PROJECT: 117308 - 5.2.2

DESIGN BRIEF CCR WAREHOUSE ADDITION 20 COPE DRIVE

Table of Contents

1	INTRO	DUCTION	ON	1
	1.1	Scope		1
	1.2	Subjec	ct Site	1
	1.3	Previo	us Studies	1
	1.4	Pre-co	onsultation	1
2	WATE	R SUPF	PLY	2
	2.1	Existin	ng Conditions	2
	2.2	Desigr	n Criteria	2
		2.2.1	Water Demands	2
		2.2.2	System Pressure	2
		2.2.3	Fire Flow Rates	3
		2.2.4	Boundary Conditions	3
		2.2.5	Hydraulic Model	3
	2.3	Propos	sed Water Plan	3
		2.3.1	Watermain Layout	3
		2.3.2	Modeling Results	3
3	WAST	EWATE	R DISPOSAL	5
	3.1	Existin	ng Conditions	5
	3.2	Desigr	n Criteria	5
	3.3	Recon	nmended Wastewater Plan	5
4	SITE	STORM	WATER MANAGEMENT	6
	4.1	Existin	ng Conditions	6
	4.2	Desigr	n Criteria	6
	4.3	Propos	sed Minor System	6
	4.4	Storm	water Management	7
	4.5	Inlet C	ontrols	7

SEPTEMBER 2018

Table of Contents (continued)

4.0	On-Site Detention	0
4.6		_
	4.6.1 Site Inlet Control	8
	4.6.2 Roof Inlet Controls	9
	4.6.3 Overall Release Rate	9
SEDIN	MENT AND EROSION CONTROL PLAN	10
5.1	General	10
5.2	Trench Dewatering	10
5.3	Bulkhead Barriers	10
5.4	Seepage Barriers	10
5.5	Surface Structure Filters	11
CONC	CLUSION	12

List of Figures

Figure 1 Key Plan

SEPTEMBER 2018

Table of Contents (continued)

List of Appendices

Appendix A Site Plan A1.0

Pre-Consultation Notes

Watermain Boundary Condition
Watermain Demand Calculation Sheet

Fire Flow Calculations

Water Model Schematic and Results

Appendix B SOHO West – Sanitary Sewer Flow Allocation, *Stantec*

Sanitary Drainage Area Plan Drawing No 117308-C-400

Sanitary Sewer Design Sheet General Plan 117308-C-001

General Notes and Legend Plan 117308-C-10

Appendix C Existing Conditions Site Plan, *OMM/TROW*

Monahan Drain Cell 1 Modelling – Figure 3, J.F. Sabourin & Associates Inc.

Storm Drainage Area Plan Drawing No. 117308-C-500

Storm Sewer Design Sheet

Stormwater Management Calculations Ponding Plan Drawing No. 117308-C-600 Average Runoff Coefficient Calculations

Appendix D Erosion and Sediment Control Plan Drawing No. 117308-C-900

SEPTEMBER 2018 iii

1 INTRODUCTION

1.1 Scope

IBI Group has been retained by Farmhouse Investments Inc. to prepare the necessary engineering plans, specifications and documents to support the proposed Site Plan Application for the subject lands in accordance with the policies set out by the Planning and Development Branch of the City of Ottawa. This Brief will present a detailed servicing scheme to support development of the property, and will include sections on water supply, wastewater management, minor and major stormwater management along with erosion and sediment control.

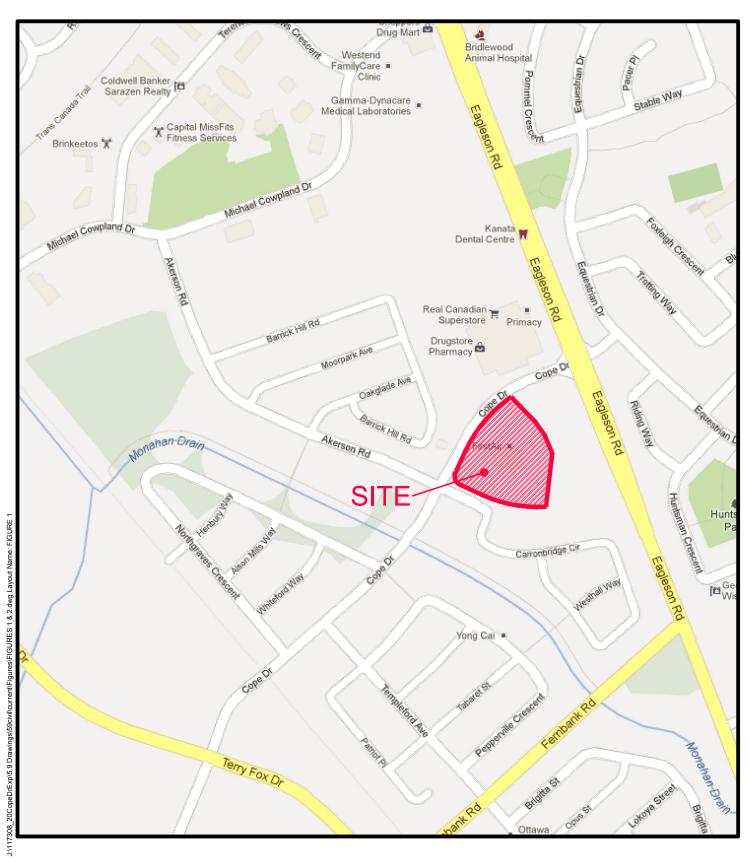
1.2 Subject Site

The CCR facility is located at 20 Cope Drive at the southwest corner of the Eagleson Road and Cope Drive intersection. The parcel is approximately 2.16 hectares in size and is bounded by Akerson Road allowance to the south, 10 Cope Drive (proposed Kanata West Center) to the east, and Cope Drive to the north. Please refer to **Figure 1** for more information regarding the site location.

The proposed expansion of the CCR facility will consist of the construction of a warehouse building to be connected to the existing building and the expansion and reconfiguring of vehicular access routes, dedicated parking space and landscaping areas. The proposed Site Plan A1.0 is included in **Appendix A**.

1.3 Previous Studies

Design of this project has been undertaken in accordance with the following reports:


- SOHO West, Phases 1 and 2 Stormwater Management Report prepared by Stantec, October 2007
- SOHO Development Servicing Report prepared by Stantec, December 2006
- SOHO West-Phase 3-REV3 Serviceability Report prepared by Stantec, September 2011
- Monahan Drain Model Update prepared by J.F.Sabourin and Associates Inc, September 2014
- Stormwater Management Report, SOFPAK Center, prepared by Oliver, Mangione, McCalla & Associates, June 3, 1999
- First Air Office Stormwater Management Report, prepared by Trow Associates Inc, May 2006

1.4 Pre-consultation

Pre-consultation with the City was held June 7, 2018 regarding the proposed development. Notes from this meeting may be found in **Appendix A**.

It should be noted that pre-consultation with the Ministry of the Environment and Climate Change will be arranged imminently.

Plot Style: AIA STANDARD COLOR-HALF.CTB Plot Scale: 0.0408:1 Plotted At: Sep. 19, 18 10:06 AM Printed By: DENIS DORE Last Saved By: DDORE Last Saved At: Sep. 19, 18

2 WATER SUPPLY

2.1 Existing Conditions

As previously noted, the 2.16 hectare site is located west of Eagleson Road and south of Cope Drive. An existing 305 mm diameter watermain is located within the Cope Drive right of way and an existing 200 mm watermain services the site off the Cope Drive watermain. The watermains fall within the City of Ottawa's pressure district **Zone 3W** which will provide the water supply to the site.

2.2 Design Criteria

2.2.1 Water Demands

Water demands have been calculated for the subject site. A consumption rate for commercial development of 28,000 l/gross/ha/day is taken from Table 4.2 of the Ottawa Design Guidelines – Water Distribution and is summarized as follows:

ICI Average Day Demand 28,000 l/gross ha/day
 ICI Peak Daily Demand 42,000 l/gross ha/day
 ICI Peak Hour Demand 75,600 l/gross ha/day

A watermain demand calculation sheet is included in **Appendix A** and the total water demands are summarized as follows:

Average Day 0.70 l/s
 Maximum Day 1.05 l/s
 Peak Hour 1.89 l/s

2.2.2 System Pressure

The Ottawa Design Guidelines – Water Distribution (WDG001), July 2010, City of Ottawa, Clause 4.2.2 states that the preferred practice for design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 480 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in Clause 4.2.2 of the guidelines are as follows:

Minimum Pressure Minimum system pressure under peak hour demand conditions shall not

be less than 276 kPa (40 psi)

Fire Flow During the period of maximum day demand, the system pressure shall

not be less than 140 kPa (20 psi) during a fire flow event.

Maximum Pressure In accordance with the Ontario Building/Plumbing Code, the maximum

pressure should not exceed 552 kPa (80 psi). Pressure reduction controls will be required for buildings where it is not possible/feasible to

maintain the system pressure below 552 kPa.

2.2.3 Fire Flow Rates

The CCR facility site plan consists of a two storey office building and a one storey warehouse building addition which are linked by a common entrance and mechanical room. Calculations using the Fire Underwriting Survey (FUS) method were conducted to determine the fire flow requirement for the site. Results of the analysis provides a maximum fire flow rate of 11,000 l/min or 183.3 l/s is required which is used in the hydraulic analysis. A copy of the FUS calculations are included in **Appendix A**.

2.2.4 Boundary Conditions

The City of Ottawa has provided a hydraulic boundary condition at the intersection of Akerson Road and Cope Drive where the connection to the site will occur. A copy of the boundary conditions is included in **Appendix A** and summarized as follows:

Table 2.1 Hydraulic Boundary Conditions at Akerson and Cope

SCENARIO	HGL
Max HGL (Basic Day)	161.7 m
Min HGL (Peak Hour)	156.4 m
Max Day + Fire Flow (250 l/s Fire Flow)	152.7 m

2.2.5 Hydraulic Model

A computer model for the subject development has been developed using the H20 MAP Version 6.0 program produced by MWH Soft Inc. The model includes the existing watermain and boundary condition provided by the City. The model has been created by adding the subject site to a water model created for the adjacent Kanata South Center site.

2.3 Proposed Water Plan

2.3.1 Watermain Layout

In order to provide additional reliability to the system in case of a watermain break two connections to the City's watermain system are proposed. The existing connection to the 305 mm watermain within the Cope Drive right of way will be maintained, and a connection to the proposed 200Ø main to service the adjacent 10 Cope Drive development which will connect to the existing 406 mm watermain within the unopened Akerson Road allowance. A fire hydrant is placed at the northwest corner of the office building and is approximately 35 meters from the building sprinkler system fire connection. All watermains on-site are 200mm diameter as required to meet the fire flow criteria.

2.3.2 Modeling Results

The hydraulic model was run under basic day, maximum day with fire flows and under peak hour conditions. Basic day and peak hour pressures are taken at node J-3 which represents the building while the fire flow is taken at node J-4 which is the location of the hydrant.

Results of the hydraulic model are include in **Appendix A** and summarized as follows:

Scenario

Basic Day (Max HGL) Pressure Range 639.9 kPa
Peak Hour (Min HGL) Pressure Range 587.9 kPa
Min Design Fire Flow @ 140 kPa and 183 L/s 620.6 L/s

A comparison of the results and design criteria is summarized as follows:

Maximum Pressure All nodes have basic day pressures over 552 kPa, therefore pressure

reducing control is required for this development. All pressures are less

than the manimum pressure in unoccupied areas of 689 kPa

Minimum Pressure All nodes are above the minimum pressure of 276 kPa

Fire Flow The FUS fire demand of 183 l/s is met at the fire node.

3 WASTEWATER DISPOSAL

3.1 Existing Conditions

The CCR facility is located within the South Glen Cairn sanitary trunk sewer tributary area which ultimately outlets to the Hazeldean Pumping Station. As part of the adjacent SOHO West Phase 3 & 4 serviceability analysis, completed in 2011, a review of the sanitary flows from the area was conducted. The subject lands were included in the analysis and it was established that these lands have been accommodated in the South Glen Cairn sanitary trunk sewer and Hazeldean Pumping Station flow estimates. A copy of excerpts from the report have been included in **Appendix B**.

3.2 Design Criteria

The sanitary sewers for the subject site will be based on the City of Ottawa design criteria. It should be noted that the sanitary sewer design for this study incorporates the latest City of Ottawa design parameters identified in Technical Bulletin ISTB-2018-01. Some of the key criteria will include the following:

Commercial/Institutional flow 28,000 l/ha/d

Peaking factor
 1.5 if ICI in contributing area >20%

1.0 if ICI in contributing area <20%

Infiltration allowance 0.33 l/s/ha

Velocities
 0.60 m/s min. to 3.0 m/s max.

3.3 Recommended Wastewater Plan

The on-site sanitary system will consist of utilizing the existing 200 mm PVC sewer from the main to the existing monitoring MH. A new sewer will be constructed from the existing monitoring MH to the expanded building since the proposed expansion is over top of the existing sewer. The existing and proposed sewer capacity to accommodate the warehouse expansion have been verified using the criteria noted above in section 3.2A copy of the sanitary drainage area plan 117308-C-400 and the sanitary sewer design sheet can be found in **Appendix B.** Please refer to the site servicing plan 117308-C-001 and details plan 117308-C-010 for further details.

4 SITE STORMWATER MANAGEMENT

4.1 Existing Conditions

When the site was originally development in 1999, the detail design for that SPA included stormwater management strategy for site. In 2006, the parking lot was reconfigured and the 2006 Trow Stormwater Management Report detailed the on-site stormwater management measures where the site was limited to 148.3 l/s which equated to the 5 year design. On site storage was provided to accommodate up to the 100 year event. The site has two service connections to the Cope storm sewer system, a 200Ø and 450Ø service, see record drawing in **Appendix C**. The existing storm system included an oil grit separator, this was required because at the time of the facilities construction, the downstream infrastructure (sewers and stormwater management pond) had not yet been constructed. Now that these facilities are in place there is no need to retain the OGS.

4.2 Design Criteria

In 2014 J.F. Sabourin & Associates were engaged by the City of Ottawa to conduct an analysis of the Monahan Drain Cell 1 and provide recommendations to upgrade the facility. As part of their report a figure was prepared that identified the tributary areas for the Monahan Drain Cell 1 and noted the release rates used in their model. The subject lands were included in the figure and identified as a portion of node CommSE. The JFSA figure notes that the stormwater flow allocation for the subject lands during the 100 year return event is 70 L/s/ha, which will be used for detailed design. A copy of JFSA's Figure 3 confirming the above can be found in **Appendix C.**

The stormwater system was designed following the principles of dual drainage, making accommodations for both major and minor flow.

Some of the key criteria include the following:

•	Design Storm	1:5 year return (Ottawa)
•	Rational Method Sewer Sizing	
•	Initial Time of Concentration	10 minutes
•	Runoff Coefficients	
	- Landscaped Areas	C = 0.30
	- Asphalt/Concrete	C = 0.90
	- Roof	C = 0.90
•	Pipe Velocities	0.80 m/s to 6.0 m/s
•	Minimum Pipe Size	250 mm diameter (200 mm CB Leads)

4.3 Proposed Minor System

Using the criteria identified in Section 4.2, the proposed on-site storm sewers were sized accordingly. A detailed storm sewer design sheet and the associated storm sewer drainage area plan is included in **Appendix C**. The general plan of services, depicting all on-site storm sewers can be found in **Appendix A**.

As this is a private storm sewer system, the site owners will be responsible for regular maintenance of the on-site catch basins and inlet control devices (ICDs) at 20 Cope Drive. Maintenance includes

but is not limited to the cost of regular cleaning the structures and ICDs as necessary. The site owner will also be responsible for replacement of damaged or missing catchbasin structures, grates or inlet control devices as needed.

4.4 Stormwater Management

The subject site will be limited to a release rate established using the criteria described in section 4.2. This will be achieved through a combination of inlet control devices (ICD's) at inlet locations and surface storage.

Flows generated that are in excess of the site's allowable release rate will be stored on site in strategic surface storage areas and rooftop storage and gradually released into the minor system so as not to exceed the site's allocation.

The maximum surface retention depth located within the developed areas will be limited to 300 mm during a 1:100 year event.

Overland flow routes will be provided in the grading to permit emergency overland flow, in excess of the 100 year event, from the site.

The site grading and ponding has been designed to control water generated during the 1:100-year event, with no overflow leaving the site. Please refer to the SWM calculations in **Appendix C**.

4.5 Inlet Controls

The allowable release rate for the site can be calculated as follows:

Q_{allowable} = 70 L/s/Ha as per JFSA Monahan Drain Cell 1 report

Tributary Area = 2.26 Ha (includes area from adjacent lands)

= 158.2 L/s

The only portion of the site will be left to discharge into the storm sewer system uncontrolled is the loading dock ramp which will drain via the buildings internal pluming into the storm sewer.

Based on a 1:100 year event, the flow from the 0.01 Ha uncontrolled area can be determined as:

Quncontrolled = $2.78 \times C \times i_{100yr} \times A$ where:

C = Average runoff coefficient of uncontrolled area = 0.9 (1.0 for 100 yr)

i_{100yr} = Intensity of 100-year storm event (mm/hr)

= 1735.688 x $(T_c + 6.014)^{0.820}$ = 178.56 mm/hr; where T_c = 10 minutes

A = Uncontrolled Area = 0.01 Ha

Therefore, the uncontrolled release rate can be determined as:

Quncontrolled = $2.78 \times C \times i_{100 \text{vr}} \times A$

 $= 2.78 \times 1.0 \times 178.56 \times 0.01$

= 4.96 L/s

The maximum allowable release rate from the remainder of the site can then be determined as:

Based on the flow allowance at the various inlet locations, a combination of various sizes of inlet control devices (ICDs) were chosen in the design. The design of the inlet control devices is unique to each drainage area and is determined based on a number of factors, including hydraulic head and allowable release rate. The inlet control devices were sized according to the manufacturer's design charts. The restrictions will cause the on-site catchbasins and manholes to surcharge, generating surface ponding in the parking and landscaped areas. Ponding locations and elevations are summarized on the Ponding Plan 117308-C-600, and included in **Appendix C**.

