


120 lber Road, Suite 103 Ottawa, Ontario K2S 1E9 Tel. (613) 836-0856 Fax (613) 836-7183 www.DSEL.ca



NOVEMBER 2019 – REV. 1 © DSEL

#### ASSESSMENT OF ADEQUACY OF PUBLIC SERVICES FOR 1151 TERON ROAD

#### 11021028 AND 11073656 CANADA INC.

#### TABLE OF CONTENTS

| 1.0 | INTRODUCTION                                                                                                                          | 1  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.1 | Existing Conditions                                                                                                                   | 2  |
| 1.2 | Required Permits / Approvals                                                                                                          | 2  |
| 1.3 | Pre-consultation                                                                                                                      | 3  |
| 2.0 | GUIDELINES, PREVIOUS STUDIES, AND REPORTS                                                                                             | 4  |
| 2.1 | Existing Studies, Guidelines, and Reports                                                                                             | 4  |
| 3.0 | WATER SUPPLY SERVICING                                                                                                                | 6  |
| 3.1 | Existing Water Supply Services                                                                                                        | 6  |
| 3.2 | Water Supply Servicing Design                                                                                                         | 6  |
| 3.3 | Water Supply Conclusion                                                                                                               | 7  |
| 4.0 | WASTEWATER SERVICING                                                                                                                  | 8  |
| 4.1 | Existing Wastewater Services                                                                                                          | 8  |
| 4.2 | Wastewater Design                                                                                                                     | 8  |
| 4.3 | Wastewater Servicing Conclusions                                                                                                      | 9  |
| 5.0 | STORMWATER MANAGEMENT                                                                                                                 | 10 |
| 5.1 | Existing Stormwater Services                                                                                                          | 10 |
| 5.2 | Post-development Stormwater Management Target                                                                                         | 10 |
| 5.3 | Proposed Stormwater Management System                                                                                                 | 11 |
|     | <ul><li>5.3.1 Option 1: Stormwater Outlet to Municipal Ditch</li><li>5.3.2 Option 2: Stormwater Outlet to Local Storm Sewer</li></ul> |    |
| 5.4 | Stormwater Servicing Conclusions                                                                                                      | 12 |
| 6.0 | UTILITIES                                                                                                                             | 14 |
| 7.0 | EROSION AND SEDIMENT CONTROL                                                                                                          | 15 |
| 8.0 | CONCLUSION AND RECOMMENDATIONS                                                                                                        | 16 |

#### **FIGURES**

#### **TABLES**

| Table 1 | Water | Supply | Des | ign Crit | eria |   |
|---------|-------|--------|-----|----------|------|---|
|         |       | _      |     |          |      | - |

- Table 2Water Demand and Boundary Conditions
- Contemplated Conditions
- Table 3Wastewater Design Criteria
- Table 4
   Summary of Estimated Peak Wastewater Flow
- Table 5Summary of Existing Peak Storm Flow Rates
- Table 6Option 1 Stormwater Flow Rate Summary
- Table 7
   Option 2 Stormwater Flow Rate Summary

#### APPENDICES

- Appendix APre-consultation NotesAppendix BWater SupplyAppendix CWastewater CollectionAppendix DStormwater ManagementDrawings / FiguresConcept Site Plan
  - Conceptual Site Servicing Sketch

#### ASSESSMENT OF ADEQUACY OF PUBLIC SERVICES FOR 1151 TERON ROAD 11021028 AND 11073656 CANADA INC. NOVEMBER 2019 – REV. 1

#### CITY OF OTTAWA PROJECT NO.: 19-1128

#### 1.0 INTRODUCTION

David Schaeffer Engineering Limited (DSEL) has been retained by 11021028 and 11073656 Canada Inc. to prepare an Assessment of Adequacy of Public Services report in support of the application for a Zoning By-law Amendment (ZBLA) at 1151 Teron Road.

The subject property is located within the City of Ottawa urban boundary, in Kanata North. As illustrated in *Figure 1* below, the subject property is located south of the intersection of March Road and Teron Road. Comprised of one parcel, the subject property measures approximately *1.43 ha* and is zoned R5A[2144]S327 and O1[2143].



Figure 1: Site Location

The proposed ZBLA would allow for the development of a nine-storey mixed-use building fronting onto Teron Road. The contemplated development would include approximately 1,071 m<sup>2</sup> of ground level retail accompanied by surface parking, with access from March Road. The residential component is comprised of approximately 109 units. A copy of the *Concept Site Plan* is included in *Drawings/Figures*.

The objective of this report is to provide sufficient detail to demonstrate that the proposed re-zoning and contemplated development is supported by existing municipal services.

#### 1.1 Existing Conditions

The existing site is undeveloped and consists of a vegetated area with a few trees. The elevations range between 89.75 m and 87.75 m with a grade change of approximate 1.30% from the Southeast to the Northwest corner of the property.

Sewer and watermain mapping collected from the City of Ottawa indicate that the following services exist across the property frontages within the adjacent municipal right-of-ways:

#### Teron Road

- ➢ 610 mm diameter water feedermain;
- > 300 mm diameter concrete storm sewer; and
- > 525 mm diameter concrete sanitary sewer.

#### March Road

> 450 mm diameter concrete storm sewer.

#### Weeping Willow Lane (formerly Varley Lane)

> A private 250 mm diameter PVC sanitary sewer

#### 1.2 Required Permits / Approvals

The contemplated development is subject to the Zoning By-law Amendment approval process. The City of Ottawa must approve the Adequacy of Public Services Report prior to the issuance of ZBLA approval.

Should the anticipated site stormwater design discharge into a ditch and not a storm sewer, OWRA s.53 approval will be required from the Ministry of the Environment, Conservation and Parks (MECP).

#### 1.3 **Pre-consultation**

Pre-Consultation was conducted with interested parties at the City of Ottawa on April 08, 2019. Pre-consultation correspondence, along with the servicing guidelines checklist, is located in *Appendix A*.

#### 2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

#### 2.1 Existing Studies, Guidelines, and Reports

The following studies were utilized in the preparation of this report:

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012. (City Standards)
  - Technical Bulletin ISDTB-2014-01 City of Ottawa, February 5, 2014. (ITSB-2014-01)
  - Technical Bulletin PIEDTB-2016-01
     City of Ottawa, September 6, 2016.
     (PIEDTB-2016-01)
  - Technical Bulletin ISTB-2018-01
     City of Ottawa, March 21, 2018.
     (ISTB-2018-01)
  - Technical Bulletin ISTB-2018-04 City of Ottawa, June 27, 2018. (ISTB-2018-04)
- Ottawa Design Guidelines Water Distribution City of Ottawa, July 2010. (Water Supply Guidelines)
  - Technical Bulletin ISD-2010-2
     City of Ottawa, December 15, 2010.
     (ISD-2010-2)
  - Technical Bulletin ISDTB-2014-02
     City of Ottawa, May 27, 2014.
     (ISDTB-2014-02)
  - Technical Bulletin ISDTB-2018-02
     City of Ottawa, March 21, 2018.
     (ISDTB-2018-02)
- Design Guidelines for Sewage Works, Ministry of the Environment, 2008. (MECP Design Guidelines)

- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)
- Ontario Building Code Compendium Ministry of Municipal Affairs and Housing Building Development Branch, January 1, 2010 Update. (OBC)
- Water Supply for Public Fire Protection Fire Underwriters Survey, 1999. (FUS)

#### 3.0 WATER SUPPLY SERVICING

#### 3.1 Existing Water Supply Services

The subject property lies within the City of Ottawa 2W2C pressure zone. A local 610 mm diameter watermain exists within the Teron Road right-of-way, as shown by the Pressure Zone map, in *Appendix B*.

#### 3.2 Water Supply Servicing Design

It is anticipated that the contemplated development will be serviced via two service connections to existing municipal infrastructure. As the water demand exceeds 50 m<sup>3</sup>/day, it is anticipated that the services will be looped internally to allow for redundancy in case of interruption of service to either connection.

*Table 1,* below, summarizes the *Water Supply Guidelines* employed in the preparation of the preliminary water demand estimate.

| Design Parameter                                                                                                                               | Value                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Residential 1 Bedroom Apartment                                                                                                                | 1.4 P/unit                                                       |
| Residential 2 Bedroom Apartment                                                                                                                | 2.1 P/unit                                                       |
| Residential Average Daily Demand                                                                                                               | 280 L/d/P                                                        |
| Residential Maximum Daily Demand                                                                                                               | 3.6 x Average Daily *                                            |
| Residential Maximum Hourly                                                                                                                     | 5.4 x Average Daily *                                            |
| Commercial Retail                                                                                                                              | 2.5 L/m²/d                                                       |
| Commercial Office                                                                                                                              | 75 L/9.3m²/d                                                     |
| Restaurant                                                                                                                                     | 125 L/seat/d                                                     |
| Commercial Maximum Daily Demand                                                                                                                | 1.5 x avg. day                                                   |
| Commercial Maximum Hour Demand                                                                                                                 | 1.8 x max. day                                                   |
| Minimum Watermain Size                                                                                                                         | 150mm diameter                                                   |
| Minimum Depth of Cover                                                                                                                         | 2.4m from top of watermain to finished grade                     |
| During normal operating conditions desired<br>operating pressure is within                                                                     | 350kPa and 480kPa                                                |
| During normal operating conditions pressure must not drop below                                                                                | 275kPa                                                           |
| During normal operating conditions pressure must not exceed                                                                                    | 552kPa                                                           |
| During fire flow operating pressure must not drop below                                                                                        | 140kPa                                                           |
| DEIOW *Daily average based on Appendix 4-A from Water Supply Guidelines ** Residential Max_Daily and Max_Hourdy peaking factors per MECP Guide | elines for Drinking-Water Systems Table 3-3 for 0 to 500 persons |

Table 1Water Supply Design Criteria

\*\* Residential Max. Daily and Max. Hourly peaking factors per MECP Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons.

-Table updated to reflect ISD-2010-2

*Table 2,* below, summarizes the anticipated water supply demand and boundary conditions for the contemplated development based on the *Water Supply Guidelines*.

# Table 2Water Demand and Boundary ConditionsContemplated Conditions

| Design Parameter     | Anticipated Demand <sup>1</sup>                                                                                  | Boundary Condition <sup>2</sup> |
|----------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                      | (L/min)                                                                                                          | (m H₂O / kPa)                   |
| Average Daily Demand | 37.2                                                                                                             | 131.7 / 410.1                   |
| Max Day + Fire Flow  | 130.2 + 11,000 = 11,130.2                                                                                        | 126.1 / 355.1                   |
| Peak Hour            | 196.1                                                                                                            | 125.9 / 353.2                   |
|                      | per <i>Water Supply Guidelines</i> . See Ap<br>ed by the City of Ottawa for the demand<br>89.9m. See Appendix B. |                                 |

Fire flow requirements are to be determined in accordance with City of Ottawa *Water Supply Guidelines* and the Ontario Building Code.

Fire flow requirements were estimated per City of Ottawa Technical Bulletin *ISTB-2018-02*. The following assumptions were obtained from the Architect, refer to *Appendix B* for correspondence:

- > Type of construction Non-Combustible Construction;
- Occupancy type Limited Combustibility; and
- Sprinkler Protection Sprinklered Supervised.

The above assumptions result in an estimated fire flow of approximately **11,000** L/min, noting that actual building materials selected will affect the estimated flow.

The City provided both the anticipated minimum and maximum water pressures, as well as, the estimated water pressure during fire flow demand for the demands as indicated by the correspondence in *Appendix B*. As shown by *Table 2*, the minimum and maximum pressures fall within the required range identified in *Table 1*.

#### 3.3 Water Supply Conclusion

The anticipated water demand under contemplated conditions was submitted to the City of Ottawa for establishing boundary conditions. As demonstrated by **Table 2**, based on the City's model, the municipal system is capable of delivering water within the **Water Supply Guidelines** pressure range.

The anticipated water supply design conforms to all relevant City Guidelines and Policies.

#### 4.0 WASTEWATER SERVICING

#### 4.1 Existing Wastewater Services

The subject site lies within the March Ridge Trunk Sewer catchment area, as shown by the City sewer mapping included in *Appendix C*. An existing 525 mm diameter sanitary sewer within Teron Road exists and is located 240 m south of the subject property. An existing 250 mm diameter private sanitary sewer exists within Weeping Willow Lane (formerly Varley Lane) located south-west of the property.

No sanitary services within the municipal right-of-way currently exist adjacent to the subject property. As a part of a previous application, a service lateral from the private sanitary sewer was contemplated as shown in the *Conceptual Site Servicing Sketch*, included in *Drawings/Figures*.

#### 4.2 Wastewater Design

It is anticipated that the contemplated development will connect to the existing private 250 mm diameter sanitary sewer within Weeping Willow Lane (formerly Varley Lane) as shown in the *Conceptual Site Servicing Sketch,* included in *Drawings/Figures*.

The private sewage system will be analyzed at the detailed design stage to ensure that it complies with relevant *MECP* Design Guidelines.

*Table 3,* below, summarizes the *City Standards* employed in the design of the contemplated wastewater sewer system.

| Design Parameter                                                 | Value                                                      |
|------------------------------------------------------------------|------------------------------------------------------------|
| Residential 1 Bedroom Apartment                                  | 1.4 P/unit                                                 |
| Residential 2 Bedroom Apartment                                  | 2.1 P/unit                                                 |
| Average Daily Demand                                             | 280 L/d/per                                                |
| Peaking Factor                                                   | Harmon's Peaking Factor. Max 3.8, Min 2.0                  |
| Commercial Floor Space                                           | 5 L/m²/d                                                   |
| Commercial Office Space                                          | 75 L/9.3m²/d                                               |
| Infiltration and Inflow Allowance                                | 0.33 L/s/ha                                                |
| Industrial - Light                                               | 35,000 L/gross ha/d                                        |
| Industrial Peaking Factor                                        | 7.0 per City of Ottawa Sewer Design Guidelines Appendix 4B |
| Sanitary sewers are to be sized employing the Manning's Equation | $Q = \frac{1}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$        |
| Minimum Sewer Size                                               | 200mm diameter                                             |
| Minimum Manning's 'n'                                            | 0.013                                                      |
| Minimum Depth of Cover                                           | 2.5m from crown of sewer to grade                          |
| Minimum Full Flowing Velocity                                    | 0.6m/s                                                     |
| Maximum Full Flowing Velocity                                    | 3.0m/s                                                     |
| Extracted from Sections 4 and 6 of the City of Ottawa Sewe       | er Design Guidelines, October 2012.                        |

## Table 3Wastewater Design Criteria

*Table 4,* below, demonstrates the anticipated peak flow from the contemplated development. See *Appendix C* for associated calculations.

| Design Parameter                   | Total<br>Flow (L/s) |
|------------------------------------|---------------------|
| Estimated Average Dry Weather Flow | 0.78                |
| Estimated Peak Dry Weather Flow    | 2.27                |
| Estimated Peak Wet Weather Flow    | 2.65                |

### Table 4Summary of Estimated Peak Wastewater Flow

The estimated sanitary flow based on the *Concept Site Plan*, provided in *Drawings/Figures*, anticipates a peak wet weather flow of 2.65 L/s.

In order to estimate the available capacity, a sanitary analysis was conducted for the local municipal sanitary sewers located across the frontage of the subject property. The catchment area serviced by the March Ridge Trunk sewer was identified and evaluated by reviewing existing development and zoning within the area. *City Standards* were employed to generate a conservative estimate of the existing wastewater flow conditions within the sewer. Refer to the sanitary drainage plan in *Appendix C*, for the extents of the existing sanitary sewer analysis.

Based on the sanitary analysis, it is estimated that the most restricted leg of local sanitary sewer downstream of the subject site, has an available residual capacity of **17.17** *L/s*, which is sufficient to accommodate the estimated **2.27** *L/s* peak wastewater flow increase generated by the contemplated development. Refer to **Appendix C** for detailed calculations.

The analysis above indicates that sufficient capacity is available in the local sewers to accommodate the contemplated development.

#### 4.3 Wastewater Servicing Conclusions

The site is tributary to the March Ridge Trunk sanitary sewer. Based on the above sanitary analysis, sufficient capacity is available to accommodate the anticipated **2.65** *L*/s peak wet weather flow from the contemplated development.

