Appendix A Water Supply Servicing August 20, 2019

Appendix A WATER SUPPLY SERVICING

A.1 DOMESTIC WATER DEMAND ESTIMATE

td w:\active\160401438_17_19 robinson ave\design\report\servicing\2019-08-20\rpt_2019-08-20_servicing.docx

<u>19 Robinson Ave</u> - Based on Figurr Site Plan 14/08/2019 (160401438)

Building ID	Area	Population	Daily Rate of	Avg Day	Demand	Max Day	Demand ²	Peak Hour Demand		
	(m ²)		Demand ¹	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)	
BLDG		72.8	350	17.7	0.29	44.2	0.74	97.3	1.62	
Total Site :				17.7	0.29	44.2	0.74	97.3	1.62	

1 Population counts based on a conversion factor of 1.4 persons/1 Bedroom Apt. and 2.4 Persons/2 Bedroom Apt.

2 Average day water demand for residential areas equal to 350 L/cap/d

3 The City of Ottawa water demand criteria used to estimate peak demand rates for residential areas are as follows:

maximum day demand rate = 2.5 x average day demand rate peak hour demand rate = 2.2 x maximum day demand rate

Referenced from the City of Ottawa Sewer Design Guidelines (October 2012) and the Ottawa Design Guidelines: Water Distribution (July 2010)

Appendix A Water Supply Servicing August 20, 2019

A.2 FIRE FLOW REQUIREMENTS PER FUS

td w:\active\160401438_17_18 robinson ave\design\report\servicing\2019-08-20\rpt_2019-08-20_servicing.docx

Fire Flow Calculations as per Ontario Building Code 2006 (Appendix A)

Job#	160401438	Designed by:	DT
Date	20-Aug-19	Checked by:	KK
		Description:	4-Storey Res.

 $Q = KVS_{tot}$

- Q = Volume of water required (L)
- V = Total building volume (m3)
- K = Water supply coefficient from Table 1

Stot = Sotal of spatial coefficeint values from property line exposures on all sides as obtained from the formula

 $S_{tot} = 1.0 + [S_{side1} + S_{side2} + S_{side3} + S_{side4}]$

1	Type of construction	Building Classification		Water Supply Coefficient
	combustible without Fire- Resistance Ratings	A-2, B-1, B-2, B-3, C, D		23
2	Area of one floor	number of floors	height of ceiling	Total Building
	(m ²)		(m)	Volume (m ³)
	490	1	3.53	1,730
	616	4	2.77	6,813
			Total	8,543
3	Side	Exposure		Total Spatial
		Distance (m)	Spatial Coefficient	Coeffiecient
	North	45	0	
	East	4.3	0.5	2
	South	15	0	2
	West	1.5	0.5	
4	Established Fire	Reduction in		Total Volume
	Safety Plan?	Volume (%)		Reduction
	no	0%		0%
5				Total Volume 'Q' (L)
				79,580
				Minimum Required
				Fire Flow (L/min)
				2,700

Appendix A Water Supply Servicing August 20, 2019

A.3 BOUNDARY CONDITIONS

Odam, Cameron

From:	Wu, John <john.wu@ottawa.ca></john.wu@ottawa.ca>
Sent:	Thursday, October 18, 2018 10:48 AM
То:	Odam, Cameron
Subject:	RE: Boundary conditions request - 19 Robinson Avenue proposed site development
Attachments:	19 Robinson Oct 2018.pdf

Here is the result:

The following are boundary conditions, HGL, for hydraulic analysis at 19 Robinson (zone 1W) assumed to be connected to the 203mm on Robinson (see attached PDF for location).

Minimum HGL = 105.2m Maximum HGL = 114.7m MaxDay + FireFlow (233 L/s) = 78.5m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

John

From: Odam, Cameron <Cameron.Odam@stantec.com>
Sent: Monday, October 15, 2018 1:07 PM
To: Wu, John <John.Wu@ottawa.ca>
Cc: Kilborn, Kris <kris.kilborn@stantec.com>
Subject: Boundary conditions request - 19 Robinson Avenue proposed site development

Good morning,

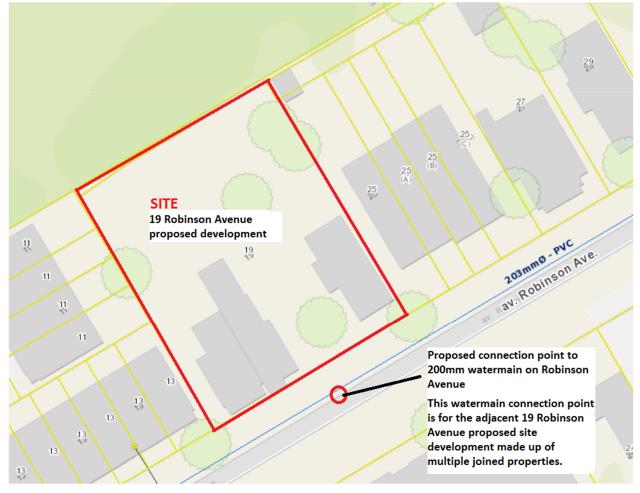
Would you be able to provide me with watermain hydraulic boundary conditions for a proposed site made up of multiple lots that is now 19 Robinson Avenue? The site consists of a proposed 3 storey residential apartment building located at 19 Robinson Avenue with water servicing that will connect to the existing 200mm watermain on Robinson Avenue adjacent to the site.

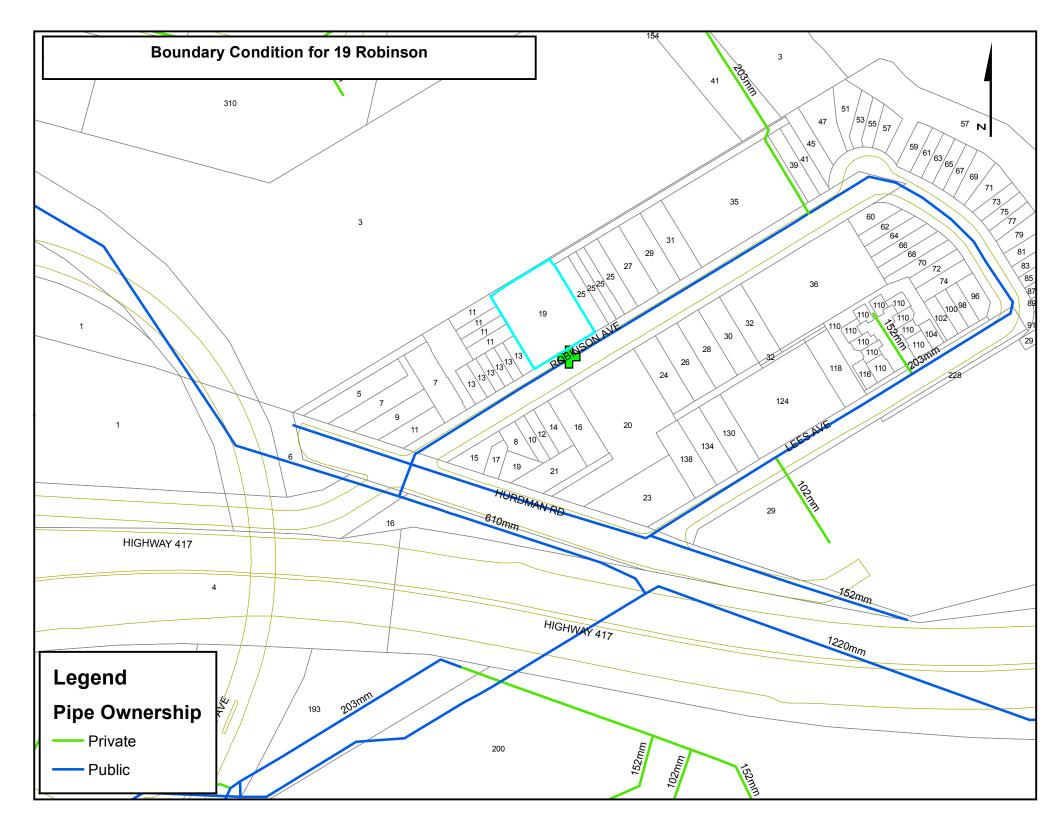
Attached are the FUS calculations for the proposed building.

Estimated domestic demands and fire flow requirements for the site are as follows:

Average Day Demand	- 0.28L/s
Max Day Demand	- 0.69L/s
Peak Hour Demand	- 1.51L/s

Fire Flow Requirement per FUS - 233.3L/s


Boundary Condition Request for 19 Robinson Avenue


Information Provided:

Date provided: October 2018

	Dema	nd
Scenario	L/min	L/s
Average Daily Demand	16.5	0.28
Maximum Daily Demand	41.3	0.69
Peak Hour	90.8	1.51
Fire Flow Demand	14 000	233.3

Location: 19 Robinson Avenue

Appendix B Wastewater Servicing August 20, 2019

Appendix B WASTEWATER SERVICING

B.1 SANITARY SEWER DESIGN SHEET

		SUBDIVISIO		INSON AVE						SANITARY SEWER DESIGN SHEET				DESIGN PARAMETERS																					
	_								(City (of Ottaw	a)				MAX PEAK F	ACTOR (RES	.)=	4.0		AVG. DAILY	FLOW / PERS	ON	280	l/p/day		MINIMUM VE	LOCITY		0.60	m/s					
I (🔊 Sta	antec	DATE:		20/8/2	019						,				MIN PEAK FA	CTOR (RES.))=	2.0		COMMERCIA	AL.		28,000	l/ha/day		MAXIMUM V	ELOCITY		3.00	m/s					
		REVISION	:	2											PEAKING FA	CTOR (INDUS	STRIAL):	2.4		INDUSTRIAL	(HEAVY)		55,000	l/ha/day		MANNINGS r	n		0.013						
		DESIGNE		WJ	J	FILE NUMBER:	:	160401438							PEAKING FA	CTOR (ICI >2	0%):	1.5		INDUSTRIAL	. (LIGHT)		35,000	l/ha/day		BEDDING CL	LASS		В	3					
		CHECKEE	BY:	-											PERSONS / E	BACHELOR		1.4		INSTITUTION	NAL		28,000	l/ha/day		MINIMUM CO	OVER		2.50) m					
															PERSONS / 1	BEDROOM		1.4		INFILTRATIO	N		0.33	l/s/Ha		HARMON CO	ORRECTION F	ACTOR	0.8						
															PERSONS / 2	BEDROOM		2.1																	
L	LOCATION					RESIDENTIAL ARE	EA AND POP	PULATION				COMM	ERCIAL	INDUS	rrial (L)	INDUST	TRIAL (H)	INSTITU	JTIONAL	GREEN	/ UNUSED	C+I+I		INFILTRATION	1	TOTAL				PI	IPE				
AREA ID NUMBER	FROM	то	AREA	BACHELOR 1	BEDROOM	2 BEDROOM	POP.	CUMU		PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VEL.	VEL.
NUMBER	M.H.	M.H.	(1)					AREA	POP.	FACT.	FLOW	(1	AREA	(1	AREA	(1)	AREA	(1	AREA	(1	AREA	FLOW	AREA	AREA	FLOW	(11-)	()	((0/)				(ACT.)
			(ha)					(na)			(I/S)	(ha)	(ha)	(na)	(ha)	(na)	(ha)	(ha)	(ha)	(na)	(ha)	(I/S)	(na)	(ha)	(l/s)	(I/S)	(m)	(mm)			(%)	(l/s)	(%)	(m/s)	(m/s)
BLDG	BLDG	TEE	0.117	12	22	12	73	0.12	73	4.00	0.94	0.000	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.117	0.12	0.04	0.98	14.3	150	PVC	DR 28	1.00	15.3	6.41%	0.86	0.41
	,							• • • • •	· · ·																		•	225							

Appendix C Stormwater Management August 20, 2019

Appendix C STORMWATER MANAGEMENT

C.1 STORM SEWER DESIGN SHEET

td w:\active\160401438_17_19 robinson ave\design\report\servicing\2019-08-20\rpt_2019-08-20_servicing.docx

		19 Robinson	Avenue			DESIGN SHEET				DESIGN I = a / (t+	IGN PARAMETERS / (t+b) ^c (As per City of Ottawa Guidelines, 2012)																			
Stantec	DATE:		20-Au	g-2019		(City of Ottawa) a =					1:2 yr	1:100 yr																		
Junicec	REVISION:			2						a =	732.951	1735.688	MANNING	G'Sn=	0.013		BEDDING	CLASS =	В											
	DESIGNED BY	:	W	AJ	FILE NUM	IBER: 160	4-01438				b =	6.199	6.014	MINIMUM	I COVER:	2.00	m													
	CHECKED BY:										c =	0.810	0.820	TIME OF	ENTRY	10	min													
LOCA	ATION									DRAINAG	E AREA													PIPE SELEC	CTION					
AREA ID	FROM	то	AREA	AREA	AREA	С	ACCUM.	AxC	ACCUM.	ACCUM.	AxC	ACCUM.	T of C	I _{5-YEAR}	I _{10-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH	PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.	VEL.	TIME OF
NUMBER	M.H.	M.H.	(2-YEAR)	(10-YEAR)	(ROOF)		AREA (2YR) (2-YEAR)	AxC (2YR)	AREA (100YR)	(100-YEAR)	AxC (100YR)	1			(NOTE 1)	Q _{CONTROL}	(CIA/360)	(OR DIAMETER	HEIGHT	SHAPE				(FULL)		(FULL)	(ACT)	FLOW
			(ha)	(ha)	(ha)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
SITE	CB 1	MAIN	0.10	0.00	0.00	0.79	0.10	0.082	0.082	0.00	0.000	0.000	10.00	76.81	178.56	0.0	0.0	17.4	12.9	200	200	CIRCULAR	PVC	-	1.00	33.3	52.38%	1.05	0.91	0.24
						•							10.24							225	225									
SITE	CB 1	MAIN	0.10	0.00	0.00		0.10	0.082	0.082	0.00	0.000	0.000	10.00 10.24	76.81	178.56	0.0	0.0	17.4	12.9	200 225	200 225	CIRCULAR	PVC	-	1.00	33.3	52.38%	1.05		0.91

