

Stormwater Management & Servicing Report KMA Mosque and Community Centre 351 Sandhill Road, Ottawa, Ontario

Client: Kanata Muslim Association 351 Sandhill Road Ottawa, Ontario K2K 1X7

Project Number: OTT-00238564-A0

Site Plan Application Number: D07-12-17-0119

Prepared By: Marc Lafleur, M.Eng.

Reviewed By: Alam Ansari, M.Sc., P. Eng.

EXP Services Inc. 100-2650 Queensview Drive Ottawa, ON K2B 8H6

Date Submitted: September 13, 2017 July 3, 2018 November 23, 2018

Stormwater Management & Servicing Report KMA Mosque and Community Centre, 351 Sandhill Road, Ottawa

Type of Document: Stormwater Management & Servicing Report

Client: Kanata Muslim Association 351 Sandhill Road Ottawa, Ontario K2K 1X7

Project Number: OTT-00238504-A0

Prepared By: exp Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 Canada T: 613 688-1899 F: 613 225-7337 www.exp.com

Aly Elgayar, MASc. Engineering Designer Infrastructure Services

Date Submitted: September 13, 2017 July 3, 2018 November 23, 2018

٩

Alam Ansari, M.Sc., P. Eng. Senior Project Manager Infrastructure Services

Legal Notification

This report was prepared by **EXP** Services Inc. for the account of Kanata Muslim Association. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. **EXP** Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

EXP Services Inc. KMA Mosque and Community Centre 351 Sandhill Road, Ottawa, ON OTT-00238504-A0 November 23, 2018

Table of Contents

1	Intro	ductio	۱	.1
2	Refe	rences		.2
3	Reg	ulatory	Approvals	.2
4	Geo	technic	al Considerations	.2
5	Sani	tary Se	wer Design	.3
	5.1	Туре о	f Establishment	3
	5.2	Peak D	esign Flow	3
	5.3	Downs	tream System	3
6	Wate	ermain	Design	.4
	6.1	Phase	1 Watermain Design	4
	6.2	Phase	2 Watermain Design	4
	6.3	Fire Hy	drant	5
7	Stor	mwater	Management	.5
	7.1	Storm I	Design Criteria	5
	7.2	Pre-De	velopment Conditions	6
	7.3	Allowal	ble Release Rate	6
	7.4	Post-D	evelopment Conditions	6
		7.4.1	Storage Requirements and Allocation	7
		7.4.2	Flow Control Device Sizing	7
		7.4.3	Summary of Proposed SWM System	7
		7.4.4	Quality Control	9
8	Eros	ion and	d Sediment Control	.9
9	Con	clusion	s	.9

List of Appendices

Appendix A – Supporting Documents & Drawings
Appendix B1 – SWM Phase 1 Design Sheets
Appendix B2 – SWM Phase 2 Design Sheets
Appendix C – Water
Appendix D – Sewer Design Sheets
Appendix E – Drawings

1 Introduction

EXP Services Inc. was retained by **KMA** to prepare a Stormwater Management & Servicing Report in support of an application for Zoning By-law Amendment and Site Plan Control, to facilitate the use of the subject property as a place of worship (mosque and community centre) and for the conversion of the existing single detached dwelling for that use and the ultimate construction of an additional 2 storey, plus basement structure on the parcel of land municipally known as 351 Sandhill Road in City Ward 4-Kanata North.

This report provides a stormwater management and servicing design brief in support of the proposed phased development. The 0.8 ha site is generally flat with a gentle slope from west to east towards Sandhill Road. There is an existing single detached dwelling and a storage shed on the property. The dwelling will be converted for use as a mosque. The first phase of development will consist of converting the existing building into a place of worship and constructing a new parking lot on the west side of the existing building and a new access to the parking lot. The second phase of development will consist of a new 2 storey building constructed adjacent to the existing building. The 2 storey building which will include a basement will serve as a place of worship and a Community Centre.

There is an existing single detached, one floor dwelling on-site. The driveway entrance is along the frontage of Sandhill road with the asphalt driveway providing an access route to the southeast side of the dwelling. Remainder of the site is vegetation. The site is currently serviced by on-site water wells and a septic system. One of the three water wells is not in service and has been abandoned. The other two wells are currently in use to meet the domestic water supply and heating/cooling requirements of the existing dwelling. Refer to FIG-2 and the Existing Conditions plan in Appendix E for the pre-development conditions of the site.

The proposed development will be connected to the municipal services on Sandhill Road. The existing septic system will be removed. The two existing water wells will be used for the heating/cooling requirements of the existing building.

This servicing design brief will address SWM requirements for the phased development of the 0.8ha site and how the proposed phased development will be serviced with sanitary, storm and water services. Servicing, Grading and drainage and SWM plans for both phases of development are included with this report.

2 References

Various documents were referred to in preparing the current report including:

- City of Ottawa Sewer Design Guidelines Revision 2, October 2012 (SDG002)
 - Technical Bulletins ISDTB-2012-4, ISDTB-2014-01, PIEDTB-2016-01, ISTB-2018-01 and ISTB-2018-04
- City of Ottawa Water Distribution Design Guidelines, July 2010 (WDG001)
 Technical Bulletins ISDTB-2014-02 and ISTB-2018-02
- Stormwater Management Planning and Design Manual, Ontario Ministry of the Environment, March 2003 (MOE SMPDM)
- Brookside Subdivision Infrastructure Study prepared by NOVATECH, November 2006
- Morgan's Creek Site Servicing Brief prepared by J.L. Richards & Associates, August 2011
- Geotechnical Investigation Report prepared by Paterson Group, November 2018

3 Regulatory Approvals

Approval from the MVCA is not required as per the communication from the City reviewer. No quality controls are required. Refer to the email in Appendix B1. An extension for the municipal sanitary sewer on Sandhill Road is proposed and as such approval is required from the MOECP. An ECA application will be submitted to acquire the approval.

4 Geotechnical Considerations

The following conclusions and recommendations from the geotechnical investigation report prepared by Paterson Group were taken into consideration:

- The subject site has a determined permissible grade raise restriction of 2 meters above the existing ground surface;
- Long-term ground water table is anticipated to be between 5 to 6 meters in depth;
- Development is recommended to have perimeter foundation and underslab drainage systems; however, the foundations design must be completed before drainage systems can be designed.

EXP Services Inc. KMA Mosque and Community Centre 351 Sandhill Road, Ottawa, ON OTT-00238504-A0 November 23, 2018

5 Sanitary Sewer Design

5.1 Type of Establishment

The ultimate development is to be a mosque and community center. The development will provide areas of worship and proposed amenities that include kitchens, meeting rooms and a gymnasium. Refer to the pre-consultation meeting notes in Appendix A.

The function of the proposed establishment is a place of worship and community center and thus is similar to a church or an Assembly hall as listed in Appendix 4-A of the City of Ottawa Sewer Design Guidelines (SDG02, 2012). The daily sewage flow for a church with kitchen facilities is selected.

5.2 Peak Design Flow

The site is currently serviced by an on-site septic system, which will be decommissioned. The existing 250mm diameter sanitary sewer on Sandhill Road is proposed to be extended and the proposed development will be serviced by a new sanitary sewer connected to the proposed municipal sanitary sewer extension. The anticipated peak sanitary flow from the existing building and the proposed addition has been calculated as per the City of Ottawa Sewer Design Guidelines (SDG02, 2012) and Technical Bulletin ISTB-2018-01. Peak flows were calculated for the ultimate site plan, refer to the pre-consultation notes in Appendix A. Occupancy loads provide by the architect, refer to the email in Appendix D. The anticipated peak sanitary flow is calculated as follows:

Design Flows

Design Flow for Establishment:	30 L/sanctuary seat (person)
Site Area:	0.818 hectares
Peak Factor:	1.5
Existing Building Occupancy Load:	180 persons
Proposed Addition Occupancy Load:	1,271 persons
Extraneous Flow:	0.33 L/s/ha
Peak Design Flow:	=(30L/person/day)(1451persons)(1.5)+(0.818ha)(0.33L/s/ha)
	=1.03 L/s

The new 2-storey building and the existing building will be serviced by two new 200mm diameter sanitary service. The proposed on-site sanitary sewer will be installed at a minimum grade of 0.5%. At this slope, the 200mm diameter sanitary sewer will have a capacity of 23.5 L/s and a full flow velocity of 0.86 m/s, which will be sufficient to service the site under both phases of development. The City of Ottawa Sewer Design Guidelines recommend a flow velocity between 0.8m/s to 3m/s. Refer to Appendix D for detailed calculations and Appendix E for Phase 1 & Phase 2 layout details on the Site Servicing plans (dwg nos. SS-1 & SS-2).

5.3 Downstream System

The downstream existing 250mm diameter municipal sanitary sewers on Sandhill road have approximately 19.22 L/sec available capacity. Thus, the existing municipal sewers have adequate capacity to accommodate the 1.03 L/sec peak flow from the site. Refer to the JLR and IBI sanitary design sheets and the IBI sanitary drainage area plan in Appendix A.

6 Watermain Design

6.1 Phase 1 Watermain Design

The site will be serviced by a new 200mm diameter watermain which will be connected to the existing 305mm diameter municipal watermain on Sandhill Road to meet the domestic and fire flow requirements for the site. The existing building will be serviced by a new 150mm diameter water service lateral connected to the new 200mm diameter watermain. The on-site existing wells will be decommissioned in phase 2 prior to construction. These wells will only be used for providing heating/cooling to the existing building in the interim. Design of the domestic water distribution system in phase 1 will ensure that there is no cross connection between the municipal and well water systems. Before occupancy, the mechanical engineer will provide written confirmation to the City that two systems are completely independent and there is no cross connection. Phase 1 domestic and fire flow demands were not calculated as per the pre-consultation meeting notes with the City. Determination of the demands and capacity of the system are based on the ultimate site plan. Refer to the pre-consultation notes in Appendix A.

6.2 Phase 2 Watermain Design

The proposed building will be serviced by a new 150mm diameter watermain extending from the internal 150mm diameter water service of the existing dwelling. Phase 2 domestic and fire flow demands were determined as follows:

Fire Flow Demand

The fire flow demand calculations were prepared based on the Fire Underwriters Survey (FUS, 1999) criteria. The new addition will be sprinklered and will be a non-combustible steel frame construction. The existing dwelling is combustible wood construction and is not sprinklered. Based on technical bulletin ISTB-2018-02 the classification for mixed construction rule of non-combustible construction applies, where 66.7% or over of the total wall, floor and roof area constructed are defined as non-combustible. Credits for sprinkler protection applied for the percentage of the floor area protected by sprinklers. Refer to Appendix C for detailed fire flow demand calculations and the type of construction confirmation from the architect.

The domestic water demands for the proposed site were calculated as per the City of Ottawa Water Distribution Guidelines and Technical Bulletin 2018-02.

Institutional Water Demand

Average daily demand: =28,000 L/ha/day =0.818 ha x 28,000 L/ha/day x (1/86,400 s/day) = 0.27 L/s

Maximum daily demand:

=1.5 x avg. day =1.5 x 0.27 L/s =0.41 L/s

Maximum hourly daily demand:

=1.8 x max.day =1.8 x 0.41 L/s =0.74 L/s

The site is located in the MG water distribution network pressure zone and the following boundary conditions were provided by the City of Ottawa (refer to Appendix C):

Peak Hour HGL = 124.2m

Maximum HGL = 131.2m

Max Day (0.41 L/s) + FireFlow (66.7L/s) = 125.1m

Based on the HGL of 124.2m for the peak hour scenario, 131.2m for the maximum HGL scenario, and 125.1m for the max day + fire flow scenario, pressure analyses were performed and residual pressures of 67.3 psi (463.9 kPa), 77.7 psi (535.5 kPa), and 66.5 psi (458.5 kPa), respectively, were estimated at the proposed 2 storey building. Refer to Appendix C for calculation details. The residual water pressures during the three scenarios are greater than the minimum requirement of 20psi (140kPa) as per the City of Ottawa Design Guidelines. The existing water supply system will therefore have adequate capacity to meet the domestic and fire demands for the proposed development.

6.3 Fire Hydrant

The fire flow demand for both buildings was calculated to be 67 L/s. An existing fire hydrant located across the proposed building on Sandhill road will provide fire protection for the proposed development. The unobstructed distance between the existing fire hydrant and the Siamese connection of the proposed building is 42m.

The existing fire hydrant has light blue colored cap that indicates it has a maximum flow of 95 L/sec at a residual pressure of 20 psi as rated by the City of Ottawa. Thus, the existing fire hydrant has adequate capacity to meet the site's fire flow demand. Table 5.3-1 below lists the minimum number of fire hydrants needed to deliver the required fire flow for the proposed building.

Block	Fire Flow Demand (L/min)	Fire Hydrant(s) within 75m	Fire Hydrant(s) within 150m
351 Sandhill Road	4000	1	0

Table 6.3-1 – Minimum Numbe	er of Fire Hydrants for	Required Fire Flow
	of of this regulation of	Required incline

7 Stormwater Management

7.1 Storm Design Criteria

The storm sewer system was designed in conformance with the City of Ottawa Sewer Design Guidelines (SDG02, 2012). The stormwater servicing design criteria for the proposed development is as follows:

• The proposed on-site storm sewer network / minor system, is designed using Rational Method and Manning's Equation to convey runoff under free flow conditions for the 5-year return period.

- Maximum allowable ponding depth is 300 mm.
- No surface ponding during 2 year storm events
- Flows from storms events greater than the 100-year return period will be directed overland towards Sandhill Rd.
- Average runoff coefficients were calculated for each inlet drainage area using a runoff coefficient of 0.20 for pervious surfaces and 0.90 for impervious surfaces.
- Estimated storage volumes are based on the Modified Rational Method.
- 100-year minor system flows to the sewer on Sandhill Rd must be controlled to the allowable release rate criteria of 85L/s/ha.
- Water quality will be provided by the existing off-site Briar Ridge Stormwater Management Facility.
- Minimum freeboard of 0.3m between the 100-year overland flow elevation and finished floor.

7.2 **Pre-Development Conditions**

The site is generally flat with a gentle slope from west to east towards Sandhill Road. There is no existing storm sewer system on the site. The stormwater runoff currently sheet drains overland towards Sandhill Road.

7.3 Allowable Release Rate

Minor system flows from the site to the 675mm diameter stormsewer on Sandhill Rd will be restricted to 85L/s/ha for up to the 100-year event. The allowable release rate criteria of 85L/s/ha was established as part of the Briar Ridge Phase 2 Subdivision. Refer to email from the City dated April 28, 2017 and the exert page from the Brookside Subdivision Infrastructure Study in Appendix A. The ICDs have been sized to ensure that there is no surface ponding during 2-year storm events. The allowable post development release rates from the site up to the 100-year storm events will be controlled to a release rate of 48.74 L/s for phase 1 of development. The allowable release rate for phase 1 is based on a development area of 0.57ha since only 0.57ha will be developed during phase 1. The allowable post development release rate for phase 2 for up to the 100-year storm events will be controlled to 68.8 L/s based on the entire site area of f 0.81ha.

7.4 Post-Development Conditions

Stormwater will be controlled and released at a rate less than the allowable release rate for storms up to and including the 100-year storm event during both phases of development. An overland flow route is provided for storms greater than the 100-year event. Flow control devices will be installed in roof drains of the proposed 2 storey building and various catchbasins/manholes in order to control stormwater prior to its release from the site. The site under phase 1and 2 post development conditions have been divided into 4 drainage areas, refer to Stormwater Management drawing SWM-1 and SWM-2 in Appendix E.

7.4.1 Storage Requirements and Allocation

Post development runoff will be detained on-site for storms up to and including the 100-year storm. The required SWM storage volumes will be achieved using the surface storage in the parking-lots and storage on the roof of the new building for storms up to the 100-year event. Underground pipe and structure storage volumes will be utilized to meet the criteria of no surface ponding during the 2-year storm events.

Surface ponding volumes over catch basins and catch basin manholes were determined by applying the pyramid volume equation of one-third of the depth multiplied by the surface area of the pond. Ponding depths for the subject site must be equal to or less than 300 mm for the 100-year storm event. There will be no surface ponding for 2-year storm events. Major overland flows from storms greater than the 100-year event will be directed to Sandhill Rd.

The volume of storage required was calculated for both the 2-year and 100-year storm events using the Rational Method. Since more storage is available than will be required in both the 2-year and 100-year events, the ponding level will be less than 300mm for the 100-year event. There will be no surface ponding during 2 year storm events.

For phase 1 of development, the 100-year on-site required and available storage volumes were estimated to be 180.9 m³ and 218.8 m³, respectively. The 2-year on-site required and available storage volumes were determined to be 34.3 m³ and 35.1m³, respectively.

For phase 2 of development, the 100-year on-site required and available storage volumes were determined to be 246.8 m³ and 275.8 m³, respectively. The 2-year on-site required and available storage volumes were determined to be 49 m³ and 92.1 m³, respectively.

Detailed stormwater management calculations are shown in Appendix B, including storage requirements and storage quantities provided. Appendix B1 contains the stormwater management calculations for phase 1 of development and Appendix B2 contains the calculations for phase 2 of development. Ponding levels and drainage areas for the site are shown on the post-development storm drainage plan SWM-1 and SWM-2 for Phase 1 and Phase 2, respectively. Refer to the drawings in Appendix E.

7.4.2 Flow Control Device Sizing

There are 2 Hydrovex-type ICDs proposed at the site. ICDs and their locations are shown on the Site Servicing plans and the Stormwater Management plans for both phase 1 and phase 2 of development, refer to drawings SS-1, SS-2, SWM-1 and SWM-2 in Appendix E. During the 100-year and 2-year storm events, CBMH203 will have design heads of 3.9m and 3.6m and allowable flowrates of 29.5L/sec and 28.0 L/sec, respectively. During the 100-year and 2-year storm events, CB101 will have design heads of 3.6m and 3.3m and allowable flowrates of 17.6 L/sec and 11.0 L/sec, respectively. Based on those criteria, Hydrovex ICD model 125VHV-2 is selected for CBMH203 and model 100-VHV-1 for CB101.

Refer to the Hydrovex selection graph in Appendix B1.

7.4.3 Summary of Proposed SWM System

A summary of the release rates for the controlled and uncontrolled drainage areas and corresponding storage details for phase 1 of development is provided in Table 6-1 below. Refer to Appendix B1 for detailed stormwater management spreadsheet calculations. The Post development 100-year controlled release rate from the site is of 47.1 L/s, which is less than the allowable limit of 48.74 L/s.

Area ID	Area (ha)	Runoff Coefficient 'C'	2 Year Release (L/s)	2 Year storage required (m ³)	2 Year underground storage provided (m ³)	100 Year Release (L/s)	100 Year storage required (m ³)	100 Year surface storage provided (m ³)
PH1A	0.486	0.79	28.0	34.3	35.1	29.5	139.7	193.5
PH1B	0.088	0.73	11.0	0.0	0.0	17.6	10.1	25.3
TOTAL	0.57							
		Totals:	39.0	34.3	35.1	47.1	180.9	218.8
	Total A	llowable Rele	ase (L/s):	48.74				

Table 7-1: Phase 1 Summary of Proposed On-Site SWM System

A summary of the release rates for the controlled and uncontrolled drainage areas and corresponding storage details for phase 2 of development is provided in Table 6-2 below. Refer to Appendix B2 for detailed stormwater management spreadsheet calculations and refer to Appendix D for the sewer design sheet. The Post development 100-year controlled release rate from the Site is of 67.4L/s, which is less than the allowable limit of 68.85L/s.

Area ID	Area (ha)	Runoff Coefficient 'C'	2 Year Release (L/s)	2 Year storage required (m ³)	2 Year underground storage provided (m ³)	100 Year Release (L/s)	100 Year storage required (m ³)	100 Year surface storage provided (m ³)
PH2A	0.498	0.78	28.0	35.1	35.1	29.5	173.3	193.5
PH2B	0.118	0.77	15.6	0.0	0.0	17.6	24.9	25.3
PH2C	0.145	0.90	7.0	13.9	57.0	10.0	48.7	57.0
PH2D	0.045	0.46	3.5	0.0	0.0	10.2	0.0	0.0
TOTAL	0.81							
		Totals:	54.2	49.0	92.1	67.4	246.8	275.8
	Total	Allowable Re	lease L/s	68.85				

Table 7-2: Phase 2 Summary of Proposed On-Site SWM System

As per the Morgan's Creek Site Servicing Brief, the HGL of the existing 675mm diameter storm sewer on Sandhill Road has an HGL equal to obvert the obvert of the pipe, which is 73.105. The proposed building's basement elevation is 74.20; thus, there is more than adequate clearance to satisfy the requirement of the HGL being a minimum of 0.3m below the underside of the footing. Refer to the 100-year storm sewer design sheet by J.L. Richards dated July 2011 in Appendix A.

7.4.4 Quality Control

The site is located in catchment area C-3, which is part of the overall drainage area collected by the existing Brookside Pond-C SWF. Moreover, Stormwater quality control will be provided by the existing Brookside Pond-C SWF since the facility provides level 2 water quality control as per the guidelines of the MOECP SWM planning and Design Manual. Therefore, no other water quality measures are proposed. Refer to email from the City dated April 28, 2017 in Appendix B1, exert pages and Figure-3 from the Brookside Subdivision Infrastructure Study and SWM Facilities Storm Drainage Area Plan in Appendix A.

8 Erosion and Sediment Control

During all construction activities, erosion and sedimentation shall be controlled by the following techniques:

- Extent of exposed soils shall be limited at any given time;
- Exposed areas shall be re-vegetated as soon as possible;
- Minimize the area to be cleared and disruption of adjacent areas;
- Siltsack or approved equivalent shall be installed inside all catch basins, catch basin manholes, and storm manholes as identified on the erosion and sediment control plan;
- Visual inspection shall be completed daily on sediment control barriers and any damage repaired immediately. Care will be taken to prevent damage during construction operations;
- In some cases, barriers may be removed temporarily to accommodate the construction operations. The affected barriers will be reinstated at night when construction is completed;
- Sediment control devices will be cleaned of accumulated silt as required. The deposits will be disposed of as per the requirements of the contract;
- During construction, if the engineer believes that additional prevention methods are required to control erosion and sedimentation, the contractor will install additional silt fences or other methods as required to the satisfaction of the engineer; and,
- Construction and maintenance requirements for erosion and sediment controls are to comply with Ontario Provincial Standard Specification (OPSS) 805.

9 Conclusions

This report addresses the adequacy of the existing municipal services to service the proposed development at 351 Sandhill Rd, Ottawa, Ontario. Based on the analysis provided in this report, the conclusions are as follows:

- A 200mm diameter water service connected to the 300mm municipal water main on Sandhill Road will adequately service the proposed development.
- A 200mm diameter sanitary service connected to the 250mm diameter municipal sanitary sewer extension on Sandhill Road will adequately service the proposed development.

- SWM for the proposed phased development will be achieved by restricting all storms up to the 100year post development flow to the allowable release rate. The allowable release rate criteria of 85L/s/ha was established as part of the Briar Ridge Phase 2 Subdivision.
- Required on-site SWM storage volumes will be achieved using the surface storage in the parking-lots and storage on the roof of the new building for storms up to the 100 year event.
- Quality control will be provided by the existing Brookside Pond-C SWF, which receives flows from the 675mm storm sewer on Sandhill Road. No other water quality measures are proposed.
- Temporary erosion and sediment control measures for the subject site have been identified.
- Overland flow routes have been provided for the subject site.
- During all construction activities, erosion and sedimentation shall be controlled.

EXP Services Inc. KMA Mosque and Community Centre 351 Sandhill Road, Ottawa, ON OTT-00238504-A0 November 23, 2018

Appendix A – Supporting Documents & Drawings

3.2 Storm Drainage

Storm drainage for development within the Klondike Road Lands will be designed pursuant to the major-minor system philosophy. In this manner, right-of-way drainage will be collected through a series of roadway inlet catch basins and conveyed through a storm sewer system to a water quality and quantity treatment facility located downstream.

3.2.1 Minor System

Storm sewers will be sized to permit free flow conveyance of runoff generated from 1:5 year design storm using City of Ottawa IDF data. Flow restrictors will be installed at each inlet to the minor system to control inflows to a maximum rate of 85 L/s/ha to prevent storm sewer surcharging for the protection of dwellings and to balance the distribution of rainfall runoff stored on-site versus that released into the SWM facilities.

The design criteria used to determine the size of the storm sewers are as follows:

Minimum pipe size	=	300 mm diameter
Minimum velocity	=	0.8 m/s
Maximum velocity	=	3.0 m/s

The minor systems for both the Brookside Subdivision (Area D) and the south shore (Area C) areas will outlet to one of two proposed SWM facilities located immediately upstream of March Valley Road on the north side and south side of Shirley's brook, respectively.

The minor system for the west shore (Area A), including 5.8 ha of March Road, will outlet to a proposed SWM facility located between March Road and Shirley's Brook near the confluence of the northwest and southwest branches.

Detailed design calculations and drawings for the Brookside Subdivision (Areas D-2 and D-3) are available in the *Brookside Subdivision Infrastructure Servicing Study* (NECL, November 2006).

3.2.2 Major System

Major systems will be designed to convey flows in excess of the minor system capacity via overland flow routes within the public ROW to Shirley's Brook. On-site major system storage will be provided within road sags for runoff rates that exceed the capacity of the inlet control devices. Major system storage for Areas D-1 and D-2 has been calculated at 47 m³/ha, based on the detailed grading design of the Brookside Subdivision, and has been approximated at 50 m³/ha in the remaining areas for hydrologic modeling purposes. Runoff volumes exceeding the available on-site major system storage will be conveyed overland along the major system flow routes to Shirley's Brook. The major overland flow route for the Brookside Subdivision is shown on Drawing 103106-STM2.

