

2.4m CONC: S/W SC4

• 0

675mm_ø STM

200 2.0m CONC. S/W SC4

MMH 16

OTOP STIVE SEWER

EX. 610mmø WATERMAINOR

CONCERTING DE AL TING DE AL

OCATION		RT ELEV			TOP COVER (m)	MANHOLE TYPE	
	NORTH	SOUTH 97.410 E X.97.48.3	EAST	WEST			
EX.	<i>EX.97.453</i> 97.520	E X.97.48.3	97.580			1800ø	
MH 1	97.520 97.556		97.580 97.616	98.304	101.530	1520X1830	
MH 2			98.631	98.716	101.640	1500ø	
MH 3		07.630	98.850	99.400	102.200	1200ø	
MH 4		97.630 97.704	98.790 98.855	97.620 97.644	101.550	1520X1830	
MH 5		99.710	00.050	99.480 99.465	101.790	1200ø	
MH 6		98.603	98.250 98.168	98.260 98.178	101.910	1520X1830	
MH 8		98.360 98.334	98.350 98.274	98.580 98.584	101.920	1520X1830	
СВМН 9		100.070 100.069	98.640 98.637	98.860 98.850	101.700	1500ø	
CBMH 10		99.030 99.040	98.910 98.905		101.700	1500ø	
CBMH 11	99.130 99.117	100.080 100.060		100.080 1 00.058	101.700	1200ø	
MH 14	98.600 98.439		98.590 98.589	98.900 98.874	102.330	1520X1830	
MH 15		99.170 99.137	<u>98.960</u> 98.927	99.190 99.162	102.140	1200ø	
MH 16			99.480 99.441		103.140	1200ø	
MH 17		99.020 99.076	98.750 98.80 1	98.610 98.641	102.010	1220X1220	
CBMH 18	99.070 99.128	100.200 1 00.247	100.050 1 00.08 9		101.750	1200ø	
MH 19		99.160 99.174	99.020 99.049	98.860 98.889	102.400	1200ø	
MH 20	99.320 99.321				102.415	1200ø	
MH 21				99.230 99.237	102.060	1200ø	
MH 22	98.000 97.945	98.250 98.190		98.140 98.080	101.750	1520X1830	
MH 23	98.260 98.202	98.390 98.370	98.460 98.400		101.705	1220X1220	
CBMH 24	00.202	98.850 98.850	100.016	98.670 98.671	101.750	1500ø	
CBMH 25	98.92 9 8.923		99.99 100.016	100.000 100.016	101.600	1200ø	
MH 26	98.500 98.442		98.750 98.727	98.810 98.802	101.930	1500ø	
MH 27		100.070 100.027	100.060 100.011	98.89 98.853	101.950	1200ø	
		100.190 100.182	99.000 98.993	30.001	102.080	1200¢	
MH 28	08.617		100.035 100.053	100.040 1 00.053	101.650	1200¢	
CBMH 29	98.617	98.817	100.050	100.010 100.010 100.034		1200¢	
CBMH 30	98.877 99.210 99.184	100.310 1 00.278	T00.050	99.610 99.575	101.650		
CBMH 31	99.184	100:278	98.600 98.612	99.575 98.470 98.412	101.900	1200ø	
CBMH 32			98.612		101.650	1200ø	
MH 33	EX.99.342	EX.99.342		99.492	±103.070	1520X1830	
MH 34	100.360	100.282	99.607	99.678	102.98	1800ø	
CBMH35	100.354	100.510			102.650	1200ø	
CBMH36	100.850	100.466			102.650	1200ø	
BOX MH37	100.475		99.811	99.840	102.890	1520X1830	
MH 39	99.96		99.90		101.90	1200ø	
MH 40	100.22	100.19	100.22	100.22	102.23	1200ø	
MH 41	100.03		100.06		102.00	1200ø	
MH 42	99.30	99.90		99.36	102.10	1200ø	
MH 63		99.46	99.40	100.13	101.70	1200ø	
MH 64	99.52		100.17	100.06	101.60	1200ø	

		SANITA	RY MAN	HOLE SC	HEDULE	
LOCATION	INVE	ERT ELEV	ATIONS (TOP COVER	MANHOLE	
LOONHON	NORTH	SOUTH	EAST	WEST	(m)	TYPE
MH1A	EX.98.30	EX.98.30	98.92 98.90		±102.750	1500ø
MH2A			99.050 99.060	99.040 99.049	103.030	1200ø
MH3A			99.260 99.270	99.250 99.260	101.630	1200ø
MH4A		99.550 99.535	99.550 99.535	99.500 99.475	101.500	1200ø*
MH5A				99.670 99.648	101.750	1200ø*
MH6A	99.715 99.706	99.715 99.716			101.790	1200ø*
MH7A	99.750 99.752	99.750 99.762			101.760	1200ø*
MH8A	99.940 99.949	100.050 100.059	100.010 1 00.009	100.010 100.009	102.420	1200ø
MH9A				100.300 100.250	102.090	1200ø
MH10A	100.320 100.290				102.430	1200ø
MH11A			100.220 100.219	100.280 100.279	102.360	1200ø
MH12A			100.510 100.517		102.980	1200ø
MH13A			99.216	99.226	102.950	1200ø
MH14A		99.468	99.356	99.366	102.900	1200ø
MH15A	99.884				102.920	1200ø
MH16A			99.477	99.487	102.950	1200ø
MH17A	EX.98.466	EX.98.466		99.066	±103.060	1500ø
MH18A	100.01	100.04			102.06	1200ø

