GEMTEC Consulting Engineers and Scientists Limited 32 Steacie Drive Ottawa, ON, Canada

613.836.1422 ottawa@gemtec.ca www.gemtec.ca

K2K 2A9

December 21, 2018 File: 60369.15

Touchstone Contracting and Engineering Ltd. P.O Box 124 Greely, Ontario K4P 1N4

Attention: Mr. David Kurosky

Re: Hydrogeological Investigation and Terrain Analysis

Proposed Warehouse Building

9460 Mitch Owens Road

5606, 5630, 5592 Boundary Road

Ottawa, Ontario

This letter presents comments and updates for a previously completed hydrogeological investigation for the above noted subject site by Houle Chevrier Engineering Ltd. (HCEL) entitled "Well Evaluation Report, Mitch Owens and Boundary Road, Ottawa, Ontario" dated November 11, 2010. No new field work was performed for this update.

1.0 WATER QUANTITY

As part of the original study, the water supply well was pumped at a rate of approximately 14 litres per minute for a period greater than six (6) hours. The measured drawdown of the water level in the water supply well was approximately 4.8 metres which represents approximately 18 percent of the available drawdown in the water supply well. The resulting groundwater withdrawal was approximately 5,180 litres.

Based on the results of the pumping test and site plan details at the time of the investigation, sufficient quantities of water are available from the water supply well for a 'typical' commercial development. If the water demand for the proposed development exceeds the previous pumping test rate, then additional pump testing or well drilling may be required.

2.0 WATER QUALITY

Water quality samples were collected for 'subdivision package' parameters on September 23, 2010 during the 6-hour pumping test. The aesthetic objectives and operational guideline exceedances are summarized below; it is noted that no health-related maximum acceptable concentrations were exceeded. Refer to the Well Evaluation Report for further comments on the water quality.

The following Aesthetic Objectives (AO) were exceeded:

- Chloride
- Colour
- Hydrogen Sulphide
- Sulphate
- Total Dissolved Solids
- Turbidity
- Sodium
- Iron

The following Operational Guideline (OG) was exceeded:

Hardness

The water quality does not meet the Ontario Drinking Water Standards (ODWS), Maximum Acceptable Concentrations, and the Maximum Concentration Considered Reasonably Treatable (MCCRT) for the following parameters:

- Chloride (311 and 314 mg/L) exceeds the ODWS aesthetic objective of 250 mg/L and the Maximum Reasonable Treatable Limit of 250 mg/L.
- Sodium (476 and 426 mg/L) exceeds the ODWS aesthetic objective of 200 mg/L and should be reported to the local Medical Officer of Health.

Based on a review of the Well Evaluation Report, the water quality does not meet the ODWS and MCCRT as outlined in MOECC Procedure D-5-5 for chloride and is considered to be aesthetically poor. The use of multiple water treatment systems is required to provide potable water for the proposed development; alternatively, groundwater can be used for the plumbing system only and potable water (e.g. bottled water) can be provided to employees.

The groundwater test well was drilled on August 11, 2010 and during the 6-hour pumping test completed on September 23, 2010, no total coliform, e.coli, fecal coliform or fecal streptococcus was detected; however, it is noted that the heterotrophic plate count was greater than 500 ct/100mL. It is our understanding that the test well has not been in use since 2010 and as such, the well should be chlorinated, circulated and tested for bacteriological parameters to ensure the groundwater meets the Ontario Drinking Water Standards for bacteria.

3.0 TERRAIN EVALUATION

The City of Ottawa requires a Hydrogeological Investigation and Terrain Analysis. It is understood that at the time of Well Evaluation Report preparation in 2010, an impact assessment was not required for commercial septic systems less than 10,000 litres per day.

Geology maps from the urban geology database of Canada's National Capital Region (Geological Survey of Canada, Open File 2878, 1994) indicate that the subsurface conditions are expected to consist of overburden deposits of sand underlain by marine deposits of silty clay. The bedrock is mapped as shale of the Carlsbad formation at depths of between 15 and 25 metres.

A total for five (5) boreholes were advanced as part of the geotechnical investigation carried out at the subject site, entitled "Geotechnical Investigation, Proposed Warehouse Building, 9460 Mitch Owens Road, 5606, 5630, 5592 Boundary Road, Ottawa, Ontario" dated December 18, 2018. Two (2) deep boreholes (BH10-1 and 10-2), completed to depths of 6.71 and 15.85 metres below ground surface, encountered 6.26 and 15.44 metres of silty clay below ground surface. Borehole logs and grain size analysis are attached for reference. Based on a review of geologic mapping and the thick silty clay encountered at the subject site, the site is not anticipated to be hydrogeologically sensitive and no negative septic impacts are anticipated to the water supply aquifer.

We trust this letter provides sufficient information for your present purposes. If you have any questions concerning this letter, please do not hesitate to contact our office.

Andrius Paznekas, M.Sc. Environmental Scientist

Shaun Pelkey, M.Sc.E., P.Eng. Principal, Environmental Engineer

Attachments: Borehole Logs, Grain Size Analysis, HCEL Well Evaluation Report

ABBREVIATIONS AND TERMINOLOGY USED ON RECORDS OF BOREHOLES AND TEST PITS

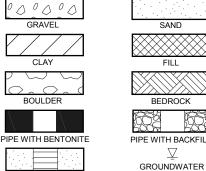
	SAMPLE TYPES
AS	Auger sample
CA	Casing sample
CS	Chunk sample
BS	Borros piston sample
GS	Grab sample
MS	Manual sample
RC	Rock core
SS	Split spoon sampler
ST	Slotted tube
ТО	Thin-walled open shelby tube
TP	Thin-walled piston shelby tube
WS	Wash sample

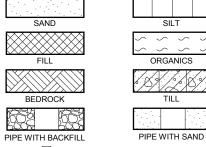
	SOIL TESTS
W	Water content
PL, w _p	Plastic limit
LL, W _L	Liquid limit
С	Consolidation (oedometer) test
D_R	Relative density
DS	Direct shear test
Gs	Specific gravity
М	Sieve analysis for particle size
МН	Combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	Organic content test
UC	Unconfined compression test
γ	Unit weight

PENETRATION RESISTANCE

Standard Penetration Resistance, N

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 millimetres (30 in.) required to drive a 50 mm split spoon sampler for a distance of 300 mm (12 in.). For split spoon samples where less than 300 mm of penetration was achieved, the number of blows is reported over the sampler penetration in mm.


Dynamic Penetration Resistance


The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive a 50 mm (2 in.) diameter 60° cone attached to 'A' size drill rods for a distance of 300 mm (12 in.).

WH	Sampler advanced by static weight of hammer and drill rods
WR	Sampler advanced by static weight of drill rods
PH	Sampler advanced by hydraulic pressure from drill rig
РМ	Sampler advanced by manual pressure

COHESION Compa		COHESIVE SOIL Consistency					
SPT N-Values	Description	Cu, kPa	Description				
0-4	Very Loose	0-12	Very Soft				
4-10	Loose	12-25	Soft				
10-30	Compact	25-50	Firm				
30-50	Dense	50-100	Stiff				
>50	Very Dense	100-200	Very Stiff				
		>200	Hard				

LEVEL

GRAIN SIZE

0.01 0,1 1,0 10 100 1000 mm SILT CLAY SAND COBBLE BOULDER 0.08 0.4 2 5 80 200

SCREEN WITH SAND

DESCRIPTIVE TERMINOLOGY

(Based on the CANFEM 4th Edition)

() 1	0 2	0 3	5
	TRACE	SOME	ADJECTIVE	noun > 35% and main fraction
	trace clay, etc	some gravel, etc.	silty, etc.	sand and gravel, etc.

RECORD OF BOREHOLE 10-1

SHEET 1 OF 1

DATUM: Local

BORING DATE: June 9, 2010

LOCATION: See Borehole Location Plan, Figure 2

SPT HAMMER: 63.5 kg; drop 0.76 m

Ä	Ę		SOIL PROFILE	1.	T. T	S/	AMPL		DYNAMI RESISTA	NCE, B	LOWS	5/0.3m	\geq	k, cm/s	S	CONDUC	110111,		چ ا ا		
DEPTH SCALE METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 I SHEAR S Cu, kPa 20	40 STRENG 40	TH n	.L nat. V em. V - ∈	80 	W.	ATER C	10 ⁻⁶ 1 ONTENT, W 40 6	PERC	ENT	ADDITIONAL LAB. TESTING	PIEZOMI OR STANDI INSTALL <i>i</i>	ETER R PIPE ATIO
- 0		Gri Bri	ound Surface own SILTY SAND	33	99.88						***************************************			e e e e e e e e e e e e e e e e e e e			***************************************				DKI
					99.43 0.45										Topic and the second						100
		Sti	ff, reddish brown SILTY CLAY		0.45											di dina				Ž	1808A
- 1						1	50 D.O.	6													X
																					200
- 2		 So			9 <u>8.05</u> 1.83	2	50 D.O.	2		ĺ									-		SON DEN CONTRACTOR OF SON CONTRACTOR
			ccasional grey silty sand seams																		
			oughout						# + #												NO NO ROBOTO
. 3	Auger	000																			200
	200 mm Pigmeter Italian St								⊕ +												55
4	000	202				3	T.P.	PH	+						ļ		l	0	C, MH	Bentonite Seal	
																}					
						4	T.P.	PH													
5																77.74				2" Diameter slotted well	
																				screen,	
6									⊕ +												
									+												
_		End	of borehole		93.17 6.71				+											Groundwater level is 0.62	
7																				metres below orginal ground	
																				surface. Sampled on June 17,	
8								ŀ												2010.	
																-					
9																					

						-															
10			NAMES OF A PROPERTY OF THE PRO														None	ACTA MATERIAL MATERIA			***************************************
DE	PTF	SCAL	Æ		Н	oul	e () Che	evrier	Enc	iine	erir	ıa Lt	d.						ED: M.L.	