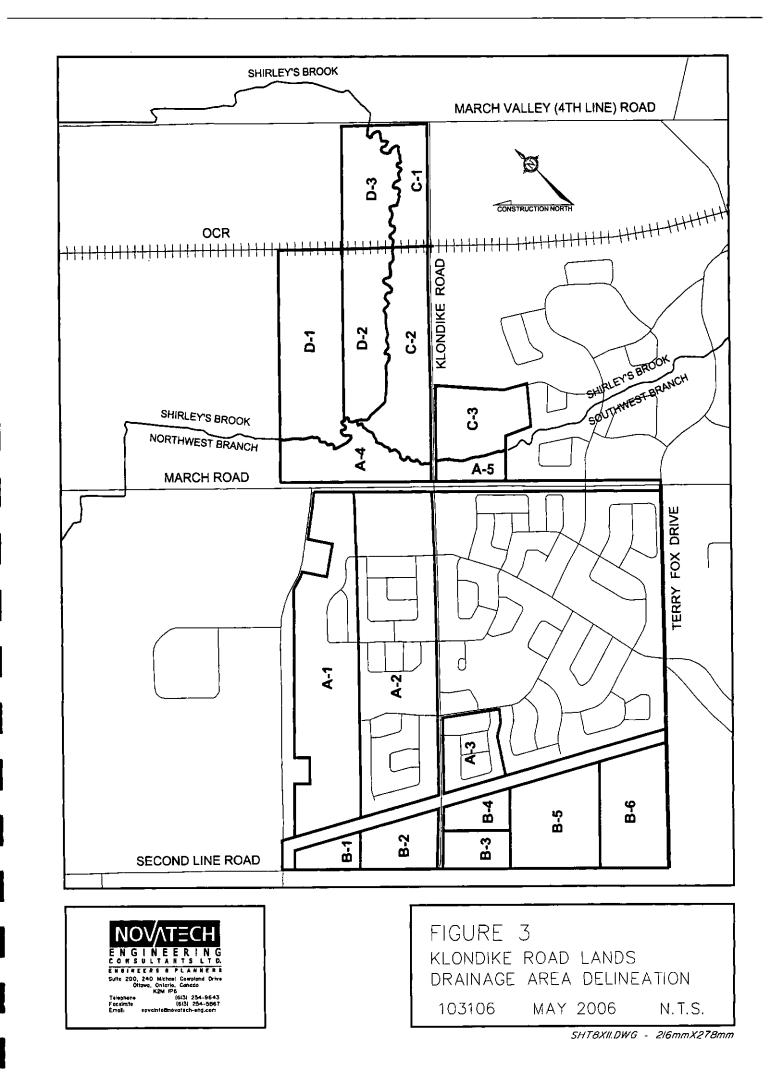
The inflow rate to the minor system will be controlled using inlet control devices, with the objective of minimizing ponding for the 1:5 year storm event. In this way, major overland flow along roadways will only occur during infrequent rainfall events (> 1:5 year). Ponding will be restricted to a maximum depth of 0.30m in the right-of-way.

SWM facility 'D' has been sized to provide Level 2 water quality control as per the guidelines provided in *MOE SWM Planning and Design Manual*, and erosion control for all storms up to the 1:5 year event based on a target erosion control rate of 8-14 L/s/ha (from Table 4 of the Kanata North EMP).

The stage-storage-discharge curve for SWM Facility 'D' used in the post-development SWMHYMO model is provided in Table 7.1-1.

Component	Elevation (m)	Forebay (m ³)	Main Cell (m³)	Total Volume (m ³)	Active Volume (m ³)	Release Rate (L/s)
Pond Bottom	65.00	0	0	0	0	-
	65.55	460	1,330	1,790	0	-
Top of Forebay Berm	65.75	730	2,120	2,850	0	-
Normal Water Level	66.05	-	4,330	4,330	0	-
	66.25	-	5,420	5,420	1,090	20
Extended Detention	66.45	-	6,530	6,530	2,200	29
	66.75	-	8,270	8,270	3,940	100
	67.00	-	9,810	9,810	5,480	210
Erosion Control (1:5 year)	67.25	-	11,420	11,420	7,090	300
	67.50	-	13,130	13,130	8,800	3,000

Table 7.1-1	SWM Facility 'D' - Stage-Storage-Discharge Curve	


7.2 SWM Facility 'C'

SWM Facility 'C' will service Areas C-1, C-2 and C-3 shown on Figure 3. The total drainage area to this facility will be approximately 26.2 ha with an average imperviousness of 53% (see calculations in Appendix D).

Minor system flows from the upstream drainage area will ultimately be conveyed by storm sewers along Klondike Road to SWM Facility 'C'. Until such time as Klondike Road is fully urbanized east of the OCR crossing, the Klondike Road storm sewer will outlet into a temporary open channel along Klondike Road, which will convey minor system flows from the upstream drainage area to SWM Facility 'C'.

SWM facility 'C' has been sized to provide Level 2 water quality control as per the guidelines provided in *MOE SWM Planning and Design Manual*, and erosion control for all storms up to the 1:5 year event based on a target erosion control rate of 8-14 L/s/ha (from Table 4 of the Kanata North EMP).

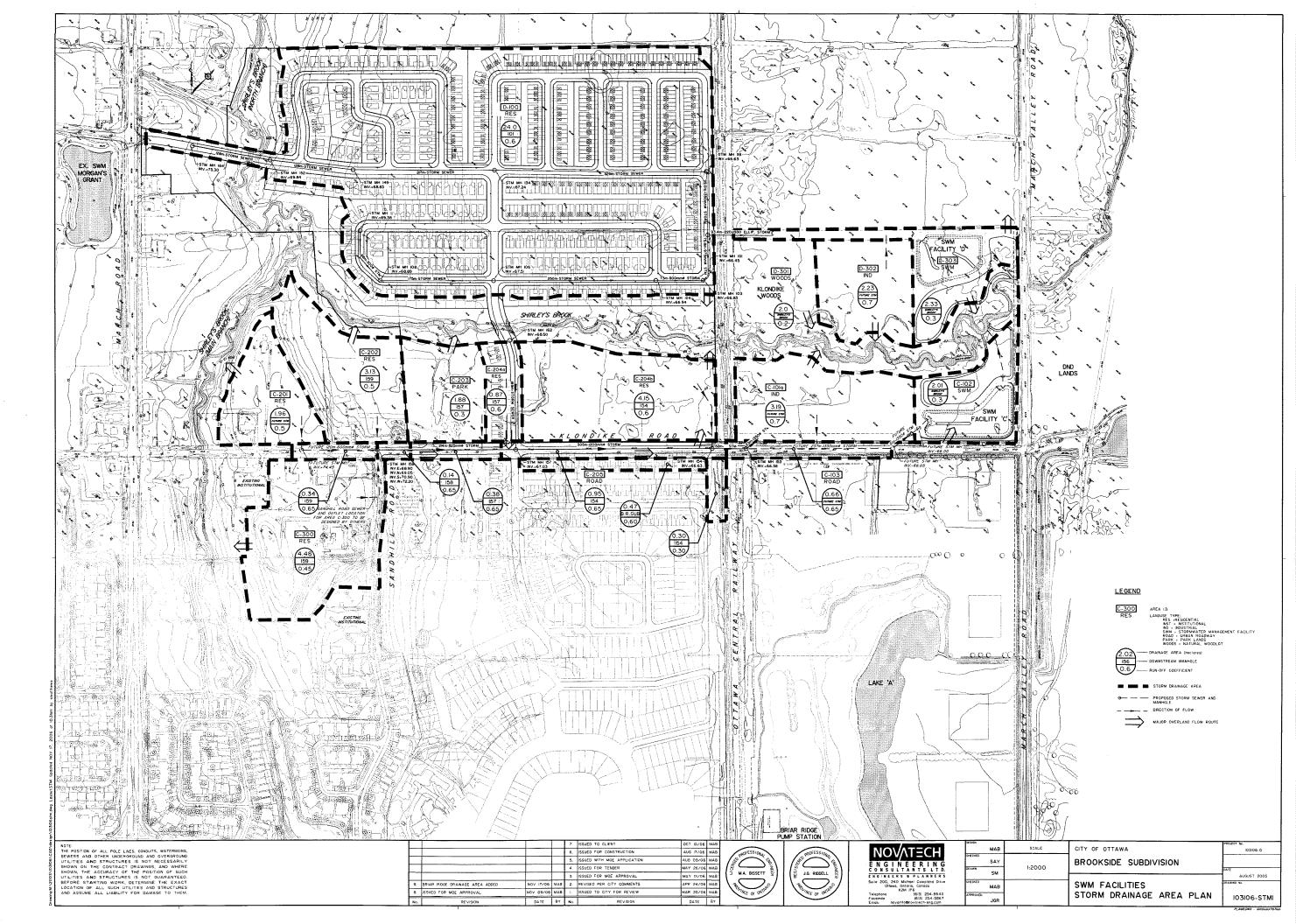
The stage-storage-discharge curve for SWMF 'C' used in the post-development SWMHYMO model is provided in Table 7.2-1.

351 Sandhill Road: Pre-application Consultation Notes

July 7, 2016, Room 4103E 2:30 – 3:30pm

In attendance: Kathy Rygus (Planner, City of Ottawa), Nadege Balima (Project Manager, City of Ottawa), Mark Young (Design, City of Ottawa), John Bernier (Planner, City of Ottawa), Riley Carter (Transportation, City of Ottawa), Mark Richardson (Forester, City of Ottawa), Fredrick VanRooyen (Student Planner, City of Ottawa), Bill Holzman (Holzman Consultants Inc.), Stephanie Morris (Holzman Consultants Inc.), Virginia Robinson (LRL Associates Ltd.), Mehmood Shaikh (Kanata Muslim Association), Moinuddin Siddiqui (Kanata Muslim Association)

Proposal Summary


- Kanata Muslim Association community of worshipers in the Kanata North area are looking for a site for a new mosque. Current facility in a strip mall on March Road with other venues such as schools and gyms rented on an ongoing basis for large prayer services and Saturday school sessions
- The site at 351 Sandhill would be developed in three phases:
 - Phase 1: make the existing building structurally sound and undertake interior changes to use the space for a worship area; add required surface parking (20-30 spaces).
 - Phase 2: build an addition at rear of the existing building (2 storey multi use facility) and provide additional parking.
 - Phase 3: demolish existing building; full build out of new mosque, with worship and multiple purpose facilities.
- As the Kanata Muslim Association is a non-for-profit organization, fundraising is ongoing and it could be 5 to 10 years before mosque is built.
- Site is ideal due to surrounding institutional uses and convenient location to the Muslim community in Kanata North.
- Friday sessions and child care will still be accommodated at a larger venue.

Staff's preliminary comments on the proposal:

Servicing & Engineering (Nadege Balima)

- The site currently is privately serviced with well and septic system.
- Water, storm and sanitary pipes are located within Sandhill Road.
- The sanitary pipe was extended by Minto to serve their property immediately to the south of 351 Sandhill. The sanitary pipe does not extend to the property line. Sanitary is also available from Klondike Road. Staff were unable to find the design of Klondike Road sanitary sewer.
- If the sanitary line was not included in the design of Sandhill Road, extending the sewer would be needed and justification for capacity would be required. The as builts for the adjacent Minto site show that the sanitary is at the corner and would need to be extended. Capacity of the system should be based on the ultimate.
- If sanitary line needs to come from Klondike Road, municipal consent would be required. The City
 does not manage cost sharing and there would be no conditions or agreements for cost recovery
 from other owners to contribute.
- Ministry Of Environment Application would be required with a sanitary extension (transfer of review application).
- <u>Action:</u> Nadege Balima will search for any further infrastructure design to confirm the location of the sanitary line.
- Because the site is located within the urban area, municipal services are required to be installed at the time of the Phase 1 development, with the establishment of the parking lot.
- With a phased development, the engineering consultant will need to show how each phase will work independently as well as at the ultimate build-out.

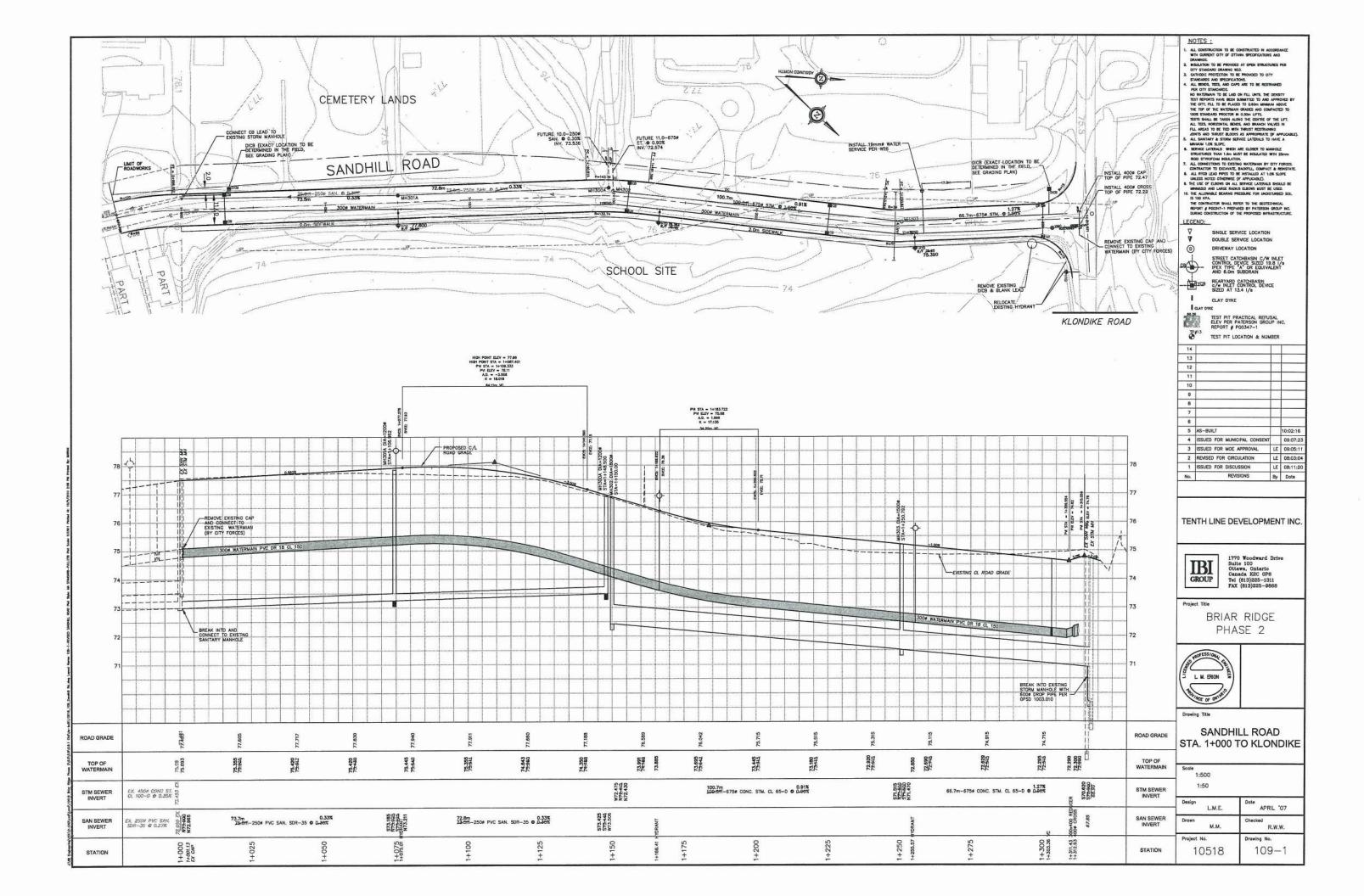
Transportation (Riley Carter)

MORGAN'S CREEK CITY OF OTTAWA MINTO COMMUNITIES INC. JLR PROJECT NO.: 24566

STORM SEWER DESIGN SHEET AND HYDRAULIC GRADE LINE ANALYSIS IDF CURVE 1: 100

Date: July 2011

Designed by: K.F. Checked by: L.D.

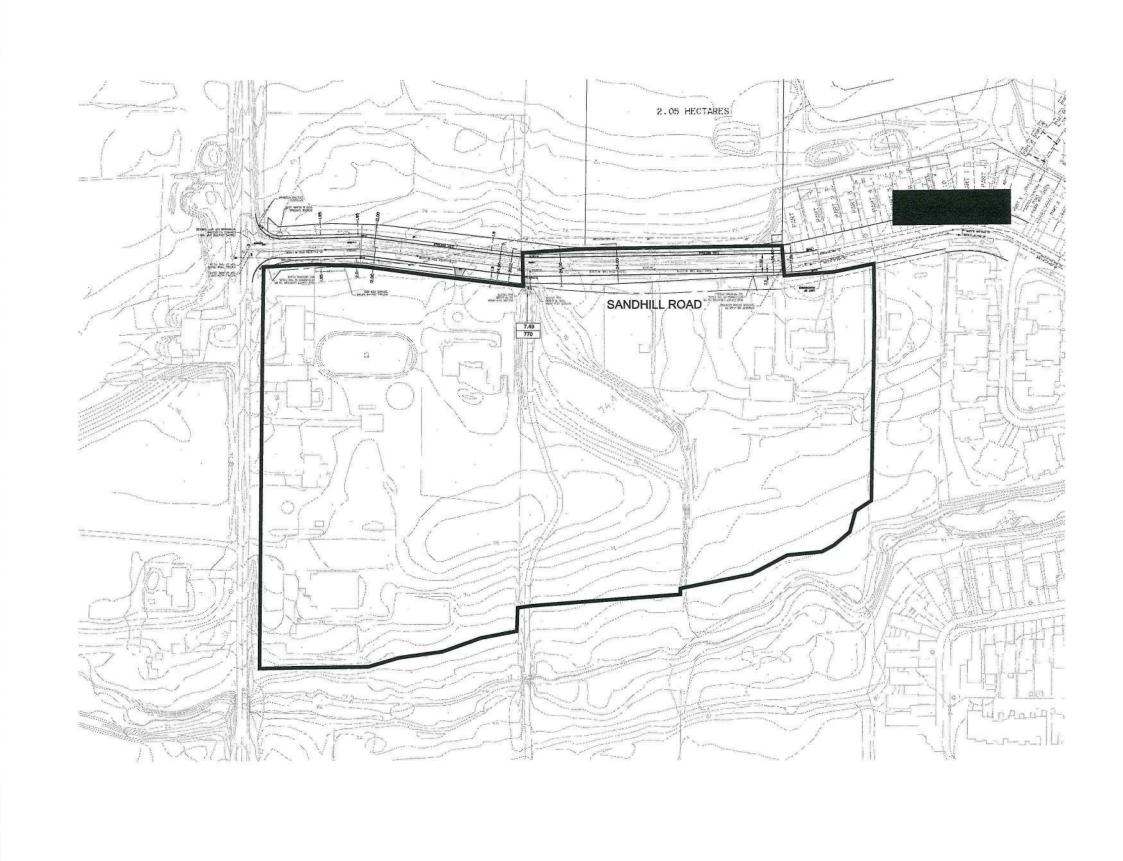

DENOTES EXISTING SEWERS

100 YEAR IDF CURVE Manning's Coefficient (n) = 0.013

														20		2	0																															
	MAN	HOLE		DRAINAGE	REAS			1:100 Y	'R PEAK FL	LOW GENE	RATION		Ini	et Control D	evices		1:100 YR PE					SEWE	R DATA					U	IPSTREA	M			DOWNST	REAM							S CALCU					1.1	00 YR HGL	LISE
STREET	NUN	IBER 0.2	0 0.40 0.50	0.90 0.95	0.00	total	cumm 2	2.78AR 2.78/	AR Time	e Intens.	Peak Flow	ICD @ ICD	@ ICD @ I	CD @ ICD	@ ICD	CUMM	FLOW (L/s)	Q _d /Q _{ca}	Dia	Slope	Q full V	/ full V p	artial Depth	n of V sur	ch Length	Flow	Pr. Center	Obvert	Obvert	Invert	Cover P	Pr. Center	Obvert	Invert C	Cover	f	L/D	K V^3	2 / 2g	Straight E	xpansior	Bend Mai	ajor LossMinor	r Losiotal L	Losse Ap	plied	00 III IIGE	001
	From	To	0 0.40 0.50	0.00 0.00	0.30	area (ha)	area (ha)	CUN	MM min	mm/hr	L/s	10.0 13.	0 15.0	20 28.	4 Flow (L	s) ICD FLOV	v		(mm)	%	(l/s) (r	m/s) (n	n/s) flow (m) (m/s	s) (m)	"ime (min)) Line	Drop				Line					FI	RICT ((m)				(m) (n	m) (n	m) _oss	ses (m Ups	str. Downs.	
												L/S L/S	S L/S	L/S L/S	6 L/S	L/S																																
FLOW TO 675mm STORM	- SANDHILL RO	AD																																														
Private Road	507	506						0.00 0.00			0.00					0.00					59.68 0					0.36			74.18	73.88		76.60	74.12	3.82 2		0.031 5	8 7 27 1						0,000 0,0			000 74	8 74.12	75.55
		000													0.00		0.00																				8.727 1.											
Private Road	506 505	505			0.29			0.73 0.73						1.0			28.40	0.25			115.68 1					0.66			74.12			76.90							.038		0.038 0		0.117 0.0		188 0			75.65
Private Road		504		0.25	0.06			0.71 1.43				1.00	1.00		25.00		53.40	0.28			188.11 1						76.90		73.96									100 0.	.051				0.178 0.0			.000 73.9	10.10	75.65
Private Road	504	503				0.00	0.60	0.00 1.43							0.00		53.40	0.28			188.11 1								73.73			76.50					8.119 1.						0.067 0.0		126 0			75.50
Private Road	503	502		0.26					5 12.19			1.0	0		13.00		66.40	0.23			283.76 1						76.50		73.64	73.11							0.679 1.		.060		C		0.109 0.0			.000 73.6		75.70
Private Road	502	501		0.19		0.19	1.05	0.45 2.50	0 12.69	157.22	392.26		1.00		15.00	81.40	81.40	0.29	525	0.40	283.76 1	1.27 1.	12 0.19	2 0.36	60.30	0.79	76.90		73.49	72.96	3.41	76.70	73.25	2.72 3	3.45	0.026 11	3.048 2.	934 0.	.064	0.010		0	0.188 0.0	0.1 0.1	198 0	.000 73.4	9 73.25	75.65
									13.48	3																																						
Private Road	513	501	0.10			0.10	0.10	0.11 0.11	1 10.00	178.56	19.86	1.00			10.00	10.00	10.00	0.06	300	2.80	168.81 2	2.31			36.10	0.26	77.25		74.26	73.96	2.99	76.70	73.25	2.95 3	3.45	0.031 11	8.438 3.	704 0.	.000			0	0.0 000.0	0.0	000 0	.000 74.2	26 73.25	75.54
									10.26	3																																						
Private Road/ Sandhill Road	501	EX. 302				0.00	1.15	0.00 2.6	1 13.48	3 151.96	396.05				0.00	91.40	91.40	0.32	525	0.40	283.76 1	1.27 1.	13 0.20	8 0.41	35.20	0.46	76.70		73.25	72.72	3.45	76.80	73.11	2.58 3	8.69	0.026 6	5.992 1.	713 0.	.065		0.065 0	J.078 C	0.111 0.1	143 0.2	254 0	.000 73.2	25 73.11	75.54
				1																																												
			TOTAL AR	EA (ha)	1.15																																											
																			11																													
				I	1							u														ı				1																		
																													SA	NDHILL- A	BUILT IN	FORMAT	ON									- AS BUILT	T INFORMAT	TION				
																														OBV @ S																		
																														INV@ ST										HOL	STORM	MH# 302	- SANDHII	1 = 73 10	15			

Ex. INV (ST MH 302 (SE)= 72.430 Information taken from IBI Group As-Built Plans - Briar Ridge Phase 2 DWG No. 109-1 , Rev 5 (As-built) - Sandhill Road (Sta. 1+000 to Klondike)

HGL @ STORM MH# 302 - SANDHILL = 73.105


IBI Group

333 Preston Street - Suite 400 Ottawa, Ontario K1S 5N4

SANITARY SEWER DESIGN SHEET

PROJECT: Briar Ridge Phase 2 - Sandhill Road LOCATION: City of Ottawa CLIENT: Tenth Line Development Inc.

