TRAFFIC IMPACT ASSESSMENT (FINAL)

Project No.: PCP-18-0056 119-121 Beechwood Avenue

Prepared for:

Blueprint Construction Services Ltd. 17-1010 Polytek St. Ottawa, Ontario K1J 9J1

Prepared by:

McIntosh Perry Consulting Engineers Ltd. 115 Walgreen Road Carp, ON K0A 1L0

June, 2018

TABLE OF CONTENTS

1.0	SCREENING FORM	1
1.2	Trip Generation Triggers	1
1.2	Location Triggers	1
1.3	Safety Triggers	1
2.0	DESCRIPTION OF PROPOSED DEVELOPMENT	2
3.0	EXISTING CONDITIONS	3
3.2	Roadways	3
3.2	Study Area Intersections	4
3.3	Existing Transit System	7
3.4	Existing Driveways	8
3.5	Collision History	9
3.6	Traffic Volume	10
4.0	PLANNED CONDITIONS	13
5.0	STUDY AREA	14
6.0	TIME PERIODS	14
7.0	HORIZON YEARS	14
8.0	EXEMPTION REVIEW	14
9.0	DEVELOPMENT-GENERATED TRAFFIC	14
10.0	BACKGROUND NETWORK TRAFFIC	15
10	1 Changes to Background Transportation Network	15
10	2 General Background Growth Rates	15
10	3 Other Developments	18
11.0	DEMAND RATIONALIZATION	18
12.0	DEVELOPMENT DESIGN	18
12	1 Design for Sustainable Modes	18
12		
13.0	PARKING	
14.0	BOUNDARY STREETS	

14.1	Seg	ment Mobility	20
14.	1.1	Pedestrian Level of Service (PLOS)	20
14.	1.2	Bicycle Level of Service (BLOS)	21
14.	1.3	Transit Level of Service (TLOS)	22
14.	1.4	Truck Level of Service (TkLOS)	22
14.	1.5	Vehicular Level of Service (LOS)	22
14.2	Roa	d Safety	23
15.0 A	CCE	SS INTERSECTIONS	. 23
15.1	Loc	ation and Design of Access	23
15.2	Inte	rsection Control	23
15.3	Inte	rsection Design	24
16.0 S	UMI	MARY	. 2 5

List of Appendices

Appendix A – Screening & Scoping Form

Appendix B – Site Plan

Appendix C – Available Traffic Data

Appendix D- Synchro 10 Reports

Appendix E – Traffic Signal Warrants

Appendix F – TDM-Supportive Development and Infrastructure Checklist

List of Figures

Figure 2.0.1: Subject Lands

Figure 3.1.1: Study Area Road Network

Figure 3.2.1: Beechwood Avenue at Putman/Marier Avenue

Figure 3.2.2: Beechwood Avenue at Marier Avenue

Figure 3.2.3: Beechwood Avenue at Champlain Avenue

Figure 3.3.4: Beechwood Avenue at St. Charles Street.

Figure 3.3.1: Bus Routes within the Development Boundary (Courtesy of OCtranspo)

Figure 3.3.2: Bus Stop Locations

Figure 3.4: Adjacent Driveways (Courtesy of Google Earth)

Figure 3.6.1: Existing (2018) Traffic Volume

Figure 10.2.1: Background Traffic Volumes (2024)

Figure 3.6.1: Background (2024) Bicycle Volumes

Figure 13.0.1: Parking Demand vs. Time

List of Tables

Table 1.1: General Office Building, Person-Trips

Table 1.1: Medical-Dental Facility, Person-Trips

Table 1.1: Special Retail, Person-Trips

Table 3.5.1: Highlighted Collision Data

Table 3.6.1: Origin-Destination Survey Travel Mode Percentages

Table 3.6.1: Modal Split Representative of Provided Data

Table 10.1.1: City of Ottawa Mode Share Targets

Table 13.0.1 ITE Parking Generation Summary

Table 14.1.1: Segment Pedestrian Level of Service (PLOS)

Table 14.1.2: Bicycle Level of Service (BLOS)

Table 14.2.3.1: Level of Service vs. Volume to Capacity Ratio

Table 14.2.3.2: Background (2024) Vehicular Level of Service (LOS) by Approach

Table 15.3.1: Intersection Operations, Existing Conditions (2018)

Table 15.3.2: Intersection Operations, Background Growth (2024) Only

McINTOSH PERRY iii

1.0 SCREENING FORM

The following section describes the initial assessment of the proposed development in respect to the Traffic Impact Assessment (TIA) Screening Form and will provide reasoning for potential triggers. The TIA screening form has been attached in Appendix A.

1.1 Trip Generation Triggers

Trip generation was calculated in accordance with the institute of Transportation Engineers (ITE) Trip Generation Manual, 9th Edition. Trip generation for the development was split into two categories, a General Office Building with a Gross Floor Area (G.F.A) of 1,700 ft² and Medical Facility with a G.F.A of 1700 ft². The City of Ottawa TIA Guidelines (2017) recommends that when using the ITE Trip Generation Manual, assume a 10 % non-auto mode share and an average vehicle occupancy of 1.15. As such, a factor of 1.28 was applied to the site generated trips in order to estimate the total site generated person-trips. Table 1.1 shows the total person-trip generation for the AM and PM peak hour. As shown below, it is estimated that the site will generate a total of 10 person-trips in the AM and 11 in the PM peak hour. Based on *Table 2*, located in the TIA Guidelines (2017), and due to the land use type and development size, the criteria for the trip generation trigger is not met.

							•			
ITE Land Lies	Unit of	Quantity	Rate		AM Peak Hour			PM Peak Hour		
ITE Land Use	Measure	Quantity	AM	PM	In	Out	Total	In	Out	Total
General Office Building (Code 710)	- Ksf	1.7	1.56	1.49	3	0	3	1	3	4
Medical Clinic (Code 720)	KSI	1.7	2.39	3.57	3	1	4	2	4	6
				Total:	6	1	7	3	7	10

Table 1.1: Development-Generated Person-Trips

1.2 Location Triggers

The proposed development will be located at 119-121 Beechwood Avenue. The proposed development is expected to make use of an existing access located on Chapleau Avenue. Although Beechwood avenue is designated as part of the City's Transit Priority and Spine Bicycle network, no new driveways are expected to be built on Beechwood. The proposed development is not located in a Transit-Oriented Development (TOD) zone, however, is in a designated Design Priority Area (DPA) classified in *Section 2.5.1, Schedule B* of the City of Ottawa Official Plan as a Traditional Main Street. As such, the criteria for a Location Trigger is met.

1.3 Safety Triggers

Beechwood Avenue and Chapleau Avenue have a statutory speed limit of 50 km/h. Additionally, since no new driveways are proposed and the speed limits on all boundary streets are below 80 km/h, the criteria for a Safety Trigger is not met.

^{*} Rates shown are average rates published within ITE Trip Generation 9th Edition

^{*} Directional splits are published within ITE Trip Generation 9th Edition

 $^{^{\}circ}$ Ksf = 1000 ft²

2.0 DESCRIPTION OF PROPOSED DEVELOPMENT

The proposed development is located at 119-121 Beechwood Avenue, north-east of the City of Ottawa's Central Area, bounded by the neighbourhoods of Lindenlea to the north and North Vanier to the south. The date of occupancy and build-out for this proposed development is anticipated to occur in September 2019 with the build-out expected to be completed in a single phase. The proposed development's subject lands will include the 280 m², 119 Beechwood Avenue lot and the 263 m², 121 Beechwood Avenue lot. 119 Beechwood Avenue is currently occupied by a two-storey single detached home which has been converted into a low-rise apartment with the ground floor occupied by a real-estate agency. 121 Beechwood Avenue is currently occupied by a two-storey single detached home which has been converted into apartments. Figure 2.0.1 below, shows the location of the proposed developments subject lands.

Figure 2.0.1: Subject Lands (Courtesy of Google Earth)

Based on the preliminary Site Plan provided in Appendix B, and other information provided by the developer, the proposed development will consist of a two-storey building with a G.F.A of 318 m². The 159 m² second floor will serve as general office space while the 159 m² ground floor is expected to be occupied by an optometrist clinic. The proposed development is expected to make use of the existing site entrance located on Chapleau Avenue where a surface parking lot consisting of 10 spaces will be located.

The proposed development is located in a General Urban area, however, as per *Schedule B* of the City of Ottawa Official Plan, the segment of Beechwood Avenue is classified as having a 'Traditional Mainstreet' design priority. As such, according to *Section 3.6.5* of the City of Ottawa Official Plan, Traditional Main streets are planned to provide a mix of uses and have the potential to transform over time, into more compact, pedestrian-orientated and transit friendly places. In addition, a wide range of uses is permitted on a Traditional Mainstreet including retail, offices, residential, and institutional uses.

3.0 EXISTING CONDITIONS

The following outlines the existing site characteristics and a summary of the expected development transportation conditions.

3.1 Roadways

Figure 3.0.1 below, shows the road network within the vicinity of the proposed development. All roads within the study area are within the jurisdiction of the City of Ottawa.

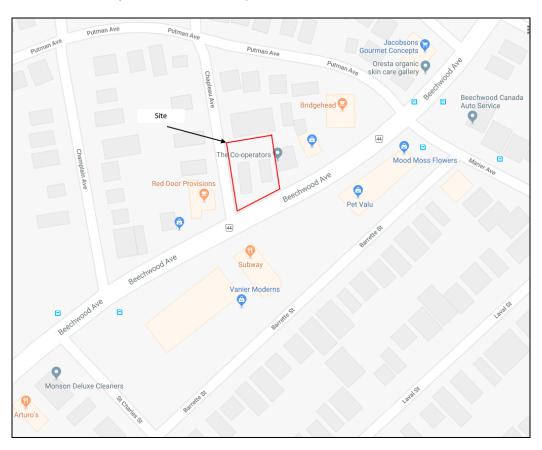


Figure 3.1.1: Study Area Road Network (Courtesy of Google Maps)

 Beechwood Avenue is an approximately 1.2 km, urban arterial roadway with a statutory speed limit of 50 km/h within the study area. The roadway joins the St. Patrick Street bridge and Vanier Parkway to the west and Hemlock Road to the east. Beechwood Avenue is a major corridor within the Vanier, Rockcliffe Park, Lindenlea, and New Edinburgh neighbourhoods, providing access to various land uses

along its route; primarily residential and commercial. Beechwood avenue within the study area has 1.8 m concrete sidewalks on both the north and south sides.

- Marier Avenue is a 1.1 km, two-lane, urban collector roadway that runs north-south connecting Beechwood Avenue to Montreal Road to the south. The roadway has a statutory speed limit of 50 km/h and has primarily residential properties along its frontage. The roadway has 1.8 m concrete sidewalks along its length.
- Putman Avenue makes up the north approach of the Beechwood Avenue and Marier Avenue intersection. The approximate 550 m, local roadway runs north west of Beechwood Avenue to Ivy Crescent and provides access to a number of residential properties. Putman Avenue has 1.8 m concrete side walks on the east side within the study area. Putman Avenue has a statutory speed limit of 50 km/h within the study area.
- Champlain Avenue and Chapleau Avenue are local roadways that run north-south from Beechwood Avenue to Putman Drive. The two roadways have a number of residential properties along their length with a statutory speed limit of 50 km/h. Both Champlain and Chapleau Avenue have 1.8 m concrete sidewalks along their west side.
- St. Charles Street is a 400 m, local road that runs south from Beechwood avenue to Landry Street. The roadway has a statutory speed limit of 50 km/h and serves to provide access to a number of residential properties along its length as well as a laundromat and a convenience store. The roadway has 1.8 m concrete sidewalks on both its east and west side.

Along the north side of Beechwood Avenue, and to the west of Marier Avenue, on-street parking is permitted for a duration of one hour between 7AM and 7PM. The designated on-street parking locations are identified with the use of signage indicating the permitted time periods and parking boundaries. Between the on-street parking and driving road surface is a dedicated 2 m bike lane. West of Marier avenue the bike lane has marked buffers on either side providing extra protection from through traffic and parked vehicles. On-street parking is not permitted along the south side of Beechwood Avenue, with the exception of directly in front of the repurposed church structure. Dedicated 2 m bike lanes, also run along the south side of Beechwood Avenue with a buffer along the northern edge. Where bus stops are located, the bike lanes act as shared lanes bus lanes. There are no other apparent area traffic management measures with the exception of a corner radius reduction at the north approach at the intersection of Beechwood Avenue and Marier/Putman Avenue.

3.2 Study Area Intersections

For the purposes of this report, it is expected that the study area will include the Beechwood Avenue at Putman/Marier Avenue, Chapleau Avenue, Champlain Avenue, and St Charles Street intersections. Below is a description of the intersections:

• Beechwood Avenue at Putman/Marier Avenue is a four-leg, signalized intersection with one shared left/through/right lane at each approach. The intersection has Bicycle Lanes on the east and west approaches as well as a transit stop positioned approximately at the east approach Stop Bar. There are

access driveways to various development within close proximity to the Stop Bars at each approach of the intersection. Figure 3.2.1 below, shows a street level view of the intersection from the perspective of the east approach.

Figure 3.2.1: Beechwood Avenue at Putman/Marier Avenue (Courtesy of Google Earth)

 Beechwood Avenue at Chapleau Avenue is a three-leg, two-way stop-controlled intersection. The east and west approaches have Bicycle Lanes and the north approach has access driveways on the east and west side within close proximity to the Stop Bar. Figure 3.2.2 below, shows a street level view of the intersection from the perspective of the west approach.

Figure 3.2.2: Beechwood Avenue at Marier Avenue (Courtesy of Google Earth)

Beechwood Avenue at Champlain Avenue is a three-leg, two-way stop-controlled intersection. Similar
in configuration to the intersection of Beechwood and Chapleau Avenue, there are Bicycle lanes on the
east and west approaches as well as access driveways within close proximity to the north approach
Stop Bars. Figure 3.2.3 below shows a street level view from the west approach.

Figure 3.2.3: Beechwood Avenue at Champlain Avenue (Courtesy of Google Earth)

 Beechwood Avenue at St Charles Street is a three-leg, signalized intersection with one shared left/through/right lane at each approach and bicycle lanes along the east and west approaches. There is a transit stop located within the westbound lane of the intersection. Figure 3.3.4 below, shows a street level view of the intersection.

Figure 3.3.4: Beechwood Avenue at St. Charles Street (Courtesy of Google Earth)

3.3 Existing Transit System

Figure 3.3.1 and Figure 3.3.2, show the bus routes that serve the area surrounding the development as well as the location of the bus stops. The following is a description of the 4 primary bus routes that provided service to Beechwood Avenue within the vicinity of the proposed development:

- Route 7 which travels from the St. Laurent Shopping Centre through the Ottawa Downtown Core and then to Carleton University. Buses from Route 7 are typically staggered every 6 minutes during evening peak hours and 15 minutes during morning peak hours.
- Route 6 travels from South Keys through the Ottawa Downtown Core to Beechwood Avenue at Putman/Marier Avenue. As shown, buses from Route 6 are typically staggered every 15 minutes in the evening peak hours and every 10 minutes in the morning peak hours.
- Route 17 travels from Alexander park in the east to the Byward Market in the west. Bus stops within the vicinity of the proposed development are typically staggered every 30 minutes during the morning peak hour with Service only between 6:00 AM and 8:30 AM.
- Route 19 travels from the Ottawa downtown core to the Montfort Hospital in the east then to the St.
 Laurent Shopping Center in the south. Buses are typically staggered every 10 minutes during the morning peak hour and every 15 minutes during the afternoon peak hour.

The closest bus stops, as shown in Figure 3.3.2, are at the corner of Beechwood Avenue and St. Charles Street, approximately 65 m west of the proposed development site and at Beechwood Avenue and Putman/Marier Avenue. The Bus stops located on Beechwood Avenue and St. Charles Street are weather protected shelters with benches.

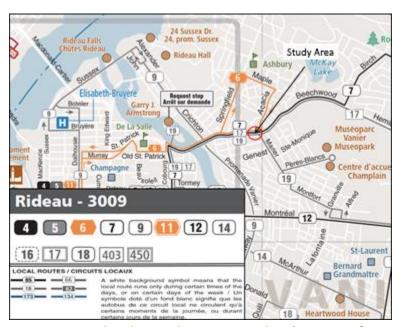


Figure 3.3.1: Bus Routes within the Development Boundary (Courtesy of OCtranspo)

Figure 3.3.2: Bus Stop Locations (Courtesy of OCtranspo)

3.4 Existing Driveways

The following are existing driveways adjacent to the proposed development while Figure 3.4 provides a visual reference.

Figure 3.4: Adjacent Driveways (Courtesy of Google Earth)

- Adjacent to the proposed development at 123-125 Beechwood Avenue is a two-storey building with
 an access driveway along its eastern and western property line. The building is occupied by various
 businesses such as an insurance agency, marketing agency, Scouts Canada, and a concrete contractor.
- Directly across the development on Chapeau Avenue is a Driveway for residents of the multi-use building located at 115 Beechwood Avenue. The multi-use building contains a Café, and several apartments.
- On Beechwood Avenue, Opposite the proposed development site is a strip mall containing a Subway, Pet Value and a Dental office. There is an access driveway to an approximately 28 space surface parking lot located approximately 15 m east of the proposed development.

3.5 Collision History

The 2014, 2015, and 2016 collision data was reviewed for the segment of Richmond Road involving the intersections identified in Section 3.2 with regards to collision severity, road surface, light condition, collision classification, and impact type. The summarized findings of the collision data can be found in Table 3.5.1.

As a result of the analysis on the collisions from Beechwood Avenue at St. Charles Street to Putman/Marier Avenue, the findings were as follows:

- There was a total of 14 collisions recorded. 2 occurred at an intersection while 5 were deemed to be intersection related and 5 were non-intersection related. 2 collisions occurred near a private driveway.
- 4 collisions occurred within the vicinity of the Beechwood and Putman/Marier Avenue intersection, 3
 collisions occurred within the vicinity of the Beechwood Avenue and St. Charles Street intersection,
 and 7 occurred between Chapleau Avenue and Putman/Marier Avenue.
- 2 of the collisions recorded involved a non-fatal injury while the other 12 resulted in Property Damage Only (P.D. Only).
- All the recorded collisions occurred between the hours of 7:30 AM and 10 PM, 10 of which occurred in Daylight and 2 in Dark light conditions.
- 43% of the collisions were a result of a rear end.
- The collision rate for the 3-year collision data was calculated using the Average Annual Daily Traffic (AADT) for 2016 (8839 vehicles) and for the total number of collisions between within the study segment (220 m). The collision rate was calculated as 6.6 collisions per million vehicle kilometers (C/MVK).
- Two collisions were recorded in 2015 which involved a pedestrian or cyclist, one of which involved a
 pedestrian at the Beechwood Avenue and St. Charles Street intersection while the other involved a
 Cyclist at the intersection of Beechwood Avenue and Chapleau Avenue. No other collisions involving
 vulnerable road users were identified within the study area.

Beechwood Ave Btw Champlain & Putman/Marier Ave Number of Collisions: 14 P.D. Only 86% **Collisions Classification** 14% Injury Fatal 0% Dry 50% Wet 36% Road Surface *Winter Conditions 14% 0% Other Daylight 86% **Light Conditions** Dark 14% Rear End 43% 7% Angle Impact Type 0% **Turning Movement** Sideswipe 14% Other 36% Non Intersection 36% At Intersection 14% **Collision Location** Intersection Related 36% At/Near Private Drive 14%

Table 3.5.1: Highlighted Collision Data

3.6 Traffic Volume

The traffic data provided by the City of Ottawa included Turning Movement Counts (TMC) at each of the 4 intersections identified in Section 3.2 and were conducted during the summer of 2015. Currently there have been no Traffic Impact Assessments completed within the study area which projected future traffic volumes. As such, Census Data for the Ottawa East Sub-Area was used in order to estimate a growth rate. In 2006, the population was approximately 49,145 which has steadily risen to an estimated population of 51,755 in 2017, resulting in an annual growth rate of 0.5%. As such, a 1% growth rate was chosen as a conservative estimate and to provide a more critical analysis of future conditions and account for a larger area of impact the proposed development might have. The traffic volumes for the AM and PM peak were projected to 2018 and applied to the network and balanced accordingly. Figure 3.6.1 shows the 2018 traffic and pedestrian volumes at the study area intersections while Figure 3.6.2 illustrates the bicycle volumes. The AM peak hour volume was from 8 AM to 9 AM and the PM peak hour volume was from 4 PM to 5 PM. All available traffic data has been attached in Appendix C.

^{*} Winter conditions include; Slush, Packed Snow, Loose Snow, and Ice

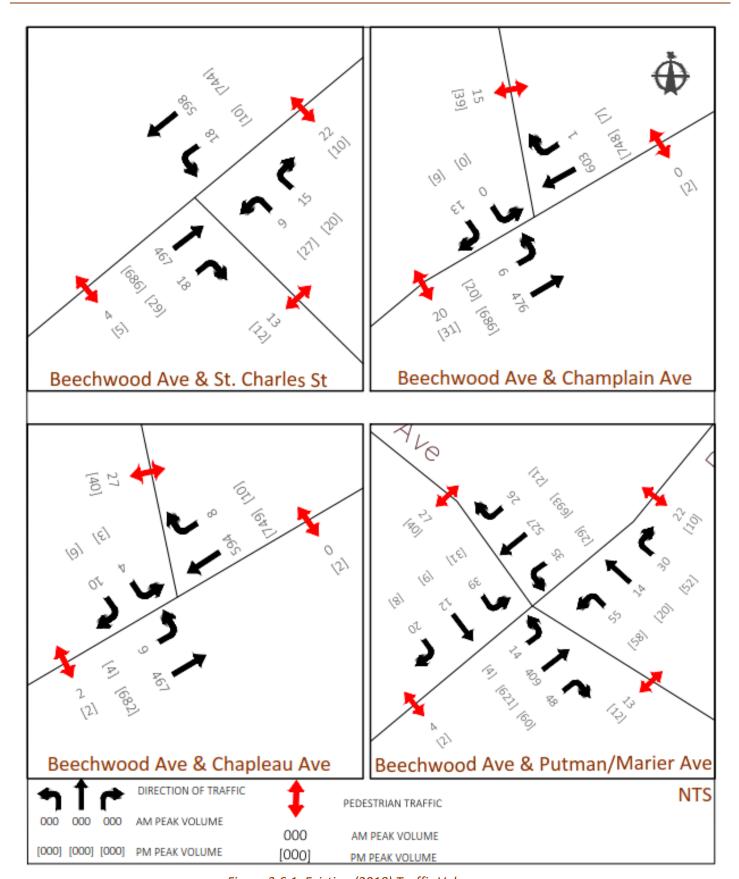


Figure 3.6.1: Existing (2018) Traffic Volume

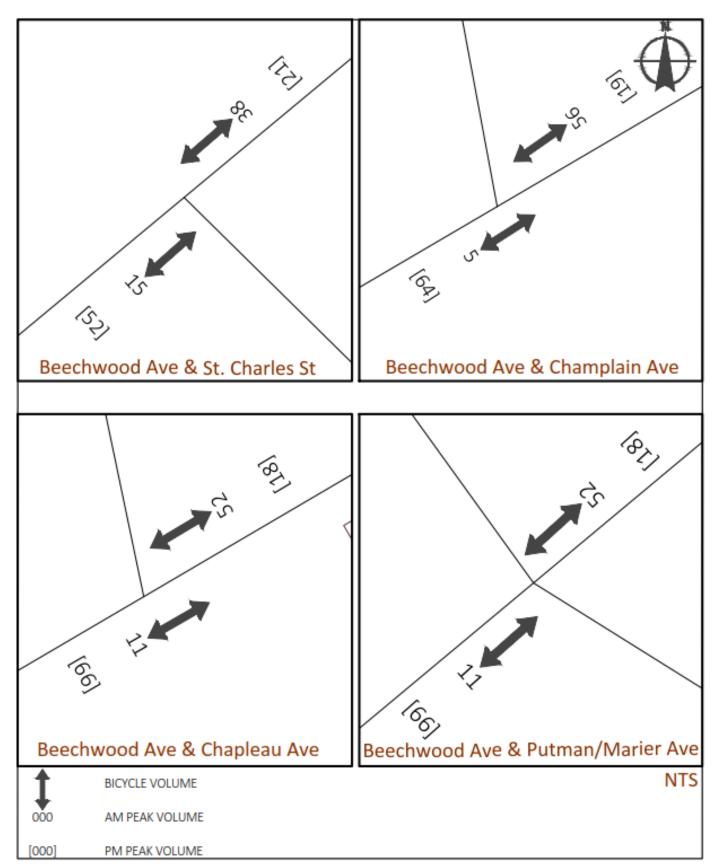


Figure 3.6.1: Existing (2018) Bicycle Volumes

Table 3.6.1 below, shows the expected travel mode percentages based on the most recent Capital Region Origin-Destination Survey which was conducted in the Fall of 2011 for the Ottawa East area and can be found in Appendix C.

