HERITAGE HILLS RETAIL PLAZA 471 TERRY FOX DRIVE

-8-

DEVELOPMENT SERVICING AND STORMWATER MANAGEMENT REPORT

Prepared by:

NOVATECH Suite 200, 240 Michael Cowpland Drive Kanata, Ontario K2M 1P6

> January 25, 2019 Revised May 10, 2019 Revised July 9, 2019

Ref: R-2018-158 Novatech File No. 118133

July 9, 2019

City of Ottawa Planning and Growth Management Department Infrastructure Approvals Division 110 Laurier Avenue West, 4th Floor Ottawa, Ontario K1P 1J1

Attention: Mr. Santhosh Kuruvilla

Dear Sir:

Re: Development Servicing and Stormwater Management Report Heritage Hills Retail Plaza 471 Terry Fox Drive Ottawa, Ontario Our File No.: 118133

Enclosed herein is the 'Development Servicing and Stormwater Management Report' for the proposed development located at 471 Terry Fox Drive, in the City of Ottawa. This report addresses the approach to site servicing and stormwater management for the subject property and is submitted in support of the site plan approval application.

Should you have any questions or require additional information, please contact the undersigned. Yours truly,

NOVATECH

USairic

Miroslav Savic, P. Eng. Project Manager

MS/sm

cc: Dennis Laurin (triMterra Development Corporation) Gord Erskine (Gord Erskine Architect Inc.)

M:\2018\118133\DATA\REPORTS\SWM\201905010-SERVICING & SWM_REPORT_REV2.DOCX

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Existing Conditions	1
1.2	Proposed Development	2
1.3	Consultation and Reference Material	
2.0	SITE SERVICING	3
2.1	Water Servicing	3
2.2	Sanitary Sewer	
3.0	STORM DRAINAGE AND STORMWATER MANAGEMENT	5
3.1	Existing Conditions	5
3.2	Allowable Release Rate	5
	3.2.1 Tillsonburg Street Storm Sewer	5
3.3	Stormwater Management Criteria6	
	3.3.1 Stormwater Quantity Control	
	 3.3.2 Stormwater Quality Control 3.3.3 Stormwater Quantity Control 	;
3.4		
3.4	Stormwater Management Modeling	
	3.4.2 Storm Drainage Areas	
	3.4.3 Boundary Conditions	;
	3.4.4 Model Results8	;
	3.4.5 Ponding Depths and Storage Volumes	ļ
	3.4.6 ICD Sizing 9 3.4.7 Hydraulic Grade Line 9	ł
3.5	SWM Maintenance and Monitoring	
4.0	SVWM Maintenance and Monitoring	
4.1		
4.1	Major System Overflow Route	
	Erosion and Sediment Control	
5.0 6.0	GEOTECHNICAL INVESTIGATIONS	
0.0 7.0	SUMMARY AND CONCLUSIONS	
1.0	2LOSURE12	

i

LIST OF TABLES

Table 2.1: Water DemandTable 3.1: Summary of Drainage AreasTable 3.2: Comparison of Water Quality Parameters to Carp River SWM FacilityTable 3.3: Roof Drain Opening Setting and Maximum Release Rates for Each Roof DrainTable 3.4: Downstream Boundary Conditions for SWM Model ScenariosTable 3.5: Post-Development Model Results (100yr, 4hr Chicago Event)

LIST OF FIGURES

Figure 1: Existing Conditions Figure 2: Site Plan

LIST OF APPENDICIES

Appendix A: Correspondence Appendix B: Background Report Excerpts Appendix C: Sanitary Sewer, Watermain and Fire Flow Calculations Appendix D: Stormwater Management Calculations Appendix E: Development Servicing Study Checklist Appendix F: Engineer Drawings

LIST OF DRAWINGS

Grading and Erosion & Sediment Control Plan (118133-GR) General Plan of Services (118133-GP) Stormwater Management Plan (118133-SWM)

1.0 INTRODUCTION

Novatech has been retained to complete the site servicing, grading, and stormwater management design for a proposed development at 471 Terry Fox Drive in Kanata (Ottawa), Ontario. The proposed development will consist of a one-storey multi-unit commercial building / retail plaza and a Shell gas station, complete with a car wash and convenience store. The servicing, grading, and stormwater management design for the Shell gas station is being completed by AECOM and submitted with this application under separate cover.

This report outlines the servicing aspects with respect to water, sanitary and storm drainage and addresses the approach to stormwater management for the retail plaza. This report is being submitted in support of the site plan application for the subject property.

1.1 Existing Conditions

The subject site, shown in **Figure 1**, is a part of the recently constructed Broughton Lands Subdivision. The site is currently vacant and grassed covered.

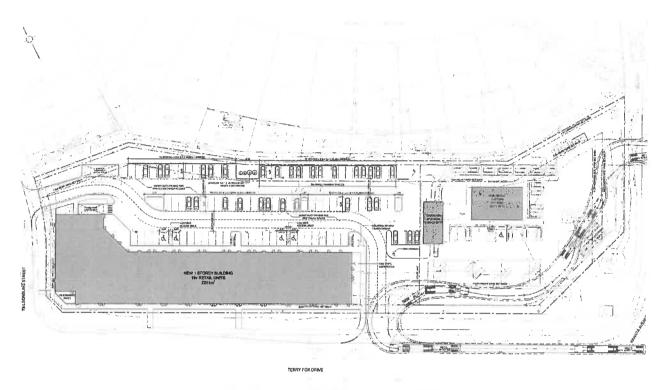


Figure 1: Existing Conditions provides an aerial view of the site.

1.2 **Proposed Development**

The proposed development consists of a retail plaza, which will include a one-storey multi-unit commercial building and a Shell Gas Bar, complete with a car wash and convenience store (by others). The site will have access points off Kanata Avenue, Terry Fox Drive and Tillsonburg Street. Refer to **Figure 2** for the proposed site plan.

Figure 2: Site Plan

1.3 Consultation and Reference Material

Pre-consultation meetings were held with the City of Ottawa in February 2018 and subsequently in October 2018 at which time the owner was advised of the general submission requirements. Further discussions were held with the City of Ottawa and Mississippi Valley Conservation Authority (MVCA) regarding the approach to stormwater management for the site. The MOECC ECA approval will be required for the proposed Shell gas station. Refer to **Appendix A** for a summary of the e-mail correspondence with the City of Ottawa and MVCA.

The following reference documents were reviewed. Relevant report excerpts are provided in **Appendix B**.

- Geotechnical Investigation Proposed Commercial Development, Terry Fox Drive at Kanata Avenue, prepared by Paterson Group, dated November 7, 2018.
- Broughton Subdivision Phase 1 and 2 Stormwater Management Report (R-2007-129), prepared by Novatech Engineering Consultants Ltd., dated July 21, 2008.
- Broughton Lands Residential Development Phases 1 and 2 Design Brief (R-2007-111), prepared by Novatech Engineering Consultants Ltd, dated July 18, 2008.

2.0 SITE SERVICING

The objective of the site servicing design is to conform to the requirements of the City of Ottawa servicing design guidelines by providing a suitable domestic water supply, proper sewage outlets and ensuring that appropriate fire protection is provided.

The servicing criteria, expected sewage flows and water demands for the site have been established using the City of Ottawa municipal design guidelines for sewer and water distribution. The City of Ottawa Servicing Study Guidelines for Development Applications requires a Development Servicing Study Checklist to confirm that each applicable item is deemed complete and ready for review by City of Ottawa Infrastructure Approvals. A completed checklist is enclosed in **Appendix E** at the back of this report.

2.1 Water Servicing

The proposed development will be serviced by a 200mm dia. water service connecting to the existing 200mm dia. watermain in Tilsonburg Street.

The proposed retail plaza will be sprinklered. The Shell convenience store will not be sprinklered. The fire protection will be provided from a private fire hydrant within the parking lot. The hydrant is located within 45m unobstructed path from the retail building siamese connection location and within 90m from the principal entrances to the Shell convenience store and car wash.

The theoretical water demand for the proposed development, calculated as per the Ottawa Design Guidelines – Water Distribution is summarized in **Table 2.1**. Detailed calculations are enclosed in **Appendix C**.

Building	Average Day Demand	Maximum Day Demand	Peak Hour Demand
Retail Plaza	0.13 L/s	0.20 L/s	0.35 L/s
Convenience Store	0.07 L/s	0.11	0.20 L/s
Car Wash	-	-	3.41 L/s (54 USGPM)*

Table 2.1: Water Demand

*The water demand for the car wash is provided by the car wash supplier.

The Fire Underwriter's Survey (FUS) was used to estimate fire flow demands for the proposed buildings. The calculated fire flow demands are 100.0 L/s (6,000 L/min) and 50 L/s (3,000 L/min) for the retail plaza and the Shell convenience store respectively. Refer to **Appendix C** for detailed calculations.

The hydraulic model EPANET was used for analyzing the performance of the proposed watermain for two theoretical conditions: 1) Maximum Day + Fire Flow Demand and 2) Peak Hour Demand. The model is based on hydraulic boundary conditions provided by the City of Ottawa. Refer to **Appendix A** for email correspondence with the City of Ottawa.

The model indicates that the minimum watermain pressure under the Maximum Day + Fire Flow Demand will be 402.70 kPa (58.41 psi). The minimum watermain pressure under the Peak Hour Demand will be 596.15 kPa (86.46 psi). Refer to **Appendix C** for detailed calculations.

The proposed watermain was checked for high pressure during average day demand, using a maximum HGL of 162.3m as provided by the City of Ottawa. The model indicates pressures above 552 kPa (80 psi) throughout the system, up to a maximum of 646.48 kPa (93.76 psi). Since the maximum pressure exceeds 80 psi, pressure reducing valves will have to be installed in the proposed buildings downstream of the meter as per the City of Ottawa requirements.

Based on the preceding analysis it can be concluded that the existing 200mm watermain in Tilsonburg Street can provide adequate water supply to the proposed development.

2.2 Sanitary Sewer

The proposed development will be serviced by connecting a 200 mm dia. sanitary service to the existing 200mm diameter sanitary sewer in Tilsonburg Street. The proposed 200 mm dia. sanitary service will be a gravity pipe at a minimum slope of 0.5% with a full flow conveyance capacity of 24.2 L/s.

The calculated peak sanitary flow from the site, including infiltration, is 4.04 L/s. The peak flows for the retail plaza and the convenience store have been calculated as per the City of Ottawa Sewer Design Guidelines. The sanitary flow for the car wash included in the calculations equals the maximum water demand provided by the cars wash supplier. Refer to **Appendix C** for detailed calculations. The proposed 200mm diameter sanitary service has sufficient capacity to convey anticipated sanitary flows generated by the proposed development.

The subject site is a part of the recently constructed Broughton Lands Subdivision. Refer to Future Commercial Block on the Broughton Lands – Phase 1 Sanitary Drainage Area Plan (drawing 102118-SAN), provided in **Appendix B**.

The sanitary flows from the Broughton Subdivision is directed towards Signature Ridge Pump Station (SRPS) located at the South West corner of Terry Fox Drive and Didsbury Road. According to *Broughton Lands Residential Development Phases 1 and 2 Design Brief* (Novatech July 18, 2018), the SRPS has been designed as the outlet for the Broughton Subdivision and adjacent lands.

The sanitary sewer system from Broughton Subdivision is connected to the SRPS via 375mm diameter sanitary sewer along the west side on Terry Fox Drive. Refer to Broughton Lands Subdivision Sanitary Servicing Plan included in **Appendix B**.

The existing sewers are sized allowing 1.66 L/s from the site. As a result of the proposed development the peak sanitary flows from the site will increase by 2.38 L/s. As per the Sanitary Sewer Design Sheet from the Broughton Lands report (included in **Appendix B**) the Tilsonburg Street sewer and the downstream outlet sewers have excess capacity for this additional flow. Therefore, there are no concerns that the proposed development flows will have any adverse impact on the performance of the existing sanitary sewer system.

3.0 STORM DRAINAGE AND STORMWATER MANAGEMENT

The proposed storm drainage and stormwater management design is based on the *City of Ottawa Sewer Design Guidelines* (October 2012) and accompanying technical bulletins. The SWM criteria are governed by the *Broughton Subdivision Phase 1 & 2 Stormwater Management Report* (Novatech, July 2008). Excerpts from this report are provided in **Appendix B**.

3.1 Existing Conditions

Under existing conditions, stormwater runoff drains overland from west to east towards the Kanata Avenue roadside ditch. The Kanata Avenue roadside ditch crosses Terry Fox Drive via a 1200mm dia. storm sewer and outlets into an open channel, which discharges directly into the Carp River.

3.2 Allowable Release Rate

The site is a part of the recently constructed Broughton Lands Subdivision; refer to Future Commercial Block 170 on the Broughton Lands – Phase 1 Storm Drainage Area Plan (drawing 102118-SWM), provided in **Appendix B**.

The development of the storm sewer on Tillsonburg Street and Carp River stormwater management facility accounted for the future development of Commercial Block 170; with an assumed runoff coefficient of 0.75 for the 1.20 ha area.

Due to grading constraints, the entire Commercial Block 170 cannot be serviced by the storm sewer on Tillsonburg Street. As such, drainage for the site has been divided so that the Retail Plaza will outlet to the Tillsonburg Street storm sewer and the Shell Gas Bar will outlet into the Kanata Avenue Roadside Ditch.

A 0.114 ha area from the Retail Plaza will drain to the Shell Gas Bar, which will have on-site stormwater management (by others). A summary of drainage areas is shown in **Table 3.1**.

Outlet	Retail Plaza	Shell Gas Bar	TOTAL
Tillsonburg Street Storm Sewer	0.653	-	0.653
Kanata Avenue Roadside Ditch	0.114	0.413	0.527
TOTAL	0.767	0.413	1.180

Table 3.1: Summary of Drainage Areas

3.2.1 Tillsonburg Street Storm Sewer

The allowable release rate to the Tillsonburg Street storm sewer was calculated using the Rational Method based on the following parameters:

The allowable release rate is based on the proposed 0.653 ha drainage area to the Tillsonburg Street storm sewer. The future Commercial Block 170 was allocated a 0.75 runoff coefficient; refer to the Broughton Subdivision Phase 1 – Storm Sewer Design Sheet (MH200 – MH198), provided in **Appendix B**. The allowable release rate was calculated as follows:

0.653 ha	Drainage Area	(to Tillsonburg Street Storm Sewer)
0.75	Runoff Coefficient	(Allocated for Future Commercial Block 170)
104.19 mm/hr	Rainfall Intensity	(5-year Return Period; 10-minute Time-of-Concentration)
141.9 L/s	Allowable Release Rate	e (2.78 x 0.653 ha x 0.75 x 104.19 mm/hr)

An allowable release rate of 141.9 L/s will need to be maintained to the Tillsonburg Street storm sewer for all storms up-to and including the 100-year storm event.

3.3 Stormwater Management Criteria

The stormwater management criteria for stormwater quantity and quality control of the proposed development of the Retail Plaza was established based on discussions with the City of Ottawa and Mississippi Valley Conservation Authority (MVCA). Refer to correspondence provided in **Appendix A**.

3.3.1 Stormwater Quantity Control

Stormwater quantity control will need to be provided to control 100-year post-development peak flows to the allowable release rate for the Tilsonburg Street Storm Sewer (141.9 L/s).

As per the City of Ottawa Sewer Design Guidelines (October 2012), there is to be no surface ponding during a 2-year storm event. In addition, surface ponding depths cannot exceed 0.30m.

An emergency overland flow route is to be provided for storm events greater than the 100-year event.

3.3.2 Stormwater Quality Control

An enhanced level of stormwater quality control, corresponding to 80% long-term TSS removal, for the Tillsonburg Street storm sewer is provided within the Carp River SWM Facility.

The proposed imperviousness of the area draining to the Tillsonburg Street storm sewer has increased since the design of the Carp River SWM Facility; however, the drainage area has decreased. A comparison of the Area x Runoff Coefficient (A x C) values is shown in **Table 3.2**.

Scenario	Drainage Area (ha)	Runoff Coefficient	AxC
Allocated (Broughton Ph 1)	1.200	0.75	0.90
Proposed (Retail Plaza)	0.653	0.83	0.54
Difference	- 0.547	0.08	- 0.36

Table 3.2: Comparison of Water Quality Parameters to Carp River SWM Facility

The proposed A x C are less than those previous allocated. In addition, peak flows will be maintained. As such, there will be no anticipated increase in runoff to the SWM Facility.

3.3.3 Stormwater Quantity Control

Stormwater management will be provided using a combination of rooftop storage and surface storage. A brief description of the quantity control strategies for each catchment area is provided below. Refer to subcatchment areas on the Stormwater Management Plan (118133-SWM).

<u>Area A-0 (0.064 ha)</u>

Storm runoff from Area A-0 will be uncontrolled and will flow overland to the existing Terry Fox Drive roadside ditch.

Areas A-1, A-2, & A-3 (0.363 ha)

Storm runoff from Areas A-1, A-2, & A-3 (entrance lane / parking lot) will be directed into the proposed on-site storm sewers. Outflows from these areas will be controlled using an ICD within each catchbasin. Storage will be provided by ponding stormwater on the surface. Ponding depths range from 0.20m to 0.23m. The stage-storage curve for each area is provided in **Appendix D**.

Area R-1 (0.226 ha)

Storm runoff from Area R-1 (building roof) will be controlled using seven (7) flow control roof drains. Flows from the building roof will restrict outflows from the building roof to 8.2 L/s during the 100-year storm event. The building roof will provide a total storage volume of approximately 112.2 m^3 at a maximum ponding depth of 0.15m.

The rooftop storage and roof drain sizing calculations were completed using the Modified Rational Method. The stage-storage curves and supporting calculations are provided in **Appendix D**. The results of this analysis are summarized in **Table 3.3**.

Roof Drain	Catchment Area	Roof Drain		tional Method 0yr)	Maximum Release	Maximum Storage ²
ID	(ha)	Opening Setting ¹	Release Rate (L/s)	Storage Used (m ³)	Rate ² (L/s)	(m ³)
RD-1	0.027	1/2 Exposed	1.10	11.1	1.26	11.7
RD-2	0.026	1/2 Exposed	1.10	10.6	1.26	11.7
RD-3	0.030	1/2 Exposed	1.26	12.3	1.26	12.8
RD-4/5	0.056	1/2 Exposed	2.20	23.4	2.52	32.4
RD-6	0.044	1/2 Exposed	1.26	20.4	1.26	22.4
RD-7	0.043	1/2 Exposed	1.26	19.8	1.26	21.3
-	0.226	-	8.18	97.5	8.82	112.2

Table 3.3: Roof Drain Opening Setting and Maximum Release Rates for Each Roof Drain

Notes:

1) Watts Adjustable Accutrol Control Roof Drain RD-100-A-ADJ.

2) Assumes 0.15 m of head.

3.4 Stormwater Management Modeling

The proposed storm drainage and stormwater management strategy was modelled using the PCSWMM hydrologic / hydraulic model. The PCSWMM model schematic and 100-year output data is provided in **Appendix D**. The PCSWMM Model files are provided on the enclosed CD.

3.4.1 Design Storms

The hydrologic / hydraulic analysis was completed using the 4-hour Chicago synthetic design storm for the 2, 5, and 100-year return periods. The IDF parameters used to generate the design storms were taken from the City of Ottawa Sewer Design Guidelines. The 4-hour Chicago storm distribution is applicable for urban storm drainage systems.

The proposed drainage system has also been stress tested using a 4-hour Chicago design storm that has a 20% higher intensity and total volume compared to the 100-year event.

3.4.2 Storm Drainage Areas

The site has been subdivided into catchment areas representing post-development conditions, based on the proposed grading design and building layout. The runoff coefficients for each

catchment were calculated for the proposed conditions. Refer to the Stormwater Management Plan (drawing 118133-SWM) and storm sewer design sheet (provided in **Appendix D**).

3.4.3 Boundary Conditions

The hydrologic / hydraulic analysis assumed downstream boundary conditions that represents a 'normal' or 'fixed' outfall condition within the Tilsonburg Street storm sewer (MH-202). Refer to **Table 3.4** for the downstream boundary conditions for each SWM modeling scenario.

Return Period	Scenario	Outfall Condition	Fixed Outfall Elevation (m)
2-year	Review Ponding Depth	'Normal' Outfall	-
5-year Review Ponding Depth		ear Review Ponding Depth 'Fixed' outfall condition representing obvert of D/S connecting pipe (MH-202)	
100 маст	Review Release Rate	'Fixed' outfall condition representing obvert of D/S connecting pipe (MH-202)	95.28
100-year	Review Ponding Depth	'Fixed' outfall condition representing 100-year HGL of D/S connecting pipe (MH-202)	96.14

 Table 3.4: Downstream Boundary Conditions for SWM Model Scenarios

The model was run by first saving then using a hotstart file with initial water depths applied to each node for model stability.

Refer to the Broughton Subdivision Phase 1 – HGL Sewer Design Sheet (MH-202), provided in **Appendix B**.

3.4.4 Model Results

Table 3.5 summarizes the results of the hydrologic / hydraulic analysis for the 100-year storm event. For modeling purposes, the four sub-areas comprising the building roof are represented by a single catchment and stage-storage-discharge rating curves.

Area ID	Area (ha)	Description	ICD Type	Peak Flow ⁽¹⁾ (L/s)	Storage Required ⁽²⁾ (m ³)	Storage Provided (m ³)
A-0	0.064	Uncontrolled to Terry Fox Drive	None	30.3	-	-
A-1	0.054	Entrance Area	IPEX Tempest LMF	8.6	12.3	12.3
A-2	0.167	Parking Lot Area	IPEX Tempest MHF	36.7	30.2	32.2
A-3	0.142	Parking Lot Area	IPEX Tempest MHF	55.4	22.5	22.5
R-1	0.226	Rooftop Storage	Watts Accutrol Drain RD-100-A-ADJ (x9)	8.2	97.5	112.2
TOTAL (minor system)	0.589	-	-	107.1	162.5	179.2
TOTAL (overall)	0.653	-	-	137.4	162.5	179.2

Table 3.5: Post-Development Model Results (100yr, 4hr Chicago Event)

⁽¹⁾Peak flows are based on a 'fixed' outfall condition representing pipe obvert (MH-202) = 95.28m. Total peak flow is taken at the outfall (i.e. outlet) and is not a straight addition of the peak flows for each subcatchment area.
⁽²⁾Starses required is based on a 'fixed' outfall condition representing 100 year HCL = 06.14m.

3.4.5 Ponding Depths and Storage Volumes

Approximately 73.8m³ of surface storage has been provided in areas A-1, A-2, & A-3 (Entrance / Parking Lot) at maximum depths ranging from 0.20m to 0.23m. There is no ponding on the parking lot surface during frequent (i.e. 2-year) storm events. Runoff from larger storm events will begin to pond on the parking lot surface, but will not exceed the maximum available ponding depths. Other than the uncontrolled area (Area A-0), there is no major system flows offsite during the 100-year event.

The 5-year and 100-year storage volumes and ponding depths for the various storage areas are shown on the Stormwater Management Plan (118133-SWM).

3.4.6 ICD Sizing

The proposed ICD sizes, head and release rates are shown in **Table 3.6**. They are also shown on the General Plan of Services (118133-GP) and the Stormwater Management Plan (118133-SWM). The Tempest LMF & MHF ICD rating curves and supporting documentation are provided in **Appendix D**.

200	CB / ICD Info			2-year		100-year	
Area ID (CB ID)	Invert Elev. (m)	T/G Elev. (m)	ICD Type	Head (m)	Release Rate (L/s)	Head (m)	Release Rate (L/s)
A-1 (CB01)	95.00	96.45	Tempest LMF (Vortex 90)	0.91	6.7	1.61	9.3
A-2 (CB02)	95.06	96.40	Tempest MHF (126 mm)	1.06	32.0	1.54	39.0
A-3 (CB03)	95.22	96.40	Tempest MHF (162mm)	0.39	30.0	01.29	59.4

Table 3.6: Proposed ICD Sizing Parameters (100yr, 4hr Chicago Event)

⁽¹⁾Peak flows are based on a 'normal' outfall condition representing a free-flowing condition in order to not have any backwater effects on the ICD's. They are not reflective of the actual boundary conditions or the total site release rate.

3.4.7 Hydraulic Grade Line

The site is located near the lower end of the sewershed. The *Broughton Subdivision Phase 1 & 2 Stormwater Management Report* (Novatech, July 2008) governs the allowable release rates for the site and the other upstream properties. The existing 975mm storm sewer at the outlet from the site surcharges 0.86m during the 100-year storm event. The 100-year HGL elevations in the existing storm sewer was accounted for in the design.

Check Valve

A check valve will be installed on the 200mm building service lateral to provide additional protection should the storm sewer surcharge.

3.5 SWM Maintenance and Monitoring

It is recommended that the client implement a maintenance and monitoring program for the onsite storm sewers and catchbasins: The storm drainage system should be inspected routinely (at least annually); the ICDs should be inspected to ensure they are fitted securely and free of debris.

4.0 SITE GRADING

The existing site is currently overlain with grasses and is relatively flat sloping gently towards the Kanata Avenue Roadside Ditch. The intent of the grading design was to propose the building finished floor elevation to best tie into the elevations along the existing adjacent roadway and surrounding property lines. The proposed grading design provides positive drainage away from the building and towards the on-site stormwater drainage structures. In the event of a rainfall event exceeding the 100-year storm event, stormwater runoff will cascade over the high points towards the entrance off Terry Fox Drive. Refer to the enclosed Grading and Erosion & Sediment Control Plan (118133-GR) for details.

4.1 Major System Overflow Route

A major system overland flow route is provided to Terry Fox Drive. This is for storm events that exceed the 100-year return period.

Stormwater within the catchbasins located within the entrance / parking lot will pond before overflowing. Each subcatchment will overflow to a lower sub-catchment drainage area and ultimately overflow towards Terry Fox Drive.

Stormwater from the proposed building roof will pond to a maximum of 0.15 m on the rooftops. Overflow scuppers will be provided along the perimeter of the roof. Rooftop drainage will overflow towards the parking lot or towards the landscaped areas; ultimately towards Terry Fox Drive. The minimum building elevations have been set at least 0.30 m above the maximum on-site ponding elevations for protection from flooding.

The major system overflow route is shown on the enclosed Grading Plan (118133-GR) and the Stormwater Management Plan (118133-SWM).

4.2 Erosion and Sediment Control

Erosion and sediment control measures will be implemented during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites" (Government of Ontario, May 1987). Details are provided on the Grading and Erosion & Sediment Control Plan (113023-GR).

- All erosion and sediment control measures are to be installed to the satisfaction of the engineer, the municipality and the conservation authority prior to undertaking any site alterations (filling, grading, removal of vegetation, etc.) and remain present during all phases of site preparation and construction.
- A qualified inspector should conduct daily visits during construction to ensure that the contractor is working in accord with the design drawings and that mitigation measures are being implemented as specified.
 - A light duty silt fence is to be installed as per OPSS 577 and OPSD 219.110 along the surrounding construction limits.
 - Catchbasin inserts are to be placed under the grates of all proposed and existing catchbasins and catchbasin manhole drainage structures.
 - Street sweeping and cleaning will be performed, as required, to suppress dust and to provide safe and clean roadways adjacent to the construction site.

- After complete build-out, all sewers are to be inspected and cleaned and all sediment and construction fencing is to be removed.
- The contractor shall immediately report to the engineer or inspector any accidental discharges of sediment material into any ditch or sewer system. Appropriate response measures shall be carried out by the contractor without delay.

The proposed temporary erosion and sediment control measures will be implemented prior to construction and will remain in place during all phases of construction. Regular inspection and maintenance of all erosion control measures is to be undertaken.

5.0 GEOTECHNICAL INVESTIGATIONS

A Geotechnical Investigation Report has been prepared for the proposed site. Refer to the Paterson Group 'Geotechnical Investigation' (Report. No. PG4564-1), dated November 7, 2018 for the existing subsurface conditions, construction recommendations and geotechnical inspection requirements for the proposed development.

6.0 SUMMARY AND CONCLUSIONS

This report has been prepared in support of the site plan application for the proposed development of a Retail Plaza, located at 471 Terry Fox Drive, in the City of Ottawa.

The conclusions are as follows:

- The proposed development will be serviced by connecting to the existing municipal sanitary and storm sewer systems and the existing municipal watermain within the Tillsonburg Street Right-Of-Way.
- The proposed retail plaza will be sprinklered. The Shell gas station will not be sprinklered. The fire protection will be provided by a single fire hydrant located within 45m form the retail building Siamese connection location and within 90m unobstructed path from the principal entrance to the Shell convenience store.
- Stormwater runoff from the site will consist of a combination of controlled parking lot flows and controlled building roof flow. On-site stormwater quantity control will be achieved using inlet control devices located within the on-site catchbasins.
- The total post-development flow from the 0.653 ha area to the Tillsonburg Street storm sewer will be controlled to a maximum of 137.4 L/s during the 100-year design event. The maximum allowable release rate is 141.9 L/s, as calculated to meet the City of Ottawa stormwater quantity requirements.
- On-site water quality treatment is not required as water quality treatment is provided by the Carp River SWM Facility.
- Regular inspection and maintenance of the storm sewer system, including the inlet control devices (ICD's), is recommended to ensure that the storm drainage system is kept clean and operational.
- Temporary erosion and sediment controls are to be provided during construction.

7.0 CLOSURE

This report has been prepared in support of the site plan application for the proposed development of a Retail Plaza located at 471 Terry Fox Drive, in the City of Ottawa.

Servicing assessments discussed in the preceding sections show that there are no major obstacles to servicing the proposed development. It is recommended that the proposed site servicing and stormwater management design be approved for implementation.

NOVATECH

Development Servicing Prepared by:

Miroslav Savic, P. Eng. Senior Project Manager | Land Development Engineering

Stormwater Management Prepared by:

Conrad Stang, M.A.Sc., P.Eng. Project Manager | Water Resources

APPENDIX A

Correspondence

471 Terry Fox Drive Pre-Consultation Meeting Minutes

Date: Tuesday, February 13, 2018, 1:30pm to 3:00pm Location: Room 4161E City Hall

Attendees:

Victoria Bissonnette, Planner, City of Ottawa Rosanna Baggs, Transportation Project Manager, City of Ottawa Santhosh Kuruvilla, Project Manager, City of Ottawa Justin Marr, Planning Assistant, City of Ottawa Dennis Laurin, Developer Gord Erskine, Architect, Gord Erskine Architect Inc.

Comments from Applicant:

- 1. The proposal is for a one-storey multi-unit commercial building as well as a gas bar (Shell) with a car wash and a convenience store.
- 2. The applicant may propose a drive-through as part of the multi-unit commercial building.
- 3. The design and layout of the site will be dependent on the drive-through.
- 4. Access into the site is proposed from Kanata Avenue, Terry Fox Drive and Tilsonburg Street.
- 5. Roadway modifications will be required as part of this development.

Comments from City Staff

Planning

- This application is for Site Plan Control with public consultation and will be manager approved. Please see the <u>City's website</u> for details on applicable timelines and fees.
- Please clearly indicate if the lands will go to the <u>Committee of Adjustment</u> for a severance prior to site plan approval. Note that if the applicant chooses to sever at this time, the lands will have to go through separate site plan approval processes. The City will not comment at this time on the likelihood of obtaining approval for a severance in the future.
- Please note that there is a 30cm reserve on the subject lands. Once approval is granted for the Site Plan Control application, an application to <u>lift the 30cm</u> <u>reserve</u> will be required.
- 4. Please ensure to consult the <u>Zoning By-law</u> as a whole to ensure compliance to applicable policies and provisions.

- Cash-in-Lieu of parkland is to be determined and will be provided by the City Planner. Please consult the <u>Parkland Dedication By-law</u> for standard requirements.
- 6. The applicant is encouraged to consult the Ward Councillor about the subject proposal, prior to application submission.
- 7. Staff have the right to further comment once a formal application is submitted, as the pre-consultation meetings are high level.
- 8. Please note that these comments as well as the list of required plans and studies will lapse in year one from the pre-consultation meeting.

Urban Design

- Please provide trees along the front of the property. A landscape buffer of coniferous trees is suggested to screen the subject site from adjacent residential and commercial areas.
- 2. The alternative design created by Mark Young that solves the cutthroat issue and will be attached to this document.
- 3. Please follow the Urban Design guidelines for a gas station as they should be consulted.

