2596 Carp Road Transportation Impact Assessment

Step 2 Scoping Report

Prepared for:

1384341 Ontario Ltd. 9094 Cavanagh Road Ashton, ON KOA 1B0

Prepared by:

March 2019

PN: 2019-04

Table of Contents

1	Scree	ning	1
2	Existir	ng and Planned Conditions	1
2.1	Prop	posed Development	1
2.2	Exist	ting Conditions	3
2.	2.1	Area Road Network	3
2.	2.2	Existing Intersections	3
2.	2.3	Existing Driveways	3
2.	2.4	Cycling and Pedestrian Facilities	3
2.	2.5	Existing Transit	4
2.	2.6	Existing Area Traffic Management Measures	4
2.	2.7	Existing Peak Hour Travel Demand	4
2.	2.8	Collision Analysis	5
2.3	Plan	ned Conditions	7
2.	3.1	Changes to the Area Transportation Network	7
2.	3.2	Other Study Area Developments	7
3	Study	Area and Time Periods	7
3.1	Stud	ly Area	7
3.2	Time	e Periods	7
3.3	Hori	zon Years	7
4	Exem	otion Review	7
5	Summ	nary and Conclusion	9
List o	of Fig	ures	
	_	Context Plan	1
•		Plan	
•		y Area Cycling Network	
_		ing Traffic Counts	
_		y Area Collision Records – Representation of 2014-2016	
-		ables	
Table 1	L: Inters	ection Count Date	4
Table 2	2: Existi	ng Intersection Operations	5
		ion Summary	
Table 4	l: Exem	ption Review	7
		nmended Additional Exemptions	

List of Appendices

Appendix A – TIA Screening Form and Certification Form

Appendix B – Turning Movement Count Data

Appendix C – Synchro Worksheets – Existing Conditions

Appendix D – Collision Data

Appendix E – Site Vehicle Operation Estimates

1 Screening

This study has been prepared according to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines. Accordingly, a Step 1 Screening Form has been prepared and is included as Appendix A, along with the Certification Form for TIA Study PM. As shown in the Screening Form, a TIA is required including the Design Review component and the Network Impact Component.

2 Existing and Planned Conditions

2.1 Proposed Development

The proposed development, located at 2596 Carp Road, is within the Carp Road Corridor Rural Employment zone. The site is zoned as RG5, RG5, and RG5[275r]-h Rural General that permits retail limited to the sale of agricultural, construction, gardening or landscape-related products, equipment or supplies. The proposed development is for a concrete batching plant and related services. The site will access Carp Road at the existing driveway location, opposite Cavanmore Road, as a full movement access. The anticipated full build-out and occupancy horizon is 2022. Figure 1 illustrates the Study Area Context. Figure 2 illustrates the proposed concept plan.

Figure 1: Area Context Plan

2.2 Existing Conditions

2.2.1 Area Road Network

Carp Road: Carp Road is a City of Ottawa arterial road with a two-lane rural cross-section including a paved shoulder. The posted speed limit is 80 km/h. The Ottawa Official Plan reserves a 37.5 metre right of way south of Richardson Side Road and the Carp Road Corridor Community Design Plan identifies 30.0 metres north to the north.

Richardson Side Road: Richardson Side Road is a City of Ottawa arterial road with a two-lane rural cross-section including a paved shoulder. The posted speed limit is 80 km/h and the right-of-way is 26.0 metres.

Cavanmore Road: Cavanmore Road is a City of Ottawa collector road with a two-lane unpaved rural cross-section. The unposted speed limit is 80 km/h. The right-of-way is 13.5 metre at Carp Road and expands to 26.0 metres to the west.

Cardevco Road: Cardevco Road is a City of Ottawa local road with a two-lane rural cross-section with gravel shoulders. The posted speed limit is 40 km/h and the right-of-way is currently 27.0 metres.

2.2.2 Existing Intersections

Carp Road / Richardson Side Road

The intersection of Carp Road at Richardson Side Road is a signalized intersection with auxiliary left turn lanes on the north and south bound approaches. No turn restrictions were noted.

2.2.3 Existing Driveways

There are existing driveways on both side of Carp Road within 200 metres of the proposed site access. None of the driveways would provide access to significant traffic generators and would be captured within the existing turning movement counts at the adjacent intersection.

2.2.4 Cycling and Pedestrian Facilities

No pedestrian facilities are provided within the vicinity of the site. Paved shoulders are provided along Carp Road and Richardson Side Road.

Carp Road and Richardson Side Road are designated as City spine routes and Cavanmore Road is designated as a local route.

Figure 3 illustrates the cycling networks in the study area.

Figure 3: Study Area Cycling Network

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: February 22, 2019

2.2.5 Existing Transit

Route 303 runs along Carp Road on Wednesdays only, between Dunrobin and Carlingwood Mall. The route has a single trip during the AM peak and the PM peak. No other existing routes currently exist.

2.2.6 Existing Area Traffic Management Measures

There are no existing area traffic management measures within the Study Area.

2.2.7 Existing Peak Hour Travel Demand

Existing turning movement counts were acquired from the City of Ottawa for the existing Study Area intersection. Table 1 summarizes the intersection count dates.

Table 1: Intersection Count Date

Intersection	Count Date	
Carp Rd @ Richardson Side Rd	Thursday, May 04, 2017	

Detailed turning movement count data is included in Appendix B. Figure 4 illustrates the existing traffic counts and Table 2 summarizes the existing intersection operations. The level of service is based on the HCM criteria for average delay at signalized intersections. Detailed turning movement count data is included in Appendix B and the synchro worksheets are provided in Appendix C.

Figure 4: Existing Traffic Counts 68(70) 26(111) 38(91) 20(20) Richardson Side 118(79) 155(148) ## AM Volume

Table 2: Existing Intersection Operations

			0.0.0 = . =	·g ····te··ocet·	on operation.				
Interception	Long	AM Peak Hour			PM Peak Hour				
Intersection	Lane	LOS	Delay	V/C	Q (95 th)	LOS	Delay	V/C	Q (95 th)
	EB	D	40.2	0.79	73.3	С	23.8	0.55	53.8
C D 1 0	WB	С	23.1	0.49	30.7	Ε	64.4	0.92	86.8
Carp Road &	NBL	Α	9.0	0.17	16.4	В	18.6	0.52	62.1
Richardson Side Road	NBT/R	В	11.9	0.54	102.9	В	15.0	0.54	116.8
Signalized	SBL	Α	9.6	0.18	15.0	В	15.2	0.35	34.1
Signulized	SBT/R	Α	9.9	0.39	68.1	В	13.8	0.46	95.0
	Overall	В	17.6	-	-	С	23.9	-	-

Overall, the intersection of Carp Road and Richardson Side Road operates well during the AM and PM peak hours. The eastbound approach experiences the highest delay during the AM peak with over40 seconds of delay, and the westbound approach experiences the highest delay during the PM peak with over 64 seconds of delay. During both peak hours, the northbound through/right-turn lane have the longest 95th percentile queues with each potentially over 100m long. The GB Pre-Fab Garden Sheds access on the eastbound approach may become blocked during both peak hours.

2.2.8 Collision Analysis

Collision data has been acquired from the City of Ottawa for five years (2013-2017) prior to the commencement of this TIA at each of the Study Area intersections. Table 3 summarizes the collisions for the study area and Figure 5 illustrates a representation of the collision locations in the study area.

Table 3: Collision Summary - 2013-2017

		Number	%
Total (Collisions	54	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	7	13%
	Property Damage Only	47	87%
	Approaching	3	6%
Initial Impact Type	Angle	7	13%
Initial Impact Type	Rear end	13	24%
	Turning Movement	6	11%

	SMV Other	21	39%
	SMV Unattended	1	2%
	Other	3	6%
	Dry	34	63%
	Wet	12	22%
Road Surface Condition	Loose Snow	5	9%
	Packed Snow	1	2%
	Ice	2	4%
Pedestriar	Involved	0	0%
Cyclists I	nvolved	0	0%

Figure 5: Study Area Collision Records – Representation of 2014-2016

The collisions within the study area are generally property damage collisions (83%) with the primary impact types of rear end (24%) and single motor vehicle other (39%), with the road conditions area typically dry (63%) or wet (22%). Of the 54 total collisions, 13 (or 24%) occurred at the intersection of Carp Road and Richardson Side Road, 12 (or 22%) along Richardson Side Road between Carp Road and Highway 417 interchange, and 11 (or 20%) Richardson Side Road between Carp Road and Oak Creek Road. Overall no trends were identified that would be exacerbated by the operation of the concrete batching plant.

Collision data is included in Appendix C.

2.3 Planned Conditions

2.3.1 Changes to the Area Transportation Network

The subject development is within the Carp Road Corridor Rural Employment area. No transportation network changes are identified, and individual transportation impact assessments should recommend any local improvements to support specific developments.

No improvements are identified within the Transportation Master Plan Ultimate Network.

2.3.2 Other Study Area Developments

The following developments are listed on the City's Development Application Search tool:

- 2491 Carp Rd proposed to rezone to allow the sale of sheds within the existing business
- 2688 Carp proposed construction of a repair garage and office, with a total 599 square metres, to support the existing heavy equipment yard/business
- 512 William Mooney Road & 2349 to 2437 Carp Road proposed landfill with less than 5 trips anticipated to travel north along Carp Road to the Richardson Side Road intersection
- 127 Cardevco Rd proposed new 2-storey 670 square metre warehouse within the existing business park
- 210-220 Maple Creek Ct proposed new 7,432 square metre warehouse that will consist of multiple phases for four tenants

With the exception of the proposed landfill, no traffic studies were prepared for these applications and it is assumed that they will have minimal impact on the traffic volumes at the Carp Road and Richardson Side Road intersection and be accounted for within the background growth projections.