% of Person Trips AM Peak (08:00 - 09:00) PM Peak (16:00 - 17:00) Travel Mode **Auto Driver** 50% 53% 11% 15% **Auto Passenger** 22% 19% Transit Bicycle 4% 4% 5% 7% Walk 8% Other 2%

Table 3.6.1: Origin-Destination Survey Travel Mode Percentages

The TMCs provided pedestrian counts for all study area intersections with the exception of Beechwood Avenue and Putman/Marier Avenue. The total number of pedestrians inventoried in the counts during the AM peak hour was 103 while the total number of vehicles was 3,267. There was a total of 143 pedestrians inventoried during the PM peak and 4,239 vehicles. The number of Bicycles inventoried was 179 during the AM peak hour and 241 during the PM peak hour. Table 3.6.2 below, is representative of the actual modal split observed within the TMCs and assuming the percentage of Auto Passenger and Transit percentages are accurate.

	% of Person Trips			
Travel Mode	AM Peak (08:00 - 09:00)	PM Peak (16:00 - 17:00)		
Auto Driver	61%	60%		
Auto Passenger	11%	15%		
Transit	22%	19%		
Bicycle	4%	4%		
Walk	2%	2%		

Table 3.6.1: Modal Split Representative of Provided Data

The available data shows an approximately 11% increase in Auto Drivers for the AM peak hour and 7% for the PM peak hour. It is important to note however that Beechwood Avenue has installed dedicated bicycle lanes since the TMCs and O-D Surveys were conducted. As, such current Bicycle percentages may actually be higher in the summer months.

4.0 PLANNED CONDITIONS

Currently no changes to the study area transportation network are expected as per the City of Ottawa's Long Range Financial plan, Official Plan and TMP. There are, however, a number of Site Plan Control applications within the vicinity of the proposed development including the following:

- An application has been submitted to amend the Zoning By-laws to allow for the development of an 8storey mixed-use development located at 135 Barrette Street. The application includes the adaptive re-use of the church for a retail store, restaurants and 53 residential units. A public park and private outdoor plaza are also proposed.
- There is currently an application for Site Plan Control at 137 Beechwood Avenue which would permit the construction of a 6-storey residential building with ground floor commercial space.
- Located at 196 Beechwood avenue, just opposite the proposed 6-storey residential development, is a proposed 3-storey commercial building.
- Located at 89-97 Beechwood Avenue, in the block between Langevin and Champlain Avenue, is a
 proposed 6-story building with retail space at grade and 67 residential dwelling units above. A total of
 71 residential and visitor parking spaces are proposed in an underground parking area with access from
 Langevin Avenue.

5.0 STUDY AREA

The study area for the purposes of this report, at the time of writing, is expected to involve the intersection of Beechwood Avenue and St Charles Street, Champlain Avenue, Chapeau Avenue, and Putman/Marier Avenue.

6.0 TIME PERIODS

For the purposes of the operational analysis, both morning and afternoon peak hours will be considered for background travel demand and development-generated trips. Travel demand will be limited to the above-mentioned intersections.

7.0 HORIZON YEARS

At the time of writing, the date of occupancy and build-out is anticipated to occur in September 2019. As such, the horizon years to be analyzed will include 2019 and 2024.

8.0 EXEMPTION REVIEW

Since development-generated person trips are not expected to exceed 60, The City of Ottawa has stated that Modules 3.1, 3.3 and 4.5 to 4.9 may be omitted from this report.

9.0 DEVELOPMENT-GENERATED TRAFFIC

As stated in Section 1.1, the development-generated person trips are expected to be 7 in the AM peak hour and 10 in the PM Peak hour. As such, this section has been omitted from this TIA.

10.0 BACKGROUND NETWORK TRAFFIC

As stated in Section 3.6, MP received turning movement counts conducted in 2015 from the City of Ottawa at the intersections of Beechwood Avenue at St. Charles Street, Champlain Avenue, Chapleau Avenue, and Putman/Marier Avenue. The traffic volumes for the AM and PM peak were projected to 2018 and applied to the network and balanced accordingly.

10.1 Changes to Background Transportation Network

As previously stated in this report, the expected build out and occupancy year is 2019. Additionally, The City of Ottawa Long Range Financial Plan (2011) estimates a transit ridership increase of 3.8% from 2016 to 2020 and 2.0% increase from 2021-2025. The City of Ottawa Master Transportation Plan, also has identified mode share targets for the year of 2031. Table 10.1.1 shows the mode share targets expected for the background traffic within the study area.

Travel Mode	Mode Share Target	Rationale
Auto Driver	55%	Currently average of 60 % of person trips. This is expected to decrease in the future as more transit options become available
Auto Passenger	10%	% of auto passenger person trips is not expected to significantly change in proportion to Auto Drivers.
Transit	26%	Transit person trips are expected to increase over time, as predicted by City of Ottawa Long Range Financial Plan
Bicycle	6%	Beechwood Avenue has dedicated Bicycle Facilities and the proposed development will be providing adequate bicycle locks to encourage cycling.
Walk	3%	% of walking person trips is not expected to increase.

Table 10.1.1: City of Ottawa Mode Share Targets

10.2 General Background Growth Rates

The background growth rate was previously determined in Section 3.6 of this report. Since the background growth rate is conservatively estimated to be 1%, the increase in transit ridership is not purely a reflection of this background growth and is partially a result of changing primary travel modes. As such for the horizon year of 2024, a 1 % growth rate was applied annually from 2018 and adjusted according to Table 10.1.1 to reflect the reduced Auto Driver percentage expected during this year. Figure 10.2.1 below, shows expected background traffic volume during the horizon year of 2024 and Figure 10.2.2 shows the expected bicycle volumes.

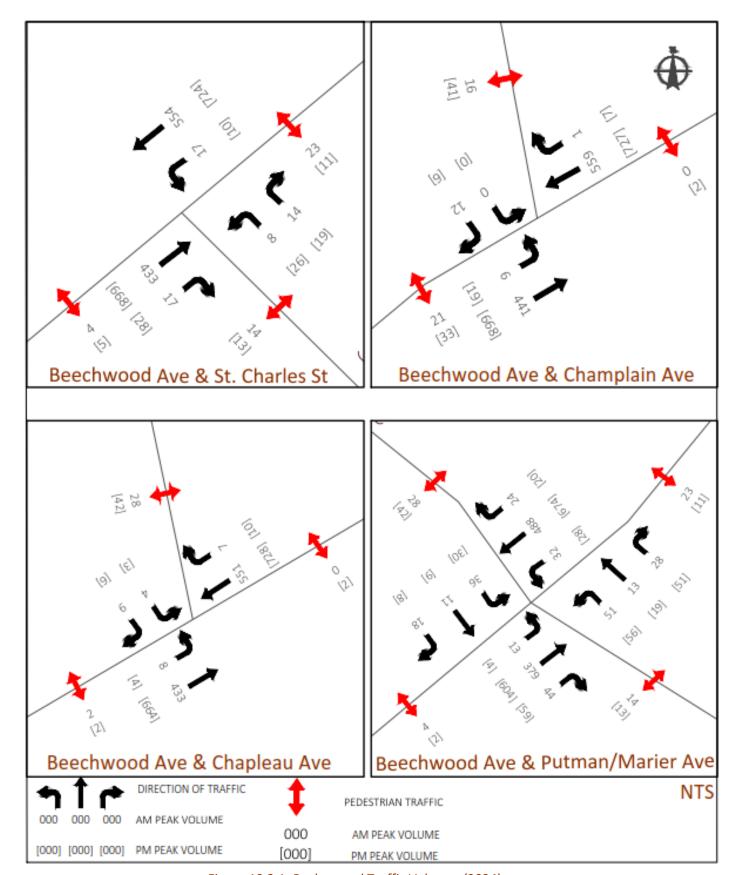


Figure 10.2.1: Background Traffic Volumes (2024)

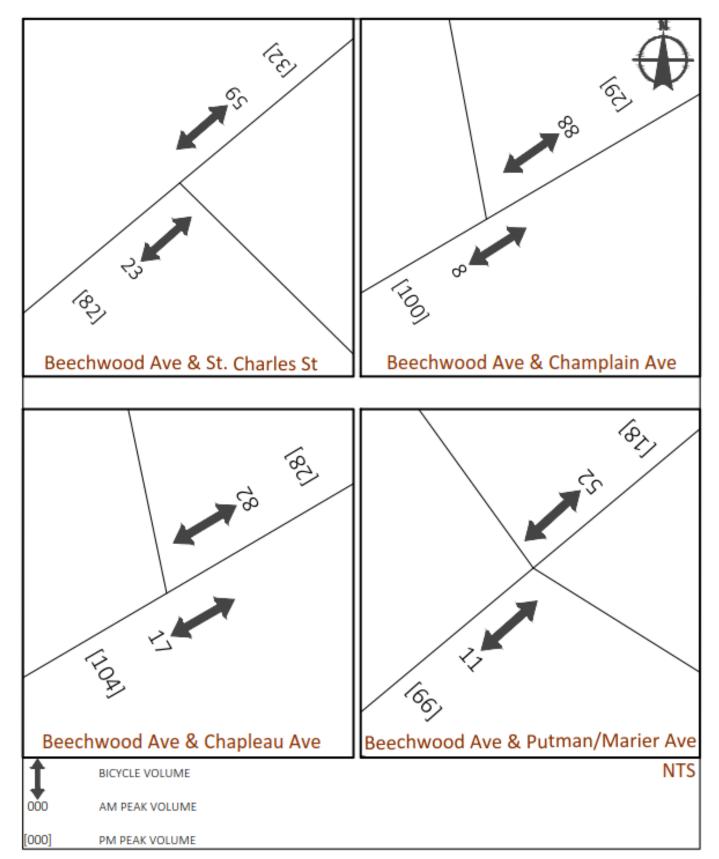


Figure 3.6.1: Background (2024) Bicycle Volumes

10.3 Other Developments

As stated in Section 4.0, there are several planned developments within the study area that would have a direct impact on the background network travel demands. Of particular note is the planned developments at 89-97 Beechwood Avenue and 137 Beechwood Avenue. Section 4.0 provides a description of all proposed developments within the study area.

11.0 DEMAND RATIONALIZATION

As stated previously and in Section 8.0, the development-generated person trips are expected to be 7 in the AM peak hour and 10 in the PM Peak hour. As such, this section has been omitted from this TIA.

12.0 DEVELOPMENT DESIGN

This section will review the proposed development and its transportation network elements in order to ensure that a safe and efficient design has been proposed that will encourage walking, cycling, and transit use. The City of Ottawa's TDM-supportive Development Design and Infrastructure checklist has been completed and attached in Appendix F for reference. The TDM-supportive Development Design and Infrastructure checklist outlines the TDM elements expected to be included in the proposed development.

12.1 Design for Sustainable Modes

As stated previously, the proposed development is expected to have a surface parking lot on the south side of the building which will have a total of 10 parking spaces including 1 barrier free parking space. Additionally, the proposed development Site Plan includes a 6-space bicycle stand located along the west side of the building. A bicycle stand with 6 spaces would provided adequate spaces for the projected volume of peak hour cyclists expected

As described in Section 3.3 there are several transit stops located within 400 m of all of the proposed developments exterior access doors. The closest transit stop was determined to be approximately 65 m from the nearest entrance.

12.2 Circulation and Access

The proposed development is expected to have entrances along the Beechwood Avenue side of the building and a rear entrance on the south facing side. Permeable Pavers (Interlock) will be laid around the north and west perimeter of the building with a depressed curb at the rear of the building. The concrete sidewalk along Beechwood Avenue is expected to be extended to the edge of the property line on Chapleau Avenue with a continuous sidewalk across the access with no curb return through the sidewalk.

The proposed development will not have any loading spaces on site. As such deliveries will have, to be made utilizing on-street parking or the proposed surface parking area to the rear of the building. It was observed during the field review conducted by MP in March, 2018 that delivery trucks commonly used on-street parking to make deliveries to other developments along Beechwood Avenue.

13.0 PARKING

As stated previously, the Site Plan has a total of 10 proposed parking spaces. The City of Ottawa *Zoning By-Law 2008-250, Section 101, Schedule 1A* lists the proposed development as being located in Area Y (Inner Urban Mainstreets). As such, *Section 101, Table 101*, states the minimum required number of parking spaces for a development with a land use type of an Office is 1 space per 100 m² of GFA. Additionally, for a development with a non-residential ground floor in Area Y and a GFA of less than 500 m² no off-street motor vehicle parking is required (By-Law 2016-249). As such, since the office space is expected to have a total GFA of 159 m², the minimum number of required on-site parking spaces according to the City of Ottawa By-Laws is two. Since the proposed development is not located within 600 m of a rapid transit route, it is not subject to a parking supply limit. As such the proposed development meets all City of Ottawa Parking By-Law requirements.

Parking Demand was estimated in accordance with the Institute of Transportation Engineers (ITE), *Parking Generation 4th Edition*. For a 159 m² (1711 ft²) office building, the 85th percentile, peak period parking demand is expected to be approximately six vehicles. For the 159 m² (1711 ft²) medical clinic, the 85th percentile, peak period parking demand is expected to be approximately eight parking spaces. Table 13.0.1 below, summarizes the expected parking demand according to the ITE parking generation.

Land UsePeak Period Demand (vehicles per 1,000 sq.ft GFA)GFA (sq.ft)Peak Period Parking DemandMedical Clinic (Code 630, Pg 197)4.961,7118Office (Code 701, Pg 201)3.451,7116

Table 13.0.1 ITE Parking Generation Summary

Each land use type could have different parking demands during different times of day. For many land use types, ITE Parking Generation illustrates the percent of peak period parking demand throughout weekdays and weekends. Given the nature of the development land uses, it can be expected that weekend parking demand would be minimal. Figure 13.0.1 below illustrates the 85th percentile parking demand by time of day for each of the land use types. As shown, the peak parking demand is expected to be approximately 14 vehicles. As such, the proposed development is short four parking spaces. As noted previously, in section 3.1, on street parking is available within walking distance, however, is only for one-hour durations. Since the turnover rate is expected to be much higher for the medical clinic, consideration should be given to assigning six parking stalls to the office tenant, and three to the medical clinic with the barrier free space available for both land uses. This would allow employees of the office to park for the entire work day and allow for overspill parking resulting from the medical clinic to make use of on-street parking. Another mitigation strategy would be to provide parking for long-term and short-term users which would encourage visitors to use off-site public parking.

Figure 13.0.1: Parking Demand vs. Time

The City of Ottawa Zoning By-Law 2008-250 Section 111, states the minimum number of bicycle parking spaces for an office is 1 per every 250 m² of gross floor area. For a medical facility the minimum number is 1 per every 1,000 m² of gross floor area. As such, the minimum required number of bicycle parking spaces for the proposed development is one. Since a total of six spaces are expected to be provided the proposed development surpasses the By-Law requirements. The number of bicycle parking stalls may encourage commuters to bike and possibly alleviate the tendency for spill-over parking.

14.0 BOUNDARY STREETS

This section will examine the design elements of the noted boundary streets and their ability to accomade the proposed development as well as being consistent with the City of Ottawa's complete streets philosophy as well as its urban design objectives.

14.1 Segment Mobility

14.1.1 Pedestrian Level of Service (PLOS)

As stated previously in Section 3.0, all roadways within the study area have a 50 km/h speed limit. Since historical Average Annual Daily Traffic (AADT) was not available for the segments within the study area, the AADT was estimated using the TMCs provided by the city of Ottawa. The recorded 8-hour traffic collected for

each TMC was averaged over a 24-hour period and as such is considered to be a conservative value. Using *Exhibit 4* of the Multi-Modal Level of Service (MMLOS) guidelines, the PLOS was determined for the study area segments. Table 14.1.1 below, provides a summary.

Motor Vehicle Operating Sidewalk Width **Boulevard** Presence of On-Segment Segment Traffic Volume Speed Width (m) street Parking **PLOS** (m) (AADT) (Km/h) **Beechwood Avenue** 1.8 0 >3000 Yes 50 C C Marier Avenue 1.8 0 >3000 Yes 50 C Putman Avenue 1.8 (East Side) 0 >3000 50 Yes Champlain Avenue 1.8 (West Side) 0 <3000 Yes (West Side) 50 В Chapleaue Aveneu 1.8 (West Side) 0 <3000 Yes (West Side) 50 В 0 50 St. Charles Street 1.8 <3000 Yes (East Side) В

Table 14.1.1: Segment Pedestrian Level of Service (PLOS)

Segment PLOS was reviewed only for sections of roadways which have pedestrian facilities. On roadways such as Champlain Avenue and Chapleau Avenue where sidewalks are provided on only one side, it would be expected that pedestrians would cross the street to use them rather than walk along the side without them.

14.1.2 Bicycle Level of Service (BLOS)

Within the study area, Beechwood Avenue, is the only roadway with dedicated bike lanes. As stated previously in Section 3.0, the bike lanes are 2.0 m wide and in some locations along Beechwood Avenue are adjacent to curbside parking. BLOS was determined using Exhibit 11. Table 14.1.2 below, provides a summary of the BLOS on the least favourable segments within each study area roadway.

Segment BLOS

Beechwood Avenue B

Marier Avenue B

Putman Avenue B

В

В

Table 14.1.2: Bicycle Level of Service (BLOS)

As shown all segments within the project limits operate at a LOS of B. A BLOS of B indicates a Level of Traffic Stress (LTS) which would be acceptable to most adult cyclists.

Champlain Avenue

Chapleaue Aveneu

St. Charles Street

14.1.3 Transit Level of Service (TLOS)

The TLOS methodologies employed in the MMLOS guideline is intended for corridors with existing or planned rapid transit or transit priority measures. The proposed development is not located along a rapid transit route, however, since there are regular bus routes along Beechwood Avenue, the TLOS can still be evaluated. For a roadway without a Bus lane, *Exhibit 15* of the MMLOS guidelines assigns a TLOS based on the ratio of average transit speed to posted speed limit (V_t/V_p) . During the field review conducted by MP, it was observed that there was minimal congestion on Beechwood Avenue during peak period conditions. As such a V_t/V_p ratio of 0.8 was used resulting in a TLOS of D.

14.1.4 Truck Level of Service (TkLOS)

The TkLOS is dependant on the number of lanes in each direction and the curb lane width for segments as shown in *Exhibit 20* of the MMLOS guidelines. Since Beechwood Avenue is the only arterial roadway within the study area, it is expected that the local streets will not serve as primary truck routes. As such, given that Beechwood Avenue has a curb lane width of approximately 3.2 m, the TkLOS is E.

14.1.5 Vehicular Level of Service (LOS)

14.1.5.1 Methodology

Analysis of vehicular LOS was performed in accordance with the City of Ottawa's TIA Guidelines (2017) and MMLOS Guidelines. Level of Service (LOS) descriptions for the analysis are provided below in Table 14.2.3.1. All existing and projected traffic operations were modelled in Synchro 10.

Level of Service	Volume to Capacity Ratio
A	0 to 0.60
В	0.61 to 0.70
С	0.71 to 0.80
D	0.81 to 0.90
E	0.91 to 1.00
F	>1.00

Table 14.2.3.1: Level of Service vs. Volume to Capacity Ratio

Volume to Capacity (V/C) ratios were analyzed for all signalized intersections overall as well as by individual movements. For unsignalized intersections with a LOS of F, the capacity was based on gap analysis.

Existing signal timing information such as phasing, pedestrian minimums and clearance intervals were provided by the City of Ottawa and used for the analysis of existing conditions for all critical intersections within the study area. The Traffic Signal Timing forms can be found in Appendix C. Signal timings were optimized for all V/C calculations relating to future conditions with all Synchro 10 parameters taken in accordance with Appendix C: Synchro Analysis Parameters of the City of Ottawa TIA Guidelines (2017). Additionally, all pedestrian clearance timings as well as amber and all red times that were provided by the City of Ottawa were used in the analysis of the future operating conditions.

14.1.5.2 Background (2024) Vehicular LOS

The segment LOS was taken as the critical V/C at all approaches within the study area. Table 14.2.3.2 below, summarizes the Approach V/C and LOS as determined by the MMLOS guidelines for the future background conditions described in Section 10.2. Synchro 10 reports can be found in Appendix D.

		AM Pea	ak Hour	PM Peak Hour	
Roadway	Approach	V/C	LOS	V/C	LOS
Beechwood Avenue	EB	0.38	А	0.64	В
Beechwood Avenue	WB	0.45	Α	0.48	Α
Champlain Avenue	SB	0.03	Α	0.02	Α
Chapleau Avenue	SB	0.04	Α	0.04	Α
St. Charles Street	NB	0.16	Α	0.28	Α
Marrier Avenue	NB	0.47	Α	0.46	Α
Putman Aveneu	SB	0.35	Α	0.18	Α

Table 14.2.3.2: Background (2024) Vehicular Level of Service (LOS) by Approach

As shown no approaches within the area have a V/C greater than one. All approaches are expected to operate at a LOS of A during the 2024 horizon year with the exception of the EB approach of Beechwood Avenue which is expected to operate at a LOS of B during the PM peak hour. Overall all roadway segments within the study area are expected to operate well and under capacity.

14.2 Road Safety

Collision history was reviewed previously in this report in Section 3.5. No road safety concerns were identified at any of the boundary streets, The City of Ottawa collision records do not indicate direction of travel for the involved vehicles and as a result, collision diagrams are not feasible.