The anticipated wastewater design conforms to all relevant *City Standards*.

#### 5.0 STORMWATER MANAGEMENT

#### 5.1 Existing Stormwater Services

Stormwater runoff from the subject property is tributary to the City of Ottawa sewer system located within the Ottawa West watershed. As such, approvals for proposed development within this area are under the approval authority of the City of Ottawa.

Flows that influence the watershed in which the subject property is located are further reviewed by the principal authority. The subject property is located within the Kizell Drain sub-watershed; and is therefore subject to review by Mississippi Valley Conservation Authority (MVCA). The MVCA has been contacted for any quality controls that may apply to stormwater runoff from the site. Consultation with the MVCA is located in *Appendix A*.

It was assumed that the existing development contained no stormwater management controls for flow attenuation. The estimated pre-development peak flows for the 2, 5, and 100-year events are summarized in *Table 5,* below:

| City of Ottawa Design Storm | Estimated Peak Flow Rate (L/s) |
|-----------------------------|--------------------------------|
| 2-year                      | 46.6                           |
| 5-year                      | 63.0                           |
| 100-year                    | 134.7                          |

Table 5Summary of Existing Peak Storm Flow Rates

#### 5.2 Post-development Stormwater Management Target

Stormwater management requirements for the contemplated development were reviewed with the City of Ottawa for two potential options;

**Option 1:** If the contemplated development outlets to a municipal ditch, the contemplated development is required to:

Estimate allowable release rates based on a Rational Method Coefficient of 0.20, employing the City of Ottawa IDF parameters for a 5-year and 100-year storms with a calculated time of concentration greater than or equal to 10 minutes, controlling post-development runoff rates to pre-development conditions. Refer to correspondence with the City included in *Appendix D.* 

**Option 2:** If the contemplated development outlets to a local storm sewer, the contemplated development is required to:

Estimate allowable release rate based on a Rational Method Coefficient of 0.20, employing the City of Ottawa IDF parameters for a 5-year storm with a calculated time of concentration greater than or equal to 10 minutes. The contemplated development is also required to meet the following requirements in both options;

- All storms up to and including the City of Ottawa 100-year design event are to be attenuated on site;
- Based on coordination with the MVCA, enhanced quality level treatment (80% TSS removal) will be required for the contemplated development; correspondence with the MVCA is included in *Appendix A*.

#### 5.3 Proposed Stormwater Management System

The contemplated development is anticipated to be serviced via one, or a combination, of two options. The first option contemplates discharging to a municipal ditch and the second option contemplates discharging to a municipal storm sewer.

#### 5.3.1 Option 1: Stormwater Outlet to Municipal Ditch

It is anticipated that the stormwater outlet from the contemplated development will be to the municipal ditch located at the north corner of the site within the March Road right-ofway.

Based on stormwater objectives for this option, the allowable release rates for the contemplated development are **63.0** *L*/s and **134.7** *L*/s for the 5-year and 100-year storms, respectively. To meet the stormwater objectives, the contemplated development may contain a combination of roof top flow attenuation along with surface and subsurface storage.

**Table 6,** below, summarizes post-development flow rates for option 1. The following storage requirement estimate assumes that approximately 10% of the development area will be directed to the outlet without flow attenuation. These areas will be compensated for in areas with flow attenuation controls.

| Opt                | ion 1 Stormw           | ater Flow R       | ate Summary              |                     |
|--------------------|------------------------|-------------------|--------------------------|---------------------|
| Control Area       | 5-Year<br>Release Rate | 5-Year<br>Storage | 100-Year<br>Release Rate | 100-Year<br>Storage |
|                    | (L/s)                  | (m³)              | (L/s)                    | (m³)                |
| Unattenuated Areas | 15.5                   | 0.0               | 33.3                     | 0.0                 |
| Attenuated Areas   | 47.4                   | 128.1             | 101.4                    | 272.4               |
| Total              | 62.9                   | 128.1             | 134.7                    | 272.4               |

Table 6Option 1 Stormwater Flow Rate Summary

It is anticipated that approximately  $272.4 \text{ m}^3$  of storage will be required on site to attenuate flow to the established release rate of 134.7 L/s in the 100-year storm; storage calculations are contained within *Appendix D*.

Actual storage volumes will need to be confirmed at the detailed design stage based on a number of factors, including grading constraints.

To meet quality controls, on-site treatment including LID measures and oil/grit separators may be implemented to achieve 80% TSS removal.

#### 5.3.2 Option 2: Stormwater Outlet to Local Storm Sewer

It is anticipated that the stormwater outlet from the contemplated development will be to the 300 mm diameter storm sewer within Teron Road right-of-way.

Based on stormwater objectives for this option, the allowable release rates for the contemplated development is **63.0** *L*/**s**. To meet the stormwater objectives the contemplated development may contain a combination of roof top flow attenuation along with surface and subsurface storage.

**Table 7,** below, summarizes post-development flow rates for option 2. The following storage requirement estimate assumes that approximately 10% of the development area will be directed to the outlet without flow attenuation. These areas will be compensated for in areas with flow attenuation controls.

| <b>0</b> pu        |              |         |              |          |
|--------------------|--------------|---------|--------------|----------|
| Control Area       | 5-Year       | 5-Year  | 100-Year     | 100-Year |
|                    | Release Rate | Storage | Release Rate | Storage  |
|                    | (L/s)        | (m³)    | (L/s)        | (m³)     |
| Unattenuated Areas | 15.5         | 0.0     | 33.3         | 0.0      |
| Attenuated Areas   | 14.1         | 210.6   | 29.7         | 445.9    |
| Total              | 29.6         | 210.6   | 63.0         | 445.9    |

Table 7 Option 2 Stormwater Flow Rate Summary

It is anticipated that approximately **445.9**  $m^3$  of storage will be required on site to attenuate flow to the established release rate of **63.0** L/s; storage calculations are contained within **Appendix D**.

Actual storage volumes will need to be confirmed at the detailed design stage based on a number of factors, including grading constraints.

To meet quality controls, a combination of on-site treatment including LID measures and oil/grit separators may be implemented in order to achieve 80% TSS removal.

#### 5.4 Stormwater Servicing Conclusions

The development is anticipated to be serviced via one of two options.

**Option 1** contemplates a stormwater outlet to the municipal ditch within March Road - right-of-way. Post-development runoff rates are required to be restricted to pre-development conditions. Allowable release rates for the contemplated development were calculated to be **63.0** *L*/**s** and **134.7** *L*/**s** for the 5-year and 100-year storms respectively. It is estimated that a maximum of **272.4**  $m^3$  of storage will be required on site to attenuate flow to the established release rates for the contemplated development.

**Option 2** contemplates a stormwater outlet to the 300 mm diameter storm sewer within the Teron Road right-of-way. Post development stormwater runoff will be required to be restricted to the allowable target release rate for storm events up to and including the 100-year storm in accordance with City of Ottawa **City Standards**. It is estimated that **445.9**  $m^3$  of storage will be required on site to attenuate flow to the established release rate of **63.0** *L/s* for the contemplated development.

Based on coordination with the MVCA, enhanced quality level treatment (80% TSS removal) will be required for the contemplated development.

The anticipated stormwater design conforms to all relevant *City Standards* and Policies for approval.

#### 6.0 UTILITIES

Gas, Hydro and Bell services currently exist within the Teron Road right-of-way. Utility servicing will be coordinated with the individual utility companies prior to site development.

Special considerations will need to be taken with development within the Hydro corridor. The contemplated development will be coordinated and approved by the utility company having jurisdiction.

#### 7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. During construction the extent of erosion losses is exaggerated due to the removal of vegetation and the top layer of soil becoming agitated.

Prior to topsoil stripping, earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

Silt fence will be installed around the perimeter of the site and will be cleaned and maintained throughout construction. Silt fence will remain in place until the working areas have been stabilized and re-vegetated.

Catch basins will have SILTSACKs or an approved equivalent installed under the grate during construction to protect from silt entering the storm sewer system.

A mud mat will be installed at the construction access in order to prevent mud tracking onto adjacent roads.

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents:

- Limit extent of exposed soils at any given time;
- Re-vegetate exposed areas as soon as possible;
- Minimize the area to be cleared and grubbed;
- Protect exposed slopes with plastic or synthetic mulches;
- Install silt fence to prevent sediment from entering existing ditches;
- No refueling or cleaning of equipment near existing watercourses;
- Provide sediment traps and basins during dewatering;
- Install filter cloth between catch basins and frames;
- Plan construction at proper time to avoid flooding; and
- Establish material stockpiles away from watercourses, so that barriers and filters may be installed.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- Verification that water is not flowing under silt barriers; and
- > Clean and change filter cloth at catch basins.

#### 8.0 CONCLUSION AND RECOMMENDATIONS

David Schaeffer Engineering Ltd. (DSEL) has been retained by 11021028 and 11073656 Canada Inc. to prepare an Assessment of Adequacy of Public Services report in support of the application for a Zoning By-law Amendment (ZBLA) at 1151 Teron Road. The preceding report outlines the following:

- Based on boundary conditions provided by the City the existing municipal water infrastructure is capable of providing the contemplated development with water within the City's required pressure range;
- The FUS method for estimating fire flow indicated **11,000 L/min** is required for the contemplated development,
- The contemplated development is anticipated to have a peak wet weather flow of 2.65 L/s; Based on the sanitary analysis conducted the existing municipal sewer infrastructure has sufficient capacity to support the development;
- Based on coordination with the City, the contemplated development will be required to attenuate post development flows to allowable release rates of 63.0 L/s and 134.7 L/s for the 5-year and 100-year storms respectively if discharging to municipal ditches (Option 1);
- Based on the City of Ottawa's City Standards, the contemplated development will be required to attenuate post development flows to an equivalent release rate of 63.0 L/s for all storms up to and including the 100-year storm event if discharging to local storm sewers (Option 2);
- It is contemplated that stormwater objectives may be met through storm water retention via roof top, surface and subsurface storage. It is anticipated that 272.4 m<sup>3</sup> of onsite storage will be required to attenuate flow to the established release rates for **Option 1** and 445.9 m<sup>3</sup> of onsite storage will be required for **Option 2**;
- To meet quality controls, a combination of on-site treatment including LID measures and oil/grit separators may be employed in order to achieve 80% TSS removal.

# Prepared by, **David Schaeffer Engineering Ltd.**



Reviewed by, **David Schaeffer Engineering Ltd.** 



#### Per: Amr Salem. © DSEL

Per: Robert D. Freel, P. Eng.

CDSEL z:\projects\19-1128\_omnipex\_1151-teron\b\_design\b3\_reports\b3-2\_servicing (dsel)\2019-09-23\_aes\_sub1\aes-2019-09-17\_aas.docx

### APPENDIX A

**Pre-Consultation** 

#### **DEVELOPMENT SERVICING STUDY CHECKLIST**

19-1128

| 4.1         | General Content                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|             | Executive Summary (for larger reports only).                                                                                                                                                                                                                                                                                                                                                                                   | N/A                    |
| $\boxtimes$ | Date and revision number of the report.                                                                                                                                                                                                                                                                                                                                                                                        | Report Cover Sheet     |
| $\boxtimes$ | Location map and plan showing municipal address, boundary, and layout of proposed development.                                                                                                                                                                                                                                                                                                                                 | Drawings/Figures       |
| $\boxtimes$ | Plan showing the site and location of all existing services.                                                                                                                                                                                                                                                                                                                                                                   | Figure 1               |
|             | Development statistics, land use, density, adherence to zoning and official plan,                                                                                                                                                                                                                                                                                                                                              |                        |
| $\boxtimes$ | and reference to applicable subwatershed and watershed plans that provide<br>context to applicable subwatershed and watershed plans that provide context<br>to which individual developments must adhere.                                                                                                                                                                                                                      | Section 1.0            |
| $\boxtimes$ | Summary of Pre-consultation Meetings with City and other approval agencies.                                                                                                                                                                                                                                                                                                                                                    | Section 1.3            |
|             | Reference and confirm conformance to higher level studies and reports (Master                                                                                                                                                                                                                                                                                                                                                  | 3600011.5              |
| $\boxtimes$ | Servicing Studies, Environmental Assessments, Community Design Plans), or in<br>the case where it is not in conformance, the proponent must provide<br>justification and develop a defendable design criteria.                                                                                                                                                                                                                 | Section 2.1            |
| $\boxtimes$ | Statement of objectives and servicing criteria.                                                                                                                                                                                                                                                                                                                                                                                | Section 1.0            |
| $\boxtimes$ | Identification of existing and proposed infrastructure available in the immediate area.                                                                                                                                                                                                                                                                                                                                        | Sections 3.1, 4.1, 5.1 |
|             | Identification of Environmentally Significant Areas, watercourses and Municipal<br>Drains potentially impacted by the proposed development (Reference can be<br>made to the Natural Heritage Studies, if available).                                                                                                                                                                                                           | N/A                    |
|             | Concept level master grading plan to confirm existing and proposed grades in<br>the development. This is required to confirm the feasibility of proposed<br>stormwater management and drainage, soil removal and fill constraints, and<br>potential impacts to neighbouring properties. This is also required to confirm<br>that the proposed grading will not impede existing major system flow paths.                        | N/A                    |
|             | Identification of potential impacts of proposed piped services on private<br>services (such as wells and septic fields on adjacent lands) and mitigation<br>required to address potential impacts.                                                                                                                                                                                                                             | N/A                    |
|             | Proposed phasing of the development, if applicable.                                                                                                                                                                                                                                                                                                                                                                            | N/A                    |
|             | Reference to geotechnical studies and recommendations concerning servicing.                                                                                                                                                                                                                                                                                                                                                    | N/A                    |
|             | All preliminary and formal site plan submissions should have the following<br>information:<br>-Metric scale<br>-North arrow (including construction North)<br>-Key plan<br>-Name and contact information of applicant and property owner<br>-Property limits including bearings and dimensions<br>-Existing and proposed structures and parking areas<br>-Easements, road widening and rights-of-way<br>-Adjacent street names | N/A                    |
| 4.2         | Development Servicing Report: Water                                                                                                                                                                                                                                                                                                                                                                                            |                        |
|             | Confirm consistency with Master Servicing Study, if available                                                                                                                                                                                                                                                                                                                                                                  | N/A                    |
| $\boxtimes$ | Availability of public infrastructure to service proposed development                                                                                                                                                                                                                                                                                                                                                          | Section 3.1            |
| _           |                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |

 ☑
 Identification of system constraints
 Section 3.1

 ☑
 Identify boundary conditions
 Section 3.1, 3.2

 ☑
 Confirmation of adequate domestic supply and pressure
 Section 3.3

| $\triangleleft$ | Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Section 3.2                                             |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| _               | Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                     |
| ]               | Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                     |
| ]               | Address reliability requirements such as appropriate location of shut-off valves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                     |
|                 | Check on the necessity of a pressure zone boundary modification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                     |
| _               | Reference to water supply analysis to show that major infrastructure is capable<br>of delivering sufficient water for the proposed land use. This includes data that<br>shows that the expected demands under average day, peak hour and fire flow<br>conditions provide water within the required pressure range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Section 3.2, 3.3                                        |
| _               | Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                     |
| _               | Description of off-site required feedermains, booster pumping stations, and<br>other water infrastructure that will be ultimately required to service proposed<br>development, including financing, interim facilities, and timing of<br>implementation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A                                                     |
|                 | Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Section 3.2                                             |
|                 | Provision of a model schematic showing the boundary conditions locations,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                     |
|                 | streets, parcels, and building locations for reference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |
| 3               | streets, parcels, and building locations for reference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |
|                 | Development Servicing Report: Wastewater<br>Summary of proposed design criteria (Note: Wet-weather flow criteria should<br>not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow<br>data from relatively new infrastructure cannot be used to justify capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Section 4.2                                             |
|                 | Development Servicing Report: Wastewater<br>Summary of proposed design criteria (Note: Wet-weather flow criteria should<br>not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         |
|                 | Development Servicing Report: Wastewater<br>Summary of proposed design criteria (Note: Wet-weather flow criteria should<br>not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow<br>data from relatively new infrastructure cannot be used to justify capacity<br>requirements for proposed infrastructure).<br>Confirm consistency with Master Servicing Study and/or justifications for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Section 4.2                                             |
| -               | Development Servicing Report: Wastewater<br>Summary of proposed design criteria (Note: Wet-weather flow criteria should<br>not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow<br>data from relatively new infrastructure cannot be used to justify capacity<br>requirements for proposed infrastructure).<br>Confirm consistency with Master Servicing Study and/or justifications for<br>deviations.<br>Consideration of local conditions that may contribute to extraneous flows that<br>are higher than the recommended flows in the guidelines. This includes<br>groundwater and soil conditions, and age and condition of sewers.<br>Description of existing sanitary sewer available for discharge of wastewater<br>from proposed development.                                                                                                                                                                                                                                                                                                                                                                                                                             | Section 4.2<br>N/A                                      |
| -               | Development Servicing Report: Wastewater<br>Summary of proposed design criteria (Note: Wet-weather flow criteria should<br>not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow<br>data from relatively new infrastructure cannot be used to justify capacity<br>requirements for proposed infrastructure).<br>Confirm consistency with Master Servicing Study and/or justifications for<br>deviations.<br>Consideration of local conditions that may contribute to extraneous flows that<br>are higher than the recommended flows in the guidelines. This includes<br>groundwater and soil conditions, and age and condition of sewers.<br>Description of existing sanitary sewer available for discharge of wastewater<br>from proposed development.<br>Verify available capacity in downstream sanitary sewer and/or identification of<br>upgrades necessary to service the proposed development. (Reference can be<br>made to                                                                                                                                                                                                                                                  | Section 4.2<br>N/A<br>N/A                               |
|                 | Development Servicing Report: Wastewater         Summary of proposed design criteria (Note: Wet-weather flow criteria should<br>not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow<br>data from relatively new infrastructure cannot be used to justify capacity<br>requirements for proposed infrastructure).         Confirm consistency with Master Servicing Study and/or justifications for<br>deviations.         Consideration of local conditions that may contribute to extraneous flows that<br>are higher than the recommended flows in the guidelines. This includes<br>groundwater and soil conditions, and age and condition of sewers.         Description of existing sanitary sewer available for discharge of wastewater<br>from proposed development.         Verify available capacity in downstream sanitary sewer and/or identification of<br>upgrades necessary to service the proposed development. (Reference can be<br>made to<br>previously completed Master Servicing Study if applicable)         Calculations related to dry-weather and wet-weather flow rates from the<br>development in standard MOE sanitary sewer design table (Appendix 'C') | Section 4.2<br>N/A<br>N/A<br>Section 4.1                |
|                 | Development Servicing Report: Wastewater<br>Summary of proposed design criteria (Note: Wet-weather flow criteria should<br>not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow<br>data from relatively new infrastructure cannot be used to justify capacity<br>requirements for proposed infrastructure).<br>Confirm consistency with Master Servicing Study and/or justifications for<br>deviations.<br>Consideration of local conditions that may contribute to extraneous flows that<br>are higher than the recommended flows in the guidelines. This includes<br>groundwater and soil conditions, and age and condition of sewers.<br>Description of existing sanitary sewer available for discharge of wastewater<br>from proposed development.<br>Verify available capacity in downstream sanitary sewer and/or identification of<br>upgrades necessary to service the proposed development. (Reference can be<br>made to<br>previously completed Master Servicing Study if applicable)<br>Calculations related to dry-weather and wet-weather flow rates from the                                                                                                         | Section 4.2<br>N/A<br>N/A<br>Section 4.1<br>Section 4.2 |

|    | Pumping stations: impacts of proposed development on existing pumping                            | N/A              |
|----|--------------------------------------------------------------------------------------------------|------------------|
|    | stations or requirements for new pumping station to service development.                         |                  |
| ]  | Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity. | N/A              |
|    | Identification and implementation of the emergency overflow from sanitary                        |                  |
|    | pumping stations in relation to the hydraulic grade line to protect against                      | N/A              |
|    | basement flooding.                                                                               |                  |
|    | Special considerations such as contamination, corrosive environment etc.                         | N/A              |
| _  |                                                                                                  |                  |
| .4 | Development Servicing Report: Stormwater Checklist                                               |                  |
| ]  | Description of drainage outlets and downstream constraints including legality of                 | Section 5.1      |
| 1  | outlets (i.e. municipal drain, right-of-way, watercourse, or private property)                   | Section 5.1      |
| ]  | Analysis of available capacity in existing public infrastructure.                                | N/A              |
|    | A drawing showing the subject lands, its surroundings, the receiving                             | NI / A           |
| ]  | watercourse, existing drainage patterns, and proposed drainage pattern.                          | N/A              |
|    | Water quantity control objective (e.g. controlling post-development peak flows                   |                  |
|    | to pre-development level for storm events ranging from the 2 or 5 year event                     |                  |
| ]  | (dependent on the receiving sewer design) to 100 year return period); if other                   | Section 5.2      |
|    | objectives are being applied, a rationale must be included with reference to                     | Section 5.2      |
|    | hydrologic analyses of the potentially affected subwatersheds, taking into                       |                  |
|    | account long-term cumulative effects.                                                            |                  |
|    | Water Quality control objective (basic, normal or enhanced level of protection                   |                  |
|    | based on the sensitivities of the receiving watercourse) and storage                             | Section 5.2      |
|    | requirements.                                                                                    |                  |
| ]  | Description of the stormwater management concept with facility locations and                     | Section 5.3      |
|    | descriptions with references and supporting information                                          | 56000 5.5        |
|    | Set-back from private sewage disposal systems.                                                   | N/A              |
|    | Watercourse and hazard lands setbacks.                                                           | N/A              |
|    | Record of pre-consultation with the Ontario Ministry of Environment and the                      | Appendix A       |
|    | Conservation Authority that has jurisdiction on the affected watershed.                          | Арреник А        |
| ]  | Confirm consistency with sub-watershed and Master Servicing Study, if                            | N/A              |
|    | applicable study exists.                                                                         | N/A              |
|    | Storage requirements (complete with calculations) and conveyance capacity for                    |                  |
|    | minor events (1:5 year return period) and major events (1:100 year return                        | Section 5.3      |
|    | period).                                                                                         |                  |
|    | Identification of watercourses within the proposed development and how                           |                  |
| ]  | watercourses will be protected, or, if necessary, altered by the proposed                        | N/A              |
|    | development with applicable approvals.                                                           |                  |
|    | Calculate pre and post development peak flow rates including a description of                    |                  |
|    | existing site conditions and proposed impervious areas and drainage                              | Section 5.1, 5.3 |
|    | catchments in comparison to existing conditions.                                                 |                  |
|    | Any proposed diversion of drainage catchment areas from one outlet to                            | N/A              |
|    | another.                                                                                         |                  |
|    | Proposed minor and major systems including locations and sizes of stormwater                     | N/A              |
| •  | trunk sewers, and stormwater management facilities.                                              | N/A              |
|    | If quantity control is not proposed, demonstration that downstream system has                    |                  |
| ]  | adequate capacity for the post-development flows up to and including the 100-                    | N/A              |
|    | year return period storm event.                                                                  |                  |
| Ι. | Identification of potential impacts to receiving watercourses                                    | N/A              |
| ]  | Identification of municipal drains and related approval requirements.                            | N/A              |
|    |                                                                                                  |                  |

| $\mathbf{X}$ | Descriptions of how the conveyance and storage capacity will be achieved for the development.                                                | Section 5.3 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| -            | 100 year flood levels and major flow routing to protect proposed development                                                                 |             |
|              | from flooding for establishing minimum building elevations (MBE) and overall                                                                 | N/A         |
|              | grading.                                                                                                                                     |             |
|              | Inclusion of hydraulic analysis including hydraulic grade line elevations.                                                                   | N/A         |
|              | Description of approach to erosion and sediment control during construction for                                                              | N/A         |
|              | the protection of receiving watercourse or drainage corridors.                                                                               | NA          |
|              | Identification of floodplains – proponent to obtain relevant floodplain                                                                      |             |
|              | information from the appropriate Conservation Authority. The proponent may                                                                   |             |
|              | be required to delineate floodplain elevations to the satisfaction of the                                                                    | N/A         |
|              | Conservation Authority if such information is not available or if information                                                                |             |
|              | does not match current conditions.                                                                                                           |             |
|              | Identification of fill constraints related to floodplain and geotechnical                                                                    | NI / A      |
|              | investigation.                                                                                                                               | N/A         |
|              |                                                                                                                                              |             |
| 1.5          | Approval and Permit Requirements: Checklist                                                                                                  |             |
|              | Conservation Authority as the designated approval agency for modification of                                                                 |             |
|              | floodplain, potential impact on fish habitat, proposed works in or adjacent to a                                                             |             |
|              | watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement                                                                |             |
| $\times$     | Act. The Conservation Authority is not the approval authority for the Lakes and                                                              | Section 1.2 |
|              | Rivers Improvement ct. Where there are Conservation Authority regulations in                                                                 |             |
|              | place, approval under the Lakes and Rivers Improvement Act is not required,                                                                  |             |
|              | except in cases of dams as defined in the Act.                                                                                               |             |
|              | Application for Certificate of Approval (CofA) under the Ontario Water                                                                       | N/A         |
|              | Resources Act.                                                                                                                               | N/A         |
|              | Changes to Municipal Drains.                                                                                                                 | N/A         |
|              | Other permits (National Capital Commission, Parks Canada, Public Works and                                                                   | N/A         |
|              | Government Services Canada, Ministry of Transportation etc.)                                                                                 |             |
|              |                                                                                                                                              |             |
|              | Conclusion Checklist                                                                                                                         |             |
| $\leq$       | Clearly stated conclusions and recommendations                                                                                               | Section 7.0 |
|              | Comments received from review agencies including the City of Ottawa and                                                                      |             |
|              | information on how the comments were addressed. Final sign-off from the                                                                      |             |
|              |                                                                                                                                              |             |
| -            | responsible reviewing agency.                                                                                                                |             |
| <br>_        | responsible reviewing agency.<br>All draft and final reports shall be signed and stamped by a professional<br>Engineer registered in Ontario |             |

#### Amr Salem

From: Sent: To: Cc: Subject: Nader Nakhaei <nnakhaei@mvc.on.ca> September 11, 2019 2:42 PM Amr Salem Brandon Chow RE: 1151 Teron Road - MVCA Correspondence

Hi Amr,

Thanks a lot for your email. The quality control requirement for Kizell Drain has been considered as "Enhanced" (80% TSS removal) in the past planning applications and therefore since there is no end of pipe SWM facility for the proposed site, on-site quality control to an enhanced level will be required. Please let me know if you have any further question or concern.

Sincerely,

Nader Nakhaei, Ph.D., E.I.T. | Water Resources Specialist, Research Fellow | Mississippi Valley Conservation Authority (MVCA)

www.mvc.on.ca | t. 613 253 0006 ext. 259 | f. 613 253 0122 | NNakhaei@mvc.on.ca

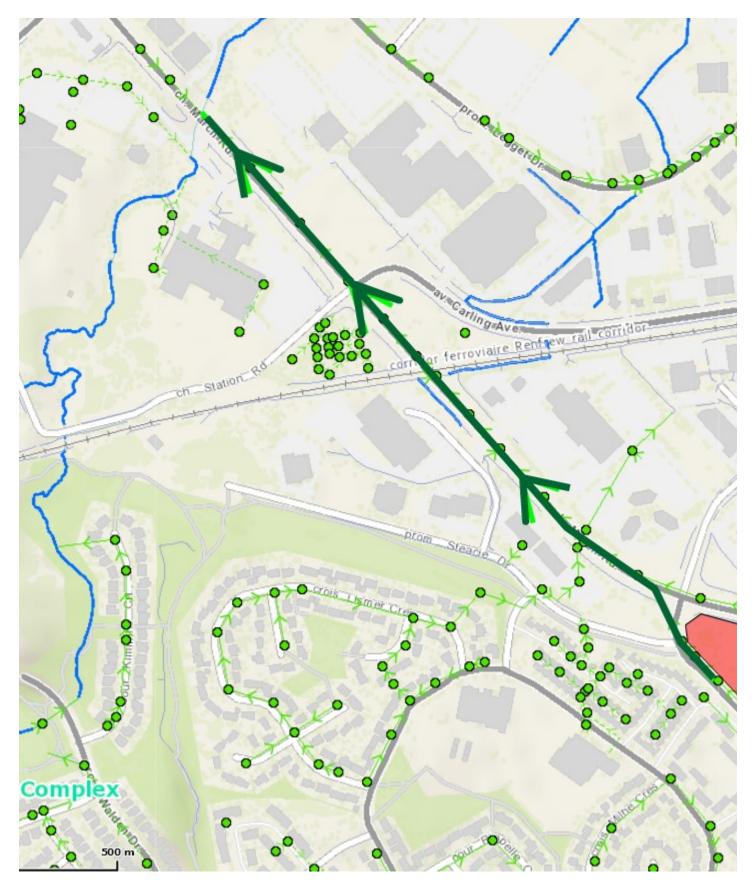
#### Mississippi Valley Onservation Authority

This e-mail originates from the Mississippi Valley Conservation Authority e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. If you are not the intended recipient, please notify me at the telephone number shown above or by return e-mail and delete this communication and any copy immediately. Thank you.

Please consider the environment before printing this e-mail and/or its attachments

From: Amr Salem [mailto:ASalem@dsel.ca]
Sent: 9-Sep-19 4:07 PM
To: Nader Nakhaei <nnakhaei@mvc.on.ca>
Cc: Brandon Chow <BChow@dsel.ca>
Subject: FW: 1151 Teron Road - MVCA Correspondence

Hello Nader,

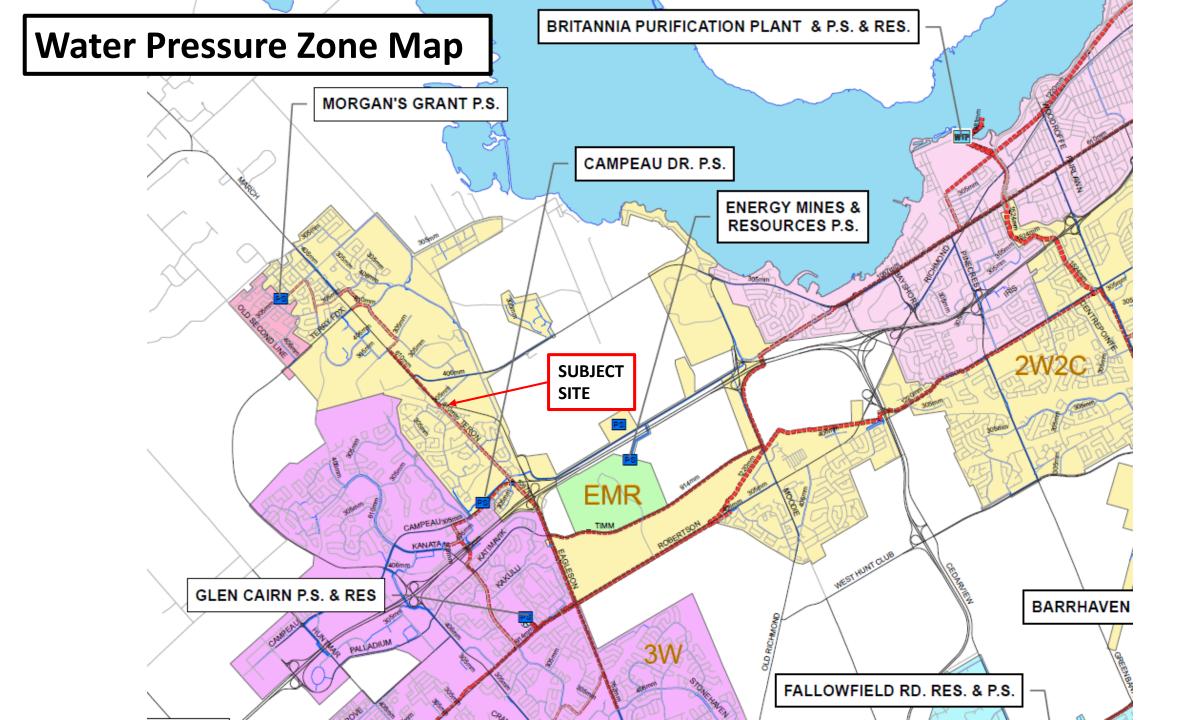

We wanted to consult with you regarding a mixed-use development we are working on located at the 1151 Teron Road.