3 Study Area and Time Periods

3.1 Study Area

The study area will include the intersection of Carp Road and Richardson Side Road intersection and will include examining Carp Road as a Boundary Road.

3.2 Time Periods

As the proposed development is composed entirely of concrete batching plant the AM and PM peak hours will be examined.

3.3 Horizon Years

The anticipated build-out year is 2022. As a result, the full build-out plus five years horizon year is 2027.

4 Exemption Review

Table 4 summarizes the exemptions for this TIA.

Table 4: Exemption Review

Module	Element	Explanation	Exempt/Required		
Design Review Component					
4.1 Development	4.1.2 Circulation and Access	Only required for site plans	Required		
Design	4.2.3 New Street Networks	Only required for plans of subdivision	Exempt		
4.2 Parking	4.2.1 Parking Supply	Only required for site plans	Required		

Module	Element	Explanation	Exempt/Required
	4.2.2 Spillover Parking	Only required for site plans where parking supply is 15% below unconstrained demand	Exempt
Network Impact Comp	onent		
4.5 Transportation Demand Management	All Elements	Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time	Exempt
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	Exempt
4.8 Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess of equivalent volume permitted by established zoning	Exempt

In addition to the above TIA requirements and exemptions, the following exemptions in Table 5 are also recommended for this TIA.

Table 5: Recommended Additional Exemptions

Module	Element	Explanation
Forecasting		
3.1 Development Generated Travel Demand	All Elements	Trip generation trigger was not met, therefore trip and mode share forecasting is not required for the subject site. An estimation of the on-site activity (developed for the noise assessment) is approximately 29 vehicles per hour. With office staff and operators assumed to start at 7am on site, the estimated inbound volume would be approximately 35 vehicles and outbound 10 vehicles. Additionally, the anticipated operation of 7am-7pm day shift is outside the peak hours of the adjacent roadways. The anticipated trip distribution will be predominantly to the south (95%) to Highway 417 and limited to the north (5%) as Carp Road is a designated trucking route. For non-truck vehicles and local trips, the distribution will see the south (75%) remain the primary route, east (15%) having a much lower usage, and nominal trips coming from the west and north (5% each). Reference data is provided in Appendix E.
3.2 Background Network Travel Demand	All Elements	No intersection constraints were noted for the existing volumes and the background growth would continue to be accommodated within the network.
3.3 Demand Rationalization	All Elements	Subject to the trip generation trigger not being met, no demand rationalization is required as part of this TIA. The existing conditions summarized in Section 2.2.7 illustrates residual capacity in the existing road network and the network can support the anticipated trip generation of the proposed development.

Module	Element	Explanation
Design Review Component		
4.1 Development Design	4.1.1 Design for Sustainable Modes	The rural nature of the site does not provide any pedestrian, cycling, and transit service/facilities. Furthermore, the internal site is a function of the concrete batching plant operation and has been prepared to support that operation. Therefore, the need to for a TIA to outline the internal auto parking and pedestrian access to the site office is not required.
4.3 Boundary Street Design	All Elements	No boundary street frontage is limited to the access to the site and limited opportunity exists to increase the MMLOS of Carp Road due to the lack of existing/connecting facilities, speed of the roadway, and vehicular volumes along the roadway.
4.4 Access Intersection Design	All Elements	The access intersection is anticipated to be a typical private approach design, completed as per City standards and operational requirements for site vehicles. Therefore, the need for a TIA to review the access is not required and can be completed as part of the site plan review process within the existing submission.
Network Impact Components		
4.7 Transit	All Elements	No transit service is provided in the area.
4.9 Network Intersections	All Elements	As outlined previously in this table, the low traffic generation will have minimal impact on network intersections and sufficient capacity if currently provided to accommodate an increase in line with background growth.

5 Summary and Conclusion

The proposed development was initially submitted without the need for a TIA through the Screening Form during pre-consultation. Subsequent to the submission, the City requested that a TIA be completed for the proposed concrete batching plant at 2596 Carp Road.

In reviewing the Screening Form, the proposed site did not meet Trip Generation Trigger, met the Location Trigger solely on the Ultimate Cycling Plan classification of Carp Road as a spine route, and the Safety Trigger was met solely on the posted speed limit of Carp Road at 80 km/h. In addition to the low volumes anticipated during the daily operations, the peak site trips occurring outside the adjacent roadway peaks, and residual capacity on the network intersections further reduces the need to assess the background operations. For example, a 2% background growth would see the intersection volumes increase between 180-220 vehicles by the 2025 during the peak hours, easily accounting for the site generated trips. This increase in volume can be accommodated by the existing signal timing.

The Carp Road Corridor Rural Employment zone does not recommend any cycling facility upgrades, and paved shoulders achieve the spine corridor for a rural area. The proposed site will have limited impact on Carp Road as the only frontage is the site access. The private approach access is assumed to be full movement, consistent with the surrounding area, and is assumed to accommodate the anticipated site vehicles as per the City standards.

The collisions for the area were reviewed as part of the Screening Report, meeting the need to assess any safety risks with the proposed development. The collision review noted a single collision at the access location of Carp

Road and Cavanmore Road in 2015. The adjacent road segments experienced a one single motor vehicle collision immediately to the south and four immediately to the north involving single motor vehicles. All but one occurred in 2013.

The remaining modules and elements of the TIA Guidelines, outlined in Table 4, are internal to the site and can be reviewed as part of the existing site plan submission without the need for a TIA. At a high level, the parking spaces provided on site for employee parking is currently 50 spaces, allowing for shift change to occur and is not representative of the employees anticipated on site during normal operations. The access will be shifted south by approximately 7 metre, may be either asphalt or gravel surface, and will maintain the 8 metre radius to tie into the existing shoulder.

Given the above, it is the recommendation of this Screening Report that the TIA requirements for the proposed development have been met and no further review or assessment of the development is required.

Prepared By:

A. J. HARTE

March 22, 2019

Andrew Harte, P.Eng.

Senior Transportation Engineer

Reviewed By:

hristopher Gordon, P.Eng

Senior Transportation Engineer

Appendix A

TIA Screening Form and PM Certification Form

City of Ottawa 2017 TIA Guidelines Screening Form

1. Description of Proposed Development

Municipal Address

Description of Location

Land Use Classification

Development Size (units)

Development Size (m²)

Number of Accesses and Locations

Phase of Development

Buildout Year

Plant 2019

Address

If available, please attach a sketch of the development or site plan to this form.

2. Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size
Single-family homes	40 units
Townhomes or apartments	90 units
Office	3,500 m²
Industrial	5,000 m ²
Fast-food restaurant or coffee shop	100 m ²
Destination retail	1,000 m²
Gas station or convenience market	75 m ²

^{*} If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

If the proposed development size is greater than the sizes identified above, the Trip Generation Trigger is satisfied.

3. Location Triggers

	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?	V	
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone?*		V

^{*}DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

If any of the above questions were answered with 'Yes,' the Location Trigger is satisfied.

4. Safety Triggers

	Yes	No
Are posted speed limits on a boundary street are 80 km/hr or greater?	V	
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?		V
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?		/
Is the proposed driveway within auxiliary lanes of an intersection?		/
Does the proposed driveway make use of an existing median break that serves an existing site?		V
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		/
Does the development include a drive-thru facility?		

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.

5. Summary

	Yes	No
Does the development satisfy the Trip Generation Trigger?	,	V
Does the development satisfy the Location Trigger?		
Does the development satisfy the Safety Trigger?	V	

If none of the triggers are satisfied, <u>the TIA Study is complete</u>. If one or more of the triggers is satisfied, <u>the TIA Study must continue into the next stage</u> (Screening and Scoping).

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check $\sqrt{\text{appropriate field(s)}}$] is either transportation engineering $\sqrt{\text{or}}$ or transportation planning \square .
- License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

Dated at Ottawa (City)	this 20 day of September	, 2018
Name:	Andrew Harte (Please Print)	_
Professional Title:	Professional Engineer	
Signature	of Individual certifier that s/he meets the above four criteria	

Office Contact Information (Please Print)
Address: 13 Markham Avenue
City / Postal Code: Ottawa / K2G 3Z1
Telephone / Extension: (613) 697-3797
E-Mail Address: Andrew.Harte@CGHTransportation.com

Appendix B

Turning Movement Counts

11 84 Miovision *****0 36994 4 297 Total 38 **₽**↓∘ 3 WO No: Device: Turning Movement Count - Peak Hour Diagram CARP RD @ RICHARDSON SIDE RD ₫\ **→ (<t**) -Cars 257 36 0 113 105 U **₹** 806 Ł 45 461 418 377 4 <u>ح</u> **—** 296 0 0 612 AM Period 07:15 08:15 Peak Hour CARP RD Ł 89 13 55 69 12 81 1180 **+** Ç **♣** 94 378 320 28 ٦ § **}** 4 រា ٢ 502 99 Survey Date: Thursday, May 04, 2017 146 Cars ***** Heavy Vehicles **€** RICHARDSON SIDE RD **%1** Start Time: 07:00 116 152 20 + ***** ¹² 7 288 409

Comments

2019-Feb-04

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram CARP RD @ RICHARDSON SIDE RD

