SERVICING BRIEF & STORMWATER MANAGEMENT REPORT

1164-1166 Highcroft Drive Ottawa, Ontario

Report No. 18035

August 9, 2019 REVISED September 27, 2019

D.B. GRAY ENGINEERING INC.

Stormwater Management - Grading & Drainage - Storm & Sanitary Sewers - Watermains

700 Long Point Circle Ottawa, Ontario K1T 4E9 613-425-8044 dbgray@rogers.com

SERVICING BRIEF & STORMWATER MANAGEMENT REPORT

1164-1166 Highcroft Drive Ottawa, Ontario

This report describes the services and addresses the stormwater management requirements of a 3542 sq.m. property at 1164-1166 Highcroft Drive, Manotick in Ottawa. The property currently has two single-family dwellings that will be demolished. Eleven single-family dwellings are proposed. Five dwellings will front on Highcroft Drive and six will front onto a proposed private road. There is a significant grade difference across the property such that there is an approximate 7.7 m elevation difference between the floor level of the lowest and highest proposed dwelling. The slope of Highcroft Drive is also significant, varying from approximately 8 to 14% in front of the subject property.

This report forms part of the stormwater management design for the proposed development. Refer to drawing C-1 to C-8 also prepared by D. B. Gray Engineering Inc.

WATER SUPPLY FOR FIREFIGHTING:

Currently there is no watermain in Highcroft Drive but a municipal watermain is proposed that will connect to an existing 400 mm watermain in Manotick Main Street at the intersection with Highcroft Drive. A private watermain is proposed to be located in the private road. A municipal fire hydrant will be located at the end of the municipal watermain and a private hydrant will be located near the end of the 200mm private watermain.

A fire flow of 166.7 L/s (10,000 L/min) is required, as calculated as per the Fire Underwriter Survey "Water Supply For Fire Protection".

The City provided two sets of boundary conditions both based on a 168.2 I/s flowrate (Max day (1.5 L/s) + Fire Flow (166.7 L/s). The pre-configuration boundary conditions reflect the current conditions and the post configuration boundary conditions reflect the future conditions due to a new pump station and changes to the boundaries of a pressure zone. Since the "pre" and "post" fire flow HGLs are approximately the same (being 123.9 m and 123.6 m respectively), only the lower "post" boundary condition was used for the fire flow hydraulic analysis.

A model was created using EPANET software to analyze the hydraulics of a proposed 200 mm municipal and 200 mm private watermains. Using the 123.6 m HGL, the pressure at the private hydrant was determined to be 118 kPa (17.0 psi) and 47 kPa (6.8 psi) at the municipal hydrant. Since the pressures are below 138 kPa (20 psi) there

is <u>not</u> an adequate water supply for firefighting with the proposed configuration. However, if a second municipal hydrant (third fire hydrant), connecting directly to the municipal watermain, was installed east of the entrance to the proposed development the pressure would be 191 kPa (27.7 psi) and there would be an adequate water supply for firefighting

Alternatively, a second model was created using EPANET with the proposed municipal watermain increased to 250mm. With this configuration the pressure at the private and municipal hydrants were determined to be 203 kPa (29.4 psi) and 193 kPa (27.9 psi), respectively. Since the pressures are above 138 kPa (20 psi) there would be an adequate water supply for firefighting with this configuration.

Therefore, there will be an adequate water supply for firefighting by adding an extra (third) hydrant or increasing the size of the proposed municipal watermain to 250 mm.

WATER SERVICE:

As previously mentioned, there is currently no watermain in Highcroft Drive but a municipal watermain is proposed that will connect to an existing 400 mm watermain in Manotick Main Street.

Based on the City of Ottawa Water Distribution Design Guidelines for residential properties (11 single-family dwellings / 3.4 person per dwelling – 350 L/person/day) and Ministry of the Environment Design Guidelines for peaking factors the daily average flow is 0.2 L/s with a maximum daily and maximum hourly demand of 1.4 and 2.1 L/s respectively.

To determine water pressure under these demands, boundary conditions, based on the City of Ottawa computer simulation of the water distribution system, at the subject location, are required. In summary, the boundary conditions for the subject area based on the following:

Average Daily Demand: 0.2 L/s. Maximum Daily Demand: 1.4 L/s. Maximum Hourly Demand: 2.1 L/s

As previously mentioned, the City provided two sets of boundary conditions, preconfiguration boundary conditions reflecting the current conditions and the post configuration boundary conditions reflecting the future conditions.

Based on the "pre" boundary conditions, the minimum HGL (hydraulic grade line) is 141.6 m and the maximum is 158.8 m. With these HGLs, the water pressure at the water meter of the lowest dwelling is calculated to vary from 516 kPa to 685 kPa (75 to 99 psi) and 441 kPa to 609 kPa (64 to 88 psi) at the highest dwelling.

Based on the "post" boundary conditions, the minimum HGL is 144.6 m and the maximum is 147.7 m. With these HGLs, the water pressure at the water meter of the lowest dwelling is calculated to vary from 546 kPa to 576 kPa (79 to 84 psi) and 470 kPa to 501 kPa (68 to 73 psi) at the highest dwelling.

These are acceptable pressures for the proposed development, however, since it is calculated that the water pressure can be above 80 psi at times an on-site pressure check is recommended to determine if a pressure reducing valve (PRV) is required.

SANITARY SERVICE:

Currently there is no sanitary sewers in Highcroft Drive, but a 200 mm municipal sanitary sewer is proposed that will connect to an existing 600 mm watermain in Manotick Main Street at the intersection with Highcroft Drive. A private 200 mm sanitary sewer is proposed to be located in the private road.

Based on the City of Ottawa Sewer Design Guidelines for residential properties (11 single-family dwellings / 3.4 person per dwelling -280 L/person/day -3.2 peaking factor); and based on a 0.33 l/s/ha infiltration flow; the post development flow is calculated to be 0.72 L/s.

This flow will be adequately handled by the proposed sanitary sewers (200 mm at 0.32% to 0.65% - 19.36 to 27.59 L/s capacity) since, at the design flows, these sewers will be only up to 4% of capacity.

The 0.72 L/s increase in sanitary flows contributing to the existing 600 mm municipal sanitary sewer (at $\pm 0.15\%$) is expected to have a negligible impact given its capacity of 248.1 L/s.

The 600 mm sanitary sewer drains to the Manotick Main Pump Station. As per a conversation John Bougadis (City of Ottawa, Senior Project Manager, Infrastructure Planning) the peak flow at the pump station is currently 5 to 10 L/s during dry conditions and 45 to 50 L/s during wet; the capacity of the pump station is 60 L/s; and renovation in 2020 will increase the capacity to 120 L/s. John Bougadis advised that the proposed development (with a 0.72 L/s increase in sanitary flows) will have a negligible impact on the pump station.

STORMWATER MANAGEMENT:

Water Quality:

The Rideau Valley Conservation Authority (RVCA) has advised that 80% total suspended solids (TSS) removal is required.

To achieve 80% TSS removal manhole MH-9 will be an oil/grit separator (OGS) manhole (AquaShield Aqua-Swirl Concentrator model AS-2 BYP CW STD). The Aqua-Swirl model AS-2 has a sediment capacity of 0.28 cubic metres and an oil/debris capacity of 140 litres.

Based on software supplied by the manufacturer, the OGS will remove approximately 91% of TSS from the runoff. Output from the manufacturer's software is attached to the report.

An erosion and sediment control plan has been developed to be implemented during construction, (see drawing C-4 and notes 2.1 to 2.7 on drawing C-5). In summary: to filter out construction sediment a silt fence barrier will be installed adjacent to the south and east property line; sediment capture filter sock inserts will be installed in all new catch basins as they are installed; and geotextile fabric mud mats will be install at all points of egress to public roads.

Water Quantity:

Currently there is no storm sewer in Highcroft Drive but a 300 and 375 mm municipal storm sewers are proposed connecting to an existing 375 mm storm sewer in Manotick Main Street at the intersection with Highcroft Drive. A private 250 mm storm sewers are proposed to be located in the private road.

The stormwater management criteria for quantity control are to control the post development peak flows to the pre-development peak flow using a pre-development runoff coefficient and a calculated time of concentration (but not less than 10 minutes). It is calculated that the pre-development conditions reflect a 5-year runoff coefficient of 0.33 and a 12.0 minute time of concentration. The 100-year runoff coefficient is 0.39 and time of concentration is 11.1 minutes. Using the Rational Method, the maximum allowable release rate is 30.68 L/s for the 5-year event and 64.71 L/s for the 100-year. The runoff coefficients for the 100-year event are increased by 25% to maximum 1.00.

To the west of the subject property 1,575 sq.m. of lands drain onto the property. This off-site drainage area is not required to be controlled but is included in the stormwater management calculations and the storm sewer design form.

Stormwater will be stored within the development in underground in cisterns. To calculate the required storage volume in an underground cistern an average release rate is assumed to be equal to 50% of the maximum release rate.

Drainage Area I

(Uncontrolled Flow Off Site – 190 sq.m.):

The runoff from front yards of the dwellings fronting on Highcroft Drive will be allowed to flow uncontrolled off the site. The flow from is calculated at 10 minutes concentration.

Maximum flow rate: 100-year 5-year 7.27 L/s 3.78 L/s

Drainage Area II (1,328 sq.m.):

An inlet control device (ICD) located at the outlet pipe of catch basin / manhole CB/MH-3 will control the release of stormwater from this drainage area. The ICD will restrict the flow and force the stormwater to back up into an underground cistern (Cistern 1). The cistern was sized by ignoring the off-site drainage. The off-site drainage area was then included any excess flows were assumed to flow out an overflow pipe at manhole CB/MH-3 bypassing the ICD. The ICD shall be a plug style with a round orifice design manufactured by Pedro Plastics (or approved equal manufactured by IPEX) and shall be sized by the manufacturer for a discharge rate of 16.68 L/s at 1.95 m head. It is calculated that an orifice area of 4,418 sq.mm. (75 mm diameter) and a discharge coefficient of 0.61 will restrict the outflow rate to 16.68 L/s at a head of 1.95 m. Based on this orifice the maximum outflow rate for the 1:5-year storm event is calculated to be 11.11 L/s at 0.87 m.

