

PARKLAND FUEL CORPORATION

PHASE II ENVIRONMENTAL SITE ASSESSMENT

> 1622 ROGER STEVENS DRIVE, KARS (OTTAWA), ONTARIO

REVISED FINAL REPORT

DECEMBER 10, 2018

Terrapex Environmental Ltd. 920 Brant Street, Unit 16 Burlington, Ontario, L7R 4J1 Telephone: (905) 632-5939 Website: www.terrapex.com

EXECUTIVE SUMMARY

Terrapex Environmental Ltd. was retained by Parkland Fuel Corporation to conduct a Phase II Environmental Site Assessment (ESA) at the property located at 1622 Roger Stevens Drive and portions of the property at 1618 Roger Stevens Drive in Kars (Ottawa), Ontario (the Site). It is our understanding that the Phase II ESA is being conducted for due diligence purposes prior to the potential redevelopment of the Site into a retail fuel outlet. A geotechnical investigation was completed concurrently with Phase II ESA and the results are reported under a separate cover.

The Site is located on the south side of Roger Stevens Drive and measures approximately 6,400 m². The Site is currently occupied by a single storey commercial building and a two storey residence, with the remainder of the Site being covered with asphalt pavement and grass. The Site is accessible from two entrances from Roger Stevens Drive. Neither the commercial building nor the residence were occupied during the Phase II ESA program. Reportedly the residence and commercial building were both serviced by domestic supply wells and septic systems.

The site condition standards (SCS) for Residential/Parkland/Institutional land use in a potable groundwater situation, with coarse textured soil, as specified in Table 2 of the April 15, 2011 Ministry of the Environment (MOECC) *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the "Environmental Protection Act"* document (hereafter referenced as the *Standards*) were used to evaluate the laboratory analytical results. The SCS were determined using the criteria established by O.Reg. 153/04 Records of Site Condition - Part XV.1 of the Act.

On February 21 and 22, a total of nine boreholes (MW101, BH102 - BH105, MW106 to MW108, and BH109) were advanced to depths of up to 6.1 m below grade surface. Visual and/or olfactory evidence of petroleum hydrocarbon impact was not observed in soil samples collected from any of the boreholes. Combustible soil vapour (CSV) readings in all of the soil samples were <10 parts per million (ppm).

Monitoring wells were installed into four of the nine boreholes advanced at the site (MW101, MW106, MW107, and MW108). During monitoring of the newly installed monitoring wells on February 23, 2018, Combustible vapour (CV) concentrations in the well headspace of each well was <10 ppm. Depth to water ranged between 0.10 m bgs at MW107 to 2.80 m bgs at MW108. Light, non-aqueous phase liquid (LNAPL) was not detected in any of the wells.

Laboratory analysis indicated that concentrations of benzene, toluene, ethylbenzene, xylenes (collectively, BTEX) and petroleum hydrocarbon (PHC) F1 to F4 fractions in all submitted soil samples did not exceed the applicable Table 2 SCS. Additionally, two soil samples collected from boreholes MW106 and MW108 and submitted for laboratory analysis of volatile organic compounds did not contain concentrations of VOCs that exceeded the applicable Table 2 SCS.

Laboratory analysis indicated that concentrations of BTEX and PHC F1 to F4 fractions in groundwater samples collected from each monitoring well did not exceed the applicable Table 2 SCS. Additionally, laboratory analysis indicated that two groundwater samples collected from monitoring wells MW106 and MW108 and submitted for laboratory analysis of VOCs did not contain concentrations of VOCs that exceeded the applicable Table 2 SCS.

EXECI	JTIVE SUMMARY	i
1.0	INTRODUCTION	1
1.1 1.2 1.3	SITE DESCRIPTION	2
2.0	FIELD PROGRAM	4
2.1 2.2 2.3 2.4 2.5	FIELD PREPARATION	4 5 5
3.0	SUBSURFACE CONDITIONS	7
3.1 3.2	SOIL GROUNDWATER	
4.0	RESULTS	8
4.1 4.2	SOIL AND GROUNDWATER STANDARDS.8ANALYTICAL RESULTS.84.2.1SOIL.4.2.2SOIL WASTE CHARACTERIZATION4.2.3GROUNDWATER4.2.4QUALITY ASSURANCE/QUALITY CONTROL	8 8 9 9
5.0	SUMMARY12	1
6.0	CLOSURE12	2

TABLE OF CONTENTS

TABLE OF CONTENTS (CONTINUED)

LIST OF FIGURES

- Figure 1 Site Location
- Figure 2 General Site Layout
- Figure 3 Interpreted Groundwater Flow
- Figure 4A Soil Analysis Results PHCs
- Figure 4B Soil Analysis Results VOCs
- Figure 5A Groundwater Analysis Results PHCs
- Figure 5B Groundwater Results VOCs

LIST OF TABLES

- Table 1Groundwater Monitoring Data
- Table 2Soil Analytical Results PHCs
- Table 3Soil Analytical Results VOCs
- Table 4Groundwater Analytical Results PHCs
- Table 5Groundwater Analytical Results VOCs

APPENDICES

- Appendix I Site Photographs
- Appendix II Borehole/Monitoring Well Logs
- Appendix III Laboratory Certificates of Analysis

1.0 INTRODUCTION

Terrapex Environmental Ltd. (Terrapex) was retained by Parkland Fuel Corporation (Parkland) to conduct a Phase II Environmental Site Assessment (ESA) at the property located at 1622 Roger Stevens Drive and portions of a property at 1618 Roger Stevens Drive in Kars (Ottawa), Ontario (the Site). It is our understanding that the Phase II ESA is being conducted for due diligence purposes prior to the potential redevelopment of the Site into a retail fuel outlet. A geotechnical investigation was completed concurrently with Phase II ESA and the results are reported under a separate cover.

1.1 SITE DESCRIPTION

The Site is located on the south side of Roger Stevens Drive and measures approximately 6,400 m². The Site is currently occupied by a single storey commercial building and a two storey residence, with the remainder of the Site being covered with asphalt pavement and grass. The Site is accessible from two entrances from Roger Stevens Drive.

The commercial building was located along the western portion of the Site and had a footprint of approximately 54 m². The commercial building was reportedly serviced by a water supply well located to the west of the building and a septic system was reportedly located to the south of the commercial building. Neither the septic system nor the water supply well were located during the Phase II ESA work program. The commercial building was supplied with natural gas. The residential building was located to the southeast of the commercial building and had a footprint of approximately 40 m². Reportedly the residence was serviced by a domestic supply well and septic system, however, neither were located during the Phase II ESA. Neither the commercial building nor the residence were occupied during the Phase II ESA program.

The majority of the Site slopes down towards Roger Stevens Drive however the western portion of the Site features a steep decline of approximately 3.0 meters (m) to the agricultural property located to the west of the property. The Site location and general site layout are shown on Figures 1 and 2, respectively. Selected photographs of the site are provided in Appendix I.

The site is located in an area of mixed residential and commercial land uses. The surrounding land uses are as follows:

North:	Roger Stevens Drive and agricultural properties beyond;
East:	commercial (Tubman Funeral Homes) and residential properties beyond;
South:	vacant undeveloped property and residential beyond, and;
West:	agricultural property and Stevens Creek beyond.

The nearest surface water body is Stevens Creek located approximately 158 m southwest of the Site.

1.2 OBJECTIVE

The objective of the Phase II ESA work program was to assess subsurface soil and groundwater quality at the site with respect to petroleum hydrocarbon impacts, if any, in accordance with Ontario Regulation (O.Reg.) 153/04.

1.3 SCOPE OF WORK

The scope of work for the Phase II ESA included the following:

- supervising the drilling of nine boreholes (MW101, BH102 BH105, MW106 to MW108, and BH109) to depths of up to 6.1 m below ground surface (bgs), by a subcontractor using a CME-55 track-mounted drill rig, equipped with solid-stem augers;
- supervising the installation of four monitoring wells by a licensed well technician;
- collecting representative soil samples during drilling; logging of visual, olfactory, and tactile soil characteristics, as well as any evidence of petroleum hydrocarbon impacts (if present), and measuring combustible soil vapours (CSV) in recovered soil samples;
- submitting selected soil samples from each of the drilled boreholes for laboratory analyses of benzene, toluene, ethylbenzene, xylenes (collectively, BTEX), and the petroleum hydrocarbon (PHC) F1 to F4 fraction parameters;
- submitting selected soil samples for the additional analysis volatile organic compounds (VOCs);
- conducting a well monitoring program of the four newly installed monitoring wells, including measurement of depth to water, presence/thickness of light, non-aqueous phase liquid (LNAPL), and headspace combustible vapours (CVs).
- submitting representative groundwater samples from each of the monitoring wells for laboratory analyses of BTEX and PHC F1 to F4 fractions; in addition, samples from two monitoring wells were also submitted for laboratory analysis of VOCs;
- submitting two representative soil samples for pH analysis and grain size analysis;
- determining the appropriate generic site condition standards (SCS) from the Ontario Ministry of the Environment (MOECC) April 15, 2011 Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (the Standards) as established by O.Reg. 153/04 Records of Site Condition;
- evaluating soil and groundwater analytical results with respect to the appropriate SCS; and,
- preparing a Phase II ESA report detailing the findings and results of the project.

Terrapex subcontracted the services of other firms to complete specialized assignments for the project, as follows:

- private locating services were provided by Multiview Locates Inc. of Mississauga, Ontario;
- soil disposal services were provided by Clean Water Works of Ottawa, Ontario; and,
- drilling and monitoring well installation services were provided by George Downing Drilling (Downing) of Hawkesbury, Ontario; Downing is a MOECC-licensed well drilling contractor; and,
- laboratory analytical services were provided by Maxxam Analytics Inc. (Maxxam), under contract to Parkland, at their laboratory located in Mississauga, Ontario; at the time of the assessment, Maxxam was accredited by the Standards Council of Canada (SCC) for each of the analyses it conducted as part of this work program.

2.0 FIELD PROGRAM

Terrapex conducted the on-site field components of the Phase II ESA between February 21 and 26, 2018. The work program described herein was generally completed in accordance with the protocols described in O.Reg 153/04 and industry-standard practices.

2.1 FIELD PREPARATION

Prior to conducting intrusive field work, Terrapex contacted the appropriate public agencies to identify the locations of buried utilities at and near the subject site. Terrapex also retained Multiview to locate private buried utilities and provide clearances for buried services at the sampling locations.

A site-specific health and safety plan (HASP) and a job safety analysis (JSA) form were prepared by Terrapex prior to commencing the field work. One copy of the HASP and JSA remained with the field crew on the subject site for the duration of the field activities. The project team members and subcontractors that conducted the field activities read and signed the HASP and JSA before commencing work at the subject site.

2.2 BOREHOLE DRILLING AND SOIL SAMPLING

On February 21 and 22, 2018, a total of nine boreholes (MW101, BH102 - BH105, MW106 to MW108, and BH109) were advanced by Downing to depths of up to 6.1 m bgs at the locations shown on Figure 2. It should be noted that auger refusal at shallow depths by suspected boulders necessitated the drilling of a secondary boreholes adjacent to the primary boreholes. These secondary boreholes are considered the same borehole for environmental reporting purposes.

The locations of the nine boreholes were mainly selected to satisfy the requirements of the geotechnical investigation and give also give adequate coverage to assess soil and groundwater conditions across the Site. Borehole MW109 was drilled in close proximity of the commercial building to assess soil and groundwater conditions in the vicinity in the suspected location of a former above ground storage tank (AST). Consideration was also given to the locations of buried and overhead services, the suspected location of the septic tanks as well as surface obstructions at the site, when selecting the placement of boreholes in the field.

During drilling, 51-mm diameter split-spoon samplers were advanced into the subsurface to facilitate the collection of relatively undisturbed soil samples. Terrapex collected soil samples at depth intervals of approximately 0.76 m, and immediately logged the geologic properties of each sample. In addition, each soil sample was examined for visual and/or olfactory evidence of contamination. A vapour sample was collected from each spoon and CSV concentrations were measured in the headspace of each sampling bag with an RKI Eagle 2 Hydrocarbon Surveyor (RKI Eagle) calibrated to n-hexane and operated in the methane elimination mode. Soil samples

which were screened for vapours were not submitted for laboratory analysis; a separate split sample of the soil was collected and stored for possible laboratory analysis.

To mitigate cross-contamination between soil samples, the split-spoon samplers were decontaminated prior to each use by washing with phosphate-free detergent soap and water and then rinsing with distilled water. Terrapex personnel wore fresh nitrile gloves for the handling of each soil sample.

The soil samples were collected in pre-cleaned, laboratory-supplied jars, placed in a cooler with ice, and delivered with signed chain-of-custody forms to Maxxam for laboratory analysis. Graphic borehole logs illustrating the stratigraphy encountered and the measured CSV readings are included in Appendix II.

A total of ten soil samples (including one field duplicate) were submitted for laboratory analysis of BTEX and PHC F1 to F4 fractions. Samples for laboratory analysis were selected to represent observed "worst-case" conditions based on CSV measurements and visual/olfactory evidence of impact, and/or the assumed groundwater table. Two soil samples (MW106-4 and MW108-7) selected on the basis of spatial coverage were also submitted for additional laboratory analysis of VOCs. Soil cuttings generated during the drilling activities were temporarily stored in a waste bin located on-site pending removal for disposal at a licensed facility by Clean Water Works.

2.3 MONITORING WELL INSTALLATION

A total of four monitoring wells (MW101, MW106. MW107, and MW108), constructed of 51-mm diameter polyvinyl chloride (PVC) well pipe and screen, were installed into selected drilled boreholes. The annulus of each well was backfilled with washed silica sand to a minimum depth of approximately 0.3 m above the screened interval, and a bentonite seal was placed above the sand pack in each well to prevent infiltration of surface water. A bolt-down or stick up protective casing was installed on each well, and cemented in place. The locations of the monitoring wells are shown on Figure 2. Monitoring well construction details are provided in the borehole logs included in Appendix II.

On September 19, 2018, Terrapex surveyed the positions and elevations (tops of the well standpipes, as well as the ground surfaces) of the newly installed monitoring wells relative to a temporary site benchmark (TBM). A survey nail located on a utility pole at the northeast corner of the Site was selected as the TBM, which had a geodetic elevation of 92.48 m. As documented on the *Topographic Plan of Survey of Part of Lot 21, Concession 1, Geographic Township of North Gower, City of Ottawa*, by Farley, Smith and Denis Surveying Ltd., 2017, the TBM elevation was derived from the vertical benchmark 0011986U011.

2.4 MONITORING WELL DEVELOPMENT

Following installation, the monitoring wells were instrumented with a dedicated inertial sampler comprising low density polyethylene (LDPE) tubing and a LDPE foot valve. The monitoring wells

were developed on February 22 and 23, 2018. Development of the well was conducted using dedicated LDPE tubing, and a surge block to ensure adequate development across the entire screen length. The well was developed by alternating between purging and surging the well until the purged water was free of visible sediment (e.g., water was "clear"). Approximately 30 L to 60 L of water was purged from each of the monitoring wells.

2.5 GROUNDWATER MONITORING AND SAMPLING

Groundwater monitoring of the newly installed wells was completed on February 23, 2018. Immediately upon removal of the well cap, headspace CVs were measured using the RKI Eagle. The depth to water in each well was measured using Heron H.OIL interface probe. The presence and apparent thickness of any LNAPL in each well was also measured using the interface probe. To mitigate cross-contamination between monitoring wells, the interface probe was washed with a solution of Alconox detergent and water and then rinsed with distilled water prior to use in each well.

Groundwater samples were collected from the four monitoring wells on February 23, 2018. Groundwater samples were collected using a "low-flow" sampling method using a peristaltic pump and a YSI water quality meter. The dedicated tubing was placed in the mid-section of the wetted screened interval and groundwater was pumped from the monitoring well at a rate between 0.1 and 0.5 L/min. Geochemical parameters such as temperature, pH, conductivity, dissolved oxygen, and oxidation-reduction potential were measured during purging. Groundwater samples were collected once the geochemical parameters stabilized.

Groundwater samples were collected from the wells directly into pre-cleaned, laboratory supplied bottles with preservative (where required). The groundwater samples were placed in a cooler with ice, and delivered with signed chain-of-custody forms to Maxxam for laboratory analysis of BTEX and PHC F1 to F4 fractions. Two groundwater samples (MW106 and MW108) were also selected for additional laboratory analysis of VOCs

3.0 SUBSURFACE CONDITIONS

3.1 SOIL

In general, the stratigraphy encountered during the work program comprised of surficial grass or asphalt, underlain by sand and gravel fill to depths between 0.1 and 2.2 m bgs. The fill layer was underlain by a native silty sand with embedded gravel to the maximum depth of the investigation of 6.1 m bgs. Auger refusal was recorded at several locations in close proximity at varying depths, indicative the presence of boulders.

Visual and/or olfactory evidence of petroleum hydrocarbon impact was not observed in soil samples collected from all boreholes. Combustible soil vapour readings in all of the soil samples were <10 parts per million (ppm).

The soil stratigraphy and corresponding soil sample CSV readings for each borehole are shown in the graphic borehole logs provided in Appendix II.

3.2 GROUNDWATER

Apparent wet to saturated conditions in soil were encountered during drilling at approximately 1.5 to 2.2 m bgs in the native soil.

Terrapex monitored the wells on February 23, 2018. During the groundwater monitoring event, CV concentrations in the well headspace of all four monitoring wells was <10 ppm. Depth to water ranged between 0.10 m bgs (MW107) to 2.80 m bgs at MW108. LNALPL was not detected in any of the wells. The survey and monitoring data are summarized in Table 1.

Based on relative groundwater elevations, the inferred direction of groundwater flow is generally to the northwest towards Stevens Creek. Interpreted groundwater contours and the inferred groundwater flow direction for the monitoring event are shown on Figure 3.

4.0 RESULTS

4.1 SOIL AND GROUNDWATER STANDARDS

The site specific details which formed the basis of the selection of the soil and groundwater SCS are summarized below:

- greater than 2 m of overburden was observed during the work program;
- soil pH is between 5 and 9; laboratory analysis of confirmed a pH values of 7.10, 7.85, and 7.93 from soil samples BH104-1, MW102-4, and BH103-2, respectively;
- the site is not within, or adjacent to, an area of "Natural Significance" (as defined by O.Reg. 153/04), or otherwise considered "potentially sensitive";
- the site does not include land which is within 30 m of a water body;
- since the Site was last used for both residential and commercial purposes, the site conditions standards will default to the most sensitive, therefore the property use will be deemed residential;
- The Site and surrounding properties are serviced with drinking water wells;
- stratified site conditions will not be used when evaluating laboratory analytical results; and,
- grain size analysis completed by Terrapex classified the soil at the site as coarse textured, for the purposes of O.Reg. 153/04; a copy of the grain size analysis is included in Appendix III.

Based on the preceding information and assumptions, the SCS applicable for residential/parkland/institutional land use and coarse textured soil in a potable groundwater condition that are described in Table 2 of the *Standards* have been selected for evaluating laboratory analytical results from the site at this time.

4.2 ANALYTICAL RESULTS

4.2.1 SOIL

The results of the laboratory analyses for soil samples submitted for BTEX and PHC F1 to F4 fractions, and VOCs are presented in Tables 2 and 3, respectively. As shown in Table 2, concentrations of BTEX and PHC F1 to F4 fractions in all soil samples submitted for laboratory analysis were less than the applicable Table 2 SCS. As shown in Table 3, concentrations of VOCs in all soil samples submitted for laboratory analysis were less than the applicable Table 2 SCS.

Visual representation of the soil analytical results are provided in Figure 4A and Figure 4B. Copies of the laboratory certificates of analyses are provided in Appendix III.

4.2.2 SOIL WASTE CHARACTERIZATION

One representative sample of the soil cuttings was submitted to Maxxam for waste characterization analysis and included a Toxicity Characteristics Leachate Procedure (TCLP) analysis of metals, as well as bulk VOCs, semi-volatile organic compounds (sVOCs), and PHC F1 to F4 fraction analysis.

The results of the waste characterization analyses indicated that the soil may be managed as non-ignitable, non-hazardous (non-leachate toxic) waste for the purposes of off-site disposal. Copies of the Laboratory Certificates of Analysis for the analyzed soil sample are included in Appendix III.

4.2.3 GROUNDWATER

Laboratory results for groundwater samples analyzed for BTEX and PHC F1 to F4 fractions, and VOCs are presented in Tables 4 and 5, respectively. As shown in Tables 4 and 5, concentrations of BTEX, PHC F1 to F4 fractions, and VOCs in groundwater samples collected from all monitoring wells were less than the applicable Table 2 SCS

Visual representation of the groundwater analytical results is shown on Figure 5A and Figure 5B. Copies of the Laboratory Certificates of Analyses are included in Appendix III.

4.2.4 QUALITY ASSURANCE/QUALITY CONTROL

The Maxxam QA/QC program consisted of the analysis of laboratory replicates, method blanks, percent recoveries, matrix spikes, and surrogate percent recoveries as appropriate for the particular analysis protocol. A review of the quality assurance reports attached to the laboratory certificates of analysis indicate that the laboratory QA/QC program results were within quality control limits.

QA/QC samples submitted by Terrapex for this work program consisted of the following:

- one blind field duplicate soil samples for analysis of BTEX and PHC F1-F4 fractions (MW107-18, duplicate pair of MW108-7);
- one soil methanol vial (labeled field blank) analyzed for BTEX and PHC F1;
- one blind field duplicate groundwater sample for analysis of BTEX and PHC F1-F4 (MW112, duplicate pair of MW101);
- one groundwater trip spike sample for analysis of BTEX and PHC F1;
- one groundwater field blank (labelled blank) sample for analysis of BTEX and PHC F1, and;
- one groundwater trip blank sample for analysis of BTEX and PHC F1 fraction.

No relative percent differences (RPDs) were able to be calculated for either the groundwater or soil duplicate pairs since no concentrations were greater than five times the laboratory method detection limit (MDL). All parameters were not detected at the laboratory MDL in the trip blank sample, and the percent recoveries from the trip spike sample were within quality control limits (±30%).

Based on the above, the QA/QC results for this work program are considered acceptable. The laboratory certificates of analyses are provided in Appendix III.

5.0 SUMMARY

A Phase II Environmental Site Assessment was conducted at the property located at 1622 Roger Stevens Drive and portions of 1618 Roger Stevens Drive property in Kars (Ottawa) Ontario. The Phase II ESA was conducted concurrently with a geotechnical investigation.

On February 21 and 22, 2018, a total of nine boreholes ((MW101, BH102 - BH105, MW106 to MW108, and BH109)) were advanced to depths of up to 6.1 m bgs. Visual and/or olfactory evidence of petroleum hydrocarbon impact was not observed in soil samples collected from any of the boreholes. CSV readings in all of the soil samples were <10 ppm.

Monitoring wells were installed into four of the nine boreholes advanced at the site (MW101, MW106, MW107, and MW108). During monitoring of the newly installed monitoring wells on February 23, 2018, CV concentrations in the headspace of the wells were all <10 ppm. Depth to water ranged between 0.10 m bgs at MW107 to 2.80 m bgs at MW108. LNAPL was not detected in any of the wells.

The SCS for coarse textured soil in a potable groundwater condition that are described in Table 2 of the *Standards* for Residential/Parkland/Institutional land use have been selected to evaluate laboratory analytical results.

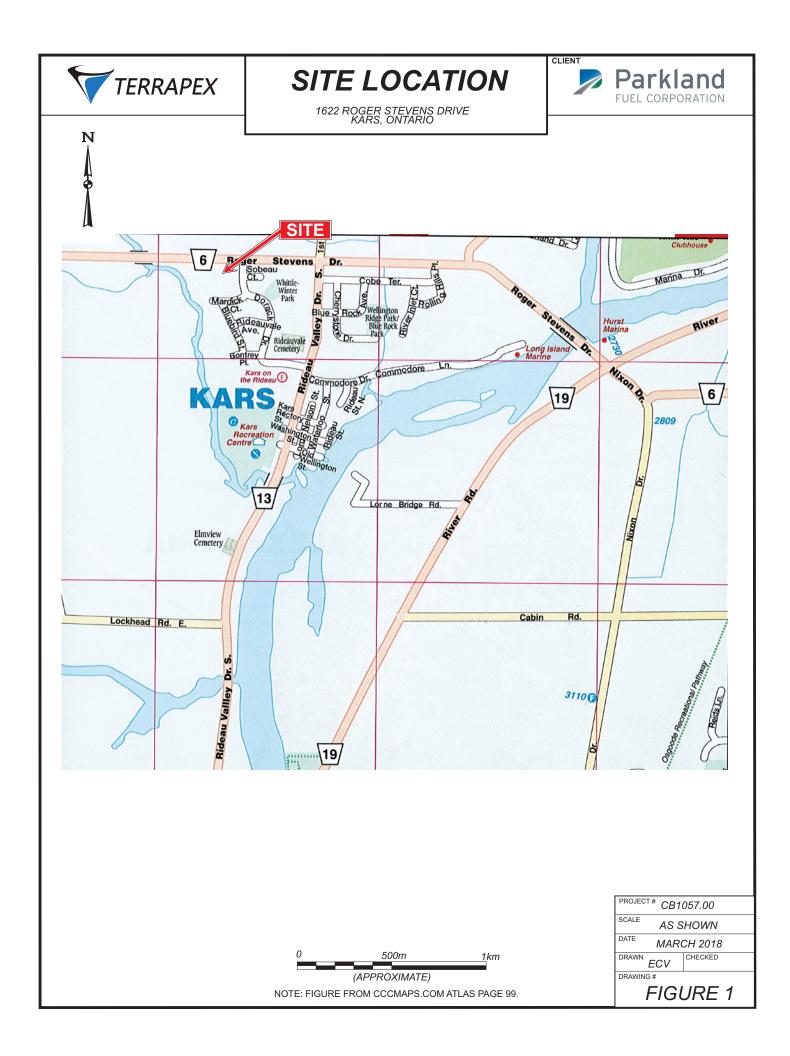
Laboratory analysis indicated that concentrations of BTEX, PHC F1 to F4 fractions, and VOCs in all soil and groundwater samples submitted from each borehole/monitoring well did not exceed the applicable Table 2 SCS.