RECORD OF BOREHOLE 10-2

SHEET 1 OF 1

DATUM: Local

BORING DATE: June 9, 2010

LOCATION: See Borehole Location Plan, Figure 2

SPT HAMMER: 63.5 kg; drop 0.76 m

 	HOD	SOIL PROFILE	T.		Si	AMPI	ES	DYNAMIC PENETRA RESISTANCE, BLOV	ATION VS/0.3m	HYDRAULIC CONDUCTIVITY, T k, cm/s	19
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 L L SHEAR STRENGTH Cu, kPa 20 40	60 80 U − Q − 60 80	10 ⁻⁷ 10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ L WATER CONTENT, PERCENT Wp W WI 20 40 60 80	PIEZOMETER OR STANDPIPE INSTALLATION
0		Ground Surface Brown SILTY SAND		99.89							B
1		Stiff, reddish brown SILTY CLAY		99.48 0.41	1	50 D.O.	5				\(\bar{\times}\)
2		Soft to firm, Grey SILTY CLAY		9 <u>8.06</u> 1.83	2	50 D.O.	2	Ð +			
3		- occasional silty sand seams throughout			3	T.P.	РН	+			Bentonite seal
5					4	50 D.O.	1	Φ +			2" Diameter slotted well screen
6	, and the second					50 D.O. T.P.	1 PH	+			
7	Auger er Hollow Ste							+ +			
9	Power Auger 200 mm Diameter Hollow Stem							+ + +			
0	20				7	T.P.		→ +			
1								Ð + Ð +			
2	į	Firm, dark grey SILTY CLAY		87.85 12.04	8	50 D.O.	WH	+ +			Native Soil
4) + +			
4							-	+ +			
3		End of borehole		84.04 15.85				++			Groundwater level is 1.55 metres below orginal
3						***************************************					ground surface. Sampled on June 17, 2010.
)											
		SCALE						evrier Engin			DGGED: M.L.

1 to 100

BOREHOLE RECORD GINT LOGS 10-203 GPJ HCE DATA TEMPLATE GDT 2/2/11

Houle Chevrier Engineering Ltd.

CHECKED:

RECORD OF BOREHOLE 10-3

SHEET 1 OF 1

DATUM: Local

BORING DATE: June 10, 2010

LOCATION: See Borehole Location Plan, Figure 2

SPT HAMMER: 63.5 kg; drop 0.76 m

S	G		SOIL PROFILE]		 	AMPL		DYNAMIC PENETF RESISTANCE, BLC			HYDRAULIC CC k, cm/s		NG P	DIE JOA 40 TO
DEPTH SCALE METRES	GOLFTIM CIVIDOR	DONING IME	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 I SHEAR STRENGTI Cu, kPa 20 40	f nat. V ~ -	+ Q-⊗ ⊕ U-O	10 ^{-/} 10 L L WATER CO Wp 20 40	0 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ NTENT, PERCENT W W 0 60 80	ADDITIONAL LAB. TESTING	PIEZOMETEF OR STANDPIPE INSTALLATIO
- 0			Ground Surface	77.3	100,16	***************************************					~~~~~				
-			Brown SILTY SAND												
- 1	Power Auger	iameter Hollow Si	Stiff, reddish brown SILTY CLAY		99.09 1.07	1	50 D.O.	9							
- 2		ะ 8 s	oft to firm, grey SILTY CLAY, trace ill seams		98.27 1.89	2	50 D.O.	3							
- 3		E	nd of borehole		97.26 2.90	3	50 D.O.	WH							Groundwater conditions
															not observed
- 4															
- 5						***************************************									
- 6							******								
7															
,															
8						THE PARTY OF THE P		-							
9															
10															
	PTH	I SCA	ALE		<u></u> Но		<u> </u>	 :he	vrier Engi]]eerin	a I te	1		LOGGE	ED: M.L.

RECORD OF BOREHOLE 10-4

SHEET 1 OF 1

DATUM: Local

LOCATION: See Borehole Location Plan, Figure 2 BORING DATE: June 10, 2010

SPT HAMMER: 63.5 kg; drop 0.76 m

빌	2	2	SOIL PROFILE			SA	MPL	ES	DYNAMIC PENETRA RESISTANCE, BLOV	TION >	HYDRAULIC CONDUCTIVITY, k, cm/s	- 	\$\$\$\$\$\$\$\$\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\
METRES	TLIM CNICO	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 I I SHEAR STRENGTH Cu, kPa 20 40	60 80 J	10 ⁻⁷ 10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
0		llow Stem	Ground Surface Brown SILTY SAND		100.04								
1	Power Auge	mm D			98.97 1.07 98.36 1.68	1	50 D.O.	6					
2			Soft to firm, Grey SILTY CLAY, trace silt seams End of borehole			2	50 D.O.	2					Groundwater
							7,000						conditions not observed
3													
4													
						777AB							
5							1000	-					
6													
						-							

Houle Chevrier Engineering Ltd.

CHECKED:

BOREHOLE_RECORD GINT LOGS 10-203 GPJ HCE DATA TEMPLATE GDT 1/25/11

RECORD OF BOREHOLE 10-5

SHEET 1 OF 1

DATUM: Local

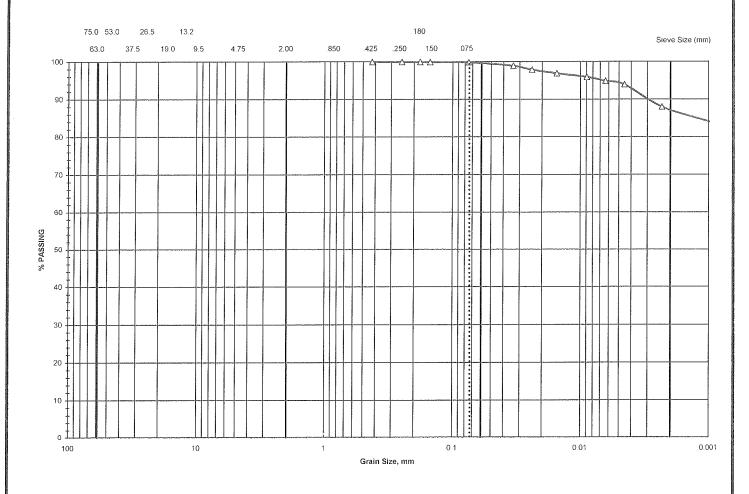
LOCATION: See Borehole Location Plan, Figure 2

BORING DATE: June 10, 2010

SPT HAMMER: 63.5 kg; drop 0.76 m DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m SOIL PROFILE HYDRAULIC CONDUCTIVITY, SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING STRATA PLOT 10⁻⁷ 10⁻⁶ 10⁻⁵ 10⁻⁴ PIEZOMETER OR STANDPIPE BLOWS/0.3m 20 60 I 80 NUMBER TYPE ELEV. SHEAR STRENGTH nat. V - + Q - ⊚ Cu, kPa rem. V - ⊕ U - O WATER CONTENT, PERCENT DESCRIPTION DEPTH -0 W INSTALLATION (m) 20 60 80 40 40 60 Ground Surface 100.87 Loose, dark brown silty sand some gravel, trace clay [Fill Material] 50 D.O 99.45 1.42 Loose, brown SILTY SAND 50 D.O. Stiff, reddish brown SILTY CLAY Soft to firm, grey SILTY CLAY, trace sandy silt seams 50 D.O. 97.97 2.90 End of borehole conditions observed 6

DEPTH SCALE

1 to 50


RECORD GINT LOGS 10-203 GPJ HCE DATA TEMPLATE GDT 1/25/11

Houle Chevrier Engineering Ltd.

LOGGED: M.L. CHECKED:

GRAIN SIZE ANALYSIS

FIGURE A1

COARSE	MEDIUM	FINE	COARSE	MEDIUM	FINE	COARSE	MEDIUM	FINE	CLAY
	GRAVEL			SAND			SILT		JEAT
				dified M.I.T. Classific					

Bore Hole	Sample	Depth (m)	Legend
10-1	2	4.57 - 5.18	Δ

Date: February 2011

Project: 10-203

Houle Chevrier Engineering Ltd.

180 Wescar Lane R.R. 2 Carp, Ontario K0A 1L0 Tel.: (613) 836-1422

Fax: (613) 836-9731 www.hceng.ca

REPORT ON

WELL EVALUATION REPORT MITCH OWENS AND BOUNDARY ROAD OTTAWA, ONTARIO

Submitted to:

O'Leary's Ltd. 3200 Rideau Road Gloucester, Ontario K1G 3N4

DISTRIBUTION:

4 copies - O'Leary's Ltd. 2 copies - Houle Chevrier Engineering Ltd.

November 2010

Our Ref: 10-203

Houle Chevrier Engineering Ltd.

180 Wescar Lane R.R. 2

Carp, Ontario K0A 1L0 Tel.: (613) 836-1422 Fax: (613) 836-9731

Our ref: 10-203

www.hceng.ca

November 11, 2010

O'Leary's Ltd. 3200 Rideau Road Gloucester, Ontario

Attention: Mr. Tony Cerquozzi

RE: HYDROGEOLOGICAL EVALUATION

MITCH OWENS ROAD AND BOUNDARY ROAD

OTTAWA, ONTARIO

Dear Sir:

K1G 3N4

This letter presents the results of a well evaluation carried out for a newly drilled well at a vacant property located to the southwest of the intersection of Mitch Owens Road and Boundary Road in Ottawa, Ontario (refer to Figure 1 - Key Plan). Additionally, the impact of the proposed septic system on the subsurface environment is investigated.

The purpose of the investigation was to confirm the following:

- That the well has been constructed in accordance with the Ministry of Environment requirements;
- That the quality of the water meets the Ministry of the Environment (MOE) Regulations, Standards, Guidelines and Objectives:
- That there is sufficient quantity for the intended use;
- The site is suitable for onsite disposal of wastewater using onsite septic disposal systems.

