

REPORT

SITE SERVICING REPORT & EROSION & CONTROL PLAN RETIREMENT COMPLEX WEST POINTE VILLAGE DEVELOPMENT

Project: 118197-5.2.2

Prepared for CLARIDGE HOMES by IBI Group Revision 2 July 31, 2019

Table of Contents

1	INTRO	ODUCTION	1
	1.1	Scope	1
	1.2	Subject Site	1
	1.3	Previous Studies	1
	1.4	Pre-consultation	1
	1.5	Geotechnical Consideration	1
2	WATE	ER DISTRIBUTION	3
	2.1	Existing Conditions	3
	2.2	Design Criteria	3
		2.2.1 Water Demands	3
		2.2.2 System Pressure	3
		2.2.3 Fire Flow Rates	4
		2.2.4 Hydraulic Model	4
	2.3	Proposed Water Plan	4
3	WAS	TEWATER	5
	3.1	Existing Conditions	5
	3.2	Design Criteria	5
	3.3	Recommended Wastewater Plan	5
4	STOR	RMWATER SYSTEM	6
	4.1	Existing Conditions	6
	4.2	Design Criteria	6
5	SEDI	MENT AND EROSION CONTROL PLAN	9
	5.1	General	9
	5.2	Trench Dewatering	9
	5.3	Bulkhead Barriers	9
	5.4	Seepage Barriers	9

6

Table of Contents (continued)

CONCLUSIONS		
5.7	Catchbasins	10
5.6	Stockpile Management	10
5.5	Surface Structure Filters	9

1 INTRODUCTION

1.1 Scope

IBI Group has been retained by Claridge Homes to provide engineering services for the lands at 164 Maravista Dr. located in Barrhaven (Ward 3-Barrhaven), Ontario. The property is zoned residential R5AH(18) and is legally known as: Block 104 & 105, on Plan 4M-1335, City of Ottawa (Surveyed by Annis, O'Sullivan, Vollebekk Ltd.). Refer to Figure 1, Site Location plan.

1.2 Subject Site

Claridge Homes proposes to construct a 143 unit Retirement Complex on these blocks which are part of their West Point Village Development. The blocks are bounded by Cobble Hill Drive on the east, Chesapeake Crescent to the south, Strandherd Road to the west and Maravista Drive to the north. This report supports the detail site service design for this site plan. A copy of the site plan is included in **Appendix A**.

1.3 Previous Studies

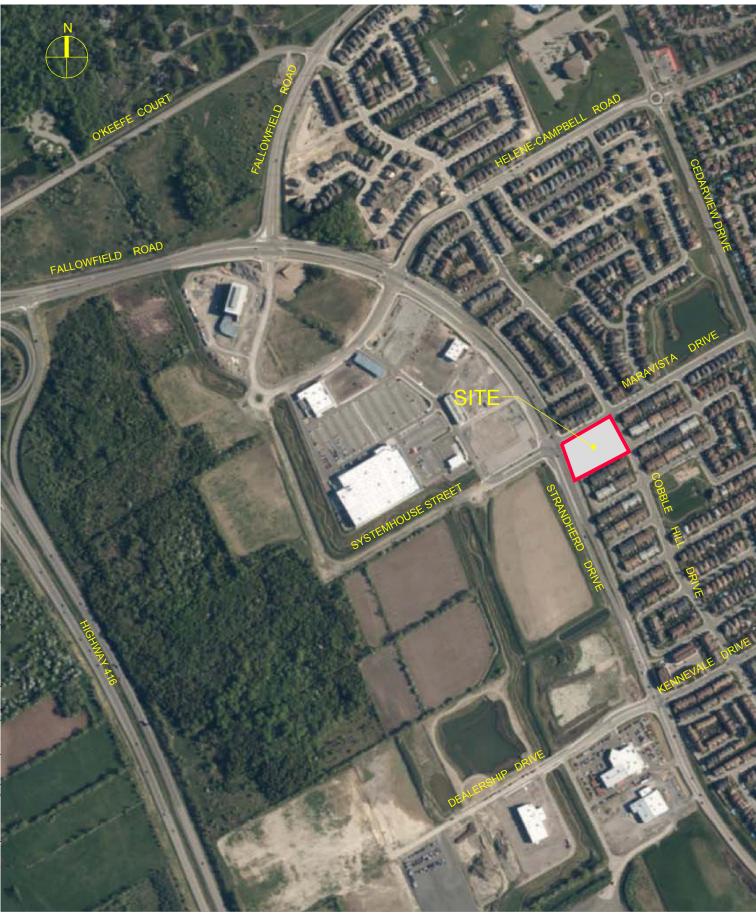
IBI had previously submitted an engineering report and drawings for review by the City, Site Servicing Report Seniors Building West Point Village, Dec 2008, however, due to market conditions the project was put on hold. The Owner has made changes to the site plan to address market conditions, and this servicing report has been prepared to demonstrate that the existing adjacent and downstream infrastructure is capable of accommodating the proposed Retirement Complex.

Design of this project has been undertaken in accordance with the following reports:

- Site Servicing Report, West Point Village, prepared by IBI, January 2008
- Site Servicing Report, Maravista Heights, prepared by IBI, October 2010

1.4 Pre-consultation

Pre-consultation with the City was held June 21, 2018 regarding the proposed development. Notes from this meeting may be found in **Appendix A**.


It should be noted that a pre-consultation with the Ministry of the Environment is not required since this site is serviced by an existing municipal sanitary sewer, storm sewer and SWM facility and falls under the transfer program. When the Servicing Report and drawings are approved the Owner will submit the application to the Ministry of the Environment.

1.5 Geotechnical Consideration

The following geotechnical investigation report has been prepared by Paterson Group Inc., Report GP4557-1 August 1, 2018, Proposed Retirement Building 20 Chesapeake Crescent, Ottawa, Ontario.

The report comments on but is not limited to the following:

- Bedrock is ± 7 to 10 meters below existing grade.
- Overburden consist of layer of fill overlaying a stiff to very stiff brown silty clay, over a firm to stiff grey clay over glacial till.
- Long term groundwater is 3 to 4 meters below existing grade.

Project Title

WESTPOINTE VILLAGE RETIREMENT COMPLEX Drawing Title

Sheet No.

LOCATION PLAN

FIGURE 1.0

- Recommends all fill removed from below building and minimum 1 meter below paved area.
- Recommended Pavement Structure:

Car Park Only areas:	50 mm HL3 150 mm Granular 'A'
	300 mm Granular 'B' Type II
Heavy Truck Area and Access Lanes	40 mm HL3
	50 mm HL8
	150 mm Granular 'A'
	400 mm Granular 'B' Type II

- Grade Raise restriction of 1meter
- Recommends review of grading plan by Geotechnical Engineer

Site Grading, Plan C-200 has been reviewed by the Geotechnical Engineer the plan and Geotechnical Engineer's approval is included in **Appendix A**.

2 WATER DISTRIBUTION

2.1 Existing Conditions

As previously noted, the site is located west of Cobble Hill Drive, and south of Maravista Drive. An existing 200 mm diameter watermain is located within the Maravista Drive right of way and an existing 200 mm watermain is located within the Cobble Hill right of way. The watermains fall within the City of Ottawa's pressure district **"Barrhaven"** which will provide the water supply to the site.

When the 200 mm watermain was constructed along Cobble Hill Drive, a 150 mm diameter service was extended to the property line to service the site. There are two fire hydrants on Maravista Drive adjacent to the site.

2.2 Design Criteria

2.2.1 Water Demands

As noted in Section 1.2, the site is a 143 unit retirement complex. For determining water demands, the site is treated as a 143 unit apartment block. Unit population density and consumption rates are taken from Tables 4.1 and 4.2 of the Ottawa Design Guidelines – Water Distribution and are summarized as follows:

٠	Average Apartment	1.8 person per unit
•	Residential Average Day Demand	350 l/cap/day

- Residential Peak Daily Demand
 875 l/cap/day
- Residential Peak Hour Demand 1,925 l/cap/day

A watermain demand calculation sheet is included in **Appendix B** and the total water demands are summarized as follows:

- Average Day 1.04 l/s
- Maximum Day 2.61 l/s
- Peak Hour
 5.73 l/s

2.2.2 System Pressure

The Ottawa Design Guidelines – Water Distribution (WDG001), July 2010, City of Ottawa, Clause 4.2.2 states that the preferred practice for design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 480 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in Clause 4.2.2 of the guidelines are as follows:

Minimum Pressure	Minimum system pressure under peak hour demand conditions shall not be less than 276 kPa (40 psi)
Fire Flow	During the period of maximum day demand, the system pressure shall not be less than 140 kPa (20 psi) during a fire flow event.

Maximum Pressure In accordance with the Ontario Building/Plumbing Code, the maximum pressure should not exceed 552 kPa (80 psi). Pressure reduction controls will be required for buildings where it is not possible/feasible to maintain the system pressure below 552 kPa.

2.2.3 Fire Flow Rates

A calculation using the Fire Underwriting Survey (FUS) method was conducted to determine the fire flow requirement for the site. The building is considered non-combustible construction by the building architect. Results of the analysis provides a maximum fire flow rate of 15,000 l/min or 250 l/s is required which is used in the hydraulic analysis. A copy of the FUS calculation is included in **Appendix B** along with correspondence from the building architect.

2.2.4 Hydraulic Model

The City has provided two boundary conditions on the existing watermains on Cobble Hill Drive adjacent to the site. Connection 1 is at Maravista and Cobble Hill Drives and Connection 2 is at Cobble Hill and Chesapeake Crescent. A copy of the boundary conditions is included in **Appendix B**.

A computer model has been created which includes the boundary conditions and watermains on Maravista Drive, Cobble Hill Drive and Chesapeake Crescent. As the daily water demand for the building is greater than 50 cubic meters per day, a second water connection is required per the City Water Design Guidelines. The existing water service on Cobble Hill Drive will be utilized and a second connection is proposed from Maravista Drive. In the water model, the two connections are represented by Nodes 101 and 103 and the full building water demand is applied to both nodes. There are several existing fire hydrants within 45 meters to the building, two on Maravista Drive, one on Cobble Hill Drive and one on Chesapeake Crescent. In the model they are represented by nodes FH-1 and FH-4.

2.3 Proposed Water Plan

The hydraulic model was run under basic day and peak hour scenarios to determine the maximum and minimum pressures at the building represented by nodes 101 and 103. Pressure is determined at the ground floor for basic day (maximum HGL) and at the top floor for peak hour (minimum HGL). The model is run under maximum day plus fire to evaluate the available fire flows at the existing hydrants represented by nodes FH-1 and FH-4.

Results of the hydraulic analysis are included in Appendix B and summarized as follows:

Scenario	Results		
Basic Day (Max HGL)	577.2 – 580.1 kPa		
Peak Hour (Min HGL)	339.4 – 340.6 kPa		
Maximum Day + Fire	256.1 – 592.6 l/s		

A comparison of the results and design criteria is summarized as follows:

Maximum Pressure	The maximum basic day pressure at the building is 580.1 kPa which exceeds the 552 kPa limit, therefore, pressure reducing control will be required for the building.
Minimum Pressure	The lowest pressure during peak hour conditions at the top floor is 339.4 kPa which exceeds the minimum requirement at 276 kPa.
Fire Flow	The minimum design fire flow at the existing hydrants adjacent to the building is 256.1 I/s which exceeds the required fire flow of 250 I/s.

3 WASTEWATER

3.1 Existing Conditions

The proposed retirement complex is located within the Cobble Hill local truck sewer tributary area which will ultimately outlet to the South Nepean Collector. In the interim until the SNC is fully constructed the Coble Hill trunk discharges to the Tartan Pump Station.

To service the overall development, plus upstream lands, a 450 mm diameter Cobble Hill trunk sanitary sewer was constructed along Cobble Hill Drive. The sanitary tributary area plan 3603-501 Rev. #3 illustrates the original townhouse plan, while 3603-501 Rev. #7 illustrates the proposed Seniors Building. The sanitary sewer design sheet (Rev. #4, May 14, 2008) from the updated servicing report for the subdivision is also included in **Appendix C**. As noted previously, a seniors building was included in the design of the existing sanitary sewer system, a service lateral was constructed off the Cobble Hill sewer to the property line to service this site.

3.2 Design Criteria

The sanitary sewers for the subject site will be based on the City of Ottawa design criteria. It should be noted that the sanitary sewer design for this study incorporates the latest City of Ottawa design parameters identified in Technical Bulletin ISTB-2018-01. Some of the key criteria will include the following:

•	Commercial/Institutional flow	28,000 l/ha/d
•	Residential flow	280 l/c/d
•	Peaking factor	1.5 if ICI in contributing area >20% 1.0 if ICI in contributing area <20%
•	Infiltration allowance	0.33 l/s/ha
•	Velocities	0.60 m/s min. to 3.0 m/s max.

The proposed 143 room Seniors Building is estimated to have a design population of $(143 \times 1.8) = 257.4$ people. For the local sewer (Maravista), the peak factor would be 4.0 for a peak population flow of $(4 \times 257.4 \times 280) = 288,288$ l/d or 3.336 l/s. When including infiltration allowance for the 0.54 ha site, the peak flow is 3.514 l/s.

3.3 Recommended Wastewater Plan

The orientation of the building has evolved and the sanitary outlet from the building will now be in the northwest corner; to this end the service will be off Maravista Drive where a 200Ø mm sanitary sewer is located. The existing service off Cobble Hill will be abandoned per City Standards.

The on-site sanitary system will consist of a 200 mm PVC sewer lateral extending from the 200mm main in Maravista Drive to a monitoring MH, then extending to the mechanical room of the proposed building. The existing and proposed sewers capacity to accommodate the retirement complex has been verified using the updated criteria noted above. Appendix C contains a copy of the updated sanitary sewer design sheet for Maravista Dr and the subsequent downstream developments. The design sheets for those existing developments have been modified to reflect the new sewer design criteria and the inclusion of this development, demonstrating the downstream system has able capacity to accommodate the development. Appendix C also contains a copy of the updated sanitary drainage area plan 118197-C-400 and the sanitary sewer design sheet can be found in **Appendix C**. Please refer to the site servicing plan 118197-C-100 and details plan 118197-C-101 for further details.

4 STORMWATER SYSTEM

4.1 Existing Conditions

When the site was originally development in 2008, the stormwater management strategy for the development was based on the standard of the day which was to restrict flow into the sewers to a rate of 85l/s/Ha. This included the use of ICD's in street CB's and rear yard CB's to limit flow into the sewer to 85 l/s Ha. The downstream storm sewer system constructed by DCR Phoenix's West Barrhaven development anticipated additional residential development up to Maravista Drive and the storm sewer system within the DCR site was oversized to accommodate the Claridge Lands including blocks 104 and 105. The Claridge and Phoenix lands were accommodated by a temporary stormwater management pond constructed by DCR Phoenix, that facility was recently decommissioned when the City completed the ultimate Stormwater Management Facility located at Strandherd and McKenna-Casey Drive. With an end of pipe Stormwater Management Facility available for this site no on-site quality control is required.

4.2 Design Criteria

The downstream sewer system was designed under the assumption that blocks 104 and 105 would be servicing street front townhouses. The fronting streets were designed to accommodate flow from the frontages with an assumed C=0.6 and the street CB's were restricted to 85 l/s/Ha. The rear yards were assumed a C=0.6 and the rear yard CB would be restricted to 85 l/s/Ha. Since the supporting infrastructure is relatively new and the design parameters used for the design of the downstream sewers is known, City Staff agreed with the servicing strategy where the yards and drives abutting Maravista Drive and Chesapeake Crescent could drain unrestricted to the respective street sewer system provided the post development 100 yr. AC did not exceed the predevelopment 100 yr. AC. The remaining areas (roofs and parking lot) would be required to restrict post development 100 yr. flows to the sewer design criteria for the rear yards, 85 l/s/Ha.

The following illustrates the above strategy has been achieved.

Area Draining to Maravista Drive:

- Pre-development 100 yr. AC from IBI storm tributary Drawing 11141-500 (in Appendix D), area of 0.06686 Ha with 100 yr. C = (0.6 x 1.25) AC = 0.0501.
- Post development 100 yr. AC for area 1 on tributary area sketch Figure 2, Appendix D:
 - grass 0.0782 x (0.2 x 1.25) = 0.0195
 - asphalt 0.034 x (1) = 0.034

0.0535

- Post development 100 yr. AC = 0.0535 is similar to the pre-development 100 yr. AC = 0.0501.

Area Draining to Chesapeake Crescent:

- Pre-development 100 yr. AC, from IBI storm tributary Drawing 3603-LD-500 in Appendix D, area 0.1137 100 yr. C = (0.6 x 1.25) AC = 0.08527.
- Post development 100 yr. AC for area 2, from IBI tributary area sketch Figure 2 in Appendix
 D:
 - grass 0.0182 x (02. X 1.25) = 0.00455

- asphalt -
$$0.0332 \times (1)$$
 = 0.0332

0.03775

- Post development 100 yr. AC = 0.0377 is less than pre-development 100 yr. AC = 0.085.
- Combined the Post Development AC for two areas discharging to the street have an AC of 0.0912, which is less than the pre-development AC for the combined area of 0.135.

The above has illustrated that two yards fronting Maravista and Chesapeake have similar post development AC as pre-development design criteria, and as such no negative impact is expected on the downstream sewers from these areas.

As noted previously, the remaining portion of the site would be restricted to the pre-development rear yard area discharge limited of 85 l/s/Ha. IBI storm tributary Drawing 3603-LD-500 noted an area of 0.31 Ha discharging to Cobble Hill storm sewer. To this end, the post development 100 yr. flow would be limited to 0.31 x 85 = 26.35 l/s.

The remaining portion of the site consists of roof (areas 3 &4), parking lot (area 6) and ramp to underground parking (area 5). See Tributary Area Plan 118198-500 in **Appendix D**. The ramp area will drain to a trench train which will flow unrestricted to the storm sewer. The ramp area (area 5) is 0.019 Ha and based on Tc10 min and 100 yr. intensity, the Q unrestricted is 9.43 l/s.

To this end, the remaining areas (3, 4 and 6) would be limited to 26.35 l/s - 9.43 l/s = 16.92 l/s.

The building roof will include an amenity area (area 4) of approximately 0.08 Ha. Runoff from the amenity area will flow unrestricted to the site Stormwater Management tank. The remaining area of the roof (area 3) will be controlled with roof top drains similar to Watts adjustable roof drain, see modified rational method storm design sheet in **Appendix D** for required storage and flow rates, which are summarized below:

SECTION	FLOW (I/s)	REQ'D STORAGE (m³)	PROVIDED STORAGE
Α	0.94	16.1	17.16
В	0.94	16.9	17.81
С	0.63	10.52	11.28
D	0.63	4.41	5.89
E	0.63	2.54	4.0
F	0.63	1.32	2.6
G	0.63	1.32	1.82
	5.03		

Controlled Roof (Area 3)

The total flow from the controlled portion of the roof is 5.03 l/s. The remaining allowable flow for the rest of the site (areas 4 and 6) is 16.92 l/s - 5.03 l/s = 11.89 l/s.

The remaining portion of the site is comprised of the uncontrolled roof area (area 4) 0.08 Ha C=0.9, and the parking lot area (area 6) 0.06 Ha C=0.61. The runoff from these areas will be controlled to limit the total combined flow to the Cobble Hill sewer to a peak of 11.89 l/s. Due to the limited surface area available for surface storage, an underground storage tank will be used to provide the necessary storage to accommodate the controlled discharge to the Cobble Hill storm sewer. Since the site will be using underground storage where the volume is calculated using the modified rational method, the flow rate used in the calculation is 50% of the allowable discharge rate or 11.89 ÷ 2 = 5.945 l/s. The volume of storage to accommodate the 100 yr. rainfall event for the 0.08 Ha of roof and 0.05 Ha of parking lot is 52.36 m³, see modified rational design sheet in Appendix D. To accommodate this volume, a 10.56 m x 4.75 m x 1.4 m (H) underground storage tank is proposed adjacent to the building, see General Plan C-100 in **Appendix B** for storm sewer layout and details. Flow will be restricted by a Tempest ICD in MH3 to 11.89 l/s at a head of 1.13 m. Based on the above servicing strategy, the proposed development can be

accommodated by the existing storm sewers, see updated storm sewer design sheets in **Appendix D**.

The below table summarizes the controlled and uncontrolled release rates, and the required storage volumes and provided storage volumes.

AREA #	AREA (HA)	AVG C	UNCONTROLLED RELEASE RATE* (L/S)	CONTROLLED RELEASE RATE (L/S)	REQUIRED STORAGE (M ³)	PROVIDED STORAGE (M ³)
1	0.11	0.41	27.98			
2	0.15	0.31	28.85			
3	0.12	0.9		5.03	53.11	60.56
4&6	0.13	0.77		11.89	52.36	60.19
5	0.02	0.84	10.42			

* 100 yr design storm T_c=10 min

5 SEDIMENT AND EROSION CONTROL PLAN

5.1 General

During construction, existing stream and conveyance systems can be exposed to significant sediment loadings. Although construction is only a temporary situation, it is proposed to introduce a number of mitigative construction techniques to reduce unnecessary construction sediment loadings. These will include:

- groundwater in trench will be pumped into a filter mechanism prior to release to the environment;
- bulkhead barriers will be installed at the nearest downstream manhole in each sewer which connects to an existing downstream sewer;
- seepage barriers will be constructed in any temporary drainage ditches; and
- filter cloths will remain on open surface structure such as manholes and silt bags for catchbasins until these structures are commissioned and put into use;
- silt fence will be installed along the perimeter of the work area.

5.2 Trench Dewatering

Although little groundwater is expected during construction of municipal services, any trench dewatering using pumps will be discharged into a filter trap made up of geotextile filters and straw bales similar in design to the OPSD 219.240 Dewatering Trap. These will be constructed in a bowl shape with the fabric forming the bottom and the straw bales forming the sides. Any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filters as needed including sediment removal and disposal and material replacement as needed.

5.3 Bulkhead Barriers

At the first manhole constructed in the site plan, a ½ diameter bulkhead will be constructed over the lower half of the outletting sewer. This bulkhead will trap any sediment carrying flows thus preventing any construction-related contamination of existing municipal sewers. The bulkhead will be inspected and maintained including periodic sediment removal as needed.

5.4 Seepage Barriers

The presence of road side ditches along Strandherd Road and the proximity of the Foster Drain necessitates the installation of seepage barriers. These barriers will consist of both the Light Duty Straw Bale Barrier as per OPSD 219.100 or the Light Duty Silt Fence Barrier as per OPSD 219.110 and will be installed in accordance with the attached sediment and erosion control Drawing 118197-C-900 included in **Appendix E**. The barriers are typically made of layers of straw bales or geotextile fabric staked in place. All seepage barriers will be inspected and maintained as needed.

5.5 Surface Structure Filters

All catchbasins, and to a lesser degree manholes, convey surface water to sewers. However, until the surrounding surface has been completed, these structures should be covered in some fashion to prevent sediment from entering the minor storm sewer system. Until landscaped areas are sodded or until parking lots are asphalted and curbed, all onsite catchbasins and manholes

and directly adjacent offsite street CB's will be outfitted with a geotextile sediment bag. These will stay in place and be maintained during construction until it is appropriate to remove same.

5.6 Stockpile Management

During construction of any development similar to that proposed by Claridge both imported and native soils are stockpiled. Mitigative measures and proper management to prevent these materials entering the sewer systems is needed.

During construction of the deeper municipal services, water, sewers and service connections, imported granular bedding materials are temporarily stockpiled on site. These materials are however quickly used up and generally before any catchbasins are installed.

The existing topography for the site is very flat with no defined drainage patterns. Consequently surface runoff in any direction is very slow. Contamination of the environment as a result of stockpiling of imported construction materials is generally not a concern. These materials are quickly used and the mitigative measures stated previously, especially the ½ diameter sewer bulkheads and filter fabric in catchbasins and manholes help to manage these concerns.

The parking lot granular materials are not stockpiled on site. They are immediately placed in the roadway and have little opportunity of contamination.

5.7 Catchbasins

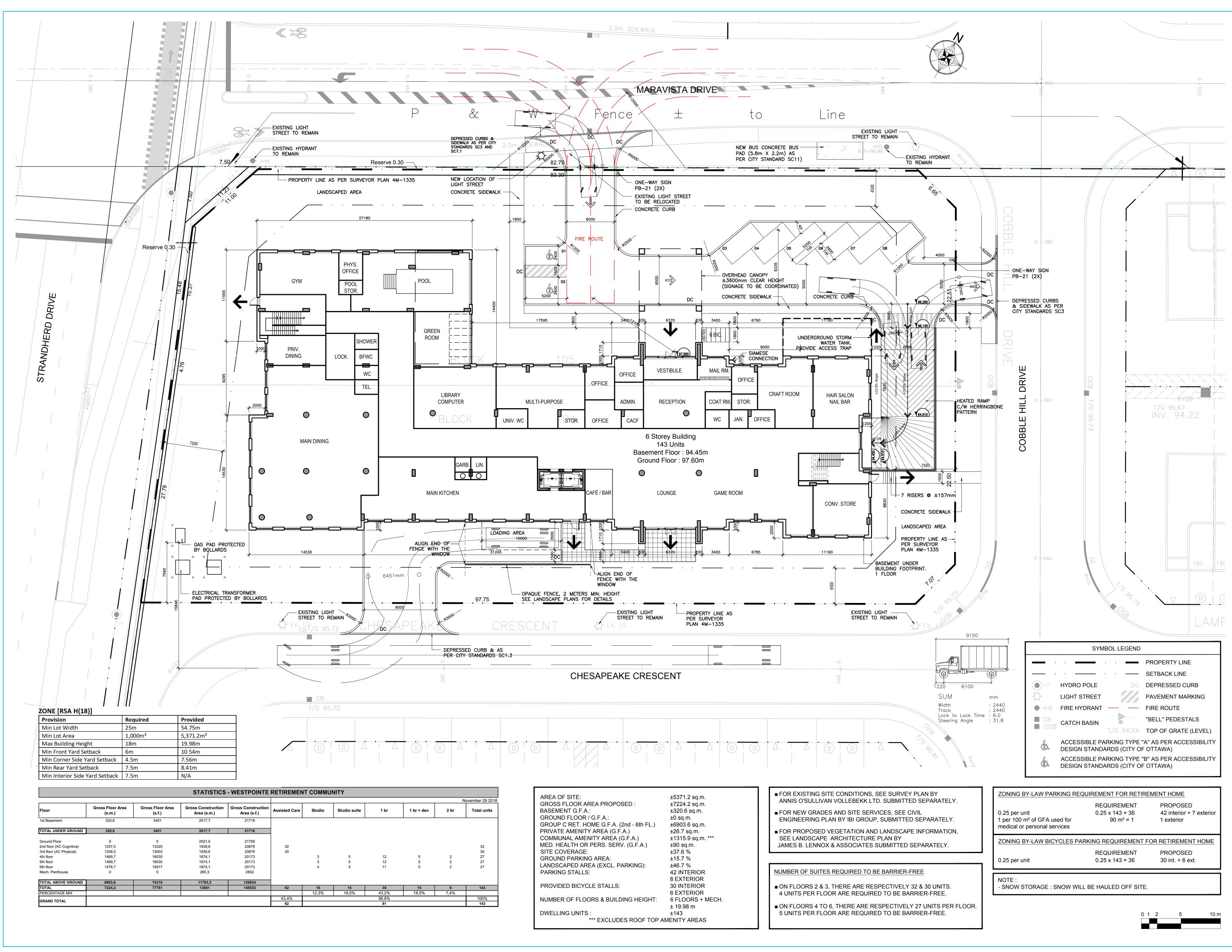
All catchbasins within the site plan, either landscape or parking lot, will be constructed with minimum 600 mm deep sumps. These sumps trap pollutants, sand, grit and debris which can be mechanically removed prior to being flushed into the minor pipe system. Both landscape and parking lot catchbasins will be to OPSD 705.01.

6 CONCLUSIONS

Municipal water, wastewater and stormwater systems required to accommodate the proposed development are available to service the Retirement Complex. Prior to construction, existing sewers are to be CCTV inspected to assess sewer condition.

This report has demonstrated sanitary and storm flows from and water supply to the Retirement Complex can be accommodated by the existing infrastructure. Also, the proposed servicing has been designed in accordance with MOE and City of Ottawa current level of service requirements.

The use of lot level controls, conveyance controls and end of pipe controls outlined in the report will result in effective treatment of surface stormwater runoff from the site. Adherence to the sediment and erosion control plan during construction will minimize harmful impacts on surface water.


Final detail design will be subject to governmental approval prior to construction, including but not limited to the following:

•	Commence Work Order:	City of Ottawa
•	ECA (sewers):	MOECP
•	Watermain approval:	City of Ottawa
•	Commence Work Order (utilities):	City of Ottawa

This report has been prepared in accordance with City of Ottawa Design Guidelines and a copy of the Development Servicing Study Checklist is included in **Appendix E**.