Transportation

- Follow the new Transportation Impact Assessment (TIA) guidelines for this development.
- 2. Refer to the Transportation Association of Canada (TAC) for clear throat requirements from collector and arterial roads.
- 3. A Road Modification Plan will be required if a right turn auxiliary lane is proposed.
- Ensure that the property lines reflect the 44.5 meter ROW protection on Terry Fox Drive.
- 5. Show all the road detail of all surrounding streets, including pavement markings.
- A Stationary Noise Impact Assessment will be required for the carwash, vacuums and for any exposed mechanical equipment on any building within the development.
- 7. Noise walls in the rear will be ineffective as a method for noise mitigation for this site due to the grading of the site.
- 8. Please show the turning movements throughout the site for the largest vehicles.
- 9. Median breaks along Terry Fox Drive that encourage uncontrolled full movement access will not be supported by the City.
- 10. Please adhere to the new accessibility guidelines.

Engineering

1. The proposal of a gas station/carwash will require MOECC ECA

File Number: D07-01-18-0047 February 13, 2018

- Please refer to the Broughton Lands Serviceability Study (Subdivision File No. D07-16-04-0020) that will provide the stormwater management criteria for this site plan. The report can be requested at the City of Ottawa's Information Centre.
- 3. For additional information regarding the engineering aspects of the site, please contact Santhosh Kuruvilla by phone at 613-580-2424 ext. 27599 or email Santhosh.Kuruvilla@ottawa.ca.
- Contact the MCVA for stormwater treatment requirements. Oil & Grit separator may be required.

Please contact me at Victoria.Bissonnette@ottawa.ca or at 613-580-2424 ext. 27029 should you have any questions.

Sincerely,

V. Buss

Victoria Bissonnette Planner I Development Review - West

APPLICANT'S STUDY AND PLAN IDENTIFICATION LIST

Legend: S indicates that the study or plan is required with application submission. A indicates that the study or plan may be required to satisfy a condition of approval/draft approval.

For information and guidance on preparing required studies and plans refer to:

http://ottawa.ca/en/development-application-review-process-0/guide-preparing-studies-and-plans

S/A	Number of copies	ENGINEERING			Number of copies
S	15	1. Site Servicing Plan	2. Site Servicing Study / Brief	S	6
S S S	6	3. Grade Control and Drainage Plan	4. Geotechnical Study	s	4
	2	5. Composite Utility Plan	6. Groundwater Impact Study		6
	5	7. Servicing Options Report	8. Wellhead Protection Study		6
S	9	9. Transportation Impact Study	10. Erosion and Sediment Control Plan		6
	6	11.Storm water Management Report / Brief	12.Hydro geological and Terrain Analysis		8
	3	13.Hydraulic Water main Analysis	14.Noise / Vibration Study	s	3
S	10	15.Roadway Modification Design Plan	16.Confederation Line Proximity Study		9

S/A	Number of copies	PLANNING / DESIGN / SURVEY			Number of copies
	50	17.Draft Plan of Subdivision	18.Plan Showing Layout of Parking Garage		2
	30	19.Draft Plan of Condominium	20.Planning Rationale	s	3
s	15	21.Site Plan	22.Minimum Distance Separation (MDS)	S	3
	20	23.Concept Plan Showing Proposed Land Uses and Landscaping	24.Agrology and Soil Capability Study		5
	3	25.Concept Plan Showing Ultimate Use of Land	26.Cultural Heritage Impact Statement		3
s	10	27.Landscape Plan	28.Archaeological Resource Assessment	S	3
S	2	29.Survey Plan	30.Shadow Analysis		3
s	3	31.Architectural Building Elevation Drawings (dimensioned)	32.Design Brief (includes the Design Review Panel Submission Requirements)		Available online
	6	33.Wind Analysis			

S/A	Number of copies	ENVIRONMENTAL				
s	5	34.Phase 1 Environmental Site Assessment	35.Impact Assessment of Adjacent Waste Disposal/Former Landfill Site		6	
	5	36.Phase 2 Environmental Site Assessment (depends on the outcome of Phase 1)	37.Assessment of Landform Features		7	
	4	38.Record of Site Condition	39.Mineral Resource Impact Assessment		4	
A	10	40.Tree Conservation Report	41.Environmental Impact Statement / Impact Assessment of Endangered Species		11	
	4	42.Mine Hazard Study / Abandoned Pit or Quarry Study	43.Integrated Environmental Review (Draft, as part of Planning Rationale)		3	

S/A	Number of copies	ADDIT	IONAL REQUIREMENTS	S/A	Number of copies
s		44.Site Lighting Plan and Certificate	45. PDF Copy of all required plans and studies via CD, USB or email	s	

Meeting Date: February 13, 2018

Application Type: *Site Plan Control, Manager Approved* Infrastructure Approvals Project Manager: Santhosh Kuruvilla

File Lead (Assigned Planner): Victoria Bissonnette

Site Address (Municipal Address): 471 Terry Fox Drive

It is important to note that the need for additional studies and plans may result during application review. If following the submission of your application, it is determined that material that is not identified in this checklist is required to achieve complete application status, in accordance with the Planning Act and Official Plan requirements, the Planning, Infrastructure and Economic Development Department will notify you of outstanding material required within the required 30 day period. Mandatory pre-application consultation will not shorten the City's standard processing timelines, or guarantee that an application will be approved. It is intended to help educate and inform the applicant about submission requirements as well as municipal processes, policies, and key issues in advance of submitting a formal development application. This list is valid for one year following the meeting date. If the application is not submitted within this timeframe the applicant must again pre-consult with the Planning, Infrastructure and Economic Development Department.

 110 Laurier Avenue West, Ottawa ON K1P 1J1
 Mail code: 01-14
 Visit us: Ottawa.ca/planning

 110, av. Laurier Ouest, Ottawa (Ontario) K1P 1J1
 Courrier interne : 01-14
 Visitez-nous : Ottawa.ca/urbanisme

Miro Savic

From:Niall Oddie < NOde</th>Sent:Friday, December (To:Miro SavicSubject:FW: Heritage Hills

Niall Oddie <NOddie@mvc.on.ca> Friday, December 07, 2018 11:46 AM Miro Savic FW: Heritage Hills Retail Plaza - Water Quality Requirements

Miro,

Please see below.

Niall Oddie MCIP, RPP | Environmental Planner | Mississippi Valley Conservation Authority 10970 Highway 7, Carleton Place, Ontario K7C 3P1 www.mvc.on.ca |t. 613 253 0006 ext. 229 | f. 613 253 0122 | noddie@mvc.on.ca

This e-mail originates from the Mississippi Valley Conservation Authority e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. If you are not the intended recipient, please notify me at the telephone number shown above or by return e-mail and delete this communication and any copy immediately. Thank you.

From: Sobha Kunjikutty Sent: Friday, December 7, 2018 8:56 AM To: Niall Oddie <NOddie@mvc.on.ca> Subject: RE: Heritage Hills Retail Plaza - Water Quality Requirements

Hi Niall,

We recommend a Normal Level of treatment for water quality for this site. However, the plan should include and demonstrate measures in treating all the runoff from this industrial area on site (e.g stormwater interceptors such as oil/grit). Let me know if you have any questions. Thanks.

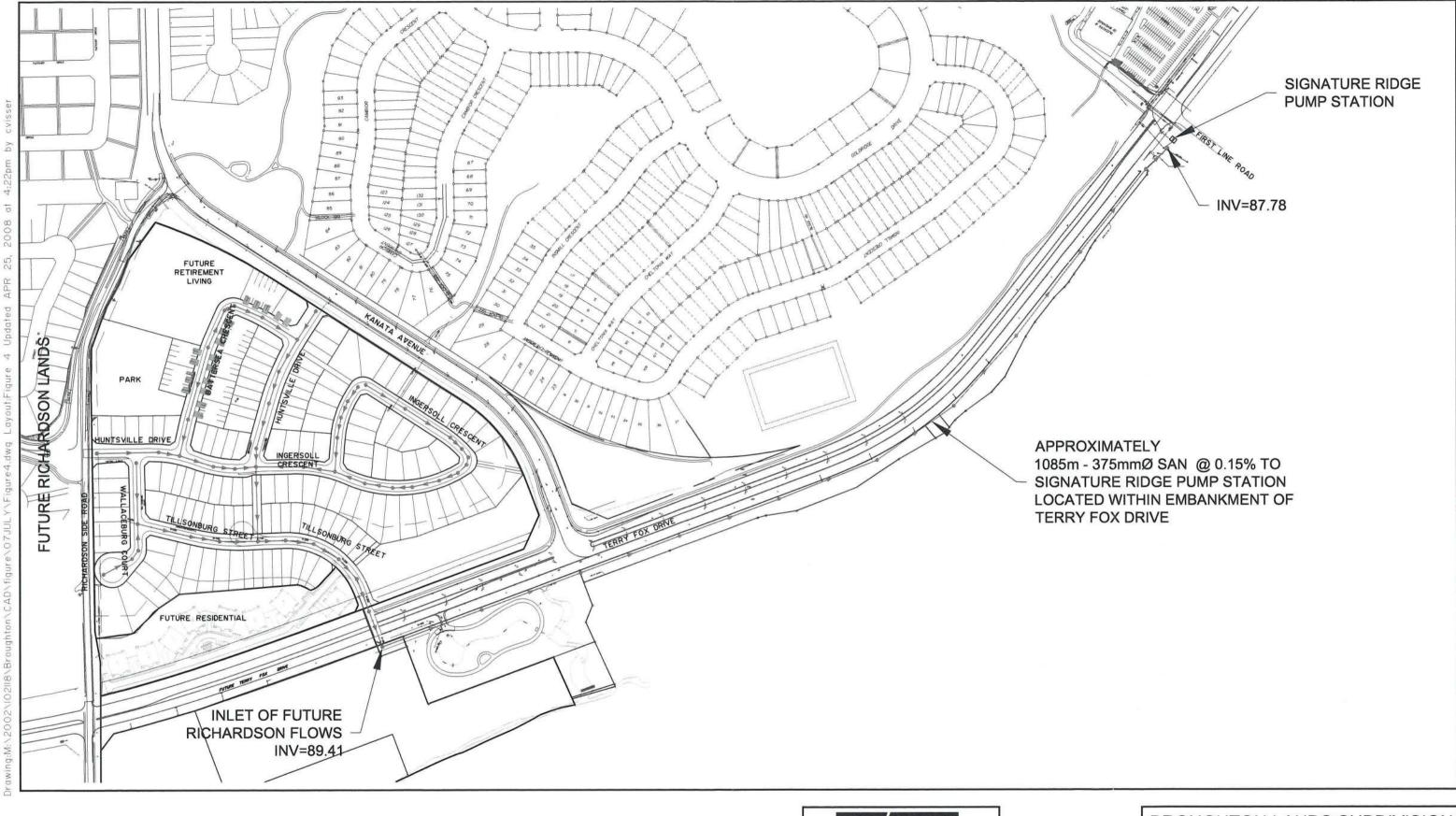
Sobha

From: Miro Savic [mailto:m.savic@novatech-eng.com] Sent: Monday, December 3, 2018 4:07 PM To: Niall Oddie <<u>NOddie@mvc.on.ca</u>> Cc: Lee Sheets <<u>l.sheets@novatech-eng.com</u>> Subject: Heritage Hills Retail Plaza - Water Quality Requirements

Good afternoon Niall,

We are working on a commercial development located at 471 Terry Fox Drive. The development proposal is to construct two one-storey multi-unit commercial buildings as well as a Shell gas bar with a car wash and a convenience store. See the attached site plan for detailes.

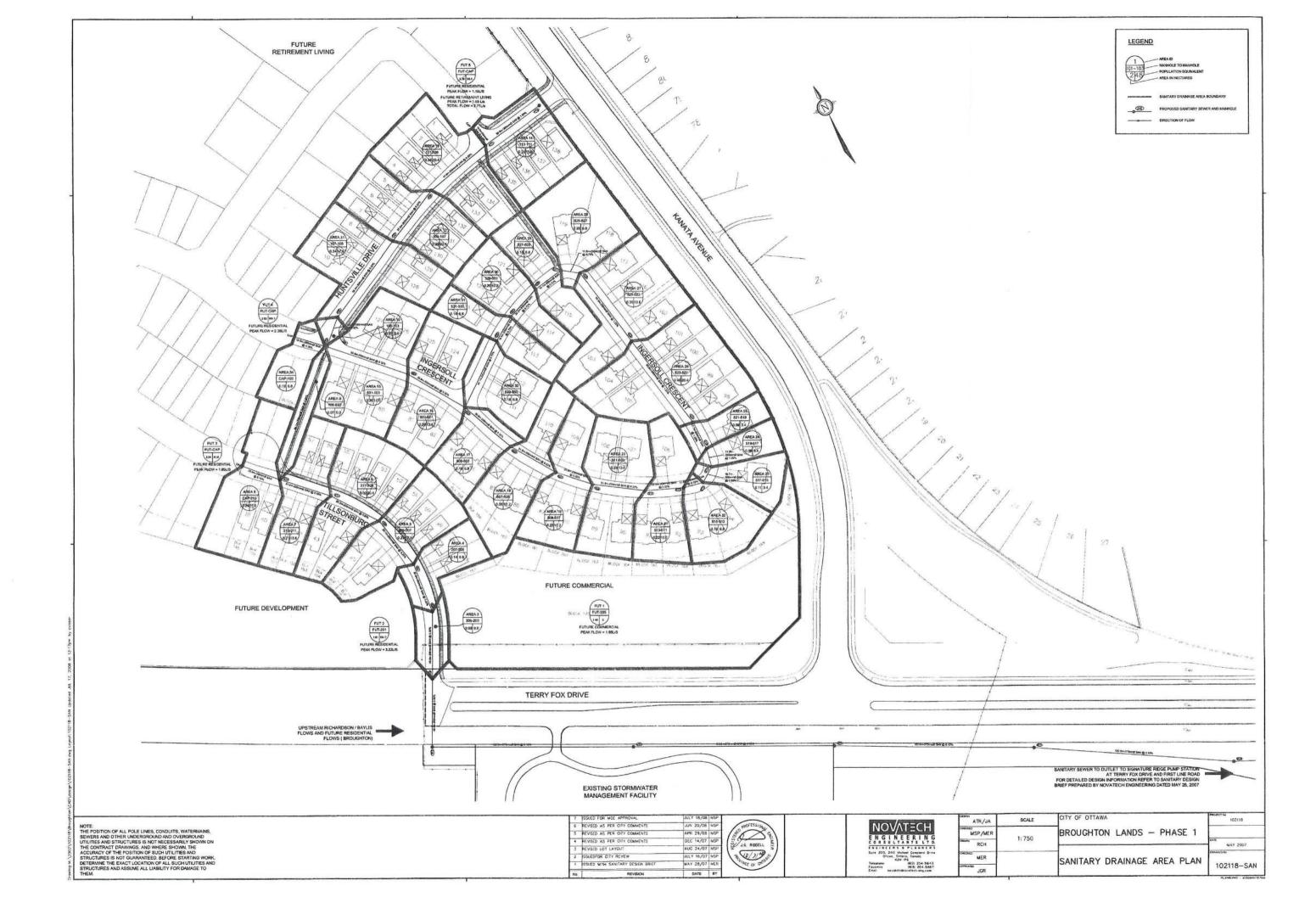
The storm runoff from the retail plaza portion of the site (Building 1 and Building 2 with the parking lot) will outlet into the existing municipal storm sewer in Tilsonburg Street. The Tilsonburg storm sewer has a flow splitter to direct runoff from storms up to the 25mm event (water quality) to the existing SWM facility of the west side of terry Fox drive. Therefore, the on-site water quality is not required for this portion of the site.


The storm runoff from the Shell gas station will outlet into the existing 1200mm diameter storm sewer near the intersection of Kanata Avenue and Terry Fox Drive. This storm sewer outlets into the ditch which outlets directly into Carp River bypassing the SWM pond (refer to the attached aerial photo). Could you please confirm the water quality requirements for the Shell portion of the site.

Please contact me should you have any questions.

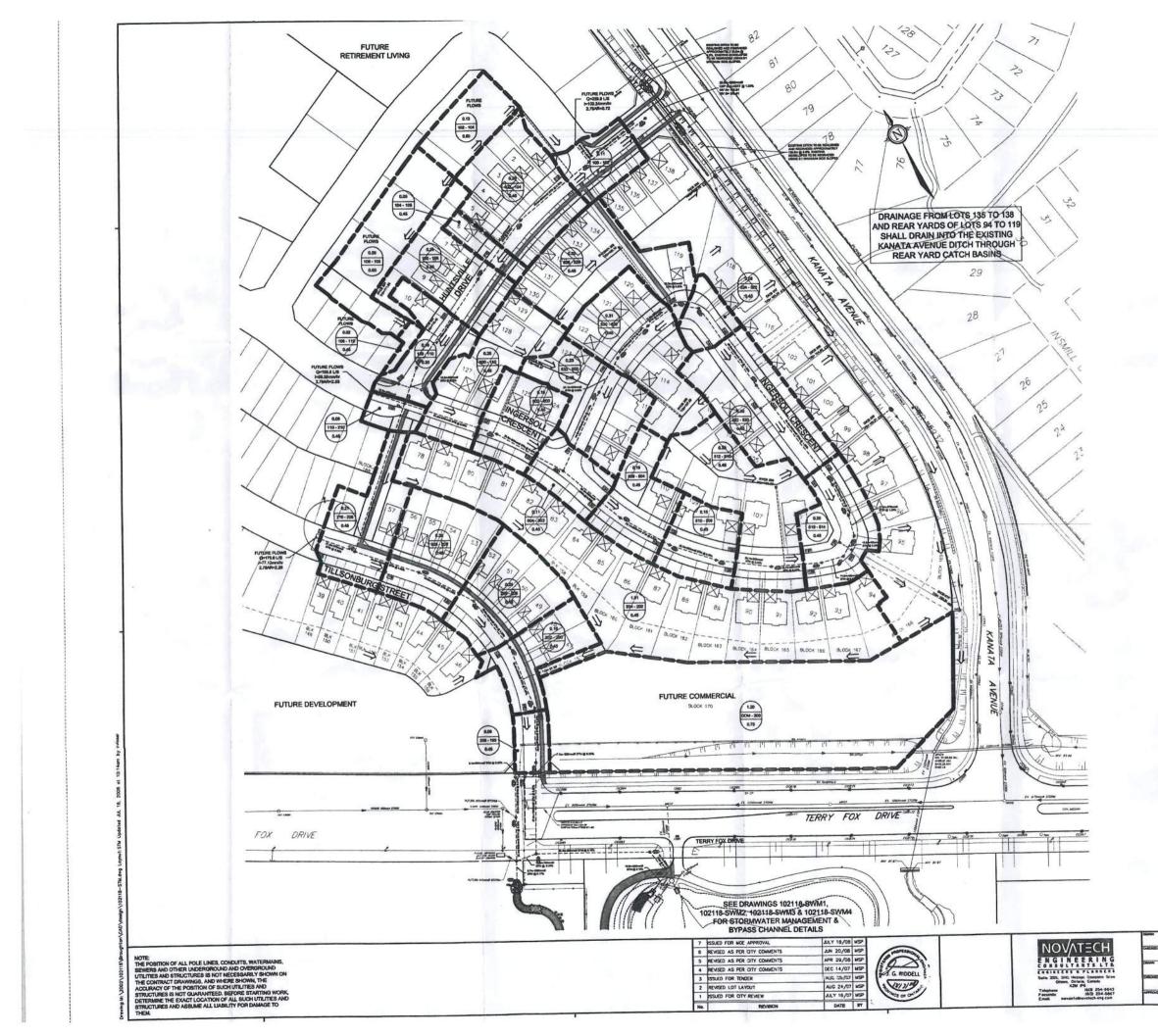
Regards,

Miroslav Savic, P.Eng., Senior Project Manager | Land Development Engineering NOVATECH Engineers, Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x 265 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee. APPENDIX B


Background Report Excerpts

BROUGHTON LANDS SUBDIVISION SANITARY SERVICING PLAN JULY 2008 FIGURE 4 102118

SHTIIXI7.DWG - 278mmX43Imm


SANITARY DESIGN SHEET BROUGHTON SUBDIVISION PHASE 1 JOB #102118

E N G I N E E R I N G C O N S U LT A N T S LT D

Area Form Tot Area Description Post					INDIVIDUAL AREA AND POPULATION	L AREA AN	D POPUL		& POPU	& POPULATIVE AREA & POPULATION	рор	POPULATION FLOW	NON	FLOW			PROP	PROPOSED SEWER	WER		
Mote Mote <th< th=""><th>Groot</th><th></th><th>From</th><th>Ę</th><th>Area</th><th>Dwell</th><th>SDU</th><th>Poo.</th><th>Area</th><th>Pop.</th><th>Peak</th><th></th><th>Infiltration</th><th>Total</th><th>Length</th><th>Dia</th><th>Dia</th><th>Stope</th><th>Velocity</th><th></th><th>Ratio</th></th<>	Groot		From	Ę	Area	Dwell	SDU	Poo.	Area	Pop.	Peak		Infiltration	Total	Length	Dia	Dia	Stope	Velocity		Ratio
manner manner<	Olicel	Area	MH	HW		SFH	HL			-	Factor		Flow	Flow		Act	Nom		(Full)	-	Q/Ofull
Fr/a Fr/a <th< td=""><td></td><td></td><td></td><td></td><td>(ha)</td><td></td><td></td><td></td><td>(ha)</td><td></td><td></td><td>(I/IS)</td><td>(IJs)</td><td>(I/S)</td><td>(E)</td><td>(mm)</td><td>(mm)</td><td>(%)</td><td>(m/s)</td><td>(IL/S)</td><td>(%)</td></th<>					(ha)				(ha)			(I/IS)	(IJs)	(I/S)	(E)	(mm)	(mm)	(%)	(m/s)	(IL/S)	(%)
1 Frd3 Fr																					200
Cop 213 0.29 5 0 170 253 96.6 4.00 160 0.71 231 235 2012 200 5 713 211 021 4 0 13.6 91.6 13.6 91.7 13.6 2012 200 3 701 202 0 13.6 11.72 56.1 35.6 11.6 0.71 21.9 2012 200 3 701 205 0.14 2 0 1.45 0.00 12.45 56.1 35.6 11.9 4.00 12.9 200 3	Tillsonburg Street	Fut 3	Fut 3	Cap	2.24	24		81.6	2.24	81.6	4.00	1.32	0.63	1.95		201.2	200	6.15	2.60	¢.28	0/2
1 1 131 211 021 4 0 136 11.6 00.6 357 3.66 13.4 21.1 2010 2011 2010 2011 2010 2011 2010 2011 2010 2011 2010 2011 2010 2011 2010 2011 2010 2011 2011 2010 2011 2010 2011 2010 2011 2010 2011 2010 2011 2010 2011 2011 2010 2011 2010 20111 2011 2011	Tillsonburg Street	8	Cap	213	0.29	5	0	17.0	2.53	98.6	4.00	1.60	0.71	2.31	23.5	201.2	200	6.15	2.60	82.5	3%
1 7 7 7 73 211 201 0.22 610 11.00 0.001 12.01 0.001 0.										00001		90.0	000	10.01	21.4	010	000	5 50	2 46	78.0	17%
i i 201 200 0.02 i 1.12 200 201 1.000 201 201 200 201 200 201 200 201 200 201 200 201 200 201 200 201 200 201 200 201 200 201 200 201 200 201 200 201 200 201	Tillsonburg Street	7	213	211	0.21	4	0	13.6	11.60	200.90	3.9/	07.6	00.0	10.04	400	2010	000	5 50	2.46	78.0	17%
1 5 200 500 100 123 500 200		9	211	209	0.32		0	20.4	11.92	521.3	0.20	10.8	3.01	12,68	33.1	201.2	200	320	1.87	59.5	23%
1 a 200 0.01 1.46 0.00 1.50 1.55 1.51 4.02 266 200 1.60 1.50 1.50 1.50 200 0.01 200 0.01 1.50 1.50 1.51 4.02 266 200 0		2	209	207	0.29	0		0.11	12.21	545.1	3 95	87.8	3.46	12.19	30.8	201.2	200	3.20	1.87	59.5	20%
1 1 256 145 145 145 145 146	Tillsonburg Street	4	201	ŝ	0.14	2		0.0	222		2000										
3 266 203 000 0 13 355 11.19 4.32 15.51 4.02 3664 200 0 mit Fut2 Fut2 T Fut2 T Fut2 T Fut2 1.51 1.51 4.02 3664 370 200 3604 370 201 200 3604 375 C 360 375 C 3604 375 C	Commercial	ŀ		205	1.45				1.45	0.00	1.50	1.26	0.41	1.66							
3 205 205 0.000 0 101 243 5511 336 1113 422 233 201 <td></td> <td>1 000</td> <td>000</td> <td>000</td> <td>0.00</td> <td>000</td> <td>170/</td>																1 000	000	000	0.00	000	170/
mt frat frat 1:50 201 0.000 0 104 136 11.18 4.22 10-11 4.21 2012 200 2012 200 2012 200 2012 200 2012 200 2012 200 2012 200 2012 200 2012 200 2012 200 2012 200 2012 200 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2013 2014 2017 2010 2014 2013		3	205	203	0.08	0	0	0.0	12.43	545.1	3.95	11.19	4.32	15.51	40.2	300.4	2002	20.0	0000	30.6	170/
mit Fut 2 Fut 2 T. Fex 151 164.7 131 164.7 4.00 257 320 2012 200 5 312 1000 366.4 375 0 ayi 911 911 017 0			203	201	0.00	0	0	0.0	12.43	545.1	3.95	11.19	4.32	15.51	42.1	300.4	SOU	26.0	0.00	30.6	0/ 11
mit Fuit2 F		1		L.			ā	1647	1 01	164.7	4 00	2.67	0.53	3.20		201.2	200	5.50	2.46	78.0	4%
Normality 201 2.86 146.9 2.86 146.9 2.86 146.9 2.86 146.9 2.86 146.9 2.86 3.01 100.0 366.4 375 0 apple and Richardson. 201 27.0 0 0 0 0 2.34 375 1 201 366.4 375 0 366.4 375 0	Future Development	LU Z	LUIZ	L. LOX	181	>	5														
with any line 201 2347 1525.6 52.73 157.55 3.64 2466 7.20 3190 1000 3664 375 0 with any line 201 2.70 0 0.03 1637.15 3.61 817 917 917 917 917 917 917 917 917 917 916 913 911 917 916 916 917 916 916 917 916 916 917 916 916 917 916 916 917 917 916	Deutio Landa			201	2.26			146.9	2.26	146.9	4.00	2.38	0.63	3.01	100.0	366.4	375	0.15	0.60	63.8	5%
ayle Total 270 00 30.3 1837.15 3.61 65.90 85.00 35.30 120.00 366.4 375 0 ayle 10 017 0 0 42.94 2382.3 3.55 95.48 120.0 366.4 375 0 1 011 017 0 0 43.37 2547.0 3.50 38.59 120.0 366.4 375 0 1 913 0.17 0 0 0.0 43.37 2547.0 3.50 38.59 13.00 51.69 366.4 375 0 903 011 0 0 0 3.50 35.59 13.00 51.69 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375	Dishardeon Earm			201	23.47			1525.6	25.73	1672.5	3.64	24.69	7.20	31.90	100.0	366.4	375	0.15	0.60	63.8	50%
201 917 017 0 0 0.0 42.94 2382.3 3.53 36.48 12.00 366.4 375 0 917 917 017 0 0 0.0 43.10 2547.0 3.50 39.59 12.81 120.0 366.4 375 0 913 911 0.17 0 0 0.0 43.43 2547.0 3.50 38.59 12.81 120.0 366.4 375 0 913 901 0.17 0 0 0.0 43.43 2547.0 3.50 38.59 13.06 1.13 120.0 366.4 375 0 905 907 0.17 0 0 0.0 43.43 2547.0 3.50 38.59 13.16 17.7 106.5 366.4 375 0 905 903 0.17 0 0 0.0 44.42 2547.0 3.50 38.59 313.69 317.6 375 0	Terry Fox (along Baylis an	d Richardson		201	2.70			0.0	30.34	1837.15	3.61	26.90	8.50	35.39	120.0	366.4	375	0.15	0.60	63.8	55%
m 201 917 0.17 0 0 42.94 2382:3 3.35 3.85-9 12.90 366-4 375 0 915 915 0.17 0 0 0.0 43.27 2547.0 3.50 38.59 12.00 366.4 375 0 913 911 0.17 0 0 0.0 43.43 2547.0 3.50 38.59 12.00 366.4 375 0 903 0.17 0 0 0.0 43.43 2547.0 3.50 38.59 13.00 51.56 170.0 366.4 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 0 375 <															0001	1 000		0.45	0.00	0 03	170/
10 43.10 2547.0 3.50 36.59 12.51 51.54 12.00 366.4 375 0 10 43.27 2547.0 3.50 38.59 12.05 51.54 120.0 366.4 375 0 10 43.60 2547.0 3.50 38.59 13.05 51.68 120.0 366.4 375 0 10 43.76 2547.0 3.50 38.59 13.05 51.68 106.5 366.4 375 0 10 43.76 2547.0 3.50 38.59 13.19 51.77 120.0 366.4 375 0 10 43.66 2547.0 3.50 38.59 13.23 51.86 34.0 375 0 10 44.06 2547.0 3.50 38.59 13.23 51.86 34.0 375 0 11 44.06 2547.0 3.50 38.54 375 0 11 44.4.06 2547.0	Terry Fox		201	917	0.17	•	•	0.0	42.94	2382.3	3.53	36.48	09771	49.94	120.0	300.4	3/3	310	0.00	0.00	B10/
10 43.27 2547.0 35.0 36.34 12.95 51.34 120.0 366.4 375 0 10 43.43 2547.0 3.50 38.59 13.00 51.59 120.0 366.4 375 0 10 43.43 2547.0 3.50 38.59 13.06 51.68 106.5 366.4 375 0 10 43.05 2547.0 3.50 38.59 13.19 51.77 120.0 366.4 375 0 10 43.05 2547.0 3.50 38.59 13.19 51.77 120.0 366.4 375 0 10 44.05 2547.0 3.50 38.59 13.28 51.86 34.0 366.4 375 0 10 44.22 2547.0 3.50 38.59 13.28 51.86 34.0 366.4 375 0 11 44.42 2547.0 3.50 38.59 13.28 51.86 34.0 366.			917	915	0.17	0	•	0.0	43.10	2547.0	3.50	38.59	12.91	51.49	0.021	300.4	3/3	0.10	0000	0.00	01 /0
10 43.43 2547.0 3.50 36.53 13.05 51.68 106.5 366.4 375 0 0.0 43.83 2547.0 3.50 38.59 13.05 51.68 106.5 366.4 375 0 0.0 43.83 2547.0 3.50 38.59 13.05 51.68 106.5 366.4 375 0 0.0 43.93 2547.0 3.50 38.59 13.19 51.77 120.0 366.4 375 0 0.0 44.02 2547.0 3.50 38.59 13.28 51.86 34.0 366.4 375 0 0.0 44.22 2547.0 3.50 38.59 13.28 51.86 34.0 366.4 375 0 0.0 44.22 2547.0 3.50 38.59 13.28 51.86 34.0 366.4 375 0 0.0 44.22 2547.0 3.50 13.28 51.86 34.0 366.4 <t< td=""><td></td><td></td><td>915</td><td>913</td><td>0.17</td><td>0</td><td>•</td><td>0.0</td><td>43.27</td><td>2547.0</td><td>3.50</td><td>38.59</td><td>C6.71</td><td>40.10</td><td>120.0</td><td>266 A</td><td>375</td><td>0.15</td><td>0.60</td><td>83.8</td><td>81%</td></t<>			915	913	0.17	0	•	0.0	43.27	2547.0	3.50	38.59	C6.71	40.10	120.0	266 A	375	0.15	0.60	83.8	81%
10 43.60 2547.0 35.0 36.53 13.05 51.63 10.65.5 366.4 375 0 0.0 43.77 2547.0 3.50 38.59 13.19 51.77 106.5 366.4 375 0 0.0 44.05 2547.0 3.50 38.59 13.19 51.77 120.0 366.4 375 0 0.0 44.26 2547.0 3.50 38.59 13.28 51.82 118.0 366.4 375 0 0.0 44.42 2547.0 3.50 38.59 13.28 51.86 34.0 366.4 375 0 0.0 44.42 2547.0 3.50 38.59 13.28 51.86 34.0 366.4 375 0 0.0 44.42 2547.0 3.50 38.59 13.28 51.86 34.0 366.4 375 0 18 Project: Broughton Subdivision Designed: ATRUADDB ATRUADDB ATRUADB			913	911	0.17	0	0	0.0	43.43	0.1402	3.50	20.05	0.01	01.00	0.021	1.000	010	240	0.60	8.0 B	81%
0 43.70 2547.0 3.50 36.56 13.16 51.73 106.5 366.4 375 0.15 0.60 63.8 0.0 44.05 2547.0 3.50 36.59 13.19 51.77 120.0 366.4 375 0.15 0.60 63.8 0.0 44.02 2547.0 3.50 36.59 13.28 51.82 118.0 366.4 375 0.15 0.60 63.8 0.0 44.42 2547.0 3.50 38.59 13.28 51.86 34.0 366.4 375 0.15 0.60 63.8 0.0 44.42 2547.0 3.50 38.59 13.28 51.86 34.0 366.4 375 0.15 0.60 63.8 9 0.0 44.42 2547.0 3.50 38.59 13.28 51.86 34.0 375 0.15 0.60 63.8 0.1 Kantal Road Inc. c/o Regional Group Designed: ATPUADDB ADE ADE <			911	606	0.17	0		0.0	43.60	2547.0	3.50	30.39	00.61	21.03	1065	366.4	375	0.15	0.60	83.8	81%
No 43.05 2547.0 3.50 38.59 13.19 51.77 120.0 366.4 375 0 0.0 44.42 2547.0 3.50 38.59 13.28 51.82 118.0 366.4 375 0 0.0 44.26 2547.0 3.50 38.59 13.28 51.86 34.0 366.4 375 0 0.0 44.26 2547.0 3.50 38.59 13.28 51.86 34.0 366.4 375 0 0.0 44.42 2547.0 3.50 38.59 13.28 51.86 34.0 366.4 375 0 0.0 44.42 2547.0 3.50 38.59 13.28 51.86 34.0 366.4 375 0 0.1 44.42 2547.0 3.50 38.59 13.28 51.86 34.0 366.4 375 0 1.1 Project: Broughton Subdivision Designed: ATRUADDB ATRUADDB 13.28			606	907	0.17	0		0.0	43.70	0.1402	3.50	20.05	13 14	51 73	106.5	366.4	375	0.15	0.60	63.8	81%
0.0 41.42 2547.0 3.50 38.59 13.23 51.82 118.0 368.4 375 0 0.0 44.42 2547.0 3.50 38.59 13.23 51.86 34.0 366.4 375 0 10 44.42 2547.0 3.50 38.59 13.28 51.86 34.0 366.4 375 0 11 Roughton Subdivision 38.59 13.28 51.86 34.0 366.4 375 0 11 Project: Broughton Subdivision Designed: ATRUADDB 11 Project: Broughton Subdivision Designed: MSP 11 Project: Broughton Subdivision Designed: MSP 11 Project: Broughton Subdivision Designed: MSP 11 Project: May 28, 2006 Breetence: 102118-SAM 11 Bristian Dwg. Reference: 102118-SAM 11 Bristian Dwg. Reference: 102118-SAM			907	006	11.0				44.00	2547.0	3 50	38.50	13 19	51.77	120.0	366.4	375	0.15	0.60	63.8	81%
13.26 34.0 366.4 375 0 na Project: Broughton Subdivision 51.86 34.0 366.4 375 0 na Project: Broughton Subdivision Designed: ATRUA/DDB client: Kanata Road Inc. c/o Regional Group Designed: MSP Date: May 23, 2006 Dwg. Reference: 102118-SAM May 2, 2008 June 13, 2008 Juny 18, 2008 Juny 18, 2008			000	505	0.17		0	0.0	44.26	2547.0	3.50	38.59	13.23	51.82	118.0	366.4	375	0.15	0.60	63.8	81%
Nation Designed: ATR/JADDB Project: Broughton Subdivision Designed: ATR/JADDB Client: Kanata Road Inc. c/o Regional Group Designed: MSP DCR Phoenix DCR Phoenix MSP Designed: MSP Date: May 2, 2006 Dwg. Reference: 102116-SAN May 2, 2008 June 13, 2008 June 13, 2008			901	EX MH	0.17	0	0	0.0	44.42	2547.0	3.50	38.59	13.28	51.86	34.0	366.4	375	0.15	0.60	63.8	81%
Tages Project: Broughton Subdivision Designed: ATRUA/DDB Client: Kanata Road Inc. c/o Regional Group Designed: ATRUA/DDB Client: Kanata Road Inc. c/o Regional Group Checked: MSP Date: May 23, 2006 Dwg. Reference: 102118-SAN May 2, 2008 June 13, 2008 June 13, 2008 Juny 18, 2008																					T
Nation Designed: ATR/JA/DDB Project: Broughton Subdivision Designed: ATR/JA/DDB Client: Kanata Road Inc. c/o Regional Group Designed: MSP DCR Phoenix DCR Phoenix May 28, 2006 Msp. Reference: 102116-SAN Date: May 2, 2006 June 13, 2008 June 13, 2008 June 13, 2008 Juny 18, 2008 Juny 18, 2008		111 111 111			DESIGN PA	RAMETER	S														Ι
Nation Designed: ATR/JA/DDB Project: Broughton Subdivision Designed: ATR/JA/DDB Client: Kanata Road Inc. c/o Regional Group Descreted: MSP DCR Phoenix DCR Phoenix Dowg. Reference: 102116-SAN Date: May 2, 2006 Dwg. Reference: 102116-SAN May 2, 2008 June 13, 2008 June 13, 2008 June 13, 2008 June 13, 2008 June 13, 2008																			Y	1	
Project: Broughton Subdivision Designed: ATR/JA/DDB Client: Kanata Road Inc. c/o Regional Group Decked:: MSP DCR Phoenix DCR Phoenix Drecked:: MSP Date: May 22, 2006 Dwg. Reference: 102116-SAN May 2, 2008 June 13, 2008 June 13, 2008		Average Dé	ity Flow =	350	Infiltrat	tion Flow=	0.28	L/s/ha											AOFE	SSION	1
Client: Kanata Road Inc. c/o Regional Group Checked: MSP DCR Phoenix Date: May 28, 2006 Revised August 24, 2007 May 2, 2008 June 13, 2008 Juny 18, 2008	Comm	ercial/Instutio	al Flow =	50000	Minimum	I Velocity=	0.6	m/s			Broughton	Subdivision	-		Designed:		ATR/JA/DL		1	4	4
Client: Kanata Hoad Inc. c/o Hegional Group Gnecked: MSP DCR Phoentx DCR Phoentx May 28, 2006 Revised August 24, 2007 May 2, 2008 June 13, 2008 July 18, 2008		Industr	ial Flow =	35000	Mai	nning's n=	0.013											28	NV a	K	G
Date: May 28, 2006 Revised August 24, 2007 May 2, 2008 June 13, 2008 Juny 18, 2008		Max Res Pea	K Factor =	4.00							Kanata Hot	ad Inc. c/o	Hegional Gr		Checked:		MSP 1	Na -	home	S	NE
Uate: May 26, 2000 Revised August 24, 2007 May 2, 2008 June 13, 2008 July 18, 2008	ŭ	mm/Inst Pea	"	1.50							HOUL HOU						VO BEFORE	Sec. of	N.J. PI	ETEPIE(EE H
May 2, 2008 June 13, 2008 July 18, 2008	Peak factor based on	Harmon Equa		1+(14/4+P	op/1000]^1/2]*	1 - (Maximu	um of 4.0)			3	May 28, 20	2007			NMG. N		10-011201	ALC: NO	100	079354	R
June 13, 2008 July 18, 2008			and and and and a	share been	and an protection	d on BE nor	equelha				May 2 200	1007							1917	21 20	3
July 18, 2008	Hichardson and Baylis Lar	tos areas are	4 hv 5000	/ arrid pupul	alions are uase a v 1 5 Poak Fs	actor / 8640	0 5 = 1 20	sili		. 9.5	June 13. 20	08						×	/)	0
			nonn fa n							.0	July 18. 200	38						/	1.0c		inte