Appendix C Stormwater Management August 20, 2019

C.2 RATIONAL METHOD CALCULATIONS

td w:\active\160401438_17_18 robinson ave\design\report\servicing\2019-08-20\rpt_2019-08-20_servicing.docx

 File No:
 160401438

 Project:
 19 ROBINSON AVE

 Date:
 20-Aug-19

SWM Approach: Post-development to Pre-development flows

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

Sub-catchi Area	nent		oefficient Table Area (ha)		Runoff Coefficient			Overall Runoff
Catchment Type	ID / Description		"A"		"C"		x C"	Coefficient
Roof	BLDG	Hard	0.058		0.9	0.052		
	0	Soft	0.000	0.050	0.2	0.000	0.0500	0.000
	St	ubtotal		0.058			0.0522	0.900
Controlled - Tributary	CB-1	Hard	0.032		0.9	0.028		
		Soft	0.014		0.2	0.003		
	Su	ubtotal		0.045			0.03105	0.690
Uncontrolled - Non-Tributary	UNC-2	Hard	0.000		0.9	0.000		
	0110 2	Soft	0.002		0.2	0.000		
	Si	ubtotal		0.002			0.0004	0.200
Uncontrolled - Non-Tributary	UNC-1	Hard	0.004		0.9	0.003		
		Soft	0.008		0.2	0.002		
	Si	ıbtotal		0.012			0.00504	0.420
Total verall Runoff Coefficient= C:				0.117			0.089	0.76
								0.10
otal Roof Areas otal Tributary Surface Areas (Co	ntrolled and Uncontro	lled)	0.058 ł 0.045 ł					
otal Tributary Area to Outlet		licu)	0.103 ha					
otal Uncontrolled Areas (Non-Tri	hereta ma)		0.014 k					

0.117 ha

Total Site	

Stormwater Management Calculations

Project #160401438, 19 ROBINSON AVE

odified	160401438 Rational N		alculatons					
	2 yr Intensi		$I = a/(t + b)^{c}$	a =	732.951	t (min)	l (mm/hr)	
	City of Otta	iwa		b =	6.199	10	76.81	
				c =	0.81	20 30	52.03 40.04	
						40	32.86	
						50 60	28.04 24.56	
						70	21.91	
						80	19.83	
						90 100	18.14 16.75	
						110	15.57	
					ا 	120	14.56	
Subdra				arget Releas		tion of Site	9	
Subura	Area (ha): C:	0.1170 0.40		y Alea to Oute	51			
	Typical Tim	e of Concer	ntration					
	tc	l (2 yr)	Qtarget					
	(min) 10	(mm/hr) 76.81	(L/s) 9.99					
	2 YEAR N	lodified R	ational Meth	od for Entire	Site			
Subdra	ainage Area:	BLDG					Roof	
	Area (ha): C:	0.058 0.90		N	laximum Sto	rage Depth:	150 1	nm
	tc (min)	l (5 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)	Depth (mm)	
	10	76.81	11.15	2.04	9.11	5.46	91.1	0.0
	20	52.03	7.55	2.16	5.39	6.47	97.5	0.0
	30 40	40.04 32.86	5.81 4.77	2.17 2.14	3.64 2.63	6.55 6.31	98.0 96.4	0.0
	50	28.04	4.07	2.09	1.97	5.92	94.0	0.0
	60 70	24.56 21.91	3.56 3.18	2.04 1.99	1.52 1.19	5.48 5.01	91.2 88.3	0.0
	70 80	21.91 19.83	3.18	1.99 1.93	1.19 0.95	5.01 4.54	88.3 85.3	0.0
	90	18.14	2.63	1.88	0.76	4.09	82.5	0.0
	100 110	16.75 15.57	2.43 2.26	1.82 1.77	0.61 0.49	3.64 3.21	79.7 77.0	0.0
	110	15.57	2.26	1.77	0.49	2.83	74.2	0.0
orage:	Roof Storag							
J .		Depth	Head	Discharge	Vreq	Vavail	Discharge	
2-year	Water Level	(mm) 98	(m) 0.10	(L/s) 2.17	(cu. m) 6.55	(cu. m) 23.20	Check 0.00	
Subdra	ainage Area: Area (ha): C:	CB-1 0.045 0.69				Control	lled - Tributary	
	C: tc		Qactual	Qrelease	Qstored	Vstored	r	
	tc (min)	l (5 yr) (mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)		
	10	76.81	8.67	2.42	6.25	3.75		
	20 30	52.03 40.04	6.65 5.63	2.73 2.83	3.92 2.79	4.71 5.03		
	40	32.86	4.98	2.85	2.12	5.10		
	50	28.04	4.52	2.84	1.68	5.04		
	60 70	24.56 21.91	4.16 3.88	2.80 2.75	1.37 1.13	4.91 4.75		
	80	21.91 19.83	3.88	2.75	0.95	4.75 4.58		
	90	18.14	3.44	2.63	0.81	4.39		
	100	16.75 15.57	3.27	2.57	0.70 0.61	4.21		
	110 120	15.57 14.56	3.12 2.98	2.51 2.44	0.61 0.53	4.02 3.83		
	ice Diameter:							
	vert Elevation T/G Elevation	58.95 60.80	m m					
Max P	onding Depth	0.25	m					
Dow	nstream W/L	58.72	m					
		Stage	Head (m)	Discharge (L/s)	Vreq (cu.m)	Vavail (cu. m)	Volume Check	
2-year	Water Level	61.05	0.25	2.85	5.10	16.34	OK	
Subdra	ainage Area: Area (ha): C:	UNC-2 0.002 0.20			Ur	ncontrolled -	Non-Tributary	
	tc	l (5 yr)	Qactual	Qrelease	Qstored	Vstored	ſ	
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)	l	
	10 20	76.81 52.03	0.09	0.09				
	20	52.03 40.04	0.06	0.04				
	40	32.86	0.04	0.04				
	50 60	28.04 24.56	0.03 0.03	0.03 0.03				
	70	24.56	0.03	0.03				
	80	19.83	0.02	0.02				
	90	18.14	0.02	0.02				
	100 110	16.75 15.57	0.02 0.02	0.02 0.02				
	120	14.56	0.02	0.02				
Subdra	ainage Area:	UNC-1			Ur	controlled -	Non-Tributarv	
Subdra	ainage Area: Area (ha): C:	0.012			Ur	ncontrolled -	Non-Tributary	
Subdra	Area (ha): C:	0.012 0.42	o	0-10			Non-Tributary	
Subdra	Area (ha): C: tc	0.012 0.42	Qactual	Qrelease	Qstored	Vstored	Non-Tributary	
Subdra	Area (ha): C:	0.012 0.42	Qactual (L/s) 1.08	Qrelease (L/s) 1.08			Non-Tributary	

Modified	Rational N	lethod Cal	culatons	for Storage				
	100 yr Intei	nsity	= a/(t + b)	a =	1735.6	688 t (min)	l (mm/hr)	1
	City of Otta		. (,	b =	6.0	014 10	178.56	
				C =	0.8	320 20 30	119.95 91.87	
						40	75.15	
						50	63.95	
						60 70	55.89 49.79	
						80	44.99	
						90	41.11	
						100 110	37.90 35.20	
						120	32.89	
	10	0 YEAR Pre	developm	ent Target Re	lease from Por	tion of Site		
Subdra	Area (ha):	0.1170	nent Tributa	ry Area to Outle	t			
	C:	0.40						
				Qtarget				
		Developmen		9.99	L/s			
	Less Pea	ak Sanitary D Target Re	ischarge of elease Rate	0.94 9.05	L/s L/s			
		•						
	100 YEAR	Modified R	ational Me	thod for Enti	re Site			
		mouniou						
Subdra	inage Area:	BLDG					Roo	f
ouburu	Area (ha):	0.058			Maximum	Storage Depth:		D mm
	C:	1.00						
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	٦
	(min) 10	(mm/hr) 178.56	(L/s) 28.79	(L/s) 2.79	(L/s) 26.00	(m^3) 15.60	(mm) 130.6	0.0
	20	119.95	19.34	2.98	16.36	19.63	140.9	0.0
1	30 40	91.87 75.15	14.81 12.12	3.06 3.08	11.76 9.04	21.16 21.68	144.8 146.1	0.0
1	40 50	63.95	12.12 10.31	3.08	9.04 7.23	21.68 21.69	146.1 146.1	0.0
	60	55.89	9.01	3.07	5.94	21.40	145.4	0.0
	70 80	49.79 44.99	8.03 7.25	3.04 3.02	4.98 4.24	20.93 20.34	144.2 142.7	0.0
	90	41.11	6.63	2.98	3.64	19.68	141.0	0.0
	100 110	37.90 35.20	6.11 5.68	2.95 2.91	3.16 2.76	18.97 18.23	139.2 137.3	0.0
	120	32.89	5.30	2.88	2.43	17.47	135.4	0.0
Storage:	Roof Storag	e						
Ť			Llaad	Discharge	View	Vereil	Discharge	٦
		Depth (mm)	Head (m)	(L/s)	Vreq (cu. m)	Vavail (cu. m)	Discharge Check	
100-year	Water Level	146	0.15	3.08	21.69	23.20	0.00	1
1								
Subdra	inage Area:	CB-1 0.045				Controll	ed - Tributar	у
	Area (ha): C:	0.86						
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored		
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)		
	10 20	178.56 119.95	22.05 15.92	4.30 4.79	17.76 11.13	10.65 13.36		
	30	91.87	12.97	4.79	7.98	14.36		
	40 50	75.15 63.95	11.19 9.98	5.06 5.07	6.13 4.91	14.70 14.73		
	60	55.89	9.10	5.04	4.06	14.60		
	70	49.79 44.99	8.42	4.99	3.42	14.38		
	80 90	44.99 41.11	7.87 7.42	4.93 4.87	2.94 2.55	14.09 13.77		
	100	37.90	7.04	4.80	2.24	13.42		
	110 120	35.20 32.89	6.71 6.43	4.73 4.66	1.98 1.76	13.06 12.69		
1								
Orifi	ce Diameter:	I ME80		Volume in CB1	and CB 2 when			
Inv	vert Elevation	58.95 r		head = 0.79		0.57		
	I/G Elevation torage Depth	60.80 r 0.79 r		Max available	volume in CB's	1.08		
	nstream W/L	58.72 r						
	1	Stage	Head	Discharge	Vreq	Vavail	Volume	1
100	Water Level	61.59	(m) 0.79	(L/s) 5.07	(cu. m) 14.73	(cu. m)	Check	_
100-year	water Lever	01.59	0.79	5.07	14.73	16.34 1.61	OK	_
Cush data		UNC-2					Nan Tributar	
Subura	inage Area: Area (ha):	0.002				Uncontrolled -	NON-TIDULAR	у
	C:	0.25						
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored		
	(min) 10	(mm/hr) 178.56	(L/s) 0.25	(L/s) 0.25	(L/s)	(m^3)		
	20	119.95	0.17	0.17				
1	30 40	91.87 75.15	0.13 0.10	0.13 0.10				
1	50	63.95	0.09	0.09				
1	60 70	55.89 49.79	0.08 0.07	0.08				
1	80	44.99	0.07	0.07				
1	90	41.11	0.06	0.06				
	100 110	37.90 35.20	0.05 0.05	0.05 0.05				
	120	32.89	0.05	0.05				
Subdra	inage Area:	UNC-1				Uncontrolled -	Non-Tributar	У
	Area (ha): C:	0.012 0.53						
	tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored		
	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(m^3)		
1	10	178.56	3.13	3.13		_		

Stormwater Management Calculations

Project #160401438, 19 ROBINSON AVE

Project #160401438, 19 ROBINSON AVE

Modified Ration								
	20	52.03	0.73	0.73				
	30	40.04	0.56	0.56				
	40	32.86	0.46	0.46				
	50	28.04	0.39	0.39				
	60	24.56	0.34	0.34				
	70	21.91	0.31	0.31				
	80	19.83	0.28	0.28				
	90	18.14	0.25	0.25				
	100	16.75	0.23	0.23				
	110	15.57	0.22	0.22				
	120	14.56	0.20	0.20				
SUMMARY TO C	DUTLET	r			Vermined	Versilek	lat	
SUMMARY TO C	DUTLET			0.402 ba	Vrequired	Vavailab	le*	
SUMMARY TO C		Tri	butary Area	0.103 ha				
SUMMARY TO C		Tri	butary Area ow to Sewer	0.103 ha 5.02 L/s		Vavailab 0	le* 0 m ³	Ok
SUMMARY TO C		Tri Total 2yr Flo	ow to Sewer	5.02 L/s				Ok
SUMMARY TO C		Tri Total 2yr Flo Non-Tri	ow to Sewer butary Area	5.02 L/s 0.014 ha				Ok
SUMMARY TO C		Tri Total 2yr Flo Non-Tri	ow to Sewer	5.02 L/s				Ok
SUMMARY TO C		Tri Total 2yr Flo Non-Tri	ow to Sewer butary Area	5.02 L/s 0.014 ha 1.16 L/s				Ok
SUMMARY TO C		Tri Total 2yr Flo Non-Tri al 2yr Flow U	bw to Sewer butary Area Incontrolled	5.02 L/s 0.014 ha				Ok

