SERVICING BRIEF \& STORMWATER MANAGEMENT REPORT

1164-1166 Highcroft Drive Ottawa, Ontario

Report No. 18035

August 9, 2019
REVISED September 27, 2019

D.B. GRAY ENGINEERING INC.

Stormwater Management - Grading \& Drainage - Storm \& Sanitary Sewers - Watermains
700 Long Point Circle
613-425-8044
Ottawa, Ontario K1T 4E9
dbgray@rogers.com

SERVICING BRIEF \& STORMWATER MANAGEMENT REPORT

1164-1166 Highcroft Drive Ottawa, Ontario

This report describes the services and addresses the stormwater management requirements of a 3542 sq.m. property at 1164-1166 Highcroft Drive, Manotick in Ottawa. The property currently has two single-family dwellings that will be demolished. Eleven single-family dwellings are proposed. Five dwellings will front on Highcroft Drive and six will front onto a proposed private road. There is a significant grade difference across the property such that there is an approximate 7.7 m elevation difference between the floor level of the lowest and highest proposed dwelling. The slope of Highcroft Drive is also significant, varying from approximately 8 to 14% in front of the subject property.

This report forms part of the stormwater management design for the proposed development. Refer to drawing C-1 to C-8 also prepared by D. B. Gray Engineering Inc.

WATER SUPPLY FOR FIREFIGHTING:

Currently there is no watermain in Highcroft Drive but a municipal watermain is proposed that will connect to an existing 400 mm watermain in Manotick Main Street at the intersection with Highcroft Drive. A private watermain is proposed to be located in the private road. A municipal fire hydrant will be located at the end of the municipal watermain and a private hydrant will be located near the end of the 200 mm private watermain.

A fire flow of $166.7 \mathrm{~L} / \mathrm{s}(10,000 \mathrm{~L} / \mathrm{min})$ is required, as calculated as per the Fire Underwriter Survey "Water Supply For Fire Protection".

The City provided two sets of boundary conditions both based on a $168.2 \mathrm{l} / \mathrm{s}$ flowrate (Max day ($1.5 \mathrm{~L} / \mathrm{s}$) + Fire Flow ($166.7 \mathrm{~L} / \mathrm{s}$). The pre-configuration boundary conditions reflect the current conditions and the post configuration boundary conditions reflect the future conditions due to a new pump station and changes to the boundaries of a pressure zone. Since the "pre" and "post" fire flow HGLs are approximately the same (being 123.9 m and 123.6 m respectively), only the lower "post" boundary condition was used for the fire flow hydraulic analysis.

A model was created using EPANET software to analyze the hydraulics of a proposed 200 mm municipal and 200 mm private watermains. Using the 123.6 m HGL, the pressure at the private hydrant was determined to be $118 \mathrm{kPa}(17.0 \mathrm{psi})$ and 47 kPa $(6.8 \mathrm{psi})$ at the municipal hydrant. Since the pressures are below $138 \mathrm{kPa}(20 \mathrm{psi})$ there
is not an adequate water supply for firefighting with the proposed configuration. However, if a second municipal hydrant (third fire hydrant), connecting directly to the municipal watermain, was installed east of the entrance to the proposed development the pressure would be $191 \mathrm{kPa}(27.7 \mathrm{psi})$ and there would be an adequate water supply for firefighting

Alternatively, a second model was created using EPANET with the proposed municipal watermain increased to 250 mm . With this configuration the pressure at the private and municipal hydrants were determined to be $203 \mathrm{kPa}(29.4 \mathrm{psi})$ and $193 \mathrm{kPa}(27.9 \mathrm{psi})$, respectively. Since the pressures are above $138 \mathrm{kPa}(20 \mathrm{psi})$ there would be an adequate water supply for firefighting with this configuration.

Therefore, there will be an adequate water supply for firefighting by adding an extra (third) hydrant or increasing the size of the proposed municipal watermain to 250 mm .

WATER SERVICE:

As previously mentioned, there is currently no watermain in Highcroft Drive but a municipal watermain is proposed that will connect to an existing 400 mm watermain in Manotick Main Street.

Based on the City of Ottawa Water Distribution Design Guidelines for residential properties (11 single-family dwellings / 3.4 person per dwelling - $350 \mathrm{~L} /$ person/day) and Ministry of the Environment Design Guidelines for peaking factors the daily average flow is $0.2 \mathrm{~L} / \mathrm{s}$ with a maximum daily and maximum hourly demand of 1.4 and $2.1 \mathrm{~L} / \mathrm{s}$ respectively.

To determine water pressure under these demands, boundary conditions, based on the City of Ottawa computer simulation of the water distribution system, at the subject location, are required. In summary, the boundary conditions for the subject area based on the following:

Average Daily Demand: 0.2 L/s.
Maximum Daily Demand: 1.4 L/s.
Maximum Hourly Demand: $2.1 \mathrm{~L} / \mathrm{s}$
As previously mentioned, the City provided two sets of boundary conditions, preconfiguration boundary conditions reflecting the current conditions and the post configuration boundary conditions reflecting the future conditions.

Based on the "pre" boundary conditions, the minimum HGL (hydraulic grade line) is 141.6 m and the maximum is 158.8 m . With these HGLs, the water pressure at the water meter of the lowest dwelling is calculated to vary from 516 kPa to 685 kPa (75 to $99 \mathrm{psi})$ and 441 kPa to 609 kPa (64 to 88 psi) at the highest dwelling.

Based on the "post" boundary conditions, the minimum HGL is 144.6 m and the maximum is 147.7 m . With these HGLs, the water pressure at the water meter of the lowest dwelling is calculated to vary from 546 kPa to 576 kPa (79 to 84 psi) and 470 kPa to 501 kPa (68 to 73 psi) at the highest dwelling.