4.6 On-Site Detention

Any excess storm water up to the 100-year event is to be stored on-site in order to not surcharge the downstream municipal storm sewer system. Detention will be provided in parking and landscape areas and building rooftops, where feasible. As previously noted, the volume of storage is dependent on the characteristics of each individual drainage area and the ICD's were chosen accordingly. It should be noted that 0.30 m of vertical separation has been provided from all maximum ponding elevations to lowest building openings.

4.6.1 Site Inlet Control

The following Table summarizes the on-site storage requirements during both the 1:5-year and 1:100-year events.

DRAINAGE	TRIBUTARY	AVAILABLE	100-YEAR	STORM	5-YEAR S	STORM
AREA(s)	AREA	STORAGE (M³)	RESTRICTED FLOW (L/S)	REQUIRED STORAGE (M³)	RESTRICTED FLOW (L/S)	REQUIRED STORAGE (M³)
P63	0.51	121.78	44.00	123.94	44.00	35.02
P61	0.30	30.99	25.00	84.84	25.00	24.72
P60A	0.22	1.94	30.00	26.95	30.00	4.99
P60	0.19	53.43	10.00	131.12	10.00	19.62
P50A	0.16	83.54	20.00	117.71	20.00	11.64
P50	0.04	8.04	10.00	40.12	10.00	1.06
P51	0.69	200.00	10.00	193.38	10.00	57.36
Ex. Roof	0.15	112.00	2.52	80.96	2.52	35.76
TOTAL	2.26	611.72	151.52	799.02	151.52	190.17

The required storage is met with surface ponds which retain the stormwater and discharge at the restricted flow rate to the sewer system. Refer to the ponding plan in **Appendix C** for storage information. Also refer to Average Runoff Coefficient Calculation table in **Appendix C**.

4.6.2 Roof Inlet Controls

The proposed building expansion has a sloped roof and will not have roof inlet controls, however, the existing building will have roof inlet controls installed to control the amount of stormwater being released into the system. The restricted flow rate for the existing building is shown in the table above.

4.6.3 Overall Release Rate

As demonstrated above, the site uses new inlet control devices to restrict the 100 year storm event to the criteria approved by the City of Ottawa. Restricted stormwater will be contained onsite by utilizing surface ponding and rooftop storage. In the 100 year event, there will be no overflow off-site from restricted areas.

The sum of restrictions on the site, rooftops and uncontrolled flows is (149 l/s + 2.52 l/s + 4.96) 156.48 l/s, which is less than the allowable release of 158.20 l/s noted in Section 4.5.

5 SEDIMENT AND EROSION CONTROL PLAN

5.1 General

During construction, existing stream and conveyance systems can be exposed to significant sediment loadings. Although construction is only a temporary situation, it is proposed to possibly introduce a number of mitigative construction techniques to reduce unnecessary construction sediment loadings. These may include:

- Until the local storm sewer and storm pond are constructed, groundwater in trenches will be pumped into a filter mechanism prior to release to the environment. bulkhead barriers will be installed at the nearest downstream manhole in each sewer which connects to an existing downstream sewer;
- seepage barriers will be constructed in any temporary drainage ditches (where applicable);
- sediment capture filter socks will remain on open surface structures such as maintenance holes and catchbasins until these structures are commissioned and put into use; and
- silt fence on the site perimeter will be installed.

5.2 Trench Dewatering

Any trench dewatering using pumps will be discharged into a filter trap made up of geotextile filters and straw bales similar in design to the OPSD 219.240 Dewatering Trap. These will be constructed in a bowl shape with the fabric forming the bottom and the straw bales forming the sides. Any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filters as needed, including sediment removal and disposal and material replacement as needed. It should be noted that that the contractor will be responsible for the design and management of the trap(s).

5.3 Bulkhead Barriers

To further reduce downstream sediment loading, a ½ diameter bulkhead will be constructed over the lower half of the outletting sewer during construction. These bulkheads will trap any sediment laden flows, thus preventing any construction-related contamination into existing sewers. The bulkheads will be inspected and maintained including periodic sediment removal as needed.

5.4 Seepage Barriers

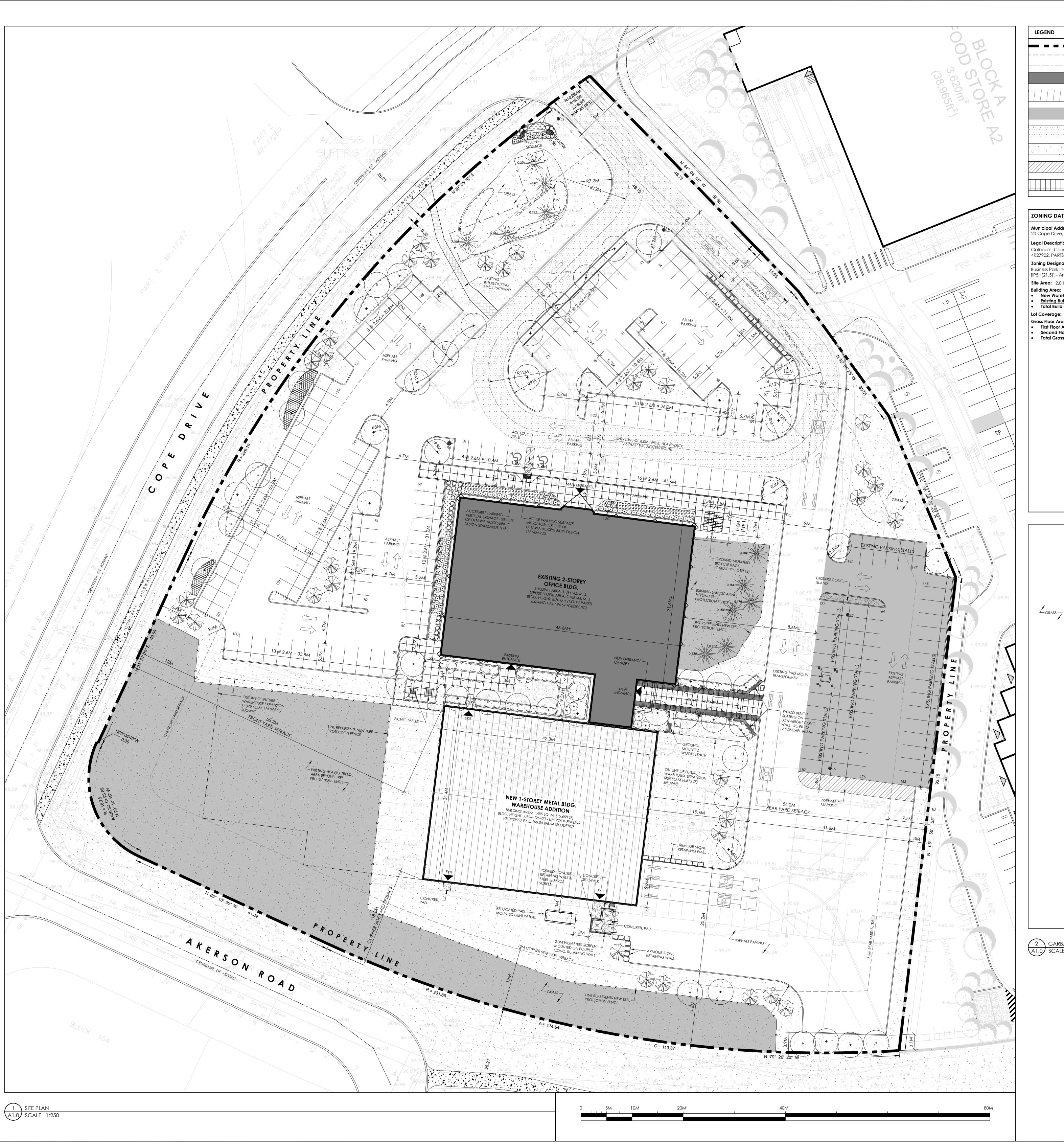
In order to further reduce sediment loading to the stormwater management facility, seepage barriers will be installed on any surface water courses at appropriate locations that may become evident during construction. These barriers will be Light Duty Straw Bale Barriers per OPSD 219.100 and Heavy Duty Silt Fence Barriers per OPSD 219.130; locations are shown on the Sediment and Erosion Control Plan included in **Appendix D**. They are typically made of layers of straw bales or geotextile fabric staked in place. All seepage barriers will be inspected and maintained as needed.

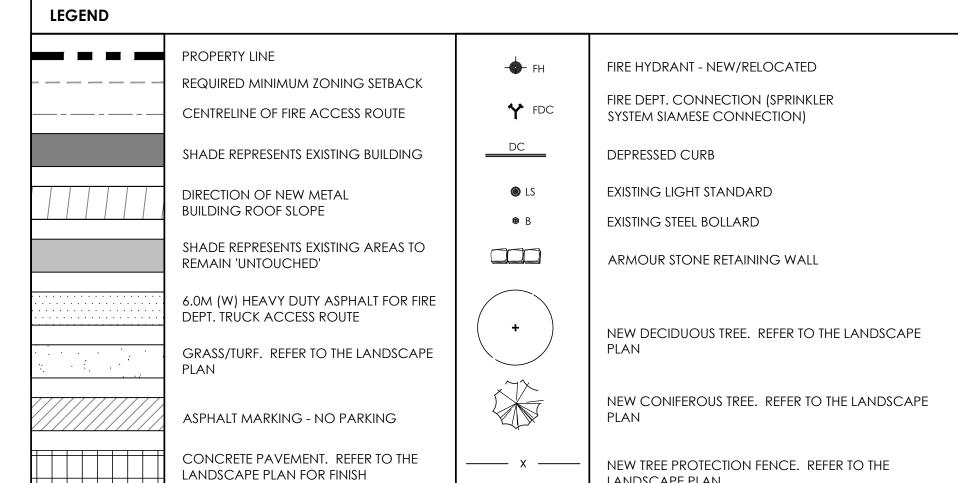
5.5 Surface Structure Filters

All catchbasins, and to a lesser degree, manholes, convey surface water to sewers. Until streets are asphalted and curbed, all catchbasins and manholes will be constructed with sediment capture inserts or equivalent located between the structure frame and cover. These will stay in place and be maintained during construction and build until it is appropriate to remove same.

6 CONCLUSION

This report has illustrated that the proposed expansion to the existing CCR facility at 20 Cope Drive can be serviced via existing municipal services. The water network will be extended to provide necessary service. All sanitary and storm sewer designs for this development will be completed in conformance with City of Ottawa standards while acknowledging downstream constraints. By limiting flow into the minor storm sewer system as per the applicable local stormwater management criteria and allowing for excess surface storage on-site, all stormwater management requirements will be met. Adherence to the Sediment and Erosion Control Plan during construction will minimize harmful impacts on surface water.

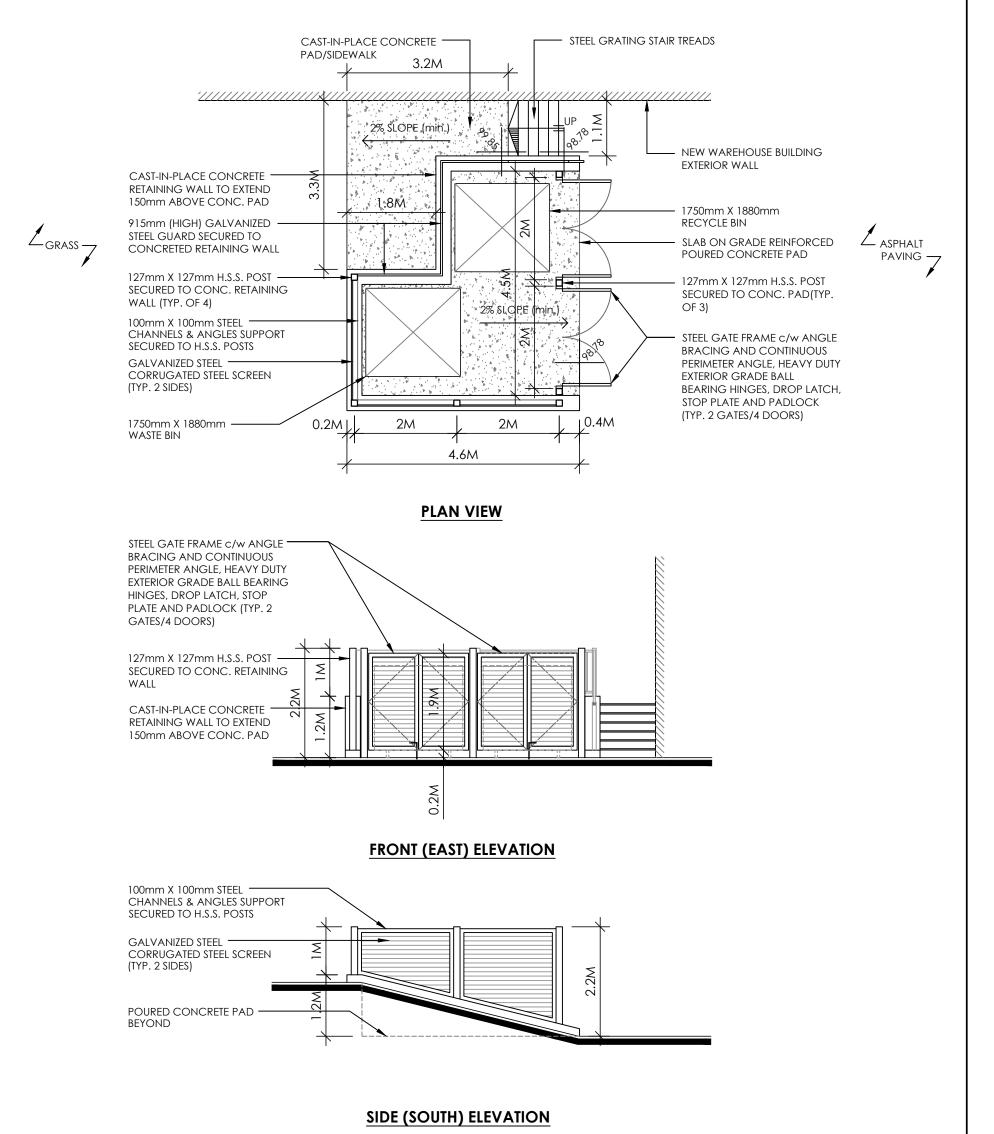

Based on the information provided within this report, the plans prepared for the subject development can be serviced to meet City of Ottawa requirements.



Demetrius Yannoulopoulos, P. Eng. Director, Ottawa Lead

APPENDIX A

- Site Plan A1.0
- Pre-Consultation Notes
- Watermain Boundary Condition
- Watermain Demand Calculation Sheet
- Fire Flow Calculations
- Water Model Schematic and Results



LANDSCAPE PLAN

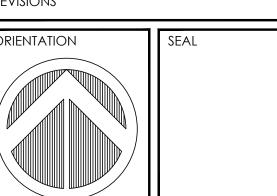
Municipal Address:	ZONING PROVISIONS - ZONE	(IP5H)		
20 Cope Drive, Kanata, Ontario	ZONING MECHANISM	REQUIRED	PROVIDED	
Legal Description:	Lot Area	4,000 Sq. M. (min.)	20,699 Sq. M.	
Golbourn, Concession 10, Part Lot 31, RP	Lot width	45M (min.)	171.73M	
4R27902, PARTS 3 AND 4, Pin: 044781247.	Lot Coverage	55% (max.)	13.76%	
Zoning Designation: Business Park Industrial Zone	Front Yard Setback	12M (min.)	58.2M	
[IP5H(21.5)] - Area C Suburban	Corner Side Yard Setback	12M (min.)	18.8M	
Site Area : 2.0 Ha (20,699 Sq.M.)	Interior Side Yard Setback	7.5M (min.)	N/A	
Building Area:	Rear Yard Setback	7.5M (min.)	54.2M	
 New Warehouse Bldg.: 1,455 Sq. M. Existing Building: 1,394 Sq. M. 	Floor Space Index	2 (max.)	< 0.2	
• Total Building Area: 2,849 Sq. M.	Building Height	11M (max.) - within 20M from a res. zone	9.78M	
Lot Coverage: $(2,849/20,699) \times 100 = 13.76\%$	70	22M (max.) - all other cases	9.78M	
 Gross Floor Area: First Floor Area: 2,849 Sq. M. Second Floor Area: 1,394 Sq. M. 	Landscaping Width	3M (min.) - abutting a street No Minimum - all other cases	VARIES. 3.1M (min.)	
Total Gross Floor Area: 4,243 Sq. M.	Parking Requirements	Office Use: 2.4/100 Sq. M. GFA (Table 101 - Row N59) 2,788 Sq. M./100 X 2.4 = 67 spaces		
		<u>Warehouse:</u> 0.8/100 Sq. M. GFA (<i>Table 101 - Row N95</i>) 1,455 Sq. M./100 X 0.8 = 12 spaces		
		Total Required Parking Spaces: 67 + 12 = 79 spaces	187	
	Accessible Parking Spaces	2 spaces	2	
	Landscaping Buffer	N/A for Industrial Zones	VARIES. 3.0M (min.)	
	Bicycle Parking Spaces	Office Use: 1 space per 250 Sq. M. GFA 2,788 Sq. M./250 = 11 spaces Warehouse: 1 space per 1,000 Sq. M. GFA 1,455 Sq. M./1,000 = 1 space Total Required Bicycle Parking Spaces:		
		11 + 1 = 12 spaces	12	
	Loading Spaces	Office Use: 1 space required Warehouse: 1 space required		
		Total Reg'd = 2 spaces	2	

Oversized Vehicle

2 GARBAGE/RECYCLE BINS ENCLOSURE DETAILS
A1.0 SCALE 1:75

GENERAL NOTES

- CONTRACTOR SHALL VERIFY ALL DIMENSIONS ON SITE AND SHALL REPORT ANY DISCREPANCIES TO THE ARCHITECT PRIOR TO COMMENCEMENT OF WORK.
- CONTRACTOR MUST COMPLY WITH ALL CODES AND BYLAWS AND OTHER REGULATIONS BY AUTHORITIES HAVING JURISDICTION OVER THE
- DO NOT SCALE THIS DRAWING. THIS DRAWING MAY NOT BE USED FOR CONSTRUCTION UNLESS SEALED/SIGNED BY THE ARCHITECT. COPYRIGHT OF THIS DRAWINGS IS RESERVED.