M:\2002\102108\Data\Calculations\SAN Design_20080718.xls

Page 2 of 2

	2.02 100-102 0.6 RUN-OFF COEFFICIENT	
	STORN DRAINAGE AREA PROPOSED STORN SEVER AND MAI INFOCTION OF FLOW	HOLE
		-
		-
3		
		-
		1
3		1. Sec. 1
MSP SCALE	CITY OF OTTAWA	PRCMCT He 102118
JGR 1 : 750	BROUGHTON LANDS - PHASE 1 STORM DRAINAGE AREA PLAN	DATE JANUARY 2007

PLANELDER - 1000am17079m

BROUGHTON LANDS SUBDIVISION (PHASE 1) - EXISTING SWM FACILITY STORM SEWER: HYDRAULIC GRADE LINE ANALYSIS (100-YEAR EVENT)

This spreadsheet uses the Darcy-Weisbach equation to calculate hydraulic losses through a pipe network with a specified flow rate. Minor losses are accounted for including both pipe bend losses and structure losses. The spreadsheet returns the upstream hydraulic grade line if surcharged, or the pipe obvert if free flow conditions exist. The HGL slope is calculated and the minimum USF is established +0.30m above the HGL. The peak flows used in the HGL analysis are based on the capture rate of the CBs for the 100-year event (refer to Catchbasin Design Sheet)

LOCATION	MANH	IOLE	INV ELEV	ERT ATION	GROUND ELEVATION	COVER	PIPE	PARAME	TERS	TOTAL FLOW	Q _{cap}	Q _{in} /	COMP	UTAT	IONAL COL	JMNS		HEAD LOSS	SURCHARGE		HGL		MIN	PIPE		0.40	1.32			oipe or s	male	(ount	
	U/S	D/S	U/S (m)	D/S (m)	U/S (m)	U/S (m)	Dia (mm)	Length (m)	'n	(m³/s)	(m³/s)	Q _{cap}	Pipe		Friction	Velocity	1/2/0-	HL	U/S	U/S	D/S	Slope	USF (m)	Slope	Di	iameters		hole Los	s				HL
FLOW SPL	TTER IN	MH 19		(11)	(11)	(11)		(iii)					Area (m)		Factor (f)	V (m/s)	V ² /2g	(m)	(m)	(m)	(m)	(%)		(%)	U/S MH		Pipe Out		Ko	CD	K	Ktot	(m)
		1	-																	95.57	<- MH 19	8 (FROM	EPA SWN	IM MODE	L)								
TERRY FO	CROSS	SING (F	rom Til	sonbu	a Street MI	H 198)								-															-				
	200	198	93.98	93.83	95.95	0.920	1050	47.0	0.013	2.082	1.609	1.29	0.894	45	0.02071	2.33	0.00	0.00						1					T				
	202	200		94.05	96.85	1.735	975	28.0	0.013	1.723	1.325	1.30	0.771	29	0.02123		0.28	0.32	0.86	95.89	95.57	0.67	96.19	0.32	1800	975	1050	0	0.17	1.25	0.00	0.21	0.06
	204	202	95.39	94.29	98.59	2.375	825	34.4	0.013	1.539	2.678	0.57	0.552	42	0.02123	2.24	0.25	0.25	1.02	96.14	95.89	0.90	96.44	0.32	1800	825	975	15	0.18	1.65	0.08	0.38	0.10
	206	204	96.38	95.40	100.35	3.145	825	30.6	0.013	1.539	2.680	0.57	0.552	37	0.02245	2.79 2.79	0.40	0.49	0.41	96.63	96.14	1.42	96.93	3.20	1800	825	825	15	0.22	1.00	0.08	0.30	0.12
	208	206	98.44	96.97	102.31	3.045	825	32.6	0.013	1.507	3.180	0.47	0.552	40	0.02245	2.79		0.45	0.00	97.21	96.63	1.88	97.51	3.20	1800	825	825	15	0.22	1.00	0.08	0.30	0.12
	210	208	100.50	98.93	104.40	3.075	825	34.8	0.013	1.463	3.181	0.46	0.552	42	0.02245	2.75	0.38	0.45	0.00	99.27	97.21	6.32	99.57	4.51	1800	825	825	15	0.22	1.00	0.08	0.30	0.11
			-				1		1		1 0.101	1 0.10	0.002	76	0.02240	2.05	0.30	0.90	0.00	101.33	99.27	5.92	101.63	4.51	1500	750	825	90	0.18	1.33	1.32	1.56	0.56
Huntsville I	Drive						1		1		1	1	1	1	1						1	1			-								
	110	210	102.19	100.57	109.11	6.170	750	81.0	0.013	1.164	1.642	0.71	0.456	108	0.02317	2.55	0.33	0.96	0.00	100.01	10105					1							
	108	110		104.23	109.27	4.300	600	19.5	0.013	0.447	0.543	0.82	0.292	33	0.02317	1.53	0.33	0.96	0.00	102.94	101.33	1.99	103.24	2.00	1500	600	750	0	0.20	1.95	0.00	0.39	0.13
	106	108	104.79	104.40	111.83	6.440	600	56.2	0.013	0.413	0.534	0.77	0.292	94	0.02496	1.53	0.12	0.12	0.00	104.97	102.94	10.41	105.27	0.72	1200	600	600	15	0.20	1.00	0.00	0.20	0.02
	104	106	105.06	104.80	111.91	6.250	600	37.4	0.013	0.358	0.534	0.67	0.292	62	0.02496	1.42	0.08	0.20	0.00	105.39	104.97	0.75	105.69	0.69	1200	600	600		and the second states in	1.00	the second s	and the second second	and the second second second
	102	104	105.41	105.09	110.10	4.090	600	45.9	0.013	0.339	0.535	0.63	0.292	77	0.02496	1.16	0.08	0.15	0.00	105.66	105.39	0.72	105.96	0.70	1200	600	600			1.00			
	100	102	106.24	105.69	108.75	2.260	250	36.70	-	0.041	0.076	0.54	0.051	147	0.03342	0.81	0.03	0.15	0.00	106.01	105.66	0.76	106.31	0.70	1200	600	600			1.00			
									1		1	1 0.01	1 0.001	1.11	0.00042	0.01	0.00	0.10	0.00	106.49	106.01	1.31	106.79	1.50	1200	250	250	0	0.48	1.00	0.00	0.48	0.02
Ingersoll C	rescent					1	1		1		1	1	1	1	1							1	1			_							_
	500	110	102.47	102.34	108.35	5.205	675	51.0	0.013	0.444	0.443	1.00	0.369	76	0.02400	1.20	0.07	0.16	0.00	103.10	100.04	0.01	100.15										
	502	500	102.65	102.55	107.48	4.230	600	39.3	0.013	0.412	0.323	1.28	0.292	66	0.02496	1.41	0.10	0.19	0.03	103.10	102.94	0.31	103.45	0.25	1500	600	675			1.42			
	504	502	102.76	102.66	107.16	3.800	600	38.3	0.013	0.271	0.327	0.83	0.292	64	0.02496	0.93	0.04	0.08	0.00	103.26	103.10	0.47	103.58	0.25	1200	600	600			1.00			
	506	504	102.84	102.77	106.92	3.480	600	29.1	0.013	0.243	0.314	0.77	0.292	49	0.02496	0.83	0.04	0.05	0.00	103.30	103.28	0.21	103.66	0.26	1200	600	600			1.00			
	508	506	102.97	102.91	106.72	3.225	525	25.7	0.013	0.214	0.217	0.99	0.223	49	0.02610	0.96	0.05	0.07	0.02	103.44	103.36	0.27	103.74	0.24	1200	525	600			1.49			
	510	508	103.05	102.98	106.48	2.905	525	29.1	0.013	0.214	0.220	0.97	0.223	55	0.02610	0.96	0.05	0.08	0.02	103.51		0.27	103.81	0.23	1200	525	525			1.00			
	512	510	103.12	103.06	106.27	2.625	525	25.7	0.013	0.186	0.217	0.86	0.223	49	0.02610	0.83	0.04	0.06	0.00	103.65	103.51	0.27	103.89	0.24	1200	525	525			1.00			the state of the s
	514	512	103.23	103.20	106.16	2.480	450	11.8	0.013	0.129	0.150	0.86	0.164	26	0.02747	0.79	0.03	0.04	0.00	103.68	103.65	0.23	103.95	0.23	1200	450	525	Contraction of the local division of the loc	and the second second	1.59	and the second se	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR OFTA CONTRACTOR O	
	516	514	103.29	103.26	106.19	2.450	450	12.0	0.013	0.129	0.149	0.87	0.164	27	0.02747	0.79	0.03	0.04	0.00	103.08	103.65	0.28	103.98	0.25	1200	450	450			1.00			
	518	516	103.49	103.36	106.33	2.465	375	11.0	0.013	0.129	0.199	0.65	0.114	29	0.02920	1.13	0.07	0.08	0.00	103.87	103.08	1.14	104.04	0.25	1200	375	450			1.73			
	520	518	103.71	103.50	106.53	2.445	375	17.9	0.013	0.129	0.198	0.65	0.114	48	0.02920	1.13	0.07	0.13	0.00	103.07	103.74	1.14	104.17	1.18	1200	375	375			1.00			
	522	520	104.56	103.79	107.32	2.460	300	64.4	0.013	0.085	0.110	0.77	0.073	215	0.03145	1.16	0.07	0.51	0.00	104.86	103.87	1.20	104.39	1.17	1200	300	375			1.95		Contraction of the local distance	0.04
	524	522	105.21	104.61	107.74	2.280	250	50.3	0.013	0.018	0.068	0.27	0.051	201		0.36	0.01	0.05	0.00	104.80	104.86	1.19	105.76	1.20	1200	250 250	300		The second s	1.73	and the horizontal states of the	the second second second	a construction of the second sec
										•		•	1 A 7551	1.000			0.01	0.00	0.00	100.40	104.00	1.10	105.70	1.19	1200	250	250	0	0.48	1.00	0.00	0.48	0.00
Ingersoll C	rescent																				1	1			-	-	1			T		- 1	-
	532		104.71		107.53	2.445	375	44.5	0.013	0.117	0.196	0.60	0.114	119	0.02920	1.03	0.05	0.20	0.00	105.09	103.28	4.05	105.39	1.15	1200	375	375	0	0.32	1.00	0.00	0.32	0.02
	530		104.82		107.60	2.405	375	20.1	0.013	0.083	0.129	0.64	0.114	54	0.02920	0.73	0.03	0.06	0.00	105.20	105.09	0.55	105.50	0.50	1200	300	375			1.95	the state of the s	and the second se	and the second se
	528		105.00		107.72	2.420	300	22.9	0.013	0.043	0.070	0.62	0.073	76		0.59	0.02	0.05	0.00	105.30	105.20	0.46	105.60	0.48	1200	300	300			1.00	Providence of the local division of the	and the second se	and the second se
	526		105.10	105.01	107.75	2.350	300	17.6	0.013	0.043	0.072	0.60	0.073	59	0.03145	0.59	0.02	0.05	0.00	105.40	105.30	0.57	Contraction of the local sector	0.51	1200	250	300			1.73			and the second se
	524	526	105.21	105.15	107.74	2.280	250	12.5	0.013	0.000	0.043	0.00	0.051	50	0.03342	0.00	0.00	0.00	0.00	105.46	105.40	0.48	-	0.48	1200	250	250			1.00	and the second se		the second se
						DESIGN	PARAM	ETERS								Designed	and the second	DB		Project:	1			1 0.40	1200	200					0.101	0.00	0.00
DOWNSTREA	M WATER	LEVEL:	FLOW SF	LITTER	N MH 198 = 95	5.57m				HGL=Ma	ijor + Mino	r Losses				-					n Subdivis	ion - Phase	e 1	1			1	-					
RETURN FRE			RS (base	d on CB i	nlet capacity)					Major Lo	ss= Pipe F	riction (E	Darcy-Weisb	ach)									-			/	ROFESSIO	NA					
MINIMUM VEL		80 m/s								Minor Lo	ss= Head	loss corr	ection for flo	w throu	uah MH.	Checked:	MJP			Client:						108	ATT	1 Er	/				
MANNING'S n										changes	in pipe siz	e, and pi	pe bends							Kanata R	oad Inc.			1		LICENSED	MAR						
MIN. HGL CLE	ARANCE t	o USF= 0	.30 m							Friction I	=actor= 8g	/c^2, whe	ere c=(1/n)*(l	D/4)^1/						Regional	Group / D	CR Pheoni	x				I.J. PETER	HECE	MEER				
1																Dwg. Refe	erence:	102118-0	GP	Date: July	13, 2007					DI W	100079	354	2				
																					e 13, 2008				1	1	the second se		1				
						_														Rev. July	18, 2008					1 '	21/21,	1.0	1				

_	and the second	Bend	Coefficients
<u>0</u>	<u>45</u>	<u>90</u>	<bend (in="" degrees)<="" th=""></bend>
0.00	0.29	1.02	900 mm pipe or greater (benched)
0.00	0.40	1.32	825 mm pipe or smaller (sump)

STORM DESIGN SHEET BROUGHTON SUBDIVISION PHASE 1

JOB#102118 Return Frequency = 5 years

and the second second	שמ	
	zb	
	-	
	~ ~	
	ωz	
-	ш∢	
No. of Concession, name		
	z	
	- >	
	5 v	
Summer Street	z	
	zo	
ALL REAL PROPERTY AND	шu	

-

and the second

Ĩ

No. 0.0 0.00 0	usiniti Listuation = 2 years	LOCATION	Γ			Area (ha)		ſ			FLOW			L			S	SEWER DATA	A			
Note Note <th< th=""><th>Location</th><th>From</th><th>To</th><th>= 000</th><th>-</th><th>H Sol</th><th>_</th><th></th><th>Indiv or ac or o</th><th>Accum</th><th>Time of</th><th>Rainfall</th><th>Peak Flow</th><th>_</th><th>Dia. (mm)</th><th></th><th>Stope</th><th>Length</th><th>Capacity</th><th>Velocity</th><th>Time of</th><th>Ratio</th></th<>	Location	From	To	= 000	-	H Sol	_		Indiv or ac or o	Accum	Time of	Rainfall	Peak Flow	_	Dia. (mm)		Stope	Length	Capacity	Velocity	Time of	Ratio
10 10<		Node	BDON	0.20	0.40	non	6/70	0.90	2.10 MG	2.10 40	-200	II I I I I I I I I I I I I I I I I I I	(ca) m	VINA			(0/)	(m)	(ca)	(call)		
Name Control C	Huntsville Drive	100	102		0.11				0.14	0.14	15.00	83.56	11.5	0.254	250	PVC	1.50	36.7	75.9	1.50	0.41	15%
I Entropologene Col Col< Col Col Col Col Col Col Col Col											15.41											
Und Und Inc Inc <td>Battersea Crescent</td> <td>Future Development</td> <td>CAP</td> <td></td> <td></td> <td>0.43</td> <td></td> <td></td> <td>0.72</td> <td>0.72</td> <td>10.78</td> <td>100.24</td> <td>259.9</td> <td>0.457</td> <td>450</td> <td>PVC</td> <td>4.00</td> <td>35.2</td> <td>594.4</td> <td>3.62</td> <td>0.16</td> <td>44%</td>	Battersea Crescent	Future Development	CAP			0.43			0.72	0.72	10.78	100.24	259.9	0.457	450	PVC	4.00	35.2	594.4	3.62	0.16	44%
1 0		CAP	102							0.72	10.94	99.46	259.3	0.457	450	PVC	4.00	11.6	594.4	3.62	0.05	44%
100 100 000 <td></td> <td>11.00</td> <td></td>											11.00											
100 100 0.00 0	Huntsville Drive	102	104		0.29	0.13			0.58	1.43	15.41	82.26	117.9	0.610	600	CONC	0.70	45.9	535.6	1.84	0.42	22%
106 101 0.34 0.36 0.37 2.36 101 7.37 17.44 0.10 600 000 601 <th< td=""><td></td><td>104</td><td>106</td><td></td><td>0.05</td><td></td><td></td><td></td><td>0.06</td><td>1.50</td><td>15.83</td><td>80.98</td><td>121.2</td><td>0.610</td><td>600</td><td>CONC</td><td>0.70</td><td>37.4</td><td>535.6</td><td>1.84</td><td>0.34</td><td>23%</td></th<>		104	106		0.05				0.06	1.50	15.83	80.98	121.2	0.610	600	CONC	0.70	37.4	535.6	1.84	0.34	23%
		106	108		0.24	0.26			0.73	2.23	16.16	79.97	178.4	0.610	600	CONC	0.70	56.2	535.6	1.84	0.51	33%
		108	110		0.18				0.23	2.46	16.68	78.51	192.8	0.610	600	CONC	0.70	19.5	535.6	1.84	0.18	36%
Functionary Cup CVP											16.85											
Color 110	Huntsville Drive	Future Development	CAP	0.93	0.82	0.29			2.03	2.03	11.13	98.58	199.8	0.381	375	CONC	4.00	6.2	365.5	3.21	0.03	55%
		CAP	110						00.0	2.03	11.16	98.43	199.5	0.381	375	CONC	4.00	18.2	365.5	3.21	0.09	55%
Side Side One Side											11.26											
520 600 0.00 0.04 103 1010 46.0 0.30 P/C 130 1170 131 0.17 510 0.00 0.04 1150 6666 46.0 0.331 370 P/C 120 179 2002 176 0.01 510 0.20 0.24 1150 666 0.457 1150 666 0.457 1160 2002 176 2002 176 0.01 510 0.03 0.13 1120 667 46.0 0.331 355 CONC 0.35 120 0.46 512 500 0.11 128 52.45 1323 1533 555 CONC 0.35 100 0.46 510 0.11 126 128 52.45 133 55.5 CONC 0.35 100 0.46 510 0.11 126 124 126 126 126 126 126 126 126 126	Indersoll Crescent	524	522		0.08				0.10	0.10	10.00	104.19	10.4	0.254	250	PVC	1.20	50.3	67.9	1.34	0.63	15%
910 910 010 044 113 916 910 110 110 2002 116 010 011 516 516 020 020 073 116 9640 693 0.457 120 146 031 120 146 031 020 176 001 031 031 032 176 001 031 </td <td></td> <td>522</td> <td>520</td> <td></td> <td>0:30</td> <td></td> <td></td> <td></td> <td>0.38</td> <td>0.48</td> <td>10.63</td> <td>101.00</td> <td>48.0</td> <td>0.305</td> <td>300</td> <td>PVC</td> <td>1.20</td> <td>64.4</td> <td>110.4</td> <td>1.51</td> <td>0.71</td> <td>43%</td>		522	520		0:30				0.38	0.48	10.63	101.00	48.0	0.305	300	PVC	1.20	64.4	110.4	1.51	0.71	43%
516 516 0.0 0.44 1150 6666 640 0.381 775 710 100 2002 175 0.10 514 510 0.38 52 0.457 450 0.000 0.31 0.23 514 510 0.38 0.35 0.55 0.457 450 0.000 0.31 0.23 510 0.38 0.35 0.35 0.55 0.457 450 0.000 0.31 0.23 510 0.38 0.36 0.35 0.55 0.55 0.55 0.50 0.55 231 241 100 0.44 511 113 1247 1233 875 0.55 0.55 231 241 100 0.44 504 0.11 114 115 1247 1243 1243 1243 1243 1243 1243 1243 1243 1243 1243 1243 1243 1243 1243 1243 1243 <		520	518						0.00	0.48	11.33	97.63	46.4	0.381	375	PVC	1.20	17.9	200.2	1.76	0.17	23%
516 511 0.20 0.23 116 66.40 0.457 460 0.000 0.25 126 146.6 0.31 0.22 0.31 0.32 151 160 0.32 161 0.32 151 160 0.31 0.32 127 124.2 100 0.33 153 <td></td> <td>518</td> <td>516</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>00.0</td> <td>0.48</td> <td>11.50</td> <td>96.86</td> <td>46.0</td> <td>0.381</td> <td>375</td> <td>PVC</td> <td>1.20</td> <td>11.0</td> <td>200.2</td> <td>1.76</td> <td>0.10</td> <td>23%</td>		518	516						00.0	0.48	11.50	96.86	46.0	0.381	375	PVC	1.20	11.0	200.2	1.76	0.10	23%
14 512 0.0 0.0 0.0 0.73 118.5 95.43 65.0 0.25 11.8 14.6 0.01 0.23 12.61 23.62 10.91 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01		516	514		0.20				0.25	0.73	11.61	96.40	66.69	0.457	450	CONC	0.25	12.0	148.6	0.91	0.22	47%
12 510 0.38 0.48 1.20 1.20 1.20 1.20 1.20 0.43 1.20 0.44 1.10 0.44 1.10 0.44 1.10 0.44 1.10 0.44 1.10 0.44 1.10 0.44 1.10 0.44 1.10 0.44 1.10 0.44 1.		514	512						0.00	0.73	11.83	95.43	69.2	0.457	450	CONC	0.25	11.8	148.6	0.91	0.22	47%
510 508 0.15 0.16 1.39 2.47 62.72 128.7 0233 525 CONC 025 23.47 100 0.48 506 0.16 0.16 0.02 1383 85.5 1533 555 20.70 0.25 23.71 20.41 1.70 0.44 506 0.01 0.16 1.75 1383 8755 1533 0510 005 201 1.10 0.44 506 0.01 0.14 1.75 1383 8755 1533 0510 005 201 1.10 0.44 526 520 0.03 0.04 0.023 0.04 0.05		512	510		0.38				0.48	1.20	12.05	94.49	113.5	0.533	525	CONC	0.25	25.7	224.2	1.00	0.43	51%
506 506 011 000 139 129 9.0.7 166.1 0.52 26.1 2001 100 0.43 504 011 0 013 1.56 138 87.55 153.3 0610 063 28.1 110 0.43 504 502 011 1.56 138 87.55 153.3 0610 600 CONC 0.25 28.1 110 0.43 524 526 0.10 1.75 138 87.55 153.3 0610 600 CONC 0.25 28.1 110 0.26 526 0.30 528 0.30 0.00 0.01 10.24 28.5 0.30 0.00 0.31 110 0.36		510	508		0.15				0.19	1.39	12.47	92.72	128.7	0.533	525	CONC	0.25	29.1	224.2	1.00	0.48	57%
506 504 0.18 0.23 151 1333 89.17 1439 0.610 600 CONC 0.25 23.1 20.1 1.10 0.44 504 506 0.11 1.75 1338 87.55 1533 0.610 600 CONC 0.25 23.3 20.1 1.10 0.54 524 526 0.30 0.30 0.36		508	506						0:00	1.39	12.96	62'06	126.1	0.533	525	CONC	0.25	25.7	224.2	1.00	0.43	56%
64 502 0.11 0.14 1.75 1383 $8.7.55$ 1533 0.610 0.02 13.61 0.05 0.32 33.01 1.10 0.56 524 526 0.03 0.00 10.00 10.419 0.00 0.244 250 17.5 13.8 0.66 0.24 526 520 0.31 0.03 10.00 10.24 10.26 200 17.5 13.8 0.96 0.24 520 0.31 0.31 0.03 10.76 10.24 125.4 326 11.7 0.98 0.30 520 0.31 0.31 0.24 10.72 0.38 0.31 11.7 0.98 0.30 520 520 0.31 11.17 98.32 0.306 200 11.72 0.39 0.01 11.72 0.30 0.01 11.292 11.17 0.301 11.292 11.17		506	504		0.18				0.23	1.61	13.38	89.17	143.9	0.610	600	CONC	0.25	29.1	320.1	1.10	0.44	45%
524 526 0 0 1441 1441 1441 1441 0 0 125 43.8 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06		504	502		0.11				0.14	1.75	13.83	87.55	153.3	0.610	600	CONC	0.25	38.3	320.1	1.10	0.58	48%
524 526 0 0.00 0.00 10.01 0.00 10.01 0.00 10.01 0.01 0.06 0.24 280 270 175 173 0.06 0.00 526 529 0.30 520 0.30 375 PVC 0.50 273 1.39 0.30 530 582 0.31 0.33 0.76 10.74 755 PVC 0.50 273 1.39 0.30 530 582 0.31 3.35 10.74 755 PVC 0.50 271 1.39 0.30 532 563 0.23 0.74 755 0.341 755 PVC 1.56 1.13 0.30 532 566 0.23 0.51 10.74 85.52 256.8 0.610 6.00 2.05 1.13 1.13 0.13 502 516 0.55 0.56 0.51 2.76 0.56 7.15 1.13 0.13											14.41											
266 528 0.30 0.30 0.34 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.25 300 PVC 0.30 2.9 7.13 0.36 0.39 580 580 0.31 0.35 0.05 10.17 36.2 0.305 20.9 17.3 0.36 0.39	Ingersoll Crescent	524	526						0.00	0.00	10.00	104.19	0.0	0.254	250	PVC	0.50	12.5	43.8	0.86	0.24	%0
528 530 530 530 530 530 520 71.3 0.38 0.39 <th0.39< th=""> <th0.39< th=""> <th0.39< th=""></th0.39<></th0.39<></th0.39<>		526	528		0:30				0.38	0.38	10.24	102.94	38.6	0.305	300	PVC	0.50	17.6	71.3	0.98	0:30	54%
530 532 0.31 0.31 0.34 7.6.5 0.331 375 PVC 0.20 20.1 1.292 1.13 0.30 mt 532 602 0.23 0.23 1.0.7 10.24 7.65 0.331 375 PVC 0.20 20.1 1.12 0.30 mt 502 0.16 0.23 0.02 1.17 98.36 10.34 0.361 375 PVC 0.50 20.1 1.12 0.30 mt 502 0.16 0.16 0.20 3.00 14.41 85.52 26.68 0.610 6.00 CONC 0.25 1.10 0.50 f 500 110 0.25 15.01 83.54 27.63 0.666 675 CONC 0.25 1.10 0.72 f 7.12 7.53 7.61 83.54 27.63 0.610 6.02 0.700 0.72 1.10 0.72 f 110 210 15.2<		528	530						0.00	0.38	10.48	101.72	38.2	0.305	300	PVC	0.50	22.9	71.3	0.98	0.39	54%
632 602 0.23 1.17 96.36 10.34 0.331 375 PVC 1.15 44.5 196.0 1.72 0.43 mt 502 500 0.16 0.20 1.06 1.60 1.60 0.55 51.0 44.5 196.0 1.72 0.43 mt 502 500 0.16 0.20 3.00 14.41 85.52 256.8 0.610 600 CONC 0.25 51.0 4.38 1.19 0.72 500 110 0.25 0.31 3.32 15.01 83.54 276.8 0.610 600 CONC 0.25 1.19 0.72 500 110 210 0.25 15.01 83.54 276.3 0.76 67.5 CONC 0.25 1.19 0.72 610 210 210 0.25 75.0 0.75 75.0 0.76 75.0 27.0 27.5 27.0 27.5 27.0 27.5 27.0 <		530	532		0.31				0.39	0.76	10.78	100.24	76.5	0.381	375	PVC	0.50	20.1	129.2	1.13	0:30	28%
mt 502 500 0.16 0.26 3.00 14.41 85.52 26.68 0.610 600 CONC 0.25 33.3 1.10 0.60 500 110 0.25 0.31 3.32 15.11 85.54 26.68 0.610 600 CONC 0.25 31.3 1.10 0.60 500 110 0.25 0.31 3.32 15.72 85.4 276.9 0.686 675 CONC 0.25 51.0 438.2 1.19 0.72 110 210 0.05 7.80 16.85 78.01 613.2 0.762 750 CONC 0.25 51.0 438.2 1.19 0.72 110 210 0.05 7.26 78.01 613.2 0.762 750 CONC 2.06 81.0 6.01 6.01 6.01 6.01 6.01 6.01 6.01 6.01 6.01 6.01 6.01 6.01 6.01 6.01 6.01 6.01 <td></td> <td>532</td> <td>502</td> <td></td> <td>0.23</td> <td></td> <td></td> <td></td> <td>0.29</td> <td>1.05</td> <td>11.17</td> <td>98.38</td> <td>103.4</td> <td>0.381</td> <td>375</td> <td>PVC</td> <td>1.15</td> <td>44.5</td> <td>196.0</td> <td>1.72</td> <td>0.43</td> <td>23%</td>		532	502		0.23				0.29	1.05	11.17	98.38	103.4	0.381	375	PVC	1.15	44.5	196.0	1.72	0.43	23%
mt 502 500 0.16 0.20 3.00 14.41 85.52 256.8 0.610 600 CONC 0.25 3.01 1.10 0.60 500 110 0.25 0.31 3.32 15.01 8354 2763 0.666 675 0.05 3.02 1.19 0.72 500 110 0.25 0.05 7.52 15.01 8354 2763 0.666 675 0.05 1.19 0.72 110 210 0.26 7.80 15.72 75 0.76 2.00 81.0 1.641.6 86.0 0.72 110 210 0.05 7.80 7.83 7.12 17.23 0.76 2.00 81.0 1.641.6 860 7.19 7.19 7.16																						
500 110 0.25 0.23 15.01 83.54 276.9 0.666 675 CONC 0.25 51.0 438.2 11.9 0.72 110 210 0.05 0.66 7.86 16.72 750 0.76 2.00 81.0 1641.6 360 0.73 110 210 0.05 7.86 16.85 78.01 613.2 0.762 750 81.0 1641.6 360 0.38 et Future Development CAP 1.82 0.712 75.6 0.381 375 PVC 5.38 312 0.09 et Future Development CAP 1.82 0.76 0.381 375 PVC 5.38 312 0.09 c CAP 210 0.381 77.12 17.27 76.89 175.1 0.381 375 PVC 5.38 312 0.09 et Future Development CAP 1.82 0.76 5.38 216.6 233 <td>Ingersoll Crescent</td> <td>502</td> <td>500</td> <td></td> <td>0.16</td> <td></td> <td></td> <td></td> <td>0.20</td> <td>3.00</td> <td>14,41</td> <td>85.52</td> <td>256.8</td> <td>0.610</td> <td>600</td> <td>CONC</td> <td>0.25</td> <td>39.3</td> <td>320.1</td> <td>1.10</td> <td>0.60</td> <td>80%</td>	Ingersoll Crescent	502	500		0.16				0.20	3.00	14,41	85.52	256.8	0.610	600	CONC	0.25	39.3	320.1	1.10	0.60	80%
Image: Normal base in the control of the control o		500	110		0.25				0.31	3.32	15.01	83.54	276.9	0.686	675	CONC	0.25	51.0	438.2	1.19	0.72	63%
110 210 0.05 0.06 7.86 16.85 78.01 613.2 0.760 2.00 81.0 1641.6 3.60 0.38 et Future Development CAP 1 2											15.72											
Future Development CAP 1.82 2.28 17.18 77.12 175.6 0.381 375 PVC 5.38 137 20 209 Future Development CAP 1.82 0.00 2.28 17.18 77.12 175.6 0.381 375 PVC 5.38 137 0.09 CAP 210 229 17.27 76.89 175.1 0.381 375 PVC 5.38 132 0.09 CAP 210 229 17.27 76.89 175.1 0.381 375 PVC 5.38 21.6 423.9 3.72 0.10	Huntsville Drive	110	210		0.05				0.06	7.86	16.85	78.01	613.2	0.762	750	CONC	2.00	81.0	1,641.6	3.60	0.38	37%
Future Development CAP 1.82 1.82 1.718 77.12 1756 0.381 375 PVC 5.38 1372 0.09 Future Development CAP 210 2.28 17.16 77.12 175.6 0.381 375 PVC 5.38 1372 0.09 CAP 210 2.29 17.27 76.89 175.1 0.381 375 PVC 5.38 21.6 423.9 3.72 0.09 CAP 210 2.29 17.27 76.89 175.1 0.381 375 PVC 5.38 21.6 423.9 3.72 0.10											17.23											
CAP 210 220 228 17.27 76.89 175.1 0.381 375 PVC 5.36 21.6 423.9 3.72 0.10 17.36 17.36 175.1 0.381 375 PVC 5.36 21.6 423.9 3.72 0.10	Tillsonburg Street	Future Development	CAP		1.82				2.28	2.28	17.18	77.12	175.6	0.381	375	PVC	5.38	19.0	423.9	3.72	0.09	41%
		CAP	210						0.00	2.28	17.27	76.89	175.1	0.381	375	PVC	5.38	21.6	423.9	3.72	0.10	41%
											17.36											