These are acceptable pressures for the proposed development, however, since it is calculated that the water pressure can be above 80 psi at times an on-site pressure check is recommended to determine if a pressure reducing valve (PRV) is required.

SANITARY SERVICE:

Currently there is no sanitary sewers in Highcroft Drive, but a 200 mm municipal sanitary sewer is proposed that will connect to an existing 600 mm watermain in Manotick Main Street at the intersection with Highcroft Drive. A private 200 mm sanitary sewer is proposed to be located in the private road.

Based on the City of Ottawa Sewer Design Guidelines for residential properties (11 single-family dwellings / 3.4 person per dwelling - 280 L/person/day - 3.2 peaking factor); and based on a $0.33 \mathrm{l} / \mathrm{s} / \mathrm{ha}$ infiltration flow; the post development flow is calculated to be $0.72 \mathrm{~L} / \mathrm{s}$.

This flow will be adequately handled by the proposed sanitary sewers (200 mm at 0.32% to $0.65 \%-19.36$ to $27.59 \mathrm{~L} / \mathrm{s}$ capacity) since, at the design flows, these sewers will be only up to 4% of capacity.

The $0.72 \mathrm{~L} / \mathrm{s}$ increase in sanitary flows contributing to the existing 600 mm municipal sanitary sewer (at $\pm 0.15 \%$) is expected to have a negligible impact given its capacity of 248.1 L/s.

The 600 mm sanitary sewer drains to the Manotick Main Pump Station. As per a conversation John Bougadis (City of Ottawa, Senior Project Manager, Infrastructure Planning) the peak flow at the pump station is currently 5 to $10 \mathrm{~L} / \mathrm{s}$ during dry conditions and 45 to $50 \mathrm{~L} / \mathrm{s}$ during wet; the capacity of the pump station is $60 \mathrm{~L} / \mathrm{s}$; and renovation in 2020 will increase the capacity to 120 L/s. John Bougadis advised that the proposed development (with a $0.72 \mathrm{~L} / \mathrm{s}$ increase in sanitary flows) will have a negligible impact on the pump station.

STORMWATER MANAGEMENT:

Water Quality:
The Rideau Valley Conservation Authority (RVCA) has advised that 80% total suspended solids (TSS) removal is required.

To achieve 80\% TSS removal manhole MH-9 will be an oil/grit separator (OGS) manhole (AquaShield Aqua-Swirl Concentrator model AS-2 BYP CW STD). The AquaSwirl model AS-2 has a sediment capacity of 0.28 cubic metres and an oil/debris capacity of 140 litres.

Based on software supplied by the manufacturer, the OGS will remove approximately 91% of TSS from the runoff. Output from the manufacturer's software is attached to the report.

An erosion and sediment control plan has been developed to be implemented during construction, (see drawing C-4 and notes 2.1 to 2.7 on drawing C-5). In summary: to filter out construction sediment a silt fence barrier will be installed adjacent to the south and east property line; sediment capture filter sock inserts will be installed in all new catch basins as they are installed; and geotextile fabric mud mats will be install at all points of egress to public roads.

Water Quantity:

Currently there is no storm sewer in Highcroft Drive but a 300 and 375 mm municipal storm sewers are proposed connecting to an existing 375 mm storm sewer in Manotick Main Street at the intersection with Highcroft Drive. A private 250 mm storm sewers are proposed to be located in the private road.

The stormwater management criteria for quantity control are to control the post development peak flows to the pre-development peak flow using a pre-development runoff coefficient and a calculated time of concentration (but not less than 10 minutes). It is calculated that the pre-development conditions reflect a 5 -year runoff coefficient of 0.33 and a 12.0 minute time of concentration. The 100 -year runoff coefficient is 0.39 and time of concentration is 11.1 minutes. Using the Rational Method, the maximum allowable release rate is $30.68 \mathrm{~L} / \mathrm{s}$ for the 5 -year event and $64.71 \mathrm{~L} / \mathrm{s}$ for the 100 -year. The runoff coefficients for the 100-year event are increased by 25% to maximum 1.00 .

To the west of the subject property 1,575 sq.m. of lands drain onto the property. This off-site drainage area is not required to be controlled but is included in the stormwater management calculations and the storm sewer design form.

Stormwater will be stored within the development in underground in cisterns. To calculate the required storage volume in an underground cistern an average release rate is assumed to be equal to 50% of the maximum release rate.

Drainage Area I
(Uncontrolled Flow Off Site - 190 sq.m.):
The runoff from front yards of the dwellings fronting on Highcroft Drive will be allowed to flow uncontrolled off the site. The flow from is calculated at 10 minutes concentration.

	$100-y e a r$	$5-y e a r$
Maximum flow rate:	$7.27 \mathrm{~L} / \mathrm{s}$	$3.78 \mathrm{~L} / \mathrm{s}$

Drainage Area II (1,328 sq.m.):
An inlet control device (ICD) located at the outlet pipe of catch basin / manhole CB/MH3 will control the release of stormwater from this drainage area. The ICD will restrict the flow and force the stormwater to back up into an underground cistern (Cistern 1). The cistern was sized by ignoring the off-site drainage. The off-site drainage area was then included any excess flows were assumed to flow out an overflow pipe at manhole $\mathrm{CB} / \mathrm{MH}-3$ bypassing the ICD. The ICD shall be a plug style with a round orifice design manufactured by Pedro Plastics (or approved equal manufactured by IPEX) and shall be sized by the manufacturer for a discharge rate of $16.68 \mathrm{~L} / \mathrm{s}$ at 1.95 m head. It is calculated that an orifice area of 4,418 sq. mm . (75 mm diameter) and a discharge coefficient of 0.61 will restrict the outflow rate to $16.68 \mathrm{~L} / \mathrm{s}$ at a head of 1.95 m . Based on this orifice the maximum outflow rate for the 1:5-year storm event is calculated to be $11.11 \mathrm{~L} / \mathrm{s}$ at 0.87 m .