Comments

o 1 of 4 2019-Feb-04

Page 2 of 4

11 758 Miovision *****0 36994 Total 20 8 **₽**↓∘ 3 WO No: Device: Turning Movement Count - Peak Hour Diagram CARP RD @ RICHARDSON SIDE RD ₫\ **→ (<t**) -Cars 175 0 U 370 Ł 99 45 325 264 298 34 <u>ح</u> **\$** 434 11:45 12:45 **MD Period** Peak Hour CARP RD Ł 90 98 69 10 79 **+** 922 Ç **♣** 650 347 306 41 ٦ 88 **+** 12 រា 1 ٢ 432 56 Survey Date: Thursday, May 04, 2017 28 Cars **<** Heavy Vehicles **€** 13 RICHARDSON SIDE RD **%1** Start Time: 07:00 35 91 **♣** ₹ *** ♣** 55 267

2019-Feb-04

Page 3 of 4

Ottawa

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram CARP RD @ RICHARDSON SIDE RD

Miovision

WO No: Device:

36994

Survey Date: Thursday, May 04, 2017

Start Time: 07:00

1 1 88 *****0 **4**0 % **♣** 88 20 **Z**. ≥ ₫ **Ŏ** Cars **(<t**) -275 L U 83 **₹** 805 450 52 369 412 43 פ ξ **4 +** 16:00 17:00 PM Period Peak Hour CARP RD t 116 Ł 174 122 9 33 207 **+** Ç 1342 **♣** 848 403 377 26 0 0 7 611 20 រា ٣ 28 279 Cars **<**\$\circ\$ \circ\$ Heavy Vehicles **₹**0 ° RICHARDSON SIDE RD **%1** ~ 145 20 77 ***** 242 ***** 88 4 11 581

Comments

Comments

Page 4 of 4

Turning Movement Count - Full Study Diagram CARP RD @ RICHARDSON SIDE RD Miovision

Device:

36994

#0M

Survey Date: Thursday, May 04, 2017

Comments

Page 1 of 1

2019-Feb-04

2019-Feb-04

Page 1 of 1

Transportation Services - Traffic Services

Work Order 36994

Turning Movement Count - Full Study Summary Report CARP RD @ RICHARDSON SIDE RD

Survey Date: Thursday, May 04, 2017	te:	Inurs	aay, M	ay 04,	71.07				Iotal Observed U-Lurns	pser	ed C	nrns					AAD	AADI Factor	ö
							_	Northbound:	0 :pur		South	Southbound:	0				06:		
							_	Eastbound:	0 :pu		West	Westbound:	0						
								_	Full Study	dy									
				CARP RD	RD						IL.	ICHA	RDSO	RICHARDSON SIDE RD	≣ RD				
	_	Northbound	puno		0)	Southbound	pund		ı	_	Eastbound	pund			Westbound	pund			
Period	₽	ST	RT	A TO	5	ST	R	SB TOT	STR	₽	ST	R	10E	h	ST	R	TOT	STR	Grand Total
07:00 08:00	72	413	104	589	28	373	6	440	1029	18	110	170	298	31	24	99	120	418	1447
00:60 00:80	35	362	136	230	83	337	16	436	1026	10	87	142	239	48	34	47	129	368	1394
09:00 10:00	101	295	82	481	40	278	10	328	808	10	99	153	228	23	36	43	132	360	1169
11:30 12:30	78	283	62	423	92	339	4	445	898	6	33	98	128	52	38	69	159	287	1155
12:30 13:30	93	314	89	475	48	295	6	352	827	6	45	92	146	22	46	62	163	309	1136
15:00 16:00	131	332	26	519	75	426	13	514	1033	12	49	72	133	78	84	73	235	368	1401
16:00 17:00	207	412	\$	703	122	403	23	548	1251	20	77	145	242	91	109	20	270	512	1763
17:00 18:00	152	334	78	564	70	324	4	408	972	12	48	93	156	66	81	62	242	398	1370
Sub Total	926	2745	673	4344	288	2775	108	3471	7815	103	514	953	1570	202	452	491	1450	3020	10835
U Turns				0				0	0				0				0	0	
Total	926	2745	673	4344	588	2775	108	3471	7815	103	514	953	1570	202	452	491	1450	3020	10835
EQ.12Hr 1287 3816 935 6038 817 3857 150 4825 10863 143	1287	3816	935	6038	817	3857	150	4825	10863	143	714	1325	2182	705	628	682	2015	4197	15060
NOIG. HIGSE V	aines a	i e calcr	liated D	idninii	n find	(Otalis D)	a a	ріоріта	e expans	OII Iacit				60.					
AVG 12Hr	1158	3434	842	5434	736	3472	135	4342	9776	129	643	1192	1964	634	292	614	1814	3778	13554
Note: These volumes are calculated by multiplying the Equivalent 12 hr. totals by the AADT factor.	olumes	are cal	culated	by multi	plying th	ne Equiva	alent 12	2 hr. tota	Is by the	AADT f	actor.		•	.90					
AVG 24Hr	1518		4499 1103	7119	964	4548	177	2688	12807	169	842	1562	2573	831	741	802	2376	4949	17756

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

JUMMA	2	-	ì	٠	•					,		,	•				,		
				<u> </u>	<u>≥</u>	love	me	i C	onn	<u>1</u>	2	Turning Movement Count - 15 Minute Summary Report	Sul	Ĕ	ary I	Zep,	T C		
					CA	CARP RD		(9) R	SH	ARE	@ RICHARDSON SIDE RD	S	DE	RD.					
Survey Date:	te:	•	Thurs	day, I	May (Thursday, May 04, 2017	17		Tol Northbound: Eastbound:	Total und: ind:	Total Observed U-Turns nd: 0 Southbound: nd: 0 Westbound:	Sc W	d U-Turns Southbound: Westbound:		0				
			S	CARP RD	۵						RIC	RICHARDSON SIDE RD	SON	SIDE	ZD.				
	Š	Northbound	Þ		Š	Southbound	pu				Eastbound	ъ		We	Westbound				
Time Period	Þ	ST	R	≥₽	占	ST	R	s Į	STR	Þ	ST	RT	ᄪᅝ	5	ST	R	× t	STR	Grand Total
07:00 07:15	5	66	21	133	10	82	0	92	225	က	18	51	72	4	4	6	17	89	314
07:15 07:30	8	109	24	151	20	102	2	124	275	4	58	37	20	80	3	4	25	92	370
07:30 07:45	15	28	25	121	13	105	4	122	243	80	28	39	75	9	80	20	34	109	352
07:45 08:00	56	124	8	184	15	8	3	102	286	ю	35	43	81	13	6	22	44	125	411
08:00 08:15	22	104	30	156	20	87	9	113	269	2	24	33	62	=	2	12	28	06	359
08:15 08:30	24	93	32	149	9	95	~	11	260	က	19	20	72	15	7	7	29	101	361
08:30 08:45	21	25	4	146	17	82	4	103	249	2	20	56	48	10	10	17	37	82	334
08:45 09:00	25	81	33	139	28	9/	2	109	248	0	24	33	22	12	12	7	35	92	340
09:00 09:15	21	81	18	120	12	8	3	66	219	2	16	32	20	15	7	80	30	80	299
09:15 09:30	38	72	25	135	12	2	2	78	213	0	18	48	99	6	20	10	39	105	318
09:30 09:45	26	92	19	110	10	29	0	69	179	-	19	43	63	16	9	9	28	91	270
09:45 10:00	16	11	23	116	9	71	2	82	198	7	12	30	49	13	8	19	35	84	282
11:30 11:45	17	25	18	89	17	69	8	88	178	ю	13	20	36	15	80	18	4	22	255
11:45 12:00	24	11	24	125	25	86	4	127	252	3	9	18	27	6	7	12	28	22	307
12:00 12:15	13	89	10	93	26	82	2	116	209	2	80	27	37	4	13	21	48	85	294
12:15 12:30	22	8	10	116	24	87	2	113	229	-	9	21	78	4	10	18	42	20	299
12:30 12:45	8	69	13	100	15	77	2	94	194	2	15	25	45	13	£	13	37	42	273
12:45 13:00	21	11	20	118	15	83	က	101	219	က	13	56	45	15	15	12	42	84	303
13:00 13:15	27	78	15	120	10	63	0	73	193	2	7	18	27	15	80	56	49	92	569
13:15 13:30	27	06	20	137	œ	72	4	84	221	2	10	23	35	12	12	7	35	20	291
15:00 15:15	32	8	15	131	25	11	9	142	273	2	13	17	35	15	13	13	4	92	349
15:15 15:30	20	75	19	114	15	26	4	116	230	-	10	21	32	22	28	17	29	66	329
15:30 15:45	4	8	10	135	16	103	~	120	255	2	80	6	19	21	21	56	89	87	342
15:45 16:00	38	88	12	139	19	115	2	136	275	4	18	25	47	20	22	17	29	106	381
16:00 16:15	20	80	20	150	8	138	4	176	326	2	20	34	29	24	35	20	42	138	464
16:15 16:30	22	100	20	175	28	8	9	118	293	က	19	4	99	28	58	16	73	139	432
16:30 16:45	53	129	22	204	23	104	6	136	340	4	19	36	29	19	23	20	62	121	461
16:45 17:00	49	103	22	174	37	77	4	118	292	80	19	31	28	20	22	4	26	114	406
17:00 17:15	4	69	18	128	20	109	က	132	260	2	17	33	22	27	25	17	69	124	384
17:15 17:30	4	06	26	160	17	71	4	92	252	2	4	21	37	22	20	4	26	93	345
17:30 17:45	37	101	16	154	18	89	4	90	244	4	6	22	35	34	18	15	29	102	346
17:45 18:00	30	74	18	122	15	9/	က	94	216	4	00	17	59	16	18	16	20	42	295
	١																		