The existing stormwater runoff from the site outlets to a city owned road side ditch running along the north boundary of the site. The stormwater collected from the site travels approximately 1.1 km through municipal sewer and roadside ditches to a direct outlet into the Kizell Drain.

The development proposes to construct a mixed use 9-storey building (commercial/office/residential) and surface parking lot fronting Teron Road. Storm water runoff from the contemplated development will primarily be coming from the paved surface parking lot and building rooftop. See attached conceptual site plan for reference.

At present, the existing site area is an undeveloped area consisting of grass and a few trees.

Can you please provide your input regarding quality controls that maybe required for the site.




Thank you,

Amr Salem Project Coordinator

### APPENDIX B

Water Supply



#### 11021028 and 11073656 Canada Inc. 1151 Teron Road Proposed Site Conditions

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

#### **Domestic Demand**

| Type of Housing | Per / Unit | Units | Рор |
|-----------------|------------|-------|-----|
| Single Family   | 3.4        | -     | 0   |
| Semi-detached   | 2.7        | -     | 0   |
| Townhouse       | 2.7        | -     | 0   |
| Apartment       |            |       | 0   |
| Bachelor        | 1.4        | 16    | 23  |
| 1 Bedroom       | 1.4        | 53    | 75  |
| 2 Bedroom       | 2.1        | 40    | 84  |
| 3 Bedroom       | 3.1        | -     | 0   |
| Average         | 1.8        | -     | 0   |

|                       | Рор | Avg. Daily |       | Max Day |       | Peak Hour |       |
|-----------------------|-----|------------|-------|---------|-------|-----------|-------|
|                       |     | m³/d       | L/min | m³/d    | L/min | m³/d      | L/min |
| Total Domestic Demand | 182 | 51.0       | 35.4  | 183.5   | 127.4 | 275.2     | 191.1 |

#### Institutional / Commercial / Industrial Demand

|                        |                           |       | Avg. [ | Daily | Max I | Day   | Peak I | Hour  |
|------------------------|---------------------------|-------|--------|-------|-------|-------|--------|-------|
| Property Type          | Unit Rate                 | Units | m³/d   | L/min | m³/d  | L/min | m³/d   | L/min |
| Commercial floor space | 2.5 L/m <sup>2</sup> /d   | 1,071 | 2.68   | 1.9   | 4.0   | 2.8   | 7.2    | 5.0   |
| Office                 | 75 L/9.3m <sup>2</sup> /d | -     | 0.00   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   |
| Restaurant*            | 125 L/seat/d              | -     | 0.00   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   |
| Industrial - Light     | 35,000 L/gross ha/d       | -     | 0.00   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   |
| Industrial - Heavy     | 55,000 L/gross ha/d       | -     | 0.00   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0   |
| Total I/CI Demand      |                           | 2.7   | 1.9    | 4.0   | 2.8   | 7.2   | 5.0    |       |
| Total Demand           |                           |       | 53.6   | 37.2  | 187.5 | 130.2 | 282.4  | 196.1 |

\* Estimated number of seats at 1 seat per 9.3m<sup>2</sup>

 $\label{eq:linear} Z: \label{eq:linear} Z: \label{eq:linear} Projects \end{tabular} 1128 \_ Omnipex \_ 1151 - Teron \end{tabular} B1\_Analysis \end{tabular} B1-5\_Water \end{tabular} wtr-2019-09-03\_aas.xlsx$ 



#### Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

#### Fire Flow Required

| 1. Ba         | se Requirement                                                                                                                         |                                                                  |                           |                   |                        |                                  |                                                                    |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------|-------------------|------------------------|----------------------------------|--------------------------------------------------------------------|
|               | $F = 220C\sqrt{A}$                                                                                                                     | L/min                                                            | Where                     | F is th           | e fire flow,           | <b>C</b> is the T                | ype of construction and ${\bf A}$ is the Total floor area          |
|               | Type of Construction:                                                                                                                  | Non-Combust                                                      | tible Con                 | structio          | n                      |                                  |                                                                    |
|               |                                                                                                                                        | <ul><li>C 0.8</li><li>A 10170.0</li></ul>                        | <i>Type o</i><br>m²       |                   |                        |                                  | r FUS Part II, Section 1<br>US Part II section 1                   |
|               | Fire Flow                                                                                                                              |                                                                  | 0 L/min<br><b>0 L/min</b> | <b>-</b><br>round | ed to the ne           | earest 1,00                      | 00 L/min                                                           |
| Adjustments   | 5                                                                                                                                      |                                                                  |                           |                   |                        |                                  |                                                                    |
| 2. Re         | duction for Occupancy Type                                                                                                             |                                                                  |                           |                   |                        |                                  |                                                                    |
|               | Limited Combustible                                                                                                                    | -15%                                                             | 6                         |                   |                        |                                  |                                                                    |
|               | Fire Flow                                                                                                                              | 15300.                                                           | 0 L/min                   | -                 |                        |                                  |                                                                    |
| 3. Re         | duction for Sprinkler Protection                                                                                                       |                                                                  |                           |                   |                        |                                  |                                                                    |
|               | Sprinklered - Supervised                                                                                                               | -50%                                                             | /<br>0                    |                   |                        |                                  |                                                                    |
|               | Reduction                                                                                                                              | -765                                                             | 0 L/min                   | -                 |                        |                                  |                                                                    |
| N<br>S<br>E   | crease for Separation Distance<br>Cons. of Exposed Wall<br>Non-Combustible<br>Non-Combustible<br>Non-Combustible<br>Non-Combustible    | S.D<br>>45m<br>30.1m-45m<br>10.1m-20m<br>30.1m-45m<br>% Increase | Lw<br>0<br>18<br>16<br>21 |                   | LH<br>1<br>2<br>3<br>2 | <b>EC</b><br>0<br>36<br>48<br>42 | 0%<br>5%<br>13%<br><u>5%</u><br><b>23%</b> value not to exceed 75% |
|               | Increase                                                                                                                               | 3519.0                                                           | 0 L/min                   | -                 |                        |                                  |                                                                    |
| Total Fire Fl | Lw = Length of the Exposed Wall<br>Ha = number of storeys of the adjace<br>LH = Length-height factor of expose<br>EC = Exposure Charge |                                                                  |                           |                   |                        |                                  |                                                                    |

#### **Total Fire Flow**

Fire Flow

11169.0 L/min fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section 4 11000.0 L/min rounded to the nearest 1,000 L/min

#### Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provided by RLA Architecture. -Calculations based on Fire Underwriters Survey - Part II

#### **Amr Salem**

| From:           | Antoine Cousineau <antoine@neufarchitectes.com></antoine@neufarchitectes.com> |
|-----------------|-------------------------------------------------------------------------------|
| Sent:           | September 4, 2019 10:24 AM                                                    |
| То:             | Amr Salem; Antoine Cardinal                                                   |
| Cc:             | Brandon Chow; Raphaël Esposito                                                |
| Subject:        | RE: 1151 Teron Road - Omnipex - FUS Coordination                              |
| Follow Up Flag: | Follow up                                                                     |
| Flag Status:    | Completed                                                                     |

See comments below in blue.

Α

ARTOINE COUSINEAU, OAQ, OAA, AAA, NCARB, IRAC, LEED, AP Architecte associé. Partner Architect T 514 847 1117 #250 F 514 847 2287 C 514 515 2048 630, boul. René-Lévesque O. 32<sup>e</sup> étage, Montréal QC H3B 1S6 47 Clarence Street, suite 406, Ottawa (ON) K1N 9K1

NEUF ARCHITECTES SENCRL

Politiques de transmission et de confidentialité de NEUF architect(e)s NEUF architect(e)s transmission and confidentiality policy

De : Amr Salem <ASalem@dsel.ca>
Envoyé : 3 septembre 2019 14:38
À : Antoine Cardinal <acardinal@neufarchitectes.com>; Antoine Cousineau <antoine@neufarchitectes.com>
Cc : Brandon Chow <BChow@dsel.ca>
Objet : 1151 Teron Road - Omnipex - FUS Coordination

Hey guys,

Can you please provide your input on the following to assist with our FUS calculations;

- We need to know if the building will be protected by a sprinkler system that is fully supervised. [Antoine Cousineau] Yes sprinklers supervised
- 2. Would you be able to confirm the ISO construction type for the buildings. I have included the ISO guide in which sections 1, 2 and 3 on pages 3 to 8 provides definitions to clarify as well as the section from the City's technical bulletin below. Note that ISO refers only to fire-resistive for fire ratings not less than 1-hour. [Antoine Cousineau] Not sure how to help you, because it is not our field of expertise. That being said the building will be NON-COMBUSTIBLE (most likely concrete structure with Masonry) Since it will be a High-rise all floor assembly will have a 2h fire rating
- 3. Are there any areas with a minimum fire rating of 2 hours? [Antoine Cousineau] All floors assemblies

### A. Determine the type of construction.

• Coefficient C in the FUS method is equivalent to coefficient F in the ISO method:

| FUS type of construction     | ISO class of construction         | Coefficient C |
|------------------------------|-----------------------------------|---------------|
| Fire-resistive construction  | Class 6 (fire resistive)          | 0.6           |
|                              | Class 5 (modified fire resistive) | 0.6           |
| Non-combustible construction | Class 4 (masonry non-combustible) | 0.8           |
|                              | Class 3 (non-combustible)         | 0.8           |
| Ordinary construction        | Class 2 (joisted masonry)         | 1.0           |
| Wood frame construction      | Class 1 (frame)                   | 1.5           |

Correspondence between FUS and ISO construction coefficients

However, the FUS definition of fire-resistive construction is more restrictive than those of ISO construction classes 5 and 6 (modified fire resistive and fire resistive). FUS requires structural members and floors in buildings of fire-resistive construction to have a fireresistance rating of 3 hours or longer.

- With the exception of fire-resistive construction that is defined differently by FUS and ISO, practitioners can refer to the definitions of the ISO construction classes (and the supporting definitions of the types of materials and assemblies that make up the ISO construction classes) found in the current ISO guide [4] (see Annex i) to help select coefficient C.
- To identify the most appropriate type of construction for buildings of mixed construction, the rules included in the current ISO guide [4] can be followed (see Annex i). For a building to be assigned a given classification, the rules require ½ (67%) or more of the total wall area and ½ (67%) or more of the total floor and roof area of the building to be constructed according to the given construction class or a higher class.
- New residential developments (less than 4 storeys) are predominantly of wood frame construction (C = 1.5) or ordinary construction (C = 1.0) if exterior walls are of brick or masonry. Residential buildings with exterior walls of brick or masonry veneer and those with less than % (67%) of their exterior walls made of brick or masonry are considered wood frame construction (C = 1.5).

### Feel free to contact me if you have any questions.

Thank you,

Amr Salem Project Coordinator

# DSEL

## david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

### phone: (613) 836-0856 ext. 512 email: <u>asalem@DSEL.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

### **Amr Salem**

| From:        | Candow, Julie <julie.candow@ottawa.ca></julie.candow@ottawa.ca> |
|--------------|-----------------------------------------------------------------|
| Sent:        | September 16, 2019 10:36 AM                                     |
| То:          | Amr Salem                                                       |
| Cc:          | Brandon Chow                                                    |
| Subject:     | RE: 1151 Teron Rd - Boundary Conditions Request                 |
| Attachments: | 1151 Teron Road_Boundary Conditions_12Sept2019.docx             |

Hi Amr,

As per the pre-consultation notes:

**Connections to the existing 610mm feedermain will not be accepted.** Proposed water service connections could be looped from the existing hydrant lateral at the south-east corner of the property to a connection off Steacie Drive. Looped connections must be separated by an existing or proposed valve to allow for maintenance of the 610mm feedermain.

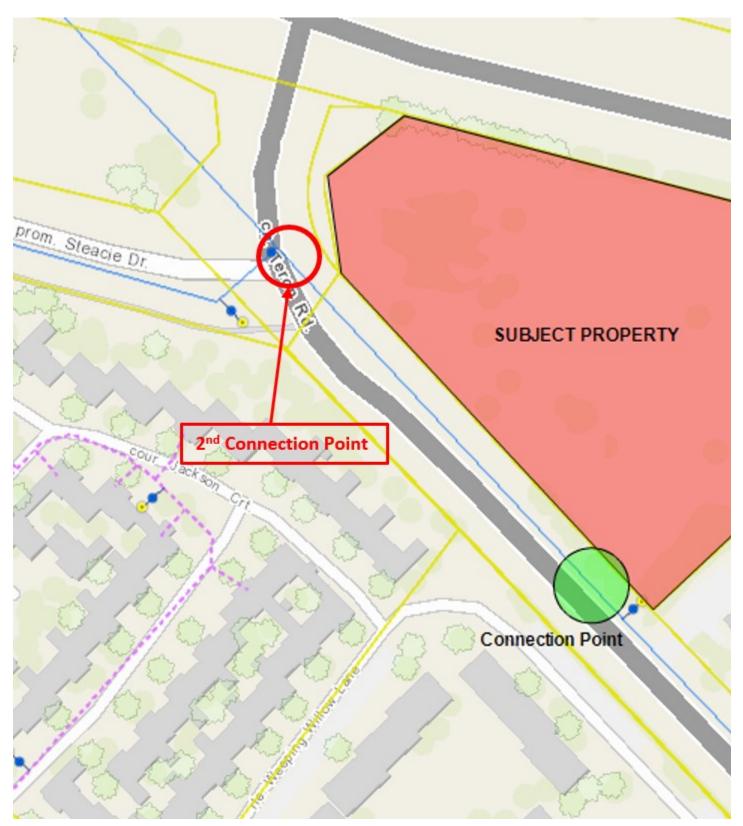
Our Infrastructure Planning department has provided preliminary boundary condition results assuming one connection to the 610mm feedermain, however, connections to local watermains will need to be provided. A minimum of 2 watermain connections will be required assuming the basic day demand remains above 50 m3/day (as per City of Ottawa Water Distribution Guidelines 2010).

In response to your stormwater management inquiry, if stormwater flows were to outlet to an existing ditch, the allocated release rate would be pre to post for all storm events. Please note that a MECP Environmental Compliance Approval (ECA) would be required if stormwater flows were to outlet to an existing ditch.