	100-year	5-year
Maximum ICD release rate:	$16.68 \mathrm{~L} / \mathrm{s}$	$11.11 \mathrm{~L} / \mathrm{s}$
Maximum overflow release rate:	$\underline{0.00 \mathrm{~L} / \mathrm{s}}$	$\underline{0.00 \mathrm{~L} / \mathrm{s}}$
Maximum total release rate:	$16.68 \mathrm{~L} / \mathrm{s}$	$11.11 \mathrm{~L} / \mathrm{s}$
Maximum water elevation:	89.05 m	87.96 m
Maximum stored volume:	$23.30 \mathrm{cu} . \mathrm{m}$.	$10.39 \mathrm{cu} . \mathrm{m}$.

Drainage Area III (2,024 sq.m.):
An inlet control device (ICD) located at the outlet pipe of catch basin / manhole CB/MH7 will control the release of stormwater from this drainage area. The ICD will restrict the flow and force the stormwater to back up into two underground cisterns (Cisterns 2 and 3). Excess flows were assumed to flow out an overflow pipe at manhole $\mathrm{CB} / \mathrm{MH}-7$ bypassing the ICD. The ICD shall be a plug style with a round orifice design manufactured by Pedro Plastics (or approved equal manufactured by IPEX) and shall be sized by the manufacturer for a discharge rate of $19.82 \mathrm{~L} / \mathrm{s}$ at 1.16 m head. It is calculated that an orifice area of $6,799 \mathrm{sq} . \mathrm{mm}$. ($\pm 93 \mathrm{~mm}$ diameter) and a discharge coefficient of 0.61 will restrict the outflow rate to $19.82 \mathrm{~L} / \mathrm{s}$ at a head of 1.16 m . Based on this orifice the maximum outflow rate for the 1:5-year storm event is calculated to be $15.80 \mathrm{~L} / \mathrm{s}$ at 0.74 m .

	100-year	5-year
Maximum ICD release rate:	$19.82 \mathrm{~L} / \mathrm{s}$	$15.80 \mathrm{~L} / \mathrm{s}$
Maximum overflow release rate:	$\underline{10.47 \mathrm{~L} / \mathrm{s}}$	$\underline{0.00 \mathrm{~L} / \mathrm{s}}$
	$30.29 \mathrm{~L} / \mathrm{s}$	$15.80 \mathrm{~L} / \mathrm{s}$
Maximum water elevation:	87.59 m	87.17 m
Maximum stored volume:	$26.40 \mathrm{cu} . \mathrm{m}$.	$16.31 \mathrm{cu} . \mathrm{m}$.

The Entire Site:
100-year 5-year
Maximum permitted release rate:
Maximum release rate:
Maximum stored volume:
$64.71 \mathrm{~L} / \mathrm{s}$
$54.24 \mathrm{~L} / \mathrm{s}$
49.70 cu.m.
$30.68 \mathrm{~L} / \mathrm{s}$
$30.68 \mathrm{~L} / \mathrm{s}$
26.70 cu.m.

The restricted flowrate resulting from one in five-year storm event will produce a peak flow of $31.4 \mathrm{~L} / \mathrm{s}$ which will be adequately by the proposed private and municipal storm sewer system with each pipe segment no more than 90% of its capacity.

The 29.4 L/s in stormwater flows contributing to the existing municipal storm sewer in Manotick Main Street is expected to have an acceptable impact given the post development flows are controlled to the pre-development flows.

CONCLUSIONS:

1. There will be an adequate water supply for firefighting by adding an extra (third) hydrant or increasing the size of the proposed municipal watermain to 250 mm .
2. The water pressure in the municipal and private watermain will be acceptable for the proposed development, however, since it is calculated that the water pressure can be above 80 psi at times an on-site pressure check is recommended to determine if a pressure reducing valve (PRV) is required.
3. The sanitary flow generated by the proposed development will be adequately handled by the proposed sanitary sewers.
4. The $0.72 \mathrm{~L} / \mathrm{s}$ increase in sanitary flows contributing to the existing 600 mm municipal sanitary sewer is expected to have a negligible impact.
5. The proposed development will have a negligible impact Manotick Main Pump Station.
6. To achieve 80% TSS removal manhole $\mathrm{MH}-9$ will be an oil/grit separator (OGS) manhole.
7. An erosion and sediment control plan has been developed to be implemented during construction.
8. The stormwater management criteria for quantity control are to control the post development peak flows for the 5 -year and 100-year storm events to peak flows during the 5 -year and 100-year storm event respectively. To achieve quantity control, stormwater will be stored within the development in an underground cistern.
9. The flowrate produced by a one in five-year storm event will be adequately handled by the proposed private and municipal storm sewers.
10. The restricted stormwater flow contributing to the existing municipal storm sewer is expected to have an acceptable impact.

D.B. GRAY ENGINEERING INC.

Stormwater Management - Grading \& Drainage - Storm \& Sanitary Sewers - Watermains
700 Long Point Circle
613-425-8044
Ottawa, Ontario K1T 4E9

1164-1166 Highcroft Dr 3 Storey Residential Dwelling - Highcroft Dr - Two West Houses Ottawa, Ontario
 Fire Flow Requirements

Fire flow requirement as calculated as per Fire Undewriter Survey "Water Supply For Fire Protection".