	20	119.95	2.10	2.10		
	30	91.87	1.61	1.61		
	40	75.15	1.32	1.32		
	50	63.95	1.12	1.12		
	60	55.89	0.98	0.98		
	70	49.79	0.87	0.87		
	80	44.99	0.79	0.79		
	90	41.11	0.72	0.72		
	100	37.90	0.66	0.66		
	110	35.20	0.62	0.62		
	120	32.89	0.58	0.58		
MMARY TO C	DUTLE	r			Vrequired Vav	railable*
IMMARY TO (DUTLE		outary Area	0.103 ha	Vrequired Vav	railable*
IMMARY TO C				0.103 ha 5.07 L/s	Vrequired Vav	railable* 0 m ³
	То	Tril tal 100yr Flo Non-Tril	w to Sewer outary Area			
	То	Tril tal 100yr Flo	w to Sewer outary Area	5.07 L/s		
	То	Tril tal 100yr Flo Non-Tril 00yr Flow U	w to Sewer outary Area ncontrolled Total Area	5.07 L/s 0.014 ha 3.38 L/s 0.117 ha		
IMMARY TO C	То	Tril tal 100yr Flo Non-Tril 00yr Flow U	w to Sewer outary Area ncontrolled	5.07 L/s 0.014 ha 3.38 L/s		

Project #160401438, 19 ROBINSON AVE Roof Drain Design Sheet, Area BLDG Standard Watts Model R1100 Accutrol Roof Drain

Rating Curve					Volume Estimation			
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0006	0	0.025	13	0	0	0.025
0.050	0.0006	0.0013	1	0.050	52	1	1	0.050
0.075	0.0009	0.0017	3	0.075	116	2	3	0.075
0.100	0.0011	0.0022	7	0.100	206	4	7	0.100
0.125	0.0013	0.0027	13	0.125	322	7	13	0.125
0.150	0.0016	0.0032	23	0.150	464	10	23	0.150

Drawdown Estimate						
Total	Total					
Volume	Time	Vol	Detention			
(cu.m)	(sec)	(cu.m)	Time (hr)			
0.0	0.0	0.0	0			
0.8	595.9	0.8	0.16552			
2.8	1176.2	2.0	0.49225			
6.8	1799.7	4.0	0.99217			
13.3	2443.5	6.6	1.67092			
23.1	3098.4	9.8	2.5316			

Rooftop Storage Summary

Total Building Area (sg.m)		580	
Assume Available Roof Area (sq.	80%	464	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		2	
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).
Max. Allowable Storage (cu.m)		23	
Estimated 100 Year Drawdown Time (h)		2.4	

From Watts Drain Catalogue								
Head (m)	Head (m) L/s							
	Open	75%	50%	25% (Closed			
0.025	0.3155	0.3155	0.3155	0.3155	0.3155			
0.050	0.6309	0.6309	0.6309	0.6309	0.3155			
0.075	0.9464	0.8675	0.7886	0.7098	0.3155			
0.100	1.2618	1.1041	0.9464	0.7886	0.3155			
0.125	1.5773	1.3407	1.1041	0.8675	0.3155			
0.150	0	1.5773	1.2618	0.9464	0.3155			

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	2yr	100yr	Available
Qresult (cu.m/s)	0.002	0.003	-
Depth (m)	0.098	0.146	0.150
Volume (cu.m)	6.6	21.7	23.2
Draintime (hrs)	1.0	2.4	

Appendix D Geotechnical Investigation August 20, 2019

Appendix D GEOTECHNICAL INVESTIGATION

td w:\active\160401438_17-19 robinson ave\design\report\servicing\2019-08-20\rpt_2019-08-20_servicing.docx

Geotechnical Investigation Report Proposed Residential Development

17-19 Robinson Avenue, Ottawa, ON

Project No.: 121622042

Prepared for: TC United Group 800 Industrial Ave, Unit 9 Ottawa, ON K1G 4B8

Prepared by: Stantec Consulting Ltd. 1331 Clyde Avenue Ottawa, Ontario

July 27, 2018

Table of Contents

1.0	INTRODUCTION	1
2.0	BACKGROUND INFORMATION	1
2.1	SITE AND PROJECT DESCRIPTIONS	1
2.2	PREVIOUS INVESTIGATION	1
3.0	SUBSURFACE CONDITIONS	2
3.1	GENERAL	
3.2	SURFICIAL MATERIALS	2
3.3	GLACIAL TILL	2
3.4	BEDROCK	3
3.5	GROUNDWATER CONDITIONS	3
4.0	DISCUSSION AND RECOMMENDATIONS	4
4.1	SEISMIC DESIGN CONSIDERATIONS	4
	4.1.1 Seismic Class	
	4.1.2 Liquefaction Potential	
4.2	FROST PENETRATION	-
4.3	SITE PREPARATION	
	4.3.1 Grade Raise Restrictions	
	4.3.2 Site Preparation and Floor Slab Construction	
4.4	FOUNDATION DESIGN INPUT	
	4.4.1 Foundation Design Parameters - Shallow Footings	
4 5	4.4.2 Foundation Wall Backfill	
4.5		
4.6	EXCAVATIONS AND BACKFILL	
	4.6.2 Temporary Dewatering Considerations	
4.7	PIPE BEDDING AND BACKFILL	
4.7	ADVERSE WEATHER CONSTRUCTION	
4.8 4.9	CEMENT TYPE AND CORROSION POTENTIAL	-
4.9	CEIVIENT TTPE AND CORROSION POTENTIAL	I
5.0	CLOSURE1	3

LIST OF TABLES

Table 3.1:	Grain Size Distribution Results – SILTY SAND TILL (SM)	3
Table 4.1:	Geotechnical Resistance for Shallow Footings	6
Table 4.2:	Non-Seismic Lateral Earth Pressure Parameters (Horizontal Backfill)	8
Table 4.3:	Seismic Earth Pressure Parameters (Horizontal Backfill)	8
Table 4.4:	Chemical Analysis Results	.11

LIST OF APPENDICES

APPENDIX A Statement of General Conditions

APPENDIX B Drawing No. 1 – Borehole Location Plan

APPENDIX C Symbols & Terms Used on the Borehole Records 2010 Borehole Records 2010 Bedrock Core Log and Photographs

APPENDIX D Laboratory Test Results 2010 Grain Size Distribution Plots

APPENDIX E Seismic Hazard Calculation Sheet

1.0 INTRODUCTION

Stantec Consulting Ltd. (Stantec) has been retained by TC United Group to prepare a Geotechnical Investigation Report for the proposed residential development located on the properties at 17-19 Robinson Avenue in Ottawa, Ontario at the location shown on the Key Plan (refer to Drawing No. 1).

Stantec previously conducted a geotechnical investigation and prepared an investigation report for a previously planned development at the site in 2010 which was reported under Stantec Project No. 163808203. As the development plans and building code requirements have changed since the submittal of the previous report, this report provides updated geotechnical design input for the proposed development. TC United Group has received approval from the former property owner to reference/use the subsurface information contained in that report and provided authorization to Stantec to use this information as part of the current assignment.

This report provides recommendations on the geotechnical design aspects of the project. Limitations associated with this report and its contents are provided in the Statement of General Conditions included in Appendix A.

2.0 BACKGROUND INFORMATION

2.1 SITE AND PROJECT DESCRIPTIONS

The proposed development site contains three former properties (17, 19, and 23 Robinson Avenue) that have been combined to form a single property. Each of the former properties currently contains an individual residential structure located in the south (front) portion of the property.

Based on the information provided by TC United Group, Stantec understands that it is planned to construct a threestorey apartment building with a basement level that has a floor slab located approximately 1 m below exterior site grades at the site. The proposed building will encompass a plan area of approximately 258 m² and is planned to be constructed at the location shown on Drawing No. 1 in Appendix B.

Based on a topographical plan of the site prepared by Stantec dated July 10, 2009, the ground surface within the site is generally flat with ground surface elevations varying between about 60.8 m and 61.5 m.

2.2 PREVIOUS INVESTIGATION

A total of eight boreholes designated as BH10-01 to BH10-07 and MW10-05A were drilled at the site as part of the previous investigation. The boreholes were advanced to depths of between 2.5 m and 11.6 m below ground surface. Bedrock coring was conducted in BH10-4. A monitoring well was installed at the location of MW10-05A.

3.0 SUBSURFACE CONDITIONS

3.1 GENERAL

Detailed descriptions of the subsurface soil, bedrock and groundwater conditions encountered during the 2010 investigation at the site are presented on the Borehole Records, Bedrock Core Log, and Rock Core Photographs provided in Appendix C. Documents providing explanations of the symbols and terms used on the borehole records are also provided in Appendix C. Laboratory test results from the previous investigation are shown on the borehole records and are included in Appendix D for reference.

The stratigraphic boundaries on the borehole records are inferred from non-continuous sampling and, therefore, represent transitions between soil and bedrock types rather than exact boundaries between geological units. The borehole records depict conditions at the particular locations and at the particular times indicated. The subsurface soil, bedrock and groundwater conditions will vary between boreholes and/or at locations away from the boreholes.

The information provided in the following sections is intended to summarize the conditions encountered; however, the borehole records provided in Appendix C should be used as the primary source of the subsurface information for the site.

In general, the subsurface stratigraphy encountered at the borehole locations consisted of surficial materials including topsoil, asphalt and fill underlain by a native deposit of glacial till and then by shale bedrock. A summary of the subsurface conditions encountered in the boreholes is provided in the following sections.

3.2 SURFICIAL MATERIALS

Surficial/near-surface materials consisting of topsoil, asphalt and predominantly granular fill materials, varying in composition from silty sand to gravelly sand/sand and gravel to gravel with asphalt, were encountered at all borehole locations. These materials extended to depths of approximately 0.035 m to 0.9 m below ground surface.

In addition to the fill encountered during the investigation, fill materials of greater thickness are expected to be present within the backfill zones of the existing residential structures and site services.

A deposit of dark brown silty sand was encountered below the fill at a depth of 0.9 m in BH10-02. The silty sand extended to a depth of 2.1 m below ground surface.

3.3 GLACIAL TILL

The near-surface materials described above are underlain by a native glacial till deposit that was encountered at depths of approximately 0.1 m to 1.6 m below ground surface (corresponding to elevations of approximately 59.2 m to 61.1 m).

The glacial till typically consists of silty sand with gravel. Cobbles were noted throughout the till deposit at the borehole locations. The glacial till in Ottawa is typically comprised of cobbles and boulders set in a matrix of finergrained material (i.e. gravel, sand, silt and clay); larger boulders (e.g. in excess of 1.0 m) are common. The till is typically unsorted and without stratification, but in places contains discontinuous layers or irregular shaped masses of sand and silt. In this regard, where glacial till deposits are identified, cobbles and boulders will be present throughout

the deposits and permeable layers of sand and/or silt may also randomly be present due to the unsorted and unstratified nature of the glacial till.

Standard Penetration Test (SPT) 'N' values measured within the glacial till ranged between 1 to > 50 per 0.3 m of penetration indicating that the glacial till is in a loose to very dense state. However, the lower 'N' values are inferred to be influenced by disturbance of the glacial till during drilling while the higher 'N' values are inferred to be influenced by the presence of cobbles and boulders.

Laboratory testing conducted on samples of the glacial till measured natural moisture contents of between 7 % and 13 %, expressed as a percentage of the dry weight of the soil.

Grain size distribution tests were completed on three (3) samples of the glacial till. The results of the tests are displayed on the figures in Appendix D and are summarized in Table 3.1. In accordance with the Unified Soil Classification System, the samples tested can be classified as SILTY SAND with gravel (SM).

Borehole	Sample	Depth (m)	Unified Soil Classification System	% Gravel	% Sand	% Silt and Clay
BH10-3	SS3	1.5		22	44	34
BH10-04	SS11	7.6	SILTY SAND (SM) with gravel	20	44	36
BH10-5A	SS4	5.3	with graver	20	45	35

Table 3.1: Grain Size Distribution Results - SILTY SAND TILL (SM)

3.4 BEDROCK

The bedrock surface was encountered at depths of approximately 9.1 m to 9.5 m below ground surface corresponding to elevations of about 51.5 m and 52.1 m, respectively.

Coring was conducted in BH10-4 to confirm the presence and type of bedrock and to provide information on the engineering characteristics of the bedrock. The first core run at this location retrieved predominantly glacial till materials with fractured shale bedrock present within the lower portion of the core run. A detailed description of the rock core is provided on the Bedrock Core Log in Appendix C.

The bedrock core obtained from BH10-04 consisted predominantly of slightly weathered, black shale. Rock Quality Designation (RQD) values of 9% and 82% were recorded within the core runs indicating that the bedrock is of very poor to good quality. The lower RQD value in the lowest core run is inferred to have been influenced by the drilling process.

Unconfined compressive strength tests on rock core samples yielded strengths of approximately 56 and 70 MPa.

3.5 GROUNDWATER CONDITIONS

A groundwater monitoring well was installed in MW10-05A on August 4, 2010. The groundwater level in the well was recorded at approximately 3.7 m below ground surface, corresponding to an elevation of 57.5 m, one week after completion of drilling.

