384 Frank Street Ottawa Assessment of Adequacy of Public Services

Project # CW-03-17 Prepared for: 384 frank street inc By: *Arch-Nova Dasign Inc.* February 2018 (Updated June 2019)

Table of Contents

1.	Intro	oduction	.2
2.	Pub	olic Services Capacity	.3
2	.1	Water Supply	.3
2	.2	Sanitary Sewer	.4
2	.3	Site Stormwater Services	.5
3.	Cor	nclusion and Recommendation	.5
3	5.1	Water Supply	.6
3	5.2	Sanitary Sewer	.6
3	.3	Stormwater	6

Appendix A: Calculations Appendix B: Correspondence

1. Introduction

The subject property is located at 384 Frank Street, Ottawa. The proposed work comprises of a 3-storey+basement apartment building. For the purpose of this report the site is considered to run north-south. Frank Street is extending west-east between Bank Street and O'Connor Street.

Currently the property is used as a residential lot with a single house which will be demolished. The rest of the lot is a parking (asphalt surface) with a grown tree on the south east corner of the property. Adjacent property on east side is also residential. Two properties, on south an west side are commercial buildings.

The area is serviced by municipal water (203 mm) and combined sewer pipe line (375 mm). Gas line (35 mm) is located along the north side of the street. A hydro duct is located under the sidewalk in front of the property and at elevation between 69.0-70.0 m a.s.l.

384 Frank Street, Ottawa: Location

2. Public Services Capacity

This section of the report will analyze existing municipal services and the potential impact of the proposed building at 384 Frank Street on the existing service capacity.

2.1 Water Supply

Existing building is supplied from 203 mm pipe and calculate consumption is 0.2 l/sec for the peak period.

Fire hydrant is located across the street at distance of 22.65 m, which is sufficient for use of this hydrant by fire department and its vehicles and provide fire protection of the site.

Design Parameter	Value		
Residential Average Apartment	1.8 P/unit		
Residential Average Daily Demand	280 L/d/P		
Residential Maximum Daily Demand	9.5 x Average Daily *		
Residential Maximum Hourly	1.5 x Maximum Daily *		
Commercial Demand	2.5 L / m2 /d		
Commercial Maximum Daily Demand	1.5 x Average Daily		
Commercial Maximum Hourly	1.8 x Maximum Daily		
Minimum Watermain Size	150mm diameter		
Minimum Depth of Cover	2.4m from top of watermain to finished grade		
During Peak Hourly Demand operating pressure must remain within	275kPa and 552kPa		
During fire flow operating pressure must not drop below	140kPa		
* Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons.			

Table 1: Water Supply Design Criteria

¹The following are boundary conditions, HGL, for hydraulic analysis at 384 Frank (zone 1W) assumed to be connected to the 203 mm on Frank St (see attached PDF for location).

Minimum HGL = 106.9 m

¹ City of Ottawa boundary condition information is based on current operation of the city water distribution system (also see Appendix A for complete correspondence information)

Maximum HGL = 115.7 m

Max Day (0.35 L/s) + Fire Flow (30.86 L/s) = 103.3 m, the estimated ground elevation is 70.8 m.

The consumption is expected to be **32.39 l/min (0.54 L/sec)** for peak period. The fire flow for residential spaces was estimated to be 8000 l/min (133 l/sec)². The City staff confirmed the required flow availability. With fire hydrant at distance of 22.65 m and available fire flow, the proposed building will be sufficiently protected from fire.

Table 1 presents the City of Ottawa design criteria based on MOE Guidelines.

2.2 Sanitary Sewer

Sanitary sewer outflow for the current building is 0.06 l/sec. the lateral is connected to combined sewer 375 mm.

Design Parameter	Value		
Residential Average Apartment	1.8 P/unit		
Average Daily Demand	280 L/cap/day		
Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0		
Correction Factor (City of Ottawa Tech.Bulletin ISTB-2018-01)	0.8		
Commercial Space	28,000 L/ha/day		
Infiltration and Inflow Allowance	0.33L/s/ha		
Sanitary sewers are to be sized employing the Manning's Equation	Q =(1/n)AR2/3S1/2		
Minimum Sewer Size	200mm diameter		
Minimum Manning's 'n'	0.013		
	2.5m from crown of		
Minimum Depth of Cover	sewer to grade		
Minimum Full Flowing Velocity	0.6m/s		
Maximum Full Flowing Velocity	3.0m/s		
Extracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, November 2012 & Infrastructure Technical Bulletins 2018			

 Table 2: Wastewater Design Criteria

² OBC SectionA.3.2.5.7, Table 2.

The estimated outflow for the new building is **0.15 l/sec** (peak flow + wet weather).

Existing municipal sewer 375 mm has a capacity of 12.29 l/sec for 0.546% slope and 20% full. For increase of 0.09 l/sec the increase will be only 0..75%. The capacity at 80% full is 137 l/sec.

Detailed calculation of pre and post development flow is presented in Appendix A.

2.3 Site Stormwater Services

Current building and the rest of surface of the lot at 384 Frank Street are impervious and all stormwater runoff is under uncontrolled condition. For the purpose of protecting the combined sewer system the City of Ottawa requires that the predevelopment 5-year runoff coefficient should be in range of C=0.4 so the newly developed site must store certain amount of water.

At the time of preparation of this report the City officers were not able to confirm if there is any residual capacity on the minor system (375 and 450 mm) so, for the calculation purposes only theoretical capacity was considered as a reference.