	100-year	5-year
Maximum ICD release rate:	16.68 L/s	11.11 L/s
Maximum overflow release rate:	0.00 L/s	0.00 L/s
Maximum total release rate:	16.68 L/s	11.11 L/s
Maximum water elevation:	89.05 m	87.96 m
Maximum stored volume:	23.30 cu.m.	10.39 cu.m.

Drainage Area III (2,024 sq.m.):

An inlet control device (ICD) located at the outlet pipe of catch basin / manhole CB/MH-7 will control the release of stormwater from this drainage area. The ICD will restrict the flow and force the stormwater to back up into two underground cisterns (Cisterns 2 and 3). Excess flows were assumed to flow out an overflow pipe at manhole CB/MH-7 bypassing the ICD. The ICD shall be a plug style with a round orifice design manufactured by Pedro Plastics (or approved equal manufactured by IPEX) and shall be sized by the manufacturer for a discharge rate of 19.82 L/s at 1.16 m head. It is calculated that an orifice area of 6,799 sq.mm. (±93 mm diameter) and a discharge coefficient of 0.61 will restrict the outflow rate to 19.82 L/s at a head of 1.16 m. Based on this orifice the maximum outflow rate for the 1:5-year storm event is calculated to be 15.80 L/s at 0.74 m.

	100-year	5-year
Maximum ICD release rate:	19.82 L/s	15.80 L/s
Maximum overflow release rate:	<u>10.47 L/s</u>	0.00 L/s
Maximum total release rate:	30.29 L/s	15.80 L/s
Maximum water elevation:	87.59 m	87.17 m
Maximum stored volume:	26.40 cu.m.	16.31 cu.m.

The Entire Site:

	100-year	5-year
Maximum permitted release rate:	64.71 L/s	30.68 L/s
Maximum release rate:	54.24 L/s	30.68 L/s
Maximum stored volume:	49.70 cu.m.	26.70 cu.m.

The restricted flowrate resulting from one in five-year storm event will produce a peak flow of 31.4 L/s which will be adequately by the proposed private and municipal storm sewer system with each pipe segment no more than 90% of its capacity.

The 29.4 L/s in stormwater flows contributing to the existing municipal storm sewer in Manotick Main Street is expected to have an acceptable impact given the post development flows are controlled to the pre-development flows.

CONCLUSIONS:

- 1. There will be an adequate water supply for firefighting by adding an extra (third) hydrant or increasing the size of the proposed municipal watermain to 250 mm.
- 2. The water pressure in the municipal and private watermain will be acceptable for the proposed development, however, since it is calculated that the water pressure can be above 80 psi at times an on-site pressure check is recommended to determine if a pressure reducing valve (PRV) is required.
- 3. The sanitary flow generated by the proposed development will be adequately handled by the proposed sanitary sewers.
- 4. The 0.72 L/s increase in sanitary flows contributing to the existing 600 mm municipal sanitary sewer is expected to have a negligible impact.
- 5. The proposed development will have a negligible impact Manotick Main Pump Station.
- 6. To achieve 80% TSS removal manhole MH-9 will be an oil/grit separator (OGS) manhole
- 7. An erosion and sediment control plan has been developed to be implemented during construction.
- 8. The stormwater management criteria for quantity control are to control the post development peak flows for the 5-year and 100-year storm events to peak flows during the 5-year and 100-year storm event respectively. To achieve quantity control, stormwater will be stored within the development in an underground cistern.
- 9. The flowrate produced by a one in five-year storm event will be adequately handled by the proposed private and municipal storm sewers.
- 10. The restricted stormwater flow contributing to the existing municipal storm sewer is expected to have an acceptable impact.

Stormwater Management - Grading & Drainage - Storm & Sanitary Sewers - Watermains

700 Long Point Circle Ottawa, Ontario K1T 4E9 613-425-8044

d.gray@dbgrayengieering.com

8-Aug-19

1164-1166 Highcroft Dr 3 Storey Residential Dwelling - Highcroft Dr - Two West Houses Ottawa, Ontario

Fire Flow Requirements

Fire flow requirement as calculated as per Fire Undewriter Survey "Water Supply For Fire Protection".

 $F = 220 \text{ C A}^{0.5}$ = the required fire flow in litres per minute

C = coefficient related to the type of construction = 1.5 Wood Frame Construction

A = total floor area (all storeys excluding basements at least 50% below grade)

Proposed House 1	Ground Floor 2nd Floor 3rd Floor	104 sq.m. 104 104
	TOTAL AREA:	312 sq.m.
Proposed House 2	Ground Floor 2nd Floor 3rd Floor TOTAL AREA:	92 sq.m. 92 92 276 sq.m.
	TOTAL FIRE AREA	588 sg m

F = 8,002 L/min

= 8,000 L/min (rounded off to the nearest 1,000 L/min)

-15% Charge for Limited-combustible Occupancy

= 6,800 L/min

0% Reduction to above for no sprinkler protection

= 6,800 L/min

Increase for Separation Exposed Buildings					Length-		
			_		Adjacent	Building	Height
			-	Constuction	Length m	Storeys	Factor
	18%	NE	3.1 to 10m	W-F	13	3	39
	17%	SE	3.1 to 10m	W-F	8	3	24
	12%	SW	10.1 to 20m	W-F	13	2	26
	5%	NW	30.1 to 45m	W-F	12	1	12
	52%	Total Incre	ase for Exposu	re (maximum	75%)		
=	3,536	L/min Incre	ease				

= 10.336 L/min

= 10,000 L/min (rounded off to the nearest 1,000 L/min)

= 166.7 l/s

Stormwater Management - Grading & Drainage - Storm & Sanitary Sewers - Watermains

700 Long Point Circle Ottawa, Ontario K1T 4E9 613-425-8044 d.gray@dbgrayengieering.com

8-Aug-19

1164-1166 Highcroft Dr 3 Storey Residential Dwelling - Private Rd - Two East Houses Ottawa, Ontario

Fire Flow Requirements

Fire flow requirement as calculated as per Fire Undewriter Survey "Water Supply For Fire Protection".

 $F = 220 \text{ C A}^{0.5}$ = the required fire flow in litres per minute

C = coefficient related to the type of construction = 1.5 Wood Frame Construction

A = total floor area (all storeys excluding basements at least 50% below grade)

Proposed House 1	Ground Floor	92 sq.m.
	2nd Floor	92
	3rd Floor	92
	TOTAL AREA:	276 sq.m.
Proposed House 2	Ground Floor	92 sq.m.
	2nd Floor	92
	3rd Floor	92
	TOTAL AREA:	276 sq.m.
	TOTAL FIRE AREA:	552 sq.m.

F = 7,753 L/min

8,000 L/min (rounded off to the nearest 1,000 L/min)

-15% Charge for Limited-combustible Occupancy

= 6,800 L/min

0% Reduction to above for no sprinkler protection

= 6,800 L/min

Increase for Separation Exposed Buildings						Length-
	Adjacent Building					Height
		-	Constuction	Length m	Storeys	Factor
8%	NE	20.1 to 30m	W-F	14	1	14
18%	SE	3.1 to 10m	W-F	15	3	45
12%	SW	10.1 to 20m	W-F	9	3	27
8%	NW	20.1 to 30m	W-F	2	3	6
46%	46% Total Increase for Exposure (maximum 75%)					
3,128	L/min Incr	ease				

= 9,928 L/min

F = 10,000 L/min (rounded off to the nearest 1,000 L/min)

= 166.7 l/s

Stormwater Management - Grading & Drainage - Storm & Sanitary Sewers - Watermains

700 Long Point Circle Ottawa, Ontario K1T 4E9 613-425-8044

d.gray@dbgrayengieering.com

8-Aug-19

1164-1166 Highcroft Dr 3 Storey Residential Dwelling - Private Rd - One West House Ottawa, Ontario

Fire Flow Requirements

Fire flow requirement as calculated as per Fire Undewriter Survey "Water Supply For Fire Protection".

 $F = 220 \text{ C A}^{0.5}$ = the required fire flow in litres per minute

C = coefficient related to the type of construction = 1.5 Wood Frame Construction

A = total floor area (all storeys excluding basements at least 50% below grade)

Ground Floor	106	sq.m.
2nd Floor	106	
3rd Floor	106	
TOTAL AREA:	318	sq.m.

F = 5,885 L/min

= 6,000 L/min (rounded off to the nearest 1,000 L/min)

-15% Charge for Limited-combustible Occupancy

= 5,100 L/min

0% Reduction to above for no sprinkler protection

= 5,100 L/min

Increase for Separation Exposed Buildings Adjacent Building						Length- Height	
			-	Constuction	Length m	Storeys	Factor
	12%	NE	10.1 to 20m	W-F	6	3	18
	18%	SE	3.1 to 10m	W-F	13	3	39
	8%	SW	20.1 to 30m	W-F	8	2	16
	18%	NW	3.1 to 10m	W-F	13	3	39
Ī	56% Total Increase for Exposure (maximum 75%)						
=	2,856	2,856 L/min Increase					
=	7,956	L/min					
=	8,000 L/min (rounded off to the nearest 1,000 L/min)						
=	133.3	l/s					

GRAY ENGINEERING

Stormwater Management - Grading & Drainage - Storm & Sanitary Sewers - Watermains

