Consulting Engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

Geotechnical Engineering Environmental Engineering Hydrogeology Geological Engineering Materials Testing Building Science Archaeological Studies

www.patersongroup.ca

April 29, 2019 Report: PG3908-LET.03 - Revision 1

Brigil Construction 98 rue Lois, Gatineau, Québec J8Y 3R7

Attention Mr. Jean-Luc Rivard

Subject: Slope Stability Assessment Report (SSAR) Proposed Multi-Storey Buildings Towers 3 and 4 - Petrie's Landing Inlet Private - Ottawa

Dear Sir,

Further to your request and authorization, Paterson Group (Paterson) prepared a slope stability assessment report (SSAR) and a response to the third-party review comments issued by BGC Engineering (BGC) dated January 23, 2019 for the proposed development at the aforementioned site. The following SSAR was based on our evaluation of the existing slope bordering the north boundary of the site taking into consideration of the proposed development along with the existing development of Towers 1 and 2.

The current SSAR should be read in conjunction with Paterson Report PG3908-2 Revision 1 dated September 14, 2018.

1.0 Historical Information

As part of the current slope stability assessment, Paterson reviewed the available information recovered during the geotechnical investigation from the previous phase of the current development prepared by GHD Limited (GHD) which was formerly Inspec-Sol:

- Geotechnical Preliminary Investigation, Tower B, Highway 174 and Trim Road, Orleans, Ontario, Report T020548-A1 dated August 13, 2013 (Inspec-Sol)
- Additional Slope Stability Assessment, Petrie's Landing I Tower II (Phase 2), Petrie Island, Ottawa, Ontario, Report T020548-A1 dated June 5, 2014 (Inspec-Sol)

- Geotechnical Investigation, Petrie's Landing Tower 2, 8900 Jeanne D'Arc Boulevard, Ottawa, Ontario, Report T020548-A2 dated June 22, 2016.
- Response to Golder Associates Ltd. Comments, Geotechnical Investigation Report (T020548-A1, dated August 13, 2013), dated June 29, 2016.

In addition, Paterson reviewed the following slope stability comments issued in the following peer review prepared by Golder Associates (Golder):

Engineering Peer Review, Geotechnical Investigation and Slope Stability Assessment, Inspec-Sol Reports, 8900 Jeanne D'Arc Boulevard - Tower 2, Orleans, Ontario, Project 1650934 dated March 15, 2016.

2.0 Available Information

The current slope stability analysis was completed using the information recovered during our site visit carried out on January 18, 2019, City of Ottawa topographic contour mapping (2001), subsoil information recovered during the previous geotechnical investigations and our general knowledge of the areas geology.

Subsoil Conditions

The subsoil and groundwater conditions used as part of the slope stability analysis was recovered from our geotechnical investigation Report PG3908-2 Revision 1 dated September 14, 2018 and relevant test holes completed by GHD for the previous phase of the current development. Generally, the subsurface profile at the test hole locations consists of a thin layer of topsoil and/or fill consisting of silty sand mixed with clay and/or gravel overlying a very stiff to stiff silty clay deposit extending to depths varying between 25 to 30 m below existing ground surface. The upper portion of the silty clay deposit was weathered to a very stiff brown silty clay crust extending to depths varying between 4 to 7 m which in turn becomes stiff and grey at depth when overlying the bedrock surface.

In situ shear vane field testing carried out within the silty clay deposit during the geotechnical investigation yielded undrained shear strength values ranging from approximately 100 to 150 kPa. These values are indicative of a very stiff consistency.

Two representative soil samples were submitted for grain size analysis from the test holes completed during the geotechnical investigation (by GHD) within the previous phase of the current development. The results of the grain size analysis are summarized in Table 1 below and presented in Particle-Size Analysis of Soils attached to the current report.

Table 1 - Grain	Size Distributior	n (GHD)		
Test Hole	Sample	Gravel (%)	Sand (%)	Silt and Clay (%)
BH1-16	SS1	0	1	99
BH1-16	SS5	0	0	100

In addition, 3 representative soil samples were submitted for Atterberg Limits testing from the test holes completed during the geotechnical investigation (by GHD) within the previous phase of the current development. The Atterberg Limits test results are summarized in Table 2 below and presented in the test hole logs prepared by GHD attached to the current report.

Table 2 - Summary	of Atterberg	Limits Tests ((GHD)		
Sample	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index %	Classification
BH1-16 - TW1	66.0	27	66	39	CL
BH1-16 - SS2	65.0	26	66	40	CL
BH1-16 - TW2	69.0	26	51	25	CL

Practical refusal to DCPT was encountered at BH 4, BH 5, BH 6, BH 7 and BH 8 at geodetic elevations varying between 23.5 to 27.7 m on inferred bedrock.

Based on the bedrock core samples recovered during the geotechnical investigation completed by GHD on the previous phase of the current development and available geological mapping, the subject site is located in an area where the bedrock consists of interbedded limestone and dolomite of the Gull River formation.

Earthquake Considerations

As part of the geotechnical investigation completed by GHD for the previous phase of the current development, a geophysical (MASW) testing was completed to provide a site specific seismic site classification.

Based on the results of the seismic testing, the average shear wave velocity Vs_{30} , is **277 m/s**. Therefore, a **Site Class D** is applicable for foundation design within that area where similar soil conditions are encountered, as per Table 4.1.8.4.A of the OBC 2012. The results of the site specific geophysial (MASW) testing are presented in Table 1 - Summary of Shear Wave Velocity Measurements and in Figure 1 - Shear Wave Velocity Versus Depth attached to the current report.

Mr. Jean-Luc Rivard Page 4 Report: PG3908-LET.03 - Revision 1

Further to the above, it should be noted that liquefaction potential is assessed as part of the seismic design considerations. The silty clay deposit encountered at the subject site has been encountered during numerous geotechnical investigations completed by Paterson across the greater Ottawa area. Based on our experience, and supported by multiple laboratory testing results, this material would typically be considered highly plastic with a plasticity index (PI) greater than 20. Figure 6.15 of the Canadian Foundation Manual (2006) provides criteria for liquefaction assessment of fine-grained soils from Bray et al. (2004) as shown in Figure 2 below.

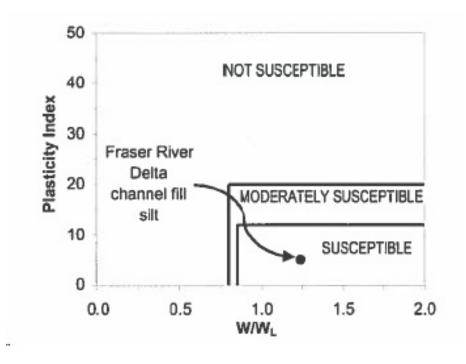


Figure 2 - Bray et al. (2004) criteria for liquefaction assessment of fine-grained soils

Based on the Atterberg Limits testing results conducted on the representative soils samples at the subject site resulting in Plasticity Index (PI) above 20 in conjunction with the site specific shear wave velocity test results, the underlying soils at the subject site not considered susceptible to liquefaction or subsequent 'earth flows' from a geotechnical perspective.

3.0 Field Observations

On January 18, 2019, Paterson conducted a site visit to complete a cursory review of the existing slope conditions bordering the north boundary of the subject site. The site was observed to be snow covered at the time of our site visit, but was generally observed to be relatively flat and sloped gradually down toward the north and north-east direction. The site is bordered to the west by a multi-storey building (Tower 2) constructed as part of the previous phase of the current development and to the south by HWY 174. The site is bordered to the north and north-west by a densely treed slope which traverses down to the bottom of the Ottawa River valley corridor to a marsh which outlets to the nearby Ottawa River.

A hand held Abney Level was used to confirm that the slope bordering the north property boundary extended to a maximum height of 10 m and generally varied between 3.7H:1V (15 degrees from horizontal) to 4.2H:1V (13 degrees from horizontal) or flatter as indicated on the available City of Ottawa topographic contour mapping.

Other than some signs of minor erosion along the approximately 100 to 400 mm deep drainage swale located between proposed Tower 4 and Tower 5, no additional signs of active erosion was observed along the slope face nor along the toe of the approximately 10 m high slope.

4.0 Proposed Development

Based on the latest conceptual drawings prepared by Neuf Architect(e)s, it's our understanding that the proposed two multi-storey structures identified as Tower 3 and Tower 4 will be supported by end-bearing piles driven to the underlying bedrock. It's also understood a two level of underground parking structure will be shared between the two structures extending beyond the tower footprints and supported with conventional strip and pad footings bearing on the native stiff silty clay.

The excavated soil removed for the two level underground parking structure, which will occupy the majority of the subject site, will reduce the overall weight on the existing slope and stabilize the groundwater level to a lower elevation which will increase the overall stability of the existing slope.

It should be further noted that the root systems of the mature trees along the slope face will remain as part of the proposed development and arguably aids in the stability of the slope and mitigates surficial erosion. However, the benefits of the existing roots systems that occupy the existing slope face have not been including as part of slope stability analysis.

5.0 Slope Stability Analysis

The analysis of the stability of the slope was carried out using SLIDE, a computer program which permits a two-dimensional slope stability analysis using several methods including the Bishop's method, which is a widely used and accepted analysis method. The program calculates a factor of safety, which represents the ratio of the forces resisting failure to those favoring failure. Theoretically, a factor of safety of 1.0 represents a condition where the slope is stable. However, due to intrinsic limitations of the calculation methods and the variability of the subsoil and groundwater conditions, a factor of safety greater than one is usually required to ascertain than the risks of failure are acceptable.

All three slope cross-sections were analysed utilizing the latest available grading plan prepared by exp. while incorporating the two level underground parking structure presented in the latest conceptual drawings prepared by Neuf Architect(e)s.

The slope stability analysis was completed at each slope cross-section under worst-casescenario by assigning cohesive soils under fully saturated conditions. In addition, a secondary analysis was completed at each slope cross-section with the stabilized groundwater lowered to the founding level of the proposed structure as a result of the localized groundwater lower from the perimeter foundation drainage system.

The effective strength soil parameters used for static analysis were chosen based on the subsoil information recovered during the geotechnical investigation which also happens to reflect the soil parameters that were used during the slope stability assessment completed for the previous phase of the current development prepared by GHD for Tower 2. The effective strength soil parameters used for static analysis are presented in Table 3 below.

Table 3 - Effective Soil and Material Pa	rameters (Static /	Analysis)	
Soil Layer	Un it Weight (kN/m³)	Friction Angle (degrees)	Cohesion (kPa)
Fill	18	28	2
Brown Silty Clay Crust	16	33	10
Grey Silty Clay	16	27	7
Bedrock		Impenetrable	

The total strength parameters for seismic analysis were chosen based on the in situ, undrained shear strengths recovered within the open boreholes completed at the time of our geotechnical investigation and based on our general knowledge of the areas geology. The strength parameters used for seismic analysis at the slope cross-sections are presented in Table below.

Table 4 - Total Stress Soil and Material	Parameters (Seis	mic Analysis)	
Soil Layer	Un it Weight (kN/m³)	Friction Angle (degrees)	Undrained Shear Strength (kPa)
Fill	18	28	2
Brown Silty Clay Crust	16	-	150
Grey Silty Clay	16	-	100
Bedrock		Impenetrable	

The location of the three cross-sections analyzed are presented on Drawing PG3908-2 - Site Plan enclosed.

Static Loading Analysis

The results of the static analysis for the proposed slope udder fully saturated conditions (worst-case-scenario) are shown in Figure 2A, 3A and 4A attached to the current report. In addition, the results of the analysis using stabilized groundwater levels lowered down to the founding level of the proposed building are shown in Figure 2C, 3C and 4C. The minimum analysed slope stability factor of safety under fully saturated conditions (worst-case-scenario) were calculated to range between 1.5 and 1.7 and between 1.7 and 2.4 when calculated with stabilized groundwater conditions.

As a result, the three slope cross-sections analyzed were all above the recommended Factor of Safety of 1.5 and are considered stable under static conditions.

Seismic Loading Analysis

An analysis considering seismic loading was also completed as part of our slope stability assessment. A horizontal seismic acceleration, K_h , of 0.16G was considered for the analysed section. A factor of safety of 1.1 is considered to be satisfactory for stability analysis including seismic loading.

The results of the analysis including seismic loading under both fully saturated conditions (worst-case-scenario) and stabilized groundwater levels lowered down to the founding level of the proposed structure are shown in Figure 2B, 2D, 3B, 3D, 4B and 4D attached to the current report. The overall slope stability factor of safety at the three slope cross-sections when considering seismic loading was found to be greater than 1.4 which is considered to be stable under seismic loading.

