

Environmental Noise Assessments

Riverside South Elementary School

Ottawa, Ontario

REPORT: GWE18-094 - Environmental Noise R1

Prepared For:

Dominique Hamed

Conseil des écoles catholiques du Centre-Est

4000 rue Labelle

Ottawa, ON

K1J 1A1

Prepared By:

Michael Lafortune, Environmental Scientist Joshua Foster, P.Eng., Principal

September 7, 2018

EXECUTIVE SUMMARY

This document describes an environmental noise assessment performed for a proposed Riverside South Elementary School development in Ottawa, Ontario. The development comprises a new two-storey building as well as provisions for future expansion with and eastern wing as well as eight portable classroom units. The site is located southeast of the Ralph Hennessy Avenue & Mount Nebo Way intersection. The site is surrounded on all sides by future low-rise residential dwellings. The major source of transportation noise is Ralph Hennessy Avenue. The major sources of stationary noise are from rooftop mechanical equipment atop the proposed building. Figure 1 illustrates a complete site plan with surrounding context.

The assessment is based on: (i) theoretical noise prediction methods that conform to the Ministry of the Environment and Climate Change (MOECC) and City of Ottawa requirements; (ii) noise level criteria as specified by the City of Ottawa's Environmental Noise Control Guidelines (ENCG); (iii) future vehicular traffic volumes based on the City of Ottawa's Official Plan roadway classifications; and (iv) preliminary architectural drawings and mechanical information received from Pye & Richards Architects Incorporated.

The results of the roadway noise assessment indicate combined noise levels will range between 47 and 62 dBA during the daytime period (07:00-23:00) and between 40 and 55 dBA during the nighttime period (23:00-07:00). The highest noise levels (i.e. 62 dBA) occurs along the development's west façade, which is nearest and most exposed to Ralph Hennessy Avenue. Noise levels fall below the ENCG criteria for upgraded building components, however the development will require force-air heating with provision for air conditioning. Air conditioning will allow windows to remain closed while maintaining a comfortable indoor environment. Because the development is situated within the Airport Vicinity Development Zone, but outside the NEP 25 contour, a following Warning Clause will also be required be placed on all Lease, Purchase and Sale Agreements, as summarized in Section 6.

Stationary noise levels fall below ENCG criteria during all hours of the day. Since the noise levels fall below ENCG criteria, the proposed development is expected to be compatible with the existing and future noise sensitive land uses. A review of final equipment selection and locations by a qualified acoustical engineer will be required prior to installation of the equipment.

TABLE OF CONTENTS

			PAGE
1.	INTR	ODUCTION	1
2.	TERM	MS OF REFERENCE	1
3.	OBJE	ECTIVES	1
4.	MET	HODOLOGY	2
	4.1	Background	2
	4.2	Transportation Noise	2
		4.2.1 Criteria for Transportation Noise	2
		4.2.1 Transportation Source Volumes	3
		4.2.2 Theoretical Transportation Noise Predictions	4
	4.3	Indoor Noise Calculations	4
	4.4	Stationary Noise	5
		4.4.1 Assumptions	5
		4.4.2 Stationary Noise Source Assessment and Criteria	6
		4.4.3 Determination of Noise Source Power Levels	7
		4.4.4 Stationary Source Noise Predictions	7
5.	RESU	JLTS AND DISCUSSION	9
	5.1	Transportation Noise Levels	9
	5.2	Stationary Noise Levels	9
6.	CON	CLUSIONS AND RECOMMENDATIONS	10
FIGU	IRES		
APPI	ENDIC	ES:	
		endix A – STAMSON 5.04 Input and Output Data	

1. INTRODUCTION

Gradient Wind Engineering Inc. (GWE) was retained by Conseil des écoles catholiques du Centre-Est to undertake an environmental noise assessment of the proposed Riverside South Elementary School development in Ottawa, Ontario. This report summarizes the methodology, results and recommendations related to an environmental noise assessment. GWE's scope of work involved assessing exterior and interior noise levels generated by local roadway traffic, as well as consideration of stationary impacts from proposed mechanical equipment. The assessment was performed on the basis of theoretical noise calculation methods conforming to the City of Ottawa¹ and Ministry of the Environment and Climate Change (MOECC)² guidelines. Noise calculations were based on architectural drawings and mechanical information received from Pye & Richards Architects Incorporated, and future traffic volumes corresponding to the City of Ottawa's Official Plan (OP) roadway classifications.

2. TERMS OF REFERENCE

The focus of this environmental noise assessment is the proposed Riverside South Elementary School development, comprising a new two-storey building as well as provisions for future expansion with and eastern wing as well as eight portable classroom units. The site is located southeast of the Ralph Hennessy Avenue & Mount Nebo Way intersection. The site is surrounded on all sides by future low-rise residential dwellings. The major source of transportation noise is Ralph Hennessy Avenue. The major sources of stationary noise are from rooftop mechanical equipment atop the proposed building. Figure 1 illustrates a complete site plan with surrounding context.

3. OBJECTIVES

The main goals of this work are to: (i) calculate the future noise levels on the study building produced by local roadway traffic sources, (ii) calculate the future noise levels on surrounding noise-sensitive properties produced by stationary noise sources associated with the development, and (iii) ensure that interior and exterior noise levels do not exceed the allowable limits specified by the City of Ottawa's Environmental Noise Control Guidelines as outlined in Section 4 of this report.

¹ City of Ottawa Environmental Noise Control Guidelines, January 2016

² Ontario Ministry of the Environment and Climate Change – Environmental Noise Guidelines, Publication NPC-300, Queens Printer for Ontario, Toronto, 2013

4. METHODOLOGY

4.1 Background

Noise can be defined as any obtrusive sound. It is created at a source, transmitted through a medium, such as air, and intercepted by a receiver. Noise may be characterized in terms of the power of the source or the sound pressure at a specific distance. While the power of a source is characteristic of that particular source, the sound pressure depends on the location of the receiver and the path that the noise takes to reach the receiver. Measurement of noise is based on the decibel unit, dBA, which is a logarithmic ratio referenced to a standard noise level (2×10^{-5} Pascals). The 'A' suffix refers to a weighting scale, which better represents how the noise is perceived by the human ear. With this scale, a doubling of power results in a 3 dBA increase in measured noise levels and is just perceptible to most people. An increase of 10 dBA is often perceived to be twice as loud.