D.B. GRAY ENGINEERING INC.

Stormwater Management - Grading \& Drainage - Storm \& Sanitary Sewers - Watermains

700 Long Point Circle
Ottawa, Ontario K1T 4E9
Otawa, Ontario KiT 4E9
613-425-8044
d.gray@dbgrayengieering.com

1164-1166 Highcroft Dr 3 Storey Residential Dwelling - Private Rd - Two East Houses Ottawa, Ontario

Fire Flow Requirements

Fire flow requirement as calculated as per Fire Undewriter Survey "Water Supply For Fire Protection".

D.B. GRAY ENGINEERING INC.

Stormwater Management - Grading \& Drainage - Storm \& Sanitary Sewers - Watermains
700 Long Point Circle
613-425-8044
Ottawa, Ontario K1T 4E9
d.gray@dbgrayengieering.com

8-Aug-19

1164-1166 Highcroft Dr
 3 Storey Residential Dwelling - Private Rd - One West House Ottawa, Ontario

Fire Flow Requirements

Fire flow requirement as calculated as per Fire Undewriter Survey "Water Supply For Fire Protection".

	$C A^{0.5}$	$=$	the required fire flow in litres per minute											
$\mathrm{C}=$ coefficient related to the type of construction														
$=1.5$ Wood Frame Construction														
$\mathrm{A}=$ total floor area (all storeys excluding basements at least 50\% below grade)														
Ground Floor 106 sq.m. 2nd Floor 106 3rd Floor 106 TOTAL AREA: 318 sq.m.														
	5,885 L/min													
	$=6,000 \mathrm{~L} / \mathrm{min}$ (rounded off to the nearest $1,000 \mathrm{~L} / \mathrm{min}$)													
	-15\% Charge for Limited-combustible Occupancy													
$=$	5,100	L/min												
	0\% Reduction to above for no sprinkler protection													
	5,100	L/min												
							Length- Height Factor							
	12\%	NE	10.1 to 20 m	W-F	6	3	18							
	18\%	SE	3.1 to 10 m	W-F	13	3	39							
	8\%	SW	20.1 to 30m	W-F	8	2	16							
	18\%	NW	3.1 to 10 m	W-F	13	3	39							
$\begin{aligned} & \quad 56 \% \text { Total Increase for Exposure (maximum 75\%) } \\ & = \\ & 2,856 \mathrm{~L} / \mathrm{min} \text { Increase } \end{aligned}$														
7,956 L/min														
$\mathrm{F}=$	8,000	$\mathrm{L} / \mathrm{min}$ (rounded off to the nearest $1,000 \mathrm{~L} / \mathrm{min}$)												
	133.3													

D. B. GRAY ENGINEERING INC.

Stormwater Management - Grading \& Drainage - Storm \& Sanitary Sewers - Watermains

700 Long Point Circle
Ottawa, Ontario K1T 4E9

613-425-8044
d.gray@dbgrayengieering.com

1164 \& 1166 Highcroft Dr

 Ottawa, OntarioWater Demand
Number of Persons
Units Per Unit Population

Single-Family Dwelling:	11	3.4	37			
		TOTAL:	37			
DAILY AVERAGE	350	litres / person / day				
	9.1	1/min	0.2	1/s	2	USgpm
MAXIMUM DAILY DEMAND	9.2	(Peaking Factor for a population of 37: Table 3-3 MOE Design Guidelines for Drinking-Water Systems)				
	83.8	1/min	1.4	$1 / \mathrm{s}$	22	USgpm
MAXIMUM HOURLY DEMAND	13.9	(Peaking Factor for a population of 37: Table 3-3 MOE Design Guidelines for Drinking-Water Systems)				
	126.1	1/min	2.1	1/s	33	USgpm

PRE-CONFIGURATION

DWELLING AT THE HIGHEST ELEVATION
Elevation of Water Meter: $\quad 96.64 \mathrm{~m}$ ASL
Finish Floor Elevation: 95.74 m ASL
MINIMUM HGL: 141.6 m ASL

Static			
Pressure	at Water Meter		
64	psi	441	kPa
88	psi	609	kPa

DWELLING AT THE LOWEST ELEVATION
Elevation of Water Meter: 88.96 m ASL Finish Floor Elevation: 88.06 m ASL

MINIMUM HGL: 141.6 m ASL
MAXIMUM HGL: 158.8 m ASL

Static Pressure at Water Meter			
75	psi	516	kPa
99	psi	685	kPa

POST CONFIGURATION
DWELLING AT THE HIGHEST ELEVATION
Elevation of Water Meter: 96.64 m ASL Finish Floor Elevation: $\quad 95.74$ m ASL

MINIMUM HGL:	144.6	m ASL
MAXIMUM HGL:	147.7	m ASL

Static Pressure at Water Meter			
68	psi	470	kPa
73	psi	501	kPa

DWELLING AT THE LOWEST ELEVATION
Elevation of Water Meter: $\quad 88.96 \mathrm{~m} \mathrm{ASL}$ Finish Floor Elevation: 88.06 m ASL

MINIMUM HGL: 144.6 m ASL
MAXIMUM HGL: 147.7 m ASL

Static	Pressure at Water Meter		
79	psi	546	kPa
84	psi	576	kPa

BOUNDARY CONDITIONS

Boundary Conditions For: 1164/1166 Highcroft Dr.