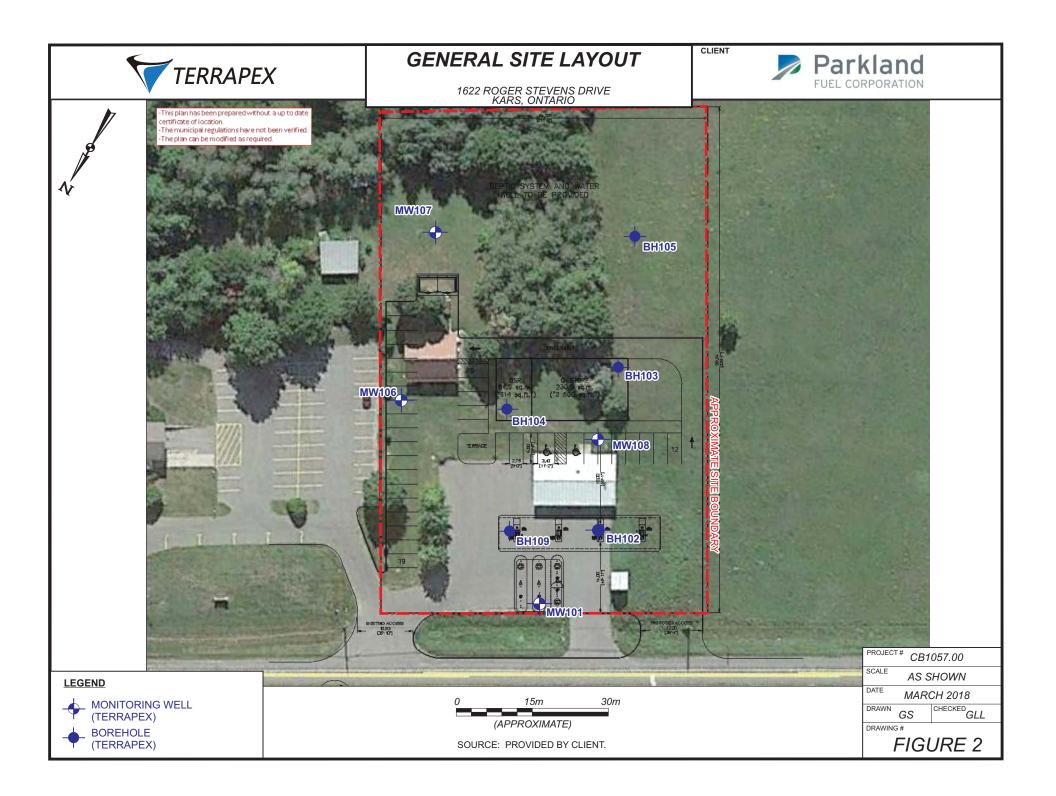
6.0 CLOSURE

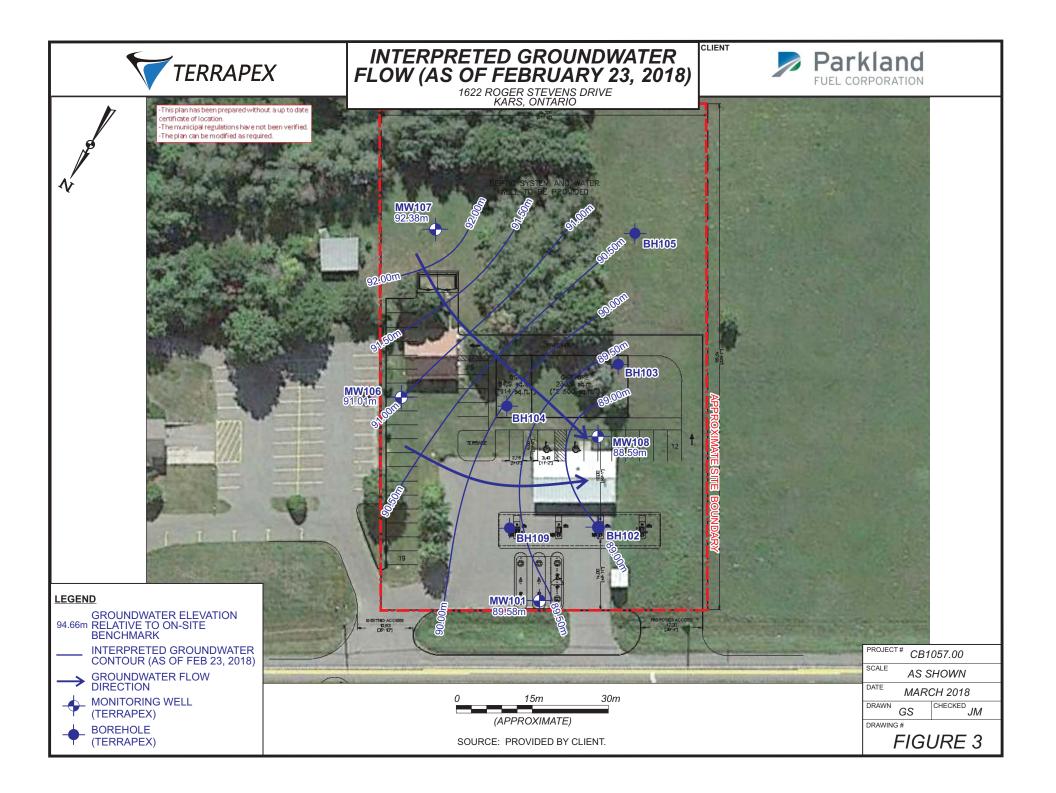
The environmental assessment described herein was conducted in accordance with the terms of reference for this project as agreed upon by Parkland Fuel Corporation and Terrapex Environmental Ltd. and to generally accepted engineering or environmental consulting practices in this area.

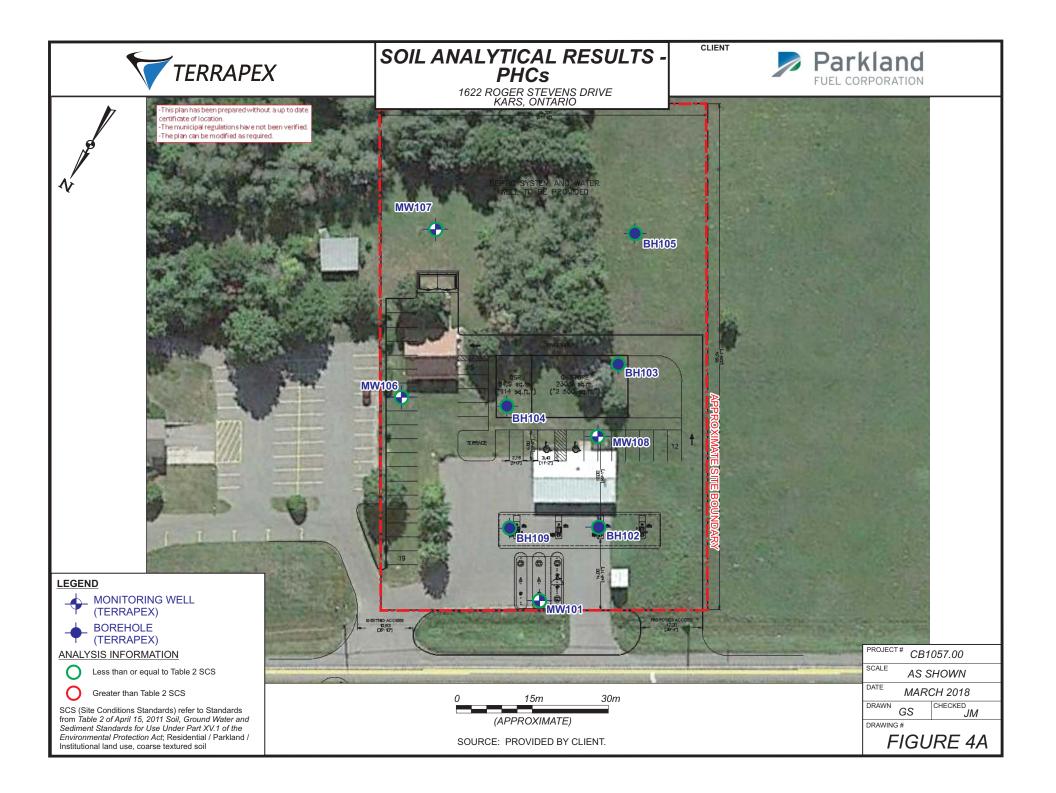
Terrapex Environmental Ltd. has exercised due care, diligence, and judgement in the performance of this subsurface investigation; however, studies of this nature have inherent limitations. The reported information is believed to provide a reasonable representation of the general environmental conditions at the site at the time of the assessment, however, the data were collected at discrete locations and conditions may vary at other locations or may change with the passage of time. The assessment was also limited to a study of those chemical parameters specifically addressed in this report.

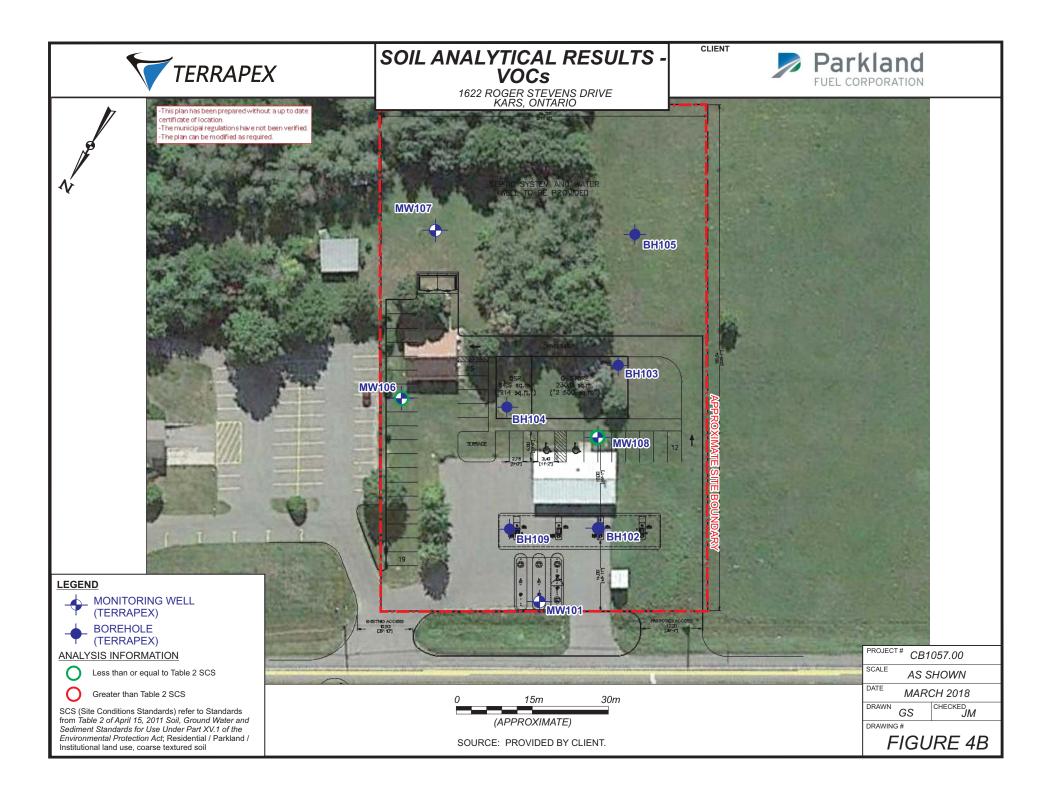
This report was prepared for the sole use of Parkland Fuel Corporation. Terrapex Environmental Ltd. accepts no liability for claims arising from the use of this report, or from decisions made or actions taken as a result of this report, by parties other than Parkland Fuel Corporation.

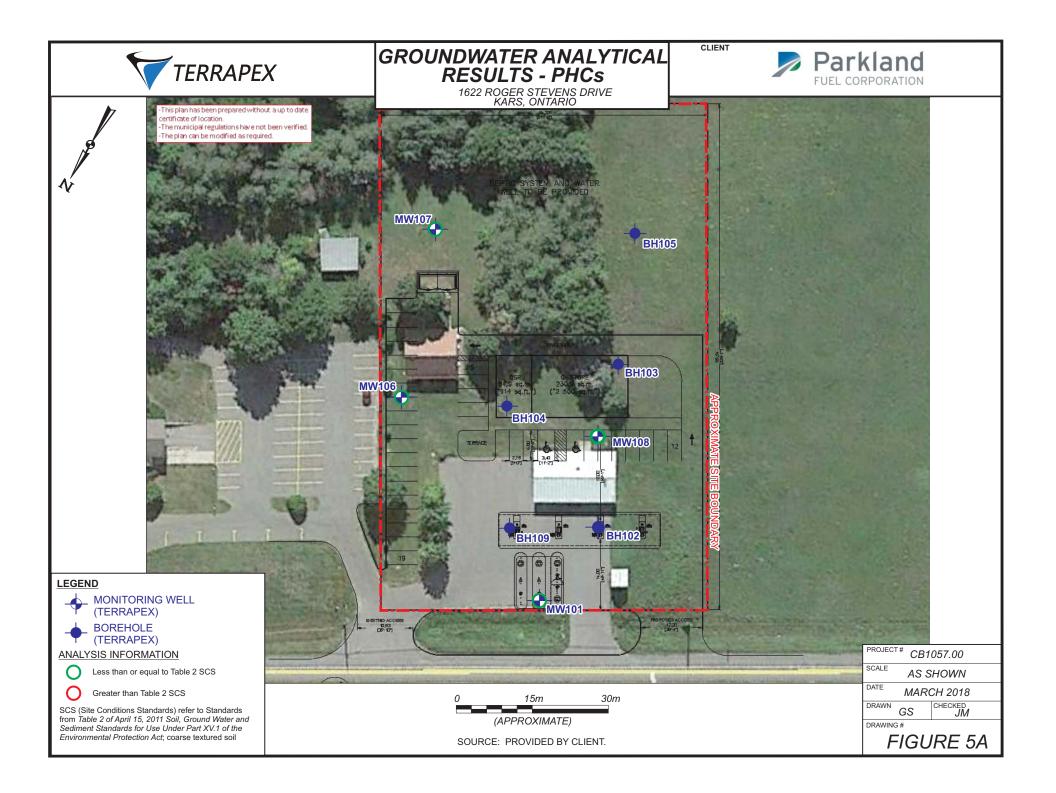

TERRAPEX ENVIRONMENTAL LTD.

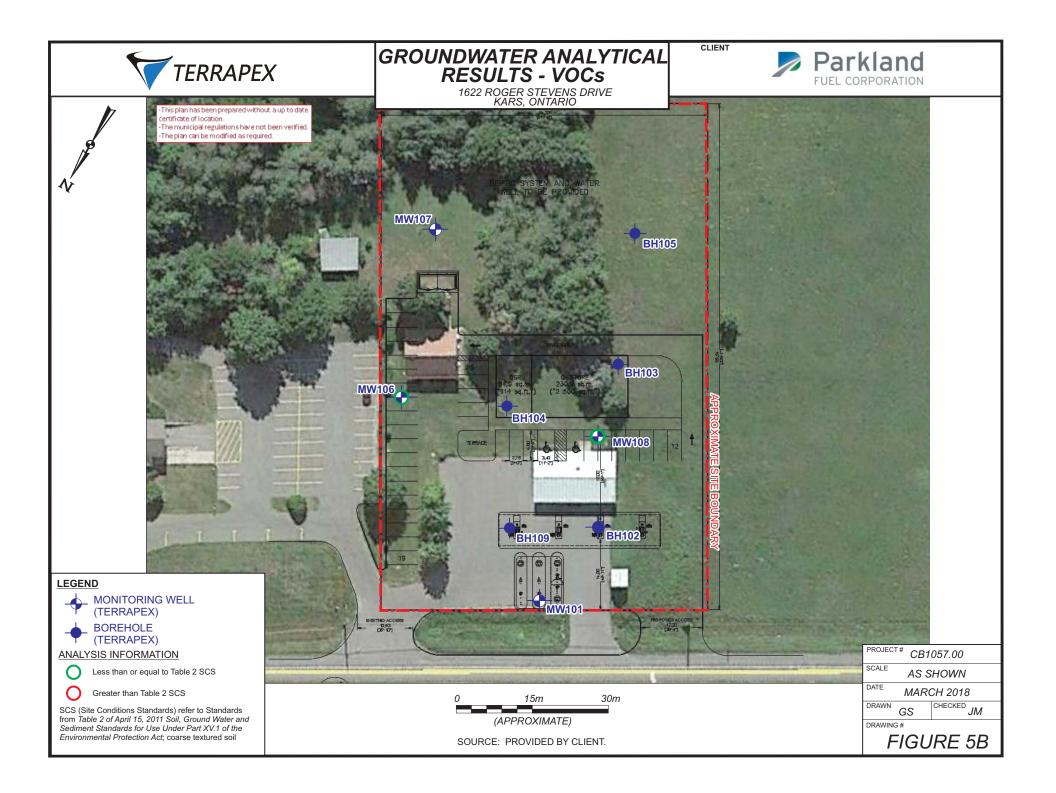

Greg Sabourin, P.Eng. Environmental Engineer


Geoff Ľussier, Dipl. Senior Project Manager


Jeff Stevenson, P.Geo. P. JEFFRE PRACTISING NLS Senior Reviewer 1153


FIGURES





TABLES

TABLE 1 GROUNDWATER MONITORING DATA

WELL NUMBER	DATE	GROUND ELEVATION ¹	T.O.P. ELEVATION ²	SCREEN LENGTH	BOTTOM OF SCREEN ³	CV ⁴	DEPTH TO WATER FROM T.O.P.	DEPTH TO WATER FROM GROUND	GROUNDWATER ELEVATION ⁵	LNAPL THICKNESS ⁶
		(m)	(m)	(m)	(m)		(m)	(m)	(m)	(m)
MW101	15-Mar-18	91.23	91.13	3.00	85.03	<10 ppm	1.55	1.64	89.58	None
MW106	15-Mar-18	92.40	93.28	3.00	86.30	<10 ppm	2.27	1.39	91.01	None
MW107	15-Mar-18	92.46	93.24	2.45	89.26	<10 ppm	0.86	0.08	92.38	None
MW108	15-Mar-18	91.38	92.44	3.00	85.38	<10 ppm	3.85	2.80	88.59	None

1622 Roger Stevens Drive, Kars, Ontario

¹ Elevation of ground surface at well location, relative to site benchmark

² Elevation of highest point of well pipe ("top of pipe"), relative to site benchmark

³ Elevation of bottom of well screened interval, relative to site benchmark

⁴ Combustible vapour concentration in well headspace in parts per million by volume (ppm) or percent of lower explosive limit (%LEL)

⁵ Adjusted static water level elevation, relative to site benchmark, using indicated relative density of LNAPL to groundwater

⁶ Measured thickness of light, non-aqueous liquid, if any

Entered by: GS Checked by: RH

TABLE 2 SOIL ANALYTICAL RESULTS - PHCs 1622 Roger Stevens Drive, Kars, Ontario

Tozz Roger Stevens Drive, Rais, C									
Terrapex Sample Name		STANDARDS	MW101-8	BH102-5	BH103-4	BH104-1	BH105-3	MW106-4	MW107-3
		2011							
		Table 2							
		R/P/I							
	Units	coarse							
Sample Depth	m bg	-	4.3 - 4.9	3.8 - 4.4	3.0 - 3.7	0.8 - 1.4	2.3 - 2.9	3.0 - 3.7	2.3 - 2.9
CSV Reading	-	-	<10 ppm						
Sampling Date	-	-	22-Feb-18						
Analysis Date	-	-	23-Feb-18						
Certificate of Analysis No.	-	-	B841113						
Benzene	µg/g	0.21	<0.02	<0.02	<0.02	<0.02	<0.02	<0.020	<0.02
Toluene	µg/g	2.3	<0.02	<0.02	<0.02	<0.02	<0.02	<0.020	<0.02
Ethylbenzene	µg/g	1.1	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.020	<0.02
Xylenes (total)	µg/g	3.1	< 0.04	<0.04	<0.04	< 0.04	<0.04	<0.020	<0.04
Petroleum Hydrocarbons, F1	µg/g	55	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons, F2	µg/g	98	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons, F3	µg/g	300	<50	<50	<50	<50	<50	<50	<50
Petroleum Hydrocarbons, F4	µg/g	2,800	<50	<50	<50	<50	<50	<50	<50

Standards from Table 2 of April 15, 2011 Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act; Residential / Institutional / Parkland land use, coarse textured soil m bg Meters below grade CSV Reading Combustible soil vapour reading (ppm or % LEL)

ppm Parts per million (by volume)

% LEL Percent of the lower explosive limit

BOLD Exceeds standard

1

Entered by: GS Checked by: JM

TABLE 2 SOIL ANALYTICAL RESULTS - PHCs 1622 Roger Stevens Drive, Kars, Ontario

1622 Roger Stevens Drive, Kars, C	Jilano				
Terrapex Sample Name		STANDARDS	MW108-7	MW108-17	BH109-4
		2011			
		Table 2		Duplicate of	
		R/P/I		MW108-78	
	Units	coarse			
Sample Depth	m bg	-	4.6 - 5.2	-	2.3 - 2.9
CSV Reading	-	-	<10 ppm	-	<10 ppm
Sampling Date	-	-	22-Feb-18	22-Feb-18	22-Feb-18
Analysis Date	-	-	23-Feb-18	23-Feb-18	23-Feb-18
Certificate of Analysis No.	-	-	B841113	B841113	B841113
Benzene	µg/g	0.21	<0.020	<0.02	<0.02
Toluene	µg/g	2.3	<0.020	<0.02	<0.02
Ethylbenzene	µg/g	1.1	<0.020	<0.02	<0.02
Xylenes (total)	µg/g	3.1	<0.020	<0.04	<0.04
Petroleum Hydrocarbons, F1	µg/g	55	<10	<10	<10
Petroleum Hydrocarbons, F2	µg/g	98	<10	<10	<10
Petroleum Hydrocarbons, F3	µg/g	300	<50	<50	<50
Petroleum Hydrocarbons, F4	µg/g	2,800	<50	<50	<50

Standards from Table 2 of April 15, 2011 Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act; Residential / Institutional / Parkland land use, coarse textured soil m bg Meters below grade CSV Reading Combustible soil vapour reading (ppm or % LEL)

ppm Parts per million (by volume) % LEL Percent of the lower explosive limit

BOLD Exceeds standard

1

Entered by: GS Checked by: JM

TABLE 3 SOIL ANALYTICAL RESULTS - VOCs 1622 Roger Stevens Drive, Kars, Ontario

	STANDARDS ¹	MW 106-4	MW 108-7
	2011		
	Table 2		
	R/P/I		
Units	coarse		
m bg	-	3.0 - 3.7	4.6 - 5.2
-	-	<10 ppm	<10 ppm
-	-	22-Feb-18	22-Feb-18
-	-	23-Feb-18	23-Feb-18
-	-	B841113	B841113
hd/d	16	<0.50	<0.50
	0.21	<0.020	<0.020
	1.5		<0.050
	0.27	<0.050	< 0.050
			< 0.050
	0.05	<0.050	< 0.050
	2.4		< 0.050
	0.05		< 0.050
	2.3	<0.050	< 0.050
	1.2		< 0.050
	4.8		< 0.050
			< 0.050
			< 0.050
			< 0.050
			<0.050
			< 0.050
			< 0.050
			< 0.050
	0.05		<0.050
	-		< 0.030
	-		<0.040
	1.1		<0.020
	0.05		<0.050
	2.8	<0.050	<0.050
	16	<0.50	<0.50
	1.7	<0.50	<0.50
	0.75	<0.050	<0.050
µg/g	0.1	<0.050	<0.050
µg/g	0.7	<0.050	<0.050
µg/g	0.058	<0.050	<0.050
µg/g	0.05	<0.050	<0.050
µg/g	0.28	<0.050	<0.050
µg/g	2.3	<0.020	<0.020
µg/g	0.38	<0.050	<0.050
µg/g	0.05	<0.050	<0.050
µg/g	0.061	<0.050	<0.050
µg/g	4	<0.050	<0.050
µg/g	0.02	<0.020	<0.020
µg/g	-	<0.020	<0.020
µg/g	-	<0.020	<0.020
µg/g	3.1	<0.020	<0.020
	на/а на/а на/а на/а на/а на/а на/а на/а	2011 Table 2 R / P / I Units coarse m bg - - - <	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act; Residential / Institutional / Parkland land use, medium and fine textured soil m bg Meters below grade CSV Reading Combustible soil vapour reading (ppm or % LEL) ppm Parts per million (by volume) % LEL Percent of the lower explosive limit BOLD Exceeds standard

TERRAPEX ENVIRONMENTAL LTD.

TABLE 4 GROUNDWATER ANALYTICAL RESULTS - PHCs

1622 Roger Stevens Drive, Kars, Ontario

Terrapex Sample Name		STANDARDS ¹	MW101	MW112	MW106	MW107	MW108	BLANK	Trip Blank
		2011							
		Table 2		Field Duplicate				FIELD	
				of MW101				BLANK	
	Units	coarse							
CV Reading	-	-	<10 ppm	-	<10 ppm	<10 ppm	<10 ppm	-	
Sampling Date	-	-	23-Feb-18	23-Feb-18	23-Feb-18	23-Feb-18	23-Feb-18	23-Feb-18	23-Feb-18
Analysis Date	-	-	23/24-Feb-18	23/24-Feb-18	23/24-Feb-18	23/24-Feb-18	23/24-Feb-18	23-Feb-18	23/24-Feb-18
Certificate of Analysis No.	-	-	B841230	B841230	B841230	B841230	B841230	B841230	B841230
Benzene	µg/L	5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	μg/L	24	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene	μg/L	2.4	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Xylenes (total)	µg/L	300	1.4	1.3	<0.20	<0.40	<0.20	<0.40	<0.40
Petroleum Hydrocarbons, F1	μg/L	750	<25	<25	<25	<25	<25	<25	<25
Petroleum Hydrocarbons, F2	μg/L	150	<100	<100	<100	<100	<100	<100	-
Petroleum Hydrocarbons, F3	µg/L	500	<200	<200	<200	<200	<200	<200	-
Petroleum Hydrocarbons, F4	µg/L	500	<200	<200	<200	<200	<200	<200	-

1	Standards from Table 2 of April 15, 2011 Soil, Ground Water
	and Sediment Standards for Use Under Part XV.1 of the
	Environmental Protection Act; coarse soil
ppm	Parts per million (by volume)
CV Reading	Combustible vapour reading (ppm or % LEL)
% LEL	Percent of the lower explosive limit
-	not applicable
BOLD	Exceeds standard

Entered by: GS Checked by: JM

Terrapex Sample Name		STANDARDS	MW106	MW108
		2011	1000	1010100
		Table 2 ¹		
		Tuble 2		
	Units	coarse		
CV Reading	-	-	<10 ppm	<10 ppm
Sampling Date	-	-	23-Feb-18	23-Feb-18
Analysis Date	-	-	23/24-Feb-18	23/24-Feb-18
Certificate of Analysis No.	-	-	B841230	B841230
Acetone	µg/L	2,700	<10	<10
Benzene	µg/L	5	<0.20	<0.20
Bromodichloromethane	μg/L	16	<0.50	<0.50
Bromoform	μg/L	25	<1.0	<1.0
Bromomethane	μg/L	0.89	<0.50	<0.50
Carbon tetrachloride	μg/L	0.79	<0.20	<0.20
Chlorobenzene	μg/L	30	<0.20	<0.20
Chloroform	μg/L	2.4	<0.20	<0.20
Dibromochloromethane	μg/L	25	<0.20	<0.20
Dichlorobenzene 1,2-	μg/L	3	<0.50	<0.50
Dichlorobenzene, 1,3-	μg/L	59	<0.50	<0.50
Dichlorobenzene, 1,4-	μg/L	1	<0.50	<0.50
Dichlorodifluoromethane	μg/L	590	<0.50	<0.50
Dichloroethane, 1,1-		5	<0.20	<0.20
Dichloroethane, 1,2-	µg/L	5 1.6	<0.20	<0.20
Dichloroethylene, 1,1-	μg/L μg/L	1.6	<0.20	<0.30
Dichloroethylene, cis-1,2-		1.6	<0.20	<0.20
Dichloroethylene, trans-1,2-	μg/L	1.6	<0.50	<0.50
Dichloropropane, 1,2-	µg/L	5	<0.20	<0.20
	µg/L	5		<0.20
Dichloropropene, cis-1,3-	μg/L	-	<0.30	
Dichloropropene, trans-1,3-	μg/L	-	<0.40	< 0.40
Dichloropropene, 1,3-	μg/L	0.5 2.4	<0.50	< 0.50
Ethylbenzene	µg/L		<0.20	<0.20
Ethylene dibromide Hexane	μg/L μg/L	0.2 51	<0.20 <1.0	<0.20 <1.0
Methyl ethyl ketone	μg/L	1,800	<1.0	<1.0 <10
Methyl isobutyl ketone	μg/L μg/L	640	<5.0	<5.0
Methyl tert butyl ether	-	15	<0.50	<0.50
Methylene Chloride	μg/L	50	<0.50	<0.50
Styrene	µg/L	5.4	<0.50	<0.50
Tetrachloroethane, 1,1,1,2-	µg/L	5.4 1.1	<0.50	<0.50
	μg/L	1.1		
Tetrachloroethane, 1,1,2,2-	μg/L	ı 1.6	<0.50	< 0.50
Tetrachloroethylene	µg/L	1.6 24	<0.20	<0.20
Toluene	µg/L		<0.20	< 0.20
Trichloroethane, 1,1,1-	µg/L	200	<0.20	< 0.20
Trichloroethane, 1,1,2-	μg/L	4.7	<0.50	< 0.50
Trichloroethylene	µg/L	1.6	<0.20	< 0.20
Trichlorofluoromethane	μg/L	150	<0.50	< 0.50
Vinyl chloride	µg/L	0.5	<0.20	< 0.20
m,p-Xylenes	µg/L	-	<0.20	< 0.20
o-Xylene	µg/L	-	<0.20	<0.20

TABLE 5 GROUNDWATER ANALYTICAL RESULTS - VOCs 1622 Roger Stevens Drive, Kars, Ontario

 1
 Standards from Table 2 of April 15, 2011 Soil, Ground Water

 and Sediment Standards for Use Under Part XV.1 of the

 Environmental Protection Act; coarse soil

 ns
 No standard

 CV Reading
 Combustible vapour reading (ppm or % LEL)

 ppm
 Parts per million (by volume)

 % LEL
 Percent of the lower explosive limit

 BOLD
 Exceeds standard

APPENDIX I

SITE PHOTOGRAPHS

TERRAPEX	I	PHOTOGRAPHIC LOG	Page 1 of 4
Client : Parkland Fuel Corporation	Site Location:	1622 Roger Stevens Drive, Kars, Ontario	Project No: CO1057.00
Photo No: 1	_		
Date: February 21, 2018		M	
Viewing Direction: North		×	
Description:	- AN ANAL		1 North
View of the track-mounted drill rig drilling monitoring well MW101.			

Photo No: 2

Date: February 21, 2018

Viewing Direction: South

Description:

View of the slope located in the eastern portion of the Site.

TERRAPEX	I	PHOTOGRAPHIC LOG	Page 2 of 4
Client : Parkland Fuel Corporation	Site Location:	1622 Roger Stevens Drive, Kars, Ontario	Project No: CO1057.00
Photo No: 3	-		
Date: February 21, 2018		Ť.	
Viewing Direction: East			
Description:		• .fi	
View of the track-mounted drill rig drilling monitoring well MW101.			