15.0 ACCESS INTERSECTIONS

This module will determine weather design elements of the points of access to the development align with the City of Ottawa's Complete Streets philosophy, MMLOS guidelines, and its urban design objectives.

15.1 Location and Design of Access

The proposed development is expected to make use of one existing access point located on Chapleau Avenue. Since it is not expected that the design parameters of this access will significantly change, *Element 4.4.1* of the City of Ottawa TIA Guidelines (2017) is not applicable.

15.2 Intersection Control

Due to the existing site access's close proximity to the intersection of Beechwood Avenue and Chapleau Avenue (30 m), intersection control would not be feasible. Additionally, since the access is located on a local street and the expected development-generated trips are less than 10 vph, intersection control measures would not be

expected to be required. However, since the intersection of Beechwood Avenue and Chapleau is expected to be the main ingress/egress for vehicles on Chapleau avenue, the potential for traffic signals at this intersection were reviewed. Traffic signal warrants were performed in accordance with the methodologies outlined in the Ontario Traffic Manual (OTM) *Book 12-Traffic Signals*. Traffic Signal Warrant Calculations can be found in Appendix E. In summary, signals are not warranted at either of the site entrances due to intersection configuration and low volume of traffic on Chapleau Avenue.

15.3 Intersection Design

Since the site entrance is not signalized, the MMLOS for all modes will be equivalent to the Chapleau Segment which was reviewed in Section 14.0. MP, however, has reviewed the existing 2018 and background 2024 operating conditions expected at all the intersections within the study area. Synchro 10 reports for all analysis periods can be found in Appendix D, while Table 15.3.1. below, shows the traffic operations analysis summary for existing background traffic with the worst performing movements highlighted.

	A	M Peak Hou	ır	PM Peak Hour		
Intersection	Critical Movement	LOS	v/c Ratio	Critical Movement	LOS	v/c Ratio
Beechwood Avenue & St. Charles Street	WBT	Α	0.48	EBT	В	0.61
Beechwood Avenue & Champlain Avenue	SBL	Α	0.03	SBL	Α	0.03
Beechwood Avenue & Chapleau Avenue	SBL	Α	0.05	SBL	Α	0.05
Beechwood Avenue & Putman/Marier Avenue	WBT	Α	0.54	WBT	С	0.77

Table 15.3.1: Intersection Operations, Existing Conditions (2018)

As shown, currently no intersections within the study area have a movement with a volume to capacity ratio greater than one. The most critical movement during the AM peak hour is the westbound through movement at the intersection of Beechwood Avenue and Putman/Marier Avenue which has a V/C ratio of 0.54. The most critical movement during the PM peak hour was the westbound through movement at the intersection of Beechwood Avenue and Putman/Marier Avenue which had a V/C ratio of 0.77. Overall all intersections within the study area are expected to be operating well and under capacity. It is important to note however, that the methodology employed by the City of Ottawa TIA guidelines directly relates V/C to Level of Service (LOS) and not total delays as shown in the Synchro 10 outputs. During the site reviews conducted in March, 2018, no operational issues were identified. It was observed that motorists were able to clear the study area signalized intersections within one cycle. Queuing was observed during both the AM and PM site visits to be the longest at the east and west approaches at the intersection of Beechwood Avenue and Putman/Marier Avenue. However, the queues were not observed to interfere with the operations of any adjacent intersection and were observed to only occur periodically.

Table 15.3.2 below, summarizes the operating conditions expected during the future horizon year of 2024 as a result of background growth only and not the additional development-generated trips.

AM Peak Hour PM Peak Hour Intersection Critical Critical LOS v/c Ratio LOS v/c Ratio Movement Movement Beechwood Avenue & St. **WBT** Α 0.45 **EBT** 0.59 Α Charles Street Beechwood Avenue & SBL 0.03 **EBL** 0.03 Α Α Champlain Avenue Beechwood Avenue & SBL Α 0.04 SBL Α 0.05 Chapleau Avenue Beechwood Avenue & WBT 0.49 WBT C 0.74 Α Putman/Marier Avenue

Table 15.3.2: Intersection Operations, Background Growth (2024) Only

As shown, the V/C ratio is expected to decrease slightly, however, no changes to LOS are expected at any of the intersections. This is a result of the low predicted growth rate within the study area and the projected changes in travel modes. As shown in Section 10.2, given the project mode share targets and a growth rate of 1%, the volume of vehicle volume within the study area is expected to decrease.

16.0 SUMMARY

This TIA Strategy Report evaluated the proposed development and its expected impact on the surrounding transportation network. Overall, all roadways within the project limits are currently operating at a LOS of A or better with the exception of the WBT movement at Beechwood Avenue and Putman/Marier Avenue which is expected to have a LOS of C. With a growth rate of 1% and projected mode share targets, the projected 2024 background traffic operations are expected to operate similarly to existing conditions. The proposed development is not expected to generate more than 7 vph in the AM peak hour and 10 vph in the PM peak hour. As such, the City of Ottawa has stated that Modules 3.1, 3.3 and 4.5-4.9 may be omitted from this TIA Report. As such, a detailed traffic analysis including the expected development-generated trips was not required. It is expected that the proposed development will have little impact on the surrounding transportation network and is expected to provide adequate facilities to meet the City of Ottawa's Complete Streets design philosophy. While the proposed development meets the City of Ottawa's parking requirement By-Laws, it is expected that some spillover parking may occur. As such, it is recommended that consideration be given to dedicating a total of six parking spaces to the office land use tenant and three be assignment to the medical clinic tenant. This would limit the number of on-site parking spaces being used by short-term users and encourage them to use off-site public parking.

Reviewed by,

Mitchell Patenaude, EIT

Transportation Engineering Intern m.patenaude@mcintoshperry.com

613.836.2184 x2250

Reviewed and Submitted by,

Thomas Gryz, M.A.Sc., P.Eng

Transportation and Traffic Engineer

t.gryz@mcintoshperry.com

613.836.2184 x2231

Dated at OHawa	this 6 day of September	, 20 <u>18</u> .
(City)	V	
Name:	THOMAS GRYZ	
	(Please Print)	
Professional Title:	TRAFFIC / TRANSPORTATION	ENGINEER
	Money My	
Signature	of Individual certifier that s/he meets the above for	our criteria

Office Contact Information (Please Print)					
Address: 115	Walgreen Road R.R.3				
City/Postal Code: Casp / KOA 110					
Telephone / Extension: 613.836.2184 x 2231					
E-Mail Address:	t. gryz@ incintosh perry. com				

TRAFFIC IMPACT ASSESSMENT (FINAL)

APPENDIX A - SCREENING & SCOPING FORM

City of Ottawa 2017 TIA Guidelines Screening Form

1. Description of Proposed Development

Municipal Address	119-121 Beachwood Avenue Road
Description of Location	Office Building with Ground Floor Retail
Land Use Classification	Commercial/Retail
Development Size (units)	1
Development Size (m²)	298 m²
Number of Accesses and Locations	1 on Chapleau Avenue
Phase of Development	Planning
Buildout Year	2018

If available, please attach a sketch of the development or site plan to this form.

2. Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size
Single-family homes	40 units
Townhomes or apartments	90 units
Office	3,500 m ²
Industrial	5,000 m ²
Fast-food restaurant or coffee shop	100 m ²
Destination retail	1,000 m ²
Gas station or convenience market	75 m²

^{*} If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

If the proposed development size is greater than the sizes identified above, the Trip Generation Trigger is satisfied.

3. Location Triggers

	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?		NO
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone? *	*YES	

^{*}DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

If any of the above questions were answered with 'Yes,' the Location Trigger is satisfied.

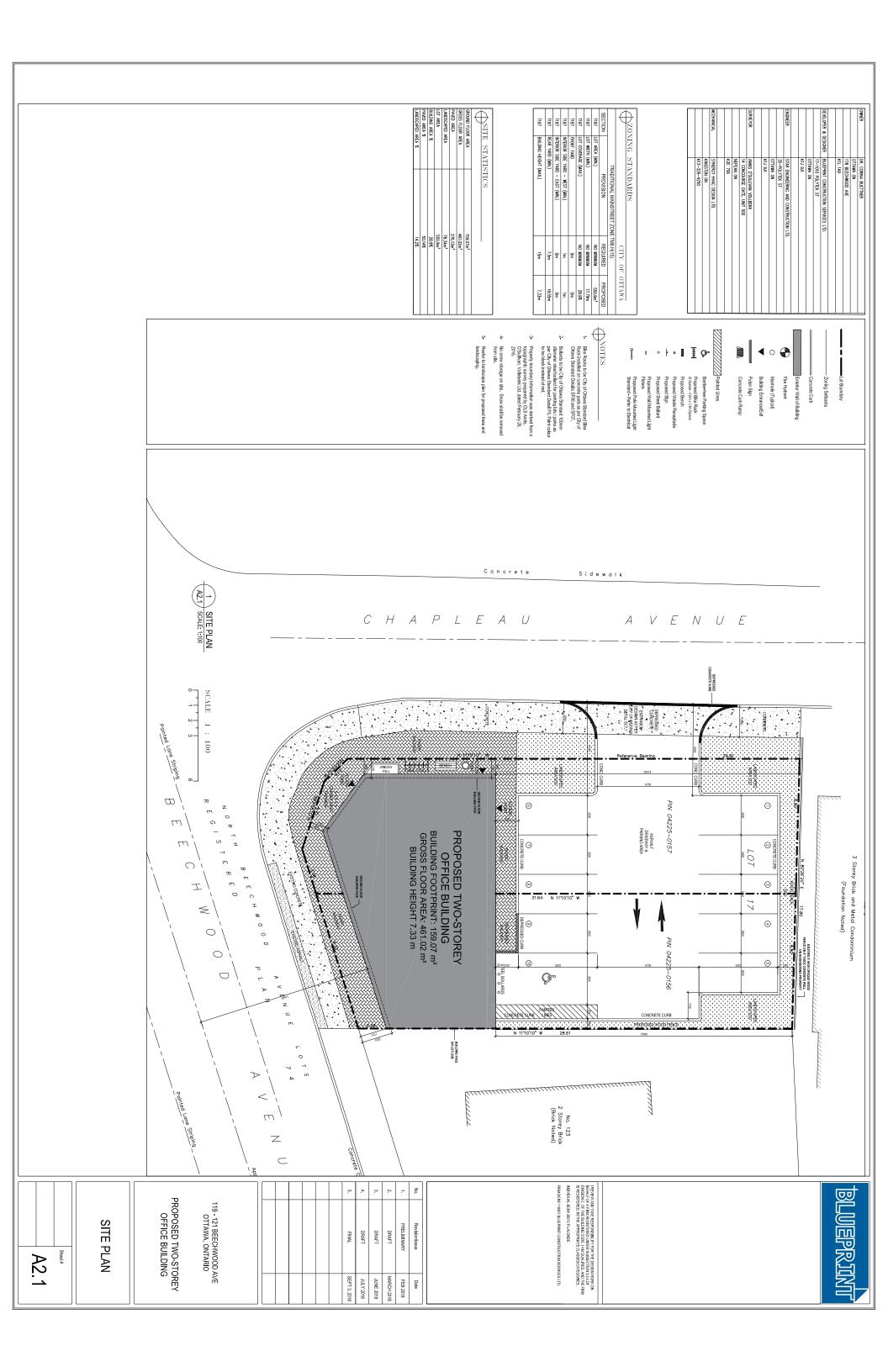
4. Safety Triggers

	Yes	No
Are posted speed limits on a boundary street are 80 km/hr or greater?		NO
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?		NO
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?		NO
Is the proposed driveway within auxiliary lanes of an intersection?		NO
Does the proposed driveway make use of an existing median break that serves an existing site?		NO
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		
Does the development include a drive-thru facility?		NO

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.

5. Summary

	Yes	No
Does the development satisfy the Trip Generation Trigger?		NO
Does the development satisfy the Location Trigger?		NO
Does the development satisfy the Safety Trigger?		NO


^{*} Located on a Traditional Mainstreet

If none of the triggers are satisfied, <u>the TIA Study is complete</u>. If one or more of the triggers is satisfied, <u>the TIA Study must continue into the next stage</u> (Screening and Scoping).

TRAFFIC IMPACT ASSESSMENT (FINAL)

APPENDIX B - SITE PLAN

TRAFFIC IMPACT ASSESSMENT (FINAL)

APPENDIX C – AVAILABLE TRAFFIC DATA

Traffic Signal Timing

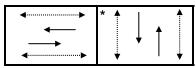
City of Ottawa, Transportation Services Department

Traffic Signal Operations Unit

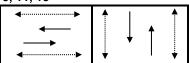
Intersection: Main: Beechwood Side: Marier/Putman

 Controller:
 MS-3200A
 TSD:
 5198

 Author:
 Spencer Willows
 Date:
 23-Mar-2018


Existing Timing Plans[†]

Plan Ped Minimum Time


	AM Peak	Off Peak		Night	Weekend		PM Heavy	Walk	DW	A+R
	1	2	3	4	5	11	15			
Cycle	90	80	90	65	90	90	100			
Offset	13	10	5	Х	5	13	5			
EB Thru	64	54	64	39	64	64	74	17	13	3.3+2.2
WB Thru	64	54	64	39	64	64	74	17	13	3.3+2.2
NB Thru	26	26	26	26	26	26	26	7	13	3.3+2.2
SB Thru	26	26	26	26	26	26	26	7	13	3.3+2.2

Phasing Sequence[‡]

Plan: 1, 4

Plan: 2, 3, 5, 11, 15

Schedule

Weekday

Time	Plan
0:15	4
6:30	1
7:00	11
9:30	2
14:30	15
17:30	3
18:30	2
19:00	4

Weekend

Time	Plan
0:15	4
8:00	2
12:00	5
19:00	4

Notes

(fp): Fully Protected Left Turn

Pedestrian signal

^{†:} Time for each direction includes amber and all red intervals

^{‡:} Start of first phase should be used as reference point for offset Asterisk (*) Indicates actuated phase

Traffic Signal Timing

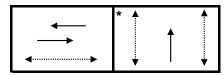
City of Ottawa, Transportation Services Department

Traffic Signal Operations Unit

Intersection: Beechwood Side: St. Charles

Controller: ATC-3 TSD: 5151

Author: Spencer Willows Date: 23-Mar-2018


Existing Timing Plans[†]

Plan Ped Minimum Time

	AM Peak	Off Peak	PM Peak	Night	Weekend	PM Heavy	Walk	DW	A+R
	1	2	3	4	5	15			
Cycle	90	80	90	65	90	100			
Offset	18	10	5	Х	5	5			
EB Thru	66	56	66	41	66	76	7	12	3.3+2.3
WB Thru	66	56	66	41	66	76	7	12	3.3+2.3
NB Thru	24	24	24	24	24	24	7	11	3.3+2.4

Phasing Sequence[‡]

Plan: All

Notes:

Schedule

Weekday

Time	Plan
0:15	4
6:30	1
9:30	2
14:30	15
17:30	3
18:30	2
19:00	4

Weekend

Time	Plan
0:15	4
8:00	2
12:00	5
19:00	4

Notes

Asterisk (*) Indicates actuated phase

(fp): Fully Protected Left Turn

→ Pedestrian signal

^{†:} Time for each direction includes amber and all red intervals

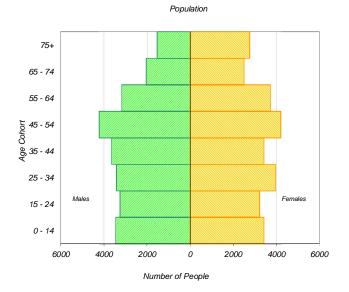
^{‡:} Start of first phase should be used as reference point for offset

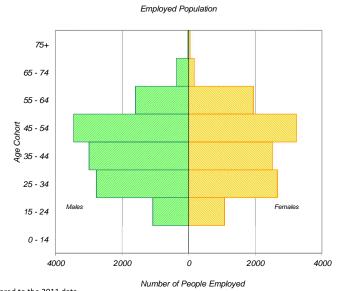
Ottawa East

Demographic Characteristics

Population	51,920	Actively Trav	/elled	40,620
Employed Population	23,900	Number of \	/ehicles	24,190
Households	25,240	Area (km²)		16
Primary Occupation				
Status (age 5+)		Male	Female	Total
Full Time Employed		10,920	9,880	20,800
Part Time Employed		1,370	1,730	3,100
Student		4,240	4,710	8,950
Retiree		4,380	6,060	10,450
Unemployed		1,470	1,020	2,490
Homemaker		220	1,650	1,870
Other		850	910	1,760
Total:		23,450	25,970	49,420
Traveller Characteristics		Male	Female	Total
Transit Pass Holders		4.420	6.060	10.480

Traveller Characteristics	Male	Female	Total
Transit Pass Holders	4,420	6,060	10,480
Licensed Drivers	16,280	16,350	32,620
Telecommuters	190	40	230
Trips made by residents	61,610	67,100	128,710

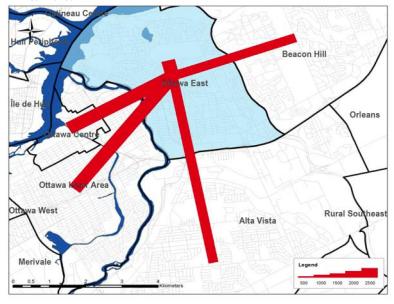

Selected Indicators	
Daily Trips per Person (age 5+)	2.60
Vehicles per Person	0.47
Number of Persons per Household	2.06
Daily Trips per Household	5.10
Vehicles per Household	0.96
Workers per Household	0.95
Population Density (Pop/km2)	3150



Household Size		
1 person	10,330	41%
2 persons	8,320	33%
3 persons	3,170	13%
4 persons	2,080	8%
5+ persons	1,340	5%
Total:	25,240	100%

Households by Vehicle Availability					
0 vehicles	7,290	29%			
1 vehicle	13,190	52%			
2 vehicles	3,750	15%			
3 vehicles	720	3%			
4+ vehicles	290	1%			
Total:	25,240	100%			

Н	louseholds by Dwelling ⁻	Туре	
S	ingle-detached	4,700	19%
S	emi-detached	1,900	8%
Т	ownhouse	3,940	16%
Α	partment/Condo	14,700	58%
Т	otal:	25,240	100%


^{*} In 2005 data was only collected for household members aged 11⁺ therefore these results cannot be compared to the 2011 data.

Travel Patterns

Top Five Destinations of Trips from Ottawa East

AM Peak Period

Summary of Trips to and from Ottawa East AM Peak Period (6:30 - 8:59) Origins of Trips From Trips To District Districts % Total District % Total Ottawa Centre 3.400 1% 14% 310 Ottawa Inner Area 3.670 15% 1.960 8% 7,280 Ottawa East 30% 7,280 32% Beacon Hill 2.110 9% 1.750 8% Alta Vista 2,370 10% 1,940 8% **Hunt Club** 540 2% 960 4% Merivale 1,610 780 3% Ottawa West 460 2% 310 1% Bayshore / Cedarview 280 1% 310 Orléans 600 2% 2,840 12% Rural East 70 0% 160 1% Rural Southeast 40 0% 260 1% South Gloucester / Leitrim 40 0% 240 1% South Nepean 50 0% 630 3% 0% Rural Southwest 20 120 1% 260 1% 660 Kanata / Stittsvile 3% Rural West 90 0% 80 0% Île de Hull 790 3% 240 1% Hull Périphérie 450 2% 550 2% Plateau 0 0% 130 1% Aylmer 20 0% 500 2% Rural Northwest 10 190 Pointe Gatineau 50 0% 420 2% 100 Gatineau Est 0% 290 1% Rural Northeast 90 0% 100 0% Buckingham / Masson-Angers 10 0% 0% 90 22.890 Ontario Sub-Total: 94% 20.590 89% Québec Sub-Total: 1.520 6% 2.510 11% 100% Total: 24,410 23,100 100%

Trips by Trip Purpose

24 Hours	From District		To District	W	ithin District	
Work or related	17,910	22%	17,810	22%	4,150	8%
School	4,920	6%	2,850	3%	3,010	6%
Shopping	7,690	9%	13,780	17%	10,880	22%
Leisure	6,320	8%	7,910	10%	4,340	9%
Medical	2,140	3%	1,850	2%	910	2%
Pick-up / drive passenger	5,200	6%	4,600	6%	2,690	5%
Return Home	35,280	43%	30,610	37%	20,780	42%
Other	3,240	4%	2,930	4%	2,450	5%
Total:	82,700	100%	82,340	100%	49,210	100%
AM Peak (06:30 - 08:59)	From District		To District	w	ithin District	
Work or related	10,560	62%	10,340	65%	1,870	26%
School	3,480	20%	2,120	13%	2,680	37%
Shopping	260	2%	500	3%	340	5%
Leisure	470	3%	370	2%	220	3%
Medical	290	2%	300	2%	60	1%
Pick-up / drive passenger	1,140	7%	1,130	7%	1,030	14%
Return Home	360	2%	500	3%	670	9%
Other	580	3%	580	4%	430	6%
Total:	17,140	100%	15,840	100%	7,300	100%
PM Peak (15:30 - 17:59)	From District		To District	W	ithin District	
Work or related	370	2%	1,080	5%	320	3%
School	150	1%	150	1%	40	0%
Shopping	1,490	8%	2,720	14%	1,960	17%
Leisure	990	6%	1,690	8%	1,020	9%
Medical	240	1%	320	2%	20	0%
Pick-up / drive passenger	1,380	8%	1,420	7%	720	6%
Return Home	12,630	70%	12,030	60%	6,810	60%
Other	730	4%	580	3%	460	4%
Total:	17,980	100%	19,990	100%	11,350	100%
Peak Period (%)	Total:		% of 24 Hours	١	Within Distric	t (%)
24 Hours	214,250				23%	
AM Peak Period	40,280		19%		18%	

49,320

23%

Trips by Primary Travel Mode

24 Hours	From District		To District	Wit	thin District	
Auto Driver	48,290	58%	47,600	58%	21,140	43%
Auto Passenger	12,390	15%	12,020	15%	7,390	15%
Transit	16,060	19%	16,550	20%	3,790	8%
Bicycle	2,330	3%	2,370	3%	1,290	3%
Walk	1,270	2%	1,260	2%	12,390	25%
Other	2,360	3%	2,530	3%	3,210	7%
Total:	82,700	100%	82,330	100%	49,210	100%
AM Peak (06:30 - 08:59)	From District		To District	Wit	thin District	<u>:</u>
Auto Driver	7,690	45%	10,160	64%	2,390	33%
Auto Passenger	1,770	10%	1,720	11%	920	13%
Transit	5,160	30%	2,940	19%	660	9%
Bicycle	1,050	6%	170	1%	210	3%
Walk	380	2%	140	1%	1,730	24%
Other	1,070	6%	720	5%	1,380	19%
Total:	17,120	100%	15,850	100%	7,290	100%
PM Peak (15:30 - 17:59)	From District		To District		thin District	
Auto Driver	11,440	64%	9,660	48%	4,850	43%
Auto Passenger	2,630	15%	2,900	15%	1,800	16%
Transit	3,220	18%	5,430	27%	830	7%
Bicycle	300	2%	1,300	7%	380	3%
Walk	110	1%	390	2%	2,800	25%
Other	280	2%	300	2%	690	6%
Total:	17,980	100%	19,980	100%	11,350	100%
Avg Vehicle Occupancy	From District		To District	Wit	thin District	
24 Hours	1.26		1.25		1.35	
AM Peak Period	1.23		1.17		1.38	
PM Peak Period	1.23		1.30		1.37	
Transit Modal Split	From District		To District	Wit	thin District	
24 Hours	21%		22%	****	12%	
AM Peak Period	35%		20%		17%	
PM Peak Period	19%		30%		11%	
1 IVI I Cak I CIIOG	1370		3070		11/0	