Date of Boundary Conditions: 2019-Jan-31

Provided Information:

Scenario	Demand		
	6.0	0.1	
Average Daily Demand	72.0	1.2	
Maximum Daily Demand	114.0	1.9	
Peak Hour	10,000	166.7	
Fire Flow \#1 Demand			

Number Of Connections: 1

Location:

Results:

Pre

Connection \#: 1

Demand Scenario	Head (m)	Pressure $^{1}(\mathrm{psi})$
Maximum HGL	158.8	100.6
Peak Hour	141.6	76.4
Max Day Plus Fire (10,000) L/min	123.9	51.2

${ }^{1}$ Elevation: $\mathbf{8 7 . 8 7 0 ~ m}$

Post

Connection \#: 1

Demand Scenario	Head (m)	Pressure $^{1}(\mathrm{psi})$
Maximum HGL	147.7	85.4
Peak Hour	144.6	80.8
Max Day Plus Fire (10,000) L/min	123.6	51.0

${ }^{1}$ Elevation: $\mathbf{8 7 . 8 7 0 ~ m}$

Notes:

1) As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi .) Pressure control measures to be considered are as follows, in order of preference:
a) If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
b) Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Douglas Gray d.gray@dbgrayengineering.com

1164 Highcroft Dr. Boundary Conditions Revision.

1 message
Alvey, Harry Harry.Alvey@ottawa.ca
Tue, Jan 29, 2019 at 1:47 PM
To: Douglas Gray d.gray@dbgrayengineering.com
Cc: "Whittaker, Damien" Damien.Whittaker@ottawa.ca, "McCormick, Sarah" sarah.mccormick@ottawa.ca

Good Afternoon Doug,

Enclosed is the revised Boundary Conditions based on your latest information. In addition, I received a correction as to what our Asset Management Group meant by "Pre" and "Post". The following is their explanation of the use of these terms and how it applies to this project:

The "pre" Boundary condition provided reflects the current water pressure zone HGLs and pressures for BARR (which is where the current development is located). The "post" zone reflects the future pressure zone configuration, which will be "3SW" and the pressure and HGL, will improve significantly due to a new pump station that will be installed, and changes to the boundaries of the pressure zone "BARR". Currently, we have both scenarios modelled and, for future developments requesting boundary conditions, we give HGLs and Pressures for both scenarios, because we still do not know when the configuration will take place.

The consultant is generally asked to design to the "pre" configured pressure zone HGLs and pressures for conservative design.

There are several administrative steps that are being negotiated with stakeholders in that area that is delaying the installation of the new pump station and the reconfiguration of the pressure zone.

Harry

Harry R. Alvey, P.E., P.Eng.
Project Manager

Planning, Infrastructure and Economic Development Department

Development Review Rural Branch
Services de la planification, de l'infrastructure et du développement économique
City of Ottawa | Ville d'Ottawa
© 613.580.2424 ext./poste 28103
ottawa.ca/planning / ottawa.ca/urbanisme
,

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

1164, 1166 Highcroft Dr_Rev1.docx
198K

1164-1166 Higcroft Drive Ottawa, Ontario

EPANET HYDRAULIC MODELLING RESULTS

MAX DAY + FIRE FLOW: 168.2 I/s - HGL: 123.6
200mm WM in Highcroft Dr - Fire Flow at Private Hydrant

Node ID	Demand	Head	Elevation	Pressure		
	I / s	m	m	m	psi	kPa
1 Reservoir (Connection to 400 WM)	-168.2	123.60	87.81	35.79	50.9	351
2	0.0	110.14	90.64	19.50	27.7	191
3 Fire Hydrant 1	167.5	102.34	90.35	11.99	17.0	118
4 Fire Hydrant 2	0.7	110.34	95.91	14.43	20.5	141

Link ID	Diameter	Length	Roughness	Loss	Flow	Velocity
	mm	m		110	2.40	168.20
Pipe 1	200	60.2		5.35		
Pipe 2	200	27.7	110	2.25	167.50	5.33
Pipe 3	200	52.5	110	0.60	0.70	0.02

200mm WM in Highcroft Dr - Fire Flow at Municipal Hydrant

Node ID	Demand	Head	Elevation	Pressure		
	I / s	m	m	m	psi	kPa
1 Reservoir (Connection to 400 WM)	-168.2	123.60	87.81	35.79	50.9	351
2	0.0	110.14	90.64	19.50	27.7	191
3 Fire Hydrant 1	0.8	110.14	90.35	19.79	28.1	194
4 Fire Hydrant 2	167.4	100.67	95.91	4.76	6.8	47

Link ID	Diameter	Length	Roughness	Loss Coeff.	Flow	Velocity
	mm	m			1/s	m/s
Pipe 1	200	60.2	110	2.40	168.20	5.35
Pipe 2	200	27.7	110	2.25	0.80	0.03
Pipe 3	200	52.5	110	0.60	167.40	5.33

250mm WM in Highcroft Dr - Fire Flow at Private Hydrant

Node ID	Demand	Head	Elevation	Pressure		
	I / s	m	m	m	psi	kPa
1 Reservoir (Connection to 400 WM)	-168.2	123.60	87.81	35.79	50.9	351
2	0.0	118.81	90.64	28.17	40.1	276
3 Fire Hydrant 1	167.5	111.01	90.35	20.66	29.4	203
4 Fire Hydrant 2	0.7	118.81	95.91	22.90	32.6	225

Link ID	Diameter	Length	Roughness	Loss	Flow	Velocity
	mm	m			Coeff.	I / s
Pipe 1	250	60.2	110	2.40	168.20	$3 / \mathrm{s}$
Pipe 2	200	27.7	110	2.25	167.50	5.33
Pipe 3	250	52.5	110	0.60	0.70	0.01

