Appendix A Water Supply Servicing February 22, 2019

Appendix A WATER SUPPLY SERVICING

A.1 DOMESTIC WATER DEMAND ESTIMATE

13 Monk Street

- Based on Susan Smith's Architectes' Site Plan 10/18/2018 (160401462)

Building ID	Area	Population	Daily Rate of	Avg Day	Demand	Max Day	Demand ²	Peak Hour	r Demand ²
	(m ²)		Demand ¹	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)
BLDG		16.8	350	4.1	0.07	10.2	0.17	22.5	0.37
Total Site :				4.1	0.07	10.2	0.17	22.5	0.37

1 Population counts based on a conversion factor of 1.4 persons/1 Bedroom Apt. and 2.1 Persons/2 Bedroom Apt.

 ${\rm 2}\,$ Average day water demand for residential areas equal to ${\rm 350}\,$ L/cap/d

3 The City of Ottawa water demand criteria used to estimate peak demand rates for residential areas are as follows:

maximum day demand rate = 2.5 x average day demand rate peak hour demand rate = 2.2 x maximum day demand rate

Referenced from the City of Ottawa Sewer Design Guidelines (October 2012) and the Ottawa Design Guidelines: Water Distribution (July 2010)

Appendix A Water Supply Servicing February 22, 2019

A.2 FIRE FLOW REQUIREMENTS PER OBC GUIDELINES

Fire Flow Calculations as per OBC 2006 (Appendix A)

Building C

Job#	160401462	
Date	21-Feb-19	
Description:	13 Monk Street	

Designed by: Checked by: CO -

$Q = KVS_{tot}$

Q =	Volume of water required	(L)
-----	--------------------------	-----

V = Total building volume (m3)

K = Water supply coefficient from Table 1

S_{tot} = Total of spatial coefficeint values from property line exposures on all sides

 $S_{tot} = 1.0 + [S_{side1} + S_{side2} + S_{side3} + S_{side4}]$

1	Type of construction	Building Classification		Water Supply Coefficient
	combustible without Fire-Resistance Ratings	A-2, B-1, B-2, B-3, C, D		23
	•			
2	Area of one floor (m ²)	number of floors	hieght of ceiling (m)	Total Building Volume (m ³)
	219	4	2.84	2,488
3	Side	Exposure		Total Spatial
		Distance (m)	Spatial Coefficient	Coeffiecient
	North	1.4	0.5	
	East	1.2	0.5	2
	South	0.3	0.5	2
	West	3	0.5	
4				Total Volume 'Q' (L)
				114,448
				Minimum Required
				Fire Flow (L/min)
				3,600

Appendix A Water Supply Servicing February 22, 2019

A.3 BOUNDARY CONDITIONS

From:	Valic, Jessica
To:	Odam, Cameron
Cc:	<u>Kilborn, Kris</u>
Subject:	RE: Hydraulic Boundary Conditions Request - 13 Monk Street Development
Date:	Thursday, January 17, 2019 10:52:13 AM
Attachments:	<u>13 Monk Jan 2019.pdf</u>

Good Morning Cameron,

As requested. See below and attached.

The following are boundary conditions, HGL, for hydraulic analysis at 13 Monk (zone 1W) assumed to be connected to the 152mm on Monk (see attached PDF for location).

Minimum HGL = 105.8m

Maximum HGL = 114.9m

MaxDay + FireFlow (60L/s) = 95.0m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

Please do not hesitate to contact me with any questions/concerns.

Regards,

Jessica Valic, E.I.T. Engineering Intern Planning, Infrastructure and Economic Development Department - Services de la planification, de l'infrastructure et du développement économique Development Review - Central City of Ottawa | Ville d'Ottawa 110 Laurier Avenue West Ottawa, ON | 110, avenue. Laurier Ouest. Ottawa (Ontario) K1P 1J1 613.580.2424 ext./poste 15672 jessica.valic@ottawa.ca

From: Odam, Cameron <Cameron.Odam@stantec.com>
Sent: Friday, January 11, 2019 11:50 AM
To: Valic, Jessica <jessica.valic@ottawa.ca>
Cc: Kilborn, Kris <kris.kilborn@stantec.com>
Subject: Hydraulic Boundary Conditions Request - 13 Monk Street Development

Hi Jessica,

Would you be able to provide me with watermain hydraulic boundary conditions for the proposed site 13 Monk Street? The site consists of a proposed 3 storey and basement residential apartment building located at 13 Monk Street with water servicing that will connect to the existing 150mm watermain on Monk Street adjacent to the site.

We have attached the OBC fire flow calculations for the proposed building as there is no private watermain required on site and will use existing municipal hydrants. Please see attached City correspondence regarding the criteria allowing the use of OBC fire flow instead of the FUS. A site location map with the approximate proposed connection point is also attached.

Estimated domestic demands and fire flow requirements for the site are as follows:

Average Day Demand	– 0.07 L/s
Max Day Demand	- 0.17 L/s
Peak Hour Demand	- 0.37 L/s

Fire Flow Requirement per OBC - 60 L/s

Thanks,

Cameron

Cameron Odam

Direct: +16137244353 Fax: +16137222799 Cameron.Odam@stantec.com

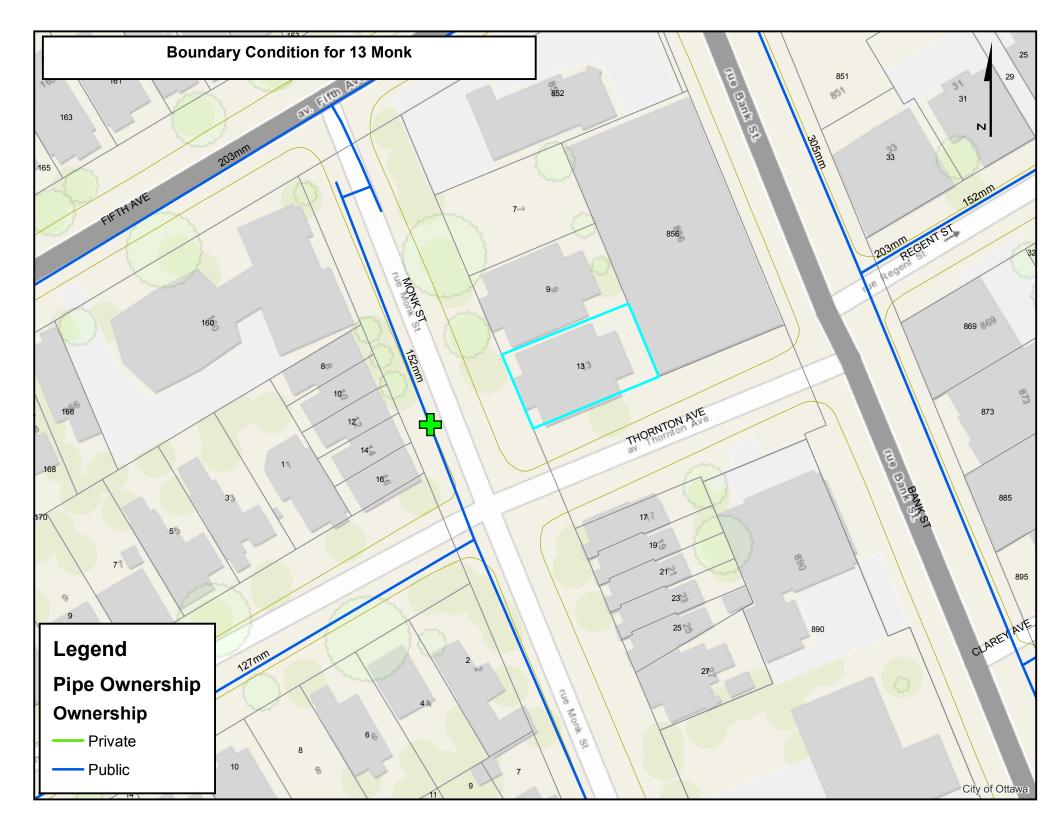
Stantec 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Boundary Condition Request for 13 Monk Street


Information Provided:

Date provided: January 2019

	Demand					
Scenario	L/min	L/s				
Average Daily Demand	4.1	0.07				
Maximum Daily Demand	10.2	0.17				
Peak Hour	22.5	0.37				
Fire Flow Demand	3 600	60				

Location: 13 Monk Street

Appendix B Wastewater Servicing February 22, 2019

Appendix B WASTEWATER SERVICING

B.1 SANITARY SEWER DESIGN SHEET

	SUBDIVISION: DATE: REVISION: DESIGNED I CHECKED B		2/19/2019 1 CO -		t:				EET				MAX PEAK FA MIN PEAK FA PEAKING FAC PEAKING FAC PERSONS / B PERSONS / 1 PERSONS / 2	CTOR (RES.)= CTOR (INDUST CTOR (ICI >20% ACHELOR BEDROOM	: (rial):	4.0 2.0 2.4 1.5 1.4 1.4 2.1		AVG. DAILY F COMMERCIA INDUSTRIAL INDUSTRIAL INSTITUTION.	NL (HEAVY) (LIGHT) IAL	м	280 28,000 55,000 35,000 28,000	Vp/day I/ha/day I/ha/day I/ha/day I/ha/day I/ha/day I/s/Ha		MINIMUM VE MAXIMUM V MANNINGS I BEDDING CI MINIMUM CO HARMON CO	ELOCITY 1 ASS	ACTOR	0.60 3.00 0.013 B 2.50 0.8	m/s					
LOCATION				RESIDENTIAL AR	EA AND POP	ULATION				COMM	ERCIAL	INDUST	TRIAL (L)	INDUST	RIAL (H)	INSTITUT	TIONAL	GREEN /	UNUSED	C+I+I		INFILTRATION	1	TOTAL				PIF	ΡE				
AREA ID FROM NUMBER M.H.	TO M.H.	AREA BACI	HELOR 1 BEDROOM	2 BEDROOM	POP.	CUML AREA (ha)	LATIVE POP.	PEAK FACT.	PEAK FLOW (I/s)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	PEAK FLOW (I/s)	TOTAL AREA (ha)	ACCU. AREA (ha)	INFILT. FLOW (I/s)	FLOW (I/s)	LENGTH (m)	DIA (mm)	MATERIAL	CLASS	SLOPE	CAP. (FULL) (I/s)		VEL. (FULL) (m/s)	VEL. (ACT.) (m/s)
BLDG BLDG	TEE	0.031	0 0	8	17	0.03	17	4.00	0.22	0.000	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.031	0.03	0.01	0.23	10.8	150 300	PVC	DR 28	1.00	15.3	1.49%	0.86	0.27

Appendix C Stormwater Management February 22, 2019

Appendix C STORMWATER MANAGEMENT

C.1 STORM SEWER DESIGN SHEET

			13 Monk Str	reet				STOR	M SEWI			<u>DESIGN</u> I = a / (t+	PARAMET	<u>ERS</u>	(As per (City of Otta	wa Guidel	lines, 201	2)												
	Stantec	DATE:		22-Feb	-2019			(City o	of Ottawa	a)			1:2 yr	1:100 yr	1																
	Junec	REVISION:		1								a =	732.951	1735.688	MANNING	G'Sn=	0.013		BEDDING	CLASS =	В										
		DESIGNED BY:		C	0	FILE NUM	BER: 160	04-01438				b =	6.199	6.014	MINIMUN	I COVER:	2.00	m													
	1	CHECKED BY:										с =	0.810	0.820	TIME OF	ENTRY	10	min													
	LOCA	TION									DRAINA	GE AREA													PIPE SELEC	CTION					
A	AREA ID	FROM	то	AREA	AREA	AREA	С	ACCUM.	AxC	ACCUM.	ACCUM.	AxC	ACCUM.	T of C	I _{2-YEAR}	I _{100 YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH	PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.	VEL.	TIME OF
N	NUMBER	M.H.	M.H.	(2-YEAR)	(10-YEAR)	(ROOF)		AREA (2YR) (2-YEAR)	AxC (2YR)	AREA (100YR) (100-YEAR	AxC (100YR)				(NOTE 1)	Q _{CONTROL}	(CIA/360)	C	R DIAMETER	HEIGHT	SHAPE				(FULL)		(FULL)	(ACT)	FLOW
				(ha)	(ha)	(ha)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
	SITE	CB 1	MAIN	0.03	0.00	0.00	0.81	0.03	0.022	0.022	0.00	0.000	0.000	10.00	76.81	178.56	0.0	0.0	4.7	10.8	100	100	CIRCULAR	PVC	-	1.00	5.3	88.63%	0.66	0.67	0.27
														10.27							300	300									

