

PARKLAND FUEL CORPORATION

PHASE II ENVIRONMENTAL SITE ASSESSMENT

> 1622 ROGER STEVENS DRIVE, KARS (OTTAWA), ONTARIO

REVISED FINAL REPORT

SEPTEMBER 27, 2018

Terrapex Environmental Ltd. 920 Brant Street, Unit 16 Burlington, Ontario, L7R 4J1 Telephone: (905) 632-5939 Website: www.terrapex.com

EXECUTIVE SUMMARY

Terrapex Environmental Ltd. was retained by Parkland Fuel Corporation to conduct a Phase II Environmental Site Assessment (ESA) at the property located at 1622 Roger Stevens Drive and portions of the property at 1618 Roger Stevens Drive in Kars (Ottawa), Ontario (the Site). It is our understanding that the Phase II ESA is being conducted for due diligence purposes prior to the potential redevelopment of the Site into a retail fuel outlet. A geotechnical investigation was completed concurrently with Phase II ESA and the results are reported under a separate cover.

The Site is located on the south side of Roger Stevens Drive and measures approximately 6,400 m². The Site is currently occupied by a single storey commercial building and a two storey residence, with the remainder of the Site being covered with asphalt pavement and grass. The Site is accessible from two entrances from Roger Stevens Drive. Neither the commercial building nor the residence were occupied during the Phase II ESA program. Reportedly the residence and commercial building were both serviced by domestic supply wells and septic systems.

The site condition standards (SCS) for Residential/Parkland/Institutional land use in a potable groundwater situation, with coarse textured soil, as specified in Table 2 of the April 15, 2011 Ministry of the Environment (MOECC) *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the "Environmental Protection Act"* document (hereafter referenced as the *Standards*) were used to evaluate the laboratory analytical results. The SCS were determined using the criteria established by O.Reg. 153/04 Records of Site Condition - Part XV.1 of the Act.

On February 21 and 22, a total of nine boreholes (MW101, BH102 - BH105, MW106 to MW108, and BH109) were advanced to depths of up to 6.1 m below grade surface. Visual and/or olfactory evidence of petroleum hydrocarbon impact was not observed in soil samples collected from any of the boreholes. Combustible soil vapour (CSV) readings in all of the soil samples were <10 parts per million (ppm).

Monitoring wells were installed into four of the nine boreholes advanced at the site (MW101, MW106, MW107, and MW108). During monitoring of the newly installed monitoring wells on February 23, 2018, Combustible vapour (CV) concentrations in the well headspace of each well was <10 ppm. Depth to water ranged between 0.10 m bgs at MW107 to 2.80 m bgs at MW108. Light, non-aqueous phase liquid (LNAPL) was not detected in any of the wells.

Laboratory analysis indicated that concentrations of benzene, toluene, ethylbenzene, xylenes (collectively, BTEX) and petroleum hydrocarbon (PHC) F1 to F4 fractions in all submitted soil samples did not exceed the applicable Table 2 SCS. Additionally, two soil samples collected from boreholes MW106 and MW108 and submitted for laboratory analysis of volatile organic compounds did contain concentrations of VOCs that exceeded the applicable Table 2 SCS.

Laboratory analysis indicated that concentrations of BTEX and PHC F1 to F4 fractions in groundwater samples collected from each monitoring well did not exceed the applicable Table 2 SCS. Additionally, laboratory analysis indicated that two groundwater samples collected from monitoring wells MW106 and MW108 and submitted for laboratory analysis of VOCs did contain concentrations of VOCs that exceeded the applicable Table 2 SCS.

EXECI	JTIVE SUMMARY	i
1.0	INTRODUCTION	1
1.1 1.2 1.3	SITE DESCRIPTION	1 2 2
2.0	FIELD PROGRAM	4
2.1 2.2 2.3 2.4 2.5	FIELD PREPARATION	4 5 5 6
3.0	SUBSURFACE CONDITIONS	7
3.1 3.2	SOIL GROUNDWATER	7 7
4.0	RESULTS	8
4.1 4.2	SOIL AND GROUNDWATER STANDARDS.8ANALYTICAL RESULTS.84.2.1SOIL.4.2.2SOIL WASTE CHARACTERIZATION4.2.3GROUNDWATER4.2.4QUALITY ASSURANCE/QUALITY CONTROL	3 3 3 9 9
5.0	SUMMARY12	1
6.0	CLOSURE12	2

TABLE OF CONTENTS

TABLE OF CONTENTS (CONTINUED)

LIST OF FIGURES

- Figure 1 Site Location
- Figure 2 General Site Layout
- Figure 3 Interpreted Groundwater Flow
- Figure 4A Soil Analysis Results PHCs
- Figure 4B Soil Analysis Results VOCs
- Figure 5A Groundwater Analysis Results PHCs
- Figure 5B Groundwater Results VOCs

LIST OF TABLES

- Table 1Groundwater Monitoring Data
- Table 2Soil Analytical Results PHCs
- Table 3Soil Analytical Results VOCs
- Table 4Groundwater Analytical Results PHCs
- Table 5Groundwater Analytical Results VOCs

APPENDICES

- Appendix I Site Photographs
- Appendix II Borehole/Monitoring Well Logs
- Appendix III Laboratory Certificates of Analysis

1.0 INTRODUCTION

Terrapex Environmental Ltd. (Terrapex) was retained by Parkland Fuel Corporation (Parkland) to conduct a Phase II Environmental Site Assessment (ESA) at the property located at 1622 Roger Stevens Drive and portions of a property at 1618 Roger Stevens Drive in Kars (Ottawa), Ontario (the Site). It is our understanding that the Phase II ESA is being conducted for due diligence purposes prior to the potential redevelopment of the Site into a retail fuel outlet. A geotechnical investigation was completed concurrently with Phase II ESA and the results are reported under a separate cover.

1.1 SITE DESCRIPTION

The Site is located on the south side of Roger Stevens Drive and measures approximately 6,400 m². The Site is currently occupied by a single storey commercial building and a two storey residence, with the remainder of the Site being covered with asphalt pavement and grass. The Site is accessible from two entrances from Roger Stevens Drive.

The commercial building was located along the western portion of the Site and had a footprint of approximately 54 m². The commercial building was reportedly serviced by a water supply well located to the west of the building and a septic system was reportedly located to the south of the commercial building. Neither the septic system nor the water supply well were located during the Phase II ESA work program. The commercial building was supplied with natural gas. The residential building was located to the southeast of the commercial building and had a footprint of approximately 40 m². Reportedly the residence was serviced by a domestic supply well and septic system, however, neither were located during the Phase II ESA. Neither the commercial building nor the residence were occupied during the Phase II ESA program.

The majority of the Site slopes down towards Roger Stevens Drive however the western portion of the Site features a steep decline of approximately 3.0 meters (m) to the agricultural property located to the west of the property. The Site location and general site layout are shown on Figures 1 and 2, respectively. Selected photographs of the site are provided in Appendix I.

The site is located in an area of mixed residential and commercial land uses. The surrounding land uses are as follows:

North:	Roger Stevens Drive and agricultural properties beyond;
East:	commercial (Tubman Funeral Homes) and residential properties beyond;
South:	vacant undeveloped property and residential beyond, and;
West:	agricultural property and Stevens Creek beyond.

The nearest surface water body is Stevens Creek located approximately 158 m southwest of the Site.

1.2 OBJECTIVE

The objective of the Phase II ESA work program was to assess subsurface soil and groundwater quality at the site with respect to petroleum hydrocarbon impacts, if any, in accordance with Ontario Regulation (O.Reg.) 153/04.

1.3 SCOPE OF WORK

The scope of work for the Phase II ESA included the following:

- supervising the drilling of nine boreholes (MW101, BH102 BH105, MW106 to MW108, and BH109) to depths of up to 6.1 m below ground surface (bgs), by a subcontractor using a CME-55 track-mounted drill rig, equipped with solid-stem augers;
- supervising the installation of four monitoring wells by a licensed well technician;
- collecting representative soil samples during drilling; logging of visual, olfactory, and tactile soil characteristics, as well as any evidence of petroleum hydrocarbon impacts (if present), and measuring combustible soil vapours (CSV) in recovered soil samples;
- submitting selected soil samples from each of the drilled boreholes for laboratory analyses of benzene, toluene, ethylbenzene, xylenes (collectively, BTEX), and the petroleum hydrocarbon (PHC) F1 to F4 fraction parameters;
- submitting selected soil samples for the additional analysis volatile organic compounds (VOCs);
- conducting a well monitoring program of the four newly installed monitoring wells, including measurement of depth to water, presence/thickness of light, non-aqueous phase liquid (LNAPL), and headspace combustible vapours (CVs).
- submitting representative groundwater samples from each of the monitoring wells for laboratory analyses of BTEX and PHC F1 to F4 fractions; in addition, samples from two monitoring wells were also submitted for laboratory analysis of VOCs;
- submitting two representative soil samples for pH analysis and grain size analysis;
- determining the appropriate generic site condition standards (SCS) from the Ontario Ministry of the Environment (MOECC) April 15, 2011 *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act* (the *Standards*) as established by O.Reg. 153/04 *Records of Site Condition*;
- evaluating soil and groundwater analytical results with respect to the appropriate SCS; and,
- preparing a Phase II ESA report detailing the findings and results of the project.

Terrapex subcontracted the services of other firms to complete specialized assignments for the project, as follows:

- private locating services were provided by Multiview Locates Inc. of Mississauga, Ontario;
- soil disposal services were provided by Clean Water Works of Ottawa, Ontario; and,
- drilling and monitoring well installation services were provided by George Downing Drilling (Downing) of Hawkesbury, Ontario; Downing is a MOECC-licensed well drilling contractor; and,
- laboratory analytical services were provided by Maxxam Analytics Inc. (Maxxam), under contract to Parkland, at their laboratory located in Mississauga, Ontario; at the time of the assessment, Maxxam was accredited by the Standards Council of Canada (SCC) for each of the analyses it conducted as part of this work program.

2.0 FIELD PROGRAM

Terrapex conducted the on-site field components of the Phase II ESA between February 21 and 26, 2018. The work program described herein was generally completed in accordance with the protocols described in O.Reg 153/04 and industry-standard practices.

2.1 FIELD PREPARATION

Prior to conducting intrusive field work, Terrapex contacted the appropriate public agencies to identify the locations of buried utilities at and near the subject site. Terrapex also retained Multiview to locate private buried utilities and provide clearances for buried services at the sampling locations.

A site-specific health and safety plan (HASP) and a job safety analysis (JSA) form were prepared by Terrapex prior to commencing the field work. One copy of the HASP and JSA remained with the field crew on the subject site for the duration of the field activities. The project team members and subcontractors that conducted the field activities read and signed the HASP and JSA before commencing work at the subject site.

2.2 BOREHOLE DRILLING AND SOIL SAMPLING

On February 21 and 22, 2018, a total of nine boreholes (MW101, BH102 - BH105, MW106 to MW108, and BH109) were advanced by Downing to depths of up to 6.1 m bgs at the locations shown on Figure 2. It should be noted that auger refusal at shallow depths by suspected boulders necessitated the drilling of a secondary boreholes adjacent to the primary boreholes. These secondary boreholes are considered the same borehole for environmental reporting purposes.

The locations of the nine boreholes were mainly selected to satisfy the requirements of the geotechnical investigation and give also give adequate coverage to assess soil and groundwater conditions across the Site. Borehole MW109 was drilled in close proximity of the commercial building to assess soil and groundwater conditions in the vicinity in the suspected location of a former above ground storage tank (AST). Consideration was also given to the locations of buried and overhead services, the suspected location of the septic tanks as well as surface obstructions at the site, when selecting the placement of boreholes in the field.

During drilling, 51-mm diameter split-spoon samplers were advanced into the subsurface to facilitate the collection of relatively undisturbed soil samples. Terrapex collected soil samples at depth intervals of approximately 0.76 m, and immediately logged the geologic properties of each sample. In addition, each soil sample was examined for visual and/or olfactory evidence of contamination. A vapour sample was collected from each spoon and CSV concentrations were measured in the headspace of each sampling bag with an RKI Eagle 2 Hydrocarbon Surveyor (RKI Eagle) calibrated to n-hexane and operated in the methane elimination mode. Soil samples

which were screened for vapours were not submitted for laboratory analysis; a separate split sample of the soil was collected and stored for possible laboratory analysis.

To mitigate cross-contamination between soil samples, the split-spoon samplers were decontaminated prior to each use by washing with phosphate-free detergent soap and water and then rinsing with distilled water. Terrapex personnel wore fresh nitrile gloves for the handling of each soil sample.

The soil samples were collected in pre-cleaned, laboratory-supplied jars, placed in a cooler with ice, and delivered with signed chain-of-custody forms to Maxxam for laboratory analysis. Graphic borehole logs illustrating the stratigraphy encountered and the measured CSV readings are included in Appendix II.

A total of ten soil samples (including one field duplicate) were submitted for laboratory analysis of BTEX and PHC F1 to F4 fractions. Samples for laboratory analysis were selected to represent observed "worst-case" conditions based on CSV measurements and visual/olfactory evidence of impact, and/or the assumed groundwater table. Two soil samples (MW106-4 and MW108-7) selected on the basis of spatial coverage were also submitted for additional laboratory analysis of VOCs. Soil cuttings generated during the drilling activities were temporarily stored in a waste bin located on-site pending removal for disposal at a licensed facility by Clean Water Works.

2.3 MONITORING WELL INSTALLATION

A total of four monitoring wells (MW101, MW106. MW107, and MW108), constructed of 51-mm diameter polyvinyl chloride (PVC) well pipe and screen, were installed into selected drilled boreholes. The annulus of each well was backfilled with washed silica sand to a minimum depth of approximately 0.3 m above the screened interval, and a bentonite seal was placed above the sand pack in each well to prevent infiltration of surface water. A bolt-down or stick up protective casing was installed on each well, and cemented in place. The locations of the monitoring wells are shown on Figure 2. Monitoring well construction details are provided in the borehole logs included in Appendix II.

On September 19, 2018, Terrapex surveyed the positions and elevations (tops of the well standpipes, as well as the ground surfaces) of the newly installed monitoring wells relative to a temporary site benchmark (TBM). A survey nail located on a utility pole at the northeast corner of the Site was selected as the TBM, which had a geodetic elevation of 92.48 m. As documented on the *Topographic Plan of Survey of Part of Lot 21, Concession 1, Geographic Township of North Gower, City of Ottawa*, by Farley, Smith and Denis Surveying Ltd., 2017, the TBM elevation was derived from the vertical benchmark 0011986U011.

2.4 MONITORING WELL DEVELOPMENT

Following installation, the monitoring wells were instrumented with a dedicated inertial sampler comprising low density polyethylene (LDPE) tubing and a LDPE foot valve. The monitoring wells

were developed on February 22 and 23, 2018. Development of the well was conducted using dedicated LDPE tubing, and a surge block to ensure adequate development across the entire screen length. The well was developed by alternating between purging and surging the well until the purged water was free of visible sediment (e.g., water was "clear"). Approximately 30 L to 60 L of water was purged from each of the monitoring wells.

2.5 GROUNDWATER MONITORING AND SAMPLING

Groundwater monitoring of the newly installed wells was completed on February 23, 2018. Immediately upon removal of the well cap, headspace CVs were measured using the RKI Eagle. The depth to water in each well was measured using Heron H.OIL interface probe. The presence and apparent thickness of any LNAPL in each well was also measured using the interface probe. To mitigate cross-contamination between monitoring wells, the interface probe was washed with a solution of Alconox detergent and water and then rinsed with distilled water prior to use in each well.

Groundwater samples were collected from the four monitoring wells on February 23, 2018. Groundwater samples were collected using a "low-flow" sampling method using a peristaltic pump and a YSI water quality meter. The dedicated tubing was placed in the mid-section of the wetted screened interval and groundwater was pumped from the monitoring well at a rate between 0.1 and 0.5 L/min. Geochemical parameters such as temperature, pH, conductivity, dissolved oxygen, and oxidation-reduction potential were measured during purging. Groundwater samples were collected once the geochemical parameters stabilized.

Groundwater samples were collected from the wells directly into pre-cleaned, laboratory supplied bottles with preservative (where required). The groundwater samples were placed in a cooler with ice, and delivered with signed chain-of-custody forms to Maxxam for laboratory analysis of BTEX and PHC F1 to F4 fractions. Two groundwater samples (MW106 and MW108) were also selected for additional laboratory analysis of VOCs

3.0 SUBSURFACE CONDITIONS

3.1 SOIL

In general, the stratigraphy encountered during the work program comprised of surficial grass or asphalt, underlain by sand and gravel fill to depths between 0.1 and 2.2 m bgs. The fill layer was underlain by a native silty sand with embedded gravel to the maximum depth of the investigation of 6.1 m bgs. Auger refusal was recorded at several locations in close proximity at varying depths, indicative the presence of boulders.

Visual and/or olfactory evidence of petroleum hydrocarbon impact was not observed in soil samples collected from all boreholes. Combustible soil vapour readings in all of the soil samples were <10 parts per million (ppm).

The soil stratigraphy and corresponding soil sample CSV readings for each borehole are shown in the graphic borehole logs provided in Appendix II.

3.2 GROUNDWATER

Apparent wet to saturated conditions in soil were encountered during drilling at approximately 1.5 to 2.2 m bgs in the native soil.

Terrapex monitored the wells on February 23, 2018. During the groundwater monitoring event, CV concentrations in the well headspace of all four monitoring wells was <10 ppm. Depth to water ranged between 0.10 m bgs (MW107) to 2.80 m bgs at MW108. LNALPL was not detected in any of the wells. The survey and monitoring data are summarized in Table 1.

Based on relative groundwater elevations, the inferred direction of groundwater flow is generally to the northwest towards Stevens Creek. Interpreted groundwater contours and the inferred groundwater flow direction for the monitoring event are shown on Figure 3.

4.0 RESULTS

4.1 SOIL AND GROUNDWATER STANDARDS

The site specific details which formed the basis of the selection of the soil and groundwater SCS are summarized below:

- greater than 2 m of overburden was observed during the work program;
- soil pH is between 5 and 9; laboratory analysis of confirmed a pH values of 7.10, 7.85, and 7.93 from soil samples BH104-1, MW102-4, and BH103-2, respectively;
- the site is not within, or adjacent to, an area of "Natural Significance" (as defined by O.Reg. 153/04), or otherwise considered "potentially sensitive";
- the site does not include land which is within 30 m of a water body;
- since the Site was last used for both residential and commercial purposes, the site conditions standards will default to the most sensitive, therefore the property use will be deemed residential;
- The Site and surrounding properties are serviced with drinking water wells;
- stratified site conditions will not be used when evaluating laboratory analytical results; and,
- grain size analysis completed by Terrapex classified the soil at the site as coarse textured, for the purposes of O.Reg. 153/04; a copy of the grain size analysis is included in Appendix III.

Based on the preceding information and assumptions, the SCS applicable for residential/parkland/institutional land use and coarse textured soil in a potable groundwater condition that are described in Table 2 of the *Standards* have been selected for evaluating laboratory analytical results from the site at this time.

4.2 ANALYTICAL RESULTS

4.2.1 SOIL

The results of the laboratory analyses for soil samples submitted for BTEX and PHC F1 to F4 fractions, and VOCs are presented in Tables 2 and 3, respectively. As shown in Table 2, concentrations of BTEX and PHC F1 to F4 fractions in all soil samples submitted for laboratory analysis were less than the applicable Table 2 SCS. As shown in Table 3, concentrations of VOCs in all soil samples submitted for laboratory analysis were less than the applicable Table 2 SCS.

Visual representation of the soil analytical results are provided in Figure 4A and Figure 4B. Copies of the laboratory certificates of analyses are provided in Appendix III.

4.2.2 SOIL WASTE CHARACTERIZATION

One representative sample of the soil cuttings was submitted to Maxxam for waste characterization analysis and included a Toxicity Characteristics Leachate Procedure (TCLP) analysis of metals, as well as bulk VOCs, semi-volatile organic compounds (sVOCs), and PHC F1 to F4 fraction analysis.

The results of the waste characterization analyses indicated that the soil may be managed as non-ignitable, non-hazardous (non-leachate toxic) waste for the purposes of off-site disposal. Copies of the Laboratory Certificates of Analysis for the analyzed soil sample are included in Appendix III.

4.2.3 GROUNDWATER

Laboratory results for groundwater samples analyzed for BTEX and PHC F1 to F4 fractions, and VOCs are presented in Tables 4 and 5, respectively. As shown in Tables 4 and 5, concentrations of BTEX, PHC F1 to F4 fractions, and VOCs in groundwater samples collected from all monitoring wells were less than the applicable Table 2 SCS

Visual representation of the groundwater analytical results is shown on Figure 5A and Figure 5B. Copies of the Laboratory Certificates of Analyses are included in Appendix III.

4.2.4 QUALITY ASSURANCE/QUALITY CONTROL

The Maxxam QA/QC program consisted of the analysis of laboratory replicates, method blanks, percent recoveries, matrix spikes, and surrogate percent recoveries as appropriate for the particular analysis protocol. A review of the quality assurance reports attached to the laboratory certificates of analysis indicate that the laboratory QA/QC program results were within quality control limits.

QA/QC samples submitted by Terrapex for this work program consisted of the following:

- one blind field duplicate soil samples for analysis of BTEX and PHC F1-F4 fractions (MW107-18, duplicate pair of MW108-7);
- one soil methanol vial (labeled field blank) analyzed for BTEX and PHC F1;
- one blind field duplicate groundwater sample for analysis of BTEX and PHC F1-F4 (MW112, duplicate pair of MW101);
- one groundwater trip spike sample for analysis of BTEX and PHC F1;
- one groundwater field blank (labelled blank) sample for analysis of BTEX and PHC F1, and;
- one groundwater trip blank sample for analysis of BTEX and PHC F1 fraction.

No relative percent differences (RPDs) were able to be calculated for either the groundwater or soil duplicate pairs since no concentrations were greater than five times the laboratory method detection limit (MDL). All parameters were not detected at the laboratory MDL in the trip blank sample, and the percent recoveries from the trip spike sample were within quality control limits (±30%).

Based on the above, the QA/QC results for this work program are considered acceptable. The laboratory certificates of analyses are provided in Appendix III.

5.0 SUMMARY

A Phase II Environmental Site Assessment was conducted at the property located at 1622 Roger Stevens Drive and portions of 1618 Roger Stevens Drive property in Kars (Ottawa) Ontario. The Phase II ESA was conducted concurrently with a geotechnical investigation.

On February 21 and 22, 2018, a total of nine boreholes ((MW101, BH102 - BH105, MW106 to MW108, and BH109)) were advanced to depths of up to 6.1 m bgs. Visual and/or olfactory evidence of petroleum hydrocarbon impact was not observed in soil samples collected from any of the boreholes. CSV readings in all of the soil samples were <10 ppm.

Monitoring wells were installed into four of the nine boreholes advanced at the site (MW101, MW106, MW107, and MW108). During monitoring of the newly installed monitoring wells on February 23, 2018, CV concentrations in the headspace of the wells were all <10 ppm. Depth to water ranged between 0.10 m bgs at MW107 to 2.80 m bgs at MW108. LNAPL was not detected in any of the wells.

The SCS for coarse textured soil in a potable groundwater condition that are described in Table 2 of the *Standards* for Residential/Parkland/Institutional land use have been selected to evaluate laboratory analytical results.

Laboratory analysis indicated that concentrations of BTEX, PHC F1 to F4 fractions, and VOCs in all soil and groundwater samples submitted from each borehole/monitoring well did not exceed the applicable Table 2 SCS.

6.0 CLOSURE

The environmental assessment described herein was conducted in accordance with the terms of reference for this project as agreed upon by Parkland Fuel Corporation and Terrapex Environmental Ltd. and to generally accepted engineering or environmental consulting practices in this area.

Terrapex Environmental Ltd. has exercised due care, diligence, and judgement in the performance of this subsurface investigation; however, studies of this nature have inherent limitations. The reported information is believed to provide a reasonable representation of the general environmental conditions at the site at the time of the assessment, however, the data were collected at discrete locations and conditions may vary at other locations or may change with the passage of time. The assessment was also limited to a study of those chemical parameters specifically addressed in this report.

This report was prepared for the sole use of Parkland Fuel Corporation. Terrapex Environmental Ltd. accepts no liability for claims arising from the use of this report, or from decisions made or actions taken as a result of this report, by parties other than Parkland Fuel Corporation.

TERRAPEX ENVIRONMENTAL LTD.

Greg Sabourin, P.Eng.

Environmental Engineer

Geoff Ľussier, Dipl. Senior Project Manager

Jeff Stevenson, P.Geo 0 P. JEFFREY STEVENSO Senior Reviewer PRACTISING MEMBS

FIGURES

TABLES

TABLE 1 GROUNDWATER MONITORING DATA

WELL NUMBER	DATE	GROUND ELEVATION ¹	T.O.P. ELEVATION ²	SCREEN LENGTH	BOTTOM OF SCREEN ³	CV ⁴	DEPTH TO WATER FROM T.O.P.	DEPTH TO WATER FROM GROUND	GROUNDWATER ELEVATION ⁵	LNAPL THICKNESS ⁶
		(m)	(m)	(m)	(m)		(m)	(m)	(m)	(m)
MW101	15-Mar-18	91.23	91.13	3.00	85.03	<10 ppm	1.55	1.64	89.58	None
MW106	15-Mar-18	92.40	93.28	3.00	86.30	<10 ppm	2.27	1.39	91.01	None
MW107	15-Mar-18	92.46	93.24	2.45	89.26	<10 ppm	0.86	0.08	92.38	None
MW108	15-Mar-18	91.38	92.44	3.00	85.38	<10 ppm	3.85	2.80	88.59	None

1622 Roger Stevens Drive, Kars, Ontario

¹ Elevation of ground surface at well location, relative to site benchmark

² Elevation of highest point of well pipe ("top of pipe"), relative to site benchmark

³ Elevation of bottom of well screened interval, relative to site benchmark

⁴ Combustible vapour concentration in well headspace in parts per million by volume (ppm) or percent of lower explosive limit (%LEL)

⁵ Adjusted static water level elevation, relative to site benchmark, using indicated relative density of LNAPL to groundwater

⁶ Measured thickness of light, non-aqueous liquid, if any

Entered by: GS Checked by: RH

TABLE 2 SOIL ANALYTICAL RESULTS - PHCs 1622 Roger Stevens Drive, Kars, Ontario

		1							
Terrapex Sample Name		STANDARDS	MW101-8	BH102-5	BH103-4	BH104-1	BH105-3	MW106-4	MW107-3
		2011							
		Table 2							
		R/P/I							
	Units	coarse							
Sample Depth	m bg	-	4.3 - 4.9	3.8 - 4.4	3.0 - 3.7	0.8 - 1.4	2.3 - 2.9	3.0 - 3.7	2.3 - 2.9
CSV Reading	-	-	<10 ppm						
Sampling Date	-	-	22-Feb-18						
Analysis Date	-	-	23-Feb-18						
Certificate of Analysis No.	-	-	B841113						
Benzene	µg/g	0.21	<0.02	<0.02	<0.02	<0.02	<0.02	<0.020	<0.02
Toluene	µg/g	2.3	<0.02	<0.02	<0.02	<0.02	<0.02	<0.020	<0.02
Ethylbenzene	µg/g	1.1	<0.02	<0.02	<0.02	<0.02	<0.02	<0.020	<0.02
Xylenes (total)	µg/g	3.1	<0.04	<0.04	< 0.04	<0.04	<0.04	<0.020	<0.04
Petroleum Hydrocarbons, F1	µg/g	55	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons, F2	µg/g	98	<10	<10	<10	<10	<10	<10	<10
Petroleum Hydrocarbons, F3	µg/g	300	<50	<50	<50	<50	<50	<50	<50
Petroleum Hydrocarbons, F4	µg/g	2,800	<50	<50	<50	<50	<50	<50	<50

Standards from Table 2 of April 15, 2011 Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act; Residential / Institutional / Parkland land use, coarse textured soil m bg Meters below grade CSV Reading Combustible soil vapour reading (ppm or % LEL)

ppm Parts per million (by volume)

% LEL Percent of the lower explosive limit

BOLD Exceeds standard

1

Entered by: GS Checked by: JM

TABLE 2 SOIL ANALYTICAL RESULTS - PHCs 1622 Roger Stevens Drive, Kars, Ontario

······································					
Terrapex Sample Name		STANDARDS	MW108-7	MW108-17	BH109-4
		2011			
		Table 2		Duplicate of	
		R/P/I		MW108-78	
	Units	coarse			
Sample Depth	m bg	-	4.6 - 5.2	-	2.3 - 2.9
CSV Reading	-	-	<10 ppm	-	<10 ppm
Sampling Date	-	-	22-Feb-18	22-Feb-18	22-Feb-18
Analysis Date	-	-	23-Feb-18	23-Feb-18	23-Feb-18
Certificate of Analysis No.	-	-	B841113	B841113	B841113
Benzene	µg/g	0.21	<0.020	<0.02	<0.02
Toluene	µg/g	2.3	<0.020	<0.02	<0.02
Ethylbenzene	µg/g	1.1	<0.020	<0.02	<0.02
Xylenes (total)	µg/g	3.1	<0.020	<0.04	<0.04
Petroleum Hydrocarbons, F1	µg/g	55	<10	<10	<10
Petroleum Hydrocarbons, F2	µg/g	98	<10	<10	<10
Petroleum Hydrocarbons, F3	µg/g	300	<50	<50	<50
Petroleum Hydrocarbons, F4	µg/g	2,800	<50	<50	<50

Standards from Table 2 of April 15, 2011 Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act; Residential / Institutional / Parkland land use, coarse textured soil m bg Meters below grade CSV Reading Combustible soil vapour reading (ppm or % LEL)

ppm Parts per million (by volume) % LEL Percent of the lower explosive limit

BOLD Exceeds standard

1

Entered by: GS Checked by: JM

TABLE 3 SOIL ANALYTICAL RESULTS - VOCs 1622 Roger Stevens Drive, Kars, Ontario

Terrapex Sample Name		STANDARDS ¹	MW 106-4	MW 108-7
		2011		
		Table 2		
		R/P/I		
	Units	coarse		
Sample Depth	m bg	-	3.0 - 3.7	4.6 - 5.2
SV Reading	-	-	<10 ppm	<10 ppm
Sampling Date	-	-	22-Feb-18	22-Feb-18
Analysis Date	-	-	23-Feb-18	23-Feb-18
Certificate of Analysis No.	-	-	B841113	B841113
Acetone	hð\ð	16	<0.50	<0.50
Benzene	µg/g	0.21	<0.020	<0.020
Bromodichloromethane	µg/g	1.5	<0.050	<0.050
Bromoform	µg/g	0.27	<0.050	<0.050
Bromomethane	µg/g	0.05	<0.050	<0.050
Carbon tetrachloride	µg/g	0.05	<0.050	<0.050
Chlorobenzene	µg/g	2.4	<0.050	<0.050
Chloroform	µg/g	0.05	<0.050	<0.050
Dibromochloromethane	µg/g	2.3	<0.050	<0.050
Dichlorobenzene 1,2-	µg/g	1.2	<0.050	<0.050
Dichlorobenzene, 1,3-	µg/g	4.8	<0.050	<0.050
Dichlorobenzene,1,4-	µg/g	0.083	<0.050	<0.050
Dichlorodifluoromethane	µg/g	16	<0.050	<0.050
Dichloroethane, 1,1-	µg/g	0.47	<0.050	<0.050
Dichloroethane, 1,2-	µg/g	0.05	<0.050	<0.050
Dichloroethylene, 1,1-	µg/g	0.05	<0.050	<0.050
Dichloroethylene, cis-1,2-	µg/g	1.9	<0.050	<0.050
Dichloroethylene, trans-1,2-	µg/g	0.084	<0.050	<0.050
Dichloropropane, 1,2-	µg/g	0.05	<0.050	<0.050
Dichloropropene, cis-1,3-	µg/g	-	<0.030	<0.030
Dichloropropene, trans-1,3-	µg/g	-	<0.040	<0.040
Ethylbenzene	µg/g	1.1	<0.020	<0.020
Ethylene dibromide	µg/g	0.05	<0.050	<0.050
Hexane	µg/g	2.8	<0.050	<0.050
Methyl ethyl ketone	µg/g	16	<0.50	<0.50
Methyl isobutyl ketone	µg/g	1.7	<0.50	<0.50
Methyl tert butyl ether	µg/g	0.75	<0.050	<0.050
Methylene Chloride	µg/g	0.1	<0.050	<0.050
Styrene	µg/g	0.7	<0.050	<0.050
Tetrachloroethane, 1,1,1,2-	µg/g	0.058	<0.050	<0.050
Tetrachloroethane, 1,1,2,2-	µg/g	0.05	<0.050	<0.050
Tetrachloroethylene	µg/g	0.28	<0.050	<0.050
Toluene	µg/g	2.3	<0.020	<0.020
Trichloroethane, 1,1,1-	µg/g	0.38	<0.050	<0.050
Trichloroethane, 1,1,2-	µg/g	0.05	<0.050	<0.050
Trichloroethylene	µg/g	0.061	<0.050	<0.050
Trichlorofluoromethane	µg/g	4	<0.050	<0.050
Vinyl chloride	µg/g	0.02	<0.020	<0.020
m,p-Xylenes	µg/g	-	<0.020	<0.020
o-Xylene	µg/g	-	<0.020	<0.020
Xylenes (total)	µg/g	3.1	<0.020	<0.020

Standards from Table 2 of April 15, 2011 Soil, Ground Water

and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act; Residential / Institutional / Parkland land use, medium and fine textured soil m bg Meters below grade CSV Reading Combustible soil vapour reading (ppm or % LEL) ppm Parts per million (by volume) % LEL Percent of the lower explosive limit BOLD Exceeds standard

TERRAPEX ENVIRONMENTAL LTD.