* COMPLETE WITH WATER TIGHT FRAME & COVER

		_			_					<u> </u>	ROSSIN	IG SCHE	DULE			_		
	300mmø	SAN.	0.730m	CLEARANCE	UNDER	EX.400mn	nø W/M	21)	450mmø 250mmø			CLEARANCE CLEARANCE				39	600mmø	STM 0.350
2	200mmø	W/M	0.500m	CLEARANCE	OVER	300mmø	STM		200mmø	,		CLEARANCE				40		STM. 0.520 STM. 0.850
3	300mmø 300mmø			CLEARANCE CLEARANCE				22	375mmø 300mmø			CLEARANCE CLEARANCE				41)		SAN. 0.850 W/M.0.500
5	200mmø 200mmø 200mmø	Ŵ/M	1.300m	CLEARANCE CLEARANCE CLEARANCE	UNDER		SAN.	23	50mmø 450mmø		0.500m	CLEARANCE CLEARANCE			SAN. W/M	42	50mmØ	W/M. 0.500 SAN. 0.650
67	300mmø			CLEARANCE					450mmø	STM.	0.840m	CLEARANCE	UNDER	150mmø	SÁN.	44	1 JUIIIIII	SAN. 0.030
_	200mmø 975mmø	STM.	0.250m	CLEARANCE	OVER	300mmø	SAN.	24	200mmø 375mmø 50mmø	STM.	0.430m 1.160m 0.780m	CLEARANCE CLEARANCE CLEARANCE	UNDER	200mmø	STM.			
(7)	975mmø			CLEARANCE			,	25	50mmø	W/M	0.500m	CLEARANCE	UNDER	200mmø	SAN.			
8	300mmø 300mmø 300mmø	W/M	0.300m	CLEARANCE CLEARANCE	OVER	300mmø 975mmø 975mmø	STM.	~J	375mmø 375mmø			CLEARANCE CLEARANCE			W/M SAN.			
	300mmø 200mmø			CLEARANCE				26	200mmø	STM.	0.550m	CLEARANCE	UNDER	200mmø	SAN.			
(9)	200mmø 200mmø 200mmø	W/M	0.500m	CLEARANCE	UNDER		STM.	27	50mmø 50mmø 525mmø	W/M	0.500m 0.500m 0.900m	CLEARANCE CLEARANCE CLEARANCE	OVER	525mmø	STM.			
10	150mmø 450mmø 200mmø	ŚТМ.	0.500m	CLEARANCE CLEARANCE CLEARANCE	OVER	250mmø 150mmø 450mmø	W/M	28	375mmø 300mmø			CLEARANCE CLEARANCE						
11	200mmø 150mmø	SAN. W/M	0.200m 0.500m	CLEARANCE CLEARANCE	OVER UNDER	525mmø 525mmø	STM. STM	29	300mmø 300mmø 750mmø	SÁN.	0.224m	CLEARANCE CLEARANCE CLEARANCE	UNDER	200mmø	STM.			
12	300mmø 900mmø	•		CLEARANCE				30	300mmø	W/M	0.750m	CLEARANCE	UNDER	150mmø	SAN.			
13	900mmø	STM.	0.200m	CLEARANCE	UNDER	300mmø	SAN.	9	300mmø 200mmø			CLEARANCE CLEARANCE						
14	300mmø 300mmø			CLEARANCE CLEARANCE		900mmø 900mmø		31)	250mmø 300mmø			CLEARANCE CLEARANCE		300mmø 250mmø				
15	300mmø 150mmø			CLEARANCE CLEARANCE		150mmø 750mmø		32	525mmø 200mmø			CLEARANCE CLEARANCE						
16)	300mmø 300mmø	W/M	1.200m	CLEARANCE CLEARANCE	UNDER	200mmø	STM.	33	250mmø 300mmø 525mmø	W/M	1.130m	CLEARANCE CLEARANCE CLEARANCE	UNDER	200mmø	STM.			
17	600mmø 300mmø 300mmø	STM.	0.710m	CLEARANCE	UNDER	300mmø	SAN.	34	375mmø 300mmø	STM.	0.843m	CLEARANCE	UNDER		SAN.			
18	300mmø 300mmø	W/M	1.740m	CLEARANCE CLEARANCE CLEARANCE	UNDER	200mmø	SAN.	35	250mmø 300mmø	SAN. W/M	0.150m 1.150m	CLEARANCE CLEARANCE	UNDER UNDER	200mmø 200mmø	STM. STM.			
	375mmø 525mmø	STM.	0.480m	CLEARANCE	UNDER	750mmø	SAN.		300mmø 200mmø			CLEARANCE CLEARANCE		200mmø 250mmø				
19	300mmø 300mmø	W/M	1.690m	CLEARANCE	UNDER	300mmø	STM.	(36)	300mmø 300mmø	· · ·		CLEARANCE CLEARANCE						
20	50mmø 50mmø	W/M	0.500m 0.500m	CLEARANCE CLEARANCE	OVER	450mmø	STM.	37	900mmø 200mmø			CLEARANCE CLEARANCE						
	450mmø	STM.	0.790m	CLEARANCE	UNDER	150mmø	SAN.	38	900mmø 200mmø			CLEARANCE CLEARANCE						