Report pre Ong DEFIC Demetrius ulos. P. Ena. Director, Ottawa Office Lead

APPENDIX A

NOTES GÉNÉRALES General Notes

- 1. Ces documents d'architecture sont la propriété exclusive de NEUF architect(e)s et ne pourront être utilisés, reproduits ou copiés sans autorisation écrite au préalable. / These architectural documents are the exclusive property of NEUF architect(e)s and cannot be used, copied or
- reproduced without written pre-authorisation. 2. Les dimensions apparaissant aux documents devront êtres vérifiées par l'entrepreneur avant le début des travaux. / All dimensions which appear on the documents must be verify by the contractor before starting the
- 3. Veuillez aviser l'architecte de toute dimension erreur et/ou divergences entre ces documents et ceux des autres professionnels. / The architect must be notified of all errors, omissions and discrepancies between these documents and those of other professionnals.

CLIENT Client

Claridge Homes

210, Gladstone Avenue Suite 2000, Ottawa ON K2P 0Y6 T 613 233 6030 claridgehomes.com

URBAN PLANNER Urbaniste

Novatech Eng. Consultants Ltd. 240, Michael Cowpland Drive, Suite 200, Ottawa ON K2M 1P6 T 613 254 9643 novatech-eng.com

GÉOTECHNIQUE Geotechnical

Paterson Group 154, Colonnade Road South, Ottawa ON K2E 7J5 T 613 226 7381 patersongroup.ca

TRANSPORTATION Transportation

IBI Group 333, Preston Street, Suite 400, Ottawa ON K1S 5N4 T 613 225 1311 ibigroup.com

ARCHITECTURE DE PAYSAGE Landscape architect

James B. Lennox & Associates 361. Hinton Avenue South, Ottawa ON K1Y 1A6 T 613 722 5168 jbla.ca

ARPENTEUR Surveyor

Annis O'Sullivan Vollebekk Ltd. 14, Concourse Gate, Suite 500, Nepean ON K2E 7S6 T 613 727 0850 nepean@aovltd.com

CIVIL Civil IBI Group

333, Preston Street, Suite 400, Ottawa ON K1S 5N4 T 613 225 1311 ibigroup.com

ARCHITECTES Architect

SCEAU Seal

CLIENT Client

OUVRAGE Project

Ottawa

RÉVISION Revision

18

NEUF architect(e)s SENCRL 630, boul. René-Lévesque O. 32e étage, Montréal QC H3B 1S6 T 514 847 1117 NEUFarchitectes.com

164 Maravista Drive Westpointe Retirement Home

EMPLACEMENT Location NO PROJET No. 11864

NO RÉVISION DATE (aa.mm.jj) 2008.03.26 2010.02.04 2010.02.04 Site Plan Approval Site Plan Approval Information 2010.02.04 2010.02.16 2010.03.16 2012.01.25 2018.08.29 2018.09.05 2018.09.06 2018.09.12 2018.09.19 2018.11.06 2018.11.27 Information Information Information Client's comments Client's comments Client's comments Coordination Coordination Client's comments Coordination 2018.12.04 2018.12.19 Information Site Plan Application 2019.03.29 2019.04.16 Coordination Revision to Site Plan Application 2019.07.04 18 Revision to Site Plan Application DESSINÉ PAR Drawn by ΡV DATE (aa.mm.jj) ÉCHELLE Scale 1:200 **9** November 2007 TITRE DU DESSIN Drawing Title Site Plan at Ground Floor

From: Bernier, John Sent: July 16, 2018 11:19 AM To: <u>Vincent Denomme</u> Cc: jim.burghout@claridgehomes.com Subject: 24 Chesapeake Crescent - Preconsult

Good morning,

It was nice meeting you for a pre-application consultation (PC2018-0185) on Jun 21st, 2017. The proposal is the continuation from a previous Site Plan Application (D07-12-08-0076) submitted in 2008 for a retirement home at 24 Chesapeake Cres & 164 Maravista Dr. As you noted during the meeting, the project was put on hold on your end after receiving initial comments. The new design includes an additional storey in height and some changes to the site entrance area.

Planning & Design Comments:

- As the proposal is over 18m, a <u>Minor Variance</u> will be required for the height of the building. Please contact the Committee of Adjustment Planner, Max Walker (<u>Max.Walker@ottawa.ca</u> x23947) to discuss this further.
- 2. Increase landscaping on entrance loop.
- 3. Update parking rates and include visitor and accessible parking numbers.
- 4. Indicate visitor parking spaces.
- 5. Remove landscaping from Site Plan and include this information on the Landscape Plan.
- 6. Show nearest fire hydrant on Site Plan.
- 7. A new Phase One ESA will be required since more than 18 months has passed, and the recommended update period of five years has been exceeded.
- 8. Please refer to the Accessibility Design Guidelines for guidance on ramp design and parking recommendations.
- In your design brief please discuss how the urban design guidelines found in the <u>South</u> <u>Nepean Urban Area (Areas 9 & 10) Secondary Plan</u> are being met. Specifically, how is the site's corner achieving these objectives.
- 10. As there are streets on all sides of the building, please ensure that material and design of all facades respects this condition. West and East elevations are largely blank walls with little interest.
- 11. Please indicate material proposed on elevation drawings.
- 12. Attached are outstanding comments from previous the circulation.
- 13. Include a USB or CD with PDF copies of all plans and report.

Transportation:

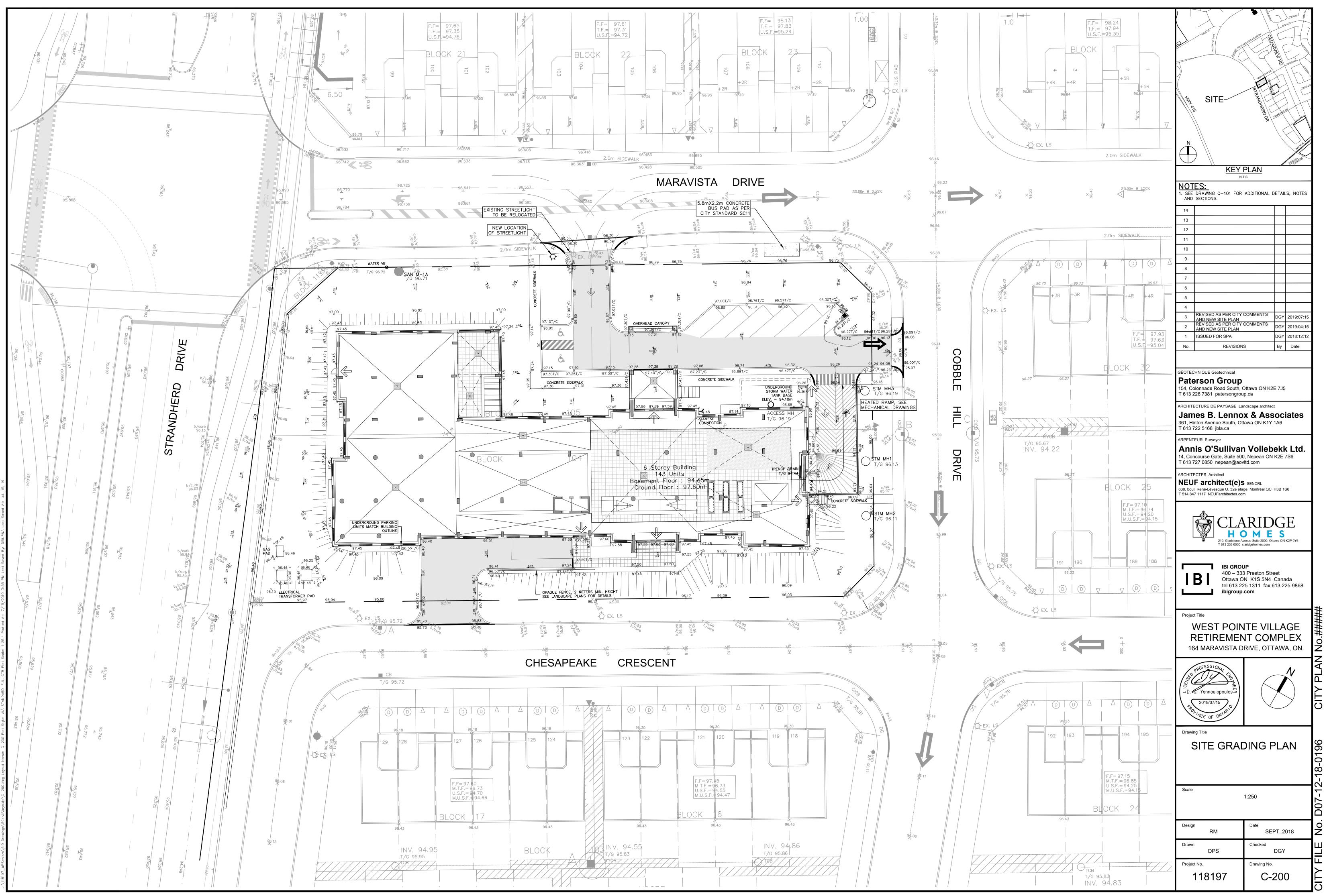
- 14. Follow Traffic Impact Assessment Guidelines Screening form to start, full Traffic Impact Assessment if any of the triggers on the screening form are satisfied.
 - 1. Start this process asap.
 - 2. Applicant advised that their application will not be deemed complete until the submission of the draft step 1-4, including the functional draft RMA package (if applicable) and/or monitoring report (if applicable).

- 15. Noise Impact Studies required for the following:
 - 1. Road
 - 2. Stationary (if there will be any exposed mechanical equipment due to the proximity to neighbouring noise sensitive land uses)
- 16. On site plan:
 - 1. Show all details of the roads abutting the site up to and including the adjacent curb; include such items as pavement markings, accesses and/or sidewalks.
 - 2. Turning templates will be required for all access showing the largest vehicle to access the site; required for internal movements and at all access (entering and exiting and going in both directions).
 - 3. Show all curb radii measurements; ensure that all curb radii are reduced as much as possible
 - 4. Show lane/aisle widths.
- 17. Recommended that the sidewalk be extended to connect to the front entrance.
- 18. Please include the intent of each access (one-way, two-way). Ensure that you are meeting the policies found within the Private Approach By-law, <u>specifically Section 25.</u>
- 19. For more information on this please contact Rosanna Baggs (<u>Rosanna.Baggsk@ottawa.ca</u> / ext. 26388).

Engineering Comments:

- 20. Servicing will be required to conform to the original subdivision design completed by IBI as part of the West Pointe Village Subdivision;
- 21. Storm, sanitary and water stubs have been provided off Cobble Hill Drive for servicing of the Block;
- 22. Stormwater runoff coefficients have been assigned as part of the design of the original subdivision;
- 23. Block was shown as an area of 0.54 ha and institutional for the purposes of calculating sanitary flows as part of the design of the original subdivision;
- 24. Subdivision watermain was designed to provide required flows for the development;
- 25. Please provide a request for watermain boundary conditions at your earliest convenience.
- 26. Should you have any questions or require additional information, please contact Jeff Shillington directly at (613) 580-2424, x16960 or by email at Jeff.Shillington@ottawa.ca)

The proposed application will be a <u>Site Plan Control</u> Application (Revision - Manager Approval, Public Consultation), which costs **\$20,287.13** (detail regarding <u>fees</u>)


Best regards,

John Bernier

Planner Development Review South City of Ottawa | Ville d'Ottawa 613.580.2424 ext/poste. 21576 ottawa.ca/planning / ottawa.ca/urbanisme

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

consulting engineers

re: **Grading Plan Review** Barrhaven Retirement Community 164 Maravista Drive, Ottawa, On

to: Claridge Homes - Mr. Vincent Denomme - vincent.denomme@claridgehomes.com

cc: IBI Group - Mr. Demetrius Yannoulopoulos - Dyannoulopoulos@ibigroup.com

date: July 31, 2019

file: PG4557-MEMO.01 Revision 3

Further to your request, Paterson Group (Paterson) prepared the current memorandum to provide an updated grading plan review for the proposed multi-storey retirement home located on 24 Chesapeake Crescent, in the City of Ottawa. This report should be read in conjunction with our Report PG4557-1 dated August 1, 2018.

Grading Plan Review

Paterson Group has reviewed the following grading plan prepared IBI Group for the aforementioned site:

Project No. 118197 - Drawing No. C-200 - Site Grading Plan, Revision 3 dated July 15, 2019.

Based on our review of the above noted grading plan, the majority of the proposed grading is in compliance with our permissible grade raise restrictions. However, minor exceedences were found along the north and northwestern corner of the proposed building. It should be noted that the building is proposed to be constructed over a berm with no significant fill along the perimeter of the building. Also, a basement level is proposed to occupy the entire footprint of the proposed building. It should be noted that the proposed basement level will provide a pressure relief to the underlying soils. Therefore, the proposed grade raises for the aforementioned development are acceptable from a geotechnical perspective.

For design purposes, the bearing resistance value at SLS of **100 kPa** and a factored bearing resistance value at ULS of **125 kPa** is considered acceptable from a geotechnical perspective for the proposed buildings. These values assume a 0.5 m long term groundwater lowering. Footings designed with the provided bearing resistance value at SLS should have a total and differential settlement of 25 and 20 mm, respectively.

Mr. Vincent Denomme Page 2 File: PG4557-MEMO.01 Revision 2

The bearing surface should be verified at the time of construction to determine the appropriate serviceability resistance value.

We trust this memo report is satisfactory for your present requirements.

Best Regards,

Paterson Group Inc.

Faisal I. Abou-Seido, P.Eng

Paterson Group Inc.

Head Office and Laboratory 154 Colonnade Road South Ottawa - Ontario - K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344 Northern Office and Laboratory 63 Gibson Street North Bay - Ontario - P1B 8Z4 Tel: (705) 472-5331 Fax: (705) 472-2334 **St. Lawrence Office** 993 Princess Street Kingston - Ontario - K7L 1H3 Tel: (613) 542-7381

APPENDIX B

BOUNDARY CONDITIONS

Boundary Conditions For: Barrhaven Retirement Community


Date of Boundary Conditions: 2019-Apr-16

Provided Information:

Scenario	Demand	
	L/min	L/s
Average Daily Demand	50.4	0.8
Maximum Daily Demand	126.0	2.1
Peak Hour	277.2	4.6
Fire Flow #1 Demand	10,000	166.7
Fire Flow #2 Demand	15,000	250.0

Number Of Connections: 1

Location:

BOUNDARY CONDITIONS

Results:

Connection #: 1

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	155.4	82.7
Peak Hour	148.3	72.8
Max Day Plus Fire (10,000) L/min	143.0	65.3
Max Day Plus Fire (15,000) L/min	137.8	58.1

¹Elevation: **96.33 m**

Connection #: 2

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	155.4	83.3
Peak Hour	148.1	73.1
Max Day Plus Fire (10,000) L/min	139.8	61.5
Max Day Plus Fire (15,000) L/min	131.9	50.4

¹Elevation: **95.90 m**

Notes:

1) As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:

- a) If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
- b) Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.

2) Click or tap here to enter text.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time.

BOUNDARY CONDITIONS

The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

	IBI GROUP	ď					\$	ATERMA	N DEMAND	WATERMAIN DEMAND CALCULATION SHEET	TION SHEE	T					
IBI	333 PRESTON OTTAWA, ON K1S 5N4	333 PRESTON STREET OTTAWA, ON K1S 5N4	ET				PROJECT : LOCATION :		BARRHAN 24 CHESA	BARRHAVEN RETIREMENT COMMUNITY 24 CHESAPEAKE CRESCENT & 164 MARAVISTA DRIVE	MENT CON	MMUNITY 164 MARA	VISTA DRI	ΥE	DATE	FILE: DATE PRINTED: DESIGN: PAGE :	118197.5.7 23-Apr-19 LE 1 OF 1
		RESIDENTIAL UNITS	ENTIAL	\prod	NON INDTRL	NON-RESIDENTIAL TRL COMM. INS	NTIAL INST.	A	AVERAGE DAILY DEMAND (I/s)	AILY (s)	AM D	MAXIMUM DAILY DEMAND (I/s)	s)	MAXI DE	MAXIMUM HOURLY DEMAND (I/s)	s) s)	FIRE DEMAND
	SF	SD & TH	APT	N'909'N'	(ha.)	(ha.)	(ha.)	Res.	Non-res.	Total	Res.	Non-res.	Total	Res.	Non-res.	Total	(I/min)
101			143	257				1.04	0.00	1.04	2.61	0.00	2.61	5.73	0.00	5.73	15,000
						Ĩ											
							1	ASSUMPTIONS	SNO								
	RESIDEN	RESIDENTIAL DENSITIES	SITIES				AVG. DAIL	AVG. DAILY DEMAND	p				MAX. HOURLY DEMAND	RLY DEMA	ND		
	- Single F	- Single Family (SF)			<u>3.4</u>	<u>3.4</u> p/p/u	- Residential - ICI	al		<u>350</u> 50.000	<u>350</u> I / cap / day 50.000 I / ha / dav		- Residential - ICI	_		135.000 I / ha / dav	<u>1,925</u> I / cap / day 5.000 I / ha / dav
	- Semi De	- Semi Detached (SD) & Townhouse (TH)) & Townh	ouse (TH)	2.7	n/d/d											
	- Apartment (APT)	∍nt (APT)			1.8	n/d/d	MAX. DAILY DEMAND	LY DEMAN	ē			_	FIRE FLOW	~			
	-14-C				99	04/ u / ::	- Residential	a		875 75 000	875 / cap / day		I	- SF, SD, TH & ST	H & ST	10.000 I / min	l / min
	-Oliei				3	00 u / p / na - I U	-			<u>יטטער</u>	<u>/ 3,000</u> / na / day		'	- 10		um / I UUU, CI	l / min

Fire Flow Requirement from Fire Underwriters Survey - Barrhaven Retirement Community

Building					
		2005m² x 6			
Floor Area of Lar	gest building				
Tota	al Floor Area	12,030	m²		
F = 220C√A					
C 0.8	3	C =	1.5	wood frame	
A 12,030	m²		1.0	ordinary	
			0.8	non-combustible	
F 19,304			0.6	fire-resistive	
use 19,500	l/min				
Occupancy Adjustme	ent		-25%	non-combustible	
<u></u>				limited combustible	
Use	-15%		0%	combustible	
				free burning	
Adjustment	-2925		+25%	rapid burning	
Fire flow	16,575	l/min			
Sprinkler Adjustment			-30%	system conforming to	NFPA 13
<u>-, - , , </u>				complete automatic s	
Use	-30%				
Adjustment	-4973	l/min			
Exposure Adjustmen	+			Separation	Chargo
	<u> </u>			0 to 3m	+25%
Building Face	Separation	Charge		3.1 to 10m	+20%
Ū		0		10.1 to 20m	+15%
north	37	5%		20.1 to 30m	+10%
east	37			30.1 to 45m	+5%
south	29				
west	60+	0%			
Total		20%			
Adjustment		3,315	l/min		
Fire flow Use		14,918 15,000 250	l/min		

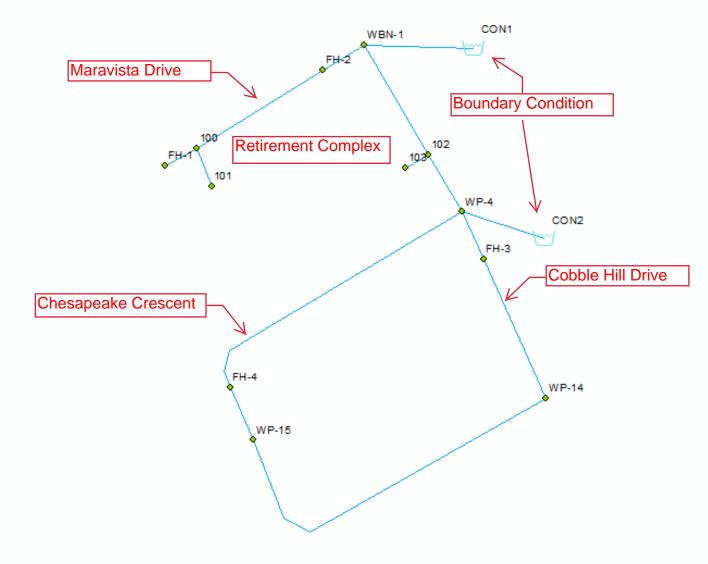
April 17th, 2019

Att.:

To whom it may concern City of Ottawa

Subject: 164 Maravista Drive – Non-combustible Construction Ref: N° 11864

As per the Fire Underwriters Survey's definition, the structural members of the building that will be located on the afore mentioned address is to be of non-combustible construction.


Lucien Haddad, Partner Architect NEUF architect(e)s

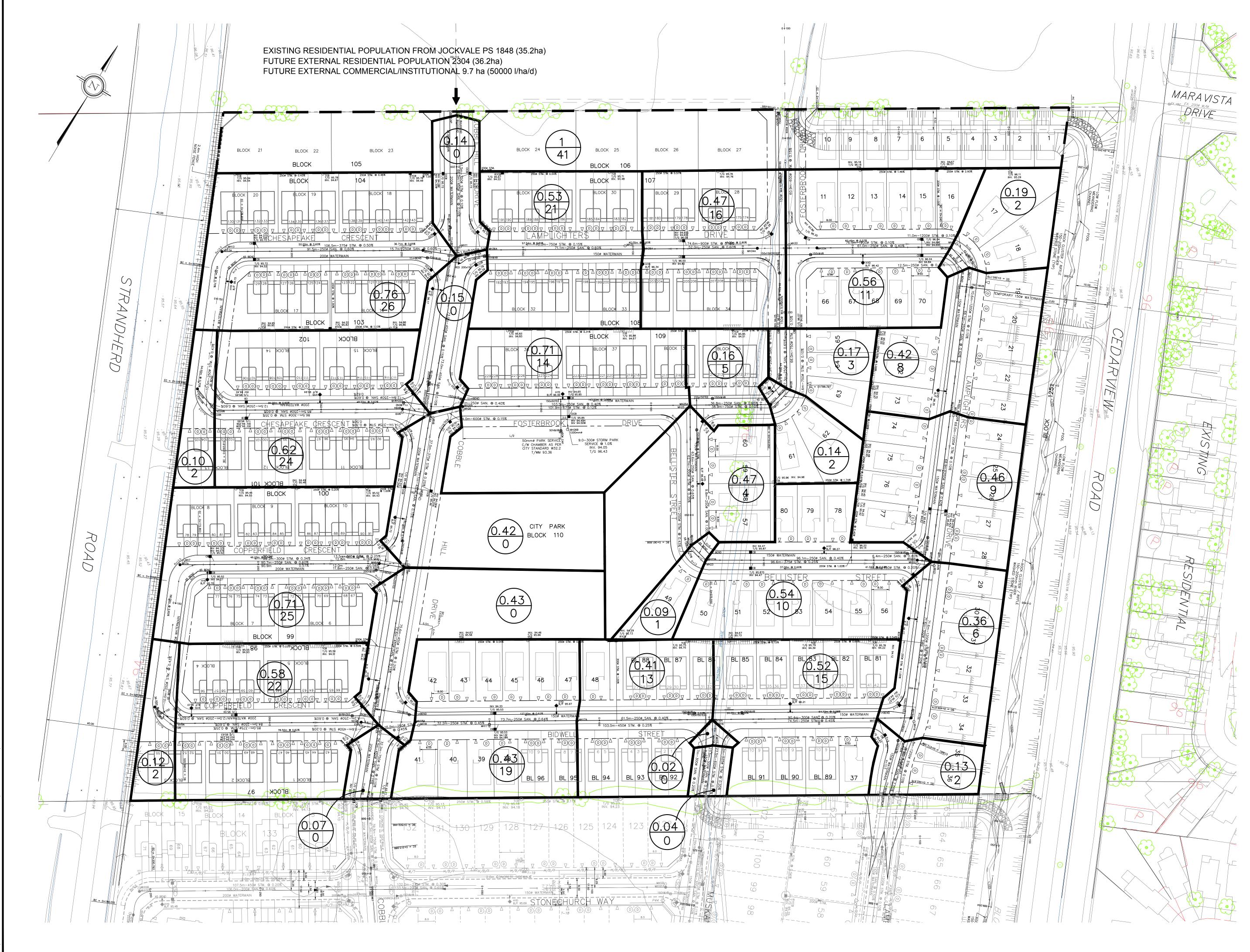
Cc: Lance Erion, IBI Demetrius Yannoulopoulos, IBI Shawn Malhotra, Claridge Homes Pascal Vendette, NEUF Architect(e)s

NEUFarchitectes.com T 514 394 1440 F 514 205 6641 630, René-Lévesque O., 32º étage, Montréal (QC) H3B 4Z9 47 Clarence Street, Suite 406, Ottawa (ON) K1N 9K1

WATER MODEL SCHEMATIC

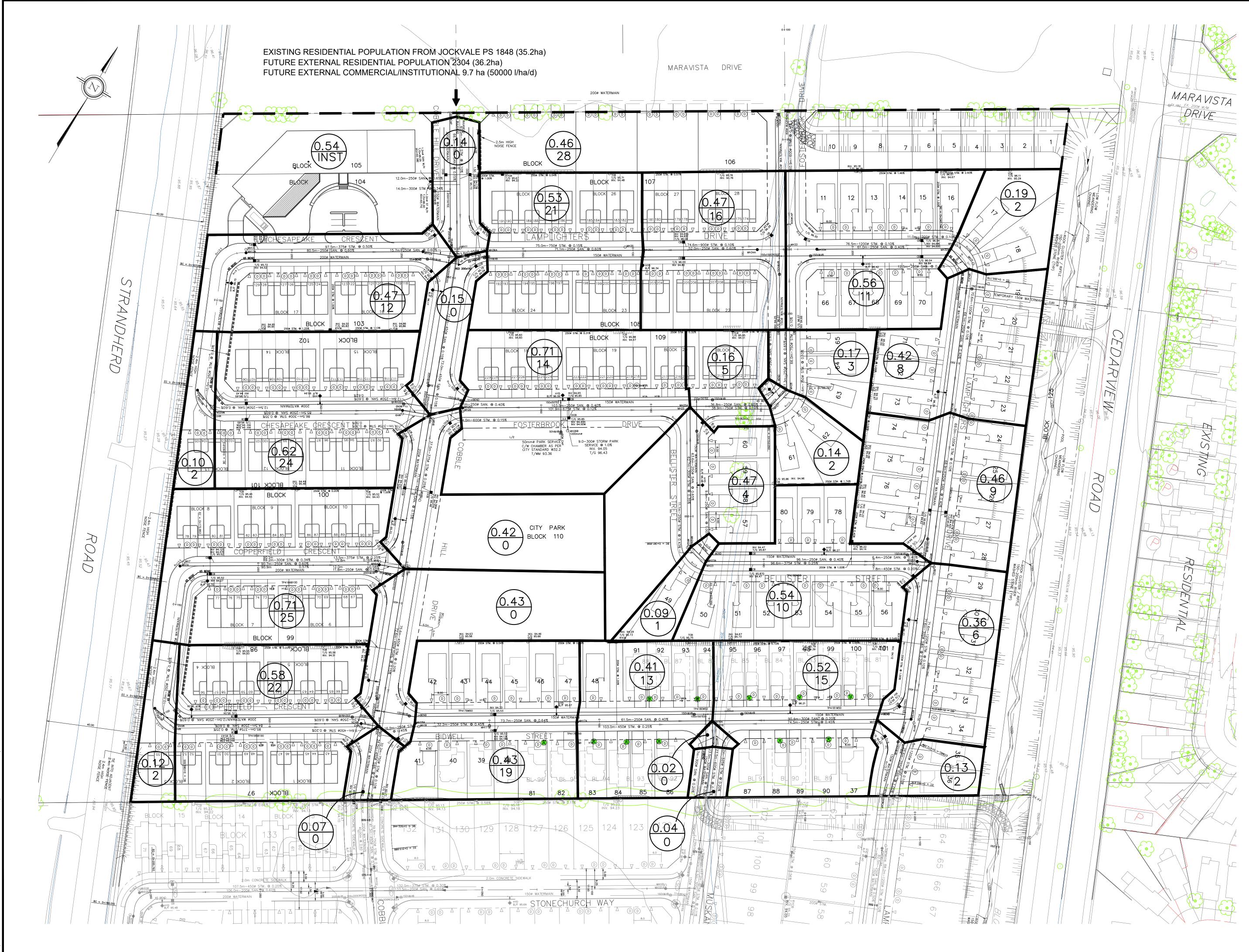
Basic Day (Max HGL) - Junction Report

	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1	100	0.00	96.50	155.40	577.16
2	101	1.04	96.50	155.40	577.15
3	102	0.00	96.20	155.40	580.11
4	103	1.04	96.20	155.40	<mark>580.10</mark>
5	FH-1	0.00	96.50	155.40	577.16
6	FH-2	0.00	96.50	155.40	577.17
7	FH-3	0.00	96.05	155.40	581.58
8	FH-4	0.00	96.15	155.40	580.60
9	WBN-1	0.15	96.50	155.40	577.17
10	WP-14	0.20	95.80	155.40	584.03
11	WP-15	0.22	96.15	155.40	580.60
12	WP-4	0.66	96.05	155.40	581.58


	ID	Demand (L/s)	Elevation (m)	Head (m)	Pressure (kPa)
1	100	0.00	96.50	148.27	507.35
2	101	5.73	113.50	148.25	340.57
3	102	0.00	96.20	148.14	509.01
4	103	5.73	113.50	148.13	<mark>339.36</mark>
5	FH-1	0.00	96.50	148.27	507.35
6	FH-2	0.00	96.50	148.29	507.50
7	FH-3	0.00	96.05	148.10	510.05
8	FH-4	0.00	96.15	148.10	509.06
9	WBN-1	0.84	96.50	148.29	507.55
10	WP-14	1.08	95.80	148.10	512.49
11	WP-15	1.20	96.15	148.10	509.06
12	WP-4	3.61	96.05	148.10	510.06

Peak Hour (Min HGL) - Junction Report

Report
Design
Fireflow
+ Fire -
Max Day


Node P	Critical Node ID Critical Node Pressure
(кга)	
139.96	FH-1 139.96
139.93	FH-1 139.93
139.96	FH-3 139.96
139.96	FH-4 139.96
139.96	WP-14 139.96
139.96	WP-15 139.96

APPENDIX C

ngineering/CCL/O-CAD\cad/Land/3603-LD CLARIDGE BARRHAVEN WEST\as-Built\3603-501.dwg Sheet Set: #### Je: CCL1000.CTB Plot Scale: 0.039:1 Plotted At: DWG TO PDF.PC3 10:58 AM Printed By: Don Siuma Last Saved By: Dean Lambert Last Saved At: Se

LEGEND:	
SANITARY	
0.35 ARE	A IN HECTARES
	BER OF UNITS
POPULATION SINGLE	
TOWNHO	FAMILY = 3.4ppu USE = 2.7ppu
13 12	
11 10	
9 8	
7 6	
5 4	
3 REVISED AS PER CIT 2 REVISED AS PER CIT	Y COMMENTS 06/09/28 Y COMMENTS DGY 06/08/31
1REVISE AS PER CITY0ISSUED FOR REVIEW	COMMENTS DGY 06/07/18 DGY 06/04/18
No. REVISIO	DNS By Date
CLAR H·O·J	IDGE M·E·S
1770 Suite	Woodward Drive 100
GROUP Cana Tel (va, Ontario da K2C 0P8 613)225-1311
	(613)225–9868
Project Title CLARIDG	E HOMES
WEST POIN	TE VILLAGE
PROFESSIONAL	Λι
PROFESSIONAL FROM SW J D. G. Yannoulopoulos R	
BOL NOE OF ONTARIO	
Drawing Title SANITARY	
AREA	_
Scale	
1:750	
Design	Date
D.G.Y. Drawn	APR. 2006 Checked
D.P.S. Project No.	D.G.Y. Drawing No.
3603-LD	501

gineering/CCL/0-CAD/cad/Land/3603-LD CLARIDGE BARRHAVEN WEST/3603-base feb.dwg Sheet Set: #### e: CCL1000.CTB Plot Scale: 0.039:1 Plotted At: DWG TO PDF.PC3 3:30 PM Printed By: Don Siuma Last Saved By: Dean Lambert Last Saved At: Jul.