Appendix C Stormwater Management February 22, 2019

C.2 RATIONAL METHOD CALCULATIONS

Stormwater Management Calculations

Modifie		l (mm/hr)	t (min)	732.951	÷-	$I = a/(t + b)^{c}$	ity 1	2 ur Inter-
		76.81 52.03	t (min) 10 20	6.199 0.81	a = b = c =			2 yr Intens City of Otta
		40.04	30	0.01	C =	L		
		32.86 28.04	40 50					
		24.56	60					
		21.91 19.83	70 80					
		18.14 16.75	90 100					
		15.57 14.56	110 120					
	_	11.00		L e from Poi	rget Releas	elopment Ta	R Predeve	2 YEA
Subo				et	Area to Outl	ment Tributary	Predevelopr 0.0310	ubdrainage Area: Area (ha):
							0.40	C:
						tration Qtarget	e of Concen I (2 yr)	Typical Tim
						(L/s) 2.65	(mm/hr) 76.81	(min) 10
				e Site	od for Enti	ational Meth	Iodified Ra	2 YEAR M
Subo		I - Tributary	Controlle				CB-1	ubdrainage Area:
							0.01 0.67	Area (ha): C:
			Vstored (m^3)	Qstored (L/s)	Qrelease (L/s)	Qactual (L/s)	l (2 yr) (mm/hr)	tc (min)
			0.85	1.42 0.87	0.77 0.87	2.18 1.74	76.81 52.03	10 20
			1.10	0.61	0.90	1.51	40.04	30
			1.11 1.10	0.46 0.37	0.91 0.90	1.37 1.27	32.86 28.04	40 50
			1.08 1.05	0.30 0.25	0.89 0.87	1.19 1.12	24.56 21.91	60 70
			1.01	0.21	0.85	1.06	19.83	80
			0.97 0.93	0.18 0.15	0.83 0.81	1.01 0.96	18.14 16.75	90 100
			0.88	0.13	0.78	0.91	15.57	110
			0.81	0.11	0.75	0.86	14.56	120
							IMEEO	Orifico Diamat-
0						m	LMF50 68.75	Orifice Diameter: Invert Elevation
Max						m m	70.55 0.16	T/G Elevation lax Storage Depth
Do						m	65.77	Downstream W/L
		Volume	Vavail	Vreq	Discharge	Head	Stage	
100-уе		Check OK	(cu. m) 3.79	(cu. m) 1.11	(L/s) 0.91	(m) 0.16	68.91	-year Water Level
Subo		Roof	nee D''	aulas Ci			BLDG	ubdrainage Area:
	nm	150 r	age Depth:	aximum Stor	M		0.02 0.90	Area (ha): C:
		Depth (mm)	Vstored (m^3)	Qstored (L/s)	Qrelease (L/s)	Qactual (L/s)	l (2 yr) (mm/hr)	tc (min)
	0.00	89.1 93.9	1.51 1.73	2.51 1.44	0.75 0.77	3.27 2.21	76.81 52.03	10 20
	0.00	92.9	1.69	0.94	0.77	1.70	40.04	30
	0.00	89.8 85.7	1.54 1.35	0.64 0.45	0.76 0.74	1.40 1.19	32.86 28.04	40 50
	0.00	81.1	1.14	0.32	0.73	1.04	24.56 21.91	60
	0.00 0.00	76.4 69.7	0.91 0.72	0.22 0.15	0.71 0.69	0.93 0.84	19.83	70 80
	0.00	62.4 55.5	0.55 0.38	0.10 0.06	0.67 0.65	0.77 0.71	18.14 16.75	90 100
	0.00	49.5	0.25	0.04	0.62	0.66	15.57	110
Storage:	0.00	46.6	0.22	0.03	0.59	0.62	14.56 je	120 je: Roof Storag
		Discharge	Vavail	Vreq	Discharge	Head	Depth	
100-ye		Check 0.00	(cu. m) 6.80	(cu. m) 1.73	(L/s) 0.77	(m) 0.09	(mm) 93.94	-year Water Level
Subo		on-Tributary	ontrolled - No	Und			UNC-1 0.004	ubdrainage Area:
							0.004 0.37	Area (ha): C:
			Vstored (m ³)	Qstored (L/s)	Qrelease (L/s)	Qactual (L/s)	l (2 yr) (mm/hr)	tc (min)
1					0.32 0.21	0.32 0.21	76.81 52.03	10 20
					0.16 0.14	0.16 0.14	40.04 32.86	30 40
	1				0.12	0.12	28.04	50
					0.10 0.09	0.10 0.09	24.56 21.91	60 70
							-1.01	
					0.08	0.08	19.83	80
								80 90 100
					0.08 0.07	0.08 0.07	19.83 18.14	90