LO	CATION							RESIDE						INSTITU	JTIONAL		CIAL IN	IDUSTR	IAL	INFILTRA	TION ALLO	NANCE				PROPOSE	D SEWER	DESIGN		
						TYPES				LATION	CUMULAT	VE FLOW			AREA	(ha)							FLOW							
Street	Fro MI		To MH	Singles	Semis	Towns	Stacked	Area (Ha.)	INDIV.	CUM.	Peaking Factor	Peak Flow (I/s)	INSTITI Indiv	UTIONAL Cumm.	COMME Indiv	RCIAL Cumm.	INDUS	Cumm.	Pk. Flow (I/s)	Incr. Area (Ha.)	Cum. Area (Ha.)	Flow (I/s)	(l/s)	Capacity (I/s)	Pipe Size (mm)	Length (m)	Slope (%)	Velocity m/sec		ail. Cap
																														-
ternal Area	Stu	ub	300A					7.49	770.0	770.0	3.87	12.07							0.00	7.49	7.49	2.10	14.17	33.98	250	10.0	0.30	0.67	19.81	58.3
ndhill Road	300	A	301A						0.0	770.0	3.87	12.07					_		0.00	0.00	7.49	2.10	14.17	33.98	250	73.5	0.30	0.67	19.81	58.
ndhill Road	301	1A	Ex. 10A						0.0	770.0	3.87	12.07							0.00	0.00	7,49	2.10	14.17	33.98	250	75.0	0.30	0.67	19.81	58.
ndhill Road	Ex 1	OA	Ex. 9A					0.43	32.0	802.0	3.86	12.54							0.00	0.43	7.92	2.22	14.76	33.98	250	99.0	0.30	0.67	19.22	56.
		-																												+
																						_								\pm
													-																-	+
		_																												
																														-
															1.021			_												+
																														-
			-														-	_									_			-
																														+
													-																	+
		-																												-
																														-
																														1
																														+
														_																-
																														-
gned: LM	15						Population	Per Unit:	3.4	For Singles			L																	
nina. Lin									2.8	Townhouses/Se	mis				ICI Rates Institution	30000		Peak Fact 1.5		Infiltrati	on Allowance:	0.13	l/sec/Ha			Assun	ned pipe loss	coefficient =	0.013	\$
ked:							Avg. Per C	apita Flow Rate:		l/day	W ubase D	an'n in fias	da		Commercial	50000	l/ha/day	1.5 Moe Guid												
			REVI	SION		DATE	Residential	Peaking Factor:	Harmon Formula	= 1+(14/(4+P*0.5)) where ⊨ = p	op n in thousar	ius		Industrial	33000	maruay	MOB GUID	emida											
Reference: 18-501-1	File Ref: 10518.5.7		Da 2009-03-09		She 1 of 1	et No.																								
			014707783370		25753753															2.5					20					

	IN HECTARES
14	
13 12 11 10	
9	
7 6 5	
4	
2 1 ISSUED FOR APPR	
No. REVIS	IONS By Dote
TENTH LINE DE	VELOPMENT INC.
GROUP	Woodward Drive e 100 wa, Ontario ada K2C 0P6 (613)225-1311 (613)225-9868
	RIDGE SE 2
L M. ERION	N
	DRAINAGE PLAN
	LL ROAD
Design	Date
L.M.E.	MARCH '09 Checked
M.M. Project No.	R.W.W. Drawing No.
10518	501-1

MORGAN'S CREEK CITY OF OTTAWA

MINTO COMMUNITIES INC. JLR PROJECT NO.: 24566

							RESIDENTI						COM/INS		RES+ COM +				SEWER DA	<u> </u>				UPSTREAM	1	-		DOWNSTR	1	-
STREET	SAN	1 MH #			BER OF UN	-	-		LATIVE	PEAKING			CUM. COM/INST		PEAK EXTR.	PEAK DES.				VEL.		Center	Obvert		3	0	Center	Ohunt	Inunt	
	FROM	то	SINGLES	STACKS	TOWNS	POP. pers	AREA	POP. pers	AREA	FACTOR	FLOW L/s	AREA ha	AREA L/s	FLOW L/s	FLOW L/s	FLOW L/s	DIA. mm	SLOPE %	CAPAC. L/s	(full) m/s	LENGTH m	Line	Drop	Obvert	Invert	Cover	Line	Obvert	Invert	
	. I NOM	10	units	unta	unta	pera	114	pers	THE .			THE .					-													
W TO 250mm SANITARY - SANDHILL ROAD																														
Private Road	7	6		12		32	0.20	32	0.20	4.00	0.53				0.05	0.58	200	0.33	19.66	0.61	21.80	76.70	0.02	74.65	74.45	2.05	76.60	74.58	74.38	_
Private Road	6	5		24		65	0.25	97	0.45	4.00	1.58				0.12	1.70	200	0.33	19.66	0.61	36.10	76.60	0.02	74.56	74.36	2.04	76.90	74.44	74.24	
Private Road	5	4		24		65	0.43	162	0.88	4.00	2.63				0.25	2.87	200	0.33	19.66	0.61	55.40	76.90	0.02	74.42	74.22	2.48	76.80	74.24	74.04	
Private Road	4	3		12		32	0.11	194	0.99	4.00	3.15				0.28	3.43	200	0.33	19.66	0.61	22.00	76.80		74.22	74.02	2.58	76.50	74.15	73.95	
Private Road	3	2		12		32	0.16	227	1.15	4.00	3.68				0.32	4.00	200	0.33	19.66	0.61	34.70	76.50	0.04	74.15	73.95	2.35	76.90	74.03	73.83	
Private Road	2	1		16		43	0.28	270	1.43	4.00	4.38	-			0.40	4.78	200	0.33	19.66	0.61	59.70	76.90		73.99	73.79	2.91	76.70	73.79	73.59	
				15																										
Private Road	8	1			4	11	0.11	11	0.11	4.00	0.18				0.03	0.21	200	2.50	54.10	1.67	32.00	77.25	0.06	74.65	74.45	2.60	76.70	73.85	73.65	+
																														1
Private Road/ Sandhill Road	1	EX. 300A			-		0.02	281	1.56	4.00	4.55				0.44	4.99	200	0.33	19.66	0.61	36.00	76.70	-	73.79	73.59	2.91	76.80	73.68	73.48	+
				100	4	281	1.56																							
																								Ex. Ex. mation taker	Inv @ SAN Obv @ SA n from IBI G	IMH 300A NMH 300A roup As-Buil	(SE) It Plans - Bria	TON r Ridge Phase 2 1+000 to Klondike)	73.425 73.675	
			-				-																							
V TO SANITARY - MARCH ROAD/ MERSEY DRIVE															-)
Private Road	11	10	A Loss	56	AT PARTY	151	0.71	151	0.71	4.00	2.45	2414	C.S.F.R.R.A		0.20	2.65	200	0.50	24.19	0.75	74.90	78.60	0.06	76.57	76.37	2.03	78.50	76.20		_
Private Road	10	9				The second	0.05	151	0.76	4.00	2.45	E. S. C.L.	20. 1.		0.21	2.66	200	0.50	24.19	0.75	34.50	78.50	0.06	76.14	75.94	2.36	78.40	75.97	75.77	7
Commercial Site - 788 March RD	Future Site	9								1		0.83	0.83	0.72	0.23	0.95	1 20-21-2			1	Detailed Desig	gn of Comme	ercial Site lo	cated at 788	8 March Roa	d to be com	pleted in futu	e		Т
Private Rd /March Rd/ Mersey Dr	9	12				18/121	1999-199	151	0.76	4.00	2.45	102 243	0.83	0.72	0.45	3.62	200	0.67	28.04	0.86	47.08	78.40	0.03	75.91	75.71	2.49	78.70	75.59	75.39)
Mersey Drive	12	13					TRANK!	151	0.76	4.00	2.45	1477	0.83	0.72	0.45	3.62	200	0.35	20.24	0.62	38.80	78.70	No.	75.56	75.36	3.14	79.02	75.42	75.22	2
Mersey Drive	124	13		1.00		4	0.14	4	0.14	4.00	0.06		122133		0.04	0.10	200	0.55	25.38	0.78	33.00	79.27		75.60	75.40	3.66	79.02	75.42	75.22	
Mersey Drive Mersey Drive	13 123	123 108				24 32	0.30	179 211	1.20	4.00 4.00	2.90 3.42		0.83	0.72	0.57 0.45	4.19 3.88	200 200	0.55 0.59	25.38 26.28	0.78 0.81	63.30 109.20	79.02 79.46		75.42 75.07	75.22 74.87	3.60 4.40	79.46 80.00	75.07 74.42	74.87	
Mersey Drive	122	121	Toraca and			24	0.38	24	0.38	4.00	0.39	Laboration	IL YES STORE		0.11	0.50	200	3.78	66.52	2.05	63.50	84.45		80.40	80.20	4.05	81.82	78.00	77.80	ls
Mersey Drive	121	120				24	0.28	48	0.66	4.00	0.78				0.18	0.96	200	2.53	54.43	1.68	68.00	81.82		77.90	77.70	3.92	80.27	76.18	75.98	
		2		12	16	32 43	0.26	32 76	0.26 0.59	4.00 4.00	0.53 1.23				0.07 0.17	0.60 1.39	200 200	0.90 0.90	32.46 32.46	1.00	52.70 89.20	84.25 84.20	0.06	81.66 81.13	81.46 80.93	2.59 3.07	84.20 82.45	81.19 80.33	80.99 80.13	
Residential Private Road Residential Private Road	3 2	1A		1	10									A TABLE A	0.11	1.34	200 200	0.90	32.46 21.64	1.00 0.67	69.30 74.90	84.25 82.80	0.06	80.71 80.03	80.51 79.83	3.54 2.77	82.80 82.45	80.09 79.73	79.89 79.53	
				28 20	10	76 54	0.41 0.28	76 130	0.41	4.00 4.00	1.23 2.10				0.11 0.19	2.29	200		21.04		14.00	02.00	-		1	2.72	82.45	79.56	79.36	10
Residential Private Road Residential Private Road Residential Private Road	2 3 4	1A 4 1A				76	0.41 0.28	130	0.69	4.00	2.10				0.19								0.50	70 70	70 52			78.67		
Residential Private Road Residential Private Road	2 3	1A 4				76	0.41	130								2.29 3.69 3.69	200	0.90 0.98	32.46 61.42	1.00 1.21	18.50	82.45		79.73 79.11	79.53 78.86	3.34	80.39	10.07	78.42	8.
Residential Private Road Residential Private Road Residential Private Road Residential Private Road	2 3 4 1A	1A 4 1A 1				76	0.41 0.28	130 205	0.69 1.30 1.30	4.00 4.00	2.10 3.33	1.69	4.62	4.01	0.19 0.36	3.69	200 250	0.90	32.46	1.00	18.50	82.45				3.34	80.39		78.42	
Residential Private Road Residential Private Road Residential Private Road Residential Private Road Commercial Plaza	2 3 4 1A 1	1A 4 1A 1 120A				76	0.41 0.28	130 205 205 2432	0.69 1.30 1.30	4.00 4.00 4.00 3.52	2.10 3.33 3.33	1.69	4.62	4.01	0.19 0.36 0.36	3.69 3.69	200 250 300	0.90 0.98	32.46 61.42	1.00 1.21	18.50 44.80	82.45			78.86				75.31	00
Residential Private Road Residential Private Road Residential Private Road Residential Private Road Commercial Plaza Klondike Rd/ MG Phase 13/ Commercial Plza	2 3 4 1A 1 Upstream	1A 4 1A 1 120A 120A				76 54	0.41 0.28 0.02	130 205 205 2432	0.69 1.30 1.30 38.86 40.16	4.00 4.00 4.00 3.52	2.10 3.33 3.33 34.66	1.69			0.19 0.36 0.36 12.18	3.69 3.69 50.85	200 250 300 300	0.90 0.98 0.30	32.46 61.42 55.26	1.00 1.21	18.50 44.80	82.45 82.45 80.39	3.05	79.11	78.86	4.77	80.39	75.61	75.31	00
Residential Private Road Residential Private Road Residential Private Road Residential Private Road Commercial Plaza Klondike Rd/ MG Phase 13/ Commercial Plza Klondike Commercial Plaza	2 3 4 1A 1 Upstream 120A	1A 4 1A 1 120A 120A 120				76 54 20 8	0.41 0.28 0.02 0.33	130 205 205 2432 2637 2705 8	0.69 1.30 1.30 38.86 40.16 41.15	4.00 4.00 4.00 3.52 3.49	2.10 3.33 3.33 34.66 37.28	1.69	4.62	4.01	0.19 0.36 0.36 12.18 12.54	3.69 3.69 50.85 53.83	200 250 300 300 300 200	0.90 0.98 0.30 0.97 0.42 2.00	32.46 61.42 55.26 99.36 65.32 48.39	1.00 1.21 1.36 0.90 1.49	18.50 44.80 15.80 70.60 8.10	82.45 82.45 80.39 80.27 83.34	3.05 0.01 0.10	79.11 75.62 75.47 79.26	78.86 75.31 75.17 79.06	4.77 4.80 4.08	80.39 80.25 80.40 83.30	75.61 75.47 75.17 79.10	75.31 75.17 74.87 78.90	
Residential Private Road Residential Private Road Residential Private Road Residential Private Road Commercial Plaza Klondike Rd/ MG Phase 13/ Commercial Plza Klondike Commercial Plaza Westmoreland Avenue Whithorn Avenue Whithorn Avenue	2 3 4 1A 1 Upstream 120A 120 116 119	1A 4 1A 1 120A 120A 120 117 117 119 118				76 54 20 8 24	0.41 0.28 0.02 0.33 0.33 0.14 0.22	130 205 205 2432 2637 2705 8	0.69 1.30 1.30 38.86 40.16 41.15 0.14 0.36	4.00 4.00 3.52 3.49 3.48 4.00 4.00	2.10 3.33 3.33 34.66 37.28 38.14 0.13 0.52	1.69	4.62	4.01	0.19 0.36 0.36 12.18 12.54 12.82 0.04 0.10	3.69 3.69 50.85 53.83 54.96 0.17 0.62	200 250 300 300 300 200 200	0.90 0.98 0.30 0.97 0.42 2.00 2.69	32.46 61.42 55.26 99.36 65.32 48.39 56.11	1.00 1.21 1.36 0.90 1.49 1.73	18.50 44.80 15.80 70.60 8.10 37.20	82.45 82.45 80.39 80.27 83.34 83.30	3.05 0.01 0.10 0.30	79.11 75.62 75.47 79.26 79.00	78.86 75.31 75.17 79.06 78.80	4.77 4.80 4.08 4.30	80.39 80.25 80.40 83.30 82.32	75.61 75.47 75.17 79.10 78.00	75.31 75.17 74.87 78.90 77.80	
Residential Private Road Residential Private Road Residential Private Road Residential Private Road Commercial Plaza Klondike Rd/ MG Phase 13/ Commercial Plza Klondike Commercial Plaza Westmoreland Avenue Whithorn Avenue	2 3 4 1A 1 Upstream 120A 120 116	1A 4 1A 1 120A 120A 120 117 119				76 54 20 8	0.41 0.28 0.02 0.33 0.14	130 205 205 2432 2637 2705 8 8 32	0.69 1.30 1.30 38.86 40.16 41.15 0.14	4.00 4.00 3.52 3.49 3.48 4.00	2.10 3.33 3.33 34.66 37.28 38.14 0.13	1.69	4.62	4.01	0.19 0.36 0.36 12.18 12.54 12.82 0.04	3.69 3.69 50.85 53.83 54.96 0.17	200 250 300 300 300 200 200	0.90 0.98 0.30 0.97 0.42 2.00	32.46 61.42 55.26 99.36 65.32 48.39	1.00 1.21 1.36 0.90 1.49	18.50 44.80 15.80 70.60 8.10	82.45 82.45 80.39 80.27 83.34	3.05 0.01 0.10 0.30	79.11 75.62 75.47 79.26	78.86 75.31 75.17 79.06 78.80	4.77 4.80 4.08 4.30	80.39 80.25 80.40 83.30	75.61 75.47 75.17 79.10	75.31 75.17 74.87 78.90 77.80	,
Residential Private Road Residential Private Road Residential Private Road Commercial Plaza Klondike Rd/ MG Phase 13/ Commercial Plza Klondike Commercial Plaza Westmoreland Avenue Whithorn Avenue Whithorn Avenue	2 3 4 1A 1 Upstream 120A 120 116 119	1A 4 1A 1 120A 120A 120 117 117 119 118				76 54 20 8 24	0.41 0.28 0.02 0.33 0.33 0.14 0.22	130 205 205 2432 2637 2705 8 32 76	0.69 1.30 1.30 38.86 40.16 41.15 0.14 0.36 0.86	4.00 4.00 3.52 3.49 3.48 4.00 4.00	2.10 3.33 3.33 34.66 37.28 38.14 0.13 0.52	1.69	4.62	4.01	0.19 0.36 0.36 12.18 12.54 12.82 0.04 0.10	3.69 3.69 50.85 53.83 54.96 0.17 0.62	200 250 300 300 300 200 200	0.90 0.98 0.30 0.97 0.42 2.00 2.69 2.21	32.46 61.42 55.26 99.36 65.32 48.39 56.11	1.00 1.21 1.36 0.90 1.49 1.73	18.50 44.80 15.80 70.60 8.10 37.20	82.45 82.45 80.39 80.27 83.34 83.30 82.32	3.05 0.01 0.10 0.30	79.11 75.62 75.47 79.26 79.00 77.70	78.86 75.31 75.17 79.06 78.80 77.50	4.77 4.80 4.08 4.30	80.39 80.25 80.40 83.30 82.32	75.61 75.47 75.17 79.10 78.00	75.31 75.17 74.87 78.90 77.80 75.71	,
Residential Private Road Residential Private Road Residential Private Road Residential Private Road Commercial Plaza Klondike Rd/ MG Phase 13/ Commercial Plza Klondike Commercial Plaza Westmoreland Avenue Whithorn Avenue Whithorn Avenue Whithorn Avenue Whithorn Avenue	2 3 4 1A 1 Upstream 120A 120 116 119 118	1A 4 1A 1 120A 120A 120 117 119 118 117				76 54 20 8 24 44 24	0.41 0.28 0.02 0.33 0.33 0.14 0.22 0.50	130 205 205 2432 2637 2705 8 8 32 76 2805	0.69 1.30 1.30 38.86 40.16 41.15 0.14 0.36 0.86 42.32	4.00 4.00 3.52 3.49 3.48 4.00 4.00 4.00	2.10 3.33 3.33 34.66 37.28 38.14 0.13 0.52 1.23	1.69	4.62 4.62	4.01	0.19 0.36 0.36 12.18 12.54 12.82 0.04 0.10 0.24	3.69 3.69 50.85 53.83 54.96 0.17 0.62 1.47	200 250 300 300 200 200 200 200 300	0.90 0.98 0.30 0.97 0.42 2.00 2.69 2.21	32.46 61.42 55.26 99.36 65.32 48.39 56.11 50.87	1.00 1.21 1.36 0.90 1.49 1.73 1.57	18.50 44.80 15.80 70.60 8.10 37.20 81.10	82.45 82.45 80.39 80.27 83.34 83.30 82.32 80.40	3.05 0.01 0.10 0.30 0.75 0.03	79.11 75.62 75.47 79.26 79.00 77.70 75.16	78.86 75.31 75.17 79.06 78.80 77.50	4.77 4.80 4.08 4.30 4.62 5.24	80.39 80.25 80.40 83.30 82.32 80.40	75.61 75.47 75.17 79.10 78.00 75.91	75.31 75.17 74.87 78.90 77.80 75.71 74.57	· · ·
Residential Private Road Residential Private Road Residential Private Road Commercial Plaza Klondike Rd/ MG Phase 13/ Commercial Plza Klondike Commercial Plaza Westmoreland Avenue Whithorn Avenue Whithorn Avenue Whithorn Avenue Whithorn Avenue Whithorn Avenue	2 3 4 1A 1 Upstream 120A 120 116 119 118 117	1A 4 1A 1 120A 120A 120A 120 117 119 118 117 110				76 54 20 8 24 44 24 24 12	0.41 0.28 0.02 0.33 0.33 0.14 0.22 0.50 0.31 0.33	130 205 205 2432 2637 2705 8 32 76 2805 12	0.69 1.30 1.30 38.86 40.16 41.15 0.14 0.36 0.86 42.32	4.00 4.00 4.00 3.52 3.49 3.48 4.00 4.00 4.00 3.47 4.00	2.10 3.33 3.33 3.4.66 37.28 38.14 0.13 0.52 1.23 39.40	1.69	4.62 4.62	4.01	0.19 0.36 0.36 12.18 12.54 12.82 0.04 0.10 0.24 13.14	3.69 3.69 50.85 53.83 54.96 0.17 0.62 1.47 56.55	200 250 300 300 200 200 200 200 300	0.90 0.98 0.30 0.97 0.42 2.00 2.69 2.21 0.42 1.91	32.46 61.42 55.26 99.36 65.32 48.39 56.11 50.87 65.50	1.00 1.21 1.36 0.90 1.49 1.73 1.57 0.90	18.50 44.80 15.80 70.60 8.10 37.20 81.10 68.80	82.45 82.45 80.39 80.27 83.34 83.30 82.32 80.40	3.05 0.01 0.10 0.30 0.75 0.03 0.78	79.11 75.62 75.47 79.26 79.00 77.70 75.16	78.86 75.31 75.17 79.06 78.80 77.50 74.86 76.30	4.77 4.80 4.08 4.30 4.62 5.24 4.75	80.39 80.25 80.40 83.30 82.32 80.40 80.80	75.61 75.47 75.17 79.10 78.00 78.00 75.91 74.87	75.31 75.17 74.87 78.90 77.80 77.80 75.71 74.57 75.42	, ,)) ,
Residential Private Road Residential Private Road Residential Private Road Residential Private Road Commercial Plaza Klondike Rd/ MG Phase 13/ Commercial Plza Klondike Commercial Plaza Westmoreland Avenue Whithorn Avenue Whithorn Avenue Whithorn Avenue Whithorn Avenue Spalding Avenue	2 3 4 1A 1 Upstream 120A 120 116 119 118 117 111	1A 4 1A 1 120A 120A 120A 120 117 119 118 117 110 110				76 54 20 8 24 44 24 24 12 16	0.41 0.28 0.02 0.33 0.33 0.14 0.22 0.50 0.31 0.33	130 205 205 2432 2637 2705 8 32 2705 8 32 2805 12 2833	0.69 1.30 1.30 38.86 40.16 41.15 0.14 0.36 42.32 0.33 42.95	4.00 4.00 4.00 3.52 3.49 3.48 4.00 4.00 4.00 3.47 4.00	2.10 3.33 3.33 34.66 37.28 38.14 0.13 0.52 1.23 39.40 0.19	1.69	4.62 4.62 4.62	4.01 4.01 4.01	0.19 0.36 0.36 12.18 12.54 12.82 0.04 0.10 0.24 13.14 0.09	3.69 3.69 50.85 53.83 54.96 0.17 0.62 1.47 56.55 0.29 57.08	200 250 300 300 200 200 200 200 200 200	0.90 0.98 0.30 0.97 0.42 2.00 2.69 2.21 0.42 1.91 0.36	32.46 61.42 55.26 99.36 65.32 48.39 56.11 50.87 65.50 47.29 60.32	1.00 1.21 1.36 0.90 1.49 1.73 1.57 0.90 1.46	18.50 44.80 15.80 70.60 8.10 37.20 81.10 68.80 46.00	82.45 82.45 80.39 80.27 83.34 83.30 82.32 80.40 81.25	3.05 0.01 0.10 0.30 0.75 0.03 0.78	79.11 75.62 75.47 79.26 79.00 77.70 75.16 76.50	78.86 75.31 75.17 79.06 78.80 77.50 74.86 76.30	4.77 4.80 4.08 4.30 4.62 5.24 4.75	80.39 80.25 80.40 83.30 82.32 80.40 80.80 80.80	75.61 75.47 75.17 79.10 78.00 75.91 74.87 75.62 74.60	75.31 75.17 74.87 78.90 77.80 77.80 75.71 74.57 75.42	· · · · · · · · · · · · · · · · · · ·

SANITARY SEWER DESIGN SHEET Designed: K.F.

Checked By: L.D.

Commercial/Institutional Flow =	50,000	L/s/ha	
q =	350	L/cap/d	
i =	0.28	L/s/ha	
TOWNS HOUSING	2.7	pers/unit	
STACKS HOUSING	2.7	pers/unit	
SINGLES HOUSING	3.4	pers/unit	
Manning's Coefficient (n) =	0.013		

Date: August 2011

Sheet Name: SANITARY (PRINT MORGAN'S CREEK) Page 1 of 2

EXP Services Inc. KMA Mosque and Community Centre 351 Sandhill Road, Ottawa, ON OTT-00238504-A0 November 23, 2018

Appendix B1 – SWM Phase 1 Design Sheets

Marc Alain Lafleur

From:	Balima, Nadege <nadege.balima@ottawa.ca></nadege.balima@ottawa.ca>
Sent:	Friday, April 28, 2017 10:35 AM
То:	Marc Alain Lafleur
Cc:	Alam Ansari
Subject:	RE: KMA 351 Sandhill Road - SWM design criteria

Hi Marc,

Yes, this is correct as there is currently an end of pipe stormwater management facilities and this rate appear to meet existing criteria for the area. Regards,

Nadège Balima, P.Eng., M.P.M., LEED Green Assoc. Project Manager, Infrastructure Approvals

Development Review Services (West)

613.580.2424 ext. 13477

From: Marc Alain Lafleur [mailto:MarcAlain.Lafleur@exp.com]
Sent: Friday, April 28, 2017 10:03 AM
To: Balima, Nadege
Cc: Alam Ansari
Subject: RE: KMA 351 Sandhill Road - SWM design criteria

Good morning Nadège,

Can you kindly confirm the SWM criteria to be use for the site at 351 Sandhill Rd.?: -Restricted release rate to the minor system of 85L/s/ha up to the 100-year event. -No quality control required.