4.2 Transportation Noise

4.2.1 Criteria for Transportation Noise

For vehicle traffic, the equivalent sound energy level, L_{eq} , provides a measure of the time varying noise levels, which is well correlated with the annoyance of sound. It is defined as the continuous sound level, which has the same energy as a time varying noise level over a period of time. For roadways, the L_{eq} is commonly calculated on the basis of a 16-hour (L_{eq16}) daytime (07:00-23:00) / 8-hour (L_{eq8}) nighttime (23:00-07:00) split to assess its impact on residential buildings. The City of Ottawa's Environmental Noise Control Guidelines (ENCG) specifies that the recommended indoor noise limit (that is relevant to this study) is 45 dBA for schools, as listed in Table 1. To account for deficiencies in building construction, theses levels should be targeted toward 42 dBA.

TABLE 1: INDOOR SOUND LEVEL CRITERIA (ROAD & RAIL)3

Type of Space	Time Period	L _{eq} (dBA)		
Type of Space	Time Period	Road	Rail	
General offices, reception areas, retail stores, etc.	07:00 - 23:00	50	45	
Living/dining/den areas of residences, hospitals, schools , nursing/retirement homes, day-care centres, theatres, places of worship, libraries, individual or semi-private offices, conference rooms, etc.	07:00 – 23:00	45	40	
Sleeping quarters of hotels/motels	23:00 – 07:00	45	40	
Sleeping quarters of residences, hospitals, nursing/retirement homes, etc.	23:00 – 07:00	40	35	

Predicted noise levels at the plane of window (POW) dictate the action required to achieve the recommended sound levels. An open window is considered to provide a 10 dBA reduction in noise, while a standard closed window is capable of providing a minimum 20 dBA noise reduction⁴. Therefore, where noise levels exceed 55 dBA daytime and 50 dBA nighttime, the ventilation for the building should consider the need for having windows and doors closed, which normally triggers the need for central air conditioning. Where noise levels exceed 65 dBA daytime and 60 dBA nighttime, building components will require higher levels of sound attenuation⁵.

The sound level criterion for outdoor living areas is 55 dBA, which applies during the daytime (07:00 to 23:00). When noise levels exceed 55 dBA, mitigation must be provided to reduce noise levels where technically and administratively feasible to acceptable levels at or below the criterion. The only outdoor living area associated with the development would be the outdoor classroom.

4.2.1 Transportation Source Volumes

The ENCG dictates that noise calculations should consider future sound levels based on a roadway's classification at the mature state of development. Therefore, roadway traffic volumes are based on the roadway classifications outlined in the City of Ottawa's Official Plan (OP) and Transportation Master Plan⁶ which provide additional details on future roadway expansions. Transitway volumes have been assumed

³ Adapted from ENCG 2016 – Tables 2.2b and 2.2c

⁴ Burberry, P.B.. (2014). Mitchell's Environment and Services. Routledge, Page 125

⁵ MOECC, Environmental Noise Guidelines, NPC 300 – Part C, Section 7.1.3

⁶ City of Ottawa Transportation Master Plan, November 2013

based on nearby station information from OC Transpo. Average Annual Daily Traffic (AADT) volumes are then based on data in Table B1 of the ENCG for each roadway classification. Table 2 (below) summarizes the AADT values used for each roadway included in this assessment.

TABLE 2: ROADWAY TRAFFIC DATA

Segment	Roadway / Transit	Speed Limit	Traffic
	Class	(km/h)	Volumes
Ralph Hennessy Avenue	2-UCU	40	8,000

4.2.2 Theoretical Transportation Noise Predictions

Noise predictions were performed with the aid of the MOECC computerized noise assessment program, STAMSON 5.04, for road and rail analysis. Roadway traffic noise calculations were performed by treating each roadway segment as separate line sources of noise, and by using existing building locations as noise barriers. In addition to the traffic volumes summarized in Table 2, theoretical noise predictions were based on the following parameters:

- Truck traffic on all roadways was taken to comprise 5% heavy trucks and 7% medium trucks, as per ENCG requirements for noise level predictions.
- The day/night split was taken to be 92% / 8% respectively for all streets.
- Reflective and absorptive intermediate ground surfaces based on specific source-receiver path
 ground characteristics. Pavement, such as roads and parking lots, is considered as reflective
 ground, while vegetated space is considered as absorptive ground.
- Site is considered to be flat or gently sloping.

Noise receptors were strategically identified at six (6) locations around the proposed building, (see Figure 2). A complete set of input and output data from all STAMSON 5.04 calculations are available in Appendix A, and STAMSON input parameters are illustrated in Figure 3-5.

4.3 Indoor Noise Calculations

The difference between outdoor and indoor noise levels is the noise attenuation provided by the building envelope. According to common industry practice, complete walls and individual wall elements are rated according to the Sound Transmission Class (STC). The STC ratings of common commercial walls built in

conformance with the Ontario Building Code (2012) typically exceed STC 35, depending on exterior cladding, thickness and interior finish details. For example, 6" metal stud walls with gypsum board sheathing can achieve STC 45 or more. Standard good quality double-glazed non-operable windows can have STC ratings ranging from 25 to 40, depending on the window manufacturer, pane thickness and interpane spacing. As previously mentioned, the windows are the known weak point in a partition.

As per Section 4.2, when daytime noise levels (from road and rail sources) at the plane of the window exceed 65 dBA, calculations must be performed to evaluate the sound transmission quality of the building components to ensure acceptable indoor noise levels. The calculation procedure⁷ considers:

- Window type and total area as a percentage of total room floor area
- Exterior wall type and total area as a percentage of the total room floor area
- Acoustic absorption characteristics of the room
- Outdoor noise source type and approach geometry
- Indoor sound level criteria, which varies according to the intended use of a space

Based on published research⁸, exterior walls possess specific sound attenuation characteristics that are used as a basis for calculating the required STC ratings of windows in the same partition. Due to the limited information, available at the time of the study, which was prepared for site plan approval, detailed floor layouts and building elevations have not been finalized; therefore, detailed STC calculations could not be performed at this time. As a guideline, the anticipated STC requirements for windows have been estimated based on the overall noise reduction required for each intended use of space (STC = outdoor noise level – targeted indoor noise levels).

4.4 Stationary Noise

4.4.1 Assumptions

Preliminary mechanical information for the development has been provided by Pye & Richards Architects Incorporated. A review of final equipment selection and locations by a qualified acoustical engineer will be required prior to installation of the equipment. The following assumptions have been included in the analysis:

⁷ Building Practice Note: Controlling Sound Transmission into Buildings by J.D. Quirt, National Research Council of Canada, September 1985

⁸ CMHC, Road & Rail Noise: Effects on Housing

- (i) The locations, quantity and tonnage of rooftop units have been assumed based on direction from Pye & Richards Architects Incorporated.
- (ii) The sound data of rooftop units is based on manufacture's data.
- (iii) During the daytime and evening period (07:00 23:00), the rooftop mechanical units (RTU) on the building are in full operation.
- (iv) During the nighttime period (23:00 07:00), the rooftop mechanical units on the building are in operation 50% of the time.
- (v) Screening effects of buildings and parapets have been considered in the modelling. Parapet heights are assumed to be a minimum of 0.7 m above the roof deck.