M DESIGN SHEET	HTON SUBDIVISION	
STORM D	BROUGHT	DUACE 1

PHASE 1 JOB#102118 Return Frequency = 5 years

	LOCATION		L		Area (ha)	(6				FLOW			-			s	SEWER DATA	TA			
ocation	From	To	H	8	-H	#	#	Indiv	Accum	Time of	Rainfall	Peak Flow	Dia. (m)	Dia. (mm)	Type	Slope	Length	Capacity Velocity	Velocity	Time of	Hatio
	Node	Node	0.20	_	_	0.75	0.90	2.78 AC	2.78 AC	Conc.	Intensity	Q (Vs)	Actual	Nominal		(%)	(m)	(I/S)	(m/s)	Flow (min)	Q/Q full
Tilleonburg Street	210	208		0.21				0.26	10.46	17.36	76.63	801.7	0.838	825	CONC	4.50	34.8	3,175.0	5.75	0.10	25%
	208	206		0.26				0.33	10.79	17.46	76.36	823.7	0.838	825	CONC	4.50	32.6	3,175.0	5.75	0.09	26%
	206	204		0.24				0:30	11.09	17.56	76.11	843.9	0.838	825	CONC	3.20	30.6	2,677.4	4.85	0.11	32%
	SUA	202		1.01				1.26	12.35	17.66	75.84	936.7	95838	825	CONC	3.20	34.4	2,677.4	4.85	0.12	35%
	202	200		0.16				0.20	12.55	17.78	75.53	948.0	0.991	975	CONC	0.32	28.0	1,321.9	1.72	0.27	72%
	200	198		0.06	-	1.20		2.58	15.13	18.05	74.84	1,132.1	1.067	1050	CONC	0.32	47.0	1,610.8	1.80	0.43	20%
	198	196			-			0.00	15.13	18.49	73.76	1,115.8	0.838	825	CONC	0.10	58.4	Defe	TO CIVILIA	Befor to CWM report for detailed	hollod
	196	194						0.00	15.13	18.49	73.76	1,115.8	0.838	825	CONC	0.10	14.1	E D A	CWMM T	FDA SWMM model downstream	mana
	196	Outlet						0.00	15.13	18.49	73.76	1,115.8	0.838	825	CONC	0.10	10.6	5	of MH 198	of MH 198 Flow Solitter	
										18.49											
			DESIG	DESIGN PARAMETERS	ETERS										PROJEC	PROJECT INFORMATION	IATION				
Definitions:				Notes:									Storm	Storm Design: Novatech Engineering Consultants Ltd	atech Eng	neering C.	onsultants	Ltd.			
Q=2.78 AIR, where O=Posk Flow in Litres per Second (Vs)	Second (Vs)			1) Olta 2) Min	 Oltawa Rainfall-Intensity Curve Min Pipe Velocity =0.80 m/s 	Intensity Cur y =0.80 m/s	Ne				Project:	Broughton Subdivision	Subdivision				Designed:	Designed: ATR/DDB	ŝ		
A=Area in hectares (ha)				3) TC=1	3) Tc=15 min (subdiv	(inision)					Client:	Kanata Road Inc.	d Inc.				Checked:	MSP			
IRainfall Intensity (mm/lr)												c/o Regiona.	c/o Regional Group / DCR Phoenix	R Phoenix							
R=Runoff Coefficient											Date:	July 13, 2007	7			Dwg.	Dwg. Reference:		102118-STM		
											Revised	June 13, 2008	96								
											Revised	July 18, 2008	8						1000		

APPENDIX C

Sanitary Sewer, Watermain and Fire Flow Calculations

HERITAGE HILLS RETAIL PLAZA Sanitary Flow

Building 1 Retail	
Building Area	2,251 m ²
Average Daily Volume *	5 L/m²/day
Average Sanitary Flow	0.13 L/s
Commercial Peak Factor	1.50
Peak Sanitary Flow	0.20 L/s
Gas Station Number of Fuel Outlets	8
Average Daily Volume **	560 L/outlet/day
Number of Water Closets	2
Average Daily Volume **	950
Average Sanitary Flow	0.07 L/s
Commercial Peak Factor	1.50
Peak Sanitary Flow	0.11 L/s
Car Wash	
Peak Sanitary Sanitary Flow ***	54 USGPM
Peak Sanitary Flow	3.41 L/s
reak bannary now	0.41 2.5
Peak Commercial Flow	3.71 L/s
Feak Commercial Flow	J.11 L/S
Site Area	1.18 ha
Infiltration Allowance	0.28 L/s/ha
Peak Extraneous Flows	0.33 L/s
Total Peak Sanitary Flow	4.04 L/s
rotar roak bantary riow	4.04 6.0

* Average daily voulems as per Appendix 4-A of the City of Ottawa Sewer Design Guideline ** Average daily volume as per Table 8.2.1.3.B in the OBC Code and Guide for Sewage Systems

*** Car wash water demand provided by the Shell Mechanical Engineer

Miro Savic

From:	Zhu, Jiaxun <jiaxun.zhu@aecom.com></jiaxun.zhu@aecom.com>
Sent:	Wednesday, May 01, 2019 3:21 PM
To:	Miro Savic
Cc:	Reid, Jason; Golightly, Russ
Subject:	RE: Heritage Hills - Car Wash Water Demand

Good afternoon Miroslav,

Please find below for the info and feel free to contact me if there is any question, thanks.

Total carwash peak water demand load = 54 gpm:

- 45 gpm for carwash equipment;
- 5 gpm for freeze proof wall hydrant;
- 4 gpm for plumbing fixtures.

Regards,

Jiaxun Zhu, M.Eng., P.Eng. Senior Mechanical Engineer, Buildings + Places D: (403) 270-9210 M: (403) 829-4735 Jiaxun.Zhu@aecom.com

AECOM 300 – 48 Quarry Park Blvd SE Calgary, AB, T2C 5P2 T: (403) 254-3301 www.aecom.com

From: Miro Savic <m.savic@novatech-eng.com> Sent: May 1, 2019 11:15 AM To: Zhu, Jiaxun <Jiaxun.Zhu@aecom.com> Cc: Reid, Jason <Jason.Reid@aecom.com>; Golightly, Russ <Russ.Golightly@aecom.com> Subject: RE: Heritage Hills - Car Wash Water Demand

Hello Jiaxun,

I'm following up on my email below regarding water demand for the carwash. Could you please provide at your earliest convenience.

Regards,

Miroslav Savic, P.Eng., Senior Project Manager | Land Development Engineering

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x 265 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

BOUNDARY CONDITIONS

Boundary Conditions For: 471 Terry Fox Dr.

Date of Boundary Conditions: 2018-Sep-21

Provided Information:

Scenario		Demand
	L/min	L/s
Average Daily Demand	28.8	0.5
Maximum Daily Demand	43.8	0.7
Peak Hour	78.6	1.3
Fire Flow #1 Demand	3,000	50.0
Fire Flow #2 Demand	6,000	100.0
Fire Flow #3 Demand	7,000	117.0

Number Of Connections: 1

Location:

BOUNDARY CONDITIONS

Results:

Connection #: 1

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	162.3	94.5
Peak Hour	157.8	88.1
Max Day Plus Fire (3,000) L/min	157.3	87.4
Max Day Plus Fire (6,000) L/min	150.8	78.2
Max Day Plus Fire (7,000) L/min	147.9	74.0

¹Elevation: 95.810 m

Notes:

1) As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:

- a) If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
- b) Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.

2) City of Ottawa do not allow connections to dead end mains.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

FUS - Fire Flow Calculations

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 118133 Project Name: Heritage Hills Date: 10/1/2019 Input By: Steve Matthews Reviewed By: Miroslav Savic

Engineers, Planners & Landscape Architects

Legend

Input by User

No Information or Input Required

Building Description: 1 Storey Retail Building Non-combustible construction

Step		-	Input		Value Used	Total Fire Flow (L/min)
		Base Fire Flo	w			(2/1111)
	Construction Ma	terial		Multi	plier	
	Coefficient	Wood frame		1.5		AN PARA PARA
1	related to type	Ordinary construction		1		
	of construction	Non-combustible construction	Yes	0.8	0.8	
	C	Modified Fire resistive construction (2 hrs)		0.6		
	-	Fire resistive construction (> 3 hrs)		0.6		22233334
	Floor Area				(2)	
		Building Footprint (m ²)	2281			
2	A	Number of Floors/Storeys	1			
2		Area of structure considered (m ²)			2,251	101.11.203
	F	Base fire flow without reductions		and the second second		8,000
		$F = 220 C (A)^{0.5}$				0,000
		Reductions or Sure	harges			
	Occupancy haza	rd reduction or surcharge		Reduction	Surcharge	
		Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
	(1)	Combustible		0%	-15%	6,800
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduct			Redu	ction	
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%	
4	(2)	Standard Water Supply	Yes	-10%	-10%	2 720
	(4)	Fully Supervised System	No	-10%		-2,720
			Cum	ulative Total	-40%	
	Exposure Surch	arge (cumulative %)			Surcharge	
		North Side	20.1 - 30 m		10%	
5	generos	East Side	20.1 - 30 m	ANT TOTAL	10%	
J	(3)	South Side	> 45.1m		0%	2,040
		West Side	20.1 - 30 m		10%	
			Cum	nulative Total	30%	
		Results				
		Total Required Fire Flow, rounded to nea	rest 1000L/mir		L/min	6,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	100
				or	USGPM	1,585
7	Storage Volume	Required Duration of Fire Flow (hours)			Hours	2
1	Storage volume	Required Volume of Fire Flow (m ³)			m ³	720

FUS - Fire Flow Calculations

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #: 118133 Project Name: Heritage Hills Date: 9/11/2018 Input By: Steve Matthews Reviewed By: Miroslav Savic

Input by User

Legend

No Information or Input Required

Building Description: Shell Convenience Store Non-combustible construction

Step			Input		Value Used	Total Fin Flow (L/min)
		Base Fire Flo	w			(2/1111)
	Construction Ma	terial		Mult	iplier	
	Coefficient	Wood frame		1.5		NR BACTLES
1	related to type	Ordinary construction		1		
	of construction	Non-combustible construction	Yes	0.8	0.8	
	C	Modified Fire resistive construction (2 hrs)		0.6		
	U U	Fire resistive construction (> 3 hrs)		0.6		
	Floor Area					
		Building Footprint (m ²)	211	NO SALAS		
-	A	Number of Floors/Storeys	1			
2		Area of structure considered (m ²)	i noedalishe a		211	
	F	Base fire flow without reductions		fin the second		3,000
		F = 220 C (A) ^{0.5}				3,000
		Reductions or Surd	harges			
	Occupancy haza	rd reduction or surcharge		Reduction	/Surcharge	
		Non-combustible		-25%		
3		Limited combustible		-15%		
1.0	(1)	Combustible	Yes	0%	0%	3,000
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduct	tion		Redu	ction	
		Adequately Designed System (NFPA 13)	No	-30%		
4	(2)	Standard Water Supply	No	-10%		•
	(2)	Fully Supervised System	No	-10%		0
			Cun	nulative Total	0%	
	Exposure Surch	arge (cumulative %)			Surcharge	
		North Side	30.1-45 m	A STATISTICS	5%	
5		East Side	> 45.1m		0%	
3	(3)	South Side	> 45.1m		0%	450
		West Side	20.1 - 30 m		10%	
			Cun	nulative Total	15%	
		Results				
		Total Required Fire Flow, rounded to nea	rest 1000L/mir	n	L/min	3,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	50
		(2,000 Emin <1 ite 1 low < 40,000 Emin)		or	USGPM	793
7	Storage Volume	Required Duration of Fire Flow (hours)			Hours	1.25
1	Storage volume	Required Volume of Fire Flow (m ³)			m ³	225

HERITAGE HILLS RETAIL PLAZA WATER DEMAND

Retail Plaza Floor Area Average Day Demand Average Day Demand Maximum Day Demand Peak Hour Demand	2,251 m ² 5 L/m ² /day 0.13 L/s 0.20 L/s 0.35 L/s
Gas Station Convenience Store	
Floor Area	211 m ²
Number of Fuel Outlets	8
Average Day Demand	560 L/outlet/day
Number of water closets	2
Average Day Demand	950
Average Day Demand	0.07 L/s
Maximum Day Demand	0.11 L/s
Peak Hour Demand	0.20 L/s
<u>Car Wash</u> Maximum Water Demand Maximum Water Demand	54 USGPM 3.41 L/s

HERITAGE HILLS RETAIL PLAZA WATERMAIN ANALYSIS RESULTS

Maximum Day + Fire Flow Demand Network Table - Nodes

	Elevation	Demand	н	ead	Pressure		
Node ID	m	LPS	m	1	m	kPa	psi
Junc J1	96.9)	0	141.92	45.02	441.65	64.06
Junc J2	96.4	ł	0	140.24	43.84	430.07	62.38
Junc J3	96.75	5	100	137.8	41.05	402.70	58.41
Junc J4	96.95	5	0.2	140.24	43.29	424.67	61.59
Junc J5	96.6	5	0	141.91	45.31	444.49	64.47
Junc J6	96.65	5	0	141.91	45.26	444.00	64.40
Junc J7	96.7	, ,	3.41	141.83	45.13	442.73	64.21
Junc J8	96.9)	0.11	141.83	44.93	440.76	63.93
Resvr R1	150.8	3.	-103.72	150.8	0	0.00	0.00

Maximum Day + Fire Flow Demand Network Table - Links

	Length	Diameter	Rou	ghness	Flow	Velocity	Unit Headloss
Link ID	m	mm			LPS	m/s	m/km
Pipe P1	131	.5	200	110	103.72	3.3	67.52
Pipe P2	26	.5	200	110	100.2	3.19	63.34
Pipe P3		8	150	100	100	5.66	305.7
Pipe P4	1	35	100	100	0.2	0.03	0.02
Pipe P5	:	21	150	100	3.52	0.2	0.62
Pipe P6		4	150	100	3.52	0.2	0.62
Pipe P7		4	75	100	3.52	0.8	18.19
Pipe P8	5	18	50	100	0.11	0.06	0.21

HERITAGE HILLS RETAIL PLAZA WATERMAIN ANALYSIS RESULTS

Peak Hour Demand

Network Table - Nodes

	Elevation	Demand	Head		Pressure		
Node ID	m	LPS	m		m	kPa	psi
Junc J1	96.9	(C	157.78	60.88	597.23	86.62
Junc J2	96.4	(C	157.78	61.38	602.14	87.33
Junc J3	96.75	(C	157.78	61.03	598.70	86.83
Junc J4	96.95	0.36	5	157.78	60.83	596.74	86.55
Junc J5	96.6	(C	157.77	61.17	600.08	87.03
Junc J6	96.65	(C	157.76	61.11	599.49	86.95
Junc J7	96.7	3.4	1	157.69	60.99	598.31	86.78
Junc J8	96.9	0.2	2	157.67	60.77	596.15	86.46
Resvr R1	157.8	-3.9	7	157.8	0	0.00	0.00

Peak Hour Demand

Network Table - Links

	Length	Diameter	Roughness	Flow	Velocity	Unit Headloss	
Link ID	m	mm		LPS	m/s	m/km	
Pipe P1	131.5	200	110	3.97	0.13	0.16	0.039
Pipe P2	26.5	200	110	0.36	0.01	0	0.067
Pipe P3	8	150	100	0	0	0	0
Pipe P4	35	100	100	0.36	0.05	0.07	0.062
Pipe P5	21	150	100	3.61	0.2	0.65	0.046
Pipe P6	4	150	100	3.61	0.2	0.65	0.046
Pipe P7	4	75	100	3.61	0.82	19.06	0.042
Pipe P8	18	50	100	0.2	0.1	0.65	0.061

HERITAGE HILLS RETAIL PLAZA WATERMAIN ANALYSIS RESULTS

Average Day Demand

Network Table - Nodes

	Elevation	Demand	Head		Pressure		
Node ID	m	LPS	m		m	kPa	psi
Junc J1	96.9	C)	162.3	56.2	551.32	79.96
Junc J2	96.4	C)	162.3	65.9	646.48	93.76
Junc J3	96.75	C)	162.3	65.55	643.05	93.27
Junc J4	96.95	0.13	3	162.3	65.35	641.08	92.98
Junc J5	96.6	C)	162.3	65.7	644.52	93.48
Junc J6	96.65	C)	162.3	65.65	644.03	93.41
Junc J7	96.7	C)	162.3	65.6	643.54	93.34
Junc J8	96.9	0.07	7	162.3	65.4	641.57	93.05
Resvr R1	162.3	-0.2	2	162.3	0	0.00	0.00

Average Day Demand

Network Table - Links

	Length	Diameter	Roughness	Flow	Velocity	Unit Headloss	6
Link ID	m	mm		LPS	m/s	m/km	
Pipe P1	131.5	200	110	0.2	0.01	0	0.039
Pipe P2	26.5	200	110	0.13	0	0	0.067
Pipe P3	8	150	100	0	0	0	0
Pipe P4	35	100	100	0.13	0.02	0.01	0.062
Pipe P5	21	150	100	0.07	0	0	0.046
Pipe P6	4	150	100	0.07	0	0	0.046
Pipe P7	4	75	100	0.07	0.02	0.01	0.042
Pipe P8	18	50	100	0.07	0.04	0.09	0.061

APPENDIX D

Stormwater Management Calculations

STORM SEWER DESIGN SHEET

 PROJECT #:
 118133

 DESIGNED BY :
 SM

 CHECKED BY :
 CMS

 DATE:
 24-Jan-19

2-year Design Event

Heritage Hills Retail Plaza 471 Terry Fox Drive

	LOCATION	1 <u></u>		INDIV	INDIV	INDIV	ACCUM	TIME OF	RAINFALL	Peak Fi	ow (Q)				PROPOSE	D SEWER				% FULL	(Q/Qfull)
STREET	FROM M.H.	то м.н.	Area #	AREA (ha)	R	2.78 AR	2.78 AR	CONC (min)	INTENSITY (mm/hr)	UNCONTROLLED	CONTROLLED	TYPE OF PIPE	PIPE SIZE (mm)	PIPE ID (mm)	GRADE %	LENGTH (m)	CAPACITY (L/s)	FULL FLOW VELOCITY		UNCONTROLLED	CONTROLLED
			A-3	0.142	0.89	0.35															
001	OTHER	OTMANUS	A-2		0.82	0.38	1	40.00									12000		1011010		
On-Site	STM MH 4	STM MH 3	A-1	0.054	0.64	0.10	1.39	10.00	76.81	107.0	110.4	CONC	450	457	0.20	88.1	133.0	0.81	1.81	80.5%	83.0%
			R-1	0.226	0.90	0.57	1														
On-Site	STM MH 3	STM MH 2	-	-		-	1.39	11.81	70.48	98.2	110.4	CONC	450	457	0.20	7.5	133.0	0.81	0.15	73.8%	83.0%
On-Site	STM MH 2	STM MH 1		-		-	1.39	11.97	70.00	97.5	110.4	CONC	450	457	0.20	11.8	133.0	0.81	0.24	73.3%	83.0%
Connection Off-Site	STM MH 1	EX. MH 202 (connection)	-	-	-	-	1.39	12.21	69.25	96.5	110.4	CONC	450	457	1.00	7.5	297.4	1.81	0.07	32.4%	37.1%
								12.28											-		

Definitions:

Q = Peak Flow in Litres per Second (L/s)

Q = 2.78 AIR, where

A = Area in hectares (ha)

I = Rainfall Intensity (mm/hr)

R = Runoff Coefficient

Notes (General):

1) Rainfall Intensity Curves are City of Ottawa IDF Curves I(2-year) = 732.951 / [(Tc(min)+6.199)]^0.810

2) Minumum Tc is 10-min as per the Ottawa Design Guidelines.

3) Roughness Coefficient 'n' in Manning's formula shall be 0.013 for Concrete, HDPE (smooth inner wall) and PVC pipes as per the Ottawa Guidelines.

4) Minimum diameter for on-site sewer is 250mm.

5) Controlled Flow based on PCSWMM Stormwater Management Model for a 100-year 4-hour Chicago Storm

Heritage Hills Retail Plaza (471 Terry Fox Drive) Weighted Runoff Coefficients

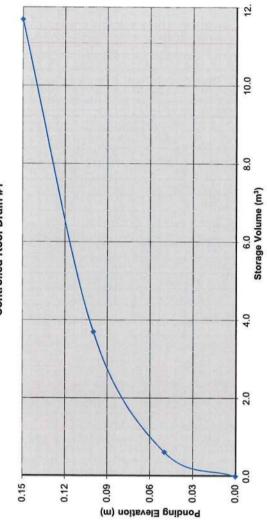
Area	Description	Total Area (ha)	Impervious Area (ha) C=0.9	Pavers Area (ha) C=0.7	Pervious Area (ha) C=0.2	Weighted Runoff Coefficient
A-0	UnControlled Direct Runoff	0.064	0.041	0.001	0.022	0.66
A-1	Controlled Loading Area	0.054	0.033	0.001	0.020	0.64
A-2	Controlled Parking Lot Area	0.167	0.148	0.001	0.018	0.82
A-3	Controlled Parking Lot Area	0.142	0.140	0.000	0.002	0.89
R-1	Controlled Building Roof	0.226	0.226	0.000	0.000	0.90
TOTAL		0.653	0.588	0.003	0.062	0.83

Heritage Hills Retail Plaza (471 Terry Fox Drive) PCSWMM Storage Tables

	in Storage Table fo 0.15m ponding dep	
Depth (m)	Total Area (m ²)	Total Volume (m ³)
0.00	0	0
0.05	274.88	6.9
0.10	952.12	37.5
0.15	2035.13	112.2
0.16	0	122.4
1.00	0	122.4

Elev.	Depth	Por	nding
(m)	(m)	Area (m ²)	Volume (m ³)
95.00	0.00	0.36	0.00
96.45	1.45	0.36	0.00
96.50	1.50	13.15	0.34
96.55	1.55	52.59	1.98
96.60	1.60	111.22	6.08
96.65	1.65	138.41	12.32
96.66	1.66	0.00	13.01
98.90	2.45	0.00	13.01

		ge Table (CB02) ding Depth	
Elev.	Depth	Pon	ding
(m)	(m)	Area (m ²)	Volume (m ³)
95.06	0.00	0.36	0.00
96.40	1.34	0.36	0.00
96.45	1.39	19.43	0.49
96.50	1.44	75.46	2.87
96.55	1.49	161.89	8.80
96.60	1.54	285.45	19.98
96.64	1.58	394.46	33.58
96.65	1.59	0.00	35.55
97.40	2.34	0.00	35.55


	이는 지역 가격에 가지 않는 것 같아? 것 같아? 같아? 이 집 것이 같아?	ge Table (CB03) iding Depth	
Elev.	Donth	Por	nding
(m)	Depth (m)	Area (m ²)	Volume (m ³)
95.22	0.00	0.36	0.00
96.40	1.18	0.36	0.00
96.45	1.23	18.29	0.47
96.50	1.28	73.59	2.76
96.55	1.33	165.41	8.74
96.61	1.39	294.22	22.53
96.62	1.40	0.00	24.00
97.40	2.18	0.00	24.00

Date: 5/8/2019

M:\2018\118133\DATA\Calculations\SWM\118133_SWM_RevisedRoof_20190503.xlsx

		s n	2		Τ																	Γ			m3 m3																	
1		C6.0	P.+	Vol	(m3)	2007	00.0	4.55	4.75	4.85	4.89	4.88	00.4 87 k	4 69	4.59	4.47	4.34	4.20	3.73	3.20	2.63	×	5		1.10	Vol	(m3)	5.14	7.38	8.66	10.04	10.43	10.71	10.90	11.02	11.10	11.14	41.11	11.12	11.01	10.72	10.33
- 1:5 YEAR EVENT Controlled Roof Drain		Vol(max) =		Qnet	(L/S)	86.8	0.03	3.80	3.16	2.69	2.33	2.03	1.13	1 42	1.28	1.15	1.03	0.93	0.69	0.51	0.37	71 Terry Fox	- 1:100 YEAR EVENT Controlled Roof Drain 1	1	Qallow = Vol(max) =	Qnet	(IUS)	17.12	12.30	9.63	6.69	5.80	5.10	4.54	4.08	3.70	3.38	3.10	C0.2	2.45	1.99	1.64
		na		a	(IL/S)	40.6	to.	4.75	4.11	3.64	3.28	2.98	2.14	2.37	2.23	2.10	1.98	1.88	1.64	1.46	1.32	Plaza - 4	- 1:100 Y Controlle		ha	o	(IL/S)	18.22	13.40	0.00	00.6	6.90	6.20	5.64	5.18	4.80	4.48	4.ZU	242	3.55	3.09	2.74
REQUIRED STORAGE AREA R-1	- CURVE	120.0	000	Intensity	(mm/hr)	141.18	83 56	70.25	60.90	53.93	48.52	44.18	37.65	35.12	32.94	31.04	29.37	27.89	24.29	21.58	19.47	Heritage Hills Retail Plaza - 471 Project No.: 118133	ш	100	0.027	Intensity	(mm/hr)	242.70	178.56	142.89	103.85	91.87	82.58	75.15	69.05	63.95	59.62	22.89	62.2C	47.26	41.11	36.50
AREA R-1	ULIAWA IDF CURVE	Area =)	Time	(min)	n 5	οų t	20	25	30	35	40	C 4	55	60	65	20	75	06	105	120	Heritage Hills Ret Project No.: 118133	REQUIRED :	OTTAWA IDF CURVE	Area = C =	Time	(min)	5	6;	CL 00	25	30	35	40	45	20	55	00	02	75	90	105