dified I	100	a a liter	1 = 2/(+ + 1)		1705 000	0 6 (m ⁻¹)	1 (mag = //)	
	100 yr Inter		I = a/(t + b)'	a = b =	1735.68		178.56	_
	City of Otta	iwa		D = C =	6.014 0.820		178.56	
				-		30	91.87	
						40	75.15	
						50	63.95	
						60	55.89	
						70	49.79	
						80 90	44.99 41.11	
						100	37.90	
						110	35.20	
						120	32.89	_
	100 `	YEAR Pre	developme	nt Target Rele	ase from Por	tion of Site		
Subdrai	Area (ha):	0.0310	ment Tributar	y Area to Outlet				
	C:	0.40						
	0 V D	Development	at Disabases	(L/s)	1.6			
		k Sanitary I	nt Discharge Discharge of Release Rate	2.65 0.23 2.42	L/s L/s L/s			
	100 YEAR			ethod for Enti				
		linealitea						
Subdrai	nage Area: Area (ha):	CB-1 0.01				Controlle	d - Tributary	y
	C:	0.84						
	tc (min)	I (100 yr) (mm/hr)	Qactual (L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)		
	10 20	178.56 119.95	5.04 3.71	1.12 1.29	3.92 2.42	2.35 2.91		
	20 30	119.95 91.87	3.71 3.07	1.29 1.36	2.42 1.71	2.91 3.07		
	40	75.15	2.68	1.36	1.30	3.07		
	50	63.95	2.42	1.38	1.04	3.12		
	60	55.89	2.23	1.37	0.86	3.09		
	70	49.79	2.08	1.35	0.73	3.07		
	80	44.99	1.97	1.34	0.63	3.03		
	90	41.11	1.87	1.32	0.55	2.99		
	100	37.90	1.79	1.30	0.49	2.94		
	110 120	35.20	1.72 1.66	1.28 1.26	0.44 0.39	2.89 2.84		
	120	32.89	1.00	1.20	0.39	2.84		
Orifice	e Diameter:	LMF50		Volume in CB1 head = 0.375	and CB 2 wher	n 0.70		
Inve T/0 Max Sto	e Diameter: ert Elevation G Elevation orage Depth stream W/L	LMF50 68.75 70.55 0.38 65.77	m m m			n 0.70 1.39		
Inve T/0 Max Sto	ert Elevation G Elevation prage Depth	68.75 70.55 0.38	m m m Head	head = 0.375 Max available v Discharge	olume in CB's	0.70 1.39 Vavail	Volume	T
Inve T/0 Max Sto Downs	ert Elevation G Elevation prage Depth	68.75 70.55 0.38 65.77	m m m	head = 0.375 Max available v	olume in CB's	1.39	Volume Check OK	
Inve T/0 Max Sto Downs	ert Elevation G Elevation orage Depth stream W/L	68.75 70.55 0.38 65.77 Stage	m m m Head (m)	head = 0.375 Max available v Discharge (L/s)	olume in CB's Vreq (cu. m)	0.70 1.39 Vavail (cu. m)	Check	
Inve T/(Max Sto Downs	ert Elevation G Elevation orage Depth stream W/L	68.75 70.55 0.38 65.77 Stage	m m m Head (m)	head = 0.375 Max available v Discharge (L/s)	Vreq (cu. m) 3.12	0.70 1.39 Vavail (cu. m) 3.79	Check OK Roo	of D mm
Inve T/(Max Sto Downs	ert Elevation G Elevation orage Depth stream W/L Water Level nage Area: Area (ha): C: tc	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00	m m Head (m) 0.38	head = 0.375 Max available v Discharge (L/s) 1.38 Qrelease	Vreq (cu. m) 3.12 Maximum St Qstored	Vavail (cu. m) 3.79 0.66 orage Depth:	Check OK Roo 150	
Inve T/(Max Sto Downs	ert Elevation G Elevation Dorage Depth stream W/L Water Level nage Area: Area (ha): C: tc (min)	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 I (100 yr) (mm/hr)	m m Head (m) 0.38 Qactual (L/s)	head = 0.375 Max available v Discharge (L/s) 1.38 Qrelease (L/s)	Vreq (cu. m) 3.12 Maximum St Qstored (L/s)	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m^3)	Check OK Roo 150 Depth (mm)	0 mm
Inve T/(Max Sto Downs	ert Elevation G Elevation orage Depth stream W/L Water Level nage Area: Area (ha): C: tc	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 I (100 yr) (mm/hr) 178.56	m m Head (m) 0.38	head = 0.375 Max available v Discharge (L/s) 1.38 Qrelease (L/s) 0.88	Vreq (cu. m) 3.12 Maximum St Qstored (L/s) 7.55	Vavaii (cu. m) 3.79 0.66 orage Depth: Vstored (m^3) 4.53	Check OK Roo 150 Depth (mm) 130.2	0 mm
Inve T/(Max Sto Downs	rt Elevation G Elevation xrage Depth stream W/L Nater Level nage Area: Area (ha): C: tc (min) 10 20 30	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87	m m m m 0.38 Qactual (L/s) 8.44 5.67 4.34	head = 0.375 Max available v Discharge (L/s) 1.38 Qrelease (L/s) 0.88 0.92 0.93	Vreq (cu. m) 3.12 Maximum St (L/s) 7.55 4.75 3.41	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m^3) 4.53 5.70 6.14	Check OK Roo 150 Depth (mm) 130.2 140.4 144.3	0 mm 0.0 0.0
Inve T/(Max Sto Downs	rt Elevation G Elevation orage Depth stream W/L Water Level Water Level Mage Area: Area (ha): C: tc (min) 10 20 30 40	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 1.00 y 1, 100 yr) (mm/hr) 178.56 119.95 91.87 75.15	m m m 0.38	head = 0.375 Max available v Discharge (L/s) 1.38 Qrelease (L/s) 0.88 0.92 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.41 2.62	Vavail (cu. m) 3.79 0.66 vstored (m^3) 5.70 6.14 6.29	Check OK Roo 150 Depth (mm) 130.2 140.4 144.3 145.5	0 mm 0.0 0.0 0.0 0.0
Inve T/(Max Sto Downs	rt Elevation G Elevation orage Depth stream W/L Water Level nage Area: Area (ha): C: tc (min) 10 20 30 40 50	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95	m m m M U U S S S S S S S S S S S S S S S S S	head = 0.375 Max available v Discharge (L/s) 1.38 Qrelease (L/s) 0.88 0.92 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.41 2.62 2.09	Vavaii (cu. m) 3.79 0.66 orage Depth: Vstored (m*3) 4.53 5.70 6.14 6.29 6.27	Check OK Roo 150 Depth (mm) 130.2 140.4 144.3 145.5 145.4	0 mm 0.0 0.0 0.0 0.0 0.0 0.0
Inve T/(Max Sto Downs	rt Elevation G Elevation Srage Depth stream W/L Water Level Water Level mage Area: Area (ha): C: tc (min) 10 20 30 40 50 60	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 I (100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	m m m 0.38 Qactual (L's) 8.44 5.67 4.34 3.55 3.02 2.64	head = 0.375 Max available v Discharge (L/s) 1.38 Qrelease (L/s) 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.41 2.62 2.09 1.71	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m^3) 4.53 5.70 6.14 6.29 6.27 6.17	Check OK Roo 150 Depth (mm) 130.2 140.4 144.3 145.5 145.4 144.5	0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Inve T/(Max Sto Downs	rt Elevation G Elevation G Elevation Strage Depth stream W/L Nater Level nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 I (100 yr) (mm/hr) 178.56 178.56 3.95 55.89 49.79	m m m (m) 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.44 5.67 4.33 5.53 3.02 2.64 2.35	head = 0.375 Max available v Discharge (L/s) 1.38 Qrelease (L/s) 0.88 0.92 0.93 0.93 0.93 0.93 0.92	Vreq (cu. m) 3.12 Maximum St (Us) 7.55 4.75 3.41 2.62 2.09 1.71 1.43	Vavail (cu. m) 3.79 0.66 vstored (m ² 3) 5.70 6.14 6.29 6.17 6.00	Check OK Roo 150 Depth (mm) 130.2 140.4 144.3 145.5 145.4 144.5 143.0	0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Inve T/(Max Sto Downs	It Elevation G Elevation orage Depth stream W/L Water Level Mater Level Mater Level C: C: C: C: (min) 10 20 30 40 50 60 70 80	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 178.56 119.95 91.87 75.15 63.95 55.89 49.79	m m m 0.38 Qactual (L/s) 4.34 4.34 5.67 4.34 3.55 3.02 2.64 2.33 2.13	head = 0.375 Max available v Discharge (L/s) 1.38 Qrelease (L/s) 0.88 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.92	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.475 3.475 3.475 3.475 3.475 3.475 3.475 3.475 3.12 1.21	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m ³) 4.53 5.70 6.17 6.17 6.17 6.00 5.80	Check OK Roo 150 Depth (mm) 130.2 140.4 144.3 145.5 145.4 144.5 145.4 144.5 143.0	0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Inve T/(Max Sto Downs	rt Elevation 6 Elevation brage Depth stream W/L water Level mage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 1(100 yr) (mm/hr) 178.56 91.87 75.15 63.95 55.89 49.79 44.99	m m Head (m) 0.38 Qactual (L/s) 8.44 5.67 4.34 5.67 4.34 3.55 3.02 2.64 2.35 2.13 1.94	head = 0.375 Max available v Discharge (L/s) 1.38 0.88 0.92 0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.92 0.92	Vreq (cu. m) 3.12 Maximum St Cstored (L/s) 7.55 4.75 3.41 2.62 2.09 1.71 1.43 1.21 1.03	Vavail (cu. m) 3.79 0.66 0rage Depth: Vstored (m^3) 4.53 5.70 6.14 6.29 6.27 6.14 6.27 6.00 5.80 5.56	Check OK Roo 150 Depth (mm) 130.2 140.4 144.3 145.5 145.4 145.5 145.4 145.5 145.4 145.2 145.4 141.2 139.2	0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inve T/(Max Sto Downs	rt Elevation 6 Elevation brage Depth stream W/L water Level nage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 11(100 yr) (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89 49.79 44.99 41.11 37.90	m m m m 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.264 2.35 2.13 1.94 1.79	head = 0.375 Max available v Discharge (L/s) 1.38 Qrelease (L/s) 0.88 0.92 0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.92 0.92 0.92	Vreq (cu. m) 3.12 Maximum St Qstored (L(s) 7.55 4.75 3.41 2.62 2.09 1.71 1.43 2.20 2.09 1.71 1.21 1.03 0.89	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m ³) 4.53 5.570 6.14 6.29 6.27 6.17 6.00 5.80 5.56 5.31	Check OK Roo 150 130.2 140.4 144.3 145.5 145.4 144.5 143.0 141.2 137.0	0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inve T/(Max Sto Downs	rt Elevation 6 Elevation brage Depth stream W/L water Level mage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 1(100 yr) (mm/hr) 178.56 91.87 75.15 63.95 55.89 49.79 44.99	m m Head (m) 0.38 Qactual (L/s) 8.44 5.67 4.34 5.67 4.34 3.55 3.02 2.64 2.35 2.13 1.94	head = 0.375 Max available v Discharge (L/s) 1.38 0.88 0.92 0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.92 0.92	Vreq (cu. m) 3.12 Maximum St Cstored (L/s) 7.55 4.75 3.41 2.62 2.09 1.71 1.43 1.21 1.03	Vavail (cu. m) 3.79 0.66 0rage Depth: Vstored (m^3) 4.53 5.70 6.14 6.29 6.27 6.14 6.27 6.00 5.80 5.56	Check OK Roo 150 Depth (mm) 130.2 140.4 144.3 145.5 145.4 145.5 145.4 145.5 145.4 145.2 145.4 141.2 139.2	0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inve T/(Max Sto Downs	rt Elevation G Elevation yrage Depth stream W/L Water Level Mater Level C: C: (min) 10 20 30 40 50 60 70 80 90 100	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 1 (100 yr) (mm/hr) 178.56 119.95 91.87 91.07 91.07 91.87 9	m m Head (m) 0.38 Qactual (L/s) 8.44 4.55 3.02 2.64 2.35 2.13 1.94 1.76	head = 0.375 Max available v Discharge (L/s) 1.38 0.88 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Cstored (Us) 7.55 3.41 2.62 2.09 1.71 1.43 1.21 1.03 0.89 0.77	Vavail (u. m) 3.79 0.66 0rage Depth: Vstored (m ³) 4.53 5.70 6.14 6.29 6.27 6.14 6.29 6.27 6.00 5.60 5.56 5.31 5.05	Check OK Roo 150 Depth (mm) 130.2 140.4 144.3 145.5 143.0 145.5 143.0 145.2 145.4 145.1 143.0 141.2 139.2 137.0 134.7	0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inve T// Max Stc Down: 100-year \ Subdrain	rt Elevation G Elevation orage Depth stream W/L Nater Level Nater Level Nater Level c tc (min) 10 20 30 40 50 60 70 80 90 90 110 120	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 178.56 119.95 119.95 55.89 49.79 44.99 41.11 37.90 35.20 32.89 He Depth	m m m Head (m) 0.38 Qactual (L/s) 8.44 4.34 3.55 2.13 1.94 1.79 1.65 1.55	head = 0.375 Max available v Discharge (L/s) 1.38 0.88 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.41 2.62 2.09 1.71 1.43 1.21 0.89 0.77 0.66	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m^3) 5.70 6.14 6.22 6.17 6.00 5.80 5.80 5.31 5.05 5.31 5.05 5.4.78	Check OK Roo 150 Depth (mm) 130.2 140.4 144.3 145.5 145.4 144.5 145.5 145.4 144.5 145.2 139.2 137.0 134.7 132.4	0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inver Tri Max Stc Down: 100-year \ Subdrai	rt Elevation G Elevation orage Depth stream W/L Nater Level Nater Level Nater Level c tc (min) 10 20 30 40 50 60 70 80 90 90 110 120	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 1.00 1.00 1.19.05 91.87 75.15 63.95 55.89 49.79 41.11 37.90 35.20 32.89 ye	m m Head (m) 0.38 Qactual (L/s) 8.44 5.67 4.355 3.02 2.64 2.35 2.25 2.13 1.94 1.55	head = 0.375 Max available v Discharge (L/s) 1.38 0.88 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.5	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m^3) 4.53 4.53 5.70 6.14 6.29 6.27 6.29 6.27 6.17 6.00 5.56 5.31 5.05 4.78	Check OK Roo 150 Depth (mm) 130.2 140.4 144.3 145.5 143.0 141.2 139.2 139.2 134.7 132.4	0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inver Tri Max Stc Down: 100-year \ Subdrai	rt Elevation of Elevation orage Depth stream W/L Nater Level Nater Level C: C: (min) 10 20 30 40 50 60 70 80 90 110 120 Roof Storage	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 1.00 91.87 75.15 63.95 91.87 75.15 63.95 91.87 75.15 63.95 91.87 75.15 63.95 91.87 75.15 63.95 92.89 94.199 41.11 37.90 35.20 32.89 96 Depth (mm) (145.51	m m Head (m) 0.38 Qactual (<i>L</i> (s) 8.44 5.67 4.35 5.67 4.35 5.67 4.35 5.67 4.35 5.67 4.35 5.67 4.35 5.67 4.35 5.65 1.55 Head (m)	head = 0.375 Max available v Discharge (L/s) 1.38 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.41 2.62 2.09 1.71 1.43 1.21 1.23 1.21 1.23 0.89 0.77 0.66 Vreq (cu. m)	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m ⁻³) 4.73 5.70 6.14 6.29 6.27 6.17 6.00 5.56 5.31 5.05 4.78 Vavail (cu. m)	Сheck ОК Рерth (mm) 130.2 140.4 144.3 145.5 145.4 144.5 145.4 144.5 145.7 137.0 134.7 132.4 Discharge Check	