Photo No: 4

Date: February 22, 2018

Viewing Direction: East

Description:

View of the drillers auguring the borehole at monitoring well MW106.

TERRAPEX	I	Page 3 of 4	
Client : Parkland Fuel Corporation	Site Location:	1622 Roger Stevens Drive, Kars, Ontario	Project No: CO1057.00
Photo No: 5 Date: February 21, 2018 Viewing Direction: West			
Description: View of the drilling of borehole BH103.			

Photo No: 6

Date: February 21, 2018

Viewing Direction: Southwest

Description:

A view of the residence located along the eastern portion of the property prior to the drilling and installation of monitoring well MW106.

TERRAPEX	I	PHOTOGRAPHIC LOG	Page 4 of 4
Client : Parkland Fuel Corporation	Site Location:	1622 Roger Stevens Drive, Kars, Ontario	Project No: CO1057.00
Photo No: 7	. Splan	H	
Date: February 22, 2018			
Viewing Direction: East			
Description: View of the drilling of monitoring well MW107.	. 10.		

Photo No: 8

ľ

Date: February 22, 2018

Viewing Direction: West

Description:

View of the drilling of the borehole for monitoring well MW108.

APPENDIX II

BOREHOLE/MONITORING WELL LOGS

		Parkland Fuel Corporation T: 1622 Roger Stevens Drive		METHO PROJEC						-	V. (m)	91.2	23		E	ЗH	N	o.: MW101
		DN: Kars, Ontario		NORTH							TING:			3				D.: CB1057.00
		TYPE AUGER DRIVER	<u></u>	Μ	CO	RIN	G						ſ	-	SHE	LBY		SPLIT SPOON
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (E	(0 8(N- Blows	r Strei kPa) 0 120 Value s/300 0 60	0 160 9 mm)		PL V	Vater ontent (%) W.C.		SAMPLE NO.	SAMPLE TYPE	SPT(N)	CSV (ppm)	Well Construction	REMARKS
		100 mm Asphaltic Concrete Augured through frost to 0.61 m	- 0.5	91 -	-													occasional boulders encountered in borehole
			- - - - - -	90.5 - 90 -	2	1			13				1		21	<10		
Ţ		compact, moist, brown	- 1.5	89.5 -		1			6				2		11	<10		
		sandy gravel trace silt (FILL)	-22.5	89 -	22				11				3		22	<10		
			- - - 3 -	88.5 -	3	4			8				4		34	<10		
			- - - - -	87.5 -		19			10 • 10				5		19	<10		
		compact brown	- 4 - - - - 4.5	87 -	30	/			11				6		30	<10		
		SAND some gravel some silt wet grey		86.5 -		15			11				7		15 8	<10 <10		Sample 8 submitted for
		loose	- 5.5	86 -	6				9				9		6	<10		BTEX and PHC (F1-F4)
		END OF BOREHOLE	-6															
								GED	BY.	RH RH		חח		IC I		: Fet)rua:	ry 26, 2018
						-		IEWE				_	ge 1		-/ . L	01		, 20, 2010

	Parkland Fuel Corporation 1: 1622 Roger Stevens Drive		METHO PROJEC						-	V. (m)	91.	64		E	ЗH	No	o.: BH102
LOCATIO	N: Kars, Ontario		NORTHI	NG:					EAS	TING:				PF	ROJEC	T NC	D.: CB1057.00
SAMPLE	TYPE AUGER DRIVEN	1			RIN			D١		/IC C	ONE			SHE	LBY		
(m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	0 8 N Blov	I-Valu vs/300	e	•	C PL	Vater ontent (%) W.C.		SAMPLE NO.	SAMPLE TYPE	SPT(N)	CSV (ppm)	Well Construction	REMARKS
	50 mm Asphaltic Concrete Augured through frost to 0.60 m	0.5	91.5 - 91.7 - 91 -														150 mm of Granular material measured underside of pavement occasional boulders
	compact, very moist, brown sand and gravel (FILL)	-1	90.5	14	ł			6				1		14	<10		encountered in borehol
	loose, moist, brownish black sand some silt trace organics (FILL)	- 1.5 - - - - 2	90 - - 89.5 -	7				1	7			2		7	<10		Sample 2 was submitti for laboratory analysis pH and Soluable. Sulphate analysis.
	loose wet	- 2.5	89 -	4					34			3		4	<10		
	moist	- 3.5	88.5 -	21				1	6			4		21	<10		
	compact SILTY SAND trace embedded gravel brown	- - 4 - 	87.5 -		12			12				5		12	<10		Sample 5 was submitt for laboratory analysis BTEX and PHC's F1-F
	grey	- 5	87 - 	26				11				6		26	<10		
	END OF BOREHOLE	- 5.5	86 -		13			11 •				7		13	<10		
															= . !		
						LO	GGED	BA:	ĸН		DF	KILLI	NGI	JATE	∷ ⊦eb	oruar	y 26, 2018

DCATION: Kars, Ontario NORTHING: EASTING: PROJECT NO: CB1057.00 AMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY SPLIT SPOOT AMPLE TYPE AUGER DRIVEN Series Strength (PB) Water Content SHELBY SPLIT SPOOT 100 mm Topsoil Augured through frost to 0.75 m Image: Content of the series of the	CLIENT: Parkland Fuel Corporation		METHO						-			0.01	<u></u>	F	хΗ	N	- · BH103
AMPLE TYPE AUGER DRIVEN CORNIG DVMAME ONE DBELEY SPUT SPOOT at grade SOIL DESCRIPTION grade grade<	PROJECT: 1622 Roger Stevens Drive						17. VI	U				ອ.ອ.	۷				
No. SOIL DESCRIPTION Some therein back brown bill builders Were the approximation bill builders Were the approximation bill builders Some therein bill builders 100 mm Topsoil Augured through frest to 0.75 m SILTY SAND some engants 0.6 1.5 88 88.5 2.5 88 0.0 1.1 88.5 0.0 1.1 8.5 0.0 1.				-		G						F	Т				
100 mm Topsoil 0 89.5 1 1 4 102 mm d Topsoil Joose, wet, dark brown SLTY SAND 1 88.5 4 1 4 4 10 Ionse, wet, dark brown SLTY SAND 1 88.5 6 9 2 1 4 4 10 Ionse, wet, dark brown SLTY SAND 1.5 88.5 6 9 2 1 4 4 10 Ionse, wet, dark brown SLTY SAND 2.5 87.5 46 9 2 16 40 Sample 2 was subnitte britebratory analysis Supptie analysis Ionse embedded gravel 2.5 87.5 46 8 3 46 40 Sample 2 was subnitte britebratory analysis Ionspace 2.5 87.5 46 11 11 4 14 10 Sample 2 was subnitte britebratory analysis Ionspace 2.6 87.5 114 11 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14				4	Shear (0 80 N- Blows	r Stre kPa) 0 12 Valu s/300	e 0 160 e 0mm)	•	C PL	Water Conten (%) W.C.	it LL		SAMPLE NO.			Well Construction	
LOGGED BY: RH DRILLING DATE: February 26, 2018	100 mm Topsoil Augured through frost to 0.75 m loose, wet, dark brown SILTY SAND some organics dense dense moist, brown SILTY SAND some embedded gravel compact	- 0.5 - 1 - 1.5 - 2.5 - 3 - 3.5	89.5 - 89 - 88.5 - 88.5 - 88.5 - 87.5 - 87.5 - 86.5 -	2	Blows 0 40 5 46	s/300 0 60 €6)mm)	999	24	W.C.			1 2 3 4	4 56 46	<10 <10 <10	Well	102 mm of Topsoil measured in Borehole occasional boulders encountered in borehole Sample 2 was submitted for laboratory analysis fo pH and Soluable. Sulphate analysis. Sample 4 was submitted for laboratory analysis o BTEX and PHC's (F1- F2).
REVIEWED BY: VN Page 1 of 1					-										ге	Juar	y 20, 2018

	Parkland Fuel Corporation		METHO							-							ы		
	T: 1622 Roger Stevens Drive					NEE	R:	Vic					1.75	5					D.: BH104
SAMPLE	DN: Kars, Ontario				RIN											SHEI		,T NC	SPLIT SPOON
GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	Shea (0 8 N Blow	r Stre (kPa) 0 12 -Valu s/300	20 16 ie Omm)	0	• •	V Co PL V	Vater onten (%) W.C.	it LL		SAMPLE NO.	SAMPLE TYPE	SPT(N)	CSV (ppm)	Well Construction	
·····	Topsoil at surface Augured through frost to 0.76 m	0	91.5 -		04	06	0 80)) 4(<u>) 60</u>) 80		0,		0	0	20	occasional boulders encountered in borehole.
	loose moist, dark brown sand some silt	- 1	91 - 90.5 -	6										1		6	<10		Sample 1 was submitted for laboratory analysis of BTEX, PHC's F1-F2 and pH.
	compact to (FILL) dense	- 1.5	90 -		Ę	56 A								2		56	<10		Auger refusal at 1.82 m on possible boulders.
						LO	GGE	DB	SY: F	RH			DRIL	LIN.	IG E	DATE	E: Feb	oruar	y 26, 2018
						RE	VIEV	VEC	BY:	: VI	N		Page	e 1 c	of 1				

CLIENT: Parkland Fuel Corporation PROJECT: 1622 Roger Stevens Drive		METHOI PROJEC							. (m)	90.	29		E	ЗH	N	o.: BH105
OCATION: Kars, Ontario	1	NORTHI	NG:				E	٩ST	ING:				PF	ROJEC	CT NC	D.: CB1057.00
SAMPLE TYPE AUGER DRIVE	N	Ν	СО	RIN	G		DYN	AMI	CC	ONE			SHE	LBY		SPLIT SPOON
MUL SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	08 N Blow	(kPa) 0 12 -Valu /s/300	20 16		Cor (° L W	ater ntent %) /.C. 60		SAMPLE NO.	SAMPLE TYPE	SPT(N)	CSV (ppm)	Well Construction	REMARKS
Topsoil at surface Augured through frost to 0.75 m	0	90 -														occasional boulders encountered in borehole
compact, moist, brown SILTY SAND trace organics	- - - - -	89.5 -		30 ▲							1		30	<10		
compact, moist, brown	- 1.5 - - - 2	88.5 -	30								2		30	<10		
SILTY SAND some embedded gravel	- - - - - -	88 - - - 87.5 -		11							3		11	<10		Sample 3 was submitter for laboratory analysis BTEX and PHC's F1-F4
END OF BOREHOLE	- 3 - - - 3.5	87 -	26								4		26	<10		
						GGE	Y: R	H		DF		NG I	DATE	≣: Fet	bruar	y 26, 2018

		Parkland Fuel Corporation T: 1622 Roger Stevens Drive		METHO PROJEC					g EV. (m) 92.	40		F	ЗH	N	o.: MW106
		N: Kars, Ontario		NORTH				-	STING: 500		2				D.: CB1057.00
				Μ	CORI				AMIC CONE	Γ	-	SHE			SPLIT SPOON
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	She 40 (Blc	ar Strer (kPa) <u>80 120</u> N-Value ws/300r 40 60	0 160 mm)	▲ PL	Water Content (%) W.C. LL 40 60 80	SAMPLE NO.	SAMPLE TYPE	SPT(N)	CSV (ppm)	Well Construction	REMARKS
		Augured through frost to 0.75 m	0.5	92 -	6			12							
Ā		SAND trace organics	- 1 - - - 1.5	91 -				12		1		6	<10		
Ť		loose	- - 2	90.5 -	8			9		2		8	<10		
		compact	- 2.5	90 -	22			11		3		22	<10		
		 loose moist, brown SILTY SAND	- 3.5	89 -	7			12		4		7	<10		Sample 4 submitted for laboratory analysis of BTEX, PHC's F1-F4 and VOC's.
		trace embedded gravel compact brownish grey	- 4	88.5 -	13			11		5		13	<10		
			- 4.5 - - 5	87.5 -	2					6		2	<10		
		loose grey	- 	87 - 86.5 -	2			12		7		2	<10		
1		END OF BOREHOLE													
								BY: RH							 y 22, 2018
						1 -00		71 R	י ן טי		1 U I		. гес	nual	y 22, 2010

	Parkland Fuel Corporation								-			40			21	NIZ	o.: MW107
	: 1622 Roger Stevens Drive N: Kars, Ontario							ز) 92.4 : 500		a				D.: CB1057.00
SAMPLE 1				CO					YNAN			1040	-	SHE			
TOBMYS LIOS G (E)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4((E	Sheai (0 80 N- Blow:	r Stre kPa) 0 12 Valu s/300	0 160	•	V Co	Vater ontent (%) W.C.	LL	SAMPLE NO.	ш		CSV (ppm)	Well	REMARKS
¥	Topsoil at surface Augured through frost to 0.76 m	- 0 	92 -														occasional boulders encountered in borehole.
		- 1 - 1 	91.5 - - - 91 -		3							1		39	<10		
	dense, moist, brown SILTY SAND some embedded gravel	- 2	90.5 -		50-							2		50+			Sample 3 submitted for laboratory analysis of
	yıavcı	- 2.5 - - - - - - - - - - - - - - - - - - -	90 - - - 89.5 -		50 -							3		50+ 50+			BTEX and PHC's F1-F4. Auger Refusal at 3.7 m
	END OF BOREHOLE	- 3.5	89 -														bgs, on possible boulders.
		1	1			LOC	GGED	BY:	RH		DF				I E: Feb	oruar	l y 22, 2018
					Ī	RE۱	VIEWE	DВ	Y: V	N	_	ge 1					

	 Parkland Fuel Corporation CT: 1622 Roger Stevens Drive 		METHO PROJEC					-	V. (m)	91.3	38		E	ЗH	N	o.: MW108
	ION: Kars, Ontario	1	NORTH	NG: ()4482	270			TING:			8				D.: CB1057.00
	E TYPE AUGER DRIVE	N	Π	COR	NG		D						SHEI	LBY		SPLIT SPOON
SOIL SYMBOL	DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (Blo	ear Str (kPa <u>80 1:</u> N-Valu ows/30 40 6) <u>20 160</u> ue 0mm)			Vater ontent (%) W.C. L D 60		SAMPLE NO.	SAMPLE TYPE	SPT(N)	CSV (ppm)	Well	REMARKS
*****	Topsoil at surface Augured to 0.76 m bgs.	0.5	91 -								1					occasional boulders encountered in borehole
	dense, moist, brown SAND and SILT trace organics trace gravel	- - - - - - - -	90.5 -		53						2		53	<10		
	loose, moist, dark brown TOPSOIL	-1.5 	89.5 -	5							3A 3B		5	<10 <10		
¥		- - - 2.5 -	89 -	34	>						4		34	<10	E	Auger refusal at 2.89, c possible boulder.
	loose, moist	- 3 - - - 3.5	88.5 -	4 11							5		11	<10		
	brown SILTY SAND trace embedded gravel	- 4	87.5 - 87.5 - 87 -	▲ 5							6		5	<10		
		- 4.5	86.5 -	8							7		8	<10		Sample 7 was submitted for laboratory analysis BTEX and PHC's F1-F and VOC's.
	wet grey		86 -	▲ 9							8A 8B		9	<10 <10		MW108-17 is a duplica
	END OF BOREHOLE															
		1	1			GGED	BV.	RH				JG I		For		y 22, 2018
						VIEW			NI		ge 1				Judi	,, _0,0

	Parkland Fuel Corporation T: 1622 Roger Stevens Drive		METHOI PROJEC							-	(m) :	91.7	70		E	ЗH	No	o.: BH109
	DN: Kars, Ontario		NORTHI	NG:						STI		-	-					D.: CB1057.00
SAMPLE		N	M	со	RIN	G			DYN/			NE	Г		SHE	LBY		SPLIT SPOON
SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	Shea (0 8 N Blow	r Stre (kPa) 0 12 -Valu vs/300	0 160)	• • PL	Wat Cont (%	er ent		SAMPLE NO.	SAMPLE TYPE	SPT(N)	CSV (ppm)	Well Construction	
· · · · · · · · · · · · · · · · · · ·	50 mm of Asphaltic Concrete Aurgured through frost to 0.76 m.	- 0.5	91.5 -										1			<10		occasional boulders encountered in borehole
	cmpact, moist, brown sand and gravel (FILL)	- - - - - - - - - - - - - - - - - - -	90.5	16	5								2		16	<10		
	compact, moist	-2	90 -		11								3		11	<10		Sample 4 was submitte
	brown SILTY SAND trace embedded gravel	- 2.5	89-	20									4		20	<10		for laboratory analysis BTEX and PHC F1-F4. Duplicate was taken.
	END OF BOREHOLE		88.5 -		. 18								5		18	<10		Auger refusal at 3.7 m possible boulder.
																		y 26, 2018
					┝			υВ	Y: R	1		איין	ge 1		JAIE	. ret	Juar	y 20, 2018

APPENDIX III

LABORATORY CERTIFICATES OF ANALYSIS

Your P.O. #: PIONEER Your Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your C.O.C. #: 650870-01-01, 650870-02-01

Attention: Geoff Lussier

Terrapex Environmental Ltd 920 Brant St. Suite 16 Burlington, ON Canada L7R 4J1

> Report Date: 2018/03/06 Report #: R5031879 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B841113 Received: 2018/02/23, 10:10

Sample Matrix: Soil # Samples Received: 11

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum	2	N/A	2018/02/23	OTT SOP-00002	EPA 8260C m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	9	N/A	2018/02/23	OTT SOP-00002	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil (3)	10	2018/02/23	2018/02/23	OTT SOP-00001	CCME CWS
Moisture	10	N/A	2018/02/23	CAM SOP-00445	McKeague 2nd ed 1978
pH CaCl2 EXTRACT (1)	1	2018/03/06	2018/03/06	CAM SOP-00413	EPA 9045 D m
Volatile Organic Compounds and F1 PHCs	2	N/A	2018/02/23	OTT SOP-00002	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your P.O. #: PIONEER Your Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your C.O.C. #: 650870-01-01, 650870-02-01

Attention: Geoff Lussier

Terrapex Environmental Ltd 920 Brant St. Suite 16 Burlington, ON Canada L7R 4J1

> Report Date: 2018/03/06 Report #: R5031879 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B841113 Received: 2018/02/23, 10:10

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		GDG333			GDG333			GDG334	GDG335		
Sampling Date		2018/02/22 08:30			2018/02/22 08:30			2018/02/22 09:30	2018/02/22 12:00		
COC Number		650870-01-01			650870-01-01			650870-01-01	650870-01-01		
	UNITS	MW 101-8	RDL	QC Batch	MW 101-8 Lab-Dup	RDL	QC Batch	MW 102-5	BH 103-4	RDL	QC Batch
Inorganics											
Moisture	%	9.7	0.2	5412285	11	0.2	5412285	11	9.7	0.2	5412285
BTEX & F1 Hydrocarbons		•			•				•	•	
Benzene	ug/g	<0.02	0.02	5412284				<0.02	<0.02	0.02	5412284
Toluene	ug/g	<0.02	0.02	5412284				<0.02	<0.02	0.02	5412284
Ethylbenzene	ug/g	<0.02	0.02	5412284				<0.02	<0.02	0.02	5412284
o-Xylene	ug/g	<0.02	0.02	5412284				<0.02	<0.02	0.02	5412284
p+m-Xylene	ug/g	<0.04	0.04	5412284				<0.04	<0.04	0.04	5412284
Total Xylenes	ug/g	<0.04	0.04	5412284				<0.04	<0.04	0.04	5412284
F1 (C6-C10)	ug/g	<10	10	5412284				<10	<10	10	5412284
F1 (C6-C10) - BTEX	ug/g	<10	10	5412284				<10	<10	10	5412284
F2-F4 Hydrocarbons		•									
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	5412136				<10	<10	10	5412136
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	5412136				<50	<50	50	5412136
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	5412136				<50	<50	50	5412136
Reached Baseline at C50	ug/g	Yes		5412136				Yes	Yes		5412136
Surrogate Recovery (%)											
1,4-Difluorobenzene	%	105		5412284				106	106		5412284
4-Bromofluorobenzene	%	114		5412284				114	117		5412284
D10-Ethylbenzene	%	93		5412284				100	97		5412284
D4-1,2-Dichloroethane	%	104		5412284				105	105		5412284
o-Terphenyl	%	83		5412136				77	94		5412136
RDL = Reportable Detection L QC Batch = Quality Control Ba	atch										
Lab-Dup = Laboratory Initiate	u Duplic	Late									

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		GDG336	GDG337	GDG339	GDG341	GDG342		
Sampling Date		2018/02/22 14:30	2018/02/22 16:30	2018/02/22 10:30	2018/02/22 15:15	2018/02/22 14:15		
COC Number		650870-01-01	650870-01-01	650870-01-01	650870-01-01	650870-01-01		
	UNITS	BH 104-1	BH 105-3	MW 107-3	BH 109-4	MW 108-17	RDL	QC Batch
Inorganics				•				
Moisture	%	20	9.3	8.0	10	11	0.2	5412285
BTEX & F1 Hydrocarbons					•			
Benzene	ug/g	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	5412284
Toluene	ug/g	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	5412284
Ethylbenzene	ug/g	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	5412284
o-Xylene	ug/g	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	5412284
p+m-Xylene	ug/g	<0.04	<0.04	<0.04	<0.04	<0.04	0.04	5412284
Total Xylenes	ug/g	<0.04	<0.04	<0.04	<0.04	<0.04	0.04	5412284
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	10	5412284
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	10	5412284
F2-F4 Hydrocarbons					•			
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	<10	<10	10	5412136
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	<50	<50	<50	50	5412136
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	<50	<50	50	5412136
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes	Yes		5412136
Surrogate Recovery (%)					•			
1,4-Difluorobenzene	%	105	106	106	106	104		5412284
4-Bromofluorobenzene	%	110	113	107	109	107		5412284
D10-Ethylbenzene	%	88	99	104	108	97		5412284
D4-1,2-Dichloroethane	%	103	102	103	103	103		5412284
o-Terphenyl	%	93	95	90	91	92		5412136
RDL = Reportable Detection L QC Batch = Quality Control B								

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Sampling Date					
		2018/02/22 08:30	2018/02/22 14:45		
COC Number	<u> </u>	650870-01-01	650870-01-01		
	UNITS	MW 106-4	MW 108-7	RDL	QC Batch
		1111 100 4	100 /	NDE	Qe Baten
Inorganics					
Moisture	%	11	11	0.2	5412285
Calculated Parameters					
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	0.050	5412280
Volatile Organics		1	1		
Acetone (2-Propanone)	ug/g	<0.50	<0.50	0.50	5412288
Benzene	ug/g	<0.020	<0.020	0.020	5412288
Bromodichloromethane	ug/g	<0.050	<0.050	0.050	5412288
Bromoform	ug/g	<0.050	<0.050	0.050	5412288
Bromomethane	ug/g	<0.050	<0.050	0.050	5412288
Carbon Tetrachloride	ug/g	<0.050	<0.050	0.050	5412288
Chlorobenzene	ug/g	<0.050	<0.050	0.050	5412288
Chloroform	ug/g	<0.050	<0.050	0.050	5412288
Dibromochloromethane	ug/g	<0.050	<0.050	0.050	5412288
1,2-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	5412288
1,3-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	5412288
1,4-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	5412288
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	0.050	5412288
1,1-Dichloroethane	ug/g	<0.050	<0.050	0.050	5412288
1,2-Dichloroethane	ug/g	<0.050	<0.050	0.050	5412288
1,1-Dichloroethylene	ug/g	<0.050	<0.050	0.050	5412288
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	0.050	5412288
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	0.050	5412288
1,2-Dichloropropane	ug/g	<0.050	<0.050	0.050	5412288
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	0.030	5412288
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	0.040	5412288
Ethylbenzene	ug/g	<0.020	<0.020	0.020	5412288
Ethylene Dibromide	ug/g	<0.050	<0.050	0.050	5412288
Hexane	ug/g	< 0.050	< 0.050	0.050	5412288
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	0.050	5412288
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	0.50	5412288
RDL = Reportable Detection Limit	~0/D			0.00	5.12200
QC Batch = Quality Control Batch					

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID		GDG338	GDG340		
Sampling Date		2018/02/22	2018/02/22		
		08:30	14:45		
COC Number		650870-01-01	650870-01-01		
	UNITS	MW 106-4	MW 108-7	RDL	QC Batch
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	0.50	5412288
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	0.050	5412288
Styrene	ug/g	<0.050	<0.050	0.050	5412288
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	0.050	5412288
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	0.050	5412288
Tetrachloroethylene	ug/g	<0.050	<0.050	0.050	5412288
Toluene	ug/g	<0.020	<0.020	0.020	5412288
1,1,1-Trichloroethane	ug/g	<0.050	<0.050	0.050	5412288
1,1,2-Trichloroethane	ug/g	<0.050	<0.050	0.050	5412288
Trichloroethylene	ug/g	<0.050	<0.050	0.050	5412288
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	<0.050	0.050	5412288
Vinyl Chloride	ug/g	<0.020	<0.020	0.020	5412288
p+m-Xylene	ug/g	<0.020	<0.020	0.020	5412288
o-Xylene	ug/g	<0.020	<0.020	0.020	5412288
Total Xylenes	ug/g	<0.020	<0.020	0.020	5412288
F1 (C6-C10)	ug/g	<10	<10	10	5412288
F1 (C6-C10) - BTEX	ug/g	<10	<10	10	5412288
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	10	5412136
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	50	5412136
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	50	5412136
Reached Baseline at C50	ug/g	Yes	Yes		5412136
Surrogate Recovery (%)					
o-Terphenyl	%	93	90		5412136
4-Bromofluorobenzene	%	89	88		5412288
D10-o-Xylene	%	74	68		5412288
D4-1,2-Dichloroethane	%	94	98		5412288
D8-Toluene	%	95	93		5412288
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

RESULTS OF ANALYSES OF SOIL

Maxxam ID		GDG336	
Sampling Date		2018/02/22 14:30	
COC Number		650870-01-01	
	UNITS	BH 104-1	QC Batch
Inorganics	UNITS	BH 104-1	QC Batch
Inorganics Available (CaCl2) pH	pH	BH 104-1 7.10	QC Batch 5427526

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

Maxxam ID		GDG354					
Sampling Date		2018/02/22					
COC Number		650870-02-01					
	UNITS	FIELD BLANK	RDL	QC Batch			
BTEX & F1 Hydrocarbons							
Benzene	ug/g	<0.02	0.02	5412284			
Toluene	ug/g	<0.02	0.02	5412284			
Ethylbenzene	ug/g	<0.02	0.02	5412284			
o-Xylene	ug/g	<0.02	0.02	5412284			
p+m-Xylene	ug/g	<0.04	0.04	5412284			
Total Xylenes	ug/g	<0.04	0.04	5412284			
F1 (C6-C10)	ug/g	<10	10	5412284			
F1 (C6-C10) - BTEX	ug/g	<10	10	5412284			
Surrogate Recovery (%)							
1,4-Difluorobenzene	%	107		5412284			
4-Bromofluorobenzene	%	106		5412284			
D10-Ethylbenzene	%	116		5412284			
D4-1,2-Dichloroethane	%	104		5412284			
RDL = Reportable Detectior	n Limit		•				
QC Batch = Quality Control	Batch						

PETROLEUM HYDROCARBONS (CCME)

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

TEST SUMMARY

	G333 V 101-8 I					Collected: Shipped: Received:	2018/02/22 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 &	BTEX in Soil	HSGC/MSFD	5412284	N/A	2018/02/23	Steve Robe	erts
Petroleum Hydrocarbons F2-F4	4 in Soil	GC/FID	5412136	2018/02/23	2018/02/23	Liliana Gat	ourici
Moisture		BAL	5412285	N/A	2018/02/23	Liliana Gab	ourici
	G333 Dup V 101-8 I					Collected: Shipped: Received:	2018/02/22 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Moisture		BAL	5412285	N/A	2018/02/23	Liliana Gab	ourici
	G334 V 102-5 I					Collected: Shipped: Received:	2018/02/22 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 &	BTEX in Soil	HSGC/MSFD	5412284	N/A	2018/02/23	Steve Robe	erts
Petroleum Hydrocarbons F2-F4	4 in Soil	GC/FID	5412136	2018/02/23	2018/02/23	Liliana Gat	ourici
Moisture		BAL	5412285	N/A	2018/02/23	Liliana Gat	ourici
	G335 103-4 I					Collected: Shipped: Received:	2018/02/22 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 &	BTEX in Soil	HSGC/MSFD	5412284	N/A	2018/02/23	Steve Robe	erts
Petroleum Hydrocarbons F2-F4		GC/FID	5412136	2018/02/23	2018/02/23	Liliana Gat	ourici
Moisture		BAL	5412285	N/A	2018/02/23	Liliana Gat	ourici
	G336 104-1 I					Collected: Shipped: Received:	2018/02/22 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 &	BTEX in Soil	HSGC/MSFD	5412284	N/A	2018/02/23	Steve Robe	erts
Petroleum Hydrocarbons F2-F4	4 in Soil	GC/FID	5412136	2018/02/23	2018/02/23	Liliana Gab	ourici
Moisture		BAL	5412285	N/A	2018/02/23	Liliana Gab	ourici
pH CaCl2 EXTRACT		AT	5427526	2018/03/06	2018/03/06	Neil Dassa	navako

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

TEST SUMMARY

Maxxam ID: GDG337 Sample ID: BH 105-3 Matrix: Soil					Collected: 2018/02/22 Shipped: Received: 2018/02/23
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	5412284	N/A	2018/02/23	Steve Roberts
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5412136	2018/02/23	2018/02/23	Liliana Gaburici
Moisture	BAL	5412285	N/A	2018/02/23	Liliana Gaburici
Maxxam ID: GDG338 Sample ID: MW 106-4 Matrix: Soil					Collected: 2018/02/22 Shipped: Received: 2018/02/23
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5412280	N/A	2018/02/23	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5412136	2018/02/23	2018/02/23	Liliana Gaburici
Moisture	BAL	5412285	N/A	2018/02/23	Liliana Gaburici
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5412288	N/A	2018/02/23	Liliana Gaburici
Maxxam ID: GDG339 Sample ID: MW 107-3 Matrix: Soil					Collected: 2018/02/22 Shipped: Received: 2018/02/23
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	5412284	N/A	2018/02/23	Steve Roberts
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5412136	2018/02/23	2018/02/23	Liliana Gaburici
Moisture	BAL	5412285	N/A	2018/02/23	Liliana Gaburici
Maxxam ID: GDG340 Sample ID: MW 108-7 Matrix: Soil					Collected: 2018/02/22 Shipped: Received: 2018/02/23
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
1,3-Dichloropropene Sum	CALC	5412280	N/A	2018/02/23	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5412136	2018/02/23	2018/02/23	Liliana Gaburici
Moisture	BAL	5412285	N/A	2018/02/23	Liliana Gaburici
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5412288	N/A	2018/02/23	Liliana Gaburici
Maxxam ID: GDG341 Sample ID: BH 109-4 Matrix: Soil					Collected: 2018/02/22 Shipped: Received: 2018/02/23
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	5412284	N/A	2018/02/23	Steve Roberts
	4	F 44 24 2C	2010/02/22	2019/02/22	Liliana Cabuniai
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5412136	2018/02/23	2018/02/23	Liliana Gaburici

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

TEST SUMMARY

Maxxam ID: GDG34 Sample ID: MW 10 Matrix: Soil		Sample ID:				Collected: Shipped: Received:	2018/02/22 2018/02/23
Test Description	Instrumentation	cription	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTE	K in Soil HSGC/MSFD	m Hydro. CCME F	5412284	N/A	2018/02/23	Steve Robe	erts
Petroleum Hydrocarbons F2-F4 in	Soil GC/FID	5412136	2018/02/23	2018/02/23	Liliana Gab	urici	
Moisture	BAL	2	5412285	N/A	2018/02/23	Liliana Gab	urici
Maxxam ID: GDG35 Sample ID: FIELD I Matrix: Soil		Sample ID:				Collected: Shipped: Received:	2018/02/22 2018/02/23
Test Description	Instrumentation	cription	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BTE	K in Soil HSGC/MSFD	m Hydro. CCME F	5412284	N/A	2018/02/23	Steve Robe	erts

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

GENERAL COMMENTS

Each t	emperature is the	average of up to	three cooler temperatures taken at receipt						
	Package 1	8.3°C							
Revise	Revised report (2018/03/06): pH analysis added to sample BH104-1 per client request								
Resul	ts relate only to th	ne items tested.							