THIS DRAWING IS PREPARED BASED ON A TOPOGRAPHIC SURVEY PLAN PROVIDED TO A+ ARCHITECTURE INC. AS A TRUE REPRESENTATION OF EXISTING LAND FEATURES, INCLUDING BUT NOT LIMITED TO, EXISTING LEGAL BOUNDARIES, LOT LINES, GRADES, TOPOGRAPHY, VEGETATION ETC., AS PREPARED BY **FAIRHALL**, **MOFFATT & WOODLAND LIMITED**, ONTARIO LAND SURVEYOR, DATED **JUNE 11, 2018** WITHOUT

ANY ALTERATION WHATSOEVER, AND IS SHOWN ON THIS DRAWING FOR REFERENCE

- AND COORDINATION PURPOSES ONLY. THE INFORMATION SHOWN ON THE PROPERTY LOCATED AT 10 COPE DRIVE, ARE DERIVED FROM A SITE PLAN DRAWING PROVIDED BY TAGGART REALTY MANAGEMENT, PREPARED BY HOBBIN ARCHITECTURE INC., DATED JUNE 18, 2018, ISSUED FOR UDRP SUBMISSION, WITHOUT ANY ALTERATION WHATSOEVER, AND IS SHOWN ON THIS DRAWING FOR
- A+ ARCHITECTURE INC. DOES NOT ASSUME ANY LIABILITY, WHATSOEVER, AS TO THE ACCURACY OF THE INFORMATION, PREPARED BY OTHER PARTIES AND PROVIDED ON THE INCORPORATED PLANS.

REFERENCE AND COORDINATION PURPOSED

CCR WAREHOUSE ADDITION & OFFICE RENOVATIONS

20 COPE DRIVE, KANATA, ONTARIO DRAWING TITLE

SITE PLAN

A.A. | DRAWING NO. START DATE 2018/04/25

PROJECT NO. 18007 REVISION NO.

Demetrius Yannoulopoulos

From: Jen Martens <jen@farmhouseinvestments.ca>

Sent: Tuesday, July 10, 2018 5:26 PM **To:** Demetrius Yannoulopoulos

Subject: Fwd: Pre-Consultation Follow-Up: 20 Cope Drive

Attachments: City of Ottawa 2017 TIA Guidelines Screening Form - V3 (1).docx; Plan & Study List.pdf

Hi Demetrius

Thanks for your time this afternoon. I will chase up the action items we noted and be back to you as answers become available. In the meantime, here are the pre-consultation notes.

Begin forwarded message:

From: "McCreight, Laurel" < <u>Laurel.McCreight@ottawa.ca</u>> Subject: Pre-Consultation Follow-Up: 20 Cope Drive

Date: June 19, 2018 at 10:35:34 AM EDT

To: Jen Martens < jen@farmhouseinvestments.ca>

Hi Jen,

Please refer to the below regarding the Pre-Consultation Meeting held on Thursday June 7th, 2018 for the property at 20 Cope Drive for an addition to a warehouse to an existing office building. I have also attached the Plans & Study List.

General

- Addition of a 15,000 square foot warehouse to an existing office building
- Reconfiguration of some of the existing parking lot
- Will coordinate with the proposal at 10 Cope Drive
- Provided the previous approvals still have an agreement registered on title, the application can be treated as a revision to an existing application

Planning/Design

- The site is heavily treed so it is recommended to retain as many trees where possible
 - Especially as a buffer to the residential community
- Retain the pedestrian connection to Cope Drive
- It is important to screen the southern edge
- Provide a pedestrian connection to the existing multi-use pathway
- Lighting and landscaping will be important (east side)
 - o Crime prevention through environmental design concerns for the parking lot at night

Engineering

- Confirm capacity for stormwater expansion
 - Turn around near loading dock
 - o Monahan Drain
 - o 0.43 run-off coefficient or equivalent required
- Verify what is existing and what was approved
- An ECA from the MOECC will be required for the industrial use

Please contact Brad Cripps (brad.cripps@ottawa.ca) for any engineering related questions

Transportation

- Fill out TIA screening form (attached) to determine if a full study is required
- Please provide all line work and paintings on the site plan
- Cope is a sensitive road- please be mindful of how it is treated
- Cope has a 24 metre right-of-way
- If any mechanical is exposed, a noise study will be required
- Clear through lengths must be illustrated
- Please provide turning templates for the largest trucks
- Keep curbs as tight as possible
- Show all lane widths
- Show connection with neighbouring access
- Please contact Rosanna Baggs <u>rosanna.baggs@ottawa.ca</u> and he will meet the consultant on site

Forestry

- Permit required for any trees greater than 10 cm in diameter
- A Tree Conservation Report is required
- The information required in a Tree Conservation Report:
 - o Tree species, diameter and health condition
 - o Trees proposed for retention or removal
 - o Protection details of retained trees
- Please contact Mark Richardson <u>mark.richardson@ottawa.ca</u> and he will meet the consultant on site

Please do not hesitate to contact me if you have any questions.

Regards, Laurel

Laurel McCreight MCIP, RPP

Planner
Development Review West
Urbaniste
Examen des demandes d'aménagement ouest

City of Ottawa | Ville d'Ottawa

613.580.2424 ext./poste 16587 ottawa.ca/planning / ottawa.ca/urbanisme

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Jen Martens
President
Farmhouse Investments Inc.
jen@farmhouseinvestments.ca
613-878-5061

NOTE: This e-mail message and attachments may contain privileged and confidential information. If you have received this message in error, please immediately notify the sender and delete this e-mail message.

Transportation Impact Assessment Screening Form

City of Ottawa 2017 TIA Guidelines Screening Form

1. Description of Proposed Development

Municipal Address	In a validation of the way is both to the state of the st
Description of Location	
Land Use Classification	Ministration of the state of th
Development Size (units)	
Development Size (m²)	
Number of Accesses and Locations	
Phase of Development	
Buildout Year	

If available, please attach a sketch of the development or site plan to this form.

2. Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size
Single-family homes	40 units
Townhomes or apartments	90 units
Office	3,500 m²
Industrial	5,000 m²
Fast-food restaurant or coffee shop	100 m²
Destination retail	1,000 m²
Gas station or convenience market	75 m²

^{*} If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

If the proposed development size is greater than the sizes identified above, <u>the Trip Generation</u> <u>Trigger is satisfied.</u>

Transportation Impact Assessment Screening Form

If none of the triggers are satisfied, <u>the TIA Study is complete</u>. If one or more of the triggers is satisfied, <u>the TIA Study must continue into the next stage</u> (Screening and Scoping).

APPLICANT'S STUDY AND PLAN IDENTIFICATION LIST

Legend: S indicates that the study or plan is required with application submission.

A indicates that the study or plan may be required to satisfy a condition of approval/draft approval.

For information and guidance on preparing required studies and plans refer to:

http://ottawa.ca/en/development-application-review-process-0/quide-preparing-studies-and-plans

S/A	Number of copies	ENC	GINEERING	S/A	Number of copies
S	10	Site Servicing Plan	2. Site Servicing Brief	s	3
S	10	3. Grade Control and Drainage Plan	4. Geotechnical Study	S	3
	2	5. Composite Utility Plan	6. Groundwater Impact Study	2	6
	5	7. Servicing Options Report	Wellhead Protection Study		6
S	6	9. TIA Screening Form	10.Erosion and Sediment Control Plan / Brief	S	3
S	3	11.Storm water Management Brief	12.Hydro geological and Terrain Analysis	圖	8
S	3	13.Hydraulic Water main Analysis	14.Stationary Noise Study	S	2
S	10	15.Roadway Modification Design Plan	16.Confederation Line Proximity Study		9
S/A	Number of copies	PLANNING	/ DESIGN / SURVEY	S/A	Number of copies
	15	17.Draft Plan of Subdivision	18.Plan Showing Layout of Parking Garage	[33]	2
	30	19.Draft Plan of Condominium	20.Planning Rationale	S	3
S	10	21.Site Plan	22.Minimum Distance Separation (MDS)		3
	15	23.Concept Plan Showing Proposed Land Uses and Landscaping	24.Agrology and Soil Capability Study		5
	3	25.Concept Plan Showing Ultimate Use of Land	26.Cultural Heritage Impact Statement	Ш	3
S	10	27.Landscape Plan	28.Archaeological Resource Assessment Requirements: S (site plan) A (subdivision, condo)		3
S	- 1	29.Survey Plan	30.Shadow Analysis		3
S	3	31.Architectural Building Elevation Drawings (dimensioned)	32.Design Brief (includes the Design Review Panel Submission Requirements)	-	Available online
	6	33.Wind Analysis			
S/A	Number of copies	ENV	IRONMENTAL	S/A	Number of copies
	3	34.Phase 1 Environmental Site Assessment	35.Impact Assessment of Adjacent Waste Disposal/Former Landfill Site		6
	5	36.Phase 2 Environmental Site Assessment (depends on the outcome of Phase 1)	37.Assessment of Landform Features		7
	4	38.Record of Site Condition	39.Mineral Resource Impact Assessment		4
S	3	40.Tree Conservation Report	41.Environmental Impact Statement / Impact Assessment of Endangered Species		5
	4	42.Mine Hazard Study / Abandoned Pit or Quarry Study	43.Integrated Environmental Review (Draft, as part of Planning Rationale)		3
S/A	Number of copies		AL REQUIREMENTS	S/A	Number of copies
S	3	44. Site Light Lighting Plan/Letter	45.		

Meeting Date: June 7", 2018	Application Type: Site Plan Control
File Lead (Assigned Planner): Laurel McCreight	Infrastructure Approvals Project Manager: Brad Cripps
Site Address (Municipal Address: 20 Cope Drive	*Preliminary Assessment: 1 \square 2 \square 3 \square 4 \square 5 \square

*One (1) indicates that considerable major revisions are required before a planning application is submitted, while five (5) suggests that proposal appears to meet the City's key land use policies and guidelines. This assessment is purely advisory and does not consider technical aspects of the proposal or in any way guarantee application approval.

It is important to note that the need for additional studies and plans may result during application review. If following the submission of your application, it is determined that material that is not identified in this checklist is required to achieve complete application status, in accordance with the Planning Act and Official Plan requirements, the Planning, Infrastructure and Economic Development Department will notify you of outstanding material required within the required 30 day period. Mandatory pre-application consultation will not shorten the City's standard processing timelines, or guarantee that an application will be approved. It is intended to help educate and inform the applicant about submission requirements as well as municipal processes, policies, and key issues in advance of submitting a formal development application. This list is valid for one year following the meeting date. If the application is not submitted within this timeframe the applicant must again pre-consult with the Planning, Infrastructure and Economic Development Department.

James Battison

From: Whittaker, Damien < Damien.Whittaker@ottawa.ca>

Sent: Friday, March 15, 2013 8:10 AM

To: Stuart Hefler Cc: Terry Brule

Subject: Soho Kanata South watermain boundary condition request (20 Cope Drive)

Stuart,

Boundary conditions are provided for the intersection of Akerson and Cope, for existing conditions:

- Max HGL = 161.7 m
- Peak Hour = 156.4 m
- Max Day + Fire = 152.7 m (with a fire demand of 250 l/s)

Maximum pressures will be over 80 psi and therefore private PRVs on service connections will be required.

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

Please feel free to ask for clarification, or further information, on any of the comments above.

Regards,

```
Damien Whittaker, P.Eng Project Manager Development Review, Suburban (West) City of Ottawa 110 Laurier Avenue West, Ottawa, Ontario K1P 1J1 613-580-2424 x16968 damien.whittaker@ottawa.ca 26-61
```

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. If you are not the intended recipient, please notify me at the telephone number shown above or by return e-mail and delete this communication and any copy immediately. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Si vous avez reçu le message par erreur, veuillez m'en aviser par téléphone (au numéro précité) ou par courriel, puis supprimer sans délai la version originale de la communication ainsi que toutes ses copies. Je vous remercie de votre collaboration.

IBI GROUP 333 PRESTON STREET OTTAWA, ON K1S 5N4

WATERMAIN DEMAND CALCULATION SHEET

PROJECT: CCR Warehouse Addition

LOCATION: 20 Cope Drive

117308.5.7 DATE: 17-Sep-18 DESIGN: LME

			RESID	ENTIAL			ION	N-RESIDEN	TIAL	A	VERAGE DA	LY	M	AXIMUM DAI	ILY	MA	XIMUM HOU	IRLY
NODE		UN	IITS		GROSS		COM	IND	INST		DEMAND (I/	s)		DEMAND (I/	s)		DEMAND (I/	(s)
11002	SF	SD	TH	APT	RES. (Ha)	POP'N	(Ha)	(Ha)	(Ha)	Res.	Non-res.	Total	Res.	Non-res.	Total	Res.	Non-res.	Total
CCR Facility																		
J-3							2.16			0.00	0.70	0.70	0.00	1.05	1.05	0.00	1.89	1.89
Kanada Sauth Sauta																		
Kanata South Center																		
A							1.12			0.00	0.36	0.36	0.00	0.54	0.54	0.00	0.98	0.98
С							0.44			0.00	0.14	0.14	0.00	0.21	0.21	0.00	0.39	0.39
D							0.54			0.00	0.18	0.18	0.00	0.26	0.26	0.00	0.47	0.47
												0.68			1.01			1.84

ASSUMPTIONS											
RESIDENTIAL DENSITIES		AVERAGE DAILY DEMAND		MAXIMUM DAILY DEMAND		MAXIMUM HO	URLY DEMAND				
- Single Family (SF)	<u>3.4</u> p/p/u	- Residential	350 l/cap/day	- Residential	875 l/cap/day	- Residential	1,925 l/cap/day -				
- Semi Detached (SD)	<u>2.7</u> p/p/u	- Commercia	28,000 I/ha/day	- Commercia	42,000 I/ha/day	- Commercia	75,600 l/ha/day -				
- Townhouse (TH)	<u>2.7</u> p/p/u	- Industrial	35,000 I/ha/day	 Industrial 	52,500 I/ha/day	- Industrial	94,500 l/ha/day -				
- Apartment (APT)	<u>1.8</u> p/p/u	- Institutional	28,000 l/student/d	d - Institutional	42,000 I/student/d	- Institutional	75,600 l/student/d				

Fire Flow Requirement from Fire Underwriters Survey

20 Cope Drive Building Floor Area

 $3,045 \text{ m}^2$ Existing office 1,430 m² Warehouse addition 4,475 m² Total

Fire Flow

F = 220C√A

С 1.0 C= 1.5 wood frame 4,475 m² Α 1.0 ordinary 0.8 non-combustile F 14,717 l/min 0.6 fire-resistive 15,000 l/min

Occupancy Adjustment

-15% limited combustile Use 0% 0% combustile +15% free burning Adjustment 0 I/min +25% rapid burning

Fire flow 15,000 l/min

-30% system conforming to NFPA 13 Sprinkler Adjustment -50% complete automatic system