BACKGROUND

A new drinking water well was drilled on the site on August 11, 2010, by Olympic Drilling Co. Ltd. Copies of the Water Well and Well Compliance Records are provided in Attachment A following the tables of this letter. The approximate location of the well is indicated on the Site Plan, Figure 2.

A six (6) hour pump test was conducted on September 23, 2010, on the test well by Houle Chevrier Engineering Ltd. (HCEL) and water samples were collected during the third and final hour of pumping. The water samples were submitted to Exova Accutest laboratory for analysis of subdivision package parameters in accordance with MOE Procedure D-5-5.

The following sections provide the results of the six (6) hour duration pump test carried out on September 23, 2010.

WELL CONTRUCTION

The drinking water well was drilled on August 11, 2010, by a licensed MOE well contractor (Olympic Drilling Co. Ltd.) using a rotary air percussion drill rig. A copy of the MOE Water Well Record is provided in Attachment A.

The well was constructed using a 150 millimetre diameter, No. 35 slot steel well screen set approximately 0.6 metres in the bedrock and approximately 2.4 metres in the overburden (that is, straddling the bedrock and overburden interface). A steel 150 millimetre well casing was set in place from the top of the well screen to approximately 0.6 metres above ground surface. Clear filter stone was placed from the bottom of the well screen to approximately 1.5 metres above the top of the well screen. Approximately 0.6 metres of bentonite hole plug was placed on top of the clear filter stone. The remainder of the annular space around the well casing was grouted using mixture of General Use Type 1 cement with 5% bentonite.

The grouting of the steel well casing was observed by Houle Chevrier Engineering Ltd. staff and a Certificate of Well Compliance was prepared certifying that the well casing has been constructed in accordance with MOE requirements (refer to Attachment A).

The construction details from the MOE Water Well Record are summarized in the following table:

Well Construction	n Details
Depth to Bedrock	28.3 metres
Length of Well Screen	3.0 metres
Length of Well Casing	26.5 metres
Length of Well Casing below ground surface	25.9 metres
Length of Casing set into Bedrock	0.0 metres
Depth Water Found	Not Reported
Total Well Depth	29.0 metres

GROUNDWATER QUANTITY

A pumping test was carried out on the water well on September 23, 2010 to determine the characteristics of the water supply aquifer. As per MOE Guideline D-5-5, the well was pumped at a constant flow rate greater than 13.7 litres per minute for a minimum of 6 hours. The well was pumped at a constant rate of 14.2 litres per minute by HCEL.

Water level measurements were taken at regular intervals throughout the six (6) hour pumping test. Water levels were also taken during recovery phase of the pumping test (after the pump was turned off). The drawdown and recovery data and drawdown graph are provided in Attachment B. The drawdown data contained herein was measured with reference to the top of the well casing. Please note that the discharge rate on the drawdown data and graph sheets is listed as variable because the recovery period, where the discharge rate is zero, is included in

November 11, 2010 Our Ref: 10-203

the same data set as the drawdown period. However, the actual discharge during the pumping of the water well was conducted at a constant rate greater than 13.7 litres per minute.

The transmissivity of the water supply aquifer was estimated based on a Theis analyses of the pump test drawdown and recovery data using Aquifer Test Pro 4.2, a commercially available software program from Waterloo Hydrogeologic Inc. The results of the Aquifer Test Pro 4.2 analysis is provided in Attachment C. The results of the analysis indicate that the expected transmissivity of the water supply aquifer ranges from approximately 0.8 to 2.4 m²/day.

Based on the results of the pumping test(s), there is sufficient quantity of groundwater available at the site for the intended use (reported to be a small commercial building).

GROUNDWATER QUALITY

Water samples were collected at three (3) and six (6) hours of pumping from the water well on September 23, 2010, by HCEL and submitted to Exova Accutest laboratory for analysis of subdivision package parameters. A copy of the laboratory certificates of analysis for the water samples is provided in Attachment D.

Field measurements for temperature, pH, conductivity, Total Dissolved Solids (TDS), turbidity and total chlorine were taken at regular intervals throughout the pumping test and are summarized in Table 1 following the text of this report. The laboratory results for the water samples collected at three (3) and six (6) hours are summarized in Table 2 following the text of this letter.

The results of the laboratory analysis on the water samples were compared to applicable standards provided in the Ontario Drinking Water Standards (ODWS). The results of the water quality analysis indicates that the water is suitable for consumption, with the exception of some aesthetic objective and operational guideline exceedances. The following comments are provided regarding the drinking water quality and exceedances of the ODWS:

Bacteriological Results

The results of the bacteriological analysis of the August 2010 water samples indicate that the well water meets all the standards of the ODWS for bacteriological parameters. In addition, the concentration of other bacteria indicator species such as faecal coliform and faecal streptococcus bacteria were determined to be non-detectable.

Total chlorine measurements made at regular intervals during the pumping test confirmed that total chlorine concentrations in the well water were non-detectable at the time of bacteriological sampling.

Chemical Results

The result of the chemical testing on the water samples indicates the aesthetic objectives for chloride, colour, hydrogen sulphide, pH (3 hour sample only), sulphate, total dissolved solids, turbidity, sodium and iron were exceeded. The operational guideline for hardness was also exceeded.

The above noted exceedances are discussed in the follow sections:

Chloride

The concentration of chloride in the water samples ranged from 311 to 314 mg/L and exceeded the aesthetic objective of 250 mg/L. Chloride is a non-toxic material in small amounts in drinking water and produces a detectable salty taste at the aesthetic objective level of 250 mg/L. Chloride is widely distributed in nature, generally as the sodium (NaCl), potassium (KCl) and calcium (CaCl₂) salts.

Point of Use (POU) reverse osmosis systems are capable of effectively removing up to 96 percent of chloride in drinking water. A reverse osmosis system treating the raw water would reduce chloride concentrations in the water at the subject site to levels well below the aesthetic objective. Therefore, the level of chloride in the water is considered to be reasonably treatable by POU reverse osmosis.

Colour

The level of colour in the water samples was 5 TCU which is equal to the aesthetic objective of 5 TCU. The MOE Procedure D-5-5 document indicates that the maximum concentration considered reasonably treatable by charcoal filters is 7 TCU. Therefore, the level of colour in the water is considered to be reasonably treatable by charcoal filters.

Hydrogen Sulphide

The concentrations of hydrogen sulphide in the water samples was <0.1 and 0.08 mg/L, respectively, and exceeded the Ontario Drinking Water Standards (ODWS) aesthetic objective of 0.05 mg/L.

Elevated concentrations of hydrogen sulphide are typically characterized by an unpleasant odour (rotten egg smell) and, when in present in association with iron, can produce black stains on laundered items and black deposits on pipes and fixtures.

The Ministry of Environment document entitled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines" indicates that low levels of hydrogen sulphide can be removed effectively from most well water by aeration. Hydrogen sulphide can also be effectively treated through the use of activated charcoal filters, chlorination, manganese greensand filters and other forms of oxidizing treatment.

Based on the relatively low levels of hydrogen sulphide detected in the water samples (that is, less than 1.0 mg/L), the level of hydrogen sulphide in the well water is considered to be reasonably treatable by aeration.

рΗ

The level of pH in the water sample collected at 3 hours was 8.51 and exceeded the operational guideline of 8.5. The level of pH in the water sample collected at 6 hours was 8.44 was within the permissible range specified by the operational guideline. Field measurements collected during the pumping test show that pH was below the operational guideline and exhibited a downward trend.

Based on the results of the 6 hour sample and the field pH measurements, the level of pH in the water available from the test well is acceptable.

Sulphate

The concentration of sulphate in the water samples ranged from 509 to 519 mg/L and exceeded the aesthetic objective of 500 mg/L. At levels above the aesthetic objective, sulphate may have a laxative effect, however, regular users adapt to high levels of sulphate in drinking water and problems are usually experienced by only visitors and new consumers. The presence of sulphate in drinking water above 150 mg/L may result in noticeable taste, however, this depends on the associated metals present in the water. In addition, sulphate may converted to sulphide by some anaerobic bacteria creating odour problems.

Point of Use (POU) reverse osmosis systems are capable of effectively removing up to 99 percent of sulphate in drinking water. A reverse osmosis system treating the raw water would reduce sulphate concentrations in the water at the subject site to levels well below the aesthetic objective. Therefore, the level of sulphate in the water is considered to be reasonably treatable by POU reverse osmosis.

Total Dissolved Solids

The concentration of Total Dissolved Solids (TDS) in the water samples ranged from 1,810 to 1,820 mg/L and exceeded the aesthetic objective of 500 mg/L. The term total dissolved solids refers mainly to inorganic substances dissolved in water. The principal constituents of TDS are chloride, sulphates, calcium, magnesium and bicarbonates. Excessive hardness, taste, mineral deposition or corrosion are common properties of highly mineralized water.

As per Table 3 in the Appendix of the MOE Guideline D-5-5, rationale must be provided that corrosion, encrustation or taste problems will not occur when there are exceedances of the ODWS for TDS.

To determine the corrosive nature of the groundwater, the Langelier Saturation Index (LSI) and the Ryznar Stability Index (RSI) were calculated for the samples obtained from the well. These values are based on the TDS, temperature, pH, alkalinity (as CaCO3), calcium (as CaCO3), chloride and sulphate levels observed in the samples. The LSI was calculated to be 0.70 and the RSI was calculated to be 7.0. Information from the American Water Works Association indicates that the desired range of LSI and RSI values to prevent corrosion and scaling is an LSI greater than 0 and an RSI between 5.0 and 7.0. Based on the LSI and RSI values for samples from this well, the groundwater from the test well is within the desired range, therefore, the degree of corrosion and scaling of plumbing should be acceptable and we do not anticipate any discernable taste problems.