700 Long Point Circle Ottawa, Ontario K1T 4E9

613-425-8044 d.gray@dbgrayengieering.com

8-Aug-19

1164 & 1166 Highcroft Dr Ottawa, Ontario

Water Demand

	vvai	CI DCII	iaiiu			
	Number of	Persons				
	Units	Per Unit	Population			
Single-Family Dwelling:	11	3.4	37	-		
		TOTAL:	37			
DAILY AVERAGE	350	litres / pers	son / day			
BAILT AVERVIOL	9.1	I/min	0.2	l/s	2	USgpm
	5.1	1/111111	0.2	1/3		ООЭРП
MAXIMUM DAILY DEMAND	9.2	(Peaking F	actor for a p	onulation o	of 37. Tah	la 3-3 MOE
MAXIMON BAILT BENIAND	3.2	`	idelines for I			
	00.0	U		U		,
	83.8	l/min	1.4	l/s	22	USgpm
MAXIMUM HOURLY DEMAND	13.9	(Peaking F	actor for a p	opulation o	of 37: Tab	le 3-3 MOE
		Design Guidelines for Drinking-Water Systems)				ems)
	126.1	l/min	2.1	l/s	33	USgpm
	120.1	""""		""	30	o o gpini

PRE-CONFIGURATION

DWELLING AT	THE HIGHEST	ELEWATION.
DVV ELLING AT	THETHUSIEST	LLL VALION

Elevation of Water Meter: m ASL 96.64 Finish Floor Elevation: 95.74 m ASL

> Static Pressure at Water Meter 441 kPa MINIMUM HGL: m ASL 64 141.6 psi MAXIMUM HGL: 88 609 kPa 158.8 m ASL psi

DWELLING AT THE LOWEST ELEVATION

Elevation of Water Meter: m ASL 88.96 Finish Floor Elevation: 88.06

m ASL

Static Pressure at Water Meter MINIMUM HGL: 141.6 m ASL 75 516 kPa psi MAXIMUM HGL: 158.8 m ASL 99 psi 685 kPa

POST CONFIGURATION

DWELLING AT THE HIGHEST ELEVATION

Elevation of Water Meter: 96.64 m ASL Finish Floor Elevation: 95.74 m ASL

Static Pressure at Water Meter MINIMUM HGL: 144.6 m ASL 68 470 kPa psi MAXIMUM HGL: 73 kPa 147.7 m ASL psi 501

DWELLING AT THE LOWEST ELEVATION

Elevation of Water Meter: m ASL 88.96 Finish Floor Elevation: 88.06 m ASL

> Static Pressure at Water Meter 546 MINIMUM HGL: 144.6 m ASL 79 psi kPa MAXIMUM HGL: 147.7 m ASL 84 576 kPa psi

BOUNDARY CONDITIONS

Boundary Conditions For: 1164/1166 Highcroft Dr.

Date of Boundary Conditions: 2019-Jan-31

Provided Information:

Scenario	Demand		
	L/min	L/s	
Average Daily Demand	6.0	0.1	
Maximum Daily Demand	72.0	1.2	
Peak Hour	114.0	1.9	
Fire Flow #1 Demand	10,000	166.7	

Number Of Connections: 1

Location:

BOUNDARY CONDITIONS

Results:

<u>Pre</u>

Connection #: 1

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	158.8	100.6
Peak Hour	141.6	76.4
Max Day Plus Fire (10,000) L/min	123.9	51.2

¹Elevation: **87.870 m**

Post

Connection #: 1

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	147.7	85.4
Peak Hour	144.6	80.8
Max Day Plus Fire (10,000) L/min	123.6	51.0

¹Elevation: **87.870 m**

Notes:

- 1) As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:
 - a) If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
 - b) Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Douglas Gray <d.gray@dbgrayengineering.com>

1164 Highcroft Dr. Boundary Conditions Revision.

1 message

Alvey, Harry < Harry. Alvey@ottawa.ca>

Tue, Jan 29, 2019 at 1:47 PM

To: Douglas Gray <d.gray@dbgrayengineering.com>

Cc: "Whittaker, Damien" < Damien. Whittaker@ottawa.ca>, "McCormick, Sarah" < sarah.mccormick@ottawa.ca>

Good Afternoon Doug,

Enclosed is the revised Boundary Conditions based on your latest information. In addition, I received a correction as to what our Asset Management Group meant by "Pre" and "Post". The following is their explanation of the use of these terms and how it applies to this project:

The "pre" Boundary condition provided reflects the current water pressure zone HGLs and pressures for BARR (which is where the current development is located). The "post" zone reflects the future pressure zone configuration, which will be "35W" and the pressure and HGL, will improve significantly due to a new pump station that will be installed, and changes to the boundaries of the pressure zone "BARR". Currently, we have both scenarios modelled and, for future developments requesting boundary conditions, we give HGLs and Pressures for both scenarios, because we still do not know when the configuration will take place.

The consultant is generally asked to design to the "pre" configured pressure zone HGLs and pressures for conservative design.

There are several administrative steps that are being negotiated with stakeholders in that area that is delaying the installation of the new pump station and the reconfiguration of the pressure zone.

Harry

Harry R. Alvey, P.E., P.Eng.

Project Manager

Development Review Rural Branch

Services de la planification, de l'infrastructure et du développement économique

City of Ottawa | Ville d'Ottawa

613.580.2424 ext./poste 28103

ottawa.ca/planning / ottawa.ca/urbanisme

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

1164, 1166 Highcroft Dr_Rev1.docx 198K

1164-1166 Higcroft Drive Ottawa, Ontario

EPANET HYDRAULIC MODELLING RESULTS

MAX DAY + FIRE FLOW: 168.2 l/s - HGL: 123.6

200mm WM in Highcroft Dr - Fire Flow at Private Hydrant

Node ID	Demand	Head	Elevation		Pressure	
Node ID	l/s	m	m	m	psi	kPa
1 Reservoir (Connection to 400 WM)	-168.2	123.60	87.81	35.79	50.9	351
2	0.0	110.14	90.64	19.50	27.7	191
3 Fire Hydrant 1	167.5	102.34	90.35	11.99	17.0	118
4 Fire Hydrant 2	0.7	110.34	95.91	14.43	20.5	141

Link ID	Diameter	Length	Roughness	Loss	Flow	Velocity
LITIK ID	mm	m	Rougilless	Coeff.	l/s	m/s
Pipe 1	200	60.2	110	2.40	168.20	5.35
Pipe 2	200	27.7	110	2.25	167.50	5.33
Pipe 3	200	52.5	110	0.60	0.70	0.02

200mm WM in Highcroft Dr - Fire Flow at Municipal Hydrant

Node ID	Demand	Head	Elevation		Pressure	
Node ID	l/s	m	m	m	psi	kPa
1 Reservoir (Connection to 400 WM)	-168.2	123.60	87.81	35.79	50.9	351
2	0.0	110.14	90.64	19.50	27.7	191
3 Fire Hydrant 1	0.8	110.14	90.35	19.79	28.1	194
4 Fire Hydrant 2	167.4	100.67	95.91	4.76	6.8	47

Link ID	Diameter	Length	Roughness	Loss	Flow	Velocity
LIIIK ID	mm	m	Rougilless	Coeff.	l/s	m/s
Pipe 1	200	60.2	110	2.40	168.20	5.35
Pipe 2	200	27.7	110	2.25	0.80	0.03
Pipe 3	200	52.5	110	0.60	167.40	5.33

250mm WM in Highcroft Dr - Fire Flow at Private Hydrant

23011111 VVIVI III TIIGIICIOIL DI - TIIE I	iow at i i	Ivale Hy	uranı			
Node ID	Demand	Head	Elevation		Pressure	
Node ID	l/s	m	m	m	psi	kPa
1 Reservoir (Connection to 400 WM)	-168.2	123.60	87.81	35.79	50.9	351
2	0.0	118.81	90.64	28.17	40.1	276
3 Fire Hydrant 1	167.5	111.01	90.35	20.66	29.4	203
4 Fire Hydrant 2	0.7	118.81	95.91	22.90	32.6	225

Link ID	Diameter	Length	Daughnasa	Loss	Flow	Velocity
LITIK ID	mm	m	Roughness	Coeff.	l/s	m/s
Pipe 1	250	60.2	110	2.40	168.20	3.43
Pipe 2	200	27.7	110	2.25	167.50	5.33
Pipe 3	250	52.5	110	0.60	0.70	0.01

250mm WM in Highcroft Dr - Fire Flow at Municipal Hydrant

Node ID	Demand	Head	Elevation		Pressure	
Node ID	l/s	m	m	m	psi	kPa
1 Reservoir (Connection to 400 WM)	-168.2	123.60	87.81	35.79	50.9	351
2	0.0	118.81	90.64	28.17	40.1	276
3 Fire Hydrant 1	167.5	118.81	90.35	28.46	40.5	279
4 Fire Hydrant 2	0.7	115.55	95.91	19.64	27.9	193

Link ID	Diameter	Length	Doughnood	Loss	Flow	Velocity
LITIK ID	mm	m	Roughness	Coeff.	l/s	m/s
Pipe 1	250	60.2	110	2.40	168.20	3.43
Pipe 2	200	27.7	110	2.25	0.80	0.03
Pipe 3	250	52.5	110	0.60	167.40	3.41

EPANET 2

Network Table - Nodes

	Elevation	Base Demand	Demand	Head	Pressure
Node ID	m	LPS	LPS	m	m
Junc 2	90.64	0	0.00	110.14	19.50
Junc 3	90.35	167.5	167.50	102.34	11.99
Junc 4	95.91	0.7	0.70	110.14	14.23
Resvr 1	123.6	#N/A	-168.20	123.60	0.00

Network Table - Links

Link ID	Length m	Diameter mm	Roughness	Flow	Velocity m/s
Pipe 1	60.2	200	110	168.20	5.35
Pipe 2	27.7	200	110	167.50	5.33
Pipe 3	52.5	200	110	0.70	0.02

Network Table - Nodes

£	tion	Base Demand		Head	Pressure
Node ID	m	LPS	LPS	m	m
Junc 2	90.64	0	0.00	110.14	19.50
Junc 3	90.35	8.	0.80	110.14	19.79
Junc 4	95.91	167.4	167.40	100.67	4.76
Resvr 1	123.6	#N/A	-168.20	123.60	0.00

Network Table - Links

Link ID	Length m	Diameter mm	Roughness	Flow	Velocity m/s
Pipe 1	60.2	200	110	168.20	5.35
Pipe 2	27.7	200	110	08.0	0.03
Pipe 3	52.5	200	110	167.40	5.33