PM Peak Period

Work Order

34983

Turning Movement Count - Full Study Summary Report

BEECHWOOD AVE @ MARIER AVE/PUTMAN AVE

Survey Date: Wednesday, July 22, 2015

Total Observed U-Turns

AADT Factor

.90

Northbound: 0 Eastbound: 0

Southbound: 0

0

nd: 0 Westbound:

								F	ull St	udy									
		MA	RIER	AVE/P	UTMA	N AVE	Ξ					BEE	CHWC	OOD A	VE				
_	١	orthbo	ound		S	Southb	ound		_		Eastbo	ound			Westb	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	42	6	20	68	30	13	9	52	120	9	360	31	400	24	485	12	521	921	1041
08:00 09:00	51	14	29	94	38	12	19	69	163	14	397	47	458	34	498	25	557	1015	1178
09:00 10:00	35	9	33	77	24	11	12	47	124	8	335	48	391	23	421	12	456	847	971
11:30 12:30	53	7	39	99	29	8	20	57	156	16	381	55	452	40	428	10	478	930	1086
12:30 13:30	44	7	37	88	23	9	12	44	132	3	402	47	452	29	445	22	496	948	1080
15:00 16:00	68	10	41	119	21	9	16	46	165	17	469	63	549	26	582	20	628	1177	1342
16:00 17:00	55	19	50	124	30	9	8	47	171	4	603	58	665	28	668	20	716	1381	1552
17:00 18:00	52	16	48	116	28	8	3	39	155	8	494	61	563	32	596	11	639	1202	1357
Sub Total	400	88	297	785	223	79	99	401	1186	79	3441	410	3930	236	4123	132	4491	8421	9607
U Turns				0				0	0				0				0	0	0
Total	400	88	297	785	223	79	99	401	1186	79	3441	410	3930	236	4123	132	4491	8421	9607
EQ 12Hr	556	122	413	1091	310	110	138	557	1648	110	4783	570	5463	328	5731	183	6242	11705	13353
Note: These	values ar	e calcu	lated by	/ multiply	ying the	totals b	y the ap	opropriate	e expans	ion fac	tor.		1	1.39					
AVG 12Hr	500	110	372	982	279	99	124	502	1484	99	4305	513	4916	295	5158	165	5618	10534	12018
Note: These	volumes	are calc	culated	by multi	plying th	ne Equiv	alent 1	2 hr. tota	ls by the	AADT	factor.		•	90					
AVG 24Hr	656	144	487	1286	365	129	162	657	1943	129	5639	672	6441	387	6757	216	7360	13801	15744
Note: These	volumes	are calc	culated	by multi	plying th	ne Avera	ige Dail	y 12 hr. t	otals by	12 to 2	4 expan	sion fac	tor.	1.31					

Comments:

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

2017-Aug-03 Page 1 of 1

Turning Movement Count - 15 Minute Summary Report

BEECHWOOD AVE @ CHAPLEAU AVE

Survey Date: Tuesday, August 25, 2015

Total Observed U-Turns

Northbound: 0 Southbound: Eastbound: 4 Westbound:

CHAPLEAU AVE

BEECHWOOD AVE

5

35325

					LEAU									WOOD	AVL	-				
		No	orthbou	ınd		So	uthbou	nd	_		Ea	stbound		_	We	estbound	I			
Time P	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	07:15	0	0	0	0	0	0	1	1	1	0	92	0	92	0	103	0	103	195	196
07:15	07:30	0	0	0	0	0	0	2	2	2	1	99	0	100	0	115	1	116	216	218
07:30	07:45	0	0	0	0	0	0	1	1	1	3	92	0	95	0	135	1	136	231	232
07:45	08:00	0	0	0	0	0	0	1	1	1	1	112	0	113	0	129	3	132	245	246
08:00	08:15	0	0	0	0	0	0	3	3	3	1	84	0	85	0	162	3	165	250	253
08:15	08:30	0	0	0	0	1	0	3	4	4	1	96	0	97	0	163	1	164	261	265
08:30	08:45	0	0	0	0	1	0	3	4	4	2	114	0	116	0	139	2	141	257	261
08:45	09:00	0	0	0	0	1	0	1	2	2	2	125	0	127	0	120	3	123	250	252
09:00	09:15	0	0	0	0	1	0	3	4	4	4	118	0	122	0	142	2	144	266	270
09:15	09:30	0	0	0	0	0	0	3	3	3	2	106	0	108	0	130	3	133	241	244
09:30	09:45	0	0	0	0	2	0	2	4	4	2	88	0	90	0	137	7	145	235	239
09:45	10:00	0	0	0	0	1	0	3	4	4	0	105	0	105	0	112	5	117	222	226
11:30	11:45	0	0	0	0	1	0	1	2	2	1	114	0	115	0	114	0	114	229	231
11:45	12:00	0	0	0	0	2	0	3	5	5	1	124	0	125	0	125	3	128	253	258
12:00	12:15	0	0	0	0	0	0	2	2	2	1	115	0	116	0	114	1	115	231	233
12:15	12:30	0	0	0	0	0	0	1	1	1	2	136	0	138	0	128	0	129	267	268
12:30	12:45	0	0	0	0	2	0	0	2	2	5	127	0	132	0	110	2	112	244	246
12:45	13:00	0	0	0	0	1	0	2	4	4	1	112	0	113	0	119	1	121	234	238
13:00	13:15	0	0	0	0	1	0	1	2	2	3	108	0	114	0	108	3	111	225	227
13:15	13:30	0	0	0	0	4	0	4	8	8	3	105	0	109	0	107	6	113	222	230
15:00	15:15	0	0	0	0	1	0	3	4	4	1	131	0	132	0	105	2	107	239	243
15:15	15:30	0	0	0	0	1	0	0	1	1	3	140	0	143	0	135	3	138	281	282
15:30	15:45	0	0	0	0	0	0	0	0	0	2	126	0	128	0	146	2	148	276	276
15:45	16:00	0	0	0	0	0	0	2	2	2	3	136	0	139	0	137	0	137	276	278
16:00	16:15	0	0	0	0	1	0	3	4	4	0	112	0	112	0	164	4	169	281	285
16:15	16:30	0	0	0	0	2	0	2	4	4	1	163	0	164	0	183	5	188	352	356
16:30	16:45	0	0	0	0	0	0	1	1	1	2	144	0	146	0	172	1	174	320	321
16:45	17:00	0	0	0	0	1	0	2	3	3	0	139	0	139	0	177	2	179	318	321
17:00	17:15	0	0	0	0	0	0	1	1	1	1	152	0	153	0	167	2	169	322	323
17:15	17:30	0	0	0	0	0	0	1	1	1	1	127	0	128	0	161	1	162	290	291
17:30	17:45	0	0	0	0	0	0	3	3	3	2	138	0	140	0	166	2	168	308	311
17:45	18:00	0	0	0	0	1	0	2	3	3	1	126	0	127	0	137	1	138	265	268
TOTAL	:	0	0	0	0	25	0	60	86	86	53	3806	0	3863	0	4362	72	2 44:	39 8302	8388

Note: U-Turns are included in Totals.

Comment:

Turning Movement Count - Cyclist Volume Report

Work Order 35325

BEECHWOOD AVE @ CHAPLEAU AVE

Count Date: Tuesday, August 25, 2015 Start Time: 07:00

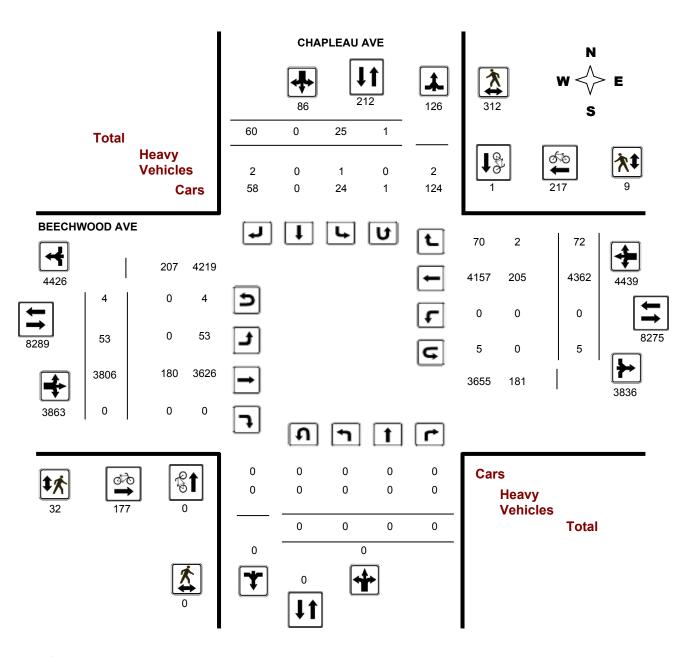
CHAPLEAU AVE

BEECHWOOD AVE

Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 08:00	0	0	0	8	54	62	62
08:00 09:00	0	0	0	9	57	66	66
09:00 10:00	0	0	0	9	21	30	30
11:30 12:30	0	0	0	4	30	34	34
12:30 13:30	0	0	0	12	6	18	18
15:00 16:00	0	0	0	28	19	47	47
16:00 17:00	0	1	1	64	14	78	79
17:00 18:00	0	0	0	43	16	59	59
Total	0	1	1	177	217	394	395

Comment:

Note: These volumes consists of bicycles only (no mopeds or motorcycles) and ARE NOT included in the Turning Movement Count Summary.



Turning Movement Count - Full Study Diagram

BEECHWOOD AVE @ CHAPLEAU AVE

Survey Date: Tuesday, August 25, 2015 WO#: 35325

Device: Miovision

Comments

W.O.

35325

Turning Movement Count - Heavy Vehicle Report

BEECHWOOD AVE @ CHAPLEAU AVE

Survey Date: Tuesday, August 25, 2015

CHAPLEAU AVE BEECHWOOD AVE

		Northb	ound		(Southb	ound				Eastb	ound		\	Westbo	ound	_			
Time P	eriod	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	08:00	0	0	0	0	0	0	0	0	0	0	24	0	24	0	31	0	31	55	55
08:00	09:00	0	0	0	0	0	0	1	1	1	0	21	0	21	0	37	0	37	58	59
09:00	10:00	0	0	0	0	1	0	0	1	1	0	24	0	24	0	28	0	28	52	53
11:30	12:30	0	0	0	0	0	0	0	0	0	0	23	0	23	0	22	0	22	45	45
12:30	13:30	0	0	0	0	0	0	1	1	1	0	20	0	20	0	23	2	25	45	46
15:00	16:00	0	0	0	0	0	0	0	0	0	0	27	0	27	0	21	0	21	48	48
16:00	17:00	0	0	0	0	0	0	0	0	0	0	19	0	19	0	22	0	22	41	41
17:00	18:00	0	0	0	0	0	0	0	0	0	0	22	0	22	0	21	0	21	43	43
Sub T	otal	0	0	0	0	1	0	2	3	3	0	180	0	180	0	205	2	207	387	390
U-Turns	s (Heav	/y Veh	nicles)		0				0	0				0				0	0	0
Tot	al	0	0	0	0	1	0	2	3	3	0	180	0	180	0	205	2	207	387	390

Heavy Vehicles include Buses, Single-Unit Trucks and Articulated Trucks. Further, they ARE included in the Turning Movement Count Summary.

Work Order

Turning Movement Count - Pedestrian Volume Report

BEECHWOOD AVE @ CHAPLEAU AVE Count Date: Tuesday, August 25, 2015 **Start Time:** 07:00 NB Approach SB Approach EB Approach WB Approach Time Period Total **Total Grand Total** (E or W Crossing) (E or W Crossing) (N or S Crossing) (N or S Crossing) 07:00 07:15 07:15 07:30 07:30 07:45 07:45 08:00 07:00 08:00 08:00 08:15 08:15 08:30 08:30 08:45 08:45 09:00 08:00 09:00 09:00 09:15 09:15 09:30 09:30 09:45 09:45 10:00 09:00 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 11:30 12:30 12:30 12:45 12:45 13:00 13:00 13:15 13:15 13:30 12:30 13:30 15:00 15:15 15:15 15:30 15:30 15:45 15:45 16:00 15:00 16:00 16:00 16:15 16:15 16:30 16:30 16:45 16:45 17:00 16:00 17:00 17:00 17:15 17:15 17:30 17:30 17:45 17:45 18:00

Comment:

17:00 18:00

Total

2018-Mar-16 Page 1 of 1

Work Order

35325

Turning Movement Count - Full Study Summary Report

BEECHWOOD AVE @ CHAPLEAU AVE

Survey Date: Tuesday, August 25, 2015

Total Observed U-Turns

AADT Factor

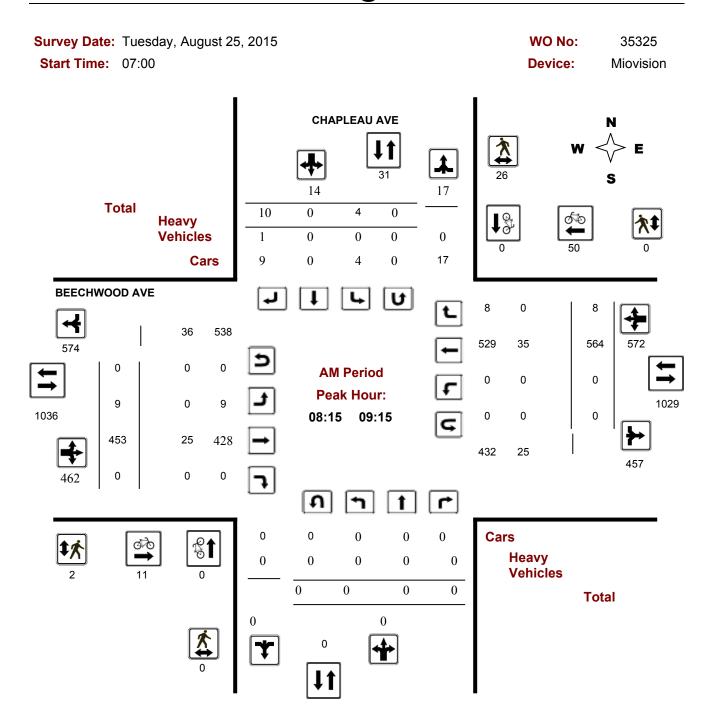
0 Northbound: 4 Southbound: 1 5 .90

Eastbound:

Westbound:

Full Study

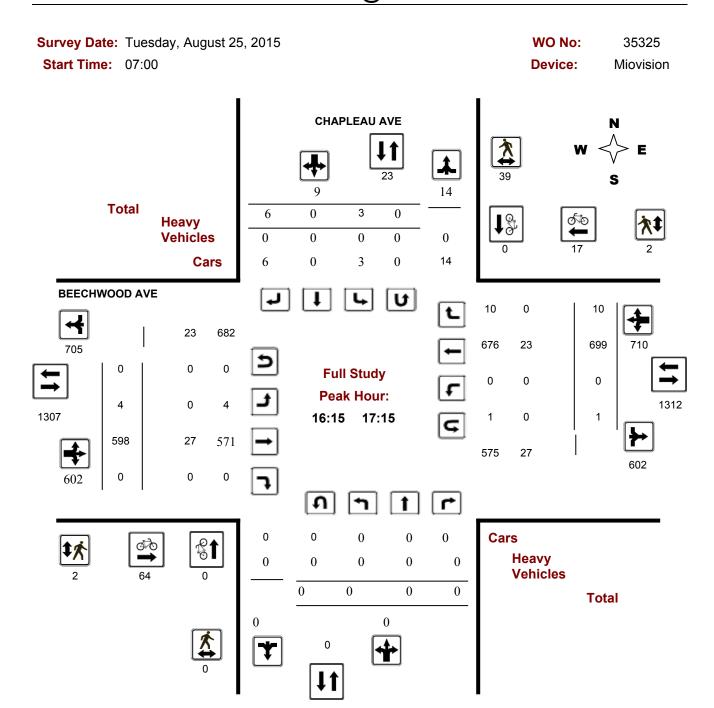
			CH	APLEA	u ave	Ξ						BEE	CHWC	OD A	VE				
	N	orthbo	ound		S	outhbo	ound		_		Eastbo	und		,	Westb	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	0	0	0	0	0	0	5	5	5	5	395	0	400	0	482	5	487	887	892
08:00 09:00	0	0	0	0	3	0	10	13	13	6	419	0	425	0	584	9	593	1018	1031
09:00 10:00	0	0	0	0	4	0	11	15	15	8	417	0	425	0	521	17	538	963	978
11:30 12:30	0	0	0	0	3	0	7	10	10	5	489	0	494	0	481	4	485	979	989
12:30 13:30	0	0	0	0	8	0	7	15	15	12	452	0	464	0	444	12	456	920	935
15:00 16:00	0	0	0	0	2	0	5	7	7	9	533	0	542	0	523	7	530	1072	1079
16:00 17:00	0	0	0	0	4	0	8	12	12	3	558	0	561	0	696	12	708	1269	1281
17:00 18:00	0	0	0	0	1	0	7	8	8	5	543	0	548	0	631	6	637	1185	1193
Sub Total	0	0	0	0	25	0	60	85	85	53	3806	0	3859	0	4362	72	4434	8293	8378
U Turns				0				1	1				4				5	9	10
Total	0	0	0	0	25	0	60	86	86	53	3806	0	3863	0	4362	72	4439	8302	8388
EQ 12Hr	0	0	0	0	35	0	83	120	120	74	5290	0	5370	0	6063	100	6170	11540	11660
Note: These v	alues ar	e calcul	ated by	multiply	ing the	totals by	y the ap	propriate	e expansi	on fact	tor.		1	.39					
AVG 12Hr	0	0	0	0	31	0	75	108	108	66	4761	0	4833	0	5457	90	5553	10386	10494
Note: These v	olumes a	are calc	ulated	by multip	lying the	e Equiv	alent 12	2 hr. total	s by the	AADT	factor.		_!	90					
AVG 24Hr	0	0	0	0	41	0	98	141	141	87	6237	0	6331	0	7148	118	7275	13606	13747
Note: These v	olumes a	are calc	ulated	by multip	lying the	e Avera	ge Dail	y 12 hr. t	otals by	12 to 2	4 expans	sion fac	tor. 1	.31					


Comments:

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Turning Movement Count - Full Study Peak Hour Diagram

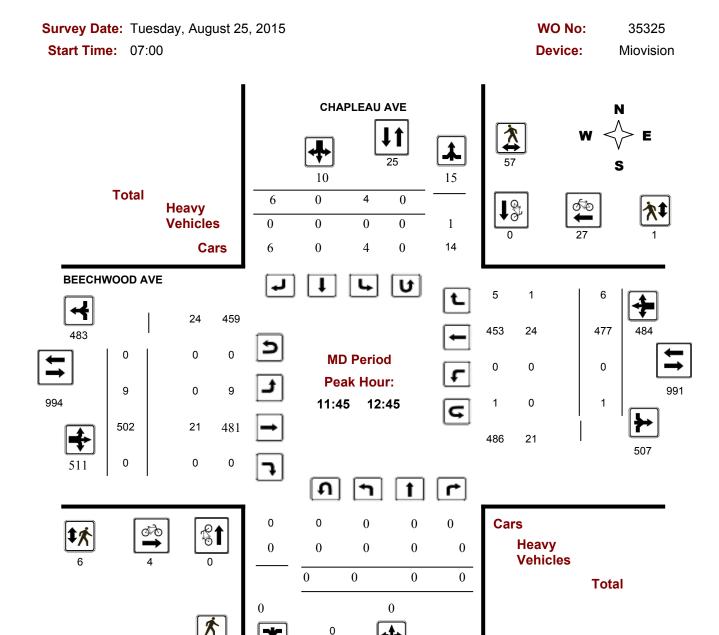
BEECHWOOD AVE @ CHAPLEAU AVE



Comments

Turning Movement Count - Full Study Peak Hour Diagram

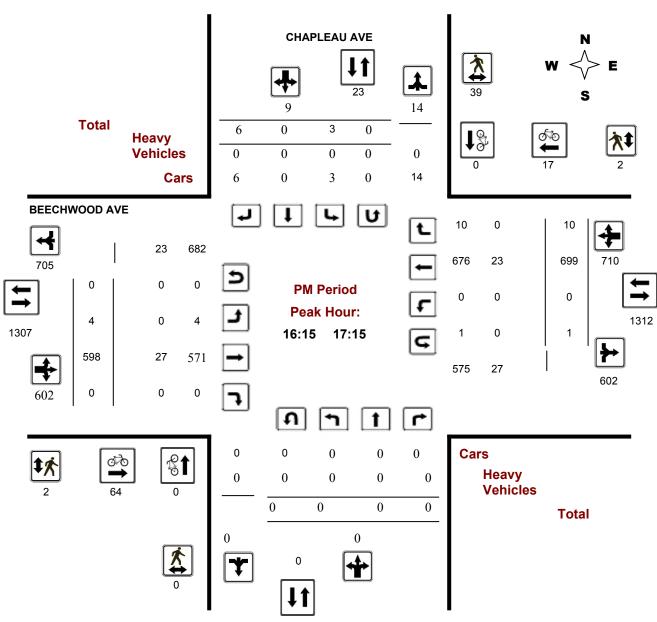
BEECHWOOD AVE @ CHAPLEAU AVE



Comments

Turning Movement Count - Full Study Peak Hour Diagram

BEECHWOOD AVE @ CHAPLEAU AVE


Comments

Turning Movement Count - Full Study Peak Hour Diagram

BEECHWOOD AVE @ CHAPLEAU AVE

Survey Date:Tuesday, August 25, 2015WO No:35325Start Time:07:00Device:Miovision

Comments

Turning Movement Count - 15 Min U-Turn Total Report

BEECHWOOD AVE @ CHAPLEAU AVE

Survey Date:	Tu	esday, August 25	5, 2015			
Time Pe	riod	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	1	1
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	1	1
12:30	12:45	0	0	0	0	0
12:45	13:00	0	1	0	1	2
13:00	13:15	0	0	3	0	3
13:15	13:30	0	0	1	0	1
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	1	1
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	1	1
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
Tota	1	0	1	4	5	10