LEGEND:
SANITARY
0.35 AREA IN HECTARES
NUMBER OF UNITS
<u>POPULATION</u> SINGLE FAMILY = 3.4ppu TOWNHOUSE = 2.7ppu
$_{\otimes}$ SERVICE TO BE
REMOVED WATERMAIN BLANKED AT MAIN
12 11
10 9
867REVISED AS PER CITY COMMENTS DGY 08/10/08
6REVISE BLOCK AND LOT NO'SDGY 08/05/025ADD RETIREMENT HOMEDGY 08/01/294DELETE TOWNS BLK 104-105DGX 07/10/01
4 FOR RETIREMENT HOME DGT 07/10/01 3 REVISED AS PER CITY COMMENTS DGY 06/09/28
2REVISED AS PER CITY COMMENTS DGY 06/08/311REVISE AS PER CITY COMMENTS DGY 06/07/180ISSUED FOR REVIEWDGY 06/04/18
No. REVISIONS By Date
CLAŘIDGE H·O·M·E·S
333 Preston Street Tower 1, Suite 400 Ottawa, Ontario
Canada K1S 5N4 Canada K1S 5N4 Tel (613)225–1311 FAX (613)225–9868
Project Title
CLARIDGE HOMES WEST POINTE VILLAGE
D. G. Yannoulopoulos
PROLINCE OF ONTARIO
Drawing Title SANITARY DRAINAGE
AREA PLAN
Scale
1:750
Design Date D.G.Y. APR. 2006
Drawn Checked D.P.S. D.G.Y.
Project No. Drawing No. 3603-LD 501

SANITARY SEWER DESIGN SHEET PROJECT : WEST POINTE VILLAGE Chy of Ottawa DEVELOPER : CLARIDGE HOMES

JOB#: 3603-LD DATE: 21-Apr-06 DESIGN: DY

STREET FROM TO MH MH M	<i>w</i>	RESID. UNITS Singles Town: Semis	s	FUTURE RESAREA	POP.	COM. INST.	POP.	PEAK FI	PEAK FLOW AREA		PEAK	INCR.	CUM.	ELOW	DESIGN				>	VEI AVAII
S T R E E T PROM 1 NHM NHM NHM NHM NHM NHM NHM NHM NHM NHM			owns RF			NST.			-											
existing to be connected from Jocken Autore development bit Eutre Menviosion (1996) [1996] Eutre Minivision (1997) [1996] (Claridge portion only) Coblet HII Drive [1986] [1976] Cheespeale Cres. [1974] [1976] [1976] Cheespeale Cres. [1976] [ale PS		1			(Ha)	4		_	(Ha) FACT.			AREA (Ha)	(I/s)	FLOW (I/s)	CAP. I/s	(mm) ((m) SLI	sLOPE (f	(full) CAP. m/s (%)
House and the connected from Jackware future development future development by the future development by the future development by the future development by the future futu	ale PS khd						_													
nr, nnly) bkhh 13A 13A 13A 34A 8 34A 8 8 35A			Ť	_	1848	0	1848	3.61	27.37	0.0 1.50	0.0	35.20	35.20	9.86	37.23			-		
nity) bikhh 13A 12A 12A 12A 12A 34A 8 85A 85A			+	36.20	+	9.70	_	3.54	33.41				45.90	12.85						
nly) http://www.anditional.com/andit	blkhd	9	18		83		8	4.00	1.35	0.0 1.50	0.00	0.48	0.48	0.13	1.49					
13A 13A 12A 12A 34A 35A	\vdash			\vdash	\vdash															
13A 12A 12A 12A 12A 12A 12A 12A	11A					0.54	4235	3.31	57.49	10.2 1.50	0 8.91	1 0.68	82.26	23.03	89.43	115.25	450	66.0	0.15	0.70
13A 12A 12A 86 35A 85A 85A 85A	;		-										!							
34A 15	12A		21		32	T	3 8	9.4	0.53	0.0 1.50	0.0	14/	0.47	0.13	0.66	48.04	750	80.5	0.60	66.0
34A 35A	4		+		+	╞		8,	50°D				0.4/	2.0		40.04	R7	1.61	00.0	G8:0
35A	35A		16		43			4.00	0.71				0.47	0.13		48.04	250	52.0	0.60	0.95
100	36A		21		57	h	100	4.00	1.64	0.0 1.50		0.53	1.00	0.28	1.92	48.04	250	71.1	0.60	0.95
HOC .	1A		\square			\square		4.00	1.64	0.0 1.50			1.00	0.28		48.04	250	13.8	0.60	0.95
Cobble Hill Drive 116 8	βΔ		╈	+	╞	╈	4367	3 30	59.07	10.2 1.50	8 01	1 0 15	83.88	23.40	01 A6	115.25	450	73.0	0.15	0 70
-	5							8.0					2000				8	200	2	2.0
Chesapeake Cres. 100A 10	10A		2		5			4.00	0.09				0.10	0.03		48.04	250	12.5	0.60	0.95
_	9A		24		65			4.00	1.15		0.00	0.62	0.72	0.20	1.35	48.04	250	85.5	0.60	0.95
_	8A						R	4.00	1.15	0.0 1.50			0.72	0.20		48.04	250	12.8	0.60	0.95
+	8A	3	t	$\left \right $	9	t	6	4.00	0.17	0.0 1.50		0.17	0.17	0.05		50.01	250	27.3	0.65	0.99
28A	27A	2	-		7			4.00	0.28		0.00		0.31	0.09	0.37	50.01	250	10.3	0.65	0.99
	25A		5		14	H	31	4.00	0.50	0.0 1.50			0.47	0.13		50.01	250	36.8	0.65	0.99
-					•		-	8	900				000	000		000	750	00	1 20	1 33
24A	25A	- 4	t	+	14	t	4	4.00	0.28	0.0 1.50	0.00	0.47	0.56	0.16	0.44	50.01	250	63.6	0.65	0.99
	╞	F	F		ŀ															
Fosterbrook Dr 25A 26	26A		14		38		85	4.00	1.40	0.0 1.50	0.00	0.71	1.74	0.49	1.89	39.22	250	103.5	0.40	0.77
-	84		+	+				4.00	1.40				1.74	0.49		39.22	250	15.1	0.40	0.77
Cobble Hill Drive 8A 5	5A						4522	3.29	60.91	10.2 1.50	0 8.91	1 0.42	86.76	24.29	94.11	115.25	450	71.1	0.15	0.70
	H		$\ $																	
Cooperfield Cres. 7A 6	6A		25		68	1	89	4.00	1.11	0.0 1.50	0.00	0.71	0.71	0.20	1.31	48.04	250	90.7	0.60	0.95
+	5A							4.00	1.11				0.71	0.20		48.04	250	11.8	0.60	0.95
Cobble Hill Drive 5A 2	2A		\square				4590	3.28	61.71	10.2 1.50	0 8.91	1 0.43	87.90	24.61	95.23	115.25	450	72.6	0.15	0.70
+			¢		u		v	00	000	1 5			012	0.03		48.04	250	12.0	0.60	50 02
44	34		22		59	+		4.00	1.06	0.0 1.5	0.00	0.58	0.70	0.20	1.26	48.04	250	84.5	0.60	0.95
-	2A		$\left \right $		$\left \right $			4.00	1.06	0.0 1.50			0.70	0.20		48.04	250	8.2	0.60	0.95
																	110		5	1
2A					1		C004	3.21	07.40	001 7.01	0.31	//	00.07	24.03	30.21	67.611	630	0.4.0	c	00
existing Cobble Hill Drive STUB 10	102.A		\parallel	\square	0	\square	4655	3.27	62.48	10.2 1.50	0 8.91	0.00	88.67	24.83	96.21	115.25	450	41.3	0.15	0.70
existing Prem Clicle 100A 10	102A		22		59		8	4.00	0.97	0.0 1.50	0.00	0.73	0.73	0.20	1.18	26.49	200	99.0	0.60	0.82
existing Stonechurch Lane 1014 10	1024	21			71	+		4.00	1.17	0.0 1.50	0.00	1.07	1.07	0.30	1.47	2649	200	133.5	0.60	0.82 94.45%
	5	;	t		:			3						20.0		2		0	8	
existing Cobble Hil Drive 102A 11	110A				0		4786	3.26	64.01	10.2 1.50	0 8.91	1 0.12	90.59	25.37	98.29	115.25	450	80.6	0.15	0.70
			_		-			_	-	_	_							_	_	_

 Where Q
 = average daily per capital flow (350) (tag, d.) or (0.004119sec./cap)

 1
 = ultitol peak extransous (bw (0.28) lisecha)

 0(1)
 = Preaking Extrart - Hammon (0.28) lisecha)

 0(1)
 = Preak coprident (0.26) lisecha)

 0(1)
 = Preak coprident (0.26) lisecha)

 0(1)
 = Preak coprident (0.26) lisecha)

 0(2)
 = Preak coprident (0.26) lisecha)

 0(

2008	
14,	
May	
#4,	
ions:	
evis	
Ř	

PROPOSED SEWER	VEL.	LGTH. SLOPE (full)	+	61.0 0.40 0.77	0.40	0.40	68.9 0.40 0.77	96.1 0.40 0.77	6.4 0.40 0.77	0.20	90.4 0.20 0.62	10.04	0.04	61.5 0.40 0.77	11 0 20 0.62	0.20		116.5 0.20 0.62		0.20		12.1 0.40 0.77	0.40	92.1 0.30 0.67	05.0 0.15 0.30	0.10	0.40 0.67	80.6 0.25 0.61	0.40 0.67	100.3 0.25 0.61	
		PIPE	(iiiii)	250	250	250	250	250	250	300	300	0EC	NC7	250	300	300		300	300	300	200	250	250	250	Sec.	₽	200	250	200	250	ļ
		CAP.	5/1	39.22	39.22	39.22	39.22	39.22	39.22	45.09	45.09	10.64	49.01	39.22	45.09	45.09		45.09	45.09	45.09	26.49	39.22	39.22	34.00	115.05	07011	21.63	31.01	21.63	31.01	00 00
TOTAL	DESIGN	FLOW	(511)	0.77	0.93	1.50	2.13	0.71	0.71	3.26	4.14	0.70	U./ 9	1.62	5.76	5.77		8.94	9.10	10.43	 0.44	0.53	0.72	2.25	100 10	103.10	1.68	2.29	1.89	5.44	
F	ā	FLOW F	+	0.16	0.21	0.33	0.46	0.15	0.15	0.69	0.85	045	Z1.0	0.23	1.08	1.09		364	3.69	3.96	0.08	0.09	0.10	0.38	00.00		0.31	0.43	0.38	1.06	0000
INFILTRATION	CUM.	AREA F	_	0.56	0.75	1.17	1.63	0.54	0.55	2.48	3.03		U.43	0.81	3.86	3.90		13.02	13.18	14.16	0.30	0.32	0.36	1.35	100 ED	0000	1.09	1.52	1.37	3.78	1.000
INFILT		AREA A	+	0.56	-	-	0.46		0.01	_	0.55	-		0.38	0.0	-	-	9.12 1				_		0.99	4	-	1.09		1.37	0.89	
-Low	PEAK IN		+	0.00			0.00	0.00	0.00		0.00			0.00	000			0.00	0.00		0.00	0.00		0.54 (40		0.00	0.00	0.00	0.00	
CUM. COM. & INST. FLOW		PEAK FI	_	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	4 50	nc.1	1.50	1.50	1.50		1.50	1.50	1.50	1.50	1.50	1.50	1.50	1 60	00.1	1.50	1.50	 1.50	1.50	 C L 7
JM. COM		AREA F	-	0.0			0.0	0.0	0.0		0.0			0.0	00			0.0	0.0		0.0	0.0	0.0	0.6	007		0.0	0.0	0.0	0.0	007
	PEAK	FLOW A	+	0.61	0.72	1.17	1.67	0.56	0.56	2.56	3.29	720	/0'D	1.39	4.68	4.68		5.30	5.41	6.47	0.35	0.44	0.62	1.33	00.02	8.60	1.37	1.86	1.51	4.38	
CUM. RES. FLOW		PEAK F	_	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	001	N 1	4.00	4 00	4.00		4.00	4.00	4.00	4.00	4.00	4.00	4.00	00.0	77.0	4.00	4.00	 4.00	4.00	
CUM. R		POP.	2	37 4			102	34	34 4		201	-		85 4	286	+	-		330 4			27 4		81 4	, 3003	_	84		8	267 4	
	COM.		(BU)							-														0.62		.,					
		POP.		37	7	27	31	34		20	44	44	4	44				37	7	65	22	5	11	43	2	+7	84	30	92	62	Ę
NDIVIDUAL	FUTURE		(Ha)																												
S	NITS FI	Singles Towns RESAREA																			8	2	4	16	0	ñ	31	11	34	23	ę
	RESID. UNITS	Singles 7	OBIIIIS	ŧ	7	8	6	9		9	13	ę	7	13				11	2	19											
		6		32A	31A	30A	21A	22A	21A	19A	16A	17.0	A 1	16A	15Δ	EX107A		108A	109A	110A	104A	105A	106A	110A	4444	×+	112A	113A	113A	114A	444.4
z o		FROM		33A	32A	31A	30A	23A	22A	21A	19A	10.4	HOL	17A	16Δ			107A			103A	104A		106A	1404	_	Stub	112A	Stub	113A	4444
LOCATION		STREET		-ampliahter Dr.				Bellister St.		-amplighter Dr.	Bidwell St	Sidual Ct	Didwell St		Muskan St			existing Muskan Street	Muskan Street	Muskan Street	Prem Circle	Prem Circle	Prem Circle	Prem Circle	Cobble Lift Dates		Moffatt Pond	Cobble Hill Drive	existing Moffatt Pond	Cobble Hill Drive	C TANTTAL Y

SANTARY SEWER DESIGN SHEET PROJECT : WEST POINTE VILLAGE Cây d'Otawa DEVELOPER : CLARIDGE HOMES

ССЛА ССЛА ССЛА ОТТИКООВИАТОВИИЕ ОТТИКОВИНЕНТИВИ ОТТИКОВИННИЕ ОТТИКОВИТНИВИ ОТТИКОВИННИЕ ОТТИКОВИНИЕ ОТТИКОВИННИЕ ОТТИКОВИТНИЕ ОТТИКОВИННИЕ ОТТИКОВИТНИЕ ОТТИКОВИТНИЕ ОТТИКОВИТНИЕ ОТТИКОВИТНИЕ ОТТИКОВИТНИИ ОТТИКОВИ ОТТИКОВИ ОТТИКОВИТНИИ ОТТИКОВИ ОТТИСНОВИ ОТТИКОВИ ОТТИКОВИ ОТТИ

JOB #: 3603-LD DATE: 21-Apr-06 DESIGN: DY

CCL/IE	1770 M	OTTA	K2C C	
	~	CEOLIP	TAMIN	
			Cockburn Limited	
			Cuming	

L/IBI 70 WOODWARD DRIVE TAWA, ONTARIO C OP8

SANITARY SEWER DESIGN SHEET PROJECT : WEST POINTE VILLAGE City of Ottawa DEVELOPER : CLARIDGE HOMES

JOB #: 3603-LD DATE: 21-Apr-06 DESIGN: DY

Ľ	LOCATION			=	NDIVIDUAL			CUM.	RES. FLOW		CUM. COM. & INST. FLOW	1. & INST.	FLOW	INFIL	INFILTRATION	_	TOTAL			PROPOSI	PROPOSED SEWER		
			RESIC	RESID. UNITS	FUTURE		COM.		-	PEAK		-	PEAK	INCR.	CUM.		DESIGN					VEL.	AVAIL.
STREET	_	FROM TO	Singles	Singles Towns RESAREA	RES AREA	POP.	INST.	POP.	PEAK F	FLOW A	AREA F	PEAK F	FLOW	AREA	AREA	FLOW	FLOW	CAP.	PIPE	LGTH.	SLOPE	(full)	CAP.
	Σ	HM HM	Semis		(Ha)		(Ha)		FACT.	(NS)	(Ha) F	FACT.	(Vs)	(Ha)	(Ha)	(I/s)	(I/s)	s/I	(mm)	í,	%	s/m	(%)
								-			-	-	-										
Interim Outlet																							
Population flow from future development lands is not included in interim outlet	from future c	Jevelopmen	t lands is r	not include	ed in interin	n outlet																	
existing KENNEVALE	11.	114A 115A				0		1401	3.70	21.25	0.6	1.50	0.54	0.00	28.89	8.09	29.88	45.09	300	83.0	0.20	0.62	33.74%
existing KENNEVALE	15(150A 115B	9			20		20	4.00	0.33	0.0	1.50	0.00	0.53	0.53	0.15	0.48	34.21	200	61.5	1.00	1.06	98.59%
existing KENNEVALE	11.	115B 115A	0			0		20	4.00	0.33	0.0	1.50	0.00	0.00	0.53	0.15	0.48	48.38	200	4.5	2.00	1.49	800'66
existing AMAR LANE	14.	143A 144A	15			51		51	4.00	0.84	0.0	1.50	0.00	0.82	0.82	0.23	1.07	26.49	200	105.0	0.60	0.82	95.98%
existing AMAR LANE	14.	144A 115A	5			17		88	4.00	1.12	0.0	1.50	0.00	0.32	1.14	0.32	1.43	26.49	200	50.0	0.60	0.82	94.59%
existing KENNEVALE	11.	115A 119A	7			24		1513	3.68	22.80	0.6	1.50	0.54	0:30	30.95	8.66	32.01	45.09	300	125.1	0.20	0.62	29.02%
Lamplighters Drive		190A EX116A	A 2			7		7	4.00	0.11	0.0	1.50	0.00	0.18	0.18	0.05	0.16	34.21	200	25.6	1.00	1.06	99.53%
existing Lamplighters Drive		116A 117A	15			51		88	4.00	0.95	0.0	1.50	0.00	0.73	0.91	0.25	120	31.01	250	82.5	0.25	0.61	96.12%
existing Lampighters Drive		117A 118A	19			65		122	4.00	2.01	0.0	1.50	0.00	0.92	1.83	0.51	2.52	31.01	250	120.0	0.25	0.61	91.87%
Lamplighters Drive		118A 119A				0		122	4.00	2.01	0.0	1.50	0.00	0.00	1.83	0.51	2.52	17.12	200	9.6	0.25	0.53	85.28%
existing Lampighters Drive		142A 123A	4			14		14	4.00	0.22	0.0	1.50	0.00	0.37	0.37	0.10	0.33	26.49	200	63.1	0.60	0.82	98.77%
existing Lampighters Drive		123A 122A	3			10		24	4.00	0.39	0.0	1.50	0.00	0:30	0.67	0.19	0.58	31.01	250	78.0	0.25	0.61	98.14%
existing Lamplighters Drive		122A 121A	5			17		41	4.00	0.67	0.0	1.50	0.00	0.43	1.10	0.31	0.98	31.01	250	78.0	0.25	0.61	96.85%
existing Lamplighters Drive		121A 119A	0			0		41	4.00	0.67	0.0	1.50	0.00	0.00	1.10	0.31	0.98	31.01	250	11.5	0.25	0.61	96.85%
existing KENNEVALE	111	119A 120A				0		1676	3.64	25.04	0.6	1.50	0.54	0.11	33.99	9.52	35.10	45.09	300	37.4	0.20	0.62	22.17%
existing KENNEVALE	12(120A EX.				0		1676	3.64	25.04	0.6	1.50	0.54	0.16	34.15	9.56	35.14	45.09	300	79.4	0.20	0.62	22.07%
								-															

Where G = average deby per capita liver (550 (izeo, d) or (0.0041)seo. Krap) 1 = Unit of peak extramous liver (0.28 liseo/ha) = 1+1(4(14-PO.5)), where P = population in thousands M = Peaking factor + Hammon Peaking Factor, M = 1+1(4(14-PO.5)), where P = population in thousands Q(p) = Peak extramous liver (19) Q(q) = peak extramous liver (19) Population Detrols = 3, per strapel Brinhy and semi-detrached residential unit, 2.7 per Towhnhouse unit Commercial, Office Space and School - Average liver 50,000 Jihaday (0.05 lishn) with Peaking Factor = 1.5

sever design sheet updated

Copy of 3603-LD

333 Preston Street - Suite 400 Ottawa, Ontario K1S 5N4

IBI Group

LOCATION							RESID	ENTIAL					INSTITU	ITIONAL C	<u>COMMER</u>	<u>CIAL IN</u>	<u>IDUSTRI</u>	AL	INFILTRA	TION ALLO	NANCE	TOTAL			PROPOS
				UNIT	TYPES			POPL	LATION	CUMULAT	IVE FLOW			AREA	(ha)							FLOW			
Street	From	То	Singles	Semis	Towns	Apt	Area	INDIV.	CUM.			INSTIT		COMME		INDUS	STRIAL	Pk. Flow	Incr. Area	Cum. Area	Flow		Capacity	Pipe Size	Length
	МН	МН	g				(Ha.)			Factor	(l/s)	Indiv	Cumm.	Indiv			Cumm.	(I/s)	(Ha.)	(Ha.)	(l/s)	(l/s)	(l/s)	(mm)	(M)
Popplewell Cres	136A	135A			7		0.26	18.9	18.9	4.00	0.25							0.00	0.26	0.26	0.09	0.34	26.50	200	46.58
Popplewell Cres	135A	134A			7		0.30	18.9	37.8	4.00	0.49							0.00	0.30	0.56	0.00	0.67	28.42	200	79.68
Popplewell Cres	134A	133A			2		0.10	5.4	43.2	4.00	0.56							0.00	0.10	0.66	0.22	0.78	22.44	200	9.23
Popplewell Cres	133A	131A			17		0.52	45.9	89.1	4.00	1.16							0.00	0.52	1.18	0.39	1.55	30.60	200	75.29
From Claridge WPV4 (Node 10)								-	3183.4	-	35.29		10.30		9.33		1.01	12.30		83.59	26.50	72.08	 		
Cobble Hill Dr	131A	137A			11		0.64	29.7	3302.2	3.41	36.46		10.30		9.33		1.01	12.30	0.64	85.41	28.19	76.95	107.24	450	86.90
Cobble Hill Dr	137A	138A			17		0.54	45.9	3348.1	3.40	36.91		10.30		9.33		1.01	12.30	0.54	85.95	28.36	77.58	107.24	450	61.70
Cobble Hill Dr	138A	139A			5		0.18	13.5	3361.6	3.40	37.04		10.30		9.33		1.01	12.30	0.18	86.13	28.42	77.77	142.64	450	34.12
Popplewell Cres	141A	140A			1		0.12	2.7	2.7	4.00	0.04							0.00	0.12	0.12	0.04	0.08	31.17	200	8.42
Popplewell Cres	140A	139A			21		0.57	56.7	59.4	4.00	0.77							0.00	0.57	0.69	0.23	1.00	26.50	200	83.77
Cobble Hill Dr	139A	100A			6		0.28	16.2	3437.2	3.39	37.78		10.30		9.33		1.01	12.30	0.28	87.10	28.74	78.83	126.19	450	79.17
	139A	TUUA			0		0.28	10.2	3437.2	3.39	51.10		10.30		9.55		1.01	12.30	0.20	07.10	20.74	70.03	120.19	400	79.17
From Claridge WPV4 (Node 12)									10.2		0.09									0.19	0.06	0.19			
Bamburgh Way	114A	113A	14				0.87	47.6	57.8	4.00	0.75							0.00	0.87	1.06	0.35	1.10	32.83	250	107.09
Bamburgh Way Bamburgh Way	113A 112A	112A 111A	1				0.08	<u>3.4</u> 13.6	61.2 74.8	4.00	0.79							0.00	0.08 0.29	1.14 1.43	0.38 0.47	1.17 1.44	30.39 36.70	250 250	16.64 66.03
							0.23	10.0	14.0	4.00	0.07							0.00	0.20	1.40	0.47	1.44	00.10	200	00.00
Bretby Cres	129A	128A	6				0.39	20.4	20.4	4.00	0.26							0.00	0.39	0.39	0.13	0.39	26.06	200	63.30
Bretby Cres	128A	127A	7				0.46	23.8	44.2	4.00	0.57							0.00	0.46	0.85	0.28	0.85	19.66	200	58.41
Bretby Cres	127A 126A	126A	1				0.14	3.4 20.4	47.6 68.0	4.00	0.62							0.00	0.14 0.35	0.99	0.33	0.95	20.24 35.09	200	11.48 43.10
Bretby Cres Bretby Cres	126A 125A	125A 111A	6				0.35 0.18	10.2	78.2	4.00	1.01							0.00	0.35	1.34 1.52	0.44 0.50	1.32 1.51	35.09	250 250	24.38
	1207		0				0.10	10.2	10.2	4.00	1.01							0.00	0.10	1.02	0.00	1.01	00.04	200	24.00
Bamburgh Way	111A	115A	1				0.14	3.4	156.4	4.00	2.03							0.00	0.14	3.09	1.02	3.05	48.06	250	34.84
Bamburgh Way	115A 116A	116A 117A	3				0.20	10.2 6.8	166.6 173.4	4.00 4.00	2.16 2.25							0.00	0.20	3.29 3.43	1.09	3.25	65.36 57.20	250	27.93
Bamburgh Way Bamburgh Way	117A	117A	1				0.14	3.4	176.8	4.00	2.23							0.00	0.14	3.53	1.13 1.16	3.38 3.45	71.55	250 250	18.88 27.83
Bretby Cres Bretby Cres	122A 121A	121A 120A	4				0.61	13.6 30.6	13.6 44.2	4.00	0.18							0.00	0.61 0.41	0.61	0.20 0.34	0.38	27.59 23.71	200 200	39.81 50.35
Bretby Cres	121A 120A	120A 119A	2				0.41	6.8	51.0	4.00	0.66							0.00	0.41	1.19	0.34	1.05	33.35	200	14.72
Bretby Cres	119A	118A	0				0.00	0.0	51.0	4.00	0.66							0.00	0.00	1.19	0.39	1.05	26.28	200	25.25
Bamburgh Way	118A	123A	9				0.55	30.6	258.4	4.00	3.35							0.00	0.55	5.27	1.74	5.09	31.63	250	61.63
Bamburgh Way	123A	123A 102A	9				0.55	30.6	236.4	4.00	3.75							0.00	0.50	5.27	1.74	5.65	30.39	250	73.14
Bambargh Way	120/1	1027	Ű				0.00	00.0	200.0	4.00	0.10							0.00	0.00	0.11	1.00	0.00	00.00	200	70.14
Maravista Dr	105A	103A*	9				1.87	30.6	30.6	4.00	0.40							0.00	1.87	1.87	0.62	1.02	26.50	200	94.22
Maravista Dr	103A	102A	1		8		0.45	25.0	55.6	4.00	0.72							0.00	0.45	2.32	0.77	1.49	36.70	250	95.10
Maravista Dr	102A	100A			14		0.47	37.8	382.4	4.00	4.96							0.00	0.47	8.56	2.82	7.78	56.17	300	83.33
Site Plan	Dida	1A				142	0.54	257.4	257.4	4.00	3.34							0.00	0.54	0.54	0.18	3.52	48.39	200	11.20
Site Plan	Bldg 1A	101A/100A				143	0.54	0.0	257.4	4.00	3.34							0.00	0.00	0.54	0.18	3.52	48.39	200	11.20
Maravista Dr	101A	100A			12		0.50	32.4	289.8	4.00	3.76							0.00	0.50	1.04	0.34	4.10	29.23	200	93.61
Cobble Hill Dr	100A	EX						0.0	4109.4	3.32	44.25	0.56	10.86		9.33		1.01	12.58	0.56	97.26	32.10	88.92	118.97	450	12.50
To Claridge WPV (Node 9)									4109.4		44.25		10.86		9.33			12.58		97.26	32.10	88.92			
Designed:					 	Population P	er l Init [.]	3.4	For Singles														 		
E.I.						. operation i		2.7	Townhouses/Se	emis			I	ICI Rates			Peak Fact	or	Infiltra	tion Allowance:	0.33	l/sec/Ha	1		Ass
								1.8	Apartments					Institution	28000 I	•	1.5						1		
Checked: D.Y.	revised flow rate		y Standards port March 2012		12-Dec-18 Mar 2012	Avg Por Co	pita Flow Rate:	90.0 280	Low/Medium De I/day	ensity (90 ppHa))			Commercial Industrial	28000 I		1.5 Moe Guide						1		
U.T.	issued for Maste		VISION			-	Pla Flow Rate: Peaking Factor:		i/day i = 1+(14/(4+P^0.5)) where D - n	on'n in thousand		I	แนนจแเป	350001	na/uay	6.75						1		Issued for \$
Dwg Reference: File	Ref:		VISION Date:	Shee	et No.		canny i actor.		···(·+/(+·F 0.3	// where P = pt							0.75						1		
Dwg Reference.						-																			