-25% non-combustile

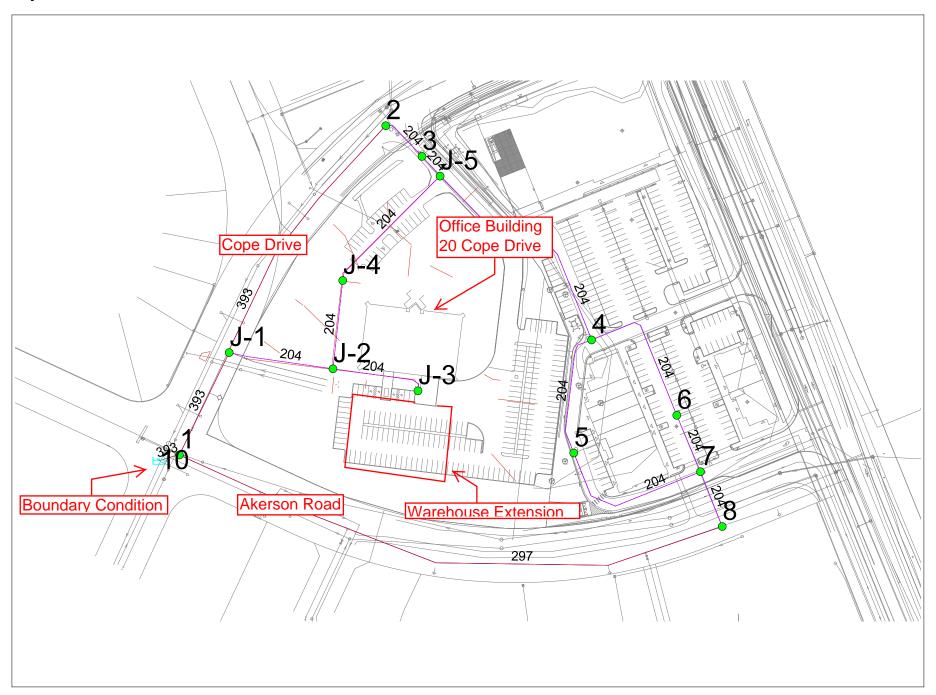
-30% Use

Adjustment -4500 I/min

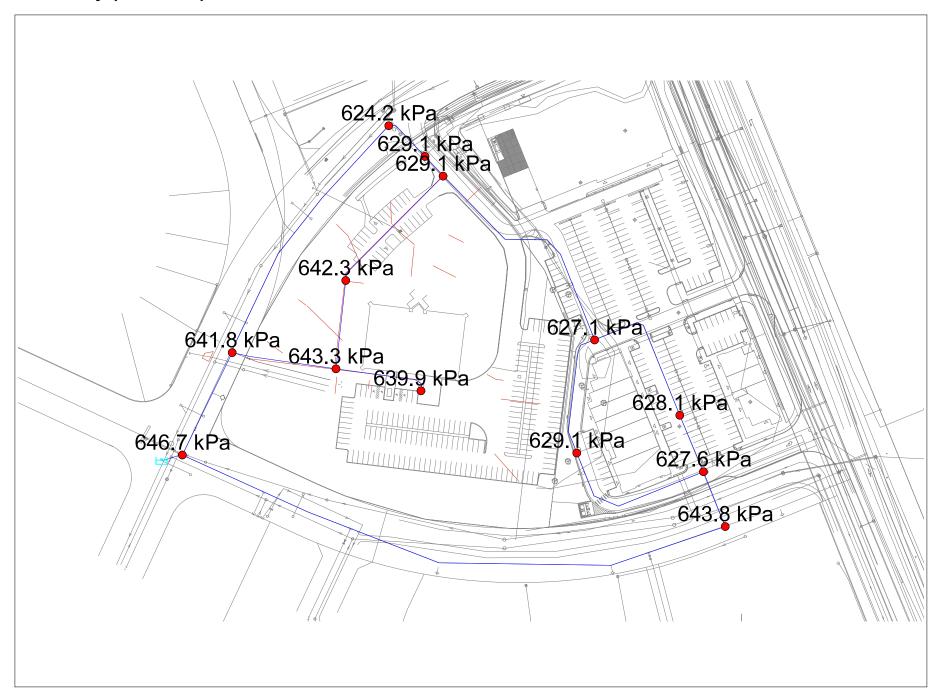
Exposure Adjustment

Separation Charge 0 to 3m +25% **Building Face** Separation Charge 3.1 to 10m +20% 10.1 to 20m +15% > 45 0% +10% north 20.1 to 30m east > 45 0% 30.1 to 45m +5% south > 45 0% west > 45 0%

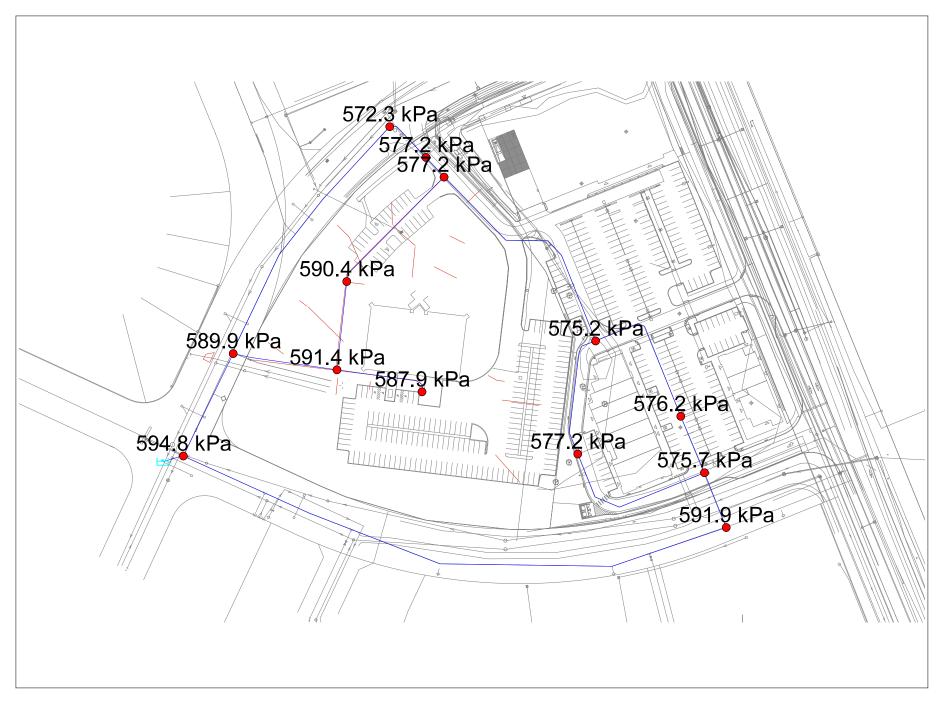
0%

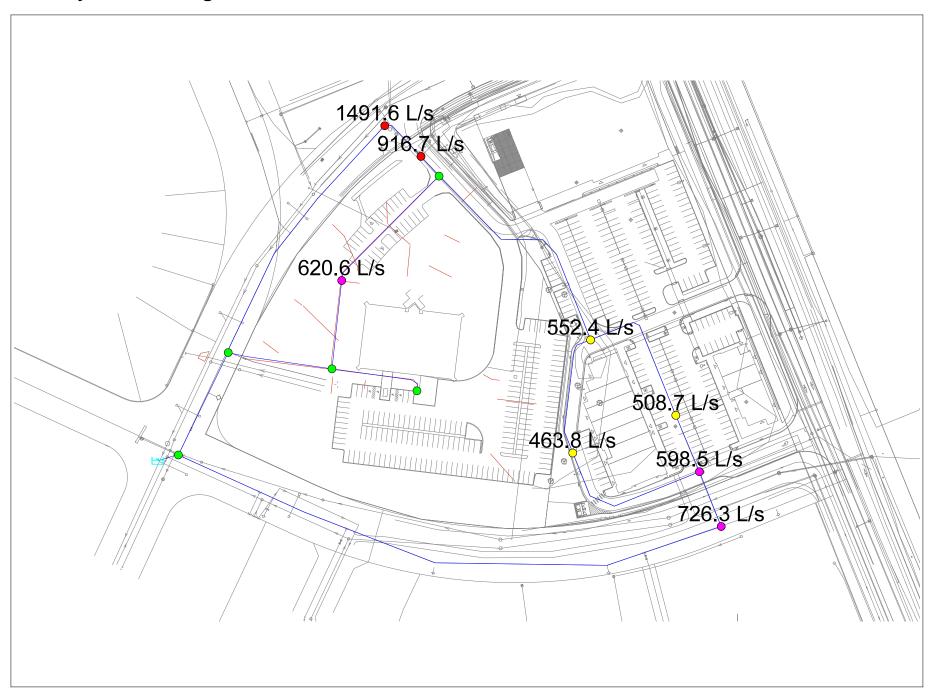

Adjustment I/min

Required Fire Flow


Total

Total adjustments (4,500) I/min Fire flow 10,500 l/min Use 11,000 l/min 183.3 l/s


Pipe Sizes and Node ID's


Basic Day (Max HGL) Pressures

Peak Hour Pressures

Max Day + Fire - Design Fireflows

APPENDIX B

- SOHO West Sanitary Sewer Flow Allocation, Stantec
- Sanitary Drainage Area Plan Drawing No 117308-C-400
- Sanitary Sewer Design Sheet
- General Plan 117308-C-001
- General Notes and Legend Plan 117308-C-10

Stantec Consulting Ltd.
1505 Laperriere Avenue
Ottawa ON K1Z 7T1
Tel: (613) 722-4420 Fax: (613) 722-2799
stantec.com

Stantec

December 2, 2004 File: 604-00373

Preliminary Wastewater Collection System Calculations

Summary

Estimate of existing design peak flow rates from Business Park: Estimate of peak flow rates from proposed development:

88.7L/s 76.9L/s

Since the proposed flow rates are lower than the previously designed peak flow rates the South Glen Cairn Collector and Hazeldean P.S. should be capable of receiving the proposed peak flows.

Calculations

Business Park

Total Site Area: 61.087ha Existing Kanatek Site 4.83ha

Gross Area: 56,257ha

Peak Flow

Light Industrial Avg Flow: 35,000 L/gross ha/d (Sewer Design Guidelines, 2004)

 $56.257ha \times 35000L/ha/d = 1,968,995L/d = 22.79L/s$

Peak Factor ≈ 3.2 (MOE Tables, see attached)

Peak Flow = $22.78L/s \times 3.2 = 72.93L/s$

Stantec

December 2, 2004

Infiltration

0.28L/s/ha

(Sewer Design Guidelines, 2004)

Total Infiltration = $56.257ha \times 0.28L/s/ha = 15.75L/s$

Total Business Park Flow

72.93L/s + 15.75L/s = 88.7L/s

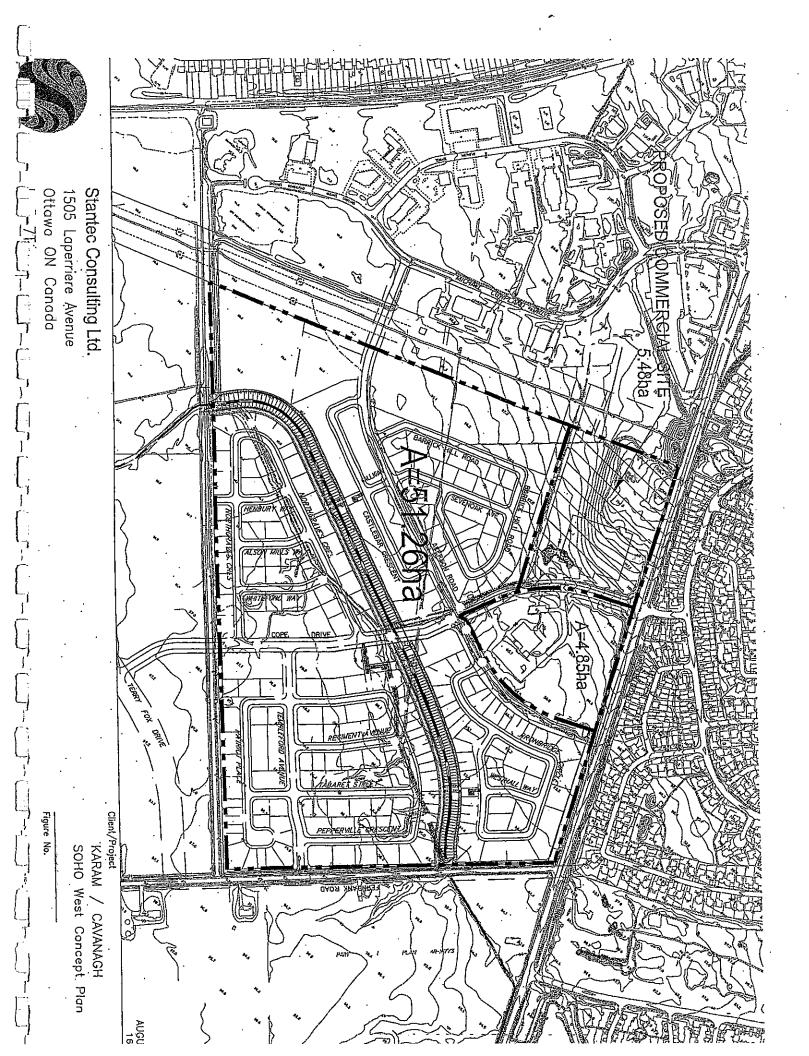
Proposed SOHO Concept Plan Flow

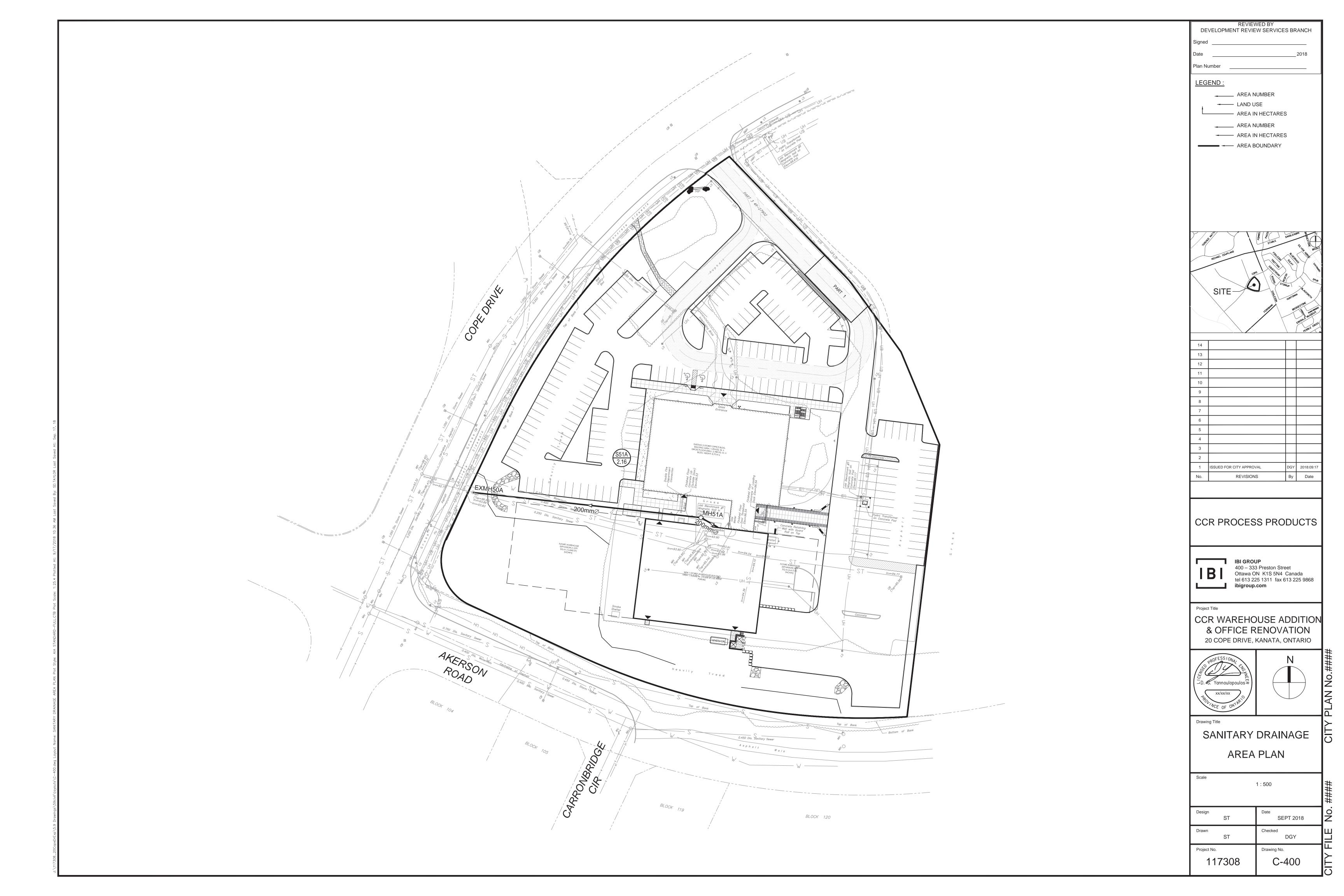
The mixed use concept plan is proposed the following composition (FoTenn Consultants):

391 Linked Singles	2.7p/unit	=	1056
507 Townhouses	2.7p/unit	= .	1369
198 Stacked Townhouses	2.7p/unit	=	535
217 Low to Mid rise apartments	1.8p/unit	=	391
69 Chamber Units	2.7p/unit	=	187
Residential Population	-		3538

- 6.05ha Commercial
- 2.71ha Business Park

Peak Flow

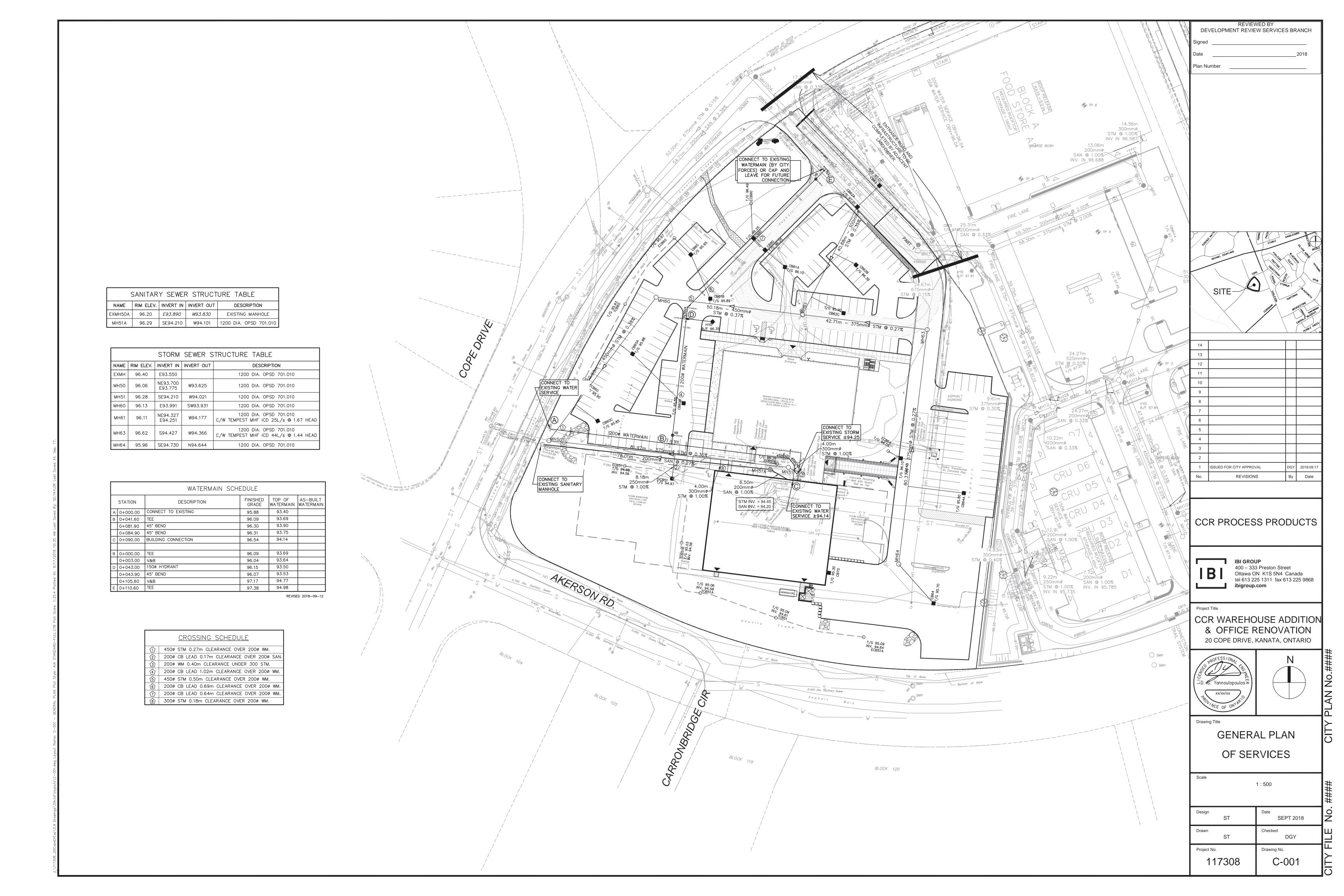

Residential:


$$3538p \times 350L/p/d = 1227800L/d \times \frac{1d}{(24)(3600)s} = 14.33L/s$$

Peak Factor

$$PF = 1 + \left(\frac{14}{4 + \left(\frac{P}{1000}\right)^{\frac{1}{2}}}\right) = 1 + \left(\frac{14}{4 + \left(\frac{3538}{1000}\right)^{\frac{1}{2}}}\right) = 3.4$$

Peak Flow Residential = $14.21L/s \times 3.4 = 48.7L/s$.