The proposed new building and area of the lot are proposed to be impervious however, in order to accommodate the City's requirement to reduce the runoff from the site and in accordance with MOE F-5-5 regulations for combined systems the predevelopment runoff coefficient was reduced to C=0.6 from actual C=1.0. This resulted in provision of a storage on the roof of the proposed building. The outflow control devices will be two weir orifices installed on entrances to scuppers. Detailed calculation is provided in Appendix A as well on the Servicing & Grading Plan No.W-01 drawing. In order to determine the runoff factor the storage time was a reference: maximum retention time was 1 hour. As a result of calculation factor of C=0.6 was used for the predevelopment calculation. Total amount of water for the 100 year storm is 5.61 m³ and it will be released within two hours. For a climate of Ottawa region this will prevent freezing of significant amount of water on the roof and the ice build-up.

The foundation drain (weeping tiles) will be connected by a lateral directly to the 375 mm combined minor system. If the construction manager finds that there is no sufficient elevation, the drainage system should also be equipped with a sump pump system.

3. Conclusion and Recommendation

3.1 Water Supply

The water supply demand calculation is based on the fire flow requirement for residential buildings; it is 8,000 l/min (133 l/sec). The City provided information that required flow is available at 103.3 m of HGL. The building roof is at elevation of 83 m which leaves 28.45 psi of residual pressure at maximum HGL of pressure.

3.2 Sanitary Sewer

The existing sanitary sewer 375 mm under 0.546% and 20% full is expected to provide a flow of 12.29 l/sec. Flow from the new building in rate of 0.15 l/sec for the peak wet weather flow will increase the pipe fulness for only 0.075%. The connection from the site will be by gravity (as presented on the plan).

3.3 Stormwater

Currently all runoff is directed toward the street and catch basins. The proposed grading plan also directs all runoff toward the street. The proposed new building and area of the lot are proposed to be impervious however, in order to accommodate the City's requirement to reduce the runoff from the site and in accordance with MOE F-5-5 regulations for combined systems the predevelopment runoff coefficient was reduced to C=0.6 from actual C=1.0.

Based on the information provided by the City of Ottawa, the existing municipal services are adequate. Furthermore it will be protected from overloading (combine sewer system) with proposed stormwater storage after the construction of the buildings at 384 Frank Street.

Prepared by:

Zoran Mrdja, P.Eng.

Professional Engineers Ontario

Authorized by Professional Engineers of Ontario to provide professional services to public

May, 2019

Appendix A: Calculations

Water Supply Design Criteria

Design Parameter	Value
Residential Average Apartment	1.8 P/unit
Residential Average Daily Demand	350 L/d/P
Residential Maximum Daily Demand	9.5 x Average Daily *
Residential Maximum Hourly	1.5 x Maximum Daily *
Commercial Demand	2.5 L / m2 /d
Commercial Maximum Daily Demand	1.5 x Average Daily
Commercial Maximum Hourly	1.8 x Maximum Daily
Minimum Watermain Size	150mm diameter
Minimum Depth of Cover	2.4m from top of watermain to finished grade
must remain within	275kPa and 552kPa (40-80 psi; 28-56m)
During fire flow operating pressure must not drop	
below	140kPa (20 psi; 14 m)
* Residential Max. Daily and Max. Hourly peaking fa Table 3-3 for 0 to 500 persons.	ctors per MOE Guidelines for Drinking-Water Systems

Wastewater Design Criteria

Design Parameter	Value			
Residential Average Apartment	1.8 P/unit			
Average Daily Demand	350 L/d/per			
Peaking Factor	Harmon's Peaking Factor. Max 4.0, Min 2.0			
Commercial Space	5L/m2/day			
Infiltration and Inflow Allowance	0.28L/s/ha			
Sanitary sewers are to be sized employing the Manning's	O_{1} (1/2) $AD^{2/3}O^{1/2}$			
Equation	Q = (1/n)AR S			
Minimum Sewer Size	200mm diameter			
Minimum Manning's 'n'	0.013			
Minimum Depth of Cover	2.5m from crown of sewer to grade			
Minimum Full Flowing Velocity	0.6m/s			
Maximum Full Flowing Velocity	3.0m/s			
Extracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, November 2004.				

384 Frank Street, Ottawa Current

Domestic Demand

Type of Housing	Per / Unit	Units	Рор
Single Family	3.4	1	3
Semi-detached	2.7		0
Townhouse	2.7		0
Apartment			0
Bachelor	1.4		0
1 Bedroom	1.4	0	0
2 Bedroom	2.1	0	0
3 Bedroom	3.1	0	0
4 Bedroom	4.2	0	0

	Рор	Avg. Daily		/ Max Day		Peak Hour	
		m³/d	L/min	m³/d	L/min	m³/d	L/min
Total Domestic Demand	3	1.19	0.83	11.31	7.85	16.96	11.78

Institutional / Commercial / Industrial Demand

				Avg. [Daily	Max	Day	Peak	Hour
Property Type	Unit	Rate	Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Commercial floor space	2.5	L/m²/d	0	0.00	0.00	0.00	0.00	0.00	0.00
Office	75.0	L/9.3m ² /d	0	0.00	0.00	0.00	0.00	0.00	0.00
Restaurant*	125.0	L/seat/d							
Industrial -Light	35,000.0	L/gross ha/d							
Industrial -Heavy	55,000.0	L/gross ha/d							
		Total I/	C/I Demand	0.00	0.00	0.00	0.00	0.00	0.00

	Total Demand	1.19	0.83	11.31	7.85	16.96	11.78
* Estimated number of seats at 1seat per 9.3m ²							