It should be noted that groundwater level at the site will be subject to fluctuations due to seasonal changes and precipitation events as well as water level in the nearby Rideau River. The water level at the site may have changed since the time of 2010 investigation.

4.0 DISCUSSION AND RECOMMENDATIONS

This section provides engineering input related to the geotechnical design aspects of the proposed development based on our interpretation of the available subsurface information described herein and our understanding of the project requirements.

The discussion and recommendations presented in the following sections of this report are intended to provide the designers with preliminary information for planning and design purposes only. Contractors bidding on or undertaking the works should examine the factual results of the investigation, satisfy themselves as to the adequacy of the factual information for construction, and make their own interpretation of the factual data as it affects their proposed construction techniques, schedule, safety, and equipment capabilities.

4.1 SEISMIC DESIGN CONSIDERATIONS

4.1.1 Seismic Class

The seismic Site Class value, as defined in Section 4.1.8.4 of the 2012 Ontario Building Code (OBC), contains a seismic analysis and design methodology which uses a seismic site response and site classification system defined by the average shear stiffness of the upper 30 metres of the ground below the foundation level. There are six site classes (from A to F), decreasing in stiffness from A (hard rock) to E (soft soil); Site Class F denotes problematic soils for which a site-specific evaluation is required.

As part of the Seismic Site Class assessment, publicly available information from a nearby site where vertical seismic profile (VSP) testing was carried out to determine the shear wave velocity of the subsurface materials was reviewed. The results of this testing indicate that shear wave velocities in excess of 1,000 m/s were measured within till deposits that had similar gradations and strength characteristics to those measured at the subject site. Based on the results of the current field investigation and the above noted VSP testing, it is appropriate to classify the existing ground conditions at the subject site as a Site Class C.

A copy of the NBC Seismic Hazard Calculation Data sheet for this site is provided in Appendix E for reference.

4.1.2 Liquefaction Potential

The potential for soil liquefaction was evaluated by comparing the cyclic stress ratio (CSR) caused by the design earthquake with the soil resistance expressed in terms of the cyclic resistance ratio (CRR). The evaluation follows the analysis methodology suggested by Idriss and Boulanger (2008) and is based on the following:

- SPT 'N' values from boreholes and available information on the shear wave velocity of till soils noted above.
- A Site Adjusted PGA of 0.28 g.
- An earthquake magnitude M_w of 6.2.

The assessment indicated that the site soils are generally not considered susceptible to liquefaction taking into account the available information on the shear wave velocities in the till and that the lowest SPT 'N' values measured within the till are considered to have been influenced by drilling activities.

4.2 FROST PENETRATION

The design frost penetration depth for the Ottawa area is 1.8 m. All foundations founded on frost-susceptible materials should be provided with a minimum of 1.8 metres of earth cover or equivalent insulation for frost protection purposes.

It is to be noted that the above frost penetration depth is applicable only to foundation design. Short period deeper frost penetrations, which would have little impacts on foundations, may occur. The typical soil cover for frost protection of watermains and services is 2.4 m below ground surface in the City of Ottawa.

Exterior slabs-on-grade or slabs-on-grade within unheated areas will also be subject to the risk of heave and deformation/cracking due to frost. Consideration could be given to the use rigid insulation to protect structures against frost action; however appropriate frost tapers would need to be incorporated at the ends of the insulation.

4.3 SITE PREPARATION

4.3.1 Grade Raise Restrictions

It is understood that significant grade raises are not planned at the site. The native subsurface materials present at the site consist predominantly of silty sand till overlying shale bedrock. These materials are not considered to be highly compressible. Therefore, grade raises of less than 1 m, if required, are not anticipated to result in settlements of the underlying soil/bedrock that would adversely affect the performance of the proposed facilities.

4.3.2 Site Preparation and Floor Slab Construction

In preparation for construction of the building foundations and floor slab, all vegetation and tree stumps/roots, organic soil (including topsoil), existing fill materials, existing infrastructure (e.g. foundations, floor slabs and services for the existing buildings) and any loose, wet, and/or otherwise disturbed native material should be removed from within the footprint of the proposed building and any other settlement sensitive areas. To provide consistent subgrade conditions, all below-grade portions of the existing buildings as well as basement wall backfill materials should be removed to expose the native glacial till. Following removal of the above noted materials, the prepared subgrade will require inspection by geotechnical personnel to verify all unsuitable material has been removed.

The existing basements and foundations of the existing structures at the site are anticipated to extend below the basement floor slab level for the proposed building. Where removal of existing structures and/or unsuitable materials extends below the floor slab subgrade level, the grade beneath the new building floor slab should be raised/reinstated to the design subgrade level using Structural Fill consisting of Ontario Provincial Standard Specification (OPSS) Granular B Type I or II materials that are placed in lifts no thicker than 300 mm and compacted to at least 100% of the material's Standard Proctor Maximum Dry Density (SPMDD).

The floor slab for the basement/lowest level of the proposed building is understood to be located below the final exterior grades. This level should either be designed to be waterproof/watertight or an underslab drainage system should be provided to prevent hydrostatic pressure build-up beneath the floor due to fluctuations in the water table

and/or infiltration of surface water. At least 300 mm of free draining material, such as 16 mm clear crushed stone, should be provided beneath the base of the slab. These materials should be lightly-compacted to provide a level surface and improve trafficability during construction. Subdrains consisting of geotextile encapsulated, 100 mm diameter perforated pipes should be provided at approximately 6 m spacings within the floor slab bedding and should be connected to a frost-free gravity outlet or a sump from which the water is pumped. The requirements for an underslab vapour barrier should be determined in accordance with the requirements of the Ontario Building Code.

As noted later in this report, the proposed building is recommended to be supported on shallow foundations bearing on the native silty sand till deposit. If existing fill materials or structures are present beneath the proposed founding elevations, all such fill materials and structures should be removed from beneath the footprint of the building, the footings and the zone of influence of all footings, to expose the native glacial till surface. The zone of influence is defined by a line drawn at 1 horizontal to 1 vertical, outward and downward from the edge of the footings. The grade should be raised back up to the founding level using Structural Fill as discussed above.

Inspection and testing services will be critical to ensure that all fill, existing structures and unsuitable materials are removed beneath the proposed building, and that new engineered fill and concrete used is suitable and is placed competently.

4.4 FOUNDATION DESIGN INPUT

Based on the subsurface conditions encountered at the site and the proposed finished floor slab level of the proposed building, the preferred foundation option for this site is the use of shallow strip and/or spread footings bearing on either the undisturbed native till deposits or compacted Structural Fill placed above the undisturbed till.

4.4.1 Foundation Design Parameters - Shallow Footings

Shallow foundations bearing directly on undisturbed native silty sand till or on Structural Fill placed above the native silty sand till can be designed using factored geotechnical resistance values presented in Table 4.1 below.

Footing Type and Width (m)	Minimum Footing Embedment (m) Below Basement Floor Slab Surface	Factored Geotechnical Resistance at ULS (kPa)	Geotechnical Resistance at SLS (kPa)					
Square Footings								
1			225					
2	0.8	300	200					
2.5			175					
Strip Footings								
0.5 to 1.5	0.8	200	175					

Table 4.1: Geotechnical Resistance for Shallow Footings

Notes:

The geotechnical resistances in the above table are provided for the range of footing widths and the minimum footing embedment depths (below the basement floor slab surface) listed in the above table. Additional input should be provided by the geotechnical engineer if the foundation sizes or embedment depths are outside of the ranges outlined above.

The factored geotechnical bearing resistance at ULS incorporates a resistance factor of 0.5. The post-construction total and differential settlements of footings sized using the above SLS bearing pressure should be less than about 25 and 20 millimetres, respectively, provided that the soil at or below founding level is not disturbed during construction.

The native soils are highly susceptible to disturbance by construction activity especially during wet or freezing weather. Care should be taken to preserve the integrity of the materials as bearing strata. It is essential that the founding level for the footings be inspected by the geotechnical engineer prior to placing concrete. If the concrete for the footings on the native soil cannot be placed immediately after excavation and inspection, it is recommended that a working mat of lean concrete be placed in the excavation to protect the integrity of the bearing stratum.

The unfactored horizontal resistance to sliding of the spread foundations may be calculated using the following unfactored coefficients of friction:

- 0.55 between OPSS Granular A or B Type II materials and cast-in-place concrete
- 0.45 between silty sand till and cast-in-place concrete

In accordance with Table 8.1 of the Canadian Foundation Engineering Manual 4th Edition (CFEM), a resistance factor (ϕ) against sliding (for frictional materials) of 0.8 should be applied to obtain the factored resistance at ULS.

4.4.2 Foundation Wall Backfill

The soils/fill materials encountered at the site are susceptible to frost heave and should not be used as backfill against exterior, unheated, or well insulated foundation elements within the depth of frost penetration. To avoid problems with frost adhesion and heaving, foundation walls in these areas should be backfilled with non-frost susceptible granular fill meeting the gradation requirements of OPSS Granular B Type I materials. The fill should be placed in maximum 300-millimetre thick lifts and should be compacted to at least 95 percent of the material's SPMDD using suitable vibratory compaction equipment.

In areas where hard surfacing (e.g., concrete slabs, sidewalks) surround the building, differential frost heaving will occur between the granular fill backfill zone and other areas. To reduce this differential heaving, a frost taper of the granular backfill is recommended. The frost taper should extend up from 1.5 metres below finished exterior grade (at the foundation wall) at a slope of 3 horizontal to 1 vertical, or flatter, to the surface level.

Exterior grades should be sloped away from the building to prevent ponding of water around the buildings. As the lowest floor slab level is understood to be below the final exterior grades, the basement wall backfill should be drained using a perimeter drainage system (e.g. perforated subdrain) which is provided positive drainage to a storm sewer or to a sump from which water is pumped similar to the underslab drainage system discussed in section 4.3.2.

4.5 EARTH PRESSURES

Earth pressures will need to be considered in the design of the basement walls. The total active (P_A), passive (P_P) and at-rest (P_O) thrusts can be calculated using the following equations:

$$\begin{split} \mathsf{P}_{\mathsf{A}} &= \frac{1}{2} \; \mathsf{K}_{\mathsf{a}} \; \gamma \; \mathsf{H}^2 \\ \mathsf{P}_{\mathsf{P}} &= \frac{1}{2} \; \mathsf{K}_{\mathsf{p}} \; \gamma \; \mathsf{H}^2 \\ \mathsf{P}_{\mathsf{O}} &= \frac{1}{2} \; \mathsf{K}_{\mathsf{o}} \; \gamma \; \mathsf{H}^2 \end{split}$$

July 27, 20

where;

H = height of the wall γ = unit weight of the backfill soil

Values for K_a, K_p, K_o and γ are provided in the table below. These values are based on the assumption that a horizontal back slope will be utilized behind the wall system. At-rest earth pressures should be used in the design of walls that are restrained from movement. The thrust acts at a point one third up the height of the wall.

Table 4.2: Non-Seismic Lateral Earth Pressure Parameters	(Horizontal Backfill)
Table 4.2. Non-Seisinic Lateral Latti Fressure Farameters	(nunzuntai Dackiiii)

Parameter	OPSS Granular B - Type I
Bulk Unit Weight, γ (kN/m³)	22
Effective Friction Angle	32°
Coefficient of Earth Pressure at Rest (K _o)	0.47
Coefficient of Active Earth Pressure (Ka)	0.31
Coefficient of Passive Earth Pressure (K_p)	3.25

Total active and passive thrusts under earthquake conditions can be calculated using the following equations:

 $P_{AE} = \frac{1}{2} K_{AE} \gamma H^2$ $P_{PE} = \frac{1}{2} K_{PE} \gamma H^2$

where;

 $\begin{aligned} &\mathsf{K}_{\mathsf{A}\mathsf{E}} \texttt{=} \texttt{active earth pressure coefficient (combined static and seismic)} \\ &\mathsf{K}_{\mathsf{P}\mathsf{E}} \texttt{=} \texttt{passive earth pressure coefficient (combined static and seismic)} \\ &\mathsf{H} \texttt{=} \texttt{height of wall} \\ &\gamma \texttt{=} \texttt{total unit weight} \end{aligned}$

The recommended seismic earth pressure parameters are provided in Table 4.3 below. The angle of friction between the soil and the wall has been assumed to be 0° to provide a conservative estimate.

Parameter	OPSS Granular B - Type I		
Bulk Unit Weight, γ (kN/m ³)	22		
Effective Friction Angle	32°		
KAE (Non-Yielding Wall)	0.51		
Height of Application of P_{AE} from base as a ratio of wall height, (H) – Non Yielding Wall	0.44		
Active Earth Pressure (KAE) – Yielding Wall	0.4		
Height of Application of P _{AE} from base as a ratio of wall height, (H) - Yielding Wall	0.39		
Passive Earth Pressure, (KPE)	2.99		
Height of Application of P_{PE} from base as a ratio of wall height, (H)	0.31		

In order to use the coefficients of pressure for the granular materials presented in the tables above, the granular backfill must be provided within a wedge extending out from the base of the wall at 45 degrees (or smaller) to the horizontal.

4.6 EXCAVATIONS AND BACKFILL

4.6.1 Temporary Excavations

All temporary excavations should be carried out in accordance with the Occupational Health and Safety Act and Regulations for Construction Projects. Care should be taken to direct surface water away from the open excavations.