Regards,

Julie Candow, P.Eng. Project Manager - Infrastructure Approvals

City of Ottawa Development Review - West Branch Tel: 613-580-2424 x 13850


From: Amr Salem <ASalem@dsel.ca>
Sent: September 12, 2019 4:18 PM
To: Candow, Julie <julie.candow@ottawa.ca>
Cc: Brandon Chow <BChow@dsel.ca>
Subject: FW: 1151 Teron Rd - Boundary Conditions Request

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Hello Julie,

Further to my e-mail below, we'd also like boundary conditions at a <u>second</u> connection point to the 610mm feedermain @ Stacie Drive. Please see snapshot below



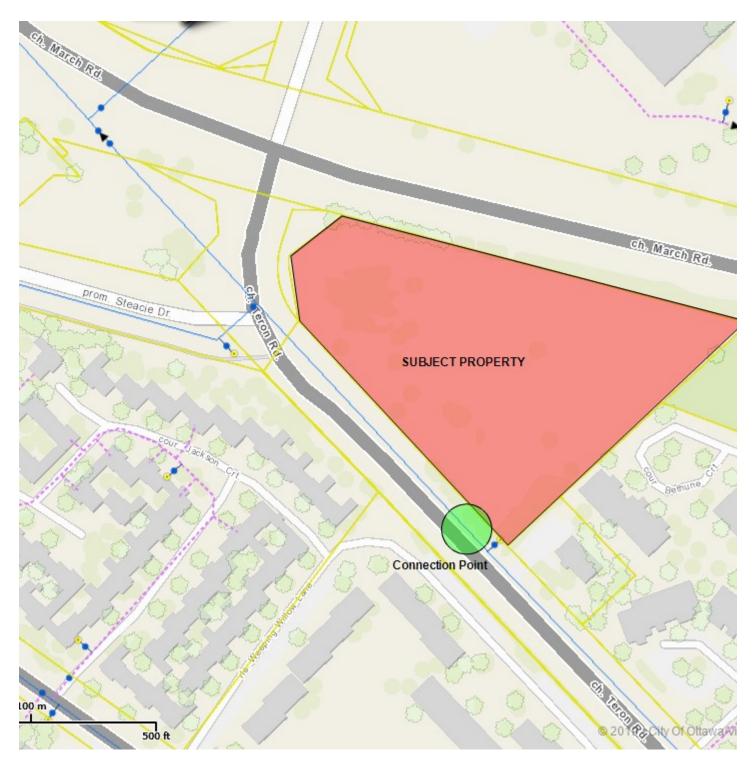
Thank you,

Amr Salem Project Coordinator

## **DSEL** david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

### phone: (613) 836-0856 ext. 512 email: <u>asalem@DSEL.ca</u>


This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

From: Amr Salem
Sent: September 5, 2019 3:24 PM
To: 'Julie.candow@ottawa.ca' <<u>Julie.candow@ottawa.ca</u>>
Subject: FW: 1151 Teron Rd - Boundary Conditions Request

Hey Julie,

We would like to kindly request updated boundary conditions for the proposed development at **1151 Teron Road** using the following proposed development demands:

- 1. Location of Service / Street Number: 1151 Teron Road
- Type of development: The proposed mixed-use development involves a 9-storey mixed-use building with 1,071 m2 of retail space proposed on the ground floor level. The development consists of a total of 109 residential units.
- 3. Proposed Connection points:
  - **Connection to existing 600mm diameter watermain along Teron Road.** *Please see the diagram below for reference.*



4. Please provide pressures for the following water demand scenarios required for the proposed development:

|               | L/min                     | L/s                   |
|---------------|---------------------------|-----------------------|
| Avg. Daily    | 37.2                      | 0.62                  |
| Max Day + FUS | 130.2 + 11,000 = 11,130.2 | 2.17+ 183.33 = 185.50 |
| Peak Hour     | 196.1                     | 3.27                  |

Thanks,

Amr Salem Project Coordinator

## **DSEL** david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

ı

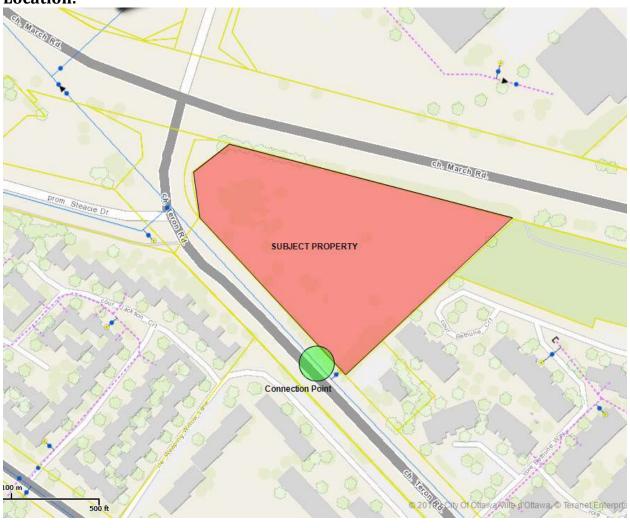
ı

phone: (613) 836-0856 ext. 512 email: <u>asalem@DSEL.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.


## **Boundary Conditions for 1151 Teron Road**

## **Information Provided:**

Date provided: September 2019

| Seconaria            | Demand |        |  |
|----------------------|--------|--------|--|
| Scenario             | L/min  | L/s    |  |
| Average Daily Demand | 37.2   | 0.62   |  |
| Maximum Daily Demand | 130.2  | 2.17   |  |
| Peak Hour            | 196.2  | 3.27   |  |
| Fire Flow Demand #1  | 11000  | 183.33 |  |

## Location:



## **Results:**

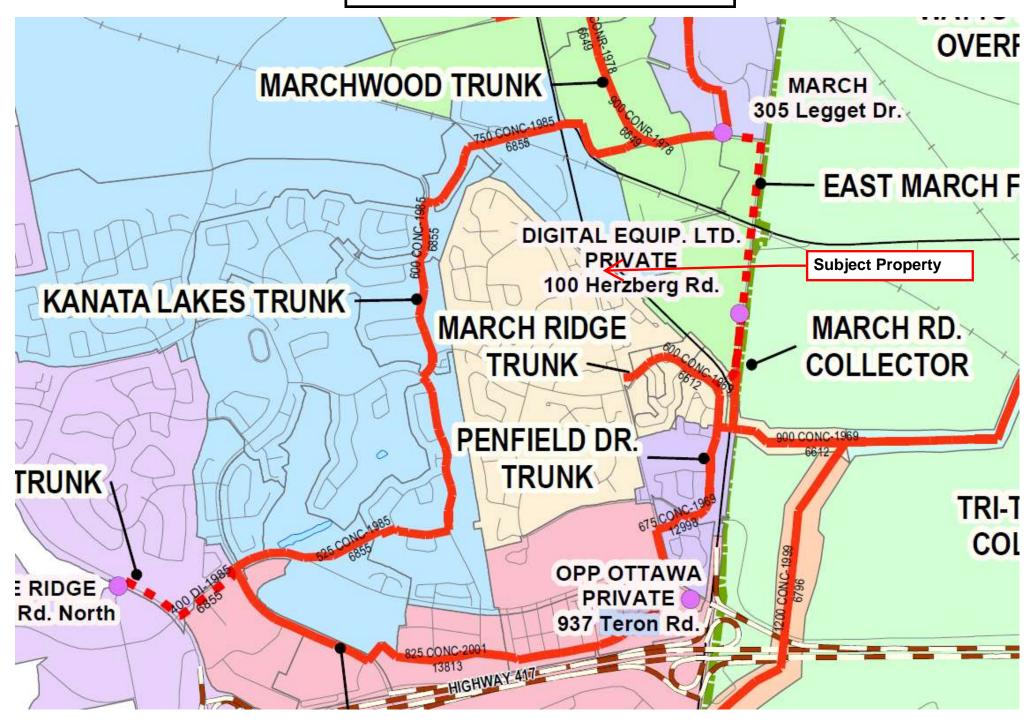
### **Connection 1 - Teron Road**

| Demand Scenario   | Head<br>(m) | Pressure <sup>1</sup> (psi) |
|-------------------|-------------|-----------------------------|
| Maximum HGL       | 131.7       | 59.4                        |
| Peak Hour         | 125.9       | 51.2                        |
| Max Day plus Fire | 126.1       | 51.5                        |

<sup>1</sup> Ground Elevation = 89.9m

### Notes:

- 1. A new service connection to the 610mm transmission main is not permitted.
- 2. The site requires two connections since the number of residential units exceeds 50.


## Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

## APPENDIX C

Wastewater Collection

**Sanitary Sewer Distribution Map** 



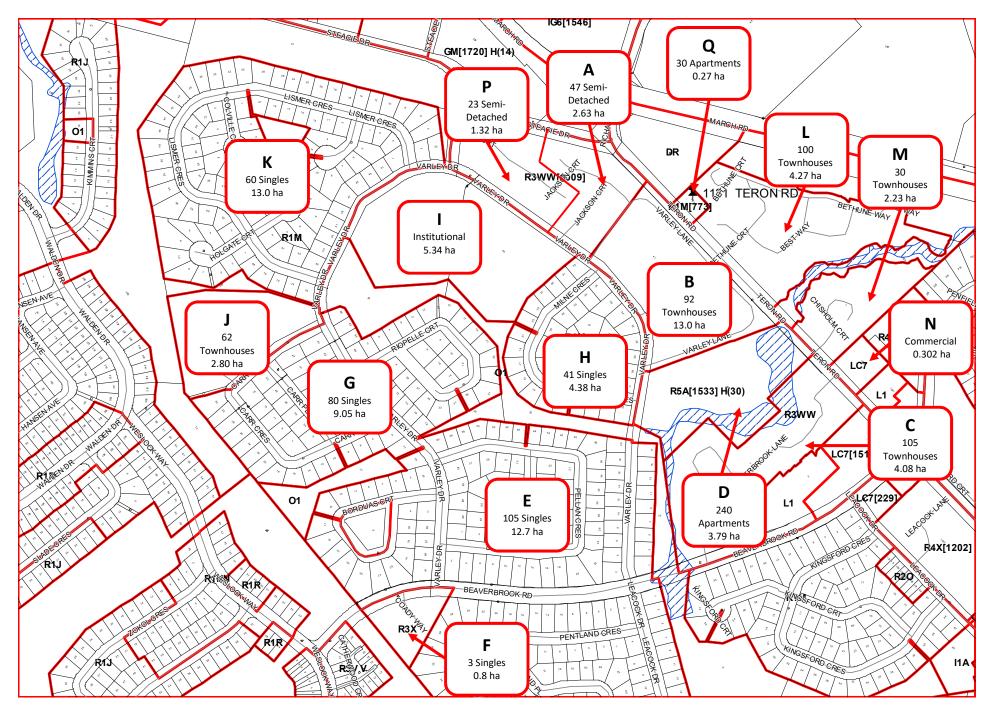
Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004



| Site Area                 |                   |               | 1.342 <b>ha</b> |
|---------------------------|-------------------|---------------|-----------------|
| Extraneous Flow Allowance | es                |               |                 |
|                           | Infiltration /    | Inflow (Dry)  | 0.07 L/s        |
|                           | Infiltration /    | Inflow (Wet)  | 0.38 L/s        |
|                           | Infiltration / Ir | nflow (Total) | 0.44 L/s        |
| Domestic Contributions    |                   |               |                 |
| Unit Type                 | Unit Rate         | Units         | Рор             |
| Single Family             | 3.4               |               | 0               |
| Semi-detached and duplex  | 2.7               |               | 0               |

| Semi-detached and duplex | 2.1 |    | 0  |
|--------------------------|-----|----|----|
| Townhouse                | 2.7 |    | 0  |
| Stacked Townhouse        | 2.3 |    | 0  |
| Apartment                |     |    |    |
| Bachelor                 | 1.4 | 16 | 23 |
| 1 Bedroom                | 1.4 | 53 | 75 |
| 2 Bedroom                | 2.1 | 40 | 84 |
| 3 Bedroom                | 3.1 |    | 0  |
| Average                  | 1.8 |    | 0  |
|                          |     |    |    |

| Total Pop             | 182  |     |
|-----------------------|------|-----|
| Average Domestic Flow | 0.59 | L/s |
| Peaking Factor        | 3.53 |     |
| Peak Domestic Flow    | 2.08 | L/s |


| Institutional / Commercial | / Industrial Contributions |
|----------------------------|----------------------------|
| Droporty Type              | Unit Data                  |

| Property Type           | Unit    | Rate             | No. of Units     | Avg Wastewater<br>(L/s) |
|-------------------------|---------|------------------|------------------|-------------------------|
| Commercial floor space* | 5       | L/m²/d           | 1,071            | 0.12                    |
| Hospitals               | 900     | L/bed/d          |                  | 0.00                    |
| School                  | 70      | L/student/d      |                  | 0.00                    |
| Industrial - Light**    | 35,000  | L/gross ha/d     |                  | 0.00                    |
| Industrial - Heavy**    | 55,000  | L/gross ha/d     |                  | 0.00                    |
|                         |         | Ave              | erage I/C/I Flow | 0.12                    |
|                         | Peak In | stitutional / Co | mmercial Flow    | 0.12                    |
|                         |         | Peak In          | dustrial Flow**  | 0.00                    |
|                         |         |                  | Peak I/C/I Flow  | 0.12                    |

\* assuming a 12 hour commercial operation

\*\* peak industrial flow per City of Ottawa Sewer Design Guidelines Appendix 4B

| Total Estimated Average Dry Weather Flow Rate | 0.78 L/s |
|-----------------------------------------------|----------|
| Total Estimated Peak Dry Weather Flow Rate    | 2.27 L/s |
| Total Estimated Peak Wet Weather Flow Rate    | 2.65 L/s |



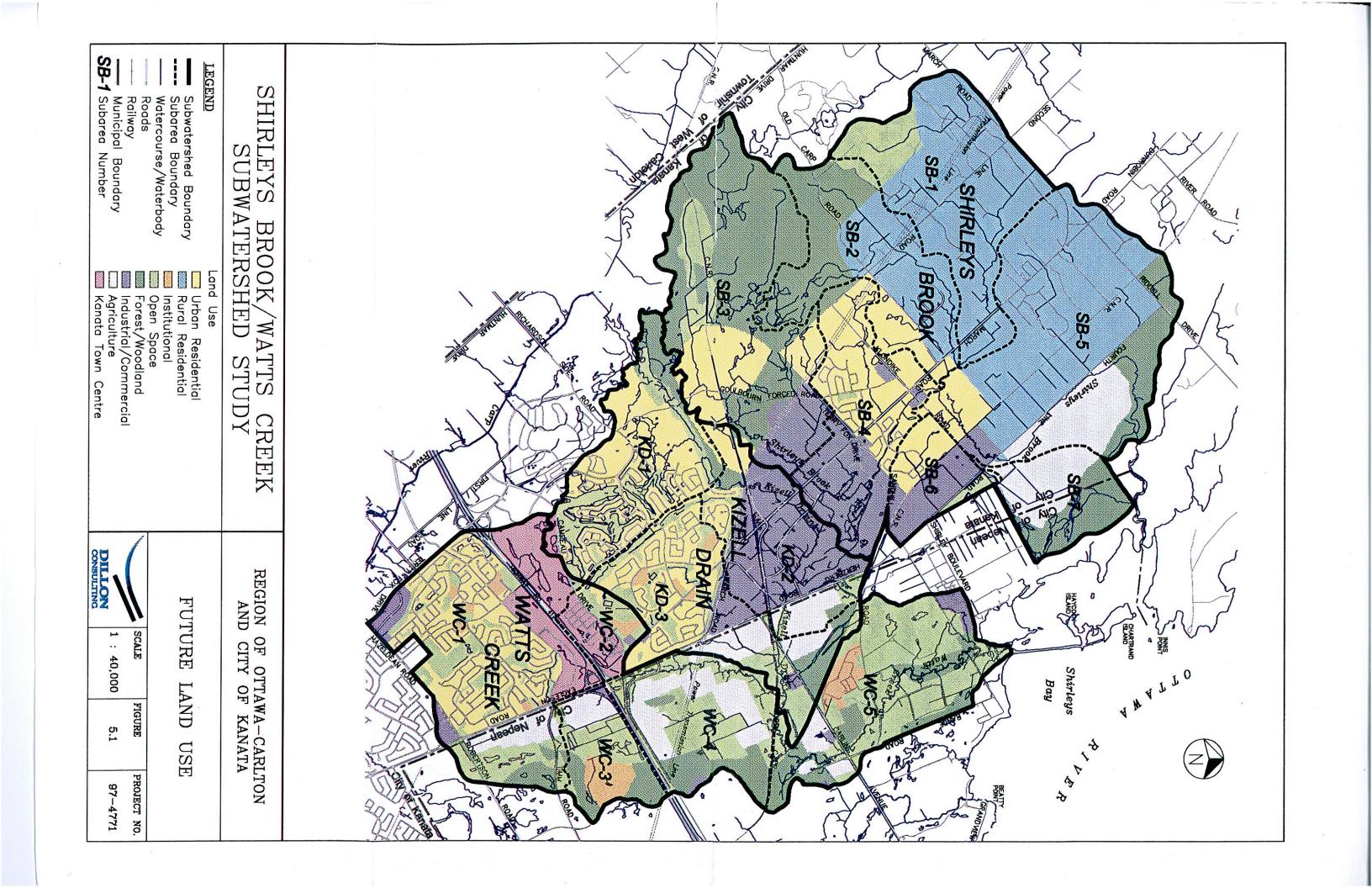
### SANITARY SEWER CALCULATION SHEET: Existing Conditions

| PROJECT:  |                | DESIGN PARAMETERS                                                   |                      |
|-----------|----------------|---------------------------------------------------------------------|----------------------|
| LOCATION: | 1151 Teron Rd. | Avg. Daily Flow Res. 280 L/p/d Peak Fact Res. Per Harmons: I        | ∕lin = 2.0, Max =4.0 |
| FILE REF: |                | Avg. Daily Flow Comr 50,000 L/ha/d Peak Fact. Comm.                 | 1.5                  |
| DATE:     | 01-Oct-19      | Avg. Daily Flow Instit. 50,000 L/ha/d Peak Fact. Instit.            | 1.5                  |
|           |                | Avg. Daily Flow Indust 35,000 L/ha/d Peak Fact. Indust. per MOE gra | ıph                  |