Г

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5412136	LGA	Spiked Blank	o-Terphenyl	2018/02/23		106	%	30 - 130
			F2 (C10-C16 Hydrocarbons)	2018/02/23		97	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2018/02/23		97	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2018/02/23		97	%	80 - 120
5412136	LGA	RPD	F2 (C10-C16 Hydrocarbons)	2018/02/23	1.0		%	50
			F3 (C16-C34 Hydrocarbons)	2018/02/23	1.0		%	50
			F4 (C34-C50 Hydrocarbons)	2018/02/23	1.0		%	50
5412136	LGA	Method Blank	o-Terphenyl	2018/02/23		94	%	30 - 130
			F2 (C10-C16 Hydrocarbons)	2018/02/23	<10		ug/g	
			F3 (C16-C34 Hydrocarbons)	2018/02/23	<50		ug/g	
			F4 (C34-C50 Hydrocarbons)	2018/02/23	<50		ug/g	
5412284	STE	Spiked Blank	1,4-Difluorobenzene	2018/02/23		104	%	60 - 140
			4-Bromofluorobenzene	2018/02/23		116	%	60 - 140
			D10-Ethylbenzene	2018/02/23		103	%	30 - 130
			D4-1,2-Dichloroethane	2018/02/23		112	%	60 - 140
			Benzene	2018/02/23		92	%	60 - 140
			Toluene	2018/02/23		83	%	60 - 140
			Ethylbenzene	2018/02/23		86	%	60 - 140
			o-Xylene	2018/02/23		86	%	60 - 140
			p+m-Xylene	2018/02/23		87	%	60 - 140
			F1 (C6-C10)	2018/02/23		95	%	80 - 120
			F1 (C6-C10) - BTEX	2018/02/23		95	%	N/A
5412284	STE	RPD	Benzene	2018/02/23	7.2		%	50
			Toluene	2018/02/23	2.5		%	50
			Ethylbenzene	2018/02/23	0.98		%	50
			o-Xylene	2018/02/23	2.2		%	50
			p+m-Xylene	2018/02/23	0.46		%	50
			F1 (C6-C10)	2018/02/23	0.33		%	50
			F1 (C6-C10) - BTEX	2018/02/23	0		%	50
5412284	STE	Method Blank	1,4-Difluorobenzene	2018/02/23		103	%	60 - 140
			4-Bromofluorobenzene	2018/02/23		116	%	60 - 140
			D10-Ethylbenzene	2018/02/23		101	%	30 - 130
			D4-1,2-Dichloroethane	2018/02/23		110	%	60 - 140
			Benzene	2018/02/23	<0.02		ug/g	
			Toluene	2018/02/23	<0.02		ug/g	
			Ethylbenzene	2018/02/23	<0.02		ug/g	
			o-Xylene	2018/02/23	<0.02		ug/g	
			p+m-Xylene	2018/02/23	<0.04		ug/g	
			Total Xylenes	2018/02/23	<0.04		ug/g	
			F1 (C6-C10)	2018/02/23	<10		ug/g	
			F1 (C6-C10) - BTEX	2018/02/23	<10		ug/g	
5412285	LGA	RPD [GDG333-01]	Moisture	2018/02/23	7.9		%	50
5412288	LGA	Spiked Blank	4-Bromofluorobenzene	2018/02/23		102	%	60 - 140
			D10-o-Xylene	2018/02/23		79	%	60 - 130
			D4-1,2-Dichloroethane	2018/02/23		102	%	60 - 140
			D8-Toluene	2018/02/23		102	%	60 - 140
			Acetone (2-Propanone)	2018/02/23		103	%	60 - 140
			Benzene	2018/02/23		103	%	60 - 130
			Bromodichloromethane	2018/02/23		95	%	60 - 130
			Bromoform	2018/02/23		112	%	60 - 130
			Bromomethane	2018/02/23		82	%	60 - 140

Г

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Carbon Tetrachloride	2018/02/23		89	%	60 - 130
			Chlorobenzene	2018/02/23		91	%	60 - 130
			Chloroform	2018/02/23		88	%	60 - 130
			Dibromochloromethane	2018/02/23		108	%	60 - 130
			1,2-Dichlorobenzene	2018/02/23		95	%	60 - 130
			1,3-Dichlorobenzene	2018/02/23		92	%	60 - 130
			1,4-Dichlorobenzene	2018/02/23		96	%	60 - 130
			Dichlorodifluoromethane (FREON 12)	2018/02/23		71	%	60 - 140
			1,1-Dichloroethane	2018/02/23		94	%	60 - 130
			1,2-Dichloroethane	2018/02/23		100	%	60 - 130
			1,1-Dichloroethylene	2018/02/23		83	%	60 - 130
			cis-1,2-Dichloroethylene	2018/02/23		94	%	60 - 130
			trans-1,2-Dichloroethylene	2018/02/23		84	%	60 - 130
			1,2-Dichloropropane	2018/02/23		84	%	60 - 130
			cis-1,3-Dichloropropene	2018/02/23		96	%	60 - 130
			trans-1,3-Dichloropropene	2018/02/23		97	%	60 - 130
			Ethylbenzene	2018/02/23		95	%	60 - 130
			Ethylene Dibromide	2018/02/23		109	%	60 - 130
			Hexane	2018/02/23		86	%	60 - 130
			Methylene Chloride(Dichloromethane)	2018/02/23		83	%	60 - 130
			Methyl Ethyl Ketone (2-Butanone)	2018/02/23		107	%	60 - 140
			Methyl Isobutyl Ketone	2018/02/23		116	%	60 - 130
			Methyl t-butyl ether (MTBE)	2018/02/23		87	%	60 - 130
			Styrene	2018/02/23		110	%	60 - 130
			1,1,1,2-Tetrachloroethane	2018/02/23		103	%	60 - 130
			1,1,2,2-Tetrachloroethane	2018/02/23		107	%	60 - 130
			Tetrachloroethylene	2018/02/23		92	%	60 - 130
			Toluene	2018/02/23		95	%	60 - 130
			1,1,1-Trichloroethane	2018/02/23		87	%	60 - 130
			1,1,2-Trichloroethane	2018/02/23		90	%	60 - 130
			Trichloroethylene	2018/02/23		91	%	60 - 130
			Trichlorofluoromethane (FREON 11)	2018/02/23		87	%	60 - 130
			Vinyl Chloride	2018/02/23		86	%	60 - 130
			p+m-Xylene	2018/02/23		90	%	60 - 130
			o-Xylene	2018/02/23		103	%	60 - 130
			F1 (C6-C10)	2018/02/23		104	%	80 - 120
5412288	LGA	RPD	Acetone (2-Propanone)	2018/02/23	22		%	50
			Benzene	2018/02/23	5.7		%	50
			Bromodichloromethane	2018/02/23	19		%	50
			Bromoform	2018/02/23	24		%	50
			Bromomethane	2018/02/23	12		%	50
			Carbon Tetrachloride	2018/02/23	3.9		%	50
			Chlorobenzene	2018/02/23	3.8		%	50
			Chloroform	2018/02/23	7.4		%	50
			Dibromochloromethane	2018/02/23	15		%	50
			1,2-Dichlorobenzene	2018/02/23	1.7		%	50
			1,3-Dichlorobenzene	2018/02/23	4.3		%	50
			1,4-Dichlorobenzene	2018/02/23	1.4		%	50
			Dichlorodifluoromethane (FREON 12)	2018/02/23	5.1		%	50
			1,1-Dichloroethane	2018/02/23	9.6		%	50
			1,2-Dichloroethane	2018/02/23	25		%	50

Г

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			1,1-Dichloroethylene	2018/02/23	2.4		%	50
			cis-1,2-Dichloroethylene	2018/02/23	13		%	50
			trans-1,2-Dichloroethylene	2018/02/23	2.4		%	50
			1,2-Dichloropropane	2018/02/23	11		%	50
			cis-1,3-Dichloropropene	2018/02/23	26		%	50
			trans-1,3-Dichloropropene	2018/02/23	33		%	50
			Ethylbenzene	2018/02/23	6.8		%	50
			Ethylene Dibromide	2018/02/23	26		%	50
			Hexane	2018/02/23	15		%	50
			Methylene Chloride(Dichloromethane)	2018/02/23	14		%	50
			Methyl Ethyl Ketone (2-Butanone)	2018/02/23	41		%	50
			Methyl Isobutyl Ketone	2018/02/23	40		%	50
			Methyl t-butyl ether (MTBE)	2018/02/23	5.1		%	50
			Styrene	2018/02/23	5.1		%	50
			1,1,1,2-Tetrachloroethane	2018/02/23	3.0		%	50
			1,1,2,2-Tetrachloroethane	2018/02/23	27		%	50
			Tetrachloroethylene	2018/02/23	2.6		%	50
			Toluene	2018/02/23	0.53		%	50
			1,1,1-Trichloroethane	2018/02/23	0.80		%	50
			1,1,2-Trichloroethane	2018/02/23	17		%	50
			Trichloroethylene	2018/02/23	2.8		%	50
			Trichlorofluoromethane (FREON 11)	2018/02/23	4.7		%	50
			Vinyl Chloride	2018/02/23	0.88		%	50
			p+m-Xylene	2018/02/23	4.6		%	50
			o-Xylene	2018/02/23	0.94		%	50
			F1 (C6-C10)	2018/02/23	1.9		%	30
5412288	LGA	Method Blank	4-Bromofluorobenzene	2018/02/23		89	%	60 - 140
			D10-o-Xylene	2018/02/23		81	%	60 - 130
			D4-1,2-Dichloroethane	2018/02/23		114	%	60 - 140
			D8-Toluene	2018/02/23		88	%	60 - 140
			Acetone (2-Propanone)	2018/02/23	<0.50		ug/g	
			Benzene	2018/02/23	<0.020		ug/g	
			Bromodichloromethane	2018/02/23	<0.050		ug/g	
			Bromoform	2018/02/23	<0.050		ug/g	
			Bromomethane	2018/02/23	<0.050		ug/g	
			Carbon Tetrachloride	2018/02/23	<0.050		ug/g	
			Chlorobenzene	2018/02/23	<0.050		ug/g	
			Chloroform	2018/02/23	<0.050		ug/g	
			Dibromochloromethane	2018/02/23	0.0		ug/g	
			1,2-Dichlorobenzene	2018/02/23	<0.050		ug/g	
			1,3-Dichlorobenzene	2018/02/23	<0.050		ug/g	
			1,4-Dichlorobenzene	2018/02/23	<0.050		ug/g	
			Dichlorodifluoromethane (FREON 12)	2018/02/23	<0.050		ug/g	
			1,1-Dichloroethane	2018/02/23	<0.050		ug/g	
			1,2-Dichloroethane	2018/02/23	<0.050		ug/g	
			1,1-Dichloroethylene	2018/02/23	<0.050		ug/g	
			cis-1,2-Dichloroethylene	2018/02/23	<0.050		ug/g	
			trans-1,2-Dichloroethylene	2018/02/23	< 0.050		ug/g	
			1,2-Dichloropropane	2018/02/23	< 0.050		ug/g	
			cis-1,3-Dichloropropene	2018/02/23	< 0.030		ug/g	
			trans-1,3-Dichloropropene	2018/02/23	< 0.040		ug/g	

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Ethylbenzene	2018/02/23	<0.020		ug/g	
			Ethylene Dibromide	2018/02/23	<0.050		ug/g	
			Hexane	2018/02/23	<0.050		ug/g	
			Methylene Chloride(Dichloromethane)	2018/02/23	<0.050		ug/g	
			Methyl Ethyl Ketone (2-Butanone)	2018/02/23	<0.50		ug/g	
			Methyl Isobutyl Ketone	2018/02/23	<0.50		ug/g	
			Methyl t-butyl ether (MTBE)	2018/02/23	<0.050		ug/g	
			Styrene	2018/02/23	<0.050		ug/g	
			1,1,1,2-Tetrachloroethane	2018/02/23	<0.050		ug/g	
			1,1,2,2-Tetrachloroethane	2018/02/23	<0.050		ug/g	
			Tetrachloroethylene	2018/02/23	<0.050		ug/g	
			Toluene	2018/02/23	<0.020		ug/g	
			1,1,1-Trichloroethane	2018/02/23	<0.050		ug/g	
			1,1,2-Trichloroethane	2018/02/23	<0.050		ug/g	
			Trichloroethylene	2018/02/23	<0.050		ug/g	
			Trichlorofluoromethane (FREON 11)	2018/02/23	<0.050		ug/g	
			Vinyl Chloride	2018/02/23	<0.020		ug/g	
			p+m-Xylene	2018/02/23	<0.020		ug/g	
			o-Xylene	2018/02/23	<0.020		ug/g	
			Total Xylenes	2018/02/23	<0.020		ug/g	
			F1 (C6-C10)	2018/02/23	<10		ug/g	
			F1 (C6-C10) - BTEX	2018/02/23	<10		ug/g	
5427526	NYS	Spiked Blank	Available (CaCl2) pH	2018/03/06		99	%	97 - 103
5427526	NYS	RPD	Available (CaCl2) pH	2018/03/06	0.52		%	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

VALIDATION SIGNATURE PAGE

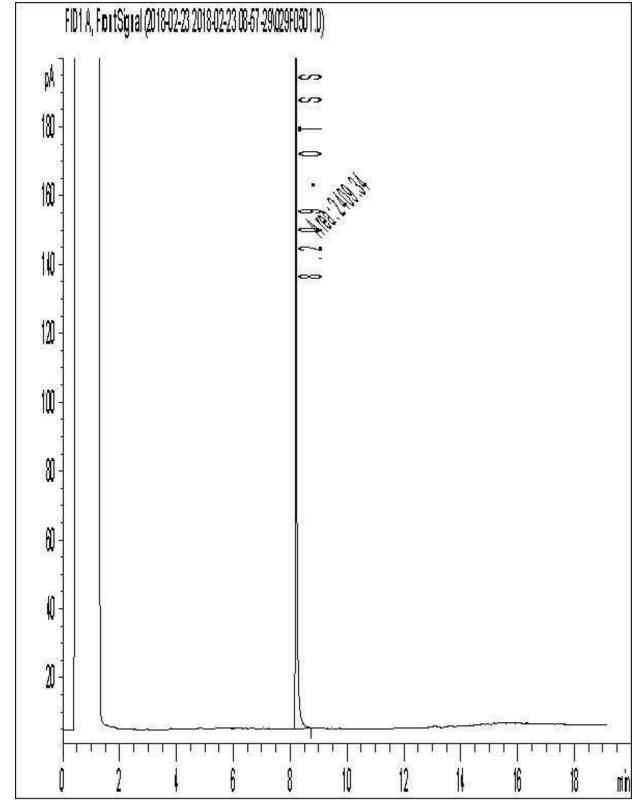
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

avisting Carriere

Cristina Carriere, Scientific Service Specialist

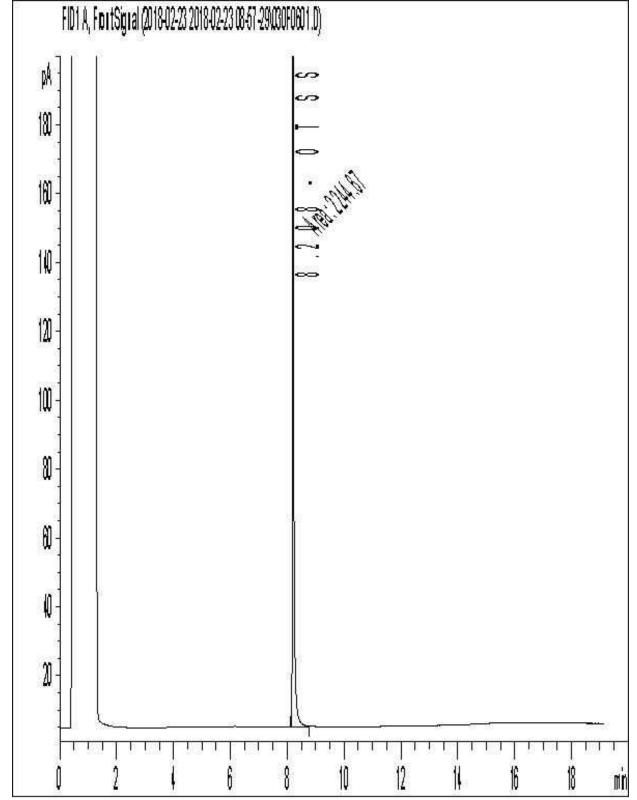
Steve Roberts, Ottawa Lab Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

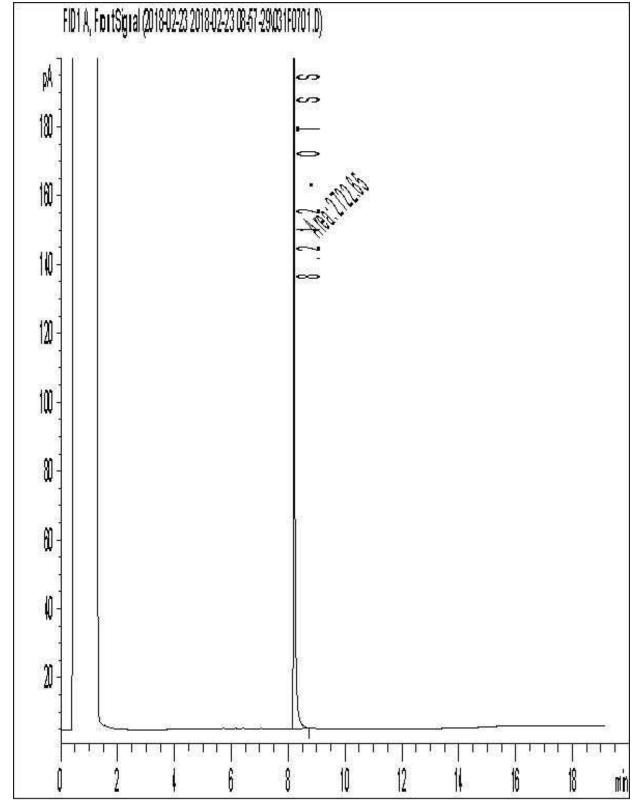

	INVOICE TO:		REPORT TO:								PROJE	CT INFOR	MATION:			Page (o Laboratory Use Only:		
mpany Name: #30396 P	arkland Industries Ltd	Compan	Company Name: #19684 Terrapex Environmental Ltd Attention: Geoff Lussier Address: 920 Brant St. Suite 16 Burlington ON L7R 4J1 Tet: (905) 632-5939 x228 Fax: g.lussier@terrapex.com							1#	B75	111					Maxxam Job #:	Bottle Order #:
ention: Retail Invo										Quotation #: B7511			1.60					
1000.	St Suite 100	Address								roject: CB105			,					650870
11001 057	AB T4N 6C9 6400 x Fax: (403) 356-30	Ex								ame:	1622 Roger Stevens Drive						COC #:	Project Manager:
	@parkland.ca, victoria.pianarosa@pa												abou			C#650870-01-01		Augustyna Dobosz
	NKING WATER OR WATER INTENDE		-			Т			Sampled	By: EQUESTED				/			Turnaround Time (TAT) F	Required:
SUBMI	TED ON THE MAXXAM DRINKING WA	TER CHAIN OF	CUSTODY	MOSTBL		oð		hate						10.00	ST 15		Please provide advance notice f	
Regulation 153 (2011)	Other Regulati	ons	Special In	structions	circle):			Sulpt	oclay)	1.75			ackag		nics F		Standard) TAT: ied if Rush TAT is not specified):	Γ
Table 1 Res/Park					ase ci	CCME F1	F2-F4	and	%silt, %c				CS P		Orga	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	T = 5-7 Working days for most tests.	L
Table 2 Comm Coarse Reg 558. Storm Sewer Bylaw Table 3 Agri/Other For RSC MISA Municipality			n Coarse Reg 558. Storm Sewer Bylaw									-	rgani	PCBs	atile	Please note: Standard TAT for certain tests such as BOD and Dioxins/Furans are > days - contact your Project Manager for details.		
Table Table	For RSC MISA Municipality				Field Filtered (ple Metals / Hg /	ocart	ocart	WS W	sand,	S	RACT	1.1	P Inc	P PC	P Vol	Job Specific Rush TAT (if applies to entire submission)		
	Other				Filter	Hydr	Hydr	3 ICPMS	%) ə.	VOC	CaCI2 EXTRACT		558 TCLP	I TCLP	TCL	Date Requir	ed: Feb. 23 1/8 Til	me Required: D
Include	Criteria on Certificate of Analysis (Y/N)?				Mield	k	meleum	Reg 153	fextur	er o	aCI2	point	g 556	g 558	g 556	Rush Confir	mation Number: AD2018	0223-01 ~
Sample Barcode Label	Sample (Location) Identification	Date Sampled	e Sampled Time Sampled Matrix			Petrole BTEX	Petro	O.Re	Soil	Inficial	PHC	Flash	O.Reg	O.Reg	O.Reg	# of Bottles Co		omments
	Mart Mh 101-8	Feb 22 18	8:30	SOIL		X	×									3		
	MW102-5	Feb2118	9:30	SOIL		×	×	-					-			3	-	23-Feb-18 10:10
C. Artesta	BH103-4	Feb21'18	12:00	SOIL		×	×									3		tyna Dobosz
	BH104-1	Feb. 21 18	2:30	SOIL		×	×									3		41113
	BH105-3	Feb. 21'18	4:30	SOIL		×	×									3	VIV	ለተተ ሰሰ1
	MW106-4	Feb. 22 10	8:30	SOIL		×	X	-		×						3	RECEIVED IN OT	TAWA
	MW107.3	Feb. 22 18		SOIL		×	X									3		
	MW-108-7	Feb. 22'18	2:45	SOIL	Chiefe is	\times	×			\times						3	E. S. States	
	BH109-4	Feb. 22'1	3:15	SOIL	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	×	X	-								3	Onice	
	MW-108-17	Feb. 22 18	2:45	SOIL		×	×									3		
		(/MM/DD) Ti		1.44	BY: (Signature			Date: (YY/MI	M/DD)	Ti	me		used and ubmitted			Labor	atory Use Only	
Pile	DIN WRITING, WORK SUBMITTED ON THIS CHAIL	2/23 10:		liana		1.212		2018/10			10		Shinted	Time S	ensitive	Tempera	ture (°C) on Recei	eal Yes N

Maxxam Analytics International Corporation o/a Maxxam Analytics

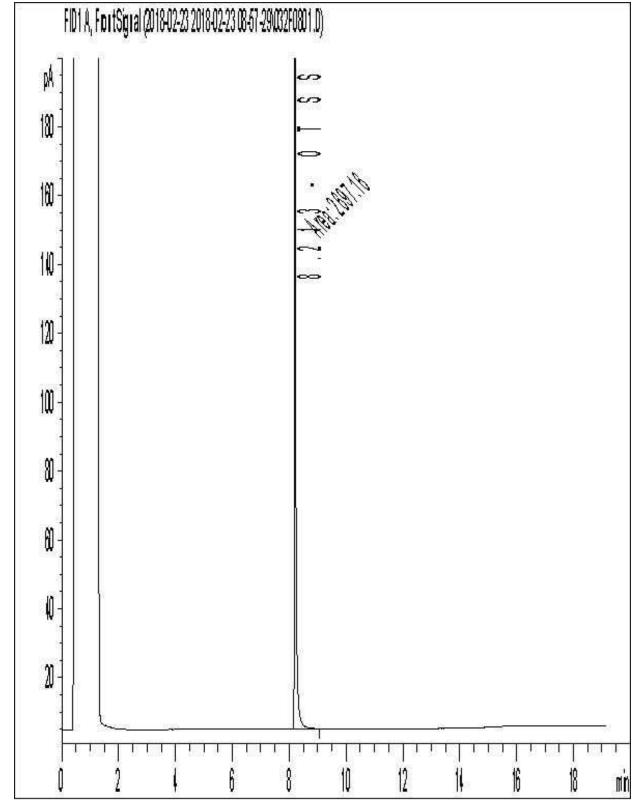
INVOICE TO:					REPORT TO:							PROJE	CT INFOR	MATION:		1911	1	Laboratory Use	Page Zof
					mpany Name: #19684 Terrapex Environmental Ltd							B751		MATION.	THEY			Maxxam Job #:	Bottle Order #:
Attention: Retail Invoices Attention											n#:	<u>B/3111</u>					maxian obs #.		
ddress: 4919-59th St Suite 100 Address:					000 P 101 P 1 40							CB10	057.00	1197.014	1.11	355.0			650870
Red Deer AB T4N 6C9 Fax: (403) 357-6400 x Fax: (403) 356-3015 x Tel: emilie: emilie: prior@@parkland.ca, victoria.pianarosa@parkland. Email: Email:				Burlington ON L7R 4J1 (905) 632-5939 x228 Fax:						Project: Project N	ame: Parkland Kars					£150	Coc #:		Project Manager
										Site #: Sampled	Bv:	1622 Roger Stevens Drive Grea Sabours							Augustyna Dobos
	NKING WATER OR WATER IN	NTENDED FO	DR HUMAN C	ONSUMPTION	MUST BE				AN/		QUESTED						1	Turnaround Time (TAT) F	
MOE REGULATED DRINKING WATER OR WATER INTENDED FOR HUMAN CO SUBMITTED ON THE MAXXAM DRINKING WATER CHAIN OF C							oð		hate		E			90		R		Please provide advance notice f	or rush projects
Regulation 153 (2011) Other Regulations				Special Instructions					Sulp	clay)				acka		Sic		tandard) TAT: d if Rush TAT is not specified):	
Table 1 Res/Park Medium/Fine CCME Sanitary Sewer Bylaw			Medium/Fine CCME Sanitary Sewer Bylaw 0 2 8 0							% t	/PHC			8		Orga		= 5-7 Working days for most tests.	
able 2 Ad/Comm	Comm Coarse Reg 558. Storm Sewer Bylaw						suoo	Suod	Metals	%sil	1			rgan	S8	atile	Please note: Standard TAT for certain tests such as BOD and Dioxins/Furans are days - contact your Project Manager for details.		
able 3 Agri/Other Agri/Other	For RSC MISA Municipality				Metals / Hg /					y X	BTEX	RACT		P Ino	558 TCLP PCBs	P Vol	Job Specific Rush TAT (if applies to entire submission)		
			Other				Hydro					EXTRACI		558 TCLP	TCL	558 TCLP	Date Require	Required Ephe 2.3 P Time Required	
Include Criteria on Certificate of Analysis (Y/N)?						Me Me	enm	leum	153	extur	1	CaCl2 F	ooint	3 558	3 558	3 558	Rush Confirm	nation Number: AD2018	me Required: 0223 ~01 call lab for #)
Sample Barcode Label		Sample (Location) Identification Date Sa			ed Matrix	Ē	Petrole BTEX	etrol	.Reg	E lios	Anton	H Ca	lash	O.Reg	O.Reg	O.Reg	# of Bottles Comments		
	- 11-21		1		SOIL		<u> </u>	-				<u>a</u>				0	2		1
	Field Blan	K /	Feb. 221	5	UUIL						\times						4		1.2.1
					SOIL														
			-ti- ()		SOIL											- 10			
					SOIL								600				1. 1.		
-					SOIL													medellares the	OTTANIA
					SOIL			1							-			RECEIVED IN	OTTAWA
			-						-					23-Fel	b-18 1	0:10			
					SOIL		1						Augustyna Dobosz						
					SOIL							11							
					SOIL								B	8411	13			0	
						in a price					-	V	TV	OT	T 001			On	ria
					SOIL								1.000						
* RELINQUISHED	3Y: (Signature/Print)	Date: (YY/MN	1	ime	1102 2000 2000 2000	D BY: (Signature	CELESCO M		Date: (YY/I	Contraction -	Ti			s used and submitted		ensitive		tory Use Only (Custody S	eal Vee
phy	1 Sobourion	18/02/	123 10	to Ma	ruana	Vascon	Das	con .	201810	2123	10.	10	-		Time S	ensitive	Temperatu P (ieal Yes,