Thank you,

Marc Alain Lafleur, M.Eng. | exp

EIT-Design Engineer, Infrastructure **exp** Services Inc. t: +1.613.688.1899 x3298 | e: <u>marcalain.lafleur@exp.com</u> 100-2650 Queensview Drive Ottawa, ON K2B 8H6 Canada <u>exp.com</u> | <u>legal disclaimer</u> keep it green, read from the screen

From: Marc Alain Lafleur
Sent: Wednesday, April 26, 2017 3:23 PM
To: 'Balima, Nadege' <<u>Nadege.Balima@ottawa.ca</u>>
Cc: Alam Ansari <<u>alam.ansari@exp.com</u>>
Subject: RE: KMA 351 Sandhill Road - SWM design criteria

Hi Nadège,

Table D1	
CALCULATION OF AVERAGE RUNOFF COEFFICIENTS (POST-DEVELOPMENT)	

		Asphalt & Are		Roof A	Areas	Gravel	Areas	Grassed	Areas			Total		
Area No.	Area	Area (m ²)	A * C	Area (m ²)	A * C	Area (m ²)	rea (m²) A * C		n ²) A * C Runoff Type		Sum AC	Area (m²)	C _{AVG}	100-YR C _{AVG}
		C=0	.90	C=0	.90	C=0	.90	C=0.	20					
PH1A	Parking Lot	3872.0	3484.8	245.0	220.5			738.0	147.6	Controlled	3852.9	4855	0.79	1.00
PH1B	Access Rd	533.0	479.7	127.0	114.3			219.0	43.8	Controlled	637.8	879	0.73	1.00
				Average Runoff Coeff =						C _{AVG} =	C _{AVG} =	<u>4,531</u> 5,795	= 0.78	

Table D2

SUMMARY OF POST DEVELOPMENT RUNOFF (UNCONTROLLED AND CONTROLLED)

	Outlet				Storm	= 2-year			Storm =	5-year			Storm	= 100-year	
Area No	Location	Area (ha)	Conc. T _c (min)	C_{AVG}	l ₂ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)	C _{AVG}	l₅ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)	C_{AVG}	l ₁₀₀ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)
PH1A	Parking Lot	0.486	15	0.79	61.77	66.2	28.0	0.79	83.56	89.5	29.5	0.99	142.89	191.3	29.5
PH1B	Access Rd	0.088	15	0.73	61.77	11.0	11.0	0.73	83.56	14.8	17.6	0.91	142.89	31.7	17.6
Total P	re-Flows	0.573				77.1	39.0			104.3	47.1			223.0	47.1

$$\label{eq:Notes} \begin{split} & \underline{\text{Notes}} \\ 1) \text{ Intensity, } I_2 = 732.951/(\text{Tc}+6.199)^{0.810} (2-\text{year, City of Ottawa}) \\ 2) \text{ Intensity, } I_5 = 998.071/(\text{Tc}+6.035)^{0.814} (5-\text{year, City of Ottawa}) \\ 3) \text{ Intensity, } I_{100} = 1735.688/(\text{Tc}+6.014)^{0.820} (100-\text{year, City of Ottawa}) \\ 4) \text{ Time of Concentration: } T_c=10\text{min } (5.4.5.2, \text{ City of Ottawa}) \\ 4) \text{ Flows under column } Q_{\text{CAP}} \text{ which are$$
bold $, denotes flows that are controlled. \end{split}$

Table D3 Estimate of Storage Required for 2-yr and 100-yr Storms (Modified Rational Method)

	Area No:	PH1A	Parking Lo	+						
	$C_{AVG} =$	0.89	(2-yr, 100-							
	C _{AVG} =	1.00	(100-yr +2	• •						
Time				070)						
	e Interval =	15	(mins)							
Draina	age Area =	0.4194	(hectares)							
	Rele	ase Rate =	28.0	(L/sec)		Relea	ase Rate =	29.5	(L/sec)	
	Retu	rn Period =	2	(years)		Retur	n Period =	100	(years)	
Dunation	IDF Parar	meters, A =		, B =	0.810	IDF Paran	neters, A =		_	0.820
Duration, T _D (min)		(=	A/(T _D +C) ^B	, C =	6.199		(=	A/(T _D +C) ^B	, C =	6.014
10(1111)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)
0	167.2	173.0	28.04	144.9	0	398.6	464.8	29.527	435.2	0.0
15	61.8	63.9	28.04	35.9	32	142.9	166.6	29.527	137.1	123.4
30	40.0	41.4	28.04	13.4	24	91.9	107.1	29.527	77.6	139.7
45	30.2	31.3	28.04	3.2	9	69.1	80.5	29.527	51.0	137.6
60	24.6	25.4	28.04	-2.6	-9	55.9	65.2	29.527	35.6	128.3
75	20.8	21.5	28.04	-6.5	-29	47.3	55.1	29.527	25.6	115.1
90	18.1	18.8	28.04	-9.3	-50	41.1	47.9	29.527	18.4	99.4
105	16.1	16.7	28.04	-11.3	-72	36.5	42.6	29.527	13.0	82.1
120	14.6	15.1	28.04	-13.0	-93	32.9	38.4	29.527	8.8	63.5
135	13.3	13.8	28.04	-14.3	-116	30.0	35.0	29.527	5.4	44.1
150	12.3	12.7	28.04	-15.4	-138	27.6	32.2	29.527	2.7	24.0
165	11.4	11.8	28.04	-16.3	-161	25.6	29.9	29.527	0.3	3.3
180	10.6	11.0	28.04	-17.0	-184	23.9	27.9	29.527	-1.7	-17.9
195	10.0	10.3	28.04	-17.7	-207	22.4	26.2	29.527	-3.4	-39.5
210	9.4	9.7	28.04	-18.3	-231	21.1	24.7	29.527	-4.9	-61.4
225	8.9	9.2	28.04	-18.8	-254	20.0	23.3	29.527	-6.2	-83.6
240	8.5	8.8	28.04	-19.3	-278	19.0	22.2	29.527	-7.4	-106.1
255	8.1	8.4	28.04	-19.7	-301	18.1	21.1	29.527	-8.4	-128.8
270	7.7	8.0	28.04	-20.1	-325	17.3	20.2	29.527	-9.4	-151.7
285	7.4	7.7	28.04	-20.4	-349	16.6	19.3	29.527	-10.2	-174.8
300	7.1	7.3	28.04	-20.7	-372	15.9	18.5	29.527	-11.0	-198.0
315	6.8	7.1	28.04	-21.0	-396	15.3	17.8	29.527	-11.7	-221.4
Maximum S	torage Req	uried =			32.3					139.7

Notes

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, $I = A/(T_D + C)^B$, where $T_D =$ storm duration (mins)

3) Release Rate = Desired Capture (Release) Rate

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

6) Maximium Storage = Max Storage Over Duration

7) A,B,C are IDF Parameters for City of Ottawa. From Ottawa Sewer Design Guidelines, Section 5.4.2.

Table D4 Estimate of Storage Required for 2-yr and 100-yr Storms (Modified Rational Method)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Area No:	PH1B								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					5%)						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Draina	age Area =	0.0727	(hectares)							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Rele	ase Rate =	10.4	(L/sec)		Rele	ase Rate =	17.6	(L/sec)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Retu	rn Period =	2	(years)		Retu	n Period =	100	(years)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D "	IDF Parar	meters, A =	732.951	, B =	0.810	IDF Paran				0.820
Rainfall Intensity, I (mm/hr) Peak (L/sec) Release (L/sec) Storage (m ³) Rainfall Intensity, I (mm/hr) Peak (L/sec) Release Rate (L/sec) Storage Rate (L/sec) Storage (m ³) 0 167.2 28.2 10.43 17.8 0 398.6 80.6 17.612 63.0 0.0 15 61.8 10.4 10.43 -3.7 -7 91.9 18.6 17.612 11.3 10.1 30 40.0 6.8 10.43 -5.3 -14 69.1 14.0 17.612 1.3.7 -9.9 60 24.6 4.1 10.43 -6.3 -23 55.9 11.3 17.612 -6.3 -22.7 75 20.8 3.5 10.43 -7.4 -40 41.1 8.3 17.612 -8.1 -36.3 90 18.1 3.1 10.43 -7.7 -49 36.5 7.4 17.612 -10.2 -64.5 120 14.6 2.5 10.43 -8.0 -57 <td>,</td> <td></td> <td>(=</td> <td>A/(T_D+C)^B</td> <td>, C =</td> <td>6.199</td> <td></td> <td>(=</td> <td>A/(T_D+C)^B</td> <td>, C =</td> <td>6.014</td>	,		(=	A/(T _D +C) ^B	, C =	6.199		(=	A/(T _D +C) ^B	, C =	6.014
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10(11111)					0				-	Storage
1561.810.410.430.00142.928.917.61211.310.13040.06.810.43 -3.7 -7 91.918.617.6121.01.74530.25.110.43 -5.3 -14 69.114.017.612 -3.7 -9.9 6024.64.110.43 -6.3 -23 55.911.317.612 -6.3 -22.7 7520.83.510.43 -6.9 -31 47.39.617.612 -8.1 -36.3 9018.13.110.43 -7.4 -40 41.18.317.612 -9.3 -50.2 10516.12.710.43 -7.7 -49 36.5 7.4 17.612 -10.2 -64.5 12014.62.510.43 -8.0 -57 32.9 6.6 17.612 -11.0 -78.9 13513.32.210.43 -8.2 -66 30.0 6.1 17.612 -11.5 -93.5 15012.32.110.43 -8.4 -75 27.6 5.6 17.612 -12.0 -108.3 16511.41.910.43 -8.6 -93 23.9 4.8 17.612 -12.4 -128.1 18010.61.810.43 -8.7 -102 22.4 4.5 17.612 -13.1 -153.0 2109.41.610.43 -8.8 -111 21.1 4.3 1			(L/sec)	(L/sec)		(m°)		(L/sec)	(L/sec)	(L/sec)	(m°)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	167.2	28.2	10.43	17.8	0	398.6	80.6	17.612	63.0	0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	61.8	10.4	10.43	0.0	0	142.9	28.9	17.612	11.3	10.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	40.0	6.8	10.43	-3.7	-7	91.9	18.6	17.612	1.0	1.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	30.2	5.1	10.43	-5.3	-14	69.1	14.0	17.612	-3.7	-9.9
90 18.1 3.1 10.43 -7.4 -40 41.1 8.3 17.612 -9.3 -50.2 105 16.1 2.7 10.43 -7.7 -49 36.5 7.4 17.612 -10.2 -64.5 120 14.6 2.5 10.43 -8.0 -57 32.9 6.6 17.612 -11.0 -78.9 135 13.3 2.2 10.43 -8.2 -66 30.0 6.1 17.612 -11.5 -93.5 150 12.3 2.1 10.43 -8.4 -75 27.6 5.6 17.612 -12.4 -12.3 -108.3 165 11.4 1.9 10.43 -8.5 -84 25.6 5.2 17.612 -12.4 -12.3 -138.0 195 10.0 1.7 10.43 -8.6 -93 23.9 4.8 17.612 -13.1 -153.0 210 9.4 1.6 10.43 -8.7 -102 22.4	60	24.6	4.1	10.43	-6.3	-23	55.9	11.3	17.612	-6.3	-22.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	75	20.8	3.5	10.43		-31	47.3	9.6	17.612	-8.1	-36.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90	18.1	3.1	10.43	-7.4	-40	41.1	8.3	17.612	-9.3	-50.2
135 13.3 2.2 10.43 -8.2 -66 30.0 6.1 17.612 -11.5 -93.5 150 12.3 2.1 10.43 -8.4 -75 27.6 5.6 17.612 -12.0 -108.3 165 11.4 1.9 10.43 -8.5 -84 25.6 5.2 17.612 -12.4 -12.3 10.3 180 10.6 1.8 10.43 -8.6 -93 23.9 4.8 17.612 -12.8 -138.0 195 10.0 1.7 10.43 -8.7 -102 22.4 4.5 17.612 -13.1 -153.0 210 9.4 1.6 10.43 -8.8 -111 21.1 4.3 17.612 -13.3 -168.1 225 8.9 1.5 10.43 -8.9 -120 20.0 4.0 17.612 -13.6 -183.2 240 8.5 1.4 10.43 -9.0 -130 19.0 3.8 17.612 -14.0 -213.5 255 8.1 1.4 10.43	105	16.1	2.7	10.43	-7.7	-49	36.5	7.4	17.612	-10.2	-64.5
15012.32.110.43-8.4-7527.65.617.612-12.0-108.316511.41.910.43-8.5-8425.65.217.612-12.4-12.4-12.118010.61.810.43-8.6-9323.94.817.612-12.8-13.8-138.019510.01.710.43-8.7-10222.44.517.612-13.1-153.02109.41.610.43-8.8-11121.14.317.612-13.3-168.12258.91.510.43-8.9-12020.04.017.612-13.6-183.22408.51.410.43-9.0-13019.03.817.612-14.0-213.52558.11.410.43-9.1-13918.13.717.612-14.0-213.52707.71.310.43-9.1-14817.33.517.612-14.1-228.72857.41.210.43-9.2-15716.63.317.612-14.3-243.53007.11.210.43-9.2-16615.93.217.612-14.4-259.23156.81.210.43-9.3-17515.33.117.612-14.5-274.5	120	14.6	2.5	10.43	-8.0	-57	32.9	6.6	17.612	-11.0	-78.9
165 11.4 1.9 10.43 -8.5 -84 25.6 5.2 17.612 -12.4 -123.1 180 10.6 1.8 10.43 -8.6 -93 23.9 4.8 17.612 -12.4 -123.1 180 10.6 1.8 10.43 -8.6 -93 23.9 4.8 17.612 -12.8 -138.0 195 10.0 1.7 10.43 -8.7 -102 22.4 4.5 17.612 -13.1 -153.0 210 9.4 1.6 10.43 -8.8 -111 21.1 4.3 17.612 -13.3 -168.1 225 8.9 1.5 10.43 -8.9 -120 20.0 4.0 17.612 -13.6 -183.2 240 8.5 1.4 10.43 -9.0 -130 19.0 3.8 17.612 -14.0 -213.5 255 8.1 1.4 10.43 -9.1 -148 17.3 3.5 17.612 </td <td>135</td> <td>13.3</td> <td>2.2</td> <td>10.43</td> <td>-8.2</td> <td>-66</td> <td>30.0</td> <td>6.1</td> <td>17.612</td> <td>-11.5</td> <td>-93.5</td>	135	13.3	2.2	10.43	-8.2	-66	30.0	6.1	17.612	-11.5	-93.5
180 10.6 1.8 10.43 -8.6 -93 23.9 4.8 17.612 -12.8 -138.0 195 10.0 1.7 10.43 -8.7 -102 22.4 4.5 17.612 -13.1 -153.0 210 9.4 1.6 10.43 -8.8 -111 21.1 4.3 17.612 -13.3 -168.1 225 8.9 1.5 10.43 -8.9 -120 20.0 4.0 17.612 -13.8 -183.2 240 8.5 1.4 10.43 -9.0 -130 19.0 3.8 17.612 -13.8 -198.3 255 8.1 1.4 10.43 -9.1 -139 18.1 3.7 17.612 -14.0 -213.5 270 7.7 1.3 10.43 -9.1 -148 17.3 3.5 17.612 -14.1 -228.7 285 7.4 1.2 10.43 -9.2 -157 16.6 3.3 17.612 </td <td>150</td> <td>12.3</td> <td>2.1</td> <td>10.43</td> <td>-8.4</td> <td>-75</td> <td>27.6</td> <td>5.6</td> <td>17.612</td> <td>-12.0</td> <td>-108.3</td>	150	12.3	2.1	10.43	-8.4	-75	27.6	5.6	17.612	-12.0	-108.3
19510.01.710.43-8.7-10222.44.517.612-13.1-153.02109.41.610.43-8.8-11121.14.317.612-13.3-168.12258.91.510.43-8.9-12020.04.017.612-13.6-183.22408.51.410.43-9.0-13019.03.817.612-13.8-198.32558.11.410.43-9.1-13918.13.717.612-14.0-213.52707.71.310.43-9.1-14817.33.517.612-14.1-228.72857.41.210.43-9.2-15716.63.317.612-14.3-243.53007.11.210.43-9.2-16615.93.217.612-14.4-259.23156.81.210.43-9.3-17515.33.117.612-14.5-274.5	165	11.4	1.9	10.43	-8.5	-84	25.6	5.2	17.612	-12.4	-123.1
2109.41.610.43-8.8-11121.14.317.612-13.3-168.12258.91.510.43-8.9-12020.04.017.612-13.6-183.22408.51.410.43-9.0-13019.03.817.612-13.8-198.32558.11.410.43-9.1-13918.13.717.612-14.0-213.52707.71.310.43-9.1-14817.33.517.612-14.1-228.72857.41.210.43-9.2-15716.63.317.612-14.3-243.53007.11.210.43-9.2-16615.93.217.612-14.4-259.23156.81.210.43-9.3-17515.33.117.612-14.5-274.5	180	10.6	1.8	10.43	-8.6	-93	23.9	4.8	17.612	-12.8	-138.0
2258.91.510.43-8.9-12020.04.017.612-13.6-183.22408.51.410.43-9.0-13019.03.817.612-13.8-198.32558.11.410.43-9.1-13918.13.717.612-14.0-213.52707.71.310.43-9.1-14817.33.517.612-14.1-228.72857.41.210.43-9.2-15716.63.317.612-14.3-243.53007.11.210.43-9.2-16615.93.217.612-14.4-259.23156.81.210.43-9.3-17515.33.117.612-14.5-274.5	195	10.0	1.7	10.43	-8.7	-102	22.4	4.5	17.612	-13.1	-153.0
240 8.5 1.4 10.43 -9.0 -130 19.0 3.8 17.612 -13.8 -198.3 255 8.1 1.4 10.43 -9.1 -139 18.1 3.7 17.612 -14.0 -213.5 270 7.7 1.3 10.43 -9.1 -148 17.3 3.5 17.612 -14.0 -213.5 285 7.4 1.2 10.43 -9.2 -157 16.6 3.3 17.612 -14.3 -243.5 300 7.1 1.2 10.43 -9.2 -157 16.6 3.3 17.612 -14.4 -229.7 315 6.8 1.2 10.43 -9.3 -175 15.3 3.1 17.612 -14.4 -259.2 315 6.8 1.2 10.43 -9.3 -175 15.3 3.1 17.612 -14.5 -274.5	210	9.4	1.6	10.43	-8.8	-111	21.1	4.3	17.612	-13.3	-168.1
255 8.1 1.4 10.43 -9.1 -139 18.1 3.7 17.612 -14.0 -213.5 270 7.7 1.3 10.43 -9.1 -148 17.3 3.5 17.612 -14.0 -213.5 285 7.4 1.2 10.43 -9.2 -157 16.6 3.3 17.612 -14.3 -243.5 300 7.1 1.2 10.43 -9.2 -157 16.6 3.3 17.612 -14.3 -243.5 315 6.8 1.2 10.43 -9.2 -166 15.9 3.2 17.612 -14.4 -259.2 315 6.8 1.2 10.43 -9.3 -175 15.3 3.1 17.612 -14.5 -274.5	225	8.9	1.5	10.43	-8.9	-120	20.0	4.0	17.612	-13.6	-183.2
270 7.7 1.3 10.43 -9.1 -148 17.3 3.5 17.612 -14.1 -228.7 285 7.4 1.2 10.43 -9.2 -157 16.6 3.3 17.612 -14.3 -243.5 300 7.1 1.2 10.43 -9.2 -166 15.9 3.2 17.612 -14.4 -259.2 315 6.8 1.2 10.43 -9.3 -175 15.3 3.1 17.612 -14.5 -274.5	240	8.5	1.4	10.43	-9.0	-130	19.0	3.8	17.612	-13.8	-198.3
285 7.4 1.2 10.43 -9.2 -157 16.6 3.3 17.612 -14.3 -243.9 300 7.1 1.2 10.43 -9.2 -166 15.9 3.2 17.612 -14.4 -259.2 315 6.8 1.2 10.43 -9.3 -175 15.3 3.1 17.612 -14.5 -274.5	255	8.1	1.4	10.43	-9.1	-139	18.1	3.7	17.612	-14.0	-213.5
300 7.1 1.2 10.43 -9.2 -166 15.9 3.2 17.612 -14.4 -259.2 315 6.8 1.2 10.43 -9.3 -175 15.3 3.1 17.612 -14.5 -274.5	270	7.7	1.3	10.43	-9.1	-148	17.3	3.5	17.612	-14.1	-228.7
315 6.8 1.2 10.43 -9.3 -175 15.3 3.1 17.612 -14.5 -274.5	285	7.4	1.2	10.43	-9.2	-157	16.6	3.3	17.612	-14.3	-243.9
		7.1	1.2	10.43		-166	15.9	3.2	17.612	-14.4	-259.2
Maximum Storage Required = 0.0 10.1				10.43	-9.3	-175	15.3	3.1	17.612	-14.5	-274.5
Maximum Storage Nequiled - 0.0 10.1		torage Red	uried =			0.0					10.1

Notes

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, $I = A/(T_D + C)^B$, where $T_D =$ storm duration (mins)

3) Release Rate = Desired Capture (Release) Rate

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

6) Maximium Storage = Max Storage Over Duration

7) A,B,C are IDF Parameters for City of Ottawa. From Ottawa Sewer Design Guidelines, Section 5.4.2.

Total 2 Year Storage =	35.1 m ³
Total 100 Year Storage=	218.8 m ³

2 Year Catch Basin Storage									
CB ID	Area (m2)	Volume (m3)							
CB 102	0.36	2.1	0.77						
CB 103	0.36	2.1	0.77						
CB 104	0.36	2.1	0.77						
CB 105	0.36	2.1	0.77						
CB 106	0.36	2.1	0.77						
CB 107	0.36	2.1	0.77						
CB 108	0.36	2.1	0.77						
	Total Volume 5.4								

2 Year Catch Basin Manhole Storage

			-	
MH ID	Diameter (mm)	Area (m2)	Depth (m)	Volume (m3)
CBMH 203	1200	1.13	3.00	3.39
CBMH 204	1200	1.13	3.20	3.62
CBMH 205	1200	1.13	3.00	3.39
		Tota	7.0	

2 Year Underground Pipe Storage

Diameter (mm)	Area (m2)	Length (m)	Volume (m3)		
200	0.031	119.6	3.8		
600	0.283	67.0	18.9		
	T	22.7			

100 Year Surface Ponding Volumes PH1A

Ponding	Surface	Ponding	Volume	
Location	Area (m2)	Depth (m)	(m3)	
CB102	132	0.30	13.2	
CB103	368.00	0.30	36.8	
CB104	342.00	0.30	34.2	
CB105	86.0	0.30	8.6	
CB106	82.0	0.30	8.2	
CB107	309.0	0.30	30.9	
CB108	401.0	0.30	40.1	
CBMH203	184	0.35	21.5	
	Тс	193.5		

100 Year Surface Ponding Volumes PH1B

Ponding Location	Surface Area (m2)	Ponding Depth (m)	Volume (m3)		
CB101	217	0.35	25.3		
	Тс	25.3			

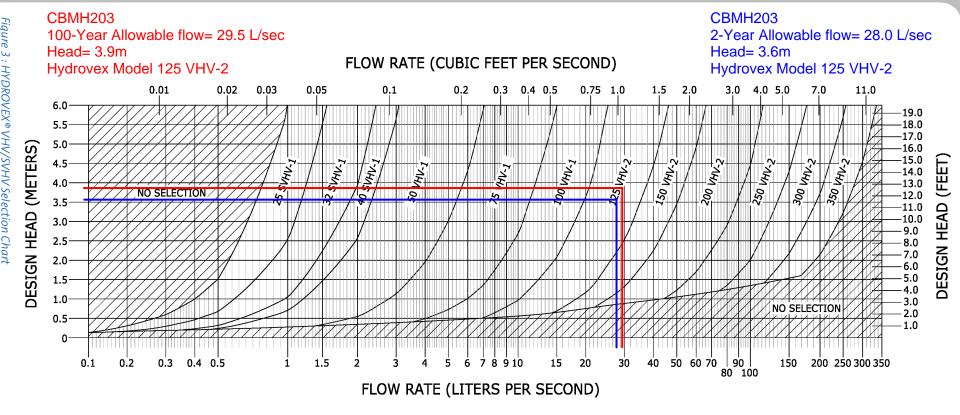
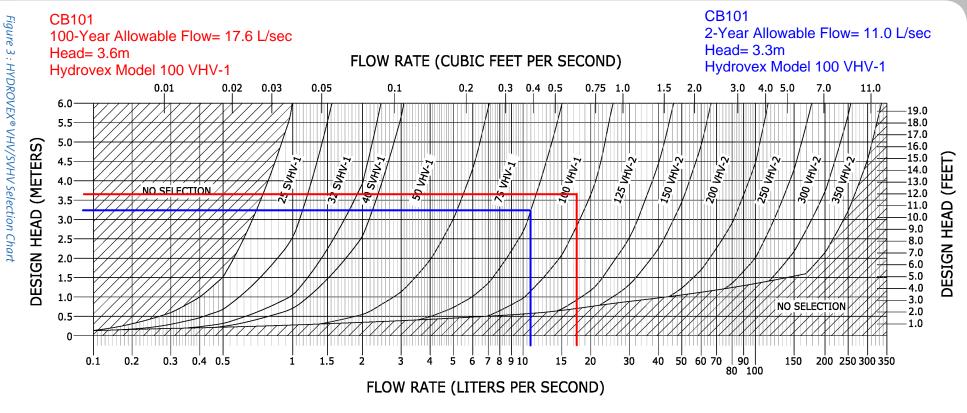



Figure 3 : HYDROVEX® VHV/SVHV Selection Chart

EXP Services Inc. KMA Mosque and Community Centre 351 Sandhill Road, Ottawa, ON OTT-00238504-A0 November 23, 2018

Appendix B2 – SWM Phase 2 Design Sheets

Table D8	
CALCULATION OF AVERAGE RUNOFF COEFFICIENTS (POST-DEVELOPMENT)	

Area No.		Asphalt & Concrete Areas		Roof Areas		Gravel Areas		Grassed Areas					100 \/D
	Area	Area (m ²)	A * C	Area (m ²)	A * C	Area (m ²)	A * C	Area (m ²)	A * C	Sum AC	Total Area (m ²)	C_{AVG}	100-YR C _{AVG}
		C=0	C=0.90		C=0.90		C=0.90		C=0.20				
PH2A	Parking Lot	3910.0	3519.0	245.0	220.5			826.4	165.3	3904.8	4981	0.78	0.98
PH2B	Access Rd	837.0	753.3	127.0	114.3			219.0	43.8	911.4	1183	0.77	0.96
PH2C	New Bld			1450.0	1305.0					1305.0	1450	0.90	1.00
PH2D	Free Flow	165.7	149.1					284.3	56.9	206.0	450	0.46	0.57
									<u>6,368</u> 8,125	= 0.78			