6.0 Limit of Hazard Lands

The limit of hazard lands includes allowances for a geotechnical stable slope, the potential for future toe erosion and access for equipment to remediate a potential slide. Generally, the erosion access allowance is taken as 6 m from the top of stable slope.

A slope stability assessment was carried out to determine the required stable slope allowance setback based on a factor of safety of 1.5 under static analysis and a factor of safety of 1.1 under seismic loading. A toe erosion and 6 m access allowances were also considered in the determination of limits of hazard lands and are further discussed below.

Stable Slope Allowance

The stable slope limit is usually defined by the extent of the lowest slip circle (failure slip plains) analyzed behind the top of slope where the minimum factor of safety calculated is less than 1.5. The minimum factor of safety was calculated for all three slope section analysed to be above the recommended 1.5 under static conditions and above the recommended factor of safety of 1.1 under seismic loading and therefore defined as stable and no stable slope allowance is required from a geotechnical perspective.

Toe Erosion Allowance

The toe erosion allowance for the valley corridor wall slope are based on the cohesive nature of the top layers of the subsoils, the observed current erosional activities, and the width and location of the current watercourse. Since the existing watercourse (Ottawa River) is located greater than 20 m from the toe of the slope and no evidence of erosional activities were observed along the toe of the slope during our site visit. As per "River and Stream System: Erosion Hazard Limit prepared by Ontario Ministry of Natural Resources", confined systems where the toe of the slope located more than 15 m from the watercourse do not require set back for toe erosion allowance. Based on the measured distance between the toe of the slope and the watercourse, slope geometry and slope stability analysis results, it is our opinion that no toe erosion allowance is required for the subject section of the site.

Mr. Jean-Luc Rivard Page 9 Report: PG3908-LET.03 - Revision 1

Erosion Access Allowance

Based on the City of Ottawa guidelines for slope stability, as a general rule, where the development precludes an access for construction equipment such as a parking lot, access lanes, rear yards, etc, a 6 m erosion access allowance must be provided. However, due to the overall stability of the slope in conjunction with the proximity of the watercourse to the toe of the slope, it is considered acceptable to omit the requirement for the 6 m toe erosion access allowance for the subject section of slope. In the unlikely event that minor erosional activities occur in the future along the slope face, the slope could be easily accessed from the toe of the slope (if required).

7.0 Conclusion

Based on our site review, geometry of the slope, results of the slope stability analysis taking into consideration of the proposed development, the slope bordering the north boundary of the subject section of the site is stable and considered satisfactory. The slope is not considered to be susceptible to global failure or "earth flows".

Therefore, no geotechnical set back is required to be designated as Hazard Lands for toe erosion allowance or slope instability.

We trust that this information satisfies your requirements.

Best Regards,

Paterson Group Inc.

Richard Groniger, C. Tech.

Carlos P. Da Silva, P.Eng., ing., QP_{ESA}

Attachments

- Soil Profile and Test Data Sheets
- Symbols and Terms
- Soil Profile and Test Data Sheets (by others)
- Grain Size Distribution Analysis (by others)
- Table 1 Summary of Shear Wave Velocity Measurements (GHD)
- Figure 1 Shear Wave Velocity Versus Depth (GHD)
- **G** Figure 2A Section A Proposed Conditions Fully Saturated Static Analysis.
- Figure 2B Section A Proposed Conditions Fully Saturated Seismic Loading
- **G** Figure 2C Section A Proposed Conditions Stabilized Groundwater Static Analysis.
- Figure 2D Section A Proposed Conditions Stabilized Groundwater Seismic Loading
- **G** Figure 3A Section B Proposed Conditions Fully Saturated Static Analysis.
- Given B Section B Proposed Conditions Fully Saturated Seismic Loading
- Figure 3C Section B Proposed Conditions Stabilized Groundwater Static Analysis.
- Figure 3D Section B Proposed Conditions Stabilized Groundwater Seismic Loading
- Figure 4A Section C Proposed Conditions Fully Saturated Static Analysis.
- Figure 4B Section C Proposed Conditions Fully Saturated Seismic Loading
- Figure 4C Section C Proposed Conditions Stabilized Groundwater Static Analysis.
- Figure 4D Section C Proposed Conditions Stabilized Groundwater Seismic Loading
- D PG3908-2 Site Plan

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Development - Petrie's Landing I 100 Inlet Private, Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

DATUM

	FILE NO.
8	HOLE NO.

PG3908

BORINGS BY CME 55 Power Auger				П	ATE	July 17, 2	018		HOL	e no.	BH 4	ŀ	
	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. R		Blov	vs/0.3	m	
SOIL DESCRIPTION	STRATA PI	ΡE	BER	% VERY	VALUE r RQD	(m)	(m)				Cone		Piezometer Construction
GROUND SURFACE	STR	ΊΥΡΕ	NUMBER	∾ RECOVERY	N VA OL J			0 V 20	Vater 40	Conte	ent % 80		Diezo
FILL: Brown silty clay with crushed 0.18	XXX	×				0-	-53.26	20					
stone and organics		S AU	1			1-	-52.26						
						2-	-51.26						
						3-	-50.26						
						4-	-49.26						
						5-	-48.26						
						6-	-47.26						
Very stiff, brown SILTY CLAY						7-	-46.26						
- grey by 7.6m depth						8-	-45.26						
						9-	-44.26						
						10-	-43.26		<u> </u>			130	
						11-	-42.26						
						12-	-41.26		· · · · · · · · ·				
						13-	-40.26					1)
						14-	-39.26					120	
						15-	-38.26						
15.85		-				16-	-37.26	20	40	60	80	129	
									ar Stre	ength	(kPa) Remould)	

SOIL PROFILE AND TEST DATA

FILE NO.

PG3908

Geotechnical Investigation
 Proposed Development - Petrie's Landing I
 100 Inlet Private, Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

DATUM

				_			0.1.0		HOL	e no.	3H 4	
BORINGS BY CME 55 Power Auger				D	ATE	July 17, 2	018			-		
SOIL DESCRIPTION	PLOT			IPLE ਮੁ	[T] _	DEPTH (m)	ELEV. (m)			Blows Dia. C		ter tion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD					Conter		Piezometer Construction
GROUND SURFACE				R	N	16-	-37.26	20	40	60	80	ΞO
Dynamic Cone Penetration Test commenced at 15.85m depth.							-36.26					
						18-	-35.26					
						19-	-34.26					
						20-	-33.26					
						21-	-32.26					
						22-	-31.26					
							-30.26					
							-29.26					
							-28.26					
							-27.26					
							-26.26					
28.80		_				28-	-25.26					
End of Borehole												Ť
Practical DCPT refusal at 28.80m depth.												
(BH dry - July 24, 2018)												
								20	40	60	80 1	00
								She ▲ Undis	ar Str	ength (kPa) moulded	

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Development - Petrie's Landing I 100 Inlet Private, Ottawa, Ontari

DATE July 17, 2018

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

BORINGS BY CME 55 Power Auger

REMARKS

DATUM

rio	
FILE NO. PG3908	
HOLE NO. BH 5	
sist. Blows/0.3m mm Dia. Cone	tor
ator Contont %	matar

SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone	, L
	STRATA I	TYPE	NUMBER	% RECOVERY	VALUE Pr ROD	(m)	(m)	• Water Content %	Piezometer Construction
GROUND SURFACE	STI	Ĥ	NUN	RECC	N N N			20 40 60 80	Dons
FILL: Brown silty clay, trace gravel 0.10		× AU	1			0-	-52.78		88
land organics									8
						1-	-51.78		8 🕅
									8
						2-	-50.78		8 🕅
									3 🕅
						3-	49.78		3 🕅
									8
						4-	48.78		3 👹
									8
						5-	47.78		88
									8 🕅
Very stiff, brown SILTY CLAY						6-	46.78		8 🕅
									3 👹
- grey by 6.8m depth						7-	45.78		8 🕅
									88
						8-	-44.78		8
									8
						9-	43.78		8 🕅
								1	8
						10-	42.78		8
									8
						11-	41.78		8
								Ĩ	8
						12-	40.78		
								120	,
						13-	-39.78		
						14-	-38.78	129	Ĵ
								∑	
						15-	-37.78		
15.85									
<u>13.8</u> c	ינאבצו	-				16-	-36.78		
								20 40 60 80 100 Shear Strength (kPa)	'
								▲ Undisturbed \triangle Remoulded	
	1							I	

SOIL PROFILE AND TEST DATA

20

▲ Undisturbed

40

Shear Strength (kPa)

60

80

△ Remoulded

100

Geotechnical Investigation

154 Colonnade Road South, Ottawa, Ont	ario I	<2E 7.	J5		Pr 10	oposed E 0 Inlet Pr	Developi rivate, O	ment - Petr ttawa, Ont	ie's Lar ario	iding I	
DATUM Geodetic							, -	,	FILE N	o. PG3908	
REMARKS									HOLE		-
BORINGS BY CME 55 Power Auger				D	ATE .	July 17, 2	2018		HOLEI	^{00.} BH 5	
	PLOT		SAN	IPLE		DEPTH	ELEV.			Blows/0.3m	
SOIL DESCRIPTION		61	IR.	IRY	ВQ	(m)	(m)	• 5	0 mm D	ia. Cone	leter uction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD					ontent %	Piezometer Construction
GROUND SURFACE				Ř	4	16-	-36.78	20	40	60 80	
Dynamic Cone Penetration Test commenced at 15.85m depth.											
						1/-	-35.78				
						18-	-34.78				
						19-	-33.78				
						20-	-32.78				· · · · · · · · · · · · · · · · · · ·
						21-	-31.78				
						22-	-30.78				
						23-	-29.78				
						24-	-28.78				· · · · · · · · · · · · · · · · · · ·
											••
						25-	-27.78				
						26-	-26.78				···
						27-	-25.78				
						28-	-24.78				
						29-	-23.78				
End of Borehole											T
Practical DCPT refusal at 29.67m depth.											
(BH dry - July 24, 2018)											

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Development - Petrie's Landing I 100 Inlet Private, Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

REMARKS

DATUM

Geodetic

HOLE NO.	BH 6
----------	------

PG3908

FILE NO.

SORINGS BY CME 55 Power Auger				D	ATE .	July 18, 2	018	BH 6	
SOIL DESCRIPTION	РГОТ		SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone	r
GROUND SURFACE	STRATA	ЭДХТ	NUMBER	% RECOVERY	N VALUE or ROD	(m)	(m)	 Water Content % 20 40 60 80 	Piezometer
FILL: Brown silty sand with crushed _{0.46} tone and organics		õ AU	1			0-	-53.09		8
						1-	-52.09		*
						2-	-51.09		
						3-	-50.09		
						4-	-49.09		
ery stiff, brown SILTY CLAY						5-	-48.09		
						6-	-47.09		
grey by 6.4m depth							-46.09		
									*
							-45.09		
						9-	-44.09	10	
						10-	-43.09		
						11-	-42.09	4	
						12-	-41.09		<u> </u>
						13-	-40.09		0
						14-	-39.09	12	20
						15-	-38.09		K
15.85		-				16-	-37.09		
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded	0

SOIL PROFILE AND TEST DATA

FILE NO.

PG3908

Geotechnical Investigation Proposed Development - Petrie's Landing I 100 Inlet Private, Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

DATUM

BORINGS BY CME 55 Power Auger				D	ATE .		HOLE NO. BH 6					
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone				er tion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD					ontent		Piezometer Construction
GROUND SURFACE				щ		16-	37.09	20	40	60	80	
Dynamic Cone Penetration Test commenced at 15.85m depth.												
						17-	36.09					
						18-	35.09					
						19-	-34.09					
						20-	-33.09				·······	
						21-	-32.09			· · · · · · · · · · · · · · · · · · ·	······	
						22-	-31.09					
						23-	-30.09					
						20	50.05					
						04	00.00					
						24-	-29.09					
						25-	-28.09				······································	
						26-	-27.09					-
						27-	-26.09					
28.25						28-	-25.09					
End of Borehole		_										T I
Practical DCPT refusal at 28.25m depth.												
(BH dry - July 24, 2018)												
								20	40	60		00
										ngth (kF		
								▲ Undist	urbed		oulded	

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Development - Petrie's Landing I 100 Inlet Private, Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

REMARKS

DATUM

Geodetic

Η7

PG3908

FILE NO.