Maxxam Analytics International Corporation o/a Maxxam Analytics

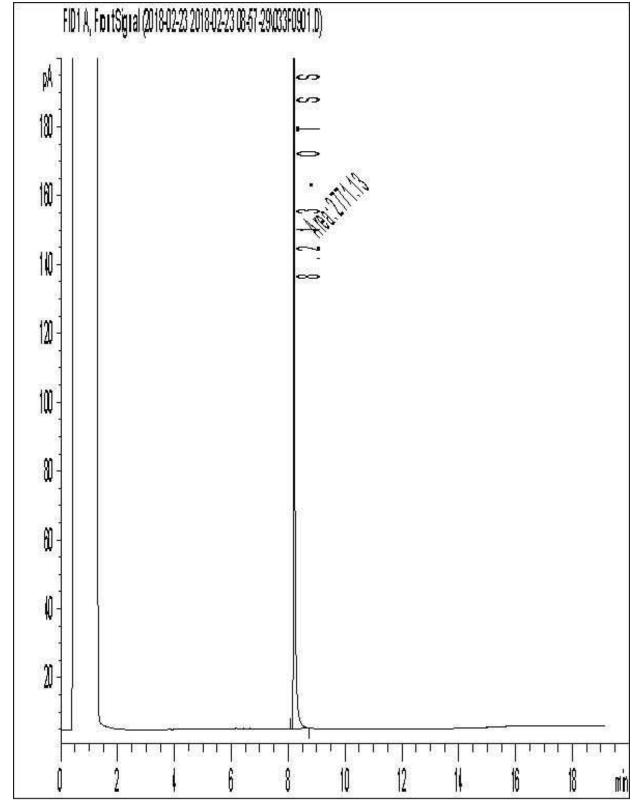
Terrapex Environmental Ltd Client Project #: CB1057.00 Project name: 1622 Roger Stevens Drive Client ID: MW 101-8


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

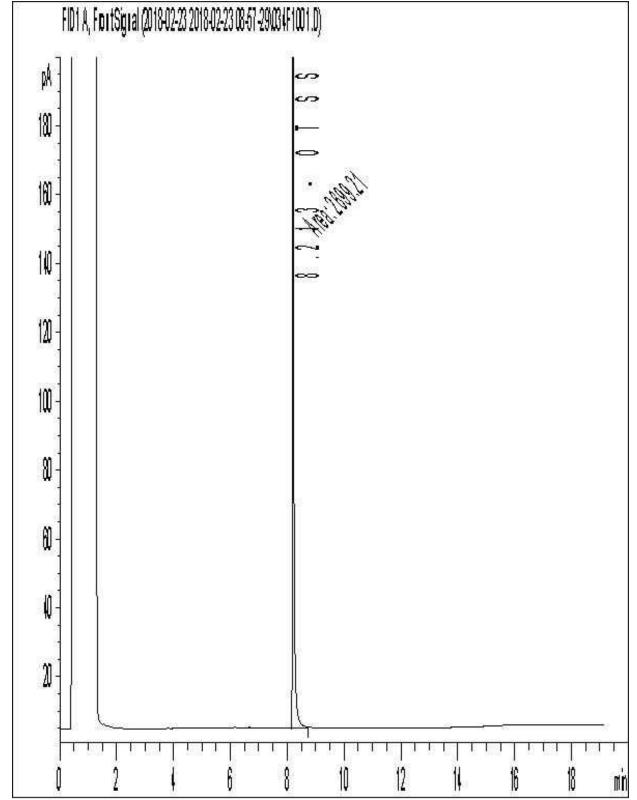
Terrapex Environmental Ltd Client Project #: CB1057.00 Project name: 1622 Roger Stevens Drive Client ID: MW 102-5


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

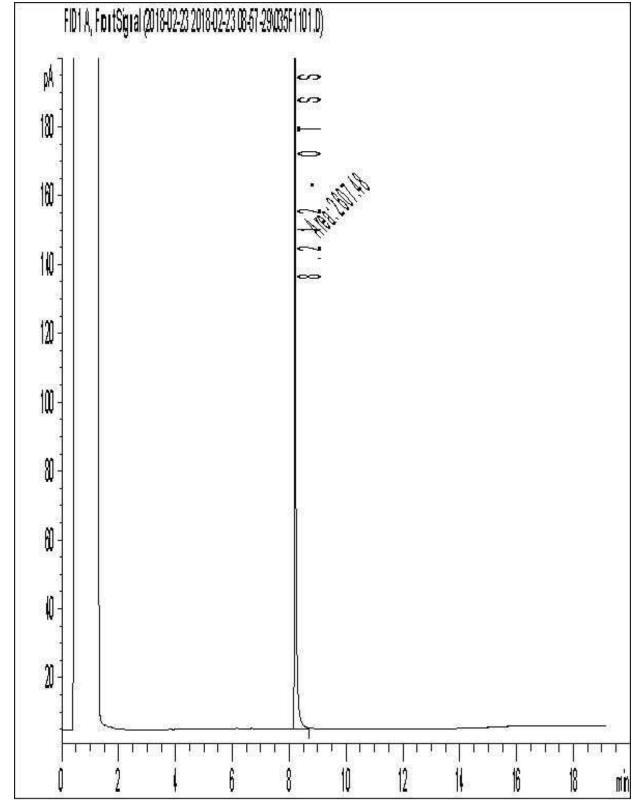
Terrapex Environmental Ltd Client Project #: CB1057.00 Project name: 1622 Roger Stevens Drive Client ID: BH 103-4

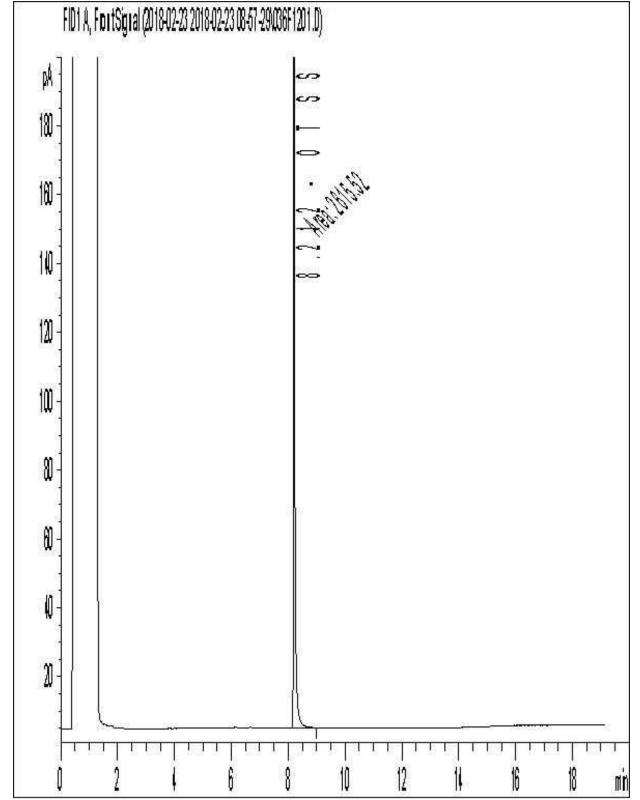

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

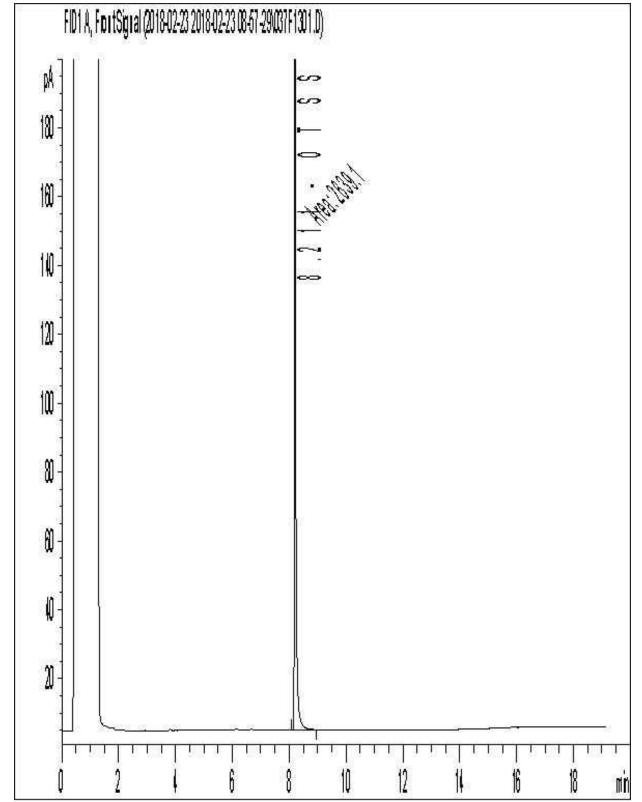
Terrapex Environmental Ltd Client Project #: CB1057.00 Project name: 1622 Roger Stevens Drive Client ID: BH 104-1

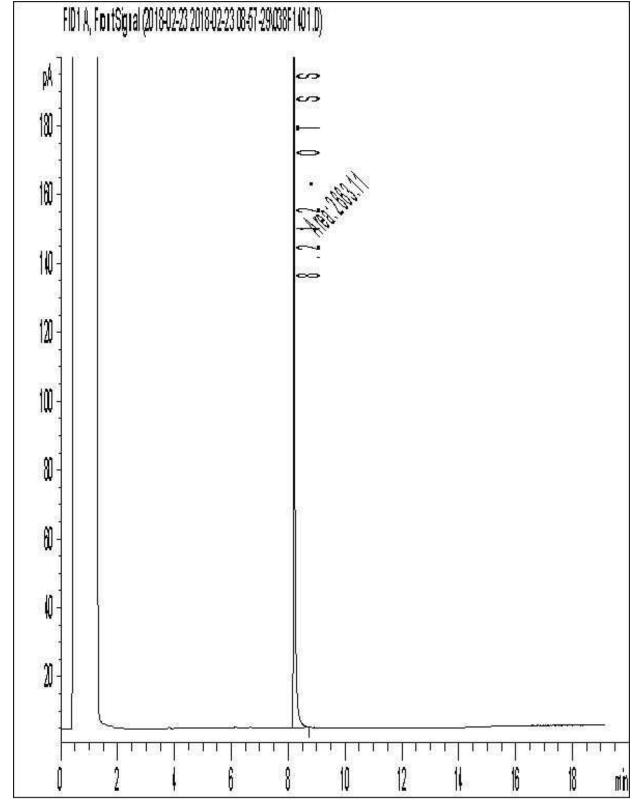


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Terrapex Environmental Ltd Client Project #: CB1057.00 Project name: 1622 Roger Stevens Drive Client ID: BH 105-3


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your C.O.C. #: 650870-04-01

Attention: Geoff Lussier

Terrapex Environmental Ltd 920 Brant St. Suite 16 Burlington, ON Canada L7R 4J1

> Report Date: 2018/02/26 Report #: R5017915 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B841230 Received: 2018/02/23, 10:10

Sample Matrix: Water # Samples Received: 8

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum	2	N/A	2018/02/26	OTT SOP-00002	EPA 8260C m
Petroleum Hydro. CCME F1 & BTEX in Water	6	N/A	2018/02/23	OTT SOP-00002	CCME CWS
Petroleum Hydrocarbons F2-F4 in Water (1)	6	2018/02/23	2018/02/24	OTT SOP-00001	CCME Hydrocarbons
Volatile Organic Compounds and F1 PHCs	2	N/A	2018/02/23	OTT SOP-00002	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your C.O.C. #: 650870-04-01

Attention: Geoff Lussier

Terrapex Environmental Ltd 920 Brant St. Suite 16 Burlington, ON Canada L7R 4J1

> Report Date: 2018/02/26 Report #: R5017915 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B841230 Received: 2018/02/23, 10:10

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		GDG968	GDG969		
Sampling Date		2018/02/23 09:00	2018/02/23 14:00		
COC Number		650870-04-01	650870-04-01		
	UNITS	TRIP BLANK	TRIP SPIKE	RDL	QC Batch
BTEX & F1 Hydrocarbons	-			<u>.</u>	
Benzene	ug/L	<0.20	92.77%	0.20	5412712
Toluene	ug/L	<0.20	95.68%	0.20	5412712
Ethylbenzene	ug/L	<0.20	90.32%	0.20	5412712
o-Xylene	ug/L	<0.20	90.72%	0.20	5412712
p+m-Xylene	ug/L	<0.40	92.77%	0.40	5412712
Total Xylenes	ug/L	<0.40	NA	0.40	5412712
F1 (C6-C10)	ug/L	<25	97.64%	25	5412712
F1 (C6-C10) - BTEX	ug/L	<25	NA	25	5412712
Surrogate Recovery (%)	•				
1,4-Difluorobenzene	%	107	112		5412712
4-Bromofluorobenzene	%	105	114		5412712
D10-Ethylbenzene	%	116	117		5412712
D4-1,2-Dichloroethane	%	106	111		5412712
RDL = Reportable Detection L QC Batch = Quality Control Ba					

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

O.REG 153 PETROLEUM HYDROCARBONS (WATER)

Maxxam ID		GDG963			GDG963			GDG965	GDG967		
Sampling Date		2018/02/23			2018/02/23			2018/02/23	2018/02/23		
		09:18			09:18			10:00	09:30		
COC Number		650870-04-01			650870-04-01			650870-04-01	650870-04-01		
	UNITS	MW 101	RDL	QC Batch	MW 101 Lab-Dup	RDL	QC Batch	MW 107	BLANK	RDL	QC Batch
BTEX & F1 Hydrocarbons											
Benzene	ug/L	<0.20	0.20	5412712	<0.20	0.20	5412712	<0.20	<0.20	0.20	5412712
Toluene	ug/L	<0.20	0.20	5412712	<0.20	0.20	5412712	<0.20	<0.20	0.20	5412712
Ethylbenzene	ug/L	<0.20	0.20	5412712	<0.20	0.20	5412712	<0.20	<0.20	0.20	5412712
o-Xylene	ug/L	0.66	0.20	5412712	0.61	0.20	5412712	<0.20	<0.20	0.20	5412712
p+m-Xylene	ug/L	0.72	0.40	5412712	0.71	0.40	5412712	<0.40	<0.40	0.40	5412712
Total Xylenes	ug/L	1.4	0.40	5412712	1.3	0.40	5412712	<0.40	<0.40	0.40	5412712
F1 (C6-C10)	ug/L	<25	25	5412712	<25	25	5412712	<25	<25	25	5412712
F1 (C6-C10) - BTEX	ug/L	<25	25	5412712	<25	25	5412712	<25	<25	25	5412712
F2-F4 Hydrocarbons											
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	5412185				<100	<100	100	5412185
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	5412185				<200	<200	200	5412185
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	5412185				<200	<200	200	5412185
Reached Baseline at C50	ug/L	Yes		5412185				Yes	Yes		5412185
Surrogate Recovery (%)											
1,4-Difluorobenzene	%	105		5412712	105		5412712	106	105		5412712
4-Bromofluorobenzene	%	112		5412712	112		5412712	113	108		5412712
D10-Ethylbenzene	%	120		5412712	103		5412712	108	113		5412712
D4-1,2-Dichloroethane	%	105		5412712	104		5412712	106	103		5412712
o-Terphenyl	%	99		5412185				103	98		5412185
RDL = Reportable Detection L	imit										
QC Batch = Quality Control Ba	atch										
Lab-Dup = Laboratory Initiate	d Duplic	cate									

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

O.REG 153 PETROLEUM HYDROCARBONS (WATER)

Maxxam ID		GDG970		
Sampling Date		2018/02/23 09:15		
COC Number		650870-04-01		
	UNITS	MW 112	RDL	QC Batch
BTEX & F1 Hydrocarbons				
Benzene	ug/L	<0.20	0.20	5412712
Toluene	ug/L	<0.20	0.20	5412712
Ethylbenzene	ug/L	<0.20	0.20	5412712
o-Xylene	ug/L	0.62	0.20	5412712
p+m-Xylene	ug/L	0.63	0.40	5412712
Total Xylenes	ug/L	1.3	0.40	5412712
F1 (C6-C10)	ug/L	<25	25	5412712
F1 (C6-C10) - BTEX	ug/L	<25	25	5412712
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	5412185
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	5412185
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	5412185
Reached Baseline at C50	ug/L	Yes		5412185
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	105		5412712
4-Bromofluorobenzene	%	111		5412712
D10-Ethylbenzene	%	103		5412712
D4-1,2-Dichloroethane	%	94		5412712
o-Terphenyl	%	100		5412185
RDL = Reportable Detection L QC Batch = Quality Control Ba				

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		GDG964			GDG964			GDG966		
Sampling Date		2018/02/23			2018/02/23			2018/02/23		
		09:25			09:25			08:15		
COC Number		650870-04-01			650870-04-01			650870-04-01		
	UNITS	MW 106	RDL	QC Batch	MW 106 Lab-Dup	RDL	QC Batch	MW 108	RDL	QC Batch
Calculated Parameters										
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	5412500				<0.50	0.50	5412500
Volatile Organics			•	•			•			
Acetone (2-Propanone)	ug/L	<10	10	5413136	<10	10	5413136	<10	10	5413136
Benzene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Bromodichloromethane	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
Bromoform	ug/L	<1.0	1.0	5413136	<1.0	1.0	5413136	<1.0	1.0	5413136
Bromomethane	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
Carbon Tetrachloride	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Chlorobenzene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Chloroform	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Dibromochloromethane	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
1,2-Dichlorobenzene	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
1,3-Dichlorobenzene	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
1,4-Dichlorobenzene	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	5413136	<1.0	1.0	5413136	<1.0	1.0	5413136
1,1-Dichloroethane	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
1,2-Dichloroethane	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
1,1-Dichloroethylene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
1,2-Dichloropropane	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	5413136	<0.30	0.30	5413136	<0.30	0.30	5413136
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	5413136	<0.40	0.40	5413136	<0.40	0.40	5413136
Ethylbenzene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Ethylene Dibromide	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Hexane	ug/L	<1.0	1.0	5413136	<1.0	1.0	5413136	<1.0	1.0	5413136
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	5413136	<2.0	2.0	5413136	<2.0	2.0	5413136
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	5413136	<10	10	5413136	<10	10	5413136
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	5413136	<5.0	5.0	5413136	<5.0	5.0	5413136
RDL = Reportable Detection Limit QC Batch = Quality Control Batch										

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		GDG964			GDG964			GDG966		
Sampling Date		2018/02/23 09:25			2018/02/23 09:25			2018/02/23 08:15		
COC Number		650870-04-01			650870-04-01			650870-04-01		
	UNITS	MW 106	RDL	QC Batch	MW 106 Lab-Dup	RDL	QC Batch	MW 108	RDL	QC Batch
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
Styrene	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
Tetrachloroethylene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Toluene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
1,1,1-Trichloroethane	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
1,1,2-Trichloroethane	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
Trichloroethylene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
Vinyl Chloride	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
p+m-Xylene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
o-Xylene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Total Xylenes	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
F1 (C6-C10)	ug/L	<25	25	5413136	<25	25	5413136	<25	25	5413136
F1 (C6-C10) - BTEX	ug/L	<25	25	5413136	<25	25	5413136	<25	25	5413136
F2-F4 Hydrocarbons		•			•			•		
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	5412185				<100	100	5412185
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	5412185				<200	200	5412185
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	5412185				<200	200	5412185
Reached Baseline at C50	ug/L	Yes		5412185				Yes		5412185
Surrogate Recovery (%)		•			•			•		
o-Terphenyl	%	99		5412185				103		5412185
4-Bromofluorobenzene	%	83		5413136	86		5413136	85		5413136
D4-1,2-Dichloroethane	%	110		5413136	106		5413136	109		5413136
D8-Toluene	%	88		5413136	86		5413136	88		5413136

Lab-Dup = Laboratory Initiated Duplicate

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	GDG963 MW 101 Water					Collected: Shipped: Received:	2018/02/23 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F	F1 & BTEX in Water	HSGC/MSFD	5412712	N/A	2018/02/23	Lyndsey Ha	rt
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	5412185	2018/02/23	2018/02/24	Liliana Gab	urici
Maxxam ID: Sample ID: Matrix:	GDG963 Dup MW 101 Water					Collected: Shipped: Received:	2018/02/23 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F	F1 & BTEX in Water	HSGC/MSFD	5412712	N/A	2018/02/23	Lyndsey Ha	rt
Maxxam ID: Sample ID: Matrix:	GDG964 MW 106 Water					Collected: Shipped: Received:	2018/02/23 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	1	CALC	5412500	N/A	2018/02/26	Automated	Statchk
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	5412185	2018/02/23	2018/02/24	Liliana Gab	urici
Volatile Organic Compour	nds and F1 PHCs	GC/MSFD	5413136	N/A	2018/02/23	Liliana Gab	urici
Maxxam ID: Sample ID: Matrix:	GDG964 Dup MW 106 Water					Collected: Shipped: Received:	2018/02/23 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Volatile Organic Compour	nds and F1 PHCs	GC/MSFD	5413136	N/A	2018/02/23	Liliana Gab	urici
Maxxam ID: Sample ID:							
Matrix:	GDG965 MW 107 Water					Collected: Shipped: Received:	2018/02/23 2018/02/23
•	MW 107	Instrumentation	Batch	Extracted	Date Analyzed	Shipped:	
Matrix:	MW 107 Water	Instrumentation HSGC/MSFD	Batch 5412712	Extracted N/A	Date Analyzed 2018/02/23	Shipped: Received:	2018/02/23
Matrix:	MW 107 Water F1 & BTEX in Water					Shipped: Received: Analyst	2018/02/23 rt
Matrix: Test Description Petroleum Hydro. CCME F	MW 107 Water F1 & BTEX in Water	HSGC/MSFD	5412712	N/A	2018/02/23	Shipped: Received: Analyst Lyndsey Ha	2018/02/23 rt
Matrix: Test Description Petroleum Hydro. CCME F Petroleum Hydrocarbons Maxxam ID: Sample ID:	MW 107 Water F1 & BTEX in Water F2-F4 in Water GDG966 MW 108	HSGC/MSFD	5412712	N/A	2018/02/23	Shipped: Received: Analyst Lyndsey Ha Liliana Gab Collected: Shipped:	2018/02/23 rt urici 2018/02/23
Matrix: Test Description Petroleum Hydro. CCME F Petroleum Hydrocarbons Maxxam ID: Sample ID: Matrix:	MW 107 Water F1 & BTEX in Water F2-F4 in Water GDG966 MW 108 Water	HSGC/MSFD GC/FID	5412712 5412185	N/A 2018/02/23	2018/02/23 2018/02/24	Shipped: Received: Analyst Lyndsey Ha Liliana Gab Collected: Shipped: Received:	2018/02/23 rt urici 2018/02/23 2018/02/23
Matrix: Test Description Petroleum Hydro. CCME F Petroleum Hydrocarbons Maxxam ID: Sample ID: Matrix: Test Description	MW 107 Water F1 & BTEX in Water F2-F4 in Water GDG966 MW 108 Water	HSGC/MSFD GC/FID Instrumentation	5412712 5412185 Batch	N/A 2018/02/23 Extracted	2018/02/23 2018/02/24 Date Analyzed	Shipped: Received: Analyst Lyndsey Ha Liliana Gab Collected: Shipped: Received: Analyst	2018/02/23 rt urici 2018/02/23 2018/02/23 urici

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	GDG967 BLANK Water					Collected: Shipped: Received:	2018/02/23 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F	1 & BTEX in Water	HSGC/MSFD	5412712	N/A	2018/02/23	Lyndsey H	art
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	5412185	2018/02/23	2018/02/24	Liliana Gal	ourici
Maxxam ID: Sample ID: Matrix:	GDG968 TRIP BLANK Water					Collected: Shipped: Received:	2018/02/23 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F	1 & BTEX in Water	HSGC/MSFD	5412712	N/A	2018/02/23	Lyndsey H	art
Maxxam ID: Sample ID: Matrix:	GDG969 TRIP SPIKE Water					Collected: Shipped: Received:	2018/02/23 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F	1 & BTEX in Water	HSGC/MSFD	5412712	N/A	2018/02/23	Lyndsey H	art
Maxxam ID: Sample ID: Matrix:	GDG970 MW 112 Water					Collected: Shipped: Received:	2018/02/23 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F	1 & BTEX in Water	HSGC/MSFD	5412712	N/A	2018/02/23	Lyndsey H	art
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	5412185	2018/02/23	2018/02/24	Liliana Gal	ourici

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1

3.0°C

Results relate only to the items tested.