Table D9 SUMMARY OF POST DEVELOPMENT RUNOFF (UNCONTROLLED AND CONTROLLED)

Committee		I DETER				KOLEED /	UID 0011	INCELED)				
	0.41.4		Time of		Storm = 2-year				Storm = 100-year			
Area No Outlet Location	Area (ha)	Area (ha)	Conc. T _c (min)	C_{AVG}	l ₂ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)	C _{AVG}	I ₁₀₀ (mm/hr)	Q (L/sec)	Q _{CAP} (L/sec)	
PH2A	Parking Lot	0.498	15	0.78	61.77	67.1	28.0	0.98	142.89	193.9	29.5	
PH2B	Access Rd	0.118	15	0.77	61.77	15.6	15.6	0.96	142.89	45.3	17.6	
PH2C	New Bld	0.145	15	0.90	61.77	22.4	7.0	1.00	142.89	57.6	10.0	
PH2D	Free Flow	0.045	15	0.46	61.77	3.5	3.5	0.57	142.89	10.2	10.2	
Total		0.616				82.7	54.2			239.2	67.4	

Table D10 Estimate of Storage Required for 2-yr and 100-yr Storms (Modified Rational Method)

Area No: PH2A Parking Lot												
	$C_{AVG} = 0.78$ (2-yr, 5-yr)											
	C _{AVG} =	0.98	(100-yr +2	5%)								
Time	e Interval =	15	(mins)									
Draina	Drainage Area = <u>0.4981</u> (hectares)											
				(L/sec)								
		ase Rate =	28.0		ase Rate =	29.5	(L/sec)					
		rn Period =	2	(years)			n Period =	100	(years)			
Duration,	IDF Parar	meters, A =	732.951	, B =	0.810	IDF Paran	neters, A =			0.820		
T_D (min)		(1=	A/(T _D +C) ^B	, C =	6.199		(A/(T _D +C) ^B	, C =	6.014		
5()	Rainfall	Peak	Release	Storage	Storage	Rainfall	Peak	Release	Storage	Storage		
	Intensity, I	Flow	Rate	Rate	(m ³)	Intensity, I	Flow	Rate	Rate	(m ³)		
	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	()	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	()		
0	167.2	181.5	28.04	153.5	0	398.6	540.9	29.527	511.4	0.0		
15	61.8	67.1	28.04	39.0	35	142.9	193.9	29.527	164.4	147.9		
30	40.0	43.5	28.04	15.4	28	91.9	124.7	29.527	95.1	171.2		
45	30.2	32.8	28.04	4.8	13	69.1	93.7	29.527	64.2	173.3		
60	24.6	26.7	28.04	-1.4	-5	55.9	75.8	29.527	46.3	166.7		
75	20.8	22.6	28.04	-5.4	-24	47.3	64.1	29.527	34.6	155.7		
90	18.1	19.7	28.04	-8.3	-45	41.1	55.8	29.527	26.3	141.8		
105	16.1	17.5	28.04	-10.5	-66	36.5	49.5	29.527	20.0	126.0		
120	14.6	15.8	28.04	-12.2	-88	32.9	44.6	29.527	15.1	108.8		
135	13.3	14.4	28.04	-13.6	-110	30.0	40.7	29.527	11.2	90.5		
150	12.3	13.3	28.04	-14.7	-133	27.6	37.5	29.527	7.9	71.4		
165	11.4	12.3	28.04	-15.7	-155	25.6	34.7	29.527	5.2	51.7		
180	10.6	11.5	28.04	-16.5	-178	23.9	32.4	29.527	2.9	31.4		
195	10.0	10.8	28.04	-17.2	-201	22.4	30.4	29.527	0.9	10.6		
210	9.4	10.2	28.04	-17.8	-224	21.1	28.7	29.527	-0.8	-10.5		
225	8.9	9.7	28.04	-18.4	-248	20.0	27.2	29.527	-2.4	-32.0		
240	8.5	9.2	28.04	-18.8	-271	19.0	25.8	29.527	-3.7	-53.8		
255	8.1	8.8	28.04	-19.3	-295	18.1	24.6	29.527	-5.0	-75.9		
270	7.7	8.4	28.04	-19.7	-318	17.3	23.5	29.527	-6.1	-98.2		
285	7.4	8.0	28.04	-20.0	-342	16.6	22.5	29.527	-7.1	-120.7		
300	7.1	7.7	28.04	-20.3	-366	15.9	21.6	29.527	-8.0	-143.4		
315	6.8	7.4	28.04	-20.6	-390	15.3	20.7	29.527	-8.8	-166.2		
Maximum S	torage Req	uried =			35.1					173.3		

Notes

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, $I = A/(T_D + C)^B$, where $T_D =$ storm duration (mins)

3) Release Rate = Desired Capture (Release) Rate

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

6) Maximium Storage = Max Storage Over Duration

7) A,B,C are IDF Parameters for City of Ottawa. From Ottawa Sewer Design Guidelines, Section 5.4.2.

Table D11 Estimate of Storage Required for 2-yr and 100-yr Storms (Modified Rational Method)

	Area No:	PH2B	Access Ro							
	C _{AVG} =	0.77	(2-yr, 5-yr)							
	C _{AVG} =	0.96	(100-yr +2	5%)						
	e Interval =	15	(mins)							
Drain	age Area =	0.1183	(hectares)							
	D.L	D. I	15.0	(1. (D.L	D.t.	17.0		
		ase Rate =	15.6	(L/sec)			ase Rate =		(L/sec)	
		rn Period =	2	(years)	0.040		rn Period =	100	(years)	0.000
Duration,	IDF Parar	meters, A =	<u>732.951</u> A/(T _D +C) ^B	, B =	0.810	IDF Paran	neters, A =	$\frac{1/35.688}{A/(T_D+C)^B}$	- -	0.820
T _D (min)		(1-	Av(1 _D +C)	, C =	6.199		(1-	A(IDTC)	, C =	6.014
	Rainfall	Peak	Release	Storage	Storage	Rainfall	Peak	Release	Storage	Storage
	Intensity, I	Flow	Rate	Rate	(m ³)	Intensity, I	Flow	Rate	Rate	(m ³)
	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	()	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	()
0	167.2	42.4	15.65	26.7	0	398.6	126.2	17.612	108.6	0.0
15	61.8	15.6	15.65	0.0	0	142.9	45.3	17.612	27.6	24.9
30	40.0	10.1	15.65	-5.5	-10	91.9	29.1	17.612	11.5	20.7
45	30.2	7.7	15.65	-8.0	-22	69.1	21.9	17.612	4.3	11.5
60	24.6	6.2	15.65	-9.4	-34	55.9	17.7	17.612	0.1	0.3
75	20.8	5.3	15.65	-10.4	-47	47.3	15.0	17.612	-2.6	-11.9
90	18.1	4.6	15.65	-11.1	-60	41.1	13.0	17.612	-4.6	-24.8
105	16.1	4.1	15.65	-11.6	-73	36.5	11.6	17.612	-6.1	-38.1
120	14.6	3.7	15.65	-12.0	-86	32.9	10.4	17.612	-7.2	-51.8
135	13.3	3.4	15.65	-12.3	-99	30.0	9.5	17.612	-8.1	-65.7
150	12.3	3.1	15.65	-12.5	-113	27.6	8.7	17.612	-8.9	-79.8
165	11.4	2.9	15.65	-12.8	-126	25.6	8.1	17.612	-9.5	-94.1
180	10.6	2.7	15.65	-13.0	-140	23.9	7.6	17.612	-10.0	-108.4
195	10.0	2.5	15.65	-13.1	-154	22.4	7.1	17.612	-10.5	-122.9
210	9.4	2.4	15.65	-13.3	-167	21.1	6.7	17.612	-10.9	-137.5
225	8.9	2.3	15.65	-13.4	-181	20.0	6.3	17.612	-11.3	-152.2
240	8.5	2.1	15.65	-13.5	-194	19.0	6.0	17.612	-11.6	-166.9
255	8.1	2.0	15.65	-13.6	-208	18.1	5.7	17.612	-11.9	-181.7
270	7.7	2.0	15.65	-13.7	-222	17.3	5.5	17.612	-12.1	-196.6
285	7.4	1.9	15.65	-13.8	-236	16.6	5.2	17.612	-12.4	-211.5
300	7.1	1.8	15.65	-13.9	-249	15.9	5.0	17.612	-12.6	-226.4
315	6.8	1.7	15.65	-13.9	-263	15.3	4.8	17.612	-12.8	-241.4
Maximum S	Storage Req	uried =			0.0					24.9
Notos	-4									

Notes

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, $I = A/(T_D + C)^B$, where $T_D =$ storm duration (mins)

3) Release Rate = Desired Capture (Release) Rate

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

6) Maximium Storage = Max Storage Over Duration

7) A,B,C are IDF Parameters for City of Ottawa. From Ottawa Sewer Design Guidelines, Section 5.4.2.

Table D12 Estimate of Storage Required for 2-yr and 100-yr Storms (Modified Rational Method)

Area No: PH2C Roof $C_{AVG} = 0.90$ (2-yr, 5-yr) $C_{AVG} = 1.00$ (100-yr +25%)										
			• *	5%)						
	e Interval =	15	(mins)							
Drain	age Area =	0.1450	(hectares)							
		ase Rate =	7.0	(L/sec)			ase Rate =	10.0	(L/sec)	
		rn Period =	2	(years)	0.040		n Period =	100	(years)	0.000
Duration,	IDF Parar	meters, A =	A/(T _D +C) ^B	, B = , C =	0.810 6.199	IDF Paran	neters, A =	$\frac{1735.688}{A/(T_{D}+C)^{B}}$	- -	0.820
T _D (min)					0.199					0.014
	Rainfall Intensity, I	Peak Flow	Release Rate	Storage Rate	Storage	Rainfall Intensity, I	Peak Flow	Release Rate	Storage Rate	Storage
	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(m ³)
	. ,		. ,			. ,	,			
0	167.2	60.7	7.00	53.7	0	398.6	160.7	10.000	150.7	0.0
15	61.8	22.4	7.00	15.4	14	142.9	57.6	10.000	47.6	42.8
30	40.0	14.5	7.00	7.5	14	91.9	37.0	10.000	27.0	48.7
45	30.2	11.0	7.00	4.0	11	69.1	27.8	10.000	17.8	48.2
60	24.6	8.9	7.00	1.9	7	55.9	22.5	10.000	12.5	45.1
75	20.8	7.6	7.00	0.6	2	47.3	19.0	10.000	9.0	40.7
90	18.1	6.6	7.00	-0.4	-2	41.1	16.6	10.000	6.6	35.5
105	16.1	5.9	7.00	-1.1	-7	36.5	14.7	10.000	4.7	29.7
120	14.6	5.3	7.00	-1.7	-12	32.9	13.3	10.000	3.3	23.5
135	13.3	4.8	7.00	-2.2	-18	30.0	12.1	10.000	2.1	16.9
150	12.3	4.4	7.00	-2.6	-23	27.6	11.1	10.000	1.1	10.2
165	11.4	4.1	7.00	-2.9	-28	25.6	10.3	10.000	0.3	3.2
180	10.6	3.9	7.00	-3.1	-34	23.9	9.6	10.000	-0.4	-3.9
195	10.0	3.6	7.00	-3.4	-40	22.4	9.0	10.000	-1.0	-11.2
210	9.4	3.4	7.00	-3.6	-45	21.1	8.5	10.000	-1.5	-18.6
225	8.9	3.2	7.00	-3.8	-51	20.0	8.1	10.000	-1.9	-26.1
240	8.5	3.1	7.00	-3.9	-57	19.0	7.7	10.000	-2.3	-33.7
255	8.1	2.9	7.00	-4.1	-62	18.1	7.3	10.000	-2.7	-41.3
270	7.7	2.8	7.00	-4.2	-68	17.3	7.0	10.000	-3.0	-49.1
285	7.4	2.7	7.00	-4.3	-74	16.6	6.7	10.000	-3.3	-56.9
300	7.1	2.6	7.00	-4.4	-80	15.9	6.4	10.000	-3.6	-64.7
315	6.8	2.5	7.00	-4.5	-85	15.3	6.2	10.000	-3.8	-72.6
Maximum S	Storage Red	uried =			13.9					48.7

Notes

1) Peak flow is equal to the product of 2.78 x C x I x A

2) Rainfall Intensity, $I = A/(T_D + C)^B$, where $T_D =$ storm duration (mins)

3) Release Rate = Desired Capture (Release) Rate

4) Storage Rate = Peak Flow - Release Rate

5) Storage = Duration x Storage Rate

6) Maximium Storage = Max Storage Over Duration

7) A,B,C are IDF Parameters for City of Ottawa. From Ottawa Sewer Design Guidelines, Section 5.4.2.

Table D13Estimate of Provided Storage for 2-yr and 100-yr Storms

Total 2 Year Storage =	35.1 m ³
Total 100 Year Storage	275.8 m ³

2 Year Catch Basin Storag	e
---------------------------	---

CB ID	Area ID	Area (m2)	Depth (m)	Volume (m3)
CB 102	PH2A	0.36	2.1	0.77
CB 103	PH2A	0.36	2.1	0.77
CB 104	PH2A	0.36	2.1	0.77
CB 105	PH2A	0.36	2.1	0.77
CB 106	PH2A	0.36	2.1	0.77
CB 107	PH2A	0.36	2.1	0.77
CB 108	PH2A	0.36	2.1	0.77
		Total Volume		5.4

2 Year Catch Basin Manhole Storage

MH ID	Area ID	Diameter (mm)	Area (m2)	Depth (m)	Volume (m3)
CBMH 203	PH2A	1200	1.13	3.0	3.39
CBMH 204	PH2A	1200	1.13	3.2	3.62
CBMH 205	PH2A	1200	1.13	3.0	3.39
			Total Volume		7.0

2 Year Underground Pipe Storage

Diameter (mm)	Area ID	Area (m2)	Length (m)	Volume (m3)
200	PH2A	0.031	119.6	3.8
600	PH2B	0.283	67.0	18.9
		Total Volume		22.7

100 Year Surface Ponding Volumes PH1A

Ponding Location	Surface Area (m2)	Ponding Depth	Volume (m3)
CB102	132	0.30	13.2
CB103	368.00	0.30	36.8
CB104	342.00	0.30	34.2
CB105	86.0	0.30	8.6
CB106	82.0	0.30	8.2
CB107	309.0	0.30	30.9
CB108	401.0	0.30	40.1
CBMH203	184	0.35	21.5
	Tota	l Volume	193.5

100 Year Surface Ponding Volumes PH1C

Ponding Location	Surface Area (m2)	Ponding Depth	Volume (m3)
Roof	1140	0.15	57
	Tota	57.0	

100 Year Surface Ponding Volumes PH1B

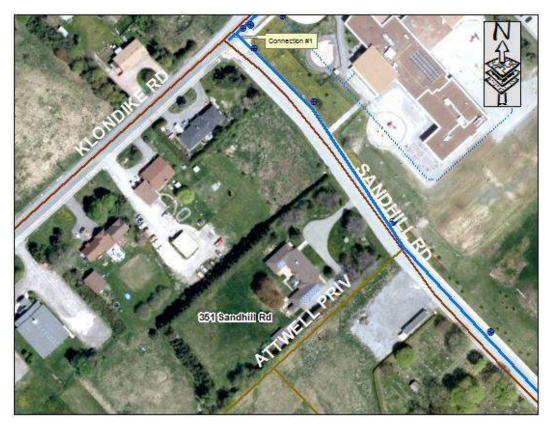
Ponding Location	Surface Area (m2)	Ponding Depth	Volume (m3)
CB101	217	0.35	25.3
	Tota	25.3	

EXP Services Inc. KMA Mosque and Community Centre 351 Sandhill Road, Ottawa, ON OTT-00238504-A0 November 23, 2018

Appendix C – Water

BOUNDARY CONDITIONS

Boundary Conditions For: 351 Sandhill Rd


Date of Boundary Conditions: 2018-Jul-09

Provided Information:

Scenario	Den	nand
	L/min	L/s
Average Daily Demand	16.2	0.3
Maximum Daily Demand	24.6	0.4
Peak Hour	44.4	0.7
Fire Flow #1 Demand	4,000	66.7

Number Of Connections: 1

Location:

BOUNDARY CONDITIONS

Results:

Connection #: 1

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	131.5	80.7
Peak Hour	124.2	70.3
Max Day Plus Fire (4,000) L/min	125.1	71.6

¹Elevation: **74.73 m**

Notes:

1) As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:

- a) If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
- b) Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.

2) Connection Location is always selected to be at watermain major intersections to provide best and most accurate results.

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

From:	Ahmed Aref <aaref@aplus-arch.com></aaref@aplus-arch.com>
Sent:	Monday, November 12, 2018 1:46 PM
То:	Aly Elgayar
Cc:	Alam Ansari; Marc Alain Lafleur
Subject:	Re: KMA Mosque – Type of Construction Confirmation
Attachments:	image001.png

Steel frame on concrete shallow foundations. Exterior cladding of combustible and non combustible construction.

Ahmed Aref, Architect, OAA, MRAIC, LEED Green Assoc. Principal

A+ Architecture Inc.

555 Legget Drive, Tower A, Suite 304, Kanata, ON K2K 2X3

T. (613) 699-6860 | F. (613) 800-2204 | C. (613) 854-5008

aaref@aplus-arch.com | www.aplus-arch.com

On Mon, Nov 12, 2018, 10:58 AM Aly Elgayar <<u>Aly.ElGayar@exp.com</u> wrote:

Good Morning Ahmed,

Can you please confirm the proposed building's type of construction?

I require documentation for the SWM report as per the City comments.

Regards,

TABLE 1: FIRE FLOW REQURIEMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999 Project No.: OTT-00238504-A0 Project Name: KMA Mosque & Community Center

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where: F = required fire flow in litres per minute

A = total floor area in m² (including all storeys, but excluding basements at least 50% below grade)

C = coefficient related to the type of construction

Task	Options	Multiplier	Input	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5			
Choose Building	Ordinary Construction	1			
Frame (C)	Non-combustible Construction	0.8	Non-combustible Construction	0.8	
	Fire Resistive Construction	0.6			
	Floor 3				
Input Building	Floor 2		586.4	2282.4 m ²	
Floor Areas (A)	Floor 1		1696	2282.4 m²	
	Basement (At least 50% bel	ow grade, not included)	0		
Fire Flow (F)	F = 220 * C * SQRT(A)		-	-	8,408
Fire Flow (F)	Rounded to nearest 1,000				8,000

Reductions/Increases Due to Factors Effecting Burning

Task	Options		Multipl	ier				Input			Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)
	Non-combustible		-25%)									
Choose	Limited Combustible		-15%)									
	Combustible		0%				Limited	Combustib	le		-15%	-1,200	6,800
Building Contents	Free Burning		15%										
	Rapid Burning		25%										
	Adequate Sprinkler Conforms to NFPA13		-30%)		Adequa	te Sprinkl	er Conforms	to NFPA13		-23%	-1,591	5,209
	No Sprinkler		0%										
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10%	1	Standard	Water Su		Fire Departm kler System	ient Hose Lir	ne and for	-8%	-530	4,678
	Not Standard Water Supply or Unavailable		0%				- 1	,					
	Fully Supervised Sprinkler System		-10%)		Fully	Supervis	ed Sprinkler	System		-8%	-530	4,148
	Not Fully Supervised or N/A		0%			runy	Supervis	eu oprinkier	System		070	000	-,140
							E	kposed Wall	Length				
Choose Structure Exposure Distance	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposing Wall type	Length (m)	No of Storeys	Lenth- height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)	
	Side 1	80.5	6	> 45.1	Туре А	29	1	29	6	0%			
	Side 2	100	6	> 45.1	Туре А	0	0	0	6	0%	0%	0	4,148
	Front	62.5	6	> 45.1	Туре А	16.4	2	32.8	6	0%	0%	U	4,148
	Back	100	6	> 45.1	Туре А	0	0	0	6	0%			
Obtain Required Fire Flow							Tot	al Required	Fire Flow, Ro			1,000 L/min = re Flow, L/s =	4,000 67

Exposure Charges for Exposing Walls of Wood Frame Construciton (from Table G5)

Type A Wood-Frame or non-conbustible

Type B Ordinary or fire-resisitve with unprotected openings

Type C Ordinary or fire-resisitve with semi-protected openings

Type D Ordinary or fire-resisitve with nlank wall

Conditons for Separation

Condition
1
2
3
4
5
6

KMA MOSQUE AND COMMUNITY CENTRE

Client:KANATA MUSLIM ASSOCIATION

Project: OTT-00238504-A0 Prepared By: A. Elgayar Date: July 2018

Max day(0.41L/s) + FireFlow(67L/s) HGL= Max HGL= 131.5 m Peak Hour= 124.2 m 125.1 m

Table C1 Pressure Analysis

			Flow	Pipe Dia		Q	Area		Velocit y V	Slope of HGL	Pipe Length	Frictional Head	Equivalent Pipe Length of	Minor Loss of Fittings hb		Start Ground	End Ground	Static Head	Pressure	From	Press	ure To	Pressure
Description	From	То	(L/sec)	(mm)	Dia (m)	(m³/sec)	(m2)	С	(m/s)	(m/m)	(m)	Loss h _f (m)	Fittings (m)	(m)	(m) h _b + h _f	Elev(m)	Elev (m)	(m)	kPa	(psi)	kPa	(psi)	Drop (psi)
Max Day + Fire Flow	Main	Building	67	200	0.200	0.067	0.0314159	110	2.1327	0.0300	35	1.050311609	13.2	0.39612	1.44643	74.73	76.90	-2.17	494.0	(71.6)	458.5	(66.5)	5.1
Max HGL	Main	Building	0.3	200	0.200	0.0003	0.0314159	110	0.0095	0.0000	35	4.68874E-05	13.2	0.00002	0.00006	74.73	76.90	-2.17	556.7	(80.7)	535.5	(77.7)	3.1
Peak Hour	Main	Building	0.7	200	0.200	0.0007	0.0314159	110	0.0223	0.0000	35	0.00022519	13.2	0.00008	0.00031	74.73	76.90	-2.17	485.2	(70.4)	463.9	(67.3)	3.1

V=Q/A Slope of HGL= $\left(\frac{3.59}{C}\right)^{1.852} \frac{Q}{D^{4.87}}^{1.852}$

hf = Slope of HGL * Pipe Length

Resistance of Fittings and Valves for 200mm WM

	Loss in				
	Equiv.				
	Length in	Equiv.			
	Pipe	Length	Quantity	Total Equiv.	
Fittings	Diameters	(metres)	(each)	Length (m)	
Standard 90 ⁰ Elbow	32	6.40	1	6.4	
11.25 Degree Elbow	8	1.60	1	1.6	
45 Degree Elbow	16	3.20	0	0	
Gate Valve Full -Open	13	2.60	2	5.2	
		Total:	4	13.2	

EXP Services Inc. KMA Mosque and Community Centre 351 Sandhill Road, Ottawa, ON OTT-00238504-A0 November 23, 2018

Appendix D – Sewer Design Sheets

From:	Ahmed Aref <aaref@aplus-arch.com></aaref@aplus-arch.com>
Sent:	Thursday, November 15, 2018 1:26 PM
То:	Aly Elgayar
Cc:	Mehmood Shaikh; Alam Ansari
Subject:	KMA Mosque & Community Centre: Occupant Load Calculations

Hi Aly,

As requested, here is a breakdown of the proposed occupant load for the buildings:

- Existing Building: 180 persons

- New Building: 1,271 persons (assuming the gymnasium hall will be used as an assembly space).

Let me know if you have any questions.

Thanks,

Ahmed Aref, Architect, OAA, MRAIC, LEED Green Assoc.

Principal

A+ Architecture Inc.