Design Event	Flow/Drain (L/s)	Total Flow (L/s)	Ponding (cm)	Storage (m ³) Required	(m ³) Provided
1:5 Year	0.95	0.95	11	4.9	11.7
1:100 Year	1.10	1.10	14	11.1	11.7
Roof Dr	Roof Drain Storage Table for Area R-1	e for Area R-1	_		
Elevation	Area RD 1	Total Volume			
ε	m²	۶			
0.00	0	0			
0.05	24.6	0.6			
0.10	98.4	3.7			
0.15	221.4	11.7			
	ŭ	Stage Storage Curve: Area R-1 Controlled Roof Drain #1	rve: Area R-1 if Drain #1		

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Evention Flow Oral Lund 0.95 Ls 0.95 Ls 0.95 Ls Vol 15 Year 0.95 Ls 1.10 Val 1.5 Year 0.95 1.10 Ls 1.11 Ls 1.10 Ls <th>Heritage Hills Retail Plaza - 471 Terry Fox</th> <th>a - 471 Terry F</th> <th>XO</th> <th></th> <th></th> <th>Watts Accut</th> <th>Watts Accutrol Flow Control Roof Drains:</th> <th>of Drains:</th> <th>RD-100-A-ADJ se</th>	Heritage Hills Retail Plaza - 471 Terry Fox	a - 471 Terry F	XO			Watts Accut	Watts Accutrol Flow Control Roof Drains:	of Drains:	RD-100-A-ADJ se
Vi 1:5 Var 0:5 0:6 1:1 Vi Vi 1:0 Var 0:5 0:6 1 1:00 Vear 1:0 1:0 1:0 1:0 1 1:00 Vear 0:0 0 0 0 1 1 1:0 1:1 1:1 1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Project No.: 118133 REQUIRED STORAGE - 1:5)	YEAR EVENT				Event	Flow/Drain (L/s)	Total Flow (L/s)	Ponding (cm)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		rolled Roof Dra	in 2			1:5 Year	0.95	0.95	11
4.6 m3 V(1) V(1) (10) (11) (12) (11) (13) (11) (11) (12) (11) (12) (11) (12) (11) (11) (11) (12) (11) (13) (11) (14) (11) (12) (11) (12) (11) (13) (14) (11) (11) (12) (11) (13) (11) (14) (11) (14) (11) (14) (11) (14) (11) (14) (11) (14) (15) (16) (16) (17) (17) (18) (19) (11) (11) (12) (11) (13) (12) (14) (15) (16) (16)	4.6 M3 Vi Vi (10) (11) (12) (11) (12) (11) (12) (11) (13) (11) (14) (11) (15) (11) (16) (11) (16) (11) (11) (12) (13) (14) (11) (12) (13) (14) (11) (12) (13) (14) (14) (11) (15) (16) (16) (16) (16) (16) (16) (16) (16) (16) (16) (16) (17) (17) (18) (11) (19) (11) (11) (12) (13) (14) (16) (16) (17) (17) (18) (17) (19)		Qallow =		L/s		1:100 Year	1.10	1.10	14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Vol(max) =		Em 3		Roof Di	ain Storage Table	e for Area R-1	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Intensity (mm/hr)		Vol (ma)			Elevation	Area RD 2	Total Volume	
350 000 000 00 440 000 000 000 440 000 000 000 440 000 000 000 2014 010 000 000 2016 010 010 010 010 010 010 010 010 010 010 010 011 010 010 010 010 010 010 010 011 010 010 010 010 010 010 010 011 010 010 010 011 010 010 010 011 010 010 010 011 010 010 010 011 010 010 010 011 010 010 010 011 010 010 010 011 010 010 010 011 010 010 010 011 010 010 010 011 010 010 010 011 010 010 010 011 010 01	350 000 00 00 440 010 044 010 440 010 044 010 440 010 010 010 236 010 010 010 238 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 011 010 010 010 011 010 010 010 011 010 010 010 011 010 010 010 011 010 010 010 011 010 010 010 011 010 010 010 011 010 010 </td <td>141 18</td> <td></td> <td>2.47</td> <td></td> <td>_</td> <td>٤</td> <td>m²</td> <td>æ3</td> <td></td>	141 18		2.47		_	٤	m ²	æ3	
444 453 453 453 455 455 456 456 456 456 456 456 456 456	444 454 455 456 456 456 456 456 456 456	104.19		3.50			0.00	0	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	424 0.10 984 3.7 425 436 1.7 1.7 426 21.4 1.7 1.7 426 20.16 98.4 3.7 426 20.16 98.4 1.7 426 20.16 0.16 21.4 1.1 426 0.16 0.16 0.16 21.4 1.1 12 0.16 0.16 0.16 0.16 21.4 1.1 11 10 1/5 0.06 0.06 0.16 0.	83.56		4.04			0.05	24.6	0.6	
452 446 456 456 456 456 456 456 456 456 456	452 453 454 456 456 456 456 456 456 400 400 60 60 60 60 60 60 60 60 60 60 60 60 6	70.25	55.0	4.34			0.10	98.4	3.7	
4 460 4 45 4 4 45 4 4	446 447 417 417 418 419 419 419 419 419 419 419 419	60.90		4.52			0.15	221.4	11.7	
455 456 456 456 456 456 456 456 456 456 456 015 458 016 228 012 016 03 016 03 016 03 016 03 016 03 016 03 016 03 017 040 018 000 010 000 010 000 010 000 010 000 010 000 010 000 010 000 010 000 010 000 010 000 010 000 010 000 010 000 010 000 010 000 0100 000 0100 000 0100 000 0100 000<	445 445 445 445 445 445 445 456 445 015 016 013 016 038 016 036 016 036 016 036 017 012 018 000 019 000 010 000 011 000 012 000 013 000 014 000 015 000 016 00 017 000 018 000 019 000 010 000 011 000 012 000 013 000 014 000 015 000 016 000 017 000 018 000 019 000 010 000 010 000 010 00	53.93		4.60						1
410 110 15 Controlled Roof Drain #2 410 0.15 0.15 0.15 228 228 0.15 0.16 238 0.12 0.16 0.16 0.16 0.00 0.00 0.16 0.16 0.10 0.00 0.00 0.16 0.10 0.10 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.00	4.0 Stage Storage Curve: Area R- 4.0 4.1 4.0 4.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.0	48.52		4.63						
Controlled Roof Drain #2 442 442 443 388 388 388 388 388 388 388	Controlled Roof Drain #2 442 442 443 443 448 448 448 238 338 338 338 338 338 338 33	44.18		4.62				S	ade Storade Cu	rve: Area R-1
440 417 417 417 417 417 418 338 338 338 338 338 010 010 010 010 00 00 40 00 00 00 00 00 00 00 00 00 00	440 417 228 228 228 228 228 228 228 228 010 010 10 10 10 10 10 10 10 10 10 10 1	37.65		450					Controlled Roc	of Drain #2
429 411 411 411 411 413 340 228 228 228 228 228 228 228 22	4.2 4.17 4.17 4.17 2.28 2.28 2.28 2.28 2.28 2.28 2.28 0.15 0.15 0.15 0.15 0.15 0.16 0.15 0.16 0.16 0.16 0.10 0.16 0.16 0.16 0.16 0.10 0.10 0.16 0.16 0.10 0.16 0.16 0.10 0.16 0.16 0.10 0.16 0.16 0.10 0.16 0.16 0.10 0.16 0.16 0.10 0.10 0.16 0.10 0	35.12		4.40						
4.17 4.03 3.40 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 0.00	4.17 4.03 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 0.00	32.94	0	4.29		0.15				
2 28 3 40 2 28 2 28 2 28 2 28 2 28 2 28 2 28 2 28 2 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.28 3.86 2.28 2.28 2.28 2.28 2.28 0.10 1.10 1.0 1.0 1.0 1.0 1.0 1	31.04	1920	4.17						
338 340 228 228 228 228 228 228 228 228 700 60 11:0 L 700 60 433 60 60 743 883 708 883 708 861 700 70 70 70 70 70 70 70 70 70 70 70 70	3.40 3.40 3.40 2.28 5.28 5.28 5.28 5.28 5.28 5.28 6.0 00 0.00 0.00 0.00 0.00 0.00 0.00 0	29.37		4.03						
3.40 2.28 2.28 2.28 2.28 2.28 2.0 4 1.10 7 1.0 7 1.0 7 1.0 7 1.0 7 1.0 7 1.0 7 1.0 7 1.0 7 1.0 7 1.0 7 1.0 7 1.0 7 1.0 7 1.0 7 1.0 7 1.0 7 1.0 7 1.0 7 1.0 7 7 1.0 7 7 1.0 7 7 7 8 8 8 1 8 9 8 1 8 9 8 1 8 9 8 1 8 9 8 1 8 9 8 1 8 9 8 1 8 9 8 1 8 9 8 1 8 9 8 1 8 9 8 1 8 9 8 1 8 9 8 1 8 9 8 1 8 9 8 1 8 9 8 1 8 1	3.40 2.28 2.28 2.28 2.28 2.28 2.00 0.00 0.0	27.89		3.89		010				
228 228 228 238 238 333 4 333 55 55 040 055 055 055 055 055 055 055 0	228 228 208 208 208 433 433 558 863 863 863 863 863 863 863 863 863 86	24.29		3.40		0.12				
228 228 Voi 1.10 Voi 1.10	228 228 Vol Millio Filo Vol Millio Filo Vol Millio Filo	21.58	0.00	2.86						
Vol Vol Markov Vol Vol Markov Vol Markov	011 011 012 012 020 020 020 020	19.47		2.28				1		
111 1 1 111 1 1 <th>Vol Vol Vol Mag 981 981 981 981 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.20 0.0 0.</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Vol Vol Vol Mag 981 981 981 981 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.20 0.0 0.									
n2 1.10 Ls Nol Ls 1.10 Ls 1.10 Ls 10.6 m3 2.0 4.0 6.0 1.10 22 10.25 10.25	n 2 n 2 n 2 n 3 n 3	Heritage Hills Retail Plaza	1 - 471 Terry F	XO						
n2 1.10 Ls Nol Nol Nol 1.10 Ls 10.6 m3 10.0 0.00 0.0 0.0 0.0 0.0 0.0 0	n2 n3 n3<	REQUIRED STORAGE - 1:10	O VEAR EVENT	10			1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	AREA R-1 Contro	olled Roof Drai	n 2		6u	~			
haQallow=1.10Ls $\overline{\mathbf{P}_{3}}$ 0.03 $\overline{\mathbf{P}_{3}}$ 0.03 $\overline{\mathbf{P}_{3}}$ 00netVol000.000.000.000.0012.9111.844.9311.817.080.000.000.000.0012.9111.844.9311.817.080.000.000.000.000.0012.9111.817.089.075.549.975.549.075.549.075.974.8710.225.439.075.549.075.549.075.974.8710.225.439.076.04.06.05.974.8710.225.439.075.549.075.9710.574.093.8910.563.6210.574.933.2110.553.6010.563.6210.493.802.7110.553.6010.493.6910.493.422.3210.493.6910.493.691.643.642.549.691.649.693.601.643.812.7110.553.6010.653.6210.493.422.3210.493.691.649.693.641.8710.112.9410.551.643.641.649.691.649.691.643.651.649.691.649.693.641.649.691.64<	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						/			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Callow =	1 10	2/1		+			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.00	Vol(max) =	10.6	m3	1				
	(mm/hr) (Ls) (m3) 0.0 2.0 4.0 6.0 242.70 17.54 16.44 4.93 0.0 2.0 4.0 6.0 178.56 12.91 11.81 7.08 3.31 118.1 7.08 3.31 119.95 8.67 7.57 9.08 119.95 8.07 7.57 9.08 119.95 8.07 7.57 9.08 119.95 8.03 7.51 6.0 8.0 8.0 8.3 10.33 9.23 8.31 119.95 8.03 7.51 6.0 8.0	Intensity	Qnet	Vol		000				
242.70 17.54 16.44 4.93 Storage Volume (m ²) 178.56 12.91 11.81 7.08 31 113.95 8.67 7.57 9.08 113.95 8.67 7.57 9.08 11.81 7.08 11.81 7.08 113.95 8.67 7.57 9.08 9.01 9.01 9.01 9.01 113.95 6.64 5.54 9.97 9.61 9.03 9.61 9.61 91.87 6.65 5.43 4.33 10.40 69.05 4.99 3.89 10.51 63.05 4.99 3.89 10.51 65.43 4.33 10.51 65.53 4.04 2.94 4.05 55.63 4.04 55.63 4.04 55.63 4.05 55.63 4.04 55.63 4.04 55.63 4.04 55.63 4.04 55.63 4.04 55.63 4.01 2.94 10.55 55.63 4.04 55.63 4.04 55.63 4.01 2.94 47.26 3.42 2.32 10.64 47.26 3.42 2.32 10.	242.70 17.54 16.44 4.93 Storage Volume (m ²) 178.56 12.91 11.81 7.08 3.31 119.95 8.67 7.57 9.08 3.31 119.95 8.67 7.57 9.08 3.31 119.95 8.67 7.57 9.08 3.31 119.95 8.67 7.57 9.08 3.31 1119.95 8.67 7.57 9.08 3.31 91.87 6.64 5.54 9.97 3.61 91.87 6.64 5.54 9.97 3.61 3.61 91.87 6.64 5.54 9.06 3.61 3.62 63.95 4.62 3.52 10.57 5.64 10.56 63.95 4.62 3.52 10.56 5.66 3.81 10.49 55.66 3.81 2.71 10.56 5.64 10.56 5.64 10.49 55.66 3.81 2.77 10.56 5.64 10.49 5.64 5.74 4.11 2.97 10.49 55.66	(mm/hr)		(m3)		0.0	0			
178.56 12.91 11.81 7.08 112.89 10.33 923 8.31 119.95 8.67 7.57 9.08 119.95 8.67 7.57 9.08 119.95 8.67 7.57 9.08 119.95 8.67 7.57 9.08 119.95 6.43 5.44 9.97 91.87 6.64 5.54 9.97 91.87 6.64 5.54 9.97 82.58 5.93 4.33 10.22 63.95 4.62 3.52 10.57 63.95 4.62 3.52 10.57 55.69 4.04 2.94 10.56 55.63 3.81 2.71 10.56 55.65 3.81 2.77 10.49 55.65 3.81 2.77 10.56 55.66 3.87 10.56 5.43 55.66 3.87 10.56 55.66 3.87 10.56 55.66 1.87 10.56 55.66 1.87 10.56	178.56 12.91 11.81 7.08 112.89 10.33 923 8.31 119.95 8.67 7.57 9.08 119.95 8.67 7.57 9.08 119.95 8.67 7.57 9.08 119.95 8.67 7.57 9.08 119.95 8.67 7.57 9.03 91.87 6.64 5.54 9.97 92.58 5.97 4.87 10.22 75.15 5.43 4.33 10.40 69.05 4.99 3.89 10.51 63.95 4.62 3.52 10.57 59.62 4.31 3.21 10.56 55.89 4.04 2.94 10.56 55.66 3.81 2.77 10.56 55.63 3.81 2.77 10.56 55.66 3.81 2.77 10.56 55.66 3.81 2.76 10.42 41.11 2.97 10.56 3.60 2.64 1.54 9.69 32.89	242.70		4.93						
142.89 10.33 9.23 119.95 8.67 7.57 103.85 7.51 6.64 91.87 6.64 5.54 91.87 6.64 5.54 91.87 6.64 5.54 91.87 6.64 5.54 91.87 6.64 5.54 91.87 6.64 5.54 82.58 5.97 4.33 69.05 4.99 3.89 63.05 4.93 3.89 69.05 4.99 3.21 55.68 4.04 2.94 55.65 3.81 2.71 52.65 3.81 2.71 41.11 2.97 2.32 36.50 2.64 1.87 36.50 2.64 1.54	1142.89 10.33 9.23 1142.89 10.33 9.23 119.95 8.67 7.57 103.85 7.51 6.41 91.87 6.64 5.54 91.87 6.64 5.54 91.87 6.64 5.54 91.87 6.64 5.54 82.58 5.93 4.33 69.05 4.99 3.89 63.95 4.62 3.52 55.89 4.04 2.94 55.65 3.81 2.71 55.65 3.81 2.71 55.65 3.81 2.71 55.65 3.81 2.71 55.66 3.81 2.71 40.79 3.60 2.550 41.11 2.97 1.87 36.50 2.64 1.54 32.89 2.38 1.28 32.89 2.38 1.28	178.56		7.08					•	
113.35 7.51 7.51 113.35 7.51 6.41 91.87 6.64 5.54 91.87 6.64 5.54 75.15 5.43 4.37 75.15 5.43 4.33 75.15 5.43 4.33 69.05 4.99 3.89 69.05 4.93 3.89 69.05 4.31 3.21 59.62 4.31 3.21 59.63 4.04 2.94 52.65 3.81 2.71 49.79 3.60 2.57 36.50 2.64 1.87 36.50 2.64 1.87 36.50 2.64 1.54	113.35 7.51 7.51 113.36 7.51 6.41 91.87 6.64 5.54 91.87 6.64 5.54 91.87 6.64 5.54 75.15 5.43 4.37 75.15 5.43 4.33 69.05 4.99 3.89 63.95 4.62 3.52 55.89 4.04 2.94 55.65 3.81 2.71 55.66 3.81 2.71 55.66 3.81 2.71 55.66 3.81 2.71 55.66 3.81 2.71 55.66 3.81 2.71 55.66 3.60 2.50 41.11 2.97 1.87 36.50 2.64 1.54 32.89 2.38 1.28 32.89 2.38 1.28	142.89		8.31						
91.03.05 6.64 5.54 91.03.05 6.90 6.91 5.94 75.15 5.43 4.33 75.43 75.15 5.43 4.33 5.54 69.05 4.99 3.89 69.35 69.05 4.99 3.89 5.54 53.95 4.31 3.21 55.4 55.89 4.04 2.94 5.21 55.66 3.81 2.71 3.21 55.66 3.81 2.71 3.21 49.79 3.60 2.56 1.87 36.50 2.64 1.54 1.87	91.03.05 6.4 5.54 91.03.05 6.9 5.54 75.15 5.43 4.38 75.15 5.43 4.33 69.05 4.99 3.89 63.95 4.62 3.52 55.89 4.04 2.94 55.89 4.04 2.94 55.89 3.81 2.71 55.65 3.81 2.71 55.66 3.81 2.71 52.65 3.81 2.71 52.66 3.81 2.71 52.65 3.81 2.71 52.66 3.60 2.50 41.11 2.97 1.87 36.50 2.64 1.54 32.89 2.38 1.28	102 05		9.00						
82.58 5.97 4.87 75.15 5.43 4.33 75.15 5.43 4.33 69.05 4.99 3.89 69.05 4.99 3.89 69.05 4.99 3.52 59.62 4.31 3.21 55.89 4.04 2.94 55.65 3.81 2.71 52.66 3.81 2.71 49.79 3.60 2.56 41.11 2.97 1.87 36.50 2.64 1.54	82.58 5.97 4.87 75.15 5.43 4.33 75.15 5.43 4.33 69.05 4.99 3.89 63.95 4.53 3.52 59.62 4.31 3.21 59.62 4.31 3.21 59.62 4.31 3.21 55.89 4.04 2.94 52.65 3.81 2.71 49.79 3.60 2.50 41.11 2.97 1.87 36.50 2.64 1.54 32.89 2.38 2.36	91.87		10.6						
75.15 5.43 4.33 69.05 4.99 3.89 63.95 4.62 3.52 59.62 4.31 3.21 55.89 4.04 2.94 52.65 3.81 2.71 49.79 3.81 2.71 49.79 3.60 2.56 41.11 2.97 2.32 36.50 2.64 1.87 36.50 2.64 1.54	75.15 5.43 4.33 69.05 4.99 3.89 63.95 4.62 3.52 59.62 4.31 3.21 55.89 4.04 2.94 55.65 3.81 2.71 55.66 3.81 2.71 55.66 3.81 2.71 49.79 3.60 2.50 41.16 2.94 2.51 36.50 2.64 1.54 32.89 2.38 1.28 32.89 2.38 1.28	82.58		10.22						
69.05 4.99 3.89 63.95 4.62 3.52 59.62 4.31 3.21 55.89 4.04 2.94 49.79 3.60 2.50 41.11 2.97 1.87 41.11 2.97 1.87 36.50 2.64 1.54	69.05 4.99 3.89 63.95 4.62 3.52 59.62 4.31 3.21 55.89 4.04 2.94 55.89 4.04 2.94 55.89 3.81 2.71 49.79 3.81 2.71 49.79 3.60 2.50 41.11 2.97 1.87 36.50 2.64 1.54 32.89 2.38 1.28	75.15		10.40						
63.95 4.62 3.52 59.62 4.31 3.21 55.89 4.04 2.94 49.79 3.60 2.50 41.11 2.97 1.87 41.11 2.97 1.87 36.50 2.64 1.54	63.95 4.62 3.52 59.62 4.31 3.21 55.89 4.04 2.94 49.79 3.60 2.50 47.26 3.42 2.50 41.11 2.97 1.87 36.50 2.64 1.54 32.89 2.38 1.28	69.05		10.51						
59.62 4.31 3.21 55.89 4.04 2.94 52.65 3.81 2.71 49.79 3.60 2.50 41.11 2.97 1.87 36.50 2.64 1.54	59.62 4.31 3.21 55.89 4.04 2.94 52.65 3.81 2.71 49.79 3.60 2.50 47.26 3.42 2.32 41.11 2.97 1.87 36.50 2.64 1.54 32.89 2.38 1.28	63.95		10.57						
55.89 4.04 2.94 52.65 3.81 2.71 49.79 3.60 2.50 41.11 2.97 1.87 36.50 2.64 1.54	55.89 4.04 2.94 52.65 3.81 2.71 49.79 3.60 2.50 47.26 3.42 2.32 41.11 2.97 1.87 36.50 2.64 1.54 32.89 2.38 1.28	59.62		10.59						
52.65 3.81 2.71 49.79 3.60 2.50 47.26 3.42 2.32 41.11 2.97 1.87 36.50 2.64 1.54	52.65 3.81 2.71 59.79 3.60 2.50 47.26 3.42 2.32 41.11 2.97 1.87 36.50 2.64 1.54 32.89 2.38 1.28	55.89		10.58						
49.79 3.60 2.50 47.26 3.42 2.32 41.11 2.97 1.87 3.6.50 2.64 1.54	49.79 3.60 2.50 47.26 3.42 2.32 41.11 2.97 1.87 36.50 2.64 1.54 32.89 2.38 1.28	52.65		10.55						
47.26 3.42 2.32 41.11 2.97 1.87 36.50 2.64 1.54	47.26 3.42 2.32 41.11 2.97 1.87 36.50 2.64 1.54 32.89 2.38 1.28	49.79		10.49						
41.11 2.97 1.87 36.50 2.64 1.54	41.11 2.97 1.87 36.50 2.64 1.54 32.89 2.38 1.28	47.26		10.42						
36.50 2.64 1.54	36.50 2.64 1.54 32.89 2.38 1.28	41.11		10.11						
	32.89 2.36 1.28	36.50		9.69						

Provided 11.7 11.7

 RD-100-A-ADJ set to 1/2 Exposed

 Ponding
 Storage (m³)

 (cm)
 Required

 11
 4.6

 14
 10.6

12

10.0

8.0

																0.15			0.12				60.0 m)	noii	0.06 0.06	3 6		0.03		00.0	0.0															
		L/s	m3							-																		L/s	m3			Γ					-	_								
	2	0.95	5.7	Vol	(m3)	2.89	4.12	4.79	5.19	5.43	20.00	20.0	5.67	5.63	5.56	5.48	5.38	5.27	5.14	4.71	4.22	3.68			×	1	3	1.26	12.3	Vol	(m3)	5.69	8.18	9.59	10.49	11.10	11 82	12.02	12.15	12.22	12.25	12.25	12.21	12.15	12.00	11.24
- 1:5 YEAR EVENT	Controlled Koot Drain	Qallow =	Vol(max) =	Qnet	(IL/S)	9.65	6.87	5.32	4.32	3.62	3.10	2 37	2.10	1.88	1.69	1.52	1.38	1.25	1.14	0.87	0.67	0.51			Heritage Hills Retail Plaza - 471 Terry Fox Project No.: 118133	1:100 YEAR EVENT	Controlled Koot Drain 3	Qallow =	Vol(max) =	Qnet	(IUS)	18.98	13.63	10.66	8.74	04.7	5.63	5.01	4.50	4.07	3.71	3.40	3.13	2.89	2.08	1 78
	Control	ha		a	(IL/S)	10.60	7.82	6.27	5.27	4.57	CU.4	3 30	3.05	2.83	2.64	2.47	2.33	2.20	2.09	1.82	1.62	1.46			Plaza - 4	- 1:100 Y	Controll	ha		a	(ILIS)	20.24	14.89	11.92	10.00	7 66	68.9	6.27	5.76	5.33	4.97	4.66	4.39	4.15	3.43	204
STORAGE	CURVE	0.030	06.0	Intensity	(mm/hr)	141.18	104.19	83.56	70.25	06.00	03.93 A D E O	44 18	40.63	37.65	35.12	32.94	31.04	29.37	27.89	24.29	21.58	19.47			lls Retail 118133	TORAGE		1000		Intensity	(mm/hr)	242.70	178.56	142.89	119.95	C0.001	82.58	75.15	69.05	63.95	59.62	55.89	52.65	49.79	41.20	36.50
Project No.: 118133 REQUIRED STORAGE	OTTAWA IDF CURVE	Area =	с С	Time	(min)	5	10	15	22	67	30	40	45	50	55	60	65	70	75	06	105	120			eritage Hil roject No.: '	REQUIRED STORAGE	AKEA K-1	Area =	с С	Time			10	15	20	02	35	40	45	50	55	60	65	21	0	105

12.0

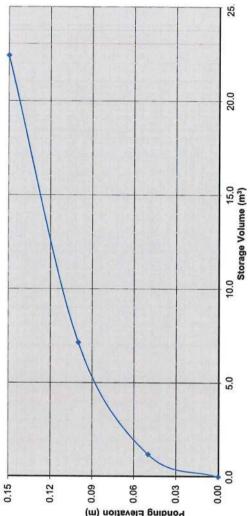
10.0

6.0 8.0 Storage Volume (m³)

4.0

2.0

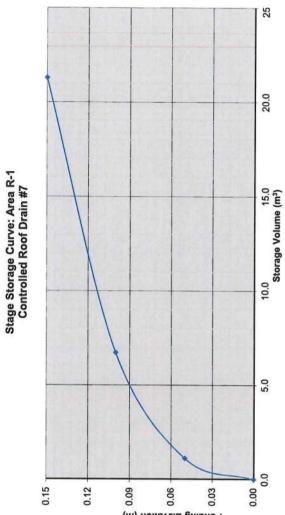
	Flow/Drain (L/s) 0.95 1.26 Area RD 3 m ² 0 0 26.87 107.49 241.87 St	Total Flow (L/s) Ponding (cm) (cm) (cm) 0.95 11 0.95 15 1.26 15 1.26 15 1.26 15 1.26 15 1.26 15 1.26 15 1.26 15 1.26 15 1.26 15 1.26 15 0 0 12.8 12.8 12.8 12.8 12.8 12.8	Ponding (cm) 15 15 15 8-1	Storage (m ³) 5.7 12.3	(m ³) Provided 12.8 12.8
1:5 Year 1:100 Year Roof Drain Sto Elevation An m 0.00 0.10 0.15	0.95 1.26 1.26 0 m ² 0 0 26.87 241.87 241.87 241.87	0.95 1.26 1.26 Total Volume m ³ 0 0.7 4.0 12.8 326 Storage Cur	11 15 AA Araa R.1	5.7 12.3	12.8 12.8 12.8
1:100 Year Roof Drain Sto Elevation An m 0.00 0.15 0.15	1.26 0rage Table rea RD 3 0 26.87 107.49 241.87 241.87	1.26 Total Volume m ³ 0.7 12.8 12.8	15 AA Area R-1	12.3	12.8
Roof Drain Ste Elevation An m 0.00 0.15 0.15	0rage Table rea RD 3 m ² 0 107.49 241.87 241.87	for Arca R-1 Total Volume m ³ 0 0.7 12.8 12.8	ve Area R-1		
Elevation An 0.00 0.15 0.15	rea RD 3 m ² 0 26.87 241.87 241.87 St	Total Volume m ³ 0.7 4.0 12.8 12.8	ve Area R-1		
		m ³ 0 4.0 12.8 age Storage Cur	ve: Åraa R.1		
		0 0.7 4.0 12.8 12.8	ve. Årea R-1		
		0.7 4.0 12.8 age Storage Cur	ve: Area R.1		
		4.0 12.8 age Storage Cur	va: Årea R-1		
_	1.33	12.8 age Storage Cur	ve: Area R-1		
	ŝ	age Storage Cur	ve. Area R-1		
		Controlled Koot Drain #3	f Drain #3		
			-		
	1				
/					