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

QUALITY ASSURANCE REPORT

QA/QC				.				
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5412185	LGA	Matrix Spike	o-Terphenyl	2018/02/23		115	%	30 - 130
			F2 (C10-C16 Hydrocarbons)	2018/02/23		100	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2018/02/23		100	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2018/02/23		100	%	50 - 130
5412185	LGA	Spiked Blank	o-Terphenyl	2018/02/23		104	%	30 - 130
			F2 (C10-C16 Hydrocarbons)	2018/02/23		93	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2018/02/23		93	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2018/02/23		93	%	80 - 120
5412185	LGA	Method Blank	o-Terphenyl	2018/02/23		101	%	30 - 130
			F2 (C10-C16 Hydrocarbons)	2018/02/23	<100		ug/L	
			F3 (C16-C34 Hydrocarbons)	2018/02/23	<200		ug/L	
			F4 (C34-C50 Hydrocarbons)	2018/02/23	<200		ug/L	
5412185	LGA	RPD	F2 (C10-C16 Hydrocarbons)	2018/02/23	NC		%	50
			F3 (C16-C34 Hydrocarbons)	2018/02/23	NC		%	50
			F4 (C34-C50 Hydrocarbons)	2018/02/23	NC		%	50
5412712	LHR	Matrix Spike [GDG965-02]	1,4-Difluorobenzene	2018/02/23		103	%	70 - 130
			4-Bromofluorobenzene	2018/02/23		115	%	70 - 130
			D10-Ethylbenzene	2018/02/23		112	%	70 - 130
			D4-1,2-Dichloroethane	2018/02/23		104	%	70 - 130
			Benzene	2018/02/23		97	%	70 - 130
			Toluene	2018/02/23		89	%	70 - 130
			Ethylbenzene	2018/02/23		90	%	70 - 130
			o-Xylene	2018/02/23		90	%	70 - 130
			p+m-Xylene	2018/02/23		91	%	70 - 130
			F1 (C6-C10)	2018/02/23		123	%	70 - 130
5412712	LHR	Spiked Blank	1,4-Difluorobenzene	2018/02/23		103	%	70 - 130
			4-Bromofluorobenzene	2018/02/23		114	%	70 - 130
			D10-Ethylbenzene	2018/02/23		121	%	70 - 130
			D4-1,2-Dichloroethane	2018/02/23		105	%	70 - 130
			Benzene	2018/02/23		101	%	70 - 130
			Toluene	2018/02/23		98	%	70 - 130
			Ethylbenzene	2018/02/23		101	%	70 - 130
			o-Xylene	2018/02/23		98	%	70 - 130
			p+m-Xylene	2018/02/23		101	%	70 - 130
			F1 (C6-C10)	2018/02/23		115	%	70 - 130
5412712	LHR	Method Blank	1,4-Difluorobenzene	2018/02/23		102	%	70 - 130
			4-Bromofluorobenzene	2018/02/23		115	%	70 - 130
			D10-Ethylbenzene	2018/02/23		115	%	70 - 130
			D4-1,2-Dichloroethane	2018/02/23		104	%	70 - 130
			Benzene	2018/02/23	<0.20	-	ug/L	
			Toluene	2018/02/23	<0.20		ug/L	
			Ethylbenzene	2018/02/23	<0.20		ug/L	
			o-Xylene	2018/02/23	<0.20		ug/L	
			p+m-Xylene	2018/02/23	<0.40		ug/L	
			Total Xylenes	2018/02/23	<0.40		ug/L	
			F1 (C6-C10)	2018/02/23	<25		ug/L	
			F1 (C6-C10) - BTEX	2018/02/23	<25		ug/L	
5412712	LHR	RPD [GDG963-02]	Benzene	2018/02/23	NC		%	40
, . / 16	2.111		Toluene	2018/02/23	NC		%	40
			Ethylbenzene	2018/02/23	NC		%	40 40
			o-Xylene	2018/02/23	7.5		%	40

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			p+m-Xylene	2018/02/23	1.1		%	40
			Total Xylenes	2018/02/23	4.1		%	40
			F1 (C6-C10)	2018/02/23	NC		%	40
			F1 (C6-C10) - BTEX	2018/02/23	NC		%	40
5413136	LGA	Matrix Spike [GDG966-02]	4-Bromofluorobenzene	2018/02/23		99	%	70 - 130
			D4-1,2-Dichloroethane	2018/02/23		99	%	70 - 130
			D8-Toluene	2018/02/23		94	%	70 - 130
			Acetone (2-Propanone)	2018/02/23		93	%	60 - 140
			Benzene	2018/02/23		94	%	70 - 130
			Bromodichloromethane	2018/02/23		86	%	70 - 130
			Bromoform	2018/02/23		95	%	70 - 130
			Bromomethane	2018/02/23		79	%	60 - 140
			Carbon Tetrachloride	2018/02/23		84	%	70 - 130
			Chlorobenzene	2018/02/23		85	%	70 - 130
			Chloroform	2018/02/23		85	%	70 - 130
			Dibromochloromethane	2018/02/23		96	%	70 - 130
			1,2-Dichlorobenzene	2018/02/23		89	%	70 - 130
			1,3-Dichlorobenzene	2018/02/23		89	%	70 - 130
			1,4-Dichlorobenzene	2018/02/23		90	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2018/02/23		69	%	60 - 140
			1,1-Dichloroethane	2018/02/23		84	%	70 - 130
			1,2-Dichloroethane	2018/02/23		87	%	70 - 130
			1,1-Dichloroethylene	2018/02/23		81	%	70 - 130
			cis-1,2-Dichloroethylene	2018/02/23		83	%	70 - 130
			trans-1,2-Dichloroethylene	2018/02/23		77	%	70 - 130
			1,2-Dichloropropane	2018/02/23		71	%	70 - 130
			cis-1,3-Dichloropropene	2018/02/23		89	%	70 - 130
			trans-1,3-Dichloropropene	2018/02/23		96	%	70 - 130
			Ethylbenzene	2018/02/23		88	%	70 - 130
			Ethylene Dibromide	2018/02/23		93	%	70 - 130
			Hexane	2018/02/23		82	%	70 - 130
			Methylene Chloride(Dichloromethane)	2018/02/23		72	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2018/02/23		84	%	60 - 140
			Methyl Isobutyl Ketone	2018/02/23		87	%	70 - 130
			Methyl t-butyl ether (MTBE)	2018/02/23		76	%	70 - 130
			Styrene	2018/02/23		91	%	70 - 130
			1,1,1,2-Tetrachloroethane	2018/02/23		95	%	70 - 130
			1,1,2,2-Tetrachloroethane	2018/02/23		89	%	70 - 130
			Tetrachloroethylene	2018/02/23		80	%	70 - 130
			Toluene	2018/02/23		81	%	70 - 130
			1,1,1-Trichloroethane	2018/02/23		82	%	70 - 130
			1,1,2-Trichloroethane	2018/02/23		76	%	70 - 130
			Trichloroethylene	2018/02/23		84	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2018/02/23		84	%	70 - 130
			Vinyl Chloride	2018/02/23		81	%	70 - 130
			p+m-Xylene	2018/02/23		81	%	70 - 130
			o-Xylene	2018/02/23		84	%	70 - 130
			F1 (C6-C10)	2018/02/23		93	%	60 - 140
5413136	LGA	Spiked Blank	4-Bromofluorobenzene	2018/02/23		102	%	70 - 130
5 115150	237	opined blank	D4-1,2-Dichloroethane	2018/02/23		102	%	70 - 130
			D8-Toluene	2018/02/23		100	%	70 - 130

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acetone (2-Propanone)	2018/02/23		80	%	60 - 140
			Benzene	2018/02/23		108	%	70 - 130
			Bromodichloromethane	2018/02/23		92	%	70 - 130
			Bromoform	2018/02/23		96	%	70 - 130
			Bromomethane	2018/02/23		84	%	60 - 140
			Carbon Tetrachloride	2018/02/23		101	%	70 - 130
			Chlorobenzene	2018/02/23		96	%	70 - 130
			Chloroform	2018/02/23		90	%	70 - 130
			Dibromochloromethane	2018/02/23		101	%	70 - 130
			1,2-Dichlorobenzene	2018/02/23		96	%	70 - 130
			1,3-Dichlorobenzene	2018/02/23		98	%	70 - 130
			1,4-Dichlorobenzene	2018/02/23		99	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2018/02/23		83	%	60 - 140
			1,1-Dichloroethane	2018/02/23		96	%	70 - 130
			1,2-Dichloroethane	2018/02/23		88	%	70 - 130
			1,1-Dichloroethylene	2018/02/23		95	%	70 - 130
			cis-1,2-Dichloroethylene	2018/02/23		94	%	70 - 130
			trans-1,2-Dichloroethylene	2018/02/23		92	%	70 - 130
			1,2-Dichloropropane	2018/02/23		81	%	70 - 130
			cis-1,3-Dichloropropene	2018/02/23		89	%	70 - 130
			trans-1,3-Dichloropropene	2018/02/23		82	%	70 - 130
			Ethylbenzene	2018/02/23		103	%	70 - 130
			Ethylene Dibromide	2018/02/23		95	%	70 - 130
			Hexane	2018/02/23		101	%	70 - 130
			Methylene Chloride(Dichloromethane)	2018/02/23		79	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2018/02/23		83	%	60 - 140
			Methyl Isobutyl Ketone	2018/02/23		88	%	70 - 130
			Methyl t-butyl ether (MTBE)	2018/02/23		85	%	70 - 130
			Styrene	2018/02/23		109	%	70 - 130
			1,1,1,2-Tetrachloroethane	2018/02/23		107	%	70 - 130
			1,1,2,2-Tetrachloroethane	2018/02/23		91	%	70 - 130
			Tetrachloroethylene	2018/02/23		106	%	70 - 130
			Toluene	2018/02/23		98	%	70 - 130
			1,1,1-Trichloroethane	2018/02/23		97	%	70 - 130
			1,1,2-Trichloroethane	2018/02/23		81	%	70 - 130
			Trichloroethylene	2018/02/23		100	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2018/02/23		100	%	70 - 130
			Vinyl Chloride	2018/02/23		95	%	70 - 130
			p+m-Xylene	2018/02/23		97	%	70 - 130
			o-Xylene	2018/02/23		106	%	70 - 130
			F1 (C6-C10)	2018/02/23		104	%	60 - 140
5413136	LGA	Method Blank	4-Bromofluorobenzene	2018/02/23		89	%	70 - 130
			D4-1,2-Dichloroethane	2018/02/23		107	%	70 - 130
			D8-Toluene	2018/02/23		88	%	70 - 130
			Acetone (2-Propanone)	2018/02/23	<10		ug/L	
			Benzene	2018/02/23	<0.20		ug/L	
			Bromodichloromethane	2018/02/23	<0.50		ug/L	
			Bromoform	2018/02/23	<1.0		ug/L	
			Bromomethane	2018/02/23	<0.50		ug/L	
			Carbon Tetrachloride	2018/02/23	<0.20		ug/L	
1			Chlorobenzene	2018/02/23	<0.20		ug/L	
l			Chloroform	2018/02/23	<0.20		ug/L	

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	lni+		Parameter	Date Analyzed	Value	Recovery		QC Limits
Batch	Init	QC Type	Parameter Dibromochloromethane	Date Analyzed 2018/02/23	Value <0.50	Recovery	UNITS ug/L	QC LIMITS
			1,2-Dichlorobenzene	2018/02/23	<0.50		ug/L	
			1,3-Dichlorobenzene	2018/02/23	<0.50		ug/L	
			1,4-Dichlorobenzene	2018/02/23	<0.50		ug/L	
			Dichlorodifluoromethane (FREON 12)	2018/02/23	<1.0		ug/L	
			1,1-Dichloroethane	2018/02/23	<0.20		ug/L	
			1,2-Dichloroethane	2018/02/23	<0.20		ug/L	
			1,1-Dichloroethylene	2018/02/23	<0.30		ug/L ug/L	
			-	2018/02/23	<0.20			
			cis-1,2-Dichloroethylene		<0.50		ug/L	
			trans-1,2-Dichloroethylene	2018/02/23 2018/02/23	<0.30		ug/L	
			1,2-Dichloropropane				ug/L	
			cis-1,3-Dichloropropene	2018/02/23	<0.30		ug/L	
			trans-1,3-Dichloropropene	2018/02/23	<0.40		ug/L	
			Ethylbenzene Sthulana Dihaamida	2018/02/23	<0.20		ug/L	
			Ethylene Dibromide	2018/02/23	<0.20		ug/L	
			Hexane	2018/02/23	<1.0		ug/L	
			Methylene Chloride(Dichloromethane)	2018/02/23	<2.0		ug/L	
			Methyl Ethyl Ketone (2-Butanone)	2018/02/23	<10		ug/L	
			Methyl Isobutyl Ketone	2018/02/23	<5.0		ug/L	
			Methyl t-butyl ether (MTBE)	2018/02/23	<0.50		ug/L	
			Styrene	2018/02/23	<0.50		ug/L	
			1,1,1,2-Tetrachloroethane	2018/02/23	<0.50		ug/L	
			1,1,2,2-Tetrachloroethane	2018/02/23	<0.50		ug/L	
			Tetrachloroethylene	2018/02/23	<0.20		ug/L	
			Toluene	2018/02/23	<0.20		ug/L	
			1,1,1-Trichloroethane	2018/02/23	<0.20		ug/L	
			1,1,2-Trichloroethane	2018/02/23	<0.50		ug/L	
			Trichloroethylene	2018/02/23	<0.20		ug/L	
			Trichlorofluoromethane (FREON 11)	2018/02/23	<0.50		ug/L	
			Vinyl Chloride	2018/02/23	<0.20		ug/L	
			p+m-Xylene	2018/02/23	<0.20		ug/L	
			o-Xylene	2018/02/23	<0.20		ug/L	
			Total Xylenes	2018/02/23	<0.20		ug/L	
			F1 (C6-C10)	2018/02/23	<25		ug/L	
			F1 (C6-C10) - BTEX	2018/02/23	<25		ug/L	
5413136	LGA	RPD [GDG964-02]	Acetone (2-Propanone)	2018/02/23	NC		%	30
			Benzene	2018/02/23	NC		%	30
			Bromodichloromethane	2018/02/23	NC		%	30
			Bromoform	2018/02/23	NC		%	30
			Bromomethane	2018/02/23	NC		%	30
			Carbon Tetrachloride	2018/02/23	NC		%	30
			Chlorobenzene	2018/02/23	NC		%	30
			Chloroform	2018/02/23	NC		%	30
			Dibromochloromethane	2018/02/23	NC		%	30
			1,2-Dichlorobenzene	2018/02/23	NC		%	30
			1,3-Dichlorobenzene	2018/02/23	NC		%	30
			1,4-Dichlorobenzene	2018/02/23	NC		%	30
			Dichlorodifluoromethane (FREON 12)	2018/02/23	NC		%	30
			1,1-Dichloroethane	2018/02/23	NC		%	30
			1,2-Dichloroethane	2018/02/23	NC		%	30
			1,1-Dichloroethylene	2018/02/23	NC		%	30
			cis-1,2-Dichloroethylene	2018/02/23			,,,	50

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			trans-1,2-Dichloroethylene	2018/02/23	NC		%	30
			1,2-Dichloropropane	2018/02/23	NC		%	30
			cis-1,3-Dichloropropene	2018/02/23	NC		%	30
			trans-1,3-Dichloropropene	2018/02/23	NC		%	30
			Ethylbenzene	2018/02/23	NC		%	30
			Ethylene Dibromide	2018/02/23	NC		%	30
			Hexane	2018/02/23	NC		%	30
			Methylene Chloride(Dichloromethane)	2018/02/23	NC		%	30
			Methyl Ethyl Ketone (2-Butanone)	2018/02/23	NC		%	30
			Methyl Isobutyl Ketone	2018/02/23	NC		%	30
			Methyl t-butyl ether (MTBE)	2018/02/23	NC		%	30
			Styrene	2018/02/23	NC		%	30
			1,1,1,2-Tetrachloroethane	2018/02/23	NC		%	30
			1,1,2,2-Tetrachloroethane	2018/02/23	NC		%	30
			Tetrachloroethylene	2018/02/23	NC		%	30
			Toluene	2018/02/23	NC		%	30
			1,1,1-Trichloroethane	2018/02/23	NC		%	30
			1,1,2-Trichloroethane	2018/02/23	NC		%	30
			Trichloroethylene	2018/02/23	NC		%	30
			Trichlorofluoromethane (FREON 11)	2018/02/23	NC		%	30
			Vinyl Chloride	2018/02/23	NC		%	30
			p+m-Xylene	2018/02/23	NC		%	30
			o-Xylene	2018/02/23	NC		%	30
			Total Xylenes	2018/02/23	NC		%	30
			F1 (C6-C10)	2018/02/23	NC		%	30
			F1 (C6-C10) - BTEX	2018/02/23	NC		%	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

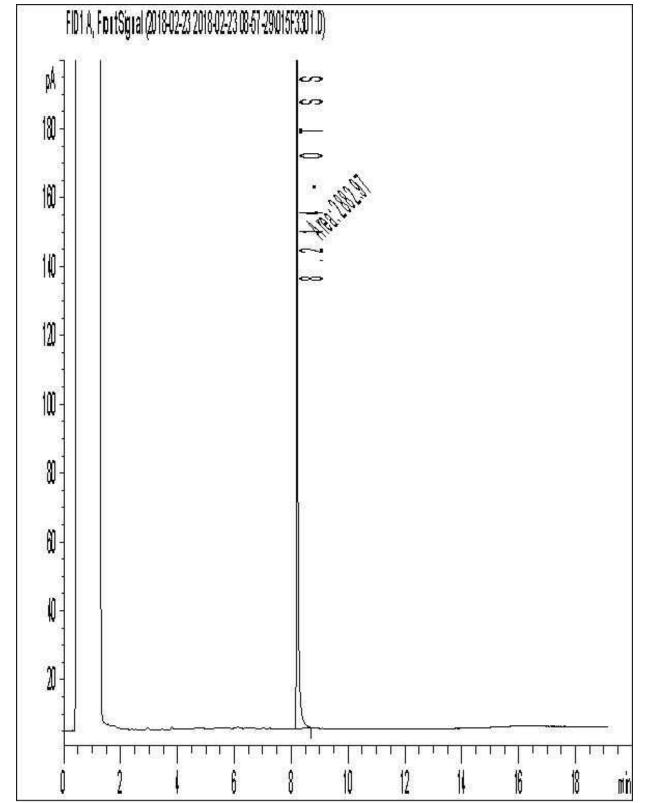
Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

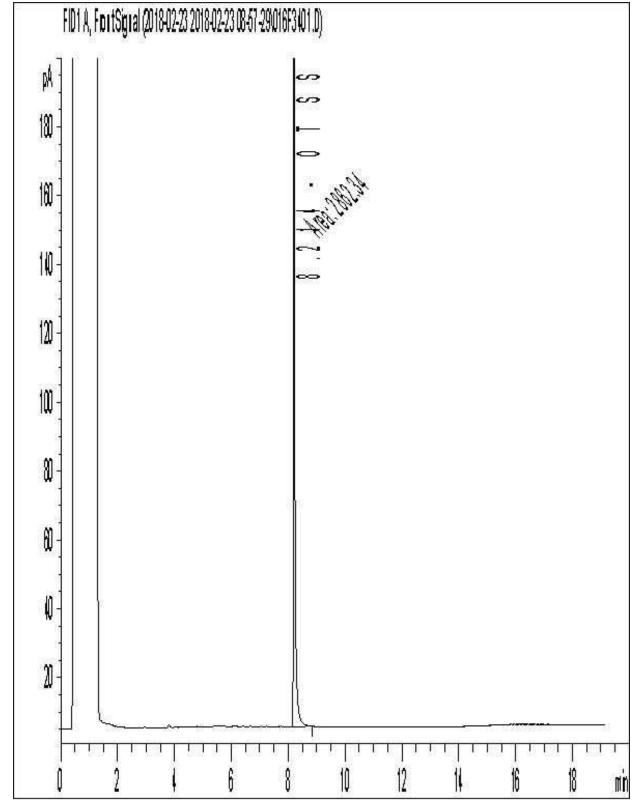
Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

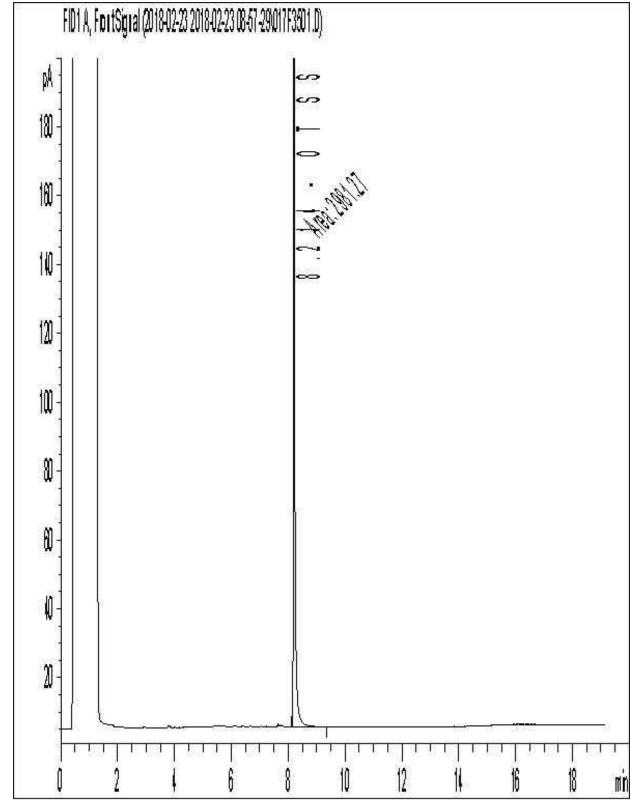
Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

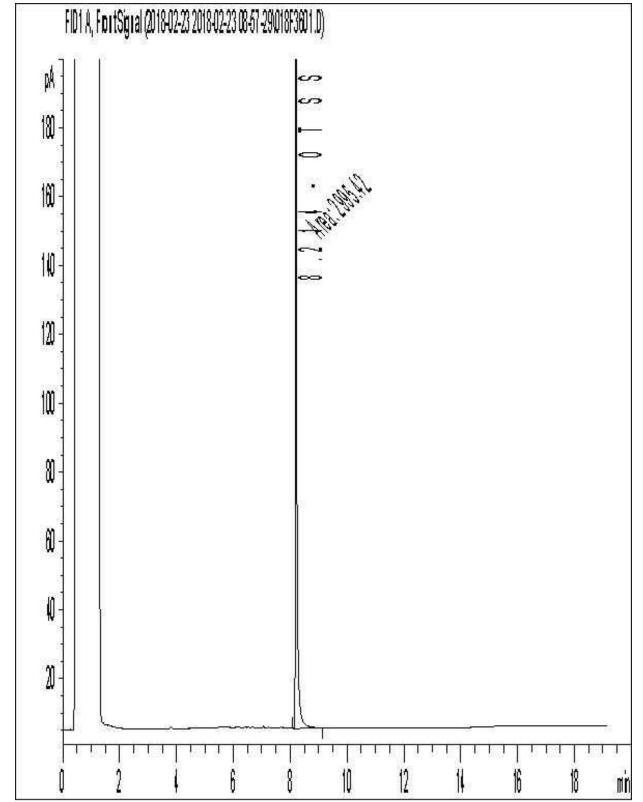

VALIDATION SIGNATURE PAGE

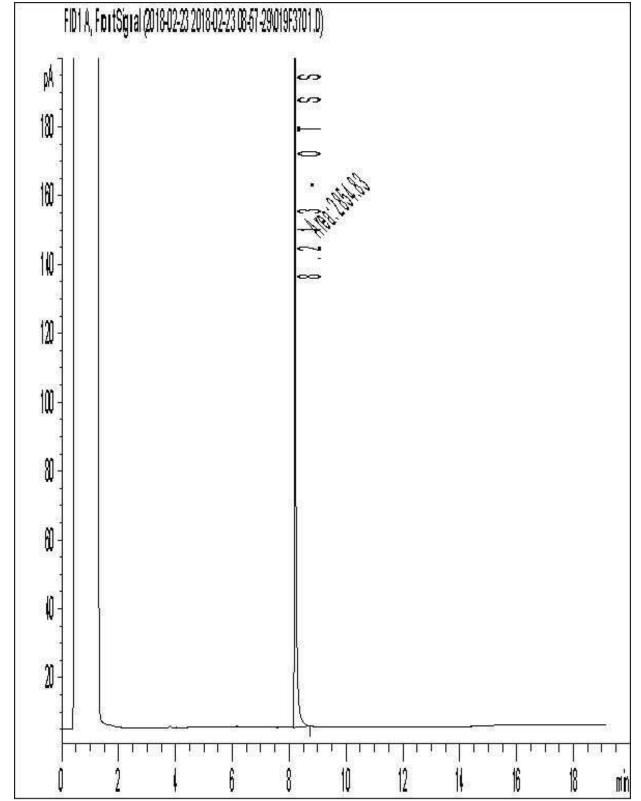
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

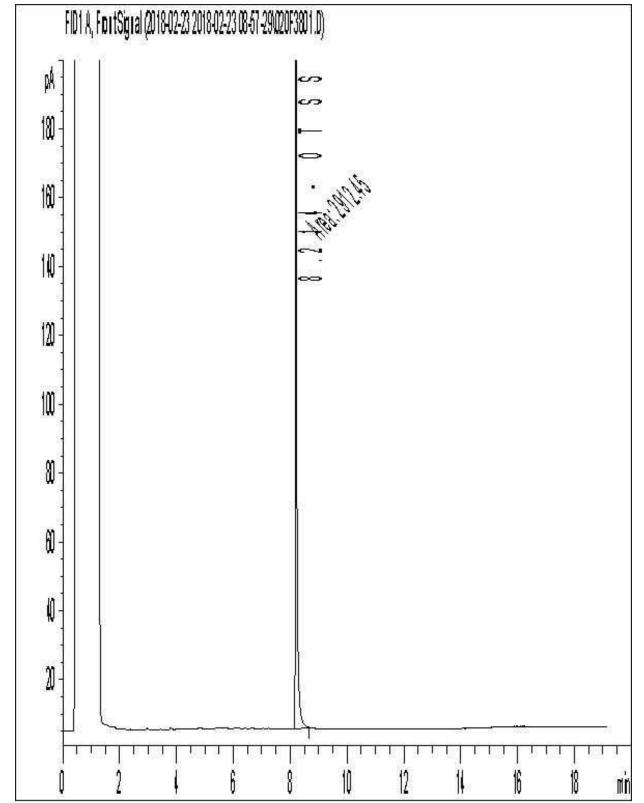

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	· /	6740 Campobello Road, Mi				REPOR						1.1.1	PROJEC	T INFORMAT	ION:		14		Laboratory Use	
SALTER INC	HOODOO Deddar			Company	Mame: #19684	Terrapex Er	vironmenta	l Ltd		Stand 1	Ouotation #	ŧ	B751	11	্রা পু হা				Maxxam Job #:	Bottle Order #:
npany Na	Retail Invoices			Attention:	Geoff L	Call Contraction of the Contract					P.O. #:					18 (a)				650870
ress:	4919-59th St Su			Address:		ant St. Suite 1		8 65 (1) (1) (1) (1)			Project:		<u>CB10</u>	57.00	<u>1951 - 1985</u>	1.Start			COC #:	Project Manager:
	Red Deer AB T4) 356-3015 >			ton ON L7R 4. 32-5939 x228	Fax:	1		Contraction and the	Project Nar Site #:	me:	1622	Roger Ste	vens D	rive				Augustyna Dobosz
ail:	(403) 357-6400 : emilie.price@pa	rkland.ca, victoria.piana				er@terrapex.c		WHEN STOL			Sampled B	y:	R	H		Jie Jie All	ALL A		C#650870-04-01	
	REGULATED DRINKIN	G WATER OR WATER I	NTENDED F	OR HUMAN CC	NSUMPTION	MUST BE				ANA	LYSIS REC	QUESTED	(PLEASE	BE SPECIFIC)				Tumaround Time (TAT) F Please provide advance notice f	Required: or rush projects
inc Li	SUBMITTED	ON THE MAXXAM DRIN	IKING WATE	R CHAIN OF C	USTODY		le):	F1 &		Iphate	\$		5. de		kage		ics HS		andard) TAT:	E C
11000	ulation 153 (2011)		ner Regulations		Special In	structions	t circle): VI	CCME F	F2-F4	ng pu	%cia)	8			s Pac		Organ		if Rush TAT is not specified): = 5-7 Working days for most tests	La se la secola de la
Table 1 Table 2	Res/Park Mediu	e Reg 558.	Sanitary Sewer Storm Sewer By				(please	bons CC	rbons F2	Metals a d, %silt,	ld, %silt,	153	E.		norganic	PCBs	Volatile (Please note: Standard TAT for certain tests such as BOD and Dioxins/Furans are > 5 days - contact your Project Manager for details.		
Fable 3 Fable -	Agri/Other For R	PWQ0	nicipality				Field Filtered (please Metals / Hg / Cr	eum Hydroca	eum Hydroca	153 ICPMS	exture (%san	the Oley	CaCI2 EXTRAC	point	g 558 TCLP I	558 TCLP	g 558 TCLP	Date Required	tion Number, AP 20180223-	me Required:
	Include Criter	a on Certificate of Analy Sample (Location) Iden		Date Sampled	Time Sampled	Matrix	Ë	Petrole BTEX	Petrol	0.Reg	Soil Te	Maich	pH Ca	Flash	O.Reg	O.Reg	O.Reg	# of Bottles	Comm	nents
		MW101		Feb 23	9:13	1910HL	-	X	×									\$4		
		MU106		Feb 23	9:25	SOIL GL	-	X	X			×						四十		23-Feb-18 10:10
		MU107		Feb 23	10:00	SOIL	-	X	X									14		
		MWIOS		Feb 23	8:15	-SOIL		×	X			X						14	B	841230
		Blank		Feb 23	9:30	SOIL		×	X		6							B 4	RECEIVED IN C	
		MUDIP Bloc	nK	Feb23	9:06	SOT		×	11HH								-	B 2	HECEIVED IN C	
		trip Spil	C	Feb 23	14:00	SOIL	1000	×										2		- Andrews
		MUII2		Feb 23	9:15	SOIL		X	X							_		御牛		1
						SOIL													On	1 Ce
						SOIL								# jars u	sed and	_		Laborat	ory Use Only	
	RELINQUISHED BY: (Date: (YY/M				BY: (Signature			Date: (YY)	2010/00/02/2010		ime	not sul	omitted	Time	Sensitive	Temperatu	re (°C) on Recei Custody	Seal Yes
PH	4 RACHEL	HERZOG	18/02			ariana		*										3,3	3 Intac	


Maxxam Analytics International Corporation o/a Maxxam Analytics


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your P.O. #: PIONEER Your Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your C.O.C. #: 650870-05-01

Attention: Geoff Lussier

Terrapex Environmental Ltd 920 Brant St. Suite 16 Burlington, ON Canada L7R 4J1

> Report Date: 2018/03/05 Report #: R5029583 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B842304 Received: 2018/02/23, 15:05

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
pH CaCl2 EXTRACT (1)	2	2018/03/02	2018/03/02	CAM SOP-00413	EPA 9045 D m
Sulphate (20:1 Extract) (1)	2	N/A	2018/03/02	CAM SOP-00464	EPA 375.4 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

Your P.O. #: PIONEER Your Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your C.O.C. #: 650870-05-01

Attention: Geoff Lussier

Terrapex Environmental Ltd 920 Brant St. Suite 16 Burlington, ON Canada L7R 4J1

> Report Date: 2018/03/05 Report #: R5029583 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B842304 Received: 2018/02/23, 15:05

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

RESULTS OF ANALYSES OF SOIL

Maxxam ID		GDL933	GDL934		GDL934				
Sampling Date		2018/02/21 13:00	2018/02/21 14:00		2018/02/21 14:00				
COC Number		650870-05-01	650870-05-01		650870-05-01				
	UNITS	MW102 SAMPLE 4	BH103 SAMPLE 2	QC Batch	BH103 SAMPLE 2 Lab-Dup	RDL	QC Batch		
Inorganics									
Available (CaCl2) pH	рН	7.85	7.93	5422743					
Soluble (20:1) Sulphate (SO4)	ug/g	54	54	5420892	42	20	5420892		
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate									

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	GDL933 MW102 SAMPLE 4 Soil					Collected: Shipped: Received:	2018/02/21 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	5422743	2018/03/02	2018/03/02	Tahir Anwa	ar
Sulphate (20:1 Extract)		KONE/EC	5420892	N/A	2018/03/02	Alina Dobr	eanu
Maxxam ID: Sample ID: Matrix:	GDL934 BH103 SAMPLE 2 Soil					Collected: Shipped: Received:	2018/02/21 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	5422743	2018/03/02	2018/03/02	Tahir Anwa	ar
Sulphate (20:1 Extract)		KONE/EC	5420892	N/A	2018/03/02	Alina Dobr	eanu
Maxxam ID: Sample ID: Matrix:	GDL934 Dup BH103 SAMPLE 2 Soil					Collected: Shipped: Received:	2018/02/21 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Sulphate (20:1 Extract)		KONE/EC	5420892	N/A	2018/03/02	Alina Dobr	02011

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 0.0°C

Results relate only to the items tested.