Turbidity

Laboratory measurements of turbidity from the water samples ranged from 20.4 to 28 NTU and exceeded the ODWS aesthetic objective of 5.0 NTU. Field measurements made during the pumping test on September 23, 2010 indicate that the turbidity of the water ranged from 29 to 243 NTU and exceeded the ODWS aesthetic objective of 5.0 NTU. Turbidity levels in excess of 5.0 NTU becomes visible to the naked eye and as such a majority of consumers may object to its presence.

Additional pumping of the well was carried out during the period of September 23 to 27, 2010 to demonstrate that turbidity levels, as measured in the field, would continue to decrease until the level of turbidity in the well water was below the ODWS aesthetic objective.

The additional pumping from September 23 to 27, 2010 was carried out at a flow rate of 14.2 litres per minute by Olympic Drilling Co. Ltd. The results of the field turbidity measurements on September 24 and 27, 2010 are provided in Table 3 following the text of this report. Following the additional pumping, the turbidity in the field was demonstrated to be 0.0 NTU on September 27, 2010.

Therefore, as the turbidity level of the well water has been demonstrated to have been reduced below the ODWS aesthetic objective through additional pumping, the level of turbidity in the test well is not considered to be of concern.

Hardness

The hardness of the water samples ranged from 226 to 246 mg/L as $CaCO_3$ and exceeded the ODWS operational guideline for hardness. Water having a hardness above 100 milligrams per litre as $CaCO_3$ is often softened for domestic use. Water softeners are widely used throughout rural areas to treat hardness and there is no upper treatable limit for hardness.

Water softening by conventional sodium ion exchange water softeners that use sodium chloride may introduce relatively high concentrations of sodium into the drinking water that may be of concern to persons on a sodium restricted diet. The use of potassium chloride in the water softener (which adds potassium to the water instead of sodium); could be considered as a means of reducing sodium in the water.

Sodium

The concentration of sodium in the water samples in the water samples ranged from 426 to 476 mg/L and exceeded the aesthetic objective of 200 mg/L. At concentrations exceeding the aesthetic objective, a salty taste can be detected. In addition, concentrations of sodium above 20 mg/L may be of concern for persons on sodium restricted diets.

Point of Use (POU) reverse osmosis systems are capable of effectively removing up to 97 percent of sodium in drinking water. A reverse osmosis system treating the raw water would reduce sodium concentrations in the water at the subject site to levels well below the aesthetic objective. Therefore, the level of sodium in the water is considered to be reasonably treatable by POU reverse osmosis.

Iron

The iron concentration water samples ranged from 0.56 to 0.75 mg/L and exceeded the aesthetic objective of 0.3 mg/L listed by the ODWS.

MOE Procedure D-5-5 indicates that iron concentrations up to 5.0 mg/L are considered treatable by conventional water softeners. The iron concentrations in the onsite water well are well below the treatable limit for water softeners provided by MOE Procedure D-5-5.

IMPACT ASSESSMENT

An impact assessment is not required for commercial septic systems less than 10,000 litres per day. Therefore, the septic system for the commercial building is required to be less than 10,000 litres per day. The design of the septic disposal system for this building is in progress by HCEL. It is expected that the septic system design flow will be much less than 10,000 litres per day.

CONCLUSIONS

Based on the results of the six (6) hour pumping test carried out on September 23, 2010, the quantity of water from the test well is considered to be sufficient for the proposed development.

The laboratory analysis and field measurements of water quality indicate that the water meets the ODWS standards, guidelines and objectives, with the exception of some aesthetic objective and operational guidelines exceedances. All parameter exceedances of the ODWS were found to be reasonably treatable using conventional water softeners, charcoal filters, aeration and point of use reverse osmosis treatment systems.

Based on the results of our investigation, the onsite test well has been constructed in accordance with MOE requirements, the water quality meets the ODWS guidelines, objectives and standards (with the exception of several parameter exceedances which were determined to be within treatable limits) and the well has demonstrated that there is sufficient quantity of water available at the subject site for the proposed development.

We trust that this letter is sufficient for your purposes. If you require additional information or if we could be of further assistance to you on this project, please do not hesitate to call.

Yours truly,

HOULE CHEVRIER ENGINEERING LTD.

James McEwen, B.Sc., B.Eng.

Hydrogeologist

A.C. Houle, P.Eng.

Principal

Figure 1 - Key Plan

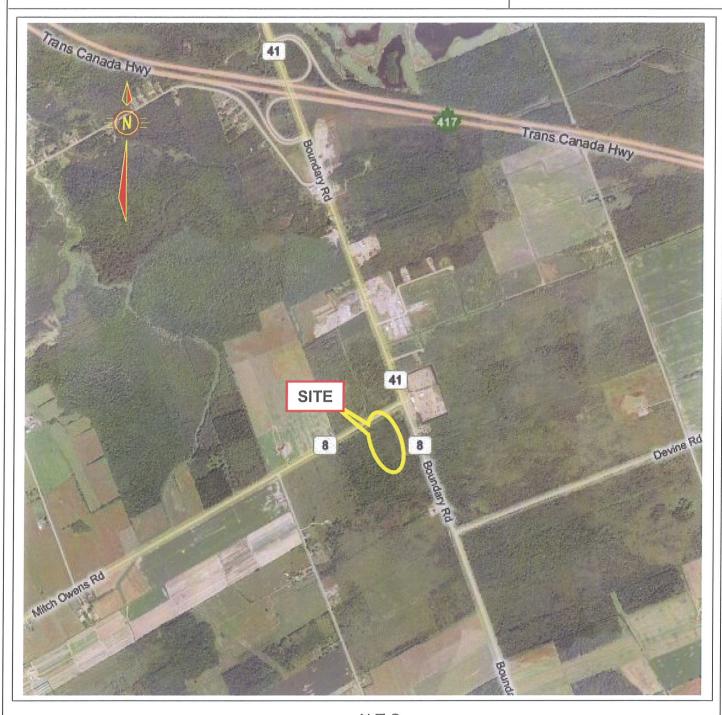

Figure 2 - Site Plan

Table 1 - Field Measurements

Table 2 - Summary of Laboratory Analysis

Table 3 - Additional Field Measurements

Attachments A, B, C and D

N.T.S

Date: June 2010

Project: 10-203

TW 1

APPROXIMATE TEST WELL LOCATION IN PLAN, CURRENT INVESTIGATION BY HOULE CHEVRIER ENGINEERING LTD.

PROPERTY BOUNDARY

Client	O'LEARY	'S I	LTD.	in.	Location	MITCH OWENS ROAD AND BOUNDARY ROAD	Revision
Drawn by D.J.R			pprov	,	Project No. 10-203	OTTAWA, ON	Approx. Scale 1:2000
				Title		CITE DI ANI	

Houle Chevrier Engineering Date

SITE PLAN

November 2010

FIGURE 2

Table 1 - Summary of Test Well Field Measurements - September 23, 2010

November 2010

P		_	~~		~~							
Total Dissolved Solids (ppm)	1994	2.77	1007	1771	7707	1.74.1	0.00	1243		1240	0007	XXX
Conductivity (uS)	2445		2/61	24.7	0370	2500	0010	7400	1010	7047	02770	73/3/
H	8.48		277		2/2	5	2/2	5.1	0	2.72	25.0	5
Total Chlorine (mg/L)	0.0			2:5	-	2.5	-	9.5	_	0.0	00	·
Turbidity (NTU)	243		125		06:		C.		Δ 4		50	3
Temperature (°C)	10.4	, 0,	10.4		,,,,,,,,,,,,,		17.5		9.		5.7	
Time from Start of Pumping (hours)	1	c	7	c	3		7		C	(٥	

Table 2 - Summary of Test Well Laboratory Reports Analysis - September 23, 2010

PARAMETER	UNITS	TW1 - 3hr	TW1 - 6hr	ONTARIO DRINKING WATER STANDARD	TYPE OF STANDARD
Total Coliforms	ct/100mL	0	0	0	MAC ⁽¹⁾
Escherichia Coli	ct/100mL	0	0	0	MAC
Heterotrophic Plate Count	ct/1mL	>500	>500		-
Faecal Coliforms	ct/100mL	0	0	-	
Faecal Streptococcus	ct/100mL	0	0	-	
Alkalinity as CaCO3	mg/L	280	290	30-500	OG ⁽²⁾
Chloride	mg/L	311	314	250	AO ⁽³⁾
Colour	TCU	5	5	5	AO
Conductivity	μS/cm	2410	2430	-	-
Dissolved Organic Carbon	mg/L	2.7	2.8	5.0	AO
Fluoride	mg/L	0.68	0.67	1.5	MAC
Hydrogen Sulphide	mg/L	< 0.1	0.08	0.05	AO
N-NH3 (Ammonia)	mg/L	1.30	1.27	~	_
N-NO2 (Nitrite)	mg/L	<0.10	<0.10	0.1 ⁽⁴⁾	MAC
N-NO3 (Nitrate)	mg/L	<0.10	<0.10	10 ⁽⁴⁾	MAC
рН	-	8.51	8.44	6.5-8.5	og
Phenols	mg/L	<0.001	<0.001	-	-
Sulphate	mg/L	519	509	500	AO
Tannin & Lignin	mg/L	0.2	0.2	-	
TDS (COND - CALC)	mg/L	1810	1820	500	AO
Total Kjeldahl Nitrogen	mg/L	1.31	1.25	-	-
Turbidity	NTU	28	20.4	5	AO
Hardness as CaCO3	mg/L	246	226	80-100	OG
Ion Balance		1.04	0.94	-	-
Calcium	mg/L	31	28	-	-
Magnesium	mg/L	41	38	-	-
Potassium	mg/L	21	21	-	-
Sodium	mg/L	476	426	200 ⁽⁵⁾	AO
Iron	mg/L	0.75	0.56	0.3	AO
Manganese	mg/L	0.03	0.02	0.05	AO
Organic Nitrogen	mg/L	0.01	0.00	0.15	OG

NOTES:

- 1. MAC = Maximum Acceptable Concentration
- 2. OG = Operational Guideline
- 3. AO = Aesthetic Objective
- 4. The total of Nitrate and Nitrite should not exceed 10 mg/litre
- 5. The aesthetic objective for sodium is 200 mg/litre. The local medical officer of health should be notified when the sodium concentration exceeds 20 mg/litre for persons on sodium restricted diets.
- 6. Organic Nitrogen is calculated as the difference between total Kjeldahl nitrogen and ammonia nitrogen.
- 7. '-' signifies no value provided in the ODWS guideline.