555 Legget Drive, Tower A, Suite 304, Kanata, ON K2K 2X3

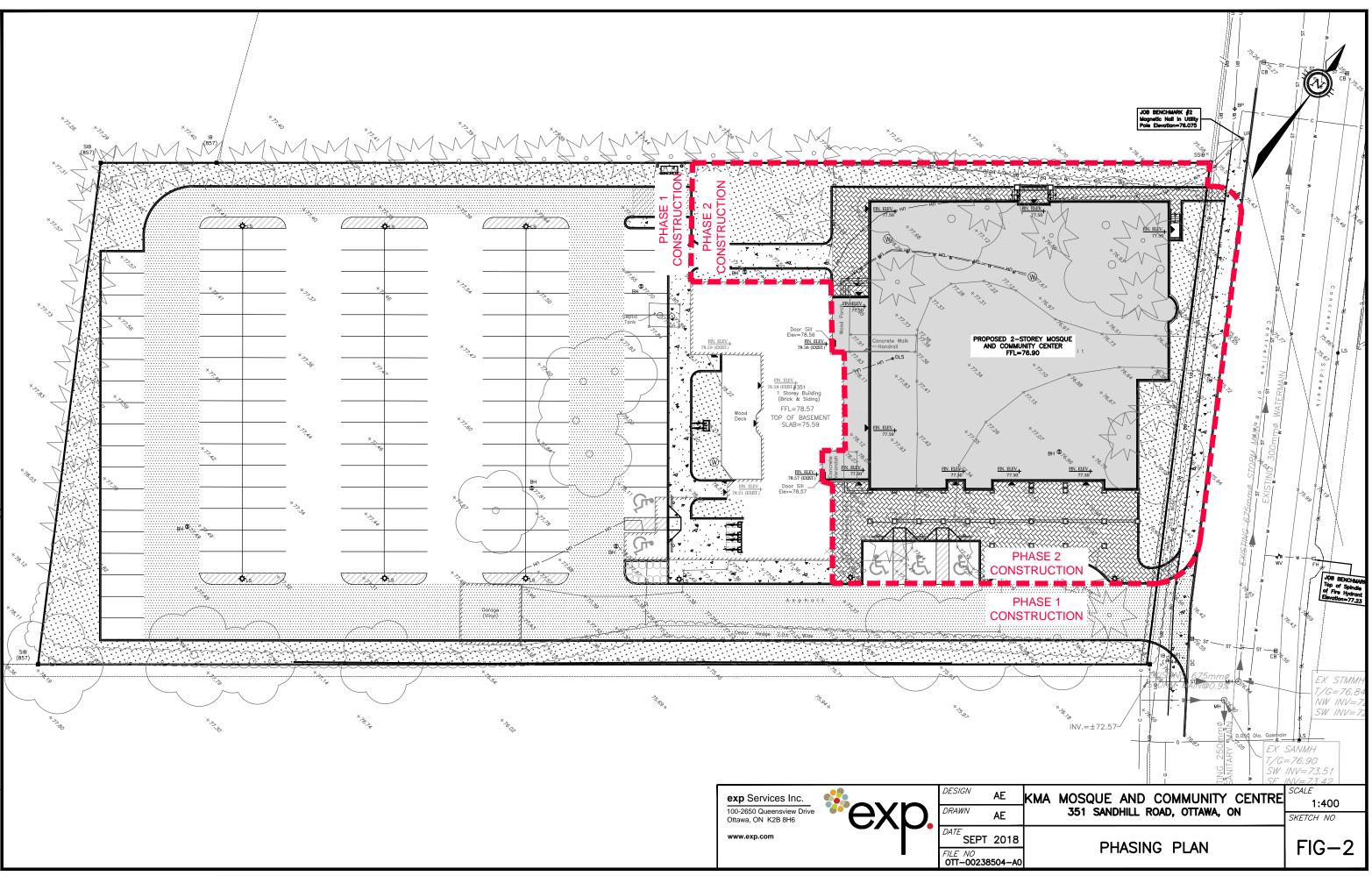
SANITARY SEWER CALCULATION SHEET

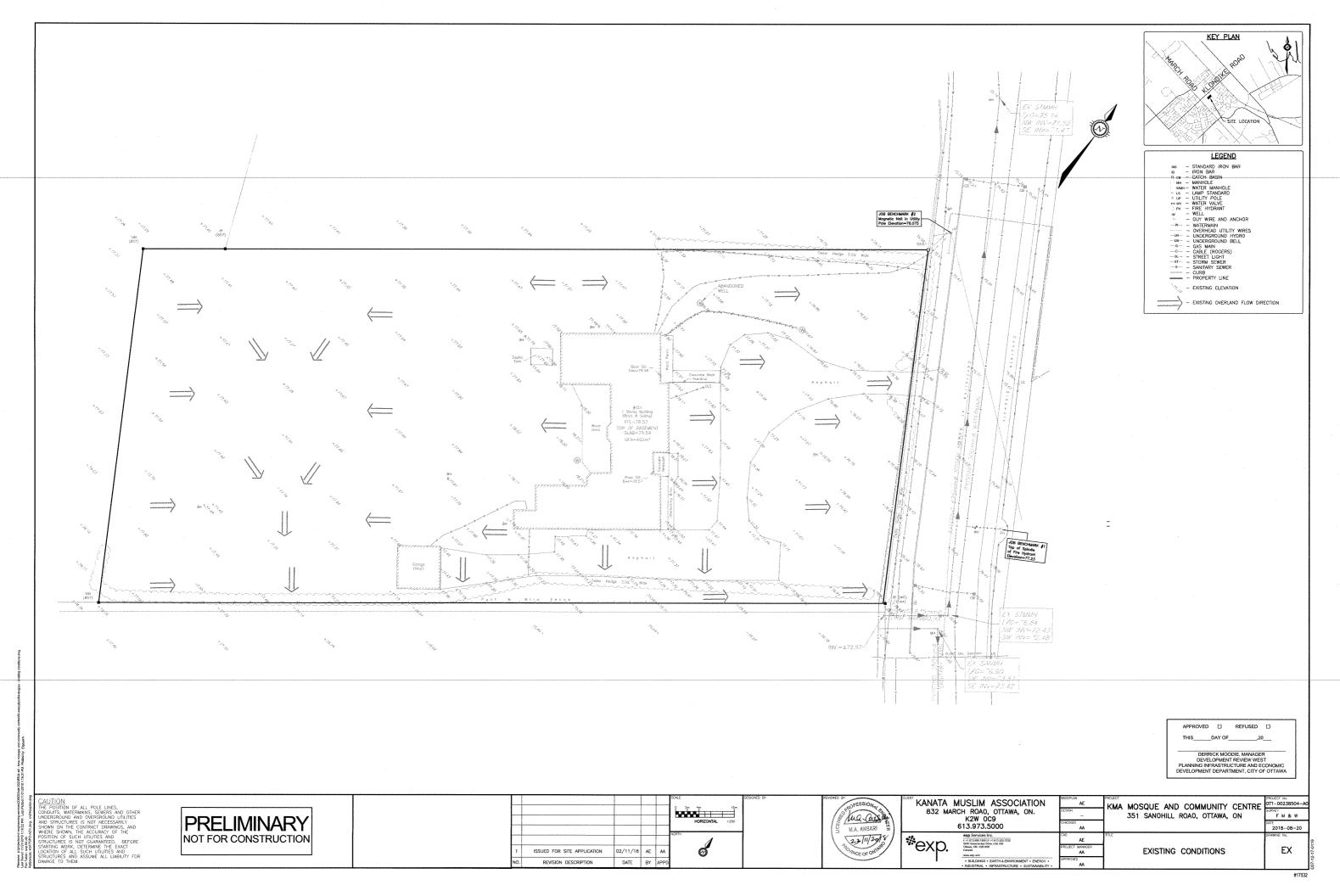
	LOC	CATION					RI	ESEDENTI	AL AREAS	AND PO	PULAITON	IS				0	OMMERC	IAL	I	NDUSTRIA	L	INSTIT	UTIONAL	IN	FILTRATI	ON					SEWER	DATA		
							NUN	1BER OF L	JNITS			POPUL	ATION			ARE	A (ha)		ARE	A (ha)	Peak			AREA	A (ha)									
Street	U/S MH	D/S MH	Desc	Area (ha)	Singles	Semis	Towns	1-Bed	2-Bed	3-Bed	4-Bed			Peak	Peak Flow	INDIV	ACCU	Peak Flow	INDIV	ACCU	Factor (per	AREA	ACCU AREA	INDIV	ACCU	INFILT FLOW	TOTAL FLOW	Nom Dia	Actual Dia	Slope (%)	Length (m)	Capacity (L/sec)	_	Full Velocity
								Apt.	Apt.	Apt.	Apt.	INDIV	ACCU	Factor	(L/sec)			(L/sec)			MOE)	(Ha)	(Ha)			(L/s)	(L/s)	(mm)	(mm)					(m/s)
<u> </u>		000		0.0400																				0.040	0.040	0.07	0.07		004.40			05 000 /	0.00507	0.000700/0
Private		303		0.8180																		0.82	0.82	0.818	0.818	0.27	0.67	200	201.16	0.60	7.300		0.02587	0.93970312
	303	302																										200	201.16	2.00	41.200	47.10488		1.715655321
		301																										200	201.16	0.50		23.55244		0.85782766
	301	Ex.MH																										200	201.16	0.60	13.500	25.8004		0.93970312
																																		<u> </u>
																																		<u> </u>
		-																										-						
		-																										-						
				0.818																				0.818										
				0.818																				0.818		Designed				Ductort				
ocidontial	Avg Dail		(L/p/day) =		200		Commerci	ial Boak Fa	ctor -		4 5	(when are	> 200/)		Dook Doo	ulation Flo	w, (L/sec) =		P*q*M/8	с 4				Dorconc /I		Designed				Project:				
			(L/p/day) – /gross ha/da	vd) -	280 28,000		Commerci	Idi Pedk Fd	CLOI –			(when are					w, (L/sec) = w, (L/sec) =		I*Ac	0.4		<u>Unti Type</u> Singles		Persons/L 3.4	<u>Jiiit</u>	A. Elgaya	r MASo				anua and (Community	Contor	
or L/gros			/gross na/ua	y) —	0.324						1.0	(when are	:a <2076)				Factor, M =			+P^0.5)) *		Semi-Deta	ached	3.4 5.7		A. Eigaya	ar, IVI.A.50	-		KIVIA IVIO	sque and C	Jonnunity	Center	
nstitutiana	-		L/s/ha) =		28,000		Institution	nal Peak Fa	ctor =		1.5	(when are	a >20%)			-	a (hectares)		1 (1-)(-	0.5//		Townhom		2.7		Checked:				Location				
or L/gros			,		0.324							(when are			-	ation (thou						Single Apt		1.4										
ight Indust	-		na/day) =		35,000								,			, .						2-bed Apt		2.1		A. Ansari	, P.Eng.			Ottawa, 0	Ontario			
or L/gros					0.40509		Residentia	al Correctio	on Factor, k	(=	0.80				Sewer Ca	pacity, Qca	p (L/sec) =		1/N S ^{1/2}	R ^{2/3} A _c		3-bed Apt	. Unit	3.1			č			,				
ight Indust	trial Flow	v (L/gross ł	na/day) =		55,000		Manning I	N =			0.013				(Manning	's Equation	ı)					4-bed Apt	. Unit	3.8		File Refer	rence:			Page No:				
or L/gros	s ha/sec	=			0.637		Peak extra	aneous flov	w,I (L/s/ha	a) =	0.33	(Total I/I)														229504	SAN Desi			1 of 1				

TABLE C-1: 5-YEAR STORM SEWER CALCULATION SHEET

Return Period Storm = 5 (5-year) Default Inlet Time= 10 (minutes) Manning Coefficient = 0.013 (dimensionless)

L	OCATION		AREA (ł	ectares)			F	LOW (UNREST	RICTED)								SEWER DA	TA				
			•						,									Velocit	y (m/s)	Time in	Hydraul	ic Ratios
Location	From Node	To Node	Area No.	Area (ha)	Average R	Indiv. 2.78*A*R	Accum. 2.78*A*R	Tc (mins)	l (mm/h)	Return Period	Q (L/sec)	Dia (mm) Actual	Dia (mm) Nominal	Туре	Slope (%)	Length (m)	Capacity (L/sec)	Vf	Va	Pipe, Tt (min)	Qa/Qf	Va/Vf
	00405	00141205	2112.4	0.0000	0.70	0.07	0.07	40.00	101.10	5.00		201.16	200	D) (0	1.00	17.10	22.2	1.04	0.60	0.42	0.00	
351 Sandhill Road	CB105	CBMH205	PH2A	0.0300	0.78	0.07	0.07	10.00	104.19	5.00	6.8	201.16	200	PVC	1.00	17.40	33.3	1.04	0.69	0.42	0.20	0.66
	CB106	CBMH205	PH2A	0.0450	0.78	0.10	0.10	10.00	104.19	5.00	10.2	201.16	200	PVC	1.00	19.60	33.3	1.04	0.73	0.45	0.31	0.70
	CB104	CBMH205	PH2A	0.060	0.78	0.13	0.13	10.00	104.19	5.00	13.6	201.16	200	PVC	1.00	15.30	33.3	1.04	0.74	0.35	0.41	0.71
	CB107	CBMH205	PH2A	0.080	0.78	0.17	0.17	10.00	104.19	5.00	18.1	201.16	200	PVC	1.00	14.60	33.3	1.04	0.74	0.33	0.54	0.71
	CB103	CBMH205	PH2A	0.090	0.78	0.20	0.20	10.00	104.19	5.00	20.3	201.16	200	PVC	1.00	15.30	33.3	1.04	0.95	0.27	0.61	0.91
	CB108	CBMH205	PH2A	0.100	0.78	0.22	0.22	10.00	104.19	5.00	22.6	201.16	200	PVC	1.00	18.40	33.3	1.04	0.88	0.35	0.68	0.84
	CBMH205	CBMH204					0.88	10.42	102.02	5.00	89.6	610	600	CONC	0.50	44.60	453.7	1.54	1.03	0.72	0.20	0.67
	CB102	CBMH204	PH2A	0.047	0.78	0.10	0.10	10.00	104.19	5.00	10.6	201.16	200	PVC	1.00	15.50	33.3	1.04	0.73	0.35	0.32	0.70
	CBMH204	CBMH203					0.98	11.14	98.52	5.00	96.6	610	600	CONC	0.50	23.20	453.7	1.54	1.01	0.38	0.21	0.66
	CB101	CBMH203	PH2B	0.120	0.77	0.26	0.26	10.00	104.19	5.00	26.8	201.16	200	PVC	1.00	2.70	33.3	1.04	1.02	0.04	0.80	0.98
	ROOF	CBMH203	PH2C	0.150	0.90	0.38	0.38	10.00	104.19	5.00	39.1	251.46	250	PVC	0.50	15.00	42.7	0.86	0.86	0.29	0.92	1.00
	CBMH203	STMMH202					1.61	11.52	96.77	5.00	156.0	610	600	CONC	0.50	67.00	453.7	1.54	1.07	1.04	0.34	0.70
	STMMH202	STMMH201					1.61	12.56	92.35	5.00	148.9	610	600	CONC	0.50	15.00	453.7	1.54	1.07	0.23	0.33	0.70
TOTALS =																283.60						
Definitions: Q = 2.78*AIR, where Q = Peak Flow in Litre		s)				Notes: Ottawa Rainfal From Sewer De	,		a = b=	0.814		Designed: A. Elgayar Checked:				Project: 351 Sand Location:	Hill Road					
A = Watershed Area (I = Rainfall Intensity (r R = Runoff Coefficient	mm/h)	.)							c =	6.053		A. Ansari, Dwg Refer				Ottawa, C File Ref:	Dntario				Sheet No:	
		<i>'</i> 1										SSGP-2	chec.				STM Design	1			1 of 1	




EXP Services Inc. KMA Mosque and Community Centre 351 Sandhill Road, Ottawa, ON OTT-00238504-A0 November 23, 2018

Appendix E – Drawings

 CONTRACTOR IS RESPONSIBLE FOR ALL LAYOUT FOR CONSTRUCTION. ALL ELEVATIONS ARE GEOGETIC AND UTILIZE METRIC UNITS. JOB ENCH MARK - CONFIRM WITH exp SERVICES INC. PRIOR TO UTILIZATION. JOB ENCH MARK - CONFIRM WITH exp SERVICES INC. PRIOR TO UTILIZATION. ALL DIMENSIONS ARE IN METERS UNLESS OTHERWISE STATEO. ALL GRAWINGS SHOULD NOT BE SCALED THE CONTRACTOR. ANY MISSING OCNTRACTOR SHALL BROADS ARE TO BE CONFIRMED WITH THE CONSULTANT IN WRITING. CONSTRUCTION SHALL BE IN ACCORDANCE WITH CITY OF OTTAWA AND ONTRATO PROVINCIAL STANDARD ORANGES SHALL APPLY WHERE NO COTS STANDARDS ARE AVAILABLE. ANY DISCREPANCIES, INTERPRETATIONS, CHANGES AND ADDITIONS OF THESE DEAMINGS AND LAYOUT INFORMATION SHALL APPLY WHERE NO SCITY STANDARDS AND AND CONSTRUCTION WORKS. REFER TO THE LANDSCAPE EACHITECTS PLAN FOR SIDEWALK, PATHWAYS, PLANTING AND DEFORMENTICI S AND ADDITIONS OF THESE DEAMINGS AND LAYOUT INFORMATION SHALL APPLY WHERE NO SCITY CONTRACTORS SHALL APPLY WHERE NO SCITY STANDARDS SHOULDING DIMESSIONS AND SITE LAYOUT ON EXPRANCES IND LAYOUT INFORMATION SHALL APPLY WHERE NO SCITY STANDARDS AND AND ADDITION OF THE ENGINEER, WHEN NOTED AND BEFORE PROCEEDING WITH CONSTRUCTION WORKS. REFER TO THE LANDSCAPE ACHITECTS PLAN FOR SIDEWALK, PATHWAYS, PLANTING AND LAYOUT INFORMATION SHALL BE CONFIRMED PRIOR TO COMMENCEMENT OF CONSTRUCTION, STALL APPLY WHERE LAYOUT ON EXPREMENT OF AND INFORMATION STALL BECOMPLEX AND MANHOLES AND INSTALLING SLIT FENCES AND OTHER RESULTING CATCHERBING AND LAYOUT INFORMATION SHALL BE CONFIRMED PRIOR TO COMMENCEMENT OF CONSTRUCTION, STALL BE CONFIRMED PRIOR TO COMMENCEMENT OF CONSTRUCTION, STALL BE CONFIRMED PRIOR TO COMMENCEMENT OF CONSTRUCTION, STALL AND DUARD INFORMATION STALLING SLIT FENCES AND INTRACTOR SHALL MOSTARCE ACAN AND THE DECONFIRMED PRIOR TO COMMENCEMENT OF CONSTRUCTION, STALL BE CONFIRMED PRIOR TO COMMENCEMENT OF CONSTRUCTION, AND THE SECONFING WITH NO CHARGE WARK AND AND THE ACCORDA	UD ANY CONDITIONS AT THE SITE BE ENCOUNTERED WHICH DIFFER THE TEST LOCATIONS IOENTIFIED IN THE GEOTECHNICAL BROWN SECTIONS IOENTIFIED IN THE GEOTECHNICAL STO DEPART REASSESSMENT OF THE GEOTECHNICAL BROWN SECTIONS IOENTIFIED IN THE GEOTECHNICAL STO DE CONCRETE BARRER CURBS AS PER CITY OF OTTAWA STO DE CONCRETE BARRER CURBS AS PER CITY OF	TH RECEIPTION	KEY. PLAN how how how Bit with the point
$\frac{1}{12} \frac{1}{12} \frac$	77.05 77.40TC 77.25BC 78.25CC 78.25CCC 78.25CCC 78.25CCC 78.25CCC 78.25CCC 78.25CCC 78.25CCC	SAD EXCHANCE (2) SAD EXCHANCE (2) SAD EXCHANCE (2) SAD IN (1) SAD EXCHANCE (2) SAD EXCHANCE	 PROPOSED STORM MANHOLE PROPOSED STORM CATCHASIN MANHOLE PROPOSED STORM CATCHASIN MANHOLE PROPOSED STORM CATCHASIN PROPOSED STORM CATCHASIN PROPOSED STAME AVAILE DOX PROPOSED STORM CATCHASIN PROPOSED STORM CATCHASIN PROPOSED MATER METER PROPOSED LIGHT STANDARD 76.40 PROPOSED LEVATION Existing ELEVATION PROPOSED HEAVY DUTY PAVEMENT PROPOSED LIGHT DUTY PAVEMENT PROPOSED LIGHT DUTY PAVEMENT PROPOSED CONCRETE SIDEWALK HP HIGH POINT OVERLAND FLOW DIRECTION
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult Subject of Existing Asphult Image: Subject of Existing Asphult <td< th=""><th>APPROVED REFUSEO THIS</th></td<>	APPROVED REFUSEO THIS
CUTION OF ALL POLE LINES. THE POSITION OF ALL POLE LINES. TO DEDREGNING AND OVERCOUND UTLITIES AND STRUCTURES IS NOT RECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND POSITION OF SUCH UTLITIES AND STRUCTURES IS NOT GUARANTEED. GEFORE STARTING WORK, DETERMINE THE EXACT LOCATION OF ALL SUCH UTLITIES AND STRUCTURES IND ASSUME ALL LABILITY FOR DAMAGE TO THEM.	A REVISED AS PER CITY COMMENTS 02/11/18 AE AA 2 ISSUED FOR SITE PLAN APPROVAL 29/06/18 AE AA 1 ISSUED FOR SITE PLAN APPROVAL 13/09/17 ML AA NO. REVISION DESCRIPTION DATE BY APPO	KN Signal Constraints Signal Constra Signal Constraints Signal Constraints Signal Constra	A MOSQUE AND COMMUNITY CENTRE 351 SANDHILL ROAD, OTTAWA, ON GRADING PLAN PHASE 1 BIOREY B

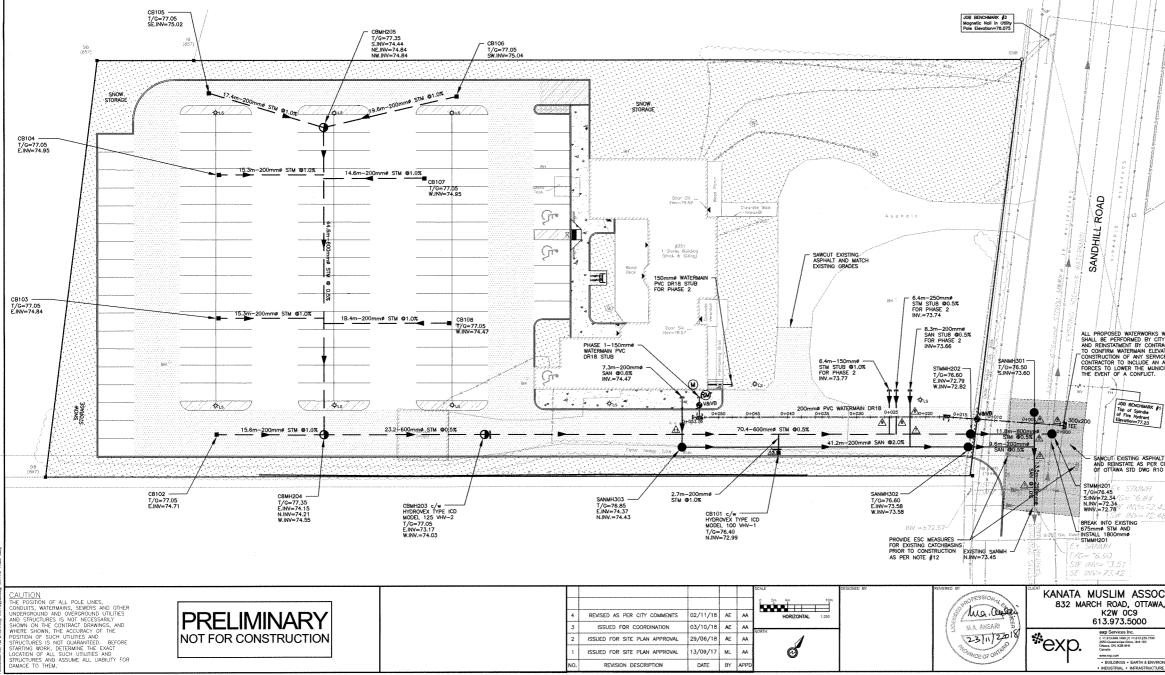
Filmenten, Exprojectatical explanaering aerologi258 Last Sarvect 112/202019 12:26:27 PM Last Peradoct Pen Tablec area Robertaces: area FOPO-A/OV.04eg. aref-Koppien.de

ALL WATERMAIN AND WATER SERVICE MATERIALS AND INSTALLATION SHALL CONFORM TO THE CURRENT CITY OF OTTAWA STANDARD DRAWINGS AND SPECIFICATIONS.