Page 1 of 1 2019-Feb-04

Transportation Services - Traffic Services Ottawa Turning Movement Count - Cyclist Volume Report

Work Order 36994

		CA	CARP RD @ RICHARDSON SIDE RD	CHARDSON	SIDE RD		
Count Dat	Count Date: Thursday, May 04, 2017	May 04, 2017				Start Time: 07:00	00:20
		CARP RD		RIC	RICHARDSON SIDE RD	E RD	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
00:80 00:20	0	0	0	-	-	2	2
08:00 00:00	0	0	0	0	0	0	0
09:00 10:00	_	0	-	0	0	0	-
11:30 12:30	0	0	0	0	0	0	0
12:30 13:30	0	0	0	-	0	-	-
15:00 16:00	0	_	-	0	0	0	-
16:00 17:00	0	_	-	2	_	က	4
17:00 18:00	0	0	0	0	_	-	-
Total	-	2	က	4	3	7	10

Comment:

Note: These volumes consists of bloydes only (no mopeds or motorcycles) and ARE NOT included in the Turning Movement Count Summary.

Page 1 of 1

2019-Feb-04

W.O. 36994

Turning Movement Count - Heavy Vehicle Report

CARP RD @ RICHARDSON SIDE RD

Thursday, May 04, 2017 Survey Date:

No. Southbound Southbound Southbound Southbound Southbound Str. Southbound Str.				Ü	CARP RD	SD.						œ	RICHARDSON SIDE RD	RDSC	N SIC	2					
Nat Nat			North	puno			South	puno				Eastb	punc			Westbo	pund	ı			
6 54 13 63 1 77 131 1 28 18 47 1 3 3 3 4 3 90 2 41 1 61 12 2 1 16 6 10 5 11 6 10 5 11 6 10 6 10 5 21 4 10 11 6 10 10 6 10 10 6 10	Time	Period	占	ST	RT	N TOT	ᆸ	ST	RT	s тот	STR	LT	ST	RT	T0T	LT	ST	RT	W TOT	STR	Grand Total
3 4	00:20		80	37	6	54	13	63	~	77	131	-	28	18	47	-	3	3	7	54	185
3 90 2 48 2 52 142 1 7 11 19 8 18 9 36 4 51 2 46 1 49 100 1 2 10 13 3 3 10 16 3 58 4 1 2 13 17 3 0 3 6 1 58 4 1 4 6 1 5 10 16 1 77 6 26 3 35 112 4 1 4 6 1 5 10 16 1 77 6 26 3 35 112 4 1 2 7 0 2 2 2 1 7 6 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1	00:80			20	9	75	6	4	~	21	126	2	2	7	15	9	10	2	77	36	162
4 51 2 46 1 49 100 1 2 10 43 3 3 3 3 3 40 46 3 68 4 36 87 2 2 13 17 3 0 3 6 1 77 6 26 3 35 112 4 1 4 6 1 5 10 16 3 29 12 14 43 0 0 1 1 0 3 4 3 485 12 4 1 2 7 0 2 29 29 3 2 1 1 1 1 1 0 3 4 4 4 1 <t< td=""><td>00:60</td><td></td><td>34</td><td>23</td><td>6</td><td>90</td><td>2</td><td>48</td><td>2</td><td>52</td><th>142</th><td>~</td><td>7</td><td>7</td><td>19</td><td>œ</td><td>18</td><td>6</td><td>35</td><td>54</td><td>196</td></t<>	00:60		34	23	6	90	2	48	2	52	142	~	7	7	19	œ	18	6	35	54	196
4 51 7 28 1 36 87 2 2 13 17 3 0 3 6 3 58 4 1 1 4 6 1 5 10 16 1 77 6 26 3 35 112 4 1 2 7 0 24 5 29 3 485 12 0 1 1 1 1 0 3 4 4 485 45 296 9 350 835 12 43 70 125 23 63 48 134 5 6 4 1 2 7 1 1 0 3 4 134 5 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11:30		6	38	4	51	2	46	~	49	100	~	2	10	13	т	6	10	16	59	129
12 43 58 4 32 0 36 94 1 1 4 6 1 5 10 14 2 2 2 2 2 2 2 2 2	12:30		12	32	4	51	7	28	~	36	87	2	2	13	17	е	0	က	9	23	110
1 77 6 26 3 35 112 4 1 2 7 0 24 5 29 3 29 2 12 14 43 0 0 1 1 1 0 3 4 30 485 29 350 835 12 43 70 125 23 63 43 134 30 48 29 9 350 83 12 43 70 125 23 63 48 134	15:00		12	43	က	28	4	32	0	36	94	~	~	4	9	-	2	10	16	22	116
0 29 2 12 0 14 43 0 0 1 1 1 0 3 4 30 486 59 350 83 12 43 70 125 23 63 48 134 30 3 3 3 3 3 4 134 3 30 4 3 3 3 4 4 14 4<	16:00		33	43	~	77	9	26	က	35	112	4	~	2	7	0	24	2	53	36	148
30 486 45 296 9 360 83 5 12 43 70 125 23 63 48 134 134 3 3 0 45 296 9 350 83 5 12 43 70 125 23 63 48 134	17:00		2	24	0	29	2	12	0	4	43	0	0	-	-	_	0	က	4	ю	48
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sub	Total	132	323	30	485	45	296	6	350	835	12	43	20	125	23	63	48	134	259	1094
132 323 30 0 45 296 9 350 835 12 43 70 125 23 63 48 134	J-Tur	ıs (Неа	vy Vet	nicles)		0				0	0				0				0	0	0
	욘	tal	132	323	30	0	45	296	6	350	835	12	43	02	125	23	63	48	134	259	1094

Page 1 of 1 2019-Feb-04

Transportation Services - Traffic Services

36994

Work Order

Turning Movement Count - Pedestrian Volume Report

ount Da	Count Date: Thursday, May 04, 2017	lay 04, 2017				Start Time:	02:00
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	0 9	0	0	0	0	0	0
07:15 07:30	0 0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	0 0	0	0	0	0	0	0
07:00 08:00	0 (0	0	0	0	0	0
08:00 08:15	0 9	0	0	0	0	0	0
08:15 08:30	0 0	0	0	0	0	0	0
08:30 08:45	0	0	0	0	0	0	0
08:45 09:00		0	0	0	0	0	0
08:00 09:00	0 (0	0	0	0	0	0
09:00 09:15	0 9	0	0	0	0	0	0
09:15 09:30	0 0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0 0	0	0	0	0	0	0
09:00 10:00	0 (0	0	0	0	0	0
11:30 11:45	0 9	0	0	0	0	0	0
11:45 12:00	0 0	0	0	0	0	0	0
12:00 12:15		0	0	0	0	0	0
12:15 12:30	0 0	0	0	0	0	0	0
11:30 12:30	0 (0	0	0	0	0	0
12:30 12:45	0 9	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15		0	0	0	0	0	0
13:15 13:30	0 0	0	0	0	0	0	0
12:30 13:30	0 (0	0	0	0	0	0
15:00 15:15	0 9	0	0	0	0	0	0
15:15 15:30	0 0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
15:00 16:00	0 (0	0	0	0	0	0
16:00 16:15	0 9	0	0	0	0	0	0
16:15 16:30	0 0	0	0	0	0	0	0
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0 0	0	0	0	0	0	0
16:00 17:00	0 (0	0	0	0	0	0
17:00 17:15		0	0	0	0	0	0
17:15 17:30	0	0	0	0	0	0	0
17:30 17:45		0	0	0	0	0	0
17:45 18:00	0 0	0	0	0	0	0	0
7:00 18:00	0 (0	0	0	0	0	0

Comment:

2019-Feb-04

Page 1 of 1

Survey Date:

Transportation Services - Traffic Services

Work Order 36994

Turning Movement Count - 15 Min U-Turn Total Report CARP RD @ RICHARDSON SIDE RD Thursday, May 04, 2017

Time Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:15	0	0	0	0	0
07:30	0	0	0	0	0
07:45	0	0	0	0	0
08:00	0	0	0	0	0
08:15	0	0	0	0	0
08:30	0	0	0	0	0
08:45	0	0	0	0	0
00:60	0	0	0	0	0
09:15	0	0	0	0	0
08:60	0	0	0	0	0
09:45	0	0	0	0	0
10:00	0	0	0	0	0
11:45	0	0	0	0	0
12:00	0	0	0	0	0
12:15	0	0	0	0	0
12:30	0	0	0	0	0
12:45	0	0	0	0	0
13:00	0	0	0	0	0
13:15	0	0	0	0	0
13:30	0	0	0	0	0
15:15	0	0	0	0	0
15:30	0	0	0	0	0
15:45	0	0	0	0	0
16:00	0	0	0	0	0
16:15	0	0	0	0	0
16:30	0	0	0	0	0
16:45	0	0	0	0	0
17:00	0	0	0	0	0
17:15	0	0	0	0	0
17:30	0	0	0	0	0
17:45	0	0	0	0	0
18:00	0	0	0	0	0
	0	0	0	0	0