Table 3 - Summary of Additional Turbidity Field Measurements - September 24 - 27, 2010

Turbidity (NTU)	11.80	8.12	11.29	9.63	0.00
Date and Time	September 24, 2010, 3:00 pm	September 24, 2010, 3:05 pm	September 24, 2010, 3:10 pm	September 24, 2010, 3:15 pm	September 27, 2010, 4:00 pm

November 2010 Our Ref: 10-203

ATTACHMENT A

ONTARIO MINISTRY OF THE ENVIRONMENT
WATER WELL RECORD
AND
CERTIFICATE OF WELL COMPLIANCE

(W)	Ontario

Ministry of the Environment

Well	Taç	, Ni	umb	er (Place :	sticke	randi	onnt number bel	ow)
						į.			
	å	<i>i</i> s	7	1	7	J	0		

Well Record Regulation 903 Ontario Water Resources Ac

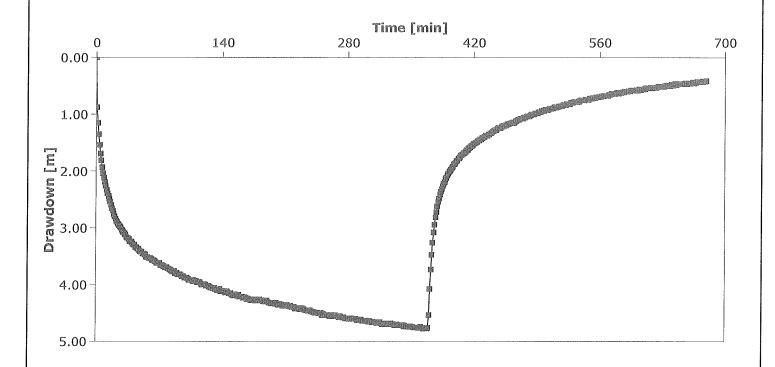
Cette formule est disponible en franç

400000					-	~03	÷ 0			1 '	oguiui.	,,, ,,,,		,		
	for Completin				036]					age_	of
• For use in	the Province on must be con	of Ontario	only. This	docum	ent is a pe	ermar	nent leg	al docu	ment. Pl	lease re	tain for	futur	e refer	ence.	 odent	thic form
 Questions 	regarding com	pleting this	s application	on can l	oe directed	d to th	ne Wate	er Well N	fanagen	nent Co	ordinat	or at	416-23	35-6203		u 83 10111
 All metre Please print 	measurement	s shall be e or black	reported	to 1/10	th of a me	tre	*************				Minist	ry Use	Only		,000,000,000,000,000	
	Information			/ell Info	ormation		MUN		cc					1 1 5	LOT	
First Name	4 -	Last Nam				Maili	ng Addre	ss (Stree	et Numbe	er/Name,	RR,Lo	,Cono	ession))	S	25
County/District/M			Township/				ı	rovince	Posta	Code	 	Tele	phone i	Number	(include	area co
Oftawa Address of Wall	Larlely, Location (County)	Dietrict/8/4	nicipality)	146	wg.	Town	van van de commente	Ontario			moneyoundo	L.ot		Conce	ssion	
RR#/Street Num	2 18 18 a come	Jan Collina	RA.	1				3590	sod ¢	»′ 			سألد		1	A10-14
RR#/Street Num	iber/Name		41		ander Sierle Gebeurte		y/Town/	0	Ha	cot Ø	Posts	W 74.	5 K	Block/Tr		
GPS Reading	NAD Zon	Eastm	g	Nort	hing	3.Un	it Make/	Model	Mode	of Open	ation:	Und	iferentiat erentiated	led [Avera	ged
Log of Overb	8 3 / 9 urden and Be	drock Ma	nterials (s	ee ins	tructions	<u> </u>						1.0110		, apoury _	anano ir in se	
General Colour	Most common			Other Ma	and the second second second second	finite		- Annie Carlotte (ar	Genera	Descrip	tion			Deg Fro		Metres To
Brown	5,	เลย (บลูล เมสสต์บลล เ	with		a in e	5 /	118	<u>. </u>						G		12'
Grey		clay	477			19	1005						٠.,	1.2		81
Grey		Hudy	a in the	16	560	105								81		93'
Grey		Shale	F1	ch	100	14	50	11						93		95'
				41. 21			-	à								
						•	 	7.00 F)					***		-7	
		. 6					ļ			,	· .				-	
J	•	···········	<u> </u>						****		reguler d Au			1		
Hole Dia	ameter			Cons	struction R	ecord	i					Tes	t of We	II Yield		
Depth Met		Inside			Wall		Depth	М	etres		ig test m			/ Down /ater Leve		ecovery Water Le
From To		- diam- centimetres	Mater	rai	thickness centimetre		From		То		- surpre		min	Metres	min	Metres
95 0	12"				Casing					(metres	ntake se		-	17.12		
<u> </u>			₹ Steel				S5'	4	7		ngrate- nina) /∂	9,214	1 /	4119	1	
Water I	Record		Plastic Galvanized		1188		ラノ	'	*		n of pun		2 /	6.77	2	-
Water found at Metres	Kind of Water		Steel			\top					ers + ater leve		3 1	5.83	3	
	resh Sulphur alty Minerals	1 1	Plastic							of pum	ping	metres	3 (<u> </u>	٦	
Other:	aity		Galvanized							I type.	mended			0.12	4	
	resh Sulphur alty Minerals		Plastic							Recom	Shallow (mended	pump		15.51	5	
Other:	any	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Galvanized	,						ł E	<u>90</u> mended		10 -	9.41	10	
	resh Sulphur alty Minerals	Outside	Eloral M	F*tt	Screen			Ţ.		rate.	tees min	بد,)		3 6d	15	
Other:		diam	Steel. []		-	ì	95	8	< '	11	ig give n itres/min		20 3 25 ~	3.7.	20	
After test of well y		6"	Galvanized	i	35		17	0		If pump	ing disco	กซ์ก-		7.35	30	
Other, specify.				No C	Casing or S	Scree	n			usu, g.,	10 100001		-	51.12	40 50	
Chlorinated Y	es 🗌 No		Open hole				•						50 60 t	51,23	60	
P	Plugging and Se	aling Reco	rd .	Annula	ar space] Abar	ndonment	1					of Well			MANUAL PROPERTY AND ADDRESS OF THE PARTY ADDRESS OF THE PAR
Depth set at - Metr From To	Material and typ	e (bentonite s	luny, neat cei	ment slum	y) etc. Vo	olume l cubic m	Placed netres)		gram belov te north by		tances o	f well fr	om road	l, fot line,	and bu	llding.
80' 0'		ugy (b	eman t	7]] [·			<u></u>	1		~."	·
		<i>5</i>						-	8				321	•		. IL
		<u> </u>						1			- 1 m	181	1		Ę	V
				<u> </u>		٠		11 8	+		· · } ·	100				
		ethod of	Construction									!				
Cable Tool	Rotary (air)		iamond			igging		1			1				
☐ Rolary (convent		ussion .	J. □ []	etting Inving	4 54		ther -				i	-				
			r Use	1.11. 0						· · · · · · · · · · · · · · · · · · ·	10 C	2				
Domestic Stock	☐ Industria Comme	rcial	□N	ublic Suppliot used			mer	-	<u> </u>							
Irrigation	Municip		 us∵of Well		air conditionin	19	×	Audit	No. Z	401	82	Da	te Well (Completed	۲۲ ا	MM D
Water Supply	Recharge we	ell .	Πi	Infinished		andone	d, (Other	Was	the well ov	vner's info	mation Yes	. 1	te Delive	red	~~~	MM D
☐ Observation we ☐ Test Hole	Abandoned,	poor quality	☐ R	ewatering epiaceme	nt well							255	C - ^			ــلنـــــ
Name of Well Cont		tractor/Tec	hnician in		on /ell Contracto	r's Lice	ence No.	L.	Source	MONTH TO THE TANK	Minis		e Only ntractor		***************************************	
Myma	ic del	Villy	lu Ita	1		06] [in of later	notice		
Business Address	(street name, numb		1etra	1fe	Ort	<i>*</i>] Date F	Received	m	MM C		te of Inst		YYYY	MM E
Name of Well Tech	nnician (last name, f			W	lell Technicia	n's Lic	ence No.	Rema	irks			We	all Recor	d Number		

Contractor's Copy Ministry's Copy Well Owner's Copy

November 2010 Our Ref: 10-203

ATTACHMENT B


PUMP TEST DRAWDOWN AND RECOVERY DATA

Project: Boundary Road Hydrogeological Investigation

Number: 10-203

Location:	Pumping Test: TW1	Pumping Well: Well 1
Test Conducted by: RA		Test Date: 9/23/2010
Analysis Performed by: JM	Time vs. Drawdown	Analysis Date: 10/27/2010
Aguifar Thickness	Discharge: variable, average rate 0.00	052682 [m³/min]

ı	Pumping	Test -	Water	Level	Data
---	---------	--------	-------	-------	------

Page 1 of 13

Project: Boundary Road Hydrogeological Investigation

Number: 10-203

Client: O'Leary's Limited

 Location:
 Pumping Test: TW1
 Pumping Well: Well 1

 Test Conducted by: RA
 Test Date: 9/23/2010
 Discharge: variable, average rate 0.0052682 [m³/min]