	INVE	RT ELEV	ATIONS ((m)	TOP COVE
	NORTH	SOUTH	EAST	WEST	(m)
TRENCH	99.65		ENGT		101.05
DRAIN CB CICB 2	99.00	99.95 99.90			101.30
CICB 2		100.18 100.00			101.40
CICB 3		99.87			101.40
		100.02 99.95			101.40
CICB 5	100.20 100.20	99.92		100.30 100.30	101.80
CB 6	100.20		100.40	100.20	101.80
CB 7	100.20 100.2 0		100.40		101.80
CB 8	100.20		100.25		101.85
CB 9	100.20		100.20	100.30	101.85
CB 10	100.20		100.40 1 00.40	100.30	101.80
CB 11	100.15 100.15		100.40		101.80
CICB 12 CB 14	100.88 100.88				
	100.00	100.78 100.78	100.43 100.43		102.08
CB 15	100.90 100.88	100.78	100.42		102.08
CB 16	100.88	100.80 100.78	100.43 1 09.4 1		102.08
CB 17		100.48	99.85 99.80		
CB 18	100.45		99.80		101.45
CB 19	100.75 100.72			100.85 10 0.8 2	101.90
CB 20	T 00.72		100.95 1 00.9 2	100.82	102.32
CB 21		100.58 100.58	100.92	100.38 1 00.38	102.32
CB 22	100.68 100.68	100.58		100.38	101.98
CB 23	100.35 100.35 100.35				101.98
CB 24	100.35 100.84			100.94	101.85
CB 25	100.84		101.08	100.94 1 00.94	102.44
CB 26		100.28	101.08 101.04	100.18	102.44
CB 27	100.65	100.28 100.53		100.18 100.18	101.83
CB 28	100.65 1 00.63 -99.95			101-10	101.83
CB 29	-99.95 99.975			101.10. 1 01.13	101.55
CB 30				100.20	101.65
CB 31			100.18	100.20	101.65
CB 32	100.02		100.18 1 00.20	100 11	101.65
CB 33	100.02 100.00		100 19	100.11 100.10	101.60
CB 34	100.06		100.19 1 00.20	100.38	101.60
CB 35	100.06 1 00.00		100.39	100.38 100.30	101.60
CB 36	100.11		100.39 1 00.40		101.60
CB 39	100.08			100.22	101.65
CB 40	100.25			100.22 1 00.2 0	101.65
CB 41	100.25 100.25			100.20	101.75
CB 42			100.18	100.20 1 00.20	101.65
CB 43			100.18 1 00.20	100.27	101.65
CB 44			100 19	100.20	101.65
CB 45			100.19 1 00.15		101.65
CB 46	100.60				102.65
CB 47			101.15		102.65
CB 48		100.945			102.52
CB 49	101.15		101.05		102.65
CB 50		101.25			102.65
RYCB 51		100.50			102.00
CB 52				100.25	101.80
CB 53	00.60			100.22 1 00.20	101.75
CB 54	99.69 100.05				101.47
CB 55	99.66 100.03				101.45
CB 56	99.80 9 9.8 1				101.05
TRENCH CB 57	99.81 99.83			100 77	101.05
CB 58	100.62 1 00.66		100.00	100.73 100.76	102.26
CB 59			100.90 1 00.86		102.26
CB 60	100.35 F	REUSE OTATE EX. C	100.35 B 100.35	100.01	101.75
CB 61	99.95				101.35
CB 62	99.95				101.35
ECB					101.95
CB63			100.20		101.60
CB64			100.15	99.77	101.55
CB65			100.30		101.75

50m	CLEARANCE	UNDER	200mmø	W/M
20m 50m	CLEARANCE CLEARANCE		200mmø 900mmØ	
50m)0m)0m	CLEARANCE CLEARANCE CLEARANCE	OVER	300mmø 300mmØ 250mmØ	STM.
50m	CLEARANCE	OVER	200mmø	W/M