250mm WM in Highcroft Dr - Fire Flow at Municipal Hydrant

Node ID	Demand	Head	Elevation	Pressure		
	I / s	m	m	m	psi	kPa
1 Reservoir (Connection to 400 WM)	-168.2	123.60	87.81	35.79	50.9	351
2	0.0	118.81	90.64	28.17	40.1	276
3 Fire Hydrant 1	167.5	118.81	90.35	28.46	40.5	279
4 Fire Hydrant 2	0.7	115.55	95.91	19.64	27.9	193

Link ID	Diameter	Length	Roughness	Loss	Flow	Velocity
	mm	m		Coeff.	I / s	m / s
Pipe 1	250	60.2	110	2.40	168.20	3.43
Pipe 2	200	27.7	110	2.25	0.80	0.03
Pipe 3	250	52.5	110	0.60	167.40	3.41

EPANET 2
Network Table - Nodes

Node ID	Elevation m	Base Demand LPS	Demand LPS	Head m	
Junc 2	90.64	0	0.00	110.14	Pressure m
Junc 3	90.35	167.5	167.50	102.34	11.99
Junc 4	95.91	0.7	0.70	110.14	14.23
Resvr 1	123.6	\#N/A	-168.20	123.60	0.00

EPANET 2

EPANET 2
Network Table - Nodes

Node ID	Elevation m		Base Demand LPS	Demand LPS	Head m
Junc 2	90.64	0	0.00	110.14	Pressure m
Junc 3	90.35	.8	0.80	110.14	19.50
Junc 4	95.91	167.4	167.40	100.67	4.76
Resvr 1	123.6	\#N/A	-168.20	123.60	0.00

EPANET 2

EPANET 2

EPANET 2
Network Table - Nodes

Node ID	Elevation m		Base Demand LPS	Demand LPS	Head m		Pressure m
Junc 2	90.64	0	0.00	118.81	28.17		
Junc 3	90.35	167.5	167.50	111.01	20.66		
Junc 4	95.91	0.7	0.70	118.81	22.90		
Resvr 1	123.6	\#N/A	-168.20	123.60	0.00		

EPANET 2

Network Table - Nodes

Node ID	Elevation m		Base Demand LPS	Demand LPS	Head m
Junc 2	90.64	0	0.00	118.81	Pressure m
Junc 3	90.35	.8	0.80	118.81	28.17
Junc 4	95.91	167.4	167.40	115.55	19.64
Resvr 1	123.6	\#N/A	-168.20	123.60	0.00

EPANET 2

EPANET 2
Stormwater Managemen -Graing \& Drainage - St Saniny Se
700 Long Point Circle
Ottawa, Ontario K1T 4E9
613-425-8044
d.gray@dbgrayengineering.com
$\begin{array}{lll}\text { Commercial \& Institutional: } & 1.5 & \text { If contrinbution }>20 \% \\ \text { Commercial \& Institutional: } & 1.0 & \text { If contrinbution }<20 \% \\ \text { Industrial: As per Ottawa Guidelines Appendix } 4-\mathrm{B}\end{array}$

Page: 1 of 1	
SEWER DATA	
COMMENTS	

$$
+
$$

STORMWATER MANAGEMENT CALCULATIONS

The orifice calculations are based on the following formula:
$Q=C_{d} \times A_{o} \sqrt{2 g h} \times 1000$
where:
Q = flowrate in litres per second
$\mathrm{C}_{d}=$ coefficient of discharge
$A_{\circ}=$ orifice area in sq.m.
$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s} 2$
$h=$ head above orifice in meters

Summary Tables

ONE HUNDRED YEAR EVENT

Drainage Area	Maximum Allowable Release Rate (L/s)	Maximum Release Rate (L/s)	Maximum Volume Required (cu.m)	Maximum Volume Stored (cu.m)
AREA I (Uncontrolled Flow Off Site)	-	7.27	-	-
AREA II	-	16.68	23.30	23.30
AREA III	-	30.29	26.40	26.40
TOTAL	64.71	54.24	49.70	49.70

FIVE YEAR EVENT

Drainage Area	Maximum Allowable Release Rate (L/s)	Maximum Release Rate (L/s)	Maximum Volume Required (cu.m)	Maximum Volume Stored (cu.m)
AREA I (Uncontrolled Flow Off Site)	-	3.78	-	-
AREA II	-	11.11	10.39	10.39
AREA III	-	15.80	16.31	16.31
TOTAL	30.68	30.68	26.70	26.70

STORM WATER MANAGEMENT CALCULATIONS Rational Method

ONE HUNDRED YEAR EVENT
 (Calculations Assuming No Off Site Drainage)

Pre-Development Conditions
100

DRAINAGE AREA I (Uncontrolled Flow Off Site)
(ONE HUNDRED YEAR EVENT)

Roof Area:	0	sq.m	1.00
Asphalt/Concrete Area:	132	sq.m	1.00
Gravel Area:	0	sq.m	0.875
Landscaped Area:	58	sq.m	0.25
Aretal Catchment Area:	190	sq.m	0.77
Area (A):	190	sq.m	
Time of Concentration:	10	min	
Rainfall Intensity (i):	179	$\mathrm{~mm} / \mathrm{hr} \mathrm{(100} \mathrm{year} \mathrm{event)}$	
Runoff Coeficient (C):	0.77		

DRAINAGE AREA II
(ONE HUNDRED YEAR EVENT)

DRAINAGE AREA III
(ONE HUNDRED YEAR EVENT)

DRAINAGE AREA II
(ONE HUNDRED YEAR EVENT- Calculations Including Off Site Drainage)

FIVE YEAR EVENT

(Calculations Assuming No Off Site Drainage)

Pre-development Conditions
5 Year Event

DRAINAGE AREA I (Uncontrolled Flow Off Site)
(FIVE YEAR EVENT)