- ALL WATERMAIN TO BE INSTALLED AT MINIMUM COVER OF 2.4-m. THERMAL INSULATION SHALL BE INSTALLED WHERE ADEQUATE SEPARATION CANNOT BE ACHIEVED AS PER CITY STANDARD W21, W22 AND W23.
- ALL WATERMANN WORK AND AMERIAL SHALL BE IN ACCORDANCE WITH CITY OF OTTAWA STANDARDS. NO WORK SHALL COMMENCE UNLESS A CITY WATER WORK'S INSPECTOR IS ON SITE. WATERBAAN CONNECTORS BY CITY OF OTTAWA FORCES WITH ALL EXCAVATION BACKFILL AND ROAD REINSTATEMENT BY CONTRACTOR.
- WATERMAIN IS TO BE PVC DR18 WITH TRACER WIRE AS PER CITY OF OTTAWA STANDARD W36 UNLESS OTHERWISE NOTED
- 5. VALVE BOXES AS PER CITY OF OTTAWA DETAIL W24.
- 6. ALL FRE HYDRANTS TO BE INSTALLED AS PER CITY STANDARD W19 AND LOCATED AS PER CITY STANDARD W19 AND/OR CITY STANDARD CROSS SECTIONS.
- WATERMAIN BEDDING IS TO BE AS PER CITY OF OTTAWA DETAIL W17.
- THRUST BLOCKS AND RESTRAINT AS PER CITY OF OTTAWA DWGS: W25.3, W25.4, W25.5 AND W25.6.
- CATHODIC PROTECTION REQUIRED FOR ALL IRON FITTINGS PER CITY OF OTTAWA DWGS: W39, W40, W41.
- 10. IF WATERMAIN MUST 8E DEFLECTED TO MEET ALIGNMENT, ENSURE THAT THE AMOUNT OF DEFLECTION USED IS LESS THAN HALF THAT RECOMMENDED BY THE MANUFACTURER.
- 11. DISINFECTION AND TESTING OF WATERMAIN TO 8E IN ACCORDANCE WITH CITY OF OTTAWA STANDARDS.
- 12. WATER SERVICES TO BE INSTALLED AS PER CITY OF OTTAWA STANDARD W26 AND W35.
- 13. WITHIN THE FROST ZONE, THE 8ACKFILL IN THE SERVICE TRENCHES SHOULD MATCH THE SOIL ON

STRUCTURE TABLE FRAME STRUCTURE OPSD No. OR CITY STD DWG OPSD No. OR CITY STD DWG STRUCTURE SIZE LABEL SANMH 301 1200mmØ 701.010 401.010-A SANMH 302 1200mmØ 701.010 401.010-A SANMH 303 1200mmØ 701.010 401.010-A CBs 600mm x 600mm 705.010 400.020 800mmØ 701.010 401.010-B STMMH 201 1200mmØ 701.010 401.010-B STBMAH2202 1200mmØ 701.010 401.010-B CBMH 204 1200mmØ 701.010 401.010-B CBMH 205 1200mmØ 701.010 401.010-B

		WATE	RMAIN TABLE
STATION	FIN/GRADE	T/W GRADE	COMMENT
0+000	76.45	74.05	TIE INTO EXISTING WATERMAIN ON SANDHILL RE
0+001.6	76.45	74.05	STM CROSSING
0+004.2	76.45	74.28	SAN CROSSING
0+012.5	76.51	73.50	VALVE AND VALVE BOX
0+016.9	76.60	73.30	THRUST BLOCK
0+022.2	76.60	73.14	SAN CROSSING
0+024.2	76.54	73.58	STM CROSSING
0+025.2	76.53	73.54	STM CROSSING
0+035	76.60	73.60	TOP OF WATERMAIN
0+045	76.60	73.80	TOP OF WATERMAIN
0+052.8	76.50	74.00	THRUST BLOCK AND 150mmØ WM CONNECTION
0+053.8	76.55	74.00	WM CAPPED


ø

ISSUED FOR SITE PLAN APPROVAL 13/09/17 ML AA

REVISION DESCRIPTION

DATE BY APP

			WA	TERMAI	N/SEW	ER CROS	SSING T	ABLE		
	SAN	ITARY SE	WER	ST	ORM SEW	/ER	W	/ATERMA	IN	CLEARANCES
LOCATION	Invert	Dia.	Obvert	Invert	Dia.	Obvert	Invert	Dia.	Obvert	
	Elev	(mm)	Elev	Elev	(mm)	Elev	Elev	(mm)	Elev	(mm)
1	73.46	250	73.71	72.65	675	73.33				130mm (STM Below)
2	73.49	250	73.74	72.39	250	72.64				850mm (STM Below)
3				72.33	675	73.01	73.B5	200	74.05	890mm (STM Below)
4	73.58	250	73.B3				74.0B	200	74.28	250mm (SAN Below)
5	73.55	250	73.B0	72.77	600	73.37				180mm(STM Below)
6	73.64	200	73.B4				72.94	200	73.14	500mm (WM Below)
7	73.63	200	73.83	72.B6	600	73.46				170mm (STM Below)
8				72.BB	250	73.13	73.38	200	73.58	250mm (STM Below)
9				72.89	200	73.09	73.34	200	73.54	250mm (STM Below)
10	73.83	200	74.03	73.00	200	73.20				630mm (STM Below)
11	74.44	200	74.64	73.03	600	73.63				810mm (STM Below)

SUPPLY AND INSTALL ALL PIPING AND APPURTENANCES AS SHOWN TO WITHIN 1.0m OF BUILDING WALLS AND PROVIDE TEMPORARY (APS. THE CONTRACTOR SHALL CONDUCT INFLITRATION/EXPLITIATION (AS PER CURRENT) OPSS) TESTING ON ALL NEWY INSTALLED SANTARY SEWERS. THE TEST SHALL BE PERFORMED INMEDIATELY AFTER SEWER INSTALLATION AND SUPERVISED BY THE ENGINEER. THE CONTRACTOR SHALL CONDUCT COTV INSPECTION OF ALL NEWLY INSTALLED STORM AND SANITARY SEWERS AND EXISTING SEWERS CONNECTED TO. THE TEST SHALL BE PERFORMED IMMEDDATELY AFTER SEWERS INSTALLED AND SUPERVISED BY THE ENGINEER.

SIDES TO MINIMIZE DIFFERENTIAL FROST HEAVING IN THE SUBGRADE.

SANITARY AND STORM SEWER MATERIALS AND INSTALLATION SHALL CONFORM TO THE CURRENT CITY OF OTTAWA STANDARD DRAWINGS AND SPECIFICATIONS AND OPSS 407 AND 410.

ALL SANITARY SEWERS ARE TO BE THE SIZES INDICATED AND THE MATERIAL SHALL 8E PVC SDR35.

ALL STORM SEWERS ARE TO BE THE SIZES INDICATED AND THE MATERIAL SHALL BE PVC SDR35 OR REINFORCED CONCRETE IN ACCORDANCE WITH CSA STANDARDS A257.2 AND A257.3 (JOINTS).

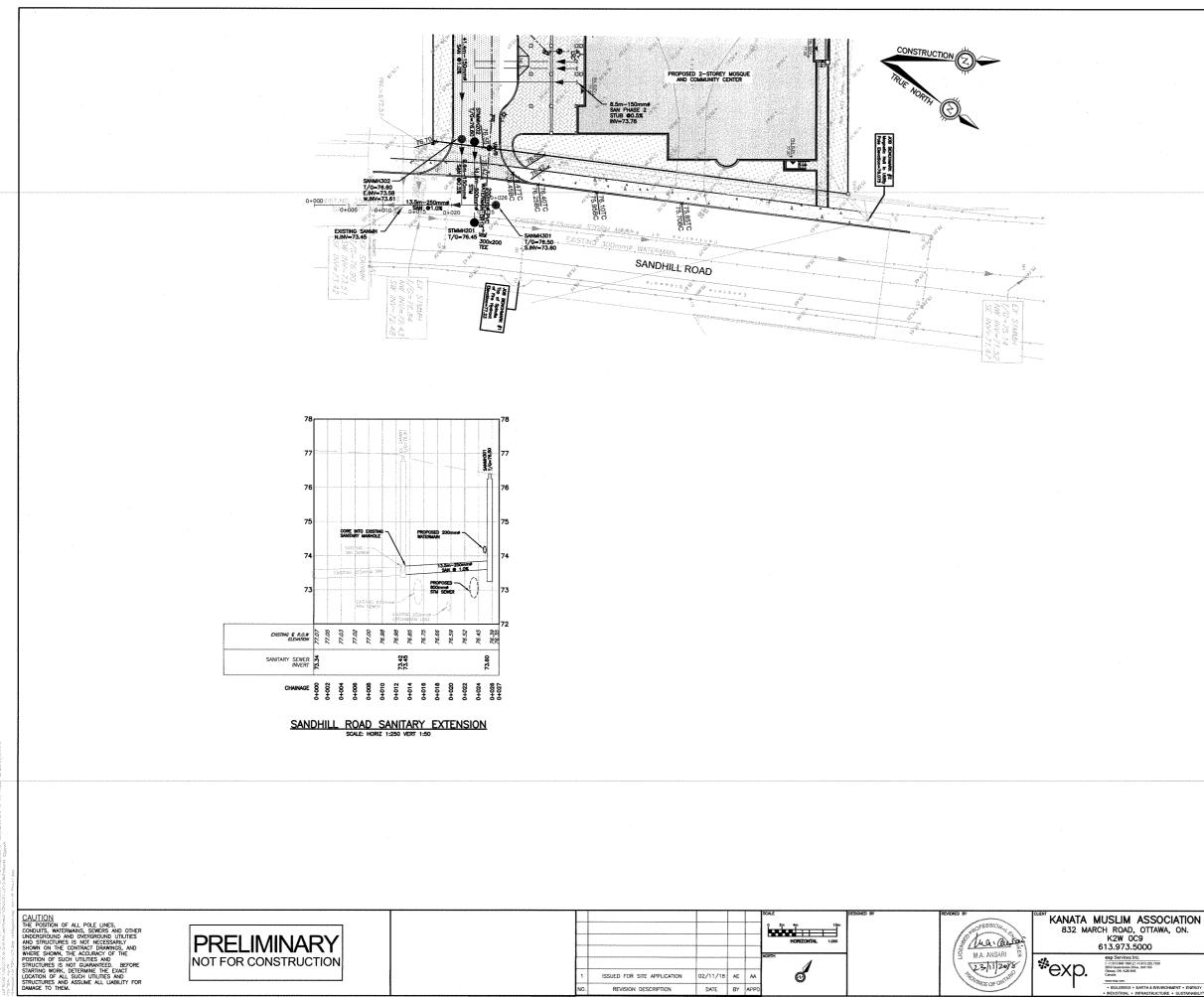
5. ALL MANHOLES, CATCHBASINS AND CATCHBASIN MANHOLES TO BE BACKFILLED WITH MIN. 0.3m HORIZONTAL THICKNESS

 ALL SERVICE CONNECTIONS TO BE CONSTRUCTED AS PER CITY STANDARD S11 & S11.1. 10. ALL SANITARY BUILDING DRAINS TO BE EQUIPPED WITH SANITARY BACKWATER VALVES INSTALLED PER CITY OF OTTAWA STANDARD DRAWING \$14.1.

11. MINIMUM SOIL COVER TO BE 2.0m TO PROTECT SEWERS FROM FROST DAMAGE. IN AREAS WHERE ADEQUATE COVER CANNOT BE ACHIEVED, THERMAL INSULATION TO BE INSTALLED AS PER OPSD 514.010.

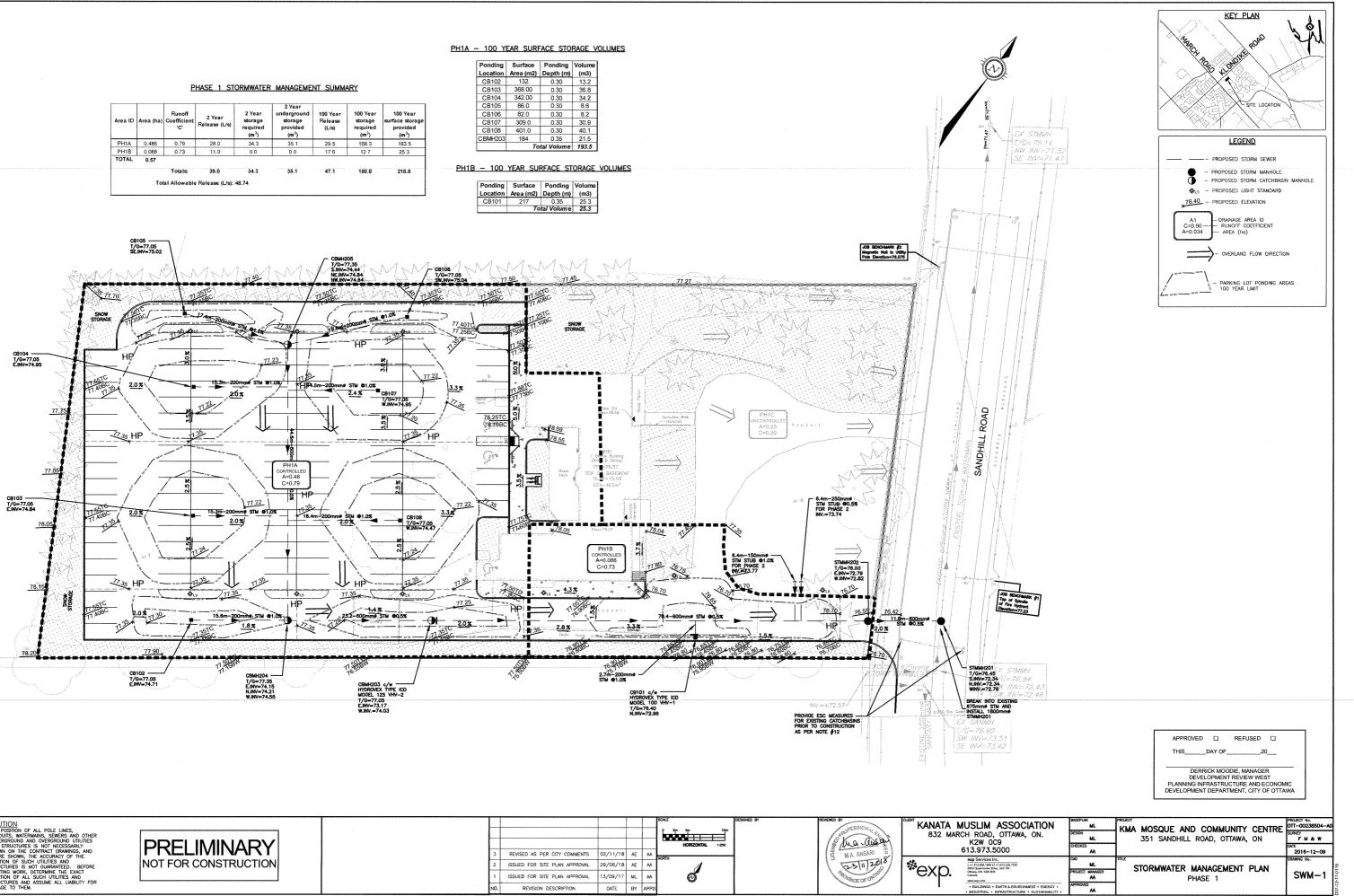
14. INSTALLATION OF WATER METER AND REMOTE RECEPTACLE SHALL BE IN ACCORDANCE WITH CITY OF OTTAWA STANDARDS.

2. SEWER BEDDING AS PER CITY STANDARD S6 & S7.

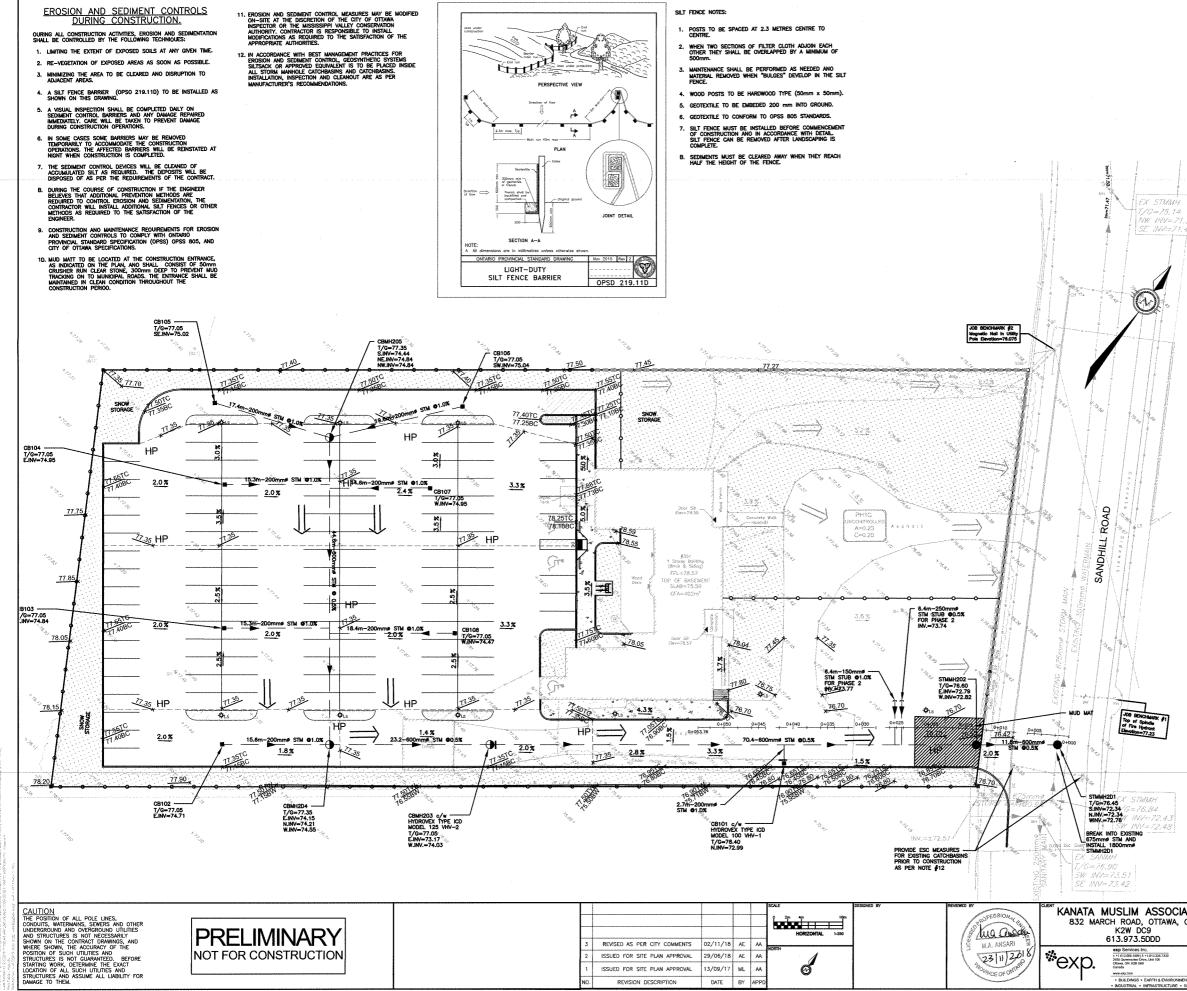

STORM AND SANITARY SEWERS

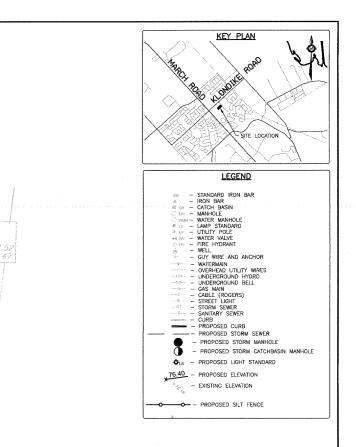
GRANULAR 'A'.

ERMAIN

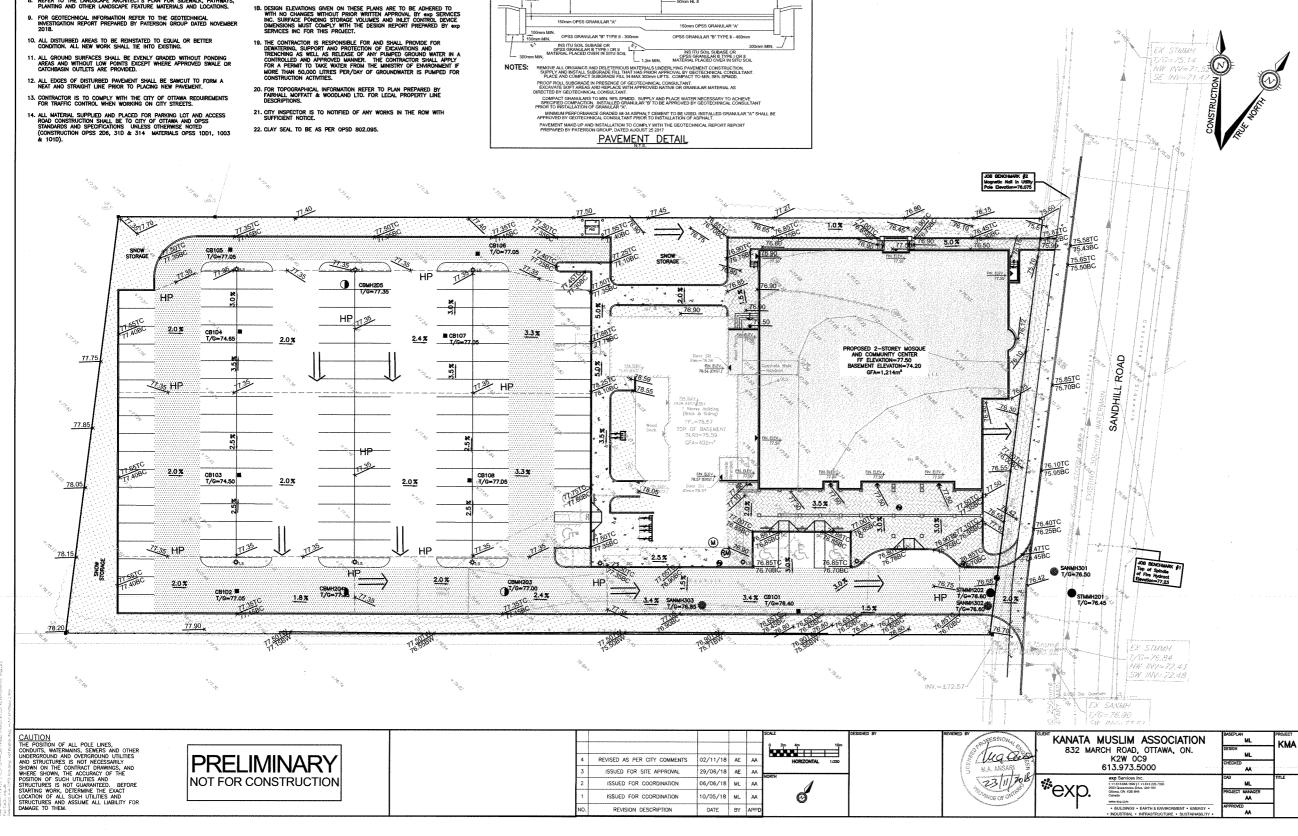

		AN ORD E LOCATION
Add H T J J T J J J T J J J J T J J J J J T J J J J J J J J J J J J J J J J J J J	PROPOSED SANIT.	AAR WICHOR Y WIRES YORO ELL WANN M SEWER ARY SAVER SEAL AT 60m INTERVALS ARY MANHOLE M CATCHBASIN MANHOLE M CATCHBASIN MANHOLE M CATCHBASIN MANHOLE M CATCHBASIN M CATCHBA
WITHIN THE CITY ROW TY FORCES, BACKFILL SACTOR, CONTRACTOR ATION, PRIOR TO		
CE CONNECTIONS. ALLOWANCE FOR CITY CIPAL WATERMAIN IN		
	APPROVED THISDAY OF THISDAY OF DERRICK MOOD DEVELOPMENT F PLANING INFRASTRUCI DEVELOPMENT DEPARTM	IE, MANAGER REVIEW WEST FURE AND ECONOMIC
CIATION A, ON. CHECKED AA CAD ML	MALACT KMA MOSQUE AND COMMUNITY 351 SANDHILL ROAD, OTTAWA,	ON F M & W DATE 2016-12-09 DRAWING No.
ONMENT + ENERGY - APPROJECT AM	SITE SERVICING PHASE 1	SS-1

• BUILDINGS • EARTH & ENVIR




KEY_PLAN
LEGEND
SIG - STANDARD IRON BAR
IN - IRON BAR
Diver - MANHOLE
O vere∽ WATER MANHOLE ≫ Ls ~ LAMP STANDARD
I UP - UTILITY POLE
o ip - Fire hydrant
± τ − WELL τ − GUY WIRE AND ANCHOR
- UNDERGROUND HYDRO
CABLE (ROGERS)
- PROPOSED CURB
PROPOSED WATERMAIN
PROPOSED SANITARY MANHOLE
- PROPOSED STORM MANHOLE
PROPOSED STORM CATCHBASIN MANHOLE PROPOSED STORM CATCHBASIN
- PROPOSED FIRE HYDRANT
(M) - PROPOSED WATER METER
- PROPOSED REMOTE WATER METER
- PROPOSED HEAVY DUTY PAVEMENT
- PROPOSED LIGHT DUTY PAVEMENT
- PROPOSED CONCRETE SIDEWALK
TERRACING 3:1 MAX
w and and and an a - 150mm PERFORATED SUBDRAIN

APPROVED
REFUSED THIS____DAY OF____ ,20 DERRICK MOODIE, MANAGER DEVELOPMENT REVIEW WEST PLANNING INFRASTRUCTURE AND ECONOMIC DEVELOPMENT DEPARTMENT, CITY OF OTTAWA AE KMA MOSQUE AND COMMUNITY CENTRE AE ED AA FM & W 351 SANDHILL ROAD, OTTAWA, ON 2016-11-12 Æ MUNICIPAL SANITARY EXTENSION AA PP PLAN AND PROFILE OVED AA



CAUTION THE FOSTION OF ALL POLE LINES, CONDUITS, WATERAAINS, SEWERS AND OTHER UNDERGROUND AND OVERGROUND UITLINES AND STRUCTURES IS NOT ACCESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UITLINES AND STRUCTURES IS NOT GUARANTEED. BEFORE INCOTTURES IS NOT GUARANTEED. BEFORE LOCATION OF ALL SUCH UITLINES AND STRUCTURES AND ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

		APPROVED C REFUSED C	
		THISDAY OF,20	
		DERRICK MOODIE, MANAGER DEVELOPMENT REVIEW WEST PLANNING INFRASTRUCTURE AND ECONOI DEVELOPMENT DEPARTMENT, CITY OF OTT,	
ATION	BASEPLAN ML		PROJECT No. OTT00238504A0
ON.	DESIGN ML	351 SANDHILL ROAD, OTTAWA, ON	SURVEY FM&W
	CHÉCKED AA		DATE 2018-12-09
	CAD ML	EROSION & SEDIMENT CONTROL PLAN	DRAWING No.
	PROJECT MANAGER	PHASE 1	ESCP-1
MENT • ENERGY • • SUSTAINABILITY •	APPROVED AA		

- ONTAIN SHALL BE IN ACCORDANCE WITH CITY OF OTTAWA AND ONTAINO PROVINCIAL STANDARD ORWING SUPPLEMENTS WHERE APPLICABLE AND ONTAINO PROVINCIAL STANDARDS SHALL APPLY WHERE NO CITY STANDARDS ARE AVAILABLE.
- ANY DISCREPANCIES, INTERPRETATIONS, CHANGES AND ADDITIONS TO THESE DRAWINGS MUST BE BROUGHT TO THE ATTENTION OF THE ENGINEER, WHEN NOTED AND BEFORE PROCEEDING WITH CONSTRUCTION WORKS.
- REFER TO ARCHITECT'S SITE PLAN FOR BUILDING DIMENSIONS AND SITE LAYOUT. DIMENSIONS AND LAYOUT INFORMATION SHALL BE CONFIRMED PRIOR TO COMMENCEMENT OF CONSTRUCTION.
- REFER TO THE LANDSCAPE ARCHITECT'S PLAN FOR SIDEWALK, PATHWAY PLANTING AND OTHER LANDSCAPE FEATURE MATERIALS AND LOCATIONS.