The equipment considered in the model consisted of:

- (i) S1,2,9 AAON Model RN 9 & 11 TON
- (ii) S3 AAON Model RN 8 & 10 TON
- (iii) S4,7 AAON Model RQ 4-6 RN 6 & 7 TON
- (iv) S5 AAON Model RN 25 & 30 TON
- (v) S6,8 AAON Model RN 13-20 TON

4.4.2 Stationary Noise Source Assessment and Criteria

For stationary sources, the L_{eq} is calculated on an hourly interval, while for roadways, the L_{eq} is calculated on the basis of a 16-hour daytime / 8-hour nighttime split. Noise criteria taken from the ENCG apply to points of reception (POR). A POR is defined under ENCG as "any location on a noise sensitive land use where noise from a stationary source is received", this can be an outdoor point of reception or at the plane of window. A POR can be located on an existing or zoned for future use premises of permanent or seasonal residences, hotels/motels, nursing/retirement homes, rental residences, hospitals, camp grounds, and noise sensitive buildings such as schools, and daycare facilities. According to the ENCG, the recommended maximum noise level for a suburban (Class 2) environment at a POR is either the lowest one-hour background noise level due to other sources, or the exclusionary limits outlined in Table 3, whichever is higher.

TABLE 3: EXCLUSIONARY LIMITS FOR CLASS 2 AREA

Time of Day	Outdoor Points of Reception	Plane of Window
07:00 – 19:00	50	50
19:00 – 23:00	45	50
23:00 – 07:00	N/A	45

4.4.3 Determination of Noise Source Power Levels

Table 4 summarizes the sound power levels of each source assumed in our analysis. Source locations are illustrated in Figure 6. Rooftop equipment sound power data is for the manufacture's test data.

TABLE 4: EQUIPMENT SOUND POWER LEVELS (dBA)

	Height above roof/grade (m)	Frequency (Hz)								
Source ID		63	125	250	500	1000	2000	4000	8000	Total
S1,2,9	1.5	66	71	74	79	78	75	72	69	84
S 3	1.5	70	75	78	83	82	79	76	73	88
S4,7	1.5	63	68	71	76	75	72	69	66	81
S5	1.5	68	74	76	81	80	77	74	71	86
S6,8	1.5	73	78	81	86	85	82	79	76	91

4.4.4 Stationary Source Noise Predictions

The impact of the stationary noise sources on the nearby residential areas was determined by Predictor-Lima. A total of ten (10) receptor locations were chosen around the site to measure the noise impact at points of reception (POR) during the daytime and evening period (07:00-23:00), as well as the nighttime period (23:00-07:00). POR locations included outdoor points of reception (OPOR) and the plane of windows (POW) of the adjacent residential properties, as well as on-site locations. Sensor locations are described in Table 5 and illustrated in Figure 7. All units were represented as point sources in the Predictor model. Table 6 below contains Predictor-Lima calculation settings. These settings are typical and have been based on ISO 9613 standards and guidance from the MOECC.

Ground absorption over the study area was determined based on topographical features (such as water, concrete, grassland, etc.). An absorption value of 0 is representative of hard ground, while a value of 1 represents grass, and similar soft surface conditions. Existing and proposed buildings were added to the model to account for screening and reflection effects from building façades. A Predictor-Lima sample output is available in Appendix B, further modelling data are available upon request.

TABLE 5: RECEPTOR LOCATIONS

Receptor Number	Location	Height Above Grade (m)
R1	POW – Lot 51	4.5
R2	OPOR – Lot 51	1.5
R3	POW – Lot 272	4.5
R4	POW – Lot 212	4.5
R5	OPOR – Lot 212	1.5
R6	POW – Lot 174	4.5
R7	OPOR – Lot 174	1.5
R8	POW – Lot 149	4.5
R9	POW – Lot 146	4.5
R10	POW – Lot 143	4.5

TABLE 6: CALCULATION SETTINGS

Parameter	Setting
Meteorological correction method	Single value for CO
Value C0	2
Default ground attenuation factor	1
Ground attenuation factor for roadways and paved areas	0
Temperature (K)	283.15
Pressure (kPa)	101.33
Air humidity (%)	70

5. RESULTS AND DISCUSSION

5.1 Transportation Noise Levels

The results of the roadway traffic noise calculations are summarized in Table 7 below. A complete set of input and output data from all STAMSON 5.04 calculations are available in Appendix A.

TABLE 7: EXTERIOR NOISE LEVELS DUE TO TRANSPORTATION SOURCES

Receptor Number	Plane of Window	Roadway Noise Level (dBA)		
Number	Receptor Location	Day	Night	
1	1 st Floor North Façade	59	52	
2	1 st Floor South Façade	58	51	
3	1 st Floor West Façade	62	55	
4	Future Portable Units North Façade	47	40	
5	Preschool Play Area	58	50	
6	Infant Play Area	51	44	

The results of the current analysis indicate that combined noise levels will range between 47 and 62 dBA during the daytime period (07:00-23:00) and between 40 and 55 dBA during the nighttime period (23:00-07:00). The highest noise levels (i.e. 62 dBA) occurs along the development's west façade, which is nearest and most exposed to Ralph Hennessy Avenue. Noise levels fall below the ENCG criteria for upgraded building components, however the development will require force-air heating with provision for air conditioning. Air conditioning will allow windows to remain closed while maintaining a comfortable indoor environment.

5.2 Stationary Noise Levels

As Table 8 (below) summarizes, noise levels fall below ENCG criteria during all hours of the day. Noise contours at 1.5 m above grade can be seen in Figure 8 and 9 for daytime/evening and nighttime conditions. Since the noise levels fall below ENCG criteria, the proposed development is expected to be compatible with the existing and future noise sensitive land uses.