BORINGS BY CME 55 Power Auger				D	ATE 、	July 18, 2	2018	BH 7			
SOIL DESCRIPTION	PLOT		SAMPLE			DEPTH	ELEV.	Pen. Resist. Blows/0.3m• 50 mm Dia. Cone○ Water Content %20406080			
GROUND SURFACE	STRATA	ЭДҮТ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	 Water Content % 20 40 60 80 			
		õ AU	1			0-	-52.67				
						1-	-51.67				
						2-	-50.67				
ery stiff, brown SILTY CLAY						3-	-49.67				
grey by 3.8m depth						4-	-48.67				
, , , , ,						5-	-47.67				
							-46.67				
							-45.67				
						8-	-44.67				
						9-	-43.67				
						10-	-42.67				
						11-	-41.67				
						12-	-40.67				
						13-	-39.67		29		
						14-	-38.67		29		
						15-	-37.67				
15.85		-					-36.67		89		
							00.07	20 40 60 80 10 Shear Strength (kPa) ▲ Undisturbed △ Remoulded	00		

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Development - Petrie's Landing I 100 Inlet Private, Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

DATUM

	PG3908
HOLE NO.	BH 7

FILE NO.

BORINGS BY CME 55 Power Auger DATE July 18, 2018 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE 0/0 Water Content % Ο **GROUND SURFACE** 80 20 40 60 16 + 36.67**Dynamic Cone Penetration Test** commenced at 15.85m depth. 17+35.67 18+34.67 19+33.67 20+32.67 21+31.67 22+30.67 23+29.67 24+28.67 24.97 End of Borehole Practical DCPT refusal at 24.97m depth. (BH dry - July 24, 2018) 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Development - Petrie's Landing I 100 Inlet Private, Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic

REMARKS

HOLE NO. **BH 8**

PG3908

FILE NO.

BORINGS BY CME 55 Power Auger				D	ATE .	July 18, 2	2018	1		^{••} BH 8	
SOIL DESCRIPTION	РГОТ		SAN	IPLE	1	DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone			
	STRATA	ТҮРЕ	NUMBER	° ≈ © © ©	N VALUE or RQD	(11)		• Water Content			Piezometer
GROUND SURFACE		× • • •	1	щ		0-	-52.25	20	40	60 80	
		& AU	I			1-	-51.25				
		ss	2	75	9	2-	-50.25				
						3-	-49.25				
						4-	-48.25				
						5-	-47.25				
						6-	-46.25				
ery stiff, brown SILTY CLAY grey by 7.5m depth						7-	-45.25				
						8-	-44.25				
						9-	-43.25				120
						10-	-42.25		2		
						11-	-41.25	4			
							-40.25				139
							-39.25				
							-38.25				149
15.85	5										159
<u>15.8</u>	5	-					-37.25 -36.25	20 Shea ▲ Undist	ar Streng	60 80 jth (kPa) ∆ Remoulded	10

SOIL PROFILE AND TEST DATA

▲ Undisturbed △ Remoulded

Geotechnical Investigation Proposed Development - Petrie's Landing I 100 Inlet Private, Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic					I				FILE NO.	PG3908	
REMARKS									HOLE NO)	
BORINGS BY CME 55 Power Auger				D	ATE 、	July 18, 2	2018	1		⁷ BH 8	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		ows/0.3m a. Cone	r u	
	STRATA	STRATA TYPE NUMBER & ECOVERY		LUE ROD	(m)	(m)			Piezometer Construction		
GROUND SURFACE	STR	Ъ	NUM	∾ RECOVERY	N VALUE or ROD			0 W 20	Ater Cor	ntent %	Piezo Const
Dynamic Cone Penetration Test						16-	-36.25				
commenced at 15.85m depth.											
						17-	-35.25				
						18-	-34.25				
							04.20				
						19-	-33.25				
						20-	32.25				
						21-	-31.25				
						22-	-30.25				-
						23-	-29.25				
							00.05				
						24-	-28.25				
						25-	-27.25				
						25	27.25				
						26-	-26.25				-
						20	20.20				
26.82 End of Borehole		-									•
Practical DCPT refusal at 26.82m depth.											
(BH dry - July 24, 2018)											
(Bir diy - 5diy 24, 2010)											
								20 Shea	40 6 ar Streng		00

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Proposed Development - Petrie's Landing I 100 Inlet Private, Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

REMARKS

DATUM

BORINGS BY	CME	55	Power	Augei

Geodetic

HOLE NO.	BH 9	
	BH 9	

PG3908

FILE NO.

BORINGS BY CME 55 Power Auger				D	ATE 、	July 19, 2	018		BH 9					
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)			Blows/ Dia. Co		يد ا		
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(11)	(11)	• V	Vater (Content	%	Piezometer		
GROUND SURFACE	S		Z	E E	z ^o		50.04	20	40	60	80	Ē		
FILL: Brown silty sand with gravel, 0.51		§ AU	1			0-	-52.81							
						1-	-51.81							
						2-	-50.81							
Very stiff, brown SILTY CLAY						3-	-49.81							
- grey by 3.8m depth						4-	-48.81							
						5-	-47.81							
						6-	-46.81							
						7-	-45.81							
						8-	-44.81							
							-43.81							
						10-	-42.81							
						11-	-41.81		<u>×</u>					
						12-	-40.81							
						13-	-39.81					9		
						14-	-38.81				15	50		
						15-	-37.81							
<u>15.85</u>						16-	-36.81		· · · · · · · · · · · · · · · · · · ·		· · · · · 4	0		
								20 Shea ▲ Undis		60 ength (kl ∆ Rem		JÜ		

patersongroup Consulting Engineers

SOIL PROFILE AND TEST DATA

FILE NO.

PG3908

Geotechnical Investigation Proposed Development - Petrie's Landing I 100 Inlet Private, Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

DATUM

REMARKS							HOLE NO. BH 9						
BORINGS BY CME 55 Power Auger				D	ATE	July 19, 2	018						
SOIL DESCRIPTION	PLOT			MPLE	м	DEPTH (m)	ELEV. (m)		. Resist. Blows/0.3m 50 mm Dia. Cone				ter tion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD			• V	Vater (Conte	nt %	b	Piezometer Construction
GROUND SURFACE	01		4	RI	Z V	16-	-36.81	20	40	60	80)	ΞŎ
Dynamic Cone Penetration Test commenced at 15.85m depth.						17-	-35.81						
							-34.81						
							-33.81						
							-32.81					• • • • • • • •	
						21-	-31.81				· · · · · · · · · · · · · · · · · · ·		
						22-	-30.81						
						23-	-29.81						
						24-	-28.81						
						25-	-27.81						
						26-	-26.81						
						27-	-25.81						
						28-	-24.81						
						29-	-23.81						
						30-	-22.81						
						31-	-21.81						
32.00		-				32-	-20.81	20	40	60	80) 10	0
								Shea Undist	ar Stre turbed	ength ∆ R	(kPa) emoul) ded	

patersongroup Consulting Engineers

SOIL PROFILE AND TEST DATA

Geotechnical Investigation
 Proposed Development - Petrie's Landing I
 100 Inlet Private, Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

DATUM

FILE NO.	PG3908
HOLE NO.	BH 9

BORINGS BY CME 55 Power Auger				D	ATE 、	July 19, 2			D	19		
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV. (m)		Resist. 50 mm	r u		
	STRATA I	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)			Water		Piezometer Construction	
GROUND SURFACE	2 S		N	REC	N 10			20	40	60	80	Pie
End of Borehole						-						
(BH dry upon completion)												
								20 She ▲ Undis	40 ear Stro sturbed	60 ength (kl △ Rem	Pa)	00

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

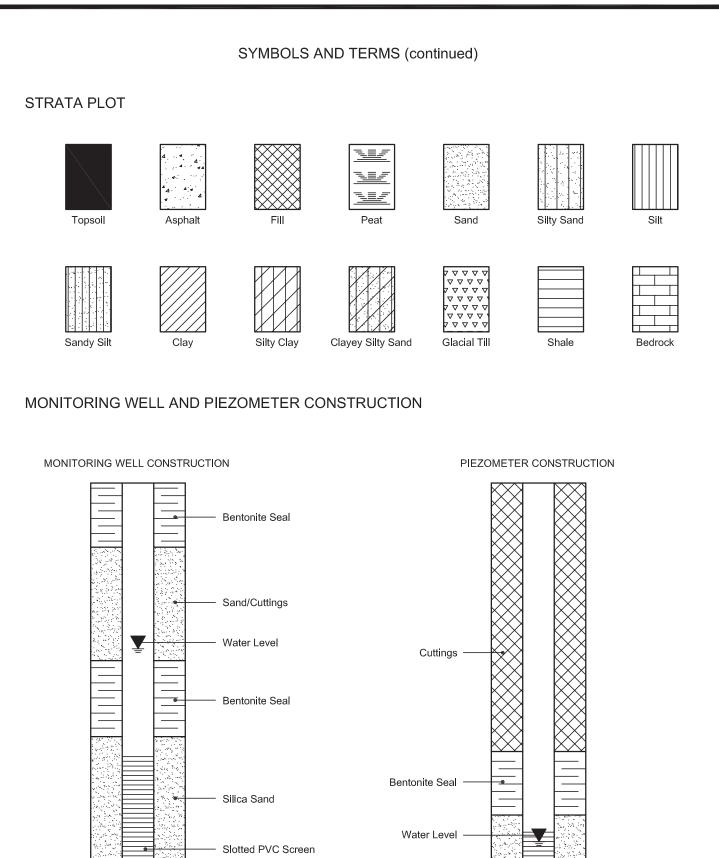
SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Cc	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10
Cc and	Cu are	used to assess the grading of sands and gravels:


Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o
Void Rat	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

Slotted PVC Screen

Silica Sand

REFER	ENCEN	0.:	T020548-A1	_								ENCL	USUR		.:		1	
				BOR	EHOLE No.:		BH-	1					BO	REF	IOL	EL	OG	
i	ISPI	C•	SOL	ELE\	ATION:	5	2.16	m					Pag	e:	1	of _	2	
CLIE	ENT: Br	iail Co	nstruction												GEN	ID		
1		-	la Landina Dhasa II										S Spli S Aug					
LOC	ATION:	Cum	berland, Ontario										T She					
DES	CRIBED	BY:	B.Beveridge		CHECKED BY	/:		J.Ber	nnett			¥ ⊙		er Lev	el ent (%)			
DAT	E (STAR	T):	October 9, 2008	5	DATE (FINISH	H):		October	9, 20	08			Atte	rberg l	mits (%			
sc	ALE		STRATIGRAPHY		MONITO WELL	R		SAI	MPLE [DATA		• N	Spli Pen	t Spoor		le based		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION (SOIL AND BEDRO		55.21— —		State	State Type and Number Recovery		OVC	Penetration Index / RQD				n Lab n	Vane		
meters	52.16		GROUND SURFA	CE					%	ppm	Ν	10	SCAL 50kPa 20 3	E FOF 100kF	R TEST	RESI	ULTS 200k	Pa 90
_			CLAY SOME SILT- trac organics, brownish grey					SS1	71		8	•			-			
- 1.0			moist	,,,				SS2	88		11	•						
2.0					WL 1.78-	Y		SS3	88		11	-			•			
								SS4	100		7	•						
- 3.0	49.1		CLAY SOME SILT- trac trace oxidation, brownis	e sand, sh grey,	3.66 -			SS5	100		5	•		•				
4.0			very stiff, moist		Bentonite			SS6	100		6	•		•	-	-		
5.0					4.57 —			SS7	100		5	•		•				
	47.0		CLAY SOME SILT- gre wet	y, stiff,				SS8	100					5=6.3		-01		
6.0					Screen —			GS9	100				S=6	5.61				
7.0																		
E					7.62-	E		GS10	100				ŀ	-S=5.7	7	0	-1	
8.0					8.08-	=		0010										
9.0	43.0		CLAY SOME SILT- gre		_			8					_	S={	5.6			
			stiff, wet	y, very				GS11	100				_		\$.0 \$			
10.0						:=: :=:												_
-11.0								GS12	100				- F	—S=6	.22	0		
E 12.0								GS13	100					S=	:3.53 △			
- 13.0																		
								0014	100						<u> </u>	0		_
								GS14	100						▲ S=5.33-			
- 15.0						.:≓. .:=.		GS15							S=5.33-			
								4						-			\square	_
								GS16							S	=6.67-		
= 17.0																		
18.0								GS17							6=3.76-			
12.0 13.0 14.0 15.0 16.0 17.0 18.0 NOTES	:										_							