The excavation side slopes should be protected from precipitation or surface runoff to prevent further softening that could lead to additional sloughing and caving. If sloughing and cave-in are encountered in the excavation, the slopes should be further flattened to achieve a stable configuration.

Excavations required for the building construction are expected to typically be less than 2 m in depth although localized, deeper excavations could be required (e.g. for service connection tie-ins).

Shallow excavations within the overburden at the site are anticipated to extend through fill materials varying in composition from silty sand with gravel to sand and gravel and the native silty sand till deposit. Conventional hydraulic excavating equipment is considered suitable for developing excavations in these materials recognizing that additional effort will be required to remove cobbles and boulders within the glacial till. Boulders larger than 0.3 metres in size should be removed from the excavation side slopes.

The existing fill materials and the native glacial till deposit that are above the water table would be classified as Type 3 soils as defined by Occupational Health and Safety Act (OHSA) and Regulations for Construction Projects. Within Type 3 soils, temporary open cut excavations must be sloped at 1 horizontal to 1 vertical from the base of the excavation per the requirements of OHSA.

The excavation side slopes would need to be flattened and/or appropriate groundwater control measures implemented if excavations are carried out in overburden materials below the water table.

The excavations must be developed in a manner to ensure that adequate support is provided for any existing structures, utilities or underground services located adjacent to the excavations. Where there is insufficient space to develop open cuts without resultant loss of support for existing features or encroaching into adjacent properties, the installation of a shoring system meeting the requirements of the OHSA would be required. All shoring systems should be designed and approved by a qualified Professional Engineer. The excavation support system should be designed to resist loads from traffic and adjacent building foundations.

4.6.2 Temporary Dewatering Considerations

The groundwater level measured in the piezometer installed in MW10-05A was measured to be at a depth of about 3.7 m below ground surface in 2010. Control of groundwater into shallow excavations into the glacial till deposit is expected to be able to be handled by filtered sumps within the excavation areas.

More significant groundwater inflows should be expected for deeper excavations that extend below the groundwater level. More extensive dewatering systems (e.g. external dewatering system using well points or other dewatering wells) could be required for such conditions. Depending on the depth of excavations, dewatering activities may require either registration in the Ministry of the Environment and Climate Change (MOECC) Environmental Activity and Sector Registry (EASR) or obtaining a Permit to Take Water (PTTW) from the MOECC depending on the anticipated groundwater removal rates. A separate hydrogeological assessment, should be completed to confirm

these requirements before such excavations are undertaken. This assessment should include measurement of the in situ hydraulic conductivity of the site soils.

4.7 PIPE BEDDING AND BACKFILL

OPSS Granular A materials should be placed below sewer and water pipes as bedding material. The bedding should have a minimum thickness of 150 mm to meet City of Ottawa standards. Where unavoidable disturbance to the subgrade surface does occur, it may be necessary to thicken the bedding layer or provide a sub-bedding layer of compacted Granular B Type II materials. Pipe backfill and cover materials should also consist of OPSS Granular A material. A minimum thickness of 300 mm of these materials should be provided as vertical and side cover beside and over top of the pipes. These materials should be compacted to at least 95% of the material's SPMDD in lifts no greater than 300 mm. Clear crushed stone backfill should not be permitted as pipe bedding or cover materials.

Where the pipe trenches will be covered with hard surfaced areas, the type of native material placed in the frost zone (i.e. between subgrade level and the top of the pipe cover materials) should match the soil exposed on the trench walls for frost heave compatibility. A 3H:1V frost taper is recommended in order to minimize the effects of differential frost heaving if materials different than those present in excavation sidewalls are used as backfill.

Trench backfill above the pipe cover materials should be placed in maximum 300 mm thick lifts and should be compacted to at least 98 % of the material's SPMDD using suitable vibratory compaction equipment.

The existing fill materials and the native glacial till that are free of organic matter and other deleterious materials, may be considered suitable for reuse as trench backfill or as general site grade fill (i.e. materials used to raise the site grade to the design elevations). The ability to compact these materials to the required levels is dependent on the moisture content of the materials; thus, the amount of re-useable material will be dependent on the natural moisture content, weather conditions and the construction techniques at the time of excavation and placement. In addition, any boulders or cobbles with dimensions greater than 150 mm should be removed from these materials prior to placement.

Any imported fill materials proposed for use as bedding or trench backfill should be tested and approved by a geotechnical engineering firm prior to delivery to the site.

Materials testing and inspection should be carried out during construction to ensure the materials meet the project specifications and required levels of compaction.

4.8 ADVERSE WEATHER CONSTRUCTION

Additional precautions, effort, and measures may be required, when and where construction is undertaken during late fall, winter, and/or early spring (i.e. when the temperature and climatic conditions can have an adverse influence on the standard construction practices) or during periods of inclement weather. With respect to all earthworks activities undertaken during the late fall through to late spring, when less-than-ideal weather and construction conditions may prevail, the following comments are provided:

1. Foundations shall be constructed on non-frozen ground only; where non-frozen ground includes the material at surface and all underlying soils. The non-frozen nature of the ground must be confirmed by a geotechnical inspection within 1 hour of concrete placement.

- 2. Similarly, concrete for floor slabs should not be placed on or above frozen ground. Test pits or other measures should be undertaken to confirm that the soils beneath the slab(s) are frost-free prior to slab construction.
- Following construction of footings, protection measures must be provided to prevent freezing of the foundation subgrade/bearing soils and for protection of the concrete during curing.
- 4. Engineered fills including pipe bedding and cover, are recommended to consist of imported granular materials, including OPSS Granular A or B materials. The use of non-granular fill materials may be considered for use as trench backfill but obtaining suitable compaction of such materials could be extremely problematic, and these materials should only be used if large, post-construction settlement of the trench backfill is deemed acceptable.
- 5. Fill placement should be inspected by qualified field personnel on a full-time basis under the supervision of a geotechnical engineer, with the authority to stop the placement of fill at any time when conditions are considered to be unfavourable.
- 6. Backfill materials, including imported materials, that contain ice, snow, or any frozen material should not be accepted for use.
- 7. Overnight frost penetration may occur, even in granular fill materials, where precipitation and ground surface runoff pools and accumulates, and freezing temperatures exist. The on-site native soils are prone to frost heave due to ice lensing. Any frozen materials should be removed prior to placing subsequent lifts of engineered fill. Breaking the frost in-situ is not considered acceptable.
- 8. It may be necessary to stop the placement of engineered fill during periods of cold, where ambient temperatures are -5° C or less exist.

Appropriate scheduling of the work may also require specific consideration and revision from that typically adopted. The scope of work intended may have to be reduced or adjusted, and/or only select construction activities be undertaken during specific climatic conditions. The areas of planned fill placement may have to be reduced on a daily basis, and the extent of excavations may have to be limited.

4.9 CEMENT TYPE AND CORROSION POTENTIAL

The results of two (2) tests conducted on selected soil samples to determine the water soluble sulphate content of the site soils completed during the previous investigation at the site are summarized in Table 4.4 below. The results are provided to aid in the selection of coatings and corrosion protection systems for items such as steel pipe in contact with the soil and groundwater at the site.

Borehole No.	Sample No.	Depth (m)	рН	Chloride (µg/g)	Sulphate (µg/g)	Resistivity (Ohm-m)
BH10-3	SS5	3.1 m – 3.7 m	7.82	22	145	50.6
BH10-6	SS5	3.1 m – 3.7 m	7.87	6	138	63.5

Table 4.4:	Chemical	Analysis	Results
	enenioai	,	1 to o anto

The concentration of soluble sulphate provides an indication of the degree of sulphate attack that is expected for concrete in contact with soil and groundwater at the site. The soluble sulphate concentrations for the samples were 138 µg/g and 145 µg/g. Soluble sulphate concentrations less than 1000 µg/g generally indicate that a low degree of sulphate attack is expected for concrete in contact with the soil and groundwater. General Use (GU) Portland cement is appropriate for use at the site.

The test results provided in the Table 4.4 may also be used to aid in the selection of coatings and corrosion protection systems for buried steel objects. The pH, resistivity, and chloride concentration provide an indication of the degree of corrosiveness of the sub-surface environment. The soil pH values were 7.82 and 7.87, which are within what is considered a normal range for soil pH of 5.5 to 9.0. The pH levels of the tested soils do not indicate a highly corrosive environmental. The reported resistivity levels of 50.6 Ohm-m and 63.5 Ohm-m suggest a moderate degree of corrosiveness for steel.

5.0 CLOSURE

Not all details related to the proposed development are known at this time. In this regard, all geotechnical comments provided in this report should be reviewed and, if necessary, revised once the final plans become available. Stantec should be retained to review the final drawings and specifications to confirm that the geotechnical input provided herein has been adequately addressed.

This report has been prepared for the sole benefit of TC United Group and their agents, and may not be used by any third party without the express written consent of Stantec Consulting Ltd. and TC United Group. Any use, which a third party makes of this report, is the responsibility of such third party. Use of this report is subject to the Statement of General Conditions provided in Appendix A. It is the responsibility of TC United Group, who is identified as "the Client" within the Statement of General Conditions, and its agents to review the conditions and to notify Stantec Consulting Ltd. should any of these not be satisfied. The Statement of General Conditions addresses the following:

- Use of the report
- Basis of the report
- Standard of care
- Interpretation of site conditions
- Varying or unexpected site conditions
- Planning, design or construction

We trust the above information meets with your present requirements. Should you have any questions or require further information, please contact us. This report has been prepared by Ramy Saadeldin, Ph.D., P.Eng. and reviewed by Kevin Nelson, P.Eng.

Thank you for the opportunity to be of service to you.

Respectfully submitted,

STANTEC CONSULTING LTD.

Ramy Saadeldin, PhD, P.Eng. Senior Geotechnical Engineer

Ken - Nul

Kevin Nelson, P.Eng. Principal, Geotechnical Engineering

Statement of General Conditions

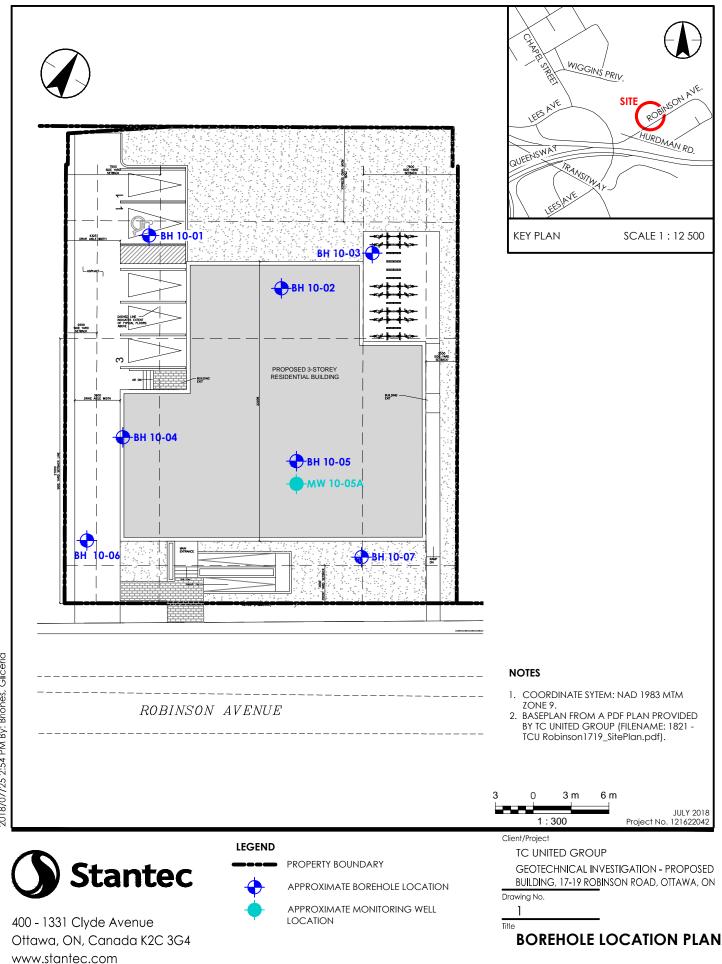
STATEMENT OF GENERAL CONDITIONS

<u>USE OF THIS REPORT</u>: This report has been prepared for the sole benefit of the Client or its agent and may not be used by any third party without the express written consent of Stantec Consulting Ltd. and the Client. Any use which a third party makes of this report is the responsibility of such third party.

<u>BASIS OF THE REPORT</u>: The information, opinions, and/or recommendations made in this report are in accordance with Stantec Consulting Ltd.'s present understanding of the site specific project as described by the Client. The applicability of these is restricted to the site conditions encountered at the time of the investigation or study. If the proposed site specific project differs or is modified from what is described in this report or if the site conditions are altered, this report is no longer valid unless Stantec Consulting Ltd. is requested by the Client to review and revise the report to reflect the differing or modified project specifics and/or the altered site conditions.

<u>STANDARD OF CARE</u>: Preparation of this report, and all associated work, was carried out in accordance with the normally accepted standard of care in the state or province of execution for the specific professional service provided to the Client. No other warranty is made.

<u>INTERPRETATION OF SITE CONDITIONS</u>: Soil, rock, or other material descriptions, and statements regarding their condition, made in this report are based on site conditions encountered by Stantec Consulting Ltd. at the time of the work and at the specific testing and/or sampling locations. Classifications and statements of condition have been made in accordance with normally accepted practices which are judgmental in nature; no specific description should be considered exact, but rather reflective of the anticipated material behavior. Extrapolation of in situ conditions can only be made to some limited extent beyond the sampling or test points. The extent depends on variability of the soil, rock and groundwater conditions as influenced by geological processes, construction activity, and site use.