TABLE 8: NOISE LEVELS FROM STATIONARY SOURCES

Receptor		1-HR L	զ (dBA)	ENCG Crite	Meets	
Number	Receptor Location	Daytime/ Evening	Night	Daytime/ Evening	Night	ENCG
R1	POW – Lot 51	43	40	50	45	Yes
R2	OPOR – Lot 51	40	37	45	N/A	Yes
R3	POW – Lot 272	43	40	50	45	Yes
R4	POW – Lot 212	45	42	50	45	Yes
R5	OPOR – Lot 212	42	39	45	N/A	Yes
R6	POW – Lot 174	40	37	50	45	Yes
R7	OPOR – Lot 174	42	39	45	N/A	Yes
R8	POW – Lot 149	42	39	50	45	Yes
R9	POW – Lot 146	44	41	50	45	Yes
R10	POW – Lot 143	43	40	50	45	Yes

6. CONCLUSIONS AND RECOMMENDATIONS

The results of the current analysis indicate that transportation noise levels will range between 47 and 62 dBA during the daytime period (07:00-23:00) and between 40 and 55 dBA during the nighttime period (23:00-07:00). The highest noise levels (i.e. 62 dBA) occurs along the development's west façade, which is nearest and most exposed to Ralph Hennessy Avenue. Noise levels fall below the ENCG criteria for upgraded building components, however the development will require force-air heating with provision for air conditioning. Air conditioning will allow windows to remain closed while maintaining a comfortable indoor environment. Because the development is situated within the Airport Vicinity Development Zone, but outside the NEP 25 contour, the following Warning Clause⁹ will also be required be placed on all Lease, Purchase and Sale Agreements, as summarized below.

"Purchasers/tenants are advised that due to the proximity of the airport, noise from the airport and indicial aircraft may at times interfere with outdoor or indoor activities."

⁹ City of Ottawa Environmental Noise Control Guidelines, January 2016

Stationary noise levels fall below ENCG criteria during all hours of the day. Since the noise levels fall below ENCG criteria, the proposed development is expected to be compatible with the existing and future noise sensitive land uses. A review of final equipment selection and locations by a qualified acoustical engineer will be required prior to installation of the equipment.

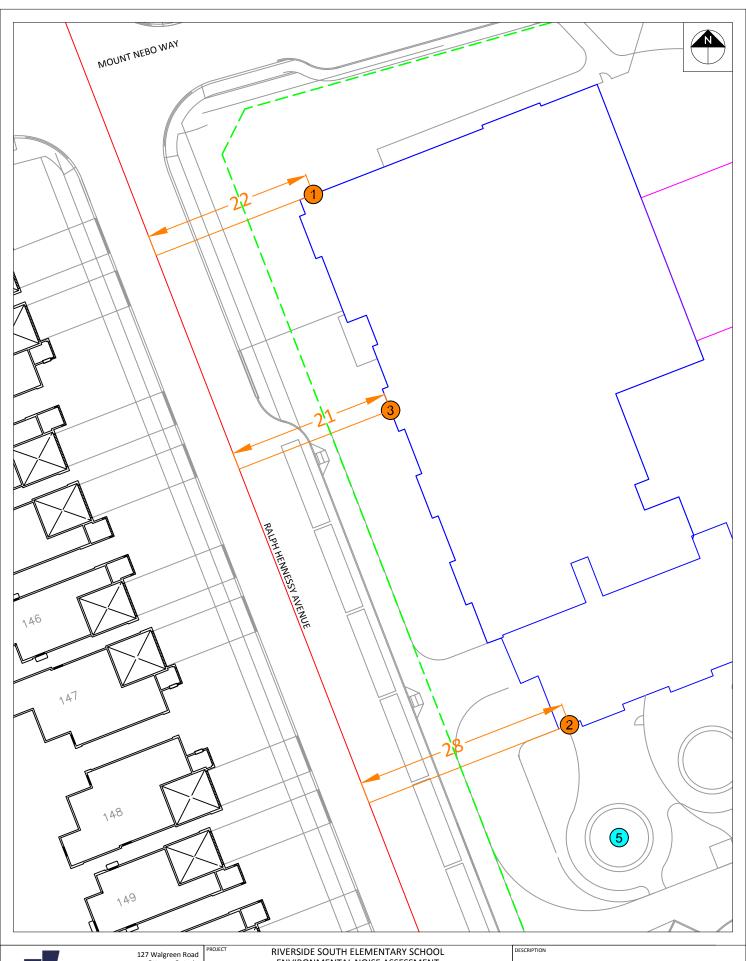
This concludes our assessment and report. If you have any questions or wish to discuss our findings please advise us. In the interim, we thank you for the opportunity to be of service.

Yours truly,

Gradient Wind Engineering Inc.

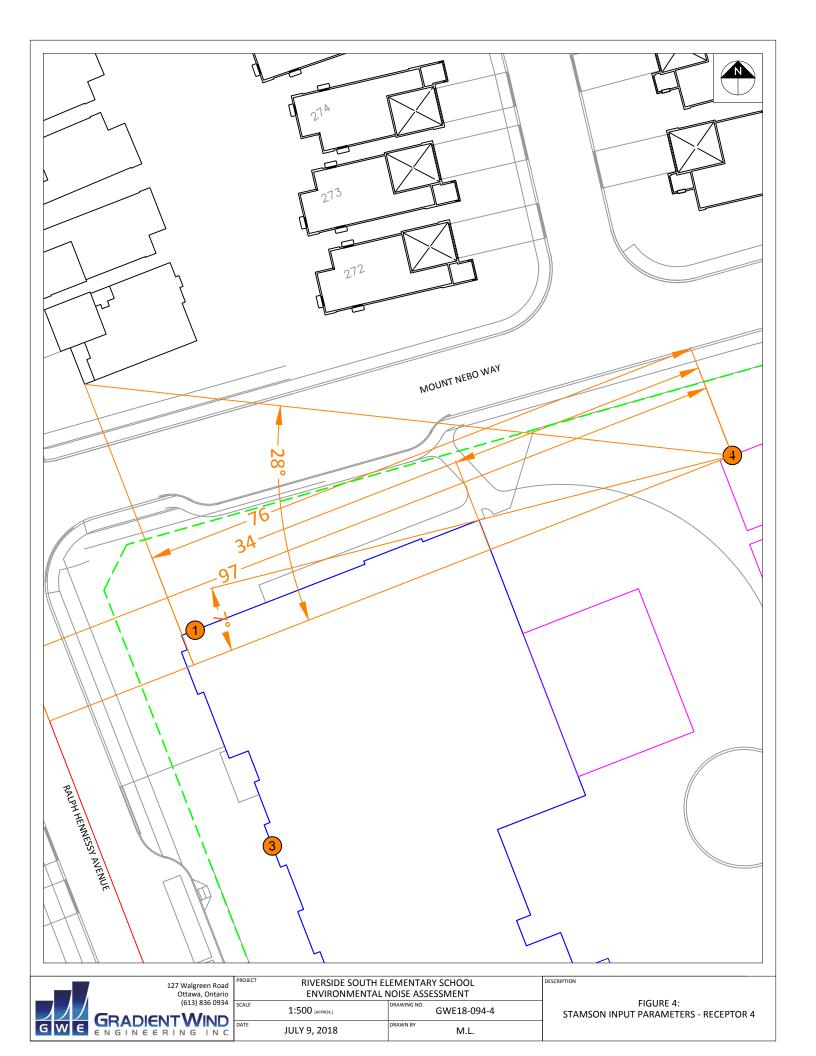
Michael Lafortune, C.E.T. Environmental Scientist