384 Frank Street, Ottawa Current

Sanitary Sewer Post Development Outflow

Site Area			0.02 ha					
Extraneous Flow Allowances								
	Infiltration / In	flow	0.0056 L/s					
Domestic Contributions	Domestic Contributions							
Unit Type	Unit Rate	Units	Рор					
Single Family	3.4	1	3.4					
Semi-detached and duplex	2.7		0					
Duplex	2.3		0					
Townhouse	2.7		0					
Apartment								
Bachelor	1.4		0					
1 Bedroom	1.4		0					
2 Bedroom	2.1	0	0					
3 Bedroom	3.1	0	0					
4 Bedroom	4.2	0	0					
	3.4							
	0.01 L/s							
	Peaking Factor							
	Peak Do	mestic Flow	0.06 L/s					

Institutional / Commercial / Industrial Contributions

Property Type	Unit Rate	No. of Units	Avg Wastewater (L/s)
Commercial floor space	5 L/m2/d	0	0
Hospitals	900 L/bed/d		
School	70 L/student/d		
Industrial - Light	35,000 L/gross ha/d		
Industrial - Heavy	55,000 L/gross ha/d		
	Ave	erage I/C/I Flow	0
	Peak Institutional / Co	mmercial Flow	
	Peak I/C/I Flow		

Total Estimated Average Dry Weather Flow Rate	0.01
Total Estimated Peak Dry Weather Flow Rate	0.06
Total Estimated Peak Wet Weather Flow Rate	0.06

Arch-Nova Desing Inc.

384 Frank Street, Ottawa New Development

Domestic Demand

Type of Housing	Per / Unit	Units	Рор
Single Family	3.4		0
Semi-detached	2.7		0
Townhouse	2.7		0
Apartment			0
Bachelor	1.4		0
1 Bedroom	1.4	0	0
2 Bedroom	2.1	17	36
3 Bedroom	3.1	0	0
4 Bedroom	4.2	0	0

	Рор	Avg. Daily		Max Day		Peak Hour	
		m³/d	L/min	m³/d	L/min	m³/d	L/min
Total Domestic Demand	36	12.50	8.68	118.70	82.43	178.05	123.65

Institutional / Commercial / Industrial Demand

			Avg. Daily		Max Day		Peak Hour		
Property Type	Unit	Rate	Units	m³/d	L/min	m³/d	L/min	m³/d	L/min
Commercial floor space	2.5	L/m²/d	0	0.00	0.00	0.00	0.00	0.00	0.00
Office	75.0	L/9.3m ² /d	90	0.73	0.50	1.09	0.76	1.96	1.36
Restaurant*	125.0	L/seat/d							
Industrial -Light	35,000.0	L/gross ha/d							
Industrial -Heavy	55,000.0	L/gross ha/d							
Total I/C/I Demand		0.73	0.50	1.09	0.76	1.96	1.36		

	Total Demand	13.22	9.18	119.79	83.19	180.01	125.01
* Estimated number of seats at 1seat per 9.3m ²							

384 Frank Street, Ottawa New Development

Water Demand and Boundary Conditions

Proposed Conditions

Design Parameter	Anticipated Demand ¹	Boundary Condition ²				
	(L/min)	(kPa)				
Average Daily Demand	9.18	115.7				
Max Day + Fire Flow	14,083.19	103.3				
Peak Hour	125.01	106.9				
¹⁾ Water demand calculation per Water Supply Guidelines. See Appendix B for detailed calculations.						

²⁾ Boundary conditions supplied by the City of Ottawa. See Appendix B for correspondence with the City.

384 Frank Street, Ottawa New Development

Sanitary Sewer Post Development Outflow

Site Area			0.02 ha
Extraneous Flow Allowances	s		
	flow	0.0056 L/s	
Domestic Contributions			
Unit Type	Unit Rate	Units	Рор
Single Family	3.4		0
Semi-detached and duplex	2.7		0
Duplex	2.3		0
Townhouse	2.7		0
Apartment			
Bachelor	1.4		0
1 Bedroom	1.4		0
2 Bedroom	2.1	17	35.7
3 Bedroom	3.1	0	0
4 Bedroom	4.2	0	0
	35.7		
	0.14 L/s		
	4.00		
	Peak Do	mestic Flow	0.58 L/s

Institutional / Commercial / Industrial Contributions

Property Type	Unit Rate	No. of Units	Avg Wastewater (L/s)
Commercial floor space	5 L/m2/d	90	0.0052
Hospitals	900 L/bed/d		
School	70 L/student/d		
Industrial - Light	35,000 L/gross ha/d		
Industrial - Heavy	55,000 L/gross ha/d		
	Ave	erage I/C/I Flow	0.0052
		Peak I/C/I Flow	0.0052

Total Estimated Average Dry Weather Flow Rate	0.15
Total Estimated Peak Dry Weather Flow Rate	0.58
Total Estimated Peak Wet Weather Flow Rate	0.59

Free Online Manning Pipe Flow Calculator

>> Nationalism not welcome here. <<

Manning Formula Uniform Pipe Flow at Given Slope and Depth

Can you help me translate, program, or host these calculators? (../contact.php) [Hide this request]

Check out our newest spreadsheet update: Download Spreadsheet (spreadsheet/Manning-Pipe-Flow.xlsx) Open Google Sheets version (spreadsheet/Manning-Pipe-Flow.php) View All Spreadsheets (http://www.hawsedc.com/engcalcs/SpreadsheetLibrary.php)

--CAUTION: If you have downloaded the spreadsheet prior to September 24, you may have received incorrect results!--