Turning Movement Count - 15 Minute Summary Report

BEECHWOOD AVE @ ST. CHARLES ST

Survey Date: Wednesday, July 29, 2015

Total Observed U-Turns

ST. CHARLES ST

BEECHWOOD AVE

			,	ST. CI	HARLI	ES S	Г					BE	ECH	WOOD	AVE					
		No	orthbou	und		So	uthbou	nd			Ea	stbound			We	stbound				
Time Pe	eriod	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 0	7:15	0	0	2	2	0	0	0	0	2	0	84	5	89	2	115	0	117	206	208
07:15 0	7:30	0	0	2	2	0	0	0	0	2	0	104	4	108	3	114	0	117	225	227
07:30 0	7:45	3	0	2	5	0	0	0	0	5	0	103	1	104	1	134	0	135	239	244
07:45 0	00:80	1	0	3	4	0	0	0	0	4	0	114	0	114	2	131	0	133	247	251
08:00 0	8:15	2	0	1	3	0	0	0	0	3	0	112	6	118	3	148	0	151	269	272
08:15 0	08:30	4	0	3	7	0	0	0	0	7	0	93	3	96	5	139	0	144	240	247
08:30 0	8:45	1	0	6	7	0	0	0	0	7	0	119	4	123	4	140	0	144	267	274
08:45 0	9:00	2	0	5	7	0	0	0	0	7	0	121	4	125	5	153	0	158	283	290
09:00 0	9:15	6	0	2	8	0	0	0	0	8	0	112	7	119	1	141	0	142	261	269
09:15 0	9:30	2	0	0	2	0	0	0	0	2	0	94	4	98	1	97	0	98	196	198
09:30 0	9:45	4	0	5	9	0	0	0	0	9	0	96	2	98	4	119	0	123	221	230
09:45 1	0:00	5	0	3	8	0	0	0	0	8	0	106	2	108	4	117	0	121	229	237
11:30 1	1:45	5	0	2	7	0	0	0	0	7	0	125	6	131	2	123	0	125	256	263
11:45 1	2:00	7	0	6	13	0	0	0	0	13	0	124	2	126	6	120	0	126	252	265
12:00 1	2:15	3	0	3	6	0	0	0	0	6	0	125	8	133	2	117	0	119	252	258
12:15 1	2:30	2	0	4	6	0	0	0	0	6	0	119	1	120	4	141	0	145	265	271
12:30 1	2:45	6	0	4	10	0	0	0	0	10	0	108	2	110	4	114	0	118	228	238
12:45 1	3:00	3	0	5	8	0	0	0	0	8	0	109	5	114	5	135	0	140	254	262
13:00 1	3:15	8	0	4	12	0	0	0	0	12	0	114	4	118	3	127	0	130	248	260
13:15 1	3:30	6	0	7	13	0	0	0	0	13	0	98	7	105	5	128	0	133	238	251
15:00 1	5:15	5	0	3	8	0	0	0	0	8	0	122	3	125	2	147	0	149	274	282
15:15 1	5:30	6	0	0	6	0	0	0	0	6	0	124	3	127	0	144	0	144	271	277
15:30 1	5:45	2	0	6	8	0	0	0	0	8	0	118	3	121	3	152	0	155	276	284
	6:00	1	0	6	7	0	0	0	0	7	0	127	8	135	3	154	0	157	292	299
16:00 1		8	0	3	11	0	0	0	0	11	0	155	10		3		0	176	341	352
16:15 1		4	0	6	10	0	0	0	0	10	0	185	5	190	4	189	0	193	383	393
16:30 1		6	0	6	12	0	0	0	0	12	0	153	7	160	1	191	0	192	352	364
16:45 1		8	0	4	12	0	0	0	0	12	0	160	6	166	2	169	0	171	337	349
17:00 1		3	0	2	5	0	0	0	0	5	0	142	9	151	5	157	0	162	313	318
17:15 1		6	0	5	11	0	0	0	0	11	0	137	7	144	4	183	0	187	331	342
17:30 1		4	0	3	7	0	0	0	0	7	0	151	6	157	3	144	0	147	304	311
17:45 1	8:00	2	0	5	7	0	0	0	0	7	0	109	5	114	3	129	0	132	246	253
TOTAL:	1	125	0	118	243	0	0	0	0	243	0	3863	149	4012	99	4485	0	458	84 8596	8839

Note: U-Turns are included in Totals.

Comment:

Turning Movement Count - Cyclist Volume Report

Work Order 35150

BEECHWOOD AVE @ ST. CHARLES ST

Count Date: Wednesday, July 29, 2015 Start Time: 07:00

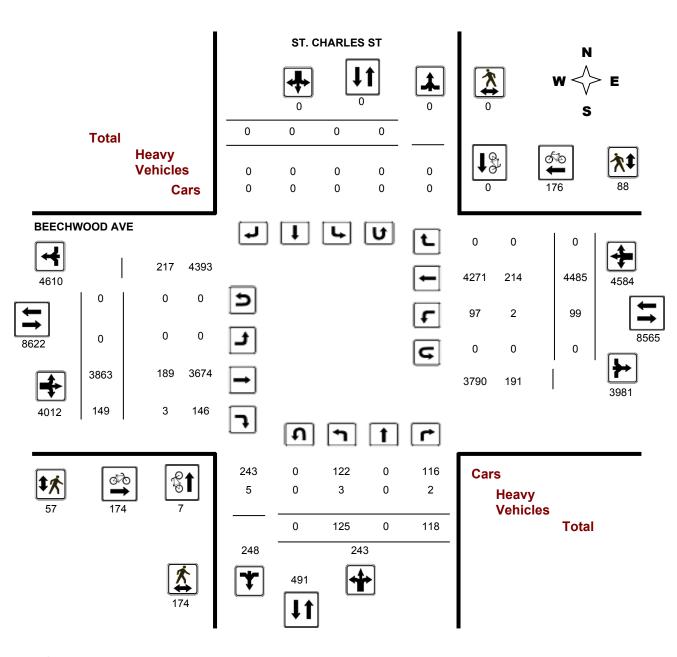
ST. CHARLES ST

BEECHWOOD AVE

Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 08:00	0	0	0	14	60	74	74
08:00 09:00	1	0	1	15	37	52	53
09:00 10:00	0	0	0	11	19	30	30
11:30 12:30	1	0	1	16	12	28	29
12:30 13:30	2	0	2	14	4	18	20
15:00 16:00	0	0	0	22	9	31	31
16:00 17:00	1	0	1	50	20	70	71
17:00 18:00	2	0	2	32	15	47	49
Total	7	0	7	174	176	350	357

Comment:

Note: These volumes consists of bicycles only (no mopeds or motorcycles) and ARE NOT included in the Turning Movement Count Summary.



Turning Movement Count - Full Study Diagram

BEECHWOOD AVE @ ST. CHARLES ST

Survey Date: Wednesday, July 29, 2015 WO#: 35150

Device: Miovision

Comments

W.O. 35150

Turning Movement Count - Heavy Vehicle Report

BEECHWOOD AVE @ ST. CHARLES ST

Survey Date: Wednesday, July 29, 2015

ST. CHARLES ST

BEECHWOOD AVE

	- 1	Northb	ound		5	Southb	ound	_			Eastb	ound		١	Nestb	ound	_			
Time F	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	08:00	0	0	0	0	0	0	0	0	0	0	23	0	23	0	34	0	34	57	57
08:00	09:00	0	0	0	0	0	0	0	0	0	0	33	0	33	0	42	0	42	75	75
09:00	10:00	0	0	0	0	0	0	0	0	0	0	26	0	26	0	34	0	34	60	60
11:30	12:30	1	0	0	1	0	0	0	0	1	0	21	0	21	0	21	0	21	42	43
12:30	13:30	0	0	1	1	0	0	0	0	1	0	22	1	23	2	26	0	28	51	52
15:00	16:00	1	0	1	2	0	0	0	0	2	0	21	1	22	0	16	0	16	38	40
16:00	17:00	1	0	0	1	0	0	0	0	1	0	22	0	22	0	23	0	23	45	46
17:00	18:00	0	0	0	0	0	0	0	0	0	0	21	1	22	0	18	0	18	40	40
Sub 1	Γotal	3	0	2	5	0	0	0	0	5	0	189	3	192	2	214	0	216	408	413
U-Turn	s (Heav	y Veh	icles)		0				0	0				0				0	0	0
Tot	al	3	0	2	0	0	0	0	0	5	0	189	3	192	2	214	0	216	408	413

Heavy Vehicles include Buses, Single-Unit Trucks and Articulated Trucks. Further, they ARE included in the Turning Movement Count Summary.

Work Order

Turning Movement Count - Pedestrian Volume Report

BEECHWOOD AVE @ ST. CHARLES ST Count Date: Wednesday, July 29, 2015 **Start Time:** 07:00 NB Approach SB Approach EB Approach WB Approach Time Period Total **Total Grand Total** (E or W Crossing) (E or W Crossing) (N or S Crossing) (N or S Crossing) 07:00 07:15 07:15 07:30 07:30 07:45 07:45 08:00 07:00 08:00 08:00 08:15 08:15 08:30 08:30 08:45 08:45 09:00 08:00 09:00 09:00 09:15 09:15 09:30 09:30 09:45 09:45 10:00 09:00 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 11:30 12:30 12:30 12:45 12:45 13:00 13:00 13:15 13:15 13:30 12:30 13:30 15:00 15:15 15:15 15:30 15:30 15:45 15:45 16:00 15:00 16:00 16:00 16:15 16:15 16:30 16:30 16:45 16:45 17:00 16:00 17:00 17:00 17:15 17:15 17:30 17:30 17:45

Comment:

17:45 18:00

17:00 18:00

Total

2018-Mar-16 Page 1 of 1

Work Order

35150

Turning Movement Count - Full Study Summary Report

BEECHWOOD AVE @ ST. CHARLES ST

Survey Date: Wednesday, July 29, 2015

Total Observed U-Turns

AADT Factor

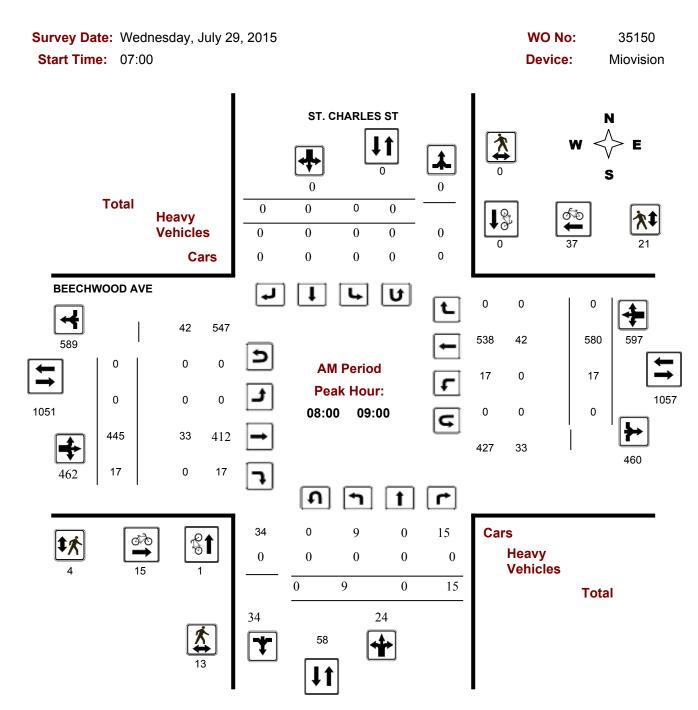
0 Northbound:

Southbound: 0 .90

Eastbound: Westbound: 0

Full Study

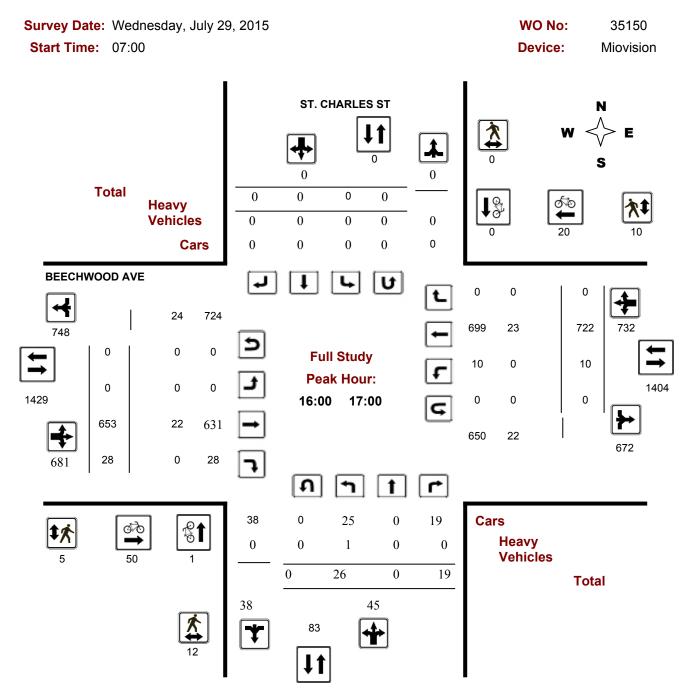
			ST.	CHARL	LES S	Γ				-		BEE	CHWC	OD A	VE				
_	N	orthbo	ound		S	outhbo	ound	_	_		Eastbo	ound		,	Westbo	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	4	0	9	13	0	0	0	0	13	0	405	10	415	8	494	0	502	917	930
08:00 09:00	9	0	15	24	0	0	0	0	24	0	445	17	462	17	580	0	597	1059	1083
09:00 10:00	17	0	10	27	0	0	0	0	27	0	408	15	423	10	474	0	484	907	934
11:30 12:30	17	0	15	32	0	0	0	0	32	0	493	17	510	14	501	0	515	1025	1057
12:30 13:30	23	0	20	43	0	0	0	0	43	0	429	18	447	17	504	0	521	968	1011
15:00 16:00	14	0	15	29	0	0	0	0	29	0	491	17	508	8	597	0	605	1113	1142
16:00 17:00	26	0	19	45	0	0	0	0	45	0	653	28	681	10	722	0	732	1413	1458
17:00 18:00	15	0	15	30	0	0	0	0	30	0	539	27	566	15	613	0	628	1194	1224
Sub Total	125	0	118	243	0	0	0	0	243	0	3863	149	4012	99	4485	0	4584	8596	8839
U Turns				0				0	0				0				0	0	0
Total	125	0	118	243	0	0	0	0	243	0	3863	149	4012	99	4485	0	4584	8596	8839
EQ 12Hr	174	0	164	338	0	0	0	0	338	0	5370	207	5577	138	6234	0	6372	11949	12287
Note: These	values ar	e calcul	lated by	/ multiply	ing the	totals by	the ap	propriate	e expansi	on fact	tor.		1	1.39					
AVG 12Hr	156	0	148	304	0	0	0	0	304	0	4833	186	5019	124	5611	0	5735	10754	11058
Note: These	volumes a	are calc	culated	by multip	lying the	e Equiva	alent 12	2 hr. total	s by the	AADT 1	factor.			90					
AVG 24Hr	205	0	193	398	0	0	0	0	398	0	6331	244	6575	162	7350	0	7512	14087	14485
Note: These	volumes a	are calc	culated	by multip	lying the	e Avera	ge Dail	y 12 hr. t	otals by	12 to 2	4 expans	sion fac	tor.	1.31					


Comments:

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Turning Movement Count - Full Study Peak Hour Diagram

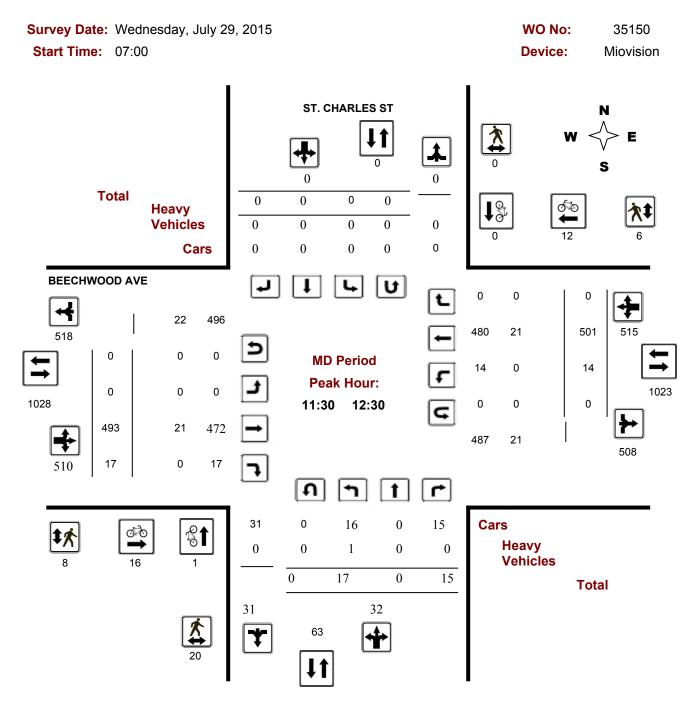
BEECHWOOD AVE @ ST. CHARLES ST



Comments

Turning Movement Count - Full Study Peak Hour Diagram

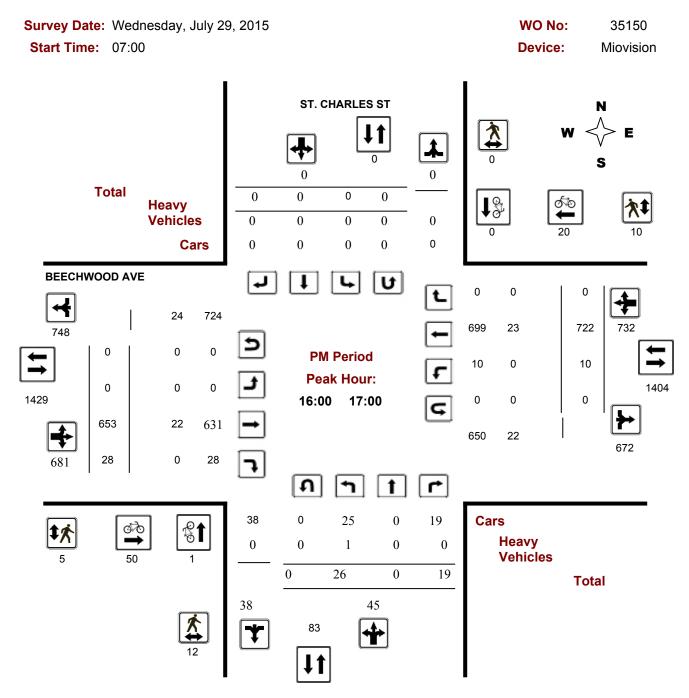
BEECHWOOD AVE @ ST. CHARLES ST



Comments

Turning Movement Count - Full Study Peak Hour Diagram

BEECHWOOD AVE @ ST. CHARLES ST



Comments

Turning Movement Count - Full Study Peak Hour Diagram

BEECHWOOD AVE @ ST. CHARLES ST

Comments

Turning Movement Count - 15 Min U-Turn Total Report

BEECHWOOD AVE @ ST. CHARLES ST

Survey Date: Wednesday, July 29, 2015

Survey Date:		eanesaay, July 29	9, 2015			
Time F	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
То	tal	0	0	0	0	0

Turning Movement Count - 15 Minute Summary Report

BEECHWOOD AVE @ CHAMPLAIN AVE

Survey Date: Tuesday, August 25, 2015

Total Observed U-Turns

Northbound: 0 Southbound: Eastbound: 0 Westbound:

CHAMPLAIN AVE

BEECHWOOD AVE

1

				CHAMPLAIN AVE BEECHWOOD AVE																
		No	orthbou	ind		So	uthbou	nd	_		Ea	stbound		_	We	stbound	l			
Time Pe	eriod	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	07:15	0	0	0	0	1	0	2	3	3	0	87	0	87	0	102	0	102	189	192
07:15	07:30	0	0	0	0	0	0	0	0	0	0	100	0	100	0	113	0	113	213	213
07:30	07:45	0	0	0	0	0	0	5	5	5	0	92	0	92	0	138	0	138	230	235
07:45	08:00	0	0	0	0	0	0	3	3	3	1	110	0	111	0	127	0	127	238	241
08:00	08:15	0	0	0	0	0	0	4	4	4	2	97	0	99	0	162	0	162	261	265
08:15	08:30	0	0	0	0	0	0	3	3	3	2	104	0	106	0	159	1	160	266	269
08:30	08:45	0	0	0	0	0	0	1	1	1	1	111	0	112	0	144	0	144	256	257
08:45	09:00	0	0	0	0	0	0	5	5	5	1	124	0	125	0	120	0	120	245	250
09:00	09:15	0	0	0	0	1	0	3	4	4	0	120	0	120	0	139	0	139	259	263
09:15	09:30	0	0	0	0	0	0	0	0	0	3	110	0	113	0	130	1	131	244	244
09:30	09:45	0	0	0	0	0	0	1	1	1	1	96	0	97	0	129	0	130	227	228
09:45	10:00	0	0	0	0	0	0	4	4	4	0	103	0	103	0	113	3	116	219	223
11:30	11:45	0	0	0	0	1	0	3	4	4	2	115	0	117	0	115	1	116	233	237
11:45	12:00	0	0	0	0	0	0	1	1	1	1	126	0	127	0	129	3	132	259	260
12:00	12:15	0	0	0	0	0	0	1	1	1	1	115	0	116	0	112	1	113	229	230
12:15	12:30	0	0	0	0	1	0	2	3	3	2	142	0	144	0	128	1	129	273	276
12:30	12:45	0	0	0	0	0	0	1	1	1	3	130	0	133	0	112	3	115	248	249
12:45	13:00	0	0	0	0	1	0	1	2	2	0	111	0	111	0	119	1	120	231	233
13:00	13:15	0	0	0	0	0	0	2	2	2	0	110	0	110	0	115	1	116	226	228
13:15	13:30	0	0	0	0	0	0	2	2	2	2	107	0	109	0	113	0	113	222	224
15:00 ·	15:15	0	0	0	0	0	0	0	0	0	2	136	0	138	0	111	1	112	250	250
15:15	15:30	0	0	0	0	1	0	1	2	2	3	138	0	141	0	132	0	132	273	275
15:30	15:45	0	0	0	0	0	0	1	1	1	2	124	0	126	0	139	3	142	268	269
15:45	16:00	0	0	0	0	0	0	1	1	1	0	131	0	131	0	141	1	142	273	274
16:00	16:15	0	0	0	0	1	0	2	3	3	3	104	0	107	0	163	3	166	273	276
16:15	16:30	0	0	0	0	0	0	0	0	0	5	163	0	168	0	183	3	186	354	354
16:30	16:45	0	0	0	0	0	0	2	2	2	1	141	0	142	0	180	2	182	324	326
16:45	17:00	0	0	0	0	0	0	1	1	1	4	138	0	142	0	181	1	182	324	325
17:00	17:15	0	0	0	0	0	0	3	3	3	9	148	0	157	0	170	1	171	328	331
17:15	17:30	0	0	0	0	0	0	1	1	1	2	124	0	126	0	160	1	161	287	288
17:30 ·	17:45	0	0	0	0	0	0	4	4	4	2	132	0	134	0	170	0	170	304	308
17:45	18:00	0	0	0	0	0	0	2	2	2	4	127	0	131	0	137	0	137	268	270
TOTAL:		0	0	0	0	7	0	62	69	69	59	3816	0	3875	0	4386	32	2 44	19 8294	8363

Note: U-Turns are included in Totals.