<u>VARYING OR UNEXPECTED CONDITIONS</u>: Should any site or subsurface conditions be encountered that are different from those described in this report or encountered at the test locations, Stantec Consulting Ltd. must be notified immediately to assess if the varying or unexpected conditions are substantial and if reassessments of the report conclusions or recommendations are required. Stantec Consulting Ltd. will not be responsible to any party for damages incurred as a result of failing to notify Stantec Consulting Ltd. that differing site or subsurface conditions are present upon becoming aware of such conditions.

<u>PLANNING, DESIGN, OR CONSTRUCTION</u>: Development or design plans and specifications should be reviewed by Stantec Consulting Ltd., sufficiently ahead of initiating the next project stage (property acquisition, tender, construction, etc), to confirm that this report completely addresses the elaborated project specifics and that the contents of this report have been properly interpreted. Specialty quality assurance services (field observations and testing) during construction are a necessary part of the evaluation of sub-subsurface conditions and site preparation works. Site work relating to the recommendations included in this report should only be carried out in the presence of a qualified geotechnical engineer; Stantec Consulting Ltd. cannot be responsible for site work carried out without being present.

APPENDIX B

Drawing No. 1 – Borehole Location Plan

T:\Autocad\Drawings\Project Drawings\2018\121622042\121622042_Boreholes_MTM9.dwg 2018/07/25 2:54 PM By: Briones, Gliceria

GEOTECHNICAL INVESTIGATION REPORT – PROPOSED RESIDENTIAL DEVELOPMENT -17-19 ROBINSON AVENUE, OTTAWA, ONTAIRO July 27, 2018

APPENDIX C

Symbols & Terms Used on the Borehole Records 2010 Borehole Records 2010 Bedrock Core Log and Photographs

SYMBOLS AND TERMS USED ON BOREHOLE AND TEST PIT RECORDS

SOIL DESCRIPTION

Terminology describing common soil genesis:

Rootmat	 vegetation, roots and moss with organic matter and topsoil typically forming a mattress at the ground surface
Topsoil	- mixture of soil and humus capable of supporting vegetative growth
Peat	- mixture of visible and invisible fragments of decayed organic matter
Till	- unstratified glacial deposit which may range from clay to boulders
Fill	- material below the surface identified as placed by humans (excluding buried services)

Terminology describing soil structure:

Desiccated	- having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.
Fissured	- having cracks, and hence a blocky structure
Varved	- composed of regular alternating layers of silt and clay
Stratified	- composed of alternating successions of different soil types, e.g. silt and sand
Layer	- > 75 mm in thickness
Seam	- 2 mm to 75 mm in thickness
Parting	- < 2 mm in thickness

Terminology describing soil types:

The classification of soil types are made on the basis of grain size and plasticity in accordance with the Unified Soil Classification System (USCS) (ASTM D 2487 or D 2488) which excludes particles larger than 75 mm. For particles larger than 75 mm, and for defining percent clay fraction in hydrometer results, definitions proposed by Canadian Foundation Engineering Manual, 4th Edition are used. The USCS provides a group symbol (e.g. SM) and group name (e.g. silty sand) for identification.

Terminology describing cobbles, boulders, and non-matrix materials (organic matter or debris):

Terminology describing materials outside the USCS, (e.g. particles larger than 75 mm, visible organic matter, and construction debris) is based upon the proportion of these materials present:

Trace, or occasional	Less than 10%
Some	10-20%
Frequent	> 20%

Terminology describing compactness of cohesionless soils:

The standard terminology to describe cohesionless soils includes compactness (formerly "relative density"), as determined by the Standard Penetration Test (SPT) N-Value - also known as N-Index. The SPT N-Value is described further on page 3. A relationship between compactness condition and N-Value is shown in the following table.

Compactness Condition	SPT N-Value
Very Loose	<4
Loose	4-10
Compact	10-30
Dense	30-50
Very Dense	>50

Terminology describing consistency of cohesive soils:

The standard terminology to describe cohesive soils includes the consistency, which is based on undrained shear strength as measured by *in situ* vane tests, penetrometer tests, or unconfined compression tests. Consistency may be crudely estimated from SPT N-Value based on the correlation shown in the following table (Terzaghi and Peck, 1967). The correlation to SPT N-Value is used with caution as it is only very approximate.

Consistency	Undrained Sh	Approximate	
Consistency	kips/sq.ft.	kPa	SPT N-Value
Very Soft	<0.25	<12.5	<2
Soft	0.25 - 0.5	12.5 - 25	2-4
Firm	0.5 - 1.0	25 - 50	4-8
Stiff	1.0 - 2.0	50 – 100	8-15
Very Stiff	2.0 - 4.0	100 - 200	15-30
Hard	>4.0	>200	>30

ROCK DESCRIPTION

Except where specified below, terminology for describing rock is as defined by the International Society for Rock Mechanics (ISRM) 2007 publication "The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006"

Terminology describing rock quality:

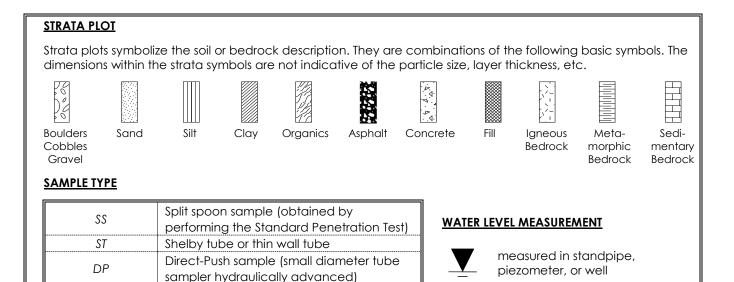
RQD	Rock Mass Quality		Alternate (Colloquio	al) Rock Mass Quality
0-25	Very Poor Quality		Very Severely Fractured	Crushed
25-50	Poor Quality		Severely Fractured	Shattered or Very Blocky
50-75	Fair Quality		Fractured	Blocky
75-90	Good Quality		Moderately Jointed	Sound
90-100	Excellent Quality		Intact	Very Sound

RQD (Rock Quality Designation) denotes the percentage of intact and sound rock retrieved from a borehole of any orientation. All pieces of intact and sound rock core equal to or greater than 100 mm (4 in.) long are summed and divided by the total length of the core run. RQD is determined in accordance with ASTM D6032.

SCR (Solid Core Recovery) denotes the percentage of solid core (cylindrical) retrieved from a borehole of any orientation. All pieces of solid (cylindrical) core are summed and divided by the total length of the core run (It excludes all portions of core pieces that are not fully cylindrical as well as crushed or rubble zones).

Fracture Index (FI) is defined as the number of naturally occurring fractures within a given length of core. The Fracture Index is reported as a simple count of natural occurring fractures.

Terminology describing rock with respect to discontinuity and bedding spacing:


Spacing (mm)	Discontinuities	Bedding
>6000	Extremely Wide	-
2000-6000	Very Wide	Very Thick
600-2000	Wide	Thick
200-600 Moderate		Medium
60-200 Close		Thin
20-60	Very Close	Very Thin
<20	Extremely Close	Laminated
<6 -		Thinly Laminated

Terminology describing rock strength:

Strength Classification	Grade	Unconfined Compressive Strength (MPa)
Extremely Weak	RO	<1
Very Weak	R1	1 – 5
Weak	R2	5 – 25
Medium Strong	R3	25 – 50
Strong	R4	50 – 100
Very Strong	R5	100 – 250
Extremely Strong	R6	>250

Terminology describing rock weathering:

Term Symbol		Description				
Fresh	W1	No visible signs of rock weathering. Slight discoloration along major discontinuities				
Slightly W2		Discoloration indicates weathering of rock on discontinuity surfaces. All the rock material may be discolored.				
Moderately W3		Less than half the rock is decomposed and/or disintegrated into soil.				
Completely W5		More than half the rock is decomposed and/or disintegrated into soil.				
		All the rock material is decomposed and/or disintegrated into soil. The original mass structure is still largely intact.				
		All the rock converted to soil. Structure and fabric destroyed.				

RECOVERY

PS

BS

HQ, NQ, BQ, etc.

For soil samples, the recovery is recorded as the length of the soil sample recovered. For rock core, recovery is defined as the total cumulative length of all core recovered in the core barrel divided by the length drilled and is recorded as a percentage on a per run basis.

N-VALUE

Numbers in this column are the field results of the Standard Penetration Test: the number of blows of a 140 pound (63.5 kg) hammer falling 30 inches (760 mm), required to drive a 2 inch (50.8 mm) O.D. split spoon sampler one foot (300 mm) into the soil. In accordance with ASTM D1586, the N-Value equals the sum of the number of blows (N) required to drive the sampler over the interval of 6 to 18 in. (150 to 450 mm). However, when a 24 in. (610 mm) sampler is used, the number of blows (N) required to drive the sampler over the interval of 6 to 18 in. (150 to 450 mm). However, when a 24 in. (300 to 610 mm) may be reported if this value is lower. For split spoon samples where insufficient penetration was achieved and N-Values cannot be presented, the number of blows are reported over sampler penetration in millimetres (e.g. 50/75). Some design methods make use of N-values corrected for various factors such as overburden pressure, energy ratio, borehole diameter, etc. No corrections have been applied to the N-values presented on the log.

DYNAMIC CONE PENETRATION TEST (DCPT)

Piston sample

Rock core samples obtained with the use

of standard size diamond coring bits.

Bulk sample

Dynamic cone penetration tests are performed using a standard 60 degree apex cone connected to 'A' size drill rods with the same standard fall height and weight as the Standard Penetration Test. The DCPT value is the number of blows of the hammer required to drive the cone one foot (300 mm) into the soil. The DCPT is used as a probe to assess soil variability.

OTHER TESTS

Stantec

S	Sieve analysis						
Н	Hydrometer analysis						
k	Laboratory permeability						
Y	Unit weight						
Gs	Specific gravity of soil particles						
CD	Consolidated drained triaxial						
CU	Consolidated undrained triaxial with pore						
CU	pressure measurements						
UU	Unconsolidated undrained triaxial						
DS	Direct Shear						
С	Consolidation						
Qu	Unconfined compression						
	Point Load Index (Ip on Borehole Record equals						
Ιp	$I_{p}(50)$ in which the index is corrected to a						
	reference diameter of 50 mm)						

Ţ	Single packer permeability test; test interval from depth shown to bottom of borehole
	Double packer permeability test; test interval as indicated
Ŷ	Falling head permeability test using casing
Ŷ	Falling head permeability test using well point or piezometer

inferred

C	St	antec	BO	RI	EHC	DL	E RI	ECO	RD BH10-01
	LIENT	Robinson Park Development Co	orp.						BOREHOLE No. BH10-01
LOCATION 17 Robinson Ave, Ottawa, ON									
DA	ATES: BO	RING <u>July 27, 2010</u> WA	TER L	EVE	L				
_	Ê.		1			SA	MPLES		UNDRAINED SHEAR STRENGTH - kPa 50 100 150 200
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY (mm)	N-VALUE OR RQD	WP W WL WATER CONTENT & ATTERBERG LIMITS HOW S/0.3m
_	60.83								STANDARD PENETRATION TEST, BLOWS/0.3m ● 10 20 30 40 50 60 70 80 90
0 -	60.2	Topsoil, trace organics	<u></u> .		SS	1	230	6	
1 -		Dark brown silty sand with gravel FILL		****	SS	2	300	6	
2 -	59.2	Loose to dense, brownish grey silty sand with gravel (SM)		× ×	SS	3	420	40	
		TILL, wet			SS	4	350	15	
3					SS	5	460	12	
4					SS	6	450	11	
5					SS	7	475	9	
					SS	8	400	13	
5 -					SS	9	190	22	
7 -		- occasional cobbles			SS	10	120	39	
					SS	11	210	11	
· · · · · · · · · · · · · · · · · · ·	52.0				SS	12	320	50/	
9 - - - -	52.0	End of Borehole						610mm	
0-10-10-10-10-10-10-10-10-10-10-10-10-10									
1-									
1		 ✓ Inferred Groundwater Level ✓ Groundwater Level Measured in 	Stand	nine					 □ Field Vane Test, kPa □ Remoulded Vane Test, kPa App'd △ Pocket Penetrometer Test, kPa Date

C) St	antec	BO	Rŀ	EHC) L]	E RH	ECO	RD	В	H10-02	
CI	JENT	Robinson Park Development Co	rp							BOREHOLE No.	BH10-02	
		17 Robinson Ave, Ottawa, ON								PROJECT No.		
DA	ATES: BO	RING <u>July 27, 2010</u> WAT	ER LI	EVE	L					DATUM		
~	Ê		5			SA	MPLES		UNDR 50	AINED SHEAR STREN 100	IGTH - kPa 150 200	
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION	STRATA PLOT	WATER LEVEL		н.	ERY	벽요			⊢ W _{PW} WL	
DEP1	EVAI		TRAT	ATEF	ТҮРЕ	NUMBER	RECOVERY (mm)	N-VALUE OR RQD	WATER CONTENT &	ATTERBERG LIMITS		
	Ш		N	8		z	RE	zo		FION TEST, BLOWS/0.31 ATION TEST, BLOWS/0.		
0	61.10								10 20 3		60 70 80 90	
- 0 -	60.9	Topsoil, trace organics	- <u>~ //</u> .		SS	1	475	40				
	60.5	360 mm - ASPHALT	-		55	1	4/3	40				
- 1 -	60.2	FILL: Crushed gravel with asphalt	r 👯									
		Dark brown silty sand			SS	2	375	4				
		Durk brown sincy suite										
- 2 -	59.0				SS	3	25	12	<u> </u>			
	57.0	Loose to dense grey silty sand										
		with gravel (SM) TILL, wet			SS	4	475	10	 			
- 3 -											<u> </u>	
-					SS	5	450	4				
- 4 -					SS	6	320	21			<u> </u>	
-					00	0	520	21				
					00	7	100					
- 5 -					SS	7	400	4				
-					SS	8	490	7				
- 6 -												
					SS	9	450	24				
_		- occasional cobbles										
- 7 -					SS	10	350	35				
- 8 -					SS	11	300	41				
0												
	50.0		K		SS	12	610	40		 		
- 9 -	52.3	End of Borehole										
-												
-10-												
-11									P P :-1437 P	ant 12Dc		
									 Field Vane Test, kPa Remoulded Vane Test, kPa App'd 			
		▼ Groundwater Level Measured in S	standp	 ▲ Pocket Penetrometer Test, kPa Date 								