384 Frank Street Ottawa				
375 mm Combined Sewer - current				
		Results		
		Flow, Q	12.2907	l/s 🗸
		Velocity, v	0.7816	m/s 🗸
Set units: m mm ft in		Velocity head, h _v	0.0311	m 🗸
Pine diameter, d.	375	Flow area	0.0157	m^2 🗸
Manning roughnoss n 2	mm 🗸	Wetted	0.3477	m 🗸
(http://www.engineeringtoolbox.com/mannings- roughness-d_799.html)	.012	Hydraulic radius	0.0452	m 🗸
Pressure slope (possibly ? (/pressureslope.php) equal to pipe slope), S₀	0.546 % rise/run ✔	Top width, T	0.3000	m 🗸
Percent of (or ratio to) full depth (100% or 1 if flowing full)	20 %	Froude number, F	1.09	
		Shear stress (tractive force), tau	4.0156	N/m^2 🗸

Free Online Manning Pipe Flow Calculator

>> Nationalism not welcome here. <<

Manning Formula Uniform Pipe Flow at Given Slope and Depth

Can you help me translate, program, or host these calculators? (../contact.php) [Hide this request]

Check out our newest spreadsheet update: Download Spreadsheet (spreadsheet/Manning-Pipe-Flow.xlsx) Open Google Sheets version (spreadsheet/Manning-Pipe-Flow.php) View All Spreadsheets (http://www.hawsedc.com/engcalcs/SpreadsheetLibrary.php)

--CAUTION: If you have downloaded the spreadsheet prior to September 24, you may have received incorrect results!--

384 Frank Street Ottawa				
375 mm Combined Sewer - proposed	d			
· · · ·		Results		
		Flow, Q	12.9203	l/s 🗸
		Velocity, v	0.7931	m/s 🗸
Set units: m mm ft in		Velocity head, h _v	0.0321	mv
Pine diameter, d.	375	Flow area	0.0163	m^2 🗸
Manning roughnoss n 2	mm 🗸	Wetted	0.3524	m 🗸
(http://www.engineeringtoolbox.com/mannings- roughness-d_799.html)	.012	Hydraulic radius	0.0462	mv
Pressure slope (possibly ? (/pressureslope.php) equal to pipe slope), S ₀	0.546 % rise/run 🗸	Top width, T	0.3028	mv
Percent of (or ratio to) full depth (100% or 1 if flowing full)	20.5 %	Froude number, F	1.09	
		Shear stress (tractive force), tau	4.1159	N/m^2 🗸

Please give us your valued words of suggestion or praise. Did this free calculator exceed your expectations in every way? (../contact.php) [Hide this request]

Home (http://www.hawsedc.com/index.php) | Support (http://www.hawsedc.com/support.php) | FreeSoftware (http://www.hawsedc.com/gnu/index.php) | Engineering Services (http://www.hawsedc.com/engserv.php) | Engineering Calculators (http://www.hawsedc.com/engcalcs/index.php) | Technical Documents (http://www.hawsedc.com/techdocs.php) | Blog (new in 2009) (http://tomsthird.blogspot.com/) | Personal essays (http://www.hawsedc.com/thomas) | Collaborative Family Trees (http://www.hawsedc.com/famtree.php) | Contact (http://www.hawsedc.com/contact.php)

Pressure Drop Online-Calculator

Calculation output

Flow medium: Volume flow:: Weight density: Dynamic Viscosity: Element of pipe: Dimensions of element:	Water 10 °C / liquid 2.08 l/s 998.206 kg/m ³ 1001.61 10-6 kg/ms circular Diameter of pipe D: 50 mm Length of pipe L: 40 m
Velocity of flow: Reynolds number: Velocity of flow 2: Reynolds number 2: Flow: Absolute roughness: Pipe friction number: Resistance coefficient: Resist.coeff.branching pipe: Press.drop branch.pipe: Pressure drop:	1.06 m/s 52787 - - turbulent 0.0016 mm 0.02 16.61 - - 93.02 mbar 0.09 bar

Note: The pressure drop was calculated by the online calculator of www.pressure-drop.com. We can not warrant the correctness of this software. The software is produced carefully. But no computer software is without bugs. Therefore the calculations are your own risk.

Do you know our software SF Pressure Drop 8.x for Excel? Information: www.pressure-drop.com

Project Number: CW-03-17 PRE-DEVELOPMENT				384 F	rank Street., Ottawa	ARCH-MU DEBIGN INC. Architecture Engineering Consulting	
		The pre-deve	lopment ti	me of concentration	on is 10 minut	es	
	where:	I ₅ = 9 I ₅ =	998.071 / (104.2	Tc + 6.053) ^{0.814} mm/hr	I ₁₀₀ = 1735. I ₁₀₀ = 1	688 / (Tc + 6.014) ^{0.820} 178.6 mm/hr	
Surface Type ID	Area (ha)	Percent of total Area	С	A X C (ha)			
Site A1	0.02063	100.0%	0.95	0.020			
					$Q_{5pre} = (2.78)$ $Q_{5pre} =$ $Q_{5pre} =$	*(C)*(I ₅).(A) 2.78 x 0.60 x 1 3.59 L/s	04.2 x 0.0206
					0 - (2.78)	*(_)*(I) (A)	
					$Q_{100pre} = (2.70)$ $Q_{100pre} = Q_{100pre} =$	2.78 x 0.75 x 1 7.68 L/s	78.6 x 0.0206
TOTAL	0.0206	100.0%		0.020			
Weighted C = C=0.6 used	for predevelopm	nent calculation (<u>D RUNOFF)</u>	City of Ottav	0.60 va requirement)	on is 10 minut	es.	

where:

 $I_5 = 998.071 / (Tc + 6.053)^{0.814}$ $I_5 = 104.2 \text{ mm/hr}$

Surface Type	ID	Area (ha)	Percent of total Area	С	A X C (ha)
Area	A1	0.0031	100.0%	0.95	0.003
Building	A2	0.0000	0.0%	0.00	0.000
TOTAL		0.0031	100.0%		0.003
Weighted C =					1.00