IBI GROUP 400-333 Presi Ottawa, Ontar tel 613 225 13 ibigroup.com

IBI GROUP
400-333 Preston Street
Ottawa, Ontario K1S 5N4 Canada
tel 613 225 1311 fax 613 225 9868

20 Cope Dr CITY OF OTTAWA Farmhouse Investments

LOCATION								RESID	ENTIAL								ICI AF	REAS				INFILTE	RATION AL	LOWANCE	FIVED FI	I OW (I /a)	TOTAL			PROPO	SED SEWER	DESIGN		
	LOCATION			AREA		UNIT	TYPES		AREA	POPU	ILATION	RES	PEAK			ARE	A (Ha)			ICI	PEAK	ARE	:A (Ha)	FLOW	T FIXED FL	LOW (L/s)	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	AVA	ILABLE
STREET	AREA ID	FROM	TO MH	w/ Units	SF	SD	тн	APT	w/o Units	IND	CUM	PEAK	FLOW	INSTITU	JTIONAL	COMM		INDUST IND	RIAL	PEAK	FLOW	IND	CUM	(1./0)	IND	CUM	(1./0)	(1./0)	(m)	(mm)	(0/)	(full)	CAF	PACITY
SIREEI	AREA ID	МН	MH	(Ha)	31	30	ļ '''	AFI	(Ha)	IIND	COIVI	FACTOR	(L/s)	IND	CUM	IND	CUM	IND	CUM	FACTOR	(L/s)	IND	COIVI	(L/s)	IND	COIVI	(L/s)	(L/s)	(m)	(mm)	(%)	(m/s)	L/s	(%)
	1	Blding	51A													2.16	2.16			1.50	1.05	2.16	2.16	0.71			1.76	34.22	6.50	200	1.00	1.055	32.45	94.85
	<u>'</u>	51A	ex MM						+		+	+				0.00	2.16			1.50	1.05	0.00	2.16	0.71			1.76	20.24	78.01	200	0.35	0.624	18.48	91.29
		ex MM	ex MH			+						+				0.00	2.16			1.50	1.05	0.00	2.16	0.71	1		1.76	21.83	14.50	200	0.41	0.673	20.07	91.92
		OX IVIIVI	OX IVII I													0.00	2.10			1.00	1.00	0.00	2.10	0.71				21.00	1 1.00		0.11	0.070	20.01	011027
								+				+										+		+	-									
																																		<u> </u>
sign Parameters:				Notes: 1. Mannings coefficient (n) = 0.013								Designed:		ST			No. 1.					•		Revision or Site Plan App	lication							Date 2018-09-05		
Residential F 3.4 p/p/u		ICI Areas		2. Demand (p 3. Infiltration	per capita):	:		0 L/day 3 L/s/Ha	200) L/day		Checked:		DY			2																	
l/SD 2.7 p/p/u PT 1.8 p/p/u		00 L/Ha/day 00 L/Ha/day	1.5 1.5	4. Residentia	al Peaking I				3																									
ther 60 p/p/Ha		00 L/Ha/day	MOE Chart	•		= 0.8 Correcti		232, 3.3,,3.0	-			Dwg. Refer	ence:	117308-60	0																			
P.P.		00 L/Ha/day		5. Commercia	al and Instit		k Factors ba	sed on total	area,						-			le Reference 33681.5.7	:						Date: 2018-04-25							Sheet No: 1 of 1		

UTILITY LEGEND

	TRANSFORMER
	TRANSFORMER C/W CONCRETE WINGS
HSG	HYDRO SWITCHGEAR
НМН	HYDRO MANHOLE
	BELL PEDESTAL
GLB	BELL GRADE LEVEL BOX (I=600mm, w=1200mm, d=750mm) C/W 1.5 x 3.0m easeme
FC	BELL FIBER CABINET (I=1200mm, w=750mm, d=500mm)
CSP	BELL CENTRAL SPLITTING POINTS (I=1175mm, w=1200mm, d=500mm)
	ROGERS PEDESTAL
\boxtimes	ROGERS VAULT (I=1000mm, w=1000mm, d=1200mm) C/W 1m x 2m easement
^	STREET LIGHT
D	STREET LIGHT DISCONNECT
— u	STREET LIGHT GROUNDING
——H/B/T/G/S———	JOINT UTILITY TRENCH
Н	HYDRO CABLE AND DUCTS
В	BELL CABLE
BB	BELL DUCTS
Т	ROGERS CABLE
TT	ROGERS DUCTS
G	GAS
s	STREET LIGHT CABLE
	UTILITY DROP LOCATIONS
10-DUCTS 6-H 4-T	CONCRETE ENCASED DUCT BANK C/W NUMBER OF DUCTS
CMB	COMMUNITY MAILBOX
	PROPOSED TREE LOCATION
(<u>i</u>)	ROOT MANAGEMENT BARRIER

SEDIMENT EROSION LEGEND

HEAVY DUTY SILT FENCE

1

	SNOW FENCE
₩	STRAW BALE CHECK DAM
部間 開始 200mm 利益 100mm	STRAW BALE CHECK DAM WITH FILTER CLOTH
	ROCK CHECK DAM
⊕yB	SEDIMENT SACK PLACED UNDER EXISTING CB COVER
	TEMPORARY MUD MAT 0.15m THICK 50mm CLEAR STONE ON NON WOVEN FILTER CLOTH

GENERAL LEGEND

	LIMIT OF CONSTRUCTION
	PHASING LINE
	BARRIER CURB
	MOUNTABLE CURB
	DEPRESSED BARRIER CURB
DC	CONCRETE SIDEWALK
DC DC	- TACTILE WALKING SURFACE INDICATOR, DEPRESSED CURB
•	ASPHALT SIDEWALK / PATHWAY
B 95	BUS STOP CONCRETE / ASPHALT
FIRE LANE	FIRE ROUTE

STANTEC GEOMATICS LTD. SURVEY LEGEND

INV BPED TS BMH HMH TMH HGUY HGUY HBP HP LS HLS HH	TREELINE INVERT BELL PEDESTAL TRAFFIC SIGN BELL MANHOLE HYDRO MANHOLE TRAFFIC MANHOLE FIRE HYDRANT HYDRO GUY WIRE HYDRO BELL POLE HYDRO POLE LIGHT STANDARD HAND HOLE
→ HT SN	SIGN BELL POLE TRAFFIC CONTROL BOX TRAFFIC LIGHT CABLE PEDESTAL HYDRO TRANSFORMER WATER VALVE
$ \begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & &$	TEST PIT GAS VALVE BOLLARD CATCH BASIN VALVE CHAMBER STORM MANHOLE FIBER OPTIC MANHOLE SANITARY MANHOLE DRAIN WATER WELL

SEDVICING LEGEND

SERVICING L	<u>EGEND</u>
MH118A	SANITARY MANHOLE
● MH119A	SANITARY MANHOLE C/W WATER TIGHT COVER
200mmø SAN	SANITARY SEWER
MH109 MH118	STORM MANHOLE
825mmø STM	STORM SEWER - LESS THAN 900Ø
900mmø STM	STORM SEWER - 900Ø AND GREATER
200¢ WATERMAIN	WATERMAIN
■ CB100 T/G 104.10	STREET CATCHBASIN C/W TOP OF GRATE
CICB101	CURB INLET CATCHBASIN C/W GUTTER GRADE
G/G 104.25 DCB100 T/G 104.10	DOUBLE CATCHBASIN C/W TOP OF GRATE
DCICB101	DITCH INLET CATCHBASIN C/W GUTTER GRADE
G/G 104.25 CBMH100	CATCHBASIN MANHOLE C/W TOP OF GRATE
T/G 103.59	DITCH INLET MANHOLE C/W TOP OF GRATE
T/G 103.59 CB100 T/G 104.10	ICD LOCATION
■ RYCB T/G 104.35	REAR YARD CATCHBASIN IN ROAD CONNECTING STRUCTURE C/W SOLID GRATE
−0 TCB T/G 104.35	REAR YARD "TEE" CATCHBASIN C/W TOP OF GRATE (300Ø)
T/G 104.50	REAR YARD "END" CATCHBASIN C/W TOP OF GRATE (300Ø)
CCB T/G 104.35	REAR YARD "CUSTOM ANGLED" CATCHBASIN C/W TOP OF GRATE (450Ø)
WCB T/G 104.35	REAR YARD "THREE WAY" CATCHBASIN C/W TOP OF GRATE (450Ø)
	PERFORATED REAR YARD SUBDRAIN
300mmø CSP	CSP CULVERT
⊗ ^{V&VB}	VALVE AND VALVE BOX
⊚ V&VC	VALVE AND VALVE CHAMBER
◆ HYD 104.35	FIRE HYDRANT C/W BOTTOM OF FLANGE ELEVATION
200ø WM RED 150ø WM	WATERMAIN REDUCER
2 VBENDS	VERTICAL BEND LOCATION
\triangleleft	SINGLE SERVICE LOCATION
\triangleleft	DOUBLE SERVICE LOCATION
BH 12 102.00	INFERDED DEDDOOK (SEE CECTECUNICAL DEDODT)
HGL	INFERRED BEDROCK (SEE GEOTECHNICAL REPORT)
101.79 S/T HGL	100 YEAR STORM HYDRAULIC GRADE LINE AT MANHOLE
101.79	STRESS TEST STORM HYDRAULIC GRADE LINE AT MANHOLE
102.40	UNDERSIDE OF FOOTING ELEVATION (WITH LOT #)
***************************************	CLAY SEAL IN SEWER / WATERMAIN TRENCH

GRADING LEGEND

\rightarrow \rightarrow \rightarrow	PROPOSED SWALE C/W FLOW DIRECTION
	PROPOSED DITCH C/W FLOW DIRECTION AND SLOPE
1.3%	SLOPE C/W FLOW DIRECTION
	OVERLAND FLOW ROUTE
× 104.62	PROPOSED SPOT GRADE
×104.40 (S)	PROPOSED SWALE GRADE
×104.50 (S)HP	PROPOSED SWALE HIGH POINT GRADE
104.60 103.59 ×	LOT CORNER GRADE C/W EXISTING GRADE
86.45 EX ×	TIE INTO EXISTING GRADE
96.79	FULL STATIC PONDING GRADE
	RETAINING WALL
105.30 T/W ↓↓↓↓↓↓↓	TOP OF RETAINING WALL GRADE TERRACING 3:1 MAXIMUM UNLESS NOTED OTHERWISE
103.50 B/W [×]	PROPOSED BOTTOM OF RETAINING WALL GRADE PRESSURE REDUCING VALVE
F.FL. 96.32 T.FND. 95.96 U.S.F. 93.36 RISERS 0 M.U.S.F.	FINISHED FLOOR ELEVATION TOP OF FOUNDATION ELEVATION UNDERSIDE OF FOOTING ELEVATION TOTAL NUMBER OF RISERS MINIMUM UNDERSIDE OF FOOTING
WU	WALKUP UNIT
WO	WALKOUT UNIT
NS	NON-STANDARD FOUNDATION (Frost cover not provided for standard unit)
BS	BACKSPLIT UNIT (1.5m frost cover on footings)
——————————————————————————————————————	NOISE FENCE LOCATION
	NOISE FENCE GATE

ROADWAY STRUCTURE:

CAR PARKING AREA:(590mm)

- SURFACE COURSE ASPHALTIC CONCRETE HL-4 (OPSS 1150) - BINDER COURSE ASPHALTIC CONCRETE HL-8 (OPSS 1150) - BASE COURSE: GRANULAR "A" (OPSS 1010) 350mm - SUBBASE Course: GRANULAR "B" TYPE I (OPSS 1010)

ACCESS LANES:(720mm)

- SURFACE COURSE ASPHALTIC CONCRETE HL-4 (OPSS 1150) - BINDER COURSE ASPHALTIC CONCRETE HL-8 (OPSS 1150) - BASE COURSE: GRANULAR "A" (OPSS 1010) - SUBBASE Course: GRANULAR "B" TYPE I (OPSS 1010)

PER PINCHIN LTD. REPORT

DRAWING NOTES

- 1.1 CONTRACTOR TO VERIFY ALL DIMENSIONS PRIOR TO CONSTRUCTION.
- 1.2 DO NOT SCALE DRAWINGS.
- 1.3 CONTRACTOR TO REPORT ALL DISCOVERIES OF ERRORS, OMISSIONS OR DISCREPANCIES TO THE
- 1.4 USE ONLY THE LATEST REVISED DRAWINGS OR THOSE THAT ARE MARKED "ISSUED FOR CONSTRUCTION".
- 1.5 ALL CONSTRUCTION SHALL COMPLY WITH CURRENT CITY OF OTTAWA STANDARDS AND SPECIFICATIONS.

1.6 THIS DRAWING SHALL BE READ IN CONJUNCTION WITH ALL RELEVANT DRAWINGS AND SPECIFICATIONS.

- 1.7 FOR LEGAL SURVEY INFORMATION REFER TO REGISTERED PLAN.

ARCHITECT OR DESIGN ENGINEER AS APPLICABLE

- 1.8 REFER TO SITE PLAN (DRAWING NO A0.1) BY A+ ARCHITECTURE INC.
- 1.09 CONTRACTOR TO IMPLEMENT EROSION AND SEDIMENT CONTROL MEASURES AS IDENTIFIED IN THE EROSION AND SEDIMENT CONTROL PLAN TO THE SATISFACTION OF THE CITY OF OTTAWA. PRIOR TO UNDERTAKING ANY SITE ALTERATIONS (FILLING, GRADING, REMOVAL OF VEGETATION, ETC.). DURING ALL PHASES OF THE SITE PREPARATION AND CONSTRUCTION THE MEASURES ARE TO BE MAINTAINED TO THE SATISFACTION OF THE ENGINEER AND CITY OF OTTAWA IN ACCORDANCE WITH THE BEST MANAGEMENT PRACTICES FOR EROSION AND SEDIMENT CONTROL. SHOULD ANY ADDITIONAL MEASURES BE REQUIRED TO ADDRESS FIELD CONDITIONS THEY SHALL BE INSTALLED AS DIRECTED BY THE ENGINEER OR THE CITY OF OTTAWA. SUCH ADDITIONAL MEASURES MAY INCLUDE BUT NOT BE LIMITED TO INSTALLATION OF FILTER CLOTHS ACROSS MANHOLE AND CATCHBASIN LIDS TO PREVENT SEDIMENT FROM ENTERING THE STRUCTURE AND INSTALLATION AND MAINTENANCE OF A LIGHT DUTY SILT FENCE BARRIER AS REQUIRED.
- 1.10 ALL IRON WORK ELEVATIONS SHOWN ARE APPROXIMATE AND ARE SUBJECT TO MINOR ADJUSTMENTS AS DETERMINED BY THE ENGINEER.
- 1.11 ALL CONCRETE CURBS AND SIDEWALKS TO CONFORM TO O.P.S. AND CONSTRUCTED TO CITY STANDARDS.
- 1.12 ALL CONCRETE SHALL BE "NORMAL PORTLAND CEMENT" IN ACCORDANCE WITH O.P.S.S. 1350 AND SHALL ACHIEVE A MINIMUM STRENGTH OF 30MPa AT 28 DAYS.
- 1.13 ALL CONSTRUCTION TRAFFIC TO ACCESS SITE FROM COPE DRIVE.

ALL ONSITE CURBS TO BE BARRIER TYPE, WITH DEPRESSIONS AS NOTED.