STATION A) 1+100.0	DESCRIPTION 400x300 TEE	FINISHED GRADE(m) <i>EX.102.60</i>	TOP OF WATERMAIN(m) <i>EX.100.40</i>	AS BUILT WATERMAIN(r <i>EX.100.40</i>
A) 1+100.0 1+111.5	400x300 TEE 300ø V&VB	EX.102.60 103.02	<i>EX.100.40</i> 100.620	<i>EX.100.40</i> 100.60
1+138.68	SERVICE CONNECTION	102.32	99.920 99.040	99.920 99.03
1+187.68	HYDRANT&TEE	101.54	99.140	98.99
1+229.57	SERVICE CONNECTION	101.47	99.070 99.18	99.02 99.00
1+305.82	300ø V&VB	101.48	99.080	99.04
B)1+312.85 1+316.27	300ø TEE 300x200 REDUCER	101.44	99.150 99.020	99.08 99.11
1+351.92	HYDRANT&TEE	101.67	99.270	99.21
1+353.96 1+359.52	45° BEND 45° BEND	101.65	99.000 98.650	99.20 98.94
C)1+374.38	200 V&VB	101.90	99.270	99.270
B)2+100.00	300ø TEE	101.44	99.150	99.16
2+103.00 2+103.50	VERTICAL BEND	101.50	98.950 98.950	98.96 98.96
2+103.85	VERTICAL BEND	101.54	99.300	99.26
2+110.00 2+125.00	300ø V&VB	101.60	99.200 99.300	99.21 99.28
2+175.00		102.22	99.820	99.78
F)3+100.00	300X200Ø TEE 300X200Ø TEE	101.84	99.440	99.440
3+104.69	200ø V&VB	101.90	99.500	99.48
3+152.61	HYDRANT & TEE 2000 TEE	102.15	99.750	99.76
H)3+240.69	HYDRANT	102.10	99.700	99.72
E 4+100.00	300¢ TEE	101.84	99.440	99.440
4+101.60 4+106.00	300ø V&VB	101.82 101.76	99.460 99.800	99.50 99.42
4+112.13	300X150Ø TEE & HYD	101.85	99.600	99.39
4+114.64 4+123.75	22° BEND 22° BEND	101.87	99.600 99.330	99.42 99.35
4+167.00		101.87	99.900	99.83
4+207.97 4+209.30	300¢ V&VB	102.25	99.850 98.300	99.36 98.28
4+209.30	VERTICAL BEND	102.25	98.300	98.28
) 4+217.11	300ø TEE	102.38	98.300	98.300
)4+400.00 4+403.51	300ø TEE 300x200 REDUCER	102.38 102.38	98.300 98.300	98.300 98.300
4+411.41	SERVICE CONNECTION	102.24	98.300	98.36
4+416.08 4+416.58	VERTICAL BEND	102.23	98.300 99.830	98.38 99.830
4+437.57	HYDRANT&TEE	102.06	99.660	99.65
4+466.57 4+493.33	SERVICE CONNECTION	101.83	99.350 99.690	99.350 99.68
4+493.33 4+498.37	45° BEND	102.09	99.690	99.68
4+499.78	45° BEND	102.05	99.650	99.70
)4+503.78 5+100.00	HYDRANT 300ø C/W 50ø SADDLE	102.20 102.38	99.800 98.300	99.800 98.28
5+105.00	45° BEND	102.27	98.300	98.300
5+107.00 5+137.00	45° BEND SERVICE CONNECTION	102.30	99.900	99.86 100.14
D5+154.50	SERVICE CONNECTION	102.48	100.080	100.07
€)6+100.00 6+100.50	300ø C/W 50ø SADDLE VERTICAL BEND	102.38	98.300 98.300	98.300 98.300
6+102.00	VERTICAL BEND	102.26	99.860	99.860
6+103.50 6+106.75	300ø V&VB	102.25	99.850 99.860	99.86 99.90
6+130.50	HYDRANT&TEE	102.26	99.860	99.90
6+144.20	VERTICAL BEND	102.07	99.670	99.71
6+145.5 6+151.5	VERTICAL BEND	102.07	98.500 98.500	98.55 98.55
6+152.8	VERTICAL BEND	102.00	99.600	99.600
6+187.50 6+189.00	SERVICE CONNECTION	102.20	98.000 98.000	98.000 98.000
6+201.00	50mmø SADDLE	102.35	99.940	99.93
∭6+202.00 ∭10+100.00	300X200 TEE 50mmø SADDLE	102.34 102.35	99.940 99.940	99.93 99.93
10+110.00		102.42	100.02	100.02
D10+133.00 D7+100.00	200ø TEE	102.53	100.13 99.520	100.13 99.59
7+106.00		101.92	99.520	99.59
7+127.63		102.01	99.610	99.60
7+177.63 7+206.00	HYDRANT&TEE 200ø V&VB	102.10	99.700 99.890	99.700 99.89
7+216.63	300X200 TEE	102.34	99.940	99.95
7+222.13 7+243.63	300¢ V&VB VERTICAL BEND	102.22	99.820 99.750	99.80 99.750
7+243.89	VERTICAL BEND	102.15	100.024	100.02
7+249.37 7+249.63	VERTICAL BEND	102.17	99.750	100.04 99.750
7+249.63	HYDRANT&TEE	102.17	100.060	100.10
7+308.13	SERVICE CONNECTION	102.87	100.470	100.46 100.650
7+314.63	3000 V&VB 400x300 TEE	103.05 <i>EX. 103.10</i>	100.650 EX. 100.750	EX. 100.750
8+100.0	400×300 TEE	EX.102.97	EX.100.71	
8+121.7 8+122.7	300ø V&VB VERTICAL BEND	102.95 102.97	100.550 100.570	
8+124.7	VERTICAL BEND	103.00	98.500	
8+127.6 8+130.6	SERVICE CONNECTION	103.00	98.500 98.500	
8+133.6	VERTICAL BEND	103.19	98.500	
8+135.6 8+146.5	VERTICAL BEND	103.07	100.670	
8+147.5	VERTICAL BEND	103.00	99.786	
8+153.0	VERTICAL BEND	103.00	99.786 98.500	
8+154.0	300x200 CROSS	103.00	98.500	
8+165.9	VERTICAL BEND	102.85	98.500	
8+167.9 8+185.8	VERTICAL BEND SERVICE CONNECTION	102.79 102.68	100.390	
8+191.9	SERVICE CONNECTION	102.74	100.340	
8+202.5 () 8+204.1	300ø V&VB 300ø CAP	102.85	100.450	
R) 9+100.0	3000 CAP HYDRANT&TEE	102.85	100.450	
9+104.7	200x150 REDUCER	102.85	100.450	
9+141.3 P 9+144.3	VERTICAL BEND 300x200 CROSS	102.90 102.87	98.500 98.500	
9+155.0	VERTICAL BEND	102.90	99.500	
9+157.0 9+191.0	VERTICAL BEND	102.90	100.500	
9+193.8	SERVICE CONNECTION	102.95	100.550	
~	HYDRANT&TEE	103.10	100.700	

DRAWING NOTES 1.0 GENERAL

ROAD. THE CITY.

UNDERGROUND AND ABOVEGROUND UTILITIES AND STRUCTURES ARE NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING WORK THE CONTRACTOR SHALL INFORM HIMSELF OF THE EXACT LOCATION OF ALL SUCH UTILITIES AND STRUCTURES, SHALL PROTECT ALL UTILITIES AND STRUCTURES, AND SHALL ASSUME ALL LIABILITY FOR DAMAGE TO THEM. 1.14 CONTRACTOR TO SUPPLY SUITABLE FILL MATERIAL WHERE REQUIRED TO ROUGH

GRADE THE SITE.

1.15 CONTRACTOR TO HAUL EXCESS MATERIAL OFFSITE AS NECESSARY TO GRADE SITE TO MEET THE PROPOSED GRADES. ALL EXCESS MATERIAL TO BE HAULED OFFSITE AND DISPOSED OF AT AN APPROVED DUMP SITE. SHOULD THE CONTRACTOR DISCOVER ANY HAZARDOUS MATERIAL, CONTRACTOR IS TO NOTIFY ENGINEER. ENGINEER TO DETERMINE APPROPRIATE DISPOSAL METHOD/LOCATION. 1.16 ALL DISTURBED BOULEVARDS TO BE REINSTATED WITH SOD ON 100mm TOPSOIL. 1.17 UTILITY DUCTS TO BE INSTALLED PRIOR TO ROAD BASE CONSTRUCTION. 2.0 SANITARY 2.1 ALL SANITARY SEWERMAINS TO BE CSA CERTIFIED PVC SDR 35, BELL AND SPIGGOT TYPE. ONLY FACTORY FITTINGS TO BE USED. SEWER TO BE INSTALLED AS PER OSPD

2.2 ALL SANITARY MAINTENANCE HOLES TO BE 1.2m DIAMETER AS PER CITY OF OTTAWA STANDARDS COMPLETE WITH BENCHING, STEPS IF REQUIRED, AND FRAME AND COVER. 2.3 SANITARY MH FRAME AND COVER TO BE CLOSED COVER TYPE, AS PER CITY STANDARD S24. 2.4 SANITARY SEWER LEAKAGE TEST AND CCTV INSPECTION SHALL BE COMPLETED AS PER CITY SPECIFICATIONS PRIOR TO INSTALLATION OF BASE COURSE ASPHALT.

1005.01.

ENGINEER. TO CITY STANDARDS. 3.0 STORM

COMPLETE. BE FLAT TOP TYPE.