REFER	ENCE N	0.:	T020548-A1	-								ENCLO	DSUF	REN	0.: _		1		
				BOR	EHOLE No.:	В	H-1						BO	RE	но	LE	LOG		
i i	JSPI	C•	SOL	ELEV	ATION:	52.	16	m									_2		
			nstruction											L	EGE	ND			
		0	la Landina Dhasa II									🔀 ss							
	-		berland, Ontario									ST							
			B.Beveridge		CHECKED BY	/ :		J.Ben	nett			Ţ	Wa	ter Le	vel				
			October 9, 2008									°			itent (% limits	,			
SC	ALE		STRATIGRAPHY		MONITO			SAN	IPLE [DATA		• N • N	Spli Pen	t Spoo	on san Inde	nple x base	ed on		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION (SOIL AND BEDRO				State	Type and Number	Recovery	OVC	Penetration Index / RQD		She She Sen She Poo	ear Str ear Str sitivity ear Str ket Pe	ength y Value ength enetro	based based e of S based meter	l on Fiel I on Lab oil I on	Van	e
meters	52.16		GROUND SURFA	CE					%	ppm	Ν	50 10	SCAI ^{0kPa} 20 3	LE FC 100k 30 40	R TES	ST RE 150kPa 60	SULTS 200k 70 80	:Pa) 9	0
19.0 20.0	33.1		CLAY SOME SILT- gre wet	y, stiff,	Clay → Cuttings			GS18						2.85-		-0			
21.0	31.6		CLAY SOME SILT- gre stiff, wet	y, very	_		8	GS19									S=6.2	5	
-22.0						:= := :=	8	GS20					ŀ			· · · · · · · · · · · · · · · · · · ·	S=5-		
24.0	28.5		CLAY SOME SILT- trac dissolved organics, ver wet		_		8	GS21								Δ			
25.0	27.3		LIMESTONE- grey, slig weathered, medium has shale partings	htly rd, close	-						91								
-26.0 -27.0	26.2		LIMESTONE- grey, slig weathered, medium has shale partings	htly rd, close		:= :=					73								
28.0	24.7		LIMESTONE- grey, slig weathered, medium ha shale partings		-						72								
29.0	23.1		End of Borehole	e	29.03	OREHOLI													
- 30.0 																			
31.0																			
33.0																			
34.0																			
35.0																			
36.0																			
NOTES	:																		

REFER		J	T020548-A1	_								ENCL	USUR	RE No.:		2	
				BORE	HOLE No.:	Bł	1-2	2					во	REH	OLE	LO	G
ih	ISPI	C•	SOL	ELEV	ATION:	52.4	16	m					Pag	je: _1	0	of _1	_
CLIE	NT [.] Br	iail Co	nstruction												GEND)	
		0												t Spoon er Samp			
	-		berland, Ontario											lby Tube			
			B.Beveridge		CHECKED BY	·.		J.Ben	nett			Ţ	Wat	er Level			
DAT	E (STAR	T):	October 16, 2008	8	DATE (FINISH	I):	C	October 1	16, 20	800		°		er conter rberg lin	. ,		
sc	ALE		STRATIGRAPHY		MONITO	٦		SAN	IPLE D	λτα		• N		etration t Spoon			
		≥	on who with		WELL			0/ 11		5/(1/(- 0	• N		etration li amic Cor			
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION (SOIL AND BEDRO		55.31— _		State	Type and Number	Recovery	OVC	Penetration Index / RQD	□ C S ▲	u She Sen She Poc	ar Stren sitivity V ar Stren ket Pene	oth base alue of oth base etromete	ed on La Soil ed on er	
meters	52.46		GROUND SURFA	CE					%	ppm	Ν	10	SCAL	E FOR 100kPa 0 40	TEST F 150k	RESULT Pa 20	S 0kPa 80 90
-			CLAY SOME SILT- trac organics, trace oxidatio				М	SS1	53		11						
E 1.0	51.7		∖greenish grey, hard, mo	oist /	WL 0.77		\overline{A}	SS2	96		13	•					
	50.9		CLAY SOME SILT- trac organics, trace oxidatio				Ĥ										
2.0	50.2		sand, greenish grey, ha	rd, moist	Clay → Cuttings		Å	SS3	92		12	•					
	50.2		CLAY SOME SILT- trac oxidation, trace sand, g		Cuttings		М	SS4	100		8	•					
- 3.0			grey, very stiff, moist CLAY SOME SILT- trac				\square	SS5	100		4	•					
4.0	48.6		layers, trace oxidation,	trace r	5, 3.96-		Ħ		100								
	47.9		sand, greenish grey, ve moist	ery stiff,	Bentonite		Å	SS6	100		3	• •					
5.0			CLAY SOME SILT- trac			E	М	SS7	100					S=5.33			
E			layers, trace organics, t oxidation, greenish gre	y, stiff,			\square	SS8	100				—S=6.1	8			
6.0			moist CLAY SOME SILT- trac	<u>`</u>	Silica Sand -> Screen		Ħ	SS9	100				S=8.5	5			
	45.6		organics, grey. stiff, we	t			A		100								
7.0			CLAY SOME SILT- trac organics, trace silt sear			E	М	SS10	75				-S=3.44				
8.0	44.8		∖stiff, wet		7.62— 7.92—		\square	SS11	100				S	=7.34		_	
			CLAY SOME SILT- trac organics, grey, stiff, we				Ħ	SS12	100				S=6			_	
9.0									100								
							Ø	ST-1									
- 10.0					Silica Sand ->		Д	SS13	100								
-11.0								ST-2						<u></u>			
							K	SS14	100								
12.0	40.3				12.19		А	0011	100								
	40.0		End of Borehold	e		REHOLE											
13.0																	
2 																	
2 15.0																	
												-			+		
16.0												_				_	
												_				_	
17.0																	
18.0																	
NOTES	:	<u> </u>			<u> </u>						I						

CLIENT PROJE LOCAT DESCR DATE (3 SCALE Depth BGS	T: <u>Brig</u> CT: <u>F</u> ION: _ RIBED E	gil Cor Petrie' Cumt BY: _	SOL nstruction s Landing - Phase II berland, Ontario B.Beveridge October 14, 200 STRATIGRAPHY DESCRIPTION SOIL AND BEDRO GROUND SURFA TOPSOIL- some organ black, wet, very soft,	8 OF DCK		Y: H): OR		J.Ben	nett 14, 20	08		IIG IZS ⊻ ○	S Split S Auge T Shell Wate Wate Atter Pene	Spoon er Samp by Tube er Level r conten berg lim etration I Spoon s	BEND le t (%) its (%) ndex ba	ased on		
PROJE LOCAT DESCR DATE (1 SCALE Depth BGS 2 meters 5 1.0 5	CT: <u>F</u> ION: _ RIBED E START START 3.35	Petrie' Cumb 3Y: _ -):	s Landing - Phase II perland, Ontario B.Beveridge October 14, 200 STRATIGRAPHY DESCRIPTION SOIL AND BEDRO GROUND SURFA	8 OF DCK	CHECKED B DATE (FINIS MONITO WELL	8Y: SH): OR		J.Ben October 1	nett 14, 20	08		IIG IZS ⊻ ○	S Auge T Shell Wate Atter Pene	Spoon er Samp by Tube er Level r conten berg lim etration I Spoon s	le t (%) its (%) ndex ba	ased on		
LOCAT DESCR DATE (3 SCALE Depth BGS meters 53 - 1.0 5		Cumt 3Y: _ 	Derland, Ontario B.Beveridge October 14, 200 STRATIGRAPHY DESCRIPTION SOIL AND BEDRO GROUND SURFA TOPSOIL- some organ	8 OF DCK	CHECKED B DATE (FINIS MONITO WELL	9Y: 9H): 0R		J.Ben October 1	nett 14, 20	08		⊠ s ⊻ ∘	T Shell Wate Wate Atter Pene	by Tube r Level r conten berg lim tration I Spoon	t (%) its (%) ndex ba	ased on		
DESCR DATE (3 SCALE Depth BGS	RIBED E START UOIDEAU 3.35	3Y: _	B.Beveridge October 14, 200 STRATIGRAPHY DESCRIPTION SOIL AND BEDRO GROUND SURFA TOPSOIL- some organ	0F DCK	DATE (FINIS	6H):		October 1	14, 20	08		▼ ∘	Wate Wate Atter Pene	er Level r conten berg lim tration l Spoon	t (%) its (%) ndex ba	ased on		
DATE (S SCALE Depth BGS neters 53 - 1.0 - 2.0 5	START	-):	October 14, 200 STRATIGRAPHY DESCRIPTION SOIL AND BEDRO GROUND SURFA TOPSOIL- some organ	0F DCK	DATE (FINIS	6H):		October 1	14, 20	08		° H	Wate Atter Pene	r conten berg lim tration I Spoon	its (%) ndex ba	ased on		
SCALE Depth BGS 53 meters 53 - 1.0 5	E (E) (E) (E) (E) (E) (E) (E) (E) (E) (E		STRATIGRAPHY DESCRIPTION SOIL AND BEDRO GROUND SURFA TOPSOIL- some organ	OF DCK	MONITO	OR							Pene	tration I Spoon	ndex ba	ased on		
Depth BGS 53 neters 53 - 1.0 5	(L) (E) 3.35 52.6	Stratigraphy	DESCRIPTION SOIL AND BEDR GROUND SURF TOPSOIL- some organ	CK	WELL			SAM						Spoon s				
neters 53 - 1.0 5 - 2.0 5	3.35 52.6	Stratigraph	SOIL AND BEDRO GROUND SURFA TOPSOIL- some organ	CK	56.32-						- 0		Pene Dyna	tration Ir mic Con	idex bas e sampl	sed on		
- 1.0 5 - 2.0 5	52.6	III.	TOPSOIL- some organ				State	Type and Number	Recovery	OVC	Penetration Index / RQD		Shea Pock	itivity V Ir Streng et Pene	alue of oth base tromete	Soil ed on er		
- 1.0 - 2.0 5				ACE					%	ppm	Ν	10	SCAL 50kPa 20 30	E FOR	TEST R		S 0kPa	
- 1.0 - 2.0 5			plack wet verv soft	ics,			\mathbb{M}	SS0				10	20 30	40	<u>50 60</u>			-
- 2.0 5	51.1	KK	CLAY SOME SILT- trac	ce			Ħ	0.04	100		40						\pm	+
5	51.1	KIXIX.	organics, brownish gre				Å	SS1	100		12	•					\pm	+
3.0 5	V		moist CLAY SOME SILT- trad		WL € !ø g → Cuttings	-8▼8	A	SS2	100		8	•						-
	50.3		oxidation, brownish gre ∖stiff, moist		-		Å	SS3	100		4	•					\vdash	+
4.0 4	19.5		CLAY SOME SILT- trac oxidation, brownish gre		3.66 — Bentonite →		Å	SS4	100		2	• •					\vdash	+
4.0			CLAY SOME SILT- trac		4.27 -		Å	SS5	100								+	+
5.0			oxidation, grey, stiff, we					SS6	100		2	• •		6=16.67-			+	+
6.0					Silica Sand ->			GS7	100					8.4			\vdash	+
7.0 4	46.5		CLAY SOME SILT- trad		Goreen			GS8	100					=9.2			<u> </u>	-
	45.7		organics, trace silt, stiff		7.62-			GS9	100								-	-
8.0	+J.7		CLAY SOME SILT- trac oxidation, trace organic stiff, wet		7.92	FA FA			100				S=6.30	5.87			+	-
9.0 4	14.2				-			GS11	100					Δ				-
			CLAY SOME SILT- trac organics, trace silt, gre					GS12	100					<u>~</u>				-
- 10.0			wet														\vdash	+
- 11.0	42.7		CLAY SOME SILT- tra organics, trace silt, gre					GS13	100					S=10.8			\vdash	+
12.0			stiff, wet														+	ŧ
4	11.2		CLAY SOME SILT- trac		1			GS14	100				+ +	<u> </u>			+	ŧ
13.0	F		organics, grey, stiff, we	i i			Ø	ST-1									+	+
110																	+	+
14.0																	<u> </u>	+
15.0								GS15	100								\vdash	+
16.0								-0.0									+	+
17.0																	=	+
- 18.0																	<u>+</u>	+
NOTES:	Y	×X.				1993933333												T