Inve T// Max St Down: 100-year \ Subdrain Subdrain	rt Elevation of Elevation orage Depth stream W/L Nater Level Nater Level C: C: (min) 10 20 30 40 50 60 70 80 90 110 120 Roof Storage	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 119.95 91.87 75.15 63.95 55.89 44.99 41.11 37.90 35.20 32.89 gree Depth (mm)	m m Head (m) 0.38 Qactual (<i>L</i> (s) 8.44 5.67 4.35 5.67 4.35 5.67 4.35 5.67 4.35 5.67 4.35 5.67 4.35 5.67 4.35 5.65 1.55 Head (m)	head = 0.375 Max available v Discharge (L/s) 1.38 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St (Us) 7.55 3.41 2.62 2.09 1.71 1.43 1.21 1.03 0.89 0.77 0.66 Vreq (cu. m) 6.29	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m ⁻³) 4.73 5.70 6.14 6.29 6.27 6.17 6.00 5.56 5.31 5.05 4.78 Vavail (cu. m)	Сheck ОК Верета (mm) 130.2 140.4 144.3 145.5 145.5 145.5 145.5 145.4 144.5 139.2 137.0 134.7 132.4 Discharge <u>Check</u> 0.00	0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inve T// Max St Down: 100-year \ Subdrain Subdrain	rt Elevation of Elevation yage Depth stream W/L Water Level mage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 70 70 70 70 70 70 70 70 70 7	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 1.00 1.00 91.87 75.15 63.95 91.87 75.15 63.95 91.87 75.15 63.95 91.87 75.15 63.95 91.87 75.15 63.95 91.87 75.15 63.95 91.87 75.15 143.55 32.89 91.11 75.15 145.51 145.51 145.51	m m m Head (m) 0.38 Qactual (L(s) 8.44 0.38 8.44 0.53 2.13 1.94 1.65 1.55 1.55 1.55	head = 0.375 Max available v Discharge (L/s) 1.38 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.41 2.62 2.09 1.71 1.43 1.21 1.03 9.90 0.77 0.66 Vreq (cu. m) 6.29 U Qstored	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m*3) 4.72 6.14 6.27 6.14 6.28 6.17 6.14 6.29 6.17 6.14 6.29 6.17 6.14 6.29 5.50 5.31 5.05 4.78 0.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 5.55 5.31 5.05 4.78 5.57 5.70 6.80 5.55 5.57 5.70 6.80 5.55 5.51 5.55 5.51 5.55 5.51 5.55	Сheck ОК Верета (mm) 130.2 140.4 144.3 145.5 145.5 145.5 145.5 145.4 144.5 139.2 137.0 134.7 132.4 Discharge <u>Check</u> 0.00	0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inve T// Max St Down: 100-year \ Subdrain Subdrain	rt Elevation G Elevation G Elevation Arage Depth stream W/L Nater Level Arae (ha): C: (min) 10 20 30 40 50 60 70 80 90 110 120 Roof Storage Water Level Nater Level Nater Level Nater Level Roof Storage Water Level C: C: C: C: C: C: C: C: C: C: C: C: C:	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 1.00 1.100 91.87 75.15 63.95 55.89 44.99 44.99 44.99 44.99 44.90 35.20 32.89 ge Depth (mm) 145.51 UNC-1 0.004 0.46	m m Head (m) 0.38 Qactual (L/s) 8.44 5.67 4.355 3.02 2.64 2.35 2.64 2.35 2.25 1.94 1.55 Head (m) 0.15	head = 0.375 Max available v Discharge (L/s) 1.38 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 7.75 7.75 7.75 3.71 2.62 2.09 1.71 1.23 1.21 1.23 1.21 1.30 0.89 0.77 0.66 Vreq (cu. m) 6.29	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m ³) 4.53 4.53 4.57 6.17 6.10 5.50 5.31 5.05 4.78 Vavail (cu. m) 6.80 Vavail (cu. m)	Сheck ОК Верета (mm) 130.2 140.4 144.3 145.5 145.5 145.5 145.5 145.4 144.5 139.2 137.0 134.7 132.4 Discharge <u>Check</u> 0.00	0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inve T// Max St Down: 100-year \ Subdrain Subdrain	rt Elevation G Elevation yrage Depth stream W/L Nater Level nage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 110 120 Roof Storage Water Level nage Area: Area (ha): C: (min) 10 20 30 40 50 60 90 110 120 100 100 100 100 100 10	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 1.00 119.95 91.87 75.15 63.95 55.89 44.99 41.11 37.90 35.20 32.89 je Depth (mm/hr) 145.51 UNC-1 0.004 0.46	m m m Head (m) 0.38 Qactual (<i>L</i> (<i>s</i>) 8.44 5.67 4.35 5.67 4.35 5.67 4.35 5.3.02 2.64 2.35 2.64 2.35 2.64 2.35 2.64 1.55 1.66 1.55 Head (m) 0.15	head = 0.375 Max available v Discharge (L/s) 1.38 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.41 2.62 2.09 1.71 1.43 1.21 1.03 9.90 0.77 0.66 Vreq (cu. m) 6.29 U Qstored	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m*3) 4.72 6.14 6.27 6.14 6.28 6.17 6.14 6.29 6.17 6.14 6.29 6.17 6.14 6.29 5.50 5.31 5.05 4.78 0.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 5.55 5.31 5.05 4.78 5.57 5.70 6.80 5.55 5.57 5.70 6.80 5.55 5.51 5.55 5.51 5.55 5.51 5.55	Сheck ОК Верета (mm) 130.2 140.4 144.3 145.5 145.5 145.5 145.5 145.4 144.5 139.2 137.0 134.7 132.4 Discharge <u>Check</u> 0.00	0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inve T// Max St Down: 100-year \ Subdrain Subdrain	rt Elevation G Elevation yrage Depth stream W/L Water Level Mater Level (min) 10 20 30 40 50 60 70 70 70 80 90 100 120 Roof Storag Water Level Nater Level (min) 120 Roof Storag Mater Level (min) 120 80 100 110 120 Roof Storag (min) 120 80 100 110 120 80 100 110 120 80 100 110 120 80 100 100 100 100 100 100 100 100 100	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 1.00 91.87 75.15 63.95 55.89 44.99 44.91 44.99 44.11 37.90 35.20 32.89 9 145.51 UNC-1 0.004 0.46 UNC-1 0.046 1178.56 119.95 91.87	m m m Head (m) 0.38 Qactual (L(s) 8.44 5.3 5.3 5.3 5.3 5.2 13 4.4 2.35 2.43 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.3	head = 0.375 Max available v Discharge (L/s) 1.38 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.41 2.62 2.09 1.71 1.43 1.21 1.03 9.90 0.77 0.66 Vreq (cu. m) 6.29 U Qstored	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m*3) 4.72 6.14 6.27 6.14 6.28 6.17 6.14 6.29 6.17 6.14 6.29 6.17 6.14 6.29 5.50 5.31 5.05 4.78 0.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 5.55 5.31 5.05 4.78 5.57 5.70 6.80 5.55 5.57 5.70 6.80 5.55 5.51 5.55 5.51 5.55 5.51 5.55	Сheck ОК Верета (mm) 130.2 140.4 144.3 145.5 145.5 145.5 145.5 145.4 144.5 139.2 137.0 134.7 132.4 Discharge <u>Check</u> 0.00	0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inve T// Max St Down: 100-year \ Subdrain Subdrain	rt Elevation G Elevation orage Depth stream W/L Nater Level nage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 110 120 Roof Storage Water Level nage Area: Area (ha): C: (min) 10 20 30 40 50 60 110 120 Roof Storage Water Level (min) 10 20 20 20 20 20 20 20 20 20 2	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 178.56 119.95 91.87 75.15 63.95 55.89 44.99 41.11 37.90 32.89 weights of the state of	m m Head (m) 0.38 Qactual (L/s) 8.44 5.67 4.355 3.002 2.64 2.35 2.64 2.35 2.64 2.35 2.64 2.35 1.94 1.75 Head (m) 0.15 Qactual (L/s) 0.15	head = 0.375 Max available v Discharge (L/s) 1.38 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.41 2.62 2.09 1.71 1.43 1.21 1.03 9.90 0.77 0.66 Vreq (cu. m) 6.29 U Qstored	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m*3) 4.72 6.14 6.27 6.14 6.28 6.17 6.14 6.29 6.17 6.14 6.29 6.17 6.14 6.29 5.50 5.31 5.05 4.78 0.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 5.55 5.31 5.05 4.78 5.57 5.70 6.80 5.55 5.57 5.70 6.80 5.55 5.51 5.55 5.51 5.55 5.51 5.55	Сheck ОК Верета (mm) 130.2 140.4 144.3 145.5 145.5 145.5 145.5 145.4 144.5 139.2 137.0 134.7 132.4 Discharge <u>Check</u> 0.00	0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inve T// Max St Down: 100-year \ Subdrain Subdrain	rt Elevation G Elevation yrage Depth stream W/L Water Level Mater Level (min) 10 20 30 40 50 60 70 70 70 80 90 100 120 Roof Storag Water Level Nater Level (min) 120 Roof Storag Mater Level (min) 120 80 100 110 120 Roof Storag (min) 120 80 100 110 120 80 100 110 120 80 100 110 120 80 100 100 100 100 100 100 100 100 100	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 1.00 91.87 75.15 63.95 55.89 44.99 44.91 44.99 44.11 37.90 35.20 32.89 9 145.51 UNC-1 0.004 0.46 UNC-1 0.046 1178.56 119.95 91.87	m m m Head (m) 0.38 Qactual (L(s) 8.44 5.3 5.3 5.3 5.3 5.2 13 4.4 2.35 2.43 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.3	head = 0.375 Max available v Discharge (L/s) 1.38 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.41 2.62 2.09 1.71 1.43 1.21 1.03 9.90 0.77 0.66 Vreq (cu. m) 6.29 U Qstored	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m*3) 4.72 6.14 6.27 6.14 6.28 6.17 6.14 6.29 6.17 6.14 6.29 6.17 6.14 6.29 5.50 5.31 5.05 4.78 0.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 5.55 5.31 5.05 4.78 5.57 5.70 6.80 5.55 5.57 5.70 6.80 5.55 5.51 5.55 5.51 5.55 5.51 5.55	Сheck ОК Верета (mm) 130.2 140.4 144.3 145.5 145.5 145.5 145.5 145.4 144.5 139.2 137.0 134.7 132.4 Discharge <u>Check</u> 0.00	0.0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inve T// Max St Down: 100-year \ Subdrain Subdrain	rt Elevation G Elevation orage Depth stream W/L Nater Level Atter Level nage Area: Area (ha): C: (min) 10 20 30 40 50 60 100 110 120 Roof Storage Nater Level nage Area: Area (ha): C: (min) 10 20 30 40 50 60 110 120 Roof Storage Nater Level nage Area: Area (ha): C: (min) 10 20 30 40 50 60 110 120 Roof Storage Nater Level 120 120 120 120 120 120 120 120	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 178.56 91.87 75.15 55.89 44.99 41.11 37.90 32.89 44.91 775.15 55.89 44.99 44.91 775.15 55.89 145.51 UNC-1 0.04 0.46 (mm/hr) 178.56 119.95 91.87 75.15 63.95 55.89	m m Head (m) 0.33 647 5.67 4.345 3.65 3.02 2.64 4.34 3.55 3.02 2.64 4.34 2.35 2.64 1.55 1.66 1.55 Head (m) 0.15 Cactual (<i>Us</i>) 0.55	head = 0.375 Max available v Discharge (L/s) 1.38 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.41 2.62 2.09 1.71 1.43 1.21 1.03 9.90 0.77 0.66 Vreq (cu. m) 6.29 U Qstored	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m*3) 4.72 6.14 6.27 6.14 6.28 6.17 6.14 6.29 6.17 6.14 6.29 6.17 6.14 6.29 5.50 5.31 5.05 4.78 0.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 5.55 5.31 5.05 4.78 5.57 5.70 6.80 5.55 5.57 5.70 6.80 5.55 5.51 5.55 5.51 5.55 5.51 5.55	Сheck ОК Верета (mm) 130.2 140.4 144.3 145.5 145.5 145.5 145.5 145.4 144.5 139.2 137.0 134.7 132.4 Discharge <u>Check</u> 0.00	0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inve T// Max St Down: 100-year \ Subdrain Subdrain	rt Elevation G Elevation G Elevation Arage Depth stream W/L Nater Level (min) 10 20 30 40 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 80 70 80 80 80 70 80 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 1.00 91.87 75.15 63.95 55.89 49.79 41.91 37.90 32.89 41.11 37.90 35.20 32.89 H1.11 35.51 UNC-1 0.004 0.46 119.95 51.87 75.15 63.95 55.89 49.79	m m m Head (m) 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38	head = 0.375 Max available v Discharge (L/s) 1.38 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.41 2.62 2.09 1.71 1.43 1.21 1.03 9.90 0.77 0.66 Vreq (cu. m) 6.29 U Qstored	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m*3) 4.72 6.14 6.27 6.14 6.28 6.17 6.14 6.29 6.17 6.14 6.29 6.17 6.14 6.29 5.50 5.31 5.05 4.78 0.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 5.55 5.31 5.05 4.78 5.57 5.70 6.80 5.55 5.57 5.70 6.80 5.55 5.51 5.55 5.51 5.55 5.51 5.55	Сheck ОК Верета (mm) 130.2 140.4 144.3 145.5 145.5 145.5 145.5 145.4 144.5 139.2 137.0 134.7 132.4 Discharge <u>Check</u> 0.00	0.0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inve T// Max St Down: 100-year \ Subdrain Subdrain	rt Elevation G Elevation orage Depth stream W/L Nater Level Atter Level nage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 100 110 120 30 40 50 60 70 80 80 80 80 80 80 80 80 80 8	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 178.56 119.95 91.87 75.15 63.95 55.89 44.99 32.89 re Depth (mm) 145.51 UNC-1 0.04 0.46 I (190 yr) (mm/hr) 178.56 3.95 55.89 44.99	m m m Head (m) 0.38 Qactual (L(s) 8.44 3.55 2.13 1.94 1.65 1.65 1.55 Head (m) 0.15 Qactual (L(s) 1.65 1.65	head = 0.375 Max available v Discharge (L/s) 1.38 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.41 2.62 2.09 1.71 1.43 1.21 1.03 9.90 0.77 0.66 Vreq (cu. m) 6.29 U Qstored	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m*3) 4.72 6.14 6.27 6.14 6.28 6.17 6.14 6.29 6.17 6.14 6.29 6.17 6.14 6.29 5.50 5.31 5.05 4.78 0.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 5.55 5.31 5.05 4.78 5.57 5.70 6.80 5.55 5.57 5.70 6.80 5.55 5.51 5.55 5.51 5.55 5.51 5.55	Сheck ОК Верета (mm) 130.2 140.4 144.3 145.5 145.5 145.5 145.5 145.4 144.5 139.2 137.0 134.7 132.4 Discharge <u>Check</u> 0.00	0.0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inve T// Max St Down: 100-year \ Subdrain Subdrain	rt Elevation G Elevation G Elevation rage Depth stream W/L Nater Level mage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 110 120 Roof Storage Water Level mage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 110 120 100 100 100 100 100 10	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00	m m m Head (m) 0.38 Qactual (<i>Lts</i>) 8.44 5.67 4.355 5.67 4.355 2.64 2.35 2.64 2.35 2.25 2.64 2.35 2.25 1.94 1.55 1.66 1.55 Head (m) 0.15 Qactual (<i>Lts</i>) 0.92 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.6	head = 0.375 Max available v Discharge (L/s) 1.38 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.41 2.62 2.09 1.71 1.43 1.21 1.03 9.90 0.77 0.66 Vreq (cu. m) 6.29 U Qstored	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m*3) 4.72 6.14 6.27 6.14 6.28 6.17 6.14 6.29 6.17 6.14 6.29 6.17 6.14 6.29 5.50 5.31 5.05 4.78 0.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 5.55 5.31 5.05 4.78 5.57 5.70 6.80 5.55 5.57 5.70 6.80 5.55 5.51 5.55 5.51 5.55 5.51 5.55	Сheck ОК Верета (mm) 130.2 140.4 144.3 145.5 145.5 145.5 145.5 145.4 144.5 139.2 137.0 134.7 132.4 Discharge <u>Check</u> 0.00	0.0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inve T// Max St Down: 100-year \ Subdrain Subdrain	rt Elevation G Elevation yrage Depth stream W/L Water Level mage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storage Water Level Mater Level (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storage Water Level (min) 10 20 30 40 50 60 70 80 90 100 100 100 100 100 100 100	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 1.00 1.00 91.87 75.15 63.95 91.87 75.15 63.95 94.97 44.99 41.11 35.20 32.89 we Depth (mm) 178.56 119.95 93.289 we Depth (mm) 140.046 178.56 119.95 91.87 75.15 63.95 55.89 44.99 44.91 178.56 1178.56 119.95 91.87 75.15 63.95 55.89 91.87 75.15 63.95 55.89 91.87 75.15 63.95 55.89 91.87 75.15 63.95 55.89 91.87 75.15 63.95 55.89 91.87 75.15 63.95 55.89 91.87 75.15 63.95 55.89 91.87 75.15 63.95 55.89 91.87 75.15 63.95 55.89 91.87 75.15 63.95 55.89 91.87 75.15 63.95 55.89 91.87 75.15 63.95 55.89 91.87 75.15 63.95 55.89 91.87 75.15	m m m Head (m) 0.38 Qactual (L/s) 8.44 5.47 4.34 3.55 2.13 3.02 2.64 2.35 2.13 3.02 2.64 1.79 1.66 1.65 1.55 Head (m) 0.15 Qactual (U) 0.15 Qactual (U) 0.15 Qactual (C) 0.15 Qactual (C) 0.15 Qactual (C) 0.23 0.23 0.23 0.23 0.23 0.23 0.21 0.21 0.21 0.21 0.23 0.22 0.22 0.22 0.22 0.22 0.22 0.21 0.21	head = 0.375 Max available v Discharge (L/s) 1.38 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.41 2.62 2.09 1.71 1.43 1.21 1.03 9.90 0.77 0.66 Vreq (cu. m) 6.29 U Qstored	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m*3) 4.72 6.14 6.27 6.14 6.28 6.17 6.14 6.29 6.17 6.14 6.29 6.17 6.14 6.29 5.50 5.31 5.05 4.78 0.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 5.55 5.31 5.05 4.78 5.57 5.70 6.80 5.55 5.57 5.70 6.80 5.55 5.51 5.55 5.51 5.55 5.51 5.55	Сheck ОК Верета (mm) 130.2 140.4 144.3 145.5 145.5 145.5 145.5 145.4 144.5 139.2 137.0 134.7 132.4 Discharge <u>Check</u> 0.00	0.0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Inve T// Max St Down: 100-year \ Subdrain Subdrain	rt Elevation G Elevation G Elevation yrage Depth stream W/L Nater Level mage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 110 120 Roof Storage Water Level mage Area: Area (ha): C: (min) 10 20 30 40 50 60 70 80 90 110 120 100 100 100 100 100 10	68.75 70.55 0.38 65.77 Stage 69.13 BLDG 0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00	m m m Head (m) 0.38 Qactual (<i>Lts</i>) 8.44 5.67 4.355 5.67 4.355 2.64 2.35 2.64 2.35 2.25 2.64 2.35 2.25 1.94 1.55 1.66 1.55 Head (m) 0.15 Qactual (<i>Lts</i>) 0.92 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.6	head = 0.375 Max available v Discharge (L/s) 1.38 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	Vreq (cu. m) 3.12 Maximum St Qstored (Us) 7.55 4.75 3.41 2.62 2.09 1.71 1.43 1.21 1.03 9.90 0.77 0.66 Vreq (cu. m) 6.29 U Qstored	Vavail (cu. m) 3.79 0.66 orage Depth: Vstored (m*3) 4.72 6.14 6.27 6.14 6.28 6.17 6.14 6.29 6.17 6.14 6.29 6.17 6.14 6.29 5.50 5.31 5.05 4.78 0.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 0.80 5.55 5.31 5.05 4.78 5.55 5.31 5.05 4.78 5.57 5.70 6.80 5.55 5.57 5.70 6.80 5.55 5.51 5.55 5.51 5.55 5.51 5.55	Сheck ОК Верета (mm) 130.2 140.4 144.3 145.5 145.5 145.5 145.5 145.4 144.5 139.2 137.0 134.7 132.4 Discharge <u>Check</u> 0.00	0.0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