Vol(max) =	- 1:5 Cont	пентаде плів кекап гтада - 4/1 Пену F0X Project No.: 118133 REQUIRED STORAGE - 1:5 YEAR EVENT AREA R-1 Controlled Roof Drains 4& ОТТАWA IDF CURVE ОТТАWA IDF CURVE 190 Агеа = 0.056 ha Coallow = 1.90	ox ns 4&5 1 90	s/ I		Watts Accutrol Design Event 1:5 Year 1:100 Year	Watts Accutrol Flow Control Roof Drains: Design Event Flow/Drain (L/s) Tota 1:5 Year 0.95 1:100 Year 1.10	Drains: Total Flow (L/s) 1.90 2.20	RD-100-A-AD Ponding (cm) 10 13	RD-100-A-ADJ set to 1/2 Exposed Ponding Storage (m ³ (cm) Required 10 10.3 13 23.4	S S
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	a			аз З		Roof Dra	in Storage Table	for Area R-1 Total Volume	r		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.7 19.7		(m3) 5.36			E	m ²	m ³			
6.65 0.15 7.64 2.24 1.5 0.13 0.15 0.15 0.15 0.15 0.15 0.13 0.15 0.15 0.15 0.15 0.15 0.15 0.15	11.7 9.8		7.02 8.83 9.53			0.05 0.10	0 106.39 278.15	0 2.7 12.3			
1028 Stage Storage Curve: Area R-1 001 233 013 015 016 015 015 015 016 016 017 016 018 016 019 010 010 010 011 010 012 010 013 010 014 010 015 010 016 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 010 01173 Storage Volume (m)	8.5		9.95 10.18			0.15	526.89	32.4	-1		
Controlled Roof Drains #4 & #5 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.3 8.4 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	6.8(6.19		10.29				St	ade Storade Cur	ve: Area R-1		
9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3	5.2		10.13				ບິ	ntrolled Roof Dr	rains #4 & #5		
930 941 945 959 959 959 959 951 951 951 951 951 95	4.6.4		9.55		0.15						1
812 708 536 536 536 803 817 803 538 538 538 538 538 538 538 538 538 53	4.1		9.30 9.03		0.12 -						
5.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	3.40		8.12								
485 2220 Ls 234 m3 234 m3 6536 6536 6536 6536 6536 6536 7178 1178 1178 1178 1178 1178 1178 117	2.73		5.96								
Is 485 Ponding 2.20 Ls 2.31 m3 2.31 m3 2.31 m3 10.68 10.0 10.68 0.00 19.77 20.95 21.78 20.00 22.38 20.00 23.37 20.33 23.32 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.34 23.34 23.35 23.33 23.36 23.34 23.35 23.35 23.36 23.35 23.36 23.35 23.36 23.36 23.36 23.36 23.36 23.36 23.36	aza	ı - 471 Terry Fo	×								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1:10 ontr	0 YEAR EVENT olled Roof Drain	1s 4&5			~					
Vol(max)= 23.4 m3 0.00 5.0 10.0 15.0 20.0 (1s) (1s) (1s) (10) 15.0 20.0 <td></td> <td>Oallow =</td> <td>2.20</td> <td>L/s</td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Oallow =	2.20	L/s							
Qnet Vol 0.0 5.0 10.0 15.0 20.0 35.58 10.68 35.58 10.68 20.0 35.58 10.68 20.0 35.56 13.97 20.95 13.97 20.95 13.97 20.35 31.64 13.97 20.35 31.04 13.97 20.35 31.04 13.97 20.35 31.04 13.97 20.35 31.04 13.97 20.35 31.04 10.66 2.2.38 9.50 22.34 35.5 23.34 5.55 23.33 5.55 23.32 5.16 23.27 7.76 23.32 5.16 23.23 5.16 23.23 5.16 23.23 5.16 23.23 5.16 23.23 5.16 23.23 5.16 23.23 5.16 23.23 5.16 23.23 5.16 23.23 5.16 23.23 5.16 23.24 5.15 23.23 5.16 23.23 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 <		Vol(max) =	23.4	m3	0.00				51		
35.58 10.68 25.60 15.36 20.05 18.04 16.47 19.77 13.97 20.95 12.10 21.78 9.50 22.80 8.55 23.08 8.55 23.37 7.76 23.27 7.76 23.37 6.50 23.34 6.00 23.34 6.00 23.34 5.55 23.32 5.16 23.21 5.16 23.21 5.10 23.21 5.16	٥IJ		Vol (m3)		0.		10.0	15.0 Storage Vo	20.0 olume (m ³)	25.0	
2.005 16.47 13.97 13.97 10.66 9.50 6.00 6.00 6.00 6.00 6.00 8.55 5.55 5.55 5.55 5.55 5.55 5.55 5	37.7		10.68						•		
10.47 11.24 11.24 9.50 9.50 8.55 6.50 6.50 6.50 5.55 5.55 5.16 5.55 5.16 5.55 5.16	22.2		18.04								
12.10 10.66 9.50 7.76 6.50 6.00 5.55 5.16 5.16 5.16	16.1		20.95								
9.50 8.55 8.55 7.76 6.50 6.50 6.50 5.16 5.16 5.16 5.48 3.48	14.3		21.78								
7.76 6.50 6.00 5.55 5.16 5.16 3.48 3.48	11.7		22.80								
7.00 0.50 0.51 0.52 0.52 0.00 0.50 0.50 0.50 0.50 0.50	96.6		23.27								
6.00 5.55 5.16 3.48 3.48 2.00	8.70		23.41								
5.16 4.20 3.48	8.20		23.38								
3.48	7.36		23.21								
	5.68		21.94								

ntro	Flow/		1.100 Tear 1.20	Roof Drain Storage Table	Elevation Area RD 6	m ²		0.05 47.6		0.15 420.26		i	Sta		-					1									Cu	0.0														
>1						1 T									0.15			0.12	;		Ê 0.09) uc	oiteve S	913 f	pnik			-	00.00															
			5 L/s				-	N	4	~ ~		1.07	-	.			•	4	_	~	•						a m 3 t		-		2	0	5 0	0 00		. 4	0	6,		× ~	5 0	. 4	- 10	0
5		in 6	0.95		Vol (m3)	4.38	6.31	7.42	8.14	80.8 8 98	9.22	9.39	9.51	9.59	20.6	9.62	9.59	9.54	9.31	8.98	8.59		x		in 6		1.26 20.4	IV	(Em3)	8.53	12.35	14.60	15.09	17 96	18.57	19.04	19.40	19.69	19.91	20.02	20.29	20.34	20.35	
Designed Mo. 149433	AR EVENT	Controlled Roof Drain 6	Qallow =	voi(max) =	Qnet (L/s)	14.59	10.52	8.25	6.78	00 P	4.39	3.91	3.52	3.20	2.32	2.47	2.28	2.12	1.72	1.43	1.19		Heritage Hills Retail Plaza - 471 Terry Fox Proiect No.: 118133	REQUIRED STORAGE - 1:100 YEAR EVENT	Controlled Roof Drain 6		Qallow = Vol(max) =	Onot	(IL/s)	28.43	20.58	16.22	13.41	9 98	8.84	7.93	7.19	6.56	6.03	5.58 5.18	4.83	4.52	3.77	
-	- 1:5 YE	Control	ha		(IL/s)	15.54	11.47	9.20	7.73	5 94	5.34	4.86	4.47	4.15	3.63	3.42	3.23	3.07	2.67	2.38	2.14		Plaza -	- 1:100)	Control		ha	c	(IL/S)	29.69	21.84	17.48	14.6/	11 24	10.10	9.19	8.45	7.82	6.29	6.44	6.09	5.78	5.03	
. 110122	STORAGE		0.044		Intensity (mm/hr)	141.18	104.19	83.56	70.25	53 93	48.52	44.18	40.63	37.65	30.04	31.04	29.37	27.89	24.29	21.58	19.47		ills Retail	STORAGE			0.044	Intensity	(mm/hr)	242.70	178.56	142.89	103 95	10.00	82.58	75.15	69.05	63.95	59.62	50.89 57.65	49.79	47.26	41.11	
Droinct No : 119122	REQUIRED STORAGE - 1:5 YEAR EVENT	AREA R-1		נ	Time (min)	5	10	15	20	30	35	40	45	50	09 09	65	70	75	06	105	120		Heritage Hills Ret	REQUIRED	AREA R-1	OTTAWA IDF CURVE	Area = C =	Time	(min)	5	10	15	20	30	35	40	45	50	50 00	00 65	<u>6</u> 2	75	06	

Natts Accutrol Flow Control Roof Drains:	OI LIOW COILIN NO	or prains.	KU-100-A-AUJ Set to 1/2 Exposed	adi to 112 Express	
Design Event	Flow/Drain (L/s)	Flow/Drain (L/s) Total Flow (L/s)	Ponding (cm)	Storage (m ³ Required	(m ³) Provided
1:5 Year	0.95	0.95	11	9.6	22.4
1:100 Year	1.26	1.26	14	20.4	22.4

Roof Drain	Storage '	Table for Area R-1
Elevation	Area RD 6	Total Volume
٤	m²	в ³
0.00	0	0
0.05	47.6	1.2
0.10	190.39	7.1
0.15	420.26	22.4



Design	Event Flow/Urain (L/s) 1 1:5 Year 0.95	-		Roof Drain Storage Table fo	Elevation Area RD 7	+	5	0.00		0.15 403.31			Star									1				×	/				200																	
																0.15			0.12	0.12		1.2	ี ม) เ	noits	vel:	3 Bu	nibi	0.03	4	20	0.00	>																
			r,	2		Τ																		Γ					m3 m3			Т															_	
×	7		0.95	a.c	Vol	(m3)	4.21 6.16	7 24	7.93	8.40	8.73	8.97	9.13	9.24	9.33	9.34	9.32	9.28	9.23	8.98	8.64	8.24				•			19.8		Vol.	(cm) 8 33	12.05	14.24	15.69	16.73	17.50	18.08	18.53	18.88	10.36	19.52	19.63	19.71	19.75	19.73	10 55	14 0
reritage nuis Ketaii Flaza - 4/1 Terry Fox Project No.: 118133	- 1:5 YEAR EVENT Controlled Roof Drain 7		Qallow =	vuluiday) -	Qnet	(L/S)	14.24	8.04	6.61	5.60	4.85	4.27	3.80	3.42	2.83	2.59	2.39	2.21	2.05	1.66	1.37	1.14		Heritage Hills Retail Plaza - 471 Terry Fox	•	REQUIRED STORAGE - 1:100 YEAR EVENT	CONTROLLED KOOT DIAIN /		Vol(max) =	8	Qnet	27 75	20.08	15.82	13.08	11.15	9.72	8.61	7.72	6.99	5 87	5.42	5.03	4.69	4.39	3.65	2 10	111 1
- 1979	- 1:5 YE. Controll		ha		a	(L/S)	10.15	8 99	7.56	6.55	5.80	5.22	4.75	4.3/	3.78	3.54	3.34	3.16	3.00	2.61	2.32	2.09		Plaza - 4		- 1:100 Y	Controll		па		٥.	29.01	21.34	17.08	14.34	12.41	10.98	9.87	8.98	8.25	7 13	6.68	6.29	5.95	5.65	4.91		
: 118133	STORAGE	F CURVE	0.043	0.0	Intensity	(mm/hr)	141.18	83.56	70.25	60.90	53.93	48.52	44.18	37.65	35.12	32.94	31.04	29.37	27.89	24.29	21.58	19.47		ills Retail	118133	STORAGE			1.00		Intensity	242 70	178.56	142.89	119.95	103.85	91.87	82.58	75.15	c0.69	69.62	55.89	52.65	49.79	47.26	41.11	00 00	Contract Contract of Contract
Project No.: 118133	REQUIRED STORAGE - 1:5 YEAR EVENT AREA R-1 Controlled Roof Di	OTTAWA IDF CURVE	Area =	5	Time	(min)	υĘ	2 5	20	25	30	35	6 ;	64 0 72	55	60	65	70	75	90	105	120		Heritage H	Project No.: 118133	REQUIRED			C =	1	Time	2	10	15	20	25	30	35	4	45 C 4	55	60	65	70	75	06	105	

Vatts Accutrol Flow Control Roof Drains:	OI LIOW COILLOI NO	or pranta.	רחע-ע-חחו-חע	ND-100-N-N-ND 381 10 112 EXPOSED	
Design Event	Flow/Drain (L/s)	Flow/Drain (L/s) Total Flow (L/s)	Ponding (cm)	Storage (m ³) Required	(m ³) Provided
1:5 Year	0.95	0.95	11	9.3	21.3
1:100 Year	1.26	1.26	14	19.8	21.3

KOOT UTA	in Storage Tab	rage Table for Area R-1
Elevation	Area RD 7	Total Volume
E	m²	е ³
0.00	0	0
0.05	44.82	1.1
0.10	179.29	6.7
0.15	403.31	21.3

Heritage Hills Retail Plaza (471 Terry Fox Drive) PCSWMM Model Schematic

Overall Model Schematic

Date: 2019-01-24 M:\2018\118133\DATA\Calculations\SWM\PCSWMM\Model Schematic-Output\PCSWMM Model Schematic.docx

	WATER MANAGEMENT						
Allowable MH202 (100	Release Rate = 1 yr HGL) = 96.14m) = 95.28m	41.9 L/s					

Element Co							
Number of Number of Number of Number of	rain gages subcatchments nodes links pollutants land uses	. 6 . 18 . 18 . 0					

Raingage S							

Name	Data				Data Type	Recordir Interval	
Raingage	C4hr-					10 min.	
Subcatchme	**************************************						
Name				%Imperv			Outlet
A-0			200.00	65.70	2.0000	Raingage	 Major-Out
A-1		0.05	72.00	62.90	2.0000	Raingage	CB01
A-2 A-3		0.17	111.33	88.60 98.60	2.0000	Raingage	CB02
EXT		0.14	105 40	98.60	2.0000	Raingage	CB03
R-1		0.23	226.00	100.00	1.5000	Raingage	EXT-Out BLDG01(rcof)
*******	••						
Node Summa	2-32						

Name	Type	Elev.	Depth	Area In	flow	
BLDG01	JUNCTION	95.30	5.70	0.0		
HP01	JUNCTION	96.65	1.00	0.0		
HP02	JUNCTION	96.63	1.00	0.0		
HP03	JUNCTION	96,61		0.0		
EXMH202	OUTFALL	94.65	0.45	0.0		
EXT-Out	OUTFALL	96.00	0.45	0.0		
Major-Out	OUTFALL		1.00	0.0		
BLDG01 (roof)	STORAGE	100.00	1.00	0.0		
СВ01	STORAGE	95.00	2.45	0.0		
CB02	STORAGE		2.34	0.0		
CB03	STORAGE	95.22	2.18	0.0		
MH01	STORAGE	94.73	2.12	0.0		
MH02	STORAGE			0.0		
MH03	STORAGE	94.83	2.27	0.0		
MH04	STORAGE		1.83	0.0		
MH04(D1)	STORAGE					
MH04 (D2)	STORAGE	94.95	1.82	. 0.0		
MH04 (D3)	STORAGE	94.97	1.93	0.0		
Link Summary						
	From Node	To Node	Type	Length	501000	Poughneed
	From Node		Туре		%Slope	
C1	CB01	HP01		************		
	CB01	HP01		3,0	-6.6815	0.0150
	CB01	HP01	CONDUIT	3.0 7.5 10.0	-6.6815 0.2667 0.2000	0.0150 0.0130 0.0130
	CB01	HP01 MH02 MH03 MH04(D1)	CONDUIT CONDUIT	3.0 7.5 10.0	-6.6815 0.2667 0.2000	0.0150 0.0130 0.0130
	CB01	HP01 MH02 MH03 MH04(D1)	CONDUIT CONDUIT CONDUIT	3.0 7.5 10.0 33.0	-6.6815 0.2667 0.2000 0.2121	0.0150 0.0130 0.0130 0.0130 0.0130
C1 C16 C18_2 C18_5 C18_6 C18_7	CB01 MH03 MH04(D1) MH04(D2) MH04(D3) MH04	HP01 MH02 MH03 MH04 (D1) MH04 (D2) MH04 (D3)	CONDUIT CONDUIT CONDUIT CONDUIT	3.0 7.5 10.0 33.0 9.0 36.1	-6.6815 0.2667 0.2000 0.2121 0.2222 0.1939	0.0150 0.0130 0.0130 0.0130 0.0130 0.0130
C1 C16 C18_2 C18_5 C18_6 C18_7	CB01 MH03 MH04(D1) MH04(D2) MH04(D3) MH04	HP01 MH02 MH03 MH04 (D1) MH04 (D2) MH04 (D3)	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	3.0 7.5 10.0 33.0 9.0 36.1	-6.6815 0.2667 0.2000 0.2121 0.2222 0.1939	0.0150 0.0130 0.0130 0.0130 0.0130 0.0130
C1 C16 C18_2 C18_5 C18_6 C18_7	CB01 MH03 MH04(D1) MH04(D2) MH04(D3) MH04	HP01 MH02 MH03 MH04 (D1) MH04 (D2) MH04 (D3) CB02 MH04 (D3)	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	3.0 7.5 10.0 33.0 9.0 36.1	-6.6815 0.2667 0.2000 0.2121 0.2222 0.1939 8.3624	0.0150 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0150
C1 C16 C18_2 C18_5 C18_6 C18_7	CB01 MH03 MH04(D1) MH04(D2) MH04(D3) MH04	HP01 MH02 MH03 MH04 (D1) MH04 (D2) MH04 (D3) CB02 MH04 (D3)	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	3.0 7.5 10.0 33.0 9.0 36.1 3.0 20.1	-6.6815 0.2667 0.2000 0.2121 0.2222 0.1939 8.3624 1.6420	0.0150 0.0130 0.0130 0.0130 0.0130 0.0130 0.0150 0.0130
C1 C16 C18_2 C18_5 C18_6 C18_7 C2_7 C21 C21 C26	CB01 MH03 MH04(D1) MH04(D2) MH04(D3) MH04 HP01 BLDG01 MH01	HP01 MH02 MH03 MH04(D1) MH04(D2) MH04(D2) MH04(D3) CB02 MH04(D3) EXMH202	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	3.0 7.5 10.0 33.0 9.0 36.1 3.0 20.1 7.5	-6.6815 0.2667 0.2000 0.2121 0.2222 0.1939 8.3624 1.6420 1.0667	0.0150 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130 0.0130
C1 C16 C18_2 C18_5 C18_6 C18_7 C2_7 C21 C21 C26	CB01 MH03 MH04(D1) MH04(D2) MH04(D3) MH04	HP01 MH02 MH03 MH04(D1) MH04(D2) MH04(D2) MH04(D3) CB02 MH04(D3) EXMH202	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	3.0 7.5 10.0 33.0 9.0 36.1 3.0 20.1 7.5 11.8	-6.6815 0.2667 0.2000 0.2121 0.2222 0.1939 8.3624 1.6420 1.0667 0.1695	0.0150 0.0130 0.0130 0.0130 0.0130 0.0130 0.0150 0.0130 0.0130 0.0130
C1 C16 C182 C185 C186 C186 C187 C2 C21 C21 C26 C27 C3	CB01 MH03 MH04(D1) MH04(D2) MH04(D3) MH04 HP01 BLDG01 MH01	HP01 MH02 MH03 MH04(D1) MH04(D2) MH04(D3) CB02 MH04(D3) EXMH202 MH01	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	3.0 7.5 10.0 33.0 9.0 36.1 3.0 20.1 7.5 11.8 3.0	-6.6815 0.2060 0.2121 0.2222 0.1939 8.3624 1.6420 1.0667 0.1695 -7.6893	0.0150 0.0130 0.0130 0.0130 0.0130 0.0130 0.0150 0.0130 0.0130 0.0130 0.0130
C1 C16 C18_2 C18_5 C18_6 C18_7 C2 C21 C26 C21 C26 C27 C3 C4	CB01 MH03 MH04(D1) MH04(D2) MH04(D3) MH04 HP01 BLDG01 MH01 MH02 CB02	HP01 MH02 MH03 MH04(D1) MH04(D2) MH04(D2) CB02 MH04(D3) EXMH202 MH01 HF02	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	3.0 7.5 10.0 33.0 9.0 36.1 3.0 20.1 7.5 11.8 3.0 3.0	-6.6815 0.2667 0.2000 0.2121 0.2222 0.1939 8.3624 1.6420 1.0667 0.1695 -7.6893 7.6893	0.0150 0.0130 0.0130 0.0130 0.0130 0.0130 0.0150 0.0130 0.0130 0.0130 0.0130 0.0130 0.0150
C1 C1 C16 C18 2 C18 5 C18 6 C18 7 C2 C21 C21 C21 C21 C27 C3 C4 C6	CB01 MH03 MH04(D1) MH04(D2) MH04(D3) MH04 HP01 BLDG01 MH01 MH02 CB02 HF02	HP01 MH02 MH03 MH04(D1) MH04(D2) MH04(D3) CB02 MH04(D3) EXMH202 MH01 HF02 CB03	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	3.0 7.5 10.0 33.0 9.0 36.1 3.0 20.1 7.5 11.8 3.0 3.0 3.0 3.0	-6.6815 0.2667 0.2000 0.2121 0.2222 0.1939 8.3624 1.6420 1.0667 0.1695 -7.6893 1.7002	0.0150 0.0130 0.0130 0.0130 0.0130 0.0130 0.0150 0.0130 0.0130 0.0130 0.0150 0.0150
C1 C16 C18_2 C18_5 C18_6 C18_7 C2 C21 C21 C26 C27 C3 C3 C4 C6 C7	CB01 MH03 MH04(D1) MH04(D2) MH04(D3) MH04 HP01 BLDG01 MH01 MH02 CB02 HP02 HP03	HP01 MH02 MH04(D1) MH04(D2) MH04(D2) MH04(D3) CB02 MH04(D3) EXMH202 MH01 HF02 CB03 Major-Out	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	3.0 7.5 10.0 33.0 9.0 36.1 3.0 20.1 7.5 11.8 3.0 3.0 3.0 3.0	-6.6815 0.2667 0.2000 0.2121 0.2222 0.1939 8.3624 1.6420 1.0667 0.1695 -7.6893 7.6893	0.0150 0.0130 0.0130 0.0130 0.0130 0.0130 0.0150 0.0130 0.0130 0.0130 0.0150 0.0150
C1 C1 C16 C18_2 C18_5 C18_6 C18_7 C2 C2 C21 C26 C27 C26 C27 C3 C4 C4 C6 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	CB01 MH03 MH04(D1) MH04(D2) MH04(D3) MH04 HP01 BLDG01 MH01 MH02 CB02 HP02 HP03 CB03	HP01 MH02 MH03 MH04(D1) MH04(D2) MH04(D3) CB02 MH04(D3) EXMH202 MH01 HP02 CB03 Major-Out HP03	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	3.0 7.5 10.0 33.0 9.0 36.1 3.0 20.1 7.5 11.8 3.0 3.0 3.0 3.0	-6.6815 0.2667 0.2000 0.2121 0.2222 0.1939 8.3624 1.6420 1.0667 0.1695 -7.6893 1.7002	0.0150 0.0130 0.0130 0.0130 0.0130 0.0130 0.0150 0.0130 0.0130 0.0130 0.0150 0.0150
C1 C16 C18_2 C18_5 C18_6 C18_7 C2 C21 C26 C27 C3 C4 C6 C7 C600-TCD C802-TCD C803-TCD	CB01 MH03 MH04(D1) MH04(D2) MH04(D3) MH04 HP01 BLDG01 MH01 MH01 MH02 CB02 HP02 HP03 CB03 CB01	H201 H402 MH03 MH04(D1) MH04(D2) MH04(D3) CB02 MH04(D3) EXMH202 MH01 HF02 CB03 Major-Out HF03 MH04(D1)	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	3.0 7.5 10.0 33.0 9.0 36.1 3.0 20.1 7.5 11.8 3.0 3.0 3.0 3.0	-6.6815 0.2667 0.2000 0.2121 0.2222 0.1939 8.3624 1.6420 1.0667 0.1695 -7.6893 1.7002	0.0150 0.0130 0.0130 0.0130 0.0130 0.0130 0.0150 0.0130 0.0130 0.0130 0.0150 0.0150

Date: 05/08/19

M:\2018\118133\DATA\Calculations\SWM\PCSWMM\Model Schematic-Output\PCSWMM Model Output-100yr(96.14m).pdf

Heritage Hills Retail Plaza (471 Terry Fox Drive) PCSWMM Model Output (100-year, 4-hour Chicago Storm - Fixed Outfall = 96.14m)

Conduit	Shape	Full Depth	Full Area	Hyd. Rad.	Max. Width	No. of Barrels	Full Flow
C1	RECT OPEN	1.00	3.00	0.60	3.00	1	36778.58
C16	CIRCULAR	0.45	0.16	0.11	0.45	1	147.24
C18 2	CIRCULAR	0.45	0.16	0.11	0.45	1	127.51
C18 5	CIRCULAR	0.45	0.16	0.11	0.45	1	131.32
C18 6	CIRCULAR	0.45	0.16	0.11	0.45	1	134.41
C18_7	CIRCULAR	0.45	0.16	0.11	0.45	1	125.55
C2	RECT OPEN	1.00	3.00	0.60	3.00	1	41145.56
C21	CIRCULAR	0.20	0.03	0.05	0.20	1	42.03
C26	CIRCULAR	0.45	0.16	0.11	0.45	1	294.48
C27	CIRCULAR	0.45	0.16	0.11	0.45	1	117.38
C3	RECT OPEN	1.00	3.00	0.60	3.00	1	39454.84
C4	RECTOPEN	1.00	3.00	0.60	3.00	1	39454.84
C6	RECT OPEN	1.00	3.00	0.60	3.00	1	18552.94
C7	RECTOPEN	1.00	3.00	0.60	3.00	1	37691.14

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options Analysis Options Flow Units LPS Process Models: Rainfall/Runoff YES RDII NO Snowmelt NO Groundwater NO Flow Routing YES Ponding Allowed NO Water Quality NO Infiltration Method ... HORTON Flow Routing Method ... DYNWAVE Starting Date 12/07/2018 00:00:00 Ending Date 12/14/2018 00:00:00

 Antecedent Dry Days
 0.0

 Report Time Step
 00:01:00

 Wet Time Step
 00:05:00

 Dry Time Step
 00:05:00

 Routing Time Step
 2.00 sec

 Variable Time Step
 YES

 Maximum Trials
 8

 Number of Threads
 4

 Head Tolerance
 0.001500 m

Depth	Volume	********
mm	hectare-m	Runoff Quantity Continuity

1.085	0.001	Initial LID Storage
76.002	0.090	Total Precipitation
0.000	0.000	Evaporation Loss
5.536	0.007	Infiltration Loss
71.044	0.084	Surface Runoff
1.085	0.001	Final Storage
	-0.750	Continuity Error (%)
Volume	Volume	*****
10^6 1tr	hectare-m	Flow Routing Continuity

0.000	0.000	Dry Weather Inflow
0.838	0.084	Wet Weather Inflow
0.000	0.000	Groundwater Inflow
0.000	0.000	RDII Inflow
0.000	0.000	External Inflow
0.838	0.084	External Outflow
0.000	0.000	Flocding Loss
0.000	0.000	Evaporation Loss
0.000	0.000	Exfiltration Loss
0.029	0.003	Initial Stored Volume
0.029	0.003	Final Stored Volume
	0.000	Continuity Error (%)

Time-Step Critical Elements

Highest Flow Instability Indexes Link CB03-ICD (146) Link CB02-ICD (146) Link C21 (10) Link CB01-ICD (1)

Routing Time Step Summary		

Minimum Time Step	:	1.50 sec
Average Time Step	:	2.00 sec
Maximum Time Step	:	2.00 sec
Percent in Steady State	30	0.00
Average Iterations per Step	:	2.00
Percent Not Converging	:	0.00

Subcatchment Runoff Summary

Subcatchment	Total Precip mm	Total Runon mm	Total Evap mm	Total Infil mm	Total Runoff mm	Total Runoff 10°6 ltr	Peak Runoff LPS	Runoff Coeff
A-0	76.00	0.00	0.00	16.06	61.45	0.04	30.28	0.809
A-1	76.00	0.00	0.00	17.44	59.86	0.03	25.36	0.788
A-2	76.00	0.00	0.00	5.35	71.23	0.12	81.55	0.937
A-3	76.00	0.00	0.00	0.65	75.56	0.11	70.30	0.994
EXT	76.00	0.00	0.00	6.79	69.91	0.37	252.98	0.920
R-1	76.00	0.00	0.00	0.00	76.11	0.17	112.10	1,001

Node Depth Summary

		Average	Maximum	Maximum	Time of Max	Reported
		Depth	Depth	HGL	Occurrence	Max Depth
Node	Type	Meters	Meters	Meters	days hr:min	Meters

BLDG01	JUNCTION	0.84	0.93	96.23	0	01:38	0.93
HP01	JUNCTION	0.00	0.00	96.65	Ó	00:00	0.00
HP02	JUNCTION	0.00	0.01	96.64	0	01:33	0.01
HP03	JUNCTION	0.00	0.00	96.61	0	00:00	0.00
EXMH202	OUTFALL	1.49	1.49	96.14	0	00:00	1.49
EXT-Out	OUTFALL	0.00	0.00	96.00	0	00:00	0.00
Major-Out	OUTFALL	0.00	0.00	96.10	0	00:00	0.00
BLDG01 (roof)	STORAGE	0.00	0.15	100.15	0	02:11	0.15
CB01	STORAGE	1.14	1.65	96.65	Ó	01:42	1.65
CB02	STORAGE	1.08	1.58	96.64	0	01:32	1.58
CB03	STORAGE	0,92	1.39	96.61	0	01:34	1.39
MH01	STORAGE	1.41	1.43	96.16	0	01:35	1.43
MH02	STORAGE	1.36	1.40	96.18	0	01:35	1.40
MH03	STORAGE	1,31	1.36	96.19	0	01:35	1.36
MH04	STORAGE	1.10	1.18	96.22	0	01:35	1.18
MH04(D1)	STORAGE	1.26	1.32	96.20	0	01:35	1.32
MH04 (D2)	STORAGE	1,19	1.26	96.21	0	01:35	1.26
MH04 (D3)	STORAGE	1.17	1.24	96.21	0	01:35	1.24

Node Inflow Summary

Node	Туре	Maximum Lateral Inflow LPS	Maximum Total Inflow LPS	Occu	of Max rrence hr:min	Lateral Inflow Volume 10^6 ltr	Total Inflow Volume 10^6 ltr	Flow Balance Error Percent	
BLDG01	JUNCTION	0.00	8.15	0	02:11	0	0.174	0.003	
HP01	JUNCTION	0.00	0.00	0	00:00	0	0	0.000	11
HP02	JUNCTION	0.00	26.68	0	01:33	0	0.0048	-0.017	
HP03	JUNCTION	0.00	0.00	0	00:00	0	C	0.000	1t
EXMH202	OUTFALL	0.00	68.32	0	01:35	0	0.5	0.000	
EXT-Out	OUTFALL	252.98	252.98	0	01:30	0.368	0.368	0.000	
Major-Out	OUTFALL	30.28	30.28	0	01:30	0.0393	0.0393	0.000	
BLDG01(roof)	STORAGE	112.10	112.10	0	01:30	0.172	0.172	-0.000	
CB01	STORAGE	25.36	25.36	0	01:30	0.0323	0.0345	0.009	
CB02	STORAGE	81.55	81.55	0	01:30	0.119	0.128	0.094	
СВ03	STORAGE	70.30	70.30	0	01:30	0.107	0.121	0.182	
MH01	STORAGE	0.00	68.32	0	01:35	0	0.501	-0.000	
MH02	STORAGE	0.00	68.32	0	01:35	0	0.499	0.000	
MH03	STORAGE	0.00	68.32	0	01:35	0	0.495	0.000	
MH04	STORAGE	0.00	33.78	0	01:34	0	0.133	-0.165	
MH04(D1)	STORAGE	0.00	68.31	0	01:35	0	0.49	0.000	

Date: 05/08/19 M:\2018\118133\DATA\Calculations\SWM\PCSWMM\Model Schematic-Output\PCSWMM Model Output-100yr(96.14m).pdf

Heritage Hills Retail Plaza (471 Terry Fox Drive) PCSWMM Model Output (100-year, 4-hour Chicago Storm - Fixed Outfall = 96.14m)

MH04(D2)	STORAGE	0.00	63.22	0	01:35	0	0.452	-0.027
MH04(D3)	STORAGE	0.00	41.63		01:35	0	0.317	0.001
***********	******							

Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

			Max. Height	Min. Depth
		Hours	Above Crown	Below Rim
Node	Type	Surcharged	Meters	Meters
BLDG01	JUNCTION	168.00	0.730	4.770

Node Flooding Summary

No nodes were flooded.

****** Storage Volume Summary

Storage Unit	Average Volume 1000 m3	Avg Pont Full	Evap Pont Loss	Exfil Pont Loss	Maximum Volume 1000 m3	Max Pent Full	Occi	of Max arrence hr:min	Maximum Outflow LPS
BLDG01(roof)	0.002	2	0	0	0.109	89	0	02:11	8.15
CB01	0.000	3	0	0	0.012	92	0	01:42	5.28
CB02	0.001	2	0	0	0.033	100	0	01:32	48.43
CB03	0.000	2	0	0	0.022	89	0	01:34	33.78
MH01	0.001	67	0	0	0.001	67	0	01:35	68.32
MH02	0.001	60	0	0	0.001	61	0	01:35	68.32
MH03	0.001	65	0	0	0.001	67	0	01:35	68.32
MH04	0.001	60	0	0	0.001	64	0	01:35	33.79
MH04 (D1)	0.001	6.9	0	0	0.001	72	0	01:35	68.32
MH04 (D2)	0.001	63	0	0	0.001	66	0	01:35	63.21
MH04 (D3)	0.001	61	0	0	0.001	64	0	01:35	41.64

0.908

****** Outfall Loading Summary

Outfall Node	Flow Freq Pont	Avg Flow LPS	Max Flow	Total Volume
ouclait Noue	FCHC	LPS	LPS	10^6 1tr
EXMH202	92.05	0.90	68.32	0.500
EXT-Out	3.40	17.89	252.98	0.368
Majcr-Out	2.43	2.68	30.28	0.039

32.63 21.47 349.17

**************** Link Flow Summary

System

Maximum Time of Max Maximum Max/ |Flow| Occurrence |Veloc| Full Max/ |Flow| Full Type LPS day Link LPS days hr:min C1 C C16 C m/sec Flow Depth -----0.00 0.43 0.43 CONDUIT 0.00 CONDUIT 68.32 CONDUIT 68.32 CONDUIT 68.32 CONDUIT 63.21 0.10 0 00:00 0.00 0 01:35 0 01:35 0 01:35 0.46 1.00 C18_2 C18_5 C18_6 C18_7 C2 1.00 0.40 1.00 0.48 CONDUIT CONDUIT 41.64 33.79 0 01:35 0.31 0.21 0.27 1.00 CONDUIT CONDUIT 0.00 8.18 0 00:00 0 01:58 0 01:35 0.00 0.00 0.12 C21 C26 0.19 1.00 CONDUIT 68.32 01:35 01:35 1.00 0.43 0.23 0 01:35 0 01:35 0 01:33 0 01:33 0 00:00 C27 CONDUIT 68.32 0.43 0.58 C3 26.68 0.07 0.00 0.13 26.08 26.83 0.00 0.00 5.28 C4 CONDUIT 0.09 0.00 0.11 C6 CONDUIT 0.00 0.00 0.00 0.00 0.00 C7 CONDUIT 0 00:00 0.10 CB01-ICD CB02-ICD ORIFICE 0 01:58 1.00 22.05 0 01:58 1.00 ORIFICE CB03-ICD ORIFICE 33.78 00 01:34 BLDG01(drain) DUMMY 8.15 02:11

Date: 05/08/19 M:\2018\118133\DATA\Calculations\SWM\PCSWMM\Model Schematic-Output\PCSWMM Model Output-100yr(96.14m).pdf

Heritage Hills Retail Plaza (471 Terry Fox Drive) PCSWMM Model Output (100-year, 4-hour Chicago Storm - Fixed Outfall = 96.14m)

Flow Classification Summary

	Adjusted			Fract	ion of	Time	in Flo	w Clas	s	
Conduit	/Actual Length	Dry	Up Dry	Down Dry	Sub Crit	Sup Crit	Up Crit	Down Crit	Norm Ltd	Inlet Ctrl
C1	1.00	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C16	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
C18_2	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
C18_5	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
C18_6	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
C18_7	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
C2	1.00	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C21	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
C26	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
C27	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
C3	1.00	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.99	0.00
C4	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.99	0.00
C6	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C7	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Conduit Surcharge Summary

Conduit	Both Ends	Hours Full Upstream	Dnstream	Hours Above Full Normal Flow	Hours Capacity Limited
C16	168.00	168.00	168.00	0.01	0.01
C18 2	168.00	168.00	168.00	0.01	0.01
C18_5	168.00	168.00	168.00	0.01	0.01
C18 6	168.00	168.00	168.00	0.01	0.01
C18 7	168.00	168.00	168.00	0.01	0.01
C21	168.00	168.00	168.00	0.01	0.01
C26	168.00	168.00	168.00	0.01	0.01
C27	168.00	168.00	168.00	0.01	0.01

Analysis begun on: Wed May 08 14:04:25 2019 Analysis ended on: Wed May 08 14:04:33 2019 Total elapsed time: 00:00:08

Conrad Stang

From:	Rosiu, Cornel <cornel.rosiu@ipexna.com></cornel.rosiu@ipexna.com>
Sent:	Friday, January 25, 2019 9:53 AM
To:	Conrad Stang
Cc:	Donnelly, Ryan
Subject:	RE: Tempest LMF/MHF ICD Design Request (118133)
Attachments:	2019012503 Novatech - Heritage Hills ICD Submittal R1.pdf

Conrad,

Please see attached revised submittal

Regards,

Cornel Rosiu IPEX Inc. - Municipal Estimator, ON Cornel.Rosiu@ipexna.com 6810 Invader Crescent, Mississauga, ON, L5T 2B6 T: (905) 670-7676 x200

Confidentiality Note: This e-mail message and any attachments to it are intended only for the named recipients and may contain confidential information. If you are not one of the intended recipients, please do not duplicate or forward this e-mail message and immediately delete it from your computer.