Page 1 of 1 2019-Feb-04

Appendix C

Synchro Worksheets – Existing Conditions

Lanes, Volumes, Timings 1: Carp & Richardson Side

Feb.		1	†	>	>	ļ	4	•	←	•	۶	→	•
20 146 152 38 25 68 81 418 113 68 68 10 1616 152 38 25 68 81 418 113 68 68 10 1616 0 1600 0 1658 1699 0 1658 0 1574 0 1500 0 1658 1699 0 1658 0 1574 0 1500 0 1658 1699 0 1658 0 1574 0 1500 0 1658 0 199 0 90 0 1574 0 1500 0 146 0 90 990 0 176 0 1600 0 146 0 90 990 0 176 0 146	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR.	SBL	SBT	SBR
20 116 152 38 25 68 81 418 113 68 68 61 418 113 68 69 60 116 0 0 600 0 1668 169 0 0.368 0 0.472 0 60 642 60 0.371 0 60 90 60 0 0.472 0 60 642 60 0	Lane Configurations		4			4		F	4		×	4	
20 116 152 38 25 68 81 418 113 68 68 10 1688 0 1688	Traffic Volume (vph)	20	116	152	88	52	89	8	418	113	89	378	15
1616 0 1600 0 1658 1689 0 1658 0 16	Future Volume (vph)	20	116	152	88	52	89	8	418	113	99	378	15
0.971 0.0590 0.472 0.368 0.642 0.368 0.642 0.389 0.0472 0.389 0.0472 0.389 0.0472 0.389 0.0472 0.389 0.0472 0.389 0.0472 0.389 0.0472 0.389 0.0472 0.389 0.0472 0.389 0.0472 0.389 0.0472 0.389 0.0472 0.389 0.0472 0.399 0.077 0.079 0.049 0.077 0.079 0.049 0.077 0.079 0.049 0.077 0.049 0.079 0.079 0.049 0.077 0.049 0.079 0.049 0.077 0.049 0.079 0.049 0.079 0.049 0.079 0.049 0.079 0.049 0.079 0.049 0.079 0.049 0.079 0.049 0.079 0.049 0.079 0.049 0.079 0.049 0.079 0.049 0.079 0.049 0.079 0.049 0.079 0.049 0.079 0.049 0.079 0.09 0.00 0.00 0.00 0.00 0.00 0.	Satd. Flow (prot)	0	1616	0	0	1600	0	1658	1689	0	1658	1735	0
Def	Fit Permitted	•	1.971	•	c	0.690	•	0.472	0007	•	0.368		•
Perm NA Perm	Satd. Flow (perm)	0	1574	0	0	1120	0	824	1689	0	642	1735	0
Perm NA Perm N	Lane Group Flow (vph)	0	320	0	0	8 4	0	8	290	0	9/	437	0
4 4 8 8 2 2 6 6 4 4 4 8 8 8 2 2 5 6 6 6 6 6 6 6 0 6 0 27.5 27.5 27.5 27.5 27.5 62.0 62.0 62.0 45.5 45.5 45.5 45.5 62.0 62.0 62.0 62.0 42.3% 42.3% 42.3% 42.3% 57.7% 57.7% 57.7% 5.0 62.0 42.3% 42.3% 42.3% 42.3% 57.7% 57.7% 57.7% 5.0 62.0 42.3% 42.3% 42.3% 42.3% 57.7% 57.7% 57.7% 5.0 62.0 42.3% 42.3% 42.3% 42.3% 57.7% 57.7% 5.0 62.0 5.5 5.5 6.0 6.0 6.0 6.0 5.5 5.5 6.0 6.	Turn Type	Perm	Ą		Perm	ΑN		Perm	Ν		Perm	≨	
100 100	Protected Phases		4			80			2			9	
100 100 100 100 100 100 100 100 100 100	Permitted Phases	4			80			2			9		
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Detector Phase	4	4		∞	∞		2	2		9	9	
100 100 100 100 100 100 100 100 100 100	Switch Phase												
27.5 27.5 27.5 27.5 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
455 455 455 820 820 820 820 820 820 820 820 820 820	Minimum Split (s)	27.5	27.5		27.5	27.5		62.0	62.0		62.0	62.0	
42.3% 42.3% 42.3% 57.7%	Total Split (s)	45.5	45.5		45.5	45.5		62.0	62.0		62.0	62.0	
3.7 3.7 3.7 46 46 46 46 1.8 1.8 1.8 1.8 1.8 1.8 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Total Split (%)	42.3%	42.3%		42.3%	42.3%		21.7%	21.7%		27.7%	21.7%	
1.8 1.8 1.8 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	Yellow Time (s)	3.7	3.7		3.7	3.7		4.6	4.6		4.6	4.6	
Signature	All-Red Time (s)	1.8	1.8		1.8	- 8:		1.4	1.4		1.4	1.4	
5.5 5.5 6.0 6.0 6.0 6.0 None None None None Max Max Max 1,000.0 20.0 20.0 20.0 56.3 56.3 56.3 56.3 56.3 56.3 56.3 56.3	Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	
None None None None Max Max Max Max 10.20.0 20.0 56.3 56.3 56.3 56.3 56.3 56.3 56.3 56.3	Total Lost Time (s)		5.5			5.5		0.9	0.9		0.9	0.9	
None None None None Max	Lead/Lag												
None None None None Max Max Max Max Control Co	Lead-Lag Optimize?												
200 200 56.3 56.3 56.3 56.3 6.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0	Recall Mode	None	None		None	None		Max	Max		Max	Max	
0.23 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64	Act Effct Green (s)		20.0			20.0		56.3	56.3		56.3	56.3	
0.79 0.49 0.17 0.54 0.18 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Actuated g/C Ratio		0.23			0.23		0.64	0.64		0.64	0.64	
402 23.1 9.0 11.9 9.6 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	//c Ratio		0.79			0.49		0.17	0.54		0.18	0.39	
00 00 00 00 00 00 00 00 00 00 00 00 00	Control Delay		40.2			23.1		9.0	11.9		9.6	6.6	
40.2 23.1 9.0 11.9 9.6 A B A A B A A B A A B A A B A A B A A B A A B A A B A A B A A B A A B A B A A B A B A A B A B A A B A B A A B A	Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
A B A B A B A B A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A B B A B	Total Delay		40.2			23.1		9.0	11.9		9.6	6.6	
40.2 23.1 11.5	SOT		Ω			O		⋖	ш		¥	⋖	
A 26	Approach Delay		40.2			23.1			11.5			6.6	
436 131 57 492 49 73.3 30.7 164 102.9 15.0 335.7 351.7 54.0 15.0 752 544 527 1089 411 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Approach LOS		۵			ပ			ш			⋖	
73.3 30.7 16.4 102.9 15.0 335.7 351.7 54.0 322.4 95.0 54.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Queue Length 50th (m)		43.6			13.1		2.7	49.2		4.9	32.7	
335.7 351.7 322.4 55.0 752 544 527 1089 411 0	Queue Length 95th (m)		73.3			30.7		16.4	102.9		15.0	68.1	
762 544 54,0 95,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Internal Link Dist (m)		335.7			351.7			322.4			371.5	
752 544 527 1089 411 0.43 0.27 0.17 0.54 0.18	Turn Bay Length (m)							54.0			92.0		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Base Capacity (vph)		752			544		527	1089		411	1112	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Starvation Cap Reductn		0			0		0	0		0	0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Spillback Cap Reductn		0			0		0	0		0	0	
0.43 0.27 0.17 0.54 0.18	Storage Cap Reductn					0		0	0		0	0	
Intersection Summary Cycle Length: 107.5 Actuated Cycle Length: 87.8 Asturated Cycle. 90 in: Control Type: Semi Act Uncord Maximum virte Ratio, 67.9	Reduced v/c Ratio		0.43			0.27		0.17	0.54		0.18	0.39	
Cyple Length: 107.5 Actuated Cycle Length: 87.8 Astuated Cycle Son University of the Control Type: Semi Act-Uncord Maximum vir Ratio: 0.79	Intersection Summary												
Actuated Cyde Length: 87.8 Matural Cycle: 90 Control Type: Semil Act Uncord Maximum vic Ratio: 679	Cvcle Lenath: 107.5												
Natural Cycle; 90 Control Type: Semi Act-Uncoord Maximum vic Radio: n 70	Actuated Cycle Length: 87.												
Control Type: Semi Act-Uncoord Maximum vic Ratio: 0.70	Natural Cycle: 90												
Maximum vic Ratio. D 79	Control Type: Semi Act-Und	coord											
	Maximum v/c Ratio: 0.79												

Synchro 10 Light Report Page 1 2596 Carp Rd AM Peak Hour Existing

Lanes, Volumes, Timings 1: Carp & Richardson Side

03-11-2019

Intersection LOS: B ICU Level of Service D Intersection Signal Delay: 17.6 Intersection Capacity Utilization 73.7% Analysis Period (min) 15