### Existing Condtiotions

|         | Location |      |       | Residentia            | al Area ar | nd Popula | tion   |        |       |                  | Comme | ercial | Institut | ional | Indu | strial |                    |        | Infiltration | n            |       |      |       |        | Pipe D                 | ata   |          |                  | l l        |
|---------|----------|------|-------|-----------------------|------------|-----------|--------|--------|-------|------------------|-------|--------|----------|-------|------|--------|--------------------|--------|--------------|--------------|-------|------|-------|--------|------------------------|-------|----------|------------------|------------|
| Area ID | Up       | Down | Area  | Number of Units       |            | Pop.      | Cumu   | lative | Peak. | Q <sub>res</sub> | Area  | Accu.  | Area     | Accu. | Area | Accu.  | Q <sub>C+I+I</sub> | Total  | Accu.        | Infiltration | Total | DIA  | Slope | Length | A <sub>hydraulic</sub> | R     | Velocity | Q <sub>cap</sub> | Q / Q full |
|         |          |      |       | by type               |            |           | Area   | Pop.   | Fact. |                  |       | Area   |          | Area  |      | Area   |                    | Area   | Area         | Flow         | Flow  |      |       |        |                        |       |          |                  |            |
|         |          |      | (ha)  | Singles Semi's Town's | Apt's      |           | (ha)   |        | (-)   | (L/s)            | (ha)  | (ha)   | (ha)     | (ha)  | (ha) | (ha)   | (L/s)              | (ha)   | (ha)         | (L/s)        | (L/s) | (mm) | (%)   | (m)    | (m²)                   | (m)   | (m/s)    | (L/s)            | (-)        |
| A       | 10       | 9    | 2.63  | 47                    |            | 126.0     | 2.633  | 126.0  | 4.00  | 1.63             |       | 0.00   |          | 0.00  |      | 0.00   | 0.0                | 2.633  | 2.633        | 0.737        | 2.37  | 250  | 0.24  | 92.8   | 0.049                  | 0.063 | 0.59     | 29.1             | 0.08       |
| В       | 9        | 8    | 3.78  | 92                    |            | 248.0     | 6.413  | 374.0  | 4.00  | 4.85             |       | 0.00   |          | 0.00  |      | 0.00   | 0.0                | 3.780  | 6.413        | 1.796        | 6.64  | 250  | 0.24  | 68.6   | 0.049                  | 0.063 | 0.59     | 29.1             | 0.23       |
| L       | 8        | 7    | 4.27  | 100                   |            | 270.0     | 10.683 | 644.0  | 3.92  | 8.17             |       | 0.00   |          | 0.00  |      | 0.00   | 0.0                | 4.270  | 10.683       | 2.991        | 11.16 | 250  | 0.24  | 69.3   | 0.049                  | 0.063 | 0.59     | 29.1             | 0.38       |
| Q*      | 7        | 6    | 0.27  |                       | 30         | 54.0      | 10.953 | 698.0  | 3.90  | 8.81             |       | 0.00   |          | 0.00  |      | 0.00   | 0.0                | 0.270  | 10.953       | 3.067        | 11.88 | 250  | 0.24  | 45.7   | 0.049                  | 0.063 | 0.59     | 29.1             | 0.41       |
| С       |          |      | 3.79  |                       | 240        | 432.0     | 14.743 | 1130.0 | 3.77  | 13.79            |       | 0.00   |          | 0.00  |      | 0.00   | 0.0                | 3.790  | 14.743       | 4.128        | 17.92 |      |       |        |                        |       |          |                  | 1          |
| Р       |          |      | 1.32  | 23                    |            | 63.0      | 16.060 | 1193.0 | 3.75  | 14.50            |       | 0.00   |          | 0.00  |      | 0.00   | 0.0                | 1.317  | 16.060       | 4.497        | 18.99 |      |       |        |                        |       |          |                  | 1          |
| E       |          |      | 10.50 | 105                   |            | 357.0     | 26.560 | 1550.0 | 3.67  | 18.43            |       | 0.00   |          | 0.00  |      | 0.00   | 0.0                | 10.500 | 26.560       | 7.437        | 25.87 |      |       |        |                        |       |          |                  | 1          |
| F       |          |      | 0.80  | 3                     |            | 10.0      | 27.360 | 1560.0 | 3.67  | 18.54            |       | 0.00   |          | 0.00  |      | 0.00   | 0.0                | 0.800  | 27.360       | 7.661        | 26.20 |      |       |        |                        |       |          |                  |            |
| G       |          |      | 9.05  | 80                    |            | 272.0     | 36.410 | 1832.0 | 3.62  | 21.46            |       | 0.00   |          | 0.00  |      | 0.00   | 0.0                | 9.050  | 36.410       | 10.195       | 31.66 |      |       |        |                        |       |          |                  |            |
| Н       |          |      | 4.38  | 41                    |            | 139.0     | 40.790 | 1971.0 | 3.59  | 22.94            |       | 0.00   |          | 0.00  |      | 0.00   | 0.0                | 4.380  | 40.790       | 11.421       | 34.36 |      |       |        |                        |       |          |                  |            |
| 1       |          |      | 0.00  |                       |            | 0.0       | 40.790 | 1971.0 | 3.59  | 22.94            |       | 0.00   | 5.34     | 5.34  |      | 0.00   | 4.6                | 5.340  | 46.130       | 12.916       | 40.49 |      |       |        |                        |       |          |                  |            |
| J       |          |      | 2.80  | 62                    |            | 167.0     | 43.590 | 2138.0 | 3.56  | 24.69            |       | 0.00   |          | 5.34  |      | 0.00   | 4.6                | 2.800  | 48.930       | 13.700       | 43.02 |      |       |        |                        |       |          |                  |            |
| к       | 6        | 5    | 12.99 | 60                    |            | 204.0     | 56.580 | 2342.0 | 3.53  | 26.80            |       | 0.00   |          | 5.34  |      | 0.00   | 4.6                | 12.990 | 61.920       | 17.338       | 48.78 | 525  | 0.10  | 19.2   | 0.216                  | 0.131 | 0.63     | 136.0            | 0.36       |
|         | 5        | 4    | 0.00  |                       |            | 0.0       | 56.580 | 2342.0 | 3.53  | 26.80            |       | 0.00   |          | 5.34  |      | 0.00   | 4.6                | 0.000  | 61.920       | 17.338       | 48.78 | 525  | 0.10  | 84.2   | 0.216                  | 0.131 | 0.63     | 136.0            | 0.36       |
| M       | 4        | 3    | 2.23  | 30                    |            | 81.0      | 58.810 | 2423.0 | 3.52  | 27.64            |       | 0.00   |          | 5.34  |      | 0.00   | 4.6                | 2.230  | 64.150       | 17.962       | 50.23 | 525  | 0.10  | 19.3   | 0.216                  | 0.131 | 0.63     | 136.0            | 0.37       |
| N       | 3        | 2    | 0.00  |                       |            | 0.0       | 58.810 | 2423.0 | 3.52  | 27.64            | 0.30  | 0.30   |          | 5.34  |      | 0.00   | 4.9                | 0.300  | 64.450       | 18.046       | 50.58 | 525  | 0.10  | 56.3   | 0.216                  | 0.131 | 0.63     | 136.0            | 0.37       |
| D       | 2        | 1    | 4.08  | 105                   |            | 284.0     | 62.890 | 2707.0 | 3.48  | 30.53            |       | 0.30   |          | 5.34  |      | 0.00   | 4.9                | 4.080  | 68.530       | 19.188       | 54.61 | 600  | 0.11  | 109.2  | 0.283                  | 0.150 | 0.72     | 203.5            | 0.27       |
|         |          |      |       |                       |            |           |        |        |       |                  |       |        |          |       |      |        |                    |        |              |              |       |      |       |        |                        |       |          |                  |            |

Note: Slope for segment between nodes 1-2 from City of Ottawa GIS data. All other slopes assumed minimum values from City of Ottawa Sewer Design Guidline


\* Anticipated demands per proposed development in neighboring parcel at 1131 Teron Road

Infiltration / Inflow Min. Pipe Velocity Max. Pipe Velocity Mannings N 0.33 L/s/ha 0.60 m/s full flowing 3.00 m/s full flowing 0.013



## APPENDIX D

## Stormwater Management



### Estimated Peak Stormwater Flow Rate City of Ottawa Sewer Design Guidelines, 2004



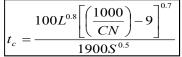
### **Existing Drainage Area Charateristics**

 Area
 1.34 ha

 C
 0.20 Rational Method runoff coefficient

 t<sub>c</sub>
 14.7 min \* Min. time of concentrtaion = 10min

### **Estimated Peak Flow**


|   | 2-year | 5-year | 100-year |       |
|---|--------|--------|----------|-------|
| i | 62.5   | 84.5   | 144.6    | mm/hr |
| Q | 46.6   | 63.0   | 134.7    | L/s   |

\* C value calculated as a composite value based on existing site soil conditions and topography. value derived using Table 5.7 Runoff Coefficients for Various Soil Conditions from the Ottawa Sewer Design Guidelines,

### **Drainage Basin Characteristics**

| Area ID  |       |                                                                                                   |
|----------|-------|---------------------------------------------------------------------------------------------------|
| A (ha)   | 1.342 |                                                                                                   |
| L (m)    | 93    |                                                                                                   |
| Up Elev  | 89.86 |                                                                                                   |
| Dn Elev  | 88    |                                                                                                   |
| S (%)    | 2.0   |                                                                                                   |
| CN (-)   | 61    | *CN value was selected assuming Hydrologic Soil Group B and good conditions (grass covering >75%) |
| Tc (min) | 14.7  |                                                                                                   |

Time of Concentration per SCS lag equation



L, length in ft

CN, SCS runoff curve number

S, average watershed slope in (%)

#### Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012



| Area           | 1.34 ha                                 |
|----------------|-----------------------------------------|
| С              | 0.20 Rational Method runoff coefficient |
| t <sub>c</sub> | 14.7 min                                |

|   | 5-year   | 100-year         |
|---|----------|------------------|
| i | 84.5 mn  | n/hr 144.6 mm/hr |
| Q | 63.0 L/s | s 134.7 L/s      |

### Estimated Post Development Peak Flow from Unattenuated Areas

Total Area C 0.13 ha \*10% of site area assumed unattenuated as a conservative estimate 0.40 Rational Method runoff coefficient

|                         | 5-year       |                              |                               |                              |                                          | 100-year     |                                |                               |                              |                                          |
|-------------------------|--------------|------------------------------|-------------------------------|------------------------------|------------------------------------------|--------------|--------------------------------|-------------------------------|------------------------------|------------------------------------------|
| t <sub>c</sub><br>(min) | i<br>(mm/hr) | Q <sub>actual</sub><br>(L/s) | Q <sub>release</sub><br>(L/s) | Q <sub>stored</sub><br>(L/s) | V <sub>stored</sub><br>(m <sup>3</sup> ) | i<br>(mm/hr) | Q <sub>actual</sub> *<br>(L/s) | Q <sub>release</sub><br>(L/s) | Q <sub>stored</sub><br>(L/s) | V <sub>stored</sub><br>(m <sup>3</sup> ) |
| 10.0                    | 104.2        | 15.5                         | 15.5                          | 0.0                          | 0.0                                      | 178.6        | 33.3                           | 33.3                          | 0.0                          | 0.0                                      |

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

#### Estimated Post Development Peak Flow from Attenuated Areas

Total Area

a 1.21 haC 0.65 Rational Method runoff coefficient

| Γ              | 5-year  |                            |                             |                            |                     | 100-year |                            |                             |                            |                     |
|----------------|---------|----------------------------|-----------------------------|----------------------------|---------------------|----------|----------------------------|-----------------------------|----------------------------|---------------------|
| t <sub>c</sub> | i       | <b>Q</b> <sub>actual</sub> | <b>Q</b> <sub>release</sub> | <b>Q</b> <sub>stored</sub> | V <sub>stored</sub> | i        | <b>Q</b> <sub>actual</sub> | <b>Q</b> <sub>release</sub> | <b>Q</b> <sub>stored</sub> | V <sub>stored</sub> |
| (min)          | (mm/hr) | (L/s)                      | (L/s)                       | (L/s)                      | (m <sup>3</sup> )   | (mm/hr)  | (L/s)                      | (L/s)                       | (L/s)                      | (m <sup>3</sup> )   |
| 10             | 104.2   | 227.2                      | 47.4                        | 179.9                      | 107.9               | 178.6    | 486.7                      | 101.5                       | 385.3                      | 231.2               |
| 15             | 83.6    | 182.2                      | 47.4                        | 134.9                      | 121.4               | 142.9    | 389.5                      | 101.5                       | 288.1                      | 259.2               |
| 20             | 70.3    | 153.2                      | 47.4                        | 105.8                      | 127.0               | 120.0    | 327.0                      | 101.5                       | 225.5                      | 270.6               |
| 25             | 60.9    | 132.8                      | 47.4                        | 85.4                       | 128.1               | 103.8    | 283.1                      | 101.5                       | 181.6                      | 272.4               |
| 30             | 53.9    | 117.6                      | 47.4                        | 70.2                       | 126.4               | 91.9     | 250.4                      | 101.5                       | 149.0                      | 268.1               |
| 35             | 48.5    | 105.8                      | 47.4                        | 58.4                       | 122.7               | 82.6     | 225.1                      | 101.5                       | 123.6                      | 259.6               |
| 40             | 44.2    | 96.4                       | 47.4                        | 49.0                       | 117.6               | 75.1     | 204.8                      | 101.5                       | 103.4                      | 248.1               |
| 45             | 40.6    | 88.6                       | 47.4                        | 41.2                       | 111.3               | 69.1     | 188.2                      | 101.5                       | 86.8                       | 234.3               |
| 50             | 37.7    | 82.1                       | 47.4                        | 34.7                       | 104.2               | 64.0     | 174.3                      | 101.5                       | 72.9                       | 218.6               |
| 55             | 35.1    | 76.6                       | 47.4                        | 29.2                       | 96.5                | 59.6     | 162.5                      | 101.5                       | 61.1                       | 201.5               |
| 60             | 32.9    | 71.8                       | 47.4                        | 24.5                       | 88.1                | 55.9     | 152.4                      | 101.5                       | 50.9                       | 183.2               |
| 65             | 31.0    | 67.7                       | 47.4                        | 20.3                       | 79.3                | 52.6     | 143.5                      | 101.5                       | 42.0                       | 164.0               |
| 70             | 29.4    | 64.1                       | 47.4                        | 16.7                       | 70.1                | 49.8     | 135.7                      | 101.5                       | 34.3                       | 143.9               |
| 75             | 27.9    | 60.8                       | 47.4                        | 13.5                       | 60.5                | 47.3     | 128.8                      | 101.5                       | 27.3                       | 123.1               |
| 80             | 26.6    | 57.9                       | 47.4                        | 10.6                       | 50.7                | 45.0     | 122.6                      | 101.5                       | 21.2                       | 101.6               |
| 85             | 25.4    | 55.3                       | 47.4                        | 8.0                        | 40.6                | 43.0     | 117.1                      | 101.5                       | 15.6                       | 79.7                |
| 90             | 24.3    | 53.0                       | 47.4                        | 5.6                        | 30.2                | 41.1     | 112.1                      | 101.5                       | 10.6                       | 57.2                |
| 95             | 23.3    | 50.8                       | 47.4                        | 3.5                        | 19.7                | 39.4     | 107.5                      | 101.5                       | 6.0                        | 34.4                |
| 100            | 22.4    | 48.9                       | 47.4                        | 1.5                        | 9.0                 | 37.9     | 103.3                      | 101.5                       | 1.9                        | 11.1                |
| 105            | 21.6    | 47.1                       | 47.4                        | 0.0                        | 0.0                 | 36.5     | 99.5                       | 101.5                       | 0.0                        | 0.0                 |
| 110            | 20.8    | 45.4                       | 47.4                        | 0.0                        | 0.0                 | 35.2     | 96.0                       | 101.5                       | 0.0                        | 0.0                 |
| 115            | 20.1    | 43.9                       | 47.4                        | 0.0                        | 0.0                 | 34.0     | 92.7                       | 101.5                       | 0.0                        | 0.0                 |
| 120            | 19.5    | 42.5                       | 47.4                        | 0.0                        | 0.0                 | 32.9     | 89.7                       | 101.5                       | 0.0                        | 0.0                 |
| 125            | 18.9    | 41.1                       | 47.4                        | 0.0                        | 0.0                 | 31.9     | 86.9                       | 101.5                       | 0.0                        | 0.0                 |
| 130            | 18.3    | 39.9                       | 47.4                        | 0.0                        | 0.0                 | 30.9     | 84.2                       | 101.5                       | 0.0                        | 0.0                 |
| 135            | 17.8    | 38.7                       | 47.4                        | 0.0                        | 0.0                 | 30.0     | 81.8                       | 101.5                       | 0.0                        | 0.0                 |
| 140            | 17.3    | 37.7                       | 47.4                        | 0.0                        | 0.0                 | 29.2     | 79.5                       | 101.5                       | 0.0                        | 0.0                 |
| 145            | 16.8    | 36.6                       | 47.4                        | 0.0                        | 0.0                 | 28.4     | 77.3                       | 101.5                       | 0.0                        | 0.0                 |