 $I_{100} = 1735.688 / (Tc + 6.014)^{0.820}$ $I_{100} = 178.6 \text{ mm/hr}$

$Q_{5post} = (2.7)$	″8)*(C)*(I ₅)∗(A	A)			
Q _{5post} =	2.78 x	1.00	х	104.2	x 0.0031
Q _{5post} =	0.91 L/s				

$Q_{100post} = (2.7)$	′8)*(C)*(I ₁₀₀)∗	(A)			
Q _{100post} =	2.78 x	1.00	х	178.6	x 0.0031
Q _{100post} =	1.56 L/s				

PRE-DEVELOPMENT The pre-development time of concentration is 10 minutes where: $l_{g} = 998.071 / (Tc + 6.053)^{0.814}$ $l_{100} = 1735.688 / (Tc + 6.014)^{0.800}$ $l_{100} = 1735.688 / (Tc + 6.014)^{0.800}$ Surface Type ID Area (ha) Percent of total Area C A X C Bus Stop A1 0.00000 0.0% 0.95 0.000 Green area A3 0.00000 0.0% 0.70 0.000 Green area A3 0.00000 0.0% 0.70 0.000 Green area A3 0.00000 0.0% 0.000 0.0% 0.000 Mulphted C = 0 0.0000 0.0% 0.0000 0.0% 0.0000 0.0% 0.000 L/S 0.000	Project Number:	CW-03-1	17			384 F	Trank Street., Ottawa
where: $I_{g} = 998.071 / (Tc + 6.053)^{US14}$ $I_{100} = 1735.688 / (Tc + 6.014)^{US20}$ Log = 101.2 mm/hr Surface Type ID Area (ha) Percent of C A X C Surface Type ID Area (ha) Percent of C A X C Surface Type ID Area (ha) Percent of C A X C Surface Type ID Area (ha) Percent of C Percent of C A X C C OULS C C C C C A X C C Colspan= OULS C Colspan= C C C C C C C C C C C C<	PRE-DEVELOPI	<u>MENT</u>		The pre-deve	lopment ti	me of concentration	on is 10 minutes
$I_{g} = 104.2 \text{ mm/hr}$ $I_{u} = 178.6 \text{ mm/hr}$			where:	I ₅ = 9	998.071/	(Tc + 6.053) ^{0.814}	J ₄₀₀ = 1735.688 / (Tc + 6.014) ^{0.820}
Surface Type ID Area (ha) Percent of total Area C A X C Bus Stop A1 000000 0.0% 0.00 Parking A2 000000 0.0% 0.00 Green area A3 000000 0.0% 0.70 0.000 Image: Constrained and image: Constret and image: Constret and image: Constrained and image: Constrat				I ₅ =	104.2	mm/hr	l ₁₀₀ = 178.6 mm/hr
Bus Stop A1 0.0000 0.0% 0.95 0.000 Parking A2 0.00000 0.0% 0.95 0.000 Green area A3 0.00000 0.0% 0.70 0.000 Green area A3 0.00000 0.0% 0.70 0.000 Green area A3 0.00000 0.0% 0.70 0.000 A	Surface Type	ID	Area (ha)	Percent of	С	AXC	
Parking A2 0.0000 0.0% 0.95 0.000 Green area A3 0.00000 0.0% 0.70 0.000 Green area A3 0.00000 0.0% 0.0000 0.0% 0.0000 0.0% 0.0000 0.0% 0.0000 0.0% 0.0000 0.0% 0.0000 0.0% 0.0000 0.0% 0.0000 0.0% 0.0000 0.0% 0.0000 0.0% 0.0000 0.0% 0.0000 0.0% 0.0000 0.0% 0.0000 0.0% 0.0000 0.0% <th< td=""><td>Bus Stop</td><td>A1</td><td>0.00000</td><td>0.0%</td><td>0.95</td><td>(ha) 0.000</td><td></td></th<>	Bus Stop	A1	0.00000	0.0%	0.95	(ha) 0.000	
Green area A3 0 00000 0 0% 0 70 0 000	Parking	A2	0.00000	0.0%	0.95	0.000	
$\frac{ }{ $	Green area	A3	0.00000	0.0%	0.70	0.000	$Q_{5pre} = (2.78)^*(C)^*(I_5)^*(A)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							$Q_{5pre} = 2.78 \text{ x} 0.60 \text{ x} 104.2 \text{ x} 0.0000$ $Q_{5pre} = 0.00 \text{ L/s}$
$Q_{100pre} = 0.00 \text{ L/s}$							$Q_{100pre} = (2.78)^{*}(C)^{*}(I_{100}) \cdot (A)$ $Q_{100pre} = 2.78 \times 0.60 \times 178.6 \times 0.0000$
TOTAL 0.000 0.0% 0.000 Weighted C = 0.60 C=0.6 used for predevelopment calculation (City of Ottawa requirement) POST-DEVELOPMENT (CONTROLLED RUNOFF) The post-development time of concentration is 10 minutes where: $I_5 = 998.071 / (Tc + 6.053)^{0.814}$ $I_{100} = 1735.688 / (Tc + 6.014)^{0.820}$ $I_5 = 104.2 \text{ mm/hr}$ $I_{100} = 178.6 \text{ mm/hr}$							Q _{100pre} = 0.00 L/s
Note the second of the secon	τοται		0.0000	0.0%		0.000	
C=0.6 used for predevelopment calculation (City of Ottawa requirement) POST-DEVELOPMENT (CONTROLLED RUNOFF) The post-development time of concentration is 10 minutes where: $I_5 = 998.071 / (Tc + 6.053)^{0.814}$ $I_{100} = 1735.688 / (Tc + 6.014)^{0.820}$ $I_{100} = 178.6 mm/hr$	Weighted C =		0.0000	0.070		0.60	
The post-development time of concentration is 10 minutes where: $I_5 = 998.071 / (Tc + 6.053)^{0.814}$ $I_{100} = 1735.688 / (Tc + 6.014)^{0.820}$ $I_{100} = 178.6 \text{ mm/hr}$	ost-develoi	C=0.6 used PMENT (for predevelopm	ent calculation (D RUNOFF)	(City of Otta	wa requirement)	
where: $I_5 = 998.071 / (Tc + 6.053)^{0.814}$ $I_{100} = 1735.688 / (Tc + 6.014)^{0.820}$ $I_{100} = 178.6 \text{ mm/hr}$			Т	he post-deve	lopment ti	me of concentration	on is 10 minutes
Surface Turne ID Area (he) Percent of C A X C			where:	l ₅ = ⁵ I ₅ =	998.071 / (104.2	(Tc + 6.053) ^{0.814} mm/hr	$I_{100} = 1735.688 / (Tc + 6.014)^{0.820}$ $I_{100} = 178.6 \text{ mm/hr}$
	Surface Type	חו	Area (ba)	Percent of	0	AXC	