2.5 ANY SANITARY SEWER WITH LESS THAN 1.8m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22, OR AS APPROVED BY THE 2.6 CONNECTION TO THE EXISTING SANITARY SEWER TO BE INCLUDED IN THE COST FOR SANITARY SEWER INSTALLATION. THIS INCLUDES REINSTATEMENT OF ROAD CUTS 3.1 ALL STORM SEWER TO BE CSA CERTIFIED PVC SDR 35 OR CONCRETEE CLASS 100-D, BELL AND SPIGGOT TYPE. ALL STORM SEWERS TO BE INSTALLED PER MANUFACTURER'S INSTRUCTIONS. ONLY FACTORY FITTINGS TO BE USED. 3.2 ALL STORM MAINTENANCE HOLES TO BE SIZED IN WITH THE PLANS AND AS PER CITY OF OTTAWA STANDARDS COMPLETE WITH BENCHING FOR SEWERS 900mm OR

GREATER, STEPS IF REQUIRED, AND FRAME AND COVER. 3.3 STORM MH FRAME AND COVERS TO BE OPEN TYPE, AS PER CITY STANDARD S24. CONTRACTOR TO INSTALL FILTER FABRIC UNDER STORM MH COVER UNTIL SODDING IS

3.4 STORM MAINTENANCE HOLES TO BE AS PER OPSD 701.010, TAPER TOP TYPE COMPLETE WITH 300mm SUMP FOR SEWER LESS THAN 900mmØ. ALL STORM CBMH'S TO

3.5 ALL CATCH BASINS TO BE AS PER OPSD 705.010, FRAME & GRATE AS PER 400.02, LEAD TO BE AS PER ITEM 3.1.

3.6 ALL DITCH INLET CB'S TO BE AS PER OPSD 705.030 WITH 3:1 SLOPE. ALL DITCH INLET MANHOLES TO BE TYPE A AS PER OPSD 702.040. ALL DITCH INLET GRADE AS PER OPSD 403.010. LEAD AS PER ITEM 3.1.

3.7 150mm DIAMETER SOCK-WRAPPED PERFORATED PVC SUBDRAINS TO BE INSTALLED AT ALL CBMH'S AND CB'S. SUBDRAINS TO BE 3m LONG (EACH SIDE – CURB INLETS, AND FOUR ORTHOGONALLY OUT – SUMP INLETS) AND DISCHARGE INTO CBMH OR CB. 3.8 STORMWATER ICD'S TO BE INSTALLED IN CB'S PRIOR TO BASE ASPHALT.

3.9 ANY STORM SEWER WITH LESS THAN 1.8m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22, OR AS APPROVED BY THE ENGINEER.

3.10 CONNECTION TO THE EXISTING STORM SEWER TO BE INCLUDED IN THE COST FOR STORM SEWER INSTALLATION. THIS INCLUDES REINSTATEMENT OF ROAD CUT TO CITY STANDARDS.

1.12 CONTRACTOR TO PROTECT EXISTING INFRASTRUCTURE AND PROPERTY SUCH AS TREES, PARKING METERS, SIDEWALKS, CURBS, ASPHALT, AND STREET SIGNS FROM DAMAGE DURING CONSTRUCTION. CONTRACTOR TO PAY THE COST TO REINSTATE OR REPLACE ANY DAMAGED INFRASTRUCTURE OR PROPERTY TO THE SATISFACTION OF

O.P.S.S. 1350 AND SHALL ACHIEVE A MINIMUM STRENGTH OF 30MPa AT 28 DAYS. 1.11 ALL CONSTRUCTION TRAFFIC TO ACCESS SITE OFF HUNTMAR OR HAZELDEAN

1.9 ALL CONCRETEE CURBS AND SIDEWALKS TO CONFORM TO O.P.S. AND CONSTRUCTED TO CITY STANDARDS. ALL ONSITE CURBS TO BE BARRIER TYPE. 1.10 ALL CONCRETEE SHALL BE "NORMAL PORTLAND CEMENT" IN ACCORDANCE WITH

1.8 ALL IRON WORK ELEVATIONS SHOWN ARE APPROXIMATE AND ARE SUBJECT TO MINOR ADJUSTMENTS AS DETERMINED BY THE ENGINEER.

1.7 FOR LEGAL SURVEY INFORMATION REFER TO REGISTERED PLAN.

1.13 THE POSITION OF POLE LINES, CONDUITS, WATERMAIN, SEWERS, AND OTHER

AND SPECIFICATIONS.