 Observation Well: Well 1
 Static Water Level [m]: 3.62
 Radial Distance to PW [m]:

Observ	ation Well: Well 1		Static Water Level [m]: 3.62
	Time [min]	Water Level [m]	Drawdown [m]
1	0	3.62	0.00
2	1	4.50	0.88
3	2	4.77	1.15
4	3	4.97	1.35
5	4	5.16	1.54
6	5	5.31	1.69
7	6	5.43	1.81
8	7	5.55	1.93
9	8	5.66	2.04
10	9	5.74	2.12
11	10	5.81	2.19
12	11	5.88	2.26
13	12	5.95	2.33
14	13	6.01	2.39
15	14	6.06	2.44
16	15	6.11	2.49
17	16	6.16	2.54
18	17	6.22	2.60
19	18	6.28	2.66
20	19	6.32	2.70
21	20	6.38	2.76
22	21	6.42	2.80
23	22	6.46	2.84
24	23	6.50	2.88
25	24	6.52	2.90
26	25	6.55	2.93
27	26	6.57	2.95
28	27	6.59	2.97
29	28	6.62	3.00
30	29	6.65	3.03
31	30	6.68	3.06
32	31	6.70	3.08
33	32	6.71	3.09
34	33	6.74	3.12
35	34	6.78	3.16
36	35	6.80	3.18
37	36	6.80	3.18
38	37	6.82	3.20
39	38	6.86	3.24
40	39	6.86	3.24
41	40	6.87	3.25
42	41	6.90	3.28
43	42	6.92	3.30
44	43	6.92	3.30
45	44	6.96	3.34
46	45	6.96	3.34
47	46	6.98	3.36
48	47	6.99	3.37
40	48	7.01	3.39
49			
50 51	49	7.03 7.04	3.41 3.42

Pumping Test - \	Vater Level Data	ì
------------------	------------------	---

Page 2 of 13

Project: Boundary Road Hydrogeological Investigation

Number: 10-203

	Time [min]	Water Level	Drawdown
50		[m]	[m]
52	51	7.04	3.42
53	52	7.07	3.45
54	53	7.07	3.45
55	54	7.08	3.46
56	55	7.09	3.47
57	56	7.13	3.51
58	57	7.14	3.52
59	58	7.14	3.52
60	59	7.15	3.53
61	60	7.15	3.53
62	61	7.16	3.54
63	62	7.17	3.55
64	63	7.19	3.57
65	64	7.19	3.57
66	65	7.20	3.58
67	66	7.21	3.59
68	67	7.23	3.61
69	68	7.24	3.62
70	69	7.24	3.62
71	70	7.24	3.62
72	71	7.24	3.62
73	72	7.28	3.66
74	73	7.28	3.66
75	74	7.27	3.65
76	75	7.29	3.67
77	76	7.30	3.68
78	77	7.32	3.70
79	78	7.32	3.70
80	79	7.31	3.69
81	80	7.33	3.71
82	81	7.34	3.72
83	82	7.35	3.73
84	83	7.36	3.74
85	84	7.37	3.75
86	85	7.39	3.77
87	86	7.38	3.76
88	87	7.38	3.76
89	88	7.42	3.80
90	89	7.41	3.79
91	90	7.41	3.79
92	91	7.43	3.81
93	92	7.44	3.82
94	93	7.44	3.82
95	94	7.44	3.82
96	95	7.45	3.83
97	96	7.47	3.85
98	97	7.47	3.85
99	98	7.48	3.86
100	99	7.50	3.88
101	100	7.50	3.88
102	101	7.50	3.88
103	102	7.51	3.89
104	103	7.52	3.90
105	104	7.54	3.92
106	105	7.54	3.92
107	106	7.54	3.92

Pumping Test - Water Le	vel Data
-------------------------	----------

Page 3 of 13

Project: Boundary Road Hydrogeological Investigation

Number: 10-203

Client: O'l

O'Leary's Limited

	Time [min]	Water Level [m]	Drawdown [m]		
108	107	7.54	3.92	_	
109	108	7.56	3.94	-	
110	109	7.54	3.92		
111	110	7.55	3.93	_	
112	111	7.56	3.94		
113	112	7.56	3.94	_	
114	113	7.58	3.96	_	
115	114	7.58	3.96		
116	115	7.57	3.95		
117	116	7.58	3.96	_	
118	117	7.60	3.98	_	
119	118	7.62	4.00	_	
				_	
120	119	7.61	3.99	_	
121	120	7.62	4.00		
122	121	7.61	3.99	_	
123	122	7.62	4.00	_	
124	123	7.64	4.02		
125	124	7.64	4.02	_	
126	125	7.64	4.02		
127	126	7.65	4.03		
128	127	7.66	4.04		
129	128	7.67	4.05		
130	129	7.67	4.05	_	
131	130	7.68	4.06		
132	131	7.68	4.06		
133	132	7.68	4.06		
134	133	7.70	4.08		
135	134	7.70	4.08		
136	135	7.71	4.09		
137	136	7.72	4.10		
138	137	7.71	4.09		
139	138	7.70	4.08	_	
140	139	7.74	4.12	Ī	
141	140	7.74	4.12		
142	141	7.73	4.11	_	
143	142	7.74	4.12	Ī	
144	143	7.74	4.12	Ī	
145	144	7.76	4.14	_	
146	145	7.75	4.13	_	
147	146	7.74	4.12	_	
148	147	7.76	4.14	-	
149	148	7.77	4.15	_	
150	149	7.77	4.15	_	
151	150	7.77	4.15	-	
152	151	7.79	4.17	-	
153	152	7.80	4.18		
154	153	7.81	4.19	-	
155	154	7.80	4.18		
156	155	7.79	4.17	-	
157	156	7.80	4.18	_	
158	157	7.81	4.19	-	
159	158	7.82	4.20	-	
160	159	7.80	4.18	_	
161	160	7.83	4.21	_	
	161	7.83	4.21	_	
162					

Page 4 of 13

Project: Boundary Road Hydrogeological Investigation

Number: 10-203

į.	Time [min]	Water Level [m]	Drawdown [m]
164	163	7.83	4.21
165	164	7.85	4.23
166	165	7.84	4.22
167	166	7.84	4.22
168	167	7.85	4.23
169	168	7.87	4.25
170	169	7.86	4.24
171	170	7.87	4.25
172	171	7.88	4.26
173	172	7.89	4.27
174	173	7.88	4.26
175	174	7.88	4.26
176	175	7.89	4.27
177	176	7.89	4.27
178	177	7.90	4.28
179	178	7.88	4.26
180	179	7.88	4.26
181	180	7.88	4.26
182	181	7.89	4.26
183	182	7.88	4.26
184 185	183 184	7.90 7.90	4.28
			4.28
186	185	7.89	
187	186 187	7.91	4.29
188 189	188	7.90	4.28
		7.91	4.29
190 191	189 190	7.92	4.30 4.28
192	191	7.92	4.30
193 194	192	7.93	4.31
	193	7.94	4.32
195 196	194 195	7.94	4.32
		7.95	4.33
197	196 197	7.94	4.32
198 199	198	7.94	4.32
200	199		4.32
200		7.94	4.32 4.34
	200		
202		7.94	4.32
203	202	7.96	4.34
204	203	7.97	4.35
	······································	7.97	4.35
206	205	7.96	4.34
207	206	7.97	4.35
208	207	7.97	4.35
209	208	7.99	4.37
210	209	7.98	4.36
211	210	7.98	4.36
212	211	7.98	4.36
213	212	7.99	4.37
214	213	7.98	4.36
215	214	7.99	4.37
216	215	8.00	4.38
217	216	7.99	4.37
218	217	7.99	4.37
219	218	8.01	4.39

Pump	ing Test	- Water	Level Data
------	----------	---------	-------------------

Page 5 of 13

Project: Boundary Road Hydrogeological Investigation

Number: 10-203

	Time [min]	Water Level [m]	Drawdown [m]	
220	219	8.01	4.39	
221	220	8.01	4.39	
222	221	8.02	4.40	
223	222	8.04	4.42	
224	223	8.03	4.41	
225	224	8.03	4.41	_
226	225	8.04	4.42	
227	226	8.03	4.41	
228	227	8.05	4.43	
229	228	8.04	4.42	
230	229	8.03	4.41	
231	230	8.04	4.42	—
232	231	8.04	4.42	
233	232	8.06	4.44	
234	233	8.06	4.44	
235	234	8.07	4.45	
236	235	8.07	4.45	
237	236	8.07	4.45	_
238	237	8.08	4.46	
239	238	8.08	4.46	_
240	239	8.07	4.45	
241	240	8.09	4.47	
242	241	8.09	4.47	
243	242	8.10	4.48	
244	243	8.10	4.48	
245	244	8.11	4.49	
246	245	8.11	4.49	
247	246	8.11	4.49	
248	247	8.11	4.49	
249	248	8.12	4.50	
250	249	8.12	4.50	
251	250	8.12	4.50	
252	251	8.12	4.50	_
253	252	8.15	4.53	
254	253	8.13	4.51	
255	254	8.15	4.53	
256	255	8.15	4.53	_
257	256	8.15	4.53	_
258	257	8.16	4.54	
259	258	8.15	4.53	
260	259	8.15	4.53	
261	260	8.17	4.55	
262	261	8.15	4.53	
263	262	8.16	4.54	
264	263	8.15	4.53	
		ļ		
265	264	8.17	4.55	
266	265	8.16	4.54	
267	266	8.17	4.55	
268	267	8.16	4.54	
269	268	8.17	4.55	
270	269	8.17	4.55	_
271	270	8.18	4.56	
272	271	8.19	4.57	
273	272	8.17	4.55	
274	273	8.18	4.56	
275	274	8.19	4.57	