Comment:

Turning Movement Count - Cyclist Volume Report

Work Order 35324

BEECHWOOD AVE @ CHAMPLAIN AVE

Count Date: Tuesday, August 25, 2015 Start Time: 07:00

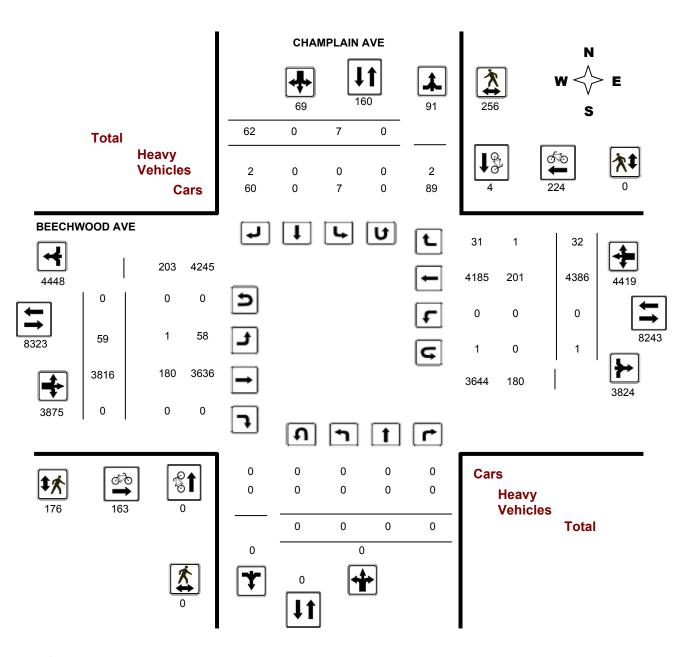
CHAMPLAIN AVE

BEECHWOOD AVE

_						_	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 08:00	0	0	0	5	55	60	60
08:00 09:00	0	1	1	5	54	59	60
09:00 10:00	0	1	1	7	20	27	28
11:30 12:30	0	1	1	7	32	39	40
12:30 13:30	0	0	0	10	11	21	21
15:00 16:00	0	1	1	25	21	46	47
16:00 17:00	0	0	0	61	14	75	75
17:00 18:00	0	0	0	43	17	60	60
Total	0	4	4	163	224	387	391

Comment:

Note: These volumes consists of bicycles only (no mopeds or motorcycles) and ARE NOT included in the Turning Movement Count Summary.



Turning Movement Count - Full Study Diagram

BEECHWOOD AVE @ CHAMPLAIN AVE

Survey Date: Tuesday, August 25, 2015 WO#: 35324

Device: Miovision

Comments

W.O.

35324

Turning Movement Count - Heavy Vehicle Report

BEECHWOOD AVE @ CHAMPLAIN AVE

Survey Date: Tuesday, August 25, 2015

CHAMPLAIN AVE BEECHWOOD AVE

		Northb	ound		(Southb	ound	_			Eastb	ound		\	Westbo	ound				
Time F	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	T TOT 53 59 54 47 40 43 43	Grand Total
07:00	08:00	0	0	0	0	0	0	0	0	0	0	22	0	22	0	31	0	31	53	53
08:00	09:00	0	0	0	0	0	0	0	0	0	0	21	0	21	0	38	0	38	59	59
09:00	10:00	0	0	0	0	0	0	0	0	0	0	26	0	26	0	28	0	28	54	54
11:30	12:30	0	0	0	0	0	0	2	2	2	1	25	0	26	0	21	0	21	47	49
12:30	13:30	0	0	0	0	0	0	0	0	0	0	19	0	19	0	21	0	21	40	40
15:00	16:00	0	0	0	0	0	0	0	0	0	0	24	0	24	0	18	1	19	43	43
16:00	17:00	0	0	0	0	0	0	0	0	0	0	20	0	20	0	23	0	23	43	43
17:00	18:00	0	0	0	0	0	0	0	0	0	0	23	0	23	0	21	0	21	44	44
Sub T	otal	0	0	0	0	0	0	2	2	2	1	180	0	181	0	201	1	202	383	385
U-Turns	s (Heav	/y Veh	icles)		0				0	0				0				0	0	0
Tot	al	0	0	0	0	0	0	2	2	2	1	180	0	181	0	201	1	202	383	385

Heavy Vehicles include Buses, Single-Unit Trucks and Articulated Trucks. Further, they ARE included in the Turning Movement Count Summary.

Work Order

Turning Movement Count - Pedestrian Volume Report

BEECHWOOD AVE @ CHAMPLAIN AVE Count Date: Tuesday, August 25, 2015 **Start Time:** 07:00 NB Approach SB Approach EB Approach WB Approach Time Period Total **Total Grand Total** (E or W Crossing) (E or W Crossing) (N or S Crossing) (N or S Crossing) 07:00 07:15 07:15 07:30 07:30 07:45 07:45 08:00 07:00 08:00 08:00 08:15 08:15 08:30 08:30 08:45 08:45 09:00 08:00 09:00 09:00 09:15 09:15 09:30 09:30 09:45 09:45 10:00 09:00 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 11:30 12:30 12:30 12:45 12:45 13:00 13:00 13:15 13:15 13:30 12:30 13:30 15:00 15:15 15:15 15:30 15:30 15:45 15:45 16:00 15:00 16:00 16:00 16:15 16:15 16:30 16:30 16:45 16:45 17:00 16:00 17:00 17:00 17:15 17:15 17:30 17:30 17:45 17:45 18:00

Comment:

17:00 18:00

Total

2018-Mar-16 Page 1 of 1

Work Order

35324

Turning Movement Count - Full Study Summary Report

BEECHWOOD AVE @ CHAMPLAIN AVE

Survey Date: Tuesday, August 25, 2015

Total Observed U-Turns

AADT Factor

0 Northbound:

Southbound: 0 1 .90

Eastbound:

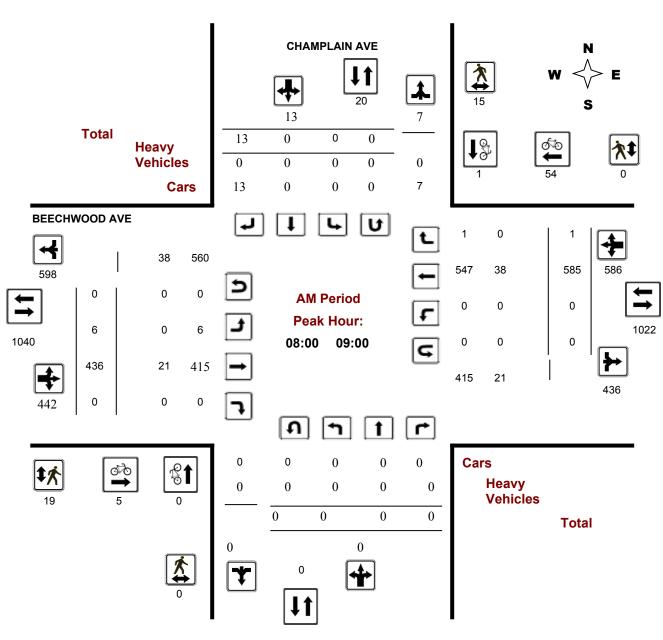
Westbound:

Full Study

REFCH	W O D D	$\Delta \backslash / =$

CHAMPLAIN AVE											BEECHWOOD AVE								
	N	orthbo	ound		S	outhbo	ound				Eastbo	ound			Westbo	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	0	0	0	0	1	0	10	11	11	1	389	0	390	0	480	0	480	870	881
08:00 09:00	0	0	0	0	0	0	13	13	13	6	436	0	442	0	585	1	586	1028	1041
09:00 10:00	0	0	0	0	1	0	8	9	9	4	429	0	433	0	511	4	515	948	957
11:30 12:30	0	0	0	0	2	0	7	9	9	6	498	0	504	0	484	6	490	994	1003
12:30 13:30	0	0	0	0	1	0	6	7	7	5	458	0	463	0	459	5	464	927	934
15:00 16:00	0	0	0	0	1	0	3	4	4	7	529	0	536	0	523	5	528	1064	1068
16:00 17:00	0	0	0	0	1	0	5	6	6	13	546	0	559	0	707	9	716	1275	1281
17:00 18:00	0	0	0	0	0	0	10	10	10	17	531	0	548	0	637	2	639	1187	1197
Sub Total	0	0	0	0	7	0	62	69	69	59	3816	0	3875	0	4386	32	4418	8293	8362
U Turns				0				0	0				0				1	1	1
Total	0	0	0	0	7	0	62	69	69	59	3816	0	3875	0	4386	32	4419	8294	8363
EQ 12Hr	0	0	0	0	10	0	86	96	96	82	5304	0	5386	0	6097	44	6142	11528	11624
Note: These va	alues ar	e calcul	ated by	multiply	ing the	totals b	y the ap	propriate	e expansi	ion fac	tor.		1	.39					
AVG 12Hr	0	0	0	0	9	0	78	86	86	74	4774	0	4848	0	5487	40	5528	10376	10462
Note: These vo	olumes a	are calc	ulated I	by multip	lying th	e Equiv	alent 12	2 hr. total	s by the	AADT	factor.		.9	90					
AVG 24Hr	0	0	0	0	11	0	102	113	113	97	6254	0	6350	0	7188	52	7242	13592	13705
Note: These vo	olumes a	are calc	ulated I	by multip	lying th	e Avera	ge Dail	y 12 hr. t	otals by	12 to 2	4 expans	sion fac	tor. 1	.31					

Comments:

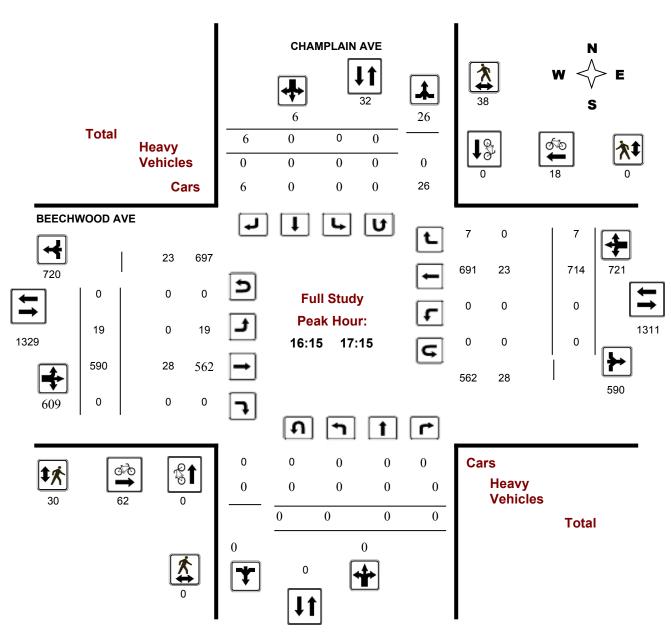

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Turning Movement Count - Full Study Peak Hour Diagram

BEECHWOOD AVE @ CHAMPLAIN AVE

Survey Date: Tuesday, August 25, 2015 WO No: 35324
Start Time: 07:00 Device: Miovision

Comments



Transportation Services - Traffic Services

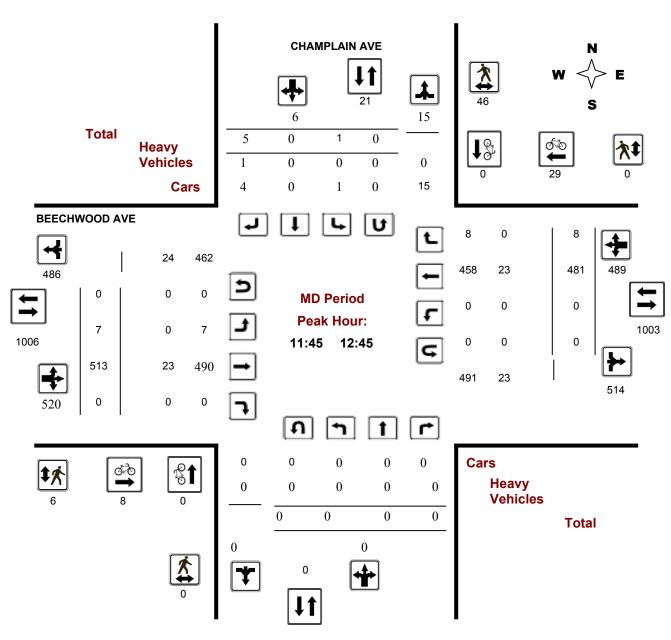
Turning Movement Count - Full Study Peak Hour Diagram

BEECHWOOD AVE @ CHAMPLAIN AVE

Survey Date: Tuesday, August 25, 2015 WO No: 35324
Start Time: 07:00 Device: Miovision

Comments

2018-Mar-16 Page 2 of 4



Transportation Services - Traffic Services

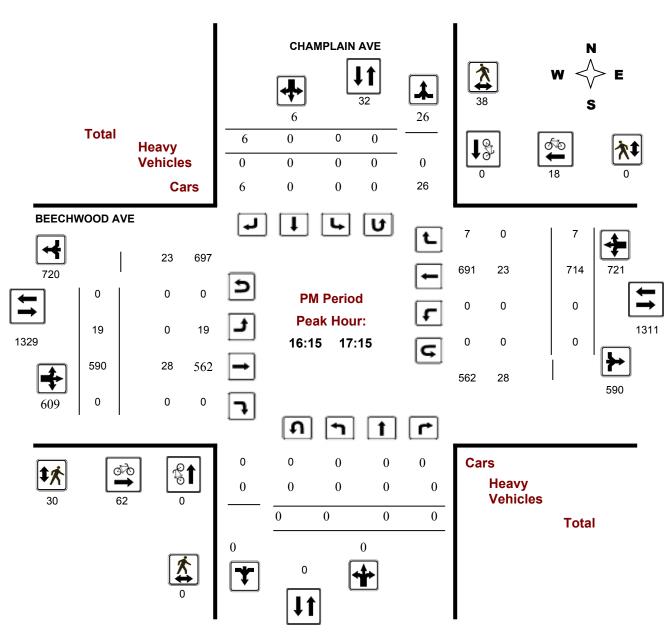
Turning Movement Count - Full Study Peak Hour Diagram

BEECHWOOD AVE @ CHAMPLAIN AVE

Survey Date: Tuesday, August 25, 2015 WO No: 35324
Start Time: 07:00 Device: Miovision

Comments

2018-Mar-16 Page 3 of 4



Transportation Services - Traffic Services

Turning Movement Count - Full Study Peak Hour Diagram

BEECHWOOD AVE @ CHAMPLAIN AVE

Survey Date: Tuesday, August 25, 2015 WO No: 35324
Start Time: 07:00 Device: Miovision

Comments

2018-Mar-16 Page 4 of 4

Turning Movement Count - 15 Min U-Turn Total Report

BEECHWOOD AVE @ CHAMPLAIN AVE

Survey Date: Tu		uesday, August 25, 2015										
Time Pe	eriod	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total						
07:00	07:15	0	0	0	0	0						
07:15	07:30	0	0	0	0	0						
07:30	07:45	0	0	0	0	0						
07:45	08:00	0	0	0	0	0						
08:00	08:15	0	0	0	0	0						
08:15	08:30	0	0	0	0	0						
08:30	08:45	0	0	0	0	0						
08:45	09:00	0	0	0	0	0						
09:00	09:15	0	0	0	0	0						
09:15	09:30	0	0	0	0	0						
09:30	09:45	0	0	0	1	1						
09:45	10:00	0	0	0	0	0						
11:30	11:45	0	0	0	0	0						
11:45	12:00	0	0	0	0	0						
12:00	12:15	0	0	0	0	0						
12:15	12:30	0	0	0	0	0						
12:30	12:45	0	0	0	0	0						
12:45	13:00	0	0	0	0	0						
13:00	13:15	0	0	0	0	0						
13:15	13:30	0	0	0	0	0						
15:00	15:15	0	0	0	0	0						
15:15	15:30	0	0	0	0	0						
15:30	15:45	0	0	0	0	0						
15:45	16:00	0	0	0	0	0						
16:00	16:15	0	0	0	0	0						
16:15	16:30	0	0	0	0	0						
16:30	16:45	0	0	0	0	0						
16:45	17:00	0	0	0	0	0						
17:00	17:15	0	0	0	0	0						
17:15	17:30	0	0	0	0	0						
17:30	17:45	0	0	0	0	0						
17:45	18:00	0	0	0	0	0						
Tota	.1	0	0	0	1	1						

TRAFFIC IMPACT ASSESSMENT (FINAL)

APPENDIX D - SYNCHRO 10 REPORTS

Intersection						
	0.3					
Int Delay, s/veh	0.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	f)		W	
Traffic Vol, veh/h	9	467	594	8	4	10
Future Vol, veh/h	9	467	594	8	4	10
Conflicting Peds, #/hr	27	0	0	27	0	2
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage		0	0	_	0	-
Grade, %	-, π -	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	7	7	0	0	0
Mvmt Flow	10	519	660	9	4	11
Major/Minor M	lajor1	N	Major2		/linor2	
	696	0			1231	694
Conflicting Flow All		U	-			
Stage 1	-	-	-	-	692	-
Stage 2	-	-	-	-	539	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	909	-	-	-	198	446
Stage 1	_	_	-	-	500	_
Stage 2	_	-	_	_	589	-
Platoon blocked, %			_	_	007	
Mov Cap-1 Maneuver	884	_	-		185	433
		-				
Mov Cap-2 Maneuver	-	-	-	-	185	-
Stage 1	-	-	-	-	479	-
Stage 2	-	-	-	-	573	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		17.1	
HCM LOS					С	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBRS	SBLn1
Capacity (veh/h)		884				313
HCM Lane V/C Ratio		0.011	-	-	-	0.05
			-	-		
HCM Control Delay (s)		9.1	0	-	-	17.1
HCM Lane LOS		A	Α	-	-	С
HCM 95th %tile Q(veh))	0	-	-	-	0.2

Intersection						
Int Delay, s/veh	0.2					
Movement	SBL	SBR	NEL	NET	SWT	SWR
Lane Configurations	SBL	אמכ	INEL	INE I	3W1 }	SWK
Traffic Vol, veh/h	0	13	6	476	603	1
Future Vol, veh/h	0	13	6	476	603	1
Conflicting Peds, #/hr	0	20	15	0	003	15
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	-	None	-	None
Storage Length	0	NOTIC -	-	None -	-	None
Veh in Median Storage			-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	90	90	0	7	7	90
Mvmt Flow	0	14	7	529	670	1
IVIVIIIL FIOW	U	14	1	329	070	ı
Major/Minor N	linor2	Λ	/lajor1	١	/lajor2	
Conflicting Flow All	1229	706	686	0	-	0
Stage 1	686	-	-	-	-	-
Stage 2	543	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	198	439	917	-	-	-
Stage 1	504	-	-	-	-	-
Stage 2	586	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	190	424	903	-	-	-
Mov Cap-2 Maneuver	190	-	-	-	-	-
Stage 1	491	-	-	-	-	-
Stage 2	577	-	-	-	-	-
J						
Annroach	CD		МЕ		CW	
Approach	SB		NE		SW	
HCM Control Delay, s			0.1		0	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NEL	NET S	SBLn1	SWT	SWR
Capacity (veh/h)		903	_	424		_
HCM Lane V/C Ratio		0.007	_	0.034		_
HCM Control Delay (s)		9	0	13.8	-	-
HCM Lane LOS		Á	A	В	_	_
HCM 95th %tile Q(veh)	0	-	0.1	-	-
7541 76410 2(1011	7	U		3.1		

	F	₹	×	~	Ĺ	×
Lane Group	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	¥		1>		3112	4
Traffic Volume (vph)	9	15	467	18	18	598
Future Volume (vph)	9	15	467	18	18	598
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.95	1.00	1.00	1.00	1.00	1.00
Frt	0.915		0.995			1.00
Flt Protected	0.915		0.770			0.999
	1542	0	1498	0	0	1684
Satd. Flow (prot) Flt Permitted		U	1490	U	U	0.980
	0.982	0	1400	0	0	
Satd. Flow (perm)	1536	0	1498	0	0	1651
Right Turn on Red	4-	Yes	-	Yes		
Satd. Flow (RTOR)	17		5			
Link Speed (k/h)	50		50			50
Link Distance (m)	65.6		83.6			34.5
Travel Time (s)	4.7		6.0			2.5
Confl. Peds. (#/hr)	4	22		13	13	
Confl. Bikes (#/hr)				15		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	0%	0%	7%	0%	0%	7%
Parking (#/hr)			1			
Adj. Flow (vph)	10	17	519	20	20	664
Shared Lane Traffic (%)						
Lane Group Flow (vph)	27	0	539	0	0	684
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.6	ragnt	0.0	Rigit	Loit	0.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.8		4.8			4.8
, ,	4.0		4.0			4.0
Two way Left Turn Lane	1 07	1 07	1 00	1 07	1 07	1 07
Headway Factor	1.07	1.07	1.23	1.07	1.07	1.07
Turning Speed (k/h)	25	15		15	25	
Number of Detectors	1		2		1	2
Detector Template	Left		Thru		Left	Thru
Leading Detector (m)	2.0		10.0		2.0	10.0
Trailing Detector (m)	0.0		0.0		0.0	0.0
Detector 1 Position(m)	0.0		0.0		0.0	0.0
Detector 1 Size(m)	2.0		0.6		2.0	0.6
Detector 1 Type	CI+Ex		CI+Ex		CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0		0.0	0.0
Detector 1 Queue (s)	0.0		0.0		0.0	0.0
Detector 1 Delay (s)	0.0		0.0		0.0	0.0
Detector 2 Position(m)	0.0		9.4		0.0	9.4
Detector 2 Size(m)			0.6			0.6
Detector 2 Type			CI+Ex			CI+Ex
			CITEX			CITEX
Detector 2 Channel			0.0			0.0
Detector 2 Extend (s)	D1		0.0		D	0.0
Turn Type	Prot		NA		Perm	NA
Protected Phases	2		4		_	8
Permitted Phases					8	
Detector Phase	2		4		8	8
Switch Phase						

	~	₹	*	~	Ĺ	×
Lane Group	NWL	NWR	NET	NER	SWL	SWT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	24.7		24.6		24.6	24.6
Total Split (s)	24.0		66.0		66.0	66.0
Total Split (%)	26.7%		73.3%		73.3%	73.3%
Maximum Green (s)	18.3		60.4		60.4	60.4
Yellow Time (s)	2.4		2.3		2.3	2.3
All-Red Time (s)	3.3		3.3		3.3	3.3
Lost Time Adjust (s)	0.0		0.0			0.0
Total Lost Time (s)	5.7		5.6			5.6
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)	7.0		7.0		7.0	7.0
Flash Dont Walk (s)	11.0		12.0		12.0	12.0
Pedestrian Calls (#/hr)	13		8		0	0
Act Effct Green (s)	8.4		77.0			77.0
Actuated g/C Ratio	0.09		0.86			0.86
v/c Ratio	0.17		0.42			0.48
Control Delay	22.2		4.7			3.1
Queue Delay	0.0		0.0			0.0
Total Delay	22.2		4.7			3.1
LOS	С		Α			Α
Approach Delay	22.3		4.7			3.1
Approach LOS	С		Α			А
Intersection Summary						
Area Type:	Other					
Cycle Length: 90						
Actuated Cycle Length: 9	90					
Offset: 18 (20%), Refere	nced to phas	e 4:NET	and 8:SV	VTL, Sta	art of Gre	en
Natural Cycle: 60	, ,					
0 1 1 7	2 11 1					

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.48

Intersection Signal Delay: 4.2 Intersection LOS: A Intersection Capacity Utilization 67.8% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 5: Beechwood Ave. & St. Charles St.