GWE18-094 - Environmental Noise R1


J. R. FOSTER 100155655

SOUNCE OF ONTARIO

Joshua Foster, P.Eng. Principal





127 Walgreen Road Ottawa, Ontario (613) 836 0934 G

	ENVIRONMENTAL NOISE ASSESSMENT						
SCALE	1:500 (APPROX.)	GWE18-094-3					
DATE	JULY 9, 2018	DRAWN BY M.L.					

FIGURE 3: STAMSON INPUT PARAMETERS - RECEPTOR 1-3

GRADIENT WIND

GWE GRADIENT WIND

GNEERINGINGERINGING

FIGURE 5: STAMSON INPUT PARAMETERS - RECEPTOR 5-6

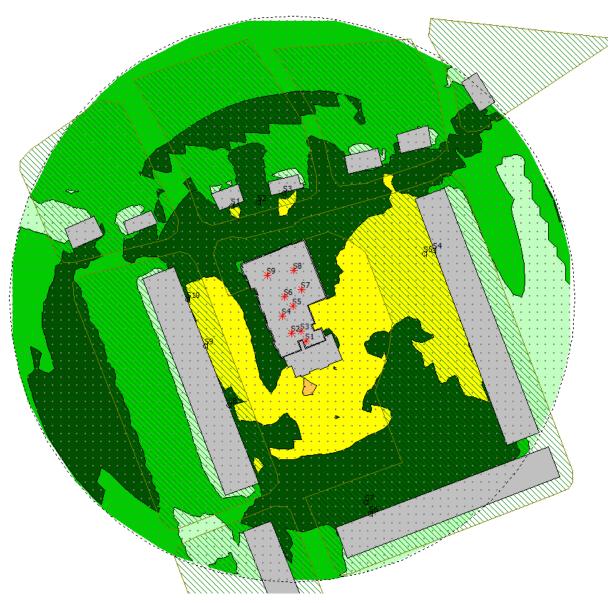
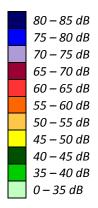



FIGURE 8: DAYTIME/EVENING STATIOANRY NOISE CONTOURS (1.5 METERS ABOVE GRADE)

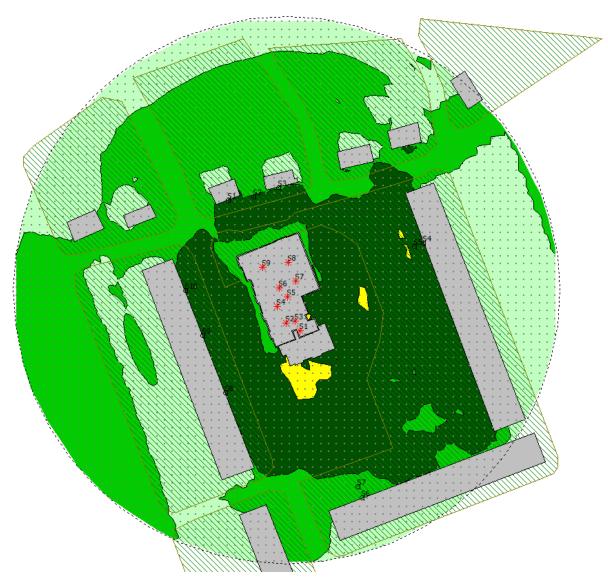
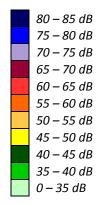



FIGURE 9: NIGHTTIME STATIONARY NOISE CONTOURS (1.5 METERS ABOVE GRADE)

APPENDIX A STAMSON 5.04 - INPUT AND OUTPUT DATA

NORMAL REPORT Date: 09-07-2018 11:56:02 STAMSON 5.0

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r1.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Ralph (day/night) _____

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod *
Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Ralph (day/night)

: 0.00 deg 90.00 deg . U.UU deg
. U .UU Angle1 Angle2 (No woods.)

0 / 0

2 (Reflective ground surface)

Receiver source distance : 22.00 / 22.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Ralph (day)

Source height = 1.50 m

ROAD (0.00 + 59.28 + 0.00) = 59.28 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

--

0 90 0.00 63.96 0.00 -1.66 -3.01 0.00 0.00 0.00

59.28

--

Segment Leq: 59.28 dBA

Total Leq All Segments: 59.28 dBA

Results segment # 1: Ralph (night)

Source height = 1.50 m

ROAD (0.00 + 51.69 + 0.00) = 51.69 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj

Барыс

90 0.00 56.36 0.00 -1.66 -3.01 0.00 0.00 0.00

0

51.69

--

Segment Leq: 51.69 dBA

Total Leq All Segments: 51.69 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 59.28

(NIGHT): 51.69

NORMAL REPORT Date: 09-07-2018 11:56:07 STAMSON 5.0

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r2.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Ralph (day/night) _____

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod *
Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Ralph (day/night)

: -90.00 deg 0.00 deg Angle1 Angle2 0 / 0 (No woods.)

2 (Reflective ground surface)

Receiver source distance : 28.00 / 28.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Ralph (day)

Source height = 1.50 m

ROAD (0.00 + 58.23 + 0.00) = 58.23 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

--

-90 0 0.00 63.96 0.00 -2.71 -3.01 0.00 0.00 0.00

58.23

--

Segment Leq : 58.23 dBA

Total Leq All Segments: 58.23 dBA

Results segment # 1: Ralph (night)

Source height = 1.50 m

ROAD (0.00 + 50.64 + 0.00) = 50.64 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

·----

__

-90 0 0.00 56.36 0.00 -2.71 -3.01 0.00 0.00 0.00 50.64

Segment Leq: 50.64 dBA

Total Leq All Segments: 50.64 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 58.23 (NIGHT): 50.64

NORMAL REPORT Date: 09-07-2018 11:56:11 STAMSON 5.0

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r3.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Ralph (day/night) _____

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod *
Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Ralph (day/night)

: -90.00 deg 90.00 deg Angle1 Angle2 Wood depth 0 / 0 : 0 (No woods.)