Pumping Test - Water Level Data

Page 6 of 13

Project: Boundary Road Hydrogeological Investigation

Number: 10-203

	Time [min]	Water Level [m]	Drawdown [m]
276	275	8.20	4.58
277	276	8.19	4.57
278	277	8.20	4.58
279	278	8.21	4.59
280	279	8.21	4.59
281	280	8.21	4.59
282	281	8.21	4.59
283	282	8.22	4.60
284	283	8.22	4.60
285	284	8.22	4.60
286	285	8.21	4.59
287	286	8.22	4.60
288	287	8.22	4.60
289	288	8.22	4.60
290	289	8.22	4.60
291	290	8.22	4.60
292	291	8.23	4.61
293	292	8.24	4.62
294	293	8.24	4.62
295	294	8.23	4.61
296	295	8.23	4.61
297	296	8.24	4.62
298	297	8.25	4.63
299	298	8.25	4.63
300	299	8.25	4.63
301	300	8.25	4.63
302	301	8.26	4.64
303	302	8.25	4.63
304	303	8.26	4.64
305	304	8.27	4.65
306	305	8.26	4.64
307	306	8.27	4.65
308	307	8.27	4.65
309	308	8.28	4.66
310	309	8.27	4.65
311	310	8.28	4.66
	311	8.28	4.66
313	312	8.28	4.66
314	313	8.29	4.67
315	314	8.29	4.67
316	315	8.29	4.67
317	316	8.29	4.67
318	317	8.28	4.66
319	318	8.30	4.68
320	319	8.31	4.69
321	320	8.30	4.68
322	321	8.30	4.68
323	322	8.30	4.68
324	323	8.31	4.69
325	324	8.30	4.68
326	325	8.31	4.69
327	326	8.31	4.69
328	327	8.31	4.69
329	328	8.31	4.69
330	329	8.30	4.68
331	330	8.31	4.69

Pumping Test - Water Level Data

Page 7 of 13

Project: Boundary Road Hydrogeological Investigation

Client: O'Leary's Limited

Number: 10-203

	Time [min]	Water Level [m]	Drawdown [m]
332	331	8.31	4.69
333	332	8.31	4.69
334	333	8.33	4.71
335	334	8.32	4.70
336	335	8.32	4.70
337	336	8.32	4.70
338	337	8.33	4.71
339	338	8.33	4.71
340	339	8.33	4.71
341	340	8.33	4.71
342	341	8.33	4.71
343	342		***************************************
	·····	8.33	4.71
344	343	8.35	4.73
345	344	8.34	4.72
346	345	8.35	4.73
347	346	8.36	4.74
348	347	8.36	4.74
349	348	8.35	4.73
350	349	8.35	4.73
351	350	8.35	4.73
352	351	8.35	4.73
353	352	8.36	4.74
354	353	8.36	4.74
355	354	8.37	4.75
356	355	8.37	4.75
357	356	8.37	4.75
358	357	8.37	4.75
359	358	8.37	4.75
360	359	8.38	4.76
361	360	8.38	4.76
362	361	8.38	4.76
363	362	8.36	4.74
364	363	8.38	4.76
365	364	8.38	4.76
366	365	8.39	4.77
367	366	8.38	4.76
368	367	8.39	4.77
369	368	8.38	4.76
370	369	8.39	4.77
371	370	8.38	4.76
372	371	8.15	4.53
373	372	7.69	4.07
374	373	7.35	3.73
375	374	7.09	3.47
376	375	6.88	3.26
377	376	6.70	3.08
378	377	6.56	2.94
379	378	6.43	2.81
380	379	6.34	2.72
381	380	6.24	2.62
382	381	6.16	2.54
383	382	6.10	2.48
384	383	6.03	2.41
385	384	5.98	2.36
386	385	5.93	2.31
387	386	5.88	2.26
		0.00	۵.۵۷

l	Pumping	Test -	Water	Level	Data
	i amping	1036.	. ABCITCE	FC 4 CI	$\omega a \iota a$

Page 8 of 13

Project: Boundary Road Hydrogeological Investigation

Number: 10-203

	Time [min]	Water Level [m]	Drawdown [m]
388	387	5.84	2.22
389	388	5.81	2.19
390	389	5.76	2.14
391	390	5.73	2.11
392	391	5.69	2.07
393	392	5.66	2.04
394	393	5.63	2.01
395	394	5.61	1.99
396	395	5.59	1.97
397	396	5.56	1.94
398	397	5.54	1.92
399	398	5.50	1.88
400	399	5.49	1.87
401	400	5.47	1.85
402	401	5.44	1.82
403	402	5.43	1.81
404	403	5.40	1.78
405	404	5.39	1.77
406	405	5.37	1.75
407	406	5.34	1.72
408	407	5.33	1.71
409	408	5.32	1.70
410	409	5.30	1.68
411	410	5.30	1.68
412	411	5.28	1.66
413	412	5.25	1.63
414	413	5.25	1.63
415	414	5.22	1.60
416	415	5.21	1.59
417	416	5.20	1.58
418	417	5.18	1.56
419	418	5.17	1.55
420	419	5.16	1.54
421	420	5.14	1.52
422	421	5.13	1.51
423	422	5.12	1.50
424	423	5.11	1.49
425	424	5.09	1.47
426	425	5.08	1.46
427	426	5.08	1.46
428	427	5.06	1.44
429	428	5.06	1.44
430	429	5.04	1.42
431	430	5.03	1.41
432	431	5.02	1.40
433	432	5.01	1.39
434	433	4.99	1.37
435	434	4.99	1.37
436	435	4.99	1.37
437	436	4.97	1.35
438	437	4.97	1.35
439	438	4.95	1.33
140	439	4.95	1.33
141	440	4.94	1.32
142	441	4.92	1.30
143	442	4.91	1.29

Pumping Test - Water Level Data

Page 9 of 13

Project: Boundary Road Hydrogeological Investigation

Number: 10-203

	Time [min]	Water Level [m]	Drawdown [m]
444	443	4.90	1.28
445	444	4.90	1.28
446	445	4.89	1.27
447	446	4.89	1.25
448	447	4.86	1.24
449	448	4.86	1.24
450	449	4.86	1.24
451	450	4.85	1.23
452	451	4.83	1.23
453	452	4.83	1.21
454	453	4.82	1.20
455	454	4.82	1.20
456	455	4.81	1.19
457	456	4.81	1.19
458	457	4.79	1.19
459	458	4.79	1.17
460	459	4.78	1.17
461	460	4.78	
462	460	4.78	1.16 1.15
463	462		
464	463	4.77	1.15
465	~~~~~~~~~~~	4.76	1.14
	464		1.15
466	465	4.76	1.14
467	466	4.74	1.12
468	467	4.73	1.11
469	468	4.72	1.10
470	469	4.71	1.09
471	470	4.71	1.09
472	471	4.70	1.08
473	472	4.69	1.07
474	473	4.69	1.07
475	474	4.69	1.07
476	475	4.68	1.06
477	476	4.67	1.05
478	477	4.67	1.05
479	478	4.66	1.04
480	479	4.65	1.03
481	480	4.65	1.03
482	481	4.65	1.03
483	482	4.64	1.02
484	483	4.63	1.01
485	484	4.62	1.00
486	485	4.62	1.00
487	486	4.62	1.00
488	487	4.61	0.99
489	488	4.60	0.98
490	489	4.60	0.98
491	490	4.60	0.98
492	491	4.59	0.97
493	492	4.58	0.96
494	493	4.58	0.96
495	494	4.58	0.96
496	495	4.56	0.94
497	496	4.56	0.94
498	497	4.55	0.93
499	498	4.55	0.93

Pumping	Test -	Water	Level	Data
---------	--------	-------	-------	------

Page 10 of 13

Project: Boundary Road Hydrogeological Investigation

Number: 10-203

		<u> </u>	4
	Time [min]	Water Level [m]	Drawdown [m]
500		4.54	0.92
501	500	4.54	0.92
502	501	4.54	0.92
503	502	4.54	0.92
504	503	4.53	0.91
505	504	4.52	0.90
506	505	4.52	0.90
507	506	4.52	0.90
508	507	4.51	0.89
509	508		
		4.51	0.89
510	509	4.50	0.88
511	510	4.49	0.87
512	511	4.50	0.88
513	512	4.49	0.87
514	513	4.49	0.87
515	514	4.48	0.86
516	515	4.48	0.86
517	516	4.47	0.85
518	517	4.47	0.85
519	518	4.47	0.85
520	519	4.46	0.84
521	520	4.45	0.83
522	521	4.45	0.83
523	522	4.45	0.83
524	523	4.44	0.82
525	524	4.44	0.82
526	525	4.44	0.82
527	526	4.44	0.82
528	527	4.43	0.81
529	528	4.41	0.79
530	529	4.41	0.79
531	530	4.41	0.79
532	531	4.40	0.78
533	532	4.40	0.78
534	533	4.40	0.78
535	534	4.40	0.78
536	535	4.40	0.78
537	536	4.39	0.77
538	537	4.39	0.77
539	538	4.38	0.76
540	539	4.37	0.75
541	540	4.37	0.75
542	541	4.37	0.75
543	542	4.37	0.75
544	543	4.37	0.75
545	544	4.36	0.74
546	545	4.36	0.74
547	546	4.36	0.74
548	547	4.36	0.74
549	548	4.36	0.74
550	549	4.34	0.72
551	550	4.34	0.72
552	551	4.34	0.72
553	552	4.33	0.72
554	553	4.33	0.71
555	554	4.33	0.71
333	JJ4	4.33	0.71