C	St	antec I	30	RF	EHC	DL	E RI	ECO	RD	В	H10-03
		Robinson Park Development Con									
	OCATION ATES: BO	<u>17 Robinson Ave, Ottawa, ON</u> RING July 27, 2010 WAT									<u>163808203</u> Geodetic
		(((())) (()) (()) (()) (()) (()) (())			Ľ		MPLES		r	AINED SHEAR STREN	
(E)	ELEVATION (m)		PLOT	EVEL.		~	2		50	100	150 200
DEPTH (m)	EVATIO	SOIL DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY (mm)	N-VALUE OR RQD	WATER CONTENT &	ATTERBERG LIMITS	[₩] ₽₩₩L ⊢⊖
	ELE		ST	٨M		Z	REC	5 Ö		TION TEST, BLOWS/0.3r ATION TEST, BLOWS/0.	
- 0 -	61.22										50 70 80 90
	61.2	40mm - ASPHALT		A A A 4	BS	1			0		
	60.6	FILL: Dark brown gravelly sand, \trace organics									
- 1 -		Loose to very dense, grey silty sand with gravel (SM) TILL,			SS	2	340	6			
		moist			SS	3	300	23			
- 2 -							200				
- 3 -					SS	4	380	22	♀		
					SS	5	250	9			
- 4 -					SS	6	150	15			
					~~						
- 5 -					SS	7	420	14			
					SS	8	25	18			
- 6 -		- occasional cobbles			SS	9	50	14	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
- 7 -					SS	10	525	35			
- 8 -					SS	11	450	57			
	52.4				SS	12	560	54	 		
-9- - -		End of Borehole									
-10-											
-11-	I			. 1			1	•	■ Field Vane Te		
		 ↓ Inferred Groundwater Level ↓ Groundwater Level Measured in S 	tandp	oipe		□ Remoulded Vane Test, kPa App'd △ Pocket Penetrometer Test, kPa Date					