TABLE 4 GROUNDWATER ANALYTICAL RESULTS - PHCs

1622 Roger Stevens Drive, Kars, Ontario

Terrapex Sample Name		STANDARDS ¹	MW101	MW112	MW106	MW107	MW108	BLANK	Trip Blank
		2011							
		Table 2		Field Duplicate				FIELD	
				of MW101				BLANK	
	Units	coarse							
CV Reading	-	-	<10 ppm	-	<10 ppm	<10 ppm	<10 ppm	-	
Sampling Date	-	-	23-Feb-18	23-Feb-18	23-Feb-18	23-Feb-18	23-Feb-18	23-Feb-18	23-Feb-18
Analysis Date	-	-	23/24-Feb-18	23/24-Feb-18	23/24-Feb-18	23/24-Feb-18	23/24-Feb-18	23-Feb-18	23/24-Feb-18
Certificate of Analysis No.	-	-	B841230	B841230	B841230	B841230	B841230	B841230	B841230
Benzene	µg/L	5	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	μg/L	24	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Ethylbenzene	μg/L	2.4	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Xylenes (total)	µg/L	300	1.4	1.3	<0.20	<0.40	<0.20	<0.40	<0.40
Petroleum Hydrocarbons, F1	μg/L	750	<25	<25	<25	<25	<25	<25	<25
Petroleum Hydrocarbons, F2	μg/L	150	<100	<100	<100	<100	<100	<100	-
Petroleum Hydrocarbons, F3	µg/L	500	<200	<200	<200	<200	<200	<200	-
Petroleum Hydrocarbons, F4	μg/L	500	<200	<200	<200	<200	<200	<200	-

1	Standards from Table 2 of April 15, 2011 Soil, Ground Water
	and Sediment Standards for Use Under Part XV.1 of the
	Environmental Protection Act; coarse soil
ppm	Parts per million (by volume)
CV Reading	Combustible vapour reading (ppm or % LEL)
% LEL	Percent of the lower explosive limit
-	not applicable
BOLD	Exceeds standard

Entered by: GS Checked by: JM

Terrapex Sample Name		STANDARDS	MW106	MW108
		2011		
		Table 2 ¹		
	Units	coarse		
CV Reading	-	-	<10 ppm	<10 ppm
Sampling Date	-	-	23-Feb-18	23-Feb-18
Analysis Date	-	-	23/24-Feb-18	23/24-Feb-18
Certificate of Analysis No.	-	-	B841230	B841230
Acetone	ug/L	2.700	<10	<10
Benzene	ug/L	5	<0.20	<0.20
Bromodichloromethane	ug/L	16	< 0.50	< 0.50
Bromoform	ua/L	25	<1.0	<1.0
Bromomethane	ug/l	0.89	<0.50	<0.50
Carbon tetrachloride	ug/l	0.79	<0.20	<0.20
Chlorobenzene	µg/=	30	<0.20	<0.20
Chloroform	µg/L	24	<0.20	<0.20
Dibromochloromethane	µg/L	2.4	<0.20	<0.20
Dichlorobenzene 1.2-	µg/L	3	<0.50	<0.50
Dichlorobonzono 13-	µg/L	50	<0.50	<0.50
Dichlorobenzene 1.4	µg/∟	1	<0.50	<0.50
Dichlorodifluoromothana	µg/∟	500	<0.50	<0.50
Dichloroothono 11	µg/∟	590	< 1.0	<1.0
Dichloroethane, 1,1-	µg/∟	16	<0.20	<0.20
Dichloroethidene, 1,2-	µg/∟	1.0	<0.50	<0.50
	µg/L	1.0	<0.20	<0.20
Dichloroethylene, cis-1,2-	µg/L	1.6	<0.50	<0.50
Dichloroethylene, trans-1,2-	µg/L	1.6	<0.50	<0.50
Dichloropropane, 1,2-	µg/L	5	<0.20	<0.20
Dichloropropene, cis-1,3-	µg/L	-	<0.30	<0.30
Dichloropropene, trans-1,3-	µg/L	-	<0.40	<0.40
Dichloropropene, 1,3-	µg/L	0.5	<0.50	<0.50
Ethylbenzene	µg/L	2.4	<0.20	<0.20
Ethylene dibromide	µg/L	0.2	<0.20	<0.20
Hexane	µg/L	51	<1.0	<1.0
Methyl ethyl ketone	µg/L	1,800	<10	<10
Methyl isobutyl ketone	µg/L	640	<5.0	<5.0
Methyl tert butyl ether	µg/L	15	<0.50	<0.50
Methylene Chloride	µg/L	50	<2.0	<2.0
Styrene	µg/L	5.4	<0.50	<0.50
Tetrachloroethane, 1,1,1,2-	µg/L	1.1	<0.50	<0.50
Tetrachloroethane, 1,1,2,2-	µg/L	1	<0.50	<0.50
Tetrachloroethylene	µg/L	1.6	<0.20	<0.20
Toluene	µg/L	24	<0.20	<0.20
Trichloroethane, 1,1,1-	µg/L	200	<0.20	<0.20
Trichloroethane, 1,1,2-	µg/L	4.7	<0.50	<0.50
Trichloroethylene	µg/L	1.6	<0.20	<0.20
Trichlorofluoromethane	µg/L	150	<0.50	<0.50
Vinyl chloride	µg/L	0.5	<0.20	<0.20
m,p-Xylenes	µg/L	-	<0.20	<0.20
o-Xylene	μg/L	-	<0.20	<0.20
		1		

TABLE 5 GROUNDWATER ANALYTICAL RESULTS - VOCs 1622 Roger Stevens Drive, Kars, Ontario

 1
 Standards from Table 2 of April 15, 2011 Soil, Ground Water

 and Sediment Standards for Use Under Part XV.1 of the

 Environmental Protection Act; coarse soil

 ns
 No standard

 CV Reading
 Combustible vapour reading (ppm or % LEL)

 ppm
 Parts per million (by volume)

 % LEL
 Percent of the lower explosive limit

 BOLD
 Exceeds standard

APPENDIX I

SITE PHOTOGRAPHS

TERRAPEX		Page 1 of 4	
Client : Parkland Fuel Corporation	Site Location:	1622 Roger Stevens Drive, Kars, Ontario	Project No: CO1057.00
Photo No: 1 Date: February 21, 2018 Viewing Direction: North Description: View of the track-mounted drill rig drilling monitoring well MW101.			

Photo No: 2

Date: February 21, 2018

Viewing Direction: South

Description:

View of the slope located in the eastern portion of the Site.

TERRAPEX	I	Page 2 of 4	
Client : Parkland Fuel Corporation	Site Location:	1622 Roger Stevens Drive, Kars, Ontario	Project No: CO1057.00
Photo No: 3		د ا.	
Date: February 21, 2018		Π	
Viewing Direction: East			
Description:			
View of the track-mounted drill rig drilling monitoring well MW101.			

Photo No: 4

Date: February 22, 2018

Viewing Direction: East

Description:

View of the drillers auguring the borehole at monitoring well MW106.

TERRAPEX		Page 3 of 4	
Client : Parkland Fuel Corporation	Site Location:	1622 Roger Stevens Drive, Kars, Ontario	Project No: CO1057.00
Photo No: 5 Date: February 21, 2018 Viewing Direction: West Description: View of the drilling of borehole BH103.			

Photo No: 6

Date: February 21, 2018

Viewing Direction: Southwest

Description:

A view of the residence located along the eastern portion of the property prior to the drilling and installation of monitoring well MW106.

TERRAPEX	1	PHOTOGRAPHIC LOG	Page 4 of 4
Client : Parkland Fuel Corporation	Site Location:	1622 Roger Stevens Drive, Kars, Ontario	Project No: CO1057.00
Photo No: 7 Date: February 22, 2018 Viewing Direction: East			
View of the drilling of monitoring well MW107.			

Photo No: 8

ľ

Date: February 22, 2018

Viewing Direction: West

Description:

View of the drilling of the borehole for monitoring well MW108.

APPENDIX II

BOREHOLE/MONITORING WELL LOGS

CLI	ENT:	Parkland Fuel Corporation		M	IETHO	D: 8	Split	Spo	oon	Sai	mpli	ing							ы	NL	- · M//// 04
PR	DJEC	CT: 1622 Roger Stevens Drive		P	ROJEC		NGI	NEE	R: \	Vic	E	ELE	V. (m) 9'	1.23	3			<u>5</u> 1		
				N		NG:	04	482	60		E			: 50	000	463	3			ST NC	
SAI					Ê	100	Shea	G r Stre	ength		וזע	V	Vater	UN		-					
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION		DEPTH (m)	ELE VATION (n	4	0 8 N Blow	(kPa) 0 12 -Valu s/300	0 16 e)mm)	0	• • •	Co PL N	ontent (%) W.C.	LL		SAMPLE NO.	SAMPLE TYPE	SPT(N)	CSV (ppm)	Well Construction	REMARKS
		100 mm Asphaltic Concrete Augured through frost to 0.61 i	m _ c)).5	91 -		0 1			,		<u> </u>									occasional boulders encountered in borehole.
			- - - - - 1 -	1	90.5 - - 90 -	2	1				13					1		21	<10		
₹.		compact,	- 	1.5	89.5 -		11				6					2		11	<10		
		sandy gravel trace silt (FILL)	-2	2 2.5	89 -	22					11					3		22	<10		
			- - - 3	3	88.5 -	3	4				8					4		34	<10		
			-3	3.5	88 - - - 87.5 -		19				10					5		19	<10		
			- - 4 - -	4	87 -	30					10					6		30	<10		
		compact SAND some gravel	brown - 4	4.5	86.5 -		15				11					7		15	<10		
		loose	grey	5.5	86 -	8					11					8		8	<10		Sample 8 submitted for laboratory analysis for BTEX and PHC (F1-F4)
			- 6	6	85.5 -	6					9					9		6	<10		
		END OF BOREHOLE																			
								LOO	GGE	DΒ	Y:	RH			DRIL	LIN	IG E	DATE	E: Fel	oruar	y 26, 2018
								RE۱	VIEV	VED	BY	: V	N	F	Page	e 1 o	of 1				

CLIENT: Parkland Fuel Corporation		METHO	DD: S	plit S	Spoor	n Sa	mpli	ng								- DU400
PROJECT: 1622 Roger Stevens Drive		PROJE	CT EN	IGINE	EER:	Vic	E	LE\	V. (m) 91.	64			<u>3H</u>	NC	D.: BH102
LOCATION: Kars, Ontario		NORTH	IING:				E	AS	TING	i:	-		PF	ROJEC	T NO	D.: CB1057.00
SAMPLE TYPE AUGER	DRIVEN		COF	RING	Strengt	h	DYN		IIC C	ONE	╷╹		SHEI	LBY		
		DEPTH (m) ELEVATION (m)	40 (B 20	(kF) <u>80</u> N-V Blows/3	Pa) <u>120 1</u> alue 300mm		• • F 20	Co PL \ 0 40	N.C.	LL 80	SAMPLE NO.	SAMPLE TYPE	SPT(N)	CSV (ppm)	Well Construction	REMARKS
50 mm Asphaltic Concrete Augured through frost to 0.60) m -0	91.5 .5 91														150 mm of Granular material measured underside of pavement occasional boulders
compact, very moist, brown sand and gravel (FILL)	n1	90.5	14				6				1		14	<10		encountered in borehole.
loose, moist, brownish blac sand some silt trace organics (FILL)	:k [1 [2	.5 90 89.5	7				17				2		7	<10		Sample 2 was submitted for laboratory analysis for pH and Soluable. Sulphate analysis.
loose	wet -2	.5 89	4					34 •			3		4	<10		
	3 moist 3	.5 88.5 88	21				16 •				4		21	<10		
compact SILTY SAND trace embedded gravel	- 4	87.5		2			12				5		12	<10		Sample 5 was submitted for laboratory analysis for BTEX and PHC's F1-F4
	5 grey -	87	26				11				6		26	<10		
	-5	.5 86		3			11				7		13	<10		
				L	OGG	ED E	3Y: F	RH		DF	RILLI	NG [DATE	E: Feb	oruar	y 2 <mark>6, 2018</mark>
										Pa	ige 1	of 1				

CLIENT:	Parkland Fuel Corporation	Ν	IETHO	D: S	Split	Spo	oon	Sa	mpli	ing							ы		. DU102
PROJEC	T: 1622 Roger Stevens Drive	F	PROJEC		NGI	NEE	R:	Vic	E	ELE	V. (m	1) 8	9.9	2					D.: DT1057.00
					DIN	<u> </u>						3: CON		Т				,T NO	
JAIVIFLL			<u>ک</u> ۶	100	Shea	r Stre	ength		•	V	Vater			-					
GWL G(m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (I	4 ()	0 8 N Blow 0 4	(KPA) 0 12 -Valu s/300 0 6	/ 20 16 Je 0mm) 0 8(i0) D	الم 20	PL 1	W.C.	LL) 80	0	SAMPLE NO.	SAMPLE TYP	SPT(N)	CSV (ppm)	Well Construction	REMARKS
	100 mm Topsoil Augured through frost to 0.75 m		89.5 -																102 mm of Topsoil measured in Borehole
	loose wet dark brown	- 0.5 - - -																	occasional boulders encountered in borehole.
	SILTY SAND some organics	- 1 - -	-	4						•				1		4	<10		
	 dense	- 1.5 - - - 2				56			9					2		56	<10		Sample 2 was submitted for laboratory analysis for pH and Soluable. Sulphate analysis.
	moist, brown SILTY SAND	- 2.5	87.5 -		46				9					3		46	<10		
	compact	- 3.5	86.5 -		14				11					4		14	<10		Sample 4 was submitted for laboratory analysis of BTEX and PHC's (F1- F2).
		- 4	86 -		.17				11					5		17	<10		Auger refusal at 2.9 and 4.42 m on possible boulders.
			•	•		LO	GGE	D B	SY:	RH			DRI	LLIN	IG [DATE	: E: Feb	oruar	y 26, 2018
						RE	VIEV	VEC) BY	: V	N		Pag	e 1 (of 1				

CLIENT: Parkland Fuel Corporation	METHOD): Sp	olit Sp	oon	Sar	mplir	ng								
PROJECT: 1622 Roger Stevens Drive	PROJEC	T EN	GINE	ER:	Vic	E	LEV.	(m) 9	91.7	5			<u>3H</u>	N	D.: BH104
LOCATION: Kars, Ontario	NORTHIN	NG:				E	ASTI	NG:		_		PF	ROJEC	T NO	D.: CB1057.00
SAMPLE TYPE AUGER DRIVEN	\mathbf{M}_{1}	COR	ING			DYN	IAMIC		NE	▁	5	SHEI	LBY		
GWL TORMAS TO BESCRIPTION	ELEVATION (m)	40 (Blo 20	(kPa (kPa <u>80 1</u> N-Val ows/30	engtn) 2 <u>0 16</u> ue (0mm) <u>50 8(</u>	i0) D	• P 20	Cont (% L W.0	tent 5) C. LL		SAMPLE NO.	SAMPLE TYPE	SPT(N)	CSV (ppm)	Well Construction	REMARKS
Topsoil at surface Augured through frost to 0.76 m	91.5														occasional boulders encountered in borehole.
loose moist, dark brown sand some silt compact to companies 1.5	90.5	6 •								1		6	<10		Sample 1 was submitted for laboratory analysis of BTEX, PHC's F1-F2 and pH.
dense (FILL)	90 -		56							2		56	<10		on possible boulders.
				GGE	D B	Y: R	RH		DRI	LLIN	IG E	DATE	: Feb		y 26, 2018
			RE	VIEV	VED	BY:	VN		Pag	e 1 d	of 1			-	

CLIENT: Parkland Fuel Corporation	М	ETHOD	D: S	Split	Sp	oon	Sa	mpl	ing								NI.	
PROJECT: 1622 Roger Stevens Drive	PI	ROJEC	ΤE	NGI	NEE	R:	Vic	E	ELE	V. (n	n) 9	90.2	9			3H	N	D.: BH105
LOCATION: Kars, Ontario	N		NG:					E	EAS	TIN	G:		_	_	PF	ROJEC	CT NC	D.: CB1057.00
SAMPLE TYPE AUGER DRIVEN			00	RIN	G	anath		DY	NAN			١E			SHE	LBY	-	
GWL SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4 (I 2	0 8 N- Blow 0 4	(kPa) 0 12 -Valu s/300 0 6	20 16 1e 0mm) 0 80	60) 0	•	PL 1	0nter (%) W.C.	nt . LL 0 8	0	SAMPLE NO.	SAMPLE TYPE	SPT(N)	CSV (ppm)	Well Construction	REMARKS
Topsoil at surface Augured through frost to 0.75 m	0 0.5	90 - 90 - -																occasional boulders encountered in borehole.
Compact, moist, brown SILTY SAND trace organics	1	89.5 - - - 89 -		30 ▲									1		30	<10		
compact, moist, brown	1.5 2	88.5 -	30	, ,									2		30	<10		
SILTY SAND some embedded gravel	2.5	88 -		11									3		11	<10		Sample 3 was submitted for laboratory analysis for BTEX and PHC's F1-F4.
	3 3.5	- 87 - -	26										4		26	<10		
END OF BOREHOLE																		
				╞	LO			Y:	RH	N		DR			DATE	E: Feb	oruar	y 26, 2018
				1	RΕ.	VIEV	VEL	יםי	. v	IN		гас	je i					

CLI	ENT:	Parkland Fuel Corporation	N		D: 5	Split	Spo	oon	Sa	mpli	ing			10			зμ		- · MW106
		1: 1622 Roger Stevens Drive						:R:	VIC			V. (m)	92.	40 044	2				CB1057.00
SAN	/PLE		 I		CO	RIN	G	.02		DYI			ONE	044	2	SHE	LBY		SPLIT SPOON
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	Shea 0 8 N Blow 0 4	r Stre (kPa) 0 12 -Valu vs/300	20 16 20 16 1e 0mm) 0	• ▲ 20		Vater ontent (%) W.C.	LL	SAMPLE NO.	SAMPLE TYPE	SPT(N)	CSV (ppm)	Well Construction	REMARKS
		Augured through frost to 0.75 m	0	92 -															occasional boulders encountered in borehole.
₽		loose, moist, brown SAND trace organics	- - - - -	91.5 -	6					12				1		6	<10		
Ţ		loose	- 1.5 	90.5 -	e A					9				2		8	<10		
		compact	- 2.5	90 -	22					11 •				3		22	<10		
		loose moist, brown	- 3 - - - 3.5	89 -	7					12 •				4		7	<10		Sample 4 submitted for laboratory analysis of BTEX, PHC's F1-F4 and VOC's.
		trace embedded compact brownish	- - - - - - - - - - - - - -	88.5 - 		13				11				5		13	<10		
			- 5	87.5	2									6		2	<10		
		grey	- 5.5	87 - - - 86.5 -	2					12				7		2	<10		
		END OF BOREHOLE																	
																			-22.2049
						ł	PE) RV		N					. ге	Juar	y 22, 2010
						κĘ	VIE\	NEL	лық	. V	N	Гьа	ye 1	υΠ					

CLIENT:	Parkland Fuel Corporation	1	NETHO	D: Sp	olit S	poor	n Sa	mplir	ng							NL	
PROJEC	T: 1622 Roger Stevens Drive	F	PROJEC	T EN	GINE	ER:	Vic	E	LEV. (m) 9	92.4	6			<u>3H</u>	N	D.: IVIVV107
	DN: Kars, Ontario	1		NG: (0448	315		E	ASTIN	G: 5	500	0409) 			T NC	D.: CB1057.00
SAMPLE	AUGER DRIVE	N I		COR Sh	ING lear St	trengt	h	DYN	Wate	er	NE			SHE	LBY		
UOBMYS LIOS G (B) G (B)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m	40 (BI	(kP 80 N-Va ows/3	a) 1 <u>20 1</u> Ilue 00mm	60 n)	• • •	Conte (%)	nt . LL	0	SAMPLE NO.	SAMPLE TYPE	SPT(N)	(mqq) VSC	Vell Construction	REMARKS
¥	Topsoil at surface Augured through frost to 0.76 m	0	92 -		40		50		40 0		0						occasional boulders encountered in borehole.
		- - - - - - - - - - - - -	91.5 -		39							1		39	<10		
	dense, moist, brown SILTY SAND some embedded	- 2	90.5 -	5	50+ À							2		50+	<10		Sample 3 submitted for
	gravel	- 2.5	90 - - - 89.5 -	5	50+ ▲							3		50+	<10		BTEX and PHC's F1-F4.
		- 3.5	89 -	5	50+▲							4		50+	<10		Auger Refusal at 3.7 m bgs, on possible boulders.
					L(R	DGGI EVIE	ED B	Y: R BY:	VN		DR	je 1 o	IG E		: Feb	oruar	y 22, 2018

CLI	ENT:	Parkland Fuel Corporation	Ν	NETHO	D: 5	Split	Spo	oon	Sai	mpli	ng								NI.	MIM/400
PRO	DJEC	T: 1622 Roger Stevens Drive	F	PROJEC	ΤE	NGI	NEE	R: \	∕ic	E	ELE	V. (n	n) 9)1.3	8			5 H	N	
LOC		DN: Kars, Ontario	1		NG:	04	482	70		E	AS	TIN	G: 5	5000)428	3		ROJEC	T NC	D.: CB1057.00
SAN	/PLE	TYPE AUGER DRIVEN			CC	RIN	G r Stre	enath		DYI		AIC (1E 1			SHE	LBY I	1	
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	0 8 N Blow	(kPa) 0 12 -Valu /s/300	e 0 16 0 16 0 16 0 16 0 16 0 16 0 16	0	• • 20	, C ⊃L \ <u>D 4</u>	onter (%) W.C.	nt LL <u>2 8(</u>	0	SAMPLE NO.	SAMPLE TYPE	SPT(N)	CSV (ppm)	Well	REMARKS
		Topsoil at surface Augured to 0.76 m bgs.	_ 0 0.5	91 -											1					occasional boulders encountered in borehole.
	,,,,,	dense, moist, brown SAND and SILT trace organics trace gravel	- 1	90.5			53 •								2		53	<10		
		TOPSOIL	_	-	/-	1									3A		_	<10		
			-2	89.5 -	-9										3B		5	<10		
₽			- - 2.5 - - - 3	89 - 	3	4									4		34	<10		Auger refusal at 2.89, on possible boulder.
		loose, moist brown	- 3.5	88 -		11									5		11	<10		
		SILTY SAND trace embedded gravel	- 4	87.5 -	5										6		5	<10		
			- 4.5 - - - 5	86.5 -	٤	3									7		8	<10		Sample 7 was submitted for laboratory analysis of BTEX and PHC's F1-F4 and VOC's.
		 wet grey	- 5.5	86 -	•	•									8A 8B		9	<10 <10		MW108-17 is a duplicate.
		END OF BOREHOLE	-	85.5 -				-				_	_	_					1:=	
							LO	GGE	DВ	Y:	RH			DRI	LLIN	IG [DATE	E: Feb	oruar	ry 22, 2018
							RE	VIEV	VED	BY	: V	N		Pag	e 1 d	of 1				

CLIENT	Parkland Fuel Corporation	1	METHO	D: 5	Split	Sp	oon	Sa	mpl	ing						┤┏			- DU400
PROJE	CT: 1622 Roger Stevens Drive		PROJEC	CT E	NGI	NEE	R:	Vic	E	ELE	V. (n	n) 9	91.7	0			<u>3H</u>	NC	D.: BH109
LOCATI	ON: Kars, Ontario	1	NORTH	NG:			_		E	EAS	TIN	G:		-		PF	ROJEC	T NO	D.: CB1057.00
SAMPLE	E TYPE AUGER DRIVE	N T			RIN	G	anath		DY	NAN			VE			SHE	LBY I	-	
G (B) G (B)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	0 8 N Blow	(kPa) 0 12 -Valu /s/300	20 16 20 16 Je 0mm 0 8	50) 0	•	C PL 0 4	onter (%) W.C.	, nt . LL 0 8	0	SAMPLE NO.	SAMPLE TYPE	SPT(N)	CSV (ppm)	Well Construction	REMARKS
	50 mm of Asphaltic Concrete Aurgured through frost to 0.76 m.	- 0.5	91.5 -	-									-	1			<10		occasional boulders encountered in borehole.
	cmpact, moist, brown sand and gravel (FILL)	- - - - - - - - -	90.5 -	10	5									2		16	<10		
	compact moist	-2	90 -		11									3		11	<10		Sample 4 was submitted
	brown SILTY SAND trace embedded gravel	- 2.5	89-	20										4		20	<10		for laboratory analysis for BTEX and PHC F1-F4. Duplicate was taken.
		- 3.5	88.5 -		18									5		18	<10		Auger refusal at 3.7 m on possible boulder.
						LO	GGE	D B	SY:	RH			DRI		4G [E: Fet	pruary	y 26, 2018
				·	RE	VIE	NEC	51: DBY	кн : V	N		Pag	je 1	of 1	JAIL	=: ret	Juary	y 20, 2018	

APPENDIX III

LABORATORY CERTIFICATES OF ANALYSIS

Your P.O. #: PIONEER Your Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your C.O.C. #: 650870-01-01, 650870-02-01

Attention: Geoff Lussier

Terrapex Environmental Ltd 920 Brant St. Suite 16 Burlington, ON Canada L7R 4J1

> Report Date: 2018/03/06 Report #: R5031879 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B841113 Received: 2018/02/23, 10:10

Sample Matrix: Soil # Samples Received: 11

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum	2	N/A	2018/02/23	OTT SOP-00002	EPA 8260C m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	9	N/A	2018/02/23	OTT SOP-00002	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil (3)	10	2018/02/23	2018/02/23	OTT SOP-00001	CCME CWS
Moisture	10	N/A	2018/02/23	CAM SOP-00445	McKeague 2nd ed 1978
pH CaCl2 EXTRACT (1)	1	2018/03/06	2018/03/06	CAM SOP-00413	EPA 9045 D m
Volatile Organic Compounds and F1 PHCs	2	N/A	2018/02/23	OTT SOP-00002	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated. (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your P.O. #: PIONEER Your Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your C.O.C. #: 650870-01-01, 650870-02-01

Attention: Geoff Lussier

Terrapex Environmental Ltd 920 Brant St. Suite 16 Burlington, ON Canada L7R 4J1

> Report Date: 2018/03/06 Report #: R5031879 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B841113 Received: 2018/02/23, 10:10

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		GDG333			GDG333	1		GDG334	GDG335		
Sampling Date		2018/02/22 08:30			2018/02/22 08:30			2018/02/22 09:30	2018/02/22 12:00		
COC Number		650870-01-01			650870-01-01			650870-01-01	650870-01-01		
	UNITS	MW 101-8	RDL	QC Batch	MW 101-8 Lab-Dup	RDL	QC Batch	MW 102-5	BH 103-4	RDL	QC Batch
Inorganics											
Moisture	%	9.7	0.2	5412285	11	0.2	5412285	11	9.7	0.2	5412285
BTEX & F1 Hydrocarbons	1								I		
Benzene	ug/g	<0.02	0.02	5412284				<0.02	<0.02	0.02	5412284
Toluene	ug/g	<0.02	0.02	5412284				<0.02	<0.02	0.02	5412284
Ethylbenzene	ug/g	<0.02	0.02	5412284				<0.02	<0.02	0.02	5412284
o-Xylene	ug/g	<0.02	0.02	5412284				<0.02	<0.02	0.02	5412284
p+m-Xylene	ug/g	<0.04	0.04	5412284				<0.04	<0.04	0.04	5412284
Total Xylenes	ug/g	<0.04	0.04	5412284				<0.04	<0.04	0.04	5412284
F1 (C6-C10)	ug/g	<10	10	5412284				<10	<10	10	5412284
F1 (C6-C10) - BTEX	ug/g	<10	10	5412284				<10	<10	10	5412284
F2-F4 Hydrocarbons											
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	5412136				<10	<10	10	5412136
F3 (C16-C34 Hydrocarbons)	ug/g	<50	50	5412136				<50	<50	50	5412136
F4 (C34-C50 Hydrocarbons)	ug/g	<50	50	5412136				<50	<50	50	5412136
Reached Baseline at C50	ug/g	Yes		5412136				Yes	Yes		5412136
Surrogate Recovery (%)											
1,4-Difluorobenzene	%	105		5412284				106	106		5412284
4-Bromofluorobenzene	%	114		5412284				114	117		5412284
D10-Ethylbenzene	%	93		5412284				100	97		5412284
D4-1,2-Dichloroethane	%	104		5412284				105	105		5412284
o-Terphenyl	%	83		5412136				77	94		5412136
RDL = Reportable Detection L	imit										
QC Batch = Quality Control Ba	atch										
Lab-Dup = Laboratory Initiate	d Duplic	cate									