03-11-2019

404 Splits and Phases: 1: Carp & Richardson Side

2596 Carp Rd AM Peak Hour Existing

Synchro 10 Light Report Page 2

Lanes, Volumes, Timings 1: Carp & Richardson Side

Color Colo	EBL EBT EBR WBL A	*	ļ	1	-	Ļ	*	+	*
1597 145 91 149 70 277 412 84 122 403 20	20 77 145 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L EBT EBR		3R NBL	NBT	NBR	SBL	SBT	SBR
20 77 145 91 109 70 207 412 84 122 403 20 1587 0 10557 0 1658 10 1658 10 1688 1731 403 1731 403 1731 403 10 1658 10 1688 1701 0 649 1731 403 1731 403 1731 403 1731 403 1731 403 1731 403 1731 403 1731 403 1731 403 1731 403 1731 403 1731 403 474 403 474 403 474 403 474 403 474 403 474 403 474 403 474 403 474 403 474 403 474 403 474 403 474 403 403 474 403 403 403 474 403 403 403 403 403 4	20 77 145 91 20 177 145 91 0 1587 0 0 0 1587 0 0 0 1587 0 0 0 1587 0 0 0 269 0 0 0 269 0 0 0 269 0 0 0 269 0 0 0 269 0 0 0 269 0 0 0 10.0 10.0 10.0 22.5 27.5 27.5 27.5 1.8 45 5 45 5 45 5 6 6 6 0	4	(‡	*	2		۴	\$	
20 77 145 91 109 70 412 84 122 403 0.980 0 0.667 0 1656 0 1668 1731 0 44 0 1731 0 44 0 1731 0 44 1731 0 649 1731 0 44 4 4 4 4 4 4 4 8 1731 0 4 4 4 4 4 4 4 8 2 2 6	20 77 145 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	77 145	109		412	84	122	403	23
1597 0 1655 0 1656 1701 0 1656 1701 0 1705 1701 0 1705 1701 0 1705 1701 0 1705 1701 0 1705 1701 0 1705 1701 0 1705 1701 0 1705 1701 0 1705 1701 0 1705 1701	0.159Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	77 145 9	109		412	84	122	403	23
0 1540 0 0 1123 0 745 1701 0 649 8 0 19 0 230 551 0 136 4 4 4 8 8 8 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 1540 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	1655 0 667	٦	1/01	>	1658	1/31	0
80 19 14 18 18 14 18 18 18 18	0 269 0 0 4 4 8 8 4 4 4 8 6 4 4 8 6 0 100 100 100 100 100 100 100 100 100	1540 0	1123	5	1701	0	649	1731	0
0 289 0 0 300 0 230 551 0 136 4 4 8 8 2 2 6 6 4 4 8 8 8 2 2 6 100 10.0 10.0 10.0 10.0 10.0 10.0 77.5 27.5 27.5 27.5 62.0 62.0 62.0 77.5 27.5 27.5 62.0 62.0 62.0 62.0 77.5 27.5 27.5 62.0 62.0 62.0 62.0 3.7 3.7 3.7 45.5 46.5 46.5 46.6 46.6 62.0	0.00 269 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80	19		14			4	
em NA Perm NA Perm Perm NA Perm Perm A Perm	Ham NA Perm 4 4 8 8 4 4 4 8 8 60.0 10.0 10.0 77.5 27.5 27.5 27.5 155. 45.5 42.3% 42.3% 42.3% 42.3% 42.3% 42.3% 42.3% 42.3% 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0	269 0	300		551	0	136	474	0
4 4 8 8 2 2 6 6 4 4 4 8 8 8 2 2 2 6 4 4 4 8 8 8 2 2 2 6 4 4 4 4 8 8 8 2 2 2 6 4 5 45 5 27.5 27.5 62.0 62.0 62.0 62.0 5.5 45.5 45.5 45.5 62.0 62.0 62.0 62.0 5.3% 42.3% 42.3% 5.77% 5.77% 5.77% 5.77% 5.71% 5.3 42.3% 42.3% 42.3% 5.77% 5.77% 5.77% 5.77% 5.71% 5.5 45.5 45.5 45.5 62.0 62.0 62.0 5.5 45.5 45.5 45.5 62.0 62.0 62.0 5.5 5 5 6.4 64.4 1.4 1.4 1.4 5.5 5 6.4 66.4 66.0 0.0 5.5 6.4 66.4 66.0 0.0 5.5 6.4 66.4 66.0 0.0 5.5 6.4 66.4 66.1 1.2 5.5 6.4 66.4 66.1 1.2 5.5 6.4 66.4 6.5 5.5 6.4 66.4 6.5 5.5 6.4 66.4 6.5 5.5 6.4 66.4 6.5 5.5 6.4 66.4 6.5 5.5 6.4 66.4 6.5 5.5 6.4 6.5 5.5 6.4 6.5 5.5 6.4 6.5 5.5 6.4 6.5 5.5 6.4 6.5 5.4 6.4 1.4 5.4 1.4	4 4 8 8 4 4 8 8 10.0 10.0 10.0 10.0 10.0 10.0 10.0	AN.	¥°	Perm	¥,		Perm	≨ '	
4 4 8 8 2 6 4 4 4 8 8 2 2 6 27.5 27.5 27.5 27.5 27.5 27.0 62.0 62.0 27.5 27.5 27.5 27.5 62.0 62.0 62.0 3.7 3.7 3.7 42.3% 42.3% 42.3% 42.3% 42.0 62.0 62.0 62.0 3.7 3.7 3.7 47.5 47.7% 57.7%	4 4 4 8 8 8 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	4	∞		2		,	9	
100 100	0.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		c	2	•		9	•	
15.5 27.5 27.5 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	4	∞	2	2		9	9	
77.5 77.5 77.6 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	77.5 27.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5 4								
77.5 27.5 27.5 27.5 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0	7.5 27.5 27.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5 4	10.0	10.0	10:0	10.0		10.0	10.0	
145 45 45 62.0 62.0 62.0 3.7 42.3% 42.3% 45.3% 67.7% 67.7% 67.7% 1.8 1.8 1.8 1.4 1.4 4.6 4.6 1.8 1.8 1.8 1.8 1.4 1.4 4.6 4.6 1.0 1.0 0.	145.5 45.5 45.5 45.5 45.3 42.3% 42.3	27.5	27.5	62.0	62.0		62.0	62.0	
3.7 42.3% 42.3% 57.7% 57.7% 57.7% 51	3.% 42.3% 42.3% 1.8 1.8 1.8 0.0 0.0 0.28 0.02 0.28 0.0 0.23 0.0 0.23 0.0 0.23 0.0 0.23 0.0 0.23 0.0 0.23 0.0 0.33 0.0 0.38 0.0 0.0 0.38 0.0 0.0 0.0 0.38 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	45.5	45.5	62.0	62.0			62.0	
3.7 3.7 3.7 4.6 4.6 1.8 1.8 1.8 1.4 1.4 1.4 5.5 5.0 6.0 6.0 6.0 5.5 5.5 6.0 6.0 6.0 5.5 5.5 6.0 6.0 6.0 26.2 26.2 56.4 56.4 56.4 26.2 26.2 56.4 56.4 56.4 26.2 6.4 56.4 56.4 56.4 23.8 64.4 18.6 15.0 15.2 20.0 0.0 0.0 0.0 0.0 23.8 64.4 18.6 15.0 15.2 2 C E B B B 2 C E B B B 2 C E B B B 2 S 38.7 32.4 38.6 3 S 35.7 32.4 38.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< td=""><td>1.8 1.8 1.8 1.8 1.8 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td><td>42.3%</td><td>42.3%</td><td>22.7%</td><td>21.7%</td><td></td><td></td><td>27.7%</td><td></td></t<>	1.8 1.8 1.8 1.8 1.8 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	42.3%	42.3%	22.7%	21.7%			27.7%	
1.8 1.8 1.8 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	1.8 1.8 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	3.7	3.7	4.6	4.6		4.6	4.6	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 5.5 0.0 0.28 0.28 0.55 0.55 23.8 23.8 23.8 704 0 0 0 0 0 0 0 0 0 0 0 0 0	8:1	8:1	1.4	1.4		1.4	1.4	