EPANET 2

Network Table - Nodes

Ologo ID	Elevation	Base Demand	Demand	Head	Pressure
June 2	90.64		0.00	118.81	28.17
Junc 3	90.35	167.5	167.50	111.01	20.66
Junc 4	95.91	0.7	0.70	118.81	22.90
Resvr 1	123.6	#N/A	-168.20	123.60	00.00

Network Table - Links

Link ID	Length	Diameter	Roughness	Flow	Velocity m/s
Pipe 1	60.2	250	110	168.20	3.43
Pipe 2	27.7	200	110	167.50	5.33
Pipe 3	52.5	250	110	0.70	0.01

Network Table - Nodes

}	Elevation	Base Demand		Head	Pressure
Node ID	m	LPS	LPS	m	m
Junc 2	90.64	0	0.00	118.81	28.17
Junc 3	90.35	8.	0.80	118.81	28.46
Junc 4	95.91	167.4	167.40	115.55	19.64
Resvr 1	123.6	#N/A	-168.20	123.60	0.00

EPANET 2

Network Table - Links

Link ID	Length	Diameter	Roughness	Flow	Velocity m/s
Pipe 1	60.2	250	110	168.20	3.43
Pipe 2	27.7	200	110	08.0	0.03
Pipe 3	52.5	250	110	167.40	3.41

Stormwater Management - Grading & Drainage - Storm & Sanitary Severs - Watermains

700 Long Point Circle Ottawa, Ontario K1T 4E9

613-425-8044 d.gray@dbgrayengineering.com

SANITARY SEWER DESIGN FORM

Average Daily Flows:
Residential: 280 I / capita / day
Commercial: 28,000 I / ha / day
Instituational: 28,000 I / ha / day
Light industrial: 35,000 I / ha / day
Heavy industrial: 55,000 I / ha / day

PROJECT: 1164-1166 Highcroft Designed By: DBG Harmon Correction Factor 0.8
Commercial & Institutional: 1.5
Commercial & Institutional: 1.5
Commercial & Institutional: 1.5
Commercial & Institutional: 1.5
Commercial & Pacture & Pactur Peaking Factor: Residential (Harmon Equation): P.F. = $1+\frac{14}{4+p^{0.5}}$

1 of 1 8-Aug-19 Infiltration Allowance: 0.33 I/s/ha

				_	_	_	_	_	_	_	_	_,	_		_	_	_	_		_	_	_						_	_		_	_	_	_	_	_	_	_	_			
	COMMENTS																																									
	Ī	Т	Katio O/Ofull	i		0.01	0.01	0.02	0.02		0.00		0.04	0.04																												
			Velocity (m/s)	+		0.85	0.85	09.0	09.0		2.98		09.0	0.60																												
			Capacity (I/s))		27.59	27.59	19.36	19.36		82.96		19.36	19.36																												
DATA			(m)			Н	22.1	21.6	12.9		48.8	\dashv	\dashv	18.4																												
SEWER DATA		- 1-	Slope (%)	(01)		0.65	0.65	0.32	0.32		8.00		0.32	0.32																												
		:	Dia. Nom.			200	200	200	200		200		200	200																												
			Dia. Actual L			203.2	203.2	203.2	203		203.2		203.2	203.2																												
			l ype of D	2		PVC	PVC	⊢	PVC		PVC	\dashv	-	PVC																												1
	Tota	-1.	s/			0.29	0.31	0.32	0.33		0.27		4	0.72																												
9	lutij-	tration	w //			0.07	0.10	0.11	0.12		0.10		0.33	0.33																												
Cumulative		Flow	S			0.21	0.21		0.21		0.18	- 1		0.39																												
-		Area	ģ	!		0.2245	0.2951	0.3260	0.3542		0.29		1.0042	1.0042																												
	a	Flow	- 1			0	0	0	0		0		0	0																												
ion	Non-Residentia		Factor	î																													_							_		
Section	Non	Area Flow	+	-		0	0	0	0		0		0	0																			_							_		
ive	tia		Factor			3.2	3.2	3.2	3.2		3.2	4	4	3.2						-	-												-							-		+
Cumulative	Residential		G			20.4	20.4	20.4	20.4		17.0	4	_	37.4																												1
	Resid-	ential		!		0.2245	0.0706	0.0309	0.028		0.29	_	0.36	0																												
-	artment	(3 Bed.)	No. of Units																																							
-	ŧ	(2 Bed.) (No. of Units N																														1							1		1
-	nent Apa	d.) (2	1.4 ppu	+																													-							-	1	
Section	nt Apartm	(1 Bed.)	s No. of Units																																							
Sec	Apartmer	(average)	ppu = 1.8 ppu = 1.4																																							
	Duplex/		No. of Units																																							
L	>	nhouse	ppu = 2.7 ppu = 2.3																																							
l h		ly .																															-							-		
	Single	Fam	No. of Units			2 6	3 0	4 0	5 0		5 5			0	_	L																										
	z	ŀ	2				MH-SA.3	MH-SA.4	MH-SA.5		MH-SA.5		MH-SA.7	_	Manotck	Main St																										
	LOCATION		FROM			MHSA.1	MH-SA.2	MH-SA.3	MH-SA.4		MH-SA.6		MH-SA.5	MH-SA.7																												
	_	L	SIREE			Ė	Ē	Ī	Ē			1	_							l	l												1						H	1	1	1
		I	1) [I	ш	_	<u> </u>	<u> </u>	Ш		_1			<u> </u>	<u> </u>	_	_	_	_	_	<u> </u>	_	_	_	_	<u> </u>	ш		_									<u> </u>	_	_1	_

STORMWATER MANAGEMENT CALCULATIONS

The orifice calculations are based on the following formula:

 $Q = C_d \times A_o \sqrt{2gh} \times 1000$

where:

Q = flowrate in litres per second

C_d = coefficient of discharge

 A_o = orifice area in sq.m.

g = 9.81 m/s2

h = head above orifice in meters

Summary Tables

ONE HUND	RED YE	AR EVE	NT	
Drainage Area	Maximum Allowable Release Rate (L/s)	Maximum Release Rate (L/s)	Maximum Volume Required (cu.m)	Maximum Volume Stored (cu.m)
AREA I (Uncontrolled Flow Off Site)	-	7.27	-	-
AREA II	-	16.68	23.30	23.30
AREA III	-	30.29	26.40	26.40
TOTAL	64.71	54.24	49.70	49.70

FIVE	YEAR E	VENT		
Drainage Area	Maximum Allowable Release Rate (L/s)	Maximum Release Rate (L/s)	Maximum Volume Required (cu.m)	Maximum Volume Stored (cu.m)
AREA I (Uncontrolled Flow Off Site)	-	3.78	-	-
AREA II	-	11.11	10.39	10.39
AREA III	-	15.80	16.31	16.31
TOTAL	30.68	30.68	26.70	26.70

STORM WATER MANAGEMENT CALCULATIONS Rational Method

ONE HUNDRED YEAR EVENT

(Calculations Assuming No Off Site Drainage)

Pre-Development Conditions

100 Year Event

Roof Area:	264	sq.m	1.00
Asphalt/Concrete Area:	392	sq.m	1.00
Gravel Area:	0	sq.m	0.875
Landscaped Area:	2886	sq.m	0.25
_			
Total Catchment Area:	3542	sq.m	0.39

Airport Formula $Tc = \underbrace{ 3.26 (1.1 - C) (L)^{1/2}}_{Sw^{0.33}} min$

Runoff Coefficient (C): 0.39 see above
Sheet Flow Distance (L): 98 m
Slope of Land (Sw): 9 %

Time of Concentration (Sheet Flow): 11.1 min

Area (A): 3542 sq.m Time of Concentration: 11.1 min

Rainfall Intensity (i): 169 mm/hr (100 year event)

Runoff Coeficient (C): 0.39

Maximum Allowable 100 Year Release Rate (2.78AiC): 64.71 L/s

DRAINAGE AREA I (Uncontrolled Flow Off Site)

(ONE HUNDRED YEAR EVENT)

Roof Area:	0	sq.m	1.00
Asphalt/Concrete Area:	132	sq.m	1.00
Gravel Area:	0	sq.m	0.875
Landscaped Area:	58	sq.m	0.25
_			
Total Catchment Area:	190	sq.m	0.77
Area (A):	190	sq.m	
Time of Concentration:	10	min	
Rainfall Intensity (i):	179	mm/hr (100 y	ear event)
Runoff Coeficient (C):	0.77		
Flow Rate (2 78AiC):	7 27	I/s	

DRAINAGE AREA II

(ONE HUNDRED YEAR EVENT)

Maximum ICD Release Rate:

	Roof Area	a: 293	sq.m	1.00			
Asphalt/Cor	crete Area	i: 367	sq.m	1.00			
G	Gravel Area	a: 0	sq.m	0.875			
Landso	aped Area	ı: 668	sq.m	0.25	_		
Total Catch	nment Area	a: 1328	sq.m	0.62			
Water Elevation:	89.05	m					
Invert of Outlet Pipe:	87.06	m					
Centroid of ICD Orifice: (ICD in Outlet Pipe of CB/MH-3)	87.10	m					
Head:	1.95	m					
Orifice Diameter:	75	mm					
Orifice Area:	4418	sq.mm			Storage in	Cistern 1	
Coefficient of Discharge:	0.61			Area (sq.m) 12	Depth (m) 1.96	Vo 23.30	olume _cu.m

Maximum Overflow Pipe Release Rate:	0.00	_L/s	Achieved Volume:	23.30	cu.m
Total Maximum Release Rate:	16.68	L/s	Maximum Volume Required:	23.30	cu.m

