEVEL RECC	RDS		CORE DI	RILLING RECO	RD
1	1. Borehole data requires interpretation by EXP before use by others	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %
1	2.19 mm standpipe installed upon completion.	Time	Level (m)	<u>To (m)</u>	No.	<u>(m)</u>		
		Completion	Dry	5.2				
į	3. Field work supervised by an EXP representative.	July 29, 2019	3.5					
5	4. See Notes on Sample Descriptions							
5	5.Log to be read with EXP Report OTT-00245378-E1							
2								

		Log of Borehole	BH-05	
Project No:	OTT-00245378-E1	-		

[%] exp.)
-------------------	---

r toject No.	011-00243370-E1		Figure No. 7							
Project:	Geotechnical Investigation - Proposed New Stitts	eotechnical Investigation - Proposed New Stittsville High School								
Location:	Robert Grant Avenue and Cope Drive, City of Ott	awa, Ontario	Page. <u>1</u> of <u>1</u>							
Date Drilled:	'May 24, 2018	Split Spoon Sample	Combustible Vapour Reading							
Drill Type:	CME-55 Track Mounted Drill Rig	Auger Sample	Natural Moisture Content							
Datum:	Geodetic	Dynamic Cone Test	Undrained Triaxial at \oplus Strain at Failure							
Logged by:	M.L. Checked by: I.T.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test							

L 0 108.2 108.0 L 0 L 0 L 0 L 0 L 0 L 0 L 0 L		ş			D	s	standard	l Pen	etration T	est N Va	lue	Combu	n) S A	Neture			
Line TopSolL - 200 mm 108.2 90 109 200 20 40 60 5 High And SaMD Till Frace Cay and gravel, cobbles and boulders, grey, moist to wet, (loose to dense) - <	G W L	M B O	SOIL DESCRIPTION		c e p t	Shea) 6	0		n) S A P L	Natura Unit W kN/m ³				
SULT AND SULL Sult and gravel, cobbles and boulders, grey, moist to wel, (loose to dense) -		L							0 1	50 2	200					÷ Š	
NOTES: 1 WATER LEVEL RECORDS CORE DRILLING RECORD NOTES: 1 WATER LEVEL RECORDS CORE DRILLING RECORD NOTES: 1 WATER LEVEL RECORDS CORE DRILLING RECORD		XXXX	<u>IOPSOIL</u> ~200 mm	108.0		6		200								ΞĮ	
Model of the requires interpretation by EXP before WATER LEVEL RECORDS CORE DRILLING RECORD NOTES: WATER LEVEL RECORDS CORE DRILLING RECORD NOTES: WATER LEVEL RECORDS CORE DRILLING RECORD			-Trace clav and gravel, cobbles and	_			3444 ++++	÷	****					;		<u> </u>	
Auger Refusal at 5.2 m Depth Auger Refusal at 5.2 m Depth WATER LEVEL RECORDS CORE DRILLING RECORD WATER LEVEL RECORDS CORE DRILLING RECORD CORE DRI		<i>W</i>	boulders, grey, moist to wet, (loose to	c]
NOTES: WATER LEVEL RECORDS CORE DRILLING RECORD NOTES: WATER LEVEL RECORDS CORE DRILLING RECORD NOTES: WATER LEVEL RECORDS CORE DRILLING RECORD			_dense)		1		22									\mathbb{N}	0.00
NOTES: NOTES: WATER LEVEL RECORDS CORE DRILLING RECORD																ΞÅ	23.5
NOTES: NOTES: WATER LEVEL RECORDS CORE DRILLING RECORD		1 A					5										
NOTES: NOTES: WATER LEVEL RECORDS CORE DRILLING RECORD							26	<u>:::</u>								:::N	
NOTES: NOTES: WATER LEVEL RECORDS CORE DRILLING RECORD							0									÷Χ	
NOTES:			_		2				<u></u>					1	: :::::	<u>.</u>	
NOTES:																: 17	
NOTES: NOTES: NALER LEVEL RECORDS 1.00ebid. data requires interpretation by EXP before WATER LEVEL RECORDS CORE DRILLING RECORD Elapaeed Water Level no topon NOTES: NOTES: 1.00ebid. data requires interpretation by EXP before WATER LEVEL RECORDS CORE DRILLING RECORD Elapaeed Water (m) Water (m) To oph) % Water (m) To oph)			_					· :0				X		1		X	22.6
NOTES: NOTES: NALER LEVEL RECORDS 1.00ebid. data requires interpretation by EXP before WATER LEVEL RECORDS CORE DRILLING RECORD Elapaeed Water Level no topon NOTES: NOTES: 1.00ebid. data requires interpretation by EXP before WATER LEVEL RECORDS CORE DRILLING RECORD Elapaeed Water (m) Water (m) To oph) % Water (m) To oph)							:::::	::::	$\overset{\circ}{\ldots}\overset{\circ}{\ldots}\overset{\circ}{\ldots}\overset{\circ}{\ldots}\overset{\circ}{\ldots}$	• • • • • • •				1	: ::::	÷Υ	
Auger Refusal at 5.2 m Depth 4 -56 X X 103.0 5 5 5 X X Auger Refusal at 5.2 m Depth 103.0 103.0 103.0 103.0 103.0 NOTES: NOTES: NOTES: NOTES: NOTES: CORE DRILLING RECORD 1.borehold data requires interpretation by EXP before WATER LEVEL RECORDS CORE DRILLING RECORD			_	-	3				45							÷. /	
Auger Refusal at 5.2 m Depth 103.0 5		1 de la compañía de							0			X				Щ.	
Auger Refusal at 5.2 m Depth 103.0 5		11	_	-			÷ • • • • •		****							÷μ	
Auger Refusal at 5.2 m Depth 103.0 5																	
Auger Refusal at 5.2 m Depth 103.0 5		i de la compañía de	_	_	4			***				X				÷Χ	
Auger Refusal at 5.2 m Depth Image: Imag		688														\mathbb{N}	
Auger Refusal at 5.2 m Depth Image: Imag		<i>HA</i>	_	-			<u></u>										
Auger Refusal at 5.2 m Depth Image: Imag												×				X	
Auger Refusal at 5.2 m Depth Image: Constraint of the second			_	103.0	5		<u></u>									<u>; / `</u>	
1. Borehole data requires interpretation by EXP before use by others WATER LEVEL RECORDS CORE DRILLING RECORD Elapsed Water Hole Open Run Depth % Rec. RQD % Time Level (m) To (m) No. (m)		1000 702	Auger Refusal at 5.2 m Depth	1					****							:	
1. Borehole data requires interpretation by EXP before use by others WATER LEVEL RECORDS CORE DRILLING RECORD Elapsed Water Hole Open Run Depth % Rec. RQD % Time Level (m) To (m) No. (m)																	
1. Borehole data requires interpretation by EXP before use by others WATER LEVEL RECORDS CORE DRILLING RECORD Elapsed Water Hole Open Run Depth % Rec. RQD % Time Level (m) To (m) No. (m)		DTES:]		'					i 	ii						
Time Level (m) To (m) (m)	1.	Boreho	ole data requires interpretation by EXP before		CK L					Run							
					L									/010			

2. Borehole backfilled upon completion of drilling. LOG OF BOREHOLE 3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions

5.Log to be read with EXP Report OTT-00245378-E1

WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECO	RD
Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Completion	3.6	4.9				

Log of Borehole <u>BH-06</u>

Project No: OTT-00245378-E1

[%] exp.

Project:	Geotechnical Investigation - Proposed New Stitts	ville High School		Figure No. <u>o</u>	1
Location:	Robert Grant Avenue and Cope Drive, City of Otta	awa, Ontario		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'July 12, 2019	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME-55 Track Mounted Drill Rig	Auger Sample SPT (N) Value	II 0	Natural Moisture Content > Atterberg Limits ()	≮ ∋
Datum:	Geodetic	Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	€
Logged by:	M.L. Checked by: I.T.	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	•

	S			D Standard Penetration Test N V						est N Va	lue		stible Vapo 50 50	SAZb-T≣Q	Natural		
G W L	SY MBOL	SOIL DESCRIPTION	Geodetic m	m t Shear Strength							80 kPa	Nat Atterb	ural Moist erg Limits	ure Conte s (% Dry V		Unit Wt. kN/m ³	
		FILL Sand and gravel, trace silt, some organics,	107.4	0		5 18		100	15	50	200	2	20 4	10 e	30 	i N	21.5
		brown, moist, (compact) <u>SILTY SAND TILL</u> Some gravel to gravelly, trace clay, cobbles	106.9													-// 	
		and boulders, grey with some brown, moist to wet, (dense)	-	1			34 					×					
			-					50 fc	or 25 m O	m		×				X	
			-	2		: • : • • : • : • •	• • • • • •									•	
			-				30					×				Ň	
		-	-	3				50 fc	or 25 m	m		×					23.9
	<i>6123</i>	Auger Refusal at 3.4 m Depth	104.0				• • • • • • •										25.5
245378-E0.GPJ TROW OTTAWA.GDT 8/1/19																	
24537																	L
XI	DTES:	ole data requires interpretation by EXP before	WATEF	٦L	EVEL	RE	CORE	DS				CO	RE DRIL	LING R	ECORE)	

20	NOTES:	WAT	ER LEVEL RECO	RDS		CORE DRILLING RECORD						
ᇳ	1. Borehole data requires interpretation by EXP before use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %				
비는	2. Borehole backfilled upon completion of drilling.	Completion	Dry	3.0								
Å	3. Field work supervised by an EXP representative.											
ģ	4. See Notes on Sample Descriptions											
5	5. Log to be read with EXP Report OTT-00245378-E1											
ğ												

		Log of Borehole <u>BH-07</u>	
Project No:	OTT-00245378-E1	-	

[%] exp.

FIOJECI NO.	011-00245378-ET		Figure No. 9
Project:	Geotechnical Investigation - Proposed New Stitts	ville High School	° I
Location:	Robert Grant Avenue and Cope Drive, City of Ott	awa, Ontario	Page. <u>1</u> of <u>1</u>
Date Drilled:	'July 12, 2019	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	CME-55 Track Mounted Drill Rig	Auger Sample	Natural Moisture Content X Atterberg Limits
Datum:	Geodetic	Dynamic Cone Test	Undrained Triaxial at % Strain at Failure
Logged by:	M.L. Checked by: I.T.	Shear Strength by + Vane Test S	Shear Strength by Annual Penetrometer Test

G	S Y		Geodetic	D Standard Penetration Test N									e Combustible Vapour Reading (ppm) 250 500 750						S A M	Natural
G W L	SY MBOL	SOIL DESCRIPTION	m	p 20 40 60 t Shear Strength							8	k	Combustible Vapour Reading (ppm) S 250 500 750 M N Natural Moisture Content % P V V kPa Atterberg Limits (% Dry Weight) E I V 20 40 60 S S						Natural Unit Wt kN/m ³	
		_ <mark>FILL</mark> _Sand, some gravel, brown, moist, (loose) 	108.6 108.3	0	.9 O	50		100		50				*		40				
		Some gravel to gravelly, trace clay, cobbles and boulders, grey-brown to grey, moist, (compact to very dense)		1			2 5							×						
			_								72 O			*						
			-	2								0		X						22.9
			_	3						7	Ő									
			104.7					50	for 50 m		J			×					1	
		Auger Refusal at 3.9 m Depth																		
	DTES:		WATEF	R L	EVELF	REC	OR	DS] [CO	RE DF		NG R	ECORE)	
1.	Boreho	ble data requires interpretation by EXP before	and		Water							D		Don						<u> </u>

OGS	NOTES: 1.Borehole data requires interpretation by EXP before] [WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD								
BHL	use by others		Elapsed Time	Water Level (m)	Hole Open To (m)	RI	un o.	Depth (m)	% Rec.	RQD %				
OLE	2. Borehole backfilled upon completion of drilling.		Completion	Dry	3.5									
BOREHOLE	3. Field work supervised by an EXP representative.													
_	4. See Notes on Sample Descriptions													
LOG OF	5.Log to be read with EXP Report OTT-00245378-E1													

	Log of Bo	orehole	BH-08		avn
Project No:	OTT-00245378-E1			•	CND.
Project:	Geotechnical Investigation - Proposed New Stit	tsville High School		Figure No. <u>10</u>	I
Location:	Robert Grant Avenue and Cope Drive, City of O	ottawa, Ontario		Page. <u>1</u> of <u>1</u>	-
Date Drilled:	'July 15, 2019	_ Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	CME-55 Track Mounted Drill Rig	Auger Sample – SPT (N) Value		Natural Moisture Content Atterberg Limits	× ⊢⊸
Datum:	Geodetic	 Dynamic Cone Test Shelby Tube 		Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.L. Checked by: I.T.	Shear Strength by Vane Test	+ \$	Shear Strength by Penetrometer Test	
S		D Standard Penet	ration Test N Value	Combustible Vapour Reading (pp	m) S A Natural

U V L	SY M B O L	SOIL DESCRIPTION	Geodeti m 108.2	p t h	Shear	20	40) 8	30 kPa 00	2 Nat Atterb	50	sture Conte ts (% Dry V	50		Natural Unit Wt. kN/m ³
		FILL Sand, some gravel, trace silt, some – organics in upper 150 mm, brown, moist, (compact)		0		1. : . : . :					×					22.0
		SANDY SILT TILL Some gravel, trace to some clay, cobbles and boulders, brownish grey to grey, mois (dense to very dense)	st,	1				for 25 mr	n :		X					7
		_	_	2			.37 .0				×					23.0
			_	3		32) 				×					23.6
			_			32	2				*					
		Auger Refusal at 4.4 m Depth	103.8	4					69 ①		×				X	
5 - 245378-E0.GPJ TROW OTTAWA.GDT 8/1/19																
BH LOG	use b		Elapsed Time		EVEL R Water .evel (m)			lole Ope To (m)	n	Run No.	CO Dep (m	th	ILLING R % Re			QD %
BOREHOI	3.Field 4.See N	ole backfilled upon completion of drilling. C work supervised by an EXP representative. lotes on Sample Descriptions b be read with EXP Report OTT-00245378-E1	ompletion		Dry			4.4								

NOTES:	WAT	ER LEVEL RECO	RDS		CORE DR	RILLING RECOF	RD
1.Borehole data requires interpretation by EXP before use by others	Elapsed Time	Water Level (m)	Hole Open	Run No.	Depth	% Rec.	RQD %
2.Borehole backfilled upon completion of drilling.	Completion	Dry	<u>To (m)</u> 4.4	INO.	<u>(m)</u>		
3. Field work supervised by an EXP representative.							
4. See Notes on Sample Descriptions							
5.Log to be read with EXP Report OTT-00245378-E1							

		Log of Borehole	BH-09	
Project No:	OTT-00245378-E1	•	Figure No.	11

*ехр.