Roof Area:	0	sq.m	0.90
Asphalt/Concrete Area:	132	sq.m	0.90
Gravel Area:	0	sq.m	0.70
Landscaped Area:	58	sq.m	0.20
Area (A):	190	sq.m	
Total Catchment Area:	190	sq.m	0.69
Time of Concentration:	10	min	
Rainfall Intensity (i):	104	$\mathrm{~mm} / \mathrm{hr} \mathrm{(5} \mathrm{year} \mathrm{event)}$	
Runoff Coeficient (C):	0.69		

DRAINAGE AREA II

(FIVE YEAR EVENT)

DRAINAGE AREA III

(FIVE YEAR EVENT)

DRAINAGE AREA II
(FIVE YEAR EVENT - Calculations Including Off Site Drainage)

D. B. GRAY ENGINEERING INC.
Stormwater Management - Grading \& Drainage - Storm \& Sanitary Sewers - Watermains

RE: 1164/1166 Highcroft Dr
 1 message

Eric Lalande eric.lalande@rvca.ca
To: Douglas Gray d.gray@dbgrayengineering.com
Cc: Ryan Faith r.faith@dbgrayengineering.com

Hi Doug,

It would appear that the site drains through overland flow (ditches) to the city's storm sewer on Manotick Main,

We are looking for 80% TSS removal, and defer quantity requirements to the City.

Let me know if you require anything else.

Thank you,

Eric Lalande, MCIP, RPP

Planner, Rideau Valley Conservation Authority
613-692-3571 x1137

From: Douglas Gray d.gray@dbgrayengineering.com
Sent: Thursday, September 19, 2019 8:31 AM
To: Eric Lalande eric.lalande@rvca.ca
Cc: Ryan Faith r.faith@dbgrayengineering.com
Subject: 1164/1166 Highcroft Dr

Hi Eric

We are working on a proposed residential development on a 3542 sq.m. property at $1164 / 1166$ Highcroft Dr in Manotick Dr. It will consist of eleven single-family dwellings. The property currently has two single-family dwellings that will be demolished.

Attached is a site plan.

Please comment concerning the stormwater management for this site.
\square
Stormwater Management - Grading \& Drainage - Storm \& Sanitary Sewers - Watermains

700 Long Point Circle

 Ottawa, Ontario K1T 4E9 d.gray@dbgrayengineering.com
Site Information

Project Name: $\underline{\text { 1164-1166 Highcroft Drive }}$
Unit Label: OGS 1

Unit Location: Ottawa, ON

Site Area (hectacres): $\mathbf{0 . 3 3 5 2}$

Runoff Coeff. : . 55

Target Removal Efficiency(\%): 80\% based on NJDEP

Product Recommendation

Aqua-Swirl ${ }^{\text {TM }}$ Model	Net Annual TSS Removal Efficiency	Chamber Diameter	Maximum Inside Diameter (mm)		Oil/Debris Storage Capacity	Sediment Storage Capacity
			Offline	BYP ${ }^{5}$		
AS-2	90.81 \%	763 mm .	205 mm .	381 mm.	140 L	$0.28 \mathrm{~m}^{3}$

Rainfall Information

NCDC Station ${ }^{1}: \underline{\left.\text { OTTAWA MACDONALD-CARTIER INT'L A } \quad \text { Data Range }{ }^{4}: \underline{261,759} \text { readings taken hourly between } 1967 \text { to } 2007 \text { (} \sim 40 \text { years) }\right) ~}$

Rainfall Event Range (mm/hre)	Rainfall Interval Point (mm/hre)	Operating Rate (Lps/m^2)	Total Rainfall (\%)	Removall Efficiency $(\%)^{2}$	Relative Efficiency(\%)
$02.00-03.00$	02.50	02.81	44.18	95.28	42.10
$03.00-04.00$	03.50	03.93	21.52	93.76	20.18
$04.00-05.00$	04.50	05.06	11.68	92.01	10.75
$05.00-06.00$	05.50	06.18	06.68	06.02	
$06.00-07.00$	06.50	07.30	0.03	87.06	03.54
$07.00-08.00$	07.50	09.55	01.99	85.50	01.70
$08.00-09.00$	08.50	10.67	01.81	82.91	01.53
$09.00-10.00$	09.50	14.04	04.12	80.09	01.45
$10.00-15.00$	17.50	19.66	01.02	70.38	02.90
$15.00-20.00$	17.50	25.28	00.54	49.90	00.51
$20.00-25.00$	22.50		24.09	00.13	

Sales Agent Information

Agent Name: $\underline{\text { Dave Kanters }}$	Phone: $\underline{\text { 416-347-2799 }}$
Company Name: Soleno	Fax:
Address: $\underline{\text { 347, } \mathbf{1 5 - 7 5} \text { Bayly St. W. }}$	E-mail: $\underline{\text { dkanters } @ \text { soleno.com }}$

City, State Zip: Ajax, ON L1S7K7

Footnotes

1. Recorded as hourly precipitation rainfall data (inches), National Climatic Data Center (NCDC)
2. Based on Tennessee Tech University laboratory testing of the AquaSwirI ${ }^{\text {TM }}$ Model AS-3 for OK-110 silica particles $50-125$ microns(Neary, 2002)
3. 90% Rainfall Event, calculated as a cumulative percentile of individual events, www.stormwatercenter.net, sizing criteria (Center for Watershed Protection)
4. NCDC data may not be consecutive, skipping days, months and/or years in the range of dates.
5. The Aqua-Swirl ${ }^{T M}$ Internal Bypass (BYP) provides full treatment of the "first flush," while the peak design storm is diverted and channeled through the main conveyance pipe. Please refer to your local representative for more information.
6. When applicable, the performance curve was adjusted via Peclet Scaling to provide estimated sizing per NJDEP PSD (d50 = 67 microns).