- 1.14 FOR GEOTECHNICAL REPORT REFER TO PINCHIN LTD. REPORT.
- 1.15 CONTRACTOR TO PROTECT EXISTING INFRASTRUCTURE AND PROPERTY SUCH AS TREES, PARKING METERS, SIDEWALKS, CURBS, ASPHALT, AND STREET SIGNS FROM DAMAGE DURING CONSTRUCTION. CONTRACTOR TO PAY THE COST TO REINSTATE OR REPLACE ANY DAMAGED INFRASTRUCTURE OR PROPERTY TO THE SATISFACTION OF THE CITY.
- 1.16 THE POSITION OF POLE LINES, CONDUITS, WATERMAIN, SEWERS, AND OTHER UNDERGROUND AND ABOVEGROUND UTILITIES AND STRUCTURES ARE NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS. AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING WORK THE CONTRACTOR SHALL INFORM ITSELF OF THE EXACT LOCATION OF ALL SUCH UTILITIES AND STRUCTURES, SHALL PROTECT ALL UTILITIES AND STRUCTURES, AND SHALL ASSUME ALL LIABILITY FOR DAMAGE TO THEM.
- 1.17 CONTRACTOR TO SUPPLY SUITABLE FILL MATERIAL WHERE REQUIRED TO ROUGH GRADE THE SITE. ALL IMPORTED FILL MATERIAL TO BE CERTIFIED AS ACCEPTABLE BY THE GEOTECHNICAL ENGINEER.
- 1.18 CONTRACTOR TO HAUL EXCESS MATERIAL OFFSITE AS NECESSARY TO GRADE SITE TO MEET THE PROPOSED GRADES. ALL EXCESS MATERIAL TO BE HAULED OFFSITE AND DISPOSED OF AT AN APPROVED DUMP SITE. SHOULD THE CONTRACTOR DISCOVER ANY HAZARDOUS MATERIAL, CONTRACTOR IS TO NOTIFY ENGINEER. ENGINEER TO DETERMINE APPROPRIATE DISPOSAL METHOD/LOCATION.
- 1.19 FILL MATERIAL WITHIN THE PARKING LOT AND BUILDING PAD AREAS, AND SUPPORTING BUILDING FOUNDATIONS SHALL BE COMPACTED TO 98% STANDARD MODIFIED PROCTOR DENSITY AND TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER.
- 1.20 ALL COMPACTION METHODS TO BE PERFORMED TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER TO INCLUDE BUT NOT BE LIMITED TO THE THICKNESS OF LIFTS, AND COMPACTION EQUIPMENT USED.
- 1.21 ALL DISTURBED BOULEVARDS TO BE REINSTATED WITH SOD ON 100mm TOPSOIL.
- 1.22 UTILITY DUCTS TO BE INSTALLED PRIOR TO ROAD BASE CONSTRUCTION.
- 1.23 CLAY DIKES TO BE INSTALLED WHERE INDICATED ON THE DRAWINGS OR AS APPROVED AND DIRECTED BY THE GEOTECHNICAL ENGINEER ALL IN ACCORDANCE WITH CITY OF OTTAWA STANDARDS AND SPECIFICATIONS.
- 1.24 SNOW TO BE REMOVED OFF SITE.

2.0 SANITARY

- 2.1 ALL SANITARY SEWER MAINS TO BE CSA CERTIFIED, BELL AND SPIGOT TYPE. ONLY FACTORY FITTINGS TO BE USED. SEWER TO BE INSTALLED AS PER OSPD 1005.01. SANITARY SEWER MATERIALS TO BE: 250mmØ AND SMALLER - PVC DR 35
- 2.2 ALL SANITARY MAINTENANCE HOLES TO BE 1.2m DIAMETER AS PER CITY OF OTTAWA STANDARDS COMPLETE WITH BENCHING, RUNGS, FRAME AND COVER, DROP PIPES AND LANDINGS WHERE NEEDED.
- 2.3 SANITARY MANHOLE COVERS TO BE CITY OF OTTAWA STD. S25 (MOD. OPSD. 401.020). SANITARY MANHOLE COVER TO BE CLOSED COVER TYPE, AS PER CITY STANDARD S24.
- 2.4 SANITARY SEWER LEAKAGE TEST AND CCTV INSPECTION SHALL BE COMPLETED AS PER CITY SPECIFICATIONS PRIOR TO INSTALLATION OF BASE COURSE ASPHALT.

INSTALLATION. THIS INCLUDES REINSTATEMENT OF ROAD CUTS TO CITY STANDARDS.

- 2.5 ANY SANITARY SEWER WITH LESS THAN 2.0m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22, OR AS APPROVED BY THE ENGINEER.
- 2.6 CONNECTION TO THE EXISTING SANITARY SEWER TO BE INCLUDED IN THE COST FOR SANITARY SEWER
- 3.0 STORM
- 3.1 ALL STORM SEWERS TO BE CSA CERTIFIED, BELL AND SPIGOT TYPE. ALL STORM SEWERS TO BE INSTALLED PER MANUFACTURER'S INSTRUCTIONS. ONLY FACTORY FITTINGS TO BE USED. STORM SEWER MATERIALS TO BE: 375mmØ AND SMALLER - PVC DR 35, 450Ø AND LARGER CL-100D, 825Ø AND LARGER CL-65D.
- 3.2 ALL STORM MAINTENANCE HOLES TO BE SIZED IN ACCORDANCE WITH THE PLANS AND AS PER CITY OF OTTAWA STANDARDS COMPLETE WITH BENCHING, RUNGS, AND FRAME AND COVER.

- 3.3 STORM MH COVERS TO BE OPEN TYPE, AS PER CITY STANDARD \$24, FRAMES TO BE PER CITY OF OTTAWA STD. S25. CONTRACTOR TO INSTALL FILTER FABRIC UNDER STORM MH COVER UNTIL SODDING IS COMPLETE. 3.4 STORM MAINTENANCE HOLES TO BE OPSD, SIZE AS SPECIFIED, TAPER TOP.
- 3.5 ALL CATCH BASINS TO BE AS PER OPSD 705.010, FRAME & FISH TYPE GRATE AS PER CITY OF OTTAWA STD.
- 3.6 150mm DIAMETER SOCK-WRAPPED PERFORATED PVC SUBDRAINS TO BE INSTALLED AT THE LIMIT OF THE HEAVY DUTY ROAD STRUCTURE WHERE IT MEETS THE LIGHT DUTY ROAD STRUCTURE AND AT ALL CB'S IN HEAVY DUTY ROADS AS IDENTIFIED ON PLAN. SUBDRAINS TO DISCHARGE TO CB'S AS SHOWN.
- 3.7 ANY STORM SEWER WITH LESS THAN 2.0m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22. OR AS APPROVED BY THE ENGINEER.
- 3.8 CONNECTION TO THE EXISTING STORM SEWER TO BE INCLUDED IN THE COST FOR STORM SEWER INSTALLATION. THIS INCLUDES REINSTATEMENT OF ROAD CUT TO CITY STANDARDS.
- 3.9 CONTRACTOR TO PROVIDE IPEX-TEMPEST MHF ICD'S SHOP DRAWINGS, OR EQUIVALENT, FOR ENGINEERS REVIEW PRIOR TO ORDERING ICD'S.
- 3.10 ALL LEADS FOR CB's CONNECTED TO MAIN SHALL BE 200mmØ PVC DR35 @ MIN 1% SLOPE UNLESS NOTED

4.0 WATER

4.1 ALL WATERMAINS TO BE PVC DR 18, WITH MINIMUM COVER OF 2.4m AND INSTALLED PER CITY OF OTTAWA STANDARDS. ALL WATER SERVICES ARE TO BE AS NOTED.

CHLORINATE ALL WATERMAINS TO THE SATISFACTION OF M.O.E. AND THE CITY OF OTTAWA.

- 4.2 THRUST BLOCKS TO BE INSTALLED AT ALL BENDS, TEES, AND CAPS ALL AS PER OPSD 1103.01 AND 1103.02. 4.3 CONTRACTOR TO CONDUCT PRESSURE AND LEAKAGE TESTING OF ALL WATERMAINS AND DISINFECT AND
- 4.4 TRACER WIRE TO BE INSTALLED ALONG THE FULL LENGTH OF WATERMAIN AND ATTACHED TO EACH MAIN STOP AS PER CITY OF OTTAWA STANDARDS.
- 4.5 ALL COMPONENTS OF THE WATER DISTRIBUTION SYSTEM SHALL BE CATHODICALLY PROTECTED AS PER
- 4.6 ALL VALVES & VALVE BOXES AND CHAMBERS, HYDRANTS, AND HYDRANT VALVES AND ASSEMBLIES SHALL
- 4.7 ANY WATERMAIN WITH LESS THAN 2.4m COVER REQUIRES THERMAL INSULATION AS PER CITY OF OTTAWA STANDARD W22. OR AS APPROVED BY THE ENGINEER.
- 4.8 CONTRACTOR IS RESPONSIBLE FOR ACQUIRING THE WATER PERMIT FROM THE CITY OF OTTAWA AND PAYMENT OF ANY FEES ASSOCIATED WITH SECURING THE WATER PERMIT. OWNER IS RESPONSIBLE FOR REIMBURSING THE CONTRACTOR FOR THE ACTUAL COST OF ACQUIRING THE WATER PERMIT.
- 4.9 CONNECTION TO EXISTING WATERMAIN TO BE INCLUDED IN THE COST FOR THE WATERMAIN INSTALLATION. THIS COST INCLUDES REINSTATEMENT OF ROAD CUTS TO CITY STANDARDS.

5.0 PARKING LOT AND WORK IN PUBLIC RIGHTS OF WAY

BE INSTALLED AS PER CITY OF OTTAWA STANDARDS.

- 5.1 CONTRACTOR TO REINSTATE ROAD CUTS PER CITY OF OTTAWA STANDARD R-10.
- 5.2 THE CONTRACTOR SHALL PREPARE A TRAFFIC MANAGEMENT PLAN FOR REVIEW AND APPROVAL BY THE CITY OF OTTAWA. CONTRACTOR TO MAINTAIN TRAFFIC FLOW DURING THE ENTIRE CONSTRUCTION PERIOD. MAINTENANCE OF ROAD CUTS SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR. PROVISION OF FLAGMEN, DETOURS AS NECESSARY, BARRICADES AND SIGNS TO THE FULL SATISFACTION OF THE ENGINEER AND ROAD AUTHORITY SHALL BE THE CONTRACTOR'S RESPONSIBILITY.
- 5.3 CONTRACTOR TO PREPARE SUBGRADE, INCLUDING PROOFROLLING, TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER PRIOR TO THE COMMENCEMENT OF PLACEMENT OF GRANULAR B MATERIAL.
- 5.4 FILL TO BE PLACED AND COMPACTED PER THE GEOTECHNICAL REPORT REQUIREMENTS.
- 5.5 CONTRACTOR TO SUPPLY, PLACE AND COMPACT GRANULAR B MATERIAL IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE GEOETCHNICAL ENGINEER. CONTRACTOR TO PROVIDE ENGINEER WITH SAMPLES OF GRANULAR B MATERIAL FOR TESTING AND CERTIFICATION FROM THE GEOTECHNICAL ENGINEER THAT THE MATERIAL MEETS THE GRADATION REQUIREMENTS SPECIFIED IN THE GEOTECHNICAL REPORT.
- 5.6 GRANULAR A MATERIAL TO BE PLACED ONLY UPON APPROVAL BY THE GEOTECHNICAL ENGINEER OF GRANULAR B PLACEMENT.
- 5.7 CONTRACTOR TO SUPPLY, PLACE AND COMPACT GRANULAR A MATERIAL IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE GEOETCHNICAL ENGINEER. CONTRACTOR TO PROVIDE ENGINEER WITH SAMPLES MATERIAL MEETS THE GRADATION REQUIREMENTS SPECIFIED IN THE GEOTECHNICAL REPORT.
- 5.8 ASPHALT MATERIAL TO BE PLACED ONLY UPON APPROVAL BY THE GEOTECHNICAL ENGINEER OF GRANULAR A PLACEMENT
- 5.9 CONTRACTOR TO SUPPLY, PLACE AND COMPACT ASPHALT MATERIAL IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE GEOTECHNICAL ENGINEER. CONTRACTOR TO PROVIDE ENGINEER WITH SAMPLES OF ASPHALT MATERIAL FOR TESTING AND CERTIFICATION FROM THE GEOTECHNICAL ENGINEER THAT THE MATERIAL MEETS THE REQUIREMENTS SPECIFIED IN THE GEOTECHNICAL REPORT
- 5.10 CONTRACTOR IS RESPONSIBLE FOR ESTABLISHING LINE AND GRADE IN ACCORDANCE WITH THE PLANS, AND FOR PROVIDING THE ENGINEER WITH VERIFICATION PRIOR TO PLACEMENT.
- 5.11 DITCHES DISTURBED DURING CULVERT INSTALLATION AND GRADING OPERATIONS ARE TO BE REINSTATED TO THEIR ORIGINAL CONDITION AND FLOWLINE GRADES.
- 5.12 ALL EXCESS MATERIAL TO BE HAULED OFFSITE AND DISPOSED OF AT AN APPROVED DUMP SITE. SHOULD THE CONTRACTOR DISCOVER ANY HAZARDOUS MATERIAL, CONTRACTOR IS TO NOTIFY ENGINEER. ENGINEER TO DETERMINE APPROPRIATE DISPOSAL METHOD/LOCATION.
- 5.13 PAVEMENT STRUCTURE (MATERIAL TYPES AND THICKNESS) FOR HEAVY DUTY AND LIGHT DUTY AREAS TO BE AS SPECIFIED IN THE GEOTECHNICAL REPORT AND SHOWN ON THE PLANS.

Revision: 2018-09-1

I ISSUED FOR CITY APPROVAL REVISIONS **CCR PROCESS PRODUCTS IBI GROUP** 400 – 333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com Project Title **CCR WAREHOUSE ADDITION** & OFFICE RENOVATION 20 COPE DRIVE, KANATA, ONTARIO

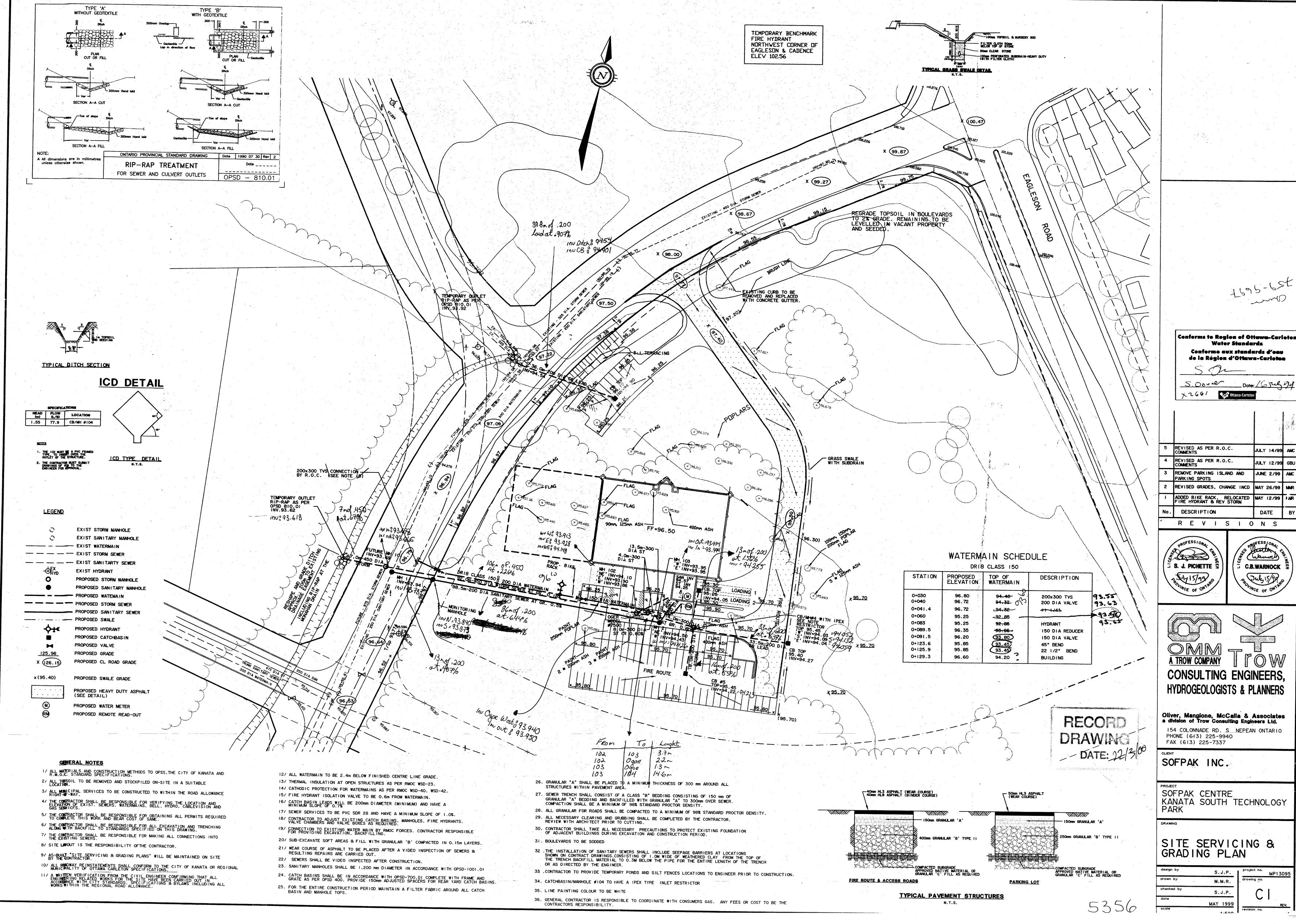
PROFESSIONAL FROM THE STATE OF ON THE STATE OF ON THE STATE OF THE STA	
Drawing Title	
GENERAL	_ NOTES,