Project:	Geotechnical Investigation - Proposed New Stittsv	ille High School	F	igure No. <u>11</u> Page. 1 of 1	I
Location:	Robert Grant Avenue and Cope Drive, City of Otta	wa, Ontario			
Date Drilled:	'July 16, 2019	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME-55 Track Mounted Drill Rig		I 0	Natural Moisture Content Atterberg Limits	× ⊸
Datum:	Geodetic	Dynamic Cone Test	- I	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.L. Checked by: I.T.	Shear Strength by	— + s	Shear Strength by Penetrometer Test	

W B SOIL DESCRIPTION Matural Moisture Content Weight) P Unit Wight) P Unit Wight) P Unit Weight) P Unit Weight) P Unit Wight) P Unit Weight) P <	G Y M		Geodetic	D e	SI			tration T				250	ible Vap 0 5	00	7	50	n) S A N	i r	Natural
FILL Sand, trace gravel and silt, brown, moist, (cose) 106.5 1 21. Sint AND SAND TILL Some gravel, trace clay, cobbles and boulders, brownish grey to grey, moist, (compact to dense) 106.5 1 24 22.1 Image: Compact to dense 1 1 1 1 24 22.1 Image: Compact to dense 1 1 1 24 22.1 Image: Compact to dense 1 1 1 22.1 Image: Compact to dense 1 1 1 22.1 Image: Compact to dense 1 1 1 21.1 Image: Compact to dense 1 1 1 22.1 Image: Compact to dense 1 1 1 21.1 Image: Compact to dense 1 1 1 22.1 Image: Compact to dense 1 1 1 21.1 Image: Compact to dense 1 1 1 22.1 Image: Compact to dense 1 1 1 23.1			m		Shear	r Str	rength			kPa	Atte								Jnit Wt kN/m ³
SILT AND SAND TILL Some gravel, trace clay, cobbles and boulders, brownish grey to grey, moist, (compact to dense) 2 48 2 48 3 COBBLES AND BOULDERS OR WEATHERED BEDROCK		Sand, trace gravel and silt, brown, moist,		0	8 O							×	č					/	21.4
(compact to dense) (compact to dense) (compa		SILT AND SAND TILL Some gravel, trace clay, cobbles and																	
2 2 48 3 104.1 103.8 104.1 103.8 2 2 48 3 48 5 5 5 5 5 5 5 5 5 5 5 5 5		boulders, brownish grey to grey, moist, (compact to dense)				2	2 4 Э				×							/	22.8
23.1 COBBLES AND BOULDERS OR WEATHERED BEDROCK																	/		
104.1 104.1 3 3 23.1 WEATHERED BEDROCK 103.8 3 3 3			-	2															
COBBLES AND BOULDERS OR WEATHERED BEDROCK			-					- 48		<u>} :: : :</u>	×				** **				23.0
		COBBLES AND BOULDERS OR		3					<u></u>	<u>.</u>					<u></u>				
		Auger Refusar at 3.3 m Depth																	

OGS	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
H		Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Ы	2. Borehole backfilled upon completion of drilling.	Completion	Dry	3.0				
BOREH	3. Field work supervised by an EXP representative.							
	4. See Notes on Sample Descriptions							
Р	5. Log to be read with EXP Report OTT-00245378-E1							
СОС								

Log	of	Bor	eho	le	BH	-10
•						

Project No: OTT-00245378-E1

*ехр.

r roject No.	011-00243370-L1		r.	Figure No. 12	
Project:	Geotechnical Investigation - Proposed New Stitts	ville High School	I		
Location:	Robert Grant Avenue and Cope Drive, City of Otta	awa, Ontario		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'July 17, 2019	Split Spoon Sample	X	Combustible Vapour Reading	
Drill Type:	CME-55 Track Mounted Drill Rig		D	Natural Moisture Content	
Dim Type.		SPT (N) Value (0	Atterberg Limits	
Datum:	Geodetic	Dynamic Cone Test	_	Undrained Triaxial at	
		Shelby Tube		% Strain at Failure	
Logged by:	M.L. Checked by: I.T.	Shear Strength by	+ s	Shear Strength by Penetrometer Test	

	S V			D	5	;	Star	ndar	d Pe	enet	ratio	n Te	st N \	/alu	е		Com	bust 25		apou 500	ir Readi	ng (ppn 50	n) S A	Natural
G W L	SY MBOL	SOIL DESCRIPTION	Geodetic m	D e p t h	3 2 1	Shea	2		ath	40		60		80)	Pa	Λ Δ#			istur	e Conte % Dry V		n) SAMPLES	Unit Wt.
Ľ	L		106.1	ĥ		Snea	ar 3 5			100		150)	20		га		20		40		i0	LES S	kN/m ³
		FILL Sand and gravel, trace silt, some organics, –brown, moist, (compact) –	105.5			11 0											*						X	
		SILTY SAND TILL	103.5					• • • •	5	50 fe	or 75	5 mn	1 1											
		Trace clay and gravel, cobbles and boulders, brownish grey to grey, moist	-	1	1					1	0						X						X	23.2
								• • • •	5	50 f	or 25	mn											···	
								• • • •		Ĩ	0				: . ; .		×							
			-	2	2			• • • • •			• • • •	÷.	2 - 2 - 2 			:- : - : - :			· · · · · · ·		<u></u>			
		COBBLES AND BOULDERS OR	103.8						5	50 fe	or 25	5 mn	i i i											
	• •	WEATHERED BEDROCK	103.5		÷		÷		÷	Ŧ		÷		÷	÷÷	<u></u>	+ + +	+	+ + +	+	÷ • • • •		÷	
		Auger Refusal at 2.6 m Depth					:	::	::			:		:	::	::		-	:::	:	::::::::::::::::::::::::::::::::::::::		:	
														:										
								:::				-								-			-	
							:	: :	::			:		:	::	: :		-	:::	:			:	
														:										
								:::				-								-			-	
					3		÷	::	::			:		:	: : : :	::		-	:::	:	:::::		:	
								: :						:									:	
							:							:									:	
							-	::			::			-					:::					
														:										
								: :						:									:	
/19																								
T 8/1														:									:	
A.GD														:									:	
LAW4																								
V OT																							:	
ROV														:									:	
												-		:									:	
E0.G														:										
245378-E0.GPJ TROW OTTAWA.GDT 8/1/19												-												
- SINC	DTES [.]						-: 1			1:		: 1		÷т Г				: 1		: 1			:	

OGS	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD										
Н	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %							
ЧСГЕ	2. Borehole backfilled upon completion of drilling.	Completion	Dry	2.1											
BOREH	3. Field work supervised by an EXP representative.														
	4. See Notes on Sample Descriptions														
LOG OF															

Log of	f Borehole	BH-11
•		

Project No: OTT-00245378-E1

*exp)
------	---

FIUJECI NO.	011-00245576-E1		Figure No. 13
Project:	Geotechnical Investigation - Proposed New Stit	tsville High School	• •
Location:	Robert Grant Avenue and Cope Drive, City of C	Ottawa, Ontario	Page. <u>1</u> of <u>1</u>
Date Drilled:	'July 17, 2019	_ Split Spoon Sample	Combustible Vapour Reading
Drill Type:	CME-55 Track Mounted Drill Rig	Auger Sample II - SPT (N) Value O	Natural Moisture Content X Atterberg Limits
Datum:	Geodetic	Dynamic Cone Test Shelby Tube	Undrained Triaxial at \oplus % Strain at Failure
Logged by:	M.L. Checked by: I.T.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test

G Y M		Geodetic	D e	tandard 20	Pen 4	etration T 0 6		ue 30	2	50 5	our Readi	ng (ppm) /50	S A M	Natural
G Y W B U O L	SOIL DESCRIPTION	m 105.8	n	20 r Strengt 50	40 th 10			kPa 00			ture Conte s (% Dry V 40	ent % Veight) 60	SAMPLES	Unit Wi kN/m ³
<u>N 1/</u>	• <u>TOPSOIL</u> ~250 mm	105.6	0 5 •••••••••••••••••••••••••••••••••••									TN	$\overline{}$	
	FILL Sand and gravel, some topsoil and organics, brown, moist, (loose)	105.2		23					×				Ň	
	SANDY SILT TILL		1	0		0 / Refus	al 2 1 1 1 1		×				Ň	22.8
	⁴¬dense)	104.3				0							4	
	Borehole Terminated at 1.5 m Depth													

logs	NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
핆	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Ы	2. Borehole backfilled upon completion of drilling.	Completion	Dry	1.2				
Ш Ш Н	3. Field work supervised by an EXP representative.							
BO	4. See Notes on Sample Descriptions							
b	5.Log to be read with EXP Report OTT-00245378-E1							
ğ								

Log of Borehole <u>BH-12</u>	Log	of	Bo	reh	ole	BH-	<u>12</u>
------------------------------	-----	----	----	-----	-----	-----	-----------

Project No: OTT-00245378-E1

*ехр.

r roject No.	011-00240070-21		Figure No. 14
Project:	Geotechnical Investigation - Proposed New Stittsv	ille High School	
Location:	Robert Grant Avenue and Cope Drive, City of Otta	wa, Ontario	Page. <u>1</u> of <u>1</u>
Date Drilled:	'July 17, 2019	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	CME-55 Track Mounted Drill Rig	Auger Sample II SPT (N) Value O	Natural Moisture Content X Atterberg Limits O
Datum:	Geodetic	Dynamic Cone Test Shelby Tube	Undrained Triaxial at \oplus % Strain at Failure
Logged by:	M.L. Checked by: I.T.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test

G	S Y		Geodetic	De	5				etration T						25	0	50	ur Readi 0 7	50	n) S A M	Natural
G W L	SY MB L	SOIL DESCRIPTION	m	D e p t h	Shea		rength			0			kPa	At				re Conte (% Dry \		n) SAMPLES	Natural Unit Wt. kN/m ³
-	L		106.8 106.7	0		50		10	0 15	50	2	200			20) 	40)	60	š	
	65575	\overline{FILL}_{∇} Gravel and sand, brown, moist, (compact) $_{\mathcal{T}}$	106.3				28 〇							×						X	
		SILTY SAND TILL Some gravel, trace clay, brownish grey to grey, moist, (dense)		1				39		· : · · · : · ·		· · · · ·		×		· · · · · · · · · · · · · · · · · · ·					22.6
			105.2					50	for 50 m					×							
		Borehole Terminated at 1.6 m Depth	100.2			İ															
245378-E0.GPJ TROW OTTAWA, GDT 8/1/19																					
245						:		:													

OGS	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
BHL	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Ч	2. Borehole backfilled upon completion of drilling.	Completion	Dry	1.2		· · ·		
BOREHOLE	3. Field work supervised by an EXP representative.							
	4. See Notes on Sample Descriptions							
LOG OF	5.Log to be read with EXP Report OTT-00245378-E1							

р,	oio at No.	Log o	f Bo) r	eho	le	<u> </u>	<u>H-</u>	<u>13</u>				*	Э	XD.
	oject No: oject:	OTT-00245378-E1 Geotechnical Investigation - Proposed	New Stitt	svi	ille High So	hoc)		F	igure N Paç		15 1 of	- 1		
Lo	ocation:	Robert Grant Avenue and Cope Drive,	City of O	ttav	wa, Ontario)				1 45	,0	0.	<u> </u>		
Da	ate Drilled	: 'July 12, 2019		-	Split Spoon Sa	ample	•			Combust	ible Vapo	our Read	ing		
Dr	ill Type:	CME-55 Track Mounted Drill Rig			Auger Sample SPT (N) Value					Natural M Atterberg		Content	F		×
Da	atum:	Geodetic			Dynamic Cone		t.			Undraine % Strain	d Triaxial		•		⊕
Lo	gged by:	M.L. Checked by: I.T.			Shelby Tube Shear Strengt Vane Test	h by		∎ + s		Shear St Penetror	rength by	,			
G W L	S Y M B	SOIL DESCRIPTION	Geodetic m	D e p t		4(etration Te		ue 80 kPa	25 Nati		00 7 ure Conte	ing (ppm) 750 ent % Weight)	SAZPLI	Natural Unit Wt. kN/m ³
	SIL Brow SAN Trac bou	PSOIL ~150 mm TY SAND TO SANDY SILT wn, moist, (loose) ID AND SILT TILL ce clay and gravel, cobbles and Iders, brownish grey to grey, moist, npact to very dense)	_ 108.4 _ 108.3 _ 108.0	1	50 7 	10		0 2		2) X	0 4	0	60		23.3

I					108.4	0	-	50		1	20 20	200		20	40	00	5	
	1	1,	TOPSOIL ~150 mm		108.3		7										::	
			SILTY SAND TO SANDY SILT	_	108.0		0	343						X			∷¦ľ	23.3
		K	⊣Brown, moist, (loose) SAND AND SILT TILL														÷-	4
	Ĺ		Trace clay and gravel cobbles and						,									7
		Y)	<u>Trace clay and gravel</u> , cobbles and boulders, brownish grey to grey, mois	st, –		1		·····C					X				ŤΧ	
		Ø	(compact to very dense)														Ľ	<u>N</u>
			_	_													÷.	1
		\mathcal{D}							3	9 · · · · · · · · · · · · · · · · · · ·			×				ΞY	<u>'</u>
		Ð	_			2											<u> </u>	
							331	3243				1000	: : : : : :	1333	:::::::::::::::::::::::::::::::::::::::	:::::	::	-
		B	_	_					<u></u>	42			X				-1	22.6
																	:::/\	22.0
		X-	_			3					••••••						÷È	
		Ø									69 O						÷1	4
			_	_									×				<u>.</u>	
		Ø					331	343	50	for 50 m	<u></u>			1333			÷+	1
		۶Ż	_		104.3	4			50) for 50 m	m		×					
		ć/R	Auger Refusal at 4.1 m Depth		104.3				÷ :								÷ –	
									÷÷									
							: : :		:::		::::	1 : : : :		1 : : :	: : : :	: : : :	:	
									÷ ;									
									::									
							: : :	: : : :	::		::::			1 : : :		: : : :	:	
									÷÷								-	
									::									
									::								-	
									÷÷								:	
									::								-	
									÷÷									
									÷ ;								-	
8/1/19									::									
8									::									
Б									::									
۲Ă.							: : :	: : :	:::					1 : : :	: : : :	: : : :	:	
Ā									÷ :									
0									÷ ;									
ő									::									
Ë									::									
Ъ									÷ :								÷	
щ									÷ ;								-	
- 245378-E0.GPJ TROW OTTAWA.GDT									::								:	
- 24		1						: 1 : :				1::::	1::::	1:::	: : : :	: : : :	<u> </u>	I
gg	NOTE				WAT	ERL	EVEL	RECC		3			CC	RE DR	ILLING	RECOF	۶D	
BH LOGS	1.Bo	reho	le data requires interpretation by EXP before others	Elaps			Wate			- Hole Ope	en	Run	Dep		% R			RQD %
				Tim	e	L	evel (m)		To (m)		No.	(m					
5		reno	le backfilled upon completion of drilling.	Comple	etion		Dry			3.8								
ΥI																	1	
REH			ork supervised by an EXP representative.															
BOREH	3.Fie	eld w	ork supervised by an EXP representative. otes on Sample Descriptions															
OF BOREH	3.Fie 4.Se	eld w e No																
LOG OF BOREHOLE	3.Fie 4.Se	eld w e No	tes on Sample Descriptions															

NOTES: 1. Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECC	RDS	CORE DRILLING RECORD							
use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %				
2.Borehole backfilled upon completion of drilling.	Completion	Dry	3.8		• •						
3. Field work supervised by an EXP representative.											
4. See Notes on Sample Descriptions											
5. Log to be read with EXP Report OTT-00245378-E1											

		Log of Borehole	BH-14
Project No:	OTT-00245378-E1	•	

	*ехр.
16	

			Figure No. 16
Project:	Geotechnical Investigation - Proposed New Stitts		
Location:	Robert Grant Avenue and Cope Drive, City of Otta	Page. <u>1</u> of <u>1</u>	
Date Drilled:	'July 12, 2019	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	CME-55 Track Mounted Drill Rig	Auger Sample	Natural Moisture Content
Dim Type.		SPT (N) Value O	Atterberg Limits
Datum:	Geodetic	Dynamic Cone Test	Undrained Triaxial at
		Shelby Tube	% Strain at Failure
Logged by:	M.L. Checked by: I.T.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test

A Y			D	Sta	anda	ard Per	netrat	ion T	est N Va	ue			pour Readi 500 7	ng (ppm) '50	S	Natura
G M W B L O L	SOIL DESCRIPTION	Geodetic m	e p t h	Shear		ngth	10	6		30 kPa	Nat Atterb	ural Mois erg Limi	sture Conte ts (% Dry V	ent % Veight)		Unit W kN/m
<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	DPSOIL ~200 mm	108.3 108.1	0	3. O	50	1	00	15	<u>i0 2</u>	00	2 *	20	40	60 	i V V	
BI	rown, moist, (very loose)	107.8														7
bo bo	ome gravel, trace clay, cobbles and bulders, brownish grey to grey, moist, lense to very dense)		1				41				×				X	N N
	-								7	9	×				X	/
	-		2													2
		105.4					h				×				X	
	Borehole Terminated at 2.9 m Depth															