City of Ottawa Servicing Study Checklist

General Content

Executive Summary (for large reports only): not applicable
Date and revision number of the report: see page 1 of Servicing Brief and Stormwater Management Report

Location map and plan showing municipal address, boundary, and layout of proposed development: see drawings $\mathrm{C}-1$ to $\mathrm{C}-8$

Plan showing the site and location of all existing services: see drawings $\mathrm{C}-1$ to $\mathrm{C}-8$
Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere: not applicable

Summary of Pre-consultation Meetings with City and other approval agencies: not available
Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria: not applicable

Statement of objectives and servicing criteria: see page 1 of Servicing Brief and Stormwater Management Report

Identification of existing and proposed infrastructure available in the immediate area: see drawings $\mathrm{C}-1$ to $\mathrm{C}-8$

Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available). see drawings C-1 to C-8

Concept level master grading plan to confirm existing and proposed grades in the development and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths: not applicable

Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts: not applicable

Proposed phasing of the development, if applicable: not applicable
Reference to geotechnical studies and recommendations concerning servicing: see note 1.5 on drawing C-1

All preliminary and formal site plan submissions should have the following information:

- Metric scale: included
- North arrow: included
- (including construction North): not included
- Key Plan: included
- Name and contact information of applicant and property owner: not available
- Property limits: included
- including bearings and dimensions: not included
- Existing and proposed structures and parking areas: included
- Easements, road widening and rights-of-way: included
- Adjacent street names: included

Development Servicing Report: Water
Confirm consistency with Master Servicing Study, if available: not applicable
Availability of public infrastructure to service proposed development: see page 2 of Servicing Brief

Identification of system constraints: see page 2 of Servicing Brief
Confirmation of adequate domestic supply and pressure: see page 2 of Servicing Brief
Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow locations throughout the development: see page 2 of Servicing Brief

Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves: see page 2 of Servicing Brief

Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design: not applicable

Address reliability requirements such as appropriate location of shut-off valves: not applicable
Check on the necessity of a pressure zone boundary modification:. not applicable
Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range: not applicable

Description of the proposed water distribution network, including locations of proposed connections to the existing systems, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions: not applicable

Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation: not applicable

Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines: see page 2 of Servicing Brief

Provision of a model schematic showing the boundary conditions locations, streets , parcels, and building locations for reference: not applicable

Development Servicing Report: Wastewater

Summary of proposed design criteria: see page 3 of Servicing Brief
(Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure): not applicable

Confirm consistency with Master Servicing Study and /or justification for deviations: not applicable

Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and conditions of sewers: not applicable

Descriptions of existing sanitary sewer available for discharge of wastewater from proposed development: see page 3 of Servicing Brief

Verify available capacity in downstream sanitary sewer and / or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable): not applicable

Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix C) format. see page 15 of Servicing Brief

Description of proposed sewer network including sewers, pumping stations, and forcemains: see page 3 of Servicing Brief

Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality): not applicable

Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development: not applicable

Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity: not applicable

Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding: not applicable

Special considerations such as contamination, corrosive environment etc: not applicable

Development Servicing Report: Stormwater Checklist

Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property): see page 4 of Servicing Brief and Stormwater Management Report

Analysis of available capacity in existing public infrastructure. not applicable

A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern: see drawing C-4

Water quality control objective (e/g/ controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects: see Stormwater Management Report Servicing Brief and Stormwater Management Report

Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements: Servicing Brief and Stormwater Management Report

Descriptions of the references and supporting information.
Set-back from private sewage disposal systems. not applicable
Watercourse and hazard lands setbacks: not applicable
Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed: the pre-application consultation record is not yet been issued

Confirm consistency with sub-waterched and Master Servicing Study, if applicable study exists: not applicable

Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period). see drawings $\mathrm{C}-1$ to $\mathrm{C}-8$ and Servicing Brief and Stormwater Management Report

Identification of watercourses within the proposed development and how watercourses will be protected, or , if necessary, altered by the proposed development with applicable approvals. see drawings C-1 to C-8 and Servicing Brief and Stormwater Management Report

Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions: see Servicing Brief and Stormwater Management Report

Any proposed diversion of drainage catchment areas from one outlet to another. : not applicable
Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities. : not applicable

If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100 -year return period storm event: not applicable

Identification of potential impacts to receiving watercourses: Servicing Brief and Stormwater Management Report

Identification of municipal drains and related approval requirements. : not applicable

Descriptions of how the conveyance and storage capacity will be achieved for the development: see page 3 of Servicing Brief and Stormwater Management Report

100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading:

Inclusion of hydraulic analysis including hydraulic grade line elevations. : not applicable
Description of approach to erosion and sediment control during construction for the protection of receiving watercourses of drainage corridors: see notes 2.1 to 2.7 on drawing $\mathrm{C}-3$

Identification of floodplains - proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplains elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current: not applicable

Identification of fill constraints related to floodplain and geotechnical investigation. : not applicable

Approval and Permit Requirements: Checklist
The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following:

Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act: see page 19 of Servicing Brief and Stormwater Management Report

Application for Certificate of Approval (CofA) under the Ontario Water Resources Act:
Changes to Municipal Drains. : not applicable
Other permits (National Capital commission, Parks Canada, public Works and Government Services Canada, Ministry of transportation etc.) : not applicable

Conclusion Checklist

Clearly stated conclusions and recommendations: see page 7 of Servicing Brief
Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.

All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario: included