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		GDG336	GDG337	GDG339	GDG341	GDG342				
Sampling Date		2018/02/22 14:30	2018/02/22 16:30	2018/02/22 10:30	2018/02/22 15:15	2018/02/22 14:15				
COC Number		650870-01-01	650870-01-01	650870-01-01	650870-01-01	650870-01-01				
	UNITS	BH 104-1	BH 105-3	MW 107-3	BH 109-4	MW 108-17	RDL	QC Batch		
norganics										
Moisture	%	20	9.3	8.0	10	11	0.2	5412285		
BTEX & F1 Hydrocarbons			•	•		•				
Benzene	ug/g	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	5412284		
Toluene	ug/g	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	5412284		
Ethylbenzene	ug/g	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	5412284		
o-Xylene	ug/g	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	5412284		
p+m-Xylene	ug/g	<0.04	<0.04	<0.04	<0.04	<0.04	0.04	5412284		
Total Xylenes	ug/g	<0.04	<0.04	<0.04	<0.04	<0.04	0.04	5412284		
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	10	5412284		
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	10	5412284		
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	<10	<10	10	5412136		
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	<50	<50	<50	50	5412136		
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	<50	<50	50	5412136		
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes	Yes		5412136		
Surrogate Recovery (%)										
1,4-Difluorobenzene	%	105	106	106	106	104		5412284		
4-Bromofluorobenzene	%	110	113	107	109	107		5412284		
D10-Ethylbenzene	%	88	99	104	108	97		5412284		
D4-1,2-Dichloroethane	%	103	102	103	103	103		5412284		
o-Terphenyl	%	93	95	90	91	92		5412136		
RDL = Reportable Detection L	imit									
QC Batch = Quality Control Ba	atch									

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID		GDG338	GDG340		
Sampling Data		2018/02/22	2018/02/22		
		08:30	14:45		
COC Number		650870-01-01	650870-01-01		
	UNITS	MW 106-4	MW 108-7	RDL	QC Batch
Inorganics					
Moisture	%	11	11	0.2	5412285
Calculated Parameters					
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	0.050	5412280
Volatile Organics					
Acetone (2-Propanone)	ug/g	<0.50	<0.50	0.50	5412288
Benzene	ug/g	<0.020	<0.020	0.020	5412288
Bromodichloromethane	ug/g	<0.050	<0.050	0.050	5412288
Bromoform	ug/g	<0.050	<0.050	0.050	5412288
Bromomethane	ug/g	<0.050	<0.050	0.050	5412288
Carbon Tetrachloride	ug/g	<0.050	<0.050	0.050	5412288
Chlorobenzene	ug/g	<0.050	<0.050	0.050	5412288
Chloroform	ug/g	<0.050	<0.050	0.050	5412288
Dibromochloromethane	ug/g	<0.050	<0.050	0.050	5412288
1,2-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	5412288
1,3-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	5412288
1,4-Dichlorobenzene	ug/g	<0.050	<0.050	0.050	5412288
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	0.050	5412288
1,1-Dichloroethane	ug/g	<0.050	<0.050	0.050	5412288
1,2-Dichloroethane	ug/g	<0.050	<0.050	0.050	5412288
1,1-Dichloroethylene	ug/g	<0.050	<0.050	0.050	5412288
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	0.050	5412288
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	0.050	5412288
1,2-Dichloropropane	ug/g	<0.050	<0.050	0.050	5412288
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	0.030	5412288
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	0.040	5412288
Ethylbenzene	ug/g	<0.020	<0.020	0.020	5412288
Ethylene Dibromide	ug/g	<0.050	<0.050	0.050	5412288
Hexane	ug/g	<0.050	<0.050	0.050	5412288
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	0.050	5412288
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	0.50	5412288
RDL = Reportable Detection Limit					
QC Batch = Quality Control Batch					

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID		GDG338	GDG340		
Sampling Date		2018/02/22 08:30	2018/02/22 14:45		
COC Number		650870-01-01	650870-01-01		
	UNITS	MW 106-4	MW 108-7	RDL	QC Batch
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	0.50	5412288
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	0.050	5412288
Styrene	ug/g	<0.050	<0.050	0.050	5412288
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	0.050	5412288
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	0.050	5412288
Tetrachloroethylene	ug/g	<0.050	<0.050	0.050	5412288
Toluene	ug/g	<0.020	<0.020	0.020	5412288
1,1,1-Trichloroethane	ug/g	<0.050	<0.050	0.050	5412288
1,1,2-Trichloroethane	ug/g	<0.050	<0.050	0.050	5412288
Trichloroethylene	ug/g	<0.050	<0.050	0.050	5412288
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	<0.050	0.050	5412288
Vinyl Chloride	ug/g	<0.020	<0.020	0.020	5412288
p+m-Xylene	ug/g	<0.020	<0.020	0.020	5412288
o-Xylene	ug/g	<0.020	<0.020	0.020	5412288
Total Xylenes	ug/g	<0.020	<0.020	0.020	5412288
F1 (C6-C10)	ug/g	<10	<10	10	5412288
F1 (C6-C10) - BTEX	ug/g	<10	<10	10	5412288
F2-F4 Hydrocarbons					
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	10	5412136
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	50	5412136
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	50	5412136
Reached Baseline at C50	ug/g	Yes	Yes		5412136
Surrogate Recovery (%)					
o-Terphenyl	%	93	90		5412136
4-Bromofluorobenzene	%	89	88		5412288
D10-o-Xylene	%	74	68		5412288
D4-1,2-Dichloroethane	%	94	98		5412288
D8-Toluene	%	95	93		5412288
RDL = Reportable Detection Limit QC Batch = Quality Control Batch					

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

RESULTS OF ANALYSES OF SOIL

Maxxam ID		GDG336	
Sampling Date		2018/02/22 14:30	
COC Number		650870-01-01	
	UNITS	BH 104-1	QC Batch
Inorganics	UNITS	BH 104-1	QC Batch
Inorganics Available (CaCl2) pH	DNITS	BH 104-1 7.10	QC Batch 5427526

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

		CDC2F4				
		GDG354				
Sampling Date		2018/02/22				
COC Number		650870-02-01				
	UNITS	FIELD BLANK	RDL	QC Batch		
BTEX & F1 Hydrocarbons						
Benzene	ug/g	<0.02	0.02	5412284		
Toluene	ug/g	<0.02	0.02	5412284		
Ethylbenzene	ug/g	<0.02	0.02	5412284		
o-Xylene	ug/g	<0.02	0.02	5412284		
p+m-Xylene	ug/g	<0.04	0.04	5412284		
Total Xylenes	ug/g	<0.04	0.04	5412284		
F1 (C6-C10)	ug/g	<10	10	5412284		
F1 (C6-C10) - BTEX	ug/g	<10	10	5412284		
Surrogate Recovery (%)						
1,4-Difluorobenzene	%	107		5412284		
4-Bromofluorobenzene	%	106		5412284		
D10-Ethylbenzene	%	116		5412284		
D4-1,2-Dichloroethane	%	104		5412284		
RDL = Reportable Detection L	imit					
QC Batch = Quality Control Ba	atch					

PETROLEUM HYDROCARBONS (CCME)

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	GDG333 MW 101-8 Soil					Collected: Shipped: Received:	2018/02/22 2018/02/23	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Petroleum Hydro. CCME	1 & BTEX in Soil	HSGC/MSFD	5412284	N/A	2018/02/23	Steve Robe	erts	
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	5412136	2018/02/23	2018/02/23	Liliana Gaburici		
Moisture		BAL	5412285	N/A	2018/02/23	Liliana Gab	ourici	
Maxxam ID: Sample ID: Matrix:	GDG333 Dup MW 101-8 Soil					Collected: Shipped: Received:	2018/02/22 2018/02/23	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Moisture		BAL	5412285	N/A	2018/02/23	Liliana Gab	ourici	
Maxxam ID: Sample ID: Matrix:	GDG334 MW 102-5 Soil					Collected: Shipped: Received:	2018/02/22 2018/02/23	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Petroleum Hydro. CCME F1 & BTEX in Soil		HSGC/MSFD	5412284	N/A	2018/02/23	Steve Robe	erts	
Petroleum Hydrocarbons F2-F4 in Soil		GC/FID	5412136	2018/02/23	2018/02/23	Liliana Gab	ourici	
Moisture		BAL	5412285	N/A	2018/02/23	Liliana Gab	ourici	
Maxxam ID: Sample ID: Matrix:	GDG335 BH 103-4 Soil					Collected: Shipped: Received:	2018/02/22 2018/02/23	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Petroleum Hydro. CCME	1 & BTEX in Soil	HSGC/MSFD	5412284	N/A	2018/02/23	Steve Robe	erts	
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	5412136	2018/02/23	2018/02/23	Liliana Gab	ourici	
Moisture		BAL	5412285	N/A	2018/02/23	Liliana Gab	ourici	
Maxxam ID: Sample ID: Matrix:	GDG336 BH 104-1 Soil					Collected: Shipped: Received:	2018/02/22 2018/02/23	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Petroleum Hydro. CCME	1 & BTEX in Soil	HSGC/MSFD	5412284	N/A	2018/02/23	Steve Robe	erts	
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	5412136	2018/02/23	2018/02/23	Liliana Gab	ourici	
Moisture		BAL	5412285	N/A	2018/02/23	Liliana Gab	ourici	
WIDISture								

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

TEST SUMMARY

Maxxam ID: GDG: Sample ID: BH 10 Matrix: Soil	337 05-3				Collected: Shipped: Received:	2018/02/22 2018/02/23
Test Description	Instrum	entation Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BT	EX in Soil HSGC/N	SFD 54122	84 N/A	2018/02/23	Steve Robe	erts
Petroleum Hydrocarbons F2-F4 i	n Soil GC/FID	54121	36 2018/02/23	2018/02/23	Liliana Gab	ourici
Moisture	BAL	54122	85 N/A	2018/02/23	Liliana Gab	ourici
Maxxam ID: GDG: Sample ID: MW Matrix: Soil	338 106-4				Collected: Shipped: Received:	2018/02/22 2018/02/23
Test Description	Instrum	entation Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	CALC	54122	80 N/A	2018/02/23	Automated	d Statchk
Petroleum Hydrocarbons F2-F4 i	n Soil GC/FID	54121	36 2018/02/23	2018/02/23	Liliana Gab	ourici
Moisture	BAL	54122	85 N/A	2018/02/23	Liliana Gab	ourici
Volatile Organic Compounds and	I F1 PHCs GC/MSF	D 54122	88 N/A	2018/02/23	Liliana Gab	ourici
Maxxam ID: GDG: Sample ID: MW Matrix: Soil	339 107-3				Collected: Shipped: Received:	2018/02/22 2018/02/23
Test Description	Instrum	entation Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCIVIE F1 & B1	EX IN SOIL HSGC/IV	SFD 54122	84 N/A	2018/02/23	Steve Roberts	
Petroleum Hydrocarbons F2-F4 I	n Soli GC/FID	54121	36 2018/02/23	2018/02/23		
Maxxam ID: GDG: Sample ID: MW Matrix: Soil	340 108-7	5111		2010/02/25	Collected: Shipped: Received:	2018/02/22 2018/02/23
Test Description	Instrum	entation Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	CALC	54122	80 N/A	2018/02/23	Automated	d Statchk
Petroleum Hydrocarbons F2-F4 i	n Soil GC/FID	54121	36 2018/02/23	2018/02/23	Liliana Gab	ourici
Moisture	BAL	54122	85 N/A	2018/02/23	Liliana Gab	ourici
Volatile Organic Compounds and	F1 PHCs GC/MSF	D 54122	88 N/A	2018/02/23	Liliana Gab	ourici
Maxxam ID: GDG: Sample ID: BH 10 Matrix: Soil	341 09-4				Collected: Shipped: Received:	2018/02/22 2018/02/23
Test Description	Instrum	entation Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F1 & BT	EX in Soil HSGC/N	SFD 54122	84 N/A	2018/02/23	Steve Robe	erts
Petroleum Hydrocarbons F2-F4 i	n Soil GC/FID	54121	36 2018/02/23	2018/02/23	Liliana Gab	ourici
Moisture	BAL	54122	85 N/A	2018/02/23	Liliana Gab	ourici

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

TEST SUMMARY

Maxxam ID: Sample ID:	GDG342 MW 108-17					Collected: 2018/02/22 Shipped:	
Matrix:	Soil					Received: 2018/02/23	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F	1 & BTEX in Soil	HSGC/MSFD	5412284	N/A	2018/02/23	Steve Roberts	
Petroleum Hydrocarbons	F2-F4 in Soil	GC/FID	5412136	2018/02/23	2018/02/23	Liliana Gaburici	
Moisture		BAL	5412285	N/A	2018/02/23	Liliana Gaburici	
Maxxam ID: Sample ID: Matrix:	GDG354 FIELD BLANK Soil					Collected: 2018/02/22 Shipped: Received: 2018/02/23	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME F	1 & BTEX in Soil	HSGC/MSFD	5412284	N/A	2018/02/23	Steve Roberts	

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt										
	Package 18.3°C									
Revise	Revised report (2018/03/06): pH analysis added to sample BH104-1 per client request									
Resul	ts relate only to th	ne items tested.								

Г

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

QUALITY ASSURANCE REPORT

5412126		QC Type	Parameter	Date Analyzed	value	Recoverv	UNITS	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1174	Cailead Blank	a Tarabaaul	2018/02/22		106	0/	20 120
5412150	LOA	эрікей віалк	C-Terphenyi	2018/02/23		106	70 0/	50 - 150 80 - 120
			F2 (C16-C10 Hydrocarbons)	2010/02/23		97	/0	80 120
			F3 (C10-C34 Hydrocarbons)	2018/02/23		97	70 0/	80 - 120
E/10106		חחפ	F4 (C34-C30 Hydrocarbons)	2018/02/23	1.0	97	70 0/	50 - 120 E0
5412150	LGA	RPD	F2 (C16-C10 Hydrocarbons)	2010/02/23	1.0		/0	50
			F3 (C10-C34 Hydrocarbons)	2018/02/23	1.0		70 0/	50
E412126		Mathad Dlank		2018/02/23	1.0	04	70 0/	20 120
5412136	LGA	Method Blank	C-Terphenyi	2018/02/23	~10	94	% 	30 - 130
			F2 (C10-C10 Hydrocarbons)	2018/02/23	<10		ug/g	
			F3 (C10-C34 Hydrocarbons)	2018/02/23	<50		ug/g	
F 41 2 2 0 4	CTE	Cuiliad Dlauli	F4 (C34-C50 Hydrocarbons)	2018/02/23	<50	104	ug/g	CO 140
5412284	SIE	Spiked Blank	1,4-Difluorobenzene	2018/02/23		104	%	60 - 140
			4-Bromofluorobenzene	2018/02/23		116	%	60 - 140
			D10-Ethylbenzene	2018/02/23		103	%	30 - 130
			D4-1,2-Dichloroethane	2018/02/23		112	%	60 - 140
			Benzene	2018/02/23		92	%	60 - 140
			Toluene	2018/02/23		83	%	60 - 140
			Ethylbenzene	2018/02/23		86	%	60 - 140
			o-Xylene	2018/02/23		86	%	60 - 140
			p+m-Xylene	2018/02/23		87	%	60 - 140
			F1 (C6-C10)	2018/02/23		95	%	80 - 120
			F1 (C6-C10) - BTEX	2018/02/23		95	%	N/A
5412284	STE	RPD	Benzene	2018/02/23	7.2		%	50
			Toluene	2018/02/23	2.5		%	50
			Ethylbenzene	2018/02/23	0.98		%	50
			o-Xylene	2018/02/23	2.2		%	50
			p+m-Xylene	2018/02/23	0.46		%	50
			F1 (C6-C10)	2018/02/23	0.33		%	50
			F1 (C6-C10) - BTEX	2018/02/23	0		%	50
5412284	STE	Method Blank	1,4-Difluorobenzene	2018/02/23		103	%	60 - 140
			4-Bromofluorobenzene	2018/02/23		116	%	60 - 140
			D10-Ethylbenzene	2018/02/23		101	%	30 - 130
			D4-1,2-Dichloroethane	2018/02/23		110	%	60 - 140
			Benzene	2018/02/23	<0.02		ug/g	
			Toluene	2018/02/23	<0.02		ug/g	
			Ethylbenzene	2018/02/23	<0.02		ug/g	
			o-Xylene	2018/02/23	<0.02		ug/g	
			p+m-Xylene	2018/02/23	<0.04		ug/g	
			Total Xylenes	2018/02/23	<0.04		ug/g	
			F1 (C6-C10)	2018/02/23	<10		ug/g	
			F1 (C6-C10) - BTEX	2018/02/23	<10		ug/g	
5412285	LGA	RPD [GDG333-01]	Moisture	2018/02/23	7.9		%	50
5412288	LGA	Spiked Blank	4-Bromofluorobenzene	2018/02/23		102	%	60 - 140
			D10-o-Xylene	2018/02/23		79	%	60 - 130
			D4-1,2-Dichloroethane	2018/02/23		102	%	60 - 140
			D8-Toluene	2018/02/23		102	%	60 - 140
			Acetone (2-Propanone)	2018/02/23		103	%	60 - 140
			Benzene	2018/02/23		103	%	60 - 130
			Bromodichloromethane	2018/02/23		95	%	60 - 130
			Bromoform	2018/02/23		112	%	60 - 130
			Bromomethane	2018/02/23		82	%	60 - 140

Г

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	OC Type	Parameter	Date Analyzed	Value	Recoverv	UNITS	OC Limits
Batteri		Quijpe	Carbon Tetrachloride	2018/02/23	Value	89	%	60 - 130
			Chlorobenzene	2018/02/23		91	%	60 - 130
			Chloroform	2018/02/23		88	%	60 - 130
			Dibromochloromethane	2018/02/23		108	%	60 - 130
			1,2-Dichlorobenzene	2018/02/23		95	%	60 - 130
			1,3-Dichlorobenzene	2018/02/23		92	%	60 - 130
			1,4-Dichlorobenzene	2018/02/23		96	%	60 - 130
			Dichlorodifluoromethane (FREON 12)	2018/02/23		71	%	60 - 140
			1,1-Dichloroethane	2018/02/23		94	%	60 - 130
			1,2-Dichloroethane	2018/02/23		100	%	60 - 130
			1,1-Dichloroethylene	2018/02/23		83	%	60 - 130
			cis-1,2-Dichloroethylene	2018/02/23		94	%	60 - 130
			trans-1,2-Dichloroethylene	2018/02/23		84	%	60 - 130
			1,2-Dichloropropane	2018/02/23		84	%	60 - 130
			cis-1,3-Dichloropropene	2018/02/23		96	%	60 - 130
			trans-1,3-Dichloropropene	2018/02/23		97	%	60 - 130
			Ethylbenzene	2018/02/23		95	%	60 - 130
			Ethylene Dibromide	2018/02/23		109	%	60 - 130
			Hexane	2018/02/23		86	%	60 - 130
			Methylene Chloride(Dichloromethane)	2018/02/23		83	%	60 - 130
			Methyl Ethyl Ketone (2-Butanone)	2018/02/23		107	%	60 - 140
			Methyl Isobutyl Ketone	2018/02/23		116	%	60 - 130
			Methyl t-butyl ether (MTBE)	2018/02/23		87	%	60 - 130
			Styrene	2018/02/23		110	%	60 - 130
			1,1,1,2-Tetrachloroethane	2018/02/23		103	%	60 - 130
			1,1,2,2-Tetrachloroethane	2018/02/23		107	%	60 - 130
			Tetrachloroethylene	2018/02/23		92	%	60 - 130
			Toluene	2018/02/23		95	%	60 - 130
			1,1,1-Trichloroethane	2018/02/23		87	%	60 - 130
			1,1,2-Trichloroethane	2018/02/23		90	%	60 - 130
			Trichloroethylene	2018/02/23		91	%	60 - 130
			Trichlorofluoromethane (FREON 11)	2018/02/23		87	%	60 - 130
			Vinyl Chloride	2018/02/23		86	%	60 - 130
			p+m-Xylene	2018/02/23		90	%	60 - 130
			o-Xylene	2018/02/23		103	%	60 - 130
			F1 (C6-C10)	2018/02/23		104	%	80 - 120
5412288	LGA	RPD	Acetone (2-Propanone)	2018/02/23	22		%	50
			Benzene	2018/02/23	5.7		%	50
			Bromodichloromethane	2018/02/23	19		%	50
			Bromoform	2018/02/23	24		%	50
			Bromomethane	2018/02/23	12		%	50
			Carbon Tetrachloride	2018/02/23	3.9		%	50
			Chlorobenzene	2018/02/23	3.8		%	50
			Chloroform	2018/02/23	7.4		%	50
			Dibromochloromethane	2018/02/23	15		%	50
			1,2-Dichlorobenzene	2018/02/23	1.7		%	50
			1,3-Dichlorobenzene	2018/02/23	4.3		%	50
			1,4-Dichlorobenzene	2018/02/23	1.4		%	50
			Dichlorodifluoromethane (FREON 12)	2018/02/23	5.1		%	50
			1,1-Dichloroethane	2018/02/23	9.6		%	50
			1,2-Dichloroethane	2018/02/23	25		%	50

Г

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Patch	Init		Darameter	Data Analyzad	Value	Bacayany		OC Limite
Datch	mit	QCType		2018/02/23	2 4	Recovery	%	50
			cis-1 2-Dichloroethylene	2018/02/23	13		%	50
			trans-1 2-Dichloroethylene	2018/02/23	24		%	50
			1 2-Dichloropropage	2018/02/23	11		%	50
			cis-1.3-Dichloropropene	2018/02/23	26		%	50
			trans-1,3-Dichloropropene	2018/02/23	33		%	50
			Ethylbenzene	2018/02/23	6.8		%	50
			Ethylene Dibromide	2018/02/23	26		%	50
			Hexane	2018/02/23	15		%	50
			Methylene Chloride(Dichloromethane)	2018/02/23	14		%	50
			Methyl Ethyl Ketone (2-Butanone)	2018/02/23	41		%	50
			Methyl Isobutyl Ketone	2018/02/23	40		%	50
			Methyl t-butyl ether (MTBE)	2018/02/23	5.1		%	50
			Styrene	2018/02/23	5.1		%	50
			1,1,1,2-Tetrachloroethane	2018/02/23	3.0		%	50
			1,1,2,2-Tetrachloroethane	2018/02/23	27		%	50
			Tetrachloroethylene	2018/02/23	2.6		%	50
			Toluene	2018/02/23	0.53		%	50
			1,1,1-Trichloroethane	2018/02/23	0.80		%	50
			1,1,2-Trichloroethane	2018/02/23	17		%	50
			Trichloroethylene	2018/02/23	2.8		%	50
			Trichlorofluoromethane (FREON 11)	2018/02/23	4.7		%	50
			Vinyl Chloride	2018/02/23	0.88		%	50
			p+m-Xylene	2018/02/23	4.6		%	50
			o-Xylene	2018/02/23	0.94		%	50
			F1 (C6-C10)	2018/02/23	1.9		%	30
5412288	LGA	Method Blank	4-Bromofluorobenzene	2018/02/23		89	%	60 - 140
			D10-o-Xylene	2018/02/23		81	%	60 - 130
			D4-1,2-Dichloroethane	2018/02/23		114	%	60 - 140
			D8-Toluene	2018/02/23		88	%	60 - 140
			Acetone (2-Propanone)	2018/02/23	<0.50		ug/g	
			Benzene	2018/02/23	<0.020		ug/g	
			Bromodichloromethane	2018/02/23	<0.050		ug/g	
			Bromoform	2018/02/23	<0.050		ug/g	
			Bromomethane	2018/02/23	<0.050		ug/g	
			Carbon Tetrachloride	2018/02/23	<0.050		ug/g	
			Chlorobenzene	2018/02/23	<0.050		ug/g	
			Chloroform	2018/02/23	<0.050		ug/g	
			Dibromochloromethane	2018/02/23	0.0		ug/g	
			1,2-Dichlorobenzene	2018/02/23	<0.050		ug/g	
			1,3-Dichlorobenzene	2018/02/23	<0.050		ug/g	
			1,4-Dichlorobenzene	2018/02/23	<0.050		ug/g	
			Dichlorodifluoromethane (FREON 12)	2018/02/23	<0.050		ug/g	
			1,1-Dichloroethane	2018/02/23	<0.050		ug/g	
			1,2-Dichloroethane	2018/02/23	<0.050		ug/g	
			1,1-Dichloroethylene	2018/02/23	<0.050		ug/g	
			cis-1,2-Dichloroethylene	2018/02/23	<0.050		ug/g	
			trans-1,2-Dichloroethylene	2018/02/23	<0.050		ug/g	
			1,2-Dichloropropane	2018/02/23	<0.050		ug/g	
			cis-1,3-Dichloropropene	2018/02/23	<0.030		ug/g	
			trans-1,3-Dichloropropene	2018/02/23	<0.040		ug/g	

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Ethylbenzene	2018/02/23	<0.020		ug/g	
			Ethylene Dibromide	2018/02/23	<0.050		ug/g	
			Hexane	2018/02/23	<0.050		ug/g	
			Methylene Chloride(Dichloromethane)	2018/02/23	<0.050		ug/g	
			Methyl Ethyl Ketone (2-Butanone)	2018/02/23	<0.50		ug/g	
			Methyl Isobutyl Ketone	2018/02/23	<0.50		ug/g	
			Methyl t-butyl ether (MTBE)	2018/02/23	<0.050		ug/g	
			Styrene	2018/02/23	<0.050		ug/g	
			1,1,1,2-Tetrachloroethane	2018/02/23	<0.050		ug/g	
			1,1,2,2-Tetrachloroethane	2018/02/23	<0.050		ug/g	
			Tetrachloroethylene	2018/02/23	<0.050		ug/g	
			Toluene	2018/02/23	<0.020		ug/g	
			1,1,1-Trichloroethane	2018/02/23	<0.050		ug/g	
			1,1,2-Trichloroethane	2018/02/23	<0.050		ug/g	
			Trichloroethylene	2018/02/23	<0.050		ug/g	
			Trichlorofluoromethane (FREON 11)	2018/02/23	<0.050		ug/g	
			Vinyl Chloride	2018/02/23	<0.020		ug/g	
			p+m-Xylene	2018/02/23	<0.020		ug/g	
			o-Xylene	2018/02/23	<0.020		ug/g	
			Total Xylenes	2018/02/23	<0.020		ug/g	
			F1 (C6-C10)	2018/02/23	<10		ug/g	
			F1 (C6-C10) - BTEX	2018/02/23	<10		ug/g	
5427526	NYS	Spiked Blank	Available (CaCl2) pH	2018/03/06		99	%	97 - 103
5427526	NYS	RPD	Available (CaCl2) pH	2018/03/06	0.52		%	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER Sampler Initials: GS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

avisting Carriere

Cristina Carriere, Scientific Service Specialist

Steve Roberts, Ottawa Lab Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	INVOICE TO:			REP	ORT TO:						PROJE	CT INFOR	MATION:			Laboratory Use Only:					
mpany Name: #30396 Par	kland Industries Ltd	Compan	v Name #19684	Terrapex I	Environment	al Ltd			Quotation	#	B75	111					Maxxam Job #:	Bottle Order #:			
ention: Retail Invoic	es	Attention	Attention: Geoff Lussier Address: 920 Brant St. Suite 16							P.O. #:			1.60								
dress: 4919-59th Si	t Suite 100	Address								Project: CB105			,					650870			
(403) 357-64	3 14N 6C9 (403) 356 301	Ev	Burlington ON L7R 4J1						Project Na	Act Name: Parkland Kars						COC #:		Project Manager:			
emilie.price@	rkland, Email	(905) 0 a lussie	oz-o939 xzz	o Fax:				Site #:		1622	Roger	Stevens	Drive		- •		Augustyna Dobosz				
MOE REGULATED DRIN	IKING WATER OR WATER INTENDED	FOR HUMAN C		MUSTRE		T		ANAL	YSIS RE	By: QUESTED	PLEASE	BE SPECI	FIC)	/			Tumaround Time (TAT) F	Required:			
SUBMITT	ED ON THE MAXXAM DRINKING WA	TER CHAIN OF	CUSTODY	MOST BE		oð		late			(10.00	\$		Please provide advance notice fi	or rush projects			
Regulation 153 (2011)	Other Regulatio	ins	Special Instructions			pecial Instructions		Sulpt	ay)				ackag		lics H	Regular (Standard) TAT:	Γ			
Table 1 Res/Park N	ledium/Fine CCME Sanitary Sew	er Bylaw			sec	CCM	F2-F4	and	t, %c				CS P		Orga	Standard TA	T = 5-7 Working days for most tests	L			
Table 2 Wind/Comm	oarse Reg 558. Storm Sewer	Bylaw	pleat C C C C C C C C C			%sit				rgani	ŝ	atte	Please note: Standard TAT for certain tests such as BOD and Dioxins/Furans are date, contact your Project Manager for datails								
Table					s / H s / H nocart nocart MS M		WS W	sand	S	RACT	1.1	P Ino	P PC	P Voli	days - contact your Project Manager for details.						
	Other				Filter	Hydr	Hydr	3 ICP	%) e.	8	EXTR		1 TCL	TCL	TCL	Date Requir	ed: Feb. 23 18 Tir	me Required:			
Include Cr	iteria on Certificate of Analysis (Y/N)?				M	leum X	leum	9 15	fextur	0	aCI2	point	g 556	g 558	g 556	Rush Confir	mation Number: AD2018	0223-01*			
Sample Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	- u	Petro	Petro	0.Re	Soil	Micrist	PHC	Flash	O.Re	O.Re	O.Re	# of Bottles	Comm	nents			
	Mart Mh 101-8	Feb 22 18	8:30	SOIL		X	×									3					
	MW102-5	Feb2118	9:30	SOIL		×	×									3	2	23-Feb-18 10:10			
	BH103-4	Feb21's	12:00	SOIL		×	×									3		tyna Dobosz			
	BH104-1	Feb. 21 18	2:30	SOIL		×	×									3	B8	41113			
	BH105-3	Feb. 21/18	4:30	SOIL		×	×									3		OTT 001			
	MW106-4	Feb. 22/13	8:30	SOIL		×	X		1. Tr	×						3	RECEIVED IN OT	TAWA			
	MW107.3	Feb. 22 18	10:30	SOIL		×	X									3					
	MW-108-7	Feb. 22'18	2:45	SOIL		\times	\times			\times						3					
	BH109-4	Feb. 22'18	23:15	SOIL		×	X	-								3	Onice				
	MW108-17	Feb. 22 18	2:45	SOIL		×	×									3					
* RELINQUISHED B	Y: (Signature/Print) Date: (YY	/MM/DD) Ti	me	RECEIVED	BY: (Signature)	Print)		Date: (YY/MM	//DD)	Ti	me	# jars	used and			Labor	atory Use Only				
Org SU	pourion 12/05	123 10:	10 Mai	liana	pascon	Focus	ion o	2018/10	2/23	10;	10			Time S	ensitive	Tempera	ture (°C) on Recei Custody S Present Intact	eal Yes N			