Your P.O. #: PIONEER Your Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your C.O.C. #: 650870-06-01

Attention: Geoff Lussier

Terrapex Environmental Ltd 920 Brant St. Suite 16 Burlington, ON Canada L7R 4J1

> Report Date: 2018/03/12 Report #: R5038214 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B847405

Received: 2018/03/01, 17:00

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum (1)	1	N/A	2018/03/09	CAM SOP-00301	EPA 8270D m
ABN Compounds in soil by GC/MS (1)	1	2018/03/08	2018/03/09	CAM SOP-00301	EPA 8270 m
1,3-Dichloropropene Sum (1)	1	N/A	2018/03/07		EPA 8260C m
Dinitrotoluene Sum (1)	1	2018/03/02	2018/03/09	CAM SOP - 00301	EPA 8270
Petroleum Hydrocarbons F2-F4 in Soil (1, 2)	1	2018/03/06	2018/03/07	CAM SOP-00316	CCME CWS m
F4G (CCME Hydrocarbons Gravimetric) (1)	1	2018/03/09	2018/03/09	CAM SOP-00316	CCME PHC-CWS m
Mercury (TCLP Leachable) (mg/L) (1)	1	N/A	2018/03/07	CAM SOP-00453	EPA 7470A m
Total Metals in TCLP Leachate by ICPMS (1)	1	2018/03/07	2018/03/07	CAM SOP-00447	EPA 6020B m
Moisture (1)	1	N/A	2018/03/05	CAM SOP-00445	Carter 2nd ed 51.2 m
TCLP - % Solids (1)	1	2018/03/06	2018/03/07	CAM SOP-00401	EPA 1311 Update I m
TCLP - Extraction Fluid (1)	1	N/A	2018/03/07	CAM SOP-00401	EPA 1311 Update I m
TCLP - Initial and final pH (1)	1	N/A	2018/03/07	CAM SOP-00401	EPA 1311 Update I m
Volatile Organic Compounds and F1 PHCs (1)	1	N/A	2018/03/06	CAM SOP-00230	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Your P.O. #: PIONEER Your Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your C.O.C. #: 650870-06-01

Attention: Geoff Lussier

Terrapex Environmental Ltd 920 Brant St. Suite 16 Burlington, ON Canada L7R 4J1

> Report Date: 2018/03/12 Report #: R5038214 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B847405

Received: 2018/03/01, 17:00

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 22

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID		GEL410		
Sampling Data		2018/02/26		
Sampling Date		12:00		
COC Number		650870-06-01		
	UNITS	TCLP	RDL	QC Batch
Inorganics				
Moisture	%	8.3	1.0	5425860
Calculated Parameters				
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	0.050	5423161
Volatile Organics				
Acetone (2-Propanone)	ug/g	<0.50	0.50	5425684
Benzene	ug/g	<0.020	0.020	5425684
Bromodichloromethane	ug/g	<0.050	0.050	5425684
Bromoform	ug/g	<0.050	0.050	5425684
Bromomethane	ug/g	<0.050	0.050	5425684
Carbon Tetrachloride	ug/g	<0.050	0.050	5425684
Chlorobenzene	ug/g	<0.050	0.050	5425684
Chloroform	ug/g	<0.050	0.050	5425684
Dibromochloromethane	ug/g	<0.050	0.050	5425684
1,2-Dichlorobenzene	ug/g	<0.050	0.050	5425684
1,3-Dichlorobenzene	ug/g	<0.050	0.050	5425684
1,4-Dichlorobenzene	ug/g	<0.050	0.050	5425684
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	0.050	5425684
1,1-Dichloroethane	ug/g	<0.050	0.050	5425684
1,2-Dichloroethane	ug/g	<0.050	0.050	5425684
1,1-Dichloroethylene	ug/g	<0.050	0.050	5425684
cis-1,2-Dichloroethylene	ug/g	<0.050	0.050	5425684
trans-1,2-Dichloroethylene	ug/g	<0.050	0.050	5425684
1,2-Dichloropropane	ug/g	<0.050	0.050	5425684
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	5425684
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	5425684
Ethylbenzene	ug/g	<0.020	0.020	5425684
Ethylene Dibromide	ug/g	<0.050	0.050	5425684
Hexane	ug/g	<0.050	0.050	5425684
Methylene Chloride(Dichloromethane)	ug/g	<0.050	0.050	5425684
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	0.50	5425684
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID		GEL410		
Sampling Date		2018/02/26		
		12:00		
COC Number		650870-06-01		
	UNITS	TCLP	RDL	QC Batch
Methyl Isobutyl Ketone	ug/g	<0.50	0.50	5425684
Methyl t-butyl ether (MTBE)	ug/g	<0.050	0.050	5425684
Styrene	ug/g	<0.050	0.050	5425684
1,1,1,2-Tetrachloroethane	ug/g	<0.050	0.050	5425684
1,1,2,2-Tetrachloroethane	ug/g	<0.050	0.050	5425684
Tetrachloroethylene	ug/g	<0.050	0.050	5425684
Toluene	ug/g	<0.020	0.020	5425684
1,1,1-Trichloroethane	ug/g	<0.050	0.050	5425684
1,1,2-Trichloroethane	ug/g	<0.050	0.050	5425684
Trichloroethylene	ug/g	<0.050	0.050	5425684
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	0.050	5425684
Vinyl Chloride	ug/g	<0.020	0.020	5425684
p+m-Xylene	ug/g	<0.020	0.020	5425684
o-Xylene	ug/g	<0.020	0.020	5425684
Total Xylenes	ug/g	<0.020	0.020	5425684
F1 (C6-C10)	ug/g	<10	10	5425684
F1 (C6-C10) - BTEX	ug/g	<10	10	5425684
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	5428073
F3 (C16-C34 Hydrocarbons)	ug/g	290	50	5428073
F4 (C34-C50 Hydrocarbons)	ug/g	720	50	5428073
Reached Baseline at C50	ug/g	No		5428073
Surrogate Recovery (%)				
o-Terphenyl	%	92		5428073
4-Bromofluorobenzene	%	90		5425684
D10-o-Xylene	%	88		5425684
D4-1,2-Dichloroethane	%	116		5425684
D8-Toluene	%	99		5425684
RDL = Reportable Detection Limit	•			-
QC Batch = Quality Control Batch				

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

O.REG 153 SEMIVOLATILES PACKAGE (SOIL)

Maxxam ID		GEL410			GEL410		
Sampling Data		2018/02/26			2018/02/26		
Sampling Date		12:00			12:00		
COC Number		650870-06-01			650870-06-01		
	UNITS	TCLP	RDL	QC Batch	TCLP Lab-Dup	RDL	QC Batch
Semivolatile Organics							
1,2,4-Trichlorobenzene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
1-Methylnaphthalene	ug/g	<0.06	0.06	5431382	<0.06	0.06	5431382
2,4,5-Trichlorophenol	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
2,4,6-Trichlorophenol	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
2,4-Dichlorophenol	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
2,4-Dimethylphenol	ug/g	<0.4	0.4	5431382	<0.4	0.4	5431382
2,4-Dinitrophenol	ug/g	<1	1	5431382	<1	1	5431382
2,4-Dinitrotoluene	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
2,6-Dinitrotoluene	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
2-Chlorophenol	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
2-Methylnaphthalene	ug/g	<0.06	0.06	5431382	<0.06	0.06	5431382
3,3'-Dichlorobenzidine	ug/g	<1	1	5431382	<1	1	5431382
Acenaphthene	ug/g	<0.06	0.06	5431382	<0.06	0.06	5431382
Acenaphthylene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
Anthracene	ug/g	<0.06	0.06	5431382	<0.06	0.06	5431382
Benzo(a)anthracene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
Benzo(a)pyrene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
Benzo(b/j)fluoranthene	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
Benzo(g,h,i)perylene	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
Benzo(k)fluoranthene	ug/g	<0.06	0.06	5431382	<0.06	0.06	5431382
Biphenyl	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
Bis(2-chloroethyl)ether	ug/g	<0.4	0.4	5431382	<0.4	0.4	5431382
Bis (2-chlorois opropyl) ether	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
Bis(2-ethylhexyl)phthalate	ug/g	<2	2	5431382	<2	2	5431382
Chrysene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
Dibenz(a,h)anthracene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
Diethyl phthalate	ug/g	<0.4	0.4	5431382	<0.4	0.4	5431382
Dimethyl phthalate	ug/g	<0.4	0.4	5431382	<0.4	0.4	5431382
Fluoranthene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
Fluorene	ug/g	<0.06	0.06	5431382	<0.06	0.06	5431382
RDL = Reportable Detection L						•	
QC Batch = Quality Control B							
Lab-Dup = Laboratory Initiate	d Duplic	ate					

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

O.REG 153 SEMIVOLATILES PACKAGE (SOIL)

Maxxam ID		GEL410			GEL410		
Sampling Date		2018/02/26 12:00			2018/02/26 12:00		
COC Number		650870-06-01			650870-06-01		
	UNITS	TCLP	RDL	QC Batch	TCLP Lab-Dup	RDL	QC Batch
Indeno(1,2,3-cd)pyrene	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
Naphthalene	ug/g	<0.06	0.06	5431382	<0.06	0.06	5431382
p-Chloroaniline	ug/g	<0.4	0.4	5431382	<0.4	0.4	5431382
Pentachlorophenol	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
Phenanthrene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
Phenol	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
Pyrene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
Calculated Parameters							
2,4- & 2,6-Dinitrotoluene	ug/g	<0.28	0.28	5423858			
Methylnaphthalene, 2-(1-)	ug/g	<0.085	0.085	5423856			
Surrogate Recovery (%)	-					•	
2,4,6-Tribromophenol	%	73		5431382	69		5431382
2-Fluorobiphenyl	%	92		5431382	88		5431382
D14-Terphenyl (FS)	%	96		5431382	94		5431382
D5-Nitrobenzene	%	74		5431382	72		5431382
RDL = Reportable Detection	Limit						
QC Batch = Quality Control B	atch						
Lab-Dup = Laboratory Initiate	ed Duplic	ate					

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

O.REG 558 TCLP LEACHATE PREPARATION (SOIL)

Maxxam ID		GEL410							
Sampling Date		2018/02/26 12:00							
COC Number		650870-06-01							
	UNITS	TCLP	RDL	QC Batch					
Inorganics	Inorganics								
Final pH	рН	6.26		5428355					
Initial pH	рН	9.41		5428355					
TCLP - % Solids	%	100	0.2	5428353					
TCLP Extraction Fluid	N/A	FLUID 1		5428354					
RDL = Reportable Detection Limit QC Batch = Quality Control Batch									

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

O.REG 558 TCLP METALS (SOIL)

Maxxam ID		GEL410		
Sampling Date		2018/02/26 12:00		
COC Number		650870-06-01		
	UNITS	TCLP	RDL	QC Batch
Metals				
Leachable Mercury (Hg)	mg/L	<0.0010	0.0010	5429337
Leachable Arsenic (As)	mg/L	<0.2	0.2	5429454
Leachable Barium (Ba)	mg/L	0.6	0.2	5429454
Leachable Boron (B)	mg/L	0.1	0.1	5429454
Leachable Cadmium (Cd)	mg/L	<0.05	0.05	5429454
Leachable Chromium (Cr)	mg/L	<0.1	0.1	5429454
Leachable Lead (Pb)	mg/L	<0.1	0.1	5429454
Leachable Selenium (Se)	mg/L	<0.1	0.1	5429454
Leachable Silver (Ag)	mg/L	< 0.01	0.01	5429454
Leachable Uranium (U)	mg/L	<0.01	0.01	5429454
RDL = Reportable Detection	Limit			
QC Batch = Quality Control I	Batch			

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		GEL410		
Sampling Date		2018/02/26 12:00		
COC Number		650870-06-01		
	UNITS	TCLP	RDL	QC Batch
F2-F4 Hydrocarbons				
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	2400	100	5433583
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

TEST SUMMARY

Maxxam ID: GEL410 Sample ID: TCLP Matrix: Soil					Collected: 2018/02/26 Shipped: Received: 2018/03/01
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5423856	N/A	2018/03/09	Automated Statchk
ABN Compounds in soil by GC/MS	GC/MS	5431382	2018/03/08	2018/03/09	Milijana Avramovic
1,3-Dichloropropene Sum	CALC	5423161	N/A	2018/03/07	Automated Statchk
Dinitrotoluene Sum	CALC	5423858	2018/03/09	2018/03/09	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5428073	2018/03/06	2018/03/07	Zhiyue (Frank) Zhu
F4G (CCME Hydrocarbons Gravimetric)	BAL	5433583	2018/03/09	2018/03/09	Debra Deslandes
Mercury (TCLP Leachable) (mg/L)	CV/AA	5429337	N/A	2018/03/07	Ron Morrison
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	5429454	2018/03/07	2018/03/07	Matthew Ritenburg
Moisture	BAL	5425860	N/A	2018/03/05	Min Yang
TCLP - % Solids	BAL	5428353	2018/03/06	2018/03/07	Jian (Ken) Wang
TCLP - Extraction Fluid		5428354	N/A	2018/03/07	Jian (Ken) Wang
TCLP - Initial and final pH	РН	5428355	N/A	2018/03/07	Jian (Ken) Wang
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5425684	N/A	2018/03/06	Karen Hughes

Maxxam ID: Sample ID: Matrix:	GEL410 Dup TCLP Soil					Collected: Shipped: Received:	2018/02/26 2018/03/01
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
ABN Compounds in soil by GC/MS		GC/MS	5431382	2018/03/08	2018/03/09	Milijana A	vramovic

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

GENERAL COMMENTS

Each	emperature is the	average of up to	hree cooler temperatures taken at receipt						
	Package 1	0.0°C							
		•	Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol nal methanol was added to the vial to ensure extraction efficiency.						
ABN A	ABN Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.								
Resul	ts relate only to the	e items tested.							

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
5425684	KH2	Matrix Spike	4-Bromofluorobenzene	2018/03/06		96	%	60 - 140
			D10-o-Xylene	2018/03/06		96	%	60 - 130
			D4-1,2-Dichloroethane	2018/03/06		110	%	60 - 140
			D8-Toluene	2018/03/06		100	%	60 - 140
			Acetone (2-Propanone)	2018/03/06		104	%	60 - 140
			Benzene	2018/03/06		99	%	60 - 140
			Bromodichloromethane	2018/03/06		95	%	60 - 140
			Bromoform	2018/03/06		85	%	60 - 140
			Bromomethane	2018/03/06		108	%	60 - 140
			Carbon Tetrachloride	2018/03/06		101	%	60 - 140
			Chlorobenzene	2018/03/06		94	%	60 - 14
			Chloroform	2018/03/06		101	%	60 - 14
			Dibromochloromethane	2018/03/06		91	%	60 - 140
			1,2-Dichlorobenzene	2018/03/06		95	%	60 - 140
			1,3-Dichlorobenzene	2018/03/06		96	%	60 - 140
			1,4-Dichlorobenzene	2018/03/06		102	%	60 - 140
			Dichlorodifluoromethane (FREON 12)	2018/03/06		102	%	60 - 140
			1,1-Dichloroethane	2018/03/06		103	%	60 - 140
			1,2-Dichloroethane	2018/03/06		103	%	60 - 140
			1,1-Dichloroethylene	2018/03/06		102	%	60 - 140
			cis-1,2-Dichloroethylene	2018/03/06		100	%	60 - 140
			trans-1,2-Dichloroethylene	2018/03/06		98	%	60 - 14
			1,2-Dichloropropane	2018/03/06		96	%	60 - 14
		cis-1,3-Dichloropropene	2018/03/06		95	%	60 - 14	
			trans-1,3-Dichloropropene	2018/03/06		95 97	%	60 - 14
			Ethylbenzene	2018/03/06		94	%	60 - 14
			Ethylene Dibromide	2018/03/06		94	%	60 - 14
			Hexane	2018/03/06		94 102	%	60 - 14 60 - 14
			Methylene Chloride(Dichloromethane)	2018/03/06		102	%	60 - 14
			Methyl Ethyl Ketone (2-Butanone)	2018/03/06		100	%	60 - 140
			Methyl Isobutyl Ketone	2018/03/06		96	%	60 - 14
			Methyl t-butyl ether (MTBE)	2018/03/06		98	%	60 - 14
				2018/03/06		98 87	%	60 - 14
			Styrene 1,1,1,2-Tetrachloroethane	2018/03/06		92	%	60 - 14 60 - 14
			1,1,2,2-Tetrachloroethane	2018/03/06		92 94	%	60 - 14 60 - 14
						94 97	%	60 - 14
			Tetrachloroethylene	2018/03/06 2018/03/06		97		60 - 14 60 - 14
			Toluene				%	
			1,1,1-Trichloroethane	2018/03/06		104	%	60 - 14
			1,1,2-Trichloroethane	2018/03/06		103	%	60 - 14
			Trichloroethylene	2018/03/06		97	%	60 - 14
			Trichlorofluoromethane (FREON 11)	2018/03/06		112	%	60 - 14
			Vinyl Chloride	2018/03/06		107	%	60 - 14
			p+m-Xylene	2018/03/06		92	%	60 - 14
			o-Xylene	2018/03/06		93	%	60 - 14
			F1 (C6-C10)	2018/03/06		112	%	60 - 14
5425684	KH2	Spiked Blank	4-Bromofluorobenzene	2018/03/06		96	%	60 - 14
			D10-o-Xylene	2018/03/06		90	%	60 - 13
			D4-1,2-Dichloroethane	2018/03/06		109	%	60 - 14
			D8-Toluene	2018/03/06		100	%	60 - 14
			Acetone (2-Propanone)	2018/03/06		102	%	60 - 14
			Benzene	2018/03/06		98	%	60 - 13
			Bromodichloromethane	2018/03/06		94	%	60 - 13

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Bromoform	2018/03/06		83	%	60 - 130
			Bromomethane	2018/03/06		104	%	60 - 140
			Carbon Tetrachloride	2018/03/06		101	%	60 - 130
			Chlorobenzene	2018/03/06		94	%	60 - 130
			Chloroform	2018/03/06		101	%	60 - 130
			Dibromochloromethane	2018/03/06		89	%	60 - 130
			1,2-Dichlorobenzene	2018/03/06		96	%	60 - 130
			1,3-Dichlorobenzene	2018/03/06		99	%	60 - 130
			1,4-Dichlorobenzene	2018/03/06		105	%	60 - 130
			Dichlorodifluoromethane (FREON 12)	2018/03/06		121	%	60 - 140
			1,1-Dichloroethane	2018/03/06		103	%	60 - 130
			1,2-Dichloroethane	2018/03/06		101	%	60 - 130
			1,1-Dichloroethylene	2018/03/06		108	%	60 - 130
			cis-1,2-Dichloroethylene	2018/03/06		101	%	60 - 130
			trans-1,2-Dichloroethylene	2018/03/06		100	%	60 - 130
			1,2-Dichloropropane	2018/03/06		96	%	60 - 130
			cis-1,3-Dichloropropene	2018/03/06		91	%	60 - 130
			trans-1,3-Dichloropropene	2018/03/06		90	%	60 - 130
			Ethylbenzene	2018/03/06		95	%	60 - 130
			Ethylene Dibromide	2018/03/06		92	%	60 - 130
			Hexane	2018/03/06		101	%	60 - 130
			Methylene Chloride(Dichloromethane)	2018/03/06		105	%	60 - 130
			Methyl Ethyl Ketone (2-Butanone)	2018/03/06		100	%	60 - 140
			Methyl Isobutyl Ketone	2018/03/06		94	%	60 - 130
			Methyl t-butyl ether (MTBE)	2018/03/06		98	%	60 - 130
			Styrene	2018/03/06		88	%	60 - 130
			1,1,1,2-Tetrachloroethane	2018/03/06		92	%	60 - 130
			1,1,2,2-Tetrachloroethane	2018/03/06		93	%	60 - 130
			Tetrachloroethylene	2018/03/06		98	%	60 - 130
			Toluene	2018/03/06		92	%	60 - 130
			1,1,1-Trichloroethane	2018/03/06		104	%	60 - 130
			1,1,2-Trichloroethane	2018/03/06		102	%	60 - 130
			Trichloroethylene	2018/03/06		98	%	60 - 130
			Trichlorofluoromethane (FREON 11)	2018/03/06		112	%	60 - 130
			Vinyl Chloride	2018/03/06		107	%	60 - 130
			p+m-Xylene	2018/03/06		93	%	60 - 130
			o-Xylene	2018/03/06		94	%	60 - 130
			F1 (C6-C10)	2018/03/06		98	%	80 - 120
5425684	KH2	Method Blank	4-Bromofluorobenzene	2018/03/06		92	%	60 - 140
			D10-o-Xylene	2018/03/06		94	%	60 - 130
			D4-1,2-Dichloroethane	2018/03/06		110	%	60 - 140
			D8-Toluene	2018/03/06		100	%	60 - 140
			Acetone (2-Propanone)	2018/03/06	<0.50		ug/g	
			Benzene	2018/03/06	<0.020		ug/g	
			Bromodichloromethane	2018/03/06	<0.050		ug/g	
			Bromoform	2018/03/06	<0.050		ug/g	
			Bromomethane	2018/03/06	<0.050		ug/g	
			Carbon Tetrachloride	2018/03/06	<0.050		ug/g	
			Chlorobenzene	2018/03/06	<0.050		ug/g	
			Chloroform	2018/03/06	<0.050		ug/g	
			Dibromochloromethane	2018/03/06	<0.050		ug/g	
			1,2-Dichlorobenzene	2018/03/06	<0.050		ug/g	

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			1,3-Dichlorobenzene	2018/03/06	<0.050		ug/g	
			1,4-Dichlorobenzene	2018/03/06	<0.050		ug/g	
			Dichlorodifluoromethane (FREON 12)	2018/03/06	<0.050		ug/g	
			1,1-Dichloroethane	2018/03/06	<0.050		ug/g	
			1,2-Dichloroethane	2018/03/06	<0.050		ug/g	
			1,1-Dichloroethylene	2018/03/06	<0.050		ug/g	
			cis-1,2-Dichloroethylene	2018/03/06	<0.050		ug/g	
			trans-1,2-Dichloroethylene	2018/03/06	<0.050		ug/g	
			1,2-Dichloropropane	2018/03/06	<0.050		ug/g	
			cis-1,3-Dichloropropene	2018/03/06	<0.030		ug/g	
			trans-1,3-Dichloropropene	2018/03/06	<0.040		ug/g	
			Ethylbenzene	2018/03/06	<0.020		ug/g	
			Ethylene Dibromide	2018/03/06	<0.050		ug/g	
			Hexane	2018/03/06	<0.050		ug/g	
			Methylene Chloride(Dichloromethane)	2018/03/06	<0.050		ug/g	
			Methyl Ethyl Ketone (2-Butanone)	2018/03/06	<0.50		ug/g	
			Methyl Isobutyl Ketone	2018/03/06	<0.50		ug/g	
			Methyl t-butyl ether (MTBE)	2018/03/06	<0.050		ug/g	
			Styrene	2018/03/06	<0.050		ug/g	
			1,1,1,2-Tetrachloroethane	2018/03/06	<0.050		ug/g	
			1,1,2,2-Tetrachloroethane	2018/03/06	< 0.050		ug/g	
			Tetrachloroethylene	2018/03/06	< 0.050		ug/g	
			Toluene	2018/03/06	< 0.020		ug/g	
			1,1,1-Trichloroethane	2018/03/06	< 0.050		ug/g	
			1,1,2-Trichloroethane	2018/03/06	< 0.050		ug/g	
			Trichloroethylene	2018/03/06	<0.050		ug/g	
			Trichlorofluoromethane (FREON 11)	2018/03/06	<0.050		ug/g	
			Vinyl Chloride	2018/03/06	<0.030		ug/g	
			p+m-Xylene	2018/03/06	<0.020		ug/g	
			o-Xylene	2018/03/06	<0.020		ug/g	
			Total Xylenes	2018/03/06	<0.020		ug/g	
			F1 (C6-C10)	2018/03/06	<10		ug/g	
			F1 (C6-C10) - BTEX	2018/03/06	<10			
F12FC01	KH2	RPD		2018/03/06	×10 NC		ug/g	50
5425684	KΠZ	RPD	Acetone (2-Propanone) Benzene	2018/03/06	NC		% %	50 50
			Bromodichloromethane					50 50
				2018/03/06	NC		%	50
			Bromoform	2018/03/06	NC		%	50
			Bromomethane	2018/03/06	NC		%	50
			Carbon Tetrachloride	2018/03/06	NC		%	50
			Chlorobenzene	2018/03/06	NC		%	50
			Chloroform	2018/03/06	NC		%	50
			Dibromochloromethane	2018/03/06	NC		%	50
			1,2-Dichlorobenzene	2018/03/06	NC		%	50
			1,3-Dichlorobenzene	2018/03/06	NC		%	50
			1,4-Dichlorobenzene	2018/03/06	NC		%	50
			Dichlorodifluoromethane (FREON 12)	2018/03/06	NC		%	50
			1,1-Dichloroethane	2018/03/06	NC		%	50
			1,2-Dichloroethane	2018/03/06	NC		%	50
			1,1-Dichloroethylene	2018/03/06	NC		%	50
			cis-1,2-Dichloroethylene	2018/03/06	NC		%	50
			trans-1,2-Dichloroethylene	2018/03/06	NC		%	50
			1,2-Dichloropropane	2018/03/06	NC		%	50