Ulitmate Servicing Including External Sources

SANITARY SEWER ASBUILTS

PROJECT: Maravista Heights LOCATION: CITY OF OTTAWA CLIENT: DCR Phoenix

> POSED SEWER DESIGN Slope Velocity(f) Avail. Cap. gth M/sec L/s (%) (%) 0.60 0.8 26.16 98.73 58 0.69 0.9 27.75 97.63 58 0.43 0.7 21.66 96.53 0.80 0.9 29.05 94.94 29
> 0.13
> 0.7
> 30.29
> 28.25
>
>
> 0.13
> 0.7
> 29.66
> 27.66
>
>
> 0.23
> 0.9
> 64.87
> 45.48
> 2 1.0 31.09 99.74 0.83 77 0.8 25.50 96.24 0.60 0.8 47.36 37.53 17 0.18 09 0.28 0.6 31.73 96.65 0.24 0.6 29.22 96.16 54 0.7 0.35 35.26 96.07 25.67 98.51 0.58 0.8 0.33 0.6 18.81 95.67 0.35 0.32 0.619.2995.320.733.7796.23 0.7 34.13 95.76 0.33 34 0.60 0.9 45.01 93.65 1.11 1.3 62.11 95.03 1.1 53.82 94.09 0.85 1.33 1.4 68.10 95.17 0.9 27.21 98.62 0.65 31 0.48 0.7 22.80 96.18 0.95 1.0 32.30 96.84 0.59 0.8 25.23 95.99 25 0.26 26.54 83.91 0.6 0.6 24.74 81.39 0.24 14 0.8 25.48 96.16 0.60 0.7 35.21 95.95 0.35 0.31 0.8 48.39 86.14 .202.001.544.8792.73.502.001.544.8792.73 51 0.73 0.9 25.13 85.96 0.16 0.7 30.05 25.26

Assumed pipe roughness coefficier 0.013

I for Servicing Report January 2013

CCL/IBI 1770 WOODWARD DRIVE OTTAWA, ONTARIO K2C OP8

LOCA	TION				INDIVIDUAL			CU	M. RES. FL		CUM. C	OM. & INS			FILTRATIO	N	TOTAL			PROPO	SED SEWER		
STREET	FROM MH	ТО МН	RESID. Singles Semis	UNITS Towns	FUTURE RES AREA (Ha)	POP.	COM. INST. (Ha)	POP.	PEAK FACT.	PEAK FLOW (l/s)	AREA (Ha)	PEAK FACT.	PEAK FLOW (l/s)	INCR. AREA (Ha)	CUM. AREA (Ha)	FLOW (l/s)	DESIGN FLOW (I/s)	CAP. I/s	PIPE (mm)	LGTH. (m)	SLOPE %	VEL. (full) m/s	AVAIL. CAP. (%)
From DCR Phoenix Mai	raviata Unighi	to (Nodo C						4109			21.2				97.26		88.92						
Cobble Hill Drive	blkhh	11A	/) 					4109 4109	3.32	44.24	21.2	1.50	10.30	0.14	97.20	32.14	86.69	115.25	450	66.0	0.15	0.70	24.78%
									0.02							02.77					0.10	00	
Chesapeake Cres.	13A	12A		12		32		32	4.00	0.42	0.0	1.50	0.00	0.52	0.52	0.17	0.59	48.04	250	91.5	0.60	0.95	98.77%
	12A	11A						32	4.00	0.42	0.0	1.50	0.00	0.00	0.52	0.17	0.59	48.04	250	15.7	0.60	0.95	98.77%
Lomplightors Drive	34A	254		16		12		43	4.00	0.56	0.0	1.50	0.00	0.47	0.47	0.16	0.71	48.04	250	52.0	0.60	0.05	09 510/
Lamplighters Drive Lamplighters Drive	34A 35A	35A 36A		16 21		<u>43</u> 57		<u> </u>	4.00 4.00	0.56 1.29	0.0 0.0		0.00 0.00	0.47	1.00	0.16 0.33	0.71 1.62	48.04	250 250	52.0 71.1	0.60 0.60	0.95 0.95	<u>98.51%</u> 96.62%
Lamplighters Drive	36A	11A		21		07		100	4.00	1.29	0.0		0.00	0.00	1.00	0.33	1.62	48.04	250	13.8	0.60	0.95	96.62%
Cobble Hill Drive	<u>11A</u>	<u>8A</u>						4242	3.31	45.50	21.2	1.50	10.30	0.15	99.07	32.69	88.49	115.25	450	73.0	0.15	0.70	23.22%
Chesapeake Cres.	100A	10A		2		5		5	4.00	0.07	0.0	1.50	0.00	0.10	0.10	0.03	0.10	48.04	250	12.5	0.60	0.95	99.79%
	100A	9A		24		65		70	4.00	0.01	0.0		0.00	0.62	0.72	0.00	1.15	48.04	250	85.5	0.60	0.95	97.61%
	9A	8A						70	4.00	0.91	0.0	1.50	0.00	0.00	0.72	0.24	1.15	48.04	250	12.8	0.60	0.95	97.61%
Fosterbrook Dr	29A	28A	3			10		10	4.00	0.13	0.0		0.00	0.17	0.17	0.06	0.19	50.01	250	27.3	0.65	0.99	99.62%
	28A 27A	27A 25A	2	5		<u>7</u> 14		<u>17</u> 31	4.00 4.00	0.22 0.40	0.0 0.0	1.50 1.50	0.00 0.00	0.14 0.16	0.31	0.10 0.16	0.32 0.55	<u> </u>	250 250	<u>10.3</u> 36.8	0.65 0.65	0.99 0.99	<u>99.35%</u> 98.90%
	27A	25A		5		14		51	4.00	0.40	0.0	1.50	0.00	0.70	0.47	0.70	0.55	50.01	250	30.0	0.05	0.99	90.90%
Bellister St.	23A	24A	0			0		0	4.00	0.00	0.0	1.50	0.00	0.09	0.09	0.03	0.03	62.02	250	9.8	1.00	1.22	99.95%
	24A	25A	4			14		14	4.00	0.18	0.0	1.50	0.00	0.47	0.56	0.18	0.36	50.01	250	63.6	0.65	0.99	99.28%
Fosterbrook Dr	25A	26A		14		38		82	4.00	1.06			0.00		1.74	0.57	1.64	39.22	250	103.5	0.40	0.77	95.83%
	26A	8A						82	4.00	1.06	0.0	1.50	0.00	0.00	1.74	0.57	1.64	39.22	250	15.1	0.40	0.77	95.83%
Cobble Hill Drive	8A	<u>5</u> A						4394	3.30	46.93	21.2	1.50	10.30	0.42	101.95	33.64	90.87	115.25	450	71.1	0.15	0.70	21.15%
										0.07		(50			0.74			(0.0.)	0.50				
Cooperfield Cres.	7A 6A	6A 5A		25		68		68 68	4.00 4.00	0.87 0.87	0.0		0.00 0.00		0.71	0.23 0.23	<u>1.11</u> 1.11	<u>48.04</u> 48.04	250 250	90.7 11.8	0.60 0.60	0.95 0.95	97.69%
	bА	ЪА						00	4.00	0.87	0.0	1.50	0.00	0.00	0.77	0.23	1.11	48.04	250	11.8	0.60	0.95	97.69%
Cobble Hill Drive	5A	2A						4461	3.29	47.56	21.2	1.50	10.30	0.43	103.09	34.02	91.88	115.25	450	72.6	0.15	0.70	20.27%
						_																	
Cooperfield Cres.	40A	4A		2		5 59		5 65	4.00	0.07	0.0		0.00	0.12	0.12	0.04	0.11	48.04	250	12.0	0.60 0.60	0.95	99.77%
	<u>4A</u> 3A	3A 2A		22		59		65	4.00 4.00	0.84 0.84	0.0 0.0	1.50 1.50	0.00 0.00	0.58 0.00	0.70	0.23 0.23	1.07 1.07	<u>48.04</u> 48.04	250 250	84.5 8.2	0.60	0.95 0.95	<u>97.77%</u> 97.77%
	04	27							4.00	0.04	0.0	1.00	0.00	0.00	0.70	0.20	1.07	40.04	200	0.2	0.00	0.00	
Cobble Hill Drive	2A	1A/STUB						4526	3.28	48.17	21.2	1.50	10.30	0.07	103.86	34.27	92.75	115.25	450	34.0	0.15	0.70	19.53%
To DCR Phoenix West	Barrhaven Ph	1 (Node	7)					4526		48.17	21.2		10.30		103.86	34.27	92.75						
Lever linkten Dr		20.4				07		07	4.00	0.40		1.50	0.00	0.50	0.50	0.40	0.07	00.00	050	01.0	0.40	0.77	
Lamplighter Dr.	33A 32A	32A 31A	11 2			37		<u> </u>	4.00 4.00	0.48 0.57	0.0 0.0	1.50 1.50	0.00 0.00	0.56 0.39	0.56 0.95	0.18 0.31	0.67 0.89	<u> </u>	250 250	61.0 12.5	0.40 0.40	0.77 0.77	<u>98.29%</u> 97.74%
	31A	30A	8			27		71	4.00	0.93	0.0	1.50	0.00	0.39	1.57	0.57	1.44	39.22	250	66.1	0.40	0.77	96.32%
	30A	21A	9			31		102	4.00	1.32	0.0	1.50	0.00	0.66	2.23	0.74	2.06	39.22	250	68.9	0.40	0.77	94.75%
Bellister St.	23A	22A	11			37		37	4.00	0.48	0.0		0.00	0.55	0.55	0.18	0.67	39.22	250	96.1	0.40	0.77	98.30%
	22A	21A						37	4.00	0.48	0.0	1.50	0.00	0.01	0.56	0.19	0.67	39.22	250	6.4	0.40	0.77	98.29%
Lamplighter Dr.	21A	19A*	6			20		160	4.00	2.07	0.0	1.50	0.00	0.49	3.28	1.08	3.15	45.09	300	71.6	0.20	0.62	93.01%
Bidwell St	 19A	16A	12			41		201	4.00	2.60	0.0	1.50	0.00	0.52	3.81	1.26	3.86	45.09	300	90.4	0.20	0.62	91.45%
Bidwell St	18A	17A	12			41		41	4.00	0.53	0.0	1.50	0.00		0.43	0.14	0.67	49.61	250	73.7	0.64	0.98	98.65%
	17A	16A	9			31		71	4.00	0.93	0.0	1.50	0.00	0.41	0.84	0.28	1.20	39.22	250	61.5	0.40	0.77	96.93%
Muskan St.	16A	15A			+			272	4.00	3.53	0.0	1.50	0.00	0.02	4.66	1.54	5.06	45.09	300	11.7	0.20	0.62	88.77%
	15A	EX107A						272	4.00	3.53	0.0		0.00		4.70	1.55		45.09	300	23.5	0.20	0.62	88.74%
To DCR Phoenix West	Barrhaven Ph	1 (Node 8)					272		3.53			0.00		4.70	1.55	5.08						
													ļ]										
Lementicitate de Dié	4004					7		-	4.00	0.00		4.50	0.00	0.47	0.47	0.00		0101	000	05.0	4	1 00	00 500/
Lamplighters Drive To DCR Phoenix West I	190A Barrhavon Ph	EX116A	<u>2</u>			1		7	4.00	0.09 0.09	0.0	1.50	0.00 0.00	0.17	0.17 0.17	0.06 0.06	0.14 0.14	34.21	200	25.6	1.00	1.06	99.58%
TO DOR PHOENIX West			<u>.</u>					1		0.09			0.00		0.17	0.00	0.14						
																	┣────┣─						
			11		1 1		1	1			1	1	1		1	1	ı II						

Where Q = average daily per capita flow (280 l/cap.d.) or (0.00324l/sec./cap)

I = Unit of peak extraneous flow (0.33 l/sec/ha)

M = Peaking factor = Harmon Peaking Factor , \dot{M} = 1+(14/(4+P^0.5)) , where P = population in thousands

Q(p) = Peak population flow (I/s) Q(i) = peak extraneous flow (I/s) Population Density = 3.4 per single family and semi-detached residential unit, 2.7 per Towhnhouse unit <u>Commercial, Office Space and School - Aver</u>age flow 28,000 I/ha/day (0.324 I/s/ha) with Peaking Factor = 1.5

SANITARY SEWER DESIGN SHEET PROJECT : WEST POINTE VILLAGE City of Ottawa DEVELOPER : CLARIDGE HOMES

Ulitmate Servicing Including External Sources

* includes Foster drain area

	I	

JOB #:	3603-LD
DATE:	21-Apr-06
DESIGN:	DY

Issued for Servicing Report January 2013 revised flow rates per New City Standards Dec 2018

Ulitmate Servicing Including External Sources

DCR Phoenix Phase I Site										ULITMAT	SERVIC	NG TO SC		EAN COLLE	CTOR								
LOCATIO	Ν				INDIVIDUAL	-		CU	IM. RES. FL	.OW	CUM. C	OM. & INS	T. FLOW	11	IFILTRATIO	Ν	TOTAL			PROPO	SED SEWER		
STREET	FROM MH	ТО МН	RESID. Singles Semis	UNITS Towns	Area (Ha)	POP.	COM. INST. (Ha)	POP.	PEAK FACT.	PEAK FLOW (I/s)	AREA (Ha)	PEAK FACT.	PEAK FLOW (l/s)	INCR. AREA (Ha)	CUM. AREA (Ha)	FLOW (l/s)	DESIGN FLOW (l/s)	CAP. I/s	PIPE (mm)	LGTH. (m)	SLOPE %	VEL. (full) m/s	AVAIL. CAP. (%)
From Claridge West Pointe Villag	ge (Node 7)							4526		48.17	21.20		10.30		103.86	34.27	92.75						
COBBLE HILL DRIVE	STUB	102A		0		0		4526	3.28	48.17	21.20	1.00	6.87	0.08	103.94	34.30	89.34	115.25	450	41.3	0.15	0.70	22.48%
PREM CIRCLE	100A	102A		22		59		59	4.00	0.77	0.00	1.50	0.00	0.73	0.73	0.24	1.01	31.55	200	106.0	0.85	0.97	96.80%
STONECHURCH DR.	101A	102A	21			71		71	4.00	0.93	0.00	1.50	0.00	1.07	1.07	0.35	1.28	27.60	200	133.5	0.65	0.85	95.37%
COBBLE HILL DRIVE	102A	110A				0		4657	3.27	49.39	21.20	1.00	6.87	0.12	105.86	34.93	91.19	115.25	450	80.6	0.15	0.70	20.87%
From Claridge West Pointe Villa	ge (Node 8)							272.0		3.53			0.00		4.70	1.55							
MUSKAN STREET	107A 108A	108A 109A	11 2			37 7		309 316	4.00	4.01 4.10	0.00	1.50 1.50	0.00 0.00	0.62 0.16	5.32 5.48	1.76 1.81		45.09 45.09	300 300	116.5 9.7	0.20	0.62 0.62	
	109A	110A	19			65		381	4.00	4.94	0.00	1.50	0.00	0.98	6.46	2.13	7.07	45.09	300	124.4	0.20	0.62	84.33%
PREM CIRCLE	103A 104A	104A 105A		8 0		22 0		22 22	4.00 4.00	0.28	0.00	1.50 1.50	0.00	0.30	0.30	0.10		26.49 39.22	200 250	57.0 12.1	0.60 0.40	0.82 0.77	
(Node 6)	105A 106A	106A 110A		0 24		0 65	0.30	22 86	4.00 4.00	0.28	0.00	1.50 1.50	0.00 0.26	0.04	0.37	0.12	0.40	39.22 50.01	250 250	22.4 92.1	0.40 0.65	0.77 0.99	98.97%
COBBLE HILL DRIVE (node 5)	110A	114A		9		24		5148	3.23	53.93		1.00	6.97	0.40	114.07	37.64	98.54	115.25	450	86.0	0.15	0.70	
,		114A		9		24			3.23										430	0.00	0.15	0.70	14.30%
From DCR Phoenix Phase 3 (No		4404		10		40		96.7	4.00	1.25			0.00		0.94	0.26			050	70.0	0.05	0.04	00.400
COBBLE HILL DRIVE COBBLE HILL DRIVE	112A 113A	113A 10A		18 13		49 35		145 180	4.00	2.34		1.50 1.50	0.00 0.00	0.50 0.31	1.44 1.75	0.48 0.58		31.01 31.01	250 250	78.0 44.0	0.25 0.25	0.61 0.61	
From DCR Phoenix Phase 3 (No	· · ·							224		2.91			0.00		1.64	0.46							
COBBLE HILL DRIVE	10A	114A		6		16		421	4.00	5.45	0.00	1.50	0.00	0.20	3.59	1.18	6.64	31.01	250	56.0	0.25	0.61	78.60%
(Node 5) To SNC																							
KENNEVALE	114A	111A		14		38		5607	3.20	58.11			6.97	0.38	118.04	38.95		132.98	450	92.7	0.20	0.81	
KENNEVALE (Node 4)	111A	100		8		21.60		5629	3.20	58.30	21.50	1.00	6.97	0	118.38	39.07	104.33	132.98	450	59.0	0.20	0.81	21.54%

Where Q = average daily per capita flow (280 l/cap.d.) or (0.00324l/sec./cap)

= Unit of peak extraneous flow (0.33 l/sec/ha)

M = Peaking factor = Harmon Peaking Factor , \dot{M} = 1+(14/(4+P^0.5)) , where P = population in thousands

Q(p) = Peak population flow (l/s) Q(i) = peak extraneous flow (l/s)

Population Density =

ICI rate

3.4 per single or semi 2.7 per townhouse 28,000 l/day/ha Peaked at 1.5

SANITARY SEWER DESIGN SHEET

PROJECT :	CONCEPTUAL SITE SERVICING STUDY
LOCATION :	WEST BARRHAVEN
DEVELOPER :	TARTAN-AIRTH-DCR PHOENIX III LANDS

Issued for Master servicing report March 2012 revised flow rates per New City Standards Dec 2018

JOB #: DATE: 18-Dec-06 DESIGN:

11141 JIM

Ulitmate Servicing Including External Sources

TO MH	O Sinę	SID. UNITS les Towns		L				- 1													
	O Sinę		FUTURE				M. RES. FL	ow	CUM. CO	DM. & INS	T. FLOW	IN	FILTRATIO	Ν	TOTAL			PROPO	SED SEWER		
MH				POP.	COM. INST.	POP.	PEAK	PEAK FLOW	AREA	PEAK	PEAK FLOW	INCR. AREA	CUM. AREA	FLOW	DESIGN FLOW	CAP.	PIPE	LGTH.	SLOPE	VEL. (full)	AVAIL. CAP.
		nis	(Ha)		(Ha)		FACT.	(I/s)	(Ha)	FACT.	(I/s)	(Ha)	(Ha)	(I/s)	(I/s)	l/s	(mm)	(m)	%	m/s	(%)
144A	4A 1	;		51		51	4.00	0.66	0.00	1.50	0.00	0.82	0.82	0.27	0.93	26.49	200	105.0	0.60	0.82	96.48%
115A		,		17		68	4.00	0.88	0.00	1.50	0.00	0.32	1.14	0.27	1.26	26.49	200	50.0	0.60	0.82	95.25%
115A	5A 8			27		27	4.00	0.35	0.00	1.50	0.00	0.53	0.53	0.17	0.53	28.64	200	85.0	0.70	0.88	98.16%
119A	9A 5			17		112	4.00	1.45	0.00	1.50	0.00	0.39	2.06	0.68	2.13	45.09	300	125.1	0.20	0.62	95.27%
						6.8		0.09	0.00		0.00		0.17	0.06	0.14						
117A				51		58	4.00	0.75	0.0	1.50	0.00	0.94	1.11	0.37	1.12	26.49	200		0.60	0.82	95.79%
118A	-)							0.0			1.22									91.11%
119A	9A			0		122	4.00	1.59	0.0	1.50	0.00	0.00	2.33	0.77	2.36	41.90	200	9.6	1.50	1.29	94.38%
123A	23A 4			14		14	4.00	0.18	0.00	1.50	0.00	0.37	0.37	0.12	0.30	26.49	200	63.1	0.60	0.82	98.87%
122A	22A 3			10	0.61	24	4.00	0.31	0.61	1.50	0.30	1.11	1.48	0.49	1.09	24.19		78.0	0.50	0.75	95.48%
121A	21A 5			17		41	4.00	0.53	0.61	1.50	0.30	0.63	2.11	0.70	1.52	24.19		78.0	0.50	0.75	93.71%
119A	9A			0		41	4.00	0.53	0.61	1.50	0.30	0.00	2.11	0.70	1.52	34.21	200	11.5	1.00	1.06	95.55%
120A	20A			0		275	4.00	3.57	0.61	1.50	0.30	0.11	6.61	2.18	6.05	45.09	300	37.4	0.20	0.62	86.59%
						275	4.00	4.52	0.61	1.50	0.30	0.16	6.77	2.23	7.05	45.09	300	79.4	0.20	0.62	84.37%
113 119 123 123 129 119		8A 19 9A 23A 4 22A 3 1A 5 9A	8A 19 9A	8A 19 9A	8A 19 65 9A 0 3A 4 14 2A 3 10 1A 5 17 9A 0 0	8A 19 65 9A 0 9A 0 3A 4 2A 3 10 0.61 1A 5 9A 0 9A 0	8A 19 65 122 9A 0 122 3A 4 14 14 2A 3 10 0.61 24 1A 5 17 41 9A 0 41 14 9A 0 275	8A 19 65 122 4.00 9A 0 122 4.00 3A 4 14 14 4.00 2A 3 10 0.61 24 4.00 2A 5 17 41 4.00 9A 0 275 4.00	8A 19 65 122 4.00 1.59 9A 0 122 4.00 1.59 3A 4 14 14 4.00 0.18 2A 3 10 0.61 24 4.00 0.31 1A 5 17 41 4.00 0.53 9A 0 275 4.00 3.57	8A 19 65 122 4.00 1.59 0.0 9A 0 122 4.00 1.59 0.0 3A 4 14 14 4.00 0.18 0.00 2A 3 10 0.61 24 4.00 0.31 0.61 2A 5 17 41 4.00 0.53 0.61 9A 0 275 4.00 3.57 0.61	8A 19 65 122 4.00 1.59 0.0 1.50 9A 0 122 4.00 1.59 0.0 1.50 9A 0 122 4.00 1.59 0.0 1.50 3A 4 14 14 4.00 0.18 0.00 1.50 2A 3 10 0.61 24 4.00 0.31 0.61 1.50 2A 3 17 41 4.00 0.53 0.61 1.50 9A 0 0 275 4.00 3.57 0.61 1.50	8A 19 65 122 4.00 1.59 0.0 1.50 0.00 9A 0 122 4.00 1.59 0.0 1.50 0.00 3A 4 14 14 4.00 0.18 0.00 1.50 0.00 2A 3 10 0.61 24 4.00 0.31 0.61 1.50 0.30 2A 5 17 41 4.00 0.53 0.61 1.50 0.30 9A 0 275 4.00 3.57 0.61 1.50 0.30	8A 19 65 122 4.00 1.59 0.0 1.50 0.00 1.22 9A 0 122 4.00 1.59 0.0 1.50 0.00 0.00 3A 4 14 14 4.00 0.18 0.00 1.50 0.00 0.37 2A 3 10 0.61 24 4.00 0.31 0.61 1.50 0.30 1.11 1A 5 17 41 4.00 0.53 0.61 1.50 0.30 0.63 9A 0 275 4.00 3.57 0.61 1.50 0.30 0.11	8A 19 65 122 4.00 1.59 0.0 1.50 0.00 1.22 2.33 9A 0 122 4.00 1.59 0.0 1.50 0.00 0.00 2.33 3A 4 14 14 4.00 0.18 0.00 1.50 0.00 0.37 0.37 2A 3 10 0.61 24 4.00 0.31 0.61 1.50 0.30 1.11 1.48 1A 5 17 41 4.00 0.53 0.61 1.50 0.30 0.63 2.11 9A 0 275 4.00 3.57 0.61 1.50 0.30 0.11 6.61	8A 19 65 122 4.00 1.59 0.0 1.50 0.00 1.22 2.33 0.77 9A 0 122 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 3A 4 14 14 4.00 0.18 0.00 1.50 0.00 0.37 0.37 0.12 2A 3 10 0.61 24 4.00 0.31 0.61 1.50 0.30 1.11 1.48 0.49 1A 5 17 41 4.00 0.53 0.61 1.50 0.30 0.63 2.11 0.70 9A 0 275 4.00 3.57 0.61 1.50 0.30 0.61 1.50 0.30 0.61 2.18	8A 19 65 122 4.00 1.59 0.0 1.22 2.33 0.77 2.36 9A 0 122 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 2.36 3A 4 14 14 4.00 0.18 0.00 1.50 0.00 0.37 0.37 0.12 0.30 2A 3 10 0.61 24 4.00 0.31 0.61 1.50 0.30 1.11 1.48 0.49 1.09 1A 5 17 41 4.00 0.53 0.61 1.50 0.30 0.63 2.11 0.70 1.52 9A 0 0 41 4.00 0.53 0.61 1.50 0.30 0.63 2.11 0.70 1.52 9A 0 0 41 4.00 0.53 0.61 1.50 0.30 0.00 2.11 0.70 1.52 9A 0 0 275 4.00 3.57 0.61 1.50 0.30	8A 19 65 122 4.00 1.59 0.0 1.22 2.33 0.77 2.36 26.49 9A 0 122 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 2.36 41.90 3A 4 14 14 4.00 0.18 0.00 1.50 0.00 0.37 0.37 0.12 0.30 26.49 2A 3 10 0.61 24 4.00 0.31 0.61 1.50 0.30 1.11 1.48 0.49 1.09 24.19 2A 3 17 41 4.00 0.53 0.61 1.50 0.30 0.63 2.11 0.70 1.52 24.19 9A 0 41 4.00 0.53 0.61 1.50 0.30 0.63 2.11 0.70 1.52 24.19 9A 0 41 4.00 0.53 0.61 1.50 0.30 0.00 2.11 0.70 1.52 34.21 9A 0 0 <td< td=""><td>8A 19 65 122 4.00 1.59 0.0 1.22 2.33 0.77 2.36 26.49 200 9A 0 122 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 2.36 41.90 200 3A 4 14 14 4.00 0.18 0.00 1.50 0.00 0.37 0.37 0.12 0.30 26.49 200 2A 3 10 0.61 24 4.00 0.31 0.61 1.50 0.30 1.11 1.48 0.49 1.09 24.19 200 2A 3 17 41 4.00 0.53 0.61 1.50 0.30 0.63 2.11 0.70 1.52 24.19 200 9A 0 41 4.00 0.53 0.61 1.50 0.30 0.63 2.11 0.70 1.52 24.19 200 9A 0 0 41 4.00 0.53 0.61 1.50 0.30 0.00 2.11</td><td>8A 19 65 122 4.00 1.59 0.0 1.50 0.00 1.22 2.33 0.77 2.36 26.49 200 82.5 9A 0 0 122 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 2.36 26.49 200 82.5 9A 0 0 122 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 2.36 26.49 200 82.5 3A 4 0 14 4.00 0.18 0.00 1.50 0.00 0.37 0.37 0.12 0.30 26.49 200 63.1 2A 3 10 0.61 24 4.00 0.31 0.61 1.50 0.30 1.11 1.48 0.49 1.09 24.19 200 78.0 3A 4 10 0.61 24 4.00 0.53 0.61 1.50 0.30 0.63 2.11 0.70 1.52 24.19 200 78.0 78.0</td><td>8A 19 65 122 4.00 1.59 0.0 1.22 2.33 0.77 2.36 26.49 200 82.5 0.60 9A 0 122 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 2.36 26.49 200 82.5 0.60 9A 0 122 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 2.36 41.90 200 9.6 1.50 3A 4 14 4.00 0.18 0.00 1.50 0.00 0.37 0.37 0.12 0.30 26.49 200 63.1 0.60 2A 3 10 0.61 24 4.00 0.31 0.61 1.50 0.30 1.11 1.48 0.49 1.09 24.19 200 78.0 0.50 1A 5 17 41 4.00 0.53 0.61 1.50 0.30 0.63 2.11 0.70 1.52 24.19 200 78.0 0.50 1.00</td></td<> <td>8A 19 65 122 4.00 1.59 0.0 1.20 2.33 0.77 2.36 26.49 200 82.5 0.60 0.82 9A 0 0 122 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 2.36 26.49 200 82.5 0.60 0.82 9A 0 0 0 1.22 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 2.36 24.19 200 9.6 1.50 1.29 3A 4 14 4.00 0.18 0.00 1.50 0.00 0.37 0.37 0.12 0.30 26.49 200 63.1 0.60 0.82 2A 3 10 0.61 24 4.00 0.31 0.61 1.50 0.30 1.11 1.48 0.49 1.09 24.19 200 78.0 0.50 0.75 0.75 1A 5 10 0.61 1.50 0.30 0.63 2.11 0.70</td>	8A 19 65 122 4.00 1.59 0.0 1.22 2.33 0.77 2.36 26.49 200 9A 0 122 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 2.36 41.90 200 3A 4 14 14 4.00 0.18 0.00 1.50 0.00 0.37 0.37 0.12 0.30 26.49 200 2A 3 10 0.61 24 4.00 0.31 0.61 1.50 0.30 1.11 1.48 0.49 1.09 24.19 200 2A 3 17 41 4.00 0.53 0.61 1.50 0.30 0.63 2.11 0.70 1.52 24.19 200 9A 0 41 4.00 0.53 0.61 1.50 0.30 0.63 2.11 0.70 1.52 24.19 200 9A 0 0 41 4.00 0.53 0.61 1.50 0.30 0.00 2.11	8A 19 65 122 4.00 1.59 0.0 1.50 0.00 1.22 2.33 0.77 2.36 26.49 200 82.5 9A 0 0 122 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 2.36 26.49 200 82.5 9A 0 0 122 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 2.36 26.49 200 82.5 3A 4 0 14 4.00 0.18 0.00 1.50 0.00 0.37 0.37 0.12 0.30 26.49 200 63.1 2A 3 10 0.61 24 4.00 0.31 0.61 1.50 0.30 1.11 1.48 0.49 1.09 24.19 200 78.0 3A 4 10 0.61 24 4.00 0.53 0.61 1.50 0.30 0.63 2.11 0.70 1.52 24.19 200 78.0 78.0	8A 19 65 122 4.00 1.59 0.0 1.22 2.33 0.77 2.36 26.49 200 82.5 0.60 9A 0 122 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 2.36 26.49 200 82.5 0.60 9A 0 122 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 2.36 41.90 200 9.6 1.50 3A 4 14 4.00 0.18 0.00 1.50 0.00 0.37 0.37 0.12 0.30 26.49 200 63.1 0.60 2A 3 10 0.61 24 4.00 0.31 0.61 1.50 0.30 1.11 1.48 0.49 1.09 24.19 200 78.0 0.50 1A 5 17 41 4.00 0.53 0.61 1.50 0.30 0.63 2.11 0.70 1.52 24.19 200 78.0 0.50 1.00	8A 19 65 122 4.00 1.59 0.0 1.20 2.33 0.77 2.36 26.49 200 82.5 0.60 0.82 9A 0 0 122 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 2.36 26.49 200 82.5 0.60 0.82 9A 0 0 0 1.22 4.00 1.59 0.0 1.50 0.00 0.00 2.33 0.77 2.36 24.19 200 9.6 1.50 1.29 3A 4 14 4.00 0.18 0.00 1.50 0.00 0.37 0.37 0.12 0.30 26.49 200 63.1 0.60 0.82 2A 3 10 0.61 24 4.00 0.31 0.61 1.50 0.30 1.11 1.48 0.49 1.09 24.19 200 78.0 0.50 0.75 0.75 1A 5 10 0.61 1.50 0.30 0.63 2.11 0.70