16.68

L/s

				Overflow			
			50% ICD	Pipe	Total		
			Release	Release	Release	Stored	Stored
Time	i	2.78AiC	Rate	Rate	Rate	Rate	Volume
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)	(cu.m)
5	243	55.80	8.34	0.00	8.34	47.46	14.24
10	179	41.05	8.34	0.00	8.34	32.71	19.63
15	143	32.85	8.34	0.00	8.34	24.51	22.06
20	120	27.58	8.34	0.00	8.34	19.24	23.09
25	104	23.88	8.34	0.00	8.34	15.54	23.30
30	92	21.12	8.34	0.00	8.34	12.78	23.01
35	83	18.99	8.34	0.00	8.34	10.65	22.36
40	75	17.28	8.34	0.00	8.34	8.94	21.45
45	69	15.88	8.34	0.00	8.34	7.54	20.35
50	64	14.70	8.34	0.00	8.34	6.36	19.09
55	60	13.71	8.34	0.00	8.34	5.37	17.72
60	56	12.85	8.34	0.00	8.34	4.51	16.24
65	53	12.10	8.34	0.00	8.34	3.76	14.68
70	50	11.45	8.34	0.00	8.34	3.11	13.05
75	47	10.86	8.34	0.00	8.34	2.52	11.36
80	45	10.34	8.34	0.00	8.34	2.00	9.62
85	43	9.88	8.34	0.00	8.34	1.54	7.83
90	41	9.45	8.34	0.00	8.34	1.11	6.01
95	39	9.07	8.34	0.00	8.34	0.73	4.14
100	38	8.71	8.34	0.00	8.34	0.37	2.25
105	36	8.39	8.34	0.00	8.34	0.05	0.32
110	35	8.09	8.09	0.00	8.09	0.00	0.00
115	34	7.82	7.82	0.00	7.82	0.00	0.00
120	33	7.56	7.56	0.00	7.56	0.00	0.00
125	32	7.33	7.33	0.00	7.33	0.00	0.00
130	31	7.10	7.10	0.00	7.10	0.00	0.00
135	30	6.90	6.90	0.00	6.90	0.00	0.00
140	29	6.70	6.70	0.00	6.70	0.00	0.00
145	28	6.52	6.52	0.00	6.52	0.00	0.00
150	28	6.35	6.35	0.00	6.35	0.00	0.00
180	24	5.50	5.50	0.00	5.50	0.00	0.00
210	21	4.86	4.86	0.00	4.86	0.00	0.00
240	19	4.37	4.37	0.00	4.37	0.00	0.00
270	17	3.98	3.98	0.00	3.98	0.00	0.00
300	16	3.65	3.65	0.00	3.65	0.00	0.00
330	15	3.38	3.38	0.00	3.38	0.00	0.00
360	14	3.15	3.4 5	0.00	3.15	0.00	0.00

DRAINAGE AREA III

(ONE HUNDRED YEAR EVENT)

Total Maximum Release Rate:

30.29

L/s

	Roof Area	a: 716	sq.m	1.00			
Asphalt/Con	a: 278	sq.m	1.00				
G	ravel Area	a: 0	sq.m	0.875			
Landso	aped Area	i: 1030	sq.m	0.25			
	•				•		
Total Catch	ment Area	a: 2024	sq.m	0.62			
Water Elevation:	87.59	m					
Invert of Outlet Pipe:	86.38	m					
Centroid of ICD Orifice: (ICD in Outlet Pipe of CB/MH-7)	86.43	m					
Head:	1.16	m					
Orifice Diameter:	93	mm					
Orifice Area:	6799	sq.mm			Storage in Cis	terns 2 & 3	3
Coefficient of Discharge:	0.61			Area (sq.m)	Depth (m)		olume
	10.00	. ,		12	1.11	26.40	_cu.m
Maximum ICD Release Rate:	19.82	L/s					
Maximum Overflow Pipe Release Rate:	10.47	_L/s		Achie	eved Volume:	26.40	cu.m

Maximum Volume Required:

26.40

cu.m

				Overflow				
			50% ICD	Pipe	Total	a		
-		0.704:0	Release	Release	Release	Stored	Stored	
Time	i	2.78AiC	Rate	Rate	Rate	Rate	Volume	
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)	(cu.m)	
5	243	84.44	9.91	0.00	9.91	74.53	22.36	
10	179	62.12	9.91	8.21	18.12	44.00	26.40	
15	143	49.72	9.91	10.47	20.38	29.33	26.40	
20	120	41.73	9.91	9.82	19.73	22.00	26.40	
25	104	36.13	9.91	8.62	18.53	17.60	26.40	
30	92	31.96	9.91	7.39	17.30	14.67	26.40	
35	83	28.73	9.91	6.25	16.16	12.57	26.40	
40	75	26.14	9.91	5.24	15.14	11.00	26.40	
45	69	24.02	9.91	4.34	14.25	9.78	26.40	
50	64	22.25	9.91	3.54	13.45	8.80	26.40	
55	60	20.74	9.91	2.84	12.74	8.00	26.40	
60	56	19.45	9.91	2.20	12.11	7.33	26.40	
65	53	18.32	9.91	1.64	11.55	6.77	26.40	
70	50	17.32	9.91	1.13	11.04	6.29	26.40	
75	47	16.44	9.91	0.67	10.57	5.87	26.40	
80	45	15.65	9.91	0.24	10.15	5.50	26.40	
85	43	14.94	9.91	0.00	9.91	5.04	25.68	
90	41	14.30	9.91	0.00	9.91	4.40	23.73	
95	39	13.72	9.91	0.00	9.91	3.81	21.73	
100	38	13.19	9.91	0.00	9.91	3.28	19.67	
105	36	12.70	9.91	0.00	9.91	2.79	17.58	
110	35	12.25	9.91	0.00	9.91	2.34	15.44	
115	34	11.83	9.91	0.00	9.91	1.92	13.27	
120	33	11.44	9.91	0.00	9.91	1.54	11.06	
125	32	11.09	9.91	0.00	9.91	1.18	8.83	
130	31	10.75	9.91	0.00	9.91	0.84	6.57	
135	30	10.44	9.91	0.00	9.91	0.53	4.28	
140	29	10.14	9.91	0.00	9.91	0.23	1.97	
145	28	9.87	9.87	0.00	9.87	0.00	0.00	
150	28	9.61	9.61	0.00	9.61	0.00	0.00	
180	24	8.32	8.32	0.00	8.32	0.00	0.00	
210	21	7.36	7.36	0.00	7.36	0.00	0.00	
240	19	6.61	6.61	0.00	6.61	0.00	0.00	
270	17	6.02	6.02	0.00	6.02	0.00	0.00	
300	16	5.53	5.53	0.00	5.53	0.00	0.00	
330	15	5.12	5.12	0.00	5.12	0.00	0.00	
360	14	4.77	43. 1 7	0.00	4.77	0.00	0.00	

DRAINAGE AREA II

Total Maximum Release Rate: 35.52 L/s

(ONE HUNDRED YEAR EVENT- Calculations Including Off Site Drainage)

Asphalt/Con G	Roof Area: Asphalt/Concrete Area: Gravel Area: Landscaped Area:			1.00 1.00 0.875 0.25			
Total Catch	ment Area	2903	sq.m	0.50			
Water Elevation:	89.48	m					
Invert of Outlet Pipe:	87.06	m					
Centroid of ICD Orifice: (ICD in Outlet Pipe of CB/MH-3)	87.10	m					
Head:	2.38	m					
Orifice Diameter:	75	mm					
Orifice Area:	4418	sq.mm			Storage in	Cistern 1	
Coefficient of Discharge:	0.61			Area (sq.m) 12	Depth (m) 2.39	Vo 28.42	olume cu.m
Maximum ICD Release Rate:	18.43	L/s				202	
Maximum Overflow Pipe Release Rate:	17.09	_L/s		Achie	ved Volume:	28.42	cu.m

Maximum Volume Required: 28.42 cu.m

Overflow								
			50% ICD	Pipe	Total			
			Release	Release	Release	Stored	Stored	
Time	i	2.78AiC	Rate	Rate	Rate	Rate	Volume	
(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)	(cu.m)	
5	243	98.31	9.21	0.00	9.21	89.09	26.73	
10	179	72.32	9.21	15.75	24.96	47.36	28.42	
15	143	57.88	9.21	17.09	26.30	31.58	28.42	
20	120	48.59	9.21	15.69	24.90	23.68	28.42	
25	104	42.06	9.21	13.91	23.12	18.95	28.42	
30	92	37.21	9.21	12.21	21.42	15.79	28.42	
35	83	33.45	9.21	10.70	19.92	13.53	28.42	
40	75	30.44	9.21	9.38	18.60	11.84	28.42	
45	69	27.97	9.21	8.23	17.44	10.53	28.42	
50	64	25.90	9.21	7.22	16.43	9.47	28.42	
55	60	24.15	9.21	6.33	15.54	8.61	28.42	
60	56	22.64	9.21	5.53	14.75	7.89	28.42	
65	53	21.32	9.21	4.83	14.04	7.29	28.42	
70	50	20.17	9.21	4.19	13.40	6.77	28.42	
75	47	19.14	9.21	3.61	12.83	6.32	28.42	
80	45	18.22	9.21	3.09	12.30	5.92	28.42	
85	43	17.40	9.21	2.61	11.83	5.57	28.42	
90	41	16.65	9.21	2.18	11.39	5.26	28.42	
95	39	15.97	9.21	1.77	10.99	4.99	28.42	
100	38	15.35	9.21	1.40	10.62	4.74	28.42	
105	36	14.78	9.21	1.06	10.27	4.51	28.42	
110	35	14.26	9.21	0.74	9.95	4.31	28.42	
115	34	13.77	9.21	0.44	9.66	4.12	28.42	
120	33	13.32	9.21	0.16	9.38	3.95	28.42	
125	32	12.91	9.21	0.00	9.21	3.69	27.70	
130	31	12.52	9.21	0.00	9.21	3.30	25.76	
135	30	12.15	9.21	0.00	9.21	2.94	23.79	
140	29	11.81	9.21	0.00	9.21	2.60	21.80	
145	28	11.49	9.21	0.00	9.21	2.27	19.78	
150	28	11.18	9.21	0.00	9.21	1.97	17.74	
180	24	9.68	9.21	0.00	9.21	0.47	5.07	
210	21	8.56	8.56	0.00	8.56	0.00	0.00	
240	19	7.70	7.70	0.00	7.70	0.00	0.00	
270	17	7.01	7.01	0.00	7.01	0.00	0.00	
300	16	6.44	6.44	0.00	6.44	0.00	0.00	
330	15	5.96	5.96	0.00	5.96	0.00	0.00	
360	14	5.56	<i>5</i> 2. 5 6	0.00	5.56	0.00	0.00	