REFER	ENCE No.: T020548-A1 BOREHOLE No.: BH-3 ELEVATION: 53.35 m														o.:		3	
				BORE	EHOLE No.:	В	H-3	3					BC	RE	HOL	ΕL	OG	i
iN	ISPI	C•	SOL	ELEV	ATION:	53.	35	m							2			
			tru ti												EGEN			
		-	s Landing - Phase II											lit Spoo				
			perland, Ontario											ger Sa elby Τι				
			B.Beveridge		CHECKED B	Y:		J.Ben	nett			<u> </u>		ater Lev				
			October 14, 200									°			tent (%) limits (9			
SC	ALE		STRATIGRAPHY		MONITO			SAN	/IPLE [ΔΤΔ		• N	Pe	netratio	on Index on samp	based	l on	
		≥	onvincivitin		WELL					57(17)	c 0		Dyi	namic (n Index Cone sar	nple		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDRO				State	Type and Number	Recovery	OVC	Penetration Index / RQD	S ▲	Se Sh Po	nsitivity ear Str cket Pe	/ Value ength ba enetrom	of Soil ased o eter	n	d Vane Vane
meters	53.35		GROUND SURFA						%	ppm	Ν	10	SCA 50kPa 20	LE FO 100k 30 40	R TEST Pa 15	RESI 50kPa 60 7	JLTS 200k 0 80	Pa 90
	35.1		CLAY SOME SILT- trac organics, grey, very stif	-	Cilian Cand b			GS16	100				_		A			
- 19.0			organice, groy, very ear	,	Silica Sand ->													
20.0															_		\square	
															_			
21.0																		
								GS17	100						S=3	52		
22.0																	\square	
23.0																	\square	
E																	\square	
24.0															_		$ \rightarrow$	_
	29.0		CLAY SOME SILT- trac organics, grey, stiff, we	e t				GS18	50								\square	
25.0	27.8		organics, grey, sun, we	L													\square	
26.0	27.0		LIMESTONE- grey, slig weathered, medium ha	hty rd_close														
			shale partings	ia, 61000,				RC19	63		60						=	
27.0	26.5		LIMESTONE- grey, slig	htly	-								_				\square	
			weathered, medium ha shale partings	rd, close				RC20	95		73						\square	
28.0	25.0			I- 41	-												=	
29.0			LIMESTONE- grey, slig weathered, medium ha	ntiy rd, close				RC21	87		79						\square	
			shale partings					RUZI	01		19						=	
30.0	23.5		End of Borehol	е	29.90-	<u>191999999999</u>											\equiv	
					B	OREHOL											\equiv	
31.0																	\square	
3E 32.0																	\square	
													_				\equiv	_
33.0													1				\downarrow	_
													+				\equiv	_
34.0													_				\downarrow	_
35.0													_				\equiv	_
																	\equiv	_
36.0																	\downarrow	
NOTES	:																	

REFER	ENCE N	0.:	T020548-A2	-						ENCLO	JSUF	KE N	0.:			1	
		G		BOREHOLE No.:	BH1-	16		_			во	RE	НС)LE	ELC)G	
				ELEVATION:	53.10	m		-			Pa	ge:	1	c	of _2	2	
CLIE	-NT· Br	iail Ca	Instruction											ENC)		
		-	onal Geotechnical Investi							🛛 🔀 SS							
	-		Jeanne D'Arc Blvd., Otta							0.0 [] S⊺				;			
DES	CRIBED	BY:	S. Wallis	CHECKED BY:		B. Va	zhbakł	nt		⊻ ∘		ter Le		(0/)			
DAT	E (STAR	T):	April 20, 2016	DATE (FINISH):		April 2	20, 201	16		H	Atte		, limit	ts (%)			
SC	ALE		STR	ATIGRAPHY		S	AMPLE	DATA		• N	Spl	it Spo	on sa	ample	ased o sed on		
	c	hy							۶Q	1	Dyn	amic	Cone	samp	ole		Vana
Depth BGS	Elevation (m)	igrap		CRIPTION OF AND BEDROCK	State	Type and Number	Recovery	OVC	etratio × / RC		i She Ser	ar St	rengt	h bas lue of	ed on ed on Soil	Lab V	'ane
663	Ele ()	Stratigraphy	SOIL	AND BEDROCK	0.	L T	Rec		Penetration Index / RQD	Ă	She	ear St	rengt	h bas	ed on		
meters	53.10		GRO	OUND SURFACE			%	ppm	N		SCA _{0kPa}	LE FC 100	DR TI _{kPa}	EST F	RESUL	_TS 200kPa	
-			AUGERED TO 6m							10	20 3	30 4	0 5	0 60) 70	80	90
E - 1.0															_		
															_		_
- 2.0															_		_
															_		
- 3.0															_		
- 4.0															_		
4.0															_		
5.0															_		
6.0	47.0		CLAY SOME SILT - gre	y, very stiff, moist to wet		SS1	96		2								
7.0			0		F	V1	90		2				S	=4.3	-		
- 7.0															-		
8.0						TW1						s	=6.6_		•		
						f V2							Δ		—		\square
9.0					k		100		1						_		
- 10.0					Ľ	SS2 V3	100		1					_S=5.6	6		
															_		
-11.0					\square	SS3	100								ю		
E					Ē	1 V4							2	H	—		
12.0							100							\square	—		
13.0					Ľ	SS4 V5	100							S=11.	.2		
														\square	—		
0.14.0											-			\square	\mp	-	+
											-			\square	\mp	-	—
2 - 15.0											<u> </u>			\square	1		—
					H	TW2 V6					+		S=	6	\rightarrow		+
16.0															\mp		
17.0											-			\square	+	-	
1 1											+			\square	\mp	-	
= 18.0 NOTES	:	KKK															
4																	ĺ
BOREHOL																	ĺ

REFER	ENCE N	o.:	T020548-A2	-						ENCLC	SUR	RE No).:	1		
		G		BOREHOLE No.:							во	RE	HOL	E LO	G	
				ELEVATION:	53.10	m		-			Pag	je: _	2	of _2	_	
CLIE	ENT: Br	igil Co	nstruction							⊠ss	Coli			<u>ID</u>		
PRC	JECT:	Additio	onal Geotechnical Investi	gation						GS CS						
LOC	ATION:	8900	Jeanne D'Arc Blvd., Otta	wa (Orleans)						ST 🖾						
				CHECKED BY:						₹ •		er Lev	el ent (%)			
DAT	E (STAR	T):	April 20, 2016	DATE (FINISH):		April 2	0, 201	6		• N	Atte	rberg l	limits (%)		
SC	ALE		STR	ATIGRAPHY		SA	MPLE			• N	Spli Pen	t Spoo etratior	n samp	based on		
Depth BGS	Elevation (m)	Stratigraphy		SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	OVC	Penetration Index / RQD		She She Sen She Poc	ar Stre ar Stre sitivity ar Stre ket Pe	ength b ength b Value ength b netrom	ased on Fi ased on La of Soil ased on leter	ab Var	ne
meters	53.10		GRO	OUND SURFACE			%	ppm	Ν	50 10	SCAL ^{)kPa} 203	E FOI 100kF 0 40	R TES	F RESULT 50kPa 20 60 70	S l0kPa <u>80 9</u>	30
19.0					Ē	SS5 V7	100							S=4.7		
20.0																
21.0						SS6	100									
-22.0						i V8										
23.0															-	
24.0	28.5			I, some sand, and some silt	×	SS7	100		R							
25.0	2010		Borehole termina appro	ated with practical refusal at oximately 24.6m												
26.0																
-27.0																
28.0																
-29.0																
31.0																
32.0																
33.0																
34.0																
35.0																
NOTES	:															

Particle-Size Analysis of Soils

ASTM D422 (Geotechnical)

Clie	ent:			Brig	il														Lab No.:	_	G	-16-(001					
Pro	ject	t, Site:		890	0 Je	eanne	D'Ar	c Bl	vd,	Ot	ttav	va, O	N						Project No.:	-	T)205	48-A	2				
	Bor	ehole No.:						Bł	H1-'	16							_		Sample No.:	-	S	51						
	Dep	oth:						6.0	- 6.	6m	۱						_		Enclosure:	-								
	100													_	_							-	••				- 0	
														Ĭ														
	90	1																									- 10	
	80													-													- 20	
	70													-													- 30	
ssing	60												_														40	tained
Percent Passing	50																										- 50	Percent Retained
Perc																												
	40																										- 60	
	30													+													70	
	20												_	_													- 80	
	10																										90	
	0																										10	0
		001			0).01					0.	1 Dia	amet	ær (m	m)			1			10					1	00	0
				Cla	ay 8	k Silt										San							avel					
								Par	ticle	e-Si	ize		ine s as	s per	US		Mec AS		um Coarse II D-2487)		Fine)		Coa	rse			
				ę	Soil	Desc	riptio	n					Τ	G	rave	əl (9	%)		Sand (%)			с	lay &	Silt	t (%)			
	Clay, some Silt, trace Sand										╈		C)			1				9	99						
Rei	nar	ks:																										
Pei	forr	med by:						Мо	me	n S	Sia	m							Date:			N	lay 1	1, 2	016			
Vei	ifie	d by:		2120											Date: May 11, 2016													

Particle-Size Analysis of Soils

ASTM D422 (Geotechnical)

Clie	ent:	-	Bri	gil														Lab	No.	:			G	-16	-00	1					
Pro	ject, Site:	-	89	00、	Jeanr	ne D'/	Arc E	Blvd	, O	ttav	wa,	ON						Pro	ject	No	.:	_	Т	020	548	8-A2	2				
	Borehole N	lo.:						3H1·										Sam	ple I	No.:			S	S5							
	Depth:	-					18	.0 -	18.	6						_		Encl	osur	e:		_									
┝																															
	100		_									•							•					•		•	•	-		0	
	90	1																												10	0
	80																													20	0
	70																													- 30	
Percent Passing	60																		-			+				_				4	Percent Retained
Percent	50																									_				50	Percent
	40																		_							_				60	0
	30																													70	0
	20																													8	0
	10																													90	0
	0 001				0.01						.1						1						10							100 10	00
	0.001				0.01						.' [Diamo	eter	(mm)																100	
			C	Clay	& Silt							Fine			Sa	Me		um		oars	e		Fin		Fav		oar	se			
							Pa	artic	le-S	ize	Lim	its a	as p	er U	SCS	(A\$	STN	M D-24	187)												
				So	il Des	cript	ion							Gra	vel	(%)			San	d (%	b)			(Clay	/&\$	Silt	(%)	i		
	Clay, some Silt														0			0								10	0				
Rei	marks:																														•
Pei	formed by	/	M.	Sia	am	~						Date:					_	May 11, 2015													
Vei	ified by:		2120											Date:					May 11, 2015												

TABLE 1 SUMMARY OF SHEAR WAVE VELOCITY MEASUREMENTS SEISMIC SITE CLASS DETERMINATION PETRIE'S LANDING - PHASE II CUMBERLAND, ON

Line 1				Line 2								
Layer No.	Depth (m bgs)		Thickness V _s		di/V _{si}	Layer No.	r No	Depth (m bgs)		Thickness V _s		d _i /
	From	То	m	m/s		Layer NO.	From	То	m	m/s	- u _i /	
1	6.0	6.5	0.5	163	0.0028	1		6.0	6.4	0.4	176	0.00
2	6.5	8.3	1.8	158	0.0115	2	2	6.4	8.1	1.7	219	0.00
3	8.3	10.5	2.3	144	0.0157	3	}	8.1	36.0	27.9	297	0.09
4	10.5	13.4	2.8	203	0.0139							
5	13.4	16.9	3.5	262	0.0135							
6	16.9	36.0	19.1	345	0.0554							
Total 30.0			0.1127		Total 30.0				0.10			
Average Shear Wave Velocity Along the Line (m/s)			266		Average Shear Wave Velocity Along the Line (m/s)				28			

(Assumed founding level at 6.0 m below ground surface)							
Line 2							
Layer No.	Depth (m bgs)	Thickness	Vs	d _i /V _{si}		
	From	То	m	m/s	u _i / v _{si}		
1	6.0	6.4	0.4	176	0.0023		
2	6.4	8.1	1.7	219	0.0077		
3	8.1	36.0	27.9	297	0.0939		
	Total		30.0		0.4000		
A	0.1039						
Average Shear Wave Velocity Along the Line (m/s) 289							