Building

TOTAL

Weighted C =

A4

0.01746

0.01746

100.0%

0.0%

С 0.95

0.95

0.017

0.017

1.00

Q _{5post} =	(2.78)	*(C)*((I ₅)∗(A)
----------------------	--------	--------	-----------------------

Q _{5post} =	2.78 x	1.00	х	104.2	x 0.0175
Q _{5post} =	5.06 L/s				

$Q_{100post} = (2.78)^*(C)^*(I_{100})^*(A)$

Q _{100post} =	2.78 x	1.00	х	178.6	x 0.0175
Q _{100post} =	8.67 L/s				

ALLOWABLE RUNOFF

Predevelopment Runoff:						
Uncontrolled Runoff						
5-year	3.59	l/sec				
100-year	7.68	l/sec				
Controlled Runoff:						
5-year	0.00	l/sec				
100-year	0.00	l/sec				

ARCH-NOVA DESIGN INC.	
Architecture Engineering Consulting	

Postdevelopment Runoff:							
Uncontrolled Runoff							
5-year	0.91	l/sec					
100-year	1.56	l/sec					
Controlled Runoff:							
5-year	5.06	l/sec					
100-year	8.67	l/sec					

Controlled allowable runoff

Controlled Runoff:							
5-year	2.03	l/sec					
100-year	6.12	l/sec					

Comment:

	Stora	ge Volume	es (5-Year St	torm)		T .		Storag	e Volume	s (100-Year	Storm)	
Project: 384 F	rank St.	-	•							•		
-	Tc =	10	(mins)					Tc =	10	(mins)		
	$C_{AVG} =$	1.00	(dimmensionle	ss)				$C_{AVG} =$	1.00	(dimmensionle	ss)	
	Area =	0.0200	(hectares)	,				Area =	0.0200	(hectares)	, ,	
	Storm =	5	(vear)					Storm =	100	(vear)		
R	elease Rate =	2.03	(L/sec)				F	Release Rate =	2.03	(L/sec)		
Tii	me Interval =	5	(mins)				Ti	ime Interval =	5	(mins)		
	Rainfall							Rainfall				
Duration	Intensity	Peak Flow	Release Rate	Storage Rate	Storage		Duration	Intensity	Peak Flow	Release Rate	Storage Rate	
(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m^{3})		(min)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	
1	204	1.1	2.03				1	351	2.0	2.03		
6	132	4.4	2.03	2.36	0.85		6	226	7.5	2.03	5.51	
11	99	5.5	2.03	3.49	2.30		11	170	9.4	2.03	7.42	
16	80	4.5	2.03	2.45	2.35		16	138	7.6	2.03	5.62	
21	68	3.8	2.03	1.76	2.22		21	116	6.5	2.03	4.44	
26	59	3.3	2.03	1.27	1.98		26	101	5.6	2.03	3.60	
31	53	2.9	2.03	0.91	1.68		31	90	5.0	2.03	2.97	
36	48	2.6	2.03	0.62	1.33		36	81	4.5	2.03	2.47	
41	43	2.4	2.03	0.39	0.95		41	74	4.1	2.03	2.08	
46	40	2.2	2.03	0.20	0.54		46	68	3.8	2.03	1.75	
51	37	2.1	2.03	0.04	0.11		51	63	3.5	2.03	1.48	
56	35	1.9	2.03	-0.10	-0.34		56	59	3.3	2.03	1.24	
61	33	1.8	2.03	-0.22	-0.80		61	55	3.1	2.03	1.04	
66	31	1.7	2.03	-0.32	-1.27		66	52	2.9	2.03	0.87	
71	29	1.6	2.03	-0.41	-1.75		71	49	2.7	2.03	0.71	
76	28	1.5	2.03	-0.49	-2.24		76	47	2.6	2.03	0.57	
81	26	1.5	2.03	-0.56	-2.74		81	45	2.5	2.03	0.45	
86	25	1.4	2.03	-0.63	-3.25		86	43	2.4	2.03	0.34	
91	24	1.3	2.03	-0.69	-3.76		91	41	2.3	2.03	0.24	
96	23	1.3	2.03	-0.74	-4.27		96	39	2.2	2.03	0.15	
101	22	1.2	2.03	-0.79	-4.79		101	38	2.1	2.03	0.06	
106	21	1.2	2.03	-0.84	-5.32		106	36	2.0	2.03	-0.01	
111	21	1.1	2.03	-0.88	-5.84		111	35	1.9	2.03	-0.08	
116	20	1.1	2.03	-0.92	-6.38		116	34	1.9	2.03	-0.15	
121	19	1.1	2.03	-0.95	-6.91		121	33	1.8	2.03	-0.21	
126	19	1.0	2.03	-0.99	-7.45		126	32	1.8	2.03	-0.27	
131	18	1.0	2.03	-1.02	-7.99	1	131	31	1.7	2.03	-0.32	
136	18	1.0	2.03	-1.05	-8.53	1	136	30	1.7	2.03	-0.37	
Notes			1			1	Notes			I.	I.	
						1						
1) For a storm du	ration that is les	s than the time of	f concentration the p	peak flow is equal to	o the product	1	1) For a storm di	uration that is les	s than the time o	of concentration the	peak flow is equal	to
of 2.78CIA and the	e ratio of the sto	rm duration to the	e time of concentrat	ion.		1	of 2.78CIA and th	ne ratio of the sto	rm duration to th	e time of concentra	ation.	