OGS	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD								
BHL	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %					
빙	2. Borehole backfilled upon completion of drilling.	Completion	Dry	1.6									
BOREHO	3. Field work supervised by an EXP representative.												
ß	4. See Notes on Sample Descriptions												
LOG OF	5.Log to be read with EXP Report OTT-00245378-E1												

roject No: roject:	OTT-00245378-E1 Geotechnical Investigation - Proposed							<u>15</u>	-	No		-		
ocation:	Robert Grant Avenue and Cope Drive			-					Pa	ge	<u>1</u> of	_1_		
ate Drilled: rill Type: atum:	'July 15, 2019 CME-55 Track Mounted Drill Rig Geodetic		-	Split Spo Auger Sa SPT (N) ^v Dynamic	mple /alue				Natural Atterber	Moisture		ng F		□ ★ ●
ogged by:	M.L. Checked by: I.T.		-	Shelby To Shear Str Vane Tes	ength by		■ + s		% Strair Shear S	n at Failur Strength b meter Tes	e y			⊕
S Y M B O L	SOIL DESCRIPTION	Geodetic m	D e p t h		trength		30 8	lue 30 kPa 00	2	250 5 tural Mois berg Limit	ture Conte s (% Dry V	50	SAZPLES	Natura Unit Wt kN/m ³
SILT Brow	SOIL ~100 mm Y SAND m, moist, (loose)	108.7 108.6 108.2	0	8. O					>	20			X	
Som	AND SAND TILL e gravel, trace clay, cobbles and ders, brownish grey to grey, moist, se)	-	1		35 O				×					24.0
		_	2			45 O			×					
		_	3) for 100 I	nm		×					
		105.2	2		24									
B	orehole Terminated at 4.4 m Depth	104.3	4		0				×					23.2

0	NOTES:	WAT	ER LEVEL RECO	RDS		CORE DRILLING RECORD						
BHL	1. Borehole data requires interpretation by EXP before use by others	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %				
		Time	Level (m)	To (m)	No.	(m)						
픠	2.19 mm standpipe installed upon completion.	Completion	Dry	4.4								
BOREHOLE	3. Field work supervised by an EXP representative.	July 29, 2019	3.5									
BO	4. See Notes on Sample Descriptions											
Ы	5. Log to be read with EXP Report OTT-00245378-E1											
LOG												

	Log of	Bo) r	rehole	В	H -′	<u>16</u>				**e	2	xn	
Project No:	OTT-00245378-E1							iaura Na		18			NΡ	
Project:	Geotechnical Investigation - Proposed I	New Stitt	sv	ille High School			_ r	igure No			-			
Location:	Robert Grant Avenue and Cope Drive,	City of O	tta	wa, Ontario			_	Page	eI	of				
Date Drilled:	'July 15, 2019		_	Split Spoon Sample				Combustib	le Vapo	ur Readi	ng			
Drill Type:	rill Type: CME-55 Track Mounted Drill Rig		_	Auger Sample SPT (N) Value				Natural Mo Atterberg L		ontent	F		×	
Datum:	Geodetic		-	Dynamic Cone Test				Undrained % Strain at	Triaxial		·		⊕	
ogged by: M.L. Checked by: I.T.			 Shelby Tube Shear Strength by + Vane Test 					Shear Strength by Penetrometer Test						
SY MBO-	SOIL DESCRIPTION	Geodetic m	D e p t h	20 40 Shear Strength	60) 80) kPa	Combustil 250 Natura Atterber	50 al Moistu		50 nt %		Natural Unit Wt. kN/m ³	
SILT Brow SILT Som bould	SOIL ~200 mm Y SAND /n, moist, (loose) // AND SAND TILL e gravel, trace clay, cobbles and ders, brownish grey to grey, moist, se to very dense)	108.4 108.2 107.9	0	8 32 0 0	15 			× .					22.9	

Some gravel, trace clay, cobbles and boulders, brownish grey to grey, mois (dense to very dense)	st,		32 O		×		22.9
	_	2	60		*		
	_						
	_	3					
	_				×		22.6
	_	4	50 for 125 mm		×		
	100.0						
Borehole Terminated at 4.6 m De							
61/18 LOS OFICES FOR THE INTERCE AT NO IN 201 100 VMCES: 1. Borehole data requires interpretation by EXP before use by others							
80 NOTES:	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
I.Borehole data requires interpretation by EXP before use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
의 2. Borehole backfilled upon completion of drilling.	Completion	Dry	4.6		· · · ·		
U 2. Borehole backfilled upon completion of drilling. 3. Field work supervised by an EXP representative. 4. See Notes on Sample Descriptions 5. Log to be read with EXP Report OTT-00245378-E1							
Om 4. See Notes on Sample Descriptions				1	1		

			Log o	f Bo) r	ehole _	BH	I-17		Δ	vr	\$
Pr	oject	No:	OTT-00245378-E1			-			- N 10		Λμ	•
Pr	oject		Geotechnical Investigation - Proposed	l New Stit	tsv	ille High School		ł	Figure No. <u>19</u>		I	
Lc	catio	n:	Robert Grant Avenue and Cope Drive	, City of C	Otta	wa, Ontario			Page. <u>1</u> of <u>1</u>			
Da	ite Dr	rilled:	'July 12, 2019		_	Split Spoon Sample		\boxtimes	Combustible Vapour Reading			
Dr	ill Typ	pe:	CME-55 Track Mounted Drill Rig		_	Auger Sample SPT (N) Value		0	Natural Moisture Content Atterberg Limits	—	× ⊕	
Da	itum:		Geodetic		_	Dynamic Cone Test Shelby Tube		_	Undrained Triaxial at % Strain at Failure		\oplus	
Logged by:		by:	M.L. Checked by: I.T.			Shear Strength by Vane Test		+ s	Shear Strength by Penetrometer Test			
G₩L	SY MBO		SOIL DESCRIPTION	Geodetic m	D e p t h	Standard Penetrati	ion Test N 60	I Value 80 kPa	Combustible Vapour Reading (ppm 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight)	M	Natural Unit Wt. kN/m ³	

		s			D		St	and	dard	Pe	netration 1	Tes	st N Valu	ue		Co		tible V 50	apo/ 50		ading 75		n)	S A	Natural
	G W L	SY MBO	SOIL DESCRIPTION	Geodetic	e p t			20		4	0 6	60	8	0			Natu	ural Me erg Lii	pistu	re Col	nten	t %		SAMPLES	Unit Wt.
	-	0 L		m 107.3	h		hear	Str 50			00 1	150	20		Pa	'	atterb 2		тиs 4(y vve 60			Ĕ	kN/m ³
ł		<u>`<u>`\</u>'.'.</u>	TOPSOIL ~200 mm	107.3	0					<u>.</u>														./	
			SILTY SAND			5 O								• • • •			×							χI	
			$\neg \overline{\text{Brown, moist}}$, (loose)	106.8				-							÷ ; ;								/	$^{\prime}$	
	Ê	11A	SILT AND SAND TILL												÷.		• • • •								
		SI B	_Trace clay and gravel, cobbles and	4	1					34		· · :		· : · :	÷÷		· ; ; ; ;		• • •			<u></u>		$\sqrt{ }$	
		<i>IBA</i>	boulders, brownish grey to grey, moist,							0							X							ΛI	
	Ē	1 A	(dense to very)						:						÷.							÷	.::¥	-	
		UB											<u>_</u>	. ; . ;					. ; .					. /	
	ĥ	IB A										6	5 D				×							χI	
		1 A A		-	2	1																	-/	$^{\prime}$	
	Ē	17 A													ŝ							333	÷E		
	Ŕ	JA SA		1		1.2	<u></u>		:::	<u>:::</u>	0.000	· · :	· · · · · · · ·	• • • •	<u>: 1</u>	20	<u>,</u>	· : · : :	• : •	· · · · ·		<u>:::</u>	÷	N	
		6 A A		104.5					:	÷:::					÷ : \$	P. >	N		::::			***		\mathbb{N}	
	ľ	~~~	Borehole Terminated at 2.8 m Depth			İ				÷÷					÷÷		<u>;;</u>				÷	***	÷ľ		
						÷	:::		::	::			:::	::			::				-		÷		
									÷÷	÷÷							÷÷								
						1:	:::		::	: :				: :	÷ ÷	: :	÷÷	:::	÷	÷ ÷ ÷	:	÷ ÷ ÷	÷		
						1÷			÷÷	÷÷					÷÷		÷÷				÷		÷		
						1:	: : :		: :	: :			::::	::	÷ :	: :	:::	:::	:	÷ ÷ ÷	:	÷ ÷ ÷	÷		
						1÷	:::		÷÷	÷ ÷							÷÷		÷		:		÷		
									÷÷	÷÷					÷÷.		÷÷		:		:				
						1	:::		: :	: :				: :	÷ ÷	: :	: : :	:::	÷	÷ : :	:	÷ ÷ ÷	÷		
						1÷				1							÷÷		÷		-		÷		
									÷÷	÷÷					÷÷		÷÷				:				
						1	:::		: :	3				1::	÷ ÷	: :	: : :	:::	÷	÷ : :	:	::::	÷		
						÷			÷÷	÷÷							÷ ÷				:		÷		
						1:	:::		: :	: :				::	÷ ÷	::	÷ ÷	:::	÷	÷ ÷ ÷	:	÷	÷		
						÷	:::			÷÷				::			::		:		-		÷		
										÷ ÷							÷÷								
						1:	:::		::	: :			::::	::	÷ ÷	::	:::	:::	÷	÷ ÷ ÷	:	÷ ÷ ÷	÷		
						÷	:::		÷÷	÷÷									:		-		÷		
										÷ ÷							÷÷								
						1:	: : :		: :	: :			: : : :	::	÷ :	: :	:::	: : :	:	÷ : :	:	÷ ÷ ÷	÷		
						1÷			÷÷	÷÷					÷÷		÷÷						÷		
/19						1	:::		: :	: :			::::	::	: :	: :	:::	:::	÷	:::	:	::::	÷		
8/1						÷	:::		::	: :			:::	::	::	::	::	:::	:	:::	:	:::	÷		
비						1÷			÷÷	÷÷							÷÷								
9 A						1:	:::		::	: :				::	÷ :	: :	:::	:::	:	÷ ÷ ÷	:	÷ : :	÷		
A										1							÷÷		÷		÷		÷		
E									: :	÷÷					::		÷ ÷		:						
Š						1:	:::		::	÷÷				1 : :	::		::			:::		:::	-		
別									::	::					÷ ÷		÷÷		÷				÷		
5						1:	:::		::	: : :			::::	::	: :	: :	÷÷	:::	÷	:::	:	:::	÷		
Ъ							:::		::					: :		: :			÷			:::	-		
Щ									: :								::						:		
245378-E0.GPJ TROW OTTAWA.GDT 8/1/19									::	::					::		÷÷		÷	::::		::::			
14						Ŀ			::	::					::		::		:	:::	:	: : :			
ŝ	NO	TES:		WATER	21	E//			201	RD	5		[CO	RED	RII		RE	COF	חא		

OGS	NOTES: 1.Borehole data requires interpretation by EXP before	WA	TER LEVEL RECC	RDS		CORE DF	RILLING RECOF	RD
BHL	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Ы	2. Borehole backfilled upon completion of drilling.	Completion	Dry	1.6				
BOREHOLE	3. Field work supervised by an EXP representative.							
B	4. See Notes on Sample Descriptions							
LOG OF	5.Log to be read with EXP Report OTT-00245378-E1							

	Log of	⁻ Bo	r	rehole	Bŀ	1-18	8 😵	ُ ے	vr	\$
Project No:	OTT-00245378-E1			•				C	~r	•
Project:	Geotechnical Investigation - Proposed N	New Stitts	svi	ille High School			Figure No. <u>20</u> Page. 1 of 1		I	
Location:	Robert Grant Avenue and Cope Drive, 0	City of Ot	ta	wa, Ontario						
Date Drilled:	'July 16, 2019			Split Spoon Sample		\boxtimes	Combustible Vapour Reading			
Drill Type:	CME-55 Track Mounted Drill Rig			Auger Sample SPT (N) Value		I 0	Natural Moisture Content Atterberg Limits	⊢	× ⊸	
Datum:	Geodetic			Dynamic Cone Test Shelby Tube		-	Undrained Triaxial at % Strain at Failure		\oplus	
Logged by:	M.L. Checked by: I.T.			Shear Strength by Vane Test		+ s	Shear Strength by Penetrometer Test		▲	
G SY MB C L	SOIL DESCRIPTION	Geodetic m	D e p t h	Standard Penetra 20 40 Shear Strength 50 100	ation Test N 60 150	80	Combustible Vapour Reading (pp 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight 20 40 60	M P	Natural Unit Wt.	

W L	M B O	SOIL DESCRIPTION	Geodetic	p t h	2 Shear S	0 4 Strength	40 6	60	80 kPa	Nat Atterb	ural Moist erg Limits	ture Conte s (% Dry V	nt % /eight)	PLES	Unit Wt. kN/m ³
	Ĕ XXX	FILL	107.7	h 0			00 1	50 2	200				0	ŝ	
DY D	X	Sand, some gravel, trace silt, some	107.4							×				XI	
		organics, brown, moist	H										1	Δ	
g		Trace clay and gravel, cobbles and				25							1	$\overline{\Lambda}$	
Ø		boulders, brownish grey to grey, moist, (compact to very dense)		1		0				X				ХI	22.3
					-> -> -> -> ->										
							- 48			×				M	22.8
			_	2	-2	• • • • • • •		·····	· · · · · · · · · · · ·			· · · · · · · · · ·		Δ	22.0
76 7	Ð					50) for 125 i	nm :		3333				$ \rightarrow $	
			-							×			··· ··· · · · · · · · · · · · · · · ·	Д	
				3		5	0 for 50 n	n m						$\overline{\mathbf{A}}$	
			_							×				Ň	
			103.8												
		- COBBLES AND BOULDERS OR	103.6	3 4											
¦.⊞.		WEATHERED BEDROCK Auger Refusal at 4.3 m Depth	103.4											_	
		Auger Nerusar at 4.5 m Depth													
/19															
Г 8/1															
GD															
AWA															
E															
NO															
Ë 1															
0.GP															
78-Ei															
245378-E0.GPJ TROW OTTAWA.GDT 8/1/19															
	DTES:] [\A/A TE				c			<u> </u>	םב הסיי]
	Boreh	ole data requires interpretation by EXP before	WATE	IT L	EVEL RE		5 Holo On	on	Bun	Don		LLING R			חר %

WOTES: 1. Borehole data requires interpretation by EXP before use by others 2. 19 mm standpipe installed upon completion. 3. Field work supervised by an EXP representative. 4. See Notes on Sample Descriptions 5. Log to be read with EXP Report OTT-00245378-E1 WATER LEVEL RECORDS WATER LEVEL RECORDS Elapsed Water Level (m) To (m) Completion Dry July 29, 2019 4.1

	Log of Bo	rehole	BH-19		Avn
Project No:	OTT-00245378-E1	•			CAP.
Project:	Geotechnical Investigation - Proposed New Stitt	sville High School		Figure No. <u>21</u>	I
Location:	Robert Grant Avenue and Cope Drive, City of O	ttawa, Ontario		Page. <u>1</u> of <u>1</u>	—
Date Drilled:	'July 16, 2019	Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	CME-55 Track Mounted Drill Rig	Auger Sample - SPT (N) Value		Natural Moisture Content Atterberg Limits	× ⊢⊖
Datum:	Geodetic	Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	⊕
Logged by:	M.L. Checked by: I.T.	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	
		Standard Penetra	ation Test N Value	Combustible Vapour Reading (ppm) Ş