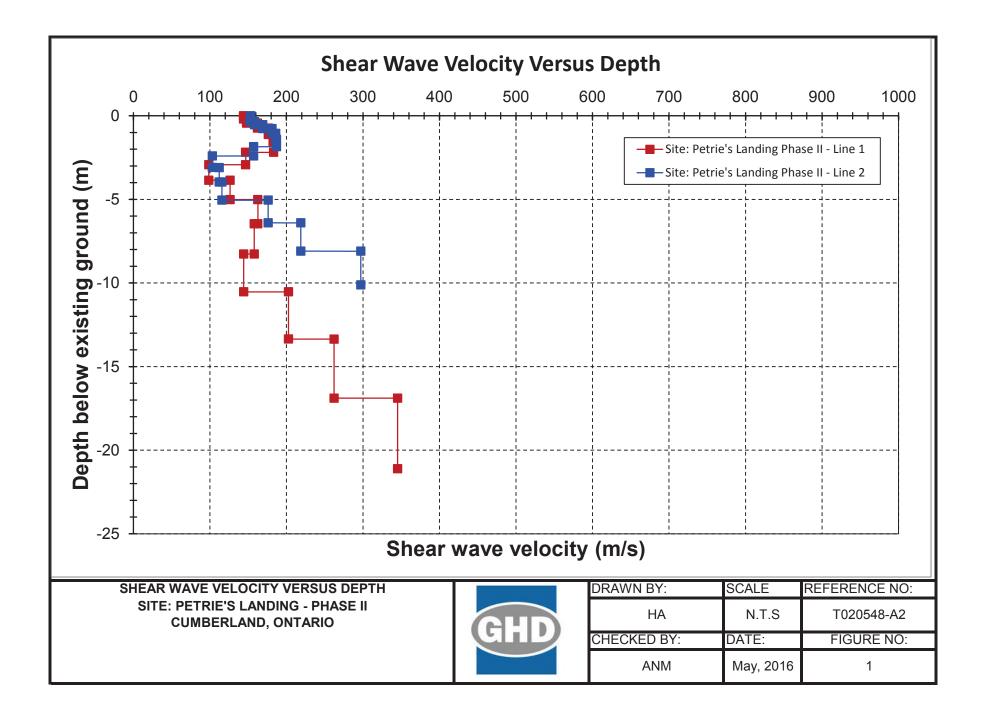
Average VS₃₀ = **Recommended Site Class:**

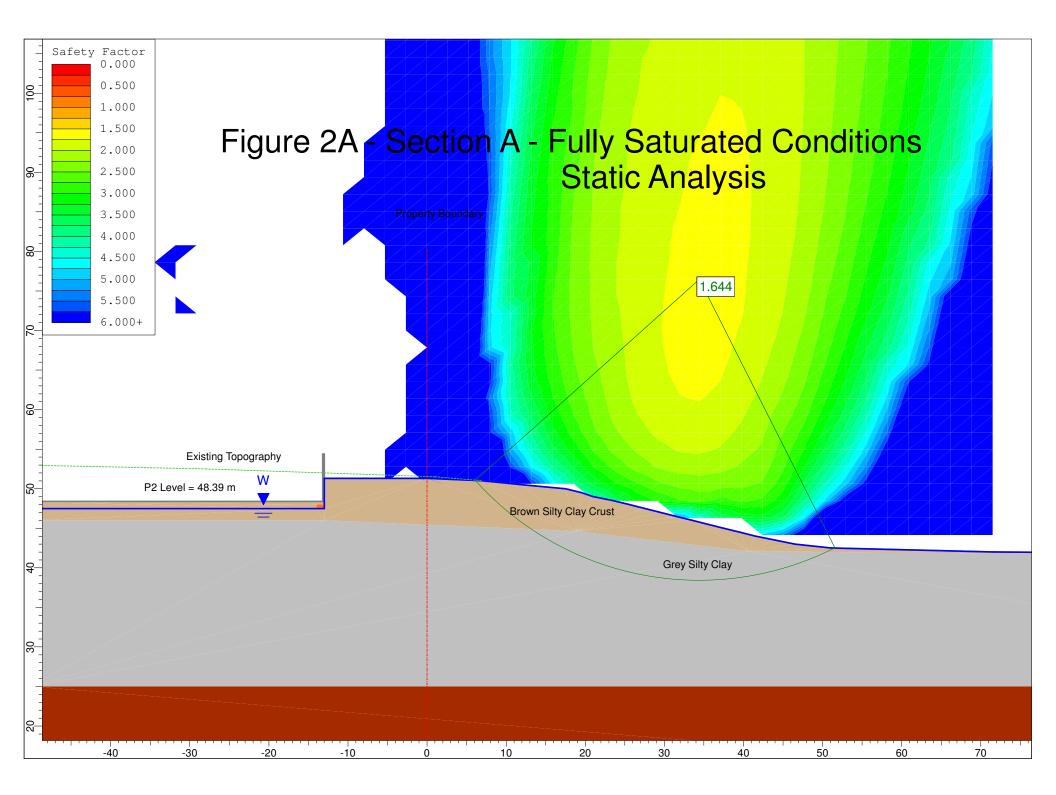
Notes:

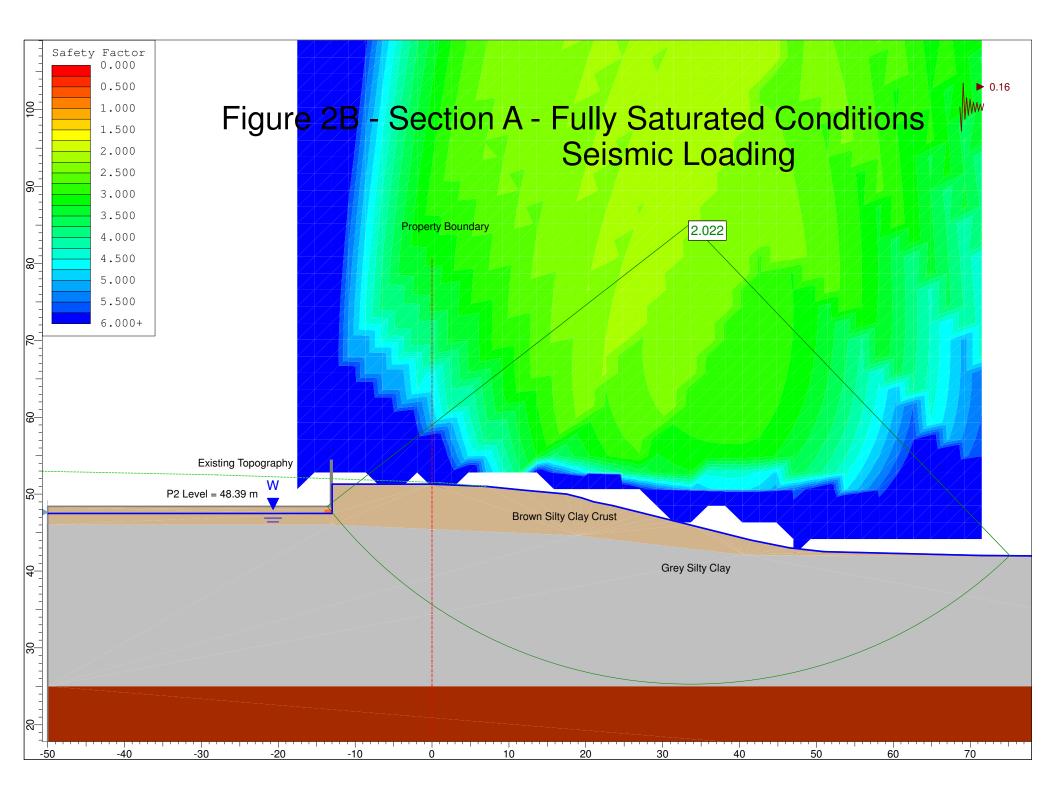
1 - The Seismic Site class is recommended in accordance to Table 4.1.8.4.A of the National Building code of Canada 2010 and based on the lowest measured average shear wave velocity measured along the investigated lines.