No of house rows : Surface :

Surface 2 (Reflective ground surface)

Receiver source distance : 21.00 / 21.00 m Receiver height : 1.50 / 1.50 m

: 1 (Flat/gentle slope; no barrier) Topography

Reference angle : 0.00

Results segment # 1: Ralph (day) ______

Source height = 1.50 m

ROAD (0.00 + 62.49 + 0.00) = 62.49 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 90 0.00 63.96 0.00 -1.46 0.00 0.00 0.00 0.00

62.49

Segment Leg: 62.49 dBA

Total Leq All Segments: 62.49 dBA

Results segment # 1: Ralph (night) _____

Source height = 1.50 m

ROAD (0.00 + 54.90 + 0.00) = 54.90 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj

-90 90 0.00 56.36 0.00 -1.46 0.00 0.00 0.00 0.00 54.90

Segment Leq: 54.90 dBA

Total Leq All Segments: 54.90 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 62.49 (NIGHT): 54.90

NORMAL REPORT Date: 09-07-2018 11:56:16 STAMSON 5.0

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r4.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Ralph1 (day/night)

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod *
Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Ralph1 (day/night)

: 0.00 deg 28.00 deg Angle1 Angle2 Wood depth Wood depth : 0
No of house rows : 0 / 0
Surface : 2 (No woods.)

2 (Reflective ground surface)

Receiver source distance : 97.00 / 97.00 m Receiver height : 1.50 / 1.50 m

: 2 (Flat/gentle slope; with barrier) Topography

Barrier angle1 : 0.00 deg Angle2 : 7.00 deg
Barrier height : 8.00 m

Barrier receiver distance : 34.00 / 34.00 m

Source elevation : 0.00 m Receiver elevation : 0.00 m Barrier elevation : 0.00 m Reference angle : 0.00

Road data, segment # 2: Ralph2 (day/night)

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h 0 % Road gradient :

: 1 (Typical asphalt or concrete) Road pavement

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 2: Ralph2 (day/night)

Angle1 Angle2 : 28.00 deg 90.00 deg
Wood depth : 0 (No woods.)
No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 97.00 / 97.00 m Receiver height : 1.50 / 1.50 m

Topography : 2 (Flat/gentle slope)
Barrier angle1 : 28.00 deg Angle2 : 90.00 deg
Barrier height : 6.00 m 2 (Flat/gentle slope; with barrier)

Barrier receiver distance : 76.00 / 76.00 m

Source elevation : 0.00 mReceiver elevation : 0.00 m
Barrier elevation : 0.00 m
Reference angle : 0.00


```
Results segment # 1: Ralph1 (day)
_____
Source height = 1.50 m
Barrier height for grazing incidence
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Barrier Top (m)
-----
    1.50! 1.50! 1.50!
                              1.50
ROAD (0.00 + 24.35 + 46.52) = 46.54 \text{ dBA}
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj
SubLeq
______
    7 0.00 63.96 0.00 -8.11 -14.10 0.00 0.00 -17.40
24.35
      28 0.00 63.96 0.00 -8.11 -9.33 0.00 0.00 0.00
46.52
_____
```

Segment Leq : 46.54 dBA

Results segment # 2: Ralph2 (day)

Source height = 1.50 m

Barrier height for grazing incidence

ROAD (0.00 + 40.17 + 0.00) = 40.17 dBA Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

28 90 0.00 63.96 0.00 -8.11 -4.63 0.00 0.00 -11.05 40.17

Segment Leq: 40.17 dBA

Total Leq All Segments: 47.44 dBA


```
Results segment # 1: Ralph1 (night)
_____
Source height = 1.50 m
Barrier height for grazing incidence
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Barrier Top (m)
-----
    1.50! 1.50! 1.50!
                                1.50
ROAD (0.00 + 16.75 + 38.92) = 38.95 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj
SubLeq
______
     7 0.00 56.36 0.00 -8.11 -14.10 0.00 0.00 -17.40
16.75
      28 0.00 56.36 0.00 -8.11 -9.33 0.00 0.00 0.00
38.92
```

Segment Leq : 38.95 dBA

Results segment # 2: Ralph2 (night)

Source height = 1.50 m

Barrier height for grazing incidence

Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Barrier Top (m)

1.50! 1.50! 1.50! 1.50

ROAD (0.00 + 32.58 + 0.00) = 32.58 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj

SubLeq

·

--

28 90 0.00 56.36 0.00 -8.11 -4.63 0.00 0.00 -11.05

32.58

--

Segment Leq: 32.58 dBA

Total Leq All Segments: 39.85 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 47.44 (NIGHT): 39.85

NORMAL REPORT Date: 09-07-2018 11:56:20 STAMSON 5.0

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r5.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Ralph (day/night) _____

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod *
Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Ralph (day/night)

: -90.00 deg 90.00 deg Angle1 Angle2 Wood depth Wood depth
No of house rows : 0 / 0 : 0 (No woods.)

1 (Absorptive ground surface)

Receiver source distance : 29.00 / 29.00 m Receiver height : 1.50 / 1.50 m

: 2 (Flat/gentle slope; with barrier) Topography

Barrier angle1 : 77.00 deg Angle2 : 90.00 deg
Barrier height : 8.00 m

Barrier receiver distance: 7.00 / 7.00 m

0.00 m Source elevation : Receiver elevation : 0.00 m
Barrier elevation : 0.00 m
Reference angle : 0.00

Results segment # 1: Ralph (day)

Source height = 1.50 m

Barrier height for grazing incidence

Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Barrier Top (m)

1.50 ! 1.50 ! 1.50 ! 1.50

ROAD (57.65 + 35.57 + 0.00) = 57.67 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj

SubLeq

-90 77 0.66 63.96 0.00 -4.75 -1.56 0.00 0.00 57.65

--

77 90 0.18 63.96 0.00 -3.38 -13.29 0.00 0.00 -11.71

35.57

--

Segment Leg: 57.67 dBA

Total Leq All Segments: 57.67 dBA

Results segment # 1: Ralph (night)

Source height = 1.50 m

Barrier height for grazing incidence

Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Barrier Top (m)

1.50 ! 1.50 ! 1.50 ! 1.50

ROAD (50.05 + 27.98 + 0.00) = 50.08 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj

SubLeq

-90 77 0.66 56.36 0.00 -4.75 -1.56 0.00 0.00 0.00 50.05

77 90 0.18 56.36 0.00 -3.38 -13.29 0.00 0.00 -11.71 27.98

--

Segment Leg: 50.08 dBA

Total Leq All Segments: 50.08 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 57.67

(NIGHT): 50.08

NORMAL REPORT Date: 09-07-2018 11:56:25 STAMSON 5.0

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r6.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Ralph (day/night) _____

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod *
Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h
Road gradient : 0 %
Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Ralph (day/night)

: -90.00 deg 90.00 deg Angle1 Angle2 Wood depth Wood depth
No of house rows : : 0 (No woods.)