G	S Y		Geodet	ic e	s		ard P			est N Va			25	tible Va i0	500	7	50	om) S	Natur
G W L	SY MB O L	SOIL DESCRIPTION	m	ic e F	Shear		ength	40	6	0	80 kPa	. /	Natu Atterb	iral Mo erg Lim	isture iits (%			om) 2 	Unit V
		FILL	107.2	() (50		100	1	50	200		2	<u>)</u>	40	6	50 	<u>;</u>	\$ /
		Sand, some gravel and topsoil, some			8. O								×						
	X	– cobbles and boulders, brown, moist, ∖(loose)	106.6															<u> </u>	4
		SILT AND SAND TILL	/			22													7
		Some gravel, trace clay, cobbles and boulders, brownish grey to grey, mois	st			ρ							X						22.2
		_(compact to dense)																	
							3	5					×			:::::			22.
		-	_	2	2		· · · · ·							· · · · · · · · · · · · · · · · · · ·		1 · · · · · · 1 · · · · ·		<u> </u>	1
							22						22			::::::::::::::::::::::::::::::::::::::	133		
)))	-	_											•••••					
		_					· · · · · · · ·							•••••		: -: -: : -: -:		: -: : -:	
			103.9	Ì	,		22	50 fe	or 75 m	m		,	<					5	3
		COBBLES AND BOULDERS OR WEATHERED BEDROCK																	
		Auger Refusal at 3.7 m Depth	103.5	+										······································		<u></u>			-
		·					÷÷							::::	: :				
							::		::::					::::	: :				
							::		::::					:::	: :				
							::		::::					::::	: :				
							::		::::					:::	: :				
							::		::::						: :	::::			
							::		::::					::::	: :	::::			
							::								: :				
									::::					::::	: :				
							::		::::					::::	: :				
							::		::::						: :				
									::::							::::		::	1
							::							:::	<u>: :</u>	<u>.</u>			
NO	TES:		WAT	ERI	EVEL F	REC	ORI	วร					COF	RE DF	SILI II	NG R	ECO	RD	
1.1	Boreho use by	le data requires interpretation by EXP before others	Elapsed		Water			Нс	le Ope		Run		Dept	h		% Re			RQD %
		le backfilled upon completion of drilling.	Time Completion		<u>Level (n</u> Dry		+		<u>Fo (m)</u> 3.0		No.		(<u>m</u>)						
		ork supervised by an EXP representative.	Completion		ыу				0.0		1								
		tes on Sample Descriptions																	
		be read with EXP Report OTT-00245378-E1																	
	5.5	,										1							

	NOTES:	WAT	TER LEVEL RECO	RDS		CORE DI	RILLING RECO	RD
	 Borehole data requires interpretation by EXP before use by others 	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %
1	2. Borehole backfilled upon completion of drilling.	Time	Level (m)	<u>To (m)</u>	No.	<u>(m)</u>		
	2. Borenole backlined upon completion of drilling.	Completion	Dry	3.0				
j	3. Field work supervised by an EXP representative.							
	4. See Notes on Sample Descriptions							
5	5. Log to be read with EXP Report OTT-00245378-E1							

	Log of	f Bo	r	ehole B	H-20	÷.	ayn
Project No:						·· N 00	SNP.
Project:	Geotechnical Investigation - Proposed I	New Stitts	svi	lle High School	F	igure No. <u>22</u>	I
Location:	Robert Grant Avenue and Cope Drive,	City of Ot	tav	wa, Ontario		Page. <u>1</u> of <u>1</u>	
Date Drilled	: 'July 17, 2019			Split Spoon Sample		Combustible Vapour Reading	
Drill Type:	CME-55 Track Mounted Drill Rig			Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits	× ──⊖
Datum:	Geodetic			Dynamic Cone Test ·		Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.L. Checked by: I.T.			Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	•
G Y M B O L	SOIL DESCRIPTION	Geodetic m 106.1	D e p t h	Standard Penetration Te 20 40 60 Shear Strength 50 100 15) 80 kPa	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	S M P Unit Wt. E S
	PSOIL ~225 mm	105.9	0	12 O		×	

ľ	Ľ	B	SOIL DESCRIPTION	m	p t	Shear	20 Streng	th 40	0 6	υξ	kPa	Attert	tural Moi berg Lim	sture Cont its (% Dry	ent % Weight)		Unit Wt. kN/m ³
L		L	70000	106.1	h 0		50	10	0 15	50 2	00		20		60	. Is	ļ
	ł	<u>\ 1,'</u> .'.	TOPSOIL ~225 mm	105.9		12		:::							1331	:::: 	1
	-		SILTY SAND	105 5		Ō						×				::: /	
	·		Brown, moist, (compact)	105.5			1									÷.	Y
	ľ	<i>U</i>	SILTY SAND TILL														7
			Trace clay and gravel, cobbles and boulders, brownish grey to grey, mo	ist –	1		28					X				÷Ιχ	
		Bà	(compact to very dense)	131,											1221	∷/′	
	ľ	UD.	_	_		-2-4-4-2		· · ·				· · · · · · ·	1.2.0.0. 1.1.0.0	<u> </u>		÷:	
								50	for 125 n	nm						÷1	1
		Bà							0			×				::://	
	Ĭ			104.0	2									;		/	4
	Ľ		COBBLES AND BOULDERS OR WEATHERED BEDROCK													-	
	Þ			- 103.5			1						1			<u></u>	
			Auger Refusal at 2.6 m Dept	h			1::										
													1 : : :				
							1 : :	::					1 : : :	: : : : :	1:::	:	
							1 : :	::					1 : : :	: : : : :	1:::	:	
							1 : :	::					1 : : :		1:::	:	
							1 : :	::					1 : : :		1:::	:	
							1 : :	::					1 : : :		1 : : :	:	
							1 : :	::					1 : : :	: : : : : :	1 : : :	:	
							1 : :	::					1 : : :	: : : : : :	1 : : :	:	
							1 : :	::					1 : : :	: : : : : :	1 : : :	:	
							1 : :	::					1 : : :	: : : : : :	1 : : :	:	
							1 : :	::					1 : : :	: : : : :	1 : : :	:	
							1 : :	::					1 : : :	: : : : :	1 : : :	:	
							1 : :	::					1 : : :	: : : : :	1 : : :	:	
							1 : :	::					1 : : :	: : : : :	1 : : :	-	
							1 : :	::					1 : : :	: : : : :	1 : : :	:	
							1 : :	::					1 : : :	: : : : :	1 : : :	-	
							1 : :	::					1 : : :	: : : : : :	1 : : :	:	
							1 : :	: :					1 : : :	: : : : :	1 : : :	:	
							1 : :	: :					1:::	: : : : :	1 : : :	:	
							1 : :	::					1 : : :	: : : : :	1 : : :	:	
19							1 : :	::					1 : : :		1:::	:	
3/1/								::					1 : : :		1:::	:	
÷								: :	::::			1::::	1:::		1:::	-	
8																	
₹ N							1 : :						1 : : :	: : : : :	1:::	:	
IA							1 : :						1 : : :	: : : : :	1:::	:	
티							1 : :	::					1:::	: : : : :	1:::	:	
Š							1 : :	::					1 : : :	: : : : :	1 : : :	:	
ЯĽ						: : : :	1::	::			1 : : : :		1:::	: : : : :	1:::	÷	
2						: : : :	1::	::			1::::		1:::	: : : : :	1:::	:	
5								11									
띩																	
378														: : : : :		:	
245378-E0.GPJ TROW OTTAWA.GDT 8/1/19						::::		::	::::				1:::		1:::	:	
· · ·	TON	TES:		WAT	ERI	EVEL R	ECOF	RDS	6			CO		RILLING F	RECOF	RD	
늬	1.B	Boreho	le data requires interpretation by EXP before	Elapsed	_	Water			, Hole Ope	-n	Run	Dep		% Re			RQD %
		-	others	Time	LL	evel (m)	_ '	To (m)		No.	m)		70130			
븨	2.E	Boreho	le backfilled upon completion of drilling.	Completion		Dry			2.4				•				

3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions

LOG OF BOREHOI 5.Log to be read with EXP Report OTT-00245378-E1

	Log o	f Bo) r	ehole _	BH-2 1		**		yn.
Project No:	OTT-00245378-E1						20		
Project:	Geotechnical Investigation - Proposed	New Stitt	svi	ille High School		• <u> </u>	2 <u>3</u> of 1		I
Location:	Robert Grant Avenue and Cope Drive,	City of O	tta	wa, Ontario		Page. <u>1</u>	л <u> </u>		
Date Drilled:	'July 18, 2019		_	Split Spoon Sample	\boxtimes	Combustible Vapour R	eading		
Drill Type:	CME-55 Track Mounted Drill Rig		_	Auger Sample SPT (N) Value		Natural Moisture Conte Atterberg Limits	nt H		× −⊖
Datum:	Geodetic		-	Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	-		⊕
Logged by:	M.L. Checked by: I.T.			Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test			
G Y W B L O L	SOIL DESCRIPTION	Geodetic m 106.2	D e p t h	20 40 Shear Strength 50 100	ion Test N Value 60 80 kF 150 200	Combustible Vapour R 250 500 Natural Moisture C Atterberg Limits (% I 20 40	750 ontent %	SAMPLES	Natural Unit Wt. kN/m ³
Grav Grav SILT Trace bould	SOIL ~50 mm elly sand, trace silt, occasional nics, brown, moist, (compact) Y SAND TILL e clay and gravel, cobbles and ders, brownish grey to grey, moist, pact)	106.2	1	27 Q		× .			
		-	2	23		×		X	

XI	IOTES:	ole data requires interpretation by EXP before	WATEF	۲L	EVEL R	ECORI	DS			со	RE DRI	LLING R	ECORD		
245378-E0.GPJ TROW OTTAWA.GDT 8/1/19															
		Borehole Terminated at 5.0 m Depth	101.2	5											Run 2
		Some thin shaly beds, several fractures in upper 400 mm, aphanitic to fine grained, –laminated to very thinly bedded, close joint spacing, grey, (fair to good quality) -30mm mud seam at 3.9 m depth –40 mm mud seam at 4.4 m depth	_	3											Run 1
		COBBLES AND BOULDERS LIMESTONE BEDROCK	103.£03.6 103.4	2			50 for 75 r	nm		×					
		Trace clay and gravel, cobbles and boulders, brownish grey to grey, moist, – (compact)		1		21 0 23 0				×				X	
	9XX	SILTY SAND TILL				27	: • - : • : • : •	1.2.2.2.2	4.2.2.2.2.2		1.2.4.4.4	· - : - : - : - : - : - : - : - : - : - :	1	₽\ /I	

LOG	NOTES:	WAT	ER LEVEL RECO	RDS		CORE DR	RILLING RECOR	RD
H	1. Borehole data requires interpretation by EXP before use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Щ	2.19 mm standpipe installed upon completion.	Completion	Dry	N/A	1	2.8 - 4	100	52
BOREHO	3. Field work supervised by an EXP representative.	July 29, 2019	2.6		2	4 - 5	100	79
BG	4. See Notes on Sample Descriptions							
Ы	5. Log to be read with EXP Report OTT-00245378-E1							
ЪО								

		Log of	f Bo	rehole E	3H-22		ovn
Pro	oject No:	OTT-00245378-E1					CNP
Pro	oject:	Geotechnical Investigation - Proposed I	New Stitt	sville High School		Figure No. <u>24</u>	I
Loc	cation:	Robert Grant Avenue and Cope Drive,	City of Of	ttawa, Ontario		Page. <u>1</u> of <u>1</u>	
Dat	te Drilled:	'July 16, 2019		Split Spoon Sample		Combustible Vapour Reading	
Dril	ll Type:	CME-55 Track Mounted Drill Rig		Auger Sample · SPT (N) Value		Natural Moisture Content Atterberg Limits	× ──⊖
Dat	tum:	Geodetic		Dynamic Cone Test Shelby Tube		Undrained Triaxial at % Strain at Failure	\oplus
Log	gged by:	M.L. Checked by: I.T.		Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	•
G W L	S Y M B O	SOIL DESCRIPTION	Geodetic m	D p t b Standard Penetration 20 40 Shear Strength	Test N Value 60 80 kPa	Combustible Vapour Reading (ppm 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight)	S M P Unit Wt. L KN/m ³

G W L	У М В О L	SOIL DESCRIPTION	Geodeti m	ic e p t	20 Shear Stren	gth	80 kPa		500 750 histure Content % hits (% Dry Weight)	ILI	Natural Unit Wt. kN/m ³
TROW OTTAWA.GDT 8/1/19		SOIL DESCRIPTION TOPSOIL ~100 mm SILT AND SAND TILL Some gravel, trace clay, cobbles and boulders, brownish grey to grey, moist, (dense to very dense)		p t	20 Shear Stren 50	gth		250 Natural MA Atterberg Lin	500 750 isture Content % 40 60 40		Unit Wt.
: BOREHOLE BH LOGS - 245378-E0.GPJ . 7 Д	use by .Boreho .Field w .See No	or the backfilled upon completion of drilling.	WAT Elapsed Time ompletion		EVEL RECC Water .evel (m) Dry	DRDS Hole Open To (m) 4.2	Run No.	CORE DI Depth (m)	RILLING RECOR		QD %
3. 4. 5. 5.	.See No										

			Log of	f Bo) r	ehole	Bł		4	F	vn
Pr	oject	No:	OTT-00245378-E1						- N 0E	C	mp.
Pr	oject	:	Geotechnical Investigation - Proposed	New Stitt	svi	ille High School		F	Figure No. <u>25</u> Page. 1 of 1		I
Lc	catic	on:	Robert Grant Avenue and Cope Drive,	City of O	ttav	wa, Ontario			·	•	
Da	ate D	rilled:	'July 16, 2019		_	Split Spoon Sample			Combustible Vapour Reading		
Dr	ill Ty	pe:	CME-55 Track Mounted Drill Rig			Auger Sample			Natural Moisture Content		×
		-	¥			SPT (N) Value		0	Atterberg Limits		-0
Da	atum:		Geodetic			Dynamic Cone Test Shelby Tube	_	_	Undrained Triaxial at % Strain at Failure		\oplus
Lo	gged	l by:	M.L. Checked by: I.T.			Shear Strength by Vane Test		+ s	Shear Strength by Penetrometer Test		
G ₩ L	S Y M B O L		SOIL DESCRIPTION	Geodetic m	D e p t h		ration Test 60 150	N Value 80 kPa 200	Combustible Vapour Reading (pp 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight 20 40 60	A M P	Natural Unit Wt. kN/m ³
	<u>×1 1/</u> .	TOP	SOIL ~300 mm	107.2 106.9	0	5		200			
		Brow SILT Som bould	Y SAND n, moist, (loose) AND SAND TILL e gravel, trace clay, cobbles and ders, brownish grey to grey, moist, pact to dense)	106.5	1	0 18 0 37			×		22.2

	TOPSOIL ~300 mm SILTY SAND Brown, moist, (loose) SILT AND SAND TILL - Some gravel, trace clay, cobbles and boulders, brownish grey to grey, mois (compact to dense) - COBBLES AND BOULDERS OR WEATHERED BEDROCK	st, - - 104.0 - 103.7	1 -	5 ••••••••••••••••••••••••••••••••••••		-48 © Cor 50 mm			× × × ×				22.2 22.1
- 245378-E0.GPJ TROW OTTAWA GDT 8/1/19	Auger Refusal at 3.5 m Depth												
NOTES: 1.Boreh use by	ole data requires interpretation by EXP before rothers	Elapsed Time	٧	VEL RECO Water vel (m)	H	ole Open <u>To (m)</u>	1	Run No.	CO Dep (m	th	LLING RI % Rec		QD %
0 3. Field v 0 4. See N	ole backfilled upon completion of drilling. work supervised by an EXP representative. otes on Sample Descriptions be read with EXP Report OTT-00245378-E1	Completion		Dry		3.0							

31	DTES:	WAT	RILLING RECOP	RD				
	Borehole data requires interpretation by EXP before use by others	Elapsed	Water	Hole Open	Run	Depth	% Rec.	RQD %
1		Time	Level (m)	<u>To (m)</u>	No.	(m)		
1 2	Borehole backfilled upon completion of drilling.	Completion	Dry	3.0				
3	Field work supervised by an EXP representative.							
<u>3</u> 4.	See Notes on Sample Descriptions							
5 5	Log to be read with EXP Report OTT-00245378-E1							
8								