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			cis-1,3-Dichloropropene	2018/03/06	NC		%	50
			trans-1,3-Dichloropropene	2018/03/06	NC		%	50
			Ethylbenzene	2018/03/06	NC		%	50
			Ethylene Dibromide	2018/03/06	NC		%	50
			Hexane	2018/03/06	NC		%	50
			Methylene Chloride(Dichloromethane)	2018/03/06	NC		%	50
			Methyl Ethyl Ketone (2-Butanone)	2018/03/06	NC		%	50
			Methyl Isobutyl Ketone	2018/03/06	NC		%	50
			Methyl t-butyl ether (MTBE)	2018/03/06	NC		%	50
			Styrene	2018/03/06	NC		%	50
			1,1,1,2-Tetrachloroethane	2018/03/06	NC		%	50
			1,1,2,2-Tetrachloroethane	2018/03/06	NC		%	50
			Tetrachloroethylene	2018/03/06	NC		%	50
			Toluene	2018/03/06	NC		%	50
			1,1,1-Trichloroethane	2018/03/06	NC		%	50
			1,1,2-Trichloroethane	2018/03/06	NC		%	50
			Trichloroethylene	2018/03/06	NC		%	50
			Trichlorofluoromethane (FREON 11)	2018/03/06	NC		%	50
			Vinyl Chloride	2018/03/06	NC		%	50
			p+m-Xylene	2018/03/06	NC		%	50
			o-Xylene	2018/03/06	NC		%	50
			Total Xylenes	2018/03/06	NC		%	50
			F1 (C6-C10)	2018/03/06	NC		%	30
			F1 (C6-C10) - BTEX	2018/03/06	NC		%	30
5425860	JGH	RPD	Moisture	2018/03/05	2.7		%	20
5428073	ZZ	Matrix Spike	o-Terphenyl	2018/03/07		94	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2018/03/07		93	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2018/03/07		95	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2018/03/07		97	%	50 - 130
5428073	ZZ	Spiked Blank	o-Terphenyl	2018/03/07		90	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2018/03/07		89	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2018/03/07		92	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2018/03/07		92	%	80 - 120
5428073	ZZ	Method Blank	o-Terphenyl	2018/03/07		93	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2018/03/07	<10		ug/g	
			F3 (C16-C34 Hydrocarbons)	2018/03/07	<50		ug/g	
			F4 (C34-C50 Hydrocarbons)	2018/03/07	<50		ug/g	
5428073	ZZ	RPD	F2 (C10-C16 Hydrocarbons)	2018/03/07	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2018/03/07	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2018/03/07	NC		%	30
5429337	RON	Matrix Spike	Leachable Mercury (Hg)	2018/03/07		98	%	75 - 125
5429337	RON	Leachate Blank	Leachable Mercury (Hg)	2018/03/07	<0.0010		mg/L	
5429337	RON	Spiked Blank	Leachable Mercury (Hg)	2018/03/07		96	%	80 - 120
5429337	RON	Method Blank	Leachable Mercury (Hg)	2018/03/07	<0.0010		mg/L	
5429337	RON	RPD	Leachable Mercury (Hg)	2018/03/07	NC		%	25
5429454	MRG	Matrix Spike	Leachable Arsenic (As)	2018/03/07		100	%	80 - 120
			Leachable Barium (Ba)	2018/03/07		94	%	80 - 120
			Leachable Boron (B)	2018/03/07		100	%	80 - 120
			Leachable Cadmium (Cd)	2018/03/07		97	%	80 - 120
			Leachable Chromium (Cr)	2018/03/07		98	%	80 - 120
			Leachable Lead (Pb)	2018/03/07		92	%	80 - 120
			Leachable Selenium (Se)	2018/03/07		98	%	80 - 120

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

QA/QC								
Batch	Init	QC Туре	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Leachable Silver (Ag)	2018/03/07		95	%	80 - 120
			Leachable Uranium (U)	2018/03/07		97	%	80 - 120
5429454	MRG	Leachate Blank	Leachable Arsenic (As)	2018/03/07	<0.2		mg/L	
			Leachable Barium (Ba)	2018/03/07	<0.2		mg/L	
			Leachable Boron (B)	2018/03/07	<0.1		mg/L	
			Leachable Cadmium (Cd)	2018/03/07	<0.05		mg/L	
			Leachable Chromium (Cr)	2018/03/07	<0.1		mg/L	
			Leachable Lead (Pb)	2018/03/07	<0.1		mg/L	
			Leachable Selenium (Se)	2018/03/07	<0.1		mg/L	
			Leachable Silver (Ag)	2018/03/07	<0.01		mg/L	
			Leachable Uranium (U)	2018/03/07	<0.01		mg/L	
5429454	MRG	Spiked Blank	Leachable Arsenic (As)	2018/03/07		93	%	80 - 120
			Leachable Barium (Ba)	2018/03/07		93	%	80 - 120
			Leachable Boron (B)	2018/03/07		93	%	80 - 120
			Leachable Cadmium (Cd)	2018/03/07		93	%	80 - 120
			Leachable Chromium (Cr)	2018/03/07		91	%	80 - 120
			Leachable Lead (Pb)	2018/03/07		92	%	80 - 120
			Leachable Selenium (Se)	2018/03/07		93	%	80 - 120
			Leachable Silver (Ag)	2018/03/07		95	%	80 - 120
			Leachable Uranium (U)	2018/03/07		96	%	80 - 120
5429454	MRG	RPD	Leachable Arsenic (As)	2018/03/07	NC		%	35
			Leachable Barium (Ba)	2018/03/07	15		%	35
			Leachable Boron (B)	2018/03/07	27		%	35
			Leachable Cadmium (Cd)	2018/03/07	NC		%	35
			Leachable Chromium (Cr)	2018/03/07	NC		%	35
			Leachable Lead (Pb)	2018/03/07	NC		%	35
			Leachable Selenium (Se)	2018/03/07	NC		%	35
			Leachable Silver (Ag)	2018/03/07	NC		%	35
			Leachable Uranium (U)	2018/03/07	NC		%	35
5431382	MA	Matrix Spike [GEL410-01]	2,4,6-Tribromophenol	2018/03/09		104	%	50 - 130
			2-Fluorobiphenyl	2018/03/09		95	%	50 - 130
			D14-Terphenyl (FS)	2018/03/09		101	%	50 - 130
			D5-Nitrobenzene	2018/03/09		76	%	50 - 130
			1,2,4-Trichlorobenzene	2018/03/09		85	%	50 - 130
			1-Methylnaphthalene	2018/03/09		90	%	50 - 130
			2,4,5-Trichlorophenol	2018/03/09		107	%	50 - 130
			2,4,6-Trichlorophenol	2018/03/09		100	%	50 - 130
			2,4-Dichlorophenol	2018/03/09		99	%	50 - 130
			2,4-Dimethylphenol	2018/03/09		80	%	30 - 130
			2,4-Dinitrophenol	2018/03/09		44	%	30 - 130
			2,4-Dinitrotoluene	2018/03/09		91	%	50 - 130
			2,6-Dinitrotoluene	2018/03/09		82	%	50 - 130
			2-Chlorophenol	2018/03/09		88	%	50 - 130
			2-Methylnaphthalene	2018/03/09		89	%	50 - 130
			3,3'-Dichlorobenzidine	2018/03/09		101	%	30 - 130
			Acenaphthene	2018/03/09		105	%	50 - 130
			Acenaphthylene	2018/03/09		98	%	50 - 130
			Anthracene	2018/03/09		99	%	50 - 130
			Benzo(a)anthracene	2018/03/09		107	%	50 - 130
			Benzo(a)pyrene	2018/03/09		108	%	50 - 130
			Benzo(b/j)fluoranthene	2018/03/09		116	%	50 - 130

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Benzo(k)fluoranthene	2018/03/09		121	%	50 - 130
			Biphenyl	2018/03/09		94	%	50 - 130
			Bis(2-chloroethyl)ether	2018/03/09		75	%	50 - 130
			Bis(2-chloroisopropyl)ether	2018/03/09		82	%	50 - 130
			Bis(2-ethylhexyl)phthalate	2018/03/09		101	%	50 - 130
			Chrysene	2018/03/09		110	%	50 - 130
			Dibenz(a,h)anthracene	2018/03/09		78	%	50 - 130
			Diethyl phthalate	2018/03/09		97	%	50 - 130
			Dimethyl phthalate	2018/03/09		100	%	50 - 130
			Fluoranthene	2018/03/09		114	%	50 - 130
			Fluorene	2018/03/09		108	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2018/03/09		76	%	50 - 130
			Naphthalene	2018/03/09		109	%	50 - 130
			p-Chloroaniline	2018/03/09		83	%	30 - 130
			Pentachlorophenol	2018/03/09		19 (1)	%	50 - 130
			Phenanthrene	2018/03/09		104	%	50 - 130
			Phenol	2018/03/09		88	%	30 - 130
			Pyrene	2018/03/09		106	%	50 - 130
5431382	MA	Spiked Blank	2,4,6-Tribromophenol	2018/03/08		86	%	50 - 130
			2-Fluorobiphenyl	2018/03/08		96	%	50 - 130
			D14-Terphenyl (FS)	2018/03/08		111	%	50 - 130
			D5-Nitrobenzene	2018/03/08		93	%	50 - 130
			1,2,4-Trichlorobenzene	2018/03/08		88	%	50 - 130
			1-Methylnaphthalene	2018/03/08		88	%	50 - 130
			2,4,5-Trichlorophenol	2018/03/08		102	%	50 - 130
			2,4,6-Trichlorophenol	2018/03/08		96	%	50 - 130
			2,4-Dichlorophenol	2018/03/08		81	%	50 - 130
			2,4-Dimethylphenol	2018/03/08		80	%	30 - 130
			2,4-Dinitrophenol	2018/03/08		10 (1)	%	30 - 130
			2,4-Dinitrotoluene	2018/03/08		97	%	50 - 130
			2,6-Dinitrotoluene	2018/03/08		93	%	50 - 130
			2-Chlorophenol	2018/03/08		92	%	50 - 130
			2-Methylnaphthalene	2018/03/08		86	%	50 - 130
			3,3'-Dichlorobenzidine	2018/03/08		62	%	30 - 130
			Acenaphthene	2018/03/08		100	%	50 - 130
			Acenaphthylene	2018/03/08		97	%	50 - 130
			Anthracene	2018/03/08		92	%	50 - 130
			Benzo(a)anthracene	2018/03/08		105	%	50 - 130
			Benzo(a)pyrene	2018/03/08		99	%	50 - 130
			Benzo(b/j)fluoranthene	2018/03/08		102	%	50 - 130
			Benzo(g,h,i)perylene	2018/03/08		108	%	50 - 130
			Benzo(k)fluoranthene	2018/03/08		111	%	50 - 130
			Biphenyl	2018/03/08		89	%	50 - 130
			Bis(2-chloroethyl)ether	2018/03/08		92	%	50 - 130
			Bis(2-chloroisopropyl)ether	2018/03/08		93	%	50 - 130
			Bis(2-ethylhexyl)phthalate	2018/03/08		89	%	50 - 130
			Chrysene	2018/03/08		103	%	50 - 130
			Dibenz(a,h)anthracene	2018/03/08		108	%	50 - 130
			Diethyl phthalate	2018/03/08		103	%	50 - 130
			Dimethyl phthalate	2018/03/08		95	%	50 - 130
			Fluoranthene	2018/03/08		107	%	50 - 130
			Fluorene	2018/03/08		107	%	50 - 130

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

QA/QC		0.07	. .					0011
Batch	Init	QC Туре	Parameter	Date Analyzed 2018/03/08	Value	Recovery 103	UNITS %	QC Limits 50 - 130
			Indeno(1,2,3-cd)pyrene					
			Naphthalene	2018/03/08		103	%	50 - 130
			p-Chloroaniline	2018/03/08		60	%	30 - 130
			Pentachlorophenol	2018/03/08		63	%	50 - 130
			Phenanthrene	2018/03/08		97	%	50 - 130
			Phenol	2018/03/08		98	%	30 - 130
5424202		Matha al Diaula	Pyrene	2018/03/08		118	%	50 - 130
5431382	MA	Method Blank	2,4,6-Tribromophenol	2018/03/08		73	%	50 - 130
			2-Fluorobiphenyl	2018/03/08		102	%	50 - 130
			D14-Terphenyl (FS)	2018/03/08		110 94	%	50 - 130
			D5-Nitrobenzene	2018/03/08	-0.05	94	%	50 - 130
			1,2,4-Trichlorobenzene	2018/03/08	<0.05		ug/g	
			1-Methylnaphthalene	2018/03/08	<0.03		ug/g	
			2,4,5-Trichlorophenol	2018/03/08	<0.08		ug/g	
			2,4,6-Trichlorophenol	2018/03/08	<0.1		ug/g	
			2,4-Dichlorophenol	2018/03/08	<0.1		ug/g	
			2,4-Dimethylphenol	2018/03/08	<0.2		ug/g	
			2,4-Dinitrophenol	2018/03/08	<0.5		ug/g	
			2,4-Dinitrotoluene	2018/03/08	<0.1		ug/g	
			2,6-Dinitrotoluene	2018/03/08	<0.1		ug/g	
			2-Chlorophenol	2018/03/08	<0.08		ug/g	
			2-Methylnaphthalene	2018/03/08	<0.03		ug/g	
			3,3'-Dichlorobenzidine	2018/03/08	<0.5		ug/g	
			Acenaphthene	2018/03/08	<0.03		ug/g	
			Acenaphthylene	2018/03/08	<0.05		ug/g	
			Anthracene	2018/03/08	<0.03		ug/g	
			Benzo(a)anthracene	2018/03/08	<0.05		ug/g	
			Benzo(a)pyrene	2018/03/08	<0.05		ug/g	
			Benzo(b/j)fluoranthene	2018/03/08	<0.1		ug/g	
			Benzo(g,h,i)perylene	2018/03/08	<0.1		ug/g	
			Benzo(k)fluoranthene	2018/03/08	< 0.03		ug/g	
			Biphenyl	2018/03/08	<0.05		ug/g	
			Bis(2-chloroethyl)ether	2018/03/08	<0.2		ug/g	
			Bis(2-chloroisopropyl)ether	2018/03/08	<0.1		ug/g	
			Bis(2-ethylhexyl)phthalate	2018/03/08	<1		ug/g	
			Chrysene	2018/03/08	<0.05		ug/g	
			Dibenz(a,h)anthracene	2018/03/08	<0.05		ug/g	
			Diethyl phthalate	2018/03/08	<0.2		ug/g	
			Dimethyl phthalate	2018/03/08	<0.2		ug/g	
			Fluoranthene	2018/03/08	<0.05		ug/g	
			Fluorene	2018/03/08	<0.03		ug/g	
			Indeno(1,2,3-cd)pyrene	2018/03/08	<0.08		ug/g	
			Naphthalene	2018/03/08	<0.03		ug/g	
			p-Chloroaniline	2018/03/08	<0.2		ug/g	
			Pentachlorophenol	2018/03/08	<0.1		ug/g	
			Phenanthrene	2018/03/08	<0.05		ug/g	
			Phenol	2018/03/08	<0.09		ug/g	
			Pyrene	2018/03/08	<0.05		ug/g	
5431382	MA	RPD [GEL410-01]	1,2,4-Trichlorobenzene	2018/03/09	NC		%	40
			1-Methylnaphthalene	2018/03/09	NC		%	40
			2,4,5-Trichlorophenol	2018/03/09	NC		%	40
			2,4,6-Trichlorophenol	2018/03/09	NC		%	40

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

QUALITY ASSURANCE REPORT(CONT'D)

Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			2,4-Dichlorophenol	2018/03/09	NC		%	40
			2,4-Dimethylphenol	2018/03/09	NC		%	40
			2,4-Dinitrophenol	2018/03/09	NC		%	40
			2,4-Dinitrotoluene	2018/03/09	NC		%	40
			2,6-Dinitrotoluene	2018/03/09	NC		%	40
			2-Chlorophenol	2018/03/09	NC		%	40
			2-Methylnaphthalene	2018/03/09	NC		%	40
			3,3'-Dichlorobenzidine	2018/03/09	NC		%	40
			Acenaphthene	2018/03/09	NC		%	40
			Acenaphthylene	2018/03/09	NC		%	40
			Anthracene	2018/03/09	NC		%	40
			Benzo(a)anthracene	2018/03/09	NC		%	40
			Benzo(a)pyrene	2018/03/09	NC		%	40
			Benzo(b/j)fluoranthene	2018/03/09	NC		%	40
			Benzo(g,h,i)perylene	2018/03/09	NC		%	40
			Benzo(k)fluoranthene	2018/03/09	NC		%	40
			Biphenyl	2018/03/09	NC		%	40
			Bis(2-chloroethyl)ether	2018/03/09	NC		%	40
			Bis (2-chlorois opropyl) ether	2018/03/09	NC		%	40
			Bis(2-ethylhexyl)phthalate	2018/03/09	NC		%	40
			Chrysene	2018/03/09	NC		%	40
			Dibenz(a,h)anthracene	2018/03/09	NC		%	40
			Diethyl phthalate	2018/03/09	NC		%	40
			Dimethyl phthalate	2018/03/09	NC		%	40
			Fluoranthene	2018/03/09	NC		%	40
			Fluorene	2018/03/09	NC		%	40
			Indeno(1,2,3-cd)pyrene	2018/03/09	NC		%	40
			Naphthalene	2018/03/09	NC		%	40
			p-Chloroaniline	2018/03/09	NC		%	40
			Pentachlorophenol	2018/03/09	NC		%	40
			Phenanthrene	2018/03/09	NC		%	40
			Phenol	2018/03/09	NC		%	40
			Pyrene	2018/03/09	NC		%	40
5433583	DDS	Matrix Spike [GEL410-03]	, F4G-sg (Grav. Heavy Hydrocarbons)	2018/03/09		NC	%	65 - 13
5433583	DDS	Spiked Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2018/03/09		100	%	65 - 13
5433583	DDS	Method Blank	F4G-sg (Grav. Heavy Hydrocarbons)	2018/03/09	<100		ug/g	
5433583	DDS	RPD	F4G-sg (Grav. Heavy Hydrocarbons)	2018/03/09	0		%	50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The recovery was below the lower control limit. This may represent a low bias in some results for this specific analyte.

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

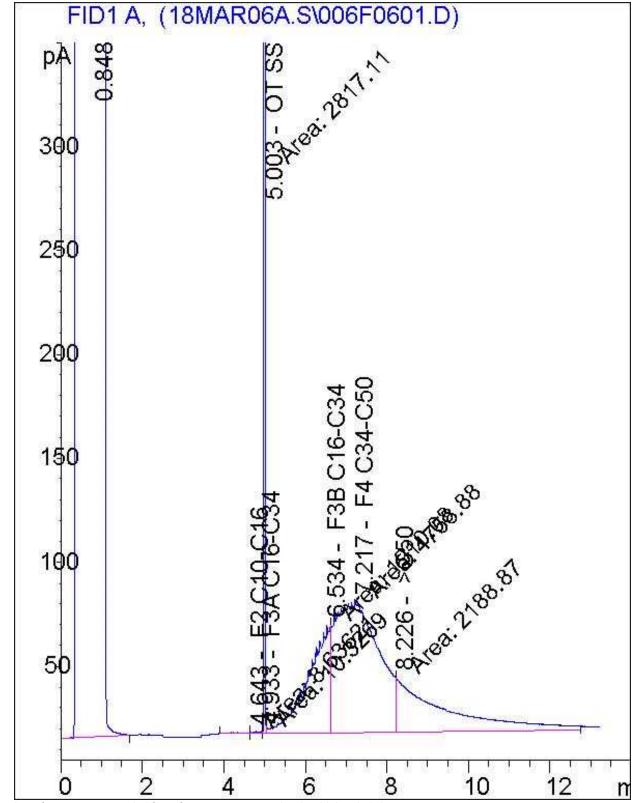
VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

avisting Carriere

Cristina Carriere, Scientific Service Specialist

Eve F Eva Pra


Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	IN	IVOICE TO:				REPO	DRT TO:	_					PROJEC	T INFORM	ATION:		Au	igustyna	Dobosz	Page of
mpany Name: #		id Industries Ltd		Company	Nama: #1968	4 Terrapex E	Environment	al Ltd		1.00	Quotation		B751	11			11111			Bottle Order #:
inputy nume	Retail Invoices			- Attention	0#	Lussier			E U	1 10	P.O. #:	#.	and the second second				B847405			
	919-59th St Sui	te 100		Address:		rant St. Suite	16		181		Project:		CB10	57.00						650870
	Red Deer AB T4			and share		gton ON L7R					Project Na	me:		i na	14. J.L		MA	F E	NV-678	Project Manager:
	403) 357-6400 >		03) 356-3015			632-5939 x22	1 60.			JULE.	Site #:				Stevens I	Drive				Augustyna Dobosz
		kland.ca, victoria.pia				er@terrapex.	com		, Marp		Sampled B			6		and and		-	C#650870-06-01	
MOE REGU		G WATER OR WATER ON THE MAXXAM DR				MUST BE		-	-	AN	ALYSIS REC	QUESTED	(PLEASE E	BE SPECIF	FIC)				Turnaround Time (TA Please provide advance not	
	and a second s	and the second se	AND THE PARTY OF THE PARTY OF	and a second second second second			cie):	F1 &			10				9999		Cs HS	Regular (S	tandard) TAT:	and the second se
Regulation	153 (2011) es/Park Mediur		Other Regulations		Special I	nstructions	< circ	GME	F2-F4	SE	C. lei				Dag		ganik		d if Rush TAT is not specified):	
	id/Comm Coarse		Storm Sewer By				ed (please c / Hg / Cr VI	us C(ns F2	C) all	51/0				12	10	ile Or		= 5-7 Working days for most tests	s h as BOD and Dioxins/Furans are >
Table 3 A	gri/Other For RS		Aunicipality				ld) be	arbo	arbo	2 TOTAL	10		CT		et o	P@B	Volat	days - contact	your Project Manager for details.	as bob and bloxinar alans are y
Table		PWQO			Hit start		tere	ydrod	ydrod	0	10		EXTRACT		3 CLP	CL.	TCLP		Rush TAT (if applies to entire	
R.		Other	<u></u>				ld Filtere Metals	H	H	0.5	a 15		CI2 E>	ĭ	558 T	22	558 T	Date Required Rush Confirm	ation Number:	Time Required:
		a on Certificate of Anal					E	Petroleu BTEX	trolei	el co	OKE:	isture	CaC		C.H.	fer	Reg	# of Bottles		(call lab for #)
Sample B	arcode Label	Sample (Location) Ide	entification	Date Sampled	Time Sampled	Matrix		Pe	Pe	08	80	Wo	Hd	il de la compañía de	0	8	Ö		C	Comments
5		TELP		12:00	12:00	SOIL	-	X	X	X	X			X	X		•	As		1
					10.	SOIL			-											
			4		1	SOIL							×							
			2			SOIL						9								
						SOIL	-								6					
	r.,					SOIL							£	34.5					RECEIVED IN	AWATTO
						SOIL														
				×		SOIL	. 78												-	
			· ~	•	0	SOIL			1										Onic	e
14	<u> </u>					SOIL							λ		9	8				
	LINQUISHED BY: (S		Date: (YY/N			RECEIVED	BY: (Signature)			Date: (YY/	MM/DD)	Tin			used and ubmitted	1		Laborat	ory Use Only	
1	udy	_	18/03,	108 1::		iang va		Dane		2018	-		00		Jonnited	Time S	ensitive		Pros	dy Seal Yes No
P	ed Sabour	im			Ville	e Lyucs	HEN	Idri;		201816	102	OP LOCU		1. 194		1	_	0,0	0 × Int	tact 4

Terrapex Environmental Ltd Client Project #: CB1057.00 Project name: 1622 Roger Stevens Drive Client ID: TCLP

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5420892	ADB	Matrix Spike [GDL934-01]	Soluble (20:1) Sulphate (SO4)	2018/03/02		NC	%	70 - 130
5420892	ADB	Spiked Blank	Soluble (20:1) Sulphate (SO4)	2018/03/02		103	%	70 - 130
5420892	ADB	Method Blank	Soluble (20:1) Sulphate (SO4)	2018/03/02	<20		ug/g	
5420892	ADB	RPD [GDL934-01]	Soluble (20:1) Sulphate (SO4)	2018/03/02	25		%	35
5422743	TA1	Spiked Blank	Available (CaCl2) pH	2018/03/02		100	%	97 - 103
5422743	TA1	RPD	Available (CaCl2) pH	2018/03/02	0.22		%	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

austin Camere

Cristina Carriere, Scientific Service Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		INVOICE TO:	ga, Ontario Canada L5N			ORT TO:				-		DRO IE	CT INFOR	MATION				Page of
ompany		ind Industries Ltd		v Name: #1968	4 Terrapex	100 CO 100 P	alltd				-	B751		mATION:			Laboratory Us	
tention	Retail Invoices		Attentio	C	Lussier	environment		-		Quotation	#:	D/31	31				Maxxam Job #:	Bottle Order #:
idress:	4919-59th St St	uite 100	Address	000 0	ant St. Suite	16				P.O. #	. 61	CBIC	057.00			-	-	
	Red Deer AB T	4N 6C9	Pluties:	2	ton ON L7R					Project:		12002-0107	COLDAYOUNA	nd	Kar	1	COC #:	650870 Project Manager:
al: "52	(403) 357-6400			(905) 6	32-5939 x22	8 Fax				Project Na Site #:	ime.			Stevens			The second	Project manager.
mail:	emilie.price@pa	arkland.ca, victoria.pianarosa@	parkland. Email:	g.lussi	er@terrapex.		Vic	6		Sampled E	By		and the second	bai		-	C#650870-05-01	Augustyna Dobosz
MO	E REGULATED DRINKI	NG WATER OR WATER INTEN	ED FOR HUMAN C	ONSUMPTION	MUST BE			0 E	ANA		QUESTED				-		Tumaround Time (TAT	Required:
	SUBMITTED	ON THE MAXXAM DRINKING	WATER CHAIN OF	CUSTODY			4	1d	hate		1.00			e		E SH	Please provide advance notice	
R	egulation 153 (2011)	Other Regu	lations	Special In	structions	circle):		12	Sulp	(ys)	10 A			ackag		nics (Regular (Standard) TAT:	5
Table '			Sewer Bylaw	1.00		ase ci	w.come	F2-F	pue	%c	8° C.			4 8		Orga	(will be applied if Rush TAT is not specified). Standard TAT = 5-7 Working days for most tests.	L2
Table 2						olea:	Land 1	ous	etais	%sitt,				gani	- 2	alle	Please note: Standard TAT for certain tests such a	30D and Dioxins/Furans are >
Table 3 Table	Agri/Other For R		·			ed (ple	15.	carb	IS Me	and,		CT		Inor	PCBs	Vola	days - contact your Project Manager for details.	
		PWQO .				d Filtere Metals	4	lydro	ICPMS	(%81		EXTRACT		LCLP	CLP	TCLP	Job Specific Rush TAT (If applies to entire su	
	Include O-it-		12			Meta	T	E	153	dure		12 E)	tint	558 7	558.7	558 T	Date Required:	Time Required:
_	Sample Barcode Label	a on Certificate of Analysis (Y/N Sample (Location) Identification		Time Sampled	Matrix	- E	The second secon	strole	Reg	oll Tex	oisture	CaCl2	odysi	Reg 5	geg 5	Reg 5	a commentation of the second sec	(call lab for #)
-		mw 102	February				8.8	P 4	0	So	W	H	Fla	0	0	0.6	Con	ments
		Sample 4	a1,2018	1:00pm	SOIL	NO	X							10			1	
-		BHIOS	February				A								_			15.05
}		Sample 2	01,2018	2:00pm	SOIL	NO	IX										23-Feb-18	
		sample o-	01,		1000		1		+ +					-		-	Augustyna Dob	OSZ
					SOIL							_						
										-			-				B842304	
					SOIL				`									
					SOIL				+ +	-							URE ENV-9	907
					SUIL												and the second s	
				_	SOIL													TTAMA
					SOIL	2.1							_				RECEIVED IN O	TIAWA
					SOIL													
_						_											and the second se	
					SOIL													
						_												
		-		4	SOIL												Onic	
				,		· ***											Unit	e
5	·				SOIL													
_	* RELINQUISHED BY: (S	ignature/Print) Date:	YY/MM/DD) Ti	ne	RECEIVED	BY: (Signature/F	Print)		Date: (YY/M	4/00)	-		# iam	used and		_		
RA	1 Sacuer 4		12/23 15:1		iana Tra			-	and a second and the second		Tim	05		bmitted	Time Se	insitive	Laboratory Use Only Tamparature (IIC) an David Custody :	Seal Yes No
1-1	I THE DE L IT	1000	2125 .0.1	- March	2-4-61				15/07						20000000	0,0	Presen	
LESS C	THERWISE AGREED TO IN W	RITING, WORK SUBMITTED ON THIS CH	AIN OF CUSTODY IS SUI	JECT TO MAXXAM	'S STANDARD TE							OY		No.	0,	0,0		3
KNOWLE	DGMENT AND ACCEPTANCE	OF OUR TERMS WHICH ARE AVAILABL	E FOR VIEWING AT WWW	MAXXAM.CA/TERI	VIS.									CALIFIC	COMMON	E VERE		hite: Maxxa Yellow: Clier
		INQUISHER TO ENSURE THE ACCURAC							ANALYTICAL	TAT DELA	AYS.			SAMPL	ES MUST	UNTIL	COOL (< 10° C) FROM TIME OF SAMPLING DELIVERY TO MAXXAM	
AMPLE	CONTAINER, PRESERVATION	HOLD TIME AND PACKAGE INFORMA	ION CAN BE VIEWED AT	HTTP://MAXXAM.C	AWP-CONTENT/	UPLOADS/ONTA	RIO-COC.F	DF.						No.				
											~						dial.	
																	513/3	