- FIRE ROUTE (HEAVY DUTY) PARKING AREAS (LIGHT DUTY) BARRIER CURB AS PER CITY STANDARD SC1.1 40mm HL 3 BARRIER CURB PE - 50mm Ht 2 --- 50mm HL 8
- 4. The existing private approach is to be removed as part of phase 2 work, right-of-way to be reinstated to the satisfaction of the city of ottawa.

- THE CONTRACTOR SHALL COMPLETE ALL RESTORATION WITHIN CITY ROW'S TO A CONDITION EQUAL TO ORIGINAL OR BETTER AND TO THE SATISFACTION OF THE MUNICIPAL AUTHORITIES.

- 2. CURBS TO BE CONCRETE BARRIER CURBS AS PER CITY OF OTTAWA STANDARD DRAWING SC1.1.
- 1. ASPHALT REINSTATEMENT AS PER CITY OF OTTAWA STANDARD DRAWING R1D.
- ROADWAYS & CURBS
- 23. SHOULD ANY CONDITIONS AT THE SITE BE ENCOUNTERED WHICH DIFFER FROM THE TEST LOCATIONS IDENTIFIED IN THE GEOTECHNICAL REPORT, PATERSON'S GEOTECHNICAL, ENGINEER IS TO BE NOTFED AMEDIATELY IN ORDER TO PERMIT REASSESSMENT OF THE GEOTECHNICAL RECOMMENDATIONS.

GENERAL NOTES

- 1. CONTRACTOR IS RESPONSIBLE FOR ALL LAYOUT FOR CONSTRUCTION.

- 2. ALL ELEVATIONS ARE GEODETIC AND UTILIZE METRIC UNITS.

- 3. JOB BENCH MARK CONFIRM WITH exp SERVICES INC. PRIOR TO

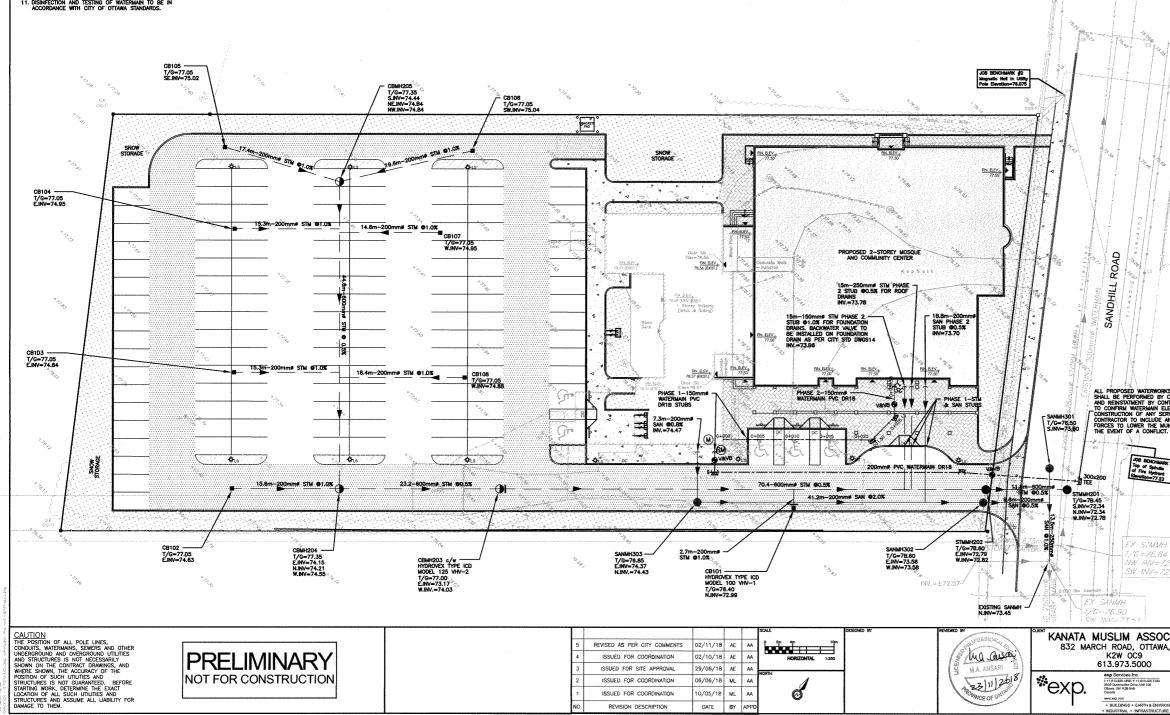
- ALL DIMENSIONS ARE IN METERS UNLESS OTHERWISE STATED. AN DRAWINGS SHOULD NOT BE SCALED BY THE CONTRACTOR. ANY OR QUESTIONABLE DIMENSIONS ARE TO BE CONFIRMED WITH THE CONSULTANT IN WRITING.

- - VACTOR SHALL PROTECT ANY SUCH EXISTING SERVICES & SUCH REQUIRED MEASURES INCLUDE, BUT ARE NOT LIN E ALL CONCERNED UTILITIES HAVE LOCATED THEIR PLANT PRIOR TO ANY DOWNTHING DURING THE COARDED ITER FUANT PRIOR TO ANY DOWNTHIG LOCATE AN OF HAG/PAINT THE LOCATIONS OF OTHER U/O PLANT WHICH MIGHT BE DAMAGED BY EXCAVATION AND CONSTRUCTION TRAFFIC, HAND DIG IN PROVINTY TO EXCAVATION AND SCRUCES TO LOCATE THEM WITHOUT ANY RESULTING DAMAGE, BRADE AND SUPPORT WHERE REQUIRED.

HE CONTRACTOR SHALL INPLEMENT BEST MANAGEMENT PRACTICES FOR THE PROTECTION OF THE AREA'S DRAINAGE SYSTEM AND THE RECEIVING WITERCOURSE CUBING CONSTRUCTION ACTIMES. THIS INCLUDES LIMITIM THE MAQUINT OF EXPOSED SOIL, USING FLITER CLOTH UNDER GRATES O ACTCHBASINS AND MANHOLES AND INSTALLING SILT FENCES AND OTHER FECTIVE SEMINENT TRAPS. THE CONTINUCTOR ACKNOWLEDGES THAT.

- 15. THE CONTRACTOR SHALL CONFIRM LOCATIONS AND ELEVATIONS OF EXISTING SERVICES AND STRUCTURES TO BE CONNECTED TO AND EXISTING SERVICES AND STRUCTURES TO BE CONNECTED TO AND CONSTRUCTION OF ANY NEW SEVER, WATER AND/OR STORM WATER WORKS, THE EXIGNES SHALL BE INFORMED IMMEDIATELY OF ANY EIRORS, DISCREPANCIES, CONFLICTS, OMISSIONS 40. THAT ARE FOUND. OPERATIONS INSCREPANCIES, CONFLICTS, OMISSIONS 40. THAT ARE FOUND. OPERATIONS INSCREPANCIES, CONFLICTS, OMISSIONS 40. THAT ARE FOUND. OPERATIONS INSCREPANCIES, CONFLICTS, OMISSIONS 40. THAT ARE FOUND.

KEY PLAN
LEGEND
GB - STANDARD IRON BAR B - IRON BAR B - IRON BAR B - MANHOLE Chem MANHOLE Chem MANHOLE Chem MANHOLE Chem MANHOLE Chem MANHOLE Chem - MANHOLE Chem - MARTE VALVE Chem - FIRE HYDRANT Chem - GUY WIRE AND ANCHOR - WATERMAIN - OVERHEAD UTILITY WIRES - UNDERGROUND HELL - OVERHEAD UTILITY WIRES - CASE - UNDERGROUND HELL - CASE - UNDERGROUND HURES - CASE - UNDERGROWNA HURES - CASE - UNDERGROWNA HURES - CASE - UNDERGROWNA HURES - PROPOSED STORM SEWER - PROPOSED STORM ATCHASIN - PROPOSED STORM CATCHASIN - PROPOSED STORM CATCHASIN - PROPOSED STORM CATCHASIN
HP - HIGH POINT
- OVERLAND FLOW DIRECTION


ROJECT No. 011-00238504-KMA MOSQUE AND COMMUNITY CENTRE 351 SANDHILL ROAD, OTTAWA, ON FM&W 2D16-12-09 GRADING PLAN GP-2 PHASE 2

		-	
1. ALL WATERMAIN AND WATER SERVICE MATERIALS AND INSTALLATION SHALL CONFORM TO THE CURRENT	12. WATER SERVICES TO BE INSTALLED AS PER CITY OF OTTAWA STANDARD W26 AND W35.	1.	SANITARY AND STORM SEWER MATERIALS AND INSTALLAT SHALL CONFORM TO THE CURRENT CITY OF OTTAWA ST
CITY OF OTTAWA STANDARD DRAWINGS AND SPECIFICATIONS.	13. WITHIN THE FROST ZONE, THE BACKFILL IN THE SERVICE TRENCHES SHOULD MATCH THE SOIL ON		DRAWINGS AND SPECIFICATIONS AND OPSS 407 AND 41
2. ALL WATERMAIN TO BE INSTALLED AT MINIMUM	SIDES TO MINIMIZE DIFFERENTIAL FROST HEAVING IN THE SUBGRADE.		SEWER BEDDING AS PER CITY STANDARD S6 & S7.
COVER OF 2.4m. THERMAL INSULATION SHALL BE INSTALLED WHERE ADEQUATE SEPARATION CANNOT BE ACHEVED AS PER CITY STANDARD W21, W22	14. INSTALLATION OF WATER METER AND REMOTE RECEPTACLE SHALL BE IN ACCORDANCE WITH CITY	3.	ALL SANITARY SEWERS ARE TO BE THE SIZES INDICATE THE MATERIAL SHALL BE PVC SDR35.
AND W23.	OF OTTAWA STANDARDS.	4.	ALL STORM SEWERS ARE TO BE THE SIZES INDICATED THE MATERIAL SHALL BE PVC SDR35 OR REINFORCED
3. ALL WATERMAIN WORK AND MATERIAL SHALL BE IN ACCORDANCE WITH CITY OF OTTAWA STANDARDS. NO WORK SHALL COMMENCE UNLESS A CITY WATER			CONCRETE IN ACCORDANCE WITH CSA STANDAROS A257 A257.3 (JOINTS).
WORK SHALL COMMENCE UNLESS A CIT WALER WORKS INSPECTOR IS ON STEL WATERWAIN CONNECTIONS BY CITY OF OTTAWA FORCES WITH ALL EXCAVATION BACKFILL AND ROAD REINSTREMENT BY CONTRACTOR.		5.	ALL MANHOLES, CATCHBASINS AND CATCHBASIN MANHOL BE BACKFILLED WITH MIN. $0.3m$ Horizontal Thickness granular 'A'.
			SUDDLY AND INSTALL ALL DIDING AND ADDUDTENANCES

- WATERMAIN IS TO BE PVC DR1B WITH TRACER WIRE AS PER CITY OF OTTAWA STANDARD W3B UNLESS OTHERWISE NOTED.
- 5. VALVE BOXES AS PER CITY OF OTTAWA DETAIL W24. ALL FIRE HYDRANTS TO BE INSTALLED AS PER CITN STANDARD W19 AND LOCATED AS PER CITY STANDARD W19 AND/OR CITY STANDARD CROSS SECTIONS.
- WATERMAIN BEDDING IS TO BE AS PER CITY OF OTTAWA DETAIL W17.
- B. THRUST BLOCKS AND RESTRAINT AS PER CITY OF OTTAWA DWGS: W25.3, W25.4, W25.5 ANO W25.B.
- 9. CATHODIC PROTECTION REQUIRED FOR ALL IRON FITTINGS PER CITY OF OTTAWA DWGS: W39, W40,
- 1D. IF WATERMAIN MUST BE DEFLECTED TO MEET ALIGNMENT, ENSURE THAT THE AMOUNT OF DEFLECTION USED IS LESS THAN HALF THAT RECOMMENDED BY THE MANUFACTURER.
- 11. DISINFECTION AND TESTING OF WATERMAIN TO BE IN ACCORDANCE WITH CITY OF OTTAWA STANDARDS.

- STORM AND SANITARY SEWERS
- LATION STANDARD 41D.
- ATED AND
- D AND 257.2 ANO
- HOLES TO
- SUPPLY AND INSTALL ALL PIPING AND APPURTENANCES AS SHOWN TO WITHIN 1.0m OF BUILDING WALLS AND PROVIDE TEMPORARY CAPS.
 THE CONTRACTOR SHALL CONDUCT INFLITRATION/DEFLITRATION (AS PER CURRENT OPS): TESTING ON ALL INEWLY INSTALLED SMITHARY SEMERS. THE TEST SHALL BE PERFORMED INMERIMENT ANTER DEFENSION INFLITATION AND SUBFERST OF INFERIMENT ANTER DEFENSION INFLICTION. THE TEST SHALL BE PER SEWER INSTALLATION AND IMMEDI
- THE CONTRACTOR SHALL CONDUCT CCTV INSPECTION OF NEWLY INSTALLED STORM AND SANITARY SEWERS AND EXISTING SEWERS CONNECTED TO. THE TEST SHALL BE PERFORMED IMMEDIATELY AFTER SEWERS INSTALLED AND SUPERVISED BY THE ENGINEER. rmed immediated Vised by the en
- ALL SERVICE CONNECTIONS TO BE CONSTRUCTED AS PER CITY STANDARD S11 & S11.1.
- ALL SANITARY BUILDING DRAINS TO BE EQUIPPED WITH SANITARY BACKWATER VALVES INSTALLED PER CITY OF OTTAWA STANDARD DRAWING S14.1.
- 11. MINIMUM SOIL COVER TO BE 2.Dm TO PROTECT SEWERS FROM FROST DAMAGE. IN AREAS WHERE ADEQUATE COVER CANNOT BE ACHIEVED, THERMAL INSULATION TO BE INSTALLED AS PER OPSID 514.01D.

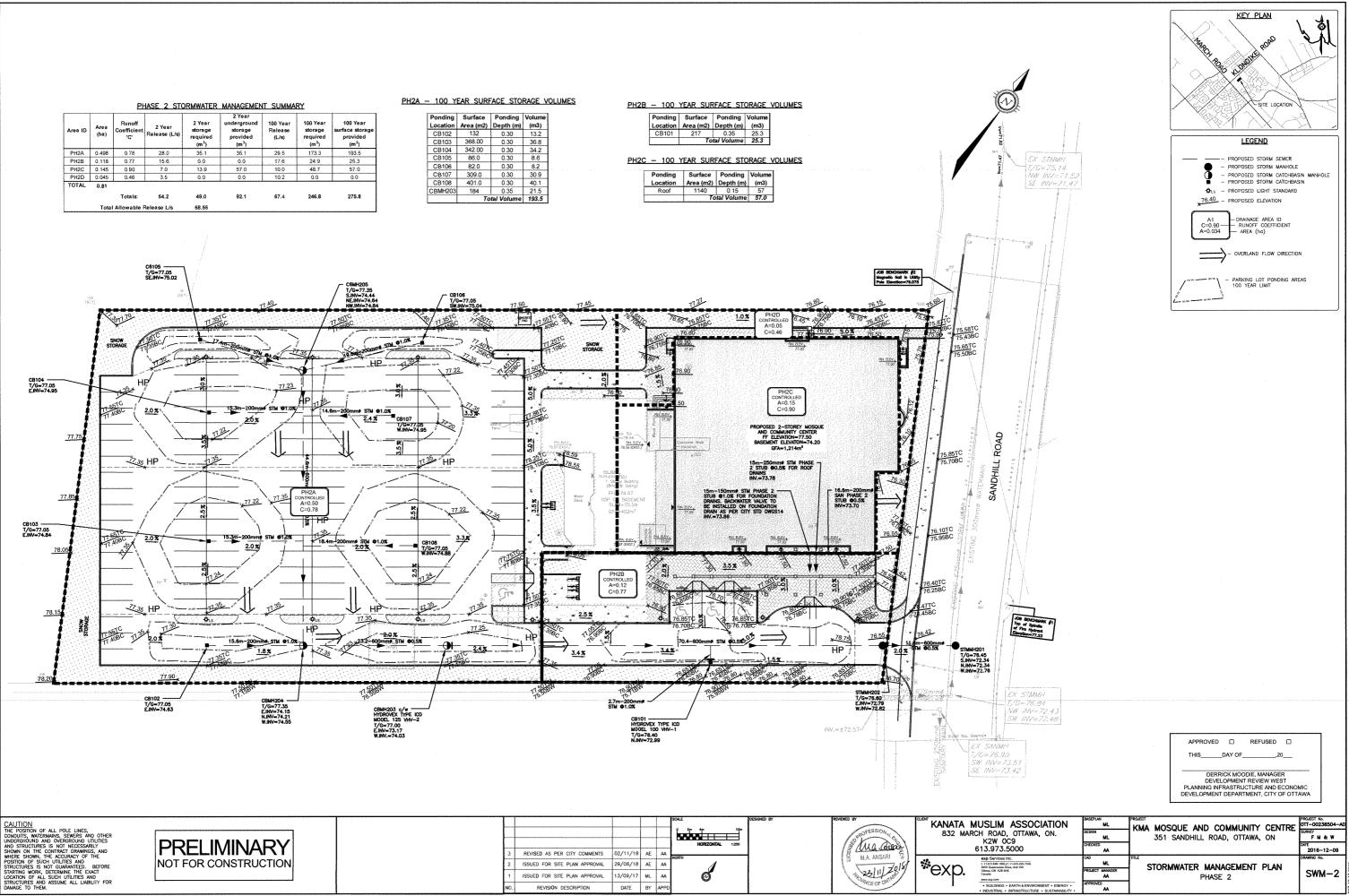
		WATE	RMAIN TABLE
STATION	FIN/GRADE	T/W GRADE	COMMENT
0+003.5	76.65	74.25	TIE INTO EXISTING WATERMAIN PHASE 1 STUB
0+010	76.63	74.23	TOP OF WATERMAIN
0+021.5	76.70	74.30	THRUST BLOCK
0+026.1	76.72	74.32	THRUST BLOCK
0+030.6	76.90	74.50	WM CAPPED

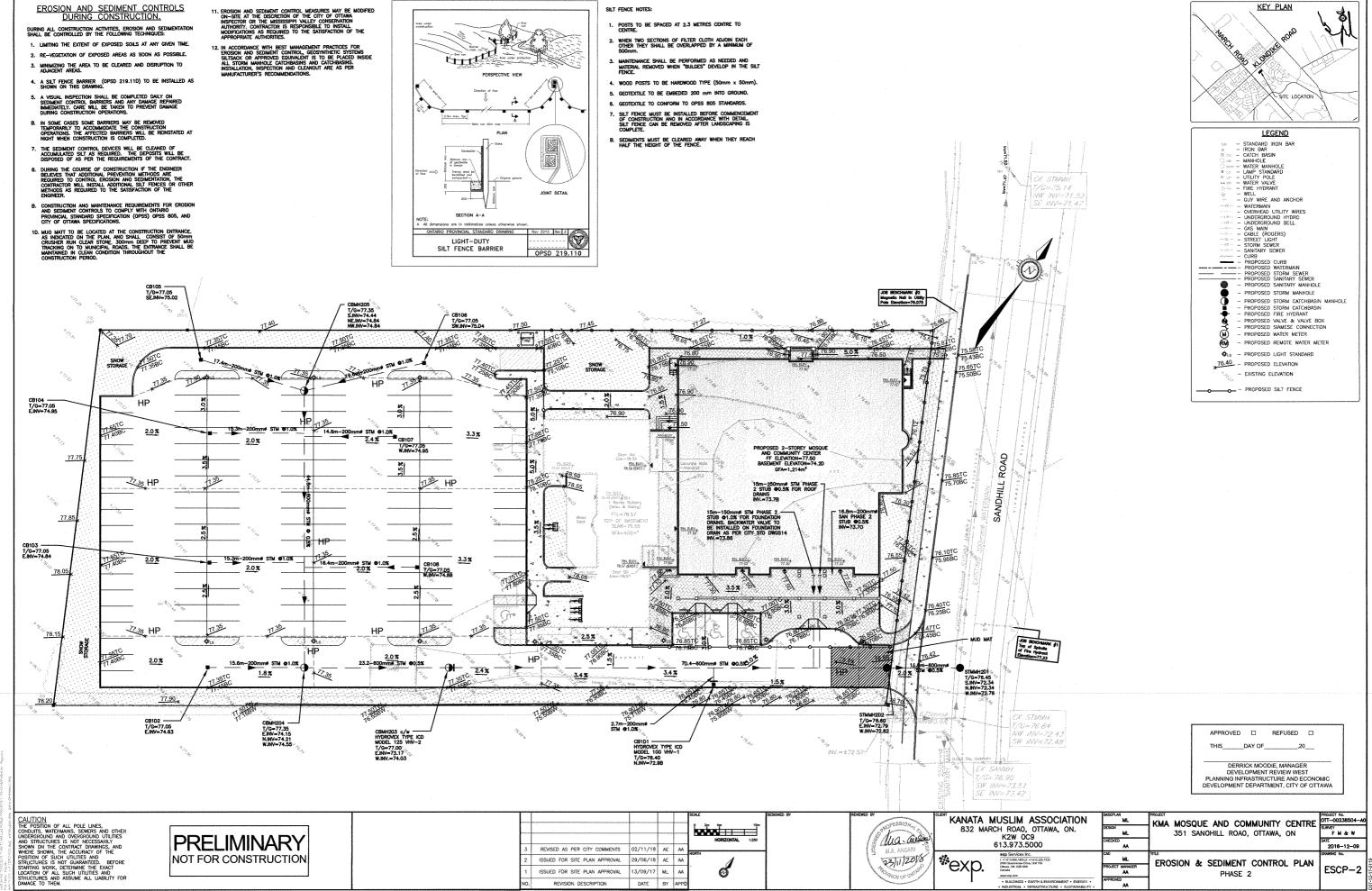
REVISION DESCRIPTION

DATE BY APP

WATERMAIN

	A A A A A A A A A A A A A A A A A A A		KEY PLAN KEY PL	N MANHOLE N OX ION ETER MENT
S WITHIN THE CIT CITY FORCES. BAC VITRACTOR. CONTRA LEVATION PROR TO RVICE CONNECTION NN ALLOWANCE FOR NNCIPAL WATERMAIL				
× #1				
2.43 2.43			APPROVED REFUSED THISDAY OF20 THISDAY OF20 DERRICK MOODIE, MANAGER DEVELOPMENT REVIEW WEST PLANNING INFRASTRUCTURE AND ECONOI DEVELOPMENT DEPARTMENT, CITY OF OTT	
CIATION	BASEPLAN ML DESIGN ML		SQUE AND COMMUNITY CENTRE SANOHILL ROAD, OTTAWA, ON	PROJECT No. OTT-00238504-A
	CHECKED AA CAD	INFLE		DATE 2016-12-09 DRAWING No.
	ML PROJECT MANAGER AA APPROVED		SITE SERVICING PHASE 2	SS-2
NMENT • ENERGY • IE • SUSTAINABILITY •	APPROVED AA	<u> </u>	******	#17532
				#1733.


NW I


Area ID	Area (ha)	Runoff Coefficient 'C'	2 Year Release (L/s)	2 Year storage required (m ³)	2 Year underground storage provided (m ³)	100 Year Release (L/s)	100 Year storage required (m ³)	100 Year surface storage provided (m ³)
PH2A	0.498	0.78	28.0	35.1	35.1	29.5	173.3	193.5
PH2B	0.118	0.77	15.6	0.0	0.0	17.6	24.9	25.3
PH2C	0.145	0.90	7.0	13.9	57.0	10.0	48.7	57.0
PH2D	0.045	0.46	3.5	0.0	0.0	10.2	0.0	0.0
TOTAL	0.81							
		Totals:	54.2	49.0	92.1	67.4	246.8	275.8
	T	All successful a	Deles es 1 (e	CO 22				

Ponding	Surface	Ponding	Volume
Location	Area (m2)	Depth (m)	(m3)
CB102	132	0.30	13.2
CB103	368.00	0.30	36.8
CB104	342.00	0.30	34.2
CB105	86.0	0.30	8.6
CB106	82.0	0.30	8.2
CB107	309.0	0.30	30.9
CB108	401.0	0.30	40.1
CBMH203	184	0.35	21.5
	To	tal Volume	193.5

Ponding	Surface Ponding		Volume
ocation	Area (m2)	Depth (m)	(m3)
CB101	217	0.35	25.3
	To	tal Volume	25.3

Ponding Location	Surface Ponding Area (m2) Depth (m)		
Roof	1140	0.15	57
	To	tal Volume	57.0

KEY PLAN
LEGEND
bit - STANDARD IRON BAR Bit - IRON BAR Bit -<
PROPOSED SANITARY MANHOLE
PROPOSED STORM MANHOLE PROPOSED STORM CATCHBASIN MANHOLE PROPOSED STORM CATCHBASIN PROPOSED STORM CATCHBASIN PROPOSED VALVE AVALVE BOX PROPOSED VALVE AVALVE BOX PROPOSED VALVE AVALVE BOX PROPOSED VALVE MATER METER PROPOSED VALVE MATER METER PROPOSED VALVE MATER METER
LS - PROPOSED LIGHT STANDARD
76.40 - PROPOSED ELEVATION