Project No:	OTT-00245378-E1	f Bo) r	ſe	h		ble	e	B	}	-1	24	<u>4</u>							e	5)	XD.	•
Project:	Geotechnical Investigation - Proposed	Now Stitt	-	rillo	Цia	sh (Sch	201					F	igur	e N	lo		26					
Location:	Robert Grant Avenue and Cope Drive,							001	1					I	⊃ag	le	1	of	1				
	iiii		แล								_										_	_	
	: 'July 17, 2019		-		lit Spo ger S		Sam ple	ple								ible Va loisture		Readii ntent	ng			_ ≺	
Drill Type:	CME-55 Track Mounted Drill Rig		-		T (N) namio		lue one T	est		_	0				-	Limits d Triax				⊢		Ð	
Datum:	Geodetic		-	She	elby 7	Tube	е							% St	rain	at Failu ength	ure	L			(Ð	
Logged by:	M.L. Checked by: I.T.				ear S ne Te		ngth b	y			+ s					neter T					4		
SY MBOL	SOIL DESCRIPTION	Geodetic m	D e p t h		hear	20 Stre	ength	40		60	8	30 F	Pa		25 Natu tterbe	i0 Iral Moi erg Lim	500 isture hits (%	e Conte % Dry W	50 nt % /eight)	Í		latural Init Wt. kN/m ³	
	°SOIL ~275 mm	106.3 106.0	0	13	8	50		100) 18	50	2	00			20) 	40	6	0		7	~ ~ ~	
	TY SAND wn, moist, (loose)	105.7			0:::: ::::::::::::::::::::::::::::::::										×			· ; · ; · ; · ; · ; · ; · ; · ; · ; · ;		_/	\mathbb{N}	21.1	
SIL"	TY SAND TILL ce clay and gravel, cobbles and		1			19				· · · · · · · ·											7		
bou	Iders, brownish grey to grey, moist, npact to dense)					0								X						2	\mathbb{N}		
	-	-			····			41								······					7		
	-	_	2		····· ·····			P					··· · · ··· ·)	<	······································		· · · · · · · · · · · · · · · · · · ·			\langle	22.2	
		103.8						50 1	for 50 m	im I				×						5			
	Auger Refusal at 2.5 m Depth																						

8/1/19
\.GDT
TTAWA
TROW C
.GPJ T
5378-E0
0GS - 24
1 LO

% NOTES:	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD							
1.Borehole data requires interpretation by EXP before use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %				
비 2.Borehole backfilled upon completion of drilling.	Completion	Dry	2.5								
3. Field work supervised by an EXP representative.											
4. See Notes on Sample Descriptions											
ර් 5.Log to be read with EXP Report OTT-00245378-E1 ග											

	Log of	f Bo	rehole BH-2	5 🏶 🗠	vn
Project No:	OTT-00245378-E1			_ C	\mathcal{M}
Project:	Geotechnical Investigation - Proposed I	New Stitts	sville High School	Figure No. <u>27</u>	I
Location:	Robert Grant Avenue and Cope Drive,	City of Ot	ttawa, Ontario	Page. <u>1</u> of <u>1</u>	
Date Drilled:	'July 18, 2019		Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CME-55 Track Mounted Drill Rig		Auger Sample	Natural Moisture Content Atterberg Limits	× ⊸⊖
Datum:	Geodetic		Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.L. Checked by: I.T.		Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	
GWL L	SOIL DESCRIPTION	Geodetic m 105.8	Dep p Standard Penetration Test N Value 20 40 60 80 t Shear Strength 50 100 150 200	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	0
<u><u>x</u> <u>r</u>OP</u>	SOIL ~300 mm	105.5			

	Ľ		105.8	h 5 0		50	100	150 2	200		20	40	60	, 	E S	NIN/III
	<u>×1 1/</u>	TOPSOIL ~300 mm	105.5													
		FILL	_											:.;.:. :::::		
		Sand and gravel, brown, moist SANDY SILT TILL	105.1			20									\square	
		Trace clay and gravel, cobbles and	_	1		φ	: • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	X		· · · · · · ·		(XI	
	H)	 Trace clay and gravel, cobbles and boulders, brownish grey to grey, moist 	t,												Н	
		(compact to dense)	_		+++++++++++++++++++++++++++++++++++++++	+ 1 · 2 · 2· 1 · 2 · 2	50 for 50 r	nm	· · · · · · · · · ·		1 - 2 - 2 - 2 - 2	+		····		
										×					XI	
			_	2	··· ···	· · · · · ·	+++++++ ++++++++++++++++++++++++++++++	• • • • • • • • • • • • • • • • • • • •	+ + + + + + + + + + + + + + + + + + + +		·····	+		····	Ĥ	
			103.5				50 for 50 r	nm								
	· .	COBBLES AND BOULDERS OR WEATHERED BEDROCK	103.3	; 	··· ··· ···					· · · · · · ·		+		·····		
		Auger Refusal at 2.5 m Depth	/													
							: : : : :									
							: : : : :									
													: :	:::		
							: : : : :	1::::		1 : : : :		+ • • •	: :	: : :		
					1 : : : :	1:::		1::::	1::::		1::::	1 : : :	: : :			
19																
8/1/19																
SDT 8/1/19																
VA.GDT 8/1/19																
TAWA.GDT 8/1/19																
V OTTAWA.GDT 8/1/19																
ROW OTTAWA. GDT 8/1/19																
J TROW OTTAWA.GDT 8/1/19																
0.GPJ_TROW OTTAWA.GDT_8/1/19																
8-E0.GPJ TROW OTTAWA.GDT 8/1/19																
45378-E0.GPJ TROW OTTAWA.GDT 8/1/19																
- 245378-E0.GPJ TROW OTTAWA.GDT																
- 245378-E0.GPJ TROW OTTAWA.GDT	OTES:	ele data requires interpretation hu EVD hofers		ITER L	EVEL R	• • • •				1	RE DRI					
- 245378-E0.GPJ TROW OTTAWA.GDT	1.Boreho	ole data requires interpretation by EXP before	Elapsed		EVEL R	ECORI	DS Hole Op	ben	Run	CC	RE DRI	LLING			RC	QD %
BH LOGS - 245378-E0.GPJ TROW OTTAWA.GDT	1.Boreho use by	ole data requires interpretation by EXP before / others ole backfilled upon completion of drilling.	Elapsed Time		EVEL R Water _evel (m	ECORI	DS Hole Op To (m	ben		СС	RE DRI	LLING	REC		RC	QD %
BH LOGS - 245378-E0.GPJ TROW OTTAWA.GDT	1.Boreho use by 2.Boreho	v others	Elapsed		EVEL R	ECORI	DS Hole Op	ben	Run	CC	RE DRI	LLING	REC		RC	QD %
BH LOGS - 245378-E0.GPJ TROW OTTAWA.GDT	1.Boreho use by 2.Boreho 3.Field v	v others ole backfilled upon completion of drilling. vork supervised by an EXP representative.	Elapsed Time		EVEL R Water _evel (m	ECORI	DS Hole Op To (m	ben	Run	CC	RE DRI	LLING	REC		RC	QD %
BH LOGS - 245378-E0.GPJ TROW OTTAWA.GDT	1. Boreho use by 2. Boreho 3. Field v 4. See No	others ole backfilled upon completion of drilling. work supervised by an EXP representative. otes on Sample Descriptions	Elapsed Time		EVEL R Water _evel (m	ECORI	DS Hole Op To (m	ben	Run	CC	RE DRI	LLING	REC		RC	QD %
BOREHOLE BH LOGS - 245378-E0.GPJ TROW OTTAWA.GDT	1. Boreho use by 2. Boreho 3. Field v 4. See No	v others ole backfilled upon completion of drilling. vork supervised by an EXP representative.	Elapsed Time		EVEL R Water _evel (m	ECORI	DS Hole Op To (m	ben	Run	CC	RE DRI	LLING	REC		RG	QD %

NOTES:	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD							
1. Borehole data requires interpretation by EXP before use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth	% Rec.	RQD %				
2. Borehole backfilled upon completion of drilling.	Completion	Dry	2.1	INO.	<u>(m)</u>						
3. Field work supervised by an EXP representative.											
4. See Notes on Sample Descriptions											
5.Log to be read with EXP Report OTT-00245378-E1											

	Log of	F Bo	r	ehole	Bŀ	1-26		P	yn
Project No:	OTT-00245378-E1			-					'NP
Project:	Geotechnical Investigation - Proposed I	New Stitt	svi	ille High School		F	Figure No. <u>28</u>		
Location:	Robert Grant Avenue and Cope Drive,	City of Of	ttav	wa, Ontario			Page. <u>1</u> of <u>1</u>		
Date Drilled:	'July 15, 2019		_	Split Spoon Sample			Combustible Vapour Reading		
Drill Type:	CME-55 Track Mounted Drill Rig			Auger Sample SPT (N) Value		∎ ○	Natural Moisture Content Atterberg Limits		× ⊸
Datum:	Geodetic			Dynamic Cone Test Shelby Tube	_	—	Undrained Triaxial at % Strain at Failure		\oplus
Logged by:	M.L. Checked by: I.T.			Shear Strength by Vane Test		+ s	Shear Strength by Penetrometer Test		A
GWL CU	SOIL DESCRIPTION	Geodetic m 107.8	D e p t h	Standard Penetra 20 40 Shear Strength 50 100	tion Test I 60 150	N Value 80 kPa 200	Combustible Vapour Reading (ppm 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60) SAMPLES	Natural Unit Wt. kN/m ³
	SOIL ~175 mm	107.6	0	4				Ň	
Occa	<u>Y SAND</u> sional organics, brown to grey, moist, — e to compact) —	106.7	1				×	-/ -/	
Some grave	AND SAND TILL e gravel, trace to some clay, some el layers, cobbles and boulders, nish grey to grey, moist, (compact to dense)	•	2		54. O		×		22.6

50 for 75 mm

.....

Х

:		1D		104.8	3				·						· · ·	
-	Ή·			104.6	_		<u> : : :</u>		· : ·					****		
245378-E0.GPJ TROW OTTAWA.GDT 8/1/19			COBBLES AND BOULDERS OR WEATHERED BEDROCK Auger Refusal at 3.2 m Depth	104.6												
								1::::	÷					. : :	:	
BH LOGS					WATER LEVEL RECO											
				Elapsed Time	L	Water Level (m)		Hole Open To (m)		Run No.	Depth (m)		% Rec.		RQD %	
Ы				Completion		Dry		3.2								
ЯЩЩ				July 29, 2019		Dry										
BQF	4.S	ee No	otes on Sample Descriptions													
LOG OF BOREHOLE	5.Lo	og to	be read with EXP Report OTT-00245378-E1													

_			f Bo) r	rehole <u>BH</u>	<u>-27</u>	*e	XD.
Pr	oject No	: <u>OTT-00245378-E1</u>				F	Figure No. 29	
Pr	roject:	Geotechnical Investigation - Proposed	New Stitt	svi	ville High School	'	J	•
Lo	ocation:	Robert Grant Avenue and Cope Drive,	City of O	tta	awa, Ontario		Page. <u>1</u> of <u>1</u>	
Da	ate Drille	d: <u>'July 15, 2019</u>		_	Split Spoon Sample		Combustible Vapour Reading	
Dr	ill Type:	CME-55 Track Mounted Drill Rig			Auger Sample		Natural Moisture Content	×
	atum:	Geodetic		-	SPT (N) Value Dynamic Cone Test Shelby Tube	<u> </u>	Atterberg Limits Undrained Triaxial at % Strain at Failure	_€ ⊕
Lo	gged by	: <u>M.L.</u> Checked by: I.T.			Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	
G W L	S Y M B O L	SOIL DESCRIPTION	Geodetic m 107.2	D e p t h	20 40 60	Value 80 kPa 200	Combustible Vapour Reading (ppm) 250 500 750 Natural Moisture Content % Atterberg Limits (% Dry Weight) 20 40 60	Natural Unit Wt. kN/m ³
	<u>SII</u>	PSOIL ~250 mm LTY SAND own to grey, moist, (loose to compact) -	107.0	0			×	
		LT AND SAND TILL	106.0	1			×	20.7
	So - So	me gravel, trace to some clay, cobbles - d boulders, brownish grey to grey, moist -		2	50 for 100 mm		×	22.7

	SILTY SAND Brown to grey, moist, (loose to compact) SILT AND SAND TILL Some gravel, trace to some clay, cobble and boulders, brownish grey to grey, mo	106.0	1		50 for 100 mm		×	20.7 22.7
245378-E0.GPJ TROW OTTAWA.GDT 8/1/19	Auger Refusal at 3.2 m Depth							
- SOOTH 1.BG US 3.Fi 4.Se	rehole data requires interpretation by EXP before	WAT Elapsed Time Completion		EVEL RECC Water .evel (m) Dry	PRDS Hole Open To (m) 3.0	Run No.	CORE DF Depth (m)	RILLING RECORD

NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECC	RDS		CORE DF	RILLING RECOF	RD
use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
2. Borehole backfilled upon completion of drilling.	Completion	Dry	3.0				
3.Field work supervised by an EXP representative.							
4.See Notes on Sample Descriptions							
5 5.Log to be read with EXP Report OTT-00245378-E1							

			Log of	f Bo) r	eł	10	le	<u> </u>	<u>3H</u>	<u>-28</u>				*		xn
P	roject	t No:	OTT-00245378-E1											20			
Pi	roject	t:	Geotechnical Investigation - Proposed	New Stitt	svi	ille Hi	gh So	choo	bl			Figure N		<u>30</u>	-		I
Lo	ocatio	on:	Robert Grant Avenue and Cope Drive,	City of O	tta	wa, C	Intari	0				Pa	ge	1_ of	<u> </u>		
Da	ate D	rilled:	7/17/19		_	Split S	poon S	ample	Ð		\boxtimes	Combus	tible Vapo	our Readii	ng		
Dr	ill Ty	ne:	CME-55 Track Mounted Drill Rig			0	Sample						Moisture (Content			×
2.		P0.			-	`	V) Valu				0	Atterber	g Limits		F		-0
Da	atum	:	Geodetic		-	Dynan Shelby	nic Con (Tube	e Tes	t		-		ed Triaxia at Failure				\oplus
Lc	ggeo	d by:	M.L. Checked by: I.T.				Streng	th by		I	+ s		trength by meter Tes				
G	S Y M			Geodetic	D e	5		d Pen 4		Test N		2	50 5		50	S A M	Natural
Ľ	M B O L		SOIL DESCRIPTION	m	p t h	Shea	20 ar Stren		-	60 150	80 kPa 200	Atterb	ural Moist berg Limits	ure Conte s (% Dry W	nt % Veight)	PLES	Unit Wt. kN/m ³
	<u>.x. 1,</u> .	TOP	SOIL ~350 mm	106.5	0	10				130	200					Ň	
	111	SILT	Y SAND _	105.9				·				^				M	
	KAN	¬∖Brow	/n, moist, (compact)	100.5												H	
			DY SILT TILL			13 23	20	3.11							13313	\mathbb{N}	
	6//A		e clay, cobbles and boulders, brownish ⁻	1	1		φ					X				1X	
		grey	to grey, moist, (compact to dense)													Щ	

34 O

50 for 50 mm

2

104.2

103.8

COBBLES AND BOULDERS OR WEATHERED BEDROCK

Auger Refusal at 2.7 m Depth

:.....

; .: ;

 \sim

X

245378-E0.GPJ TROW OTTAWA.GDT 8/1/19								
- SSC	NOTES:	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECO	RD
E BH LOGS	Borehole data requires interpretation by EXP before use by others Deschale beel/filled upon completion of drilling	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
BOREHOLE	 Borehole backfilled upon completion of drilling. Field work supervised by an EXP representative. 	Completion	Dry	2.5				
BOF	4. See Notes on Sample Descriptions							
LOG OF	5. Log to be read with EXP Report OTT-00245378-E1							

Log of	Borehole	<u>BH-29</u>
--------	----------	--------------

Project No: OTT-00245378-E1

*exp.