Stormwater Management Calculations

Project #160401462, 13 Monk Street Modified Rational Method Calculatons for Storage

UMMARY TO OUTLET			
		Vrequired Vav	ailable*
Tributary Area	0.027 ha		
Total 2yr Flow to Sewer	0.91 L/s	0	0 m ³
Non-Tributary Area	0.004 ha		
Total 2yr Flow Uncontrolled	0.32 L/s		
Total Area	0.031 ha		
Total 2yr Flow	1.22 L/s		
Target	2.42 L/s		

Project #160401462, 13 Monk Street Modified Rational Method Calculatons for Storage

SUMMARY TO OUTLET			
		Vrequired Vav	ailable*
Tributary Area	0.027 ha		
Total 100yr Flow to Sewer	1.38 L/s	3.12	3.79 m ³
Non-Tributary Area	0.004 ha		
Total 100yr Flow Uncontrolled	0.92 L/s		
Total Area	0.031 ha		
Total 100yr Flow	2.30 L/s		
Target	2.42 L/s		

Т

Project #160401462, 13 Monk Street Roof Drain Design Sheet, Area BLDG Standard Watts Model R1100 Accutrol Roof Drain

	Rating Curve			Volume Estimation				
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0003	0	0.025	4	0	0	0.025
0.050	0.0006	0.0006	0	0.050	15	0	0	0.050
0.075	0.0007	0.0007	1	0.075	34	1	1	0.075
0.100	0.0008	0.0008	2	0.100	60	1	2	0.100
0.125	0.0009	0.0009	4	0.125	94	2	4	0.125
0.150	0.0009	0.0009	7	0.150	136	3	7	0.150

Drawdown Estimate				
Total	Total			
Volume	Time	Vol	Detention	
(cu.m)	(sec)	(cu.m)	Time (hr)	
0.0	0.0	0.0	0	
0.2	349.3	0.2	0.09703	
0.8	842.7	0.6	0.33112	
2.0	1477.0	1.2	0.7414	
3.9	2213.7	1.9	1.35632	
6.8	3027.2	2.9	2.19722	

Total Building Area (sq.m)		170	
Assume Available Roof Area (sq.	80%	136	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		1	
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Cod
Max. Allowable Storage (cu.m)		7	
Estimated 100 Year Drawdown Time (h)		2.1	

* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).

From Watts Drain Catalogue

Head (m)	L/s				
	Open	75%	50%	25%	Closed
0.025	0.3155	0.31545	0.31545	0.31545	0.31545
0.050	0.6309	0.6309	0.6309	0.6309	0.31545
0.075	0.9464	0.86749	0.78863	0.70976	0.31545
0.100	1.2618	1.10408	0.94635	0.78863	0.31545
0.125	1.5773	1.34067	1.10408	0.86749	0.31545
0.150	1.8927	1.57726	1.2618	0.94635	0.31545

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	2yr	100yr	Available
Qresult (cu.m/s)	0.001	0.001	-
Depth (m)	0.094	0.146	0.150
Volume (cu.m)	1.7	6.3	6.8
Draintime (hrs)	0.7	2.1	

Appendix D Geotechnical Investigation February 22, 2019

Appendix D GEOTECHNICAL INVESTIGATION

Geotechnical Investigation Proposed Development 13-15 Monk Street Ottawa, Ontario

Submitted to:

ART Properties and Construction Suite 101 - 11 Rosemount Ave Ottawa, Ontario K1Y 4R8

Geotechnical Investigation Proposed Development 13-15 Monk Street Ottawa, Ontario

> January 23, 2019 Project: 64155.07

GEMTEC Consulting Engineers and Scientists Limited 32 Steacie Drive Ottawa, ON, Canada K2K 2A9

January 23, 2019

File: 64155.07

ART Properties and Construction Suite 101 - 11 Rosemount Ave Ottawa, Ontario K1Y 4R8

Attention: Mr. Ali Taheri

Re: Geotechnical Investigation, Proposed Development, 13-15 Monk Street, Ottawa, Ontario

Please find enclosed our geotechnical investigation report for the above noted project based on the scope of work provided in our proposal dated October 26, 2018. This report was prepared by Joseph Berkers, B.Eng., and reviewed by John Cholewa, Ph.D., P.Eng.

Do not hesitate to contact the undersigned if you have any questions or require additional information.

Joseph Berkers, B.Eng.

JC/JB

John Cholewa, Ph.D., P.Eng.

ii

TABLE OF CONTENTS

1.0	INTRO	DUCTION1
2.0	BACKO	ROUND1
2.1 2.2 2.3	2 Rev	ject Description
3.0		JRFACE INVESTIGATION2
4.0	SUBSL	JRFACE CONDITIONS2
4.2 4.2 4.3 4.4	2 Fill 3 San 4 Infe	neral
4.6		Chemistry Relating to Corrosion
5.0	GUIDE	LINES AND RECOMMENDATIONS4
		eral
	1 Fros 2 Seis	Indation Design
:		ement Concrete Slab Support
:		rosion of Buried Concrete and Steel

iii

	ADDITIONAL CONSIDERATIONS
1	Winter Construction11
2	Groundwater Inflow into the Drainage System11
3	Effects of Construction Induced Vibration11
4	Monitoring Well Abandonment12
5	Design Review and Construction Observation12
	1 2 3 4

LIST OF TABLES

Table 4.2 – Summary of Groundwater	Corrosion Testing4
------------------------------------	--------------------

LIST OF FIGURES

Figure 1: Borehole Location Plan

LIST OF APPENDICES

Appendix A	List of Abbreviations and Terminology Record of Borehole Sheets
Appendix B	Grain Size Distribution Test results
Appendix C	Soil Chemistry Related to Corrosion Paracel Laboratories Ltd. Order No. 1902316
Appendix D	Record of Previous Boreholes

1.0 INTRODUCTION

This report presents the results of a geotechnical investigation carried out at the site of a proposed three (3) storey residential structure located at 13-15 Monk Street, in Ottawa, Ontario. The purpose of the investigation was to identify the general subsurface conditions at the site by means of a limited number of boreholes and, based on the factual information obtained, to provide engineering guidelines on the geotechnical design aspects of the proposed building and site services, including construction considerations that could influence design decisions. The results of a Phase I and Phase II Environmental Site Assessment are provided in separate reports.

This investigation was carried out in accordance with our proposal dated October 26, 2018.

2.0 BACKGROUND

2.1 Project Description

Plans are being prepared to construct a three (3) storey residential building with a basement at 13-15 Monk Street, Ottawa, Ontario (see Key Plan, Figure 1). The footing level for the proposed building is to be about 1.8 metres below ground level.

There is an existing three (3) storey building with a basement currently located on the site that will be demolished and removed from the site prior to excavation and construction activities.

2.2 Review of Geology Maps

Based on available surficial geology maps, it is expected that the site is underlain by marine sediments of clay and silt. Interbedded limestone and shale bedrock of the Verulam formation or shale bedrock of the Billings formation should be expected from about 5 to 15 metres below ground surface.

2.3 Previous Geotechnical Investigation

A previous geotechnical investigation was carried out by GEMTEC Consulting Engineers and Scientists Limited (GEMTEC), formerly Houle Chevrier Engineering Ltd., for the redevelopment of 5-7 Monk Street, just north of 13-15 Monk Street. As part of that investigation, a total of three (3) boreholes, numbered 16-1 to 16-3, were advanced. In general, the boreholes encountered fill material followed by layered silt, sandy silt, and sand followed by glacial till. The inferred bedrock surface was encountered at about 14.6 metres depth. The results of the previous boreholes are shown on the Record of Borehole sheets in Appendix D. The location of the previous boreholes are shown on Figure 1.

1

3.0 SUBSURFACE INVESTIGATION

The field work for this investigation was carried out on December 21, 2018. During that time, one borehole, numbered 18-1, was advanced at the site using compact, track-mounted drilling equipment to about 12.2 metres below ground surface. Dynamic cone penetration testing was carried out beyond the depth of the logged soils from a depth of 9.8 to 12.2 metres below ground surface.

The field work was observed by a member of our engineering staff who directed the drilling operations, observed the in-situ testing and logged the samples and boreholes. Standard penetration tests were carried out throughout the soil profile and samples of the soils encountered were recovered using drive open sampling equipment.

A standpipe piezometer was sealed in the overburden to measure the groundwater levels.

Following the borehole drilling work, the soil samples were returned to GEMTEC for examination by a geotechnical engineer. Selected samples of the soil were tested for water content and grain size distribution. One soil sample was sent away for basic chemical testing relating to corrosion of buried steel and concrete.

Descriptions of the subsurface conditions logged in the borehole advanced as part of this investigation is provided on the Record of Borehole sheets in Appendix A. The approximate location of the borehole is shown on the Borehole Location Plan, Figure 1.