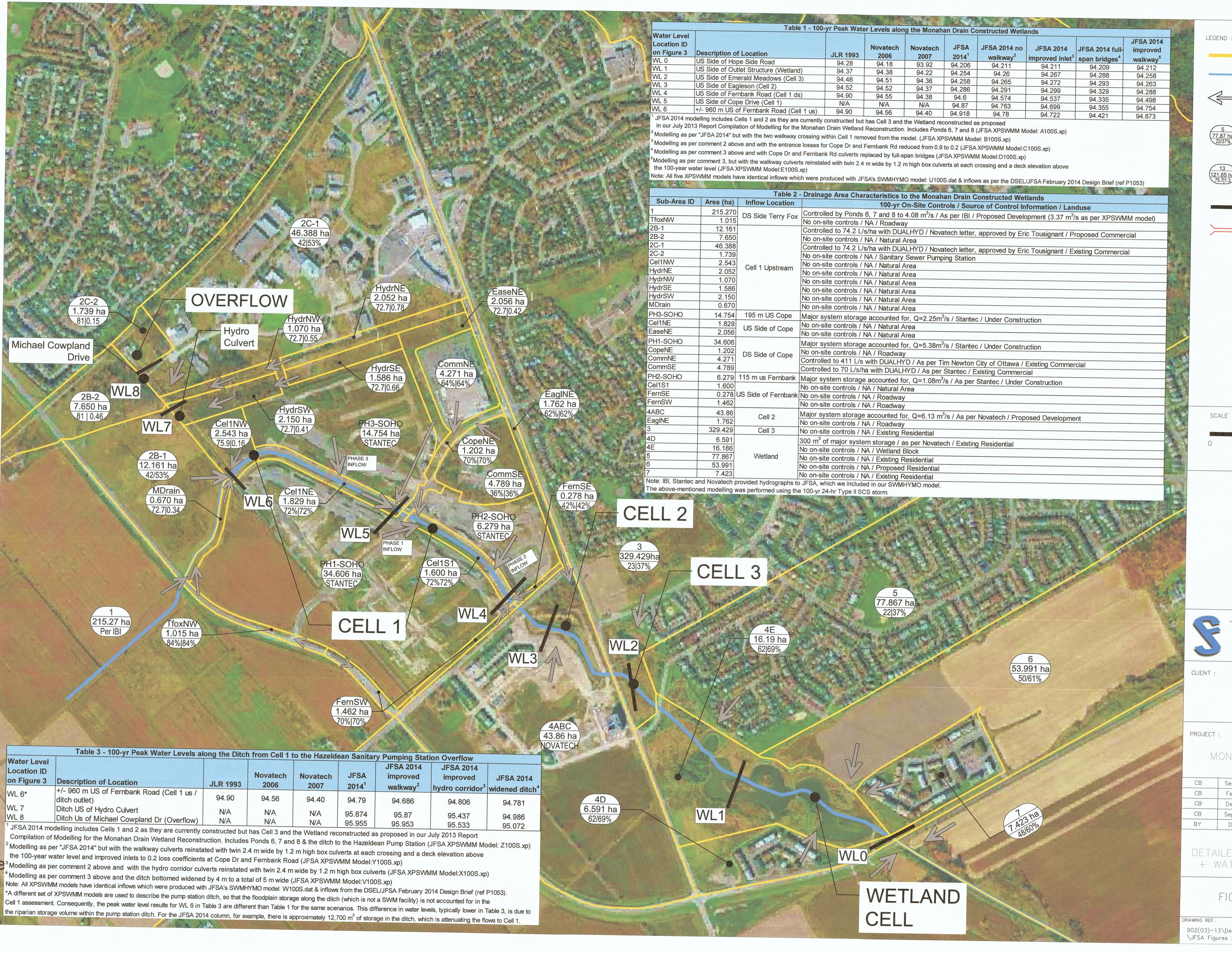
DEVELOPMENT REVIEW SERVICES BRANCH

Plan Number

LEGEND AND CB DATA TABLE

N.T.S. APR 2018 DGY


Drawing No. 117308


CATCH BASIN DATA TABLE ELEVATION OUTLET PIPE **AREA** INVERT DIAMETER STRUCTURE STRUCTURE COVER TOP OF ICD TYPE ID GRATE INLET | OUTLET (mm) BUSH OPSD 705.030 94.97 94.540 94.420 PVC DR-35 10 TEMPEST MHF DICB51 250 0.72 CB60 95.95 94.600 94.550 250 OPSD 705.010 S19 PVC DR-35 CB60A CB60A OPSD 705.010 **S19** 95.88 94.250 94.120 250 PVC DR-35 | 1.86 20 TEMPEST MHI CB60B CB60B OPSD 705.010 S19 95.88 94.500 200 PVC DR-35 CB60C CB60C OPSD 705.010 **S19** 95.85 94.450 200 | PVC DR-35 | 1.45 10 | TEMPEST MHF CB61A CB61A OPSD 705.010 96.10 94.520 250 PVC DR-35 1.56 30 TEMPEST MHI S19 94.640 94.290 CB61B CB61B OPSD 705.010 **S19** 95.89 94.410 250 PVC DR-35 | 1.74 10 **TEMPEST MHF** 97.01 95.610 CB62 OPSD 705.010 S19 200 PVC DR-35 CB62 CB62A CB62A OPSD 705.010 S19 97.01 95.410 94.470 300 PVC DR-35 CB62B OPSD 705.010 S19 96.30 94.900 200 PVC DR-35 CB62C CB62C OPSD 705.010 S19 95.90 94.500 200 PVC DR-35 CB64 95.70 94.910 PVC DR-35 CB64 OPSD 705.010 S19 200 CB64A OPSD 705.010 95.80 200 PVC DR-35 CB64A S19 94.950 CB64B OPSD 705.010 S19 96.10 94.850 94.750 250 PVC DR-35 CB70 OPSD 705.010 S19 95.30 94.840 200 CONNECT TO FOUNDATION DRAIN CB80 94.740 CB80 OPSD 705.010 S19 96.25 94.790 250 PVC DR-35 CB81 CB81 OPSD 705.010 S19 96.25 94.874 94.850 200 PVC DR-35

Bold font indicates CB's with ICD's

APPENDIX C

- Existing Conditions Site Plan, OMM TROW
- Monahan Drain Cell 1 Modelling Figure 3, *J.F. Sabourin & Associates Inc.*
- Storm Drainage Area Plan Drawing No. 117308-C-500
- Storm Sewer Design Sheet
- Stormwater Management Calculations
- Ponding Plan Drawing No. 117308-C-600
- Average Runoff Coefficient Calculations

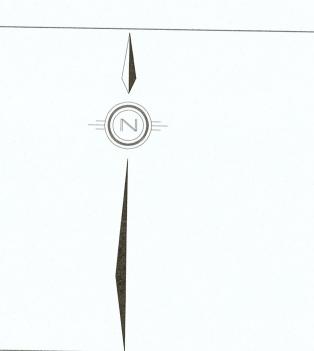
SUBCATCHMENT BOUNDARY

DRAINAGE DIRECTION / INFLOW LOCATION

- SUB-CATCHMENT ID (STANDHYD)

- SUB-CATCHMENT AREA (HA) DIRECT / TOTAL IMPERVIOUSNESS (%)

- SUB-CATCHMENT ID (NASHYD) SUB-CATCHMENT AREA (HA) CURVE NUMBER | TIME TO PEAK (H)


WL1 WATER LEVEL LOCATION refer to Table 1

APPROXIMATE LOCATION of WALKWAYS

J.F. Sabourin & Associates Inc. WATER RESOURCES AND ENVIRONMENTAL CONSULTANTS OTTAWA (613) 836-3884 GATINEAU (819) 243-6858

CELL 1 MODELLING MONAHAN DRAIN CONSTRUCTED WETLANDS

Son+ /11	FINIAL	T
3ept/14	TIVAL	3
Feb/13	For Review / Comments	2
Dec/13	For Discussion	1
Sept/13	For Discussion	0
DATE	DESCRIPTION	REV
	Dec/13 Sept/13	Feb/13 For Review / Comments Dec/13 For Discussion Sept/13 For Discussion

DETAILED DRAINAGE AREAS TO CELL + WATER LEVELS ALONG the MDCW

	DESIGNED:	
FIGURE 3	DRAWN: CB	
TOOKE 5	VERIFIED:	
	APPROVED:	
DRAWING REF.	DATE	PROJECT N
902(03)-13\Design\CAD \JFSA Figures 20140905.dwg	Sept/14	902(03)-

IBI GROUP 400-333 Preston Street Ottawa, Ontario K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868

ibigroup.com

STORM SEWER DESIGN SHEET

CCR WAREHOUSE ADDITION AND OFFICE RENOVATION 20 COPE DRIVE, KANATA, ONTARIO FIRST AIR

	LOCATION								AR	EA (Ha)														RATION		GN FLOW												SEWER D	ATA			
STREET	AREA ID	FROM	то	C=	C=	C=	C= C	= C= 50 0.69	C=	C=	C= C:	= C=	C=	C=	C=	C=	IND (CUM	INLET	TIME	TOTAL	i (2) (mm/hr)	i (5)	i (1	1 0) i	i (100)	2yr PEAK	5yr PEAK	10yr PEA	K 100yr PE	AK FIXED	DESIG	N CAP	PACITY L	ENGTH	F	PIPE SIZE		SLOPE	VELOCIT	Y AVAI	IL CAP (2yr
				0.25	0.29 0	0.28 0	0.37 0.9	0.69	0.75	0.73	0.77 0.7	9 0.80	0.82	0.85	0.87	0.90 2.	.78AC 2.	.78AC	(min)	IN PIPE	(min)	(mm/hr)) (mm/h	r) (mm	/hr) (ı	mm/hr) F	LOW (L/s)	FLOW (L/s) FLOW (L/	s) FLOW (L	/s)FLOW (L	_/s) FLOW (_/s) (I	L/s)	(m)	DIA	W	Н	(%)	(m/s)	(L/s)	(%)
																																										+
	R1	Bldg	MH51														0.38		10.00	0.05		76.81								67.01		28.82		00.88		300			1.00		72.06	6 71.43
	BUSH, R1, R2A, R2C,CB70	MH51	MH50		0.57											0.13	0.78	0.78	10.05	1.55	11.60	76.62	103.9	4 121	.84 ′	178.12	60.13	81.57	95.62	139.79		60.13	10	00.18	81.97	375			0.30	0.879	40.05	5 39.98
	CB64,CB64A,ECB64,CB64B,R2B	MH64	MH63	0.06					0.23	0.20						0.02	0.98	0.98	10.00	1.61	11.61	76.81	104 1	9 122	14	178 56	75.05	101.81	119.35	174.48		75.05	9!	5.04	80.37	375			0.27	0.834	19 90	9 21.03
	0504,050114,20504,05045,1425	MH63	MH61	0.00					0.20	0.20									11.61	0.85	12.46						69.52		110.40	_		69.52		5.04		375			0.27	0.834	25.53	3 26.86
	CB62,CB62A,CB62B,CB62C	CB62A	MH61					0.17		(0.06					0.07	0.63	0.63	10.00	0.83	10.83	76.81	104.1	9 122	.14	178.56	48.36	65.61	76.91	112.43		48.36	5 59	9.68	40.88	300			0.35	0.818	11.32	2 18.97
0.00	04D 50D00 0D04 0D00 0D044 50D00 0	200 141104	N. 100	0.00		0.40				0.04	0.0	5 0.40				0.05	0.50	0.00	40.40	0.70	40.00	00.40	00.77	7 100	70	450.04	450.00	004.00	200.05	0.40.07		450.0	2 40	20.00	50.40	450			0.07	4.400	00.00	2 40.7
CB6	61B,ECB80,CB81,CB80,CB61A,ECB60, CB		MH60 MH50	0.06	C	0.12				0.04	0.0	5 0.10		0.04					12.46 13.22	0.76	13.22							204.03	239.05			150.6			50.18	450			0.37	1.102	30.29 6.31	
	CB60A,CB60B,CB60C	MH60	IVIDOU										0.08	0.04	0.08	'	0.47	2.07	13.22	0.91	14.13	66.32	69.78	105	0.10	153.65	177.04	239.70	280.80	410.20		177.0	4 10	33.35	60.93	450			0.38	1.117	6.31	3.44
	EXISTING SERVICE	MH50	EXMH					FLOW	RESTRI	CTION T	O 156.48	/s		l.				3.45	14.13	0.31	14.43				FLOW	RESTRIC	TION TO 1	51.2 l/s			156.48	3 156.4	8 18	30.92	20.24	450			0.37	1.102	24.44	4 13.51
efinitions:				Notes:												•		De	esigned:		SDT					No.						Revisio	1							Date		
= 2.78CiA, where:				1. Mann	nings coeff	fficient (r	n) =	0.013																		1.					Submi	ission No. 1								31/08/201	18	
= Peak Flow in Litres pe																		<u> </u>																								
= Area in Hectares (Ha)																		CI	hecked:		DY																					
-	llimeters per hour (mm/hr)	0 VE 4 D																							<u> </u>																	
[i = 732.951 / (TC+6.199 [i = 998.071 / (TC+6.053	-	2 YEAR 5 YEAR																<u> </u>	wg. Refer	onco:	117308-5	500				+																
[i = 1174.184 / (TC+6.01	-	10 YEAR																الما	wy. Kelel	ence.	117300-0	000					File Re	ference:					Dat	te:						Sheet No)	
[i = 1735.688 / (TC+6.01	· -	100 YEAR																										08-5.7					31/08/							1 of 1		

PROJECT: 20 Cope Dr **DATE:** 9/10/2018 FILE: 117308.5.7 REV #:

DESIGNED BY: ST CHECKED BY: dy

STORMWATER MANAGEMENT

Formulas and Descriptions

 i_{2yr} = 1:2 year Intensity = 732.951 / $(T_c+6.199)^{0.810}$ i_{5yr} = 1:5 year Intensity = 998.071 / $(T_c+6.053)^{0.814}$ $i_{100yr} = 1:100 \text{ year Intensity} = 1735.688 / (T_c+6.014)^{0.820}$

T_c = Time of Concentration (min)

C = Average Runoff Coefficient A = Area (Ha)

Q = Flow = 2.78CiA (L/s)

Maximum Allowable Release Rate

Restricted Flowrate (based of JFSA)

Rate 70.00 L/S/Ha 2.26 Ha $A_{TOTAL} =$

Q_{Restricted} = 158.20 L/s Q_{Restricted} = 158.20 L/s

Existing Building fixed Release (4 drains at 0.63 l/s each)

0.63 l/s drain = number of drains 4

2.52 L/s $Q_{fixed} =$

Uncontrolled Release (Q uncontrolled = 2.78*C*i100yr*A uncontrolled)

C =1.00 Tc =10.00 min i100yr = 178.56 mm/hr 0.01 Ha Auncontrolled =

4.96 L/s Q _{Uncontrolled} =

Maximum Allowable Release Rate ($Q_{max \, allowable} = Q_{restricted} - Q_{uncontrolled} - Q_{uncontrolled}$)

150.72 L/s Q_{max allowable} =

MODIFIED RATIONAL METHOD (100-Year, 5-Year & 2-Year Ponding)

Drainage Area	P63]			
Area (Ha)	0.510				
C =	0.86	Restricted Flow Q _r (L	√s)=	44.00	
		100-Year Pon	ding		
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q_r	Q _p -Q _r	Volume 100yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
22	112.88	137.64	44.00	93.64	123.60
23	109.68	133.74	44.00	89.74	123.84
24	106.68	130.07	44.00	86.07	123.94
25	103.85	126.62	44.00	82.62	123.93
27	98.66	120.30	44.00	76.30	123.60

Alea (11a) 0.510				_	
C =	0.69	Restricted Flow Q_r (L/s)=		44.00	
		5-Year Ponding			
T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q _p -Q _r	Volume 5yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
9	109.79	107.41	44.00	63.41	34.24
11	99.19	97.04	44.00	53.04	35.00
12	94.70	92.64	44.00	48.64	35.02
13	90.63	88.66	44.00	44.66	34.84
15	83.56	81.74	44.00	37.74	33.97

	;	Storage (m ³)				S	corage (m ³)		
Overflow	Required	Surface	Sub-surface	Balance	Overflow	Required	Surface	Sub-surface	Balance
0.00	123 94	121 78	0.00	2 16	0.00	35.02	121 78	0.00	0.00

Drainage Area

overflows to: P51 overflows to: P51

J:\117308_20CopeDrExp\5.7 Calculations\5.7.1 Sewers & Grading\CCS_swm_2018-09-7

1 of 3

Drainage Area	P61	1			
Area (Ha)	0.300				_
C =	0.94	Restricted Flow Q _r (I	_/s)=	25.00	
		100-Year Pon	ding		
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q _r	Q_p - Q_r	Volume 100yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
25	103.85	81.41	25.00	56.41	84.62
27	98.66	77.35	25.00	52.35	84.80
28	96.27	75.48	25.00	50.48	84.80
29	94.01	73.70	25.00	48.70	84.74
31	89.83	70.42	25.00	45.42	84.48

	Area (Ha)	0.300				_
_	C =	0.75	Restricted Flow Q _r (L/s)=	25.00	
]		5-Year Ponding				
1	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q_p - Q_r	Volume 5yr
	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
]	10	104.19	65.17	25.00	40.17	24.10
]	12	94.70	59.23	25.00	34.23	24.65
]	13	90.63	56.69	25.00	31.69	24.72
	14	86.93	54.38	25.00	29.38	24.68
	16	80.46	50.33	25.00	25.33	24.31

P61

	;	Storage (m ³)		
Overflow	Required	Surface	Sub-surface	Balance
0.00	84.80	30.99	0.00	53.81