Pumping Test - Water Level Data

Page 11 of 13

Project: Boundary Road Hydrogeological Investigation

Number: 10-203

	Time [min]	Water Level [m]	Drawdown [m]
556	555	4.33	0.71
557	556	4.32	0.70
558	557	4.32	0.70
559	558	4.32	0.70
560	559	4.31	0.69
561	560	4.31	0.69
562	561	4.31	0.69
563	562	4.30	0.68
564	563	4.30	0.68
565	564	4.30	0.68
566	565	4.29	0.67
567	566	4.29	0.67
568	567	4.29	0.67
569	568	4.29	0.67
570	569	4.29	TOTAL DOMESTICAL CONTRACTOR OF THE PARTY OF
571	570		0.67 0.66
	571	4.28	
572		4.27	0.65
573	572	4.27	0.65
574	573	4.26	0.64
575	574	4.26	0.64
576	575	4.26	0.64
577	576	4.25	0.63
578	577	4.26	0.64
579	578	4.25	0.63
580	579	4.24	0.62
581	580	4.25	0.63
582	581	4.25	0.63
583	582	4.24	0.62
584	583	4.24	0.62
585	584	4.24	0.62
586	585	4.23	0.61
587	586	4.23	0.61
588	587	4.23	0.61
589	588	4.22	0.60
590	589	4.22	0.60
591	590	4.22	0.60
592	591	4.22	0.60
593	592	4.21	0.59
594	593	4.21	0.59
595	594	4.21	0.59
596	595	4.20	0.58
597	596	4.20	0.58
598	597	4.20	0.58
599	598	4.20	0.58
600	599	4.20	0.58
601	600	4.20	0.58
602	601	4.19	0.57
603	602	4.19	0.57
604	603	4.20	0.58
605	604	4.18	0.56
606	605	4.18	0.56
607	606	4.19	0.57
608	607	4.18	0.56
609	608	4.18	0.56
610	609	4.18	0.56
611	610	4.17	0.55
011	UIO	4.17	0.55

Page 12 of 13

Project: Boundary Road Hydrogeological Investigation

Number: 10-203

	Time [min]	Water Level [m]	Drawdown [m]	
612	611	4.17	0.55	_
613	612	4.16	0.54	
614	613	4.16	0.54	_
615	614	4.16	0.54	_
616	615	4.16	0.54	
617	616	4.16	0.54	
618	617	4.15		_
619	618	4.16	0.53 0.54	
620	619	4.16		_
621	620	4.15	0.54	
622	621		0.53	
		4.15	0.53	_
623	622	4.15	0.53	_
624	623	4.15	0.53	_
625	624	4.14	0.52	_
626	625	4.14	0.52	
627	626	4.13	0.51	_
628	627	4.13	0.51	
629	628	4.13	0.51	
630	629	4.13	0.51	
631	630	4.13	0.51	
632	631	4.13	0.51	
633	632	4.13	0.51	
634	633	4.12	0.50	
635	634	4.12	0.50	
636	635	4.11	0.49	
637	636	4.12	0.50	
638	637	4.11	0.49	
639	638	4.11	0.49	
640	639	4.12	0.50	
641	640	4.10	0.48	
642	641	4.11	0.49	
643	642	4.11	0.49	
644	643	4.10	0.48	
645	644	4.09	0.47	
646	645	4.09	0.47	
647	646	4.10	0.48	
648	647	4.09	0.47	
649	648	4.09	0.47	
650	649	4.09	0.47	
651	650	4.09	0.47	
652	651	4.09	0.47	
653	652	4.09	0.47	
654	653	4.09	0.47	Ī
655	654	4.08	0.46	_
656	655	4.08	0.46	_
657	656	4.07	0.45	
658	657	4.09	0.47	_
659	658	4.09	0.47	
660	659	4.08	0.46	_
661	660	4.08	0.46	_
662	661	4.07	0.45	-
663	662	4.08	0.46	-
664	663	4.07	0.45	_
665	664	4.06	0.44	_
666	665	4.07	0.45	

Page 13 of 13

Project: Boundary Road Hydrogeological Investigation

Number: 10-203

	Time [min]	Water Level [m]	Drawdown [m]
668	667	4.06	0.44
669	668	4.06	0.44
670	669	4.05	0.43
671	670	4.05	0.43
672	671	4.05	0.43
673	672	4.05	0.43
674	673	4.05	0.43
675	674	4.05	0.43
676	675	4.04	0.42
677	676	4.05	0.43
678	677	4.04	0.42
679	678	4.04	0.42
680	679	4.03	0.41
			·

November 2010 Our Ref: 10-203

ATTACHMENT C

AQUIFER TEST PRO 4.2 THEIS ANALYSIS

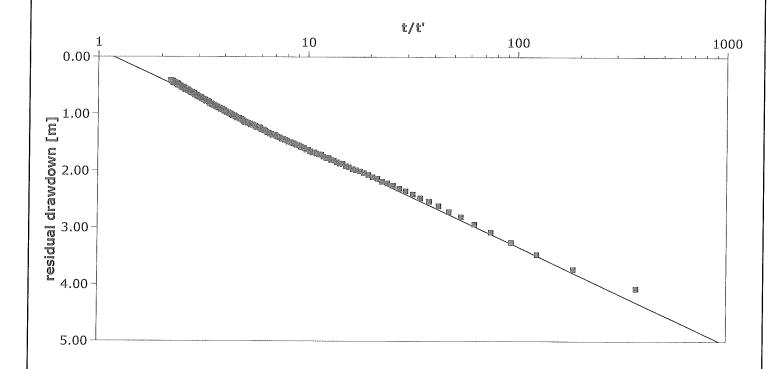
Pumping	Test	Analysis	Report
---------	------	-----------------	--------

Project: Boundary Road Hydrogeological Investigation

Number: 10-203

Location:	Pumping Test: TW1	Pumping Well: Well 1
Test Conducted by: RA		Test Date: 9/23/2010
Analysis Performed by: JM	Theis Analysis	Analysis Date: 10/27/2010
Aquifer Thickness:	Discharge: variable, average rate 0	0.0052682 [m³/min]

Calculation after Theis				
Observation Well	Transmissivity	Storage coefficient	Radial Distance to PW	
	[m²/d]		[m]	
Well 1	2.35 × 10 ⁰	2.37 × 10 ⁻¹	0.08	


Pumping Test Analysis Report

Project: Boundary Road Hydrogeological Investigation

Number: 10-203

Client: O'Leary's Limited

Location:	Pumping Test: TW1	Pumping Well: Well 1
Test Conducted by: RA		Test Date: 9/23/2010
Analysis Performed by: JM	Theis Recovery	Analysis Date: 10/27/2010
Aguifer Thickness:	Discharge: variable average rate 0.0	(052692 [m3/min]

Calculation after Theis & Jacob Observation Well Transmissivity [m²/d] Radial Distance to PW [m] Well 1 8.05 × 10⁻¹ 0.08

November 2010 Our Ref: 10-203

ATTACHMENT D EXOVA ACCUTEST LABORATORY CERTIFICATE OF ANALYSIS

EXOVA ACCUTEST

REPORT OF ANALYSIS

MXOV Accuracy

Client: Houle Chevrier Engineering 180 Wescar Lane, R.R. #2

Attentio

1023227 2010-09-27 Report Number: Date:

Carp, ON	Dato Serbanittod	2000000
K0A 1L0	Dale Submitted:	2010-03-23
ion: Mr. James McEwen	Project:	10-203
of Custody Number: 133008	P.O. Number:	, VA (

UNITS CFU/100mL CFU/100mL GUIDELINE ODWSOG LIMIT 0 0 TYPE MAC MAC Matrix: 831153 2010-09-23 TW1-6Hr 0 >500 0 2010-09-23 TW1-3Hr 831152 0 >500 0 LAB ID: Sample Date: Sample ID: MRL CFU/100mL CFU/100mL CFU/100mL CFU/100mL UNITS PARAMETER Heterotrophic Plate Count Faecal Streptococcus Faecal Coliforms Escherichia Coli Total Coliforms Chain of

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment: APPROVAL:

Microbiology Lab Supervisor Jennifer Witchell

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

8-146 Colonnade Road, Ottawa, ON, K2E 7Y1

REPORT OF ANALYSIS

Houle Chevrier Engineering Client:

180 Wescar Lane, R.R. #2 Carp, ON **KOA 1L0**

Attention: Mr. James McEwen

1023228 2010-09-30 2010-09-23 Report Number: Date Submitted:

10-203

Project:

P.O. Number:

Chain of Custody Number: 133008

UNITS mg/L mg/L mg/L TCU mg/L mg/L GUIDELINE ODWSOG 1.0 10.0 6.5-8.5 500 250 5 5 1.5 0.05 Water TYPE AO AO AO MAC 8 9 8 9 9 9 Matrix: 2010-09-23 831155 TW1-6Hr 290
314
5
5
2430
2.8
0.08
1.27
<0.00
1.27
<0.00
1.25
20.4
226
0.94
28
38
38
21
426
0.05 2010-09-23 TW1-3Hr 831154 Sample Date: Sample ID: 2 5 0.5 0.01 0.02 0.1 mg/L TCU uS/cm mg/L mg/L mg/L mg/L PARAMETER Dissolved Organic Carbon Alkalinity as CaCO3 Hydrogen Sulphide N-NH3 (Ammonia) N-NO2 (Nitrite) Conductivity Fluoride Chloride Colour

MRL = Method Reporting Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration

831154: H2S MRL elevated due to sample turbidity

norganic Lab Supervisor Ewan McRobbie APPROVAL

mg/L mg/L

200 0.3 0.05

999

mg/L

AO

mg/Ľ

500 500

9

NTU mg/L

0.1

MAC

0.001 0.1 0.1 0.01 1 1 1 1 2 0.03

mg/L mg/L mg/L mg/L

mg/L mg/L mg/L ng/L NTU

Total Dissolved Solids (COND - CALC)

Tannin & Lignin

Sulphate

Phenols

N-NO3 (Nitrate)

Total Kjeldahl Nitrogen

Hardness as CaCO3

Turbidity

lon Balance

Magnesium

Calcium

Potassium

Sodium

Manganese

Results relate only to the parameters tested on the samples submitted

Methods references and/or additional QA/QC information available on request.