4.0 SUBSURFACE CONDITIONS

4.1 General

As previously indicated, the soil and groundwater conditions identified in the borehole are given on the Record of Borehole sheet in Appendix A. The borehole log indicates the subsurface conditions at the specific test location only. Boundaries between zones on the logs are often not distinct, but rather are transitional and have been interpreted. The precision with which subsurface conditions are indicated depends on the method of drilling, the frequency and recovery of samples, the method of sampling, and the uniformity of the subsurface conditions. Subsurface conditions at other than the test locations may vary from the conditions encountered in the test hole. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties.

The groundwater conditions described in this report refer only to those observed at the place and time of observation noted in the report. These conditions may vary seasonally or as a consequence of construction activities in the area.

The soil descriptions in this report are based on commonly accepted methods of classification and identification employed in geotechnical practice. Classification and identification of soil involves judgement and GEMTEC does not guarantee descriptions as exact, but infers accuracy to the extent that is common in current geotechnical practice.

The following presents an overview of the subsurface conditions encountered in the borehole advanced during this investigation.

4.2 Fill Material

Fill material was encountered from the ground surface to a depth of 1.6 metres below ground surface. The top 0.8 metres of fill material is comprised of dark brown, silty sand, some gravel. The bottom 0.8 metres of fill consists of ash and burnt debris.

A standard penetration test carried out in the top 0.8 metres of fill material gave an N value of 20 blows per 0.3 metres of penetration, which reflects a compact relative density. A standard penetration test carried out in the bottom 0.8 metres of fill material gave an N value of 0 blows per 0.3 metres of penetration, which reflects a very loose relative density.

4.3 Sand

Native deposits of brown sand with variable silt content were encountered in borehole 18-1 between 1.6 metres and 8.9 metres below ground surface. A 0.8 metre thick layer of silt and sand was encountered within the sand deposits at 3.8 metres below ground surface.

Standard penetration tests carried out in the sandy soils gave N values ranging from 8 to 104 blows per 0.3 metres of penetration, which reflect a loose to very dense relative density.

4.4 Inferred Sand/Glacial Till

Dynamic cone penetration test results carried out in borehole 18-1 between 8.9 and 12.2 metres below ground surface ranged between 65 and 150 blows per 0.3 metres of penetration. The dynamic cone penetration test results suggest that the sand and/or glacial till deposits extend to at least 12.2 metres below ground surface and have a dense to very dense relative density.

Practical refusal to further advancement of the dynamic cone occurred in borehole 18-1 at 12.2 metres below ground surface on the inferred bedrock surface. It should be noted that practical dynamic cone refusal can sometimes occur within cobbles and boulders and may not necessarily be representative of the upper surface of the bedrock.

4.5 Groundwater Levels

The well screen installed in borehole 18-1 was dry on December 27, 2018. This indicates that the present groundwater level is below a depth of 7.6 metres below ground surface.

The groundwater level may be higher during wet periods of the year such as the early spring or following periods of precipitation.

4.6 Soil Chemistry Relating to Corrosion

The results of chemical testing on a soil sample recovered from borehole 18-1 is provided in Appendix C and summarized in Table 4.2.

Parameter	Borehole 18-1
Chloride Content (µg/g)	8
Resistivity (Ohm.m)	122
рН	7.70
Sulphate Content (µg/g)	< 5

Table 4.2 – Summary	y of Groundwater	Corrosion Testing
---------------------	------------------	--------------------------

5.0 GUIDELINES AND RECOMMENDATIONS

5.1 General

The information in the following sections is provided for the guidance of the design engineers and is intended for the design of this project only. Contractors bidding on or undertaking the works should examine the factual results of the investigation, satisfy themselves as to the adequacy of the information for construction, and make their own interpretation of the factual data as it affects their construction techniques, schedule, safety and equipment capabilities.

The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at this site. The presence or implications of possible surface and/or subsurface contamination resulting from previous uses or activities of this site or adjacent properties, and/or resulting from the introduction onto the site from materials from off-site sources are outside the terms of reference for this report.

5.2 Excavation

5.2.1 General

It is understood that the foundations for the existing building are located about 2 metres below ground surface. It is further understood that the footing level for the proposed building is to be about 1.8 metres below ground surface. As such, it is expected that only a limited amount of excavation will be required after the removal of the existing building, since the footing level of the existing building is lower than the footing level of the proposed building. Any excavation required for the proposed building will be carried out through fill material, sand, and silt.

For excavations exceeding 1.2 metres in depth, the sides of excavations should be sloped in accordance with the requirements in Ontario Regulation 213/91 under the Occupational Health and Safety Act. According to the Act, the native overburden deposits at this site can be classified as Type 3 and, accordingly, allowance should be made for excavation side slopes of 1 horizontal to 1 vertical extending upwards from the base of the excavation.

No unusual constraints are expected for the excavation of the overburden materials above groundwater level. Based on the results of the investigation, excavation below the groundwater level is not anticipated.

5.2.2 Excavation Adjacent to Existing Structures

The excavation for the proposed building should not encroach below a line extending downwards and outwards from the existing foundations at an inclination of 1 vertical to 1 horizontal.

It is understood that the existing building at 9-11 Monk Street is founded at about 2 metres below ground surface. Assuming an excavation depth of about 2 metres, the excavation for the proposed building will not undermine the existing foundations at 9-11 Monk Street. It is noted that the foundation conditions for the adjacent building at 856 Bank Street are presently unknown. It is recommended that the foundation conditions for the building at 856 Bank Street be obtained to confirm that the existing building foundations will not be undermined.

5.3 Foundation Design

Based on the results of the subsurface investigation, the proposed structure could be founded on spread footings bearing directly on native, undisturbed deposits of sand and/or silt, or on a pad of compacted granular material (engineered fill) over native undisturbed soil deposits.

In areas where subexcavation of disturbed material is required below the proposed founding level, imported granular material (engineered fill) should be used. The engineered fill should consist of granular material meeting Ontario Provincial Standard Specifications (OPSS) requirements for Granular B Type II and should be compacted in maximum 200 millimetre thick lifts to at least 95 percent of the standard Proctor maximum dry density. To allow for the spread of load beneath the footings, the engineered fill should extend horizontally at least 0.3 metres beyond the footings and then down and out from the edges of the footings at 1 horizontal to 1 vertical, or flatter. The excavation of the building should be sized to accommodate the fill placement.

OPSS documents allow recycled asphaltic concrete and concrete to be used in Granular B Type II material. Since the source of recycled material cannot be determined or controlled, it is suggested that any imported Granular B Type II materials be composed of 100 percent crushed rock only.

Spread footing foundations bearing directly on native, undisturbed deposits of sand and/or silt, or on a pad of engineered fill above native, undisturbed soil deposits should be sized using a net

geotechnical reaction at Serviceability Limit State (SLS) of 100 kilopascals and a factored net geotechnical resistance at Ultimate Limit States (ULS) resistance of 300 kilopascals.

The post construction total and differential settlement of the footings at SLS should be less than 25 and 20 millimetres, respectively, provided that all loose and disturbed soil is removed from the bearing surfaces and that any engineered fill is adequately compacted.

5.1 Frost Protection of Foundations

All exterior footings should be provided with at least 1.5 metres of earth cover for frost protection purposes. Isolated (unheated) piers that are located in areas that are to be cleared of snow should be provided with at least 1.8 metres of earth cover for frost protection purposes. Alternatively, the required frost protection could be provided by means of a combination of earth cover and extruded polystyrene insulation. An insulation detail could be provided upon request.

5.2 Seismic Site Class and Liquefaction Potential

Based on the results of the current investigation, together with the results of the previous investigation carried out for 5-7 Monk Street, we recommend that Site Class C be used.

In our opinion, there is no potential for liquefaction of the overburden deposits at this site.

5.3 Foundation Wall Drainage and Backfill

5.3.1 Foundation Drainage

The foundation walls should be damp proof and a perforated plastic foundation drain with a surround of clear crushed stone should be installed on the exterior of the foundation walls at the level of the footings. The drain should outlet by gravity to a storm sewer, ditch, or a sump from which the water is pumped. To avoid loss of fines from backfill into the voids in the clear stone (and possible post construction settlement of the ground around the building), a nonwoven geotextile should be placed between the clear stone and any sand backfill material.

5.3.2 Foundation Wall Backfill

Any organic material or deleterious material should not be used as backfill against foundations. The backfill material should consist of imported sand and gravel meeting OPSS requirements for Granular B Type I or II. It may be possible to reuse some of the backfill material against the existing foundation walls provided that a platon system foundation protector has been installed prior to backfilling.

Where the backfill will ultimately support areas of hard surfacing (pavement, sidewalks or other similar surfaces), the backfill should be placed in maximum 200 millimetre thick lifts and should be compacted to at least 95 percent of the standard Proctor dry density value using suitable vibratory compaction equipment. Light walk behind compaction equipment should be used next to the foundation walls to avoid excessive compaction induced stress on the foundation walls.

Where areas of hard surfacing (concrete, sidewalk, pavement, etc.) abut the proposed building, a gradual transition should be provided between those areas of hard surfacing underlain by nonfrost susceptible granular wall backfill and those areas underlain by existing frost susceptible fill and native materials to reduce the effects of differential frost heaving. It is suggested that granular frost tapers be constructed from 1.8 metres below finished grade to the underside of the granular base/subbase material for the hard surfaced areas. The frost tapers should be sloped at 1 horizontal to 1 vertical, or flatter.

5.4 Basement Concrete Slab Support

To provide predictable settlement performance of the basement slab, all loose soil or debris should be removed from the slab area. The base for the floor slab should consist of at least 200 millimetres of 19 millimetre clear crushed stone. Any necessary grade raise fill should consist of either 19 millimetre clear crushed stone or OPSS Granular B Type II. OPSS documents allow recycled asphaltic concrete and concrete to be used in Granular B Type II material. Since the source of recycled material cannot be determined or controlled, it is suggested that any imported Granular B Type II materials be composed of 100 percent crushed rock only.

The clear crushed stone should be nominally compacted in maximum 300 millimetre thick lifts with at least 2 passes of a diesel plate compactor. The Granular B Type II should be compacted in maximum 300 millimetre thick lifts to at least 95 percent of the standard Proctor dry density value using suitable vibratory equipment.

Underfloor drainage should be provided below the floor slab. If clear crushed stone is used below the floor slab, drains are not considered essential provided that the clear stone can outlet to the sump and drains are installed to link any hydraulically isolated areas in the basement. The drains should outlet by gravity to a sump from which the water is pumped.

The floor slab should be wet cured to minimize shrinkage cracking and slab curling. The slab should be saw cut to about 1/3 the thickness of the slab as soon as curing of the concrete permits, in order to minimized shrinkage cracks.

Proper moisture protection with a vapour retarder should be used for any slab on grade where the floor will be covered by moisture sensitive flooring material or where moisture sensitive equipment, products or environments will exist. The "Guide for Concrete Floor and Slab Construction", ACI 302.1R-04 should be considered for the design and construction of vapour retarders below the floor slab.

5.5 Site Services

5.5.1 Excavation

The excavation for the site services will be carried out through fill material, sand, and silt.

In overburden, the excavation for service pipes should be in accordance with Ontario Provincial Standard Drawing (OPSD) 802.010 for Type 3 Soil.

The excavations for the services should be sloped in accordance with the requirements in Ontario Regulation 213/91 under the Occupational Health and Safety Act. That is, open cut excavations within overburden deposits should be carried out with side slopes of 1 horizontal to 1 vertical, or flatter. Alternatively, the excavations could be carried out near vertically within a tightly fitting, braced steel trench box designed specifically for this purpose. Based on the results of the investigation, the excavations for site services will likely not extend below the groundwater level.

5.5.2 Pipe Bedding

The bedding for service pipes located within overburden should be in accordance with OPSD 802.010 for Type 3 Soil. The pipe bedding material should consist of at least 150 millimetres of granular material meeting Ontario Provincial Standard Specification (OPSS) for Granular A. OPSS documents allow recycled asphaltic concrete and concrete to be used in Granular A and Granular B Type II material. Since the source of recycled material cannot be determined or controlled, it is suggested that any granular materials used in the service trenches be composed of 100 percent crushed rock only.

In areas where the subsoil is disturbed or where unsuitable material (such as fill, organic soil, or existing trench backfill material) exists below the pipe subgrade level, the disturbed/unsuitable material should be removed and replaced with a subbedding layer of compacted granular material, such as native sand or material that meets OPSS Granular A or Granular B Type II (50 or 100 millimetre minus crushed stone). To provide adequate support for the pipes in the long term in areas where subexcavation of material is required below design subgrade level, the excavations should be sized to allow a 1 horizontal to 2 vertical spread of granular material down and out from the bottom of the pipes. The use of clear crushed stone as a bedding or subbedding material should not be permitted since there is potential for ingress of sand/silt into the voids in the clear stone which would result in settlement.