2) Rainfall Intensity, I = 998.071 / (Tc + 6.053)^0.814 (5 year, City of Ottawa) 3) Peak Flow = Duration/Tc x 2.78 x C x I x A (Duration < Tc)

4) Peak Flow = 2.78 x C x I x A (Duration > Tc)

5) Storage = Duration x Storage Rate

o the product of 2.78CIA and the ratio of the storm duration to the time of concentration.

2) Rainfall Intensity, I = 1735.688 / (Tc + 6.014)^0.820 (100 year, City of Ottawa) 3) Peak Flow = Duration/Tc x 2.78 x C x I x A (Duration < Tc) 4) Peak Flow = 2.78 x C x I x A (Duration > Tc) 5) Storage = Duration x Storage Rate

ARCH-NOVA DESIGN INC.	*
Architecture Engineering Consulting	

Storage (m³) 1.98

4.90 5.40 5.59 5.61 5.52

5.34

5.11 4.83 4.52

4.18

3.82 3.43 3.03

2.622.19 1.75

1.31

0.85 0.39 -0.08

-0.56 -1.04

-1.53 -2.02 -2.51 -3.01

Storage Requirements

5-year 2.35 m³

	100-year	3.01					
Surface Type	ID	Area (ha)	Percent of total Area	Required Storage 5 year	Required Storage 100 year	Max Allowed Drain Outflow I/s	Max Allowed Drain Outflow GPM
Roof	A1	0.0087	50.0%	1.17	2.81	1.01	8.03
Roof	A2	0.0087	50.0%	1.17	2.81	1.01	8.03
TOTAL		0.0175	100.0%	2.35	5.61	2.03	16.07

Stage-Storage

Roof A1	(Scuppe	r 1)	Roof A2 (Scupper	2)	Legend:	
Depth	Area	Volume	Depth	Area	Volume	data for 5-year event	
m	m ²	m ³	m	m ²	m ³	data for 100-year event	
0.020	9.10	0.09	0.020	9.10	0.09		
0.040	20.10	0.40	0.040	20.10	0.40		
0.054	35.00	0.95	0.054	35.00	0.95		
0.075	65.5	2.46	0.075	65.5	2.46		

Notes:

.

Roof drains with controlled flow to be specified by manufacturer using the allowable flow rates presented in this chart

384 FRANK STREET, OTTAWA SWM PREDEVELOPMENT

45 Banner Road NEPEAN ON K2H 8X5 613-829-5722 contact@archnova.ca

SWM POSTEVELOPMENT

45 Banner Road NEPEAN ON K2H 8X5 613-829-5722 contact@archnova.ca

k (ft.) = $0.0144902648 - 0.00033955535 \theta + 3.29819003x10^{-6} \theta^2 - 1.06215442x10^{-8} \theta^3$ where θ is the notch angle in degrees

Installation Guidelines and Equation ApplicabilityTop of PageUSBR (1997) suggests using the V-notch weir equations for the following conditions:

Head (h) should be measured at a distance of at least 4h upstream of the weir.

It doesn't matter how thick the weir is except where water flows over the weir through the "V." The weir should be between 0.03 and 0.08 inches (0.8 to 2 mm) thick in the V. If the bulk of the weir is thicker than 0.08 inch, the downstream edge of the V can be chamfered at an angle greater than 45° (60° is recommended) to achieve the desired thickness of the edges. You want to avoid having water cling to the downstream face of the weir.

Water surface downstream of the weir should be at least 0.2 ft. (6 cm) below the bottom of the V to allow a free flowing waterfall.

Measured head (h) should be greater than 0.2 ft. (6 cm) due to potential measurement error at such small heads and the fact that the nappe (waterfall) may cling to the weir.

The equations have been developed for h < 1.25 ft. (38 cm) and h/P < 2.4.

The equations have been developed for fully contracted V-notch weirs which means h/B should be ≤ 0.2 .

The average width of the approach channel (B) should be > 3 ft. (91 cm).

The bottom of the "V" should be at least 1.5 ft. (45 cm) above the bottom of the upstream channel.

If your weir does not achieve some of the above criteria, you may have a "partially contracted V-notch weir" where h/B needs only to be ≤ 0.4 , the bottom of the "V" only needs to be 4 inch (10 cm) above the bottom of the upstream channel, the approach channel only needs to be 2 ft. (61 cm) wide, and h can be up to 2 ft. (61 cm) instead of 1.25 ft. (38 cm). Partially contracted weirs use a different graph for C which is a function of h/P and P/B and is only valid for a notch angle of 90°. In the graph (not shown - see USBR, 1997), C varies from 0.576 to 0.6; whereas, for a fully contracted 90° notch, C is 0.578 from our graph shown above. Our calculation does not account for partially contracted weirs, but for most practical purposes the difference in C is inconsequential.