0 / 0 1 (Absorptive ground surface)

Receiver source distance : 56.00 / 56.00 m Receiver height : 1.50 / 1.50 m

: 2 (Flat/gentle slope; with barrier) Topography

Barrier angle1 : 13.00 deg Angle2 : 90.00 deg
Barrier height : 4.00 m

Barrier receiver distance : 29.00 / 29.00 m

Source elevation : 0.00 m Receiver elevation : 0.00 m
Barrier elevation : 0.00 m
Reference angle : 0.00

Results segment # 1: Ralph (day)

Source height = 1.50 m

Barrier height for grazing incidence

ROAD (50.79 + 42.05 + 0.00) = 51.33 dBA

Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

Бирпед

13 42.05

90 0.42 63.96 0.00 -8.12 -4.91 0.00 0.00 -8.87

--

Segment Leg: 51.33 dBA

Total Leq All Segments: 51.33 dBA

Results segment # 1: Ralph (night)

Source height = 1.50 m

Barrier height for grazing incidence

---90 13 0.66 56.36 0.00 -9.50 -3.67 0.00 0.00 0.00
43.19
--13 90 0.42 56.36 0.00 -8.12 -4.91 0.00 0.00 -8.87
34.46

--

Segment Leg: 43.74 dBA

Total Leq All Segments: 43.74 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 51.33 (NIGHT): 43.74