FIVE YEAR EVENT

(Calculations Assuming No Off Site Drainage)

Pre-development Conditions

5 Year Event

Roof Area:	264	sq.m	0.90
Asphalt/Concrete Area:	392	sq.m	0.90
Gravel Area:	0	sq.m	0.70
Landscaped Area:	2886	sq.m	0.20
Total Catchment Area:	3542	sq.m	0.33

Airport Formula $Tc = \frac{3.26 (1.1 - C) (L)^{1/2}}{Sw^{0.33}} min$

Runoff Coefficient (C): 0.33 see above
Sheet Flow Distance (L): 98 m
Slope of Land (Sw): 9 %

Time of Concentration (Sheet Flow): 12.0 min

Area (A): 3542 sq.m Time of Concentration: 12.0 min

Rainfall Intensity (i): 95 mm/hr (5 year event)

Runoff Coeficient (C): 0.33

Maximum Allowable 5 Year Release Rate (2.78AiC): 30.68 L/s

DRAINAGE AREA I (Uncontrolled Flow Off Site)

(FIVE YEAR EVENT)

Roof Area: Asphalt/Concrete Area: Gravel Area: Landscaped Area:	0 132 0 58	sq.m sq.m sq.m sq.m	0.90 0.90 0.70 0.20
Total Catchment Area:	190	sq.m	0.69
Area (A): Time of Concentration: Rainfall Intensity (i): Runoff Coeficient (C):	190 10 104 0.69	sq.m min mm/hr (5 ye	ar event)
Flow Rate (2.78AiC):	3.78	L/s	

DRAINAGE AREA II

(FIVE YEAR EVENT)

Coefficient of Discharge:

		Roof Area	a: 293	sq.m	0.90		
	Asphalt/Con	crete Area	i: 367	sq.m	0.90		
	G	ravel Area	a: 0	sq.m	0.70		
	Landso	aped Area	a: 668	sq.m	0.20		
	Total Catch	ment Area	n: 1328	sq.m	0.55		
	Water Elevation:	87.96	m				
	Invert of Outlet Pipe:	87.06	m				
(IC	Centroid of ICD Orifice: CD in Outlet Pipe of CB/MH-3)	87.10	m				
	Head:	0.87	m				
	Orifice Diameter:	75	mm				
	Orifice Area:	4418	sq.mm		A	Storage in C	istern 1
	Coefficient of Discharge:	0.61			Area	Depth (m)	Volume

(sq.m)

12

(m)

0.87

10.39 cu.m

Maximum ICD Release Rate: 11.11 L/s

Maximum Overflow Pipe Release Rate: 0.00 L/s Achieved Volume: 10.39 cu.m

0.61

Total Maximum Release Rate: 11.11 L/s Maximum Volume Required: 10.39 cu.m

				Overflow			
			50% ICD	Pipe	Total		
			Release	Release	Release	Stored	Stored
Time	i	2.78AiC	Rate	Rate	Rate	Rate	Volume
min	mm/hr	L/s	L/s	(L/s)	(L/s)	L/s	cu.m
5	141	28.56	5.55	0.00	5.55	23.00	6.90
10	104	21.08	5.55	0.00	5.55	15.52	9.31
15	84	16.90	5.55	0.00	5.55	11.35	10.21
20	70	14.21	5.55	0.00	5.55	8.66	10.39
25	61	12.32	5.55	0.00	5.55	6.76	10.14
30	54	10.91	5.55	0.00	5.55	5.35	9.64
35	49	9.81	5.55	0.00	5.55	4.26	8.94
40	44	8.94	5.55	0.00	5.55	3.38	8.12
45	41	8.22	5.55	0.00	5.55	2.66	7.19
50	38	7.62	5.55	0.00	5.55	2.06	6.19
55	35	7.10	5.55	0.00	5.55	1.55	5.12
60	33	6.66	5.55	0.00	5.55	1.11	3.99
65	31	6.28	5.55	0.00	5.55	0.72	2.83
70	29	5.94	5.55	0.00	5.55	0.39	1.62
75	28	5.64	5.55	0.00	5.55	0.09	0.39
80	27	5.37	5.37	0.00	5.37	0.00	0.00
85	25	5.13	5.13	0.00	5.13	0.00	0.00
90	24	4.91	4.91	0.00	4.91	0.00	0.00
95	23	4.71	4.71	0.00	4.71	0.00	0.00
100	22	4.53	4.53	0.00	4.53	0.00	0.00
105	22	4.37	4.37	0.00	4.37	0.00	0.00
110	21	4.21	4.21	0.00	4.21	0.00	0.00
115	20	4.07	4.07	0.00	4.07	0.00	0.00
120	19	3.94	3.94	0.00	3.94	0.00	0.00
125	19	3.82	3.82	0.00	3.82	0.00	0.00
130	18	3.70	3.70	0.00	3.70	0.00	0.00
135	18	3.59	3.59	0.00	3.59	0.00	0.00
140	17	3.49	3.49	0.00	3.49	0.00	0.00
145	17	3.40	3.40	0.00	3.40	0.00	0.00
150	16	3.31	3.31	0.00	3.31	0.00	0.00
180	14	2.87	2.87	0.00	2.87	0.00	0.00
210	13	2.54	2.54	0.00	2.54	0.00	0.00
240	11	2.28	2.28	0.00	2.28	0.00	0.00
270	10	2.08	2.08	0.00	2.08	0.00	0.00
300	9	1.91	1.91	0.00	1.91	0.00	0.00
330	9	1.77	1.77	0.00	1.77	0.00	0.00
360	8	1.65	13.8 5	0.00	1.65	0.00	0.00

DRAINAGE AREA III

(FIVE YEAR EVENT)

(FIVE TEAT	K EVENI)							
		D (A	740		0.00			
		Roof Area:		sq.m	0.90			
	•	ncrete Area:	278	sq.m	0.90			
	(Gravel Area:	0	sq.m	0.70			
	Lands	caped Area:	1030	sq.m	0.20			
	Total Catc	hment Area:	2024	sq.m	0.54			
W	/ater Elevation:	87.17	m					
Invert	of Outlet Pipe:	86.38	m					
Centroid (ICD in Outlet Pip	of ICD Orifice: be of CB/MH-7)	86.43	m					
	Head:	0.74	m					
Or	rifice Diameter:	93	mm					
	Orifice Area:	6799	sq.mm			Storage in Cis	eterne 2 & 3	2
	Office Area.	0199	5q.11111		Area	Depth		
Coefficien	t of Discharge:	0.61			(sq.m)	(m)	Vo	lume
					12	0.69	16.31	cu.m
Maximum ICD	Release Rate:	15.80	L/s			_		
Maximum Overflow Pipe	Release Rate:	0.00	L/s		Achie	ved Volume:	16.31	cu.m
Total Maximum	Release Rate:	15.80	L/s		Maximum Volun	ne Required:	16.31	cu.m
			50% ICD	Weir	Total			
			Release	Release	Release	Stored	Stored	
Time	i	2.78AiC	Rate	Rate	Rate	Rate	Volume	
min	mm/hr	L/s	L/s	(L/s)	(L/s)	L/s	cu.m	
5	141	43.20	7.90	0.00	7.90	35.30	10.59	
10	104	31.88	7.90	0.00	7.90	23.98	14.39	
15	84	25.57	7.90	0.00	7.90	17.67	15.90	
20	70	21.49	7.90	0.00	7.90	13.60	16.31	
25	61	18.63	7.90	0.00	7.90	10.73	16.10	
30	54	16.50	7.90	0.00	7.90	8.60	15.48	
35	49	14.84	7.90	0.00	7.90	6.95	14.59	
40	44	13.52	7.90	0.00	7.90	5.62	13.49	
45	41	12.43	7.90	0.00	7.90	4.53	12.24	
50	38	11.52	7.90	0.00	7.90	3.62	10.87	
55	35	10.75	7.90	0.00	7.90	2.85	9.40	
60	33	10.08	7.90	0.00	7.90	2.18	7.85	
65	31	9.50	7.90	0.00	7.90	1.60	6.24	
70	29	8.99	7.90	0.00	7.90	1.09	4.57	
75	28	8.53	7.90	0.00	7.90	0.63	2.85	
80	27	8.13	7.90	0.00	7.90	0.23	1.10	
85	25	7.76	7.76	0.00	7.76	0.23	0.00	
90	24	7.70	7.70	0.00	7.70	0.00	0.00	
95	23	7.13	7.13	0.00	7.13	0.00	0.00	
100	22	6.86	6.86	0.00	6.86	0.00	0.00	
105	22	6.60	6.60	0.00	6.60	0.00	0.00	
110	21	6.37	6.37	0.00	6.37	0.00	0.00	
115	20	6.16	6.16	0.00	6.16	0.00	0.00	
120	19	5.96	5.96	0.00	5.96	0.00	0.00	
125	19	5.77	5.77	0.00	5.77	0.00	0.00	
130	18	5.60	5.60	0.00	5.60	0.00	0.00	
135	18	5.44	5.44	0.00	5.44	0.00	0.00	
140	17	5.28	5.28	0.00	5.28	0.00	0.00	
145	17	5.14	5.14	0.00	5.14	0.00	0.00	
150	16	5.01	5.01	0.00	5.01	0.00	0.00	
180	14	4.34	4.34	0.00	4.34	0.00	0.00	
210	13	3.84	3.84	0.00	3.84	0.00	0.00	
240	11	3.46	3.46	0.00	3.46	0.00	0.00	
270	10	3.15	3.15	0.00	3.15	0.00	0.00	
300	9	2.89	2.89	0.00	2.89	0.00	0.00	
330	9	2.68	2.68	0.00	2.68	0.00	0.00	
360	8	2.50	2.50 39	0.00	2.50	0.00	0.00	
			30					