5.5 5.5 6.0 6.0 6.0 one None None None Max Max Max 26.2 26.2 56.4 56.4 56.4 56.4 56.4 20.2 0.55 0.52 0.54 0.35 0.54 0.56 0.5 0.2 0.54 0.56 0.56 0.50 0.00 0.0	5.5 0.28 0.28 0.35 23.8 0.0 23.8 0.0 23.8 0.0 0 0 0 0 0 0 0 0 0 33.6 704 0 0 0 0 0 33.6 0 30.0 53.8 53.8 53.8 53.8 60.0 70	0:0	0.0	0.0	0.0		0.0	0.0	
One None None Max Max Max 26.2 26.2 56.4 56.0 56.0 56.0 56.0 56.0 </td <td>One None None 1 26.2 26.2 26.2 26.5 26.5 26.5 26.6 26.6</td> <td>5.5</td> <td>5.5</td> <td>0.9</td> <td>0.9</td> <td></td> <td>0.9</td> <td>0.9</td> <td></td>	One None None 1 26.2 26.2 26.2 26.5 26.5 26.5 26.6 26.6	5.5	5.5	0.9	0.9		0.9	0.9	
One None None Max Max </td <td>One None None 1 26.2 26.2 26.2 26.5 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	One None None 1 26.2 26.2 26.2 26.5 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25								
one None None None Max Max Max 28.2 28.2 66.4 56.4 60.6 66.0 60.60 60.60 60.60 60.60 60.60 60.60 60.60 60.00 60.0 <t< td=""><td>One None None 1 26.2 2.66.2 2.86.2 2.3.8 2.3.8 2.3.8 2.3.8 335.7 704 0 0 0 0 0.38</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	One None None 1 26.2 2.66.2 2.86.2 2.3.8 2.3.8 2.3.8 2.3.8 335.7 704 0 0 0 0 0.38								
26.2 26.2 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 56.4 66.4 66.0 60.0 <th< td=""><td>26.2 0.28 0.55 23.8 0.0 23.8 C 20.0 53.8 53.8 53.8 0 0 0</td><td>None</td><td>None</td><td>Max</td><td>Max</td><td></td><td>Max</td><td>Max</td><td></td></th<>	26.2 0.28 0.55 23.8 0.0 23.8 C 20.0 53.8 53.8 53.8 0 0 0	None	None	Max	Max		Max	Max	
0.28 0.60 0.60 0.60 0.65 0.55 0.55 0.55 0.55	0.28 23.8 0.0 0.0 23.8 23.8 53.8 53.8 53.8 0 0 0 0 0 0.38	26.2	26.2	56.4	56.4		56.4	56.4	
0.55 0.92 0.54 0.35 23.8 0.44 18.6 15.0 15.2 23.8 64.4 18.6 15.0 0.0 23.8 64.4 18.6 15.0 15.2 23.8 64.4 18.6 15.0 15.2 23.8 64.4 18.6 15.0 15.2 23.8 64.4 16.1 16.1 16.1 23.8 62.1 16.8 34.1 335.7 351.7 64.0 95.0 0	0.55 23.8 23.8 23.8 23.8 23.8 53.8 53.8 704 0 0 0 0.38	0.28	0.28	09:0	09.0		09.0	09:0	
238 644 186 150 152 0.0 0.0 0.0 0.0 238 644 186 150 152 0.0 62.1 29.3 55.2 12.0 53.8 86.8 62.1 16.8 34.1 335.7 351.7 54.0 95.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	238 0.0 238 238 200 300 53.8 355.7 0 0 0 0.38	0.55	0.92	0.52	0.54		0.35	0.46	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 23.8 C C 23.8 30.0 53.8 335.7 704 0 0	23.8	64.4	18.6	15.0		15.2	13.8	
23.8 64.4 18.6 15.0 15.2 C E B B B B C S E C S E C S E C S E C S E C E C E C	23.8 C 23.8 53.0 53.8 335.7 704 0 0	0:0	0.0	0.0	0.0		0.0	0.0	
C E B B B B B B B C C C E E C C C E E C C C E E C C C C	23.8 23.8 30.0 53.8 335.7 704 0 0	23.8	64.4	18.6	15.0		15.2	13.8	
23.8 64.4 16.1 C E E B 30.0 52.1 23.3 55.2 12.0 53.8 68.8 62.1 116.8 34.1 335.7 351.7 54.0 95.0 704 491 446 1024 388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23.8 C 30.0 53.8 335.7 704 0 0 0 0 0.38	O	ш	В	ш		മ	ш	
C E B B 12.0 53.8 86.8 62.1 116.8 34.1 53.8 86.8 62.1 116.8 34.1 335.7 351.7 54.0 95.0 704 491 446 1024 95.0 0	30.0 53.8 53.8 335.7 704 0 0 0 0.38	23.8	64.4		16.1			14.1	
30.0 52.1 23.3 56.2 12.0 53.8 66.8 62.1 116.8 34.1 335.7 351.7 54.0 322.4 95.0 704 491 446 1024 388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< td=""><td>30.0 53.8 335.7 704 0 0 0 0 0 0.38</td><td>O</td><td>ш</td><td></td><td>ш</td><td></td><td></td><td>ш</td><td></td></t<>	30.0 53.8 335.7 704 0 0 0 0 0 0.38	O	ш		ш			ш	
53.8 66.8 62.1 116.8 34.1 34.1 355.7 351.7 54.0 55.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	53.8 335.7 704 0 0 0 0.38	30.0	52.1	23.3	55.2		12.0	45.1	
335.7 351.7 322.4 95.0 704 491 446 1024 388 0	335.7 351. 704 49 0 0 0 0 0.38 0.6	53.8	86.8	62.1	116.8		84.1	95.0	
704 491 54,0 95,0 0.38 0.61 0.52 0.54 0.35	704 49 0 0 0 0 0 0.38 0.6	335.7	351.7		322.4			371.5	
704 491 446 1024 388 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.38 0.61 0.52 0.54 0.35	704 49 0 0 0 0 0.38 0.6			54.0			92.0		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0.38	704	491	446	1024		388	1038	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0		0	0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.38	0	0	0	0		0	0	
0.38 0.61 0.52 0.54 0.35	0.38	0	0	0	0		0	0	
Intersection Summary Cycle Length: 107.5 Actuated Cycle Length: 94.2 Natural Cycle: 90	Intersection Summary Cycle Length: 107.5 Actuated Cycle Length: 94.2 Actual Cycles of Cycle Length: 94.2 Cycles of Cycle Length: 94.2 Cycles C	ധ	0.61		0.54		0.35	0.46	
Oyele Length, 107.5 Actuated Cycle Length: 94.2 Natural Cycle: 90 Marginia Wall Act Uncoord	Oyole Length: 107.5 Actuated Cyde Length: 94.2 Actuated Cyde Length: 94.2 Contail Cycles of Actual Cycles Contail Cycles Contail Cycles Contail Cycles Contail Actual Cycles Contail Cycles Cycles Contail Cycles Cycles Cycles Contail Cycles C								
Actuated Cycle Length: 94.2 Natural Cycle: 90 Martinal Cycle: 90 Martina Cycle: 70 Date: 0 to 70 Date: 0 to 70 Date: 0 to 70 Date: 0 Date: 0 to 70 Date: 0 t	Option Longui. 107.3 Actuated Cyde Length: 94.2 Natural Types. Sani A+1 Incomed								
Natural Cycles Cangair 2-1-1. Control Cycles Semi Act-Uncoord Maximum Viz Berfac it no	Natural Cycle: Card Art Hanner								
Contain Systes Seni Act-Uncoord Managing Type Seni Act-Uncoord	Natural Cycle: 30								
Macinal Types Cell International		7							
	Meximum v/a Betia: 0 00	5							