AND SPECIFICATIONS. 1.6 THIS DRAWING SHALL BE READ IN CONJUNCTION WITH ALL RELEVANT DRAWINGS

1.5 ALL CONSTRUCTION SHALL COMPLY WITH CURRENT CITY OF OTTAWA STANDARDS

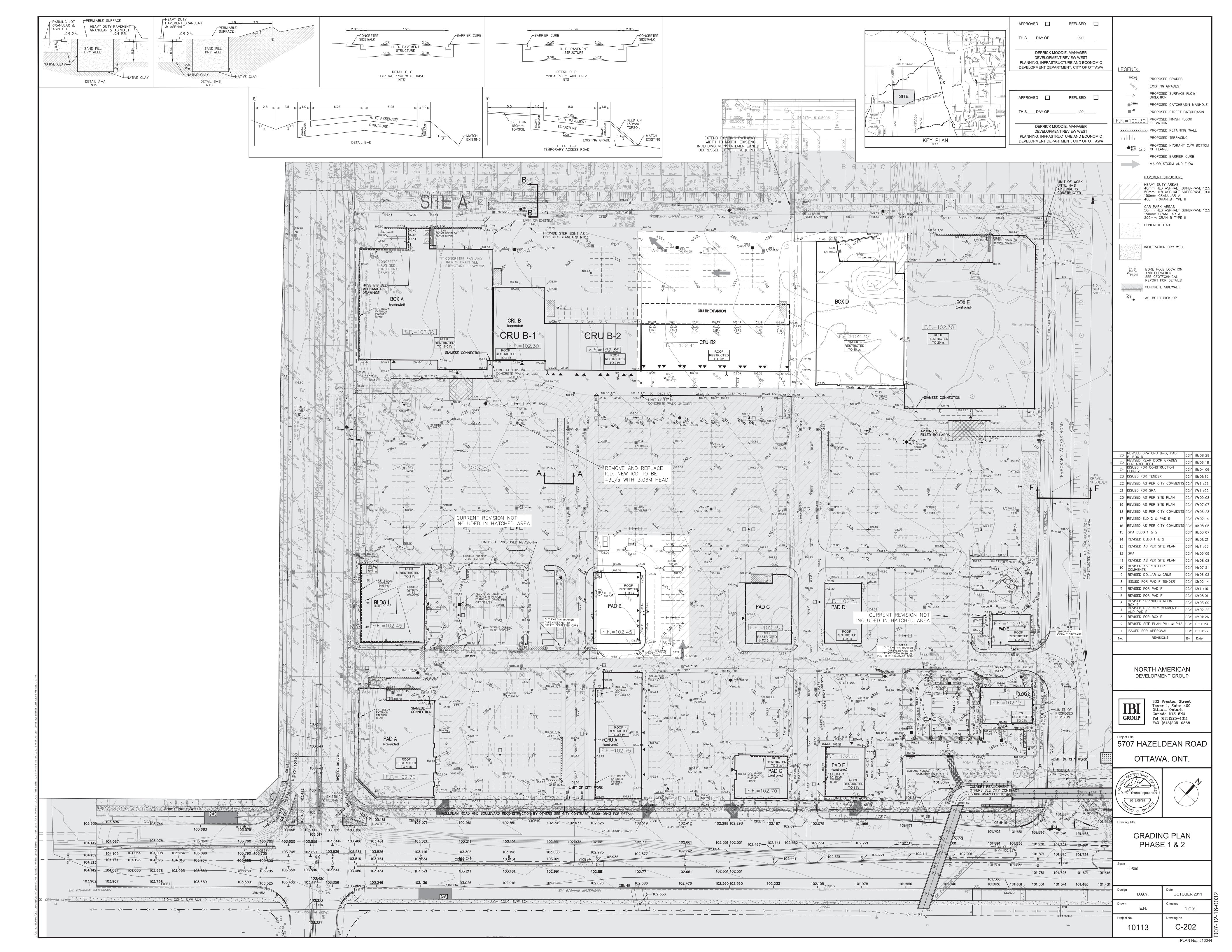
FOR CONSTRUCTION".

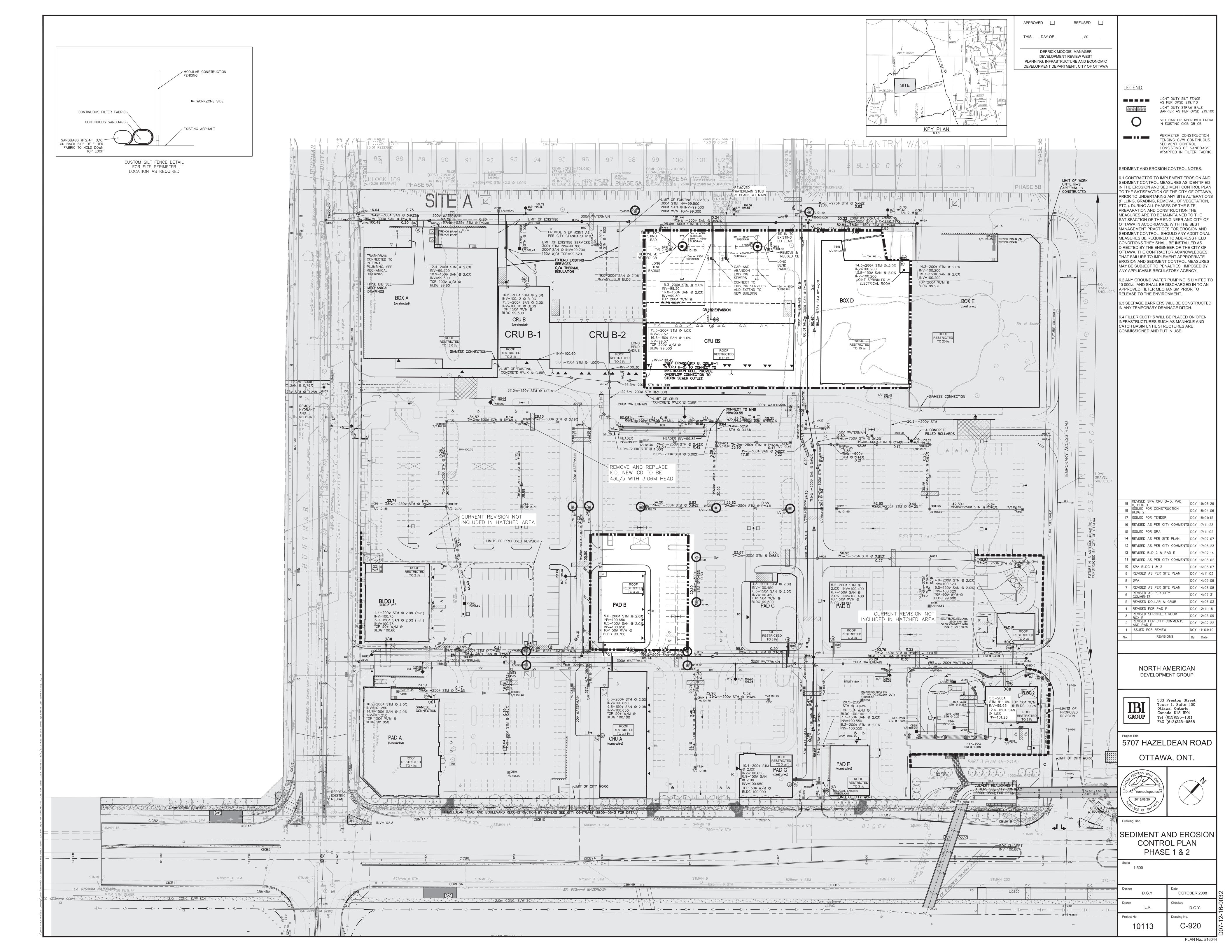
1.4 USE ONLY THE LATEST REVISED DRAWINGS OR THOSE THAT ARE MARKED "ISSUED

1.3 CONTRACTOR TO REPORT ALL DISCOVERIES OF ERRORS, OMISSIONS OR DISCREPANCIES TO THE ARCHITECT OR DESIGN ENGINEER AS APPLICABLE.