Where Q = average daily per capita flow (280 l/cap.d.) or (0.00324l/sec./cap)

I = Unit of peak extraneous flow (0.33 l/sec/ha)

M = Peaking factor = Harmon Peaking Factor, $M = 1+(14/(4+P^{0.5}))$, where P = population in thousands

Q(p) = Peak population flow (I/s)

Q(i) = peak extraneous flow (l/s)

ICI rate

Population Density =

3.4 per single or semi 2.7 per townhouse 28,000 l/day/ha Peaked at 1.5

SANITARY SEWER DESIGN SHEET

PROJECT : CONCEPTUAL SITE SERVICING STUDY

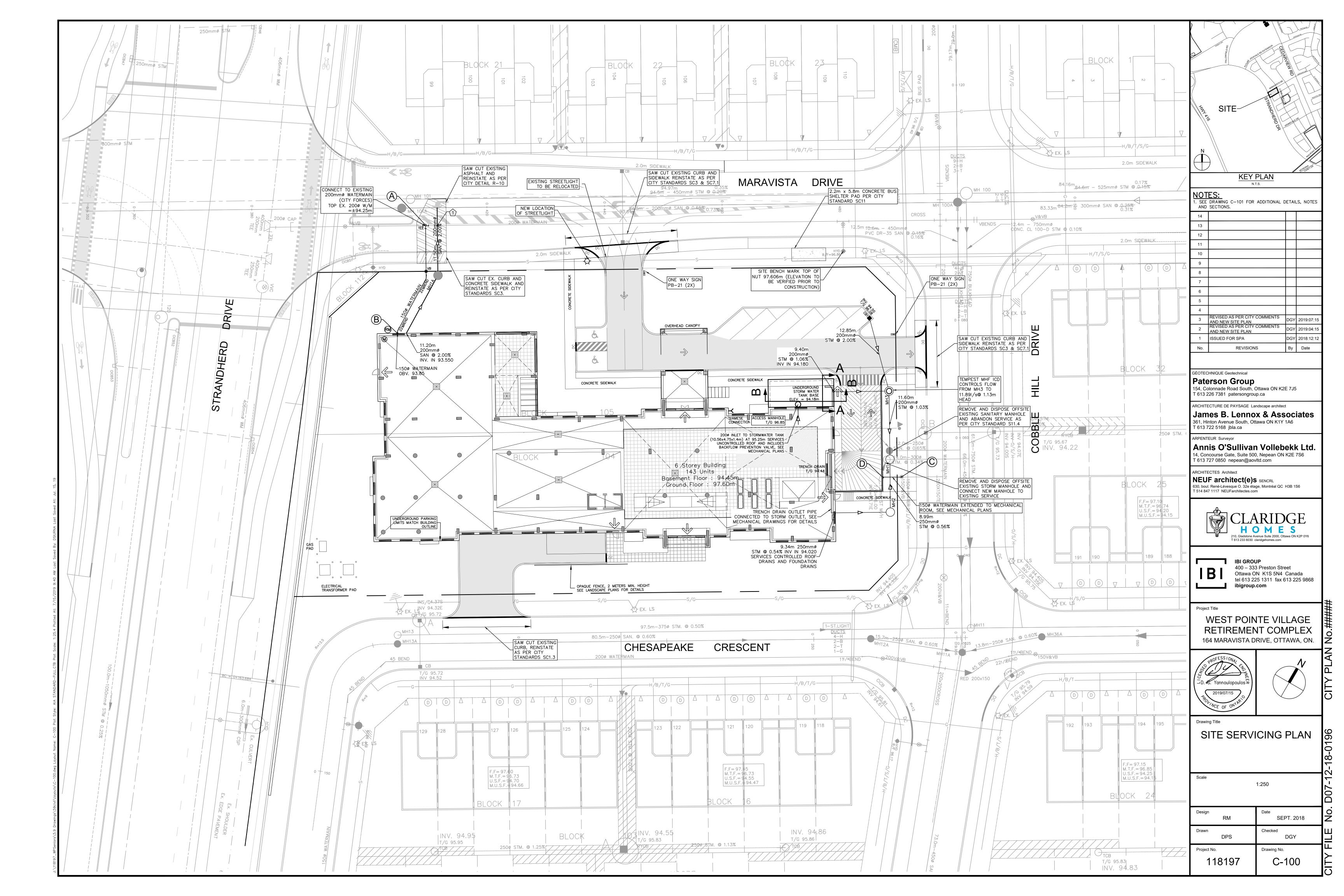
LOCATION : WEST BARRHAVEN

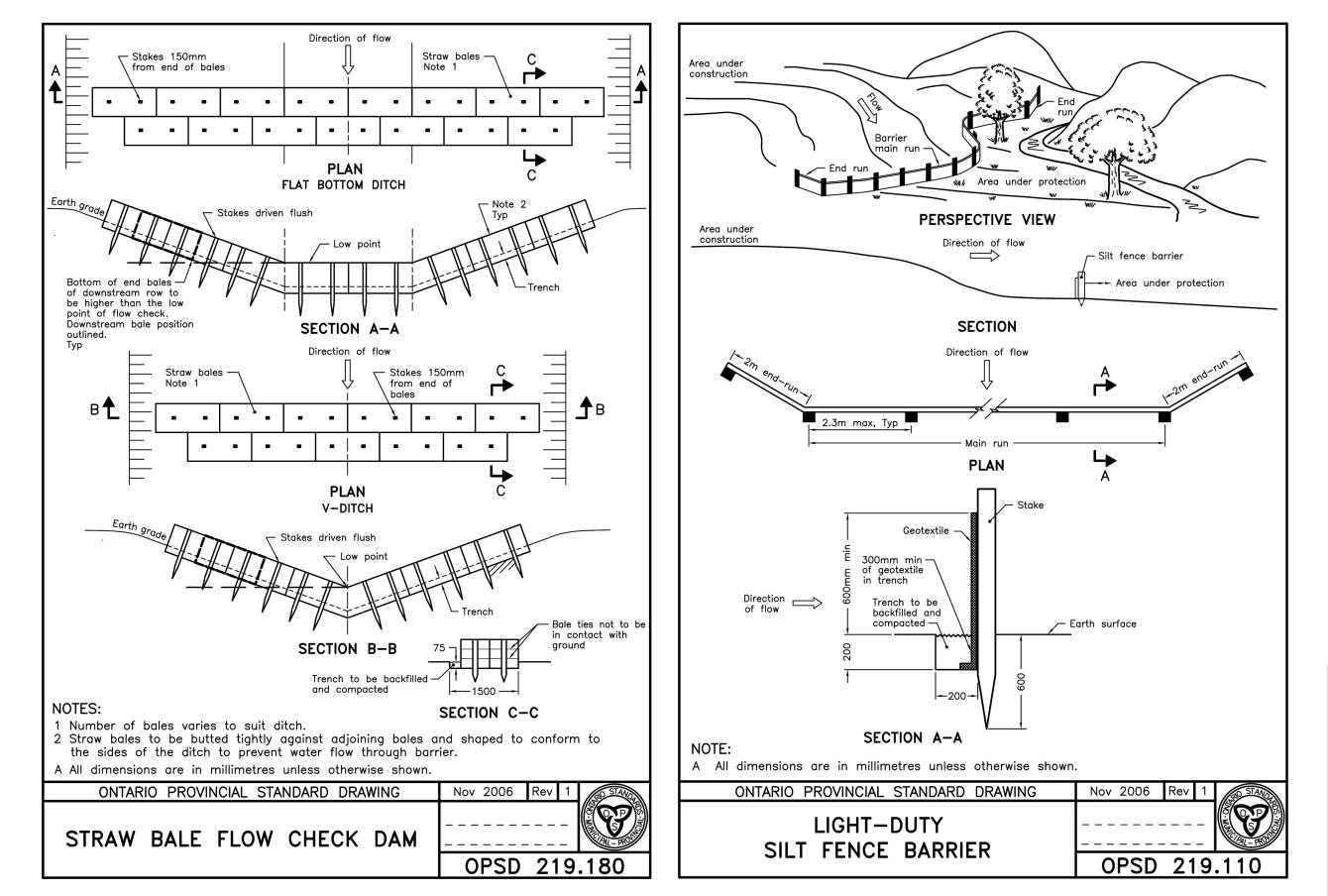
DEVELOPER : TARTAN-AIRTH-DCR PHOENIX III LANDS

Issued for Servicing Report January 2013 revised flow rates per New City Standards Dec 2018

IBI Group 333 Preston Street - Suite 400 Ottawa, Ontario K1S 5N4

LOCA	TION						RESIDE	ΝΤΙΔΙ					NSTITU	TIONAL COMMER	CIAL INDUSTR			TION ALLOW	VANCE	TOTAL			PROPOSE	D SEWER	DESIGN		
2004				UNIT T	TYPES		REGIDE	POPUL	ΔΤΙΟΝ	CUMULAT				AREA (ha)						FLOW					DEGICIN		
Street	From	То	Singles			Stacked	Area	INDIV.	CUM.		Peak Flow			COMMERCIAL	INDUSTRIAL	Pk Flow	Incr Area	Cum Area	Flow	I LOW	_	Pipe Size	Length	Slope	Velocity(f)	Avail	Can
Offer	мн	мн	olligies	0enna	TOWIS	Oldeked	(Ha.)		00111.	Factor	(l/s)	Indiv C		Indiv Cumm.			(Ha.)	(Ha.)	(l/s)	(I/s)	(l/s)	(mm)	(M)	(%)	M/sec	L/s	. Oap. (%)
Simran Private	15A	14A			10		0.18	27.0	27.0	4.00	0.35					0.00	0.18	0.18	0.05	0.40	27.59	200	55.0	0.65	0.85	27.19	98.55%
Simran Private	14A	13A					0.02	0.0	27.0	4.00	0.35					0.00	0.02	0.20	0.06	0.41	27.59	200	13.9	0.65	0.85	27.18	98.53%
Simran Private	13A	12A			14		0.27	37.8	64.8	4.00	0.84					0.00	0.27	0.47	0.13	0.97	33.98	250	50.0	0.30	0.67	33.01	97.14%
Simran Private	12A	11A			9		0.15	24.3	89.1	4.00	1.16					0.00	0.15	0.62	0.17	1.33	33.98	250	40.7	0.30	0.67	32.65	96.08%
Sadar Private	19A	20A			21		0.40	56.7	56.7	4.00	0.74					0.00	0.40	0.40	0.11	0.85	27.59	200	77.0	0.65	0.85	26.74	96.91%
Sadar Private	20A	21A			4		0.12	10.8	67.5	4.00	0.88					0.00	0.12	0.52	0.15	1.03	27.59	200	13.9	0.65	0.85	26.56	96.28%
Sadar Private	21A	11A			18		0.29	48.6	116.1	4.00	1.51					0.00	0.29	0.89	0.25	1.76	33.98	250	61.1	0.30	0.67	32.22	94.82%
Simran Private	11A	10A			7		0.13	18.9	224.1	4.00	2.91					0.00	0.13	1.64	0.46	3.37	33.98	250	57.4	0.30	0.67	30.61	90.08%
To West Barrhaven Ph 1 (Node 5B)									224.1		2.91					0.00		1.64	0.46	3.37							
Simran Private	16A	17A	+		9		0.18	24.3	24.3	4.00	0.32				<u>├</u>	0.00	0.18	0.18	0.05	0.37	27.59	200	28.5	0.65	0.85	27.22	98.66%
Simran Private	10A 17A	17A 18A	+ +		2		0.05	5.4	24.3	4.00	0.32	┨──┤─				0.00	0.18	0.18	0.05	0.37	27.59	200	15.3	0.65	0.85	27.22	98.35%
Moffatt Pond Court	18A	EX 112A	7		16		0.71	67.0	96.7	4.00	1.25					0.00	0.71	0.94	0.26	1.51	42.98	250	110.0	0.48	0.85	41.47	96.48%
To West Barrhaven Ph 1 (Node 5A)									97		1.25					0.00		0.94	0.26	1.51							
			-																			+ +					
																						+ +					
																						1 1					
			+																			+					
																						+ +					
		1	+ +		L					1	1										1	+ +			+ +		
									<u> </u>																		
			+												<u>├</u>							+					
Designed: LME			<u> </u>			Population I	Per Unit:	3.4	For Singles	1	I		I	I	II					1					1		
•]			Townhouses/Se	emis				CI Rates	Peak Fac		Infiltra	tion Allowance:	0.33	l/sec/Ha	1		Assu	med pipe loss	ceofficient =	0.013	
								000							l/ha/day 1.5						1						
Checked:		tes per New Cit	ty Standards port March 2012				apita Flow Rate: Peaking Factor:	280 Harmon Formula =	l/day = 1+(14/(4+P^0 5)) where P = po	n'n in thousand	ls		Commercial 28000 ndustrial 35000	I/ha/day 1.5 I/ha/day Moe Guid												
					DATE	Concential	. Satting i dotor.			// mioro - po		~			indiaday inice Ould						1						
Dwg Reference:	File Ref:	1	Date:	Shee		1															1		Issued for S	ervicing Rep	ort January 20	013	
	761.5.7	2009-07-06		1 of 1																	1						


SANITARY SEWER DESIGN SHEET


Ulitmate Servicing Including External Sources

PROJECT: West Barrhaven Phase 3

LOCATION: City of Ottawa

CLIENT: DCR/Phoenix Group of Companies

DRAWING NOTES

1.0 GENERAL

1.1 CONTRACTOR TO VERIFY ALL DIMENSIONS PRIOR TO CONSTRUCTION.

1.2 DO NOT SCALE DRAWINGS 1.3 CONTRACTOR TO REPORT ALL DISCOVERIES OF ERRORS, OMISSIONS OR DISCREPANCIES TO THE

ARCHITECT OR DESIGN ENGINEER AS APPLICABLE. 1.4 USE ONLY THE LATEST REVISED DRAWINGS OR THOSE THAT ARE MARKED "ISSUED FOR CONSTRUCTION".

1.5 ALL CONSTRUCTION SHALL COMPLY WITH CURRENT CITY OF OTTAWA STANDARDS AND SPECIFICATIONS. 1.6 THIS DRAWING SHALL BE READ IN CONJUNCTION WITH ALL RELEVANT DRAWINGS AND SPECIFICATIONS. 1.7 FOR LEGAL SURVEY INFORMATION REFER TO REGISTERED PLAN

1.8 REFER TO SITE PLAN (DRAWING NO A050) BY NEUF ARCHITECTS.

1.09 CONTRACTOR TO IMPLEMENT EROSION AND SEDIMENT CONTROL MEASURES AS IDENTIFIED IN THE EROSION AND SEDIMENT CONTROL PLAN TO THE SATISFACTION OF THE CITY OF OTTAWA, PRIOR TO UNDERTAKING ANY SITE ALTERATIONS (FILLING, GRADING, REMOVAL OF VEGETATION, ETC.). DURING ALL PHASES OF THE SITE PREPARATION AND CONSTRUCTION THE MEASURES ARE TO BE MAINTAINED TO THE SATISFACTION OF THE ENGINEER AND CITY OF OTTAWA IN ACCORDANCE WITH THE BEST MANAGEMENT PRACTICES FOR EROSION AND SEDIMENT CONTROL. SHOULD ANY ADDITIONAL MEASURES BE REQUIRED TO ADDRESS FIELD CONDITIONS THEY SHALL BE INSTALLED AS DIRECTED BY THE ENGINEER OR THE CITY OF OTTAWA, SUCH ADDITIONAL MEASURES MAY INCLUDE BUT NOT BE LIMITED TO INSTALLATION OF FILTER CLOTHS ACROSS MANHOLE AND CATCHBASIN LIDS TO PREVENT SEDIMENT FROM ENTERING THE STRUCTURE AND INSTALLATION AND MAINTENANCE OF A LIGHT DUTY SILT FENCE BARRIER AS REQUIRED.

1.10 ALL IRON WORK ELEVATIONS SHOWN ARE APPROXIMATE AND ARE SUBJECT TO MINOR ADJUSTMENTS AS DETERMINED BY THE ENGINEER. 1.11 ALL CONCRETE CURBS AND SIDEWALKS TO CONFORM TO O.P.S. AND CONSTRUCTED TO CITY STANDARDS. ALL ONSITE CURBS TO BE BARRIER TYPE. WITH DEPRESSIONS AS NOTED

1.12 ALL CONCRETE SHALL BE "NORMAL PORTLAND CEMENT" IN ACCORDANCE WITH O.P.S.S. 1350 AND SHALL ACHIEVE A MINIMUM STRENGTH OF 30MPa AT 28 DAYS.

1.13 ALL CONSTRUCTION TRAFFIC TO ACCESS SITE FROM MARAVISTA DRIVE.

1.14 FOR GEOTECHNICAL REPORT SEE GEOTECHNICAL INVESTIGATION BY PATERSON GROUP PG4557-1 DATED AUG. 1 2018. 1.15 CONTRACTOR TO PROTECT EXISTING INFRASTRUCTURE AND PROPERTY SUCH AS TREES. PARKING

METERS, SIDEWALKS, CURBS, ASPHALT, AND STREET SIGNS FROM DAMAGE DURING CONSTRUCTION. CONTRACTOR TO PAY THE COST TO REINSTATE OR REPLACE ANY DAMAGED INFRASTRUCTURE OR PROPERTY TO THE SATISFACTION OF THE CITY. 1.16 THE POSITION OF POLE LINES, CONDUITS, WATERMAIN, SEWERS, AND OTHER UNDERGROUND AND

ABOVEGROUND UTILITIES AND STRUCTURES ARE NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING WORK THE CONTRACTOR SHALL INFORM ITSELF OF THE EXACT LOCATION OF ALL SUCH UTILITIES AND STRUCTURES, SHALL PROTECT ALL UTILITIES AND STRUCTURES, AND SHALL ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

1.17 CONTRACTOR TO SUPPLY SUITABLE FILL MATERIAL WHERE REQUIRED TO ROUGH GRADE THE SITE. ALL IMPORTED FILL MATERIAL TO BE CERTIFIED AS ACCEPTABLE BY THE GEOTECHNICAL ENGINEER. 1.18 CONTRACTOR TO HAUL EXCESS MATERIAL OFFSITE AS NECESSARY TO GRADE SITE TO MEET THE PROPOSED GRADES, ALL EXCESS MATERIAL TO BE HAULED OFFSITE AND DISPOSED OF AT AN APPROVED DUMP SITE. SHOULD THE CONTRACTOR DISCOVER ANY HAZARDOUS MATERIAL, CONTRACTOR IS TO NOTIFY ENGINEER. ENGINEER TO DETERMINE APPROPRIATE DISPOSAL METHOD/LOCATION.

1.19 FILL MATERIAL WITHIN THE PARKING LOT AND BUILDING PAD AREAS, AND SUPPORTING BUILDING FOUNDATIONS SHALL BE COMPACTED TO 98% STANDARD MODIFIED PROCTOR DENSITY AND TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER.

1.20 ALL COMPACTION METHODS TO BE PERFORMED TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER TO INCLUDE BUT NOT BE LIMITED TO THE THICKNESS OF LIFTS, AND COMPACTION EQUIPMENT USED. 1.21 ALL DISTURBED BOULEVARDS TO BE REINSTATED WITH SOD ON 100mm TOPSOIL.

1.22 UTILITY DUCTS TO BE INSTALLED PRIOR TO ROAD BASE CONSTRUCTION.

1.23 CLAY SEALS TO BE INSTALLED WHERE INDICATED ON THE DRAWINGS OR AS APPROVED AND DIRECTED BY THE GEOTECHNICAL ENGINEER ALL IN ACCORDANCE WITH CITY OF OTTAWA STANDARDS AND SPECIFICATIONS. 1.24 SITE BENCH MARK TOP OF NUT ON HYDRANT AT INTERSECTION OF MARAVISTA AND COBBLE HILL DRIVE SUPPLIED BY IBI, SHOULD BE VERIFIED PRIOR TO CONSTRUCTION. (SEE DRAWING C-100 FOR LOCATION)

2.0 SANITARY

2.1 ALL SANITARY SEWER MAINS TO BE CSA CERTIFIED, BELL AND SPIGOT TYPE. ONLY FACTORY FITTINGS TO BE USED. SEWER TO BE INSTALLED AS PER OSPD 1005.01. SANITARY SEWER MATERIALS TO BE: 200mmØ AND SMALLER - PVC DR 35

2.2 ALL SANITARY MAINTENANCE HOLES TO BE 1.2m DIAMETER AS PER CITY OF OTTAWA STANDARDS COMPLETE WITH BENCHING, RUNGS, FRAME AND COVER, DROP PIPES AND LANDINGS WHERE NEEDED. 2.3 SANITARY MANHOLE COVERS TO BE CITY OF OTTAWA STD. S25 (MOD. OPSD. 401.020). SANITARY MANHOLE COVER TO BE CLOSED COVER TYPE, AS PER CITY STANDARD S24.

2.4 SANITARY SEWER LEAKAGE TEST AND CCTV INSPECTION SHALL BE COMPLETED AS PER CITY SPECIFICATIONS PRIOR TO INSTALLATION OF BASE COURSE ASPHALT

2.5 ANY SANITARY SEWER WITH LESS THAN 2.0m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22, OR AS APPROVED BY THE ENGINEER. 2.6 CONNECTION TO THE EXISTING SANITARY SEWER TO BE INCLUDED IN THE COST FOR SANITARY SEWER

INSTALLATION. THIS INCLUDES REINSTATEMENT OF ROAD CUTS TO CITY STANDARDS 3.0 STORM

3.1 ALL STORM SEWERS TO BE CSA CERTIFIED, BELL AND SPIGOT TYPE, ALL STORM SEWERS TO BE INSTALLED PER MANUFACTURER'S INSTRUCTIONS. ONLY FACTORY FITTINGS TO BE USED. STORM SEWER MATERIALS TO BE: 375mmØ AND SMALLER - PVC DR 35.

3.2 ALL STORM MAINTENANCE HOLES TO BE SIZED IN ACCORDANCE WITH THE PLANS AND AS PER CITY OF OTTAWA STANDARDS COMPLETE WITH BENCHING, RUNGS, AND FRAME AND COVER.