	y	×	À	~	×	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		- 43→			- 4			- ↔			- 4	
Traffic Volume (vph)	39	12	20	55	14	30	14	409	48	35	527	26
Future Volume (vph)	39	12	20	55	14	30	14	409	48	35	527	26
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.97			0.98			0.99			0.99	
Frt		0.962			0.959			0.986			0.994	
Flt Protected		0.973			0.973			0.998			0.997	
Satd. Flow (prot)	0	1673	0	0	1645	0	0	1660	0	0	1644	0
Flt Permitted		0.787			0.830			0.977			0.951	J
Satd. Flow (perm)	0	1324	0	0	1400	0	0	1624	0	0	1567	0
Right Turn on Red		1021	Yes	Ū	1100	Yes		1021	Yes		1007	Yes
Satd. Flow (RTOR)		20	103		22	103		13	103		5	103
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		95.8			106.2			112.4			86.0	
Travel Time (s)		6.9			7.6			8.1			6.2	
Confl. Peds. (#/hr)	22	0.9	2	2	7.0	22	27	0.1	13	13	0.2	27
, ,	ZZ			Z		ZZ	21		15	13		52
Confl. Bikes (#/hr) Peak Hour Factor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.90		0.90	0.00	0.90
	0.90	0.90	0.90	0.90	0.90	0.90	0.90		0.90		0.90	
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	7%	0%	0%	7%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	4	0
Adj. Flow (vph)	43	13	22	61	16	33	16	454	53	39	586	29
Shared Lane Traffic (%)		=-						=				
Lane Group Flow (vph)	0	78	0	0	110	0	0	523	. 0	0	654	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.09	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	CIIII	6		CIIII	2		i Cilli	4		CIIII	8	
Permitted Phases	6			2			4	7		8	- 0	
Detector Phase	6	6		2	2		4	4		8	8	
Switch Phase	U	U		Z	Z		4	4		0	0	
SWILLII FIIASE												

	4	×	À	F	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	25.7	25.7		25.7	25.7		25.7	25.7		25.7	25.7	
Total Split (s)	26.0	26.0		26.0	26.0		64.0	64.0		64.0	64.0	
Total Split (%)	28.9%	28.9%		28.9%	28.9%		71.1%	71.1%		71.1%	71.1%	
Maximum Green (s)	20.3	20.3		20.3	20.3		58.3	58.3		58.3	58.3	
Yellow Time (s)	2.4	2.4		2.4	2.4		2.4	2.4		2.4	2.4	
All-Red Time (s)	3.3	3.3		3.3	3.3		3.3	3.3		3.3	3.3	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.7			5.7			5.7			5.7	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0		13.0	13.0		13.0	13.0		13.0	13.0	
Pedestrian Calls (#/hr)	2	2		11	11		7	7		12	12	
Act Effct Green (s)		13.0			13.0			69.9			69.9	
Actuated g/C Ratio		0.14			0.14			0.78			0.78	
v/c Ratio		0.38			0.50			0.41			0.54	
Control Delay		31.0			35.2			5.0			8.0	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		31.0			35.2			5.0			8.0	
LOS		С			D			А			А	
Approach Delay		31.0			35.2			5.0			8.0	
Approach LOS		С			D			А			Α	
Intersection Summary												
Area Type:	Other											

Area Type:

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 13 (14%), Referenced to phase 4:NETL and 8:SWTL, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.54

Intersection Signal Delay: 10.4 Intersection LOS: B Intersection Capacity Utilization 69.8% ICU Level of Service C

Analysis Period (min) 15

Intersection						
Int Delay, s/veh	0.2					
	EBL	EBT	WBT	WBR	SBL	SBR
Movement	EDL	€¶.		WDK	Ŋ.	SDK
Lane Configurations	1		740	10	T	L
Traffic Vol, veh/h	4	682	749	10		6
Future Vol, veh/h	4	682	749	10	3	6
Conflicting Peds, #/hr	40 Eroo	0 Eroo	0	40 Eraa	0 Stop	2 Stop
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	4	4	0	0	0
Mvmt Flow	4	758	832	11	3	7
Major/Minor N	1ajor1	Λ	/lajor2	N	Minor2	
Conflicting Flow All	883	0		0	1644	880
	003	U	-		878	
Stage 1		-	-	-		-
Stage 2	-	-	-	-	766	- / 2
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	775	-	-	-	111	349
Stage 1	-	-	-	-	410	-
Stage 2	-	-	-	-	462	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	744	-	-	-	101	334
Mov Cap-2 Maneuver	-	-	-	-	101	-
Stage 1	-	-	-	-	390	-
Stage 2	-	-	-	-	443	-
J						
A			WD		CD	
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		25.1	
HCM LOS					D	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBRS	SBI n1
Capacity (veh/h)	•	744	-	.,,,,	-	189
HCM Lane V/C Ratio		0.006	_	-		0.053
HCM Control Delay (s)	\	9.9	0			25.1
HCM Lane LOS				-	•	
	.\	A	Α	-	-	D
HCM 95th %tile Q(veh	1)	0	-	-	-	0.2

Intersection						
Int Delay, s/veh	0.2					
Movement	SBL	SBR	NEL	NET	SWT	SWR
Lane Configurations	¥.	ODIN	1422	4	<u>5₩1</u>	SVIC
Traffic Vol, veh/h	0	6	20	686	748	7
Future Vol, veh/h	0	6	20	686	748	7
Conflicting Peds, #/hr	2	31	39	0	0	39
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- -	None	-	None	-	None
Storage Length	0	-	-	-	_	-
Veh in Median Storage		_	_	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	4	4	0
Mvmt Flow	0	7	22	762	831	8
WWW. Tiow	U	,		702	001	U
Major/Minor N	1inor2	N	/lajor1	N	/lajor2	
Conflicting Flow All	1682	905	878	0	-	0
Stage 1	874	-	-	-	-	-
Stage 2	808	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	105	338	778	-	-	-
Stage 1	412	-	-	-	-	-
Stage 2	442	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	92	314	747	-	-	-
Mov Cap-2 Maneuver	92	-	-	-	-	-
Stage 1	375	-	-	-	-	-
Stage 2	424	-	-	-	-	-
Annroach	CD		NIE		CW	
Approach	SB		NE 0.0		SW	
HCM Control Delay, s			0.3		0	
HCM LOS	С					
Minor Lane/Major Mvn	nt	NEL	NET S	SBLn1	SWT	SWR
Capacity (veh/h)		747	-			
HCM Lane V/C Ratio		0.03		0.021	_	_
HCM Control Delay (s))	10	0		_	_
HCM Lane LOS		A	A	C	_	_
HCM 95th %tile Q(veh)	0.1	-	0.1	-	-
115W 75W 75W 76W Q(VCI	7	0.1		0.1		

	_	₹	×	~	Ĺ	×
Lane Group	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	¥		7>		J.11	4
Traffic Volume (vph)	27	20	686	29	10	744
Future Volume (vph)	27	20	686	29	10	744
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.97	1.00	1.00	1.00	1.00	1.00
Frt	0.943		0.995			1.00
Flt Protected	0.943		0.770			0.999
	1619	0	1539	0	0	1730
Satd. Flow (prot) Flt Permitted	0.972	U	1039	U	U	0.990
		0	1520	0	0	
Satd. Flow (perm)	1607	0	1539	0	0	1714
Right Turn on Red	00	Yes	_	Yes		
Satd. Flow (RTOR)	22		5			
Link Speed (k/h)	50		50			50
Link Distance (m)	65.6		83.6			34.5
Travel Time (s)	4.7		6.0			2.5
Confl. Peds. (#/hr)	5	10		12	12	
Confl. Bikes (#/hr)				52		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	0%	0%	4%	0%	0%	4%
Parking (#/hr)			1			
Adj. Flow (vph)	30	22	762	32	11	827
Shared Lane Traffic (%)						
Lane Group Flow (vph)	52	0	794	0	0	838
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.6	ragnt	0.0	Rigit	Loit	0.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.8		4.8			4.8
	4.0		4.0			4.8
Two way Left Turn Lane	1 07	1 07	1 22	1 07	1 07	1.07
Headway Factor	1.07	1.07	1.23	1.07	1.07	1.07
Turning Speed (k/h)	25	15		15	25	
Number of Detectors	1		2		1	2
Detector Template	Left		Thru		Left	Thru
Leading Detector (m)	2.0		10.0		2.0	10.0
Trailing Detector (m)	0.0		0.0		0.0	0.0
Detector 1 Position(m)	0.0		0.0		0.0	0.0
Detector 1 Size(m)	2.0		0.6		2.0	0.6
Detector 1 Type	CI+Ex		CI+Ex		CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0		0.0	0.0
Detector 1 Queue (s)	0.0		0.0		0.0	0.0
Detector 1 Delay (s)	0.0		0.0		0.0	0.0
Detector 2 Position(m)	0.0		9.4		0.0	9.4
Detector 2 Size(m)			0.6			0.6
Detector 2 Type			Cl+Ex			CI+Ex
			CITEX			CITEX
Detector 2 Channel			0.0			0.0
Detector 2 Extend (s)	D1		0.0		D	0.0
Turn Type	Prot		NA		Perm	NA
Protected Phases	2		4			8
Permitted Phases					8	
Detector Phase	2		4		8	8
Switch Phase						

	F	₹	×	~	Ĺ	×
Lane Group	NWL	NWR	NET	NER	SWL	SWT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	23.7		24.6		24.6	24.6
Total Split (s)	24.0		66.0		66.0	66.0
Total Split (%)	26.7%		73.3%		73.3%	73.3%
Maximum Green (s)	18.3		60.4		60.4	60.4
Yellow Time (s)	2.4		2.3		2.3	2.3
All-Red Time (s)	3.3		3.3		3.3	3.3
Lost Time Adjust (s)	0.0		0.0			0.0
Total Lost Time (s)	5.7		5.6			5.6
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)	7.0		7.0		7.0	7.0
Flash Dont Walk (s)	11.0		12.0		12.0	12.0
Pedestrian Calls (#/hr)	13		8		0	0
Act Effct Green (s)	9.0		76.5			76.5
Actuated g/C Ratio	0.10		0.85			0.85
v/c Ratio	0.29		0.61			0.58
Control Delay	27.1		7.6			6.7
Queue Delay	0.0		0.0			0.2
Total Delay	27.1		7.6			6.9
LOS	С		А			Α
Approach Delay	27.1		7.6			6.9
Approach LOS	С		А			А
Intersection Summary						
Area Type:	Other					
Cycle Length: 90						

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 18 (20%), Referenced to phase 4:NET and 8:SWTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

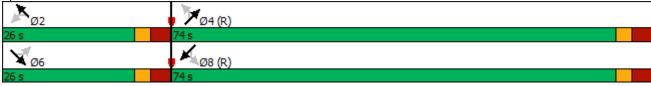
Maximum v/c Ratio: 0.61

Intersection Signal Delay: 7.9 Intersection LOS: A Intersection Capacity Utilization 66.4% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 5: Beechwood Ave. & St Charles St

	y	×	Ţ	~	×	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			- 4			4			4	
Traffic Volume (vph)	31	9	8	57	20	52	4	621	60	29	693	21
Future Volume (vph)	31	9	8	57	20	52	4	621	60	29	693	21
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.98			0.98			0.99			1.00	
Frt		0.977			0.945			0.988			0.996	
Flt Protected		0.969			0.978						0.998	
Satd. Flow (prot)	0	1697	0	0	1634	0	0	1705	0	0	1650	0
Flt Permitted		0.790			0.835			0.997			0.955	J
Satd. Flow (perm)	0	1368	0	0	1392	0	0	1699	0	0	1578	0
Right Turn on Red		1000	Yes		1072	Yes		1077	Yes		1070	Yes
Satd. Flow (RTOR)		9	103		31	103		11	103		3	103
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		95.8			106.2			112.4			178.6	
Travel Time (s)		6.9			7.6			8.1			12.9	
Confl. Peds. (#/hr)	10	0.7	2	2	7.0	10	40	0.1	12	12	12.7	40
Confl. Bikes (#/hr)	10					10	40		52	12		18
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
	0.90	0.90	0.90	0.90	0.90	0.90	0.90	4%	0.90	0.90	4%	0.90
Heavy Vehicles (%)												
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	10	0
Adj. Flow (vph)	34	10	9	63	22	58	4	690	67	32	770	23
Shared Lane Traffic (%)	0	F0	0	0	1.10	0	0	7/4	0	0	005	0
Lane Group Flow (vph)	0	53	0	0	143	0	0	761	0	0	825	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.13	1.07
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	. 31117	6		. 51111	2		. 51117	4		. 51111	8	
Permitted Phases	6			2	L		4			8	-	
Detector Phase	6	6		2	2		4	4		8	8	
Switch Phase												


Minimum Initial (s) 10.0 10.0 10.0 10.0 5.0 5.0 5.0 5.0 Minimum Split (s) 25.7		4	×)	~	×	₹	7	×	~	Ĺ	¥	*
Minimum Split (s) 25.7 24.0 25.7 25	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Total Split (s) 26.0 26.0 26.0 26.0 74.0 74.0 74.0 74.0 Total Split (%) 26.0% 26.0% 26.0% 74.0%	Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	5.0		5.0	5.0	
Total Split (%) 26.0% 26.0% 26.0% 26.0% 74.0% 74.0% 74.0% 74.0% Maximum Green (s) 20.3 20.3 20.3 68.3 68.3 68.3 68.3 Yellow Time (s) 2.4 2.4 2.4 2.4 2.4 2.4 2.4	Minimum Split (s)	25.7	25.7		25.7	25.7		25.7	25.7		25.7	25.7	
Maximum Green (s) 20.3 20.3 20.3 20.3 68.3 68.3 68.3 68.3 Yellow Time (s) 2.4 2.4 2.4 2.4 2.4 2.4 2.4	Total Split (s)	26.0	26.0		26.0	26.0		74.0	74.0		74.0	74.0	
Yellow Time (s) 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	Total Split (%)	26.0%	26.0%		26.0%	26.0%		74.0%	74.0%		74.0%	74.0%	
\	Maximum Green (s)	20.3			20.3	20.3		68.3	68.3		68.3	68.3	
	Yellow Time (s)												
	All-Red Time (s)	3.3			3.3			3.3			3.3		
	Lost Time Adjust (s)												
Total Lost Time (s) 5.7 5.7 5.7 5.7	Total Lost Time (s)		5.7			5.7			5.7			5.7	
· ·	Lead/Lag												
	Lead-Lag Optimize?												
· · ·	Vehicle Extension (s)												
	Recall Mode												
	Walk Time (s)												
, ,	Flash Dont Walk (s)												
· ·	Pedestrian Calls (#/hr)	2			8			7			15		
	Act Effct Green (s)												
	Actuated g/C Ratio												
	v/c Ratio												
•	Control Delay												
	Queue Delay												
	Total Delay												
	LOS												
	Approach Delay												
Approach LOS C C B B	Approach LOS		С			С			В			В	
Intersection Summary	Intersection Summary												
Area Type: Other	Area Type:	Other											
Cycle Length: 100	Cycle Length: 100												
Actuated Cycle Length: 100	Actuated Cycle Length:	100											
Offset: 5 (5%), Referenced to phase 4:NETL and 8:SWTL, Start of Green		ced to phase	4:NETL a	and 8:SV	/TL, Star	t of Greei	า						
Natural Cycle: 75	Natural Cycle: 75												

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.77

Intersection Signal Delay: 16.7 Intersection LOS: B Intersection Capacity Utilization 87.4% ICU Level of Service E

Analysis Period (min) 15

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	4	13	VVDIX	¥ Y	JUIN
Traffic Vol, veh/h	8	433	551	7	4	9
Future Vol, veh/h	8	433	551	7	4	9
Conflicting Peds, #/hr	28	0	0	28	0	2
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	7	7	0	0	0
Mvmt Flow	9	481	612	8	4	10
Major/Minor N	1ajor1	ı	/lajor2	N	/linor2	
						414
Conflicting Flow All	648	0	-		1143	646
Stage 1	-	-	-	-	• • •	-
Stage 2	-	-	-	-	499	- / 2
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	- 1 1	-	-	-	5.4	- 2.2
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	947	-	-	-	223	475
Stage 1	-	-	-	-	527	-
Stage 2	-	-	-	-	614	-
Platoon blocked, %	020	-	-	-	200	1/1
Mov Cap-1 Maneuver	920	-	-	-	208	461
Mov Cap-2 Maneuver	-	-	-	-	208	-
Stage 1	-	-	-	-	505	-
Stage 2	-	-	-	-	597	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		16.2	
HCM LOS					С	
Minor Lane/Major Mvm	ot	EBL	EBT	WBT	WBRS	CDI n1
	Щ	920	LDI	VVDI		335
Capacity (veh/h) HCM Lane V/C Ratio		0.01	-	-	-	0.043
	١	9	0	-		
HCM Control Delay (s) HCM Lane LOS		A	A	-	-	10.2 C
HCM 95th %tile Q(veh	1)	0	A -	-	-	0.1
HOW JULY JULY JULY OF THE	1/	U	-	-	_	U. I

Intersection						
Int Delay, s/veh	0.2					
Movement	SBL	SBR	NEL	NET	SWT	SWR
Lane Configurations	*/			4	1	
Traffic Vol, veh/h	0	12	6	441	559	1
Future Vol, veh/h	0	12	6	441	559	1
Conflicting Peds, #/hr	0	21	16	0	0	16
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	7	7	0
Mvmt Flow	0	13	7	490	621	1
Major/Minor N	linor2	N	/lajor1	١	/lajor2	
Conflicting Flow All	1142	659	638	0	-	0
Stage 1	638	-	-	-	_	-
Stage 2	504	_	_	_	_	_
Critical Hdwy	6.4	6.2	4.1	-	-	_
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	_	_	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	224	467	956	-	-	-
Stage 1	530	-	-	-	-	-
Stage 2	611	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	215	450	940	-	-	-
Mov Cap-2 Maneuver	215	-	-	-	-	-
Stage 1	516	-	-	-	-	-
Stage 2	601	-	-	-	-	-
J						
Approach	SB		NE		SW	
HCM Control Delay, s			0.1		0	
HCM LOS	13.2 B		U. I		U	
HCWI LUS	D					
Minor Lane/Major Mvm	<u>nt</u>	NEL	NETS	SBLn1	SWT	SWR
Capacity (veh/h)		940	-	450	-	-
HCM Lane V/C Ratio		0.007	-	0.03	-	-
HCM Control Delay (s)		8.9	0	13.2	-	-
HCM Lane LOS HCM 95th %tile Q(veh		Α	Α	В	-	-
		0	-	0.1	_	-

	F	₹	×	~	Ĺ	×
Lane Group	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	¥		7>	NEIX	SHIL	<u> </u>
Traffic Volume (vph)	T 8	14	433	17	17	554
• • •	8	14	433	17	17	554
Future Volume (vph)						
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.95		1.00			1.00
Frt	0.914		0.995			
Flt Protected	0.982					0.999
Satd. Flow (prot)	1537	0	1498	0	0	1684
Flt Permitted	0.982					0.982
Satd. Flow (perm)	1531	0	1498	0	0	1655
Right Turn on Red		Yes		Yes		
Satd. Flow (RTOR)	16		5			
Link Speed (k/h)	50		50			50
Link Distance (m)	65.6		83.6			34.5
Travel Time (s)	4.7		6.0			2.5
Confl. Peds. (#/hr)	4	23	0.0	14	14	2.0
Confl. Bikes (#/hr)	7	2.0		23	14	
Peak Hour Factor	0.00	0.90	0.90	0.90	0.90	0.90
	0.90					
Heavy Vehicles (%)	0%	0%	7%	0%	0%	7%
Parking (#/hr)			1	4.0	10	101
Adj. Flow (vph)	9	16	481	19	19	616
Shared Lane Traffic (%)						
Lane Group Flow (vph)	25	0	500	0	0	635
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.6		0.0			0.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.8		4.8			4.8
Two way Left Turn Lane						
Headway Factor	1.07	1.07	1.23	1.07	1.07	1.07
Turning Speed (k/h)	25	15		15	25	
Number of Detectors	1	-10	2	10	1	2
Detector Template	Left		Thru		Left	Thru
Leading Detector (m)	2.0		10.0		2.0	10.0
Trailing Detector (m)	0.0		0.0		0.0	0.0
Detector 1 Position(m)	0.0		0.0		0.0	0.0
Detector 1 Size(m)	2.0		0.6		2.0	0.6
Detector 1 Type	CI+Ex		CI+Ex		CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0		0.0	0.0
Detector 1 Queue (s)	0.0		0.0		0.0	0.0
Detector 1 Delay (s)	0.0		0.0		0.0	0.0
Detector 2 Position(m)			9.4			9.4
Detector 2 Size(m)			0.6			0.6
Detector 2 Type			CI+Ex			CI+Ex
Detector 2 Channel			CITEX			CITEX
			0.0			0.0
Detector 2 Extend (s)	D .		0.0		D.	0.0
Turn Type	Prot		NA		Perm	NA
Protected Phases	2		4			8
Permitted Phases					8	
Detector Phase	2		4		8	8
Switch Phase						

	F	₹	*	~	Ĺ	×
Lane Group	NWL	NWR	NET	NER	SWL	SWT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	24.7		24.6		24.6	24.6
Total Split (s)	24.0		66.0		66.0	66.0
Total Split (%)	26.7%		73.3%		73.3%	73.3%
Maximum Green (s)	18.3		60.4		60.4	60.4
Yellow Time (s)	2.4		2.3		2.3	2.3
All-Red Time (s)	3.3		3.3		3.3	3.3
Lost Time Adjust (s)	0.0		0.0			0.0
Total Lost Time (s)	5.7		5.6			5.6
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)	7.0		7.0		7.0	7.0
Flash Dont Walk (s)	11.0		12.0		12.0	12.0
Pedestrian Calls (#/hr)	13		8		0	0
Act Effct Green (s)	8.4		77.0			77.0
Actuated g/C Ratio	0.09		0.86			0.86
v/c Ratio	0.16		0.39			0.45
Control Delay	22.4		4.4			2.9
Queue Delay	0.0		0.0			0.0
Total Delay	22.4		4.4			2.9
LOS	С		Α			Α
Approach Delay	22.4		4.4			2.9
Approach LOS	С		А			Α
Intersection Summary						
Area Type:	Other					
Cycle Length: 90						
Actuated Cycle Length: 9	90					
Offset: 18 (20%), Refere	nced to phas	se 4:NET	and 8:SV	NTL, Sta	art of Gre	en
Natural Cycle: 60	•					

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.45

Intersection Signal Delay: 4.0 Intersection LOS: A Intersection Capacity Utilization 64.6% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 5: Beechwood Ave. & St. Charles St.