FIOJECI NO.	011-00245576-ET		Ei	gure No. 31	
Project:	Geotechnical Investigation - Proposed New Stitts	ville High School	FI	• •	
Location:	Robert Grant Avenue and Cope Drive, City of Ott	awa, Ontario		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'July 15, 2019	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME-55 Track Mounted Drill Rig			Natural Moisture Content X Atterberg Limits	
Datum:	Geodetic	Dynamic Cone Test Shelby Tube		Undrained Triaxial at \oplus % Strain at Failure	
Logged by:	M.L. Checked by: I.T.	Shear Strength by -		Shear Strength by Area	

G W L	S Y M B O L	SOIL DESCRIPTION	Geodetic m	D e p t h		2		4	etration T 0 6	Fest I 60		ue 80 kPa	2	50		ling (ppm) 750 ent % Weight)	SAZPLIES	Natural Unit Wt. kN/m ³
	Ľ	TOPSOIL ~225 mm SILTY SAND	.107.6 107.4	h O	4 O	5	-	10	00 15	50	2	00		20	40	60	ES 	
		-Trace gravel, occasional organics, brown to – grey, moist, (loose to compact) -	106.3	1		16 O							×					
		_ <u>SILT AND SAND TILL</u> Trace to some clay and gravel, some gravel layers, brownish grey to grey, moist, _(very dense)	105.5	2					53 O				×					22.2
	<u> </u>	Borehole Terminated at 2.1 m Depth	103.3															
											· · · · · · · · · · · · · · · · · · ·							
6																		
/A.GDT 8/1/19																		
ROW OTTAN																		
245378-E0.GPJ TROW OTTAWA.GDT																		
3S - 245378											· · ·							L

OGS	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS		CORE DF	RILLING RECOF	RD
핆	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %
Ч С Ц	2. Borehole backfilled upon completion of drilling.	Completion	Dry	2.1				
BOREH	3. Field work supervised by an EXP representative.							
	4. See Notes on Sample Descriptions							
LOG OF	5. Log to be read with EXP Report OTT-00245378-E1							

Log	of	Bo	reho	le	BH	-30
•						

Project No: OTT-00245378-E1

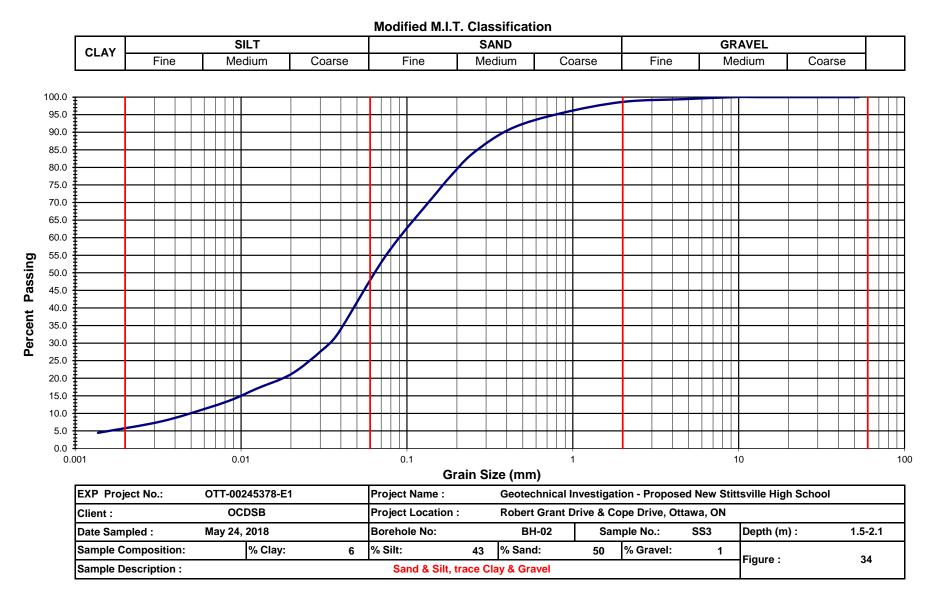
*exp.

FIOJECI NO.	011-00243378-E1		Figure No. 32
Project:	Geotechnical Investigation - Proposed New Stitts	ville High School	• <u> </u>
Location:	Robert Grant Avenue and Cope Drive, City of Ott	awa, Ontario	Page. <u>1</u> of <u>1</u>
Date Drilled:	'July 18, 2019	Split Spoon Sample	Combustible Vapour Reading
Drill Type:	CME-55 Track Mounted Drill Rig	Auger Sample II SPT (N) Value O	Natural Moisture Content X Atterberg Limits ————————————————————————————————————
Datum:	Geodetic	Dynamic Cone Test Shelby Tube	Undrained Triaxial at \oplus Strain at Failure
Logged by:	M.L. Checked by: I.T.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test

	S Y			D e		Sta	ndar	d Per	netration	n Tes	st N Va	alue		Con	nbust 25		apour 500		ng (ppm) 50	S	Natural
G W L	SY MB L	SOIL DESCRIPTION	Geodetic m	e p t h	Sh		20 Stren		0	60		80	kPa	At	Natu	iral Mo era Lin	oisture	Conte	nt % Veight)	SAZP-LIIO	Unit Wt. kN/m ³
			106.8	ĥ 0	311		50		00	150		200	кга		20		40		50	ĒS	KIN/M
	<u>×1 /</u>	TOPSOIL ~350 mm	106.5		6								;;;;;							:N	
	+++	_ <u>FILL</u>	106.2		0			-					222	>	· · · 1	223				À	
	6 <i>717</i>	\supset Sand, some gravel, brown, moist, (loose) \nearrow	100.2			15							:							$\left(\right)$	
		SILT AND SAND TILL	_	1		0							<u>.</u>	>	<					X	23.4
	1	Trace clay and gravel, cobbles and – boulders, brownish grey to grey, moist,		Ľ																Ľ	
		_(compact to dense)	-										:								
									48) () ()) () ()			$\begin{array}{c} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$				W	
				2					0					×		· · · · · · ·					
				-				50) for 75))							H	
	HD -		104.3						::::::::::::::::::::::::::::::::::::::	<u>: :</u>			<u></u>		×	·····		· · · · · · · ·			
		Auger Refusal at 2.5 m Depth				:::									::			::::			
						::		÷÷								:::		::::			
						::		::		: :					::	::::	: :	::::			
					1	::	::	::		: :			:::		::	:::	-	:::			
						::		÷÷		: :						:::		:::			
						÷÷		÷÷								::::					
						:::		÷÷													
						÷÷		÷÷							::			::::			
						::		::							::	:::	: :				
						::									::						
						::												::::			
						÷÷		÷ ;							::	:::	: :	::::			
						::		::								:::		::::			
						::		::							::	:::	: :	::::			
						::		÷÷					:::		::	:::	: :	::::			
						::		::							::		: :	::::			
						::															
						÷÷		÷÷													
						÷ ÷		÷÷										::::			
						÷ ;		÷÷													
						::		::							::	:::	: :				
						:::		::							::			::::			
															::		: :	::::			
																		::::			
						::		::								::::		::::			
						: : :		::													
								::								::::					
	DTES:																				
N			WATER	R L	EVE.	L RE	ECC	RDS	3					(COF	RE DF	RILLI	NG R	ECORE)	

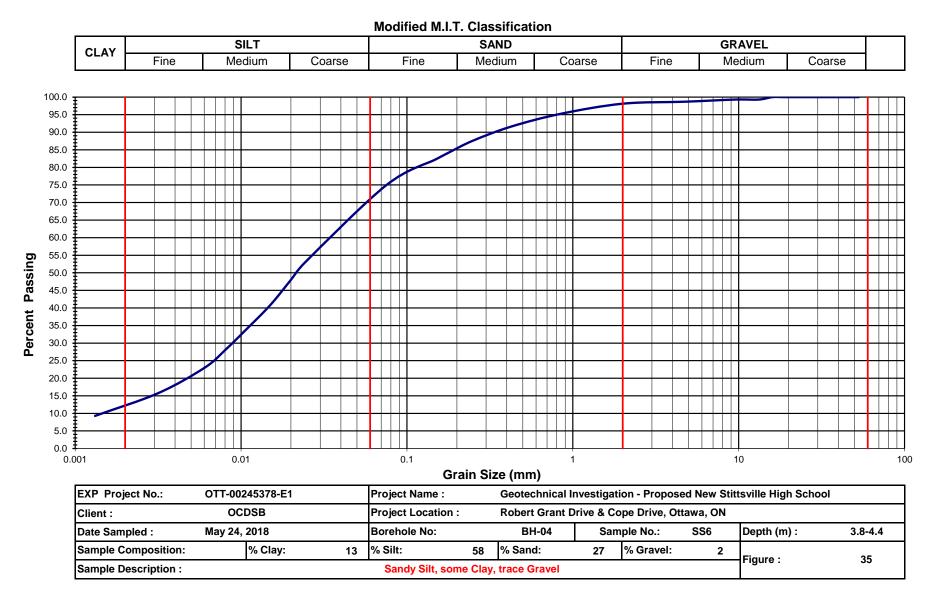
OGS	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD										
Н	use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %							
ЧСГЕ	2.19 mm standpipe installed upon completion.	Completion	Dry	2.4											
BOREH	3. Field work supervised by an EXP representative.														
	4. See Notes on Sample Descriptions														
P OF	5.Log to be read with EXP Report OTT-00245378-E1														
ГÖG															

Project No: <u>OTT-0</u>	Log of	Во	r	eh	ole	<u>B</u>	<u>8H-</u>		-igura N		33	*(ЭХ	(p.
Project: Geote	chnical Investigation - Proposed N	New Stitt	svi	lle High	n Scho	ol		г 	igure N Pa		 1of	- 1		1
Location: Robert	t Grant Avenue and Cope Drive, (City of Ot	ta	wa, Oni	ario				Pa	<u> </u>				
Date Drilled: <u>'July 18</u>	8, 2019			Split Spo	on Sampl	le	\boxtimes		Combus	tible Vapo	our Readi	ng		
Drill Type: <u>CME-5</u>	55 Track Mounted Drill Rig			Auger Sa SPT (N) \	•				Natural I Atterber	Aoisture (Limits	Content	⊢	× —⊖	
Datum: <u>Geode</u>	tic			Dynamic Shelby Ti		st			Undraine	ed Triaxia at Failure			\oplus	
Logged by: <u>M.L.</u>	Checked by: I.T.	_		Shear Str Vane Tes	ength by		-+ s		Shear S	rength by neter Tes	/		•	
G W B O L	SOIL DESCRIPTION	Geodetic m	D e p t h	2 Shear S	0 4 Strength		<u>50 8</u>	ue 30 kPa 00	2	50 5	ure Conte s (% Dry V	50	PUnit	ural Wt. /m ³
<u>TOPSOIL</u> ~3	350 mm	105.8 105.5	0	6			JU 2						Ň	
	gravel, trace silt, occasional own, moist, (loose)	105.0											Ĥ	
SANDY SILT	TILL nd gravel, cobbles and		1	··· ·· · · · · · · · ·					×				Å	
	tween 1.7 m and 2.0 m depth, ey to grey, moist, (compact)				5	0 for 10 m	ım		×				×	
			2										Ru	in 1
Some thin shaly beds, several fractures in upper 400 mm, aphanitic to fine grained,														
Iaminated to	very thinly bedded, close joint y, (fair quality)	103											P	ın 2
			3											
	_	102.2												
Borehole	• Terminated at 3.6 m Depth													

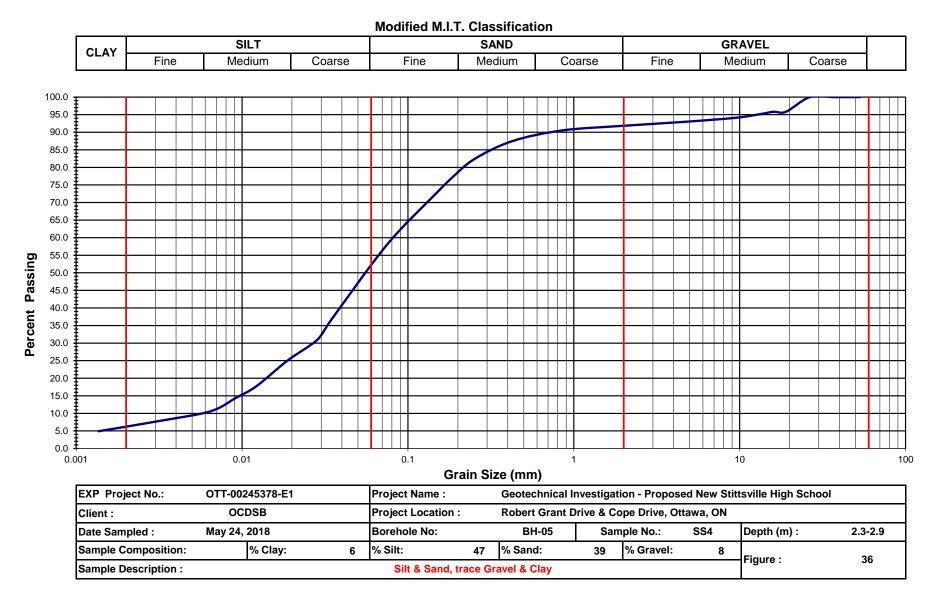

8/1/19	
W OTTAWA.GDT 8	
I TROW	
- 245378-E0.GP	
- SOOT I	

OGS	NOTES: 1.Borehole data requires interpretation by EXP before	WAT	ER LEVEL RECO	RDS	CORE DRILLING RECORD											
BHL	1. Borehole data requires interpretation by EXP before use by others	Elapsed Time	Water Level (m)	Hole Open To (m)	Run No.	Depth (m)	% Rec.	RQD %								
Ľ	2. Borehole backfilled upon completion of drilling.	Completion	Dry	N/A	1	1.7 - 2.1	100	0								
BOREHOLE	3. Field work supervised by an EXP representative.	July 29, 2019	2.8		2	2.1 - 3.6	100	73								
_	4. See Notes on Sample Descriptions															
LOG OF	5.Log to be read with EXP Report OTT-00245378-E1															

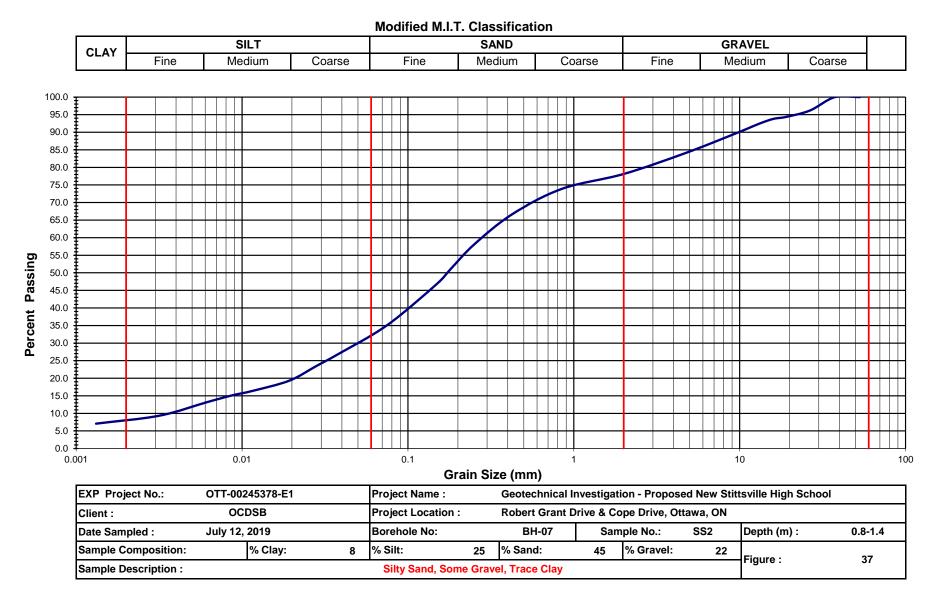
100-2650 Queensview Drive Ottawa, ON K2B 8H6


EXP Services Inc.