3.6 150mm DIAMETER SOCK-WRAPPED PERFORATED PVC SUBDRAINS 3.0m IN LENGTH ALONG CURB LINE OF CB TO BE INSTALLED. 3.7 ANY STORM SEWER WITH LESS THAN 2.0m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22, OR AS APPROVED BY THE ENGINEER. 3.8 CONNECTION TO THE EXISTING STORM SEWER TO BE INCLUDED IN THE COST FOR STORM SEWER INSTALLATION. THIS INCLUDES REINSTATEMENT OF ROAD CUT TO CITY STANDARDS. 3.9 CONTRACTOR TO PROVIDE IPEX-TEMPEST MHF ICD'S SHOP DRAWINGS, OR EQUIVALENT, FOR ENGINEERS **REVIEW PRIOR TO ORDERING ICD'S.** 4.0 WATER 4.1 ALL WATERMAINS TO BE PVC DR 18, WITH MINIMUM COVER OF 2.4m AND INSTALLED PER CITY OF OTTAWA STANDARDS. ALL DOMESTIC WATER SERVICES ARE TO BE 150mmØ. 4.2 THRUST BLOCKS TO BE INSTALLED AT ALL BENDS, TEES, AND CAPS ALL AS PER OPSD 1103.01 AND 1103.02. 4.3 CONTRACTOR TO CONDUCT PRESSURE AND LEAKAGE TESTING OF ALL WATERMAINS AND DISINFECT AND CHLORINATE ALL WATERMAINS TO THE SATISFACTION OF M.O.E. AND THE CITY OF OTTAWA. 4.4 TRACER WIRE TO BE INSTALLED ALONG THE FULL LENGTH OF WATERMAIN AND ATTACHED TO EACH MAIN STOP AS PER CITY OF OTTAWA STANDARDS W36. 4.5 ALL COMPONENTS OF THE WATER DISTRIBUTION SYSTEM SHALL BE CATHODICALLY PROTECTED AS PER CITY OF OTTAWA STANDARDS W40 & W42. 4.6 ALL VALVES & VALVE BOXES AND ASSEMBLIES SHALL BE INSTALLED AS PER CITY OF OTTAWA STANDARDS

3.3 STORM MH COVERS TO BE OPEN TYPE, AS PER CITY STANDARD S24, FRAMES TO BE PER CITY OF OTTAWA STD. S25. CONTRACTOR TO INSTALL FILTER FABRIC UNDER STORM MH COVER UNTIL SODDING IS COMPLETE

3.5 ALL CATCH BASINS TO BE AS PER OPSD 705.010, FRAME & FISH TYPE GRATE AS PER CITY OF OTTAWA STD.

3.4 STORM MAINTENANCE HOLES TO BE OPSD, SIZE AS SPECIFIED, TAPER TOP.

4.7 ANY WATERMAIN WITH LESS THAN 2.4m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22, OR AS APPROVED BY THE ENGINEER.

4.8 CONTRACTOR IS RESPONSIBLE FOR ACQUIRING THE WATER PERMIT FROM THE CITY OF OTTAWA AND PAYMENT OF ANY FEES ASSOCIATED WITH SECURING THE WATER PERMIT. OWNER IS RESPONSIBLE FOR REIMBURSING THE CONTRACTOR FOR THE ACTUAL COST OF ACQUIRING THE WATER PERMIT

4.9 CONNECTION TO EXISTING WATERMAIN TO BE INCLUDED IN THE COST FOR THE WATERMAIN INSTALLATION. THIS COST INCLUDES REINSTATEMENT OF ROAD CUTS TO CITY STANDARDS.

5.0 PARKING LOT AND WORK IN PUBLIC RIGHTS OF WAY

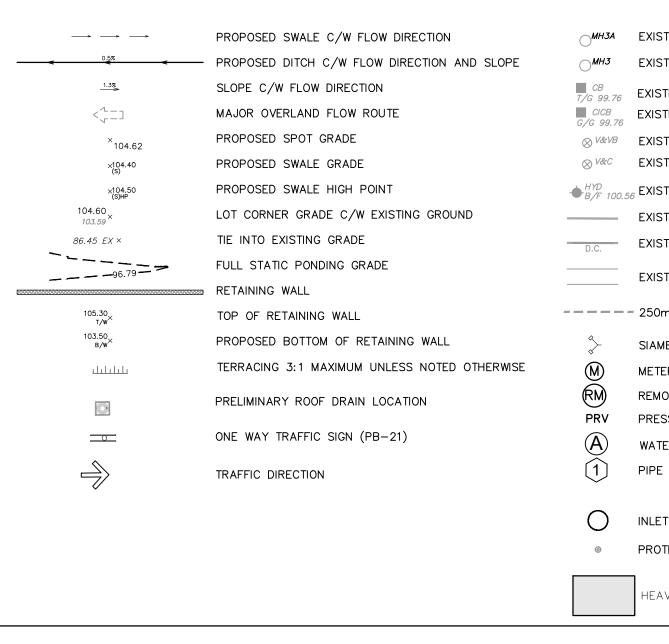
5.1 CONTRACTOR TO REINSTATE ROAD CUTS PER CITY OF OTTAWA STANDARD R-10. 5.2 THE CONTRACTOR SHALL PREPARE A TRAFFIC MANAGEMENT PLAN FOR REVIEW AND APPROVAL BY THE CITY OF OTTAWA. CONTRACTOR TO MAINTAIN TRAFFIC FLOW DURING THE ENTIRE CONSTRUCTION PERIOD. MAINTENANCE OF ROAD CUTS SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR. PROVISION OF FLAGMEN, DETOURS AS NECESSARY, BARRICADES AND SIGNS TO THE FULL SATISFACTION OF THE ENGINEER AND ROAD AUTHORITY SHALL BE THE CONTRACTOR'S RESPONSIBILITY

5.3 CONTRACTOR TO PREPARE SUBGRADE, INCLUDING PROOFROLLING, TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER PRIOR TO THE COMMENCEMENT OF PLACEMENT OF GRANULAR B MATERIAL 5.4 FILL TO BE PLACED AND COMPACTED PER THE GEOTECHNICAL REPORT REQUIREMENTS.

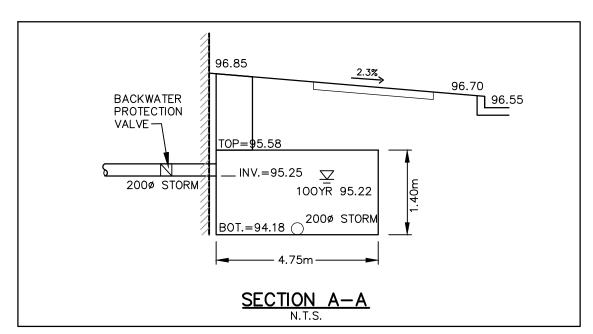
5.5 CONTRACTOR TO SUPPLY, PLACE AND COMPACT GRANULAR B MATERIAL IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE GEOETCHNICAL ENGINEER. CONTRACTOR TO PROVIDE ENGINEER WITH SAMPLES OF GRANULAR B MATERIAL FOR TESTING AND CERTIFICATION FROM THE GEOTECHNICAL ENGINEER THAT THE MATERIAL MEETS THE GRADATION REQUIREMENTS SPECIFIED IN THE GEOTECHNICAL REPORT. 5.6 GRANULAR A MATERIAL TO BE PLACED ONLY UPON APPROVAL BY THE GEOTECHNICAL ENGINEER OF

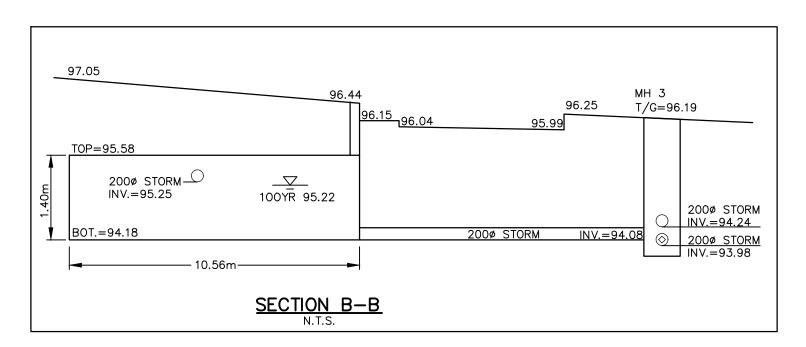
GRANULAR B PLACEMEN 5.7 CONTRACTOR TO SUPPLY, PLACE AND COMPACT GRANULAR A MATERIAL IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE GEOETCHNICAL ENGINEER. CONTRACTOR TO PROVIDE ENGINEER WITH SAMPLES OF GRANULAR A MATERIAL FOR TESTING AND CERTIFICATION FROM THE GEOTECHNICAL ENGINEER THAT THE

MATERIAL MEETS THE GRADATION REQUIREMENTS SPECIFIED IN THE GEOTECHNICAL REPORT. 5.8 ASPHALT MATERIAL TO BE PLACED ONLY UPON APPROVAL BY THE GEOTECHNICAL ENGINEER OF **GRANULAR A PLACEMENT**


5.9 CONTRACTOR TO SUPPLY, PLACE AND COMPACT ASPHALT MATERIAL IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE GEOTECHNICAL ENGINEER. CONTRACTOR TO PROVIDE ENGINEER WITH SAMPLES OF ASPHALT MATERIAL FOR TESTING AND CERTIFICATION FROM THE GEOTECHNICAL ENGINEER THAT THE MATERIAL MEETS THE REQUIREMENTS SPECIFIED IN THE GEOTECHNICAL REPORT.

5.10 CONTRACTOR IS RESPONSIBLE FOR ESTABLISHING LINE AND GRADE IN ACCORDANCE WITH THE PLANS, AND FOR PROVIDING THE ENGINEER WITH VERIFICATION PRIOR TO PLACEMENT 5.11 DITCHES DISTURBED DURING CULVERT INSTALLATION AND GRADING OPERATIONS ARE TO BE REINSTATED TO THEIR ORIGINAL CONDITION AND FLOWLINE GRADES.


5.12 EXISTING WEST SIDE ROAD DITCH ALONG STRANDHERD DRIVE TO BE REALIGNED AS PER THE GRADING PLAN. ADJACENT AREAS BETWEEN ROAD SIDE DITCH AND SIDE YARD LOT TO BE RE GRADED AS PER THE GRADING PLAN. ALL RE GRADED AREAS IN EXISTING PUBLIC RIGHTS OF WAY AND ANY OTHER DISTURBED AREAS IN EXISTING PUBLIC RIGHTS OF WAY ARE TO BE FINISHED WITH SOD ON 100mm TOPSOIL.


5.13 ALL EXCESS MATERIAL TO BE HAULED OFFSITE AND DISPOSED OF AT AN APPROVED DUMP SITE. SHOULD THE CONTRACTOR DISCOVER ANY HAZARDOUS MATERIAL, CONTRACTOR IS TO NOTIFY ENGINEER. ENGINEER TO DETERMINE APPROPRIATE DISPOSAL METHOD/LOCATION

5.14 PAVEMENT STRUCTURE (MATERIAL TYPES AND THICKNESSES) FOR HEAVY DUTY AND LIGHT DUTY AREAS TO BE AS SPECIFIED IN THE GEOTECHNICAL REPORT AND SHOWN ON THE PLANS.

		WATERMAIN SCHE	EDULE		
	STATION	DESCRIPTION	FINISHED GRADE	TOP OF WATERMAIN	AS-BUILT WATERMAIN
Α	0+000.00	CONNECT TO EXISTING 2000 - 200×150TEE	EX.±96.65		EX.±94.25
	0+007.75	150ø V&VB	96.75	94.35	
	0+009.00	22 ½ BEND	96.78	94.38	
	0+019.15	22 ½ BEND	97.45	93.85	
В	0+019.55	BUILDING	97.45	93.85	
С	0+000.00	CONNECT TO EXISTING 1500 V&VB	EX.±96.05		EX.±93.50
	0+001.50	45° VERTICAL BEND	95.93	93.50	
	0+002.00	45° VERTICAL BEND	94.71	93.00	
D	0+003.19	BUILDING	94.51	93.00	

HEAVY TRUCK PARKING AREAS AND ACCESS LANES:

STING SANITARY MANHOLE	O ^{MH3A}	SANITARY MANHOLE
STING STORM MANHOLE	O ^{MH3}	STORM MANHOLE
STING STREET CATCHBASIN	⊂CB T/G 99.76	CATCHBASIN c/w TOP OF GRATE
STING CURB INLET CATCHBASIN	■ RYCB T/G 99.76	REAR YARD CATCHBASIN c/w GUTTER GRADE
STING VALVE AND VALVE BOX	,	,
STING VALVE AND CHAMBER	О_{ЕСВ} Т/G 100.25	REAR YARD "END" CATCHBASIN C/W TOP OF GRATE 300Ø)
STING HYDRANT	🗩 свмн	CATCHBASIN MANHOLE
STING BARRIER CURB	T/G 101.55	c/w TOP OF GRATE
STING DEPRESSED BARRIER CURB	⊗ ^{V&VB}	VALVE AND VALVE BOX
	⊗ ^{v&c}	VALVE AND CHAMBER
STING CONCRETE SIDEWALK	●HYD B/F 100.56	HYDRANT c/w BOTTOM OF FLANGE ELEVATION
0mmØ SUBDRAIN		DEPRESSED BARRIER CURB AS PER SC1.1
MESE CONNECTION (IF REQUIRED)		BARRIER CURB AND GUTTER AS PER SC1.2
TER		MOUNTABLE CURB AS PER SC1.3
MOTE METER		PROPOSED CONCRETE SIDEWALK
ESSURE REDUCING VALVE		PROPOSED CHAIN LINK SLIDING GATE
TERMAIN IDENTIFICATION		PROPOSED CHAIN LINK FENCE
E CROSSING IDENTIFICATION	A A	
		CLAY DYKES PER S8
ET CONTROL DEVICE LOCATION	F.F.E.=106.30	PROPOSED BUILDING FINISHED FLOOR ELEVATION
OTECTIVE BOLLARD	U.S.F.=104.30	PROPOSED UNDERSIDE OF FOOTING ELEVATION
AVY DUTY ASPHALT / FIRE ROUTE		PROPOSED TRANSFORMER

		STOR	M STRU	CTURE TA	BLE	
NAME	RIM ELEV.	INVERT IN	INVERT IN AS-BUILT	INVERT OUT	INVERT OUT AS-BUILT	DESCRIPTION
MH1	96.13	NW93.860 SE93.860		NE93.710		1200ø OPSD 701.010
MH2	96.11	SW93.970		NW93.910		1200ø OPSD 701.010
MH3	96.19	NW94.240 SW94.080		SE93.980		1200ø OPSD 701.010

		Sanita	ry STRU	ICTURE T	ABLE	
NAME	RIM ELEV.	INVERT IN	INVERT IN AS-BUILT	INVERT OUT	INVERT OUT AS-BUILT	DESCRIPTION
MH1A	96.71	S93.326		NW93.300		1200ø OPSD 701.010

<u>CROSSING SCHEDULE</u> $\hat{1}$ 2000 SAN 0.70M CLEARANCE UNDER 2000 W/M

ROAD STRUCTURE **

CAR ONLY PARKING AREAS:

50mm WEAR COURSE - HL-3 OR SUPERPAVE 12.5 ASPHALTIC CONCRETE 150mm BASE – OPSS GRANULAR "A" CRUSHED STONE 300mm SUBBASE – OPSS GRANULAR "B" TYPE II ON APPROVED SUBGRADE

40mm WEAR COURSE - HL-3 OR SUPERPAVE 12.5 ASPHALTIC CONCRETE 50mm BINDER COURSE - HL-8 OR SUPERPAVE 19.0 ASPHALTIC CONCRETE 150mm BASE COURSE – OPSS GRANULAR "A" CRUSHED STONE 400mm SUBBASE – OPSS GRANULAR "B" TYPE II ON APPROVED SUBGRADE

** REFER TO GEOTECHNICAL REPORT BY PATERSON GROUP PG4557-1 DATED AUG. 1, 2018

> ROAD STRUCTURE EXISTING ROADS EXISTING MARAVISTA DRIVE AND COBBLE HILL DRIVE (11.0m) : 50mm HL3 50mm HL4 50mm HL 150mm GRANULAR "A" 600mm GRANULAR "B"

EXISTING CHESAPEAKE CRESCENT (8.5m)

50mm HL3 50mm HL4

150mm GRANULAR "A" 375mm GRANULAR "B"

$\langle $			The second secon	\sum	RAFTUR DO
	ONEELECRI ON OT	7	errension P		FA
	FALLOWFIELDRD	EN DER	NEROBARENSON	ARVIEW RD	
5			$\langle \ \rangle$	RD	unanonnal la filler
			MARANDE A OR		Pacoos cres
E	SI	ſE-	STRANDHERD DR		
HINY ATC			HERDD	KENNENNE	
			JR \	1	
N					22,120,00
	$\rightarrow \parallel$				MUCCELINA 10R
			PLAN T.S.		
1. SEE	ES: DRAWING SECTIONS		ADDITIONAL	DETAII	_S, NOTES
14					
13 12					
11					
10 9					
8					
7 6					
5					
4		AS PER CITY SITE PLAN AS PER CITY		DGY	2019:07:15
2		SITE PLAN	COMMENTS	DGY DGY	
No.		REVISION	S	By	2018:12:12 Date
		-			
154, Co	olonnade F	Group Road South, (patersongrou	Ottawa ON K2	2E 7J5	;
		-	ndscape archite	ct	
			x & Ass tawa ON K1Y		iates
T 613 7	722 5168 j EUR Surve	bla.ca			
Ann	is O'S	Sullivar	Volle		
		nepean@aov), Nepean ON /Itd.com	I K2E	786
NEU 630, bou	I. René-Léve	itect(e)s	ge, Montréal QC	H3B 1	S6
	•				
		CLA	ARID) G	E
		н	Venue Suite 2000, O	S	
			claridgehomes.com		
—		IBI GRO			
	BI	Ottawa C	3 Preston Str N K1S 5N4 25 1311 fax	Cana	
		ibigroup			
Projec	t Title				
-				_LA	GE
16	64 MAR	AVISTA D	RIVE, OT	IAW	A, ON.
.0	PROFESSIO	ONAL C.			
I CENSED	<u>19</u>	MAL CINC			
$ \rangle c$	6. Yannou 2019/07/	lopoulos ⊅			
TRO.	LINCE OF	ONTARIO			
	ng Title				
	-	ITE D	ETAIL	S	
	0			-	
Scale					
			N.T.S.		
Desig			Date		

RM

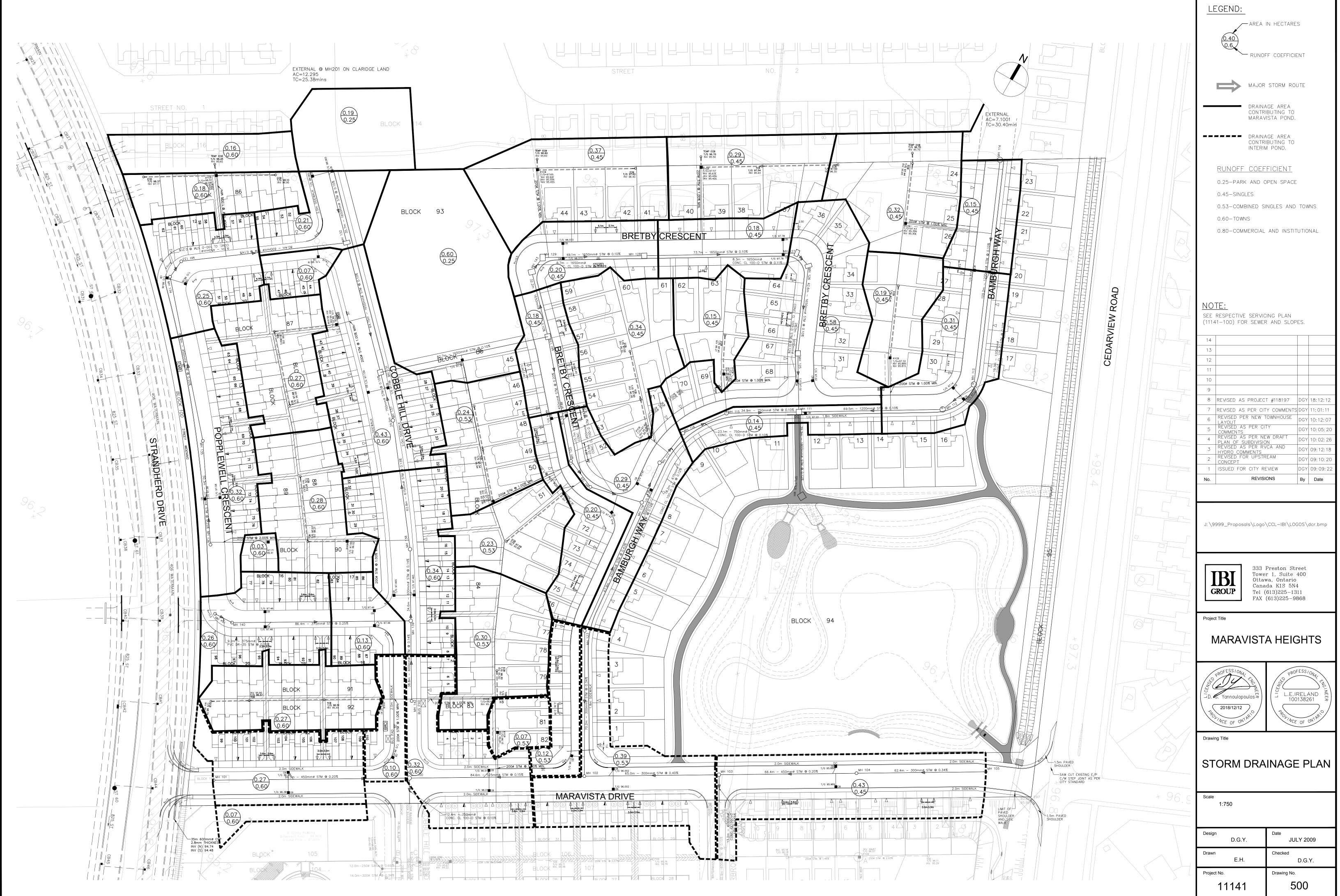
DPS

118197

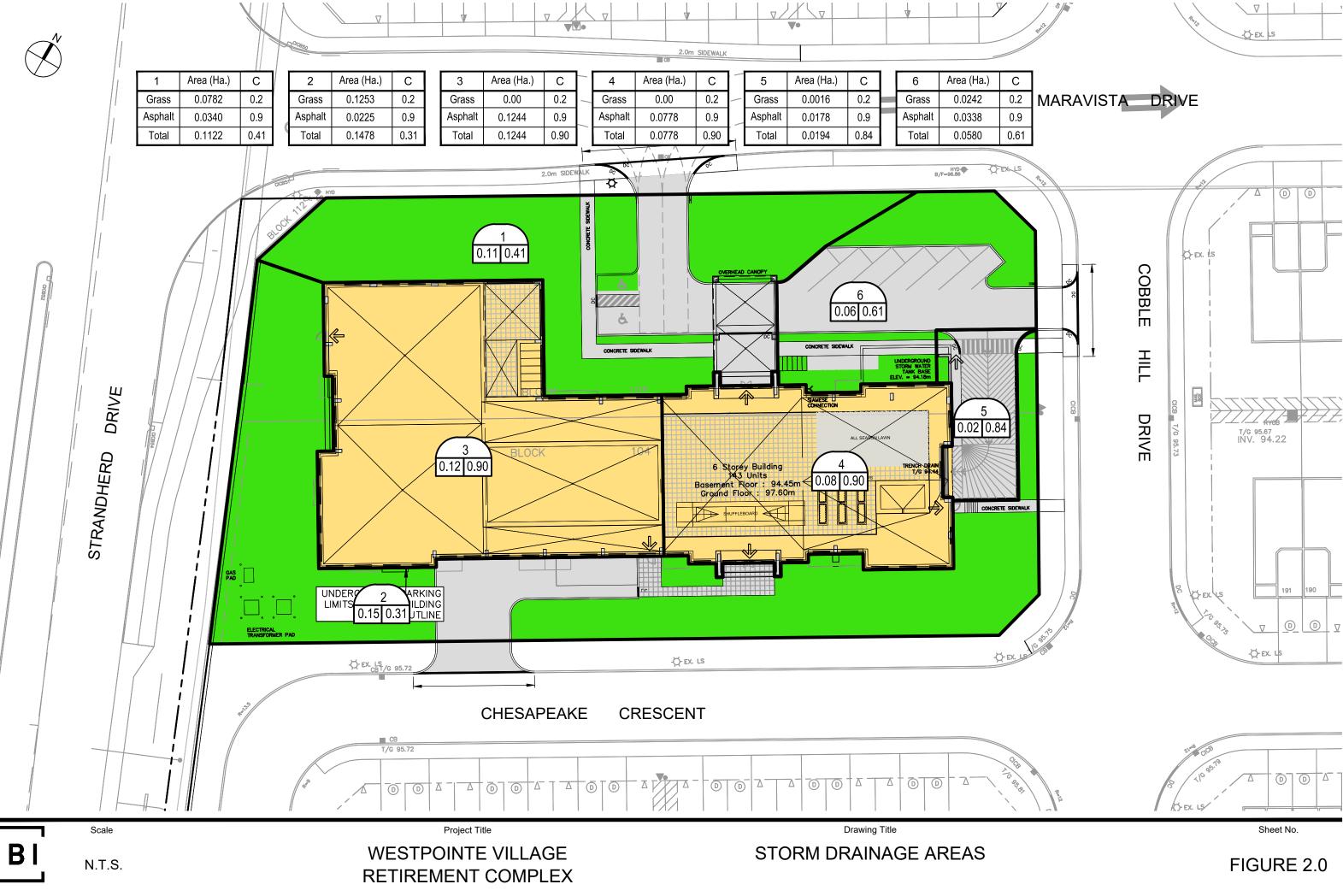
Drawn

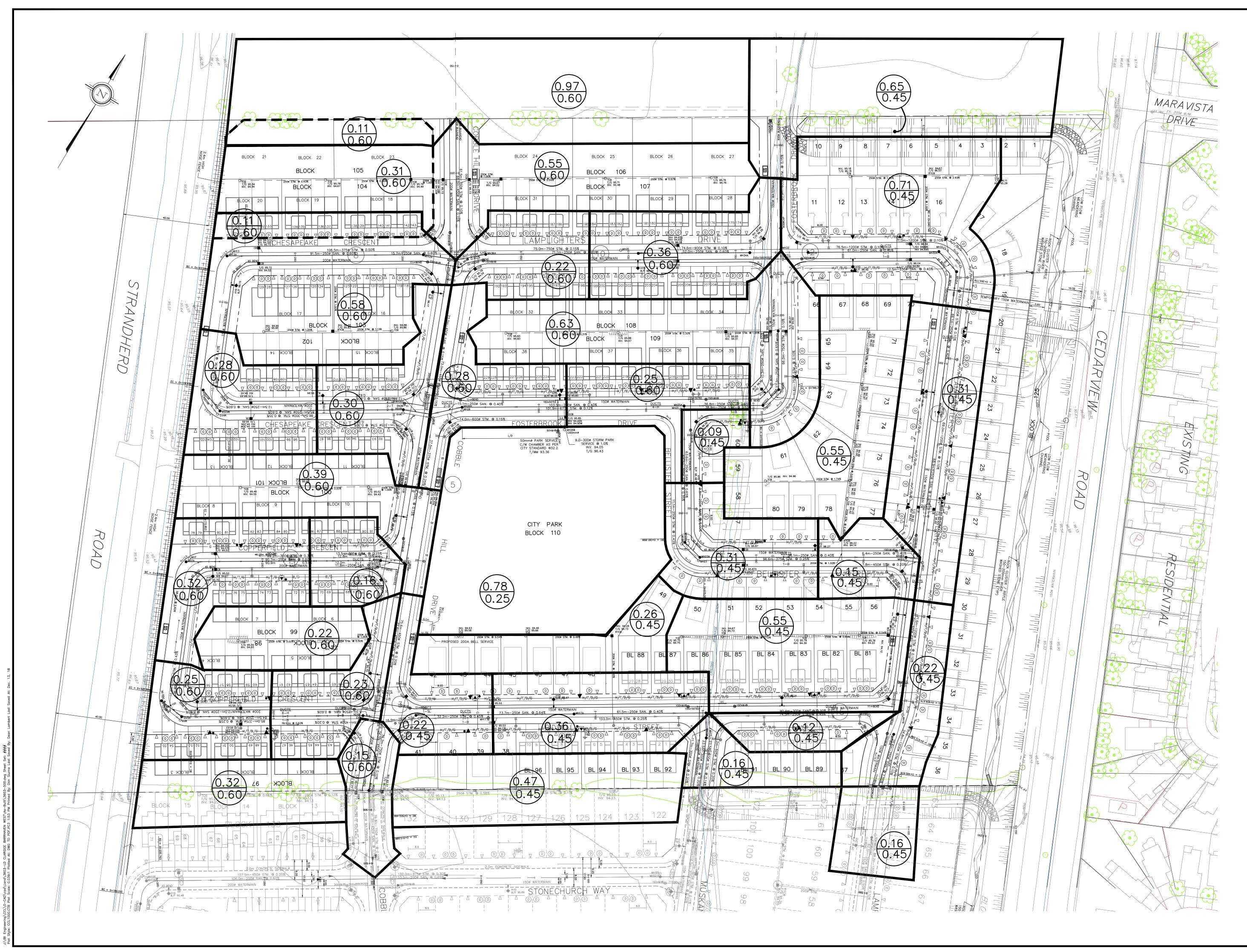
Project No.