Maxxam Analytics International Corporation o/a Maxxam Analytics

		INVOICE TO:	-	RE	PORT TO:				PROJECT INFORMATION:							Laboratory Use Only:						
#30306 Parkland Industries I td						Terrapex	Environment	alltd	41-15-1				B751	11		Figyer	12140		Maxxam Job #: Bottle Order #:			
Company Name #30390 Parkallal industries Ltd Company Attention: Retail Invoices Attention Address: 4919-59th St Suite 100 Address: Red Deer AB T4N 6C9 Address Address					nparry Name, #19564 Tetrapex Environmental Etd intion: Geoff Lussier 920 Brant St. Suite 16 Burlington ON L7R 4J1 (905) 632-5939 x228 Fax:						Quotation	1#.		8/3/11								
											Project:		CB1057.00 me: <u>Park Land Kars</u> 1622 Roger Stevens Drive Grea Sa balancia									
											Project N	ame:						COC #:		Project Manager		
IL: (403) 357-6400 x Fax: (403) 356-3015 x Tel: emilie.price@parkland.ca.victoria.pianarosa@parkland. Fmail				Site #: Sampled							Bv:	Augustyna Dobos										
M	OE REGULATED DRINKI	NG WATER OR WATER IN	NTENDED F	OR HUMAN (ONSUMPTION	MUST BE				AN	ALYSIS RE	QUESTED	(PLEASE	BE SPECI	FIC)				Turnaround Time (TAT) F	l tequired:		
	SUBMITTED	ON THE MAXXAM DRIN	KING WATE	R CHAIN OF	CUSTODY			05		hate		17			e		HS		Please provide advance notice f	or rush projects		
	Regulation 153 (2011)	Oth	er Regulations		Special In	structions	ircle	E	*	Sulp	lay)	5			acka	1.1	nics	Regular (S	tandard) TAT: d if Rush TAT is not specified):			
Table 1 Res/Park Medium/Fine CCME Sanitary Sewer Bylaw			Park Medium/Fine CCME Sanitary Sewer Bylaw					CCM	F2-F	and	t, %c	2			8		Orga	Standard TAT = 5-7 Working days for most tests.				
Pab	le 2 Add/Comm Coard	Reg 558. Storm Sewer Bylaw					plea g / C	SLOG	Soons	bons	%sil	1			organi	88	latile	Please note: Standard TAT for certain tests such as BOD and Dioxins/Furans are a days - contact your Project Manager for details				
Tab	3 Agri/Other For RSC MISA Municipality							ocart	ocart	N SN	sand	X	ACT		P Ino	P PC	P Vol	Jab Cassifi	Push TAT (Kassilas to option out	alastas)		
		Other			Sec.		ritter	Hydn	Hydr	ICPI	e (%	34	EXTR	100	TCL	TCL	TCL	Date Required	t: Febe 23 P Th	ne Required:		
Include Criteria on Contificate of Analysis (V/AU)2					-		Me Me	mne	enm	153	exturu	1	CI2 E	point	3 558	3 558	j 558	Rush Confirmation Number: <u>A1020180223 °01</u> (call lab for #)		0223-01		
Т	Sample Barcode Label	Sample (Location) Identification Date			Time Sampled	ed Matrix	— Ē	etrol	etrol	.Reg	E lios	No.	H Ca	lash).Reg	0.Reg	D.Rec	# of Bottles	Comm	ents		
t		- 11 - 1				0			-		0,	4	0	ш.		0	0	2		1		
		Field Blar	nk	Keh. 22	8 -	SUL						\times						4				
						SOIL																
						SOIL																
t						SOIL												1				
+						SOIL																
+					-	001		-											RECEIVED IN (AWATTC		
+						SOIL									23-Fel	n-18 1	0:10					
						SOIL									23-1 O	Johos	7					
+						0.011						-		Augu	styna 1					and the second second		
+						SOIL								B	8411	13				All Marine		
						SOIL							V	TV	OT	T 001			On	ia		
						SOIL																
10	* RELINQUISHED BY: (Signature/Print)	Date: (YY/M	W/DD) 1	ime	RECEIVE	D BY: (Signature	/Print)		Date: (YY/	MM/DD)	Ti	me	# jars	used and submitted			Laborat	tory Use Only			
_	Bas	Sabourion	18/02	123 10	To Ma	riana	Varian	Toos	con	201810	2123	10.	10	-		Time S	ensitive	Temperatu P (re (°C) on Recei Custody S Present Intact	eal Yes		
LE	SS OTHERWISE AGREED TO IN V	VRITING, WORK SUBMITTED ON	THIS CHAIN O	CUSTODY IS S	JBJECT TO MAXXA	I'S STANDARD	TERMS AND COM	DITIONS. S	SIGNING O	F THIS CHA	IN OF CUS	TODY DOCL	JMENT IS	-	and the second second		-	The second	with the second s	nite: Maxxa Yellow:		

Maxxam Analytics International Corporation o/a Maxxam Analytics

Terrapex Environmental Ltd Client Project #: CB1057.00 Project name: 1622 Roger Stevens Drive Client ID: MW 101-8

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Terrapex Environmental Ltd Client Project #: CB1057.00 Project name: 1622 Roger Stevens Drive Client ID: MW 102-5

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Terrapex Environmental Ltd Client Project #: CB1057.00 Project name: 1622 Roger Stevens Drive Client ID: BH 103-4

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Terrapex Environmental Ltd Client Project #: CB1057.00 Project name: 1622 Roger Stevens Drive Client ID: BH 104-1

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Terrapex Environmental Ltd Client Project #: CB1057.00 Project name: 1622 Roger Stevens Drive Client ID: BH 105-3

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your C.O.C. #: 650870-04-01

Attention: Geoff Lussier

Terrapex Environmental Ltd 920 Brant St. Suite 16 Burlington, ON Canada L7R 4J1

> Report Date: 2018/02/26 Report #: R5017915 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B841230 Received: 2018/02/23, 10:10

Sample Matrix: Water # Samples Received: 8

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
1,3-Dichloropropene Sum	2	N/A	2018/02/26	OTT SOP-00002	EPA 8260C m
Petroleum Hydro. CCME F1 & BTEX in Water	6	N/A	2018/02/23	OTT SOP-00002	CCME CWS
Petroleum Hydrocarbons F2-F4 in Water (1)	6	2018/02/23	2018/02/24	OTT SOP-00001	CCME Hydrocarbons
Volatile Organic Compounds and F1 PHCs	2	N/A	2018/02/23	OTT SOP-00002	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your C.O.C. #: 650870-04-01

Attention: Geoff Lussier

Terrapex Environmental Ltd 920 Brant St. Suite 16 Burlington, ON Canada L7R 4J1

> Report Date: 2018/02/26 Report #: R5017915 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B841230 Received: 2018/02/23, 10:10

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		GDG968	GDG969		
Sampling Date		2018/02/23 09:00	2018/02/23 14:00		
COC Number		650870-04-01	650870-04-01		
	UNITS	TRIP BLANK	TRIP SPIKE	RDL	QC Batch
BTEX & F1 Hydrocarbons					
Benzene	ug/L	<0.20	92.77%	0.20	5412712
Toluene	ug/L	<0.20	95.68%	0.20	5412712
Ethylbenzene	ug/L	<0.20	90.32%	0.20	5412712
o-Xylene	ug/L	<0.20	90.72%	0.20	5412712
p+m-Xylene	ug/L	<0.40	92.77%	0.40	5412712
Total Xylenes	ug/L	<0.40	NA	0.40	5412712
F1 (C6-C10)	ug/L	<25	97.64%	25	5412712
F1 (C6-C10) - BTEX	ug/L	<25	NA	25	5412712
Surrogate Recovery (%)			•		
1,4-Difluorobenzene	%	107	112		5412712
4-Bromofluorobenzene	%	105	114		5412712
D10-Ethylbenzene	%	116	117		5412712
D4-1,2-Dichloroethane	%	106	111		5412712
RDL = Reportable Detection L QC Batch = Quality Control Ba	imit atch				

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

O.REG 153 PETROLEUM HYDROCARBONS (WATER)

Maxxam ID		GDG963			GDG963			GDG965	GDG967		
Sampling Date		2018/02/23 09:18			2018/02/23 09:18			2018/02/23	2018/02/23 09:30		
COC Number		650870-04-01			650870-04-01			650870-04-01	650870-04-01		
	UNITS	MW 101	RDL	QC Batch	MW 101 Lab-Dup	RDL	QC Batch	MW 107	BLANK	RDL	QC Batch
BTEX & F1 Hydrocarbons											
Benzene	ug/L	<0.20	0.20	5412712	<0.20	0.20	5412712	<0.20	<0.20	0.20	5412712
Toluene	ug/L	<0.20	0.20	5412712	<0.20	0.20	5412712	<0.20	<0.20	0.20	5412712
Ethylbenzene	ug/L	<0.20	0.20	5412712	<0.20	0.20	5412712	<0.20	<0.20	0.20	5412712
o-Xylene	ug/L	0.66	0.20	5412712	0.61	0.20	5412712	<0.20	<0.20	0.20	5412712
p+m-Xylene	ug/L	0.72	0.40	5412712	0.71	0.40	5412712	<0.40	<0.40	0.40	5412712
Total Xylenes	ug/L	1.4	0.40	5412712	1.3	0.40	5412712	<0.40	<0.40	0.40	5412712
F1 (C6-C10)	ug/L	<25	25	5412712	<25	25	5412712	<25	<25	25	5412712
F1 (C6-C10) - BTEX	ug/L	<25	25	5412712	<25	25	5412712	<25	<25	25	5412712
F2-F4 Hydrocarbons		·				·					
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	5412185				<100	<100	100	5412185
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	5412185				<200	<200	200	5412185
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	5412185				<200	<200	200	5412185
Reached Baseline at C50	ug/L	Yes		5412185				Yes	Yes		5412185
Surrogate Recovery (%)						·					
1,4-Difluorobenzene	%	105		5412712	105		5412712	106	105		5412712
4-Bromofluorobenzene	%	112		5412712	112		5412712	113	108		5412712
D10-Ethylbenzene	%	120		5412712	103		5412712	108	113		5412712
D4-1,2-Dichloroethane	%	105		5412712	104		5412712	106	103		5412712
o-Terphenyl	%	99		5412185				103	98		5412185
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dun = Laboratory Initiated Dunlicate											

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

O.REG 153 PETROLEUM HYDROCARBONS (WATER)

Maxxam ID		GDG970					
Sampling Date		2018/02/23 09:15					
COC Number		650870-04-01					
	UNITS	MW 112	RDL	QC Batch			
BTEX & F1 Hydrocarbons							
Benzene	ug/L	<0.20	0.20	5412712			
Toluene	ug/L	<0.20	0.20	5412712			
Ethylbenzene	ug/L	<0.20	0.20	5412712			
o-Xylene	ug/L	0.62	0.20	5412712			
p+m-Xylene	ug/L	0.63	0.40	5412712			
Total Xylenes	ug/L	1.3	0.40	5412712			
F1 (C6-C10)	ug/L	<25	25	5412712			
F1 (C6-C10) - BTEX	ug/L	<25	25	5412712			
F2-F4 Hydrocarbons							
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	5412185			
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	5412185			
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	5412185			
Reached Baseline at C50	ug/L	Yes		5412185			
Surrogate Recovery (%)		•					
1,4-Difluorobenzene	%	105		5412712			
4-Bromofluorobenzene	%	111		5412712			
D10-Ethylbenzene	%	103		5412712			
D4-1,2-Dichloroethane	%	94		5412712			
o-Terphenyl	%	100		5412185			
RDL = Reportable Detection Limit							
QC Batch = Quality Control B	atch						

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		GDG964			GDG964			GDG966		
Sampling Date		2018/02/23 09:25			2018/02/23 09:25			2018/02/23 08:15		
COC Number		650870-04-01			650870-04-01			650870-04-01		
	UNITS	MW 106	RDL	QC Batch	MW 106 Lab-Dup	RDL	QC Batch	MW 108	RDL	QC Batch
Calculated Parameters										
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	5412500				<0.50	0.50	5412500
Volatile Organics			•			•				
Acetone (2-Propanone)	ug/L	<10	10	5413136	<10	10	5413136	<10	10	5413136
Benzene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Bromodichloromethane	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
Bromoform	ug/L	<1.0	1.0	5413136	<1.0	1.0	5413136	<1.0	1.0	5413136
Bromomethane	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
Carbon Tetrachloride	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Chlorobenzene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Chloroform	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Dibromochloromethane	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
1,2-Dichlorobenzene	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
1,3-Dichlorobenzene	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
1,4-Dichlorobenzene	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	5413136	<1.0	1.0	5413136	<1.0	1.0	5413136
1,1-Dichloroethane	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
1,2-Dichloroethane	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
1,1-Dichloroethylene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
1,2-Dichloropropane	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	5413136	<0.30	0.30	5413136	<0.30	0.30	5413136
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	5413136	<0.40	0.40	5413136	<0.40	0.40	5413136
Ethylbenzene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Ethylene Dibromide	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Hexane	ug/L	<1.0	1.0	5413136	<1.0	1.0	5413136	<1.0	1.0	5413136
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	5413136	<2.0	2.0	5413136	<2.0	2.0	5413136
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	5413136	<10	10	5413136	<10	10	5413136
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	5413136	<5.0	5.0	5413136	<5.0	5.0	5413136
RDL = Reportable Detection Limit										

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		GDG964			GDG964			GDG966		
Sampling Date		2018/02/23 09:25			2018/02/23 09:25			2018/02/23 08:15		
COC Number		650870-04-01			650870-04-01	_		650870-04-01		
	UNITS	MW 106	RDL	QC Batch	MW 106 Lab-Dup	RDL	QC Batch	MW 108	RDL	QC Batch
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
Styrene	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
Tetrachloroethylene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Toluene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
1,1,1-Trichloroethane	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
1,1,2-Trichloroethane	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
Trichloroethylene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	5413136	<0.50	0.50	5413136	<0.50	0.50	5413136
Vinyl Chloride	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
p+m-Xylene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
o-Xylene	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
Total Xylenes	ug/L	<0.20	0.20	5413136	<0.20	0.20	5413136	<0.20	0.20	5413136
F1 (C6-C10)	ug/L	<25	25	5413136	<25	25	5413136	<25	25	5413136
F1 (C6-C10) - BTEX	ug/L	<25	25	5413136	<25	25	5413136	<25	25	5413136
F2-F4 Hydrocarbons							<u> </u>			
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	5412185				<100	100	5412185
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	5412185				<200	200	5412185
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	5412185				<200	200	5412185
Reached Baseline at C50	ug/L	Yes		5412185				Yes		5412185
Surrogate Recovery (%)										
o-Terphenyl	%	99		5412185				103		5412185
4-Bromofluorobenzene	%	83		5413136	86		5413136	85		5413136
D4-1,2-Dichloroethane	%	110		5413136	106		5413136	109		5413136
D8-Toluene	%	88		5413136	86		5413136	88		5413136
RDL = Reportable Detection Limit QC Batch = Quality Control Batch										

Lab-Dup = Laboratory Initiated Duplicate

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

TEST SUMMARY

Maxxam ID: Sample ID: Matrix:	GDG963 MW 101 Water					Collected: Shipped: Received:	2018/02/23 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	5412712	N/A	2018/02/23	Lyndsey H	art
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	5412185	2018/02/23	2018/02/24	Liliana Gat	ourici
		i					
Maxxam ID: Sample ID: Matrix:	GDG963 Dup MW 101 Water					Collected: Shipped: Received:	2018/02/23 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	5412712	N/A	2018/02/23	Lyndsey H	art
Maxxam ID: Sample ID: Matrix:	GDG964 MW 106 Water					Collected: Shipped: Received:	2018/02/23 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
1,3-Dichloropropene Sum	ı	CALC	5412500	N/A	2018/02/26	Automate	d Statchk
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	5412185	2018/02/23	2018/02/24	Liliana Gat	ourici
Volatile Organic Compou	nds and F1 PHCs	GC/MSFD	5413136	N/A	2018/02/23	Liliana Gat	ourici
Maxxam ID: Sample ID: Matrix:	GDG964 Dup MW 106 Water	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received:	2018/02/23 2018/02/23
Volatile Organic Compour	nds and E1 PHCs	GC/MSED	5/13136	N/A	2018/02/23	Liliana Gal	ourici
Maxxam ID: Sample ID: Matrix: Test Description	GDG965 MW 107 Water	Instrumentation	Batch	Extracted	Date Analyzed	Collected: Shipped: Received: Analyst	2018/02/23 2018/02/23
Petroleum Hydro. CCME	F1 Q DTEV in Water	HSGC/MSED	5412712	N/A	2018/02/23	Lyndsey H	art
Detroloum Hudrocarbons	FI & BIEX III Water	11566/11515	5112712	1			
Petroleulli Hydrocarbolis	F2-F4 in Water	GC/FID	5412185	2018/02/23	2018/02/24	Liliana Gab	ourici
Maxxam ID: Sample ID: Matrix:	GDG966 MW 108 Water	GC/FID	5412185	2018/02/23 Extracted	2018/02/24	Liliana Gat Collected: Shipped: Received: Analyst	2018/02/23 2018/02/23 2018/02/23
Maxxam ID: Sample ID: Matrix: Test Description	GDG966 MW 108 Water	GC/FID Instrumentation CALC	5412185 5412185 Batch 5412500	2018/02/23 Extracted	2018/02/24 Date Analyzed 2018/02/26	Liliana Gab Collected: Shipped: Received: Analyst Liliana Gab	2018/02/23 2018/02/23 2018/02/23
Maxxam ID: Sample ID: Matrix: Test Description 1,3-Dichloropropene Sum Petroleum Hydrocarbons	GDG966 MW 108 Water	GC/FID Instrumentation CALC GC/FID	Batch 5412185	2018/02/23 Extracted N/A 2018/02/23	2018/02/24 Date Analyzed 2018/02/26 2018/02/24	Liliana Gat Collected: Shipped: Received: Analyst Liliana Gat	2018/02/23 2018/02/23 2018/02/23 purici

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

TEST SUMMARY

Maxxam ID:	GDG967					Collected:	2018/02/23
Sample ID: Matrix:	Water					Received:	2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	5412712	N/A	2018/02/23	Lyndsey H	art
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	5412185	2018/02/23	2018/02/24	Liliana Gal	ourici
Maxxam ID: Sample ID: Matrix:	GDG968 TRIP BLANK Water					Collected: Shipped: Received:	2018/02/23 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	5412712	N/A	2018/02/23	Lyndsey H	art
Maxxam ID: Sample ID: Matrix:	GDG969 TRIP SPIKE Water					Collected: Shipped: Received:	2018/02/23 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	5412712	N/A	2018/02/23	Lyndsey H	art
Maxxam ID: Sample ID: Matrix:	GDG970 MW 112 Water					Collected: Shipped: Received:	2018/02/23 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Petroleum Hydro. CCME	F1 & BTEX in Water	HSGC/MSFD	5412712	N/A	2018/02/23	Lyndsey H	art
Petroleum Hydrocarbons	F2-F4 in Water	GC/FID	5412185	2018/02/23	2018/02/24	Liliana Gal	ourici

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1

3.0°C

Results relate only to the items tested.

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

QUALITY ASSURANCE REPORT

QA/QC	Init		Darameter	Data Analyzad	Value	Pacovary		OC Limita
5/12185		Matrix Snike	o-Ternhenvl	2018/02/23	value	115	%	30 - 130
5412105	LOA	Matrix Spike	E2 (C10-C16 Hydrocarbons)	2018/02/23		115	70 0/	50 - 120
			F3 (C16-C34 Hydrocarbons)	2018/02/23		100	/u %	50 - 130
			E4 (C34-C50 Hydrocarbons)	2018/02/23		100	/u %	50 - 130
5/12185	IGA	Sniked Blank	o-Ternhenyl	2018/02/23		100	/u %	30 - 130
5412105	LOA	Spiked blank	E2 (C10-C16 Hydrocarbons)	2018/02/23		93	%	30 - 130 80 - 120
			F3 (C16-C34 Hydrocarbons)	2018/02/23		93	%	80 - 120
			E4 (C34-C50 Hydrocarbons)	2018/02/23		93	/u %	80 - 120
5/12185	IGA	Method Blank	o-Ternhenyl	2018/02/23		101	/u %	30 - 130
5412105	LOA	Method Blank	E2 (C10-C16 Hydrocarbons)	2018/02/23	<100	101	νσ/I	50 - 150
			F3 (C16-C34 Hydrocarbons)	2018/02/23	<200		ug/⊑ ug/l	
			E4 (C24-C50 Hydrocarbons)	2018/02/23	<200		ug/L	
5/12185		חמק	$E_2 = (C_10 - C_16 + V_2 + C_2 - C_3)$	2018/02/23	<200 NC		ug/∟ ∞⁄	50
5412105	LUA	ILE D	F3 (C16-C34 Hydrocarbons)	2018/02/23	NC		/0 %	50
			E4 (C24-C50 Hydrocarbons)	2018/02/23	NC		70 0/	50
5/12712	іпр	Matrix Sniko	1.4-Difluorobenzene	2018/02/23	NC	102	70 0/	70 - 120
5412/12	LUK	[GDG965-02]	1,4-Dindolobenzene	2010/02/23		105	70	70 - 130
			4-Bromofluorobenzene	2018/02/23		115	%	70 - 130
			D10-Ethylbenzene	2018/02/23		112	%	70 - 130
			D4-1,2-Dichloroethane	2018/02/23		104	%	70 - 130
			Benzene	2018/02/23		97	%	70 - 130
			Toluene	2018/02/23		89	%	70 - 130
			Ethylbenzene	2018/02/23		90	%	70 - 130
			o-Xylene	2018/02/23		90	%	70 - 130
			p+m-Xylene	2018/02/23		91	%	70 - 130
			F1 (C6-C10)	2018/02/23		123	%	70 - 130
5412712	LHR	Spiked Blank	1,4-Difluorobenzene	2018/02/23		103	%	70 - 130
			4-Bromofluorobenzene	2018/02/23		114	%	70 - 130
			D10-Ethylbenzene	2018/02/23		121	%	70 - 130
			D4-1,2-Dichloroethane	2018/02/23		105	%	70 - 130
			Benzene	2018/02/23		101	%	70 - 130
			Toluene	2018/02/23		98	%	70 - 130
			Ethylbenzene	2018/02/23		101	%	70 - 130
			o-Xylene	2018/02/23		98	%	70 - 130
			p+m-Xylene	2018/02/23		101	%	70 - 130
			F1 (C6-C10)	2018/02/23		115	%	70 - 130
5412712	LHR	Method Blank	1,4-Difluorobenzene	2018/02/23		102	%	70 - 130
			4-Bromofluorobenzene	2018/02/23		115	%	70 - 130
			D10-Ethylbenzene	2018/02/23		115	%	70 - 130
			D4-1,2-Dichloroethane	2018/02/23		104	%	70 - 130
			Benzene	2018/02/23	<0.20		ug/L	
			Toluene	2018/02/23	<0.20		ug/L	
			Ethylbenzene	2018/02/23	<0.20		ug/L	
			o-Xvlene	2018/02/23	<0.20		ug/L	
			p+m-Xvlene	2018/02/23	<0.40		ug/L	
			Total Xvlenes	2018/02/23	<0.40		ug/L	
			F1 (C6-C10)	2018/02/23	<25		ug/L	
			F1 (C6-C10) - BTEX	2018/02/23	<25		ug/L	
5412712	LHR	RPD [GDG963-02]	Benzene	2018/02/23	NC		8/ - %	40
		- [>00 0=]	Toluene	2018/02/23	NC		%	40
			Ethylbenzene	2018/02/23	NC		%	40
			o-Xvlene	2018/02/23	7.5		%	40
1			5	-310/02/23			/0	10

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			p+m-Xylene	2018/02/23	1.1		%	40
				2018/02/23	4.1		%	40
			F1 (CC-C10)	2018/02/23	NC		%	40
E412126		Matrix Spika	FI (CO-CIU) - BIEX	2018/02/23	NC	00	%	40
5415150	LGA	[GDG966-02]	4-Bromondorobenzene	2018/02/23		99	70	70 - 130
			D4-1,2-Dichloroethane	2018/02/23		99	%	70 - 130
			D8-Toluene	2018/02/23		94	%	70 - 130
			Acetone (2-Propanone)	2018/02/23		93	%	60 - 140
			Benzene	2018/02/23		94	%	70 - 130
			Bromodichloromethane	2018/02/23		86	%	70 - 130
			Bromoform	2018/02/23		95	%	70 - 130
			Bromomethane	2018/02/23		79	%	60 - 140
			Carbon Tetrachloride	2018/02/23		84	%	70 - 130
			Chlorobenzene	2018/02/23		85	%	70 - 130
			Chloroform	2018/02/23		85	%	70 - 130
			Dibromochloromethane	2018/02/23		96	%	70 - 130
			1,2-Dichlorobenzene	2018/02/23		89	%	70 - 130
			1,3-Dichlorobenzene	2018/02/23		89	%	70 - 130
			1,4-Dichlorobenzene	2018/02/23		90	%	70 - 130
			Dichlorodifluoromethane (FREON 12)	2018/02/23		69	%	60 - 140
			1,1-Dichloroethane	2018/02/23		84	%	70 - 130
			1,2-Dichloroethane	2018/02/23		87	%	70 - 130
			1,1-Dichloroethylene	2018/02/23		81	%	70 - 130
			cis-1,2-Dichloroethylene	2018/02/23		83	%	70 - 130
			trans-1,2-Dichloroethylene	2018/02/23		77	%	70 - 130
			1,2-Dichloropropane	2018/02/23		71	%	70 - 130
			cis-1,3-Dichloropropene	2018/02/23		89	%	70 - 130
			trans-1,3-Dichloropropene	2018/02/23		96	%	70 - 130
			Ethylbenzene	2018/02/23		88	%	70 - 130
			Ethylene Dibromide	2018/02/23		93	%	70 - 130
			Hexane	2018/02/23		82	%	70 - 130
			Methylene Chloride(Dichloromethane)	2018/02/23		72	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2018/02/23		84	%	60 - 140
			Methyl Isobutyl Ketone	2018/02/23		87	%	70 - 130
			Methyl t-butyl ether (MTBE)	2018/02/23		76	%	70 - 130
			Styrene	2018/02/23		91	%	70 - 130
			1,1,1,2-Tetrachloroethane	2018/02/23		95	%	70 - 130
			1,1,2,2-Tetrachloroethane	2018/02/23		89	%	70 - 130
			Tetrachloroethylene	2018/02/23		80	%	70 - 130
			Toluene	2018/02/23		81	%	70 - 130
			1,1,1-Trichloroethane	2018/02/23		82	%	70 - 130
			1,1,2-Trichloroethane	2018/02/23		76	%	70 - 130
			Trichloroethylene	2018/02/23		84	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2018/02/23		84	%	70 - 130
			Vinyl Chloride	2018/02/23		81	%	70 - 130
			p+m-Xylene	2018/02/23		81	%	70 - 130
			o-Xylene	2018/02/23		84	%	70 - 130
			F1 (C6-C10)	2018/02/23		93	%	60 - 140
5413136	LGA	Spiked Blank	4-Bromofluorobenzene	2018/02/23		102	%	70 - 130
			D4-1,2-Dichloroethane	2018/02/23		100	%	70 - 130
			D8-Toluene	2018/02/23		105	%	70 - 130

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

QUALITY ASSURANCE REPORT(CONT'D)