From: Conrad Stang <c.stang@novatech-eng.com> Sent: January 25, 2019 9:43 AM To: Rosiu, Cornel <Cornel.Rosiu@ipexna.com> Cc: Donnelly, Ryan <Ryan.Donnelly@ipexna.com> Subject: RE: Tempest LMF/MHF ICD Design Request (118133)

Hi Cornel,

As per our discussion, can I please have an updated ICD submittal package with the following head / flow rates:

		Outlet Pipe	100-year Event (Normal Outfall)		
Location	Location Structure Size	Diameter (mm)	Head (m)	Peak Flow (L/s)	
CB01	600mm x 600mm Square	300	1.61	9.3	
CB02	600mm x 600mm Square	300	1.54	39.0	
CB03	600mm x 600mm Square	300	1.29	59.4	

Thanks,

Conrad

Conrad Stang, M.A.Sc., P.Eng., Project Manager | Water Resources

NOVATECH Engineers, Planners & Landscape Architects 240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x310 | Fax: 613.254.5867 Email: <u>c.stang@novatech-eng.com</u> | Website: <u>www.novatech-eng.com</u> The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Rosiu, Cornel <<u>Cornel.Rosiu@ipexna.com</u>> Sent: Thursday, January 24, 2019 12:41 PM To: Conrad Stang <<u>c.stang@novatech-eng.com</u>> Cc: Donnelly, Ryan <<u>Ryan.Donnelly@ipexna.com</u>> Subject: RE: Tempest LMF/MHF ICD Design Request (118133)

Conrad,

Please see attached ICD submittal

Regards,

Cornel Rosiu IPEX Inc. - Municipal Estimator, ON Cornel.Rosiu@ipexna.com 6810 Invader Crescent, Mississauga, ON, L5T 2B6 T: (905) 670-7676 x200

Confidentiality Note: This e-mail message and any attachments to it are intended only for the named recipients and may contain confidential information. If you are not one of the intended recipients, please do not duplicate or forward this e-mail message and immediately delete it from your computer.

From: Conrad Stang <<u>c.stang@novatech-eng.com</u>> Sent: January 24, 2019 11:33 AM To: Rosiu, Cornel <<u>Cornel.Rosiu@ipexna.com</u>> Cc: Crozier, Perry <<u>Perry.Crozier@ipexna.com</u>> Subject: Tempest LMF/MHF ICD Design Request (118133)

Hi Cornel,

Can I please get sizing / documentation for Tempest LMF or MHF ICDs. I would like to size the ICDs based on the 2-year head and flow rates in the table below.

The project name is "Heritage Hills Retail Plaza". It is a proposed site plan in Ottawa, Ontario.

Novatech Job Number: 118133

		Outlet Pipe	2-year Event		
Location	Structure Size	Diameter (mm)	Head (m)	Peak Flow (L/s)	
CB01	600mm x 600mm Square	300	0.91	6.7	
CB02	600mm x 600mm Square	300	1.06	32.0	
CB03	600mm x 600mm Square	300	0.39	30.0	

Thanks and let me know if you have any questions.

Kind regards,

Conrad

Conrad Stang, M.A.Sc., P.Eng., Project Manager | Water Resources

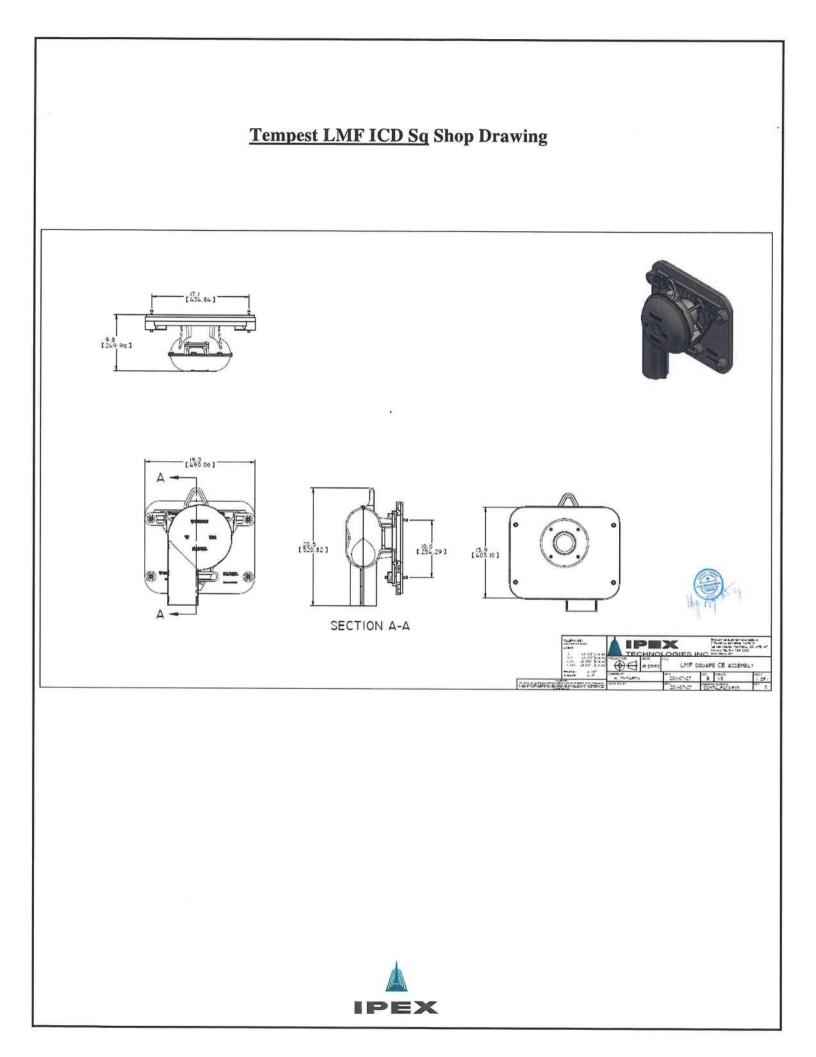
NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x310 | Fax: 613.254.5867 Email: <u>c.stang@novatech-eng.com</u> | Website: <u>www.novatech-eng.com</u>

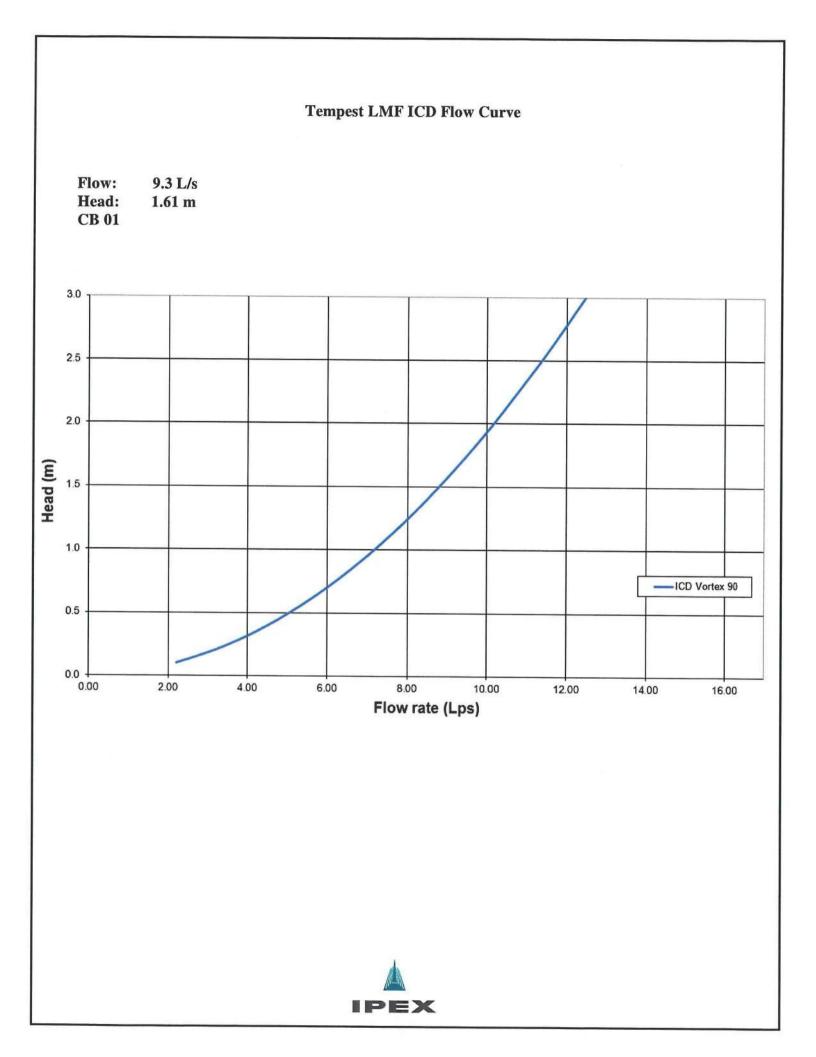
The information contained in this email message is confidential and is for exclusive use of the addressee.

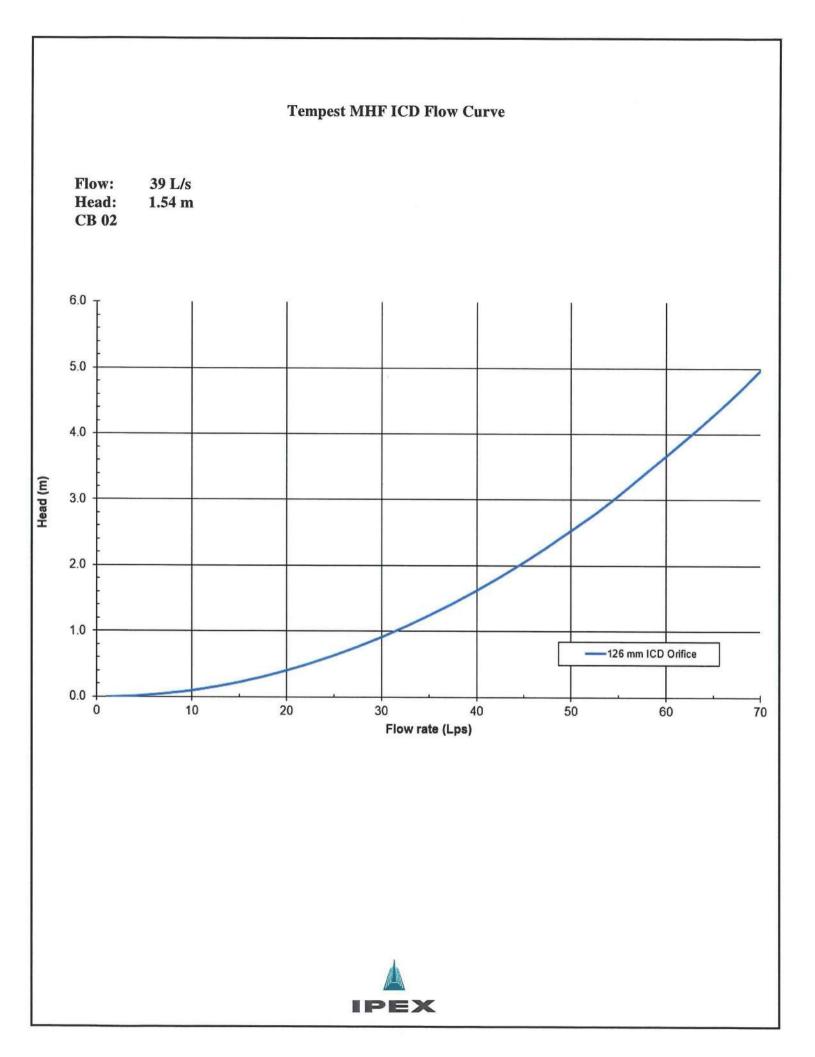
TEMPEST Product Submittal Package

Date: January 24, 2019


Customer: Novatech


Contact: Conrad Stang

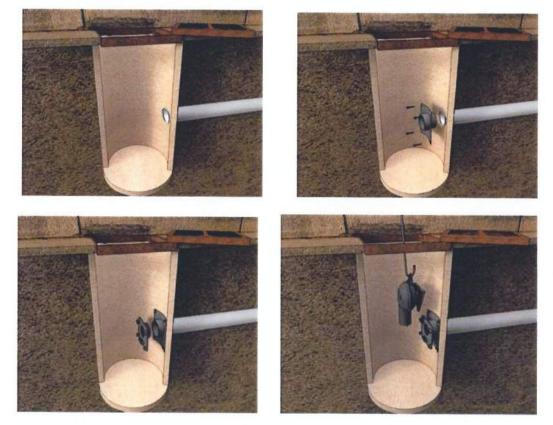

Location: Ottawa


Project Name: Heritage Hills Retail Plaza



Square CB Installation Notes:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
 - Material: (4) concrete anchor 3/8x3-1/2, (4) washers, (4) nuts
- 2. Use the mounting wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 3. Use an impact drill with a 3/8" concrete bit to make the four holes at a minimum of 1-1/2" depth up to 2-1/2". Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Put the nuts on the top of the anchors to protect the threads when you will hit the anchors with the hammer. Remove the nuts on the ends of the anchors
- 5. Install the wall mounting plate on the anchors and screw the nut in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From ground above using a reach bar, lower the device by hooking the end of the reach bar to the handle of the LMF device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the wall mounting plate and has created a seal.



Round CB Installation Notes: (Refer to square install notes above for steps 1, 3, & 4)

- 2. Use spigot catch basin wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 5. Install the CB spigot wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lb-ft). There should be no gap between the CB spigot wall plate and the catch basin wall.
- 6. Apply solvent cement on the hub of the universal mounting plate and the spigot of the spigot CB wall plate. Slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the universal mounting plate hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered into the mounting plate and has created a seal.

CAUTION/WARNING/DISCLAIM:

- Verify that the inlet(s) pipe(s) is not protruding into the catch basin. If it is, cut it back so that the inlet pipe is flush with the catch basin wall.
- Any required cement in the installation must be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Please refer to the IPEX solvent cement guide to confirm required curing times or attend the IPEX <u>Online Solvent</u> <u>Cement Training Course</u>.
- Call your IPEX representative for more information or if you have any questions about our products.

IPEX TEMPEST Inlet Control Devices Technical Specification

General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control where specified. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's must have no moving parts.

Materials

ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

All hardware will be made from 304 stainless steel.

Dimensioning

The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.

Installation

Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.

APPENDIX E

Development Servicing Study Checklist

4.1 General Content	Addressed (Y/N/NA)	Comments
Executive Summary (for larger reports only).	N/A	
Date and revision number of the report.	Y	
Location map and plan showing municipal address,	Y	
boundary, and layout of proposed development.	Ŷ	
Plan showing the site and location of all existing services.	Y	
Development statistics, land use, density, adherence to		
zoning and official plan, and reference to applicable		2 2 23 222
subwatershed and watershed plans that provide context	N	Refer to Site Plan
to which individual developments must adhere.		
Summary of Pre-consultation Meetings with City and		
other approval agencies.	Y	
Reference and confirm conformance to higher level		NOTATION OF A STREET OF A STREET
studies and reports (Master Servicing Studies,		
Environmental Assessments, Community Design Plans),	N/A	
or in the case where it is not in conformance, the		
proponent must provide justification and develop a		
defendable design criteria.		
Statement of objectives and servicing criteria.	Y	
Identification of existing and proposed infrastructure	Y	
available in the immediate area.		
Identification of Environmentally Significant Areas,		
watercourses and Municipal Drains potentially impacted		
by the proposed development (Reference can be made to	N/A	
the Natural Heritage Studies, if available).		
Concept level master grading plan to confirm existing and		
proposed grades in the development. This is required to		
confirm the feasibility of proposed stormwater		
management and drainage, soil removal and fill	N/A	
constraints, and potential impacts to neighboring	10.000.0000	
properties. This is also required to confirm that the		
proposed grading will not impede existing major system		
flow paths.		
	Addressed	
4.1 General Content	(Y/N/NA)	Comments
Identification of potential impacts of proposed piped		
services on private services (such as wells and septic	N/A	
fields on adjacent lands) and mitigation required to	N/A	
address potential impacts.		
	N/A	
Proposed phasing of the development, if applicable.		
Reference to geotechnical studies and recommendations	Y	
concerning servicing.		
All preliminary and formal site plan submissions should		
have the following information:	~	
Metric scale	Y	
North arrow (including construction North)	Y	
Key plan	Y	
Name and contact information of applicant	Y	
and property owner		
Property limits including bearings and	Y	
dimensions	'	
Existing and proposed structures and parking	Y	
areas		
areas Easements, road widening and rights-of-way	Y	

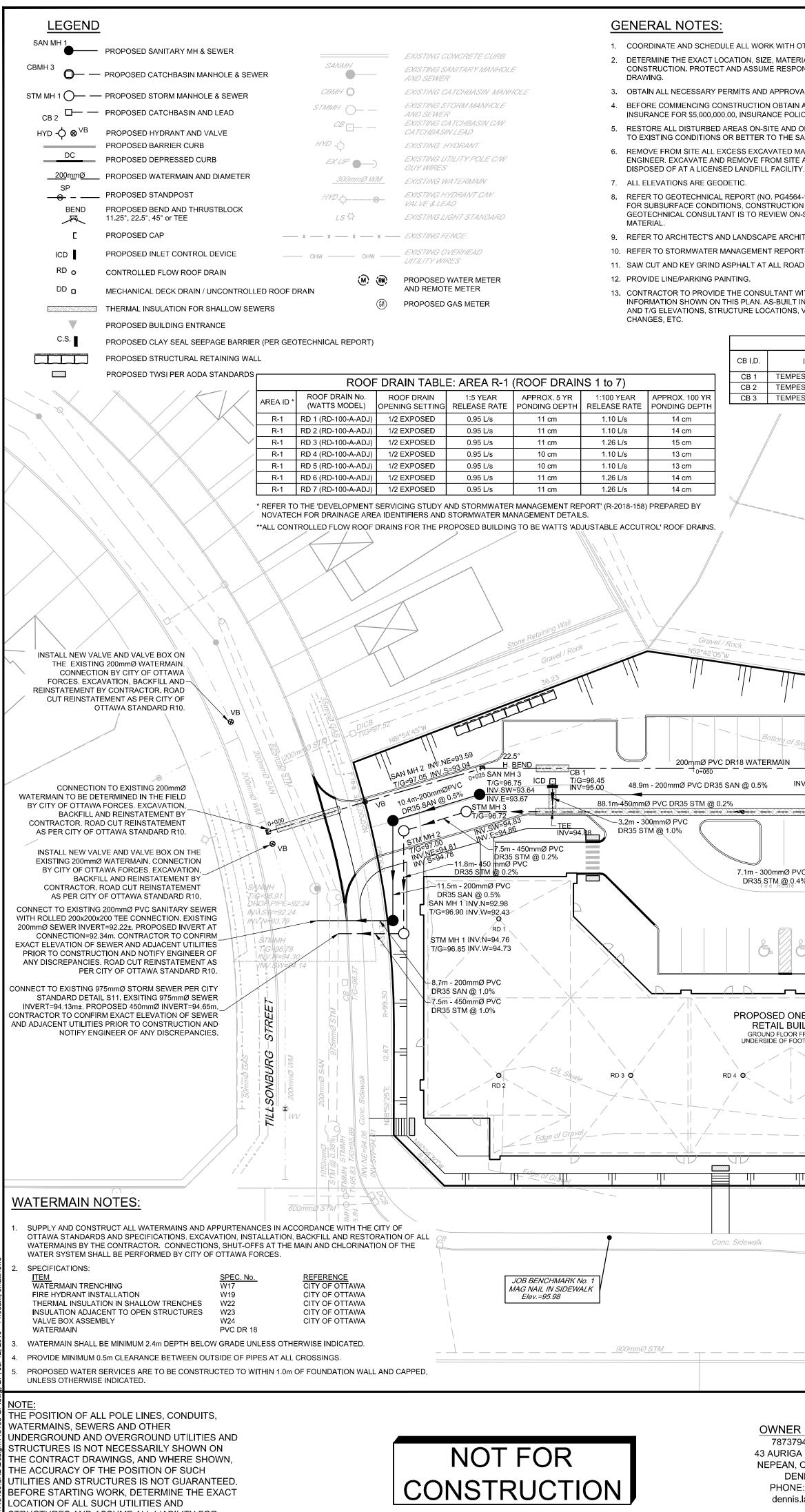
Y

Adjacent street names

4.2 Water	Addressed (Y/N/NA)	Comments
Confirm consistency with Master Servicing Study, if available.	N/A	
Availability of public infrastructure to service proposed development.	Y	
Identification of system constraints.	N/A	
Identify boundary conditions.	Y	Provided by City of Ottawa
Confirmation of adequate domestic supply and pressure.	Y	
Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.	Y	
Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	Y	
Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design.	N/A	
Address reliability requirements such as appropriate location of shut-off valves.	Y	
Check on the necessity of a pressure zone boundary modification.	N/A	
Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range.	Y	ξ ₁
Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	Y	
Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	N/A	
Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Y	
Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	Y	

4.3 Wastewater	Addressed	Comments
	(Y/N/NA)	
Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	Y	
Confirm consistency with Master Servicing Study and/or justifications for deviations.	N/A	
Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.	N/A	
Description of existing sanitary sewer available for discharge of wastewater from proposed development.	Y	
Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	Y	
Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	Y	
Description of proposed sewer network including sewers, pumping stations, and forcemains.	Y	
Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).	N/A	
Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	N/A	
Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	N/A	
Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	N/A	
Special considerations such as contamination, corrosive environment etc.	N/A	

4.4 Stormwater	Addressed (Y/N/NA)	Comments
Description of drainage outlets and downstream		
constraints including legality of outlet (i.e. municipal	Y	
drain, right-of-way, watercourse, or private property).		
Analysis of the available capacity in existing public	11/4	
infrastructure.	N/A	
A drawing showing the subject lands, its surroundings,		
the receiving watercourse, existing drainage patterns and	Y	
proposed drainage patterns.		
Water quantity control objective (e.g. controlling post-		
development peak flows to pre-development level for		
storm events ranging from the 2 or 5 year event		
(dependent on the receiving sewer design) to 100 year		
return period); if other objectives are being applied, a	Ŷ	
rationale must be included with reference to hydrologic		
analyses of the potentially affected subwatersheds,		
taking into account long-term cumulative effects.		
Water Quality control objective (basic, normal or		
enhanced level of protection based on the sensitivities of	Y	Water quality control is provided in a downstream SWM
the receiving watercourse) and storage requirements.		facility
Description of stormwater management concept with		
facility locations and descriptions with references and	Y	
supporting information.	1	
Set-back from private sewage disposal systems.	N/A	
Watercourse and hazard lands setbacks.		
	N/A	
Record of pre-consultation with the Ontario Ministry of	N/A	
Environment and the Conservation Authority that has	N/A	
jurisdiction on the affected watershed.		
Confirm consistency with sub-watershed and Master	N/A	
Servicing Study, if applicable study exists.		
Storage requirements (complete with calcs) and	Ŷ	
conveyance capacity for 5 yr and 100 yr events.		
Identification of watercourse within the proposed		
development and how watercourses will be protected,	N/A	
or, if necessary, altered by the proposed development		
with applicable approvals.	_	
Calculate pre and post development peak flow rates		
including a description of existing site conditions and		
proposed impervious areas and drainage catchments in	Ŷ	
comparison to existing conditions.		
Any proposed diversion of drainage catchment areas	N/A	
from one outlet to another.		
Proposed minor and major systems including locations	Y	
and sizes of stormwater trunk sewers, and SWM facilities.		
If quantity control is not proposed, demonstration that		
downstream system has adequate capacity for the post-	N/A	
development flows up to and including the 100-year		
return period storm event.		


4.4 Stormwater	Addressed (Y/N/NA)	Comments		
Identification of municipal drains and related approval requirements.	N/A			
Description of how the conveyance and storage capacity will be achieved for the development.	Y			
100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	Y			
Inclusion of hydraulic analysis including HGL elevations.	N/A			
Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	Y			
Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	N/A			
Identification of fill constrains related to floodplain and geotechnical investigation.	N/A			

4.5 Approval and Permit Requirements	Addressed (Y/N/NA)	Comments		
Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.				
Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	Y			
Changes to Municipal Drains.	N/A			
Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)	N/A			

4.6 Conclusion	Addressed (Y/N/NA)	Comments	
Clearly stated conclusions and recommendations.	Y		
Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	Ŷ	T.B.D.	
All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario.	Y		

APPENDIX F

Engineering Drawings

STRUCTURES AND ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

dennis.laurin@laurin.ca

1. COORDINATE AND SCHEDULE ALL WORK WITH OTHER TRADES AND CONTRACTORS 1. SUPPLY AND CONSTRUCT ALL SEWERS AND APPURTENANCES IN ACCORDANCE WITH THE MOST CURRENT CITY OF OTTAWA STANDARDS AND SPECIFICATIONS. 2. DETERMINE THE EXACT LOCATION, SIZE, MATERIAL AND ELEVATION OF ALL EXISTING UTILITIES PRIOR TO COMMENCING CONSTRUCTION. PROTECT AND ASSUME RESPONSIBILITY FOR ALL EXISTING UTILITIES WHETHER OR NOT SHOWN ON THIS 2. SPECIFICATIONS: <u>SPEC. Nc</u> 705 010 CATCHBASIN (600x600mm) 3. OBTAIN ALL NECESSARY PERMITS AND APPROVALS FROM THE CITY OF OTTAWA BEFORE COMMENCING CONSTRUCTION.

4. BEFORE COMMENCING CONSTRUCTION OBTAIN AND PROVIDE PROOF OF COMPREHENSIVE, ALL RISK AND OPERATIONAL LIABILITY INSURANCE FOR \$5,000,000.00. INSURANCE POLICY TO NAME OWNERS, ENGINEERS AND ARCHITECTS AS CO-INSURED. 5. RESTORE ALL DISTURBED AREAS ON-SITE AND OFF-SITE, INCLUDING TRENCHES AND SURFACES ON PUBLIC ROAD ALLOWANCES TO EXISTING CONDITIONS OR BETTER TO THE SATISFACTION OF THE CITY OF OTTAWA AND ENGINEER. 6. REMOVE FROM SITE ALL EXCESS EXCAVATED MATERIAL, ORGANIC MATERIAL AND DEBRIS UNLESS OTHERWISE INSTRUCTED BY ENGINEER. EXCAVATE AND REMOVE FROM SITE ANY CONTAMINATED MATERIAL. ALL CONTAMINATED MATERIAL SHALL BE

8. REFER TO GEOTECHNICAL REPORT (NO. PG4564-1_REVISION 1, DATED NOVEMBER 7, 2018), PREPARED BY PATERSON GROUP INC. FOR SUBSURFACE CONDITIONS, CONSTRUCTION RECOMMENDATIONS, AND GEOTECHNICAL INSPECTION REQUIREMENTS. THE GEOTECHNICAL CONSULTANT IS TO REVIEW ON-SITE CONDITIONS AFTER EXCAVATION PRIOR TO PLACEMENT. OF THE GRANULAR

9. REFER TO ARCHITECT'S AND LANDSCAPE ARCHITECT'S DRAWINGS FOR BUILDING AND HARDSURFACE AREAS AND DIMENSIONS 10. REFER TO STORMWATER MANAGEMENT REPORT(R-2018-158) PREPARED BY NOVATECH ENGINEERING CONSULTANTS LTD. 11. SAW CUT AND KEY GRIND ASPHALT AT ALL ROAD CUTS AND ASPHALT TIE IN POINTS AS PER CITY OF OTTAWA STANDARDS (R10)

13. CONTRACTOR TO PROVIDE THE CONSULTANT WITH A GENERAL PLAN OF SERVICES INDICATING ALL SERVICING AS-BUILT INFORMATION SHOWN ON THIS PLAN. AS-BUILT INFORMATION MUST INCLUDE: PIPE MATERIAL, SIZES, LENGTHS, SLOPES, INVERT AND T/G ELEVATIONS, STRUCTURE LOCATIONS, VALVE AND HYDRANT LOCATIONS, T/WM ELEVATIONS AND ANY ALIGNMENT

DIAMETER OF

INLET CONTROL DEVICE - DATA TABLE

DESIGN FLOW (L/s)

DESIGN HEAD (m)

SEWER NOTES:

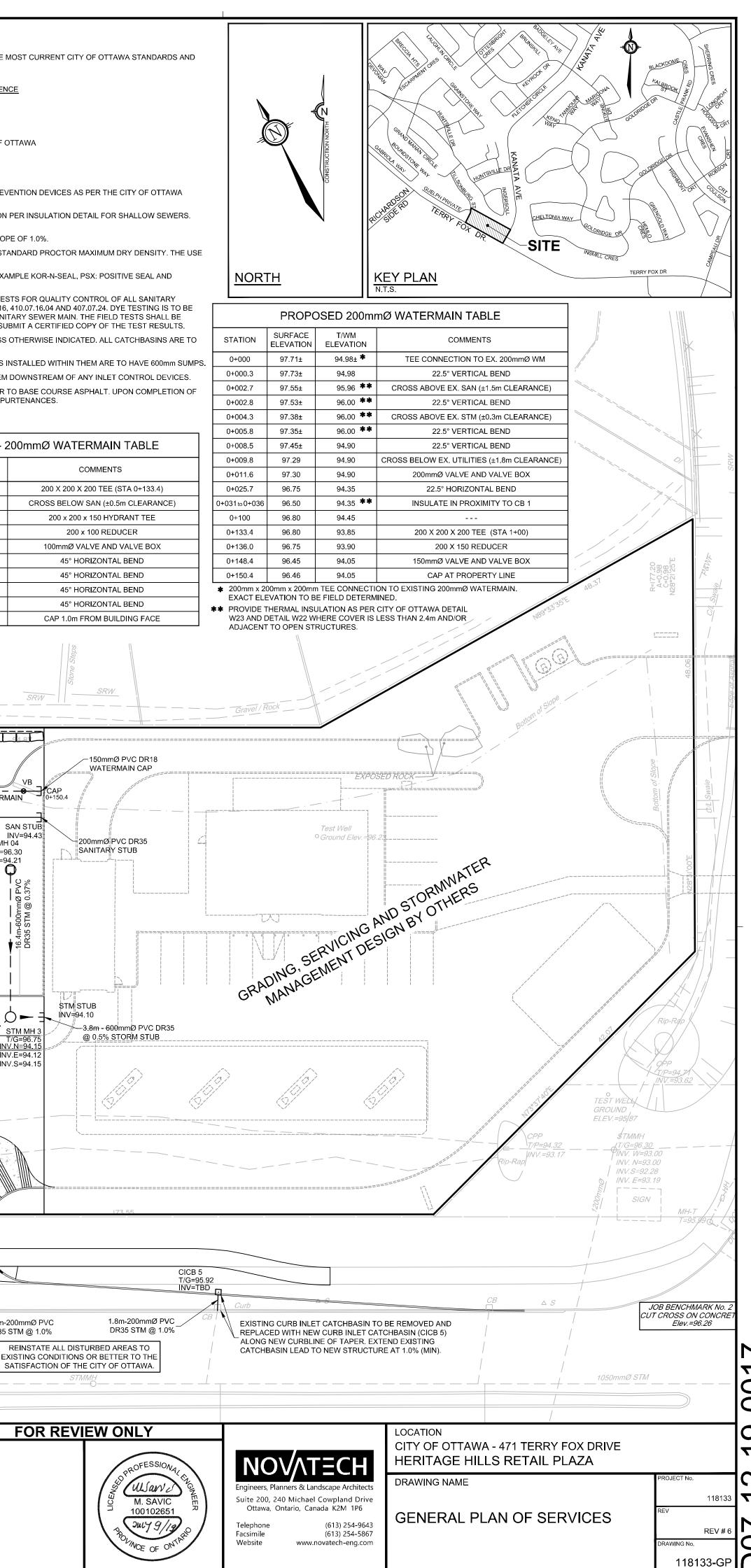
STORM / SANITARY MANHOLE (1200mmØ) CB, FRAME & COVER STORM / SANITARY MH FRAME & COVER WATERTIGHT MH FRAME AND COVER SEWER TRENCH STORM SEWER PVC DR 35