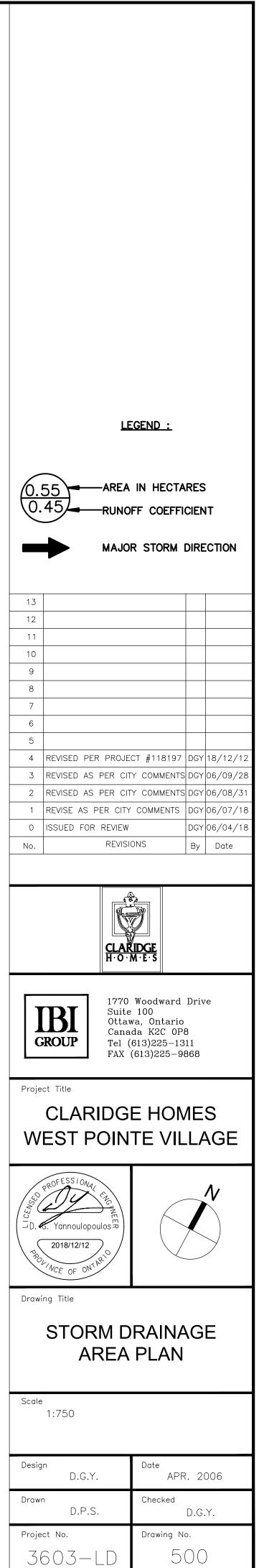
SEPT. 2018

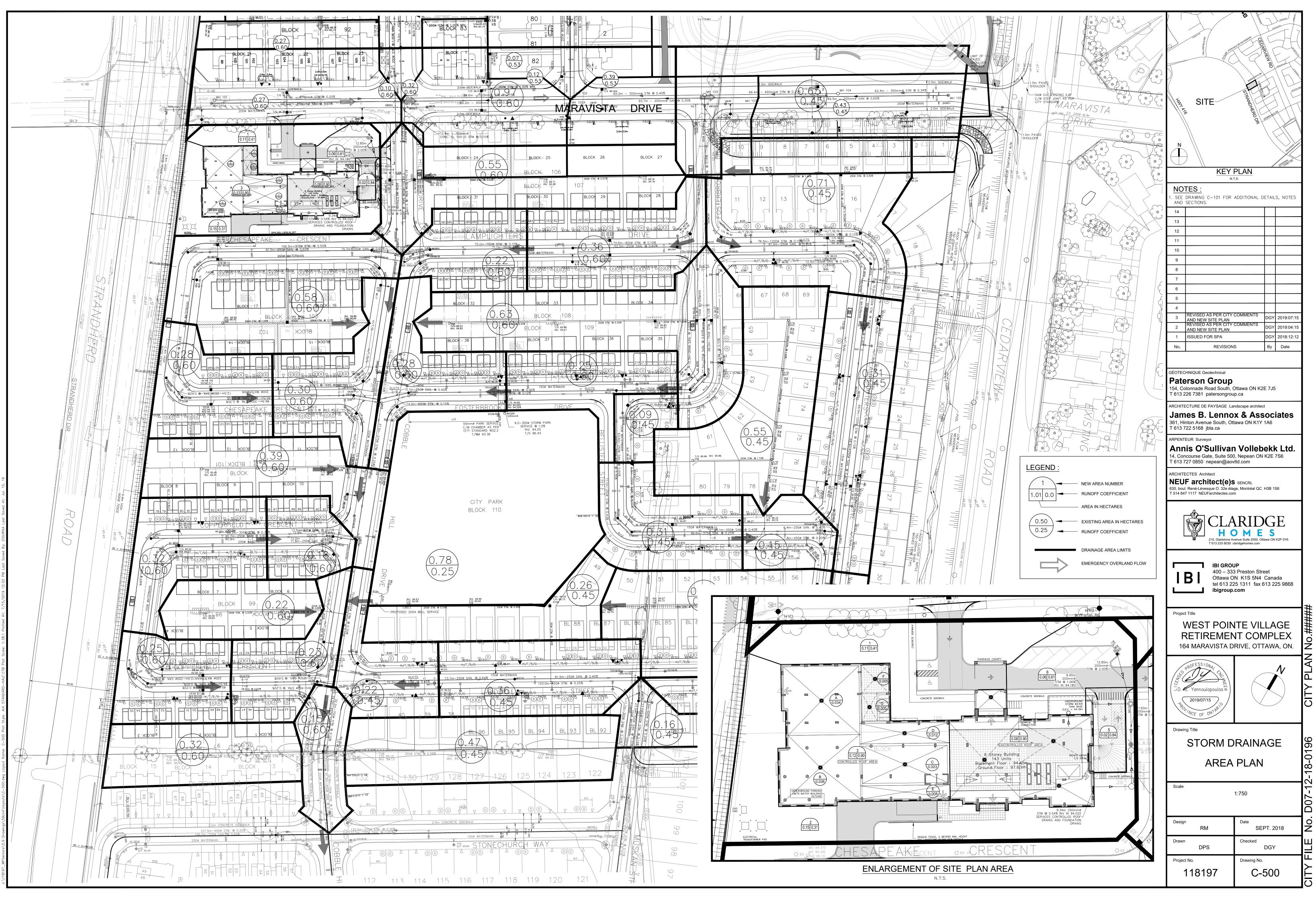

DGY

C-101


Checked


Drawing No.


APPENDIX D



4/5:9 Drawings/59civil/current/As-Built/1141ServicesAsbuilt.dwg Layout Name: 500 Plot Style: AIA STANDARD-HALF.CTB Plot Scale: 1:25.4 Plotted At: 12/13/2018 12:00 PM Last Saved By: dsiurna Last Saved At: Dec. 13,

	IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada	Canada														PROJECT: DATE: FILE:	WPV RC 14/12/2018 118197-5.7
	tel 613 225 1311 fax 613 Ibigroup.com	1 225 9868														REV#: DESIGNED BY: CHECKED BY:	A.Z. D.Y.
STORMWATER MANAGEMENT	GEMENT																
Formulas and Descriptions	<u>us</u>																
$ \begin{split} I_{p,\pi} &= 1.2 \text{ year intensity} = 722.951 / (T_e^{46}, 199)^{0.010} \\ I_{p,\pi} &= 1.5 \text{ year intensity} = 998.071 / (T_e^{-6}, 053)^{0.041} \\ I_{0,\pi} &= 1.100 \text{ year intensity} = 1735.688 / (T_e^{-6}, 0.14)^{0.020} \\ T_o^{-6} &= Time of Consentration (min) \\ T_o^{-6} &= Tim$	951 / (T _c +6.199) ^{0.810} 071 / (T _c +6.053) ^{0.814} 1735.688 / (T _c +6.01* nin) nt	4) ^{0 820}															
Maximum Allowable Release Rate	ase Rate																
Restricted Flowrate (based on 85 L/s/Ha)	on 85 L/s/Ha)																
	Aste =	0.31 Ha	m														
	$Q_{restricted} =$	26.35 L/s	s														
Ramp Uncontrolled Release ($Q_{uncontrolled} = 2.78^{*}C^{*}i_{100yr}^{*}A_{uncontrolled}$)	s (Q uncontrolled = 2.78	9*C*i _{100yr} *A _{un}	scontrolled)														
A	$C = T_c = i_{100yr} = A_{uncontrolled} = $	1.00 10 min 178.56 mm/hr 0.019 Ha	in m/hr														
Q,	Q uncontraled =	9.43 L/s	S														
Maximum Allowable Release Rate (Q $_{ m maxallowable} = Q$ $_{ m netriced}$ - Q $_{ m uncontrolled}$)	e Rate (Q _{max allowabk}	e = Q restricted -	- Q uncontrolled	(*													
Q max allowable	owable =	16.92 L/s	S														
MODIFIED RATIONAL METHOD (100-Year, 5-Year & 2-Year Ponding) Drainage Area roof a Area (Ha) 0.034	METHOD (100-You control 100-You control 100-Yo	ear, 5-Year	. & 2-Year	Ponding)		Drainage Area Area (Ha)	roof a 0.034					Drainage Area Area (Ha)	roof a 0.034				
C = ,	1.00 Restricted Flow Qr (L/s)=	d Flow Q _r (L/s	=(0.94		C = .	06.0	0.90 Restricted Flow Qr (L/s)=	/s)=	0.94		C =	06.0	0.90 Restricted Flow Qr (L/s)=	=(s/1	0.94	
	100-Ye	100-Year Ponding						5-Year Ponding						2-Year Ponding	ß		
¢,		Peak Flow Q _p =2.78xCi _{100yr} A	a,	Q _p -Q _r	Volume 100yr	Τ _c Variable	i _{Syr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	a, -a,	Volume 5yr	Τ _c Variable	i _{2yr}	Peak Flow Q _p =2.78xCi _{2yr} A	Q,	Q, -Q,	Volume 2yr
_	(1)	(L/s) 4.21	(L/s) 0.94	(L/s) 3.27	(m ³) 16 100	(min) 45	(mm/hour) 40.63	(L/S) 3 49	(L/s) 0.94	(L/s) 2.55	(<i>m</i> ') 6.88	(min) 35	(mm/hour) 36.06	(L/S) 3.10	(L/s) 0.94	(L/s) 2.16	(m ³) 4.53
		4.14	0.94	3.20	16.105	47	39.38	3.38	0.94	2.44	6.88	37	34.70	2.98	0.94	2.04	4.53
88 88	42.57 4.	4.06 3.99	0.94	3.12 3.05	16.107 16.107	48 49	38.78 38.21	3.33 3.28	0.94	2.39 2.34	6.88 6.88	88	34.06 33.45	2.92 2.87	0.94	1.98	4.53

no in official	B 1001					now officiate	1001					no i u o Britinia	1001 4				
Area (Ha)	0.034	4				Area (Ha)	0.034					Area (Ha)	0.034				
C =	1.00	1.00 Restricted Flow Qr (L/s)=	L/s)=	0.94		C =	06.0	0.90 Restricted Flow Qr (L/s)=	=(s/T)	0.94		C =	0.90	0.90 Restricted Flow Qr (L/s)=	-/s)=	0.94	
		100-Year Ponding	ng					5-Year Ponding	ß					2-Year Ponding	g		
T _c Variable	İ 100yr	Peak Flow Q _a =2.78xCi _{100vr} A	a,	Qp-Qr	Volume 100yr	T _c Variable	l _{Syr}	Peak Flow Q _n =2.78xCi _{5vr} A	Q,	Q , -Q,	Volume 5yr	T _c Variable	i _{zyr}	Peak Flow Q _a =2.78xCi _{2vr} A	Q,	Q, -Q,	Volume 2yr
(min)	(mm/hour)	(F/s)	(I/S)	(T/S)	(m ³)	(min)	(mm/hour)	(T/s)	(T/s)	(L/S)	(m ³)	(min)	(mm/hour)	(I/S)	(T/S)	(T/s)	(m ³)
82	44.15	4.21	0.94	3.27	16.100	45	40.63	3.49	0.94	2.55	6.88	35	36.06	3.10	0.94	2.16	4.53
84	43.34	4.14	0.94	3.20	16.105	47	39.38	3.38	0.94	2.44	6.88	37	34.70	2.98	0.94	2.04	4.53
86	42.57	4.06	0.94	3.12	16.107	48	38.78	3.33	0.94	2.39	6.88	38	34.06	2.92	0.94	1.98	4.53
88	41.83	3.99	0.94	3.05	16.107	49	38.21	3.28	0.94	2.34	6.88	30	33.45	2.87	0.94	1.93	4.52
06	41.11	3.92	0.94	2.98	16.104	51	37.12	3.19	0.94	2.25	6.88	41	32.30	2.77	0.94	1.83	4.51
								1	6					1			
		Sto	Storage (m ³)					Stor	Storage (m ³)					Stor	Storage (m ³)		
	Overflow 0.00	Required 16.11	Surface 17.16	Surface Sub-surface 17.16 0.00	Balance 0.00		Overflow 0.00	Required 6.88	Surface 17.16	Sub-surface 0.00	Balance 0.00		Overflow 0.00	Required 4.53	Surface 17.16	Surface Sub-surface 17.16 0.00	Balance 0.00
* Assume roof top si	torage of 150mm o	Assume roof top storage of 150mm over 100% of flat roof															

J:\118197_WPSeniors\6.7 Calculations\6.7.1 Sewers & Grading\CCS_118197_swm_2019-04-09

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Drainage Area Area (Ha)	0.036					Drainage Area Area (Ha)	0.036				
T T Imm Variable Imm Imm (min) (min) (mm (min) 86 4 4 88 93 4 4 4 93 93 4 4 0 0 0 1 4 93 93 4 4 0		Restricted Flow Qr (L/s)=	Щ	0.94		C =		Restricted Flow Qr (L/s)=	-(s)=	0.94		C =	0.90	Restricted Flow Qr (L/s)=	=(s/1)	0.94	
Tc Tc Tmm Tmm <thtmm< th=""> <thtmm< th=""> <thtmm< th=""></thtmm<></thtmm<></thtmm<>		100-Year Ponding						5-Year Ponding	g					2-Year Ponding	ng		
(min) (mm) 88 4 4 89 90 4 4 90 90 4 4 91 0 0 0 0 Assume roof top storage of trainage Area 1 1 1 7 7 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1		Q _a =2.78xCi _{100vr} A	a,	۵,-۵,	Volume 100yr	Τ _c Variable	i syr	Peak Flow Q _n =2.78xCi _{5vr} A	α,	۵, -۵,	Volume 5yr	T _c Variable	i zyr	Peak Flow Q _n =2.78xCi _{2vr} A	a,	a,-a,	Volume 2yr
Assume roof top storage of Assume roof top stop storage of Assume roof top storage of Assume roof top		(L/S)	(L/s)	(L/s)	(m ³)	(min)	(mm/hour)	(T/S)		(I/S)	(m ³)	(min)	(mm/hour)	(I/S)	_	(T/s)	(m ³)
89 92 4 92 93 4 92 92 4 Assume roof top storage of treat(Ha) 0 0 7 7 1 84 4 4 84 4 4		4.21	0.94	3.27	16.899 16.003	45	40.63	3.62	0.94	2.68	7.24	35	36.06	3.21	0.94	2.27	4.77
90 92 92 Assume roof top storage of Crainage Area = (Ha) = variable (min) 84 84 84 4			0.94	3.17	16.904	4/	38.78	3.46	0.94	2.52	7.25	58	34.06	3.04	1.94	2.13	4.78
92 92 44 Assume roof top storage of 0 (0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1		4.07	0.94	3.13	16.904	49	38.21	3.40	0.94	2.46	7.25	39	33.45	2.98	0.94	2.04	4.78
Assume roof top storage of <i>rainage Area</i> = (Ha) = Variable (mm) 84 4 86 4 4	_		0.94	3.06	16.903	51	37.12	3.31	0.94	2.37	7.24	41	32.30	2.88	0.94	1.94	4.77
ge Area	Overflow Re 0.00 .	20	0	Sub-surface 0.00	Balance 0.00	ı	Overflow 0.00	Stor Required 7.25	Storage (m ³) Surface 17.81	Sub-surface 0.00	Balance 0.00		Overflow 0.00	Sto Required 4.78	Storage (m ³) Surface 17.81	Sub-surface 0.00	Balance 0.00
T _c riable 864 866	roofc					Drainage Area	roof c					Drainage Area	roof c				
	0.023 1.00 Restrict	Restricted Flow Qr (L/s)=	ų	0.63		Area (na) C =	0.90	Restricted Flow Qr (L/s)=	=(s/1	0.63		Агеа (па) С =	0.90) Restricted Flow Q _r (L/s)=	=(s/1)	0.63	
		100-Year Ponding						5-Year Ponding	5						DU		
	i taour Pec	Peak Flow	à	a,-a,	Volume	T	I Sur	Peak Flow	a,	aa,	Volume	T	1 200	Peak Flow	°,	aa,	Volume
$\left \right $	r)	Q _p =2./8XCi _{100yr} A (L/S)	(L/s)	(L/s)	100yr (m ³)	variable (min)	ur)	Q_p=2./8XCI _{5yr} A (L/s)	0	(I/S)	oyr (m ³)	variable (min)	(mm/hour)	Q p =2.78XCI 2yr A (L/S)	(T/S)	(T/S)	(m ³)
		2.72	0.63	2.09	10.520	45	40.63	2.29	0.63	1.66	4.49	33	37.54	2.12	0.63	1.49	2.95
l			0.63	2.04	10.520	47 48	39.38 38.78	2.22 2.10	0.63	1.59	4.49 4.49	35 86	36.06 35.37	2.03	0.63	1.40	2.95
			0.63	1.99	10.518	49	38.21	2.16	0.63	1.53	4.49	37	34.70	1.96	0.63	1.33	2.95
	41.11	2.58	0.63	1.95	10.515	51	37.12	2.09	0.63	1.46	4.48	39	33.45	1.89	0.63	1.26	2.94
		Stor				ľ											
Overflow Required 0.00 10.52 * Assume roof top storage of 150mm over 100% of flat roof	Overflow Re 0.00 ·		Surface Su 11.28	Sub-surface 0.00	Balance 0.00		Overflow 0.00	Required 4.49	Surface 11.28	Sub-surface 0.00	Balance 0.00		Overflow 0.00	Required 2.95	Surface 11.28	Sub-surface 0.00	Balance 0.00
ainawa Awaa	1000				-	Durinees Ame	la Baau					Ductions Avec	h a nor	-			
Drainage Area Area (Ha)	0.012					Dramage Area Area (Ha)	0.012					Drainage Area Area (Ha)	0.012				
		Restricted Flow Qr (L/s)=	Щ	0.63		C =		Restricted Flow Qr (L/s)=	=(s/"	0.63		C =	0.90	Restricted Flow Qr (L/s)=	=(s/T)	0.63	
	100-Y	100-Year Ponding						5-Year Ponding	9					2-Year Ponding	bu		
T _c Variable	i 100yr Q.,=2.7	Peak Flow Q _=2.78xCi 400.r A	α,	a,-a,	Volume 100vr	T _c Variable	I Syr	Peak Flow Q _=2.78xCi s A	α,	a, -a,	Volume 5vr	T _c Variable	I zyr	Peak Flow Q=2.78xCi 3A	a,	a,-a,	Volume 2vr
	(mm/hour)	(L/s)	(L/s)	(F/s)	(m ³)	(min)	(mm/hour)	(L/s)	(T/s)	(I/S)	(m ³)	(min)	(mm/hour)	(L/S)	(T/S)	(T/S)	(m ³)
	73.83	2.42	0.63	1.79	4.400	22	66.15	1.95	0.63	1.32	1.74	16	59.50	1.75	0.63	1.12	1.08
		2.34	0.63	1.71	4.405	24	62.54	1.84	0.63	1.21	1.75	18	55.49 52.49	1.64	0.63	1.01	1.09
		2.50	0.63	1.07	4.406	25 26	50.35	1.00	0.63	1.17	1.75	81	52.03	1.30	0.00	0.90	1.08
47 6	66.91	2.19	0.63	1.56	4.404	28	56.49	1.67	0.63	1.04	1.74	22	49.02	1.45	0.63	0.82	1.08
Ċ		Storage (m ³)						Sto			c		ų.	Stc	Storage (m ³)	-	1
Verinow Kequine 2.00 Adulted 4.41	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		5.89 Surrace Su	o.00	0.00		0.00	1.75	5.89	o.00	0.00		0.00	1.09	5.89	o.00	0.00
										overflows to:	0					overflows to:	

J:1118197_WPSeniors/5.7 Calculations/5.7.1 Sewers & Grading/CCS_118197_swm_2019-04-09

2 of 4

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ $
$ \begin{array}{ c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ $	$ \begin{array}{ $
$ \begin{array}{ $	$ \begin{array}{ $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c $	$ \begin{array}{ c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ $
$ \begin{array}{ $	Ing S-Vear Pording S-Vear Pording
$ \begin{vmatrix} a_{1} & a_{2} & a_{1} & bolume \\ (us) &	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
ng 5-Year Ponding 2-Year Ponding 2-Year Ponding q_r q_{ρ} - q_{ρ} p_{out} p_{out} q_r <	ng 5-Year Ponding 5-Year Ponding 2-Year Ponding
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
063 129 1311 8 116/1 151 063 0.88 0.42 5 105.57 135 063 075 075	063 1.29 1311 10 1311 10 14161 151 0.03 0.08 0.42 5 10.357 1135 0.63 1.16 1.32 11 1
100 1.10 1.321 10 104.19 1.20 106.3 0.43 8 8 10.00 1.13 0.03 0.43 0.43 8 8.46 1.11 0.03 0.43 0.43 0.43 0.43 0.44 0.45 0.44 0.45 </td <td>063 1.10 1.321 10 104.19 1.35 0.03 0.12 1.43 1.8 0.06 1.13 1.06 1.16 1.32 0.06 1.16 1.32 0.06 1.16 1.32 0.06 0.43 8 8.646 1.16 1.32 1.05 1.33 0.60 0.43 9 9.67 1.05 1.05 1.05 0.05 0.43 9 8.646 1.16 1.31 1.05 <th1.05< th=""> <th1.05< th=""> <th1.05< th=""></th1.05<></th1.05<></th1.05<></td>	063 1.10 1.321 10 104.19 1.35 0.03 0.12 1.43 1.8 0.06 1.13 1.06 1.16 1.32 0.06 1.16 1.32 0.06 1.16 1.32 0.06 0.43 8 8.646 1.16 1.32 1.05 1.33 0.60 0.43 9 9.67 1.05 1.05 1.05 0.05 0.43 9 8.646 1.16 1.31 1.05 <th1.05< th=""> <th1.05< th=""> <th1.05< th=""></th1.05<></th1.05<></th1.05<>
U03 1.10 1.322 1 93.13 1.23 0.03 0.00 0.44 0 0 0.03 0.40 0.43 0 0.44 0.03 0.44 0 0.03 0.44 0 0.04 0.44 0.05 0.15 1.11 0.05 0.43 0.44	U03 1.0 1.342 1 1.342 1 1.341 0.00 U.435 0 0 0.443 0
0.00 1.00 1.055 1.05 1.05 1.05 0.00 0.05 0.07 1.1 1.05 0.05 0.05 0.07 1.1 2.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.	033 035 1.316 14 86.93 1.13 0.65 0.20 0.42 1 7 7.17 0.05 Storade (m ³) 0.55 0.50 0.42 1 73.17 0.95
	Storade (m ²) Storade (m ²)
Storage (m)	132 187 182 50-541746 Bilance Overliow Required Surface Bub-surface Balance Overliow Required 132 187 0.00 0.00 0.00 0.03 187 0.00 0.00 0.03 0.03 0.03 0.03 0.03 0.0

J:118197_WPSeniors/5.7 Calculations/5.7.1 Sewers & Grading/CCS_118197_swm_2019-04-09

3 of 4

				Volume	2yr	(m ³)	9.57	10.21	10.44	10.64	10.91			Balance 0.00
		5.94		ç	22-42	(T/s)	17.72	15.46	14.51	13.64	12.13			Sub-surface 53.60
		-(s/	g	c	3	(L/s)	5.94	5.94	5.94	5.94	5.94	Ctoraco (m ³)	aye (!!!)	Surface 0.00
		0.78 Restricted Flow Qr (L/s)=	2-Year Ponding	Peak Flow	Q _p =2.78xCi _{2yr} A	(L/S)	23.66	21.41	20.45	19.58	18.07	1010	200	Required 10.44
4 & 6	0.136	0.78		1.	' Zyr	(mm/hour)	80.87	73.17	69.89	66.93	61.77			Overflow 0.00
Drainage Area	Area (Ha)	C =		T c	Variable	(min)	6	11	12	13	15			
				Volume	5yr	(m ³)	16.05	16.65	16.89	17.10	17.41			Balance 0.00
		5.94		ç	20-42	(L/s)	20.57	18.50	17.60	16.76	15.28			Sub-surface 53.60
		=(s/~	g	c	ž	(L/S)	5.94	5.94	5.94	5.94	5.94	Ctorado (m3)		Surface 0.00
		0.78 Restricted Flow Qr (L/s)=	5-Year Ponding	Peak Flow	$Q_p = 2.78 \times Ci_{Syr} A$	(T/S)	26.52	24.45	23.54	22.71	21.22	ţ	010	Required 16.89
4 & 6	0.136	0.78		- 1	1 Syr	(mm/hour)	90.63	83.56	80.46	77.61	72.53			Overflow 0.00
Drainage Area	Area (Ha)	c =		Te	Variable	(min)	13	15	16	17	19			
				Volume	100yr	(m ³)	52.34	52.36	52.36	52.36	52.33			Balance 0.00
		5.94		0	12-42	(L/s)	17.45	16.78	16.47	16.16	15.57			Sub-surface 53.60
		=(s/T	ng	c	3	(L/S)	5.94	5.94	5.94	5.94	5.94	Ctorado (m ³)		Surface 0.00
		0.97 Restricted Flow Qr (L/s)=	100-Year Ponding	Peak Flow	Q p = 2.78xCi 100yr A	(L/s)	23.39	22.73	22.41	22.10	21.52	ů	200	Required 52.36
4 & 6	0.136	0.97		1	* 100yr	(mm/hour)	63.95	62.14	61.28	60.44	58.83			Overflow 0.00
Drainage Area	Area (Ha)	C =		Tc	Variable	(min)	50	52	53	54	56			

.03	5.92	1.89	.94	
Total roof Restricted Flow Q, (L/s)= 5	Allowable= 16	available for SWM tank 11	design flow based on 50%	

J:1118197_WPSeniors/5.7 Calculations/5.7.1 Sewers & Grading/CCS_118197_swm_2019-04-09