Acctore (2-Programme) 2018/07/3 80 % 00:100 Berzene 2018/07/3 108 % 70:130 Berzene 2018/07/3 92 % 70:130 Berzene 2018/07/3 92 % 70:130 Berzene 2018/07/3 96 % 70:130 Berzene 2018/07/3 96 % 70:130 Chiorobenzene 2018/07/3 96 % 70:130 Chiorobenzene 2018/07/3 90 % 70:130 1,2-Uchiorobenzene 2018/07/3 96 % 70:130 1,2-Uchiorobenzene 2018/07/3 97 % 70:130 1,4-Uchiorobenzene 2018/07/3 98 % 70:130 1,2-Uchiorobenzene 2018/07/3 98 % 70:130 1,2-Uchiorobenzene 2018/07/3 88 % 70:130 1,2-Uchiorobenzene 2018/07/3 88 % 70:130 1,2-Uchiorobenzene 2018/07/3	QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recoverv	UNITS	QC Limits
Parame 2018/02/23 108 % 70-150 Bromofrom 2018/02/23 96 % 70-150 Bromofrom 2018/02/23 96 % 70-150 Bromofrom 2018/02/23 96 % 70-150 Carbon Tetrachloride 2018/02/23 96 % 70-150 Chorrobenzen 2018/02/23 96 % 70-150 Chorrobenzen 2018/02/23 96 % 70-150 1,2 Dichlorobenzen 2018/02/23 98 % 70-150 1,3 Dichlorobenzen 2018/02/23 98 % 70-150 1,4 Dichloroethane 2018/02/23 98 % 70-150 1,4 Dichloroethynen 2018/02/23 98 % 70-150 1,2 Dichloroethynen 2018/02/23 98 % 70-150 1,2 Dichloroethynen 2018/02/23 98 % 70-150 1,2 Dichloroethynen 2018/02/23 101 % 70-150 1,2 Dichloroethynen <td></td> <td></td> <td></td> <td>Acetone (2-Propanone)</td> <td>2018/02/23</td> <td></td> <td>80</td> <td>%</td> <td>60 - 140</td>				Acetone (2-Propanone)	2018/02/23		80	%	60 - 140
bromodiciNoromethane 2018/02/23 92 <				Benzene	2018/02/23		108	%	70 - 130
Bromodurn 2018/02/23 96 % 70-190 Bromomethane 2018/02/23 101 % 70-190 Carbon Tetrachloride 2018/02/23 101 % 70-190 Choroherzne 2018/02/23 101 % 70-190 Dironmachloromethane 2018/02/23 101 % 70-190 1.2-Dichloroberzne 2018/02/23 101 % 70-190 1.3-Dichloroberzne 2018/02/23 8 % 70-190 1.4-Dichloroberzne 2018/02/23 8 % 70-190 1.4-Dichloroberthane 2018/02/23 8 % 70-190 1.2-Dichloroberthane 2018/02/23 8 % 70-130 1.2-Dichloroberthylene 2018/02/23 8 % 70-130 1.2-Dichloroberthylene 2018/02/23 8 % 70-130 1.2-Dichloropopane 2018/02/23 103 % 70-130 1.2-Dichloropopane 2018/02/23 103 % 70-130 <				Bromodichloromethane	2018/02/23		92	%	70 - 130
Bromomethane 2018/02/23 94 % %0-100 Chiorohernzene 2018/02/23 96 % 70-130 Chiorohernzene 2018/02/23 96 % 70-130 Dibromochhoromethane 2018/02/23 96 % 70-130 1.2 Otchiorobenzene 2018/02/23 96 % 70-130 1.4 Otchiorobenzene 2018/02/23 96 % 70-130 1.4 Otchiorobenzene 2018/02/23 96 % 70-130 1.1 Otchiorochnace 2018/02/23 96 % 70-130 1.1 Otchiorochnace 2018/02/23 96 % 70-130 1.1 Otchiorochnace 2018/02/23 96 % 70-130 1.2 Otchiorochnace 2018/02/23 98 % 70-130 1.2 Otchiorochnyene 2018/02/23 98 % 70-130 1.2 Otchiorochnyene 2018/02/23 98 % 70-130 1.2 Otchiorochnyene 2018/02/23 98 % 70-130 <t< td=""><td></td><td></td><td></td><td>Bromoform</td><td>2018/02/23</td><td></td><td>96</td><td>%</td><td>70 - 130</td></t<>				Bromoform	2018/02/23		96	%	70 - 130
Carbon Tetrachioratie 2018/02/23 101 % %0 - 130 Chioroform 2018/02/23 90 % 70 - 130 Dibromochonenehane 2018/02/23 90 % 70 - 130 1.2 Olchlorobenzene 2018/02/23 90 % 70 - 130 1.3 Olchlorobenzene 2018/02/23 98 % 70 - 130 1.4 Olchlorobenzene 2018/02/23 96 % 70 - 130 1.4 Olchlorobenzene 2018/02/23 96 % 70 - 130 1.2 Olchloroethane 2018/02/23 96 % 70 - 130 1.2 Olchloroethylene 2018/02/23 94 % 70 - 130 1.2 Olchloroethylene 2018/02/23 94 % 70 - 130 1.2 Olchloroethylene 2018/02/23 94 % 70 - 130 1.2 Olchloropropene 2018/02/23 98 % 70 - 130 1.2 Olchloropropene 2018/02/23 101 % 70 - 130 1.3 Olchloropropene 2018/02/23 101 % 70 - 130 1.1.2 Nichlorophyleen 2018/02/23 101				Bromomethane	2018/02/23		84	%	60 - 140
5413136 LGA Method Blank Chiorobenzene 2018/02/23 96 % 70-130 1,2-Dichlorobenzene 2018/02/23 101 % 70-130 1,2-Dichlorobenzene 2018/02/23 96 % 70-130 1,3-Dichlorobenzene 2018/02/23 96 % 70-130 1,4-Dichlorobenzene 2018/02/23 96 % 70-130 1,1-Dichloroethane 2018/02/23 96 % 70-130 1,1-Dichloroethane 2018/02/23 96 % 70-130 1,1-Dichloroethylene 2018/02/23 96 % 70-130 1,1-Dichloroethylene 2018/02/23 96 % 70-130 1,2-Dichloroethylene 2018/02/23 98 % 70-130 1,3-Dichloropropene 2018/02/23 98 % 70-130 1,3-Dichloropropene 2018/02/23 98 % 70-130 1,3-Dichloropropene 2018/02/23 97 180 % 70-130 Ethylene Dichorodet				Carbon Tetrachloride	2018/02/23		101	%	70 - 130
Chloroform 2018/02/23 90 % 70-130 1,2-Dichlorobenzene 2018/02/23 96 % 70-130 1,3-Dichlorobenzene 2018/02/23 98 % 70-130 1,4-Dichlorobenzene 2018/02/23 99 % 70-130 1,4-Dichlorobenzene 2018/02/23 96 % 70-130 Dichlorodhloromethane (FREON 12) 2018/02/23 96 % 70-130 1,2-Dichloroethane 2018/02/23 96 % 70-130 1,2-Dichloroethylene 2018/02/23 91 % 70-130 1,2-Dichloroethylene 2018/02/23 81 % 70-130 1,2-Dichloroethylene 2018/02/23 83 % 70-130 1,2-Dichloroethane 2018/02/23 101 % <td< td=""><td></td><td></td><td></td><td>Chlorobenzene</td><td>2018/02/23</td><td></td><td>96</td><td>%</td><td>70 - 130</td></td<>				Chlorobenzene	2018/02/23		96	%	70 - 130
Dibromechtome 2018/02/23 96 % 70-130 1.2-Dichlorobenzene 2018/02/23 98 % 70-130 1.3-Dichlorobenzene 2018/02/23 98 % 70-130 Dichlorodhuromethane (FREON 12) 2018/02/23 98 % 70-130 1.1-Dichloroethane 2018/02/23 88 % 70-130 1.2-Dichloroethytene 2018/02/23 95 % 70-130 1.3-Dichloroethytene 2018/02/23 92 % 70-130 trans-1.3-Dichloroethytene 2018/02/23 92 % 70-130 trans-1.3-Dichloropropene 2018/02/23 93 % 70-130 trans-1.3-Dichloropropene 2018/02/23 103 % 70-130 trans-1.3-Dichloropropene 2018/02/23 103 % 70-130 Hethytene Chloride(Dichloromethane) 2018/02/23 103 % 70-130 Hethytene Chloride(Dichloromethane) 2018/02/23 103 % 70-130 Hethytene Chloride(Dichloromethane)				Chloroform	2018/02/23		90	%	70 - 130
1.2-0ch0robenzene 2018/02/23 96 % 70-130 1.3-0ch0robenzene 2018/02/23 98 % 70-130 Dichorodhuzone 2018/02/23 99 % 70-130 Dichorodhuzone 2018/02/23 96 % 70-130 1.2-0ch0rocethane 2018/02/23 96 % 70-130 1.2-0ch0rocethane 2018/02/23 94 % 70-130 1.2-0ch0rocethylene 2018/02/23 94 % 70-130 1.2-0ch0rocethylene 2018/02/23 91 % 70-130 1.2-0ch0rocethylene 2018/02/23 81 % 70-130 cis-1.3-0ch0ropropene 2018/02/23 103 % 70-130 cis-1.3-0ch0ropropene 2018/02/23 103 % 70-130 Ethylenzene 2018/02/23 101 % 70-130 Methyletthyl (thylexene 2018/02/23 101 % 70-130 Methyletthylethylether 2018/02/23 101 % 70-130 Methylethylethylether 2018/02/23 101 % 70-130 </td <td></td> <td></td> <td></td> <td>Dibromochloromethane</td> <td>2018/02/23</td> <td></td> <td>101</td> <td>%</td> <td>70 - 130</td>				Dibromochloromethane	2018/02/23		101	%	70 - 130
1.3 Dichlorobenzene 2018/02/23 98 % 70.130 1.4 Dichlorobenzene 2018/02/23 99 % 70.130 1.1 Dichlorodfluromethane (FREDN 12) 2018/02/23 96 % 70.130 1.2 Dichloroethane 2018/02/23 96 % 70.130 1.3 Dichloroethylene 2018/02/23 96 % 70.130 1.4 Dichloroethylene 2018/02/23 95 % 70.130 1.5 Dichloroethylene 2018/02/23 98 % 70.130 1.5 Dichlororothylene 2018/02/23 98 % 70.130 1.5 Dichloropropene 2018/02/23 81 % 70.130 1.5 Dichloropropene 2018/02/23 95 % 70.130 1.6 Hylene Dibronide 2018/02/23 95 % 70.130 Methylene Chloride(Dichloromethane) 2018/02/23 98 % 70.130 Methylene Chloride(Dichloromethane) 2018/02/23 98 % 70.130 Methylene Chloride(Dichloromethane 2018/02/23 98 % 70.130 1.1,1,2-Tetrachoroethane <td></td> <td></td> <td></td> <td>1,2-Dichlorobenzene</td> <td>2018/02/23</td> <td></td> <td>96</td> <td>%</td> <td>70 - 130</td>				1,2-Dichlorobenzene	2018/02/23		96	%	70 - 130
1.4-0ichiorodenzene 2018/02/23 99 % 70-130 Dichiorodentane (FREON 12) 2018/02/23 88 % 70-130 1.2-0ichioroethane 2018/02/23 98 % 70-130 1.2-0ichioroethylene 2018/02/23 94 % 70-130 cis-1.2-Dichioroethylene 2018/02/23 94 % 70-130 cis-1.2-Dichioroethylene 2018/02/23 94 % 70-130 cis-1.2-Dichioroethylene 2018/02/23 81 % 70-130 cis-1.3-Dichioroethylene 2018/02/23 83 % 70-130 cis-1.3-Dichioropropene 2018/02/23 83 % 70-130 Ethylenene 2018/02/23 103 % 70-130 Hexane 2018/02/23 103 % 70-130 Methylene Ohoride(Dichioromethane) 2018/02/23 88 % 70-130 Methylene Ohoride(Dichioromethane) 2018/02/23 88 % 70-130 Methylethyl Ethyl Ketone (2-8utanone) 2018/02/23 88 % 70-130 1.1.2-Teitchioroethane				1,3-Dichlorobenzene	2018/02/23		98	%	70 - 130
Dicklorodifluoromethane (FREON 12) 2018/02/23 33 % 60 1.0 1,1-Dickloroethane 2018/02/23 96 % 70 130 1,1-Dickloroethane 2018/02/23 95 % 70 130 1,1-Dickloroethylene 2018/02/23 95 % 70 130 1,2-Dickloroethylene 2018/02/23 92 % 70 130 1,2-Dickloropopane 2018/02/23 95 % 70 130 1,2-Dickloropopane 2018/02/23 101 % 70 130 Hetysine 2018/02/23 95 % 70 130 Methyle Chorde(Dickloromethane) 2018/02/23 101 % 70 130 Methyle Ehyl Ketone (2-Butanone)				1,4-Dichlorobenzene	2018/02/23		99	%	70 - 130
1.1Dichloroethane 2018/02/23 96 % 70 - 130 1.2Dichloroethylene 2018/02/23 88 % 70 - 130 cis.1.2Dichloroethylene 2018/02/23 94 % 70 - 130 cis.1.2Dichloroethylene 2018/02/23 94 % 70 - 130 trans-1.2Dichloroethylene 2018/02/23 89 % 70 - 130 1.2Dichloroethylene 2018/02/23 89 % 70 - 130 trans-1.3Dichloropropene 2018/02/23 89 % 70 - 130 trans-1.3Dichloropropene 2018/02/23 103 % 70 - 130 trans-1.3Dichloropropene 2018/02/23 101 % 70 - 130 Hexane 2018/02/23 101 % 70 - 130 Hexane 2018/02/23 101 % 70 - 130 Methyl Ethyle Ethioroet (2-8utanone) 2018/02/23 85 % 70 - 130 Styrene 2018/02/23 100 % 70 - 130 1.1.2.2.Tetrachloroethane 2018/02/23 100 % 70 - 130 1.1.2.2.Tetrachloroethane				Dichlorodifluoromethane (FREON 12)	2018/02/23		83	%	60 - 140
1,2-0ichloroethane 2018/02/23 88 % 70 - 130 1,1-0ichloroethylene 2018/02/23 95 % 70 - 130 trans-1,2-Dichloroethylene 2018/02/23 92 % 70 - 130 1,2-Dichloroppane 2018/02/23 92 % 70 - 130 1,2-Dichloroppane 2018/02/23 89 % 70 - 130 1,3-Dichloroppane 2018/02/23 89 % 70 - 130 1,1-Dichloroppane 2018/02/23 95 % 70 - 130 Hethylee Dibromide 2018/02/23 95 % 70 - 130 Methylee Chloride(Dichloromethane) 2018/02/23 83 % 70 - 130 Methyl Sobutyl Ketone 2018/02/23 101 % 70 - 130 1,1,2-2 72 101 % 70 - 130 1,1,2-2 101 101 %				1,1-Dichloroethane	2018/02/23		96	%	70 - 130
1,1-0ichloroethylene 2018/02/23 95 % 70-130 cis.1,2-0ichloroethylene 2018/02/23 94 % 70-130 1,2-0ichloroethylene 2018/02/23 81 % 70-130 cis.1,3-Dichloropropene 2018/02/23 81 % 70-130 cis.1,3-Dichloropropene 2018/02/23 82 % 70-130 cis.1,3-Dichloropropene 2018/02/23 103 % 70-130 Ethylene Dibromide 2018/02/23 101 % 70-130 Hexane 2018/02/23 101 % 70-130 Hexane 2018/02/23 101 % 70-130 Methylene Chloride(Dichloromethane) 2018/02/23 101 % 70-130 Methyl Ethylene Dibromide 2018/02/23 83 % 70-130 Methyl Ethylene Chloride(Dichloromethane) 2018/02/23 109 % 70-130 1,1,1,2-Tetrachloroethane 2018/02/23 109 % 70-130 1,1,1,2-Tetrachloroethane 2018/02/23 106 % 70-130 1,1,1,2-Tetrachloroethane				1,2-Dichloroethane	2018/02/23		88	%	70 - 130
cis-1,2-Dichloroethylene 2018/02/23 94 % 70-130 trans-1,2-Dichloroptylene 2018/02/23 92 % 70-130 1,2-Dichloroptylene 2018/02/23 81 % 70-130 cis-1,3-Dichloroptylene 2018/02/23 89 % 70-130 cis-1,3-Dichloroptylene 2018/02/23 103 % 70-130 trans-1,3-Dichloroptylene 2018/02/23 103 % 70-130 Ethylenene 2018/02/23 95 % 70-130 Hexane 2018/02/23 95 % 70-130 Methylene Chloride(Cichloromethane) 2018/02/23 88 % 70-130 Methyl Ethyl Ketone (2-Butanone) 2018/02/23 85 % 70-130 J,1,2.2-Tetrachloroethane 2018/02/23 107 % 70-130 J,1,1,2-Tetrachloroethane 2018/02/23 107 % 70-130 J,1,2.2-Tetrachloroethane 2018/02/23 107 % 70-130 J,1,1,2-Tetrachloroethane 2018/02/23 <td></td> <td></td> <td></td> <td>1,1-Dichloroethylene</td> <td>2018/02/23</td> <td></td> <td>95</td> <td>%</td> <td>70 - 130</td>				1,1-Dichloroethylene	2018/02/23		95	%	70 - 130
5413136 LGA Method Blank trans-1,2-Dichlorogengen 2018/02/23 92 % 70 - 130 1,2-Dichlorogropene 2018/02/23 81 % 70 - 130 1c1-3,3-Dichlorogropene 2018/02/23 82 % 70 - 130 Ethylbenzene 2018/02/23 95 % 70 - 130 Hexane 2018/02/23 95 % 70 - 130 Methylene Chloromide 2018/02/23 95 % 70 - 130 Methylene Chloromethane) 2018/02/23 83 % 60 - 140 Methyl Ethyl Ketone 2018/02/23 83 % 70 - 130 Methyl Isobutyl Ketone 2018/02/23 83 % 70 - 130 1,1,2-Tetrachloroethane 2018/02/23 109 % 70 - 130 1,1,1,2-Tetrachloroethane 2018/02/23 107 % 70 - 130 1,1,1,2-Tetrachloroethane 2018/02/23 97 % 70 - 130 1,1,1,2-Tetrachloroethane 2018/02/23 97 % 70 - 130				cis-1,2-Dichloroethylene	2018/02/23		94	%	70 - 130
1,2-Dichloropropane 2018/02/23 81 % 70 - 130 cis-1,3-Dichloropropene 2018/02/23 89 % 70 - 130 trans-1,3-Dichloropropene 2018/02/23 82 % 70 - 130 Ethylbenzene 2018/02/23 103 % 70 - 130 Hexane 2018/02/23 95 % 70 - 130 Methylene Dibromide 2018/02/23 95 % 70 - 130 Methylene Chloride(Dichloromethane) 2018/02/23 83 % 60 - 140 Methyl Ethyl Ketone (2-Butanone) 2018/02/23 88 % 70 - 130 Methyl Ethyl Ketone (2-Butanone) 2018/02/23 85 % 70 - 130 Methyl Ethyl Ketone (2-Butanone) 2018/02/23 107 % 70 - 130 J,1,1,2-Tetrachloroethane 2018/02/23 107 % 70 - 130 J,1,1,2-Tetrachloroethane 2018/02/23 106 % 70 - 130 J,1,1,2-Trichloroethane 2018/02/23 97 % 70 - 130 J,1,1,2-Trichloroetha				trans-1,2-Dichloroethylene	2018/02/23		92	%	70 - 130
541316 LGA Method Blank Cis-1,3-Dichloropropene 2018/02/23 89 % 70 - 130 Ethylbenzene 2018/02/23 95 % 70 - 130 Ethylbenzene 2018/02/23 95 % 70 - 130 Hexane 2018/02/23 95 % 70 - 130 Methylene Dibromide 2018/02/23 95 % 70 - 130 Methylene Choride[Dichloromethane] 2018/02/23 83 % 60 - 140 Methyl Ethyl Ketone 2018/02/23 88 % 70 - 130 Methyl Isobutyl Ketone 2018/02/23 88 % 70 - 130 Styrene 2018/02/23 109 % 70 - 130 1,1,1,2-Tetrachloroethane 2018/02/23 107 % 70 - 130 1,1,2,2-Tetrachloroethane 2018/02/23 106 % 70 - 130 1,1,2,2-Tetrachloroethane 2018/02/23 97 % 70 - 130 1,1,2-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,2-Trichloroethane 2018/02/23 97 % 70 - 130				1,2-Dichloropropane	2018/02/23		81	%	70 - 130
5413136 LGA Method Blank trans-1,3-Dichloropropene 2018/02/23 82 % 70 - 130 Ethylene Dibromide 2018/02/23 103 % 70 - 130 Hexane 2018/02/23 101 % 70 - 130 Methylene Chloride(Dichloromethane) 2018/02/23 101 % 70 - 130 Methylethyletone (2-Butanone) 2018/02/23 88 % 70 - 130 Methylethyletone 2018/02/23 88 % 70 - 130 Methylethyletone 2018/02/23 88 % 70 - 130 Styrene 2018/02/23 85 % 70 - 130 1,1,1,2-Tetrachloroethane 2018/02/23 107 % 70 - 130 1,1,1,2-Tetrachloroethane 2018/02/23 107 % 70 - 130 1,1,1,2-Tetrachloroethane 2018/02/23 97 % 70 - 130 1,1,1,1-Trichoroethane 2018/02/23 98 % 70 - 130 1,1,2-Trichoroethane 2018/02/23 97 % 70 - 130 1,1,2-Trichoroethane 2018/02/23 100 % 70 - 130				cis-1,3-Dichloropropene	2018/02/23		89	%	70 - 130
Ethylbenzene 2018/02/23 103 % 70 - 130 Ethylene Dibromide 2018/02/23 95 % 70 - 130 Hexane 2018/02/23 101 % 70 - 130 Methylene Chloride(Dichloromethane) 2018/02/23 79 % 70 - 130 Methylene Chloride(Dichloromethane) 2018/02/23 83 % 60 - 140 Methyl Isbutyl Ketone 2018/02/23 88 % 70 - 130 Styrene 2018/02/23 85 % 70 - 130 1,1,2,2-Tetrachloroethane 2018/02/23 109 % 70 - 130 1,1,1,2-Tetrachloroethane 2018/02/23 106 % 70 - 130 1,1,2-Tetrachloroethane 2018/02/23 97 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,2-Trichloroethane 2018/02/23 100 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 100 % 70 - 130 1,1,1-Trichloroethane 2018/02/23				trans-1,3-Dichloropropene	2018/02/23		82	%	70 - 130
Ethylene Dibromide 2018/02/23 95 % 70 - 130 Hexane 2018/02/23 101 % 70 - 130 Methylene Chloride(Dichloromethane) 2018/02/23 79 % 70 - 130 Methyl Ethyl Retone (2-Butanone) 2018/02/23 83 % 60 - 140 Methyl Isbutyl Ketone 2018/02/23 88 % 70 - 130 Methyl Isbutyl Ketone 2018/02/23 89 % 70 - 130 1,1,1,2-Tetrachloroethane 2018/02/23 109 % 70 - 130 1,1,1,2-Tetrachloroethane 2018/02/23 107 % 70 - 130 1,1,1,2-Tetrachloroethane 2018/02/23 106 % 70 - 130 1,1,1,2-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 100 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 100 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 100 % 70 - 130 Vinyl Chloride				Ethylbenzene	2018/02/23		103	%	70 - 130
Hexane 2018/02/23 101 % 70 - 130 Methylene Chloride(Dichloromethane) 2018/02/23 79 % 70 - 130 Methyl Ethyl Ketone 2018/02/23 83 % 60 - 140 Methyl Isboutyl Ketone 2018/02/23 88 % 70 - 130 Methyl Isboutyl Ketone 2018/02/23 85 % 70 - 130 Methyl Isboutyl Ketone 2018/02/23 107 % 70 - 130 1,1,1,2-Tetrachloroethane 2018/02/23 107 % 70 - 130 1,1,1,2-Tetrachloroethane 2018/02/23 106 % 70 - 130 Toluene 2018/02/23 91 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,1,2-Trichloroethane 2018/02/23 100 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 100 % 70 - 130 1,1,2-Trichloroethane 2018/02/23				Ethylene Dibromide	2018/02/23		95	%	70 - 130
5413136 LGA Methylene Chloride(Dichloromethane) 2018/02/23 79 % 70 - 130 Methyl Ethyl Ethone (2-Butanone) 2018/02/23 83 % 60 - 140 Methyl Isbutyl Ketone 2018/02/23 85 % 70 - 130 Methyl I-butyl ether (MTBE) 2018/02/23 109 % 70 - 130 1,1,1,2-Tetrachloroethane 2018/02/23 107 % 70 - 130 1,1,1,2-Tetrachloroethane 2018/02/23 107 % 70 - 130 Tetrachloroethane 2018/02/23 98 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 98 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 98 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 100 % 70 - 130 Trichloroethylene 2018/02/23 100 % 70 - 130 Trichloroethylene 2018/02/23 100 % 70 - 130 0.41,12-Trichloroethane 2018/02/23 100 % 70 - 130				Hexane	2018/02/23		101	%	70 - 130
Methyl Ethyl Ketone (2-Butanone) 2018/02/23 83 % 60 - 140 Methyl Isbutyl Ketone 2018/02/23 85 % 70 - 130 Methyl Isbutyl Ether (MTBE) 2018/02/23 85 % 70 - 130 Styrene 2018/02/23 109 % 70 - 130 1,1,2.2-Tetrachloroethane 2018/02/23 107 % 70 - 130 1,1,2.2-Tetrachloroethane 2018/02/23 106 % 70 - 130 Tetrachloroethane 2018/02/23 106 % 70 - 130 Tetrachloroethane 2018/02/23 98 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,2-Trichloroethane 2018/02/23 100 % 70 - 130 1,1,2-Trichloroethane 2018/02/23 100 % 70 - 130 yrichlorofluoromethane (FREON 11) 2018/02/23 100 % 70 - 130 yrichlorofluorobenzene 2018/02/23 106 % 70 - 130 p+m-Xylene 2018/02/				Methylene Chloride(Dichloromethane)	2018/02/23		79	%	70 - 130
Methyl Isobutyl Ketone 2018/02/23 88 % 70 - 130 Methyl I-butyl ether (MTBE) 2018/02/23 85 % 70 - 130 Styrene 2018/02/23 109 % 70 - 130 1,1,1,2-Tertachloroethane 2018/02/23 107 % 70 - 130 1,1,2-Tertachloroethane 2018/02/23 91 % 70 - 130 Tetrachloroethylene 2018/02/23 98 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 98 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 100 % 70 - 130 Trichloroethylene 2018/02/23 100 % 70 - 130 Vinyl Chloride 2018/02/23 100 % 70 - 130 ptm-Xylene 2018/02/23 100 % 70 - 130 ptm-Xylene 2018/02/23 106 % 70 - 130 ptm-Xylene 2018/02/23 104 %				Methyl Ethyl Ketone (2-Butanone)	2018/02/23		83	%	60 - 140
5413136 LGA Method Blank Hernonfluoroberhane 2018/02/23 85 % 70 - 130 5413136 LGA Method Blank 1,1,1,2-Tetrachloroethane 2018/02/23 107 % 70 - 130 1,1,2,2-Tetrachloroethane 2018/02/23 107 % 70 - 130 Tetrachloroethane 2018/02/23 91 % 70 - 130 Tetrachloroethane 2018/02/23 98 % 70 - 130 Toluene 2018/02/23 98 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 100 % 70 - 130 1,1,2-Trichloroethane 2018/02/23 100 % 70 - 130 1,1,2-Trichloroethane 2018/02/23 100 % 70 - 130 0-Xylene 2018/02/23 100 % 70 - 130 0-Xylene 2018/02/23 104 %				Methyl Isobutyl Ketone	2018/02/23		88	%	70 - 130
Styrene 2018/02/23 107 % 70-130 1,1,1,2-Tetrachloroethane 2018/02/23 107 % 70-130 1,1,2-Tetrachloroethane 2018/02/23 91 % 70-130 Tetrachloroethylene 2018/02/23 98 % 70-130 Toluene 2018/02/23 98 % 70-130 1,1,1-Trichloroethane 2018/02/23 98 % 70-130 1,1,1-Trichloroethane 2018/02/23 97 % 70-130 1,1,1-Trichloroethane 2018/02/23 100 % 70-130 Trichloroethylene 2018/02/23 100 % 70-130 Trichloroethylene 2018/02/23 100 % 70-130 p+m-Xylene 2018/02/23 100 % 70-130 o-Xylene 2018/02/23 104 % 60-140 b4-1,2-Dichloroethane 2018/02/23 104 % 60-140 D4-1,2-Dichloroethane 2018/02/23 104 % 70-130 <				Methyl t-butyl ether (MTBE)	2018/02/23		85	%	70 - 130
1,1,2-Tetrachloroethane 2018/02/23 107 % 70 - 130 1,1,2,2-Tetrachloroethane 2018/02/23 91 % 70 - 130 Tetrachloroethylene 2018/02/23 106 % 70 - 130 Toluene 2018/02/23 98 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,2-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,2-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,2-Trichloroethane 2018/02/23 100 % 70 - 130 Trichloroethylene 2018/02/23 100 % 70 - 130 Vinyl Chloride 2018/02/23 100 % 70 - 130 p+m-Xylene 2018/02/23 106 % 70 - 130 p+m-Xylene 2018/02/23 104 % 60 - 140 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 107 % 70 - 130 D4-1,2-Dichloroethane 2018/02/23 40 ug/L Benzene 2018/02/23 <t< td=""><td></td><td></td><td></td><td>Styrene</td><td>2018/02/23</td><td></td><td>109</td><td>%</td><td>70 - 130</td></t<>				Styrene	2018/02/23		109	%	70 - 130
1,1,2,2-Tetrachloroethane 2018/02/23 91 % 70 - 130 Tetrachloroethylene 2018/02/23 106 % 70 - 130 Toluene 2018/02/23 98 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,2-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,2-Trichloroethane 2018/02/23 100 % 70 - 130 Trichloroethylene 2018/02/23 100 % 70 - 130 Trichloroethylene 2018/02/23 100 % 70 - 130 Vinyl Chloride 2018/02/23 100 % 70 - 130 p+m-Xylene 2018/02/23 97 % 70 - 130 o-Xylene 2018/02/23 106 % 70 - 130 p+M-Xylene 2018/02/23 106 % 70 - 130 o-Xylene 2018/02/23 106 % 70 - 130 b41326 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 107 % 70 - 130 b8 % 70 -				1.1.1.2-Tetrachloroethane	2018/02/23		107	%	70 - 130
5413136 LGA Method Blank Tetrachloroethylene 2018/02/23 98 % 70 - 130 1,1,1-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,2-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,2-Trichloroethane 2018/02/23 81 % 70 - 130 Trichloroethylene 2018/02/23 100 % 70 - 130 Trichlorofluoromethane (FREON 11) 2018/02/23 100 % 70 - 130 Vinyl Chloride 2018/02/23 95 % 70 - 130 p+m-Xylene 2018/02/23 95 % 70 - 130 o-Xylene 2018/02/23 106 % 70 - 130 p+m-Xylene 2018/02/23 106 % 70 - 130 o-Xylene 2018/02/23 104 % 60 - 140 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 107 % 70 - 130 D8-Toluene 2018/02/23 <10				1.1.2.2-Tetrachloroethane	2018/02/23		91	%	70 - 130
Toluene 2018/02/23 98 % 70-130 1,1,1-Trichloroethane 2018/02/23 97 % 70-130 1,1,2-Trichloroethane 2018/02/23 81 % 70-130 Trichloroethylene 2018/02/23 100 % 70-130 Trichlorofluoromethane (FREON 11) 2018/02/23 100 % 70-130 Vinyl Chloride 2018/02/23 95 % 70-130 p+m-Xylene 2018/02/23 95 % 70-130 p+m-Xylene 2018/02/23 97 % 70-130 o-Xylene 2018/02/23 97 % 70-130 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 106 % 70-130 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 89 % 70-130 D4-1,2-Dichloroethane 2018/02/23 107 % 70-130 D8-Toluene 2018/02/23 <0.20				Tetrachloroethylene	2018/02/23		106	%	70 - 130
1,1,1-Trichloroethane 2018/02/23 97 % 70 - 130 1,1,2-Trichloroethane 2018/02/23 81 % 70 - 130 Trichloroethylene 2018/02/23 100 % 70 - 130 Trichloroethylene 2018/02/23 100 % 70 - 130 Vinyl Chloride 2018/02/23 95 % 70 - 130 p+m-Xylene 2018/02/23 97 % 70 - 130 o-Xylene 2018/02/23 97 % 70 - 130 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 104 % 60 - 140 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 104 % 60 - 140 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 107 % 70 - 130 D4-1,2-Dichloroethane 2018/02/23 107 % 70 - 130 D8-Toluene 2018/02/23 <10				Toluene	2018/02/23		98	%	70 - 130
1,1,2-Trichloroethane 2018/02/23 81 % 70 - 130 Trichloroethylene 2018/02/23 100 % 70 - 130 Trichloroethylene 2018/02/23 100 % 70 - 130 Vinyl Chloride 2018/02/23 95 % 70 - 130 p+m-Xylene 2018/02/23 97 % 70 - 130 o-Xylene 2018/02/23 106 % 70 - 130 F1 (C6-C10) 2018/02/23 104 % 60 - 140 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 107 % 70 - 130 D4-1,2-Dichloroethane 2018/02/23 107 % 70 - 130 D8-Toluene 2018/02/23 107 % 70 - 130 D8-Toluene 2018/02/23 <10				1.1.1-Trichloroethane	2018/02/23		97	%	70 - 130
Trichloroethylene 2018/02/23 100 % 70 - 130 Trichloroethylene 2018/02/23 100 % 70 - 130 Vinyl Chloride 2018/02/23 95 % 70 - 130 p+m-Xylene 2018/02/23 97 % 70 - 130 o-Xylene 2018/02/23 106 % 70 - 130 F1 (C6-C10) 2018/02/23 106 % 70 - 130 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 104 % 60 - 140 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 107 % 70 - 130 D4-1,2-Dichloroethane 2018/02/23 107 % 70 - 130 D8-Toluene 2018/02/23 <10				1.1.2-Trichloroethane	2018/02/23		81	%	70 - 130
Trichlorofluoromethane (FREON 11) 2018/02/23 100 % 70 - 130 Vinyl Chloride 2018/02/23 95 % 70 - 130 p+m-Xylene 2018/02/23 97 % 70 - 130 o-Xylene 2018/02/23 106 % 70 - 130 F1 (C6-C10) 2018/02/23 106 % 70 - 130 F1 (C6-C10) 2018/02/23 104 % 60 - 140 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 107 % 70 - 130 D4-1,2-Dichloroethane 2018/02/23 107 % 70 - 130 D8-Toluene 2018/02/23 <107				Trichloroethylene	2018/02/23		100	%	70 - 130
Vinyl Chloride 2018/02/23 95 % 70 - 130 p+m-Xylene 2018/02/23 97 % 70 - 130 o-Xylene 2018/02/23 106 % 70 - 130 F1 (C6-C10) 2018/02/23 104 % 60 - 140 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 104 % 60 - 140 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 107 % 70 - 130 D8-Toluene 2018/02/23 107 % 70 - 130 D8-Toluene 2018/02/23 <10				Trichlorofluoromethane (FREON 11)	2018/02/23		100	%	70 - 130
p+m-Xylene 2018/02/23 97 % 70 - 130 o-Xylene 2018/02/23 106 % 70 - 130 F1 (C6-C10) 2018/02/23 104 % 60 - 140 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 104 % 60 - 140 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 107 % 70 - 130 D4-1,2-Dichloroethane 2018/02/23 107 % 70 - 130 D8-Toluene 2018/02/23 <10				Vinyl Chloride	2018/02/23		95	%	70 - 130
o-Xylene 2018/02/23 106 % 70 - 130 F1 (C6-C10) 2018/02/23 104 % 60 - 140 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 104 % 60 - 140 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 107 % 70 - 130 D4-1,2-Dichloroethane 2018/02/23 107 % 70 - 130 D8-Toluene 2018/02/23 <10				n+m-Xvlene	2018/02/23		97	%	70 - 130
5413136 LGA Method Blank F1 (C6-C10) 2018/02/23 104 % 60 - 140 5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 89 % 70 - 130 D4-1,2-Dichloroethane 2018/02/23 107 % 70 - 130 D8-Toluene 2018/02/23 88 % 70 - 130 Acetone (2-Propanone) 2018/02/23 <10				o-Xvlene	2018/02/23		106	%	70 - 130
5413136 LGA Method Blank 4-Bromofluorobenzene 2018/02/23 89 % 70 - 130 D4-1,2-Dichloroethane 2018/02/23 107 % 70 - 130 D8-Toluene 2018/02/23 88 % 70 - 130 Acetone (2-Propanone) 2018/02/23 <10				E1 (C6-C10)	2018/02/23		104	%	60 - 140
D4-1,2-Dichloroethane 2018/02/23 107 % 70 - 130 D8-Toluene 2018/02/23 88 % 70 - 130 Acetone (2-Propanone) 2018/02/23 <10	5413136	IGA	Method Blank	4-Bromofluorobenzene	2018/02/23		89	%	70 - 130
D8-Toluene 2018/02/23 88 % 70 - 130 Acetone (2-Propanone) 2018/02/23 <10	5115150	20/1	Method Blank	D4-1.2-Dichloroethane	2018/02/23		107	%	70 - 130
Acetone (2-Propanone) 2018/02/23 <10				D8-Toluene	2018/02/23		88	%	70 - 130
Benzene 2018/02/23 <0.20				Acetone (2-Propanone)	2018/02/23	<10	00	uø/I	150
Bromodichloromethane2018/02/23<0.20ug/LBromoform2018/02/23<1.0				Benzene	2018/02/23	<0.20		ω ₀ / Ε	
Bromoform 2018/02/23 <0.50 ug/L Bromomethane 2018/02/23 <0.50				Bromodichloromethane	2018/02/23	<0.20		ч _б /∟ цø/I	
Bromomethane 2018/02/23 <1.0 ug/L Carbon Tetrachloride 2018/02/23 <0.20				Bromoform	2018/02/23	<1.0		∽6/⊏ ⊔σ/I	
Carbon Tetrachloride 2018/02/23 <0.30 ug/L				Bromomethane	2010/02/23	<0.50		ч <u>в</u> / ⊑ µø/I	
				Carbon Tetrachloride	2010/02/23	<0.30		ω ₆ / ⊑ μσ/Ι	
Chlorobenzene 2018/02/23 <0.20 ug/L				Chlorobenzene	2018/02/23	<0.20		ug/L	
Chloroform 2018/02/23 <0.20 ug/L				Chloroform	2010/02/23	<0.20		чб/ L 110/I	