Error Messages given by V-notch weir calculation

Top of Page

"All inputs must be positive". This is an initial check of user input.

"Angle out of range". The notch angle must be between 20° and 100° (0.35 and 1.75 radians) for the equations to be valid.

"Infeasible input". Input results in a negative head due to the compiler's machine precision. Occurs if head is being computed and a very low Q is entered (e.g. 1.0e-20).

References

ASTM. (1993). American Society for Testing and Materials. ASTM D5242. Standard method for open-channel flow measurement of water with thin-plate weirs. 1993. Available from Global Engineering Documents at <u>http://global.ihs.com</u>

ISO. (1980). International Organization of Standards. ISO 1438/1-1980(E). Water flow measurement in open channels using weirs and venturi flumes - Part 1: Thin plate weirs. 1980. Available from Global Engineering Documents at <u>http://global.ihs.com</u>

USBR. (1997). U.S. Department of the Interior, Bureau of Reclamation. Water Measurement Manual. 3ed. Available from http://www.usbr.gov/tsc/techreferences/mands/wmm/index.htm .

© 1999-2015 LMNO Engineering, Research, and Software, Ltd. All rights reserved.

Please contact us for consulting or other questions.

LMNO Engineering, Research, and Software, Ltd. 7860 Angel Ridge Rd. Athens, Ohio 45701 USA Phone: (740) 592-1890 LMNO@LMNOeng.com http://www.LMNOeng.com

Appendix B: Correspondence

zoran@archnova

From:	Wu, John <john.wu@ottawa.ca></john.wu@ottawa.ca>
Sent:	December 8, 2017 9:20 AM
То:	zoran@archnova
Subject:	RE: 384 Frank Street, Ottawa: boundary conditions
Attachments:	384 Frank December 2017.pdf

Here is the result:

****The following information may be passed on to the consultant, but do NOT forward this e-mail directly.****

The following are boundary conditions, HGL, for hydraulic analysis at 384 Frank (zone 1W) assumed to be connected to the 203 mm on Frank St (see attached PDF for location).

Minimum HGL = 106.9 m Maximum HGL = 115.7 m Max Day (2.08 L/s) + Fire Flow (217 L/s) = 103.3 m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

Thanks.

John

From: zoran@archnova [mailto:zoran@archnova.ca]
Sent: Tuesday, December 05, 2017 8:07 PM
To: Wu, John <John.Wu@ottawa.ca>
Subject: RE: 384 Frank Street, Ottawa: boundary conditions

Hello John,

It is from City of Ottawa Guideline, which refers to MOE guideline and Table 3.3 for services for less than 500 persons. The table I sent to you is that one (Please see notes in tables). The only thing is that I used the factor of 9.5 for up to 30 persons and in reality we have 36 persons. This means that factor of 4.9 should be used however, 36 is closer to 30 person cut than to 100 and more possible that the factor is higher than 4.9. If you still prefer 4.9 I will prepare it that way,

Cheers,

ΖM

From: Wu, John [mailto:John.Wu@ottawa.ca]
Sent: December 5, 2017 9:28 AM
To: zoran@archnova <<u>zoran@archnova.ca</u>>
Subject: RE: 384 Frank Street, Ottawa: boundary conditions

Hi, Zoran:

In the Ottawa water design guidelines 2010, page49. 4.2.8 State it clearly. I do not know where your reference is from. You have to use Ottawa's water design guideline.

John

From: zoran@archnova [mailto:zoran@archnova.ca]
Sent: Monday, December 04, 2017 6:13 PM
To: Wu, John <<u>John.Wu@ottawa.ca</u>>
Subject: RE: 384 Frank Street, Ottawa: boundary conditions

Hello John,

I have used the following table:

Table 3-3: Peaking	factors i	or Drinki	ng-11 ater	Systems :	Serving Fe	mer
than 500 People						
DWELLIN EQUIVAL	NIGHT	MAXIMU	PEAK			
C UNITS INT	MINIMUM	MDAV	UOID			

10	30	0.1	9.5	14.3
50	1:50	0.1	4.9	7.4
100	300	02	3.6	5.4
150	450	0.3	3.0	4.5
167	500	0.4	2.9	4.3
	1			

The occupancy of proposed building is between 30 and 50 persons so I used factors for 30 persons. If you have different factors used for this particular area, please advise and I will adjust my calculation. For now we are on the safe side.

Regards,

Zoran

From: Wu, John [mailto:John.Wu@ottawa.ca]
Sent: December 4, 2017 10:03 AM
To: zoran@archnova <<u>zoran@archnova.ca</u>>
Subject: RE: 384 Frank Street, Ottawa: boundary conditions

I already send the request.

Please check where you got the maxday factor 9.5 for water Ottawa design guideline is not that high. Please read that section.

Thanks.

John

From: zoran@archnova [mailto:zoran@archnova.ca] Sent: Saturday, December 02, 2017 7:33 PM To: Wu, John <<u>John.Wu@ottawa.ca</u>> Subject: 384 Frank Street, Ottawa: boundary conditions

Hello John,

Please could you provide the boundary conditions for the location of 384 Frank Street, Ottawa. The owner is planning to construct a new apartment building at this location. Attached are the water and sewer calculations, FUS and OBC fire flow calculation and the site plan for proposed development.

Type of development: apartment building (basement + 9 stories) Average daily demand: 0.15 l/s Maximum daily demand: 1.39 l/s. Maximum hourly daily demand: 2.08 l/s. Fire flow: 217 l/sec

Regards,

ı.

'

Zoran Mrdja, P.Eng., FEC *Arch-Nova Design Inc.* 613-818-3884

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

. .

ı

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

10:25