IBI Group 333 Preston Street - Suite 400 Ottawa, Ontario K1S 5N4

STORM SEWER ASBUILTS

PROJECT: MARAVISTA HEIGHTS LOCATION: CITY OF OTTAWA CLIENT: DCR PHOENIX

LOCATION			T			ARI	EA (Ha)			-		RATIC		GIGN FLOW	1				SEWER	ΔΤΑ						
STREET	FROM	то	C=	C=	C=	C=	C=		INDIV.	ACCUM.	INLET	TIME	TOTAL		PEAK	CAP.	LENGTH	PIPE	SLOPE	VEL.	AVAIL	. CAP.				
	МН	МН	0.25	0.45	0.53	0.41	0.60		2.78AC	2.78AC	(min.)	IN PIPE	(min.)	(mm/Hr)	FLOW (L/s)	(L/s)	(M)	(mm)	(%)	(M/s)	(L/s)	(%)				
Claridge - 21m Collector - external	103	132	1				0.25		0.42	30.22	20.36	0.64	21.00	51.46	1,555.10	3,006.23	52.07	1650	0.10	1.4	1,451.13	48.27%				
Development Operation	4.4.4	4.40							0.00	0.00	40.00	0.40	40.40	70.04	0.00	00.04	0.40	075	0.04	0.0	00.04	100.00%				
Popplewell Crescent Popplewell Crescent	141 140	140 139					0.39		0.00	0.00	10.00 10.18	0.18	10.18 11.80			89.61 101.81	8.46 86.74	375 375		0.8	89.61 52.33	100.00% 51.40%				
	140	139					0.39		0.05	0.05	10.16	1.02	11.00	70.12	43.40	101.01	00.74	375	0.31	0.9	52.55	51.40%				
Cobble Hill	142	139	-		0.30		0.27		0.89	0.89	10.00	0.78	10.78	76.81	68.36	248.08	39.52	600	0.15	0.9	179.73	72.45%				
					0.00		0.27		0.00	0.00	10.00	0.10		10.01			00.02		0.10	0.0		12.1078				
Cobble Hill	139	138					0.34		0.57	2.11	11.80	0.71	12.50	70.53	148.81	230.86	33.53	600	0.13	0.8	82.05	35.54%				
Cobble Hill	138	137					0.28		0.47	2.58	12.50	1.23	13.73	68.36		316.20	63.11	675		0.9	139.82	44.22%				
Cobble Hill	137	131					0.43		0.72	3.30	13.73	0.36	14.09	64.93	214.27	506.20	23.69	750	0.19	1.1	291.94	57.67%				
Popplewell Crescent	136	135	<u> </u>				0.35		0.58	0.58	10.00	1.03	11.03		44.55	93.26	50.39	375		0.8	48.71	52.23%				
Popplewell Crescent	135 134	134					0.25		0.42	1.00	11.03	1.59	12.61		73.07 68.04	139.55 151.70	80.94	450 450		0.9	66.47 83.66	47.63%				
Popplewell Crescent Popplewell Crescent	134	133 132					0.39		0.00	1.65	12.61 12.79	0.17	12.79 14.13			286.61	9.58 79.13	600	0.26	0.9	175.17	55.15% 61.12%				
	133	132	1				0.39		0.05	1.05	12.79	1.34	14.13	07.34	111.44	200.01	79.13	000	0.20	1.0	175.17	01.1270				
Cobble Hill	132	131	1				0.27		0.45	32.32	21.00	0.76	21.76	50.48	1,631.54	3,154.11	65.30	1650	0.11	1.4	1,522.58	48.27%				
	1		1							0 4		5 5		1 20.10	.,	,,	1 3.00		5		.,=	/ 0				
park	131	130	0.77						0.54	36.16	21.76	1.01	22.77	49.36	1,784.98	3,006.23	82.40	1650	0.10	1.4	1,221.25	40.62%				
Bretby Crescent	130	143							0.00	36.16	22.77	0.40	23.16		1,734.50	3,006.23	32.47	1650	0.10	1.4	1,271.73	42.30%				
Bretby Crescent	143	129							0.00	36.16	23.16	0.07	23.23			3,006.23	5.58	1650	0.10	1.4	1,290.75	42.94%				
Bretby Crescent	129	128	0.20						0.75	36.91	23.23	0.60	23.83		1,747.78	3,006.23	49.00	1650	0.10	1.4	1,258.45	41.86%				
Bretby Crescent	128	127	I	0.52	L	L	L		0.65	37.56	23.83	0.91	24.74			3,006.23	74.21	1650	0.10		1,256.51	41.80%				
Bretby Crescent	127	126	I						0.00	37.56	24.74	0.10	24.84		1,708.01	3,006.23	7.98	1650	0.10	1.4	1,298.22	43.18%				
Bretby Crescent	126	125		0.50					0.00	37.56	24.84	0.51	25.35			3,006.23	41.62	1650	0.10	1.4	1,302.59	43.33%				
Bretby Crescent	125	111	-	0.58					0.73	38.29	25.35	0.33	25.68	44.76	1,714.02	3,006.23	27.08	1650	0.10	1.4	1,292.21	42.98%				
Bamburgh Way	123	118	1						0.00	0.00	10.00	1.34	11.34	76.81	0.00	42.97	68.36	250	0.48	0.8	42.97	100.00%				
Dambargh way	120	110	1						0.00	0.00	10.00	1.04	11.04	70.01	0.00	42.57	00.00	200	0.40	0.0	42.57	100.0070				
Bretby Crescent	130	120	1	0.18					0.23	0.23	10.00	1.07	11.07	76.81	17.67	157.44	61.68	450	0.28	1.0	139.78	88.78%				
Bretby Crescent	120	119		0.10	0.47				0.69	0.92	11.07	0.29	11.36			148.74	15.87	450		0.9	81.65	54.90%				
Bretby Crescent	119	118	1	0.20					0.25	1.17	11.36		11.81			162.86	26.40	450		1.0	78.69	48.32%				
			1																							
Bamburgh Way	118	117	1	0.29					0.36	1.53	11.81	0.37	12.18	70.50	107.86	264.14	20.00	600	0.17	0.9	156.28	59.17%				
Bamburgh Way	117	116		0.34					0.43	1.96	12.18	0.29	12.47	69.35	135.93	401.90	19.13	675	0.21	1.1	265.97	66.18%				
Bamburgh Way	116	115							0.00	1.96	12.47	0.38	12.85	68.47	134.20	449.65	22.70	750		1.0	315.46	70.16%				
Bamburgh Way	115	111		0.15					0.19	2.15	12.85	0.76	13.61	67.35	144.80	348.41	34.82	750	0.09	0.8	203.61	58.44%				
Claridge - Street 4 - external	120	114							0.00	15.91	23.39	0.26	23.65	47.14	750.06	1,286.53	16.98	1200	0.10	1.1	536.48	41.70%				
Remburgh Way	114	113		0.32			0.30		0.90	16.81	23.65	1.61	25.26	46.81	786.95	1,286.53	106.75	1200	0.10	1.1	499.58	38.83%				
Bamburgh Way Bamburgh Way	113	112	1	0.32			0.30		0.90	17.20	25.26	0.28	25.20			1,286.53	18.52	1200	0.10	1.1	514.95	40.03%				
Bamburgh Way	112	111	-	0.31					0.33	17.61	25.54	1.06	26.60			1,286.53	69.83	1200	0.10		502.20	39.04%				
Sampaigh tray			1	0.00					0.11		20.01		20.00			.,	00.00	.200	0.10		002.20	0010170				
SWM Block	111	110							0.00	58.05	26.60	0.30	26.90	43.37	2,517.85	5,752.63	39.73	1800	0.23	2.2	3,234.78	56.23%				
AREAS DRAINING TO EXISTING INTERIM S	WM POND																									
Maravista	101	100				0.11	0.37		0.74	0.74	10.00	1.48	11.48	76.81	56.84	175.99	94.97	450	0.35	1.1	119.16	67.71%				
Maravista	103	102	I		0.39			\vdash	0.57	0.57	10.00	1.13	11.13	76.81	43.78	70.63	65.38	300	0.49	1.0	26.85	38.02%				
Domburgh Wou	100	100			0.40	<u> </u>	<u> </u>		0.40	0.40	40.00	4.00	44.00	70.04	40.00	05.00	70.07	000	0.40		FA F F	70.05%				
Bamburgh Way	123	102			0.12			├	0.18	0.18	10.00	1.32	11.32	76.81	13.82	65.38	70.87	300	0.42	0.9	51.55	78.85%				
Maravista	102	100			0.07		0.32	+	0.64	1.39	15.00	1.69	16.69	61.77	85.86	185.02	84.16	525	0.17	0.8	99.17	53.60%				
וזימו מיוסנמ	102	100	1		0.07		0.32		0.04	1.59	15.00	1.09	10.09	01.77	05.00	100.02	04.10	525	0.17	0.0	99.17	53.00%				
Cobble Hill	100	EX CAP							0.00	2.13	16.69	0.31	17.00	58.04	123.62	402.22	16.20	750	0.12	0.9	278.60	69.27%				
									5.50	2.10		0.01		00.04	.20.02			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.12	0.0	2.0.00	00.2170				
Maravista	105	104	1	0.00					0.00	0.00	10.00	1.32	11.32	76.81	0.00	57.93	62.91	300	0.33	0.8	57.93	100.00%				
Maravista	104	103		0.43					0.54	0.54	11.32	1.35	12.67			132.98	65.78	450		0.8	94.06	70.73%				
Fosterbrook	103	EX CAP							0.00	0.54	12.67	0.79	13.47	67.86	36.65	362.49	59.00	600	0.32	1.2	325.85	89.89%				
Designed:																										
E.I.	L										Q = 2.78A	- ,	_			Mannings Coefficient (n) = 0.013										
												Flow in Litre		cond (l/s)												
Checked:		reflect Cla							April 2019			n Hectares		ve per ll-	(mana /la r)											
D.Y.	Updated to	reflect Cla	-	-				J	July 2012					ers per Hour	(mm/nr)											
Dura Deferences		File Diff	R	evision	-	44.		-	Date		[i=732.	951/(TC+6.	199)0.81]													
Dwg. Reference: 25330 - Figure 5		File Ref: 5330 - 5.7	7			ite:			heet No 1 of 1	:																
2000 - Figure 0	Z:	JJJJU - J./		L	August	10, 2011			IVII																	

CCL/IBI 1770 WOODWARD DRIVE OTTAWA, ONTARIO K2C OP8

STORM SEWER DESIGN SHEET PROJECT : WEST POINTE VILLAGE CITY OF OTTAWA DEVELOPER : CLARIDGE

LOCATION						AREA (Ha	a.)					DESIGN	FLOW		SEWER DATA									
STREET	FROM	то	C=	C=	C=	C=	C=	INDIV.	ACCUM.	INLET	TIME	TOTAL	I	PEAK FLOW	CAP.	PIPE	LENGTH	SLOPE	n	VEL.	AVAIL.			
	МН	мн	0.45	0.84	0.31	0.90	0.60	2.78AC	2.78AC	(min.)	IN PIPE		(mm/Hr)	(I/s)	(I/s)	(mm)	(M)	(%)		(M/s)	CAP. (%)			
		STUB							2.13			17.00												
COBBLE HILL	STUB	11		0.02		0.20	0.61	1.56	3.69	17.00	1.27	18.27	57.42	212.1	367.3	750	61.5	0.10	0.013	0.81	<mark>42.2%</mark>			
CHESAPEAKE CRES.	13	11			0.15		0.58	1.24	1.24	15.00	1.43	16.43	61.77	76.5	129.3	375	97.5	0.50	0.013	1.13	40.9%			
LAMPLIGHTER DR	11	35					0.22	0.37	5.30	18.27	1.27	19.54	54.99	291.4	449.8	750	75.0	0.15	0.013	0.99	35.2%			
LAMPLIGHTER DR	35									-					597.2	900								
	35	33					0.36	0.60	5.90	19.54	1.37	20.91	52.78	311.4	597.2	900	74.6	0.10	0.013	0.91	47.9%			
FOSTERBROOK DR.	STUB	33	0.65					0.81	0.81	15.00	1.19	16.19	61.77	50.2	248.1	600	60.9	0.15	0.013	0.85	79.8%			
	400	40						0.00	0.00	40.00	0.00	40.00	70.04		40.7	0.50	40.5	0.40	0.040	0.00	100.0%			
CHESAPEAKE CRES.	100	10					0.00	0.00		10.00					40.7	250			0.013	0.80	100.0%			
CHESAPEAKE CRES.	10	9					0.28	0.47	-	10.22			75.98		59.7	300		0.35	0.013	0.82	40.5%			
CHESAPEAKE CRES.	9	8					0.30	0.50	0.97	11.98	0.27	12.25	69.96	67.7	100.2	375	14.1	0.30	0.013	0.88	32.4%			
COBBLE HILL	80	8					0.39	0.65	0.65	10.00	0.78	10.78	76.81	50.0	91.5	375	37.5	0.25	0.013	0.80	45.4%			
FOSTERBROOK DR.	8	26					0.28	0.47	2.09	12.25	0.28	12.52	69.13	144.1	248.1	600	14.0	0.15	0.013	0.85	41.9%			
FOSTERBROOK DR.	26	25					0.25	0.47		12.23		14.59			303.8	675		0.13	0.013	0.82	43.7%			
TOSTERBROOK DR.	20	25					0.23	0.42	2.50	12.52	2.07	14.55	00.51	170.5	505.0	075	101.9	0.12	0.015	0.02	43.7 %			
BELLISTER ST	24	25						0.00	0.00	10.00	1.28	11.28	76.81	0.0	59.7	300	62.7	0.35	0.013	0.82	100.0%			
FOSTERBROOK DR.	25	27	0.09					0.11	2.61	14.59	0.81	15.39	62.76	164.1	367.3	750	38.9	0.10	0.013	0.81	55.3%			
FOSTERBROOK DR.	27	28						0.00	2.61	15.39	0.24	15.63	60.86	159.1	367.3	750	11.6	0.10	0.013	0.81	56.7%			
FOSTERBROOK DR.	28	33					0.63	1.05	3.67	15.63	1.37	17.00	60.31	221.1	367.3	750	66.0	0.10	0.013	0.81	39.8%			
LAMPLIGHTER DR	33	32	0.73					0.91		20.91	1.16		50.61		1,286.2	1200			0.013	1.10	55.6%			
LAMPLIGHTER DR	32	31						0.00		22.07	0.17	22.23	48.93		1,286.2	1200	-		0.013	1.10	57.0%			
LAMPLIGHTER DR	31	30						0.00	-	22.23	1.07	23.30	48.70		1,286.2	1200		0.10	0.013	1.10	57.2%			
LAMPLIGHTER DR	30	21	0.31					0.39	11.68	23.30	1.04	24.34	47.26	552.1	1,286.2	1200	69.0	0.10	0.013	1.10	57.1%			
BELLISTER ST	24	23						0.00	0.00	10.00	0.23	10.23	76.81	0.0	40.7	250	11.1	0.43	0.013	0.80	100.0%			
BELLISTER ST	23	22	0.86					1.08	1.08	15.00	2.01	17.01	61.77	66.5	91.5	375	96.6	0.25	0.013	0.80	27.3%			
BELLISTER ST	22	21	0.15					0.19	1.26	17.01	0.16	17.17	57.40	72.5	133.0	450	7.8	0.20	0.013	0.81	45.5%			
LAMPLIGHTER DR	21	19	0.55					0.69	13.63	24.34	1.08	25.43	45.95	626.4	1.286.2	1200	71.6	0.10	0.013	1.10	51.3%			
LAMPLIGHTER DR	19	116	0.38					0.00		25.43		25.95			1,286.2	1200	-		0.013	1.10	51.0%			
																			-					

Q = 2.78AIC, where:

Q = Peak Flow in Litres per Second (I/s)

A = Area in Hectares (ha.)

I = Rainfall Intensity in Millimeters per Hour (mm/hr)

C = Runoff Coefficient

I=732.951/((TC+6.199)^0.81)

Where T = inlet time in minutes

Revisions: # 7, April 22 2019, Seniors Block

JOB #:	3603-LD
DATE:	21-Apr-06
DESIGN:	DY

CCL/IBI 1770 WOODWARD DRIVE OTTAWA, ONTARIO K2C OP8

I=732.951/((TC+6.199)^0.81)

STORM SEWER DESIGN SHEET PROJECT : WEST POINTE VILLAGE CITY OF OTTAWA DEVELOPER : CLARIDGE

LOCATIO	ON					AREA (H	a.)					DESIGN	FLOW			SEWER DATA								
STREET	FROM	то	C=	C=	C=	C=	C=	INDIV.	ACCUM.	INLET	TIME	TOTAL	I	PEAK FLOW	CAP.	PIPE	LENGTH	SLOPE	n	VEL.	AVAIL.			
	МН	мн	0.45	0.25	0.65	0.75	0.60	2.78AC	2.78AC	(min.)	IN PIPE		(mm/Hr)	(I/s)	(I/s)	(mm)	(M)	(%)		(M/s)	CAP. (%)			
COOPERFIELD CRES.	7	6					0.32	0.53	0.53	10.00	1.84	11.84	76.81	41.0	58.8	300	89.2	0.34	0.013	0.81	30.3%			
COOPERFIELD CRES.	6	5					0.16		0.80	11.84	0.28	-			91.5	375		0.25	0.013	0.80	38.4%			
COBBLE HILL	5	2					0.22	-		12.13	1.56	-			133.0	450		0.20	0.013	0.81	39.0%			
COOPERFIELD CRES.	40	4						0.00	0.00	10.00	0.21	10.21	76.81	0.0	40.7	250	10.0	0.43	0.013	0.80	100.0%			
COOPERFIELD CRES.	4	3					0.25			10.21	1.77	11.97			91.5	375		0.25	0.013	0.80	65.3%			
COOPERFIELD CRES.	3	2					0.23	0.38	0.80	11.97	0.20	12.17	69.97	56.0	133.0	450	9.6	0.20	0.013	0.81	57.9%			
BIDWELL ST	17	18						0.00	0.00	10.00	0.65	10.65	76.81	0.0	41.6	250	32.2	0.45	0.013	0.82	100.0%			
BIDWELL ST	18	2						0.00	0.00	10.65	0.34	11.00	74.38	0.0	41.6	250	16.9	0.45	0.013	0.82	100.0%			
COBBLE HILL	2	1/STUB	0.23					0.29	2.26	13.68	0.67	14.35	65.07	146.8	367.3	750	32.2	0.10	0.013	0.81	60.0%			
COBBLE HILL	1/STUB	102	0.47				0.47	1.37	3.63	14.35	0.82	15.17	63.35	229.8	367.3	750	39.8	0.10	0.013	0.81	37.4%			
BIDWELL ST	17	16	0.62	0.78				1.32	1.32	10.00	1.90	11.90	76.81	101.2	148.7	450	103.0	0.25	0.013	0.91	31.9%			
BIDWELL ST	190	16	0.12					0.15	0.15	10.00	1.51	11.51	76.81	11.5	41.6	250	74.5	0.45	0.013	0.82	72.3%			
MUSKAN ST	16	15						0.00	1.47	11.90	0.19	12.08	70.22	103.1	200.6	525	10.2	0.20	0.013	0.90	48.6%			
MUSKAN ST	15	14/107						0.00	1.47	12.08	0.48	12.56	69.63	102.2	239.7	600	23.5	0.14	0.013	0.82	57.4%			

EXISTING

Q = 2.78AIC, where:

Q = Peak Flow in Litres per Second (I/s)

A = Area in Hectares (ha.)

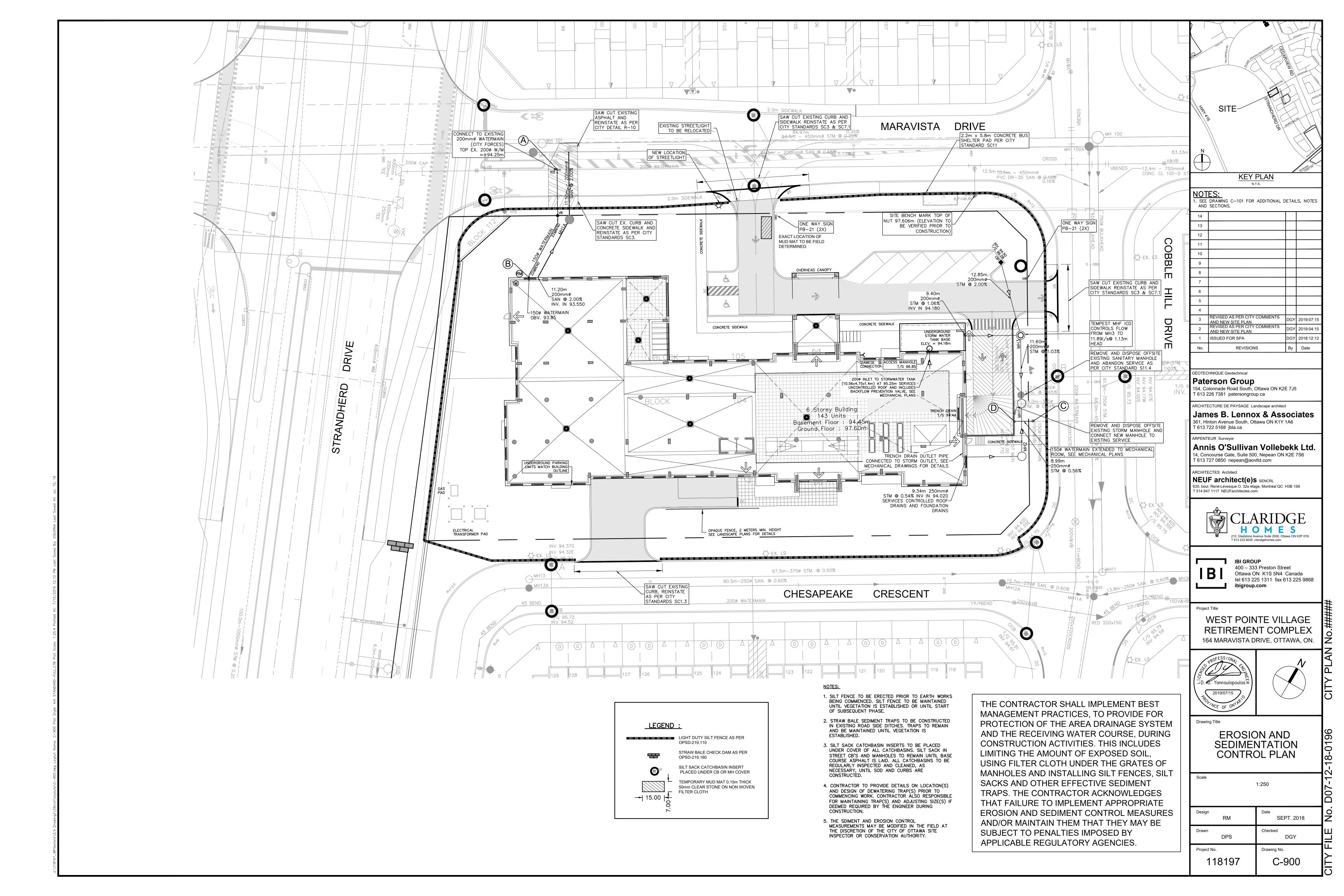
I = Rainfall Intensity in Millimeters per Hour (mm/hr)

C = Runoff Coefficient

Where T = inlet time in minutes

Revisions: # 7, April 22 2019, Seniors Block

JOB #:	3603-LD
DATE:	21-Apr-06
DESIGN:	DY


IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

LO	ATION	FROM C = <th></th> <th colspan="12">RATIONAL DESIGN FLOW</th> <th></th> <th colspan="7">SEWER DATA</th>													RATIONAL DESIGN FLOW													SEWER DATA										
STREET A	REAID	FROM	то	C=	C= (C= C=	- C=	C=	C= C=	C=	C= C	= C=	C=	C= 0	C= IN	D CUM	INLET	TIME	TOTAL	i (2)	i (5)	i (10)	i (100) 2yr PEA	K 5yr PEA	K 10yr PEA	K 100yr PE	K FIXED	DESIGN	CAPACIT	LENGTH	PI	PE SIZE (m	m)	SLOPE	VELOCITY	AVAIL C	AP (2yr)
STREET A	REAID	FROM	10	0.25	0.29 0	0.28 0.37	7 0.50	0.61	0.75 0.73	0.77	0.79 0.8	80 0.82	0.84	0.87 0.	.90 2.78	AC 2.78A0	C (min)	IN PIPE	(min)	(mm/hr) (mm/hr	(mm/hr) (mm/h	r) FLOW (L	./s) FLOW (L	s) FLOW (L	s) FLOW (L	s) FLOW (L/	s) FLOW (L/s)	(L/s)	(m)	DIA	W	Н	(%)	(m/s)	(L/s)	(%)
		0.5.4		_													10.00			20.04		100.11	120 51		10.00	10.10	10.17		=	10.00	10.05						10.55	
	6	CB1	MH3	-				0.06							0.1	0 0.10	10.00	0.14	10.14	76.81	104.19	122.14	178.56	5 7.81	10.60	12.43	18.17	-	7.81	48.39	12.85	200			2.00	1.492	40.57	83.85%
	4	STM Tank	MH3				_							0	08 01	0 0 20	10.00	0.14	10.14	76.81	10/ 10	122.14	178 56	3 15 37	20.86	24.45	35.74	-	15.37	35.23	9.40	200			1.06	1.086	19.85	56 36%
	4	MH3					-							0.		0 0.20			10.14			121.25							23.02	34.73					1.03	1.000	11.70	33.70%
		10110	IVII I I												0.0	0.00	10.14	0.10	10.02	10.20	100.44	121.20	111.20	20.02	01.20	00.01	00.01		20.02	04.70	11.00	200			1.00	1.071	11.70	00.707
	3, 5	Bldg	MH2										0.02	0.	.12 0.3	35 0.35	10.00	0.17	10.17	76.81	104.19	122.14	178.56	6 26.65	36.15	42.38	61.95		26.65	45.59	9.34	250			0.54	0.900	18.94	41.55%
		MH2	MH1												0.0	0.35	10.17	0.16	10.34	76.15	103.29	121.08	176.99	26.42	35.84	42.01	61.41		26.42	46.43	8.99	250			0.56	0.916	20.01	43.09%
		MH1	EX sewe	r												0.65	10.34	0.29	10.63	75.54	102.45	120.09	175.54	4 49.01	66.47	77.92	113.90		49.01	58.82	14.00	300			0.34	0.806	9.81	16.68%
							_											-																				
							_											_											_									
				-			-											-										-	-									
							-											-							-			-										
Definitions:		1	1	Notes:					1 1								Designed	:	AZ				No.						Revision		1					Date		
Q = 2.78CiA, where:				1. Man	nings coeff	ficient (n) =	=	0.013									-						1.					Submis	ssion No. 2						A	pril 22 2019	1	
Q = Peak Flow in Litres per Second (L/s)																																						
A = Area in Hectares (Ha)																	Checked		DY																			
i = Rainfall intensity in millimeters per hour (nm/hr)																																					
[i = 732.951 / (TC+6.199)^0.810]		2 YEAR																																				
[i = 998.071 / (TC+6.053)^0.814]		5 YEAR															Dwg. Ref	erence:	118197-5	500																		
[i = 1174.184 / (TC+6.014)^0.816]		10 YEAR																							Reference:					Date:						Sheet No:		
[i = 1735.688 / (TC+6.014)^0.820]		100 YEAR	<																					1	18197-5.7				A	pril 22 2019)					1 of 1		

STORM SEWER DESIGN SHEET

WEST POINTE VILLAGE RETIREMENT COMPLEX 164 MARAVISTA DR, OTTAWA CLARIDGE HOMES

APPENDIX E

WESTPOINTE VILLAGE SENIORS BUILDING

Development Servicing Study Checklist

4.1 General Content

- Executive Summary *Not applicable*
- \Box Date and revision number of the report *On cover*
- □ Location map and plan showing municipal address, boundary, and layout of proposed development *key map Figure 1 and Site Plan A050 Appendix A*
- \square Plan showing the site and location of all existing services *Drawing C-100 Appendix B*
- Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere *Section 1 and Site Plan A050*
- \Box Summary of Pre-consultation Meetings with City and other approval agencies Section 1
- □ Reference and confirm conformance to higher level studies and reports (master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria – *Section 1*
- □ Statement of objectives and servicing criteria Section 1
- □ Identification of existing and proposed infrastructure available in the immediate area *Water Section 2;* Sanitary; Section 3, Storm Section 4
- □ Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available) *Not applicable*
- □ Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts *Not applicable*
- □ Proposed phasing of the development, if applicable *Not applicable*
- □ Reference to geotechnical studies and recommendations concerning servicing Section 1
- All preliminary and formal site plan submissions should have the following information:
 - Metric scale
 - North arrow (including construction North)
 - Key plan
 - Name and contact information of applicant and property owner
 - Property limits including bearings and dimensions
 - Existing and proposed structures and parking areas
 - Easements, road widening and rights-of-way
 - Adjacent street names
 - See detail drawings

4.2 Development Servicing Report: Water

- Confirm consistency with Master Servicing Study, if available Section 2
- Availability of public infrastructure to service proposed development Section 2
- □ Identification of system constraints Section 2
- □ Identify boundary conditions Section 2
- Confirmation of adequate domestic supply and pressure *Section 2*
- \Box Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development Section 2
- \Box Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure decuding valves *Section 2*
- \Box Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design *Not applicable*
- Address reliability requirements such as appropriate location of shut-off valves Section 2
- Check on the necessity of a pressure zone boundary modification *Not applicable*
- □ Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range *Section* 2
- □ Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions *Section 2*
- \Box Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation *Not required*.
- □ Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines *Section 2*
- □ Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference *Section 2*

4.3 Development Servicing Report: Wastewater

- □ Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure *Section 3*
- Confirm consistency with Master Servicing Study and/or justifications for deviations Section 3
- □ Consideration of local conditions that may contriburte to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers *Not applicable*
- □ Description of existing sanitary sewer available for discharge of wastewater from proposed development *Section 3*
- □ Verify available capacity in downstream Sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) *Section 3*
- □ Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format *Section 3*
- Description of proposed sewer network including sewers, pumping stations, and forcemains Section 3
- Discussion of previously identified environmental constraints and impact on servicing (environmental constrains are related to imitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality) *Not applicable*
- □ Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development *Section 3*
- □ Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity *Not applicable*
- \Box Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding *Not applicable*
- □ Special considerations such as contamination, corrosive environment etc *Not applicable*

4.4 Development Servicing Report: Stormwater Checklist

- Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property) *Section 4*
- Analysis of available capacity in existing public infrastructure Section 4
- \Box A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern *Drawing C-400*

- Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects *Section 4*
- □ Water quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements *Section 4*
- \Box Description of the stormwater management concept with facility locations and descriptions with references and supporting information *Section 4*
- Set-back from private sewage disposal systems *Not applicable*
- □ Watercourse and hazard lands setbacks *Not applicable*
- □ Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed *Section 1*
- □ Confirm consistency with subwatershed and Master Servicing Study, if applicable study exists *Section 4*
- □ Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period) *Section 4*
- □ Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals *Not applicable*
- Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions – *Section* 4
- \Box Any proposed diversion of drainage catchment areas from one outlet to another *Not applicable*
- □ Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities *Section 4*
- \Box If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event *Not applicable*
- □ Identification of potential impacts to receiving watercourses *Not applicable*
- □ Identification of municipal drains and related approval requirements *Not applicable*
- □ Descriptions of how the conveyance and storage capacity will be achieved for the development *Section 4*
- □ 100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading *Section 4*
- □ Inclusion of hydraulic analysis including hydraulic grade line elevations *Not applicable*
- □ Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors *Section 5*

- \Box Identification of floodplains proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions *Not applicable*
- □ Identification of fill constraints related to floodplain and geotechnical investigation *Not applicable*

4.5 Approval and Permit Requirements: Checklist

- □ Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams or defined in the Act. *Not applicable*
- Application for Certificate of Approval (CofA) under the Ontario Water Resources Act Section 1
- □ Changes to Municipal Drains *Not applicable*
- □ Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation *Not applicable*

4.6 Conclusion Checklist

- \Box Clearly stated conclusions and recommendations *Section 6*
- Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency *See reply letter from Owner*
- \Box All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario -Section 6