Cover material, from pipe spring line to at least 300 millimetres above the top of the pipe, should consist of granular material, such as OPSS Granular A.

The granular bedding and subbedding materials should be compacted in maximum 200 millimetre thick lifts to at least 95 percent of the standard Proctor dry density value.

5.5.3 Trench Backfill

In areas where the service trench will be located below or in close proximity to existing or future areas of hard surfacing (pavement, sidewalk, etc.), acceptable native materials should be used as backfill between the roadway subgrade level and the depth of seasonal frost penetration in order to reduce the potential for differential frost heaving between the area over the trench and the adjacent hard surfaced area. The depth of frost penetration in exposed areas can normally

be taken as 1.8 metres below finished grade. Where native backfill is used, it should match the native materials exposed on the trench walls. Backfill below the zone of seasonal frost penetration could consist of either acceptable native material or imported granular material conforming to OPSS Granular B Type I. Any organic soil should be wasted from the trench.

To minimize future settlement of the backfill and achieve an acceptable subgrade for the roadways, sidewalks, etc., the trench backfill should be compacted in maximum 300 millimetre thick lifts to at least 95 percent of the standard Proctor maximum dry density. The specified density may be reduced to 90 percent of the standard Proctor dry density in landscaped areas provided that some excessive settlement above the trench is acceptable.

5.6 Corrosion of Buried Concrete and Steel

The measured sulphate concentration in the soil sample recovered from borehole 18-1 was found to be less than 5 micrograms per gram. According to the Canadian Standards Association "Concrete Materials and Methods of Concrete Construction" (CSA A23.1-14 Table 3), the concentration of sulphate in the soil recovered from borehole 18-1 is less than the minimum concentration for 'Moderate' sulfate exposure (0.1 to 0.2 percent). As such, the CSA A23.1 Class of Exposure is not a sulfate class. Other factors (structurally reinforced or non-structurally reinforced, freeze-thaw environment, chloride exposure, agricultural environment) should be considered in selecting the Class of Exposure and associated air entrainment and concrete mix proportions for any concrete.

Based on the conductivity and pH of the soil, the soil sampled from borehole 18-1 can be classified as non-aggressive toward unprotected steel. The manufacturer of any buried steel elements that will be in contact with the soil or groundwater should be consulted to ensure that the durability of the intended product is appropriate. It is noted that the corrosivity of the soil or groundwater could vary throughout the year due to the application of de-icing chemicals.

5.7 Access Roadways and Parking Areas

5.7.1 Subgrade Preparation

In preparation for any parking lot and access roadway construction, any soft, wet or deleterious materials should be removed. This includes removal of the existing fill material. Prior to placing granular material, the subgrade surface should be proof rolled under dry conditions and shaped and crowned to promote drainage of the granular materials.

In areas where it will be necessary to raise the grades, the grade raise fill for the roadway/parking area could consist of material meeting OPSS specifications for Granular B Type I or II, or suitable earth borrow. The grade raise fill should be placed in 300 millimetre thick lifts and compacted to at least 95 percent of the standard Proctor maximum dry density value. It is noted, however, silty earth borrow materials can be sensitive to changes in moisture content, precipitation, and frost heaving. As such, unless earth material placement is planned during dry periods of the year

(June to September), precipitation and freezing conditions may restrict or delay adequate compaction of these materials. Based on our experience, silty earth borrow materials should be compacted within 4 percent above the optimum moisture content, as defined by the standard Proctor test, to reduce post construction settlement of the fill material. Depending on weather conditions, it may be necessary to allow the materials to dry prior to compaction.

5.7.2 Pavement Design

It is suggested that parking areas or roadways to be used by light vehicles (cars, etc.) be constructed using the following minimum pavement structure:

- 50 millimetres of Superpave 12.5 (Traffic Level B) asphaltic concrete, over
- 150 millimetres of OPSS Granular A base, over
- 300 millimetres of OPSS Granular B Type II subbase

For any parking areas or access roadways which will be used by heavy trucks or fire trucks, the following minimum pavement structure should be use:

- 40 millimetres Superpave 12.5 (Traffic Level B)
- 60 millimetres Superpave 19 (Traffic Level B)
- 150 millimetres of OPSS Granular A
- 400 millimetres of OPSS Granular B

The granular base and subbase materials should be compacted in maximum 200 millimetre thick lifts to at least 98 percent of the standard Proctor maximum dry density value.

The design life of the pavement should be 20 to 25 years. Allowance should be made for normal crack sealing, as required, and a possible asphaltic concrete overlay in about 12 to 15 years.

5.7.3 Asphaltic Cement Types

Performance grade PG 58-34 asphaltic concrete should be specified for Superpave mixes.

5.7.4 Drainage

Adequate drainage of the pavement granular materials and subgrade is important for the long term performance of the pavement at this site. The subgrade surfaces should be crowned and shaped to drain to the ditches and/or catch basins to promote drainage of the pavement granular materials.

The catch basins should be provided with minimum 3 metre long perforated stub drains which extend in at least two directions from each catch basin at pavement subgrade level. Where ditches are used, the bottom of the OPSS Granular B Type II should be at least 0.3 metres above the bottom of the ditch and the granular material should extend to the ditch slopes.

5.7.5 Effects of Soil Disturbance and Construction Traffic on the Pavement Design

If the granular pavement materials are to be used by construction traffic, it may be necessary to increase the thickness of the Granular B Type II, install a woven geotextile separator between the roadway subgrade surface and the granular subbase material, or a combination of both, to prevent any disturbance to the subgrade material. The contractor should be responsible for construction access.

The adequacy of the design pavement thickness should be assessed by geotechnical personnel at the time of construction.

6.0 ADDITIONAL CONSIDERATIONS

6.1 Winter Construction

In the event that construction is required during freezing temperatures, the native soils below the footings should be protected immediately from freezing using straw, propane heaters and insulated tarpaulins, or other suitable means.

Any service trenches should be opened for as short a time as practicable and the excavations should be carried out only in lengths which allow all of the construction operations, including backfilling, to be fully completed in one working day. The materials on the sides of the trenches should not be allowed to freeze. In addition, the backfill should be excavated, stored and replaced without being disturbed by frost or contaminated by snow or ice.

Provision must be made to prevent freezing of any soil below the level of any existing structures or services. Freezing of the soil could result in damage to structures or services.

6.2 Groundwater Inflow into the Drainage System

The underside of footing (USF) is to be located at about elevation 68.8 metres, which is approximately 5.9 metres above the bottom of the monitoring well, which was recorded dry on December 27, 2019. Based on this, groundwater inflow is not expected to be significant. However, surface water infiltration should be anticipated during periods of precipitation and snowmelt, which may require use of the sump pump.

6.3 Effects of Construction Induced Vibration

Some of the construction operations (such as granular material compaction, excavation, pile driving, etc.) will cause ground vibration on and off of the site. The vibrations will attenuate with distance from the source, but may be felt at nearby structures. We recommend that preconstruction surveys be carried out on the adjacent structure so that possible construction related claims can be dealt with in a fair manner.

6.4 Monitoring Well Abandonment

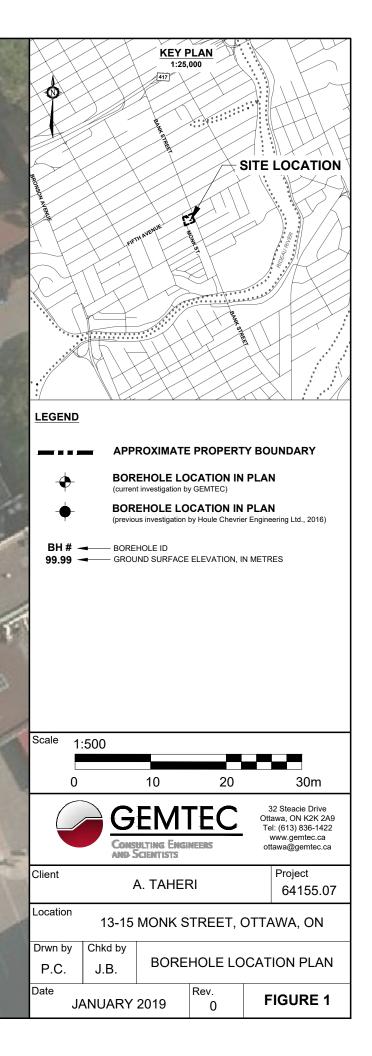
The monitoring well installed as part of this investigation should be decommissioned by a licensed well technician in accordance with Ontario Regulation 903, as amended by Ontario Regulation 128/03. The well abandonment could be carried out in advance or during construction.

6.5 Design Review and Construction Observation

The details for the proposed construction were not available to us at the time of preparation of this report. It is recommended that the design drawings be reviewed by the geotechnical engineer as the design progresses to ensure that the guidelines provided in this report have been interpreted as intended.

The engagement of the services of the geotechnical consultant during construction is recommended to confirm that the subsurface conditions throughout the proposed excavations do not materially differ from those given in the report and that the construction activities do not adversely affect the intent of the design. The subgrade surfaces for the proposed building, site services, and access roadways should be inspected by experienced geotechnical personnel to ensure that suitable materials have been reached and properly prepared. The placing and compaction of earth fill and imported granular materials should be inspected to ensure that the materials used conform to the grading and compaction specifications.

We trust this report provides sufficient information for your present purposes. If you have any questions concerning this report, please do not hesitate to contact our office.


Joseph Berkers, B.Eng.

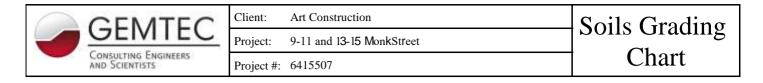
Johnathan A. Cholewa, Ph.D., P.Eng.

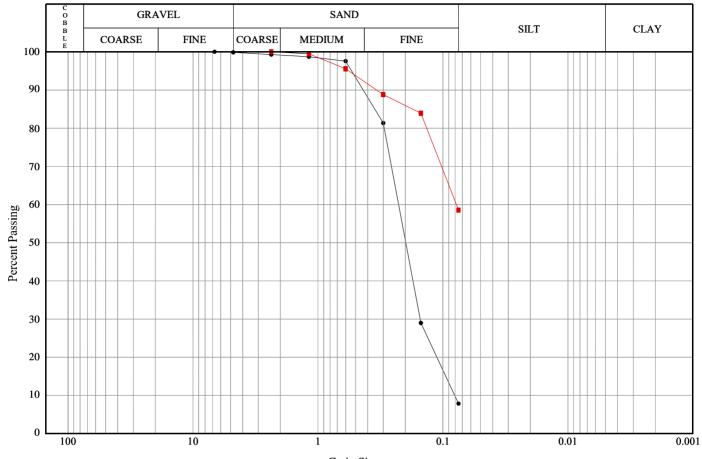
APPENDIX A

List of Abbreviations and Terminology Record of Borehole Sheet

RECORD OF BOREHOLE 18-1

CLIENT:ART Properties and ConstructionPROJECT:Geotechnical InvestigationJOB#:64155.07