							E RI		Dirio or
-	LIENT	Robinson Park Development Cor 17 Robinson Ave, Ottawa, ON	•						BOREHOLE No. <u>BH10-0</u> PROJECT No. <u>16380820</u>
	ATES: BO								PROJECT No. 16380820 DATUM Geodeti
	TILS. DO	Kino <u>valj 20, 2010</u> w/m			<u>لت</u>		MPLES		UNDRAINED SHEAR STRENGTH - KPa
	(ш) г		DT	VEL		, _{0,}			50 100 150 200
-	ATION	SOIL DESCRIPTION	STRATA PLOT	WATER LEVEL	щ	BER	ЛЕRY n)	SOD LUE	W _P W WL
	ELEVATION (m)		STRA	WATE	ТҮРЕ	NUMBER	RECOVERY (mm)	N-VALUE OR RQD	WATER CONTENT & ATTERBERG LIMITS
							Ľ		STANDARD PENETRATION TEST, BLOWS/0.3m
1	60.94		KAA/	-					10 20 30 40 50 60 70 80
-	60.9	FILL: crushed gravel		× × × ×	SS	1	100	3	
-	60.0	gravel							
-	60.0	Very loose to compact, greyish			SS	2	375	8	
-		brown silty sand with gravel							
		(SM) TILL, wet			SS	3	400	18	
-					55			10	
-					SS	4	375	10	
-					33	4	375	10	┃
-					~~~				
-					SS	5	400	21	
-									
-					SS	6	400	4	
-									
-					SS	7	240	1	
-						<u> </u>			
-					SS	8	380	18	
-	54.8								
-		Compact to dense, grey silty sand with gravel (SM) TILL, wet			SS	9	400	15	
-		Frequent cobbles and boulders							
-					SS	10	150	47	
-					~~				
-					SS	11	410	23	
-					55		+10	25	
-					SS	12	330	1	
-									- , , , , , , , , , , , , , , , , , , ,
	51.5				NQ	13	67%	0%	
ł	51.5	Fair to good grey SHALE:	Ë						
		Bedrock - RQD and REC values for			NQ	14	100%	82%	
		NQ15 are low due to equipment							
-		drilling							
-					NQ	15	58%	9%	
									 Field Vane Test, kPa Remoulded Vane Test, kPa App'd
		 Groundwater Level Measured in St 	tand	oipe					Δ Pocket Penetrometer Test, kPa Date

	St St	antec	BO	RI	EHO	DL	E RF	CO	R	D										B	H	10	-0	4	2	of	2
С	LIENT	Robinson Park Development (Corp.												E	BOF	REH	IOL	ΕN	Jo.				BH	10	-0-	4
		<u>17 Robinson Ave, Ottawa, ON</u>																									
D	ATES: BO	RING <u>July 26, 2010</u> W	ATER L	EVE	EL																IGTH			Ge	od	eti	<u>c</u>
Ę.	(m) v		LOT	VEL		SA	MPLES					:				1	100				150		a	2	00		
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY (mm)	N-VALUE OR RQD		WA	TED	co		NT 8	2. AT								>	w o	" v	L/L	
DE	ELEV		STR	WAT	Ł	NUN	RECC (T	N-V/ OR		DYN											n	•		*			
										STA 1	NDA		РЕ! 20		rati 30		tes [.] 40		LON 50		3m 60	7	0	• 80)	ç	90
-11 -	-								İ		Ti		Ti		T				T		Tii						Ē
	49.4	End of borehole	_						li I					 						 							
-12-	-	End of borehole							i +				i i	i i i +			i 		i 	 		 		i i +++	i i ++	i i ++	
																											-
1.2																											
-13-													li														Ē
																											-
-14-									+					 				 		 		++		 	 	 	E
									ļ				ļ				ļ										
-15-									 																		-
									İ																		-
-16-									i i				†i li					 				++ 			++		
	-																										
-17-														 						 							Ē
									i i								li								ii 11	ii II	
	-																1.										
-18-														+ + + 						+ + + 				+++		1.1	Ē
 -	-								i				Įİ.													İİ.	
-19-													11														-
													Įİ.														
20																											
-20-																		 								1.1	Ē
													1i				1.										Ē
-21-														 						 		 				 	Ę
													1														E
-22-									İ.																		Ē
														ne T ed V				ŀŀ	Da		Δ.	op'd					
		Groundwater Level Measured in	n Standp	oipe										enet						Pa		ate				_	

(St St	antec	BO	RI	EHC) L]	E RI	ECO	RD	В	H10-05 ^{1 of 1}		
L	LIENT OCATION ATES: BO	17 Robinson Ave, Ottawa, ON								PROJECT No.	163808203		
		KING <u>July 20, 2010</u> WA			L		MPLES		UNDR	AINED SHEAR STREM			
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY (mm)	N-VALUE OR RQD					
- 0 -	61.21										60 70 80 90		
	61.2 61.1	35mm - ASPHALT Dark brown gravelly sand with organics			BS								
- 1 -		Compact greyish brown silty sand with gravel (SM) TILL			SS	2	360	16					
- 2 -					SS	3	500	13					
	58.7	End of Borehole Refusal on Inferred Boulder			SS	4	240	50/ 910 mm					
- 3 -													
- 4 -													
- 5 -													
- 6 -													
- 7 -													
 -													
- 8 -													
- 9 -													
-10-													
-11 -													
		☑ Inferred Groundwater Level☑ Groundwater Level Measured in	Stand	oipe		 □ Field Vane Test, kPa □ Remoulded Vane Test, kPa App'd △ Pocket Penetrometer Test, kPa Date 							

	St St	antec I	BO]	Rŀ	EHC) L]	E RF	ECO	RD	В	H10-06 ^{1 of 1}
L		17 Robinson Ave, Ottawa, ON								PROJECT No.	163808203
D.	ATES: BO	RING <u>July 26, 2010</u> WAT	ER LI	EVE	L		MPLES		UNDR	DATUM	
(m)	(m) NC		PLOT	EVEL					50	100	150 200
DEPTH (m)	ELEVATION (m)	SOIL DESCRIPTION	STRATA PLOT	WATER LEVEL	ТҮРЕ	NUMBER	RECOVERY (mm)	N-VALUE OR RQD		ATTERBERG LIMITS TION TEST, BLOWS/0.3 ATION TEST, BLOWS/0	
- 0 -	61.04										60 70 80 90
	60.9	\FILL: Crushed sandy gravel Compact brown silty sand with	\square		BS	-1					
- 1 -		gravel (SM) TILL			SS	2	240	13			
					SS	3	500	19			
- 2 -	58.7										
- 3 -		Compact to dense, brownish grey silty sand with gravel, occasional cobbles (SM) TILL			SS	4	610	27			
					SS	5	400	18			
- 4 -					SS	6	610	17			
- 5 -					SS	7	400	18	-		
					SS	8	610	19			
- 6 -					SS	9	280	35			
- 7 -					SS	10	430	23			
- 8 -					SS	11	300	10	1		
	52.2				SS	12	400	45		 	
- 9 -	32.2	End of Borehole	111								
-10-											
-11 -		 ↓ Inferred Groundwater Level ↓ Groundwater Level Measured in S 	tandp		 □ Field Vane Test, kPa □ Remoulded Vane Test, kPa App'd △ Pocket Penetrometer Test, kPa Date 						

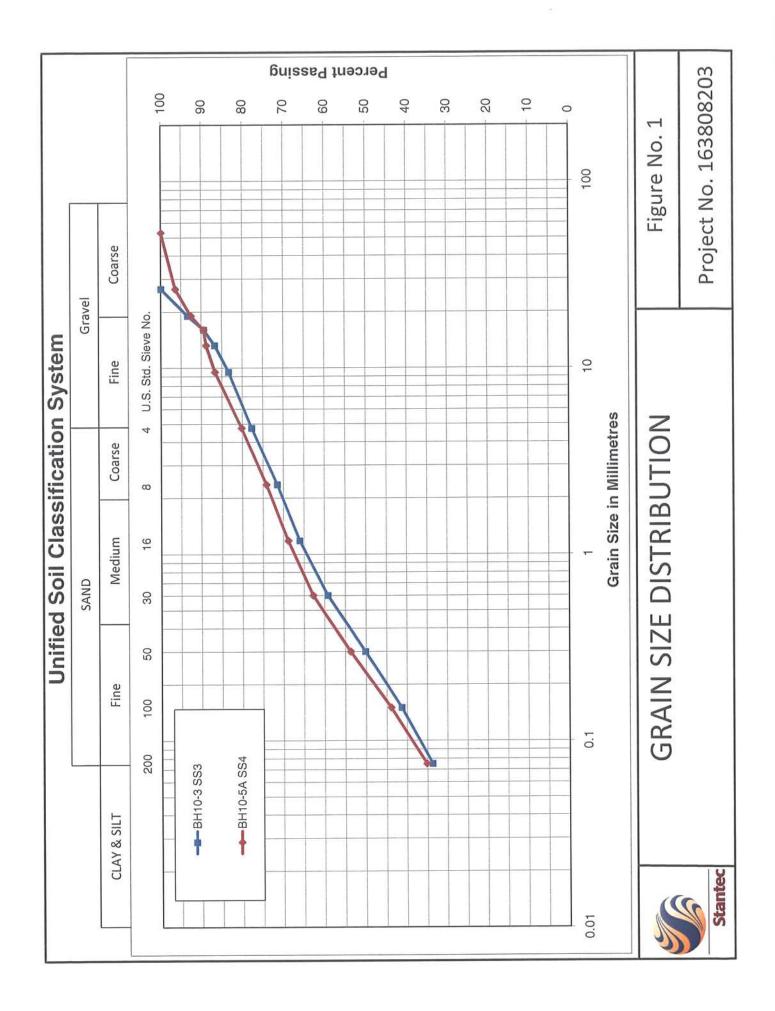
C	St	antec 1	BO	Rł	EHC	DL	E RH	ECO	RD	В	H10-07
CI	LIENT	Robinson Park Development Co	rp.							BOREHOLE No.	BH10-07
LC	OCATION	17 Robinson Ave, Ottawa, ON									163808203
D	ATES: BO	RING <u>July 28, 2010</u> WAT	TER L	EVE	L					DATUM	Geodetic
	Ê					SA	MPLES			AINED SHEAR STREN	
٦ ۳	ELEVATION (m)		STRATA PLOT	WATER LEVEL		۲.	۲	Ē	50	100	150 200
DEPTH (m)	EVATI	SOIL DESCRIPTION	RATA	TER	ТҮРЕ	NUMBER	RECOVERY (mm)	N-VALUE OR RQD	WATER CONTENT &	ATTERBERG LIMITS	^W P W ^W L I O I
	ELE		ST	٨N	F	R	REC (N-N HO		TION TEST, BLOWS/0.3r	
	61.19									ATION TEST, BLOWS/0.	3m ● 60 70 80 90
- 0 -	61.19	25mm - ASPHALT	F		BS						
	61.1	FILL: Dark brown gravelly sand									
-		Loose to very dense, grey silty									
- 1 -		sand with gravel (SM) TILL, moist	R		SS	2	320	30			
		moist									
					SS	3	440	24			
- 2 -			H								
					SS	4	375	17			
- 3 -											
5					SS	5	175	11			
					55	5	475	11			
- 4 -											
					SS	6	300	4			
- 5 -				•	SS	7	380	7			
-											
					SS	8	530	8			
- 6 -											
-					SS	9	450	10			
		- occasional cobbles			~~						
- 7 -					gg	10	390	27			
-					SS	10	390	27			
-											
- 8 -					SS	11	610	28			
					SS	12	500	73			
-	52.3				55	12	500	15			
-9-		End of Borehole									
10											
-10-											
											
-11											
									■ Field Vane T		
		 ✓ Inferred Groundwater Level ✓ Groundwater Level Measured in S 	Stand	nine						/ane Test, kPa rometer Test, kPa	App'd Date
			Junu	pipe		ionicius sest, kra	Dan				

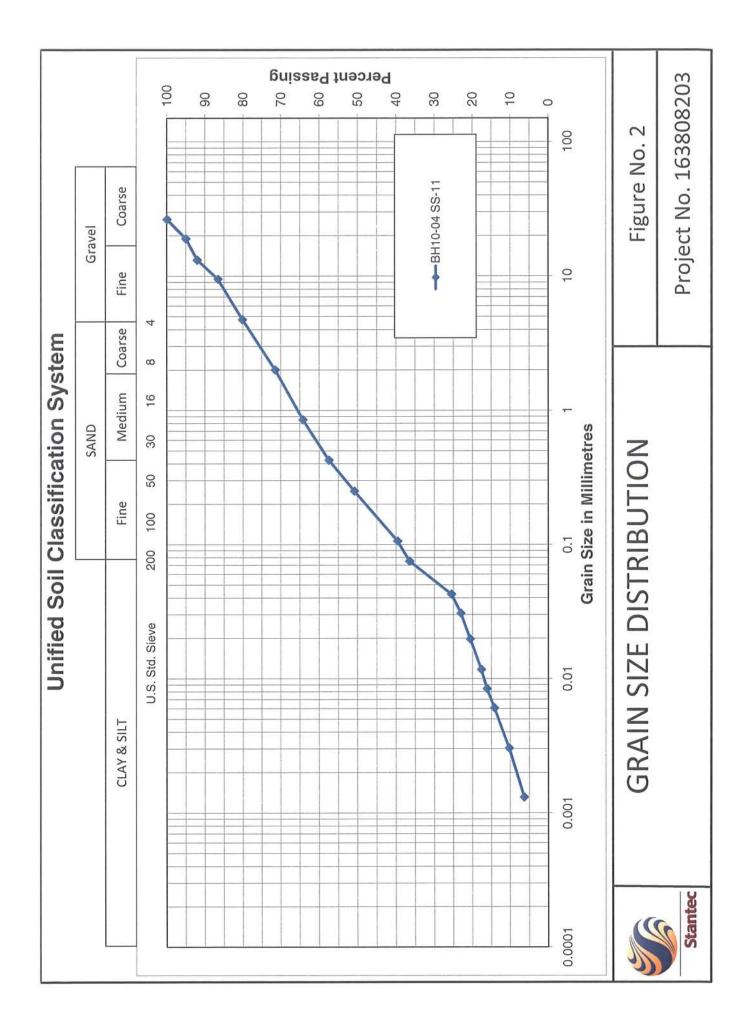
	St St	antec MO	NIT	OF	RIN	G V	VEI	LR	ECORD	MV	V10-05A	
C	LIENT	Robinson Park Development C	Corp							BOREHOLE No.	MW10-05A	
		<u>17 Robinson Ave, Ottawa, ON</u>	•									
	ATES: BO											
							MPLES	-	1	RAINED SHEAR STREN		
Ê	ELEVATION (m)		LOT	VEL					50	100 1	50 200	
DEPTH (m)	ATION	SOIL DESCRIPTION	STRATA PLOT	WATER LEVEL	щ	NUMBER	RECOVERY (mm)	N-VALUE OR RQD		Γ	W _{PW} WL	
DEF	ILEV/		STRA	NATE	ТҮРЕ	NUM	ECO (mr	N-VA OR R		& ATTERBERG LIMITS		
	ш			-			R			RATION TEST, BLOWS/0.3		
- 0 -	61.21								10 20	30 40 50 6	50 70 80 90	
	61.2	35mm - ASPHALT										
		Silty sand with gravel (SM):										
		TILL Refer to BH10-05 for soil	P									
- 1 -		description										
		The second second second second second second second second second second second second second second second se										
-												
- 2 -			H									
-												
- 3 -	58.2	Compact to dense, grey silty	—						<u></u>	+++++++++++++++++++++++++++++++++++++++		
		sand with gravel (SM) TILL			SS	1	300	12	•••••			
-		5]⊻[
- 4 -					SS	2	525	23				
					55	2	525	23	_			
					SS	3	300	50/				
- 5 -					55	5	500	910mm				
					SS	4	460	56			 -	
- 6 -												
-				·	SS	5	260	28				
					55	5	200	20				
- 7 -			₽						_ ! ! ! ! !] ! ! ! ! ! ! ! ! ! ! ! ! !	_	┃╵╵╵╵╹╹╵╵╵╵╵╵╵╵╵ ╋┿┽╅┿╋	
-					SS	6	400	31				
- 8 -					SS	7	470	62			$ \bullet $	
					SS	8	500	33			<u> -</u> 	
	50 1											
- 9 -	52.1	Weathered shale : Bedrock			SS	9	610	60/				
		Weathered shale . Dedroek						1520				
	51.0				SS	10	250	95/				
-10-	51.2	End of Borehole						1830				
-		Refusal on Bedrock										
-11 -			I			I		1	Field Vane 7	Fest, kPa		
	$\overline{\forall}$ Inferred Groundwater Level								□ Remoulded Vane Test, kPa App'd			
		✓ Groundwater Level Measured in	n Standp		△ Pocket Penetrometer Test, kPa Date							

Bedrock Core Log

Client	:		Robinso	on Park D			Project No.: 163808203											
Proje	:t:		17 Robi	nson Ave	enue									Date:			27-Jul-10	
Contr	actor:		Marath	on Drillin	ıg									Boreho	le No	.:	BH18-04	
														Logger			LEB	
									1			פוס	CONT	INUITIES				1
DEPTH FROM	RUN NO.	% CORE RECOVERY	% RQD	DEPTH TO	(Rc	GENERAL DESCRIPTION ock Type/s, %, Colour, Texture, et	c.)	STRENGTH	WEATHERING	NO. OF SETS	TYPE/S		SPACING	ROUGHNESS	APERTURE	FILLING	OCCASIONAL FEATURES	DRILLING OBSERVATIONS
8.7 m	13	67%	0%	9.6 m	gravel, cob	ortion of core consisted of Silty Sa bles and boulders (TILL) , Heavily LE Bedrock encountered below 9.	Fractured										-	
											BD	F	С	SP		SA		
9.6 m	9.6 m 14 100% 82% 10.2 m SHALE Bedrock							R5	W3								Unconfined compres MPa and 70 MPa	ssive strengths of 56
											_					sam		
10.2 n	n 15	58%	9%	11.6m		SHALE Bedrock		R5	W3		BD	F	С	SP		SA	REC and RQD values a distur	are low due to drilling bance
																	_	
R0 R1 R2 R3 R4 R5	STRENGTH (MPa)Grade/ClassificationEst. Strength (MPa)R0 Extremely Week0.25 - 1.0R1 Very Weak1.0 - 5.0R2 Weak5.0 - 25.0R3 Medium Strong25.0 - 50.0R4 Strong50.0 - 100.0R5 Very Strong100.0 - 250.0R6 Extremely Strong>250.0							F	D	= Flat = = Dippi = n-Ver	ng = 20- tical = >	50º 50º			F	O SA S Si N	FILLING = Tight, Hard = Oxidized A = Slightly Altered, Clay = Sandy, Clay Free = Sandy, Silty, Minor Cla C = Non-softening Clay C = Swelling, Soft Clay	
WEATHERINGGrade/ClassificationDescriptionW1 FreshNo Visible Signs of WeatheringW2 SlightlyDiscoloration, Weathering on DiscontinuitiesW3 Moderately<50% of Rock Material is Decomposed, Fresh Core Stones								<u>Spacing</u> EW = >6 VW = 20 W = 600 M = 200 C = 60 - VC = 20 EC = <20	(<u>mm)</u> 000 00 - 600 - 2000 - 600 200 - 60	E 00 V V 0 V V	ry space xtremely ery Wide Vide lose ery Close xtremely	y Wide e e			4 1 3 1.5 1.5 1.0 0.5	JOINT ROUGHNE Description DJ = Discontinuous Joint RU = Rough, Irregular, U SU = Smooth, Undulatin LU = Slickensided, Undu RP = Rough or Irregular, SP = Smooth, Planar LP = Slickensided, Planar	s ndulating g lating Planar	

Photo No. 1: BH10-04 9.60m - 11.58m


Photo No. 2: BH10-04 9.60m - 11.58m


Page 1

GEOTECHNICAL INVESTIGATION REPORT – PROPOSED RESIDENTIAL DEVELOPMENT -17-19 ROBINSON AVENUE, OTTAWA, ONTAIRO July 27, 2018

APPENDIX D

Laboratory Test Results 2010 Grain Size Distribution Plots

GEOTECHNICAL INVESTIGATION REPORT – PROPOSED RESIDENTIAL DEVELOPMENT -17-19 ROBINSON AVENUE, OTTAWA, ONTAIRO July 27, 2018

APPENDIX E

Seismic Hazard Calculation Sheet

2015 National Building Code Seismic Hazard Calculation

INFORMATION: Eastern Canada English (613) 995-5548 français (613) 995-0600 Facsimile (613) 992-8836 Western Canada English (250) 363-6500 Facsimile (250) 363-6565

Site: 45.418 N, 75.6673 W User File Reference: 17 Robinson Avenue, Ottawa, ON Requested by: RS, Stantec Consulting Ltd.

National Building Code ground motions: 2% probability of exceedance in 50 years (0.000404 per annum)

Sa(0.05)	Sa(0.1)	Sa(0.2)	Sa(0.3)	Sa(0.5)	Sa(1.0)	Sa(2.0)	Sa(5.0)	Sa(10.0)	PGA (g)	PGV (m/s)
0.449	0.526	0.441	0.335	0.238	0.118	0.056	0.015	0.0054	0.282	0.197

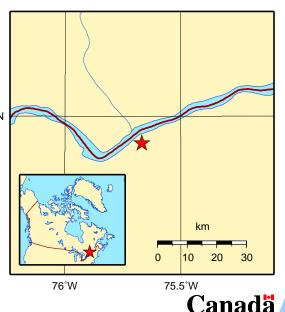
Notes. Spectral (Sa(T), where T is the period in seconds) and peak ground acceleration (PGA) values are given in units of g (9.81 m/s²). Peak ground velocity is given in m/s. Values are for "firm ground" (NBCC 2015 Site Class C, average shear wave velocity 450 m/s). NBCC2015 and CSAS6-14 values are specified in **bold** font. Three additional periods are provided - their use is discussed in the NBCC2015 Commentary. Only 2 significant figures are to be used. *These values have been interpolated from a 10-km-spaced grid of points. Depending on the gradient of the nearby points, values at this location calculated directly from the hazard program may vary. More than 95 percent of interpolated values are within 2 percent of the directly calculated values.*

Ground motions for other probabilities:			
Probability of exceedance per annum	0.010	0.0021	0.001
Probability of exceedance in 50 years	40%	10%	5%
Sa(0.05)	0.044	0.149	0.249
Sa(0.1)	0.061	0.187	0.301
Sa(0.2)	0.055	0.162	0.256
Sa(0.3)	0.044	0.125	0.196
Sa(0.5)	0.031	0.088	0.139
Sa(1.0)	0.015	0.044	0.070
Sa(2.0)	0.0061	0.021	0.033
Sa(5.0)	0.0012	0.0047	0.0081
Sa(10.0)	0.0006	0.0019	0.0032
PGA	0.033	0.102	0.164
PGV	0.021	0.068	0.111

References

National Building Code of Canada 2015 NRCC no. 56190; Appendix C: Table C-3, Seismic Design Data for Selected Locations in Canada

User's Guide - NBC 2015, Structural Commentaries NRCC no. 45.5°N xxxxxx (in preparation) Commentary J: Design for Seismic Effects


Geological Survey of Canada Open File 7893 Fifth Generation Seismic Hazard Model for Canada: Grid values of mean hazard to be used with the 2015 National Building Code of Canada

See the websites www.EarthquakesCanada.ca and www.nationalcodes.ca for more information

Aussi disponible en français

Natural Resources Canada Ressources naturelles Canada

July 17, 2018

SERVICING REPORT – 19 ROBINSON AVENUE

Appendix E Drawings August 20, 2019