APPENDIX B PREDICTOR LIMA - OUTPUT DATA

Testfile	openend:	########	10:28:08	AM

Cross													
	section	for	receiver	S6	(Id=-73)	and	source	S1	(Id=78)				
ItemType	Id	Distance	Х	Υ	Hgrnd	Height	GrndFact	Cluster					
Receiver	S6	0			_	-							
Ground	LWPOLYLIN	23.36	418.17	362.39	0	0	0						
Building	LWPOLYLIN	95.406	392.97	429.89	0	4	0		1				
Building	LWPOLYLIN	109.706	387.97	443.29	0	7.6	0		1				
Barrier	LWPOLYLIN	110.206	387.8	443.76	7.6	0.7	0		1				
Pointsourc	c(\$1	114.271	386.38	447.57	7.6	1.5	0						
L(wr)	66	66	 5 71	. 74	 79	78	75	7	72 69				
A(ground)	-3	-3	-2.15	-2.44	-2.69	-2.69	-2.69	-2.6	59 -2.69				
A(barrier)	0	0) (0	0	0	0		0 0				
A(veg)	0	0) (0	0	0	0		0 0				
A(sit)	0	0) (0	0	0	0		0 0				
A(bld)	0	0) (0	0	0	0		0 0				
A(air)	0	0.01	0.05	0.12	0.22	0.42	1.11	3.7	75 13.37				
A(geo)	52.16	52.16	52.16	52.16	52.16	52.16	52.16	52.1	16 52.16				
C(meteo)	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9	95 0.95				
L(p)	15.89	15.88	3 20	23.21	28.36	27.17	23.48	17.8	34 5.22		32.74		
Cross [Reflection	section n in	for facade	receiver LWPOLYLI		(Id=-73)	and	source	S1	(Id=78)				
ItemType		Distance		Υ	Hgrnd	Height	GrndFact	Cluster					
Receiver	S6	0			0								
Ground	LWPOLYLIN												
Building	LWPOLYLIN								1				
Building	LWPOLYLIN								1				
Barrier	LWPOLYLIN								1				
Ground	LWPOLYLIN				0	0	1						
	LWPOLYLIN				7.0								
							1						
Ground	LWPOLYLIN	177.087	366.56	497.61	0	0	1 0						
Pointsourc			366.56	497.61	0	0	1 0						
		177.087	366.56	497.61 447.57	0 7.6 	0 1.5	1 0 0		72 69				
Pointsourc	c(\$1 66	177.087 230.911	366.56 386.38 	497.61 447.57 74	0 7.6 79	0 1.5 78	1 0 0 75	7					
Pointsource L(wr)	c(\$1 66	177.087 230.911 66	366.56 386.38 386.38 5 71 5 -2.76	497.61 447.57 74 -3.05	0 7.6 79 -3.28	0 1.5 78 -3.28	1 0 0 75	-3.2	28 -3.28				
Pointsource L(wr) A(ground)	66 -3.66	177.087 230.911 66 -3.66	366.56 386.38 386.38 5 71 5 -2.76	497.61 447.57 74 -3.05	0 7.6 79 -3.28 8.07	0 1.5 78 -3.28 8.09	1 0 0 75 -3.28 8.12	-3.2 8.1	28 -3.28				
Pointsourd L(wr) A(ground) A(barrier) A(veg)	66 -3.66 8.43	177.087 230.911 66 -3.66 8.43	7 366.56 386.38 5 71 6 -2.76 7.54	497.61 447.57 74 -3.05 7.83	0 7.6 79 -3.28 8.07 0	0 1.5 78 -3.28 8.09 0	1 0 0 75 -3.28 8.12	-3.2 8.1	-3.28 18 8.29				
Pointsource L(wr) A(ground) A(barrier)	66 -3.66 8.43	177.087 230.911 	366.56 386.38 371 36 -2.76 3 7.54	497.61 447.57 74 -3.05 7.83 0	0 7.6 79 -3.28 8.07 0	0 1.5 78 -3.28 8.09 0	1 0 0 75 -3.28 8.12 0	-3.2 8.1	28 -3.28 18 8.29 0 0				
Pointsourd L(wr) A(ground) A(barrier) A(veg) A(sit)	66 -3.66 8.43 0	177.087 230.911 	366.56 386.38 371 36 -2.76 3 7.54 0 (497.61 447.57 74 -3.05 7.83 0	0 7.6 79 -3.28 8.07 0 0	0 1.5 78 -3.28 8.09 0 0	1 0 0 75 -3.28 8.12 0 0	-3.2 8.1	28 -3.28 18 8.29 0 0 0 0 0 0				
Pointsourd L(wr) A(ground) A(barrier) A(veg) A(sit) A(bld) A(air) A(geo)	66 -3.66 8.43 0 0 0 0.01 58.26	177.087 230.911 	366.56 386.38 7.16 7.2.76 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.54	497.61 447.57 74 -3.05 7.83 0 0 0 0 0 0.24 58.26	0 7.6 79 -3.28 8.07 0 0 0 0.45 58.26	0 1.5 78 -3.28 8.09 0 0 0 0.84 58.26	1 0 0 75 -3.28 8.12 0 0 0 2.23 58.26	7.5 58.2	28 -3.28 18 8.29 10 0 10 0				
Pointsourd L(wr) A(ground) A(barrier) A(veg) A(sit) A(bld) A(air)	66 -3.66 8.43 0 0 0 0.01 58.26	177.087 230.911 	366.56 386.38 7.16 3 -2.76 3 7.54 0 0 0 0 0 0 5 58.26	497.61 447.57 74 -3.05 7.83 0 0 0 0 0.24 58.26	0 7.6 79 -3.28 8.07 0 0 0 0.45 58.26	0 1.5 78 -3.28 8.09 0 0 0 0.84 58.26	1 0 0 75 -3.28 8.12 0 0 0 2.23 58.26	7.5 58.2	28 -3.28 18 8.29 0 0 0 0 0 0 67 26.99 26 58.26				
Pointsourd L(wr) A(ground) A(barrier) A(veg) A(sit) A(bld) A(air) A(geo) A(refl) C(meteo)	66 -3.66 8.43 0 0 0 0.01 58.26	177.087 230.911 	366.56 386.38 7.16 3 -2.76 3 7.54 0 0 0 0 0 0 5 58.26	497.61 447.57 74 -3.05 7.83 0 0 0 0 0.24 58.26	0 7.6 79 -3.28 8.07 0 0 0 0.45 58.26	0 1.5 78 -3.28 8.09 0 0 0 0.84 58.26	1 0 0 75 -3.28 8.12 0 0 0 2.23 58.26	7.5 58.2	28 -3.28 18 8.29 0 0 0 0 0 0 67 26.99 26 58.26		200		
Pointsourd L(wr) A(ground) A(barrier) A(veg) A(sit) A(bld) A(air) A(geo) A(refl) C(meteo)	66 -3.66 8.43 0 0 0 0.01 58.26	177.087 230.911 	366.56 386.38 7.15 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.5	497.61 447.57 74 -3.05 7.83 0 0 0 0.24 58.26	0 7.6 7.6 79 -3.28 8.07 0 0 0.45 58.26 0.95	0 1.5 78 -3.28 8.09 0 0 0.84 58.26	1 0 0 75 -3.28 8.12 0 0 0 2.23 58.26 0.95	7.5 58.2 	28 -3.28 18 8.29 0 0 0 0 0 0 67 26.99 26 58.26 0.95		-200		
Pointsourd L(wr) A(ground) A(barrier) A(veg) A(sit) A(bld) A(air) A(geo) A(refl) C(meteo)	66 -3.66 8.43 0 0 0.01 58.26 	177.087 230.911 	366.56 386.38 7.15 3 -2.76 3 7.54 0 0 0 0 5 58.26 	497.61 447.57 74 -3.05 7.83 0 0 0 0.24 58.26 	0 7.6 7.6 79 -3.28 8.07 0 0 0.45 58.26 0.95	0 1.5 78 -3.28 8.09 0 0 0.84 58.26 0.95	1 0 0 75 -3.28 8.12 0 0 0 2.23 58.26 0.95	7.5 58.2 0.9	28 -3.28 18 8.29 0 0 0 0 0 0 67 26.99 26 58.26 0.95	1000		4000	8000
Pointsourd L(wr) A(ground) A(barrier) A(veg) A(sit) A(bld) A(air) A(geo) A(refl) C(meteo)	66 -3.66 8.43 0 0 0.01 58.26 0.95	177.087 230.911 	7 366.56 386.38 7.56 7.57 7 .57 9 0 0 9 0 0 5 58.26 	497.61 447.57 74 -3.05 7.83 0 0 0 0 0.24 58.26 0.95	0 7.6 7.6 7.7 7.28 8.07 0 0 0.45 58.26 0.95	0 1.5 78 -3.28 8.09 0 0 0.84 58.26 0.95	1 0 0 75 -3.28 8.12 0 0 0 2.23 58.26 0.95	7.5 58.2 0.9	28 -3.28 18 8.29 0 0 0 0 0 0 67 26.99 26 58.26 0.95	1000 27.17	2000	4000 17.84	8000 5.22
Pointsourd L(wr) A(ground) A(barrier) A(veg) A(sit) A(bld) A(air) A(geo) A(refl) C(meteo)	66 -3.66 8.43 0 0 0.01 58.26 0.95	177.087 230.911 	7 366.56 386.38 7.56 7.57 7 .57 9 (0) 9 (0	497.61 447.57 74 -3.05 7.83 0 0 0 0 0.24 58.26 0.95	0 7.6 7.6 79 -3.28 8.07 0 0 0.45 58.26 0.95	0 1.5 78 -3.28 8.09 0 0 0.84 58.26 0.95	1 0 0 75 -3.28 8.12 0 0 0 2.23 58.26 0.95	7.5 58.2 0.9	28 -3.28 18 8.29 0 0 0 0 0 0 67 26.99 26 58.26 0.95	1000 27.17		17.84	8000 5.22
Pointsourd L(wr) A(ground) A(barrier) A(veg) A(sit) A(bld) A(air) A(geo) A(refl) C(meteo)	66 -3.66 8.43 0 0 0.01 58.26 0.95	177.087 230.911 	7 366.56 386.38 7.56 -2.76 7 7.54 7 7.54 9 0.09 5 58.26 	497.61 447.57 74 -3.05 7.83 0 0 0 0.24 58.26 0.95	0 7.6 7.6 7.7 7.28 8.07 0 0 0.45 58.26 0.95	0 1.5 78 -3.28 8.09 0 0 0.84 58.26 0.95 63 15.88	1 0 0 0 75 -3.28 8.12 0 0 0 2.23 58.26 0.95 125 20	7.5 8.1 7.5 58.2 0.9	28 -3.28 18 8.29 0 0 0 0 0 0 67 26.99 26 58.26	27.17	2000 23.48	17.84	

Height Per	LAe	eq.	32	63	125	250	500	1000	2000	4000	8000
4.5	1	32.74	15.89	15.88	20	23.21	28.36	27.17	23.48	17.84	5.22
4.5	2										
4.5	3	29.73	12.88	12.87	16.99	20.2	25.35	24.16	20.47	14.83	2.21
4.5	4										

0.0001; 154; 0.0000008; TTimerSet - overhead 0.0006; 77; 0.0000072; WriteTestString

Testfile closed: ####### 10:28:08 AM