LOCATION: See Borehole Location Plan


	ДОН	SOIL PROFILE				SAN	IPLES		● PE RE	NETR/ SISTA	ATION NCE (1	N), BLO	NS/0	.3m	SН + N	EAR S IATUR	TREN(AL⊕	GTH ((REMC	Cu), kPA DULDED	٦ģ		
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	ТҮРЕ	RECOVERY, mm	BLOWS/0.3m				ETRATION), BLOV				WATE		ITENT		ADDITIONAL LAB. TESTING	PIEZOME OR STANDPI INSTALLA	IPE
	BORII		STRAT	DEPTH (m)	NN	F F	REC	BLOW					40 I	50	F		-	80 I	90	AD	INGTALLA	ΠΟΓ
0		Ground Surface Compact, dark brown silty sand, some gravel (FILL MATERIAL)		70.56	1	SS	300	20			•										Auger Cuttings	XOX
1		Ash, burnt debris (FILL MATERIAL)		<u>69.80</u> 0.76	2	SS	50	wн														IN CHARACTER CHARACTER
2		Loose, brown fine to medium SAND, trace silt	××××	68.99 1.57 68.27 2.29	3	SS	250	8														
3		Compact, brown fine SAND, trace silt		2.29	4	SS	140	10	0											м		
	0D)	Compact, brown SILT and SAND		66.75	5	SS	510	19												-	Bentonite Backfill	
4	Power Auger Hollow Stem Auger (150mm OD)	Compact, brown fine to medium		65.99 4.57	6	SS	460	14		•		þ								м	Filter Sand 51	
5	Hollow Sterr	SAND, trace silt			7	SS SS	410														millimetre dimeter, 1.52 metre long well	
6					9	SS	510														screen	
7		Very dense, brown grey SAND, some gravel, some silt		6 <u>3.70</u> 6.86	10	SS	460													1		
8					11	SS	410	65								•				-	Filter Sand	E
9		Very dense, brown grey fine to medium SAND Possibly sand or glacial till deposits		6 <u>2.18</u> 8.38 6 <u>1.62</u> 8.94	12	SS	460	104											>>	•	Well recorded dry on	
Ĵ	Testing	i ossiony sana or yraciar till uepusits		0.04																-	12/27/2019	
10	^{>} enetration ⁻																		>>			
11	Dynamic Cone Penetration Testing																					
12	Dyr	Dynamic Cone Refusal		<u>58.34</u> 12.22															>>			
13																				1		
14																						
15																				-		
	0	Gemtec	1	1	I	1	<u> </u>	<u> </u>	<u> ::::</u>	<u> ::::</u>	<u> :::</u>	. [: : : :	1::	.: :		<u> ::::</u>	<u> ::::</u>		: : : :	LOGO	GED: ML	

APPENDIX B

Grain Size Distribution Test Results

Report to: ART Properties and Construction Project: 64155.07 (January 23, 2019)

Limits Shown: None

Grain Size, mm

Line Symbol	Sample		Boreh Test			nple mber	Depth		% Col Grav		% Sa		% Sil	
•			18-	1		4	2.29-3.05		0.2	2	92	.0		7.8
_			18-	1		6	 3.81-4.57		0.0)	41	.5		58.5
Line Symbol	CanFEM Classification		USCS Symbol		0	D ₁₅	D ₃₀	D	50	D ₆	60	D	85	% 5-75µm
•	Sand , trace gravel, trace silt	١	N/A	A 0.0		0.09	0.15		0.20		23	0.	35	
e	Silt and sand	N	√/A		-)8	0.	18	

APPENDIX C

Soil Chemistry Relating to Corrosion Paracel Laboratories Ltd. Order No. 1902316

RELIABLE.

Certificate of Analysis

GEMTEC Consulting Engineers and Scientists Limited

32 Steacie Drive Kanata, ON K2K 2A9 Attn: Nicole Soucy

Client PO: Project: 64155.07 Custody: 120375

Report Date: 15-Jan-2019 Order Date: 9-Jan-2019

Order #: 1902316

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1902316-01 BH 18-1 SA5

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Certificate of Analysis Client: GEMTEC Consulting Engineers and Scientists Limited **Client PO:**

Order #: 1902316

Report Date: 15-Jan-2019 Order Date: 9-Jan-2019

Project Description: 64155.07

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Anions	EPA 300.1 - IC, water extraction	14-Jan-19	14-Jan-19
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	15-Jan-19	15-Jan-19
Resistivity	EPA 120.1 - probe, water extraction	15-Jan-19	15-Jan-19
Solids, %	Gravimetric, calculation	11-Jan-19	11-Jan-19

Client: GEMTEC Consulting Engineers and Scientists Limited

Certificate of Analysis

Report Date: 15-Jan-2019

Order Date: 9-Jan-2019

Project Description: 64155.07

Client PO: Client ID: BH 18-1 SA5 -Sample Date: 12/19/2018 09:00 ---Sample ID: 1902316-01 -Soil **MDL/Units** -_ -**Physical Characteristics** 0.1 % by Wt. % Solids 92.9 ---**General Inorganics** 0.05 pH Units 7.70 pН ---0.10 Ohm.m Resistivity 122 ---

Anions					
Chloride	5 ug/g dry	8	-	-	-
Sulphate	5 ug/g dry	<5	-	-	-

APPENDIX D

Record of Previous Boreholes

Report to: ART Properties and Construction Project: 64155.07 (January 23, 2019) PROJECT: 64155.03

LOCATION: See Borehole Location Plan, FIG. 2

BORING DATE: June 23, 2016

RECORD OF BOREHOLE 16-1

SHEET 1 OF 1

DATUM: Geodetic

SPT HAMMER: 63 kg; drop 0.76 metres

	员	SOIL PROFILE	1.	i	SA	MPL	.ES	DYNAMIC PENETRATION HYDRAULIC CONDUCTIVITY, T בַּיָּ	
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	RESISTANCE, BLOWS/0.3m k, cm/s 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ¹⁵ 10 ¹⁴ 10 ⁻³ 10 ⁻² 10 ¹⁵ 10 ¹⁴ 10 ¹⁵ 10 ⁻⁴ 10 ¹⁵ 10 ¹⁴ 10 ¹⁵ 10 ¹⁵ 10 ¹⁴ 10 ¹⁵ 10 ¹⁴ 10 ¹⁵ 10 ¹⁴ 10 ¹⁵ 10 ¹⁵ 10 ¹⁴ 10 ¹⁵ 10 ¹⁴ 10 ¹⁵ 10 ¹⁴ 10 ¹⁵ 10 ¹⁴ 10 ¹⁵ 10 ¹⁵ 10 ¹⁴ 10 ¹⁵ 10 ¹⁴ 10 ¹⁵ 10 ¹⁴ 10 ¹⁵ 10 ¹⁴ 10 ¹⁵ 10 ¹⁵ 10 ¹⁴ 10 ¹⁵	OMETEF OR NDPIPE ALLATIO
0		Ground Surface Grey brown, fine to medium grained sand, trace silt, trace gravel, brick, debris (FILL)		68.37 68.06 0.31	2	50 D.O.		Backfilled O O O O O O O O O O O O O	
1		Grey brown SILT, some sand		6 <u>7.10</u> 1.27	3	50 D.O.	15	O Sieve, See	
2		Grey brown SANDY SILT		6 <u>6.59</u> 1.78	4	50 D.O.	25	C Fig. B2	
		silt			5	50 D.O.	25		
3				6 <u>5.25</u> 3.12 6 <u>4.94</u> 3.43	6	50 D.O.	27		
4		Grey brown, fine to medium grained SAND, trace silt			7	50 D.O.	31		
5		Crowbrown SAND and SUT trace	0 4	<u>63.59</u> 4.78	8	50 D.O.		ρ	
-		Grey brown SAND and SILT, trace clay, trace gravel			9	50 D.O.		O Sieve,	
6	Stem				10	50	38	See Fig. B1	
7	Power Auger Diameter Hollow Stem			61.23 7.14	11	D.O. 50	24		
8	ш	Grey silty clay, some sand, trace to some gravel, possible cobbles and boulders (GLACIAL TILL)			12	D.O. 50 D.O.	70	0	
9	200				13	50 D.O.	13		
9					14	50 D.O.			
10					15	50 D.O.	16	o	
11					16	50 D.O.	19	o	
12					17	50 D.O.		0	
		Grey silty sand, some gravel, trace clay, possible cobbles and boulders		5 <u>5.97</u> 12.40	18	50 D.O.	28		
13		(GLACIAL TILL)			19	50 D.O.	> 50	ior 280mm O	
14		Auger Refusal		5 <u>3.79</u> 14.58	21	50 D.O.	50 fo	x 102mm O	
15									
D	EPTH	SCALE			н	ou	le	Chevrier Engineering LOGGED: B.V.	

PROJECT: 64155.03

LOCATION: See Borehole Location Plan, FIG. 2

BORING DATE: June 24, 2016

RECORD OF BOREHOLE 16-2

SHEET 1 OF 1

DATUM: Geodetic

SPT HAMMER: 63 kg; drop 0.76 metres

щ		OD	SOIL PROFILE			SA	AMPL	.ES	DYNAMIC RESISTAN	PENET	RATIO OWS/(N -	\geq	HYDR k, cm/s		CONDU	CTIVITY	α, Τ	10		
DEPTH SCALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	түре	BLOWS/0.3m	20 I SHEAR ST Cu, kPa	40 I RENGT	60 I H nat rer	t. V - ⊣ n. V - ∉		1 W	IO ⁻⁵ L ATER C	$ \begin{array}{r} 10^{-4} \\ \hline \\ \hline \\ \hline \\ \hline \\ 40 \end{array} $	T, PER	CENT	ADDITIONAL LAB. TESTING	(STAN	Meter Dr Idpipe Llation
		BO	Ground Surface	STF	(m) 68.29	2		BL	20	40	60	8	30	2	20	40	60	80			
	- 0		Grey brown, fine to medium grained sand, trace silt, some gravel, red brick, some roots (FILL)		00.23	1	75 D.O	10												Above ground protector	
- - - -	1		Grey brown SILT, some sand		67.45 0.84 67.07 1.22	2	75 D.O	24													
	2		Grey brown SANDY SILT, trace gravel		66.77 1.52	3	75 D.O	35												Bentonite seal to surface	
	u nar	r Hollow Stem				4	75 D.O	27						0					Sieve, See Fig. B2	Filter sand	
-	Dower Alree	200 mm Diameter Hollow Stem	Grey brown, fine to medium grained SAND, trace silt		65.22	5	75 D.O	28												50mm diameter, 3.05 metres long well screen	
E CHEVRIER 2015.C	4					6	75 D.O	40													
016-06-25.GPJ HOUL	5		Grey brown SAND and SILT, trace clay, trace gravel		6 <u>3.72</u> 4.57	7	75 D.O	43													
BOREHOLE LOG 64155.03 GEOTECH AND ENVIRO GNT V01 2016-05-25.6PJ HOULE CHEVRIER 2015.6DT 7-8-16	6				5	8	75 D.O	49													
			End of Borehole	<u> </u>	62.19 6.10														-	GROUN	
64155.03 GEO																				DATE DE	EVATIONS PTH ELEV. m) (m) 50 ∑ 63.79
BOREHOLE LOG		EPTH	SCALE			H	ou	le	Chevri	er E	ngi	nee	ering						LOGG	ed: A.N.	

PROJECT: 64155.03

LOCATION: See Borehole Location Plan, FIG. 2

BORING DATE: June 23, 2016

RECORD OF BOREHOLE 16-3

SHEET 1 OF 1

DATUM: Geodetic

SPT HAMMER: 63 kg; drop 0.76 metres

	,	ΟŌ	SOIL PROFILE		•	SA	AMPL	.ES	DYNAMIC RESISTA	PENETR	ATION WS/0.3m	\geq	HYDRAULIC CONDU k, cm/s		_0	
	METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	20	40	60	80 - + Q-● - ⊕ U-C 80		$10^{-3} 10^{-2}$ T, PERCENT $N \\ 60 $ WI 80	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
┢	-	ш —	Ground Surface	ە: ا	68.66	-			20	40			20 40			
-	0		Grey brown, fine to medium grained sand, trace silt, trace gravel, miscellaneous debris (FILL)	X	<u>68.41</u> 0.25											Backfilled with auger cuttings
-			Grey brown, fine to medium grained SAND, some silt, banding observed		0.25	1	50 D.O	4								
-															-	
-	1					2	50 D.O.	8								
-																
-						3	50	22			-					
-	2						50 D.O									
-																
-		w Stem				4	50 D.O.	22							-	
-	3	Power Auger Diameter Hollo														
-		200 mm Diameter Hollow Stem				5	50 D.O.	23								
T 7-8-16		200					0.0									
2015.GD	4															
HEVRIER						6	50 D.O.	25								
HOULE CH																
25.GPJ H	5					7	50 D.O.	24								
2016-06-	Ĵ															
NT V01			Grey brown, SANDY SILT, trace clay		63.28 5.38 63.02 5.64	8	50	30								
NVIRO G			Grey brown, fine to coarse grained SAND, trace silt, cobble observed		5.64		50 D.O									
H AND E	6		End of Borehole		62.56 6.10											
GEOTEC																-
1155.03																-
9 DOL	7															
BOREHOLE LOG 64155.03_GEOTECH AND ENVIRO_GNT_V01_2016-06-25.GPJ HOULE CHEVRIER 2015.GDT 7-8-16		EPT	H SCALE 35			н	ou	le	Chevr	ier Er	ngine	ering	I		LOGG CHEC	ED: B.V. KED:

civil geotechnical environmental field services materials testing civil géotechnique environnementale surveillance de chantier service de laboratoire des matériaux

SERVICING REPORT – 13 MONK STREET

Appendix E Drawings February 22, 2019