1.2 DO NOT SCALE DRAWINGS.

1.1 CONTRACTOR TO VERIFY ALL DIMENSIONS PRIOR TO CONSTRUCTION.


COMPACTED TO 95% SPMDD. SEE GEOTECHNICAL REPORT FOR ADDITIONAL DETAILS.


THIS DAY OF

APPROVED

REFUSED

	THISDAY OF, 20			
	DERRICK MOODIE, MANAGER DEVELOPMENT REVIEW WEST PLANNING, INFRASTRUCTURE AND ECONOM			
L	DEVELOPMENT DEPARTMENT, CITY OF OTTAN	VA		
4.0 WATER				
4.1 ALL WATERMAINS TO BE PVC DR 18, WIT PER CITY OF OTTAWA STANDARDS. ALL WAT APPROVED EQUAL WITH MINIMUM COVER O	FER SERVICES TO BE COPPER OR			
OTTAWA STANDARDS. 4.2 THRUST BLOCKS TO BE INSTALLED AT A OPSD 1103.01 AND 1103.02.	LL BENDS, TEES, AND CAPS ALL AS PER			
4.3 CONTRACTOR TO CONDUCT PRESSURE				
WATERMAINS AND DISINFECT AND CHLORIN SATISFACTION OF M.O.E.E. AND THE CITY OF 4.4 TRACER WIRE TO BE INSTALLED ALONG	F OTTAWA.			
ATTACHED TO EACH MAIN STOP AS PER MU 4.5 ALL COMPONENTS OF THE WATER DISTR	NICIPAL STANDARDS. RIBUTION SYSTEM SHALL BE CATHODICALLY			
4.6 ALL VALVES & VALVE BOXES, HYDRANTS SHALL BE INSTALLED AS PER CITY OF OTTA	, AND HYDRANT VALVES AND ASSEMBLIES			
	COVER REQUIRES THERMAL INSULATION AS			
4.8 CONTRACTOR IS RESPONSIBLE FOR ACC OF OTTAWA AND PAYMENT OF ANY FEES AS PERMIT. OWNER IS RESPONSIBLE FOR REIM				
ACTUAL COST OF ACQUIRING THE WATER P 4.9 CONNECTION TO EXISTING WATERMAIN	ERMIT. TO BE CITY FORCES, EXCAVATION AND			
BACKFILLING AND REINSTATEMENT BY CON COST FOR THE WATERMAIN INSTALLATION. ROAD CUTS TO CITY STANDARDS.				
5.0 ROAD AND WORK IN THE RIGHT OF WAY 5.1 CONTRACTOR TO REINSTATE ROAD CUT	S PER CITY OF OTTAWA STANDARD R-10.			
5.2 THE CONTRACTOR SHALL PREPARE A TR AND APPROVAL BY THE CITY OF OTTAWA. C DURING THE ENTIRE CONSTRUCTION PERIO	ONTRACTOR TO MAINTAIN TRAFFIC FLOW			
THE RESPONSIBILITY OF THE CONTRACTOR NECESSARY, BARRICADES AND SIGNS TO TH AND ROAD AUTHORITY SHALL BE THE CONT	. PROVISION OF FLAGMEN, DETOURS AS HE FULL SATISFACTION OF THE ENGINEER			
5.3 CONTRACTOR TO PREPARE SUBGRADE SATISFACTION OF THE GEOTECHNICAL ENG	, INCLUDING PROOFROLLING, TO THE			
PLACEMENT OF GRANULAR B MATERIAL. 5.4 FILL TO BE PLACED AND COMPACTED PE REQUIREMENTS.	R THE GEOTECHNICAL REPORT			
5.5 CONTRACTOR TO SUPPLY, PLACE AND C ACCORDANCE WITH THE RECOMMENDATIO	NS OF THE GEOETCHNICAL ENGINEER.	23	REVISED SPA CRU B B, BOX D	DGY 19:08:29
CONTRACTOR TO PROVIDE ENGINEER WITH TESTING AND CERTIFICATION FROM THE GE MATERIAL MEETS THE GRADATION REQUIRE REPORT.	OTECHNICAL ENGINEER THAT THE	22	ISSUED FOR CONSTRUED BLDG 2 ISSUED FOR TENDER	DGY 18:04:06 DGY 18:01:15
5.6 GRANULAR A MATERIAL ONLY TO BE PLA GEOTECHNICAL ENGINEER OF GRANULAR B		19	REVISED AS PER CIT ISSUED FOR SPA REVISED AS PER SITI	Y COMMENTS DGY 17:11:23 DGY 17:11:02 E PLAN DGY 17:07:07
5.7 CONTRACTOR TO SUPPLY, PLACE AND C ACCORDANCE WITH THE RECOMMENDATION CONTRACTOR TO PROVIDE ENGINEER WITH	NS OF THE GEOETCHNICAL ENGINEER.	17		Y COMMENTS DGY 17:06:23
TESTING AND CERTIFICATION FROM THE GE MATERIAL MEETS THE GRADATION REQUIRE REPORT.		14	SPA BLDG 1 & 2	Y COMMENTS DGY 16:08:02 DGY 16:03:07
5.8 ASPHALT MATERIAL TO BE PLACED ONLY ENGINEER OF GRANULAR A PLACEMENT.	UPON APPROVAL BY THE GEOTECHNICAL	12	ASBUILT REVISED AS PER SIT SPA	15: 01: 19 E PLAN DGY 14: 11: 03 DGY 14: 09: 09
5.9 CONTRACTOR TO SUPPLY, PLACE AND C ACCORDANCE WITH THE RECOMMENDATION CONTRACTOR TO PROVIDE ENGINEER WITH TESTING AND CERTIFICATION FROM THE GE	NS OF THE GEOTECHNICAL ENGINEER. SAMPLES OF ASPHALT MATERIAL FOR		REVISED AS PER SIT REVISED AS PER CIT COMMENTS	E PLAN DGY 14:08:08