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

| 5-year Qattenuated           | 47.37 L/s            | 100-year Qattenuated           | 101.47 L/s           |
|------------------------------|----------------------|--------------------------------|----------------------|
| 5-year Max. Storage Required | 128.1 m <sup>3</sup> | 100-year Max. Storage Required | 272.4 m <sup>3</sup> |



### Summary of Release Rates and Storage Volumes

| Control Area       | 5-Year<br>Release<br>Rate | 5-Year<br>Storage | 100-Year<br>Release<br>Rate | 100-Year<br>Storage |
|--------------------|---------------------------|-------------------|-----------------------------|---------------------|
|                    | (L/s)                     | (m <sup>3</sup> ) | (L/s)                       | (m <sup>3</sup> )   |
| Unattenuated Areas | 15.54                     | 0.0               | 33.28                       | 0.0                 |
| Attenutated Areas  | 47.37                     | 128.1             | 101.47                      | 272.4               |
| Total              | 62.9                      | 128.15            | 134.75                      | 272.4               |

Stormwater - Proposed Development City of Ottawa Sewer Design Guidelines, 2012

### **Target Flow Rate**

 Area
 1.34 ha

 C
 0.20 Rational Method runoff coefficient

 t\_c
 14.7 min

5-year i 84.5 mm/hr

**Q** 63.0 L/s

### Estimated Post Development Peak Flow from Unattenuated Areas

**Total Area** 

С

0.13 ha \*10% of site area assumed unattenuated as a conservative estimate 0.40 Rational Method runoff coefficient

|                         | 5-year       |                              |                               |                              |                                          | 100-year     |                                |                               |                              |                                          |
|-------------------------|--------------|------------------------------|-------------------------------|------------------------------|------------------------------------------|--------------|--------------------------------|-------------------------------|------------------------------|------------------------------------------|
| t <sub>c</sub><br>(min) | i<br>(mm/hr) | Q <sub>actual</sub><br>(L/s) | Q <sub>release</sub><br>(L/s) | Q <sub>stored</sub><br>(L/s) | V <sub>stored</sub><br>(m <sup>3</sup> ) | i<br>(mm/hr) | Q <sub>actual</sub> *<br>(L/s) | Q <sub>release</sub><br>(L/s) | Q <sub>stored</sub><br>(L/s) | V <sub>stored</sub><br>(m <sup>3</sup> ) |
| (min)                   | (mm/nr)      | (L/S)                        | (L/S)                         | (L/S)                        | (m)                                      | (mm/nr)      | (L/S)                          | (L/S)                         | (L/S)                        | (m)                                      |
| 10.                     | 0 104.2      | 15.5                         | 15.5                          | 0.0                          | 0.0                                      | 178.6        | 33.3                           | 33.3                          | 0.0                          | 0.0                                      |

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

#### Estimated Post Development Peak Flow from Attenuated Areas

1.21 ha

Total Area

C 0.65 Rational Method runoff coefficient

| ſ              | 5-year  |                            |                             |                            |                     | 100-year |                            |                             |                            |                     |
|----------------|---------|----------------------------|-----------------------------|----------------------------|---------------------|----------|----------------------------|-----------------------------|----------------------------|---------------------|
| t <sub>c</sub> | i       | <b>Q</b> <sub>actual</sub> | <b>Q</b> <sub>release</sub> | <b>Q</b> <sub>stored</sub> | V <sub>stored</sub> | i        | <b>Q</b> <sub>actual</sub> | <b>Q</b> <sub>release</sub> | <b>Q</b> <sub>stored</sub> | V <sub>stored</sub> |
| (min)          | (mm/hr) | (L/s)                      | (L/s)                       | (L/s)                      | (m <sup>3</sup> )   | (mm/hr)  | (L/s)                      | (L/s)                       | (L/s)                      | (m <sup>3</sup> )   |
| 10             | 104.2   | 227.2                      | 13.9                        | 213.3                      | 128.0               | 178.6    | 486.7                      | 29.7                        | 457.0                      | 274.2               |
| 15             | 83.6    | 182.2                      | 13.9                        | 168.3                      | 151.5               | 142.9    | 389.5                      | 29.7                        | 359.8                      | 323.8               |
| 20             | 70.3    | 153.2                      | 13.9                        | 139.3                      | 167.1               | 120.0    | 327.0                      | 29.7                        | 297.2                      | 356.7               |
| 25             | 60.9    | 132.8                      | 14.0                        | 118.8                      | 178.3               | 103.8    | 283.1                      | 29.7                        | 253.3                      | 380.0               |
| 30             | 53.9    | 117.6                      | 14.0                        | 103.6                      | 186.5               | 91.9     | 250.4                      | 29.7                        | 220.7                      | 397.2               |
| 35             | 48.5    | 105.8                      | 14.0                        | 91.8                       | 192.8               | 82.6     | 225.1                      | 29.7                        | 195.4                      | 410.2               |
| 40             | 44.2    | 96.4                       | 14.0                        | 82.4                       | 197.7               | 75.1     | 204.8                      | 29.7                        | 175.1                      | 420.2               |
| 45             | 40.6    | 88.6                       | 14.0                        | 74.6                       | 201.4               | 69.1     | 188.2                      | 29.7                        | 158.5                      | 427.9               |
| 50             | 37.7    | 82.1                       | 14.0                        | 68.1                       | 204.3               | 64.0     | 174.3                      | 29.7                        | 144.6                      | 433.8               |
| 55             | 35.1    | 76.6                       | 14.0                        | 62.6                       | 206.5               | 59.6     | 162.5                      | 29.7                        | 132.8                      | 438.2               |
| 60             | 32.9    | 71.8                       | 14.0                        | 57.8                       | 208.1               | 55.9     | 152.4                      | 29.7                        | 122.6                      | 441.4               |
| 65             | 31.0    | 67.7                       | 14.0                        | 53.7                       | 209.3               | 52.6     | 143.5                      | 29.7                        | 113.8                      | 443.7               |
| 70             | 29.4    | 64.1                       | 14.0                        | 50.0                       | 210.1               | 49.8     | 135.7                      | 29.7                        | 106.0                      | 445.1               |
| 75             | 27.9    | 60.8                       | 14.0                        | 46.8                       | 210.5               | 47.3     | 128.8                      | 29.7                        | 99.1                       | 445.8               |
| 80             | 26.6    | 57.9                       | 14.0                        | 43.9                       | 210.6               | 45.0     | 122.6                      | 29.7                        | 92.9                       | 445.9               |
| 85             | 25.4    | 55.3                       | 14.1                        | 41.3                       | 210.5               | 43.0     | 117.1                      | 29.7                        | 87.3                       | 445.4               |
| 90             | 24.3    | 53.0                       | 14.1                        | 38.9                       | 210.1               | 41.1     | 112.1                      | 29.7                        | 82.3                       | 444.5               |
| 95             | 23.3    | 50.8                       | 14.1                        | 36.8                       | 209.5               | 39.4     | 107.5                      | 29.7                        | 77.7                       | 443.2               |
| 100            | 22.4    | 48.9                       | 14.1                        | 34.8                       | 208.8               | 37.9     | 103.3                      | 29.7                        | 73.6                       | 441.4               |
| 105            | 21.6    | 47.1                       | 14.1                        | 33.0                       | 207.9               | 36.5     | 99.5                       | 29.7                        | 69.7                       | 439.4               |
| 110            | 20.8    | 45.4                       | 14.1                        | 31.3                       | 206.8               | 35.2     | 96.0                       | 29.7                        | 66.2                       | 437.0               |
| 115            | 20.1    | 43.9                       | 14.1                        | 29.8                       | 205.6               | 34.0     | 92.7                       | 29.7                        | 62.9                       | 434.3               |
| 120            | 19.5    | 42.5                       | 14.1                        | 28.4                       | 204.3               | 32.9     | 89.7                       | 29.7                        | 59.9                       | 431.4               |
| 125            | 18.9    | 41.1                       | 14.1                        | 27.0                       | 202.8               | 31.9     | 86.9                       | 29.7                        | 57.1                       | 428.3               |
| 130            | 18.3    | 39.9                       | 14.1                        | 25.8                       | 201.3               | 30.9     | 84.2                       | 29.7                        | 54.5                       | 424.9               |
| 135            | 17.8    | 38.7                       | 14.1                        | 24.6                       | 199.6               | 30.0     | 81.8                       | 29.7                        | 52.0                       | 421.4               |
| 140            | 17.3    | 37.7                       | 14.1                        | 23.6                       | 197.9               | 29.2     | 79.5                       | 29.7                        | 49.7                       | 417.6               |
| 145            | 16.8    | 36.6                       | 14.1                        | 22.5                       | 196.1               | 28.4     | 77.3                       | 29.7                        | 47.6                       | 413.7               |

Note:

C value for the 100-year storm is increased by 25%, to a maximum of 1.0 per Ottawa Sewer Design Guidelines (5.4.5.2.1)

| 5-year Qattenuated           | 14.05 L/s            | 100-year Q <sub>attenuated</sub> | 29.75 L/s            |
|------------------------------|----------------------|----------------------------------|----------------------|
| 5-year Max. Storage Required | 210.6 m <sup>3</sup> | 100-year Max. Storage Required   | 445.9 m <sup>3</sup> |



### Summary of Release Rates and Storage Volumes

| Control Area       | 5-Year<br>Release<br>Rate | 5-Year<br>Storage | 100-Year<br>Release<br>Rate | 100-Year<br>Storage |
|--------------------|---------------------------|-------------------|-----------------------------|---------------------|
|                    | (L/s)                     | (m <sup>3</sup> ) | (L/s)                       | (m <sup>3</sup> )   |
| Unattenuated Areas | 15.54                     | 0.0               | 33.28                       | 0.0                 |
| Attenutated Areas  | 14.05                     | 210.6             | 29.75                       | 445.9               |
| Total              | 29.6                      | 210.60            | 63.03                       | 445.9               |

### **Amr Salem**

From: Sent: To: Cc: Subject: Attachments: Amr Salem September 13, 2019 12:28 PM 'Julie.candow@ottawa.ca' Brandon Chow 1151 Teron Road SWM criteria 1131 Teron Preconsultation Notes.pdf

Hey Julie,

I wanted to confirm stormwater management criteria for our subject site at 1151 Teron Road. It is my understanding that the criteria previously stated in the pre-consultation notes (*attached for your reference*) are assuming that the proposed development outlets to the local sewer within Teron Road right-of-way.

Should we choose to keep discharging to the existing outlet at the existing ditch located at the north of the subject site, can you please confirm that maintaining pre to post conditions would be acceptable as per the previous AES for the subject site?

Thank you,

Amr Salem Project Coordinator

## **DSEL** david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext. 512 email: <u>asalem@DSEL.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

### **Amr Salem**

| From:        | Candow, Julie <julie.candow@ottawa.ca></julie.candow@ottawa.ca> |
|--------------|-----------------------------------------------------------------|
| Sent:        | September 16, 2019 10:36 AM                                     |
| То:          | Amr Salem                                                       |
| Cc:          | Brandon Chow                                                    |
| Subject:     | RE: 1151 Teron Rd - Boundary Conditions Request                 |
| Attachments: | 1151 Teron Road_Boundary Conditions_12Sept2019.docx             |

Hi Amr,

As per the pre-consultation notes:

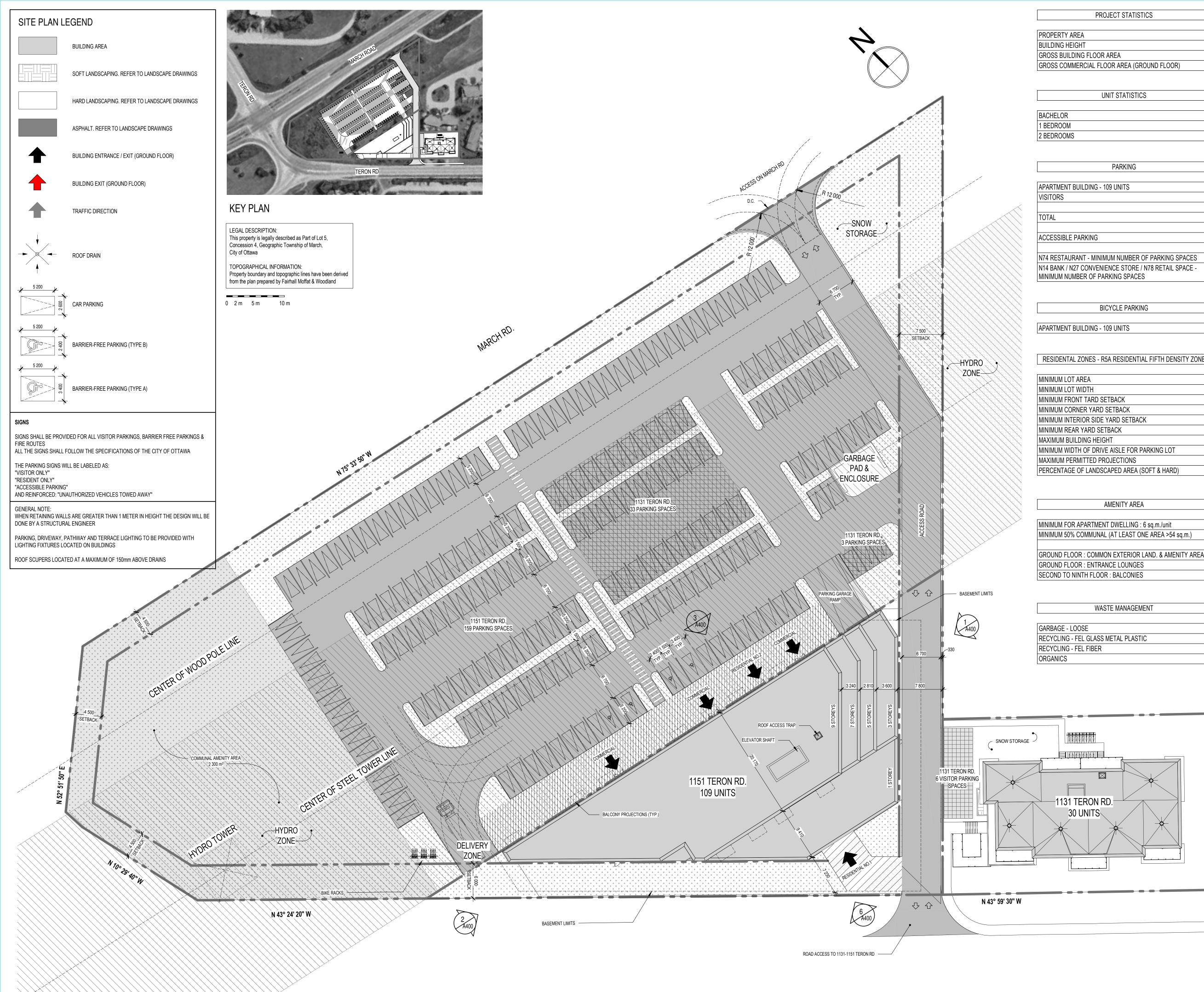
**Connections to the existing 610mm feedermain will not be accepted.** Proposed water service connections could be looped from the existing hydrant lateral at the south-east corner of the property to a connection off Steacie Drive. Looped connections must be separated by an existing or proposed valve to allow for maintenance of the 610mm feedermain.