DRAINAGE AREA II

(FIVE YEAR EVENT - Calculations Including Off Site Drainage)

Roof Area:	493	sq.m	0.90
Asphalt/Concrete Area:	482	sq.m	0.90
Gravel Area:	0	sq.m	0.70
Landscaped Area:	1928	sq.m	0.20
_			

Total Catchment Area: 2903 sq.m 0.44

Water Elevation: 88.80 m

Invert of Outlet Pipe: 87.06 m

Centroid of ICD Orifice: 87.10 m

(ICD in Outlet Pipe of CB/MH-3)

Head: 1.71 m

Orifice Diameter: 75 mm

Orifice Area: 4418 Storage in Cistern 1 sq.mm Area Depth Volume Coefficient of Discharge: 0.61 (sq.m) (m) 12 1.71 20.38 cu.m Maximum ICD Release Rate: 15.59 L/s Maximum Overflow Pipe Release Rate: 0.00 Achieved Volume: 20.38 L/s cu.m

Total Maximum Release Rate: 15.59 L/s Maximum Volume Required: 20.38 cu.m

				Overflow			
			50% ICD	Pipe	Total		
			Release	Release	Release	Stored	Stored
Time	i	2.78AiC	Rate	Rate	Rate	Rate	Volume
min	mm/hr	L/s	L/s	(L/s)	(L/s)	L/s	cu.m
5	141	49.57	7.80	0.00	7.80	41.78	12.53
10	104	36.59	7.80	0.00	7.80	28.79	17.27
15	84	29.34	7.80	0.00	7.80	21.54	19.39
20	70	24.67	7.80	0.00	7.80	16.87	20.25
25	61	21.38	7.80	0.00	7.80	13.59	20.38
30	54	18.94	7.80	0.00	7.80	11.14	20.05
35	49	17.04	7.80	0.00	7.80	9.24	19.40
40	44	15.52	7.80	0.00	7.80	7.72	18.52
45	41	14.27	7.80	0.00	7.80	6.47	17.47
50	38	13.22	7.80	0.00	7.80	5.42	16.27
55	35	12.33	7.80	0.00	7.80	4.54	14.97
60	33	11.57	7.80	0.00	7.80	3.77	13.58
65	31	10.90	7.80	0.00	7.80	3.10	12.11
70	29	10.31	7.80	0.00	7.80	2.52	10.57
75	28	9.79	7.80	0.00	7.80	2.00	8.98
80	27	9.33	7.80	0.00	7.80	1.53	7.35
85	25	8.91	7.80	0.00	7.80	1.11	5.67
90	24	8.53	7.80	0.00	7.80	0.73	3.95
95	23	8.18	7.80	0.00	7.80	0.39	2.20
100	22	7.87	7.80	0.00	7.80	0.07	0.43
105	22	7.58	7.58	0.00	7.58	0.00	0.00
110	21	7.31	7.31	0.00	7.31	0.00	0.00
115	20	7.06	7.06	0.00	7.06	0.00	0.00
120	19	6.84	6.84	0.00	6.84	0.00	0.00
125	19	6.62	6.62	0.00	6.62	0.00	0.00
130	18	6.42	6.42	0.00	6.42	0.00	0.00
135	18	6.24	6.24	0.00	6.24	0.00	0.00
140	17	6.06	6.06	0.00	6.06	0.00	0.00
145	17	5.90	5.90	0.00	5.90	0.00	0.00
150	16	5.75	5.75	0.00	5.75	0.00	0.00
180	14	4.98	4.98	0.00	4.98	0.00	0.00
210	13	4.41	4.41	0.00	4.41	0.00	0.00
240	11	3.97	3.97	0.00	3.97	0.00	0.00
270	10	3.61	3.61	0.00	3.61	0.00	0.00
300	9	3.32	3.32	0.00	3.32	0.00	0.00
330	9	3.08	3.08	0.00	3.08	0.00	0.00
360	8	2.87	2 1 .97	0.00	2.87	0.00	0.00

D.B. GRAY ENGINEERING INC.

Stormwater Management - Grading & Drainage - Storm & Sanitary Sewers - Watermains

700 Long Point Circle Ottawa, Ontario K1T 4E9

613.425-8044 d. gray@dbgrayengineering.com

STORM SEWER COMPUTATION FORM

RATIONAL METHOD Q = 2.78 A I R FIVE YEAR EVENT

n = 0.013

Project: 1164 - 1166 Highcroft Drive

Designed By: DBG

Date: September 27, 2019

		COMMENTS								FLOW THROUGH ICD		FLOW THROUGH ICD				FLOW THROUGH ICD									
1 of 1		Satio Citation	O/Ofull	3	0.00	0.00	0.24	06.0	0.79	0.24	0.78	0.24	0.23	0.14	0.47	0.24	1.00	0.39	1.00	0.40	0.86	0.34			
Page: 1 of		Time of	Flow	(min)	0.11	0.16	60.0	0.13	0.41	0.41	0.42	0.42	0.55	0.12	0.17	0.17	0.36	0.36	0.20	0.20	1.27	1.27			
		Velocity	(m/s))	2.99	2.99	2.99	0.80	0.91	0.91	0.91	0.91	08.0	2.99	0.91	0.91	1.11	1.11	1.08	1.08	08.0	0.80	EET	1.28	
		Capacity Velocity	(I /s)	î	218.5	218.5	151.7	40.7	66.2	66.2	66.2	66.2	40.7	151.7	66.2	66.2	80.7	80.7	78.8	78.8	91.5	91.5	ST IN MANOTICK MAIN STREET	146.3	
	SEWER DATA	l ength	(E)		19.3	29.5	17.0	6.2	22.1	22.1	22.8	22.8	26.6	21.9	9.0	9.0	24.2	24.2	12.9	12.9	6.09	6.09	NOTICK		
	SEW	anolog	3(%)	(2)	4.69	4.69	5.98	0.43	0.43	0.43	0.43	0.43	0.43	5.98	0.43	0.43	0.64	0.64	0.61	0.61	0.25	0.25	ST IN MA	0.64	
		Dia.	Nominal	(mm)	300	300	250	250	300	300	300	300	250	250	300	300	300	300	300	300	375	375	EXISTING 375	375	
		Dia.	Actual	(mm)	304.8	304.8	254.0	254.0	304.8	304.8	304.8	304.8	254.0	254.0	304.8	304.8	304.8	304.8	304.8	304.8	381.0	381.0	EXIS	381.0	
		Tyne of	Pipe o	<u>.</u>	PVC SDR-35	PVC SDR-35	PVC SDR-35	PVC SDR-35	PVC SDR-35	PVC SDR-35	PVC SDR-35	PVC SDR-35	PVC SDR-35	PVC SDR-35	PVC SDR-35	PVC SDR-35	PVC SDR-35	PVC SDR-35	PVC SDR-35	PVC SDR-35	PVC SDR-35	PVC SDR-35			
	Peak	Flow	σį	(s/I)	0.0	0.0	36.6	36.4	52.3	15.6	51.3	15.6	9.4	21.3	31.0	15.8	9.08	31.4	79.2	31.4	78.5	31.4			
	Rainfall	Intensity	:	(mm/hr)	104.2	103.6	104.2	103.7	103.0		101.0		104.2	104.2	101.4		0.66		97.3		96.4				
	Time of	Conc.	(min)		10.00	10.11	10.00	10.09	10.22		10.63		10.00	10.00	10.55		11.05		11.41		11.61				
		Accum.	2.78 A R				0.351	0.351	0.508		0.508		060.0	0.205	0.306		0.814		0.814		0.814				
		Individual	2.78 A R				0.351		0.157				060.0	0.205	0.011										
			Roof	06:0 = ک			0.0493		0.0275				0.0277	0.0439											
	(ha)		Landscape	R = 0.20 R = 0.90			0.1928		0.0364				0.0335	0.0499	0.0196										
	APEA (ha)	ነ !	Gravel La	R = 0.70																					
		-		R = 0.90 R			0.0482		0.0271				0.0009	0.0269											
				70 R	MH-1	MH-10	Cistern 1 (CB/MH-3	MH-4 (WH-8		CB/MH-7 (CB/MH-7 (MH-8		6-HW		MH-10		MH-11				
		LOCATION		FROM	MH-0	MH-1	CB-2 Cis	Cistern 1 CB	CB/MH-3 N		MH-4		CB-5 CB	CB-6 CB	CB/MH-7		MH-8		MH-9 M		MH-10 M				L
		707		STREET FF	2	2)	Cis		41	2))	CB		2		2		Σ				

Douglas Gray <d.gray@dbgrayengineering.com>

RE: 1164/1166 Highcroft Dr

1 message

Eric Lalande <eric.lalande@rvca.ca> To: Douglas Gray <d.gray@dbgrayengineering.com> Cc: Ryan Faith <r.faith@dbgrayengineering.com>

Thu, Sep 19, 2019 at 3:35 PM

Hi Doug,

It would appear that the site drains through overland flow (ditches) to the city's storm sewer on Manotick Main,

We are looking for 80% TSS removal, and defer quantity requirements to the City.

Let me know if you require anything else.

Thank you,

Eric Lalande, MCIP, RPP

Planner, Rideau Valley Conservation Authority

613-692-3571 x1137

From: Douglas Gray <d.gray@dbgrayengineering.com>

Sent: Thursday, September 19, 2019 8:31 AM To: Eric Lalande <eric.lalande@rvca.ca>

Cc: Ryan Faith <r.faith@dbgrayengineering.com>

Subject: 1164/1166 Highcroft Dr

Hi Eric

We are working on a proposed residential development on a 3542 sg.m. property at 1164/1166 Highcroft Dr in Manotick Dr. It will consist of eleven single-family dwellings. The property currently has two single-family dwellings that will be demolished.

Attached is a site plan.

Please comment concerning the stormwater management for this site.