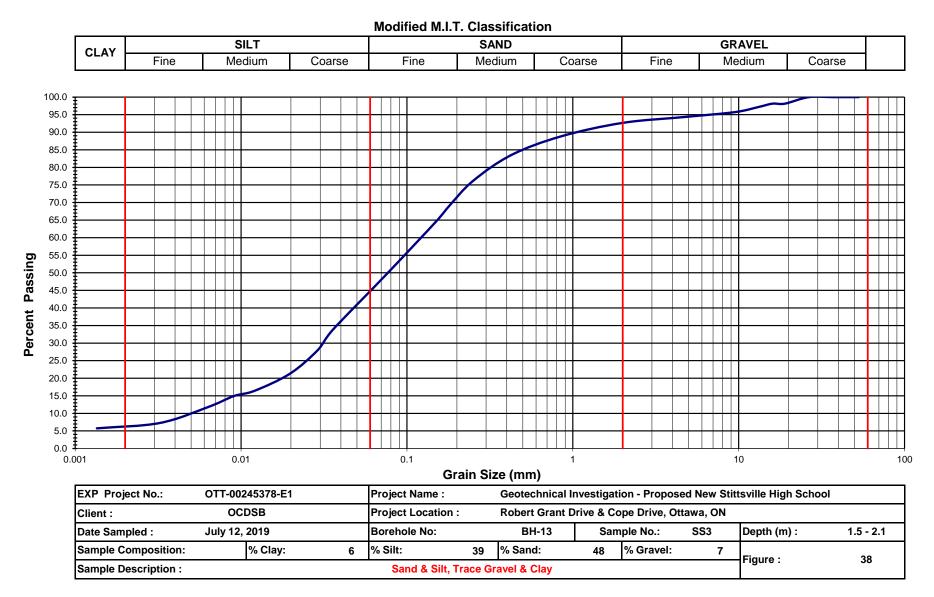
100-2650 Queensview Drive Ottawa, ON K2B 8H6


EXP Services Inc.

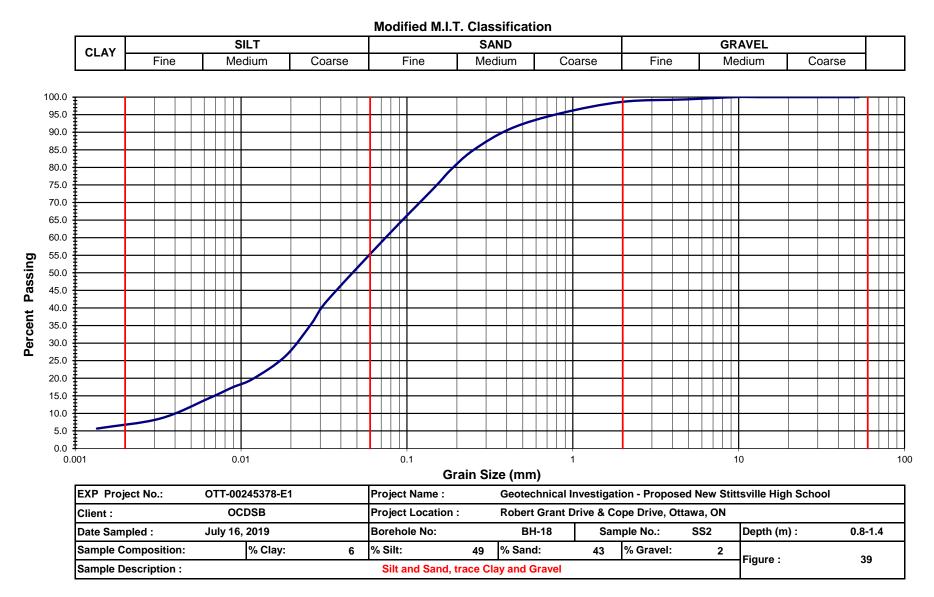
100-2650 Queensview Drive Ottawa, ON K2B 8H6


EXP Services Inc.

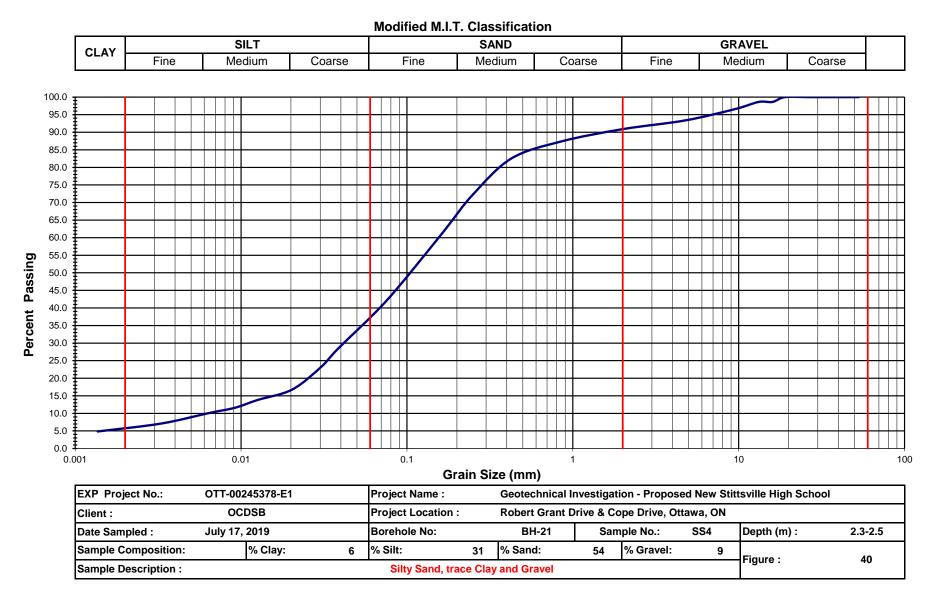
100-2650 Queensview Drive Ottawa, ON K2B 8H6


EXP Services Inc.

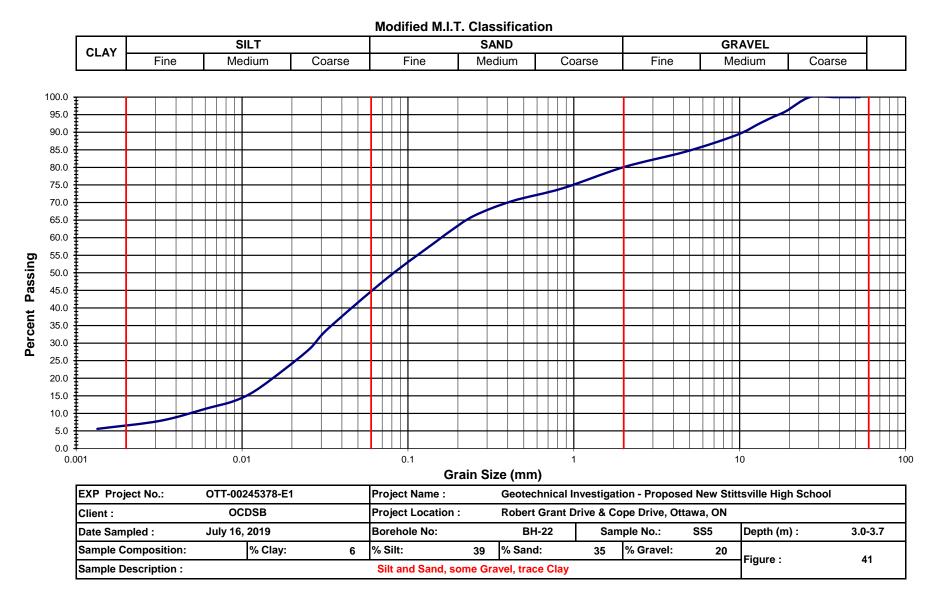
100-2650 Queensview Drive Ottawa, ON K2B 8H6


EXP Services Inc.

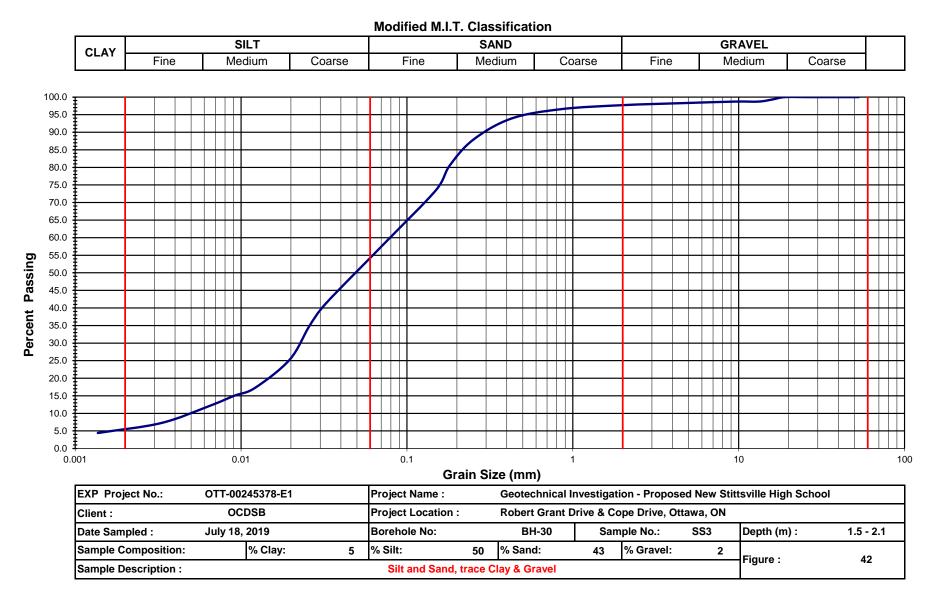
100-2650 Queensview Drive Ottawa, ON K2B 8H6

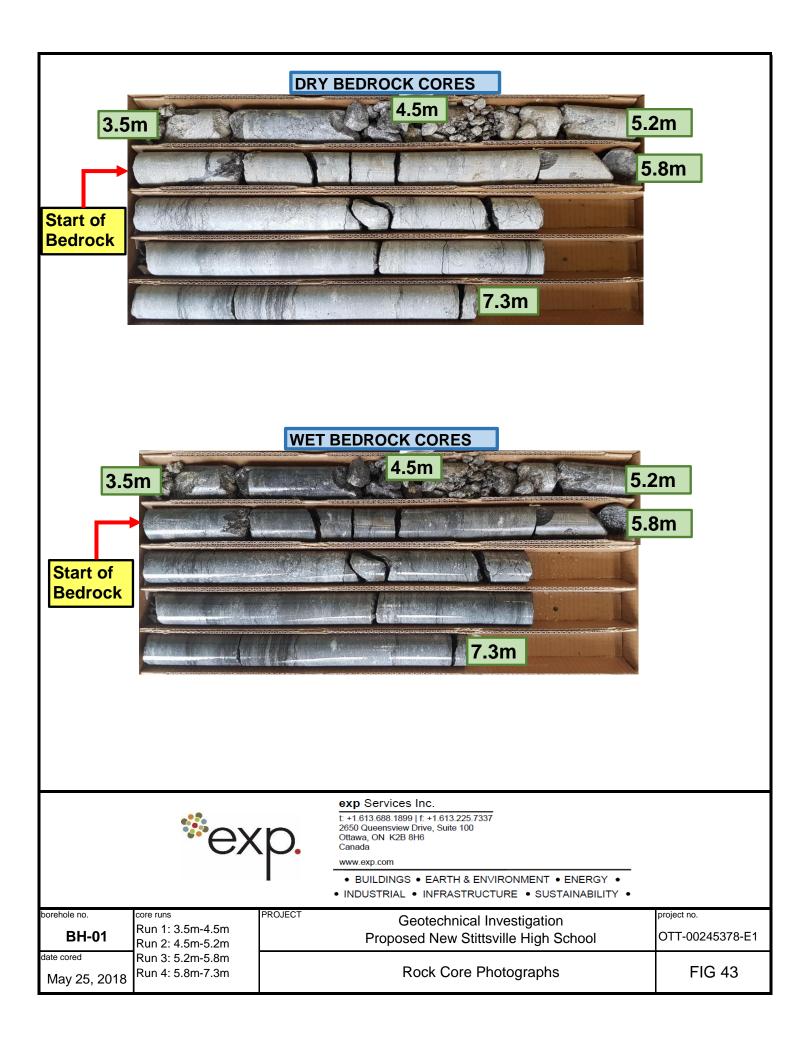

EXP Services Inc.

100-2650 Queensview Drive Ottawa, ON K2B 8H6

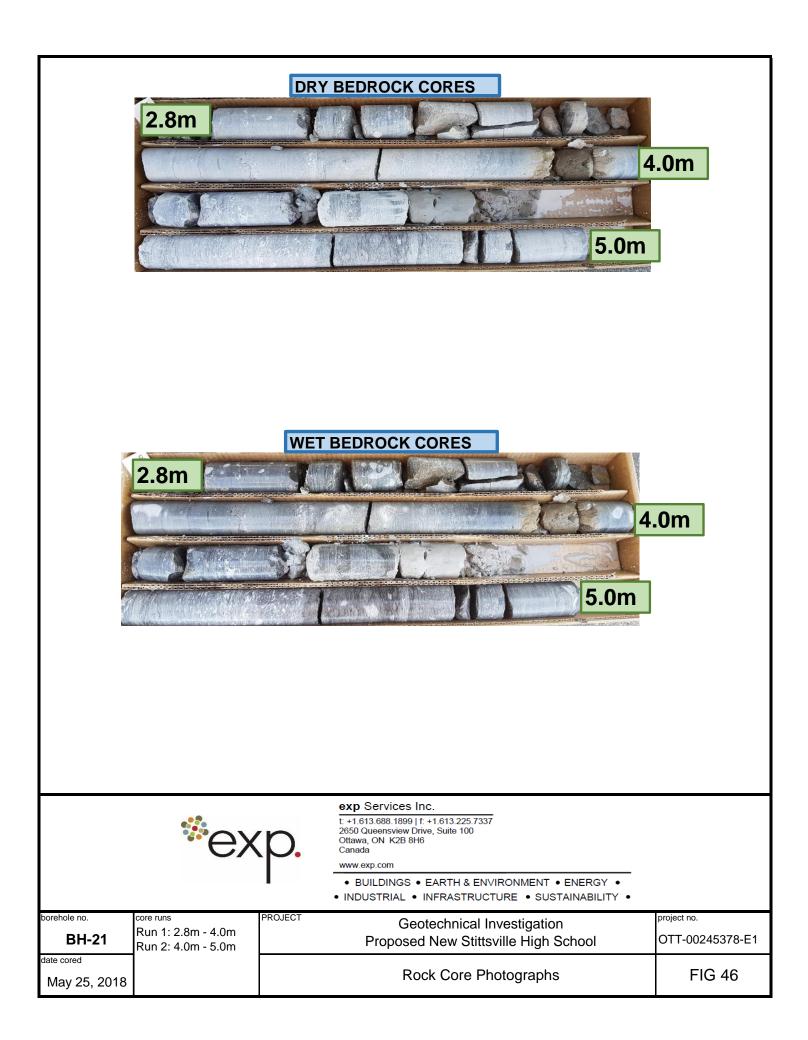

EXP Services Inc.