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	OC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	OC Limits
Duten	iiiit	de type	Dibromochloromethane	2018/02/23	<0.50	Recovery		QC LITIII
			1.2-Dichlorobenzene	2018/02/23	<0.50		ug/I	
			1.3-Dichlorobenzene	2018/02/23	<0.50		ug/L	
			1.4-Dichlorobenzene	2018/02/23	<0.50		ug/L	
			Dichlorodifluoromethane (FREON 12)	2018/02/23	<1.0		ug/L	
			1.1-Dichloroethane	2018/02/23	<0.20		ug/L	
			1.2-Dichloroethane	2018/02/23	<0.50		ug/L	
			1.1-Dichloroethylene	2018/02/23	<0.20		ug/L	
			cis-1.2-Dichloroethylene	2018/02/23	<0.50		ug/L	
			trans-1.2-Dichloroethylene	2018/02/23	<0.50		ug/L	
			1.2-Dichloropropane	2018/02/23	<0.20		ug/L	
			cis-1,3-Dichloropropene	2018/02/23	< 0.30		ug/L	
			trans-1,3-Dichloropropene	2018/02/23	<0.40		ug/L	
			Ethylbenzene	2018/02/23	<0.20		ug/L	
			Ethylene Dibromide	2018/02/23	<0.20		ug/L	
			Hexane	2018/02/23	<1.0		ug/L	
			Methylene Chloride(Dichloromethane)	2018/02/23	<2.0		ug/L	
			Methyl Ethyl Ketone (2-Butanone)	2018/02/23	<10		ug/L	
			Methyl Isobutyl Ketone	2018/02/23	<5.0		ug/L	
			Methyl t-butyl ether (MTBE)	2018/02/23	<0.50		ug/L	
			Stvrene	2018/02/23	<0.50		ug/L	
			1.1.1.2-Tetrachloroethane	2018/02/23	<0.50		ug/L	
			1.1.2.2-Tetrachloroethane	2018/02/23	<0.50		ug/L	
			Tetrachloroethylene	2018/02/23	<0.20		ug/L	
			Toluene	2018/02/23	<0.20		ug/L	
			1,1,1-Trichloroethane	2018/02/23	<0.20		ug/L	
			1,1,2-Trichloroethane	2018/02/23	<0.50		ug/L	
			Trichloroethylene	2018/02/23	<0.20		ug/L	
			Trichlorofluoromethane (FREON 11)	2018/02/23	<0.50		ug/L	
			Vinyl Chloride	2018/02/23	<0.20		ug/L	
			p+m-Xylene	2018/02/23	<0.20		ug/L	
			o-Xylene	2018/02/23	<0.20		ug/L	
			Total Xylenes	2018/02/23	<0.20		ug/L	
			F1 (C6-C10)	2018/02/23	<25		ug/L	
			F1 (C6-C10) - BTEX	2018/02/23	<25		ug/L	
5413136	LGA	RPD [GDG964-02]	Acetone (2-Propanone)	2018/02/23	NC		%	30
			Benzene	2018/02/23	NC		%	30
			Bromodichloromethane	2018/02/23	NC		%	30
			Bromoform	2018/02/23	NC		%	30
			Bromomethane	2018/02/23	NC		%	30
			Carbon Tetrachloride	2018/02/23	NC		%	30
			Chlorobenzene	2018/02/23	NC		%	30
			Chloroform	2018/02/23	NC		%	30
			Dibromochloromethane	2018/02/23	NC		%	30
			1,2-Dichlorobenzene	2018/02/23	NC		%	30
			1,3-Dichlorobenzene	2018/02/23	NC		%	30
			1,4-Dichlorobenzene	2018/02/23	NC		%	30
			Dichlorodifluoromethane (FREON 12)	2018/02/23	NC		%	30
			1,1-Dichloroethane	2018/02/23	NC		%	30
			1,2-Dichloroethane	2018/02/23	NC		%	30
			1,1-Dichloroethylene	2018/02/23	NC		%	30
			cis-1,2-Dichloroethylene	2018/02/23	NC		%	30

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

QUALITY ASSURANCE REPORT(CONT'D)

0,,,00								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			trans-1,2-Dichloroethylene	2018/02/23	NC		%	30
			1,2-Dichloropropane	2018/02/23	NC		%	30
			cis-1,3-Dichloropropene	2018/02/23	NC		%	30
			trans-1,3-Dichloropropene	2018/02/23	NC		%	30
			Ethylbenzene	2018/02/23	NC		%	30
			Ethylene Dibromide	2018/02/23	NC		%	30
			Hexane	2018/02/23	NC		%	30
			Methylene Chloride(Dichloromethane)	2018/02/23	NC		%	30
			Methyl Ethyl Ketone (2-Butanone)	2018/02/23	NC		%	30
			Methyl Isobutyl Ketone	2018/02/23	NC		%	30
			Methyl t-butyl ether (MTBE)	2018/02/23	NC		%	30
			Styrene	2018/02/23	NC		%	30
			1,1,1,2-Tetrachloroethane	2018/02/23	NC		%	30
			1,1,2,2-Tetrachloroethane	2018/02/23	NC		%	30
			Tetrachloroethylene	2018/02/23	NC		%	30
			Toluene	2018/02/23	NC		%	30
			1,1,1-Trichloroethane	2018/02/23	NC		%	30
			1,1,2-Trichloroethane	2018/02/23	NC		%	30
			Trichloroethylene	2018/02/23	NC		%	30
			Trichlorofluoromethane (FREON 11)	2018/02/23	NC		%	30
			Vinyl Chloride	2018/02/23	NC		%	30
			p+m-Xylene	2018/02/23	NC		%	30
			o-Xylene	2018/02/23	NC		%	30
			Total Xylenes	2018/02/23	NC		%	30
			F1 (C6-C10)	2018/02/23	NC		%	30
			F1 (C6-C10) - BTEX	2018/02/23	NC		%	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Sampler Initials: RH

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

INVOICE TO:				1.75	a series	REPO	RT TO:				PROJECT INFORMATION:							Laboratory Use Only:		
#20206 Barkland Industries Ltd				Company	Mamo: #19684	Terrapex E	nvironmenta	I Ltd	States and	athua la	Quotation a	.	B751	11	A				Maxxam Job #:	Bottle Order #:
ompany Name: #30350 Parkiand industries Edd Company				Attention:	Geoff L	ussier					P.O. #:									
ention:	4919-59th St St	iite 100		Address:	920 Bra	int St. Suite 1	6				Project:		CB10	57.00	darde he				000 #	650870 Project Manager:
uress.	Red Deer AB T4	IN 6C9	el nulticour		Burling	on ON L7R 4	J1	in shield			Project Na	me:				Deliver.	-		COC #:	Project munager.
	(403) 357-6400	xFax:(403) 3	56-3015 x	Tel:	(905) 6	32-5939 x228	Fax:		CLLS & S		Site #:		1622	Roger 5	stevens L	Jrive			C#650870.04.01	Augustyna Dobosz
ail:	emilie.price@pa	rkland.ca, victoria.pianaro:	sa@parkland	d. Email:	g.lussie	er@terrapex.c	om				Sampled B	y:	(DI EASE		(2)	4 0110	-		Turnaround Time (TAT) R	tequired:
MO	REGULATED DRINKIN	G WATER OR WATER INT	ENDED FOR	HUMAN CC	NSUMPTION	MUST BE				en a	ALTOID REV	JOESTED	(FEEASE	JE OI EOI			\$		Please provide advance notice for	or rush projects
	SUBMITTED	ON THE MAXAM DRINKI	NG WATER C	SHAIN OF C	031001		cie):	F1 &		ulpha	(Å	-m			ckag		Tics F	Regular (Sta	andard) TAT:	
R	egulation 153 (2011)	Other f	Regulations	00000000000000000	Special In	structions	< circ	ns CCME F	4	Ng Pu	%silt, %clay	ssitt, %clay	Noc		s Pa	ss	atile Organ	(will be applied Standard TAT =	= 5-7 Working days for most tests	
able '	Res/Park Mediu	um/Fine CCME San	itary Sewer Byla m Sewer Bylaw	BW			Cr		IIS F2	tals a					ganica			Please note: Standard TAT for certain tests such as BOD and Dioxins/Furans are > 1		
able :	Agri/Other	ISC MISA Municip	pality	The gala			lq) b Hg.	carbo	carbo	S Me	pue,	5	ACT		o Inor	PCE	o Vola	days - contact y	our Project Manager for details.	wission)
able		PWQO					tered als /	ydroc	ydroc	CPM	(%se	2º	XTR.		TCLP	TCLF	TCLF	Job Specific Date Required	Feb 23 18 Tir	me Required:
		Other		<u></u>			d Fil	Ť.	н Ц	153	dure	0	12 E)	oint	558	558	558	Rush Confirma	tion Number. AP 20180223-	01 E
	Include Criter	ia on Certificate of Analysis	(Y/N)?				Fiel	EX	itrolei	Reg	oil Tex	aictur	1 Cat	ashp	Reg.	Reg	Reg	# of Bottles	Comm	nents
F	Sample Barcode Label	Sample (Location) Identifica	ation Da	ate Sampled	Time Sampled	Matrix		BIB	P	0	Ň	*	4	<u> </u>	0	0	0	*4		
		MWIOI	Fe	ib 23	9:13	GW	-	X	X									4		
		MU106	Fe	eb 23	9:25	SOIL GL	-	X	X			×						四日	23-Feb-18 1 Augustyna Dobos	
T		MILLAT	F	eh 23	10:00	SOIL	_	X	X				4					B84		
-		TUDT		co ne	Date	OW	The section	1		1		V						TRIL	B	341230
1		MW108	F	eb 23	Dils	GW		X	X	-		~		1.1				444		OTT 001
		Blank	F	Feb 23	9:30	SOIL		X	X		1		12.					1184		AWATTA
		MUMp Blam	KF	=eb23	9:06	SOT		X	11/14									HB2	RECEIVED IN C	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-		000	0 1	E1 02	14-00	SOIL	- Charles -	V						1.1				2		
		trip Still		reb x3	1.00	GW		-		-			-					Htp()		
		MUII2	F.	Eb 23	9:15	SOIL		X	X			6- 10- 10- 10- 10- 10- 10- 10- 10- 10- 10					-	1407		1
						SOIL													On	1 Ce
1				- 141 ⁹⁸		SOIL														
A RELINCIUSUED RY: (Signature/Print) Date: (YY/MM/DD) Time			me	RECEIVED	BY: (Signature	/Print)		Date: (YY	/MM/DD)	Т	ime	# jan	s used and			Laborat	tory Use Only	Paul Vac		
4	211 RACHEI	Her709	18/00/2	23 10:	10 MG	mana	Jasoon	Toas	ione	0/8/02	2/23	10	10			Time	Sensitive	Temperatu	re (°C) on Recei Presen	it 9
	in the Men	The focus i	- I Var I P										-	5 110	ALC: NO.	1		0,0	Intact	J J

Maxxam Analytics International Corporation o/a Maxxam Analytics

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your P.O. #: PIONEER Your Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your C.O.C. #: 650870-05-01

Attention: Geoff Lussier

Terrapex Environmental Ltd 920 Brant St. Suite 16 Burlington, ON Canada L7R 4J1

> Report Date: 2018/03/05 Report #: R5029583 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B842304 Received: 2018/02/23, 15:05

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
pH CaCl2 EXTRACT (1)	2	2018/03/02	2018/03/02	CAM SOP-00413	EPA 9045 D m
Sulphate (20:1 Extract) (1)	2	N/A	2018/03/02	CAM SOP-00464	EPA 375.4 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

Your P.O. #: PIONEER Your Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your C.O.C. #: 650870-05-01

Attention: Geoff Lussier

Terrapex Environmental Ltd 920 Brant St. Suite 16 Burlington, ON Canada L7R 4J1

> Report Date: 2018/03/05 Report #: R5029583 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B842304 Received: 2018/02/23, 15:05

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

RESULTS OF ANALYSES OF SOIL

Maxxam ID		GDL933	GDL934		GDL934					
Sampling Date		2018/02/21 13:00	2018/02/21 14:00		2018/02/21 14:00					
COC Number		650870-05-01	650870-05-01		650870-05-01					
	UNITS	MW102 SAMPLE 4	BH103 SAMPLE 2	QC Batch	BH103 SAMPLE 2 Lab-Dup	RDL	QC Batch			
Inorganics										
Available (CaCl2) pH	рН	7.85	7.93	5422743						
Soluble (20:1) Sulphate (SO4)	ug/g	54	54	5420892	42	20	5420892			
RDL = Reportable Detection Limit										
QC Batch = Quality Control Batch										
Lab-Dup = Laboratory Initiated	Duplica	te								

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

TEST SUMMARY

Maxxam ID: Sample ID:	GDL933 MW102 SAMPLE 4					Collected: Shipped:	2018/02/21
Matrix:	Soil					Received:	2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	5422743	2018/03/02	2018/03/02	Tahir Anw	ar
Sulphate (20:1 Extract)		KONE/EC	5420892	N/A	2018/03/02	Alina Dobr	eanu
Maxxam ID: Sample ID: Matrix:	GDL934 BH103 SAMPLE 2 Soil					Collected: Shipped: Received:	2018/02/21 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	5422743	2018/03/02	2018/03/02	Tahir Anw	ar
Sulphate (20:1 Extract)		KONE/EC	5420892	N/A	2018/03/02	Alina Dobr	reanu
Maxxam ID: Sample ID: Matrix:	GDL934 Dup BH103 SAMPLE 2 Soil					Collected: Shipped: Received:	2018/02/21 2018/02/23
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Sulphate (20:1 Extract)		KONE/EC	5420892	N/A	2018/03/02	Alina Dobr	reanu

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 0.0°C

Results relate only to the items tested.

Your P.O. #: PIONEER Your Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your C.O.C. #: 650870-06-01

Attention: Geoff Lussier

Terrapex Environmental Ltd 920 Brant St. Suite 16 Burlington, ON Canada L7R 4J1

> Report Date: 2018/03/12 Report #: R5038214 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B847405

Received: 2018/03/01, 17:00

Sample Matrix: Soil # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum (1)	1	N/A	2018/03/09	CAM SOP-00301	EPA 8270D m
ABN Compounds in soil by GC/MS (1)	1	2018/03/08	2018/03/09	CAM SOP-00301	EPA 8270 m
1,3-Dichloropropene Sum (1)	1	N/A	2018/03/07		EPA 8260C m
Dinitrotoluene Sum (1)	1	2018/03/02	2018/03/09	CAM SOP - 00301	EPA 8270
Petroleum Hydrocarbons F2-F4 in Soil (1, 2)	1	2018/03/06	2018/03/07	CAM SOP-00316	CCME CWS m
F4G (CCME Hydrocarbons Gravimetric) (1)	1	2018/03/09	2018/03/09	CAM SOP-00316	CCME PHC-CWS m
Mercury (TCLP Leachable) (mg/L) (1)	1	N/A	2018/03/07	CAM SOP-00453	EPA 7470A m
Total Metals in TCLP Leachate by ICPMS (1)	1	2018/03/07	2018/03/07	CAM SOP-00447	EPA 6020B m
Moisture (1)	1	N/A	2018/03/05	CAM SOP-00445	Carter 2nd ed 51.2 m
TCLP - % Solids (1)	1	2018/03/06	2018/03/07	CAM SOP-00401	EPA 1311 Update I m
TCLP - Extraction Fluid (1)	1	N/A	2018/03/07	CAM SOP-00401	EPA 1311 Update I m
TCLP - Initial and final pH (1)	1	N/A	2018/03/07	CAM SOP-00401	EPA 1311 Update I m
Volatile Organic Compounds and F1 PHCs (1)	1	N/A	2018/03/06	CAM SOP-00230	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Your P.O. #: PIONEER Your Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your C.O.C. #: 650870-06-01

Attention: Geoff Lussier

Terrapex Environmental Ltd 920 Brant St. Suite 16 Burlington, ON Canada L7R 4J1

> Report Date: 2018/03/12 Report #: R5038214 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B847405

Received: 2018/03/01, 17:00

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Maxxam Analytics Mississauga

(2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Augustyna Dobosz, Project Manager Email: ADobosz@maxxam.ca Phone# (905)817-5700 Ext:5798

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 22

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID		GEL410		
Sampling Data		2018/02/26		
		12:00		
COC Number		650870-06-01		
	UNITS	TCLP	RDL	QC Batch
Inorganics				
Moisture	%	8.3	1.0	5425860
Calculated Parameters				
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	0.050	5423161
Volatile Organics	•	•		
Acetone (2-Propanone)	ug/g	<0.50	0.50	5425684
Benzene	ug/g	<0.020	0.020	5425684
Bromodichloromethane	ug/g	<0.050	0.050	5425684
Bromoform	ug/g	<0.050	0.050	5425684
Bromomethane	ug/g	<0.050	0.050	5425684
Carbon Tetrachloride	ug/g	<0.050	0.050	5425684
Chlorobenzene	ug/g	<0.050	0.050	5425684
Chloroform	ug/g	<0.050	0.050	5425684
Dibromochloromethane	ug/g	<0.050	0.050	5425684
1,2-Dichlorobenzene	ug/g	<0.050	0.050	5425684
1,3-Dichlorobenzene	ug/g	<0.050	0.050	5425684
1,4-Dichlorobenzene	ug/g	<0.050	0.050	5425684
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	0.050	5425684
1,1-Dichloroethane	ug/g	<0.050	0.050	5425684
1,2-Dichloroethane	ug/g	<0.050	0.050	5425684
1,1-Dichloroethylene	ug/g	<0.050	0.050	5425684
cis-1,2-Dichloroethylene	ug/g	<0.050	0.050	5425684
trans-1,2-Dichloroethylene	ug/g	<0.050	0.050	5425684
1,2-Dichloropropane	ug/g	<0.050	0.050	5425684
cis-1,3-Dichloropropene	ug/g	<0.030	0.030	5425684
trans-1,3-Dichloropropene	ug/g	<0.040	0.040	5425684
Ethylbenzene	ug/g	<0.020	0.020	5425684
Ethylene Dibromide	ug/g	<0.050	0.050	5425684
Hexane	ug/g	<0.050	0.050	5425684
Methylene Chloride(Dichloromethane)	ug/g	<0.050	0.050	5425684
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	0.50	5425684
RDL = Reportable Detection Limit				

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

O.REG 153 VOCS BY HS & F1-F4 (SOIL)

Maxxam ID		GEL410		
Sampling Date		2018/02/26		
		12:00		
COC Number		650870-06-01		
	UNITS	TCLP	RDL	QC Batch
Methyl Isobutyl Ketone	ug/g	<0.50	0.50	5425684
Methyl t-butyl ether (MTBE)	ug/g	<0.050	0.050	5425684
Styrene	ug/g	<0.050	0.050	5425684
1,1,1,2-Tetrachloroethane	ug/g	<0.050	0.050	5425684
1,1,2,2-Tetrachloroethane	ug/g	<0.050	0.050	5425684
Tetrachloroethylene	ug/g	<0.050	0.050	5425684
Toluene	ug/g	<0.020	0.020	5425684
1,1,1-Trichloroethane	ug/g	<0.050	0.050	5425684
1,1,2-Trichloroethane	ug/g	<0.050	0.050	5425684
Trichloroethylene	ug/g	<0.050	0.050	5425684
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	0.050	5425684
Vinyl Chloride	ug/g	<0.020	0.020	5425684
p+m-Xylene	ug/g	<0.020	0.020	5425684
o-Xylene	ug/g	<0.020	0.020	5425684
Total Xylenes	ug/g	<0.020 0.020		5425684
F1 (C6-C10)	ug/g	<10	10	5425684
F1 (C6-C10) - BTEX	ug/g	<10	10	5425684
F2-F4 Hydrocarbons				
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	5428073
F3 (C16-C34 Hydrocarbons)	ug/g	290	50	5428073
F4 (C34-C50 Hydrocarbons)	ug/g	720	50	5428073
Reached Baseline at C50	ug/g	No		5428073
Surrogate Recovery (%)				
o-Terphenyl	%	92		5428073
4-Bromofluorobenzene	%	90		5425684
D10-o-Xylene	%	88		5425684
D4-1,2-Dichloroethane	%	116		5425684
D8-Toluene	%	99		5425684
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

O.REG 153 SEMIVOLATILES PACKAGE (SOIL)

Maxxam ID		GEL410			GEL410		
Sampling Date		2018/02/26 12:00			2018/02/26 12:00		
COC Number		650870-06-01			650870-06-01		
	UNITS	TCLP	RDL	QC Batch	TCLP Lab-Dup	RDL	QC Batch
Semivolatile Organics							
1,2,4-Trichlorobenzene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
1-Methylnaphthalene	ug/g	<0.06	0.06	5431382	<0.06	0.06	5431382
2,4,5-Trichlorophenol	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
2,4,6-Trichlorophenol	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
2,4-Dichlorophenol	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
2,4-Dimethylphenol	ug/g	<0.4	0.4	5431382	<0.4	0.4	5431382
2,4-Dinitrophenol	ug/g	<1	1	5431382	<1	1	5431382
2,4-Dinitrotoluene	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
2,6-Dinitrotoluene	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
2-Chlorophenol	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
2-Methylnaphthalene	ug/g	<0.06	0.06	5431382	<0.06	0.06	5431382
3,3'-Dichlorobenzidine	ug/g	<1	1	5431382	<1	1	5431382
Acenaphthene	ug/g	<0.06	0.06	5431382	<0.06	0.06	5431382
Acenaphthylene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
Anthracene	ug/g	<0.06	0.06	5431382	<0.06	0.06	5431382
Benzo(a)anthracene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
Benzo(a)pyrene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
Benzo(b/j)fluoranthene	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
Benzo(g,h,i)perylene	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
Benzo(k)fluoranthene	ug/g	<0.06	0.06	5431382	<0.06	0.06	5431382
Biphenyl	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
Bis(2-chloroethyl)ether	ug/g	<0.4	0.4	5431382	<0.4	0.4	5431382
Bis(2-chloroisopropyl)ether	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382
Bis(2-ethylhexyl)phthalate	ug/g	<2	2	5431382	<2	2	5431382
Chrysene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
Dibenz(a,h)anthracene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
Diethyl phthalate	ug/g	<0.4	0.4	5431382	<0.4	0.4	5431382
Dimethyl phthalate	ug/g	<0.4	0.4	5431382	<0.4	0.4	5431382
Fluoranthene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382
Fluorene	ug/g	<0.06	0.06	5431382	<0.06	0.06	5431382
RDL = Reportable Detection L	imit						
QC Batch = Quality Control Ba	atch						

Lab-Dup = Laboratory Initiated Duplicate

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

O.REG 153 SEMIVOLATILES PACKAGE (SOIL)

Maxxam ID		GEL410			GEL410			
Sampling Date		2018/02/26 12:00			2018/02/26 12:00			
COC Number		650870-06-01			650870-06-01			
	UNITS	TCLP	RDL	QC Batch	TCLP Lab-Dup	RDL	QC Batch	
Indeno(1,2,3-cd)pyrene	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382	
Naphthalene	ug/g	<0.06	0.06	5431382	<0.06	0.06	5431382	
p-Chloroaniline	ug/g	<0.4	0.4	5431382	<0.4	0.4	5431382	
Pentachlorophenol	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382	
Phenanthrene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382	
Phenol	ug/g	<0.2	0.2	5431382	<0.2	0.2	5431382	
Pyrene	ug/g	<0.1	0.1	5431382	<0.1	0.1	5431382	
Calculated Parameters								
2,4- & 2,6-Dinitrotoluene	ug/g	<0.28	0.28	5423858				
Methylnaphthalene, 2-(1-)	ug/g	<0.085	0.085	5423856				
Surrogate Recovery (%)					-			
2,4,6-Tribromophenol	%	73		5431382	69		5431382	
2-Fluorobiphenyl	%	92		5431382	88		5431382	
D14-Terphenyl (FS)	%	96		5431382	94		5431382	
D5-Nitrobenzene	%	74		5431382	72		5431382	
Reportable Detection Limit QC Batch = Quality Control Batch ab Dup = Laboratory Initiated Duplicate								

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

O.REG 558 TCLP LEACHATE PREPARATION (SOIL)

Maxxam ID		GEL410									
Sampling Date		2018/02/26									
COC Number		650870-06-01									
	UNITS	TCLP	RDL	QC Batch							
Inorganics											
Final pH	рН	6.26		5428355							
Initial pH	рН	9.41		5428355							
TCLP - % Solids	%	100	0.2	5428353							
TCLP Extraction Fluid	N/A	FLUID 1		5428354							
RDL = Reportable Detection Limit											
QC Batch = Quality Control Ba	atch			QC Batch = Quality Control Batch							

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

O.REG 558 TCLP METALS (SOIL)

Maxxam ID		GEL410		
Sampling Date		2018/02/26 12:00		
COC Number		650870-06-01		
	UNITS	TCLP	RDL	QC Batch
Metals				
Leachable Mercury (Hg)	mg/L	<0.0010	0.0010	5429337
Leachable Arsenic (As)	mg/L	<0.2	0.2	5429454
Leachable Barium (Ba)	mg/L	0.6	0.2	5429454
Leachable Boron (B)	mg/L	0.1	0.1	5429454
Leachable Cadmium (Cd)	mg/L	<0.05	0.05	5429454
Leachable Chromium (Cr)	mg/L	<0.1	0.1	5429454
Leachable Lead (Pb)	mg/L	<0.1	0.1	5429454
Leachable Selenium (Se)	mg/L	<0.1	0.1	5429454
Leachable Silver (Ag)	mg/L	<0.01	0.01	5429454
Leachable Uranium (U)	mg/L	<0.01	0.01	5429454
RDL = Reportable Detection I	imit			
QC Batch = Quality Control B	atch			

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		GEL410		
Sampling Date		2018/02/26 12:00		
COC Number		650870-06-01		
	UNITS	TCLP	RDL	QC Batch
F2-F4 Hydrocarbons				
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	2400	100	5433583
RDL = Reportable Detection Limit		-		
QC Batch = Quality Control Batch				

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

TEST SUMMARY

Maxxam ID: GEL410 Sample ID: TCLP Matrix: Soil					Collected: 2018/02/26 Shipped: Received: 2018/03/01
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5423856	N/A	2018/03/09	Automated Statchk
ABN Compounds in soil by GC/MS	GC/MS	5431382	2018/03/08	2018/03/09	Milijana Avramovic
1,3-Dichloropropene Sum	CALC	5423161	N/A	2018/03/07	Automated Statchk
Dinitrotoluene Sum	CALC	5423858	2018/03/09	2018/03/09	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5428073	2018/03/06	2018/03/07	Zhiyue (Frank) Zhu
F4G (CCME Hydrocarbons Gravimetric)	BAL	5433583	2018/03/09	2018/03/09	Debra Deslandes
Mercury (TCLP Leachable) (mg/L)	CV/AA	5429337	N/A	2018/03/07	Ron Morrison
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	5429454	2018/03/07	2018/03/07	Matthew Ritenburg
Moisture	BAL	5425860	N/A	2018/03/05	Min Yang
TCLP - % Solids	BAL	5428353	2018/03/06	2018/03/07	Jian (Ken) Wang
TCLP - Extraction Fluid		5428354	N/A	2018/03/07	Jian (Ken) Wang
TCLP - Initial and final pH	РН	5428355	N/A	2018/03/07	Jian (Ken) Wang
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5425684	N/A	2018/03/06	Karen Hughes

Maxxam ID: Sample ID: Matrix:	GEL410 Dup TCLP Soil					Collected: 2018/02/26 Shipped: Received: 2018/03/01
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
ABN Compounds in soil by	y GC/MS	GC/MS	5431382	2018/03/08	2018/03/09	Milijana Avramovic

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

GENERAL COMMENTS

Each	Each temperature is the average of up to three cooler temperatures taken at receipt									
	Package 1	0.0°C								
Sampl specif	Sample GEL410 [TCLP] : VOCF1 Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.									
ABN A	ABN Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.									
Resul	ts relate only to the	e items tested.								