701.010 400.020 401.010 401.030 S6

REFERENC OPSD OPSD OPSD OPSD CITY OF OTTAWA

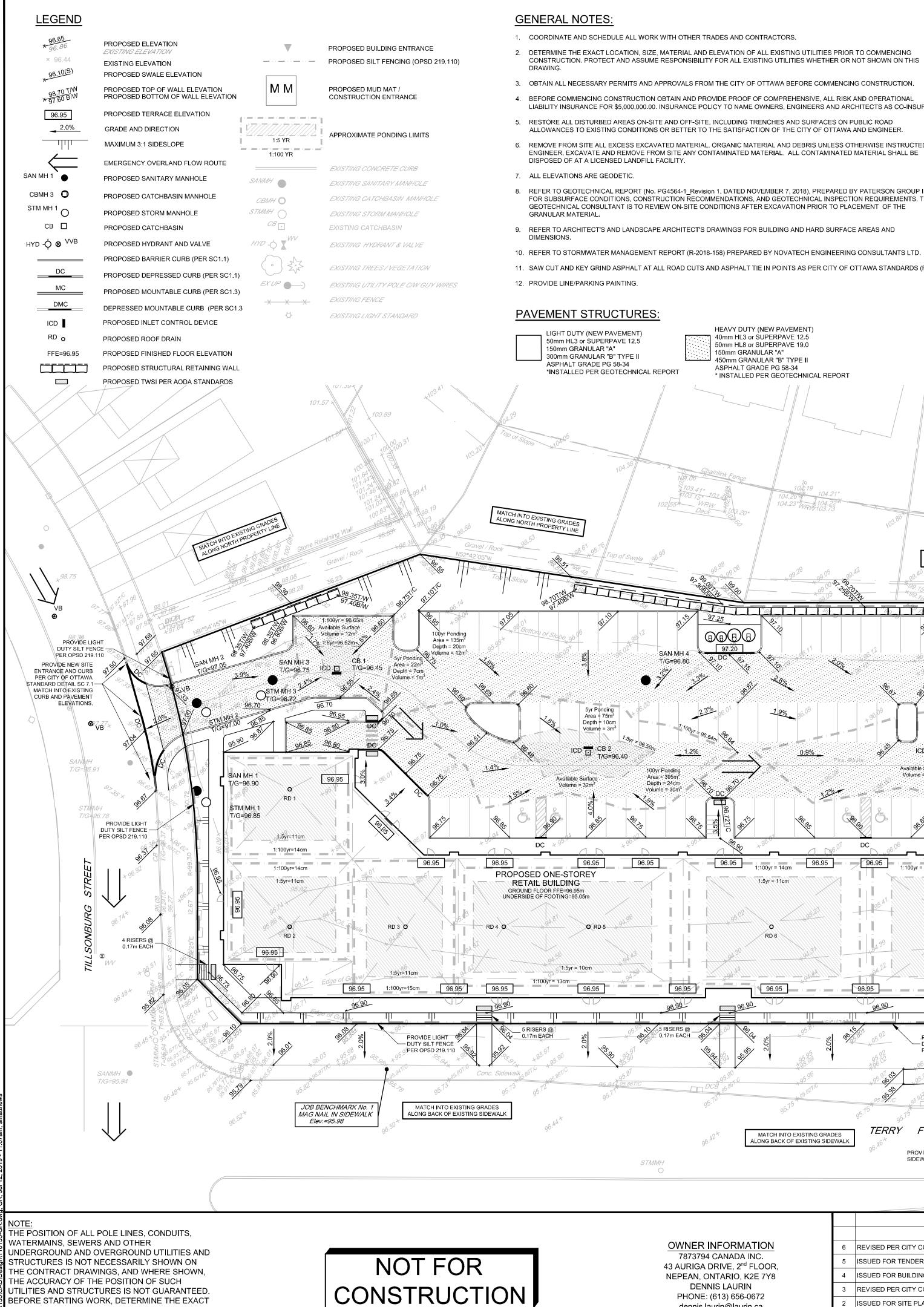
- SANITARY SEWER PVC DR 35 PVC DR 35 CATCHBASIN LEAD 3. ALL STORM AND SANITARY SERVICE LATERALS SHALL BE EQUIPPED WITH BACKFLOW PREVENTION DEVICES AS PER THE CITY OF OTTAWA
- STANDARD DETAILS S14 AND S14.1 OR S14.2. 4. INSULATE ALL PIPES (SAN/STM) THAT HAVE LESS THAN 1.5m COVER WITH HI-40 INSULATION PER INSULATION DETAIL FOR SHALLOW SEWERS.
- PROVIDE 150mm CLEARANCE BETWEEN PIPE AND INSULATION. SERVICES ARE TO BE CONSTRUCTED TO 1.0m FROM FACE OF BUILDING AT A MINIMUM SLOPE OF 1.0%.
- 6. PIPE BEDDING, COVER AND BACKFILL ARE TO BE COMPACTED TO AT LEAST 95% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY. THE USE OF CLEAR CRUSHED STONE AS A BEDDING LAYER SHALL NOT BE PERMITTED.
- 7. FLEXIBLE CONNECTIONS ARE REQUIRED FOR CONNECTING PIPES TO MANHOLES (FOR EXAMPLE KOR-N-SEAL, PSX: POSITIVE SEAL AND DURASEAL). THE CONCRETE CRADLE FOR THE PIPE CAN BE ELIMINATED.
- 8. THE OWNER SHALL REQUIRE THAT THE SITE SERVICING CONTRACTOR PERFORM FIELD TESTS FOR QUALITY CONTROL OF ALL SANITARY SEWERS. LEAKAGE TESTING SHALL BE COMPLETED IN ACCORDANCE WITH OPSS 410.07.16, 410.07.16.04 AND 407.07.24. DYE TESTING IS TO BE COMPLETED ON ALL SANITARY SERVICES TO CONFIRM PROPER CONNECTION TO THE SANITARY SEWER MAIN. THE FIELD TESTS SHALL BE PERFORMED IN THE PRESENCE OF A CERTIFIED PROFESSIONAL ENGINEER WHO SHALL SUBMIT A CERTIFIED COPY OF THE TEST RESULTS.
- 6. ALL STORM MANHOLES AND CATCHBASIN MANHOLES ARE TO HAVE 300mm SUMPS UNLESS OTHERWISE INDICATED. ALL CATCHBASINS ARE TO HAVE 600mm SUMPS UNLESS OTHERWISE INDICATED.
- ALL CATCHBASINS, MANHOLES AND/OR CATCHBASIN MANHOLES THAT ARE TO HAVE ICD'S INSTALLED WITHIN THEM ARE TO HAVE 600mm SUMPS ALL WEEPING TILE CONNECTIONS TO BE MADE TO THE PROPOSED STORM SEWER SYSTEM DOWNSTREAM OF ANY INLET CONTROL DEVICES.

SM / M


ICD TYPE OUTLET PIPE (mm) 2-YEAR 100-YEAR 2-YEAR 100-YEAR CONTRACTOR TO TELEVISE (CCTV) ALL PROPOSED SEWERS, 200mmØ OR GREATER PRIOR TO BASE COURSE ASPHALT. UPON COMPLETION OF CB 1 TEMPEST LMF (Vortex 90) 1.61 300 6.7 9.3 0.91 CONTRACT, THE CONTRACTOR IS RESPONSIBLE TO FLUSH AND CLEAN ALL SEWERS & APPURTENANCES. TEMPEST MHF (126mmØ) 1.54 300 32.0 39.0 1.06 1.29 CB 3 | TEMPEST MHF (162mmØ) | 300 30.0 59.4 0.39 PROPOSED 100mmØ - 200mmØ WATERMAIN TABLE 1000mr (min.) SURFACE T/WM STATION BACKFILL AS SPECIFIED ELEVATION ELEVATION 1+00 96.80 93.85 BEDDING AS SPECIFIED 1+03.0 96.78 93.83 1+26.4 96.42 93.83 ti INSULATION 1+28.0 96.41 93.83 1+45.4 96.23 93.83 1+46.4 96.18 93.78 1+47.8 93.73 96.13 INSULATION NOTES 1+62.2 96.20 93.80 1. THE THICKNESS OF SEWER INSULATION SHALL BE THE 1+63.6 96.90 93.90 BEDDING AS SPECIFIED EQUIVALENT OF 25mm FOR EVER 300mm REDUCTION IN THE 1+64.2 96.95 93.90 REQUIRED DEPTH OF COVER INSULATION DETAIL FOR LESS THAN 1500mm (SEE TABLE) SHALLOW SEWERS INSULATIO COVER NOT TO SCALE THICKNESS (mm) 75 ti = THICKNESS OF INSULATION (mm 1500-1200 = DEPTH OF COVER 100 W = D + 300 (1000 min / = WIDTH ÒF INSULÁTION (mm 900-600 125 SRW D = O.D OF PIPE (mm)8888 200x200x200 200x150 WM TEE 0+075 <u>SAN MH</u> 4____ → = = + T/G=96.80 REDUCER _____ — ______. Mrca 200mmØ PVC DR18 WATERMAIN TEE 150mmØ PVC DR18 WATERMAIN INV=94.95 76.1m - 200mmØ PVC DR35 SAN @ 0.6% INV.S=93.9 88.1m-450mmØ PVC DR35 STM @ 0.2% SAN STU **()** T/G=96.70 INV=94.43 NV.W=95.04 CBMH 04 T/G=96.30 INV.S=95.19 INV=94.21 DR35 STM @ 0.4% 7.1m - 300mmØ PVC _/ICD 🛱 CB 2 DR35_STM @ 0.4% T/G=96.40 ICD T/G=96.40 DR35_STM @ 0.4% Fire Route INV=95.06 INV=95.22 FIRE HYD LL LL T/FL=96.75 🔘 🛏 20 35 STM ME STORM AND SANITARY SERVICE **PROPOSED ONE-STOREY** LATERALS SHALL BE EQUIPPED WITH I 200x100 FLOW PREVENTION DEVICES AS PER REDUCER RETAIL BUILDING THE CITY OF OTTAWA STANDARD DETAILS GROUND FLOOR FFE=96.95m S14 AND S14 1 OR S14.2. REFER TO IDERSIDE OF FOOTING=95.05m MECHANICAL PLANS FOR DETAILS T/G=96.30 RESSURE REDUCING VALVES (PRV) ARE REQUIRED FOR THE PROPOSED BUILDING. REFER TO MECHANICAL \mathbb{M} PLANS FOR DETAILS. H.BENDS CB 4 📥 T/G=95.7 INV=TB EXISTING CURB INLET CATACHBASIN TO BE -3.5m-200mmØ PVC REMOVED AND REPLACED WITH NEW DR35 STM @ 1.0% DRIVE STANDARD ROADSIDE CATCHBASIN (CB 4).-/ TERRY FOX EXTEND EXISTING CATCHBASIN LEAD TO NEW STRUCTURE AT 1.0% (MIN) ______ SCALE SM / M **OWNER INFORMATION** REVISED PER CITY COMMENTS JUL 9/19 1:300 7873794 CANADA INC. JUN 19/19 ISSUED FOR TENDER 43 AURIGA DRIVE, 2nd FLOOR, ISSUED FOR BUILDING PERMIT JUN 18/19 NEPEAN, ONTARIO, K2E 7Y8 DENNIS LAURIN REVISED PER CITY COMMENTS MAY 10/19 PHONE: (613) 656-0672 1:300 ISSUED FOR SITE PLAN APPROVAL JAN 25/19

JAN 17/19 N

DATE B


ISSUED FOR DESIGN COORDINATION

REVISION

 \bigcirc O တ

Plan # 17868

JTILITIES AND STRUCTURES IS NOT GUARANTEED BEFORE STARTING WORK, DETERMINE THE EXACT LOCATION OF ALL SUCH UTILITIES AND STRUCTURES AND ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

- 2. DETERMINE THE EXACT LOCATION, SIZE, MATERIAL AND ELEVATION OF ALL EXISTING UTILITIES PRIOR TO COMMENCING CONSTRUCTION. PROTECT AND ASSUME RESPONSIBILITY FOR ALL EXISTING UTILITIES WHETHER OR NOT SHOWN ON THIS
- 3. OBTAIN ALL NECESSARY PERMITS AND APPROVALS FROM THE CITY OF OTTAWA BEFORE COMMENCING CONSTRUCTION.
- LIABILITY INSURANCE FOR \$5,000,000,000, INSURANCE POLICY TO NAME OWNERS, ENGINEERS AND ARCHITECTS AS CO-INSURED.
- ALLOWANCES TO EXISTING CONDITIONS OR BETTER TO THE SATISFACTION OF THE CITY OF OTTAWA AND ENGINEER.
- REMOVE FROM SITE ALL EXCESS EXCAVATED MATERIAL, ORGANIC MATERIAL AND DEBRIS UNLESS OTHERWISE INSTRUCTED BY ENGINEER. EXCAVATE AND REMOVE FROM SITE ANY CONTAMINATED MATERIAL. ALL CONTAMINATED MATERIAL SHALL BE

8. REFER TO GEOTECHNICAL REPORT (No. PG4564-1 Revision 1, DATED NOVEMBER 7, 2018), PREPARED BY PATERSON GROUP INC., FOR SUBSURFACE CONDITIONS, CONSTRUCTION RECOMMENDATIONS, AND GEOTECHNICAL INSPECTION REQUIREMENTS. THE GEOTECHNICAL CONSULTANT IS TO REVIEW ON-SITE CONDITIONS AFTER EXCAVATION PRIOR TO PLACEMENT OF THE

9. REFER TO ARCHITECT'S AND LANDSCAPE ARCHITECT'S DRAWINGS FOR BUILDING AND HARD SURFACE AREAS AND

HEAVY DUTY (NEW PAVEMENT

40mm HL3 or SUPERPAVE 12.5

450mm GRANULAR "B" TYPE I

* INSTALLED PER GEOTECHNICAL REPORT

ASPHALT GRADE PG 58-34

150mm GRANULAR "A"

BB(B)(

97 20

96.95

50mm HL8 or SUPERPAVE 19.0

11. SAW CUT AND KEY GRIND ASPHALT AT ALL ROAD CUTS AND ASPHALT TIE IN POINTS AS PER CITY OF OTTAWA STANDARDS (R10).

- GRADING NOTES:
- 1. ALL TOPSOIL, ORGANIC OR DELETERIOUS MATERIAL MUST BE ENTIRELY REMOVED FROM BENEATH THE PROPOSED PAVED AREAS AS DIRECTED BY THE SITE ENGINEER OR GEOTECHNICAL ENGINEER.
- 2. EXPOSED SUBGRADES IN PROPOSED PAVED AREAS SHOULD BE PROOF ROLLED WITH A LARGE STEEL DRUM ROLLER AND INSPECTED BY THE GEOTECHNICAL ENGINEER PRIOR TO THE PLACEMENT OF GRANULARS.
- 3. ANY SOFT AREAS EVIDENT FROM THE PROOF ROLLING SHOULD BE SUB-EXCAVATED AND REPLACED WITH SUITABLE MATERIAL THAT IS FROST COMPATIBLE WITH THE EXISTING SOILS AS RECOMMENDED BY THE GEOTECHNICAL ENGINEER.
- 4. THE GRANULAR BASE SHOULD BE COMPACTED TO AT LEAST 98% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY VALUE. ANY ADDITIONAL GRANULAR FILL USED BELOW THE PROPOSED PAVEMENT SHOULD BE COMPACTED TO AT LEAST 95% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY VALUE.
- 5. MINIMUM OF 2% GRADE FOR ALL GRASS AREAS UNLESS OTHERWISE NOTED. 6. MAXIMUM TERRACING GRADE TO BE 3:1 UNLESS OTHERWISE NOTED.
- 7. ALL GRADES BY CURBS ARE EDGE OF PAVEMENT GRADES UNLESS OTHERWISE INDICATED.
- 8. ALL CURBS SHALL BE BARRIER CURB (150mm) UNLESS OTHERWISE NOTED AND CONSTRUCTED AS PER CITY OF OTTAWA STANDARDS (SC1.1). MOUNTABLE CURBS ARE TO BE PER CITY OF OTTAWA STANDARD (SC1.3).
- 9. REFER TO LANDSCAPE PLAN FOR PLANTING AND OTHER LANDSCAPE FEATURE DETAILS.
- 10. CONTRACTOR TO PROVIDE THE CONSULTANT WITH A GRADING PLAN INDICATING AS-BUILT ELEVATIONS OF ALL DESIGN GRADES SHOWN ON THIS PLAN.

EROSION AND SEDIMENT CONTROL NOTES

Top of Slope

ATCH INTO EXISTING GRADE ALONG NORTH PROPERTY LIN

STM MH 4

Available Surface

Volume = 22m

96.95

MATCH INTO EXISTING GRADES

ONG BACK OF EXISTING SIDEWAL

96.95

96.95

a6.90

TERRY

06 70

96.95

PROVIDE LIGHT

- DUTY SILT FENCE PER OPSD 219 110

DRIV

EXISTING CURB, SIDEWALK AND

PAVEMENT ELEVATIONS

PROVIDE NEW SITE ENTRANCE. CURB AND

SIDEWALK PER RMA DESIGN. MATCH INTO

FOX

100yr Ponding Area = 295m²

Depth = 21cr

CONC TRAN PAD=96.9

96.95

0.18m EACH

THE CONTRACTOR SHALL IMPLEMENT BEST MANAGEMENT PRACTICES, TO PROVIDE FOR PROTECTION OF THE AREA DRAINAGE SYSTEM AND THE RECEIVING WATERCOURSE. DURING CONSTRUCTION ACTIVITIES. THE CONTRACTOR ACKNOWLEDGES THAT FAILURE TO IMPLEMENT APPROPRIATE EROSION AND

- SEDIMENT CONTROL MEASURES MAY BE SUBJECT TO PENALTIES IMPOSED BY ANY APPLICABLE REGULATORY AGENCY. 1. ALL EROSION AND SEDIMENT CONTROLS ARE TO BE INSTALLED TO THE SATISFACTION OF THE ENGINEER AND THE CITY OF OTTAWA. THEY ARE TO BE APPROPRIATE TO THE SITE CONDITIONS, PRIOR TO UNDERTAKING ANY SITE ALTERATIONS (FILLING, GRADING, REMOVAL OF VEGETATION, ETC.) AND DURING ALL PHASES OF SITE PREPARATION AND CONSTRUCTION. THESE PRACTICES ARE TO BE IMPLEMENTED IN ACCORDANCE WITH THE CURRENT BEST MANAGEMENT PRACTICES FOR EROSION AND SEDIMENT CONTROL AND SHOULD INCLUDE AS A MINIMUM THOSE MEASURES INDICATED ON THE PLAN.
- 2. EROSION AND SEDIMENT CONTROL MEASURES WILL BE IMPLEMENTED DURING CONSTRUCTION IN ACCORDANCE WITH THE "GUIDELINES ON EROSION AND SEDIMENT CONTROL FOR URBAN CONSTRUCTION SITES" (GOVERNMENT OF ONTARIO, MAY 1987). THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR MEETING ALL REGULATORY AGENCY REQUIREMENTS.
- 3. TO PREVENT SURFACE EROSION FROM ENTERING ANY STORM SEWER SYSTEM DURING CONSTRUCTION, FILTER CLOTH WILL BE PLACED UNDER GRATES OF NEARBY CATCHBASINS AND STRUCTURES. A LIGHT DUTY SILT FENCE BARRIER WILL ALSO BE INSTALLED AROUND THE CONSTRUCTION AREA (WHERE APPLICABLE). THESE CONTROL MEASURES WILL REMAIN IN PLACE UNTIL CONSTRUCTION IS COMPLETE.
- 4. TO LIMIT EROSION: MINIMIZE THE AMOUNT OF EXPOSED SOILS AT ANY GIVEN TIME, RE-VEGETATE EXPOSED AREAS AND SLOPES AS SOON AS POSSIBLE AND PROTECT EXPOSED SLOPES WITH NATURAL OR SYNTHETIC MULCHES.
- 5. FOR MATERIAL STOCKPILING: MINIMIZE THE AMOUNT OF EXPOSED MATERIALS AT ANY GIVEN TIME; APPLY TEMPORARY SEEDING, TARPS, COMPACTION AND/OR SURFACE ROUGHENING AS REQUIRED TO STABILIZE STOCKPILED MATERIALS THAT WILL NOT BE USED WITHIN 14 DAYS. 6. THE SEDIMENT CONTROL MEASURES SHALL ONLY BE REMOVED WHEN, IN THE OPINION OF THE ENGINEER, THE MEASURES ARE NO LONGER REQUIRED. NO CONTROL MEASURES MAY BE PERMANENTLY REMOVED WITHOUT PRIOR AUTHORIZATION FROM THE ENGINEER.
- 7. THE CONTRACTOR SHALL IMMEDIATELY REPORT TO THE ENGINEER ANY ACCIDENTAL DISCHARGES OF SEDIMENT MATERIAL INTO ANY STORM SEWER SYSTEM. APPROPRIATE RESPONSE MEASURES, INCLUDING ANY REPAIRS TO EXISTING CONTROL MEASURES OR THE IMPLEMENTATION OF ADDITIONAL CONTROL MEASURES, SHALL BE CARRIED OUT BY THE CONTRACTOR WITHOUT DELAY.
- 8. THE CONTRACTOR ACKNOWLEDGES THAT FAILURE TO IMPLEMENT EROSION AND SEDIMENT CONTROL MEASURES MAY BE SUBJECT TO PENALTIES IMPOSED BY ANY APPLICABLE REGULATORY AGENCY.

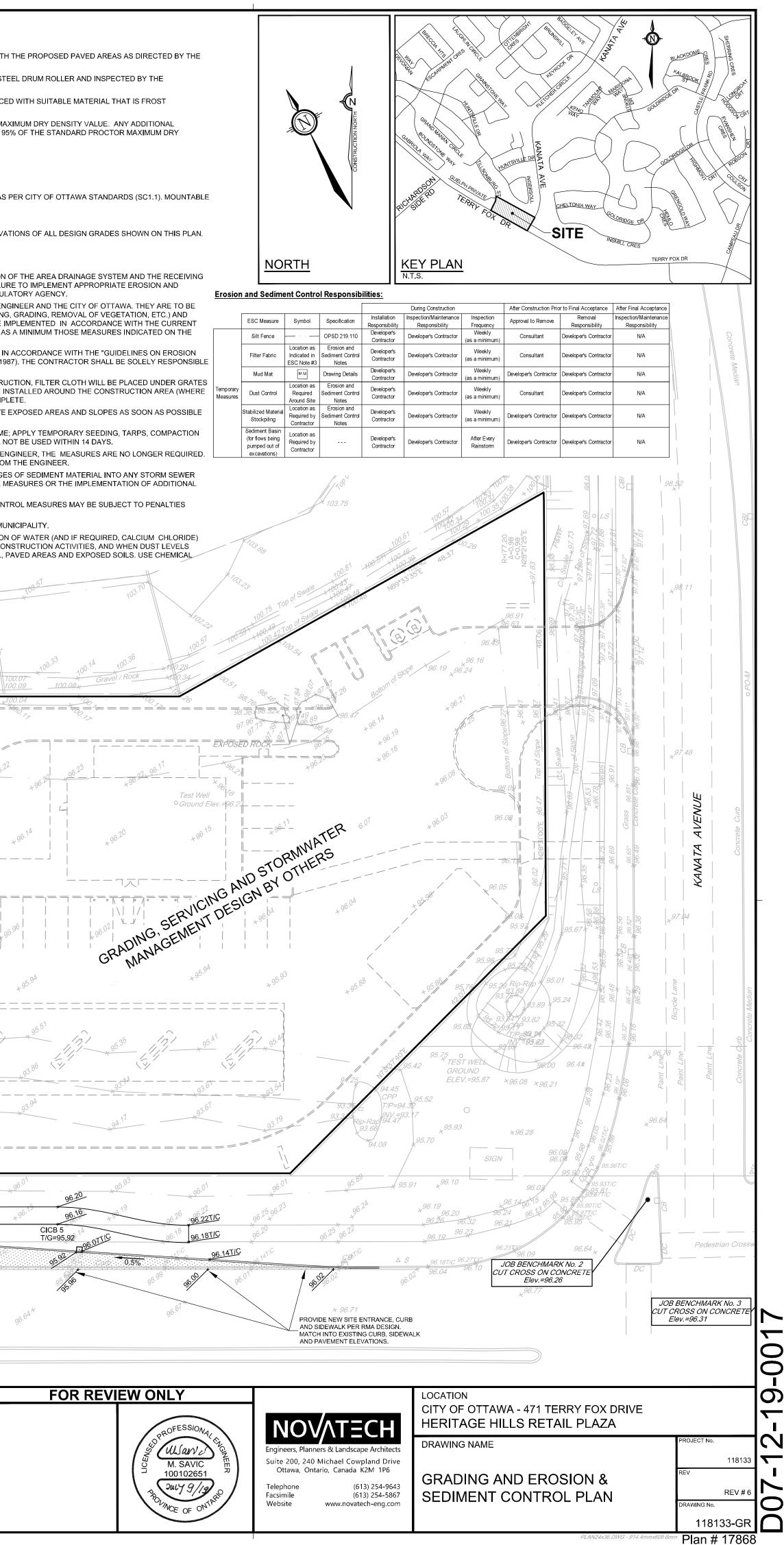
9. ROADWAYS ARE TO BE SWEPT AS REQUIRED OR AS DIRECTED BY THE ENGINEER AND/OR THE MUNICIPALITY. 10. THE CONTRACTOR SHALL ENSURE PROPER DUST CONTROL IS PROVIDED WITH THE APPLICATION OF WATER (AND IF REQUIRED, CALCIUM, CHLORIDE) DURING DRY PERIODS. MONITOR DUST LEVELS DURING SITE PREPARATION/EXCAVATION, AND CONSTRUCTION ACTIVITIES, AND WHEN DUST LEVELS BECOME VISUALLY APPARENT SPRAY WATER TO MINIMIZE THE RELEASE OF DUST FROM GRAVEL, PAVED AREAS AND EXPOSED SOILS. USE CHEMICAL DUST SUPPRESSANTS ONLY WHERE NECESSARY ON PROBLEM AREAS.

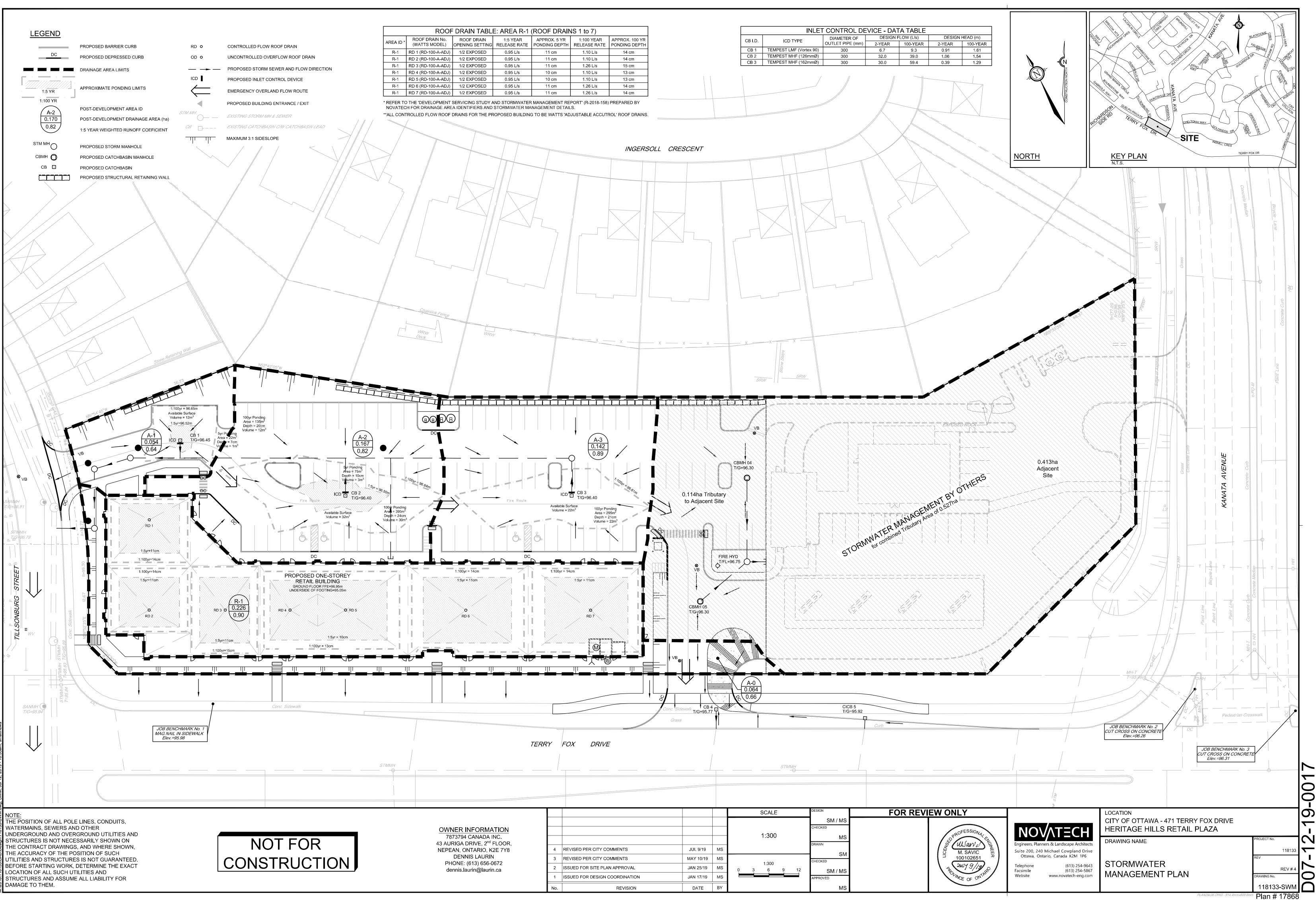
> CBMH 04 T/G=96.30

FIRE HYD

CB4

T/FL=96.75 ()


96.<u>09</u>


05 97T/

CICB 5

/G=95,92

					SCALE	DESIGN	FC
OWNER INFORMATION 7873794 CANADA INC. AURIGA DRIVE, 2 nd FLOOR, EPEAN, ONTARIO, K2E 7Y8 DENNIS LAURIN PHONE: (613) 656-0672 dennis.laurin@laurin.ca						SM / MS	
	6	REVISED PER CITY COMMENTS	JUL 9/19	MS			
	5	ISSUED FOR TENDER	D FOR TENDER JUN 19/19 MS	1.300			
	4	ISSUED FOR BUILDING PERMIT	JUN 18/19	MS		SM	
		REVISED PER CITY COMMENTS	MAY 10/19	MS	1:300 CHECKED		
	2	ISSUED FOR SITE PLAN APPROVAL	JAN 25/19	MS		SM / MS	
	1	ISSUED FOR DESIGN COORDINATION	JAN 17/19	MS			
	No.	REVISION	DATE	BY		MS	