5.10 CONTRACTOR IS RESPONSIBLE FOR ES	CIFIED IN THE GEOTECHNICAL REPORT.	7	REVISED DOLLAR &	TENDER DGY 13:02:14
ACCORDANCE WITH THE PLANS, AND FOR P VERIFICATION PRIOR TO PLACEMENT. 5.11 DITCHES DISTURBED DURING CULVERT		5	REVISED FOR PAD F REVISED SPRINKLER BOX E REVISED PER CITY C	ROOM DGY 12: 03: 09
ARE TO BE REINSTATED TO THEIR ORIGINAL	CONDITION AND FLOWLINE GRADES.	3	AND PAD E REVISED FOR BOX E REVISED SITE PLAN	DGY 12:01:26
CITY OF OTTAWA STANDARDS. 5.13 CONTRACTOR TO REINSTATE ANY DIST ADJACENT LANDS TO THE BETTER OF IMPOI		1 No.	ISSUED FOR APPROV	
MATCH ORIGINAL CONDITION.5.14 ALL EXCESS MATERIAL TO BE HAULED (
APPROVED DUMP SITE. SHOULD THE CONTR MATERIAL, CONTRACTOR IS TO NOTIFY ENG APPROPRIATE DISPOSAL METHOD/LOCATIO	INEER. ENGINEER TO DETERMINE			
5.15 PAVEMENT STRUCTURE (MATERIAL TYF AND LIGHT DUTY AREAS TO BE AS SPECIFIE SHOWN ON THE PLANS.			DEVELOPME	ENT GROUP
6.0 SEDIMENT AND EROSION CONTROL 6.1 CONTRACTOR TO IMPLEMENT EROSION	AND SEDIMENT CONTROL MEASURES AS		Tower Tower	Preston Street r 1, Suite 400
IDENTIFIED IN THE EROSION AND SEDIMENT THE CITY OF OTTAWA, PRIOR TO UNDERTAK GRADING, REMOVAL OF VEGETATION, ETC.)	CONTROL PLAN TO THE SATISFACTION OF (ING ANY SITE ALTERATIONS (FILLING, . DURING ALL PHASES OF THE SITE	G	ROUP Canao Tel (va, Ontario da K1S 5N4 613)225-1311 (613)225-9868
PREPARATION AND CONSTRUCTION THE ME SATISFACTION OF THE ENGINEER AND CITY BEST MANAGEMENT PRACTICES FOR EROSI ADDITIONAL MEASURES BE REQUIRED TO A	OF OTTAWA IN ACCORDANCE WITH THE ON AND SEDIMENT CONTROL. SHOULD ANY	Project	t Title	``´
INSTALLED AS DIRECTED BY THE ENGINEER CONTRACTOR ACKNOWLEDGES THAT FAILU AND SEDIMENT CONTROL MEASURES MAY E	OR THE CITY OF OTTAWA. THE IRE TO IMPLEMENT APPROPRIATE EROSION	57		DEAN ROAD
ANY APPLICABLE REGULATORY AGENCY. 6.2 ANY GROUND WATER PUMPING IS LIMITE IN TO AN APPROVED FILTER MECHANISM PR			OTTAW	A, ONT.
6.3 SEEPAGE BARRIERS WILL BE CONSTRUC	TED IN ANY TEMPORARY DRAINAGE DITCH.	CENSED	ROFESS/ONAL TROFESS/ONAL	
6.4 FILLER CLOTHS WILL BE PLACED ON OPE AND CATCH BASIN UNTIL STRUCTURES ARE7.0 GEOTECHNICAL.			5. Yannoulopoulos	
7.1 FOR DETAILS OF TEST PITS AND VARIOU GEOTECHNICAL REPORT, GEOTECHNICAL IN	VESTIGATION PROPOSAL COMMERCIAL	Drawin	NCE OF ONTARI	
DEVELOPMENT HAZELDEAN ROAD AT HUNTI PATERSON GROUP DATED FEBRUARY 24, 20 7.2 FILL MATERIAL WITHIN THE PARKING LOT	12.		-	AND NOTES
SUPPORTING BUILDING FOUNDATIONS SHAL MODIFIED PROCTOR DENSITY AND TO THE S ENGINEER.	L BE COMPACTED TO 98% STANDARD		PHASE	
7.3 ALL FILL MATERIAL TO BE CERTIFIED AS ENGINEER.	ACCEPTABLE BY THE GEOTECHNICAL	Scale		
7.4 ALL COMPACTION METHODS TO BE PERF GEOTECHNICAL ENGINEER TO INCLUDE BUT LIFTS, AND COMPACTION EQUIPMENT USED	NOT BE LIMITED TO THE THICKNESS OF			
7.5 CLAY SEALS TO BE INSTALLED WHERE IN APPROVED AND DIRECTED BY THE GEOTEC WITH CITY OF OTTAWA STANDARDS AND SP	HNICAL ENGINEER ALL IN ACCORDANCE	Design	D.G.Y.	Date OCTOBER 2011
7.6 PIPE BEDDING AND BACKFILL SHALL BE (CITY OF OTTAWA STANDARD. AT A MINIMUM	COMPLETED IN ACCORDANCE WITH LATEST BEDDING FOR SEWER AND WATERMAIN	Drawn Project	E.H.	Checked D.G.Y. Drawing No.
SHALL BE 150mm OPSS GRANULAR A, COMP SPRINGLINE OF PIPE. COVER MATERIAL SH, SHALL EXTEND FROM SPRINGLINE TO MININ	ACTED TO 95% SPMDD AND EXTEND TO ALL CONSIST OF OPSS GRANULAR A AND	Project	10113	Drawing No. C-105