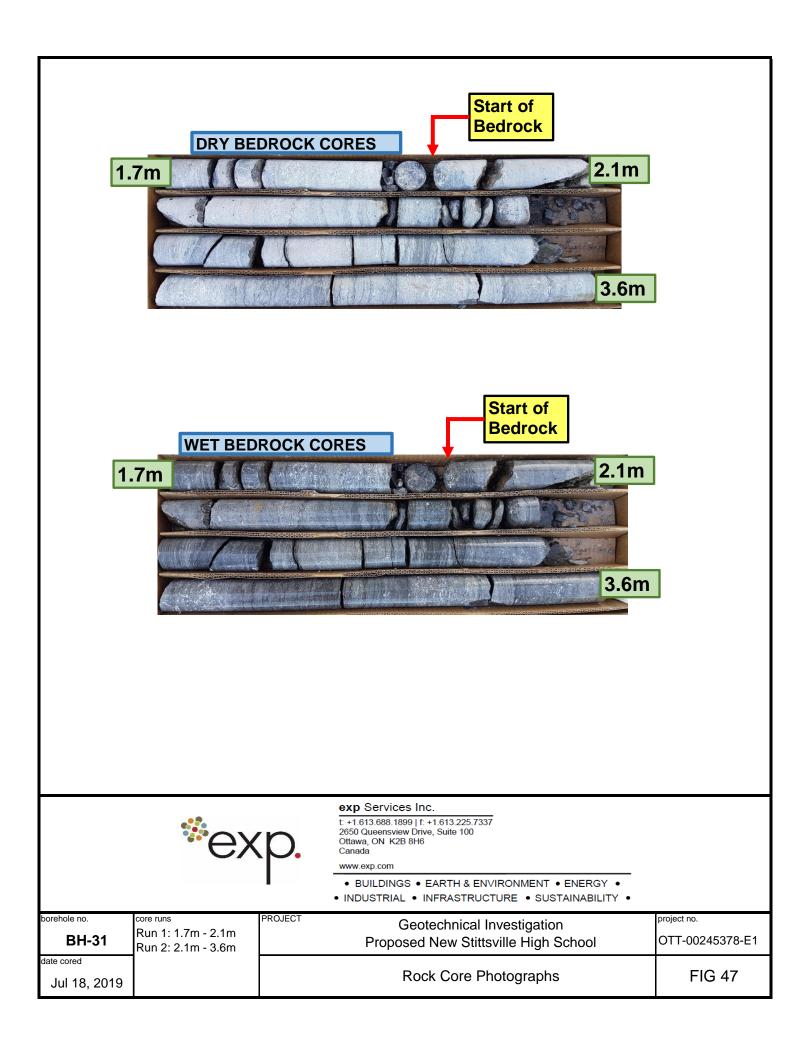
100-2650 Queensview Drive Ottawa, ON K2B 8H6


EXP Services Inc.




100-2650 Queensview Drive Ottawa, ON K2B 8H6


EXP Services Inc.



	DRY BEDROCK CORES	
3.4m		13239
	A-12 A LINE STAT	
4.6m		
	A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A	.1m
3.4m	WET BEDROCK CORES	
3.4111		
4.6m		
	Comment of the second s	
	6.1n	n
	exp Services Inc.	
*e	X D. I: +1.613.688.1899 f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6 Canada www.exp.com • BUIL DINGS • EARTH & ENV/IRONMENT	
	• BUILDINGS • EARTH & ENVIRONMENT • INDUSTRIAL • INFRASTRUCTURE • SUS	
borehole no. BH-02 core runs Run 1: 3.4m-4.6m Run 2: 4.6m-6.1m	PROJECT Geotechnical Investigation Proposed New Stittsville High S	n project no.
date cored May 25, 2018	Rock Core Photographs	

EXP Services Inc.

Ottawa-Carleton District School Board Project Name: Geotechnical Investigation, Proposed New Stittsville High School Location: Robert Grant Avenue and Cope Drive, Ottawa, ON Project Number: OTT-00245378-E1 Date: August 1, 2019

APPENDIX A: AGAT Laboratories Certificate of Analysis

CLIENT NAME: EXP SERVICES INC 2650 QUEENSVIEW DRIVE, UNIT 100 OTTAWA, ON K2B8H6 (613) 688-1899

ATTENTION TO: Maxime Leroux

PROJECT: OTT-245378-EO

AGAT WORK ORDER: 18Z343984

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Coordinator

DATE REPORTED: Jun 05, 2018

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 5

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 18Z343984 PROJECT: OTT-245378-EO 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: EXP SERVICES INC

ATTENTION TO: Maxime Leroux

SAMPLING SITE: Proposed Stittsville Secondary School - Robert Grant Dr & Cope Dr

SAMPLED BY:exp

				Inorg	ganic Cherr	istry (Soil)
DATE RECEIVED: 2018-05-29						DATE REPORTED: 2018-06-05
					BH3 SS4	
	S	AMPLE DESC	CRIPTION:	BH1 SS3 5'-7'	7'6"-9'6"	
		SAMF	PLE TYPE:	Soil	Soil	
		DATE S	SAMPLED:	2018-05-24	2018-05-24	
Parameter	Unit	G/S	RDL	9278100	9278104	
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.71	7.75	
Resistivity (2:1)	ohm.cm		1	9710	12800	
Chloride (2:1)	µg/g		2	4	3	
Sulphate (2:1)	µg/g		2	4	3	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

9278100-9278104 EC/Resistivity, Chloride and Sulphate were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio.

Certified By:

Amanjot Bhela

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-245378-EO

AGAT WORK ORDER: 18Z343984

ATTENTION TO: Maxime Leroux

SAMPLING SITE: Proposed Stittsville Secondary School - Robert Grant Dr & Cope Dr SAMPLED BY:exp

Soil Analysis

RPT Date: Jun 05, 2018		C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	RIX SPI	SPIKE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recoverv	Lin	ptable nits	Recoverv	Lin	eptable mits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
Inorganic Chemistry (Soil)															
pH, 2:1 CaCl2 Extraction	9284475		7.20	7.18	0.3%	NA	101%	80%	120%	NA			NA		
Chloride (2:1)	9278100 9	278100	4	4	NA	< 2	101%	70%	130%	95%	70%	130%	89%	70%	130%
Sulphate (2:1)	9278100 9	278100	4	4	NA	< 2	92%	70%	130%	99%	70%	130%	86%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL

Certified By:

Amanjot Bhela

Page 3 of 5

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-245378-EO

AGAT WORK ORDER: 18Z343984

ATTENTION TO: Maxime Leroux

SAMPLING SITE: Proposed Stittsville Secondary School - Robert Grant Dr & Cope Dr SAMPLED BY:exp

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	PH METER
Resistivity (2:1)	INOR-93-6036	McKeague 4.12, SM 2510 B,SSA #5 Part 3	EC METER
Chloride (2:1)	INOR-93-6004	McKeague 4.12 & SM 4110 B	ION CHROMATOGRAPH
Sulphate (2:1)	INOR-93-6004	McKeague 4.12 & SM 4110 B	ION CHROMATOGRAPH

Chain of Custody Record					_	l me 2S	1.11	Ph: 90	05.71:	ssissau 2.5100 we	835 Coo Iga, Onta Fax: 90 bearth.ag d by huma	rio L4 5.7 12 gatlab	z 1Y2 5122		Wo	rk Ord	er #: Jantit	y:	se On BZ? On i I	34.	00 0	17.1	C	17.7	- p
Report Information: Company: Exp. Sorvices Contact: Maxime Leroux Address: IDD - 2650 Ouccensview Live Address: IDD - 2650 Ouccensview Live Offware Offware Phone: G(12-698 - 1899 Reports to be sent to: Intrime. Leroux @exp. con 1. Email: Intrime. Leroux @exp. con 2. Email: Project Information:											Custody Seal Intact: Yes No N/A Notes: Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply) 3 Business 2 Business Days Days Days Day OR Date Required (Rush Surcharges May Apply):									_					
	drive 4	lary Su Cope	haol drise		ls t Reco	this submissio ord of Site Con Yes	n for a ndition? NO		Cer		Guidell te of Al	ne ol	ls		F		Plea T is e	se pro exclusi	ovide pi ive of w alysis,	rlor no eeken pleas	otificati nds and	ion for d statu	rush 1 tory h		
Invoice Information: Company: Contact: Address: Email:		II be billed full price			B GW O P S SD	ple Matrix Leg Biota Ground Water Oil Paint Soil Sediment Surface Water	end	Field Fittered - Metals, Hg, CrVI	Metals and Inorganics	□ All Metals □ 153 Metals (excl. Hydrides) □ Hydride Metals □ 153 Metals (Incl. Hydrides)	IWS DCI DCN DFOC DHg	Full Metals Scan	m Me	Nutrients: CITP CINH, CITKN CINO, CINO, CINO, HO,	S: OVOC BTEX DTHM	1-F4] Total D Aroclors	sticides	TCLP: CI M&I CI VOCS CI ABNS CI B(a)P CIPCBS	26	he		ro Residivity	
Sample Identification BH 1 553 5'-7! BH 3 554 7'6''-9'6''	Date Sampled May 24/18 May 24/18	Time Sampled	# of Containers	Samp Matr		Commen Special Instru	and the second se	Y/N	Metals	All Me Hydrid		Full Me	Regulat		Volatiles:	PHCs F1 -	PAHS	PCBs:	Organo	TCLP: DM&I		1121	r s chic	V Veka	
Samples Relinquished By (Print Name and Sign): Samples Relinquietted By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):	X	Date Mary 20 VB Date Date		6:30 600	∞	Samples Received By (Pri Samples Received By (Pri Samples Received By (Pri					NM 50/18			5-1				3) 333		0	

CLIENT NAME: EXP SERVICES INC 2650 QUEENSVIEW DRIVE, UNIT 100 OTTAWA, ON K2B8H6 (613) 688-1899

ATTENTION TO: Maxime Leroux

PROJECT: OTT-245378-E1

AGAT WORK ORDER: 19Z495978

SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Supervisor

DATE REPORTED: Jul 26, 2019

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES		

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

 AGAT Laboratories (V1)
 Page 1 of 5

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory

 Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association dy the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) or specific driving water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 19Z495978 PROJECT: OTT-245378-E1 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE: Robert Grant Drive & Cope drive, Stittsville

ATTENTION TO: Maxime Leroux

SAMPLED BY:

Inorganic Chemistry (Soil)

DATE RECEIVED: 2019-07-22	2						DATE REPORTED: 2019-07-26
				BH 31 Run 2 2		BH 22 SS4	
	SA	AMPLE DESC	CRIPTION:	1-2.2m	BH 21 SS3 5'-7'	7'6"-8'1"	
		SAMF	PLE TYPE:	Soil	Soil	Soil	
		DATE S	SAMPLED:	2019-07-18	2019-07-17	2019-07-16	
Parameter	Unit	G/S	RDL	371577	371579	371580	
Chloride (2:1)	µg/g		2	63	<2	11	
Sulphate (2:1)	µg/g		2	78	2	13	
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.92	7.91	7.80	
Resistivity (2:1) (Calculated)	ohm.cm		1	2650	12200	7410	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

371577-371580 pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil). Chloride and Sulphate were determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil).

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-245378-E1

SAMPLING SITE: Robert Grant Drive & Cope drive, Stittsville

AGAT WORK ORDER: 19Z495978

ATTENTION TO: Maxime Leroux

SAMPLED BY:

				201	I Ana	arysis	5									
RPT Date: Jul 26, 2019			C	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Lie	ptable nits	Recovery	Lin	ptable nits	
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper	
Inorganic Chemistry (Soil)																
Chloride (2:1)	371577	371577	63	69	9.1%	< 2	97%	70%	130%	105%	70%	130%	105%	70%	130%	
Sulphate (2:1)	371577	371577	78	79	1.3%	< 2	102%	70%	130%	109%	70%	130%	107%	70%	130%	
pH, 2:1 CaCl2 Extraction	371580	371580	7.80	7.79	0.1%	NA	100%	90%	110%	NA			NA			

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 3 of 5

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

CLIENT NAME: EXP SERVICES INC

PROJECT: OTT-245378-E1

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

AGAT WORK ORDER: 19Z495978

ATTENTION TO: Maxime Leroux

SAMPLING SITE:Robert Grant Driv	ve & Cope drive, Stittsville	SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	L		
Chloride (2:1)	INOR-93-6004	McKeague 4.12 & SM 4110 B	ION CHROMATOGRAPH
Sulphate (2:1)	INOR-93-6004	McKeague 4.12 & SM 4110 B	ION CHROMATOGRAPH
pH, 2:1 CaCl2 Extraction	INOR-93-6031	MSA part 3 & SM 4500-H+ B	pH METER
Resistivity (2:1) (Calculated)	INOR-93-6036	McKeague 4.12, SM 2510 B,SSA #5 Part 3	EC METER

AGAT METHOD SUMMARY (V1)

					1	large c				5	835 Coop	ers A	enue				-		e Only	-				
	£ L	La	abor	atc	ories			Ph: 90		2.5100	ga, Ontar Fax: 905	5.712.	5122		Wo	rk Orde	er #:	19	24	+9	<u>5°</u> 1	172	5	
Chain of Custody Record					webearth.agatlabs.com									Cooler Quantity: Arrival Temperatures: 27.1(27.122.)										
Report Information: Company: Exp Services					Regulatory Requirements: No Regulatory Requirement								ZI.ulluidl22.3 Custody Seal Intact: Yes Notes: 00											
	ew Drive	Drive Suite 100 ON K2R 8HG				Regulation 153/04		r Use itary					on 558			Turnaround Time (TAT) Required:								
Phone: 613-688-1899	Fax:				 □ Res/	Res/Park Agriculture	Stor	.orm		Prov. Water Quality Objectives (PWQO) Other					Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply)									
1. Email: <u>Maxime Lerc</u> 2. Email:	www. wexp.	Com		_	Coar Fine		Indica	ite One			Indicate	One			[Da	Busine iys R Date			2 Busi Days ush Su		Ĺ	Day	
Project Information: Project: OTT-245378-El Site Location: Referred Grand Drive & Cope drive, Stithewille					Is this submission for a Report Guideline on Record of Site Condition? Certificate of Analysis Yes No					Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays														
Sampled By: AGAT Quote #: Please note: If quotation number is	PO:	<u>.</u>	2			Matrix Le		CrVI	F	O. Reg	1.1.1	-			F	for 'Sai	ne Da	iy' ana	alysis, p		conta	act you	r AGA	
Invoice Information: Company: Contact: Address: Email:	В	ill To Same:	Yes ONO		0 Oil P Pai S Soi SD Sec	ound Water nt		Field Filtered - Metais, Hg, C	s and Inorganics	□ All Metals □ 153 Metals (excl., Hydrides) □ Hydride Metals □ 153 Metals (Incl., Hydrides)	ORPS: CIBHWS CI CN. CCr ⁴⁴ CEC CFOC CHg CT-44 CSAP	Full Metals Scan	om Met	Nutrients: LTP CNH, LTKN LNO3 LNO2 LNO3+NO2	es: П VOC ПВТЕХ ПТНМ	PHCs F1 - F4		□ Total □ Aroclors	sticides	LUVOCS LIABNS LIB(a)P		phote	Develout	FIELTO KESISIA
Sample Identification	Date Sampled	Time Sampled	# of Containers	Samp Matr		Commer Special Instr		Y/N	Metals		ORPs: OCA	Full M	Regula		Volatlles:	PHCs	PAHs	PCBs:	Organ		HA	N.	-	2
<u>BH 31 Run 2 2.1-2.2 m</u> <u>BH 21 ss3 5'-7!</u> <u>BH 22 ss4 7'6"-8'1"</u>	JJg18/19 JJg12/19 JJg16/19						34														> > >	V		
Samples Relinquished By (Print Name and Sign):	2	Date	>/19 Tim	ne 3:00 ne	pn san	JEH- ples Received By (P Abdin 1	Int Name and Sign):	¥	D	l'	Z	نار	Date Date Date Date Date	J.	-19 2019	Time O Time	75 0:0	8	Nº:	Pag	^{يو}	<u>)</u> . 205	f_]	_
											Diele	<u></u>	0.1		0	1								

EXP Services Inc.

Ottawa-Carleton District School Board Project Name: Geotechnical Investigation, Proposed New Stittsville High School Location: Robert Grant Avenue and Cope Drive, Ottawa, ON Project Number: OTT-00245378-E1 Date: August 1, 2019

List of Distribution

Report Distributed To:

David Lacelle, Ottawa-Carleton District School Board, David.Lacelle@ocdsb.ca Jerzy Jurewicz, Edward J Cuhaci and Associates Architects Inc., <u>Jerzyj@cuhaci.com</u>; Jean Voth, Ottawa-Carleton District School Board, jean.voth@ocdsb.ca; Daniel Bradley, Ottawa-Carleton District School Board, daniel.bradley@ocdsb.ca Rick Cunliffe, Cunliffe & Associates, <u>rcunliffe@cunliffe.ca</u> Jim Johnston, WSP, James.Johnston@wsp.com