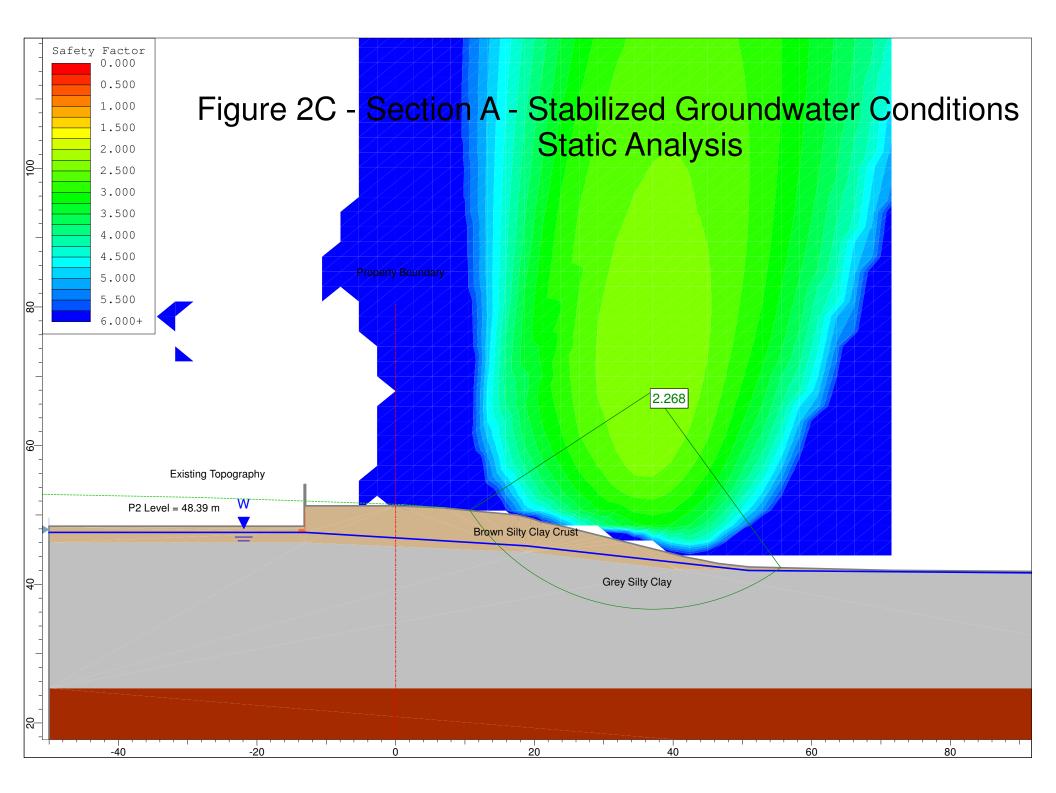
277

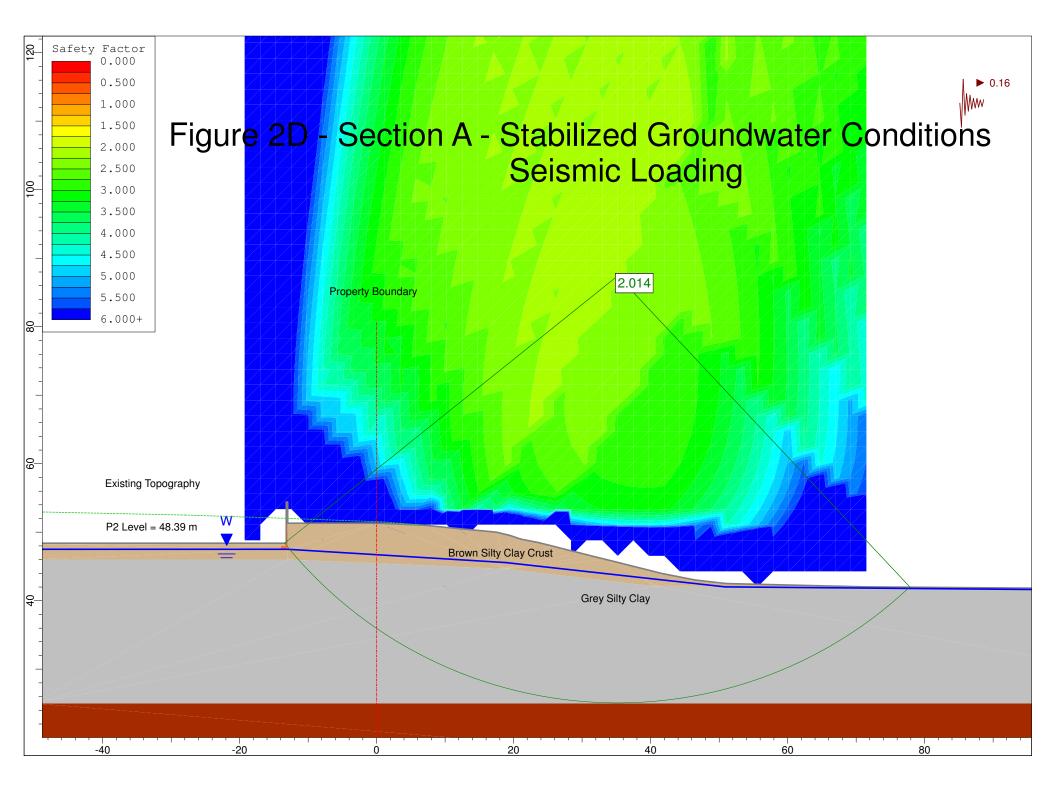
D

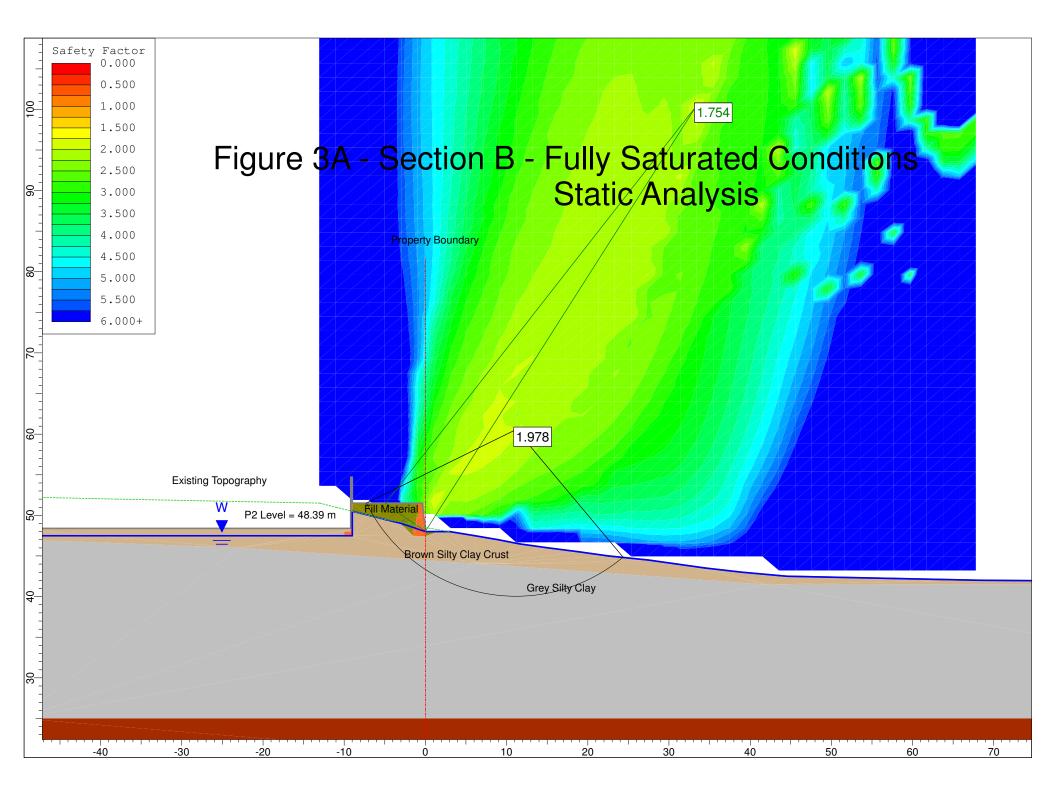

m/s Subjected to Code

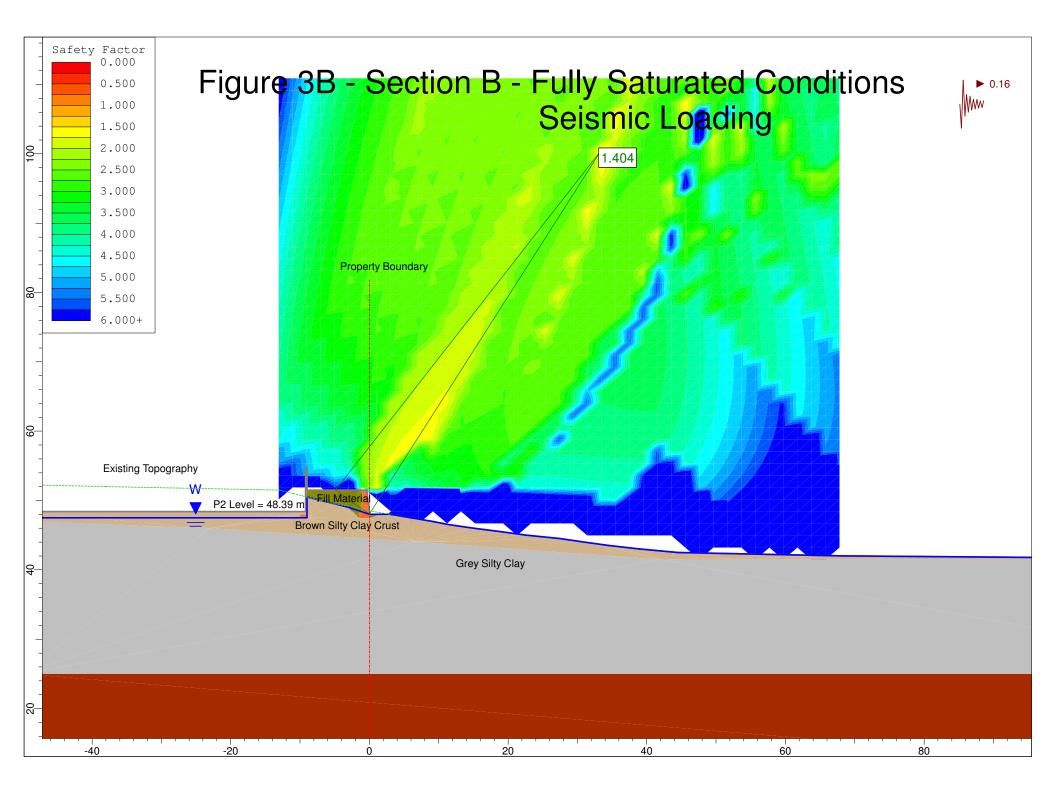

requirements

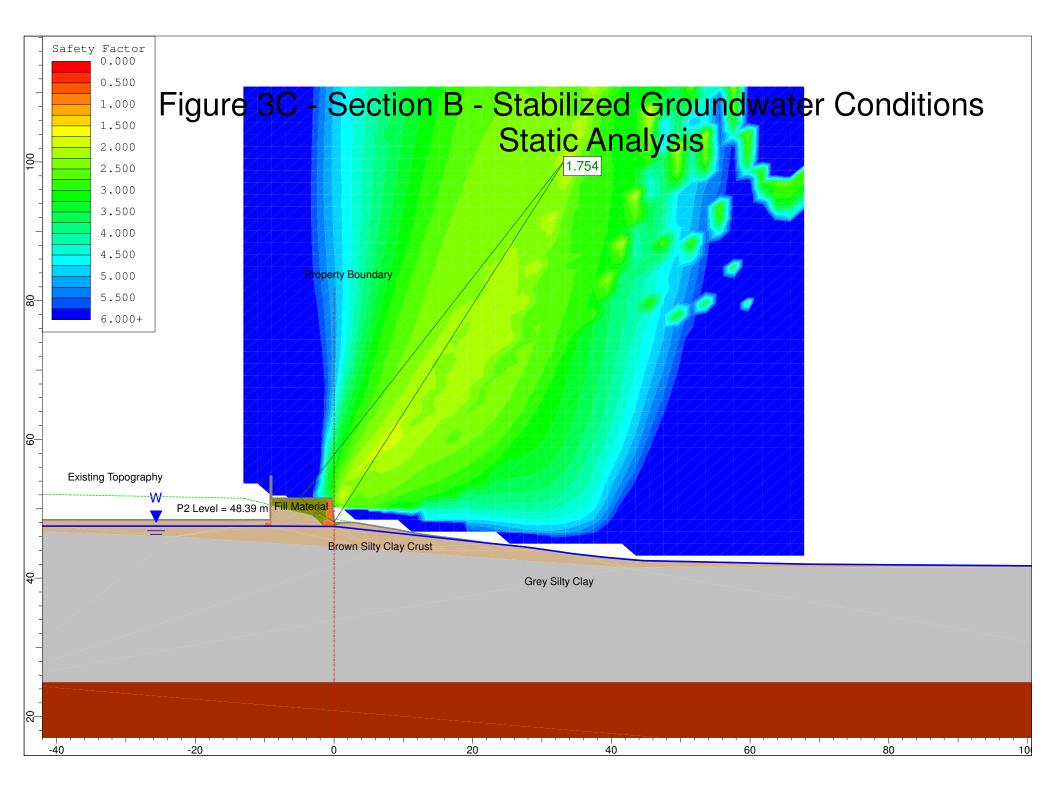

2 - VS_{30} is calculated based on the average shear wave velocity below the proposed founding elevation.

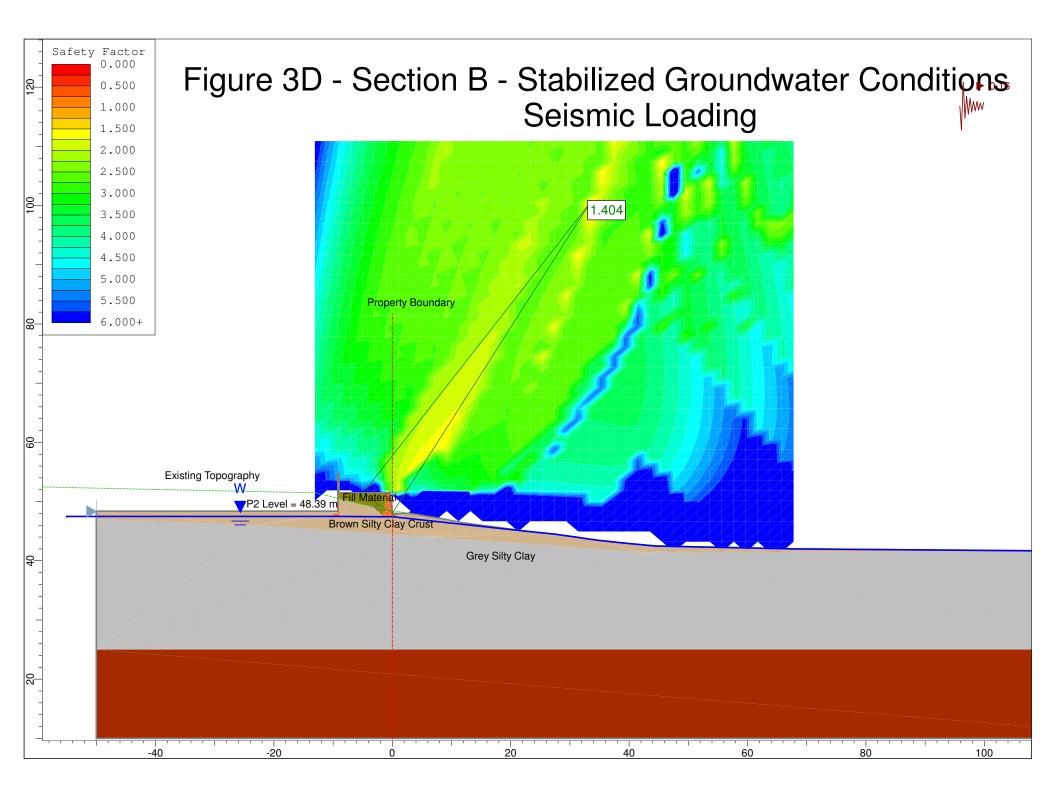

3 - Site Classes A and B are only applicable if footings are founded on bedrock or there is no more than 3.0 m of soil between founding elevation and bedrock.