Our Infrastructure Planning department has provided preliminary boundary condition results assuming one connection to the 610mm feedermain, however, connections to local watermains will need to be provided. A minimum of 2 watermain connections will be required assuming the basic day demand remains above 50 m3/day (as per City of Ottawa Water Distribution Guidelines 2010).

In response to your stormwater management inquiry, if stormwater flows were to outlet to an existing ditch, the allocated release rate would be pre to post for all storm events. Please note that a MECP Environmental Compliance Approval (ECA) would be required if stormwater flows were to outlet to an existing ditch.

Regards,

Julie Candow, P.Eng. Project Manager - Infrastructure Approvals


City of Ottawa Development Review - West Branch Tel: 613-580-2424 x 13850

From: Amr Salem <ASalem@dsel.ca>
Sent: September 12, 2019 4:18 PM
To: Candow, Julie <julie.candow@ottawa.ca>
Cc: Brandon Chow <BChow@dsel.ca>
Subject: FW: 1151 Teron Rd - Boundary Conditions Request

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

**DRAWINGS / FIGURES** 



| PROJECT STATISTICS                                |                             |                |
|---------------------------------------------------|-----------------------------|----------------|
| PERTY AREA                                        | 13 / 2/                     | sa m           |
| DING HEIGHT                                       | 13 424 sq.m.<br>30 m        |                |
| DISS BUILDING FLOOR AREA                          |                             |                |
| DSS COMMERCIAL FLOOR AREA (GROUND FLOOR)          | 10 170 sq.m.<br>1 071 sq.m. |                |
|                                                   | 10/13                       | y              |
|                                                   |                             |                |
| UNIT STATISTICS                                   | PROVIDED                    |                |
|                                                   |                             |                |
| HELOR                                             | 16                          | i              |
| DROOM                                             | 53                          |                |
| DROOMS                                            | 40                          |                |
|                                                   |                             |                |
|                                                   |                             |                |
| PARKING                                           | REQUIRED                    | PROVIDED       |
|                                                   |                             |                |
| RTMENT BUILDING - 109 UNITS                       | 131 (1.2 RATIO)             | 46 + 137 = 183 |
| TORS                                              | 22 (0.2 RATIO)              | 22             |
|                                                   |                             |                |
| AL                                                | 153                         | 205            |
|                                                   |                             |                |
| ESSIBLE PARKING                                   | 6 (3 TYPE A + 3 TYPE B)     | 6              |
|                                                   |                             |                |
| RESTAURANT - MINIMUM NUMBER OF PARKING SPACES     | (10 / 100 sq.m.) 107        | TBD            |
| BANK / N27 CONVENIENCE STORE / N78 RETAIL SPACE - | (3.4 / 100 sq.m.) 36        | TBD            |
| MUM NUMBER OF PARKING SPACES                      |                             |                |
|                                                   |                             |                |
| BICYCLE PARKING                                   | REQUIRED                    | PROVIDED       |
|                                                   |                             |                |
| RTMENT BUILDING - 109 UNITS                       | 55 (0.5 RATIO)              | 64             |
|                                                   |                             |                |

| ESIDENTAL ZONES - R5A RESIDENTIAL FIFTH DENSITY ZONE | REQUIRED                    | PROVIDED                   |
|------------------------------------------------------|-----------------------------|----------------------------|
|                                                      |                             |                            |
| IMUM LOT AREA                                        | 540 sq.m.                   | 13 424 sq.m.               |
| IMUM LOT WIDTH                                       | 18 m                        | 28.8 m                     |
| IMUM FRONT TARD SETBACK                              | 6 m (SCH. 327)              | 6 m                        |
| IMUM CORNER YARD SETBACK                             | N/A                         | N/A                        |
| IMUM INTERIOR SIDE YARD SETBACK                      | 7.5 m (SCH. 327)            | 7.5 m                      |
| IMUM REAR YARD SETBACK                               | 0 m (SCH. 327)              | 0 m                        |
| KIMUM BUILDING HEIGHT                                | 30 m / 9 storeys (SCH. 327) | 30 m / 9 storeys           |
| IMUM WIDTH OF DRIVE AISLE FOR PARKING LOT            | 6.7 m                       | 6.7 m                      |
| KIMUM PERMITTED PROJECTIONS                          | 2 m                         | 2 m                        |
| RCENTAGE OF LANDSCAPED AREA (SOFT & HARD)            | 30%                         | 42% (5 588 / 13 424 sq.m.) |
|                                                      |                             |                            |

| AMENITY AREA                                      | REQUIRED  | PROVIDED    |
|---------------------------------------------------|-----------|-------------|
|                                                   |           |             |
| IMUM FOR APARTMENT DWELLING : 6 sq.m./unit        | 654 sq.m. | 3 152 sq.m. |
| IMUM 50% COMMUNAL (AT LEAST ONE AREA >54 sq.m.)   | 327 sq.m. | 2 498 sq.m. |
|                                                   |           |             |
| OUND FLOOR : COMMON EXTERIOR LAND. & AMENITY AREA | -         | 2 300 sq.m. |
| DUND FLOOR : ENTRANCE LOUNGES                     | -         | 198 sq.m.   |
| COND TO NINTH FLOOR : BALCONIES                   | -         | 654 sq.m.   |
|                                                   |           |             |

| WASTE MANAGEMENT                 | REQUIRED                     | PROVIDED                      |
|----------------------------------|------------------------------|-------------------------------|
|                                  |                              |                               |
| RBAGE - LOOSE                    | 12.0 c.yd. (0.110 c.yd./UN.) | 3 x 4-yard containers         |
| YCLING - FEL GLASS METAL PLASTIC | 2.0 c.yd. (0.018 c.yd./UN.)  | 1 x 2-yard container          |
| YCLING - FEL FIBER               | 4.1 c.yd. (0.038 c.yd./UN.)  | 1 x 2-y. + 1 x 4-y. container |
| GANICS                           | 523L (240L / 50 UNITS)       | 3 x 240L                      |

GENERAL NOTES Notes générales

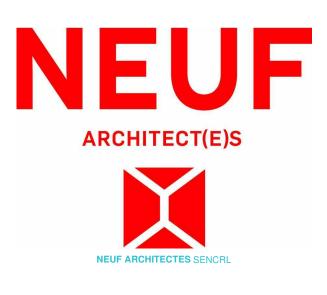
- 1 These architectural documents are the exclusive property of NEUF architect(e)s and cannot be used, copied or reproduced without written pre-authorisation. / Ces documents d'architecture sont la propriété exclusive de NEUF architect(e)s et ne pourront être utilisés, reproduits ou copiés sans autorisation écrite préalable.
- 2. All dimensions which appear on the documents must be verify by the contractor before to start the work. / Les dimensions apparaissant aux documents devront être vérifiées par l'entrepreneur avant le début des travaux.
- 3. The architect must be notified of all errors, omissions and discrepancies between these documents and those of the others professionnals. / Veuillez aviser l'architecte de toute dimension erreur et/ou divergences entre ces documents et ceux des autres professionnels.
- 4. The dimensions on these documents must be read and not measured. / Les dimensions sur ces documents doivent être lues et non mesurées.

STRUCTURE Structure

FIRM ADDRESS

PHONE NUMBER

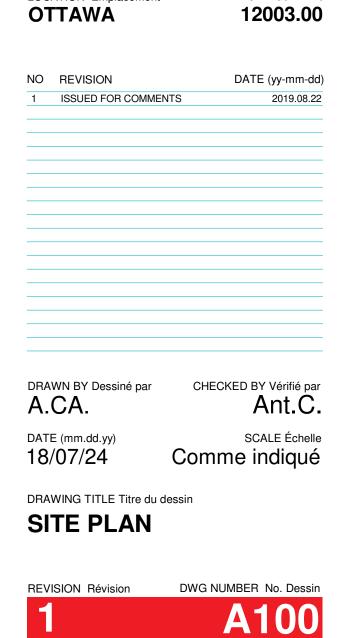
MECHANICAL / ELECTRICAL Électrique / Mécanique FIRM ADDRESS PHONE NUMBER

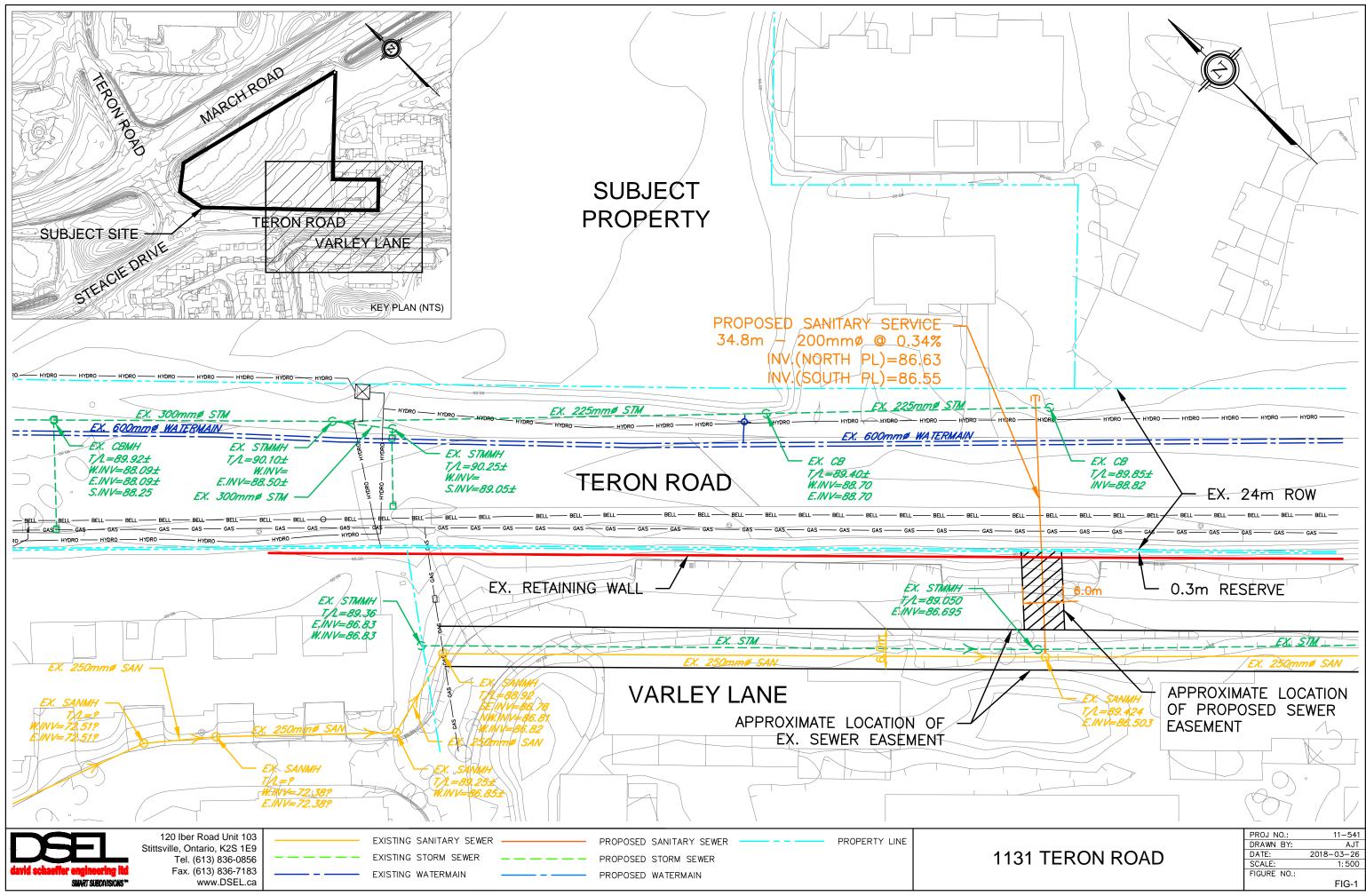

LANDSCAPE ARCHITECT Architecture de paysage FIRM ADDRESS PHONE NUMBER

CIVIL Civil FIRM

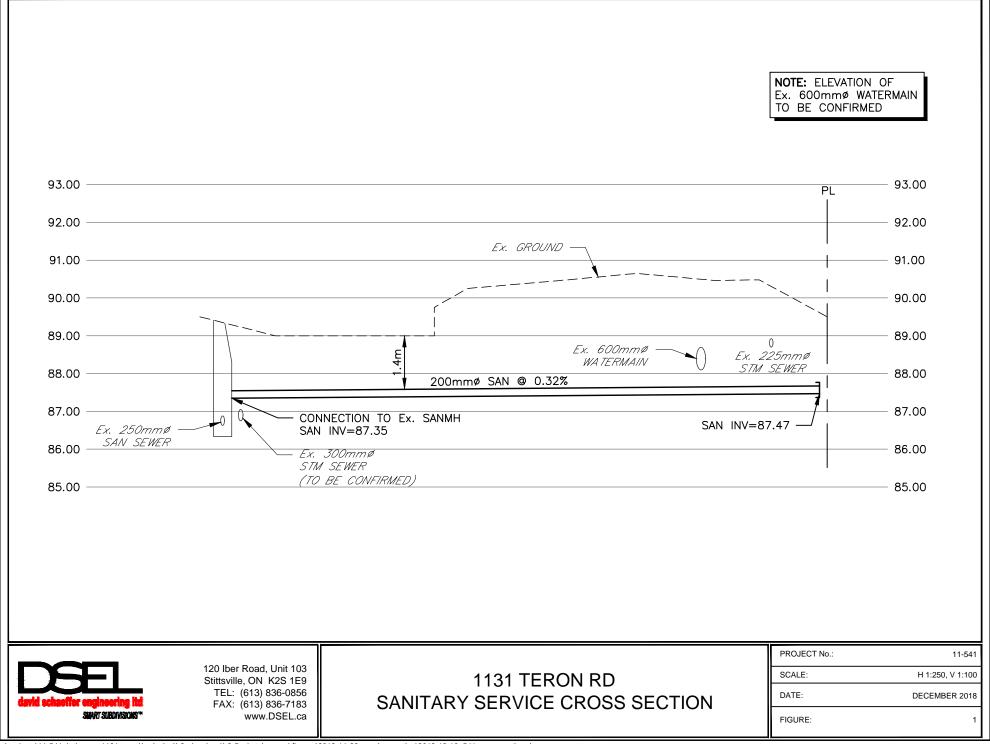
ADDRESS PHONE NUMBER

ARCHITECTS Architectes NEUF architect(e)s 630, René-Lévesque W. Boul. 32e étage, Montréal QC H3B 1S6 T 514 847 1117 NEUFarchitectes.com


SCEAU / Seal




CLIENT Client


## PROJECT Ouvrage 1151 TERON ROAD

# NO PROJET No. LOCATION Emplacement





z: \projects\11-541\_holzman\_1131-teron\b\_design\b2\_drawings\b2-5\_sketches and figures\2018-03-19\_sanitary\_servicing\_rev\_ajt\cad\2018-03-26\_541\_spa\_ajt.dwg



z:\projects\11-541\_holzman\_1131-teron\b\_design\b2\_drawings\b2-5\_sketches and figures\2018-11-28\_service-section\2018-12-10\_541\_serv\_section.dwg