Storage (m³) Overflow Required Surface Sub-surface 0.00 24.72 30.99 0.00				
Overflow	Required	Surface	Sub-surface	Balance
0.00	24.72	30.99	0.00	0.00

overflows to: P60 overflows to: P60

Drainage Area

Drainage Area	P60A]			
Area (Ha)	0.220				_
C =	0.68	Restricted Flow Q _r (I	_/s)=	30.00	
		100-Year Pon	ding		
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q_p - Q_r	Volume 100yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)
9	188.25	78.29	30.00	48.29	26.08
11	169.91	70.66	30.00	40.66	26.84
12	162.13	67.43	30.00	37.43	26.95
13	155.11	64.51	30.00	34.51	26.92
15	142.89	59.43	30.00	29.43	26.49

Drainage Area	P60A]			
Area (Ha)	0.220				_
C =	0.54	Restricted Flow Q_r (L/s)=	30.00	
		5-Year Ponding			
T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q _r	Q_p - Q_r	Volume 5yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
2	182.69	60.34	30.00	30.34	3.64
4	152.51	50.37	30.00	20.37	4.89
5	141.18	46.63	30.00	16.63	4.99
6	131.57	43.45	30.00	13.45	4.84
8	116.11	38.35	30.00	8.35	4.01

	;	Storage (m ³)			
Overflow	Required	Surface	Sub-surface	Balance	Т
0.00	26.05	1.04	0	25.01	

		Sto	orage (m³)		
-	Overflow	Required	Surface	Sub-surface	Balance
	0.00	4 99	1 0/	0	3.05

overflows to: P60 overflows to: P60

Drainage Area	P60]			
Area (Ha)	0.190				_
C =	0.80	Restricted Flow Q _r (I	_/s)=	10.00	
		100-Year Pon	ding		
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q_p - Q_r	Volume 100yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
34	84.27	35.61	10.00	25.61	52.24
36	80.96	34.21	10.00	24.21	52.30
37	79.42	33.56	10.00	23.56	52.30
38	77.93	32.93	10.00	22.93	52.28
40	75.15	31.75	10.00	21.75	52.21

	Drainage Area	P60				
	Area (Ha)	0.190				_
	C =	0.64	Restricted Flow Q _r (L/s)=	10.00	
]			5-Year Ponding			
	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q _r	Q_p - Q_r	Volume 5yr
	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
1	15	83.56	28.25	10.00	18.25	16.42
	17	77.61	26.23	10.00	16.23	16.56
	18	74.97	25.34	10.00	15.34	16.57
	19	72.53	24.52	10.00	14.52	16.55
	21	68.13	23.03	10.00	13.03	16.42

Storage (m ³)						
Overflow	Required	Surface	Sub-surface	Balance		
78.82	131.12	53.43	0	77.69		

Storage (m ³)						
Overflow	Required	Surface	Sub-surface	Balance		
3.05	19.62	53.43	0	0.00		

overflows to: P50A overflows to: P50A

Drainage Area	P50A						
Area (Ha)	0.160)			_		
C =	1.00	Restricted Flow Q _r (I	_/s)=	20.00			
	100-Year Ponding						
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr		
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)		
17	132.63	58.99	20.00	38.99	39.77		
19	123.87	55.10	20.00	35.10	40.01		
20	119.95	53.35	20.00	33.35	40.02		
21	116.30	51.73	20.00	31.73	39.98		
23	109.68	48.79	20.00	28.79	39.73		

Drainage Area	P50A				
Area (Ha)	0.160				
C =	0.85	Restricted Flow Q _r (I	_/s)=	20.00	
		5-Year Ponding			
T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5vr} A	Q_r	Q_p - Q_r	Volume 5yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
7	123.30	46.62	20.00	26.62	11.18
9	109.79	41.51	20.00	21.51	11.62
10	104.19	39.39	20.00	19.39	11.64
11	99.19	37.50	20.00	17.50	11.55
13	90.63	34.27	20.00	14.27	11.13

Storage (m ³)						
Overflow	Required	Surface	Sub-surface	Balance		
77.69	117.71	83.51	0	34.20		

_		Sto	orage (m³)			
	Overflow	Required	Surface	Sub-surface	Balance	
	0.00	11.64	83.51	0	0.00	

Storage (m³)

Surface

overflows to: P50

overflows to: P51

Drainage Area

overflows to: P50

P50				
1.00	Restricted Flow Q _r (L	/s)=	10.00	
	100-Year Pon	ding		
i	Peak Flow	O	0 -0	Volume
• 100yr	$Q_p = 2.78xCi_{100yr}A$	٠,	$\mathbf{q}_{p}\mathbf{q}_{r}$	100yr
(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
211.67	23.54	10.00	13.54	5.69
188.25	20.93	10.00	10.93	5.90
178.56	19.86	10.00	9.86	5.91
169.91	18.89	10.00	8.89	5.87
155.11	17.25	10.00	7.25	5.65
	0.040 1.00 <i>i</i> _{100yr} (<i>mm/hour</i>) 211.67 188.25 178.56 169.91	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Area (Ha)	0.040				
C =	0.85	Restricted Flow Q _r (I	∟/s)=	10.00	
		5-Year Ponding			
T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q_r	$Q_p - Q_r$	Volume 5yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m^3)
1	203.51	19.24	10.00	9.24	0.55
3	166.09	15.70	10.00	5.70	1.03
4	152.51	14.42	10.00	4.42	1.06
5	141.18	13.34	10.00	3.34	1.00
7	123.30	11.65	10.00	1.65	0.69

P50

Overflow

0.00

Ex Roof

Drainage Area

 Storage (m ³)					
Overflow	Required	Surface	Sub-surface	Balance	
34.20	40.12	8.04	0	32.08	

Required 1.06 0.00 8.04

Sub-surface

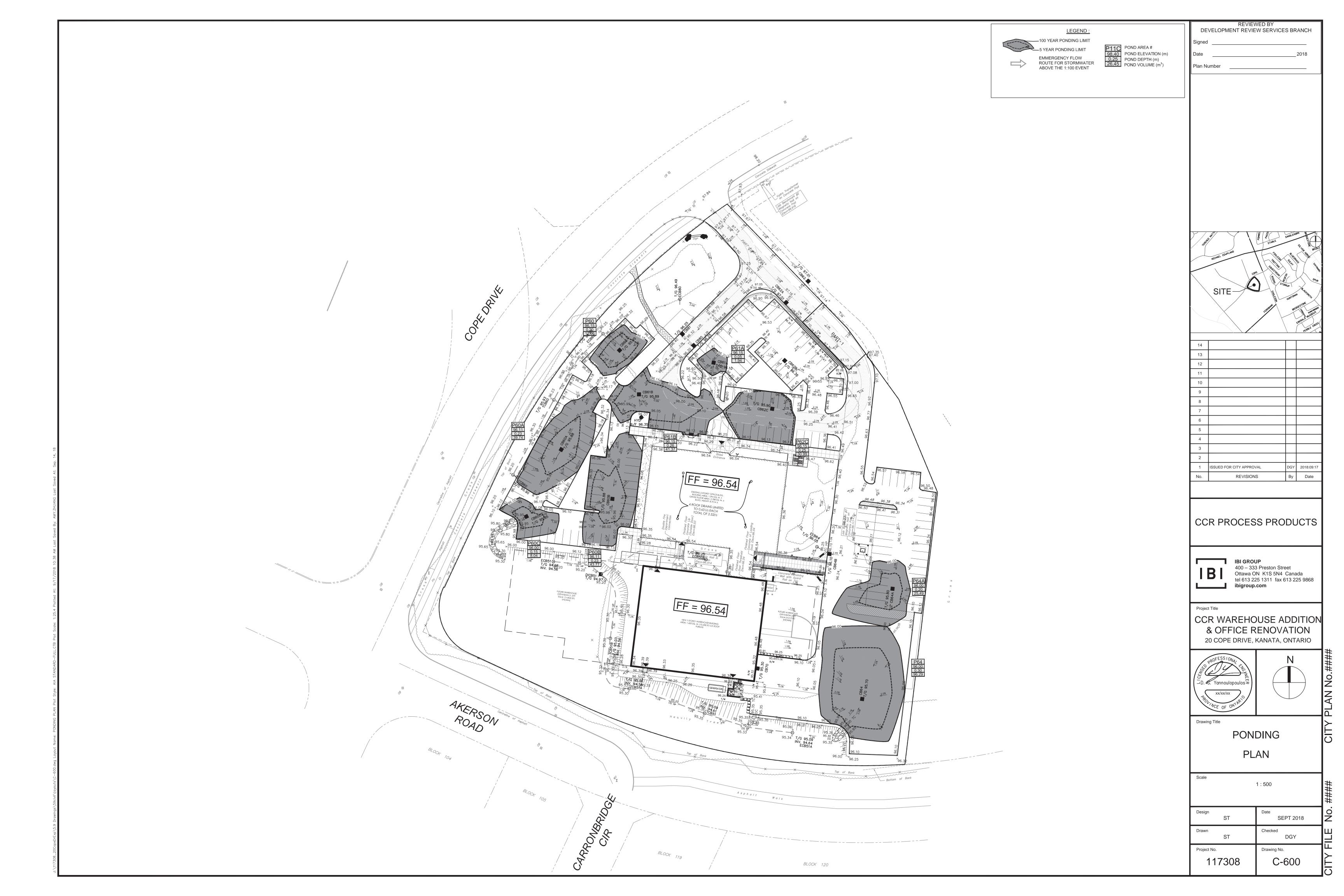
overflows to: P51

Balance

Drainage Area	51	1			
Area (Ha)	0.690)			_
C =	0.50	Restricted Flow Q _r (L	_/s)=	10.00	
		100-Year Pon	ding		
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
79	45.42	43.57	10.00	33.57	159.11
81	44.57	42.74	10.00	32.74	159.13
82	44.15	42.35	10.00	32.35	159.14
83	43.74	41.95	10.00	31.95	159.13
85	42.95	41.20	10.00	31.20	159.11

Drainage Area	51				
Area (Ha)	0.690				_
C =	0.40	Restricted Flow Q _r (L/s)=	10.00	
		5-Year Ponding			
T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q_p - Q_r	Volume 5yr
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
37	46.67	35.81	10.00	25.81	57.30
39	44.98	34.51	10.00	24.51	57.36
40	44.18	33.90	10.00	23.90	57.36
41	43.42	33.31	10.00	23.31	57.35
43	41.97	32.20	10.00	22.20	57.29

42.95	41.20	10.00	31.20	139.11			
Storage (m ³)							
Overflow	Required	Surface	Sub-surface	Balance			
34.24	193.38	200.00	0	0.00			

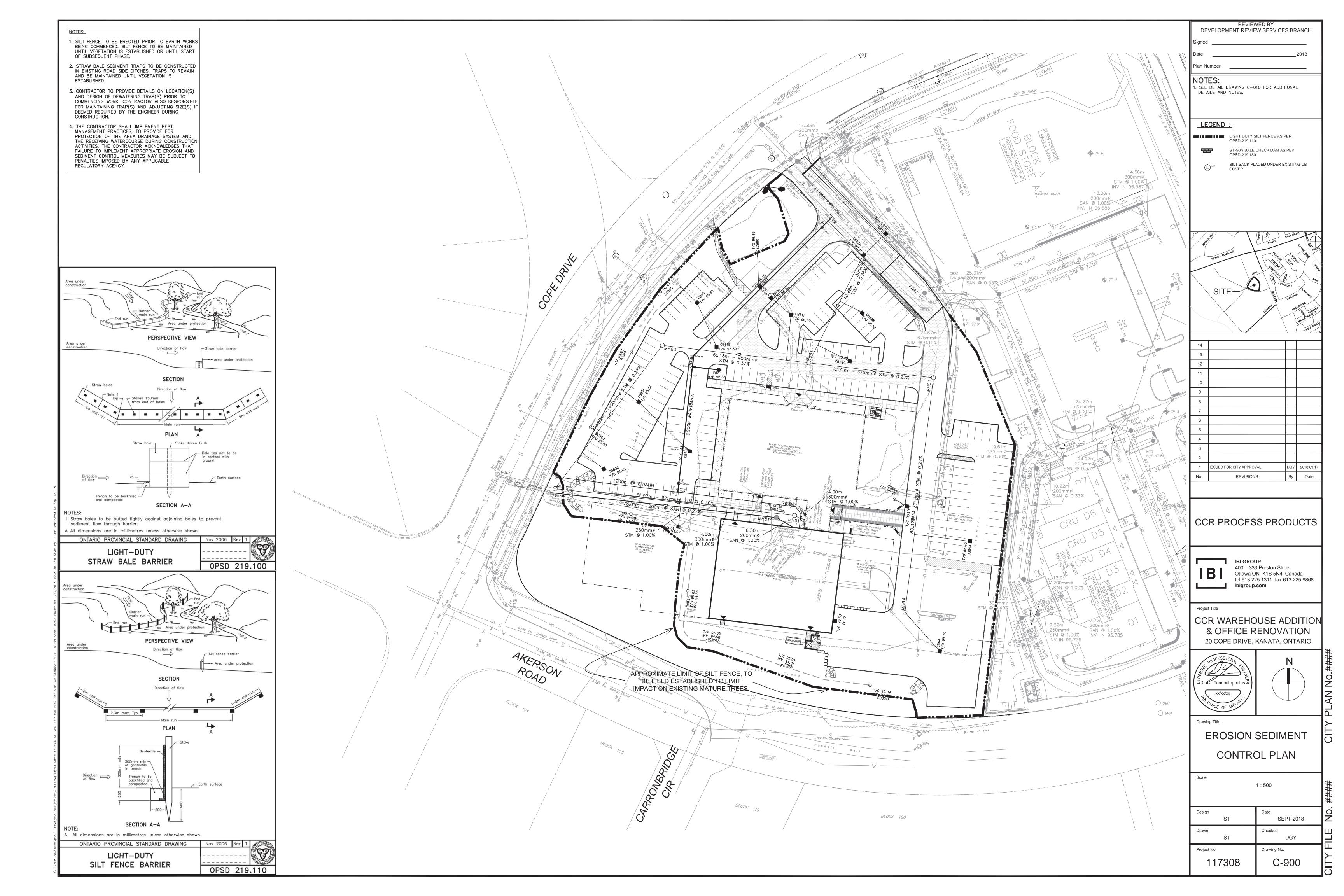

_	Storage (m ³)					
	Overflow	Required	Surface	Sub-surface	Balance	
	0.00	57.36	200.00	0	0.00	

Drainage Area	Ex Roof						
Area (Ha)	0.150						
C =	1.00	Restricted Flow Q _r (L	√s)=	2.52			
	100-Year Ponding						
T _c Variable	i _{100yr}	Peak Flow Q _p =2.78xCi _{100yr} A	Q,	Q _p -Q _r	Volume 100yr		
(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m ³)		
142	28.83	12.02	2.52	9.50	80.95		
144	28.51	11.89	2.52	9.37	80.96		
145	28.36	11.83	2.52	9.31	80.96		
146	28.21	11.76	2.52	9.24	80.96		
148	27.90	11.64	2.52	9.12	80.95		

	Area (Ha) C =	0.150 0.90	Restricted Flow Q_r (I	_/s)=	2.52	
]	5-Year Ponding					
1	T _c Variable	i _{5yr}	Peak Flow Q _p =2.78xCi _{5yr} A	Q,	Q_p - Q_r	Volume 5yr
l	(min)	(mm/hour)	(L/s)	(L/s)	(L/s)	(m³)
1	74	28.17	10.57	2.52	8.05	35.75
l	76	27.61	10.36	2.52	7.84	35.76
	77	27.34	10.26	2.52	7.74	35.76
	78	27.08	10.16	2.52	7.64	35.76
I	80	26.56	9.97	2.52	7.45	35.75

Required	Surface	depth
80.96	750.00	0.107941933

Required	Surface	depth
35.76	750.00	0.047683844


Average C calaculation 20 Cope Dr.

Sept 2018 Project # 117308

			Project # 11730	8
Tutte A	A	6	4.0	
Trib Area	Area	C value	AC	
CB70	0.01	0.9	0.009	
Total Area	0.01	0.5	0.009	
Ponding Area P70	0.01		Combined C	0.9
				0.5
Trib Area	Area	C value	AC	
ECB64	0.06	0.25	0.015	
CB64B	0.06	0.75	0.045	
CB64A	0.2	0.73	0.146	
CB64	0.17	0.75	0.1275	
R2B	0.02	0.9	0.018	
Total Area	0.51		0.3515 Combined C	0.689216
Ponding Area P63			Combined C	0.089210
Trib Area	Area	C value	AC	
CB62	0.05	0.9	0.045	
CB62A	0.02	0.9	0.018	
CB62B	0.06 0.17	0.76	0.0456	
CB62C Total Area	0.17	0.69	0.1173 0.2259	
Ponding Area P61	0.3		Combined C	0.753
Trib Area	Area	C value	AC	0.755
CB61B	0.1	0.8	0.08	
ECB60	0.05	0.25	0.0125	
CB60	0.04	0.73	0.0292	
Total Area	0.19		0.1217	
Ponding Area P60			Combined C	0.640526
Trib Area	Area	C value	AC	
CB61A	0.05	0.79	0.0395	
ECB80	0.12	0.28	0.0336	
CB80	0.02	0.9	0.018	
CB81	0.03	0.9	0.027	
Total Area	0.22		0.1181	
Ponding Area P60A			Combined C	0.536818
Trib Area	Area	C value	AC	
CB60A	0.08	0.87	0.0696	
CB60B	0.08	0.82	0.0656	<u></u>
Total Area	0.16		0.1352	
Ponding Area P50A			Combined C	0.845
	-			
Trib Area	Area	C value	AC	
CB60C	0.04	0.85	0.034	0.05
Ponding Area P50			Combined C	0.85
Trib Area	Area	C value	AC	
				<u></u>
BUSH	0.57	0.29	0.1653	
R2A	0.05	0.9	0.045	
R2C	0.07	0.9	0.063	
Total Area Ponding Area P51	0.69		0.2733 Combined C	0.396087

APPENDIX D

• Erosion and Sediment Control Plan Drawing No. 117308-C-900