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	OC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	OC Limits
5425684	KH2	Matrix Spike	4-Bromofluorobenzene	2018/03/06	Value	96	%	60 - 140
0.2000.		macintopino	D10-o-Xylene	2018/03/06		96	%	60 - 130
			D4-1.2-Dichloroethane	2018/03/06		110	%	60 - 140
			D8-Toluene	2018/03/06		100	%	60 - 140
			Acetone (2-Propanone)	2018/03/06		104	%	60 - 140
			Benzene	2018/03/06		99	%	60 - 140
			Bromodichloromethane	2018/03/06		95	%	60 - 140
			Bromoform	2018/03/06		85	%	60 - 140
			Bromomethane	2018/03/06		108	%	60 - 140
			Carbon Tetrachloride	2018/03/06		100	%	60 - 140
			Chlorobenzene	2018/03/06		94	%	60 - 140
			Chloroform	2018/03/06		101	%	60 - 140
			Dibromochloromethane	2018/03/06		91	%	60 - 140
			1 2-Dichlorobenzene	2018/03/06		95	%	60 - 140
			1 3-Dichlorobenzene	2018/03/06		96	%	60 - 140
			1 4-Dichlorobenzene	2018/03/06		102	%	60 - 140
			Dichlorodifluoromethane (EREON 12)	2018/03/06		102	%	60 - 140
			1 1-Dichloroethane	2018/03/06		103	%	60 - 140
			1.2-Dichloroethane	2018/03/06		103	/u %	60 - 140
			1 1-Dichloroethylene	2018/03/06		102	/u %	60 - 140
			cis-1 2-Dichloroethylene	2018/03/00		103	70 0/	60 - 140
			trans_1 2-Dichloroethylene	2018/03/06		98	/0 %	60 - 140
			1 2-Dichloropropage	2018/03/06		96	/u %	60 - 140
			cis-1 3-Dichloropropene	2018/03/06		95	/u %	60 - 140
			trans-1,3-Dichloropropene	2018/03/00		95	70 0/	60 - 140
			Ethylbenzene	2018/03/06		97	/0 %	60 - 140
			Ethylene Dibromide	2018/03/06		94	/u %	60 - 140
			Hevano	2018/03/00		102	70 0/	60 - 140
			Methylene Chloride(Dichloromethane)	2018/03/00		102	70 0/	60 - 140
			Methyl Ethyl Ketone (2-Butanone)	2018/03/00		100	70 0/	60 - 140
			Methyl Isobutyl Ketone	2018/03/00		102	70 0/	60 - 140
			Methyl t butyl other (MTRE)	2018/03/00		90	70 0/	60 - 140
			Styropo	2018/03/00		98	70 0/	60 - 140
			1 1 1 2 Totrachloroothano	2010/03/00		07	/0 0/	60 140
			1,1,2,2 Tetrachloroethane	2010/05/00		92	/0 0/	60 140
			Totrachlaraethylana	2010/03/00		94	/0 0/	60 140
			Toluono	2018/03/00		97	70 0/	60 - 140
			1 1 1 Trichloroothana	2018/03/00		104	70 0/	60 140
			1,1,2 Trichloroothane	2010/05/00		104	/0 0/	60 140
			1,1,2-Inchloroethalee	2018/03/06		103	70 0/	60 - 140
			Trichlorofluoremethone (EDEON 11)	2018/03/06		97	%	60 - 140
			Visud Chloride	2018/03/06		112	70 0/	60 - 140 CO 140
				2018/03/06		107	%	60 - 140
			p+m-xylene	2018/03/06		92	%	60 - 140
			0-xyiene	2018/03/06		93	%	60 - 140
E 435 60 6	1/110		F1 (Cb-C10)	2018/03/06		112	%	60 - 140
5425684	KH2	Spiked Blank	4-Bromofluorobenzene	2018/03/06		96	%	60 - 140
			D10-0-Xylene	2018/03/06		90	%	60 - 130
			D4-1,2-Dicnioroethane	2018/03/06		109	%	60 - 140
			D8-Toluene	2018/03/06		100	%	60 - 140
			Acetone (2-Propanone)	2018/03/06		102	%	60 - 140
			Benzene	2018/03/06		98	%	60 - 130
1			Bromodichloromethane	2018/03/06		94	%	60 - 130

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

QA/QC Batch	Init		Parameter	Date Applyzed	Value	Pecoverv		OC Limits
Dalti	mit	QCType	Bromoform	2018/03/06	value	83	01113	60 - 130
			Bromomethane	2018/03/06		104	70 %	60 - 1 <i>1</i> 0
			Carbon Tetrachloride	2018/03/06		104	70 %	60 - 130
			Chlorobenzene	2018/03/06		9/	70 %	60 - 130
			Chloroform	2018/03/06		101	%	60 - 130
			Dibromochloromethane	2018/03/06		89	%	60 - 130
			1 2-Dichlorobenzene	2018/03/06		96	%	60 - 130
			1 3-Dichlorobenzene	2018/03/06		99	%	60 - 130
			1 4-Dichlorobenzene	2018/03/06		105	70 %	60 - 130
			Dichlorodifluoromethane (EREON 12)	2018/03/06		105	70 %	60 - 1 <i>1</i> 0
			1 1-Dichloroethane	2018/03/06		103	70 %	60 - 130
			1.2-Dichloroethane	2018/03/00		105	70 0/	60 - 130
			1.1-Dichloroethylene	2018/03/00		101	70 0/	60 - 130
			cic-1 2-Dichloroethylene	2018/03/00		108	70 0/	60 - 130
			trans-1,2-Dichloroethylene	2018/03/00		101	70 0/	60 - 130
			1 2-Dichloropropapa	2018/03/00		96	70 0/	60 - 130
			cis 1.2 Dichloropropane	2018/03/00		90	/0 0/	60 120
			trans-1.3-Dichloropropene	2018/03/00		91	/0 0/_	60 - 130
			Ethylbonzono	2018/03/00		90 0E	70 0/	60 120
			Ethylene Dibromide	2018/03/00		95 50	70 0/	60 - 130
				2018/03/00		92	/0 0/	60 120
			Methylene Chloride(Dichloromethane)	2018/03/00		101	/0 0/_	60 - 130
			Methyl Ethyl Ketone (2 Butanone)	2018/03/00		100	70 0/	60 - 140
			Methyl Isobutyl Kotopo	2018/03/00		100	/0 0/	60 120
			Methyl t butyl ether (MTRE)	2018/03/00		94	/0	60 120
			Styropo	2018/03/00		98	70 0/	60 120
			1 1 1 2 Totrachlaraothana	2018/03/00		00	/0 0/	60 120
			1,1,2-Tetrachloroothane	2018/03/00		92	/0	60 120
			1,1,2,2-1etrachioroethalie	2018/03/06		93	70 0/	60 - 130
			Tetrachioroethylene	2018/03/06		98	70 0/	00 - 130 CO 130
			1 1 1 Trichloroothono	2018/03/06		92	% 0/	60 - 130
			1,1,1-Thenloroethane	2018/03/06		104	70 0/	60 - 130
				2018/03/06		102	70 0/	00 - 130 CO 130
			Trichland (house sthere (EDEON 11)	2018/03/06		98	%	60 - 130
			Vinul Chlorida	2018/03/06		112	% 0/	60 - 130
				2018/03/06		107	% 0/	60 - 130
			p+m-xylene	2018/03/06		93	% 0/	60 - 130
			0-xylene	2018/03/06		94	% 0/	60 - 130
5425604	1112	Mathed Diaul	FI (C6-C10)	2018/03/06		98	%	80 - 120
5425684	KHZ	Method Blank	4-Bromotiuorobenzene	2018/03/06		92	%	60 - 140
			D10-0-Xylene	2018/03/06		94	% 0/	60 - 130
			D4-1,2-Dichloroethane	2018/03/06		110	%	60 - 140
			D8-Toluene	2018/03/06	-0.50	100	%	60 - 140
			Acetone (2-Propanone)	2018/03/06	<0.50		ug/g	
			Benzene	2018/03/06	<0.020		ug/g	
			Bromodichloromethane	2018/03/06	<0.050		ug/g	
			Bromotorm	2018/03/06	<0.050		ug/g	
			Bromometnane	2018/03/06	<0.050		ug/g	
			Carbon Letrachloride	2018/03/06	< 0.050		ug/g	
			Chlorobenzene	2018/03/06	< 0.050		ug/g	
			Chlorotorm	2018/03/06	< 0.050		ug/g	
			Dibromochloromethane	2018/03/06	< 0.050		ug/g	
1			1,2-Dichlorobenzene	2018/03/06	<0.050		ug/g	

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recoverv	UNITS	QC Limits
Baton		Qu , jpc	1.3-Dichlorobenzene	2018/03/06	<0.050	necorery	ug/g	Q0 2
			1.4-Dichlorobenzene	2018/03/06	< 0.050		ug/g	
			Dichlorodifluoromethane (FREON 12)	2018/03/06	< 0.050		ug/g	
			1.1-Dichloroethane	2018/03/06	< 0.050		ug/g	
			1.2-Dichloroethane	2018/03/06	< 0.050		ug/g	
			1.1-Dichloroethylene	2018/03/06	< 0.050		ug/g	
			cis-1.2-Dichloroethylene	2018/03/06	< 0.050		ug/g	
			trans-1.2-Dichloroethylene	2018/03/06	< 0.050		8/8 ug/g	
			1.2-Dichloropropane	2018/03/06	< 0.050		8/8 ug/g	
			cis-1.3-Dichloropropene	2018/03/06	< 0.030		ua\a	
			trans-1.3-Dichloropropene	2018/03/06	< 0.040		8/8 ug/g	
			Ethylbenzene	2018/03/06	<0.020		~8/8 ug/g	
			Ethylene Dibromide	2018/03/06	<0.050		8/8 up/p	
			Hexane	2018/03/06	< 0.050		ua\a	
			Methylene Chloride(Dichloromethane)	2018/03/06	<0.050		~8/8 ug/g	
			Methyl Ethyl Ketone (2-Butanone)	2018/03/06	<0.50		~8/8 ug/g	
			Methyl Isobutyl Ketone	2018/03/06	<0.50		∝6/δ ιισ/σ	
			Methyl t-butyl ether (MTBE)	2018/03/06	<0.050		ω <u>α</u> γα Πα∖α	
			Styrene	2018/03/06	<0.050		~8/8 ug/g	
			1.1.1.2-Tetrachloroethane	2018/03/06	<0.050		~8/8 ug/g	
			1.1.2.2-Tetrachloroethane	2018/03/06	<0.050		~8/8 ug/g	
			Tetrachloroethylene	2018/03/06	<0.050		ω <u>α</u> γα Πα∖α	
			Toluene	2018/03/06	<0.020		8/8 ug/g	
			1.1.1-Trichloroethane	2018/03/06	<0.050		~8/8 ug/g	
			1.1.2-Trichloroethane	2018/03/06	<0.050		~8/8 ug/g	
			Trichloroethylene	2018/03/06	<0.050		ω <u>α</u> γα Πα∖α	
			Trichlorofluoromethane (EREON 11)	2018/03/06	<0.050		~8/8 ug/g	
			Vinyl Chloride	2018/03/06	<0.020		~8/8 ug/g	
			n+m-Xylene	2018/03/06	<0.020		∝6/δ ιισ/σ	
			o-Xvlene	2018/03/06	<0.020		∝6/δ ιισ/σ	
			Total Xylenes	2018/03/06	<0.020		ω <u>α</u> γα Πα∖α	
			F1 (C6-C10)	2018/03/06	<10		∝6/δ ιισ/σ	
			F1 (C6-C10) - BTEX	2018/03/06	<10		∝6/δ ιισ/σ	
5425684	кн2	RPD	Acetone (2-Propanone)	2018/03/06	NC		чы ы %	50
5125001	1112		Benzene	2018/03/06	NC		%	50
			Bromodichloromethane	2018/03/06	NC		%	50
			Bromoform	2018/03/06	NC		%	50
			Bromomethane	2018/03/06	NC		%	50
			Carbon Tetrachloride	2018/03/06	NC		%	50
			Chlorobenzene	2018/03/06	NC		%	50
			Chloroform	2018/03/06	NC		%	50
			Dibromochloromethane	2018/03/06	NC		%	50
			1 2-Dichlorobenzene	2018/03/06	NC		%	50
			1 3-Dichlorobenzene	2018/03/06	NC		%	50
			1 4-Dichlorobenzene	2018/03/06	NC		%	50
			Dichlorodifluoromethane (EREON 12)	2018/03/06	NC		%	50
			1 1-Dichloroethane	2010/03/00	NC		%	50
			1 2-Dichloroethane	2018/03/06	NC		%	50
			1 1-Dichloroethylene	2018/03/06	NC		%	50
			cis-1 2-Dichloroethylene	2010/03/00	NC		%	50
			trans-1.2-Dichloroethylene	2018/03/06	NC		%	50
			1 2-Dichloropropage	2018/03/06	NC		%	50
				2010/03/00			/0	50

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			cis-1,3-Dichloropropene	2018/03/06	NC		%	50
			trans-1,3-Dichloropropene	2018/03/06	NC		%	50
			Ethylbenzene	2018/03/06	NC		%	50
			Ethylene Dibromide	2018/03/06	NC		%	50
			Hexane	2018/03/06	NC		%	50
			Methylene Chloride(Dichloromethane)	2018/03/06	NC		%	50
			Methyl Ethyl Ketone (2-Butanone)	2018/03/06	NC		%	50
			Methyl Isobutyl Ketone	2018/03/06	NC		%	50
			Methyl t-butyl ether (MTBE)	2018/03/06	NC		%	50
			Styrene	2018/03/06	NC		%	50
			1,1,1,2-Tetrachloroethane	2018/03/06	NC		%	50
			1,1,2,2-Tetrachloroethane	2018/03/06	NC		%	50
			Tetrachloroethylene	2018/03/06	NC		%	50
			Toluene	2018/03/06	NC		%	50
			1,1,1-Trichloroethane	2018/03/06	NC		%	50
			1,1,2-Trichloroethane	2018/03/06	NC		%	50
			Trichloroethylene	2018/03/06	NC		%	50
			Trichlorofluoromethane (FREON 11)	2018/03/06	NC		%	50
			Vinyl Chloride	2018/03/06	NC		%	50
			p+m-Xylene	2018/03/06	NC		%	50
			o-Xylene	2018/03/06	NC		%	50
			Total Xylenes	2018/03/06	NC		%	50
			F1 (C6-C10)	2018/03/06	NC		%	30
			F1 (C6-C10) - BTEX	2018/03/06	NC		%	30
5425860	JGH	RPD	Moisture	2018/03/05	2.7		%	20
5428073	ZZ	Matrix Spike	o-Terphenyl	2018/03/07		94	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2018/03/07		93	%	50 - 130
			F3 (C16-C34 Hydrocarbons)	2018/03/07		95	%	50 - 130
			F4 (C34-C50 Hydrocarbons)	2018/03/07		97	%	50 - 130
5428073	ZZ	Spiked Blank	o-Terphenyl	2018/03/07		90	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2018/03/07		89	%	80 - 120
			F3 (C16-C34 Hydrocarbons)	2018/03/07		92	%	80 - 120
			F4 (C34-C50 Hydrocarbons)	2018/03/07		92	%	80 - 120
5428073	ZZ	Method Blank	o-Terphenyl	2018/03/07		93	%	60 - 130
			F2 (C10-C16 Hydrocarbons)	2018/03/07	<10		ug/g	
			F3 (C16-C34 Hydrocarbons)	2018/03/07	<50		ug/g	
			F4 (C34-C50 Hydrocarbons)	2018/03/07	<50		ug/g	
5428073	ZZ	RPD	F2 (C10-C16 Hydrocarbons)	2018/03/07	NC		%	30
			F3 (C16-C34 Hydrocarbons)	2018/03/07	NC		%	30
			F4 (C34-C50 Hydrocarbons)	2018/03/07	NC		%	30
5429337	RON	Matrix Spike	Leachable Mercury (Hg)	2018/03/07		98	%	75 - 125
5429337	RON	Leachate Blank	Leachable Mercury (Hg)	2018/03/07	< 0.0010		mg/L	
5429337	RON	Spiked Blank	Leachable Mercury (Hg)	2018/03/07		96	%	80 - 120
5429337	RON	Method Blank	Leachable Mercury (Hg)	2018/03/07	<0.0010		mg/L	
5429337	RON	RPD	Leachable Mercury (Hg)	2018/03/07	NC		%	25
5429454	MRG	Matrix Spike	Leachable Arsenic (As)	2018/03/07		100	%	80 - 120
			Leachable Barium (Ba)	2018/03/07		94	%	80 - 120
			Leachable Boron (B)	2018/03/07		100	%	80 - 120
			Leachable Cadmium (Cd)	2018/03/07		97	%	80 - 120
			Leachable Chromium (Cr)	2018/03/07		98	%	80 - 120
			Leachable Lead (Pb)	2018/03/07		92	%	80 - 120
			Leachable Selenium (Se)	2018/03/07		98	%	80 - 120

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

QA/QC Batch	Init		Darameter	Date Analyzed	Value	Becovery		OC Limits
Datch	mit	QCType	Leachable Silver (Ag)	2018/03/07	value	95	%	80 - 120
			Leachable Uranium (11)	2018/03/07		97	%	80 - 120
5429454	MRG	Leachate Blank	Leachable Arsenic (As)	2018/03/07	<0.2	57	mg/l	00 120
5125151	iiiiid		Leachable Barium (Ba)	2018/03/07	<0.2		mg/l	
			Leachable Boron (B)	2018/03/07	<0.2		mg/L	
			Leachable Cadmium (Cd)	2018/03/07	<0.05		mg/l	
			Leachable Chromium (Cr)	2018/03/07	<0.03		mg/l	
			Leachable Lead (Pb)	2018/03/07	<0.1		mg/l	
			Leachable Selenium (Se)	2018/03/07	<0.1		mg/l	
			Leachable Silver (Ag)	2018/03/07	< 0.01		mg/L	
			Leachable Uranium (U)	2018/03/07	< 0.01		mg/L	
5429454	MRG	Spiked Blank	Leachable Arsenic (As)	2018/03/07		93	%	80 - 120
		- p	Leachable Barium (Ba)	2018/03/07		93	%	80 - 120
			Leachable Boron (B)	2018/03/07		93	%	80 - 120
			Leachable Cadmium (Cd)	2018/03/07		93	%	80 - 120
			Leachable Chromium (Cr)	2018/03/07		91	%	80 - 120
			Leachable Lead (Pb)	2018/03/07		92	%	80 - 120
			Leachable Selenium (Se)	2018/03/07		93	%	80 - 120
			Leachable Silver (Ag)	2018/03/07		95	%	80 - 120
			Leachable Uranium (U)	2018/03/07		96	%	80 - 120
5429454	MRG	RPD	Leachable Arsenic (As)	2018/03/07	NC		%	35
			Leachable Barium (Ba)	2018/03/07	15		%	35
			Leachable Boron (B)	2018/03/07	27		%	35
			Leachable Cadmium (Cd)	2018/03/07	NC		%	35
			Leachable Chromium (Cr)	2018/03/07	NC		%	35
			Leachable Lead (Pb)	2018/03/07	NC		%	35
			Leachable Selenium (Se)	2018/03/07	NC		%	35
			Leachable Silver (Ag)	2018/03/07	NC		%	35
			Leachable Uranium (U)	2018/03/07	NC		%	35
5431382	MA	Matrix Spike [GEL410-01]	2.4.6-Tribromophenol	2018/03/09		104	%	50 - 130
			2-Fluorobiphenyl	2018/03/09		95	%	50 - 130
			D14-Terphenyl (FS)	2018/03/09		101	%	50 - 130
			D5-Nitrobenzene	2018/03/09		76	%	50 - 130
			1,2,4-Trichlorobenzene	2018/03/09		85	%	50 - 130
			1-Methylnaphthalene	2018/03/09		90	%	50 - 130
			2,4,5-Trichlorophenol	2018/03/09		107	%	50 - 130
			2,4,6-Trichlorophenol	2018/03/09		100	%	50 - 130
			2,4-Dichlorophenol	2018/03/09		99	%	50 - 130
			2,4-Dimethylphenol	2018/03/09		80	%	30 - 130
			2,4-Dinitrophenol	2018/03/09		44	%	30 - 130
			2,4-Dinitrotoluene	2018/03/09		91	%	50 - 130
			2,6-Dinitrotoluene	2018/03/09		82	%	50 - 130
			2-Chlorophenol	2018/03/09		88	%	50 - 130
			2-Methylnaphthalene	2018/03/09		89	%	50 - 130
			3,3'-Dichlorobenzidine	2018/03/09		101	%	30 - 130
			Acenaphthene	2018/03/09		105	%	50 - 130
			Acenaphthylene	2018/03/09		98	%	50 - 130
			Anthracene	2018/03/09		99	%	50 - 130
			Benzo(a)anthracene	2018/03/09		107	%	50 - 130
			Benzo(a)pyrene	2018/03/09		108	%	50 - 130
			Benzo(b/j)fluoranthene	2018/03/09		116	%	50 - 130
			Benzo(g,h,i)perylene	2018/03/09		68	%	50 - 130

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Benzo(k)fluoranthene	2018/03/09		121	%	50 - 130
			Biphenyl	2018/03/09		94	%	50 - 130
			Bis(2-chloroethyl)ether	2018/03/09		75	%	50 - 130
			Bis(2-chloroisopropyl)ether	2018/03/09		82	%	50 - 130
			Bis(2-ethylhexyl)phthalate	2018/03/09		101	%	50 - 130
			Chrysene	2018/03/09		110	%	50 - 130
			Dibenz(a,h)anthracene	2018/03/09		78	%	50 - 130
			Diethyl phthalate	2018/03/09		97	%	50 - 130
			Dimethyl phthalate	2018/03/09		100	%	50 - 130
			Fluoranthene	2018/03/09		114	%	50 - 130
			Fluorene	2018/03/09		108	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2018/03/09		76	%	50 - 130
			Naphthalene	2018/03/09		109	%	50 - 130
			p-Chloroaniline	2018/03/09		83	%	30 - 130
			Pentachlorophenol	2018/03/09		19 (1)	%	50 - 130
			Phenanthrene	2018/03/09		104	%	50 - 130
			Phenol	2018/03/09		88	%	30 - 130
			Pyrene	2018/03/09		106	%	50 - 130
5431382	MA	Spiked Blank	2,4,6-Tribromophenol	2018/03/08		86	%	50 - 130
			2-Fluorobiphenyl	2018/03/08		96	%	50 - 130
			D14-Terphenyl (FS)	2018/03/08		111	%	50 - 130
			D5-Nitrobenzene	2018/03/08		93	%	50 - 130
			1,2,4-Trichlorobenzene	2018/03/08		88	%	50 - 130
			1-Methylnaphthalene	2018/03/08		88	%	50 - 130
			2,4,5-Trichlorophenol	2018/03/08		102	%	50 - 130
			2,4,6-Trichlorophenol	2018/03/08		96	%	50 - 130
			2,4-Dichlorophenol	2018/03/08		81	%	50 - 130
			2,4-Dimethylphenol	2018/03/08		80	%	30 - 130
			2,4-Dinitrophenol	2018/03/08		10 (1)	%	30 - 130
			2,4-Dinitrotoluene	2018/03/08		97	%	50 - 130
			2,6-Dinitrotoluene	2018/03/08		93	%	50 - 130
			2-Chlorophenol	2018/03/08		92	%	50 - 130
			2-Methylnaphthalene	2018/03/08		86	%	50 - 130
			3,3'-Dichlorobenzidine	2018/03/08		62	%	30 - 130
			Acenaphthene	2018/03/08		100	%	50 - 130
			Acenaphthylene	2018/03/08		97	%	50 - 130
			Anthracene	2018/03/08		92	%	50 - 130
			Benzo(a)anthracene	2018/03/08		105	%	50 - 130
			Benzo(a)pyrene	2018/03/08		99	%	50 - 130
			Benzo(b/j)fluoranthene	2018/03/08		102	%	50 - 130
			Benzo(g,h,i)perylene	2018/03/08		108	%	50 - 130
			Benzo(k)fluoranthene	2018/03/08		111	%	50 - 130
			Biphenyl	2018/03/08		89	%	50 - 130
			Bis(2-chloroethyl)ether	2018/03/08		92	%	50 - 130
			Bis(2-chloroisopropyl)ether	2018/03/08		93	%	50 - 130
			Bis(2-ethylhexyl)phthalate	2018/03/08		89	%	50 - 130
			Chrysene	2018/03/08		103	%	50 - 130
			Dibenz(a,h)anthracene	2018/03/08		108	%	50 - 130
			Diethyl phthalate	2018/03/08		103	%	50 - 130
			Dimethyl phthalate	2018/03/08		95	%	50 - 130
			Fluoranthene	2018/03/08		107	%	50 - 130
			Fluorene	2018/03/08		107	%	50 - 130

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Indeno(1,2,3-cd)pyrene	2018/03/08		103	%	50 - 130
			Naphthalene	2018/03/08		103	%	50 - 130
			p-Chloroaniline	2018/03/08		60	%	30 - 130
			Pentachlorophenol	2018/03/08		63	%	50 - 130
			Phenanthrene	2018/03/08		97	%	50 - 130
			Phenol	2018/03/08		98	%	30 - 130
			Pyrene	2018/03/08		118	%	50 - 130
5431382	MA	Method Blank	2,4,6-Tribromophenol	2018/03/08		73	%	50 - 130
			2-Fluorobiphenyl	2018/03/08		102	%	50 - 130
			D14-Terphenyl (FS)	2018/03/08		110	%	50 - 130
			D5-Nitrobenzene	2018/03/08		94	%	50 - 130
			1,2,4-Trichlorobenzene	2018/03/08	<0.05		ug/g	
			1-Methylnaphthalene	2018/03/08	<0.03		ug/g	
			2,4,5-Trichlorophenol	2018/03/08	<0.08		ug/g	
			2,4,6-Trichlorophenol	2018/03/08	<0.1		ug/g	
			2,4-Dichlorophenol	2018/03/08	<0.1		ug/g	
			2,4-Dimethylphenol	2018/03/08	<0.2		ug/g	
			2,4-Dinitrophenol	2018/03/08	<0.5		ug/g	
			2,4-Dinitrotoluene	2018/03/08	<0.1		ug/g	
			2,6-Dinitrotoluene	2018/03/08	<0.1		ug/g	
			2-Chlorophenol	2018/03/08	<0.08		ug/g	
			2-Methylnaphthalene	2018/03/08	<0.03		ug/g	
			3,3'-Dichlorobenzidine	2018/03/08	<0.5		ug/g	
			Acenaphthene	2018/03/08	<0.03		ug/g	
			Acenaphthylene	2018/03/08	<0.05		ug/g	
			Anthracene	2018/03/08	<0.03		ug/g	
			Benzo(a)anthracene	2018/03/08	<0.05		ug/g	
			Benzo(a)pyrene	2018/03/08	<0.05		ug/g	
			Benzo(b/j)fluoranthene	2018/03/08	<0.1		ug/g	
			Benzo(g,h,i)perylene	2018/03/08	<0.1		ug/g	
			Benzo(k)fluoranthene	2018/03/08	<0.03		ug/g	
			Biphenyl	2018/03/08	<0.05		ug/g	
			Bis(2-chloroethyl)ether	2018/03/08	<0.2		ug/g	
			Bis(2-chloroisopropyl)ether	2018/03/08	<0.1		ug/g	
			Bis(2-ethylhexyl)phthalate	2018/03/08	<1		ug/g	
			Chrysene	2018/03/08	<0.05		ug/g	
			Dibenz(a,h)anthracene	2018/03/08	<0.05		ug/g	
			Diethyl phthalate	2018/03/08	<0.2		ug/g	
			Dimethyl phthalate	2018/03/08	<0.2		ug/g	
			Fluoranthene	2018/03/08	<0.05		ug/g	
			Fluorene	2018/03/08	<0.03		ug/g	
			Indeno(1,2,3-cd)pyrene	2018/03/08	<0.08		ug/g	
			Naphthalene	2018/03/08	<0.03		ug/g	
			p-Chloroaniline	2018/03/08	<0.2		ug/g	
			Pentachlorophenol	2018/03/08	<0.1		ug/g	
			Phenanthrene	2018/03/08	<0.05		ug/g	
			Phenol	2018/03/08	<0.09		ug/g	
			Pyrene	2018/03/08	<0.05		ug/g	
5431382	MA	RPD [GEL410-01]	1,2,4-Trichlorobenzene	2018/03/09	NC		%	40
			1-Methylnaphthalene	2018/03/09	NC		%	40
			2,4,5-Trichlorophenol	2018/03/09	NC		%	40
			2,4,6-Trichlorophenol	2018/03/09	NC		%	40

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

QUALITY ASSURANCE REPORT(CONT'D)