AM Peak Hour

	y	×	À	~	×	₹	ን	×	~	Ĺ	×	*~
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	36	11	18	51	13	28	13	379	44	32	488	24
Future Volume (vph)	36	11	18	51	13	28	13	379	44	32	488	24
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.97			0.98			0.99			0.99	
Frt		0.962			0.959			0.986			0.994	
Flt Protected		0.973			0.973			0.999			0.997	
Satd. Flow (prot)	0	1673	0	0	1643	0	0	1661	0	0	1642	0
Flt Permitted		0.798			0.834			0.981			0.955	
Satd. Flow (perm)	0	1340	0	0	1406	0	0	1630	0	0	1572	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		20			23			13			5	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		95.8			106.2			112.4			86.0	
Travel Time (s)		6.9			7.6			8.1			6.2	
Confl. Peds. (#/hr)	23	0.7	2	2	7.0	23	28	0	14	14	0.2	28
Confl. Bikes (#/hr)			_	_					17			82
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	7%	0%	0%	7%	0%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	4	0
Adj. Flow (vph)	40	12	20	57	14	31	14	421	49	36	542	27
Shared Lane Traffic (%)	40	12	20	37	17	31	17	721	77	30	J-12	21
Lane Group Flow (vph)	0	72	0	0	102	0	0	484	0	0	605	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	LOIT	0.0	rtigitt	Lon	0.0	rtigitt	LOIT	0.0	rtigiti	Lon	0.0	rtigitt
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane		7.0			7.0			7.0			7.0	
Headway Factor	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.09	1.07
Turning Speed (k/h)	25	1.07	1.07	25	1.07	1.07	25	1.07	1.07	25	1.07	1.07
Number of Detectors	1	2	10	1	2	10	1	2	10	1	2	10
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	OITEX	OITEX		OITEX	OITEX		OITEX	OFFER		OFFER	OHEX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0	9.4		0.0	9.4	
Detector 2 Fosition(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Type Detector 2 Channel		OITEX			OITEX			CITEX			OHEX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	i Cilli	6		i Cilli	2		ı CIIII	4		i Cilli	8	
Permitted Phases	6	U		2	Z		4	4		8	U	
Detector Phase	6	6		2	2		4	4		8	8	
Switch Phase	U	U		Z	Z		4	4		U	U	
SWITCH F HUSE												

	4	×	À	F	×	₹	ን	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	25.7	25.7		25.7	25.7		25.7	25.7		25.7	25.7	
Total Split (s)	26.0	26.0		26.0	26.0		64.0	64.0		64.0	64.0	
Total Split (%)	28.9%	28.9%		28.9%	28.9%		71.1%	71.1%		71.1%	71.1%	
Maximum Green (s)	20.3	20.3		20.3	20.3		58.3	58.3		58.3	58.3	
Yellow Time (s)	2.4	2.4		2.4	2.4		2.4	2.4		2.4	2.4	
All-Red Time (s)	3.3	3.3		3.3	3.3		3.3	3.3		3.3	3.3	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.7			5.7			5.7			5.7	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0		13.0	13.0		13.0	13.0		13.0	13.0	
Pedestrian Calls (#/hr)	2	2		11	11		7	7		12	12	
Act Effct Green (s)		12.7			12.7			70.2			70.2	
Actuated g/C Ratio		0.14			0.14			0.78			0.78	
v/c Ratio		0.35			0.47			0.38			0.49	
Control Delay		30.2			33.7			4.7			7.2	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		30.2			33.7			4.7			7.2	
LOS		С			С			Α			Α	
Approach Delay		30.2			33.7			4.7			7.2	
Approach LOS		С			С			Α			Α	
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 13 (14%), Referenced to phase 4:NETL and 8:SWTL, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.49

Intersection Signal Delay: 9.7 Intersection LOS: A Intersection Capacity Utilization 66.2% ICU Level of Service C

Analysis Period (min) 15

Intersection						
Int Delay, s/veh	0.2					
	EBL	EDT	WDT	WDD	SBL	CDD
	EBL	EBT	WBT	WBR		SBR
Lane Configurations		<u>र्</u> स	720	10	¥	,
Traffic Vol, veh/h	4	664	728	10	3	6
Future Vol, veh/h	4	664	728	10	3	6
Conflicting Peds, #/hr	42	0	0	42	0	2
<u> </u>	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	4	4	0	0	0
Mvmt Flow	4	738	809	11	3	7
Major/Minor	lor1		lois=2		Aine 2	
	ajor1		/lajor2		/linor2	
Conflicting Flow All	862	0	-	0	1603	859
Stage 1	-	-	-	-	857	-
Stage 2	-	-	-	-	746	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	789	-	-	-	117	359
Stage 1	-	-	-	-	419	-
Stage 2	-	_	-	_	472	_
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	755	_	_	_	106	343
Mov Cap-2 Maneuver	-	_	_	_	106	-
Stage 1	-	-	-	-	397	
Stage 2		-	-		452	-
Staye 2	-	-	-	-	432	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.1		0		24.2	
HCM LOS					С	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBRS	SRI n1
Capacity (veh/h)		755		VVDI	-	197
HCM Lane V/C Ratio			-	-		0.051
		0.006	-	-		
HCM Control Delay (s)		9.8	0	-	-	24.2
HCM Lane LOS		A	Α	-	-	С
HCM 95th %tile Q(veh)		0	-	-	-	0.2

Intersection						
Int Delay, s/veh	0.2					
Movement	SBL	SBR	NEL	NET	SWT	SWR
Lane Configurations	₩	ODIT	112	4	1	OTTI
Traffic Vol, veh/h	0	6	19	668	727	7
Future Vol, veh/h	0	6	19	668	727	7
Conflicting Peds, #/hr	2	33	41	0	0	41
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	-	
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	4	4	0
Mvmt Flow	0	7	21	742	808	8
Major/Minor N	/linor2	Λ	/lajor1	N	/lajor2	
Conflicting Flow All	1639	886	857	0	//ajuiz -	0
Stage 1	853	880	857	-	-	-
Stage 2	786					
Critical Hdwy	6.4	6.2	4.1	-	-	-
Critical Hdwy Stg 1	5.4	0.2		-	-	-
Critical Hdwy Stg 2	5.4		-	-	-	-
	3.5	3.3	2.2	-	-	-
Follow-up Hdwy	112	346	792	-	-	-
Pot Cap-1 Maneuver	421	340	192	-	-	-
Stage 1	453	-	-	-	-	-
Stage 2	403	-	-	-	-	-
Platoon blocked, %	98	320	759	-	-	-
Mov Cap-1 Maneuver			759	-	-	-
Mov Cap-2 Maneuver	98	-	-	-	-	-
Stage 1	384	-	-	-	-	-
Stage 2	434	-	-	-	-	-
Approach	SB		NE		SW	
HCM Control Delay, s	16.5		0.3		0	
HCM LOS	С					
Minor Lane/Major Mvn	nt	NEL	NET	SBLn1	SW/T	SWR
Capacity (veh/h)	iii.	759	INL I		-	
HCM Lane V/C Ratio		0.028		0.021	-	-
HCM Control Delay (s)	١	9.9		16.5		
HCM Lane LOS		9.9 A	0 A	10.5 C	-	-
HCM 95th %tile Q(veh	1)	0.1	- A	0.1	-	-
HOW FULL VILLE (VEL	1)	0.1	_	0.1	_	_

	*	₹	*	~	Ĺ	×
Lane Group	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	W		1			<u>ું</u>
Traffic Volume (vph)	26	19	668	28	10	724
Future Volume (vph)	26	19	668	28	10	724
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.97	1.00	1.00	1.00	1.00	1.00
Frt	0.943		0.995			1.00
Flt Protected	0.972		0.773			0.999
Satd. Flow (prot)	1617	0	1538	0	0	1730
Flt Permitted	0.972	U	1000	U	U	0.990
Satd. Flow (perm)	1606	0	1538	0	0	1714
	1000	Yes	1000	Yes	U	1/14
Right Turn on Red	21	res	Е	res		
Satd. Flow (RTOR)	21		5			Γ0
Link Speed (k/h)	50		50			50
Link Distance (m)	65.6		83.6			34.5
Travel Time (s)	4.7		6.0			2.5
Confl. Peds. (#/hr)	5	11		13	13	
Confl. Bikes (#/hr)				82		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	0%	0%	4%	0%	0%	4%
Parking (#/hr)			1			
Adj. Flow (vph)	29	21	742	31	11	804
Shared Lane Traffic (%)						
Lane Group Flow (vph)	50	0	773	0	0	815
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Right	Left	Left
Median Width(m)	3.6	giit	0.0	9.11		0.0
Link Offset(m)	0.0		0.0			0.0
Crosswalk Width(m)	4.8		4.8			4.8
Two way Left Turn Lane	4.0		4.0			4.0
Headway Factor	1.07	1.07	1.23	1.07	1.07	1.07
			1.23			1.07
Turning Speed (k/h)	25	15	2	15	25	2
Number of Detectors	1		2		1	2
Detector Template	Left		Thru		Left	Thru
Leading Detector (m)	2.0		10.0		2.0	10.0
Trailing Detector (m)	0.0		0.0		0.0	0.0
Detector 1 Position(m)	0.0		0.0		0.0	0.0
Detector 1 Size(m)	2.0		0.6		2.0	0.6
Detector 1 Type	CI+Ex		CI+Ex		CI+Ex	CI+Ex
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0		0.0	0.0
Detector 1 Queue (s)	0.0		0.0		0.0	0.0
Detector 1 Delay (s)	0.0		0.0		0.0	0.0
Detector 2 Position(m)	0.0		9.4		0.0	9.4
Detector 2 Size(m)			0.6			0.6
Detector 2 Type			CI+Ex			CI+Ex
Detector 2 Channel			OHLY			OFEA
Detector 2 Extend (s)			0.0			0.0
. ,	Drot				Dorm	
Turn Type	Prot		NA		Perm	NA
Protected Phases	2		4		0	8
Permitted Phases					8	
Detector Phase	2		4		8	8
Switch Phase						

	*	₹	*	~	Ĺ	×
Lane Group	NWL	NWR	NET	NER	SWL	SWT
Minimum Initial (s)	5.0		5.0		5.0	5.0
Minimum Split (s)	23.7		24.6		24.6	24.6
Total Split (s)	24.0		66.0		66.0	66.0
Total Split (%)	26.7%		73.3%		73.3%	73.3%
Maximum Green (s)	18.3		60.4		60.4	60.4
Yellow Time (s)	2.4		2.3		2.3	2.3
All-Red Time (s)	3.3		3.3		3.3	3.3
Lost Time Adjust (s)	0.0		0.0			0.0
Total Lost Time (s)	5.7		5.6			5.6
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0		3.0	3.0
Recall Mode	None		C-Max		C-Max	C-Max
Walk Time (s)	7.0		7.0		7.0	7.0
Flash Dont Walk (s)	11.0		12.0		12.0	12.0
Pedestrian Calls (#/hr)	13		8		0	0
Act Effct Green (s)	8.9		76.6			76.6
Actuated g/C Ratio	0.10		0.85			0.85
v/c Ratio	0.28		0.59			0.56
Control Delay	27.1		7.3			6.4
Queue Delay	0.0		0.0			0.2
Total Delay	27.1		7.3			6.6
LOS	С		А			Α
Approach Delay	27.1		7.3			6.6
Approach LOS	С		A			А
Intersection Summary						
Area Type:	Other					
Cycle Length: 90						
Actuated Cycle Length:	90					
Offset: 18 (20%), Refere		se 4:NET	and 8:S\	NTL, Sta	art of Gre	en
Natural Cycle: 70	p			, , , ,		
Control Type: Actuated	Coordinated					

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.59

Intersection Signal Delay: 7.5 Intersection LOS: A Intersection Capacity Utilization 65.6% ICU Level of Service C

Analysis Period (min) 15

PM Peak Hour

		J	*	À	~	×	₹	ን	×	~	Ĺ	×	*~
Traffic Volume (vph)	Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Traffic Volume (vph)	Lane Configurations		4			4			4			4	
Future Volume (viph)		30		8	56		51	4		59	28		20
Ideal Flow (yphpi)		30	9	8	56	19	51	4	604	59	28		
Lane UIII. Factor		1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Fith		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Fit Protected	Ped Bike Factor		0.98			0.98			0.99			1.00	
Satd. Flow (proft)	Frt		0.977			0.945			0.988			0.996	
Satd. Flow (proft)	Flt Protected		0.969			0.978						0.998	
Fit Permitted	Satd. Flow (prot)	0	1697	0	0		0	0	1700	0	0	1650	0
Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Yes Satul. Flow (RTOR) 9 31 11 33 31 178.6			0.798			0.836			0.997			0.957	
Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 9 31 11 33 31 31 31 31	Satd. Flow (perm)	0	1377	0	0	1392	0	0	1695	0	0	1581	0
Sald. Flow (RTOR)							Yes						Yes
Link Speed (k/h) 50 50 50 50 50 106.2 1112.4 178.6 18.1 12.9 4 18.1 12.9 4 18.1 12.9 2 2 11.1 42 18.1 18.1 12.9 2 2 18.1 4.2 18.1 4.2 28.9 28.9 28.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			9			31			11			3	
Link Distance (m)	` ,		50			50						50	
Travel Time (s)													
Confl. Peds. (#/hr)													
Confl. Bikes (#/hr)	` ,	13		2	2		11	42		13	13		42
Peak Hour Factor													
Heavy Vehicles (%)		0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90		0.90	0.90	
Bus Blockages (#/hr)													
Adj. Flow (vph) 33 10 9 62 21 57 4 671 66 31 749 22 Shared Lane Traffic (%) Lane Group Flow (vph) 0 52 0 0 140 0 0 741 0 0 802 0 Enter Blocked Intersection Lane Right No	, ,												
Shared Lane Traffic (%) Lane Group Flow (vph) 0 52 0 0 140 0 0 741 0 0 802 0													
Lane Group Flow (vph)				-				•					
Enter Blocked Intersection No No No No No No No		0	52	0	0	140	0	0	741	0	0	802	0
Lane Alignment Left Left Median Width(m) Left One Right One Left One Als													
Median Width(m) 0.0 0.0 0.0 0.0 Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 4.8 4.8 4.8 4.8 Two way Left Turn Lane Headway Factor 1.07													
Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 4.8 4.8 4.8 4.8 Two way Left Turn Lane Headway Factor 1.07				9			9			9			9
Crosswalk Width(m) 4.8 4.8 4.8 4.8 4.8 Two way Left Turn Lane Headway Factor 1.07 1.00													
Two way Left Turn Lane Headway Factor 1.07													
Headway Factor 1.07													
Turning Speed (k/h) 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 Number of Detectors 1 2 1 0		1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.13	1.07
Number of Detectors 1 2 1 2 1 2 1 2 Detector Template Left Thru Left Thru Left Thru Left Thru Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Detector Template Left Thru Left Thru Left Thru Left Thru Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0	0 1 , ,		2			2			2			2	
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0		Left											
Trailing Detector (m) 0.0													
Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.0													
Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 0.6 Detector 1 Type CI+Ex													
Detector 1 Type CI+Ex									0.6		2.0		
Detector 1 Channel Detector 1 Extend (s) 0.0											CI+Ex		
Detector 1 Queue (s) 0.0													
Detector 1 Queue (s) 0.0	Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m) 9.4 9.4 9.4 9.4 Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex		0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m) 9.4 9.4 9.4 9.4 Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex	Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex			9.4			9.4			9.4				
	Detector 2 Size(m)		0.6			0.6			0.6			0.6	
	Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Delector 2 Channel	Detector 2 Channel												
Detector 2 Extend (s) 0.0 0.0 0.0			0.0			0.0			0.0			0.0	
Turn Type Perm NA Perm NA Perm NA		Perm			Perm			Perm			Perm		
Protected Phases 6 2 4 8												8	
Permitted Phases 6 2 4 8		6			2			4			8		
Detector Phase 6 6 2 2 4 4 8 8			6			2			4			8	
Switch Phase													

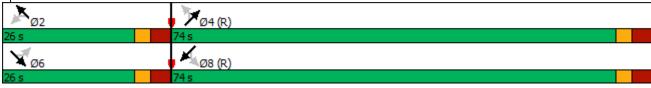
	-	\mathbf{x}	À	F	×	₹	7	×	~	Ĺ	×	*
Lane Group	SEL	SET	SER	NWL	NWT	NWR	NEL	NET	NER	SWL	SWT	SWR
Minimum Initial (s)	10.0	10.0		10.0	10.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	25.7	25.7		25.7	25.7		25.7	25.7		25.7	25.7	
Total Split (s)	26.0	26.0		26.0	26.0		74.0	74.0		74.0	74.0	
Total Split (%)	26.0%	26.0%		26.0%	26.0%		74.0%	74.0%		74.0%	74.0%	
Maximum Green (s)	20.3	20.3		20.3	20.3		68.3	68.3		68.3	68.3	
Yellow Time (s)	2.4	2.4		2.4	2.4		2.4	2.4		2.4	2.4	
All-Red Time (s)	3.3	3.3		3.3	3.3		3.3	3.3		3.3	3.3	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		5.7			5.7			5.7			5.7	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	13.0	13.0		13.0	13.0		13.0	13.0		13.0	13.0	
Pedestrian Calls (#/hr)	2	2		8	8		7	7		15	15	
Act Effct Green (s)		20.3			20.3			68.3			68.3	
Actuated g/C Ratio		0.20			0.20			0.68			0.68	
v/c Ratio		0.18			0.46			0.64			0.74	
Control Delay		30.3			32.5			11.9			15.5	
Queue Delay		0.0			0.0			0.5			0.0	
Total Delay		30.3			32.5			12.4			15.5	
LOS		С			С			В			В	
Approach Delay		30.3			32.5			12.4			15.5	
Approach LOS		С			С			В			В	

Intersection Summary

Area Type: Other

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 5 (5%), Referenced to phase 4:NETL and 8:SWTL, Start of Green


Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.74

Intersection Signal Delay: 16.0 Intersection LOS: B Intersection Capacity Utilization 85.5% ICU Level of Service E

Analysis Period (min) 15

TRAFFIC IMPACT ASSESSMENT (FINAL)

APPENDIX E - TRAFFIC SIGNAL WARRANTS

Signal Warrant Calculation

MAJOR STREET:				Beechw	ood Avenue	VOLUME	AM	PM	FAC	TOR *	
MINIOD OTDEET				01 - 1	Α	1A - All	1,025	1,415	n/a	1,220	
MINOR STREET:			Chapie	eau Avenue	1B - Minor 2A - Major	1,012	9 1,406	100%	11 1,209		
COMMENT				Horizor	n Year 2024		2B - Crossi	4	5	100%	
NUMBER OF APPROA	ACH I AI	NFS:			1	2 x	* Thi	s factor rel	ates avera	ae of the	"peak
TEE INTERSECTION	_	_	NNI		YES		eig	ht hours" to	the avera	_	•
	CONTIO	OKATIC	/14				pili	peak hour	5		
FLOW CONDITIONS:				REST	FREE FLO	W (RURAL) W (URBAN) X					
						r (orter av) X					
						_					
OVERALL WARRANT	•			ISFIED:	YES		Varrant for new into				
				ISFIED: ISFIED:	YES YES		Varrant for existing Varrant for existing				
	C			ISFIED:	YES		Varrant for existing			-	
		8	0% SAT	ISFIED:	YES	NO X	_				
						*	Consider full underg	ound prov	sions if 10	0% for fo	recast tra
WARRANT 1 - MINIMU	JM VEH	ICULAR	VOLUM	1E							
APPROACH LANES		1	2 OR	MORE	A) /ED A OF	150% SATISFI	ED: YES	NO X			
		REST.		REST.	AVERAGE HOUR	120% SATISFI		NO X			
FLOW CONDITION	FLOW	FLOW	FLOW	FLOW	PERIOD 100% SATISF		NO X				
	480	720	600	X 900	1220	80% SATISFI	ED: YES	NO X			
ALL APPROACHES	100		FILLED	000	136%						
						•					
APPROACH LANES	FREE	1 REST.	2 OR FREE	MORE REST.	AVERAGE						
FLOW CONDITION	FLOW	FLOW	FLOW	FLOW	HOUR						
				Х	PERIOD						
MINOR STREET	180	255	180	255	11						
APPROACHES		% FUL	FILLED		4%						
WARRANT 2 - DELAY	TO CR	OSS TR	AFFIC								
APPROACH LANES		1	2 OR	MORE		150% SATISFI	ED: YES	NO X			
	FREE	REST.	FREE	REST.	AVERAGE	120% SATISFI		NO X			
FLOW CONDITION	FLOW	FLOW	FLOW	FLOW	PERIOD		100% SATISFIED: YES NO X				
MA IOD CTDEET	490	720	600	X		80% SATISFI	ED: YES	NO X	l		
MAJOR STREET APPROACHES	480	720 % FUI	600 FILLED	900	1209 134%						
711 11071011120		,01 OL			10 170						
APPROACH LANES		1		MORE	AVERAGE						
ELOW CONDITION		REST.		REST.	HOUR						
FLOW CONDITION	FLOW	FLOW	FLOW	FLOW X	PERIOD						

- 1A MINIMUM VEHICULAR VOLUME: Total vehicle volume on all approaches for average day
- 1B MINIMUM VEHICULAR VOLUME: Total vehicle volume on minor streets

TRAFFIC CROSSING

MAJOR STREET

- 2A DELAY TO CROSS TRAFFIC: Total vehicle volume on major street for average day
- 2B DELAY TO CROSS TRAFFIC: Total vehicle and pedestrian volume crossing major street; comprising: (1) lefts from both minor streets, (2) heaviest through from minor street, (3) 50% of heavier left turn from major street when following criteria met: (a) left turn volume >120 and (b) left turn volume plus opposing volume > 720, (4) pedestrians crossing the major street.

75

TRAFFIC IMPACT ASSESSMENT (FINAL)

APPENDIX F – TDM-SUPPORTIVE DEVELOPMENT AND INFRASTRUCTURE CHECKLIST

TDM-Supportive Development Design and Infrastructure Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

Legend					
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed				
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users				
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance				

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	Building entrances located within 65 m of the closest transit stop.
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	Proposed development site located adjacent to public infrastructure.
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	Proposed development site located adjacent to public infrastructure.

	TDM-s	supportive design & infrastructure measures: Non-residential developments		Check if completed & descriptions, explanations plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)		Depressed Concrete at parking access with TWSI at either ends
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)		Proposed development site located adjacent to public infrastructure.
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)		Proposed development located adjacent to public infrastructure including public sidewalks and bicycle lanes.
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	☑	Main entrance located adjacent to public sidewalk.
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	Ø	Walking routes to the transit stops are secure and visible.
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	\boxtimes	N/A
	1.3	Amenities for walking & cycling		
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	\square	Bench planned on the west side of the structure.
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	\boxtimes	Not required

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	☐ Bicycle parking is provided adjacent to the main entrance, a highly visible and lighted area (not sheltered)
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	The bicycle parking space dimensions are not known
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	10 in person trips expected during PM peak hour and 6 bicycle stalls provided
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season	Exact number of cyclists is unkown due to limited scope of TIA
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	Not Applicable
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	10 in person trips expected during PM peak and 6 biycle stalls provide
	2.3	Shower & change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	
	2.4	Bicycle repair station	
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	Bike repair station located at intersection of Beechwood Ave and Marquette Avenue (270 m from proposed development)

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	There are no on-site transit stops proposed.
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	There are no on-site transit stops proposed.
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non-residential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	The proposed number of parking spaces meets the City of Ottawa By-Law requirements.
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	Should be considered.
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	
	7.	OTHER	
	7.1	On-site amenities to minimize off-site trips	
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands	×