Synchro 10 Light Report Page 1 2596 Carp Rd PM Peak Hour Existing

Lanes, Volumes, Timings 1: Carp & Richardson Side

03-11-2019

03-11-2019

Intersection LOS: C ICU Level of Service E Intersection Signal Delay: 23.9 Intersection Capacity Utilization 86.5% Analysis Period (min) 15

404 Splits and Phases: 1: Carp & Richardson Side

2596 Carp Rd PM Peak Hour Existing

Synchro 10 Light Report Page 2

Appendix D

Collision Data

Accident Date	Accident Year A	ccident Time	Location	Environment Condition	Light	Traffic Control	Traffic Control Condition	Classification Of Accident	Initial Impact Type	Road Surface Condition
2015-03-20	2015	9:01	CARDEVCO RD @ CARP RD	01 - Clear	01 - Daylight	02 - Stop sign		02 - Non-fatal injury	99 - Other	01 - Dry
2017-10-05	2017	13:45	CARDEVCO RD @ CARP RD	01 - Clear	01 - Daylight	02 - Stop sign		03 - P.D. only	03 - Rear end	01 - Dry
2017-09-28	2017	12:30	CARDEVCO RD @ CARP RD	01 - Clear	01 - Daylight	02 - Stop sign		02 - Non-fatal injury	03 - Rear end	01 - Dry
2015-10-16	2015	10:55	CARP RD @ CAVANMORE RD	01 - Clear	01 - Daylight	02 - Stop sign		02 - Non-fatal injury	05 - Turning movement	01 - Dry
2014-03-27	2014	21:30	CARP RD @ RICHARDSON SIDE RD	01 - Clear		01 - Traffic signal		03 - P.D. only	02 - Angle	01 - Dry
2014-04-29	2014	13:30	CARP RD @ RICHARDSON SIDE RD	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
2014-08-28	2014	17:51	CARP RD @ RICHARDSON SIDE RD	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	05 - Turning movement	01 - Dry
2014-11-07	2014	11:22	CARP RD @ RICHARDSON SIDE RD	01 - Clear	01 - Davlight	01 - Traffic signal		03 - P.D. only	02 - Angle	01 - Dry
2015-01-28	2015	8:28	CARP RD @ RICHARDSON SIDE RD	01 - Clear	, ,	01 - Traffic signal		02 - Non-fatal injury	02 - Angle	01 - Dry
2016-09-03	2016	17:03	CARP RD @ RICHARDSON SIDE RD	01 - Clear	, ,	01 - Traffic signal		03 - P.D. only	07 - SMV other	01 - Dry
2016-06-13	2016	8:08	CARP RD @ RICHARDSON SIDE RD	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	05 - Turning movement	01 - Dry
2016-06-29	2016	17:15	CARP RD @ RICHARDSON SIDE RD	02 - Rain	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	02 - Wet
2017-11-17	2017	13:45	CARP RD @ RICHARDSON SIDE RD	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	02 - Angle	01 - Dry
2017-03-19	2017	1:18	CARP RD @ RICHARDSON SIDE RD	01 - Clear	07 - Dark	01 - Traffic signal		03 - P.D. only	07 - SMV other	01 - Dry
2013-05-16	2013	16:09	CARP RD @ RICHARDSON SIDE RD	01 - Clear		01 - Traffic signal		03 - P.D. only	05 - Turning movement	01 - Dry
2013-06-23	2013	8:30	CARP RD @ RICHARDSON SIDE RD	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	02 - Angle	01 - Dry
2013-10-09	2013	19:00	CARP RD @ RICHARDSON SIDE RD	01 - Clear	05 - Dusk	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
2015-05-11	2015	16:15	CARP RD @ WESTHUNT RD	01 - Clear	01 - Daylight	02 - Stop sign		03 - P.D. only	02 - Angle	01 - Dry
2016-06-20	2016	8:37	CARP RD btwn CARDEVCO RD & WESTHUNT RD	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
2016-06-22	2016	22:00	CARP RD btwn CARDEVCO RD & WESTHUNT RD	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	07 - SMV other	01 - Dry
2013-07-16	2013	4:50	CARP RD btwn CAVANMORE RD & CARDEVCO RD	01 - Clear	03 - Dawn	10 - No control		03 - P.D. only	07 - SMV other	01 - Dry
2017-08-04	2017	22:00	CARP RD btwn REIS RD & CAVANMORE RD	02 - Rain	07 - Dark	10 - No control		03 - P.D. only	07 - SMV other	02 - Wet
2013-02-06	2013	8:41	CARP RD btwn REIS RD & CAVANMORE RD	05 - Drifting Snow	01 - Daylight	10 - No control		03 - P.D. only	07 - SMV other	03 - Loose snow
2013-06-19	2013	15:23	CARP RD btwn REIS RD & CAVANMORE RD	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	07 - SMV other	01 - Dry
2013-10-31	2013	6:55	CARP RD btwn REIS RD & CAVANMORE RD	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	99 - Other	02 - Wet
2014-04-16	2014	7:44	CARP RD btwn RICHARDSON SIDE RD & HWY417 IC144 RAMP62	01 - Clear	01 - Daylight	10 - No control		02 - Non-fatal injury	03 - Rear end	01 - Dry
2015-07-07	2015	12:59	CARP RD btwn RICHARDSON SIDE RD & HWY417 IC144 RAMP62	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	07 - SMV other	01 - Dry
2015-12-30	2015	6:11	CARP RD btwn RICHARDSON SIDE RD & HWY417 IC144 RAMP62	04 - Freezing Rain	07 - Dark	10 - No control		03 - P.D. only	03 - Rear end	06 - Ice
2017-09-11	2017	11:17	CARP RD btwn RICHARDSON SIDE RD & HWY417 IC144 RAMP62	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
2017-10-30	2017	11:33	CARP RD btwn RICHARDSON SIDE RD & HWY417 IC144 RAMP62	02 - Rain	01 - Daylight	10 - No control		03 - P.D. only	07 - SMV other	02 - Wet
2017-11-29	2017	6:30	CARP RD btwn RICHARDSON SIDE RD & HWY417 IC144 RAMP62	02 - Rain	03 - Dawn	10 - No control		03 - P.D. only	07 - SMV other	02 - Wet
2017-12-14	2017	10:01	CARP RD btwn RICHARDSON SIDE RD & HWY417 IC144 RAMP62	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
2017-01-22	2017	13:45	CARP RD btwn RICHARDSON SIDE RD & HWY417 IC144 RAMP62	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	02 - Wet
2017-04-18	2017	7:45	CARP RD btwn RICHARDSON SIDE RD & HWY417 IC144 RAMP62	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
2013-01-10	2013	12:00	CARP RD btwn RICHARDSON SIDE RD & HWY417 IC144 RAMP62	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	99 - Other	02 - Wet
2013-02-28	2013	6:20	CARP RD btwn RICHARDSON SIDE RD & HWY417 IC144 RAMP62	03 - Snow	07 - Dark	10 - No control		03 - P.D. only	01 - Approaching	03 - Loose snow
2013-03-28	2013	14:10	CARP RD btwn RICHARDSON SIDE RD & HWY417 IC144 RAMP62	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	05 - Turning movement	01 - Dry
2014-01-27	2014	13:08	RICHARDSON SIDE RD btwn CARDEVCO RD & CARP RD	03 - Snow	01 - Daylight	10 - No control		03 - P.D. only	07 - SMV other	03 - Loose snow
2014-05-08	2014	20:11	RICHARDSON SIDE RD btwn CARDEVCO RD & CARP RD	02 - Rain	05 - Dusk	10 - No control		03 - P.D. only	07 - SMV other	02 - Wet
2015-11-29	2015	17:09	RICHARDSON SIDE RD btwn CARDEVCO RD & CARP RD	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	07 - SMV other	01 - Dry
2013-05-19	2013	15:57	RICHARDSON SIDE RD btwn CARDEVCO RD & CARP RD	02 - Rain	01 - Daylight	10 - No control		02 - Non-fatal injury	01 - Approaching	02 - Wet
2013-11-28	2013	6:42	RICHARDSON SIDE RD btwn CARDEVCO RD & CARP RD	01 - Clear	03 - Dawn	10 - No control		03 - P.D. only	07 - SMV other	01 - Dry
2013-12-05	2013	20:11	RICHARDSON SIDE RD btwn CARDEVCO RD & CARP RD	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	07 - SMV other	02 - Wet
2014-03-13	2014	2:01	RICHARDSON SIDE RD btwn CARP RD & OAK CREEK RD	05 - Drifting Snow	07 - Dark	10 - No control		03 - P.D. only	07 - SMV other	05 - Packed snow
2014-08-09	2014	9:34	RICHARDSON SIDE RD btwn CARP RD & OAK CREEK RD	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	07 - SMV other	01 - Dry
2015-11-13	2015	13:46	RICHARDSON SIDE RD btwn CARP RD & OAK CREEK RD	02 - Rain	01 - Daylight	10 - No control		03 - P.D. only	02 - Angle	02 - Wet
2016-01-18	2016	10:08	RICHARDSON SIDE RD btwn CARP RD & OAK CREEK RD	01 - Clear	01 - Daylight	10 - No control		02 - Non-fatal injury	07 - SMV other	03 - Loose snow
2016-10-27	2016	7:36	RICHARDSON SIDE RD btwn CARP RD & OAK CREEK RD	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	07 - SMV other	01 - Dry
2016-05-13	2016	17:17	RICHARDSON SIDE RD btwn CARP RD & OAK CREEK RD	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	05 - Turning movement	01 - Dry
2017-09-29	2017	0:00	RICHARDSON SIDE RD btwn CARP RD & OAK CREEK RD	01 - Clear	00 - Unknown	10 - No control		03 - P.D. only	06 - SMV unattended vehicle	01 - Dry
2017-03-06	2017	22:30	RICHARDSON SIDE RD btwn CARP RD & OAK CREEK RD	04 - Freezing Rain	07 - Dark	10 - No control		03 - P.D. only	07 - SMV other	06 - Ice
2013-08-12	2013	16:35	RICHARDSON SIDE RD btwn CARP RD & OAK CREEK RD	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	02 - Wet
2013-10-28	2013	9:42	RICHARDSON SIDE RD btwn CARP RD & OAK CREEK RD	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	07 - SMV other	01 - Dry
2013-12-09	2013	7:50	RICHARDSON SIDE RD btwn CARP RD & OAK CREEK RD	03 - Snow	03 - Dawn	10 - No control		03 - P.D. only	01 - Approaching	03 - Loose snow
									_	

Appendix E

Site Vehicle Operation Estimates

Andrew Harte

From: Christopher Gordon
Sent: January 28, 2019 6:23 AM

To: Andrew Harte

Subject: FW: ECA follow up noise questions

Attachments: Car Road RMX Traffic Routes.docx; DRAFT Site Plan - Employee Parking Option 1.pdf

Christopher Gordon, P.Eng. CGH Transportation Inc.

P: 343-999-9117

E: Christopher.Gordon@CGHTransportation.com

From: Angela Jonkman <ajonkman@rcii.com>

Sent: January 25, 2019 2:19 PM

To: Christopher Gordon <christopher.gordon@cghtransportation.com>

Subject: FW: ECA follow up noise questions

Chris,

See email below from Cavanagh. Cavanagh felt that the information might necessary/helpful for you while you are preparing your proposal.

Angela Jonkman, P.Eng. | Senior Project Manager

This e-mail is intended solely for the individual or company to whom it is addressed. The information contained herein is confidential. Any dissemination, distribution or copying of this e-mail, other than by its intended recipient, is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately, and delete this e-mail from your records. Thank you.

From: Ben Houle [mailto:BHoule@thomascavanagh.ca]

Sent: January-25-19 1:47 PM

To: Angela Jonkman **Cc:** Chris Collins

Subject: FW: ECA follow up noise questions

Angela,

I was looking back through my emails and found the following breakdown regarding the number of anticipated trip generations from the Concrete Plant.

Hopefully this can aid Chris Gordon in the preparation of his report.

Please let us know if you require any additional information.

Regards,

Ben Houle, P. Eng.

Project Engineer, Land Development

bhoule@thomascavanagh.ca

O: (613) 257-2918 | C: (613) 227-5162 |

Email Confidentiality Notice:

This message is intended only for the use of the individual or entity to which it is addressed, and may contain information that is privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you received this communication in error, please notify the sender immediately by email and delete the message Thank you.

From: Kevin Brennan < KBrennan@cavanaghconcrete.ca>

Sent: June-14-18 11:30 AM

To: Phil White < PWhite@thomascavanagh.ca Cc: Ben Houle BHoule@thomascavanagh.ca Subject: RE: ECA follow up noise questions

Hi Phil,

	Maximum Number of Vehicles per hour				
Operations	Aggregate Trucks	Cement Tanker Trucks	Sand Trucks	Ready-Mix Concrete trucks	Loaders
Daytime [7am - 7pm]	6	3	6	14	2
Evening [7pm - 11pm]	4	2	4	12	1
Night Time [11pm - 7am]	0	1	0	6	1