42

Tel: 613-425-8044

Stormwater Management - Grading & Drainage - Storm & Sanitary Sewers - Watermains

700 Long Point Circle

d.gray@dbgrayengineering.com Ottawa, Ontario K1T 4E9

Sizing Report

2733 Kanasita Drive • Suite 111 • Chattanooga, TN 37343 • Phone: (423) 870-8888 • Fax: (423) 826-2112 • www.aquashieldinc.com

-			•		4.	
6	ite	In	ŀΛ	rm	211	On
J	ILC.		ıv		аы	U

Project Name: 1164-1166 Highcroft Drive Site Area (hectacres): 0.3352

Unit Label: OGS 1 Runoff Coeff. : .55

Unit Location: Ottawa, ON Target Removal Efficiency(%): 80% based on NJDEP

Product Recommendation

Aqua-SwirI™ Model	Net Annual TSS Removal Efficiency	Chamber Diameter	Maximu Diamet	m Inside er (mm)	Oil/Debris Storage Capacity	Sediment Storage Capacity
			Offline	BYP ⁵		
AS-2	90.81 %	763 mm.	205 mm.	381 mm.	140 L	0.28 m ³

Rainfall Information

NCDC Station¹: OTTAWA MACDONALD-CARTIER INT'L A Data Range⁴: 261,759 readings taken hourly between 1967 to 2007 (~40 years)

Rainfall Event Range (mm/hre)	Rainfall Interval Point (mm/hre)	Operating Rate (Lps/m^2)	Total Rainfall (%)	Removal Efficiency (%) ²	Relative Efficiency(%)
02.00 - 03.00	02.50	02.81	44.18	95.28	42.10
03.00 - 04.00	03.50	03.93	21.52	93.76	20.18
04.00 - 05.00	04.50	05.06	11.68	92.01	10.75
05.00 - 06.00	05.50	06.18	06.68	90.06	06.02
06.00 - 07.00	06.50	07.30	04.03	87.89	03.54
07.00 - 08.00	07.50	08.43	01.99	85.50	01.70
08.00 - 09.00	08.50	09.55	01.84	82.91	01.53
09.00 - 10.00	09.50	10.67	01.81	80.09	01.45
10.00 - 15.00	12.50	14.04	04.12	70.38	02.90
15.00 - 20.00	17.50	19.66	01.02	49.90	00.51
20.00 - 25.00	22.50	25.28	00.54	24.09	00.13

Total Cumulative Rainfall %: 99,413 Net Annual %:

Sales Agent Information

 Agent Name:
 Dave Kanters
 Phone:
 416-347-2799

 Company Name:
 Soleno
 Fax:

 Address:
 347, 15-75 Bayly St. W.
 E-mail:
 dkanters@soleno.com

Footnotes

- 1. Recorded as hourly precipitation rainfall data (inches), National Climatic Data Center (NCDC)
- 2. Based on Tennessee Tech University laboratory testing of the AquaSwirt™ Model AS-3 for OK-110 silica particles 50-125 microns(Neary, 2002)
- 3. 90% Rainfall Event, calculated as a cumulative percentile of individual events, www.stormwatercenter.net, sizing criteria (Center for Watershed Protection)
- 4. NCDC data may not be consecutive, skipping days, months and/or years in the range of dates.
- 5. The Aqua-Swirl™ Internal Bypass (BYP) provides full treatment of the "first flush," while the peak design storm is diverted and channeled through the main conveyance pipe. Please refer to your local representative for more information.
- 6. When applicable, the performance curve was adjusted via Peclet Scaling to provide estimated sizing per NJDEP PSD (d50 = 67 microns).

90,81

contact Soleno. support on the Aqua-Swirl, please (www.Soleno.com) To receive pricing and/or technical

Email: pantoine@soleno.com Sales Representative Tel: 613-292-4094 Paul Antoine

David Kanters
Engineer, Technical Service
Tel: 416-347-2799

Email: dkanters@soleno.com

Aqua-Swirl High Density Polyethylene (HDPE) Stormwater Treatment System

Projected View **SCALE 1:80**

> Please see accompanied Aqua-Swirl specification notes. See Site Plan for actual system orientation. Approximate dry (pick) weight: 400 kg [800 lbs].

750 mm [30 in] Riser Solflo Max Smooth exterior Adjustable Frame and Cover

> System shall be designed for the following capacities: Swirl Treatment Flow: 31 L/s [1.1 cfs] Swirl Oil/Debris Storage: 140 L [37 gal] Swirl Sediment Storage: 0.28 m³ [10 ft³]

- (H) AS-2 BYP inlet/outlet pipe size ranges from 203 mm [8 in] to 381 mm [15 in].
- (2) AS-2 chamber height may vary from 1321 mm [52 in] to 1524 mm [60 in], depending on inlet/outlet pipe size.
- (ω) maximum of 180°. Orientation may vary from a minimum of 90° to a

Elevation View **SCALE 1:40**

2733 Kanastia Dirve, Suite 111, Chattanooga, TN 37343 Phone (888) 344-9044 Fax (423) 826-2112 www.aquashlektinc.com Aqua-Swirl Concentrator AS-2 BYP CW STD

Standard Detail Rvw. Date

City of Ottawa Servicing Study Checklist

General Content

Executive Summary (for large reports only): not applicable

Date and revision number of the report: see page 1 of Servicing Brief and Stormwater Management Report

Location map and plan showing municipal address, boundary, and layout of proposed development: see drawings C-1 to C-8

Plan showing the site and location of all existing services: see drawings C-1 to C-8

Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere: not applicable

Summary of Pre-consultation Meetings with City and other approval agencies: not available

Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria: not applicable

Statement of objectives and servicing criteria: see page 1 of Servicing Brief and Stormwater Management Report

Identification of existing and proposed infrastructure available in the immediate area: see drawings C-1 to C-8

Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available). see drawings C-1 to C-8

<u>Concept level master grading plan</u> to confirm existing and proposed grades in the development and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths: not applicable

Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts: not applicable

Proposed phasing of the development, if applicable: not applicable

Reference to geotechnical studies and recommendations concerning servicing: see note 1.5 on drawing C-1

All preliminary and formal site plan submissions should have the following information:

Metric scale: includedNorth arrow: included

(including construction North): not included

• Key Plan: included

- Name and contact information of applicant and property owner: not available
- Property limits: included
 - including bearings and dimensions: not included
- Existing and proposed structures and parking areas: included
- Easements, road widening and rights-of-way: included
- Adjacent street names: included

Development Servicing Report: Water

Confirm consistency with Master Servicing Study, if available: not applicable

Availability of public infrastructure to service proposed development: see page 2 of Servicing Brief

Identification of system constraints: see page 2 of Servicing Brief

Confirmation of adequate domestic supply and pressure: see page 2 of Servicing Brief

Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow locations throughout the development: see page 2 of Servicing Brief

Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves: see page 2 of Servicing Brief

Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design: not applicable

Address reliability requirements such as appropriate location of shut-off valves: not applicable

Check on the necessity of a pressure zone boundary modification:. not applicable

Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range: not applicable

Description of the proposed water distribution network, including locations of proposed connections to the existing systems, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions: not applicable

Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation: not applicable

Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines: see page 2 of Servicing Brief

Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference: not applicable

Development Servicing Report: Wastewater

Summary of proposed design criteria: see page 3 of Servicing Brief

(Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure): not applicable

Confirm consistency with Master Servicing Study and /or justification for deviations: not applicable

Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and conditions of sewers: not applicable

Descriptions of existing sanitary sewer available for discharge of wastewater from proposed development: see page 3 of Servicing Brief

Verify available capacity in downstream sanitary sewer and / or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable): not applicable

Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix C) format. see page 15 of Servicing Brief

Description of proposed sewer network including sewers, pumping stations, and forcemains: see page 3 of Servicing Brief

Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality): not applicable

Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development: not applicable

Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity: not applicable

Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding: not applicable

Special considerations such as contamination, corrosive environment etc: not applicable

Development Servicing Report: Stormwater Checklist

Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property): see page 4 of Servicing Brief and Stormwater Management Report

Analysis of available capacity in existing public infrastructure. not applicable

A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern: see drawing C-4

Water quality control objective (e/g/ controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects: see Stormwater Management Report Servicing Brief and Stormwater Management Report

Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements: Servicing Brief and Stormwater Management Report

Descriptions of the references and supporting information.

Set-back from private sewage disposal systems. not applicable

Watercourse and hazard lands setbacks: not applicable

Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed: the pre-application consultation record is not yet been issued

Confirm consistency with sub-waterched and Master Servicing Study, if applicable study exists: not applicable

Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period). see drawings C-1 to C-8 and Servicing Brief and Stormwater Management Report

Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals. see drawings C-1 to C-8 and Servicing Brief and Stormwater Management Report

Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions: see Servicing Brief and Stormwater Management Report

Any proposed diversion of drainage catchment areas from one outlet to another. : not applicable

Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.: not applicable

If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event: not applicable

Identification of potential impacts to receiving watercourses: Servicing Brief and Stormwater Management Report

Identification of municipal drains and related approval requirements. : not applicable

Descriptions of how the conveyance and storage capacity will be achieved for the development: see page 3 of Servicing Brief and Stormwater Management Report

100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading:

Inclusion of hydraulic analysis including hydraulic grade line elevations. : not applicable

Description of approach to erosion and sediment control during construction for the protection of receiving watercourses of drainage corridors: see notes 2.1 to 2.7 on drawing C-3

Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplains elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current: not applicable

Identification of fill constraints related to floodplain and geotechnical investigation. : not applicable

Approval and Permit Requirements: Checklist

The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following:

Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act: see page 19 of Servicing Brief and Stormwater Management Report

Application for Certificate of Approval (CofA) under the Ontario Water Resources Act:

Changes to Municipal Drains. : not applicable

Other permits (National Capital commission, Parks Canada, public Works and Government Services Canada, Ministry of transportation etc.): not applicable

Conclusion Checklist

Clearly stated conclusions and recommendations: see page 7 of Servicing Brief

Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.

All draft and final reports shall be signed and stamped by a professional Engineer registered in **Ontario**: included