Batch Init QC Type Parameter Date Analyzed Value Recovery UNITS QC Li 2,4-Dichlorophenol 2,4-Dichlorophenol 2018/03/09 NC % 44 2,4-Dinethylphenol 2018/03/09 NC % 44 2,4-Dinitrophenol 2018/03/09 NC % 44 2,4-Dinitrotoluene 2018/03/09 NC % 44 2,6-Dinitrotoluene 2018/03/09 NC % 44 4,6-Canaphthene 2018/03/09 NC % 44 Accmaphthylene 2018/03/09 NC % 44 Anthracene 2018/03/09 NC % 44 Benzo(k)r)Houranthene 2018/03/09				
2.4-Dichlorophenol 2018/03/09 NC % 44 2.4-Dimethylphenol 2018/03/09 NC % 44 2.4-Dinitrotoluene 2018/03/09 NC % 44 2.4-Dinitrotoluene 2018/03/09 NC % 44 2.4-Dinitrotoluene 2018/03/09 NC % 44 2.6-Dinitrotoluene 2018/03/09 NC % 44 3.3-Dichlorobenzidine 2018/03/09 NC % 44 Acenaphthene 2018/03/09 NC % 44 Acenaphthylene 2018/03/09 NC % 44 Benzo(a)apyrene 2018/03/09 NC % 44 Benzo(b/j)fluoranthene 2018/03/09 NC % 44 Benzo(k/fluoranthene 2018/03/09 NC % 44 Bis(2-chlorostorpolylether <	Date Analyzed Value Recovery UNI	Parameter Date Analyzed Value	Date Analyzed Value Recovery	NITS QC Limits
2,4-Dimethylphenol 2018/03/09 NC % 44 2,4-Dinitrophenol 2018/03/09 NC % 44 2,4-Dinitrotoluene 2018/03/09 NC % 44 2,6-Dinitrotoluene 2018/03/09 NC % 44 2,-Chlorophenol 2018/03/09 NC % 44 2,-Chlorophenol 2018/03/09 NC % 44 3,3'-Dichlorobenzidine 2018/03/09 NC % 44 Acenaphthene 2018/03/09 NC % 44 Acenaphthylene 2018/03/09 NC % 44 Acenaphthylene 2018/03/09 NC % 44 Acenaphthylene 2018/03/09 NC % 44 Benzo(a)anthracene 2018/03/09 NC % 44 Benzo(b)jfluoranthene 2018/03/09 NC % 44 Benzo(k)jfluoranthene 2018/03/09 NC % 44 Benzo(k)jfluoranthene 2018/03/09 NC % 44 Bis(2-chloroisopropyl)ether 2018	2018/03/09 NC %	2,4-Dichlorophenol 2018/03/09 NC	ienol 2018/03/09 NC	% 40
2,4-Dinitrophenol 2018/03/09 NC % 44 2,4-Dinitrotoluene 2018/03/09 NC % 44 2,6-Dinitrotoluene 2018/03/09 NC % 44 2,-Chlorophenol 2018/03/09 NC % 44 2-Methylnaphthalene 2018/03/09 NC % 44 3,3'-Dichlorobenzidine 2018/03/09 NC % 44 Acenaphthene 2018/03/09 NC % 44 Acenaphthylene 2018/03/09 NC % 44 Anthracene 2018/03/09 NC % 44 Benzo(a)anthracene 2018/03/09 NC % 44 Benzo(a)anthracene 2018/03/09 NC % 44 Benzo(b/)fluoranthene 2018/03/09 NC % 44 Bis(2-chloroethyl)ether 2	2018/03/09 NC %	2,4-Dimethylphenol 2018/03/09 NC	henol 2018/03/09 NC	% 40
2,4-Dinitrotoluene 2018/03/09 NC % 44 2,6-Dinitrotoluene 2018/03/09 NC % 44 2-Chlorophenol 2018/03/09 NC % 44 2-Methylnaphthalene 2018/03/09 NC % 44 3,3'-Dichlorobenzidine 2018/03/09 NC % 44 Acenaphthene 2018/03/09 NC % 44 Acenaphthylene 2018/03/09 NC % 44 Active aphthylene 2018/03/09 NC % 44 Benzo(a)anthracene 2018/03/09 NC % 44 Benzo(a)pyrene 2018/03/09 NC % 44 Benzo(a)pyrene 2018/03/09 NC % 44 Benzo(k)filuoranthene 2018/03/09 NC % 44 Benzo(k)filuoranthene 2018/03/09 NC % 44 Bis(2-chlorositypleter 2018/03/09 NC % 44 Bis(2-chlorostyplylether 2018/03/09 NC % 44 Bis(2-chlorostyplylether <	2018/03/09 NC %	2,4-Dinitrophenol 2018/03/09 NC	nol 2018/03/09 NC	% 40
2,6-Dinitrotoluene 2018/03/09 NC % 44 2-Chlorophenol 2018/03/09 NC % 44 2-Methylnaphthalene 2018/03/09 NC % 44 3,3'-Dichlorobenzidine 2018/03/09 NC % 44 Acenaphthene 2018/03/09 NC % 44 Acenaphthylene 2018/03/09 NC % 44 Benzo(a)anthracene 2018/03/09 NC % 44 Benzo(b/j)fluoranthene 2018/03/09 NC % 44 Benzo(g,h,i)perylene 2018/03/09 NC % 44 Benzo(k/fluoranthene 2018/03/09 NC % 44 Bis(2-chlorosthyl)ether 2018/03/09 NC % 44 Bis(2-chlorosthyl)ether 2018/03/09 NC % 44 Bis(2-chlorosthylphthalate	2018/03/09 NC %	2,4-Dinitrotoluene 2018/03/09 NC	iene 2018/03/09 NC	% 40
2-Chlorophenol 2018/03/09 NC % 44 2-Methylnaphthalene 2018/03/09 NC % 44 3,3'-Dichlorobenzidine 2018/03/09 NC % 44 Acenaphthene 2018/03/09 NC % 44 Acenaphthylene 2018/03/09 NC % 44 Acenaphthylene 2018/03/09 NC % 44 Anthracene 2018/03/09 NC % 44 Benzo(a)anthracene 2018/03/09 NC % 44 Benzo(a)pyrene 2018/03/09 NC % 44 Benzo(k)/jfluoranthene 2018/03/09 NC % 44 Benzo(k)/fluoranthene 2018/03/09 NC % 44 Benzo(k)/fluoranthene 2018/03/09 NC % 44 Bis(2-chloroisopropyl)ether 2018/03/09 NC % 44 Bis(2-chloroisopropyl)ether 2018/03/09 NC % 44 Bis(2-chloroisopropyl)ether 2018/03/09 NC % 44 Bis(2-chloroisopropyl)p	2018/03/09 NC %	2,6-Dinitrotoluene 2018/03/09 NC	iene 2018/03/09 NC	% 40
2-Methylnaphthalene 2018/03/09 NC % 44 3,3'-Dichlorobenzidine 2018/03/09 NC % 44 Acenaphthene 2018/03/09 NC % 44 Acenaphthylene 2018/03/09 NC % 44 Acenaphthylene 2018/03/09 NC % 44 Actenaphthylene 2018/03/09 NC % 44 Benzo(a)anthracene 2018/03/09 NC % 44 Benzo(b)jfluoranthene 2018/03/09 NC % 44 Benzo(g,h,i)perylene 2018/03/09 NC % 44 Benzo(g,h,i)perylene 2018/03/09 NC % 44 Benzo(k)fluoranthene 2018/03/09 NC % 44 Bis(2-chloroethyl)ether 2018/03/09 NC % 44 Bis(2-chloroisopropyl)ether	2018/03/09 NC %	2-Chlorophenol 2018/03/09 NC	ol 2018/03/09 NC	% 40
3,3'-Dichlorobenzidine 2018/03/09 NC % 44 Acenaphthene 2018/03/09 NC % 44 Acenaphthylene 2018/03/09 NC % 44 Anthracene 2018/03/09 NC % 44 Benzo(a)anthracene 2018/03/09 NC % 44 Benzo(a)aphthene 2018/03/09 NC % 44 Benzo(a)pyrene 2018/03/09 NC % 44 Benzo(b/j)fluoranthene 2018/03/09 NC % 44 Benzo(g,h,i)perylene 2018/03/09 NC % 44 Benzo(k)fluoranthene 2018/03/09 NC % 44 Benzo(k)fluoranthene 2018/03/09 NC % 44 Bis(2-chlorothyl)ether 2018/03/09 NC % 44 Bis(2-chlorotisopropyl)ether 2018/03/09 NC % 44 Bis(2-chlorotisopropyl)ether 2018/03/09 NC % 44 Dibenz(a,h)anthracene 2018/03/09 NC % 44 Dibenz(a,h)anthrac	2018/03/09 NC %	2-Methylnaphthalene 2018/03/09 NC	thalene 2018/03/09 NC	% 40
Acenaphthene 2018/03/09 NC % 44 Acenaphthylene 2018/03/09 NC % 44 Acenaphthylene 2018/03/09 NC % 44 Anthracene 2018/03/09 NC % 44 Benzo(a)anthracene 2018/03/09 NC % 44 Benzo(a)pyrene 2018/03/09 NC % 44 Benzo(g,h,i)perylene 2018/03/09 NC % 44 Benzo(k)fluoranthene 2018/03/09 NC % 44 Bis(2-chloroethyl)ether 2018/03/09 NC % 44 Bis(2-chloroisopropyl)ether 2018/03/09 NC % 44 Bis(2-ethylhexyl)phthalate 2018/03/09 NC % 44 Dibenz(a,h)anthracene 2018/03/09 NC % 44 Dibenz(a,h)anthracene	2018/03/09 NC %	3,3'-Dichlorobenzidine 2018/03/09 NC	enzidine 2018/03/09 NC	% 40
Acenaphthylene 2018/03/09 NC % 44 Anthracene 2018/03/09 NC % 44 Benzo(a)anthracene 2018/03/09 NC % 44 Benzo(a)aptrene 2018/03/09 NC % 44 Benzo(a)pyrene 2018/03/09 NC % 44 Benzo(b/j)fluoranthene 2018/03/09 NC % 44 Benzo(g,h,i)perylene 2018/03/09 NC % 44 Benzo(k)fluoranthene 2018/03/09 NC % 44 Bighenyl 2018/03/09 NC % 44 Bis(2-chlorothyl)ether 2018/03/09 NC % 44 Bis(2-chloroisopropyl)ether 2018/03/09 NC % 44 Dis(2-ethylhexyl)phthalate 2018/03/09 NC % 44 Dibenz(a,h)anthracene	2018/03/09 NC %	Acenaphthene 2018/03/09 NC	2018/03/09 NC	% 40
Anthracene 2018/03/09 NC % 44 Benzo(a)anthracene 2018/03/09 NC % 44 Benzo(a)pyrene 2018/03/09 NC % 44 Benzo(b/j)fluoranthene 2018/03/09 NC % 44 Benzo(b/j)fluoranthene 2018/03/09 NC % 44 Benzo(k)fluoranthene 2018/03/09 NC % 44 Benzo(k)fluoranthene 2018/03/09 NC % 44 Biphenyl 2018/03/09 NC % 44 Bis(2-chloroethyl)ether 2018/03/09 NC % 44 Bis(2-chloroisopropyl)ether 2018/03/09 NC % 44 Bis(2-chloroisopropyl)ether 2018/03/09 NC % 44 Bis(2-ethylhexyl)phthalate 2018/03/09 NC % 44 Dibenz(a,h)anthracene 2018/03/09 NC % 44 Dibenz(b/l phthalate 2018/03/09 NC % 44 Diethyl phthalate 2018/03/09 NC % 44 Diethyl ph	2018/03/09 NC %	Acenaphthylene 2018/03/09 NC	1e 2018/03/09 NC	% 40
Benzo(a)anthracene 2018/03/09 NC % 44 Benzo(a)pyrene 2018/03/09 NC % 44 Benzo(b/j)fluoranthene 2018/03/09 NC % 44 Benzo(g,h,i)perylene 2018/03/09 NC % 44 Benzo(k)fluoranthene 2018/03/09 NC % 44 Benzo(k)fluoranthene 2018/03/09 NC % 44 Bis(2-chloroethyl)ether 2018/03/09 NC % 44 Bis(2-chloroethyl)ether 2018/03/09 NC % 44 Bis(2-chloroisopropyl)ether 2018/03/09 NC % 44 Dibenz(a,h)anthracene 2018/03/09 NC % 44 Dibenz(a,h)anthracene 2018/03/09 NC % 44 Diethyl phthalate 2018/03/09 NC % 44	2018/03/09 NC %	Anthracene 2018/03/09 NC	2018/03/09 NC	% 40
Benzo(a)pyrene 2018/03/09 NC % 44 Benzo(b/j)fluoranthene 2018/03/09 NC % 44 Benzo(g,h,i)perylene 2018/03/09 NC % 44 Benzo(k)fluoranthene 2018/03/09 NC % 44 Benzo(k)fluoranthene 2018/03/09 NC % 44 Biphenyl 2018/03/09 NC % 44 Bis(2-chloroethyl)ether 2018/03/09 NC % 44 Bis(2-chloroisopropyl)ether 2018/03/09 NC % 44 Diber2(a,h)anthracene 2018/03/09 NC % 44 Dibenz(a,h)anthracene 2018/03/09 NC % 44 Diethyl phthalate	2018/03/09 NC %	Benzo(a)anthracene 2018/03/09 NC	acene 2018/03/09 NC	% 40
Benzo(b/j)fluoranthene 2018/03/09 NC % 44 Benzo(g,h,i)perylene 2018/03/09 NC % 44 Benzo(k)fluoranthene 2018/03/09 NC % 44 Biphenyl 2018/03/09 NC % 44 Bis(2-chloroethyl)ether 2018/03/09 NC % 44 Bis(2-chloroethyl)ether 2018/03/09 NC % 44 Bis(2-chloroethyl)ether 2018/03/09 NC % 44 Bis(2-chloroisopropyl)ether 2018/03/09 NC % 44 Diber2(a,h)anthracene 2018/03/09 NC % 44 Dibenz(a,h)anthracene 2018/03/09 NC % 44 Diethyl phthalate 2018/03/09 NC % 44 Diethyl phthalate 2018/03/09 NC % 44	2018/03/09 NC %	Benzo(a)pyrene 2018/03/09 NC	e 2018/03/09 NC	% 40
Benzo(g,h,i)perylene 2018/03/09 NC % 44 Benzo(k)fluoranthene 2018/03/09 NC % 44 Biphenyl 2018/03/09 NC % 44 Bis(2-chloroethyl)ether 2018/03/09 NC % 44 Bis(2-chloroethyl)ether 2018/03/09 NC % 44 Bis(2-chloroisopropyl)ether 2018/03/09 NC % 44 Chrysene 2018/03/09 NC % 44 Dibenz(a,h)anthracene 2018/03/09 NC % 44 Diethyl phthalate 2018/03/09 NC % 44	2018/03/09 NC %	Benzo(b/j)fluoranthene 2018/03/09 NC	ranthene 2018/03/09 NC	% 40
Benzo(k)fluoranthene 2018/03/09 NC % 44 Biphenyl 2018/03/09 NC % 44 Bis(2-chloroethyl)ether 2018/03/09 NC % 44 Bis(2-chloroethyl)ether 2018/03/09 NC % 44 Bis(2-chloroisopropyl)ether 2018/03/09 NC % 44 Bis(2-ethylhexyl)phthalate 2018/03/09 NC % 44 Dibenz(a,h)anthracene 2018/03/09 NC % 44 Diethyl phthalate 2018/03/09 NC % 44	2018/03/09 NC %	Benzo(g,h,i)perylene 2018/03/09 NC	rylene 2018/03/09 NC	% 40
Biphenyl 2018/03/09 NC % 44 Bis(2-chloroethyl)ether 2018/03/09 NC % 44 Bis(2-chloroisopropyl)ether 2018/03/09 NC % 44 Bis(2-ethylhexyl)phthalate 2018/03/09 NC % 44 Chrysene 2018/03/09 NC % 44 Dibenz(a,h)anthracene 2018/03/09 NC % 44 Diethyl phthalate 2018/03/09 NC % 44	2018/03/09 NC %	Benzo(k)fluoranthene 2018/03/09 NC	nthene 2018/03/09 NC	% 40
Bis(2-chloroethyl)ether 2018/03/09 NC % 44 Bis(2-chloroisopropyl)ether 2018/03/09 NC % 44 Bis(2-ethylhexyl)phthalate 2018/03/09 NC % 44 Chrysene 2018/03/09 NC % 44 Dibenz(a,h)anthracene 2018/03/09 NC % 44 Diethyl phthalate 2018/03/09 NC % 44 Diethyl phthalate 2018/03/09 NC % 44	2018/03/09 NC %	Biphenyl 2018/03/09 NC	2018/03/09 NC	% 40
Bis(2-chloroisopropyl)ether 2018/03/09 NC % 44 Bis(2-ethylhexyl)phthalate 2018/03/09 NC % 44 Chrysene 2018/03/09 NC % 44 Dibenz(a,h)anthracene 2018/03/09 NC % 44 Diethyl phthalate 2018/03/09 NC % 44	2018/03/09 NC %	Bis(2-chloroethyl)ether 2018/03/09 NC	nyl)ether 2018/03/09 NC	% 40
Bis(2-ethylhexyl)phthalate 2018/03/09 NC % 44 Chrysene 2018/03/09 NC % 44 Dibenz(a,h)anthracene 2018/03/09 NC % 44 Diethyl phthalate 2018/03/09 NC % 44	2018/03/09 NC %	Bis(2-chloroisopropyl)ether 2018/03/09 NC	propyl)ether 2018/03/09 NC	% 40
Chrysene 2018/03/09 NC % 44 Dibenz(a,h)anthracene 2018/03/09 NC % 44 Diethyl phthalate 2018/03/09 NC % 44	2018/03/09 NC %	Bis(2-ethylhexyl)phthalate 2018/03/09 NC	yl)phthalate 2018/03/09 NC	% 40
Dibenz(a,h)anthracene2018/03/09NC%44Diethyl phthalate2018/03/09NC%40	2018/03/09 NC %	Chrysene 2018/03/09 NC	2018/03/09 NC	% 40
Diethyl phthalate 2018/03/09 NC % 40	2018/03/09 NC %	Dibenz(a,h)anthracene 2018/03/09 NC	hracene 2018/03/09 NC	% 40
	2018/03/09 NC %	Diethyl phthalate 2018/03/09 NC	ate 2018/03/09 NC	% 40
Dimethyl phthalate 2018/03/09 NC % 40	2018/03/09 NC %	Dimethyl phthalate 2018/03/09 NC	alate 2018/03/09 NC	% 40
Fluoranthene 2018/03/09 NC % 44	2018/03/09 NC %	Fluoranthene 2018/03/09 NC	2018/03/09 NC	% 40
Fluorene 2018/03/09 NC % 44	2018/03/09 NC %	Fluorene 2018/03/09 NC	2018/03/09 NC	% 40
Indeno(1,2,3-cd)pyrene 2018/03/09 NC % 44	2018/03/09 NC %	Indeno(1,2,3-cd)pyrene 2018/03/09 NC	d)pyrene 2018/03/09 NC	% 40
Naphthalene 2018/03/09 NC % 44	2018/03/09 NC %	Naphthalene 2018/03/09 NC	2018/03/09 NC	% 40
p-Chloroaniline 2018/03/09 NC % 44	2018/03/09 NC %	p-Chloroaniline 2018/03/09 NC	e 2018/03/09 NC	% 40
Pentachlorophenol 2018/03/09 NC % 44	2018/03/09 NC %	Pentachlorophenol 2018/03/09 NC	ienol 2018/03/09 NC	% 40
Phenanthrene 2018/03/09 NC % 44	2018/03/09 NC %	Phenanthrene 2018/03/09 NC	2018/03/09 NC	% 40
Phenol 2018/03/09 NC % 44	2018/03/09 NC %	Phenol 2018/03/09 NC	2018/03/09 NC	% 40
Pyrene 2018/03/09 NC % 40	2018/03/09 NC %	Pyrene 2018/03/09 NC	2018/03/09 NC	% 40
5433583 DDS Matrix Spike [GEL410-03] F4G-sg (Grav. Heavy Hydrocarbons) 2018/03/09 NC % 65 -	2018/03/09 NC %	.0-03] F4G-sg (Grav. Heavy Hydrocarbons) 2018/03/09	Heavy Hydrocarbons) 2018/03/09 NC	% 65 - 135
5433583 DDS Spiked Blank F4G-sg (Grav. Heavy Hydrocarbons) 2018/03/09 100 % 65 -	2018/03/09 100 %	F4G-sg (Grav. Heavy Hydrocarbons) 2018/03/09	Heavy Hydrocarbons) 2018/03/09 100	% 65 - 135
5433583 DDS Method Blank F4G-sg (Grav. Heavy Hydrocarbons) 2018/03/09 <100 ug/g	2018/03/09 <100 ug/	F4G-sg (Grav. Heavy Hydrocarbons) 2018/03/09 <100	Heavy Hydrocarbons) 2018/03/09 <100	g/gL
5433583 DDS RPD F4G-sg (Grav. Heavy Hydrocarbons) 2018/03/09 0 % 56	2018/03/09 0 %	F4G-sg (Grav. Heavy Hydrocarbons) 2018/03/09 0	Heavy Hydrocarbons) 2018/03/09 0	% 50

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The recovery was below the lower control limit. This may represent a low bias in some results for this specific analyte.

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

avisting Carriere

Cristina Carriere, Scientific Service Specialist

Eve F Eva Pra

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

1.22 6	INVOICE TO:				REPO	DRT TO:	_					PROJEC	TINFORM	ATION:		Aı	igustyna	Dobosz	Iv:
maay Name #30396 Park!	and Industries Ltd		Company	Name: #1968	4 Terrapex E	Environment	al Ltd		1.00	Quatation		B751	11	15-16-5					Bottle Order #:
Retail Invoices			- Attention	Geoff	ussier			- Unit	1.10	PO #	#.	1.1.1	1.00	1.18			B847 4	105	
dress: 4919-59th St S	Suite 100	المراجع المراجع	Address:	920 Br	ant St. Suite	16				Project:		CB10	57.00					NIT COO	650870
Red Deer AB	F4N 6C9			Burling	ton ON L7R	4J1				Project Na	me:	_		14. I		MA	F E	NV-678	Project Manager:
(403) 357-6400	0 x Fax: (40	03) 356-3015 >	X Tel:	(905) 6	32-5939 x22	B Fax:				Site #:		1622	Roger S	Stevens I	Drive				Augustyna Dobosz
ail: emilie.price@p	barkland.ca, victoria.pia	anarosa@park	land. Email:	g.lussi	er@terrapex.	com		J.S.W.	_	Sampled B	By:	_6	6		Carlson (_	C#650870-06-01	
MOE REGULATED DRINK	ING WATER OR WATER	R INTENDED F	OR HUMAN C		MUST BE		-	-	AN	ALYSIS REC	QUESTED (PLEASE E	BE SPECIF	FIC)		1 10		Turnaround Time (TA Please provide advance not	AT) Required: tice for rush projects
SODIWITTE	D ON THE MAAAAWI DR		R CHAIN OF C	001001		cie):	F1 &		1	10				9999		H SS	Regular (S	tandard) TAT:	• Sheet and the second s
Regulation 153 (2011)		Other Regulations	Bulow	Special I	structions	<pre>circle</pre>	GME	-F4	SE	C. lei				Dag		ganik	(will be applied	d if Rush TAT is not specified):	
Image: Addition of the second seco	RSC MISA M	Storm Sewer By Municipality	/law			ed (please / Hg / Cr	ocarbons C(ocarbons F2	No Metalis	540		LACT		P magain	PoBs	P Volatile O	Standard TAT Please note: S days - contact	= 5-7 Working days for most tests Standard TAT for certain tests such your Project Manager for details.	s h as BOD and Dioxins/Furans are
	Other			7.8.9		Tilter	Hydn	Hydr	22	1 00		XTR		TCL	P	TCL	Date Required	Rush TAT (if applies to entire	Time Required:
Include Crite	pria on Certificate of Ana	lysis (Y/N)?				Me Me	enm	mnei	5	- al	e	aCI2 B	Ĭ	g 558 Hew		3 558	Rush Confirm	ation Number:	(call lab for #)
Sample Barcode Label	Sample (Location) Id	Ientification	Date Sampled	Time Sampled	Matrix	- E	Petrol	Petro	C/C	OR	Moistu	OH C	1	O.Rei	ALC: N	0.Re	# of Bottles	c	comments
3	TELP		Fob 26	12:00	SOIL	-	X	X	X	X	-	-	*	X		-	As		
÷.				No.	SOIL														
				L	SOIL	1.3						8							
2		-			SOIL						1			-					
	/				SOIL	-							.3	6			2		ATTAMA
¢.,					SOIL							<u>×</u>	Jac.					RECEIVED IN	UTIANA
					SOIL														
			×		SOIL														
			•	4 	SOIL									-				Onic	e
					SOIL	-1.1.51						s - 1		9	8.				
* RELINQUISHED BY:	(Signature/Print)	Date: (YY/M	IM/DD) Tir	ne	RECEIVED	BY: (Signature/	Print)		Date: (YY/	MM/DD)	Tim	10	# jars u	used and	1		Laborat	ory Use Only	
	~	18/03/	0 1:3	50 Mar	iang Va	nont	ana	m	2018	10160	17:	00	not su	ubmitted	Time S	ensitive	Temperatu	re (°C) on Recei Custor	dy Seal Yes N
judy n				1.11	2 1/1/10	VGN	Edui-	2 91	P19102	102	09:	50			19.1		0,0	Int Int	act 4

Terrapex Environmental Ltd Client Project #: CB1057.00 Project name: 1622 Roger Stevens Drive Client ID: TCLP

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
5420892	ADB	Matrix Spike [GDL934-01]	Soluble (20:1) Sulphate (SO4)	2018/03/02		NC	%	70 - 130
5420892	ADB	Spiked Blank	Soluble (20:1) Sulphate (SO4)	2018/03/02		103	%	70 - 130
5420892	ADB	Method Blank	Soluble (20:1) Sulphate (SO4)	2018/03/02	<20		ug/g	
5420892	ADB	RPD [GDL934-01]	Soluble (20:1) Sulphate (SO4)	2018/03/02	25		%	35
5422743	TA1	Spiked Blank	Available (CaCl2) pH	2018/03/02		100	%	97 - 103
5422743	TA1	RPD	Available (CaCl2) pH	2018/03/02	0.22		%	N/A

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

Terrapex Environmental Ltd Client Project #: CB1057.00 Site Location: 1622 Roger Stevens Drive Your P.O. #: PIONEER

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

austin Camere

Cristina Carriere, Scientific Service Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

		INVOICE TO:			REP	ORT TO:	100000			-		PROIE	CTINEOP	MATION			1	Laborate at 11	Page of	
ompanu	Name #30396 Parkla	ind Industries Ltd	0	#1968	4 Terrapex	Environment	tal I td		11510	B75111						Laboratory Use Only:				
tention	Retail Invoices		Compa	Geoff	ussier	environment		-		Quotation #: B75111								Maxxam Job #: Bottle G		
Idress.	4919-59th St Si	uite 100	Attentio	ress: 920 Brant St. Suite 16							. 41	CB1057.00					-			
	Red Deer AB T	4N 6C9	Address	Burling	ton ON L7R	4J1		-		Project:		Pa	101	a.d	Kar	1	1	000 #	650870	
et	(403) 357-6400	x Fax (403) 356-	3015 x Tel	(905)	32-5939 x22	8 Fax				Site #	ame.	1622	Roger S	Stevens	Drive		II II II II II II		Project manager.	
mail:	emilie.price@pa	arkland.ca, victoria.pianarosa@	parkland. Email:	g.lussi	er@terrapex.	com	W.	b		Sampled	By	Gro	1 5	train	n	-		C#6E0970 OF OI	Augustyna Dobosz	
MO	EREGULATED DRINKI	IG WATER OR WATER INTEN	ED FOR HUMAN	CONSUMPTION	MUST BE	1.1.1.1.1		0H	AN	ALYSIS RE	QUESTED	(PLEASE	E SPECI	FIC)	-			Tumamund Time (TAT) Re	nuired:	
	SUBMITTED	ON THE MAXXAM DRINKING	WATER CHAIN OF	CUSTODY			4	light	hate		2.94.7			e		\$	a te Jar	Please provide advance notice for	rush projects	
R	egulation 153 (2011)	Other Regu	lations	Special I	structions	ircle		12	Sulp	(ys)	1. A.			loka		Sil	Regular (St	andard) TAT:	5	
Table '	Res/Park Media	am/Fine CCME Sanitary	Sewer Bylaw	1.0		r <l< td=""><td></td><td>F2-F</td><td>and</td><td>%c</td><td rowspan="2">%sitt, %ct</td><td rowspan="2"></td><td></td><td>cs Pac</td><td></td><td>Orga</td><td>Standard TAT</td><td>IT Rush TAT is not specified):</td><td>Ļ</td></l<>		F2-F	and	%c	%sitt, %ct			cs Pac		Orga	Standard TAT	IT Rush TAT is not specified):	Ļ	
Table 2	Ind/Comm Coars	e Reg 558. Storm S	wer Bylaw			olea:		ons l	etais	%silt				gani	- 2	alle	Standard TAT = 5-7 Working days for most tests. Please note: Standard TAT for certain tests such as 300 and Diculos/Europs are > 5			
Table :	Agri/Other For R	SC MISA Municipality	·			d) pe		Carb C	S M	and,		CT		Inor	PCB	Vola	days - contact y	rour Project Manager for details.		
		D Other				Itere	4	lydro	CPW	(%8		CTRA		CLP	CLP	CLP	Job Specific	Rush TAT (if applies to entire submit	ision)	
	lasted- Oritz					Met	THE TO	É É	153	ture		12 E)	tu	1 858	1 859	58.7	Date Required. Rush Confirma	Time	Required:	
	Sample Barcode Label	Sample (Location) Identification		Time Coursis	Matrix	- <u><u><u></u></u></u>	「「「」	trole	Reg	olf Tex	oistun	CaC	pdys	6ey	ges	seg 5	H of Bettler	(ca)	lab for #)	
-	annua parcode capel	Multication identification	Fe hn page	time sampled	Matrix		88	P	Ö	So	W	Hd	Fla	o	0	0.6	# un notires	Commer	ts	
		Sumple 4	21 1/10	1:00pm	SOIL	NO	X							10			1			
-		RH102	February				A	-	-						_			22 F.1 10 1	E.0.E	
1		Sample 2	AL 2018	2:00pm	SOIL	NO	X										+	23-Feb-18 1	5:05	
-		sample o-	011/2010		1000		1/ .		-							-	1	Augustyna Dobos	Z	
					SOIL							. 1								
													-					B842304		
					SOIL				`											
					0.011		-	-	-									URE ENV-90		
					SOIL												1	· · · · · · · · · · · · ·		
					801														ATATA	
					SOIL													RECEIVED IN OT	AWA	
					SOIL					2										
_					JOIL															
					SOIL															
					UUIL															
					SOIL													0 10		
	.5 *			•		·						· ·						Unice		
ň.	2				SOIL	1.1.1														
	PELINOUISHED BY ((anatura/Pulat) Data:			DEGENIER			L												
OU	A Acular 44	essan 18/	17/22 15		RECEIVED	BT: (Signature/	ennty		Date: (YY/M	M/DD)	Tin	ne OE	not su	bmitted	Time Sc	ariti va	Laborator	y Use Only	L Mare L No.	
17	TRACHE L M	RCEO 6 1 101	12123 .0.1	Mar	ana Da	Scon 101	ascon	-	dis IS/10	213	19	105			Thine St	o C	Temperature	(°C) on Recei Present	Tes No	
LESS C	THERWISE AGREED TO IN W	RITING WORK SUBMITTED ON THIS CH	AIN DE CUSTODY IS SU	BIECT TO MAXYAN	S STANDARD TO	BWS AND CONT	DITIONE E		102/	24	10	04		-	0,	0,0		Intact	3	
CNOWLE	DGMENT AND ACCEPTANCE	OF OUR TERMS WHICH ARE AVAILABL	E FOR VIEWING AT WWW	W.MAXXAM.CA/TER	MS.	AND GUNL	a 10 ko. 5	GINNO (OF THIS GRAIN	OF CUST	JUT DOCU	NENI IS						White	: Maxxa Yellow: Clier	
IS THE	ESPONSIBILITY OF THE REL	INQUISHER TO ENSURE THE ACCURAC	Y OF THE CHAIN OF CU	STODY RECORD. A	N INCOMPLETE	CHAIN OF CUSTO	ODY MAY R	ESULTI	N ANALYTICA	L TAT DEL	AYS.			SAMPL	ES MUST	UNTIL	DELIVERY TO MA	FROM TIME OF SAMPLING		
AMPLE	CONTAINER, PRESERVATION	HOLD TIME AND PACKAGE INFORMAT	ION CAN BE VIEWED AT	THTTP://MAXXAM.C	AWP-CONTENT/	UPLOADS/ONTA	RIO-COC.F	PDF.						1						
																	5121	2		