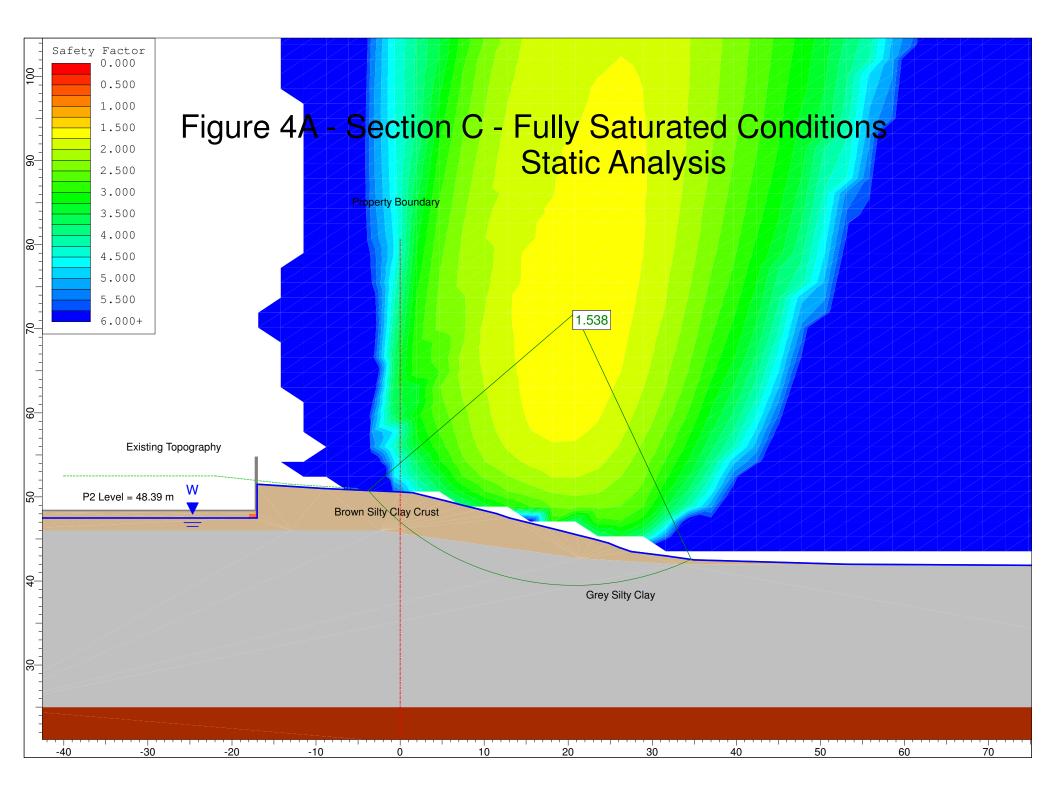

4 - The recommended site class is only applicable if site conditions for Site Class F (liquefiable soil/soft soil layers more than 3.0 m thick) are not applicable.

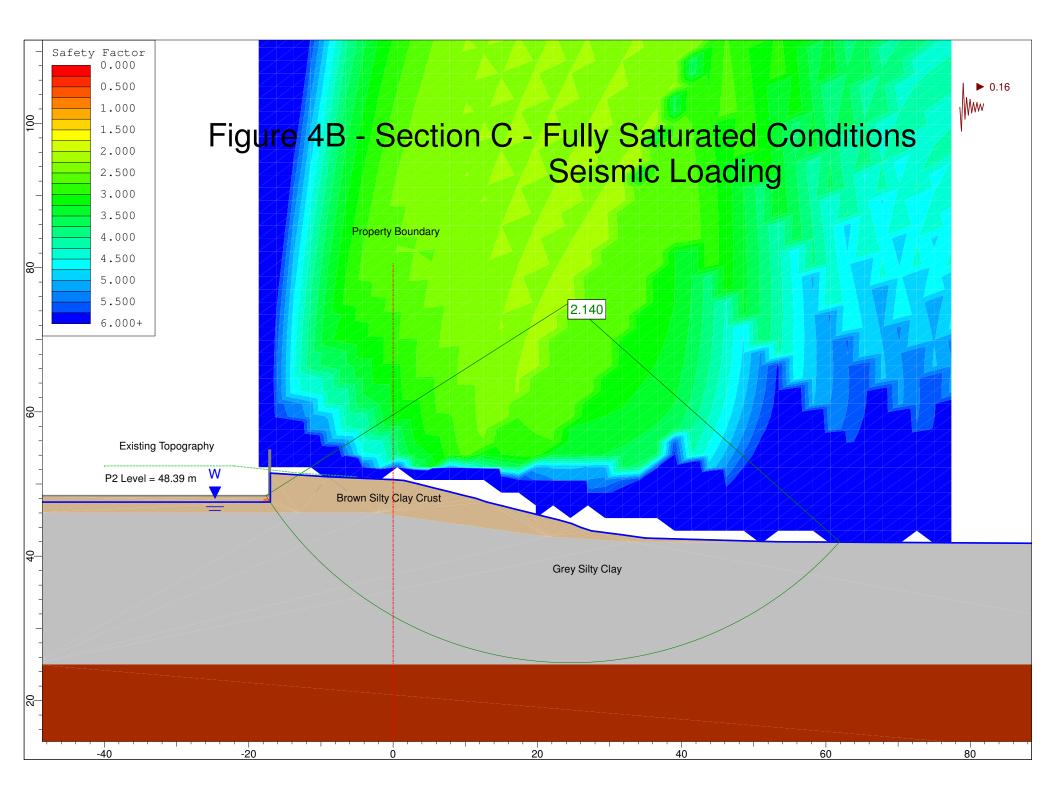


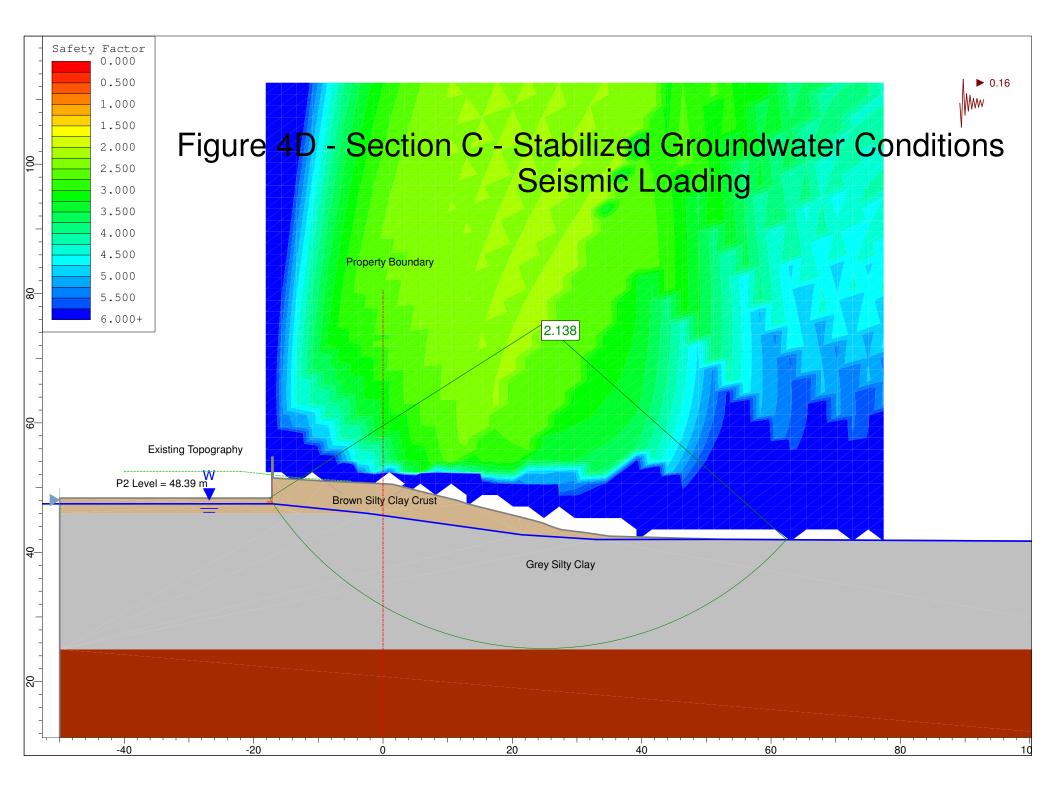


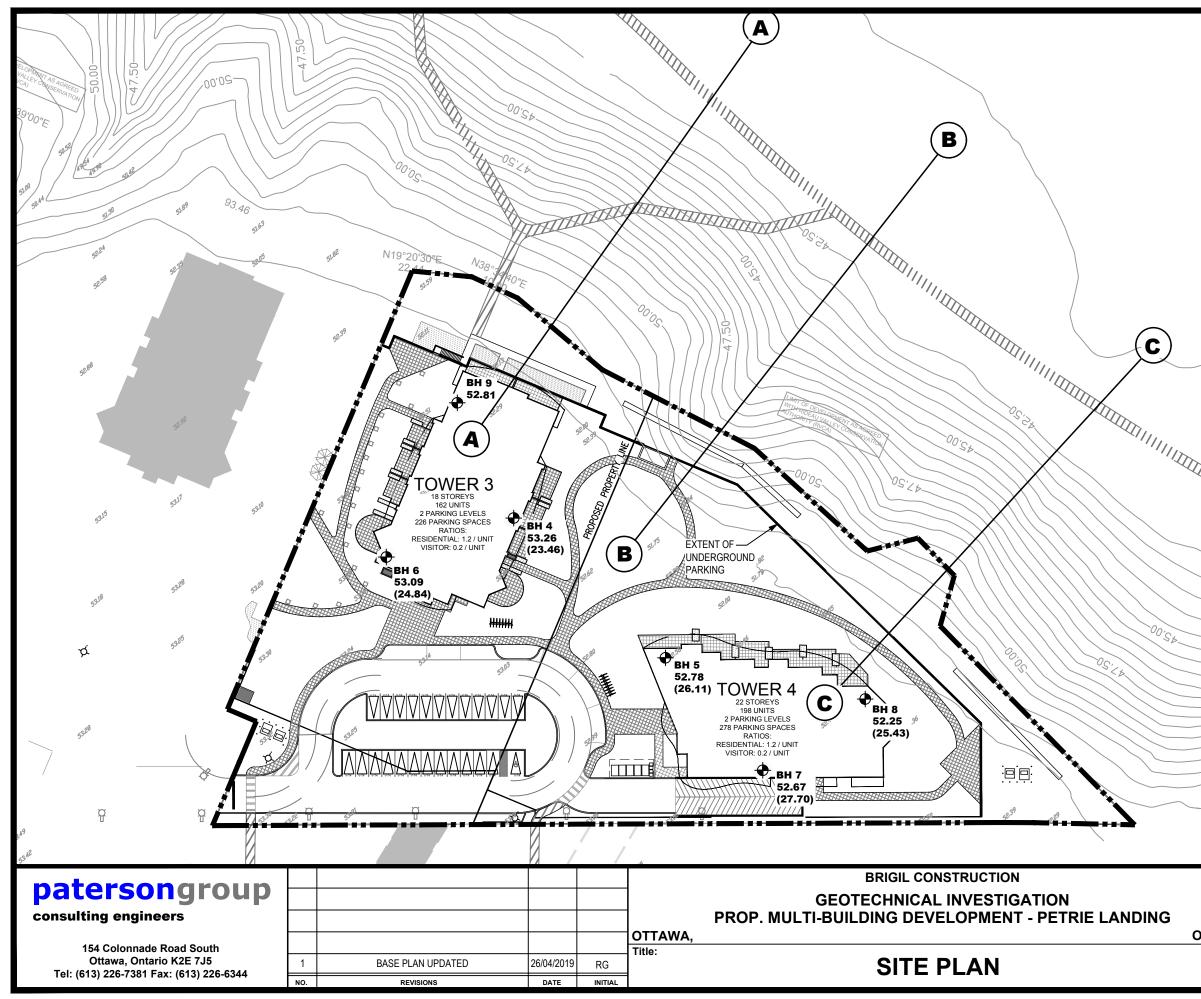












			- - - - - - - - - - - - - - 		
					~
	24				
6	LEGEND:			411	
	+ 1	BOREHOLE LO	OCATION		
	53.46	GROUND SUR	FACE ELEV	ATION (m)	
	(26.99)	PRACTICAL D	CPT REFUS	AL ELEV. (m)	
		CROSS SECTI	ON LOCATI	NC	
		LOCATIONS A S PROVIDED E (LTD.			n.\aritheed.classifications.com/actions.com/actions.com/actions.com/actions.com/actions.com/actions.com/actions
	SCALE: 1:750				\nr13908_
l	0 10	20	30	50m	\nd:3908
	Scale:		Date:		hod 30xy
	Drawn by:	1:750	Report No.	04/2019	echnical
	_	RCG	-	PG3908-LET.03	ins\neut
ONTARIO	Checked by:	FA	Dwg. No.: P	G3908-2	ad drawin
	Approved by	/: FA	Revision N		n-hautor